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Abstract: The natural landscape has been impacted by human settlement, development 

and agricultural practices. One of the major impacts of these anthropogenic activities is 

excessive upland soil erosion. During runoff events, eroded soil, or sediment, is 

transported to surface-water bodies and may impair water quality. To evaluate water-

quality impairments, turbidity, suspended sediment, color and dissolved organic carbon 

have been commonly monitored in surface waters. In this study, water-quality and 

channel-stability parameters were evaluated in three parts. The objective of the first part 

was to develop a turbidity prediction methodology which can be integrated into existing 

runoff-erosion models. Based on the soil primary-particle sizes (sand, silt and clay), a 

turbidity prediction methodology was developed and applied to selected soils from 

Oklahoma and South Carolina. The methodology can be an add-on tool to runoff-erosion 

models to predict turbidity. The objective of the second part was to predict the water 

color of water samples with heterogeneous organic sources. Results showed a high 

correlation (R
2
 = 0.99 and Nash-Sutcliffe efficiency = 0.95) between predicted and 

measured color for multiple sources in a laboratory study. The results of this study could 

be useful to predict water color in runoff from field-scale watersheds. The objective for 

the third part was to develop and apply an integrated approach to evaluate channel 

planform stability in an agricultural watershed with limited field data using historical 

records such as plat maps, aerial images, flow records, and relevant historical events. The 

approach has been applied in the Cobb Creek watershed in west-central Oklahoma. The 

results of the third part showed the length of the stream-channel network increased 

between 1873 and 2013 in the watershed and also found a decreasing trend in channel 

lateral migrations and planform stability  in the mainstem of Cobb Creek since 1940. 

Overall, the methodologies and findings presented in this dissertation are useful for 

modeling and assessing the impacts of anthropogenic activities on water quality in runoff 

and streams and can be useful tools in shaping future watershed-management decisions. 
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CHAPTER I 
 

 

INTRODUCTION 

 

 More than 50% of the earth‟s landscape has been degraded, altered, modified, and 

disturbed by anthropogenic impacts (Hooke et al 2012). Such anthropogenic impacts are 

the results of a wide range of human activities in the landscape. Agricultural practices, 

grazing, irrigation, deforestation, construction activities, dam operations, and urban 

developments are some of the human activities that may degrade earth‟s landscape. 

Tillage and application of fertilizers and soil amendments are common in agricultural, 

gardening, and large-scale nurseries. The biodiversity of global ecosystems have been 

impaired by such anthropogenic activities (MEA 2005; Morris 2010). To minimize the 

human impacts on landscapes, best management practices (BMPs) may be implemented. 

Soil conservation practices and channel restoration in the river landscape are commonly 

used to reduce erosion, maintain water quality, and improve channel stability. Such 

practices are monitored and assessed using water-quality parameters such as turbidity, 

color, dissolved organic matter, and suspended sediment concentration (Gergel  et al. 

2002; USEPA 2009). In addition, channel stability and associated historic channel 

morphological changes may be evaluated to help guide future sustainable river 

management methodologies (Brierley and Hooke 2015). 
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 In this dissertation, to assist future landscape and watershed management 

decisions, two indicators of anthropogenic impacts on landscape are investigated. The 

first investigation is using regression relationships to estimate turbidity and water color in 

hydrologic water-quality models, which is related to water-quality impairments due to 

soil erosion, sediment, and nutrients; the second investigation is that of the impacts of 

anthropogenic disturbances on fluvial system. Three different research projects are 

presented based on those two investigations. 

 The objective of the first research project was to develop a turbidity prediction 

methodology, which can be integrated into existing runoff-erosion models. Overall 

objective of the second research project was to predict water color on water samples with 

heterogeneous organic source. Similarly, the objective of third project was to develop and 

apply an integrated approach to evaluate channel planform stability in an agricultural 

watershed with limited field data using historical records such as plat maps, aerial 

images, and relevant historical events. In this chapter, background of the three research 

projects is presented. 

Background on Research Project One 

 Eroded soil particles deposited into the landscapes and transported into surface 

waters are commonly called sediment (Julien 2010). Excessive sediment loading is a 

primary cause for the listing of surface waters on the USEPA 303(d) for impacted waters 

(USEPA 2009). The sediment transported into surface waters is often measured in terms 

of suspended sediment. Suspended sediment concentration (SSC) and related parameters 

have been used as indicators of water-quality impairment. Turbidity is one of the SSC-

related parameters that is used an indicator. The relationship between SSC and turbidity 
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has been extensively studied (Gippel 1995; Lewis 1996; Wass et al. 1997; Holliday et al. 

2003; Zabaleta et al. 2007; Minella et al. 2008; Patil 2010; Williamson and Crawford 

2011; Marttila and Kløve 2012; Line et al. 2013; Rügner et al. 2013; Perkins et al. 2014; 

Slaets et al. 2014). 

 The term turbidity originated in the literature by Parmelee and Ellms (1899). They 

first introduced turbidity as it related to suspended sediment. Today turbidity is well 

known as the light scattering property of water that resembles, to some extent, water 

clarity. Clarity and turbidity are two different parameters, but the terms are sometimes 

used interchangeable in a physical sense because highly turbid water decreases clearness, 

or increases the cloudiness of water by reducing light reflectance and penetration 

(Davies-Colley and Smith 2001; Kirk 1985). The turbidity theory, principles and 

measurements techniques are well defined and discussed in the literature (Sadar 1998; 

2004; Lawer 2005; Omar and MatJafri 2009). Lawer (2005) has an in-depth description 

of turbidity, its effects on particle sizes, and applications. Turbidity is commonly 

measured in nephelometric turbidity units (NTU) with a turbidity meter (ASTM 2011; 

USEPA 1999; APHA et al. 2012). 

 Turbidity has been shown a proxy for several water-quality parameters. Rügner et 

al. (2014) demonstrated a strong relationship between turbidity and polycyclic aromatic 

hydrocarbons (PAHs) present in streams. PAHs are USEPA priority pollutants (Yan et al. 

2004). Turbidity can also be a proxy for total nitrogen present in river water (Kim and 

Furumai 2013). In their study, Kim and Furumai developed a relationship that predicted 

total nitrogen based on turbidity and electrical conductivity in the Teguri River 

watershed, Japan. In addition to this, turbidity has been shown as an indirect 
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measurement for particulate organic nitrogen and organic carbon in agricultural land in 

Vietnam (Slaets et al. 2014). Based on the studies in Utah and Minnesota watersheds, 

turbidity has been considered as a proxy measurement for total phosphorous and total 

suspended sediment (TSS) concentration (Jones et al. 2011; Ruzycki et al. 2014). Recent 

studies by Ruzycki et al. (2011) indicated a relationship between turbidity and total 

mercury levels in the Minnesota Rivers.  

 Besides nutrient pollutants, turbidity has often been used to evaluate the pathogen 

levels in surface water bodies (Brookes et al. 2005; Johnson et al. 2010; LeChevallier and 

Norton 1992; USEPA 1999). In addition to the pollutants and pathogens, turbidity can be 

a surrogate for evaluating the aquatic habitat potential in the surface waters. Hazelton and 

Grossman (2009) showed changes in foraging pattern of largemouth bass (Micropterus 

salmoides) at different turbidity levels. For a suitable fish habitat, optimum turbidity is 

required based on the species types (Lloyd 1987). The feedback between suspended 

sediment and turbidity on aquatic species have been discussed extensively in the 

literature (Kirk 1991; Vogel and Beauchamp 1999; Henley et al. 2000; Bilotta and 

Brazier 2008; Jönsson et al. 2013; Awata et al. 2011; Kemp et al. 2011; Jönsson et al. 

2013; Rosewarne et al. 2013). Turbidity has also been shown to have a direct link to 

deterioration of aesthetic appearances of surface water bodies (Davies‐Colley and Smith 

2001; Pflüger et al. 2010). 

 In the USA, several runoff-erosion models have been developed to help erosion or 

sediment control BMPs in landscapes. For example the Sediment, Erosion and Discharge 

by Computer Aided Design (SEDCAD) by Warner et al. (1998), the Sedimentology by 

Distributed Modeling Techniques (SEDIMOT) by Barfield et al. (2006), and SEDPRO 
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(Harp et al. 2008) are widely used runoff-erosion models to manage sediment control 

BMPs (Hoomehr and Schwartz 2012). These models predict SSC based on the percent of 

silt, sand, and clay particles. However, these models to not currently have a method for 

predicting turbidity. 

 

Background on Research Project Two 

 During runoff events, organic matter in various forms enters into receiving waters 

along with eroded soil and sediment. The dissolved portion of organic matter is 

commonly called dissolved organic carbon (DOC) (Thurman 1985; Collier 1987). The 

organic-matter containing runoff is often colored in the nature (APHA et al. 2012). DOC 

and the optical property of water called color are considered water-quality parameters. 

Aesthetic appearances and aquatic habitat are directly linked with water color (Davies‐

Colley et al. 1987; Smith et al. 1995; Wissel et al. 2003; Novoa et al. 2015). DOC is 

commonly measured to evaluate the carbon cycle and aquatic ecosystem functioning 

(Carter et al. 2012; Stasko et al. 2012; Peacock et al. 2014; Faithfull et al. 2015; 

Robidoux et al. 2015). Water color and DOC are shown to be impairments for drinking-

water treatment processes (Ratnaweera et al. 1999; Shutova et al. 2014; Roccaro et al. 

2015; Parry et al. 2015). 

 Color is considered a human perception and is composed of properties of light 

absorbance and reflectance. Humans perceive color in wavelengths associated with the 

visible spectrum, 400-800 nm. For example, at 420-470 nm, blue color is absorbed, and 

humans perceive orange color. The full descriptions of color and spectrophotometry are 

found in Resusch (1999), Hutchingd (2005), and Wordsfold (2005). In water chemistry, 
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color is quantified with reference to platinum cobalt solution, commonly expressed in 

platinum cobalt unit (mg/L Pt-Co or PCU). The PCU of water color was developed by 

Allen Hazen in 1892 (Hazen 1892) and is also called a Hazen unit. Color is also referred 

to as yellow substance (Kirk 1976; Bricaud et al. 1981; Davies-Colley and Vant 1987). In 

natural waters, the common color-causing chemical agents are organic phenolic 

compounds, including vanillin, vanillic acid, syringic acid, carechol, resorcinol, 

protocatechuic acid, and 3,5-dihydroxybenzoic acid (Christman and Ghassemi 1966). 

Water color in general includes humic and fulvic acids (APHA et al. 2012.) Those humic 

matters are composed of complex chemical structures of carbohydrates and proteins of 

plant and animal origins (Mostafa et al. 2013). The complex chemical property of humic 

and fulvic acids content in organic matter vary with origins as well (Brezonik and 

William 2011; Mostofa et al. 2013). 

 In many studies, water color has been used as surrogate measurement for DOC 

(Molot and Dillon 1997; Worral et al. 2003; Ishikawa et al. 2006; Yallop and Clutterbuck 

2009; Ishikawa et al. 2006). These studies showed the linear correlation between color 

and DOC. Molot and Dillon (1997) quantified the relationship between color and DOC in 

a peat dominated watershed in central Ontario, Canada. Their results indicated a strong 

linear relationship (R
2
 > 0.9) between DOC and color. They reported variation on color to 

DOC ratio (slope of linear relationship) ranging from 3.3 to 9.9 in seven lakes and 

showed the variation caused by percent of peat cover in catchment areas. Christman and 

Ghassemi (1966) illustrated the color and DOC variation in a tree bark (Douglas fir) 

dominated watershed in western Washington, USA. Their results indicated the variation 

in color to DOC ratio 3.34 to 8.8. Worrall et al. (2003) studies showed the linear 
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relationship between DOC and color (R
2
 > 0.8) in peat dominated watershed in United 

Kingdom. Similarly, Yallop and Clutterbuck (2009) presented linear relationship between 

DOC and color (R
2
 > 0.9) for peat dominated waters. Ishikawa et al. (2006) studies on 

rainforest-dominated watershed in Indonesia showed the linearity between DOC and 

Color (R
2
 > 0.9). These color-DOC relationships are not uniform because of 

heterogeneous and complex chemical nature of source organic matter. 

 

Background on Research Project Three 

 Anthropogenic factors such as impoundments, developments, and land use 

practices are reported as major factors for alteration of channel geomorphic functions 

(Hooke 2000; James and Marcus 2006; Gregory 2006; Hooke et al. 2012). Historic 

channel planform is often compared with existing planform to evaluate changes in 

channel geomorphic functions. Aerial photographs and maps are commonly used for 

spatial analysis of channel planform changes. 

 Gurnell et al. (1994) used geographic information system (GIS) techniques to 

analyze channel planform changes from 1876 to 1992 for the River Dee in the United 

Kingdom. Their findings showed the limited channel migration in the River Dee in 115 

years because of flow regulations. Micheli and Kirchner (2002) used 1955-1995 aerial 

photographs for spatial analysis of channel lateral migration in Sierra Nevada, California. 

They digitized the channel centerlines for 1955, 1976, and 1995 and estimated channel 

migration rates based on eroded area polygon made by two channel centerlines divided 

by the elapsed time period in years. Heo et al. (2007) characterized channel meander 

migration for Sabine River in the southern USA. They analyzed the historical 
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orthophotos to digitize channel centerlines from 1974 to 2004 in GIS. Yao et al. (2013) 

used similar GIS techniques to evaluate channel planform changes and migration rates in 

the Yellow River, China. 

 Numerous studies across the USA have demonstrated that BMPs and flow 

regulation can reduce lateral channel migration in fluvial systems (Shields et al. 2000; 

Ritter et al. 2007; Fremier et al. 2014). Fremier et al. (2014) demonstrated that the 

combined effects of BMPs on soil erosion and flow regulation or control reduced lateral 

channel migration by nearly 40% in the Sacramento River, California, USA. In west-

central Ohio, soil conservation and river management activities helped to maintain 

geomorphic equilibrium for previously impacted channels (Ritter et al. 2007). Shields et 

al. (2000) showed significant reduction in downstream channel lateral migration after 

construction of dams in the Missouri River in Montana, USA. 

 More recently, Rhoads et al. (2016) evaluated changes in channel planform and 

watershed channel network from the 1820s to 2012 in the Sangamon River basin, Illinois, 

USA. They digitized the 1820s channel network from historic plat maps for the 

watershed and compared it with the 2012 channel network with reference to the USGS 

National Hydrography Dataset. Their results showed that the channel network in 2012 is 

almost three times larger than the 1820s channel networks. They reported that the 

majority of channel network expansion was due to the addition of agricultural drains in 

the watershed after European settlement. 

 In west-central Oklahoma, numerous studies have showed the reduction in 

watershed soil erosion, sediment yield from the watershed, and nutrient loading into the 

Fort Cobb reservoir due to USDA conservation practices (Simon and Klimetz 2008; 
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Garbrecht and Starks 2009; OCC 2009; Becker and Steiner 2011; Garbrecht 2011; 

Moriasi et al. 2011; Steiner et al. 2014). However, those studies have only attempted 

limited investigation of channel geomorphic changes over the long term.   This 

background revealed a research gap for historic channel form and channel network 

assessment related to the effect of conservation practices implemented in the Fort Cobb 

watershed. 
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CHAPTER II 
 

 

DEVELOPMENT OF A TURBIDITY PREDICTION METHODOLOGY FOR             

RUNOFF-EROSIN MODELS
1
 

Abstract 

 Surface water bodies can be impaired by turbidity and excessive sediment loading 

due to urban development, construction activities, and agricultural practices. Turbidity 

has been considered as a proxy for evaluating water quality, aquatic habitat and aesthetic 

impairments in surface waters. The United States Environment Protection Agency 

(USEPA) has listed turbidity and sediment as major pollutants for construction site 

effluent. Recently proposed USEPA regulations for construction site runoff led to 

increased interest in methods to predict turbidity in runoff based on parameters that are 

more commonly predicted in runoff-erosion models. In this study, a turbidity prediction 

methodology that can be easily incorporated into existing runoff-erosion models has been 

developed using fractions of sand, silt, and clay plus suspended sediment concentration of 

eight parent soils from locations in Oklahoma and South Carolina, USA. 

Keywords: Turbidity, Suspended Sediment Concentration, Particle Size Distribution, Runoff- 

erosion Models. 

                                                      
1
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To Cite: Neupane, S., Vogel, J.R., Storm, D.E., Barfield, B.J., & Mittelstet, A.R. (2015). Development of a 

turbidity prediction methodology for runoff-erosion models. Water, Air & Soil Pollution, 226(12), 1-14. 
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Introduction 

 Urban development, construction activities and agricultural practices contribute to 

increased sediment loading into rivers and lakes (USEPA 2009). Increased sediment 

loading increases the suspended sediment concentration (SSC) in the surface waters, 

which in turn often increases the turbidity levels in such water bodies. Turbidity is a 

light-scattering property of water and is often used as a relative measurement for water 

clarity (Parmelee and Ellms 1899; Kirk 1985; USEPA 1999; Davies-Colley and Smith 

2001; ASTM 2011). The United States Environmental Protection Agency (USEPA) has 

listed sediment and turbidity as primary pollutants for construction site effluent in 40 

CFR Part 450, 2014 final rule (USEPA 2014). Turbidity may be used as a surrogate for 

other contaminants for determining the efficacy of best management practices (BMPs) 

for construction site effluent and erosion control, and can also have direct impacts on 

aquatic organisms. As a result, interest has increased in methods to predict turbidity using 

erosion-runoff models. The predicted turbidity can be a reference to evaluate impairments 

in surface water bodies. 

 The USEPA (2009) estimated that more than 40,000 kilometers of streams, 4,000 

square kilometers of lakes and reservoirs, and 600 square kilometers of bays and estuaries 

are impaired by turbidity in the US. Factors that have been shown to impact the turbidity 

of water include soil type and concentration, organic content, color, nutrients, algae, and 

bacteria (Holstrom and Hawkins 1980; Gippel 1995; Davies-Colley and Smith 2001; 

Bilotta and Brazier 2008). The associated factors create water quality, aquatic habitat and 

aesthetic impairments in surface-water bodies. 
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 Relationships have been documented between turbidity and many pollutants, 

including total nitrogen (Kim and Furumai 2013), particulate organic nitrogen and carbon 

(Slaets et al. 2014), total phosphorus and total suspended solids (TSS) (Jones et al. 2011; 

Ruzycki et al. 2014), mercury (Ruzycki et al. 2011), polycyclic aromatic hydrocarbons 

(PAHs) (Rügner et al. 2014), pathogens (USEPA 1999; LeChevallier and Norton 1992; 

Brookes et al. 2005; Johnson et al. 2010), and various indices of aquatic habitat quality 

(Lloyd 1987; Kirk 1991; Henley et al. 2000; Bilotta and Brazier 2008; Hazelton and 

Grossman 2009). Besides water quality and aquatic habitat, turbidity has been often 

reported as an indicator of surface water‟s aesthetic appearances. Aesthetic quality of 

surface waters is mainly related to public visual perception based on the clearness of 

water. Pflüger et al. (2010) demonstrated that the public had the lowest preference for 

rivers where turbidity and SSC are high. Similarly, the relationship between degraded 

aesthetic quality of surface waters and suspended sediment or turbidity has been reported 

in the literature (Effler et al. 1992; Smith et al. 1995; Bernal et al. 1999; Bilotta and 

Brazier 2008). 

 Turbidity has been used to estimate SSC (Rügner et al. 2013; Ruzycki et al. 

2014). Parmelee and Ellms (1899) used measured turbidity to estimate SSC using a 

platinum and copper wire as an indicator of turbidity. Since then, many others have 

utilized regression techniques to predict SSC from turbidity including Gippel (1995); 

Lewis (1996); Wass et al. (1997); Riley (1998); Brasington and Richards (2000); Sun et 

al. (2001); Zabaleta et al. (2007); Gao et al. (2008); Minella et al. (2008); Williamson and 

Crawford (2011); Marttila and Kløve (2012) and Line et al. (2013). In these studies, the 

SSC-turbidity relationships are mostly linear at low turbidity levels, with non-linear SSC-
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turbidity relationships reported for higher turbidities or in heterogeneous soil mixes. 

Several site-specific SSC-turbidity relationships and evaluation comparisons (R
2
) are 

documented in the literature (Rügner et al. 2013; Slaets et al. 2014). In some regression 

models, SSC along with the known fraction of sand, silt and clay has been utilized as a 

predictor variable for turbidity (Holliday et al. 2003; Patil 2010; Perkins et al. 2014). 

 Existing runoff-erosion models may be applied to easily estimate SSC and 

particle size distribution (PSD), but have limited capabilities to predict runoff turbidity. 

In the United States, the Sediment, Erosion and Discharge by Computer Aided Design 

(SEDCAD) (Warner et al. 1998), the Sedimentology by Distributed Modeling 

Techniques (SEDIMOT) (Barfield et al. 2006), and SEDPRO (Harp et al. 2008) models 

are commonly used runoff-erosion models for predicting sediment in construction site 

runoff and designing sediment control BMPs (Hoomehr and Schwartz 2012). Warner and 

Sturm (2002) mentioned that SEDCAD 4 (the current version) can estimate SSC and 

PSD of runoff. They developed turbidity-SSC relationships for a few sediment control 

measures based on model predicted SSC for runoff samples; however, their relationship 

does not address the effect of PSD on turbidity prediction. SEDIMOT III evaluates 

construction site sediment control BMPs (Barfield et al. 2006). The SEDIMOT III and 

SEDPRO models have the capability to differentiate parent soil particles in five groups 

(sand, silt, clay, large aggregates and small aggregates) based on Foster et al. (1985) soil 

matrix particle size distributions. However, SEDIMOT III and SEDPRO do not currently 

have the ability to predict turbidity of construction site runoff. 

 Pavanelli and Bigi (2005) mentioned that turbidity values vary significantly with 

changes in particle size distribution, even at similar SSC levels. Similarly, Slaets et al. 
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(2014) demonstrated that turbidity varied significantly by changing the suspended 

sediment PSD at the same SSC. Gippel (1995) showed that clay dominated SSC can 

increase turbidity up to four times more than the silt dominated SSC.  The amount of 

sand, silt and clay (called primary particles) in the soil or runoff control the turbidity, 

which is commonly determined by dispersing the soil or sediment with a dispersing agent 

(ASTM 2007). Besides primary particles, fractions of large and small aggregates are also 

found in undispersed soil or sediment. Quantification of such fractions using the method 

of Foster et al. (1985) requires large computations and approximations for several 

parameters; therefore, this method has not been widely implemented. Since runoff 

sediment is mostly found in the undispersed form in nature, field turbidity measurements 

are mostly related to the undispersed form of sediment, whereas most current models 

predict turbidity based on the SSC and PSD in the dispersed form. Therefore, in order to 

predict the turbidity from parameters that are predicted by existing runoff-erosion 

models, the relationship between dispersed and undispersed PSD, and turbidity needs to 

be developed. Only then can a turbidity prediction methodology be easily integrated into 

runoff-erosion models. 

 The primary goal of this study is to develop a turbidity prediction methodology 

that is easily incorporated into existing runoff-erosion models. The two main objectives 

for this study are: 1) develop a simple, reliable method to predict dispersed turbidity and 

2) develop a simple, reliable method to predict undispersed turbidity. This paper presents 

the general methodology for dispersed and undispersed runoff turbidity prediction. The 

proposed methodology was calibrated for eight parent soils from Oklahoma and South 

Carolina, USA. If existing models can be utilized to predict turbidity based on SSC and 
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PSD, there may be potential to correlate turbidity to water quality, habitat potential and 

aesthetic appearances of the surface waters. 

 

Materials and Methods 

 To predict undispersed runoff turbidity for a given parent soil, a systematic 

approach has been developed (Figure 2.1). The detail description of systematic approach 

has been described in subsequent subsections. 

 

Soil Location and Characteristics 

 In this study, five parent soil samples (Kamie B, Norge B, Stephenville, Port A 

and Port B) from Oklahoma and three parent soils (Cecil C, Cecil B and Pacolet E) from 

South Carolina were selected based on availability from active construction sites in each 

area (Table 2.1). The parent soils represent a wide range of particle size distributions and 

soil horizons from two different areas of the United States, but are not meant to represent 

an exhaustive list of soils. The alphabetical character following these soil names 

describes the soil horizon. These parent soils were selected from active construction sites 

during the sample collection period. Figure 2.2 shows the general distribution in 

Oklahoma and South Carolina of the soil series used in this study, and the exact county of 

soil sample collection is shown in Table 2.1. 

 A portion of all collected parent soils (2-3 kg of homogeneously mixed, air-dried 

for 2-3 weeks) were prepared using the classical coning and quartering method (Gerlach 

and Nocerino 2003) for PSD. The PSD was determined using the sedimentation method 

called pipette analysis (Gee and Bauder 1986) for Oklahoma soils, whereas PSD of South 
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Carolina soils were obtained from Patil (2010) hydrometer analysis based on ASTM 

(2007). Fractions of sand, silt and clay for each of the eight soils obtained from pipette or 

hydrometer analysis were characterized  according to USDA soil textural classification 

criteria (Soil Survey Division Staff 1993) (Table 2.1)USDA soil textural criteria classifies 

sand as 2 to 0.05 mm, silt as 0.05 to 0.002 mm and clay as less than 0.002 mm. All parent 

soils‟ PSD were site-specific measurements. Based on the soil formation, there were three 

general groups for studied parent soil series. The Port, Kamie, Norge soil series were 

formed from Pleistocene age loamy alluvium deposits (NCSS 2000; NCSS 2004a; NCSS 

2004b);  Stephenville soil series were formed by weathering Permian age sandstone 

(NCSS 2014), and Cecil and Pacolet soil series were formed from weathered igneous and 

metamorphic rocks (NCSS 2007; NCSS 2008). 

 

Predictive Relationships for Turbidity 

 In this study, linear and power relationships between turbidity and SSC were 

investigated. Turbidities of each suspended-sediment particles classes (clay, silt and sand) 

in the linear relationship are defined as, 

DTL,cl= k1L[Clay]; DTL,si= k2L[Silt] and DTL,sa= k3L[Sand]                                (1) 

where, DTL,cl, DTL,si and DTL,sa are turbidities due to clay, silt and sand, respectively, in 

dispersed suspended sediment water samples in Nephelometric Turbidity Unit (NTU); 

[Clay],[Silt] and [Sand] are dispersed suspended-sediment concentrations of clay-, silt- 

and sand-sized sediment, respectively, in mg/l; and, k1L, k2L and k3L are turbidity 

coefficients (NTU-L/mg) for clay-, silt- and sand-sized sediment, respectively, in the 

linear relationship. The combined predictive linear relationship for dispersed turbidity is 
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DTL= DTL,cl + DTL,si + DTL,sa                          (2) 

 Similarly, a second predictive relationship for dispersed turbidity is defined as 

non-linear power function (power relationship hereafter) between turbidity and each SSC 

particle-size class, which is defined as, 

DTP,cl= k1P [Clay]
a 
; DTP,si= k2p[Silt]

b
 and DTP,sa = k3p[Sand]

c
                           (3) 

where  DTP,cl, DTP,si and DTP,sa are dispersed turbidities due to clay-, silt- and sand-sized 

sediment, respectively, in NTU in the power relationship, respectively; and k1P, k2P and 

k3P are turbidity coefficients (NTU-L/mg) for clay-, silt- and sand-sized sediment, 

respectively. 

 Similarly, a, b and c are turbidity exponents clay-, silt- and sand-sized sediment, 

respectively, in the power relationship. The combined predictive power relationship for 

dispersed turbidity is  

DTP= DTP,cl + DTP,si + DTP,sa                                                                                                                      (4) 

Since a runoff sample would nearly always be in an undispersed form, a proposed 

predictive relationship for undispersed runoff turbidity is 

UT = α (DT) + β [Clay] + γ [Silt] + ω [Sand]            (5) 

where UT is turbidity for undispersed soil (NTU), [Clay]; [Silt] and [Sand] are dispersed 

suspended-sediment concentrations of clay-, silt- and sand-sized sediment, respectively, 

in mg/l; α is dispersed turbidity factor (unit-less); and β, γ and ω are concentration factors 

(NTU-l/mg) for clay-, silt- and sand-sized sediment, respectively. DT is dispersed 

turbidity of the sample obtained from equation (2) or (4) whenever applicable.  
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Laboratory Separation of Sand, Silt and Clay 

 To separate the sand, silt and clay fraction of each soil, 2-3 kg of homogeneously 

mixed, air-dried parent soil was collected using the classical coning and quartering 

method for homogeneous mix (Gerlach and Nocerino 2003). The sample was then sieved 

through a 2 mm opening, ASTM No. 10 sieve (ASTM 2013) to remove gravel-size and 

larger particles. As per ASTM (2007), the sample passing through the No. 10 sieve was 

then soaked with 125 ml sodium hexametaphosphate (SHMP) solution (40 g/l 

concentration) per 50 g of soil sample for 16 hours to disperse the soil particles. After the 

soaking period, the sample was sieved through a No. 270 sieve (53 µm opening) to 

remove sand-sized particles, resulting in silt and clay-sized particles only. Note that the 

soil passed through No. 270 sieve is the portion of silt and clay according to the USDA 

classification (50 µm, cutoff for silt and clay), which is a different sieve size specification 

than described by ASTM (2007). During the sieving process, 40 g/l SHMP solution was 

used instead of water to maintain a constant 40g/l concentration of SHMP in silt and clay 

slurry. The retained sample (sand) on the No. 270 sieve was washed with reverse osmosis 

(RO) water 5-6 times to minimize the SHMP residuals present. The sand portion was 

oven dried at 90oC to constant mass in a pre-weighed polypropylene jar. The organics 

and minerals present in the soil sample may affect the turbidity of soil sample; therefore, 

a lower temperature than the ASTM (2007) recommendation of 110ºC was used for 

sample drying to prevent combustion or volatilization of any organic matter present. The 

organic matter content present in the soil sample was not measured. 

 Since separation of silt cannot be separated from clay by sieve analysis, a 

centrifugation method was utilized for this purpose. A Beckman GP centrifuge (Beckman 
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Instruments 1988) was used to separate silt and clay from the sample. The soil slurry 

passed through the No. 270 sieve was divided into four 750-ml centrifuge bottles and 

centrifuged for 1 minute and 42 seconds at 1000 RPM based on rotor‟s specifications of 

Beckman Coulter (2007) and using the relationship developed by Hathaway (1956). After 

centrifuging, the bottles were carefully removed from the centrifuge and approximately 

80% of the supernatant was decanted from each bottle. This decanted volume was 

transferred to pre-weighed polypropylene jars for oven drying at 90o C to constant mass. 

The particles in the decanted portion were clay-sized particles and SHMP (40 g/l 

concentration), which made a hard clod after drying. Clay and SHMP were broken up 

using an electric spice grinder (Warning Commercial WSG30, CT, USA), resulting in 

final product of powdered clay and SHMP. 

 The SHMP concentration and resulting mass was recorded in each soil sample. 

The remaining 20% soil slurry in the centrifuge bottles was mainly silt-sized particles, a 

small amount of clay-sized particles, and SHMP. A sufficient amount of RO water was 

used to refill the bottles, mixed thoroughly, and the centrifuge run was repeated up to 13 

times until there was a reasonably clear suspension (can see objects across the sample 

bottle easily with naked eye as shown in Figure 2.3) in the bottles to represent when all 

clay-sized particles had been removed by the SHMP slurry. The remaining soil slurry in 

the centrifuge bottle was silt, which had only a very small residual of SHMP as a result of 

the multiple decanting and dilutions. The silt slurry was transferred to pre-weighed 

polypropylene jars for oven drying at 90
o
C to constant mass. 
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Sample Preparation and Turbidity Measurement 

 Turbidity measurements were completed for each dispersed primary particle 

fraction (sand, silt and clay) for each soil using a Hach Hydrolab MS5 Sonde (OTT 

Hydromet, Colorado, USA) (called turbidity meter hereafter), which has a maximum 

reading of 3000 NTU. The turbidity meter was calibrated using Hach company‟s 

turbidity standard in 4 points (1, 100, 1000 and 3000 NTUs). Ranges of dispersed SSC 

concentrations (approximately 50, 100, 200, 400, 800, 1600, 3200 and 4000 mg/l) were 

selected for clay, silt and sand in each type of soil to determine turbidity constants 

(equation 1 and 3) for clay, sand and silt for each parent soil. Similarly, to test predictive 

relationship (equations 2 and 4), turbidity were measured for a range of combinations of 

sand, silt and clay for each soil. The sand, silt and clay combinations were random and 

ranged from 250 to 5000 mg/l concentration in total. For example; 48 mg of sand, 240 

mg of silt and 212 mg makes 500 mg of mix. There were total 16 such combinations for 

each soil types. The turbidity for each of these samples was  measured in a one-liter 

beaker filled with 750 mL RO water plus the appropriate mass of soil placed on a 

continuous magnetic stirrer (Model: S131125, Thermo Scientific Cimarec, USA) rotating 

at a constant speed of approximately 525 rpm (level 7 on the stirrer) to keep solution in 

suspension . For clay, these concentrations were adjusted appropriately to account for 

SHMP content. The turbidity probe was inserted into the sample beaker as per turbidity 

meter specifications (Hach 2006) and turbidity readings were recorded every minute for 

up to 15 readings. The first five minutes were considered as mixing time and median of 

the last five one-minute readings were considered as the turbidity of the sample. The 

methodology was adapted from USGS field protocol for turbidity, which explains that 
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reported turbidity values as the median of three or more readings at ±10 percent error 

range (Anderson 2005). 

 For quality control, all measurements were completed for at least duplicate 

samples. If the second set of turbidity measurements were different than the first set (out 

of turbidity meter‟s error range: ±1% for 0-100 NTU, ±3% for 100-400 NTU, ±5% for 

400-3000 NTU), a third set of measurement were conducted. The process was repeated 

for all concentrations (each clay, sand and silt fraction) of all eight soils. 

 To measure undispersed turbidity, separate soil samples (not used in dispersed 

turbidity measurement) were prepared for each of the eight parent soils. Approximately 

250 g of oven-dried parent soil sample (oven dried at 90
o
C to a constant mass) was 

collecting using the quartering and coning method (Gerlach and Nocerino 2003). Clods 

larger than approximately 2 mm were ground using a rubber pestle in a mortar. The 

sample was then sieved through a No. 10 sieve to remove gravel-size particles and stored 

in an air-tight container. From the sample container, two types of representative 

suspended-sediment samples were created. The first type of sample contained consisted 

of the entire sample (sand, silt and clay fractions), whereas the second type of sample was 

without sand (i.e., consisted of only the silt- and clay-sized sediment fractions) that was 

meant to approximate eroded particles. 

 For the first sample type, 12 sub-samples of different sediment mass (and 

therefore concentration) were prepared for the turbidity measurement in such that it 

represented low to high concentrations of suspended sediment (Kamie B: 473 – 5554 

mg/l: Norge B: 285 – 4906 mg/l; Port A: 515- 4139 mg/l; Port B: 429 – 4515 mg/l; 

Stephenville B: 421 – 6693 mg/l; Cecil B: 205 – 1433 mg/l; Cecil C: 304 - 4890 mg/l and 
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Pacolet E: 144 – 1045 mg/l). A known sediment mass was put into a 1 liter beaker and 

750 ml of RO water was added. The sample was continuously stirred with a magnetic 

stirrer (Thermo Scientific Cimarec) at speed 7 (about 525 rpm). This type of sample 

(without addition of SHMP) was termed as undispersed turbidity (UT). Turbidity was 

measured using the previously described techniques (taking the last 5 reading of 15 

minutes reading from turbidity meter). These procedures were applied to all eight soils 

and samples. After 15 minutes (completion of turbidity measurement), 30 g of SHMP (to 

maintain 40 g/l concentration) was added and mixing with the magnetic stirrer was 

continued for 5 minutes, or until the SHMP crystals were completely dissolved). After 

SHMP addition, the sample was covered and stored at room temperature in a dark 

location for 16 hours. Turbidity was then measured again. This type of sample was 

termed as measured dispersed turbidity (DTm).These procedures were applied to all eight 

soils. The UT and DTm samples were used for validating equation 5 and used for the 

systematic procedure to predict runoff turbidity (Figure 2.1). 

 In addition to the parent soils, a second soil distribution meant to approximately 

represent the eroded suspended sediment distribution was analyzed for soil that was 

sieved through a No. 270 sieve to remove sand-sized particles. Turbidities were measured 

on 6 sub-samples of this silt- and clay-only soil in such a way that concentrations ranged 

lower to higher (Kamie B: 430 – 5335 mg/l: Norge B: 550 – 1903 mg/l; Port A: 667- 

2928 mg/l; Port B: 624 – 2887 mg/l; Stephenville B: 583 – 5236 mg/l; Cecil B: 205 – 

1433 mg/l; Cecil C: 536 – 1849 mg/l and Pacolet E: 242 – 619 mg/l), with an upper 

turbidity slightly less than 3,000 NTU, which represented the upper range of the turbidity 

meter. The turbidity measurements for the clay and silt-only samples were similar as 
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discussed above, and undispersed and dispersed turbidity measurements were completed 

similarly to the measurements for the first type. 

 

Statistical Methods 

 Turbidity coefficients and exponents for equation 1 and 2 were determined by 

Microsoft Excel (Microsoft 2010) regression trend line with the intercept term set to zero. 

The coefficients of determination (R
2
) values were reported for those relationships. Based 

on the turbidity coefficient, exponent and known concentration of [clay], [silt] and [sand], 

turbidities for linear and power relationships were predicted. The predicted turbidities in 

such relationships were compared with measured turbidities with reference to R
2
, Nash-

Sutcliffe efficiency (NSE), absolute percentage relative error (RE in %) for all eight soils. 

The NSE value  (Nash and Sutcliffe 1970) was computed as 
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where Tmi is measured turbidity in the i
th

 sample, Tpi is predicted turbidity for the i
th

 

sample and Ta is average turbidity of measured samples, n is the number of sample. The 

relative percentage error (RE) was evaluated as 
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where, Tmi is measured turbidity in the i
th

 sample, Tpi is predicted turbidity for the i
th

 

sample. 
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To determine undispersed turbidity for runoff sample, the number of coefficients used in 

equation (5) was minimized by determining the insignificant variables with multiple 

regression analysis using Minitab statistical software (Minitab 2010). 

 

Results and Discussion 

 Methodologies for predicting the turbidity of dispersed and undispersed runoff 

samples have been developed. The coefficients and parameters for best-fit predictive 

relationships (equation 1 to 5) were determined and undispersed runoff turbidities were 

estimated for the eight soils shown in Table 2.1. 

 

Turbidity Constants and Dispersed Turbidity-SSC Relationship Validation 

 For each dispersed primary-particle type (clay, silt and sand) and soil, the 

turbidity constants and coefficients for the linear and power relationships (equations 1 

and 3) varied as shown in Table 2.2. This table describes the parameters for equations 1 

and 3; for example, for Kamie B soil, DTL,cl = 0.432 [clay] in the linear relationship and 

DTp,cl = 0.324 [Clay]
1.034

 for the power relationship.  For all eight soils, the relationship 

between dispersed turbidity and SSC for each of the primary-particle classes (clay, silt 

and sand) was strong (R
2
 > 0.96) for both the linear and power relationships. Since the R

2
 

did not give strong evidence that one type of relationship is better than the other, other 

statistical results were evaluated. Based on equation 2 and 4 (parameters from Table 2.2), 

measured vs. predicted turbidity values were compared with reference to R
2
, Nash-

Sutcliffe efficiency (NSE) value, and average relative error (RE, in %) for all eight soils 

and both relationships. Table 2.3 shows that the NSE value for the power relationship is 
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greater than or equal to  the linear relationship for all eight soils and REs were usually 

less in the power relationships (except Cecil B and Cecil C). 

 It is important to note that the turbidity meter has instrument error ±1% for 0-100 

NTU, ±3% for 100-400 NTU, ±5% for 400-3000 NTU). In addition to this, preparation 

and processing error may have also influenced turbidity measurements. The NSE and RE 

values showed that the power model has a smaller relative error; however, given 

instrument error, possible measurement errors, and precision goals of the study, a 

conclusion has been made that the linear model is sufficient for most uses. If site specific 

soils performed better in the power relationship than the linear and project objectives 

require that level of accuracy, the power relationship can be used to predict turbidity. 

However, for our objectives linear relationships are considered sufficient for dispersed 

turbidity prediction and used for undispersed turbidity prediction hereafter in this study.  

 

Prediction of Undispersed Runoff Turbidity     

 The systematic approach has been followed to predict undispersed runoff turbidity 

for a given parent soil (Figure 2.1). The predicted dispersed linear turbidity (DTL) and 

direct measurement of turbidity without separating primary particles (DTm) were 

compared. The relationship between DTL and DTm was estimated using linear regression 

using Excel. (Table 2.4). However, the intercept term in the linear regression equation 

was determined to be insignificant (p < 0.05) for all soils tested, so the equations are 

presented without the intercept. An intercept of zero is expected since the measured and 

predicted turbidity of pure water would be expected to both be zero. 
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 The coefficient term in DTL was considered as a dimensionless correction factor 

(called c-factor hereafter) and is used to adjust the turbidity predicted from turbidity 

constants for each individual particle-size class that were estimated from particles that 

were separated by centrifuging of the parent soil, to approximately match the turbidity 

actually measured with the dispersed parent soil without centrifugation. This c-factor 

adjustment is likely associated with potential changes in particle shape, size and/or color 

during centrifuging. Studies have shown that turbidity can be affected by color and PSD 

of suspended sediment present in the water sample (Gippel 1995; Packman et al. 1999; 

Teixeira and Caliari 2005).  

 With reference to a known concentration of SSC for undispersed runoff samples, 

c-factor, DTL, and primary-particle fractions (Table 2.1), undispersed turbidity model 

factors were estimated using multiple linear regression analysis with Minitab statistical 

software (Minitab 2010). These equations (Table 2.5) were matched with the predictive 

equation (5). The significant coefficients α, β, γ and ω factors for equation 5 were 

selected (p<0.05). Model equations that utilize dispersed turbidity, silt-fraction sediment 

concentration, and/or clay-fraction sediment concentration are compared in Table 2.5. 

For all soils, the factor „ω‟ was insignificant (therefore considered zero) based on the 

regression analysis. 

 For each soil, best-fit model equations to predict undispersed turbidity for runoff 

samples were determined. The best-fit model equation, shown in bold for each soil in 

Table 2.5, was selected based on the values of p (< 0.05), R
2
 (maximized) and SE 

(minimized). Model 1 (predictor variables: DT and [Clay]) had the best fit  in Port A, 

Cecil B and Pacolet E soils, while Model 2 (predictor variables: [Clay] and [Silt]) had 
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best fit for Kamie B, Norge B, Port A, Port B, Cecil C, and Stephenville B soils. Model 3 

(predictor variable: DT only) was the best fit for only Cecil C soil amongst the eight soils 

analyzed. Best-fit model selections depended upon the individual soil characteristics. 

Effect of particle size and shape for turbidity estimation has been previously reported on 

the several studies (Gippel 1995; Pavanelli and Bigi 2005; Teixeira and Caliari 2005). 

Holstrom and Hawkins (1980), and the results from this study, indicate a decrease in 

turbidity with increase in predominant particle-size class (D50). Any inconsistences in the 

model performances may be related with variations in runoff sample colors and organic 

matter present in the suspended sediment samples which were not considered in this 

study. Future research could explore the effect of color and variation of organic matter on 

turbidity prediction for runoff water.  

 

Conclusions 

 The primary goal of this study was to develop a turbidity prediction methodology 

that can be easily incorporated into existing runoff-erosion models. To achieve this goal, 

a reliable method that uses the concentration of sediment in each primary particle fraction 

(sand, silt and clay) has been developed to predict dispersed and undispersed turbidity. 

This method was applied to eight parent soils from Oklahoma and South Carolina, USA. 

For broader use, as with any empirical model, relationships between the concentration of 

sediment in each primary particle fraction and turbidity for specific soils must be 

calibrated and validated using the methodology provided. The runoff turbidity prediction 

methodology presented in this study can easily be used to develop turbidity coefficients 
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for any soil and can be used as an add-on, predictive tool using currently available runoff-

erosion models. 

 Once the presented methodology integrated and validated in existing runoff-

erosion models, such as SEDMOT III, SEDPRO and SEDCAD, turbidity can be 

predicted for runoff from disturbed landscapes including construction sites and tilled 

agricultural fields. Further, the proposed methodology can be potentially extended to 

make turbidity as an all-in-one surrogate measurement for evaluating and monitoring 

water quality, habitat potential and aesthetic appearances for surface waters. However, 

future research is required to minimize the compounding error since the proposed 

methodology requires several predicted parameters. In addition to this, exploring color 

and small and large aggregates of runoff suspended sediment samples can provide more 

reliable estimation of undispersed turbidity for runoff samples. 
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Tables 

 

Table 2.1. Results of site specific measurements for percent of sand, silt and clay with 

soil type of textures. Classification was based on USDA textural soil classification 

criteria (Soil Survey Division Staff, 1993). The letters on the soil type indicate the soil 

horizon. Horizon depth sources: NCSS 2000; NCSS 2004a; NCSS 2004b; NCSS 2007; 

NCSS 2008; NCSS 2014. 

Soil Type County of Collection 

Horizon 

Depth 

Range 

(cm) 

Sand 

(%) 

Silt 

(%) 

Clay 

(%) 
Texture 

Kamie B Tulsa County, OK 46-142 77 15 8 Sandy Loam 

Norge B Payne County, OK 46-168 63 17 20 Sandy Clay Loam 

Port A Noble County, OK 23-69 13 55 32 Silty Clay Loam 

Port B Noble County, OK 69-107 27 36 37 Clay Loam 

Stephenville B Payne County, OK 97-213 42 25 33 Clay Loam 

Cecil B  Greenville County, SC 20-107 58 20 22 Sandy Clay Loam 

Cecil C  Greenville County, SC 127-203 58 17 25 Sandy Clay Loam 

Pacolet E Greenville County, SC 8-74 52 24 24 Sandy Clay Loam 
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Table 2.2. Turbidity constants for all soils as described in equation 1 and 3. The letter after the soil type represents the soil horizon. 

Soil Type 

Turbidity Constants 

Linear Power 

Clay Silt Sand Clay Silt Sand 

k1L
* R2 k2L

* R2 k3L
* R2 k1P

* a** R2 k2P
* b** R2 k3P

* c** R2 

Kamie B 0.432 0.996 0.202 0.999 0.030 0.986 0.324 1.034 0.999 0.209 0.993 0.999 0.045 0.940 0.992 

Norge B 0.729 0.998 0.242 0.999 0.052 0.974 0.635 1.016 0.998 0.204 1.020 0.999 0.060 0.976 0.994 

Stephenville B 0.578 0.987 0.256 0.999 0.056 0.997 0.340 1.063 0.998 0.202 1.028 0.999 0.050 1.003 0.998 

Port A 0.595 0.995 0.354 0.998 0.036 0.992 0.379 1.063 0.999 0.285 1.024 0.999 0.038 0.998 0.995 

Port B 0.659 0.996 0.232 0.999 0.091 0.998 0.453 1.042 0.999 0.209 1.010 0.999 0.103 0.984 0.997 

Cecil B 0.643 0.988 0.660 0.998 0.061 0.995 0.457 1.041 0.998 0.537 1.024 0.999 0.035 1.069 0.997 

Cecil C 0.777 0.998 0.490 0.998 0.035 0.988 0.597 1.037 0.999 0.359 1.042 0.997 0.070 0.914 0.993 

Pacolet E 1.432 0.992 0.742 0.998 0.088 0.959 1.695 0.972 0.992 0.507 1.046 0.999 0.049 1.061 0.976 

R2: Coefficient of determination, * Turbidity coefficients (NTU-L/mg), ** Turbidity exponents (dimensionless) 
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Table 2.3. Linear vs. power model performance comparison in terms of coefficient of 

determination (R
2
), Nash-Sutcliffe Efficiency (NSE) and percentage average relative 

error (RE).  

Soil Type 
Linear Power 

R
2 
 NSE RE (%) R

2
 NSE RE (%) 

Kamie B 0.996 0.94 9.1 0.996 0.98 4.6 

Norge B 0.997 0.99 6.3 0.997 0.99 4.1 

Stephenville B 0.996 0.96 14.4 0.997 0.99 5.6 

Port A 0.996 0.94 13.8 0.996 0.98 7.3 

Port B 0.996 0.99 12.1 0.997 0.99 4.6 

Cecil B 0.994 0.99 5.9 0.994 0.99 6.7 

Cecil C 0.978 0.98 4.9 0.978 0.98 6.9 

Pacolet E 0.996 0.98 9.3 0.996 0.99 5.7 

 

 

Table 2.4. Regression equations to predict dispersed turbidity (NTU) based on linear 

dispersed turbidity (NTU) and c-factor. The c-factor associated with change in dispersed 

turbidity between direct measurement and model prediction. p-value (<0.05) represents 

the significant relationship between corrected dispersed turbidity (DT) and predicted 

linear turbidity (DTL). 

Soil Type Regression Equation c-factor R
2
 p-value 

Kamie B DT  =  1.31 DTL 1.31 0.991 < 0.0001 

Norge B DT  =  1.50 DTL 1.50 0.995 < 0.0001 

Port A DT  =  1.43 DTL 1.43 0.984 < 0.0001 

Port B DT  =  1.28 DTL 1.28 0.997 < 0.0001 

Stephenville B DT  =  1.50 DTL 1.50 0.992 < 0.0001 

Cecil B DT  =  1.34 DTL 1.34 0.976 < 0.0001 

Cecil C DT  =  1.73 DTL 1.73 0.997 < 0.0001 

Pacolet E DT  =  1.23 DTL 1.23 0.996 < 0.0001 
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Table 2.5. Undispersed turbidity model equations (related to Equation 5). The bold text 

in model column represents the good fit model to predict undispersed turbidity for a 

given soil. p-value represents the level of significance at 0.05, UT is undispersed turbidity 

in NTU, DT is corrected dispersed turbidity in NTU, [Clay] and [Silt] are concentrations 

in mg/l based on dispersed particle size distribution of the parent soil. SE represents 

standard error (NTU) and R
2
 is coefficient of determination. 

Soil Type Model  Undispersed Turbidity (UT)  Model R
2
 

SE 

(NTU) 

p-value 

Coefficients 

b1 b2 

Kamie B 

1 UT  =  1.39 DT - 0.94 [Clay] 0.998 22 < 0.0001 0.021 

2 UT  =  1.18 [Clay] - 0.12 [Silt] 0.998 22 < 0.0001 < 0.0001 

3 UT  =  0.63 DT 0.997 25 < 0.0001  - 

Norge B 

1 UT  =  1.67 DT - 1.95 [Clay] 0.999 20 < 0.0001 < 0.0001 

2 UT  =  0.45 [Clay] + 0.38 [Silt] 0.999 20 < 0.0001 < 0.0001 

3 UT  =  0.56 DT 0.970 117 < 0.0001  - 

Port A 

1 UT  =  0.34 DT + 0.53 [Clay] 0.990 113 0.02 0.02 

2 UT  =  0.66 [Clay] + 0.25 [Silt] 0.990 113 0.001 0.02 

3 UT  =  0.67 DT 0.986 130 < 0.0001  - 

Port B 

1 UT  =  1.05 DT - 0.43 [Clay] 0.997 60 < 0.0001 0.13 

2 UT  =  0.66 [Clay] + 0.20 [Silt] 0.997 60 < 0.0001 < 0.0001 

3 UT  =  0.71 DT 0.996 62 < 0.0001  - 

Cecil C 

1 UT  =  0.58 DT - 0.02 [Clay] 0.992 29.5 < 0.0001 0.797 

2 UT  =  0.91[Clay] + 0.38 [Silt] 0.992 29.5 < 0.0001 < 0.0001 

3 UT  =  0.57 DT 0.992 28.7 < 0.0001  - 

Cecil B 

1 UT  =  2.52 DT - 3.58 [Clay] 0.999 35 < 0.0001 < 0.0001 

2 UT  =  0.002 [Clay] + 1.25 [Silt] 0.999 35 0.9720 < 0.0001 

3 UT  =  0.66 DT 0.976 151 < 0.0001  - 

Stephenville 

B 

1 UT  =  1.38 DT - 1.05 [Clay] 0.997 59 < 0.0001 0.011 

2 UT  =  0.51 [Clay] + 0.24 [Silt] 0.997 59 < 0.0001 < 0.0001 

3 UT  =  0.58 DT 0.995 70 < 0.0001  - 

Pacolet E 

1 UT  =  3.24 DT - 7.65 [Clay] 0.996 81 < 0.0001 < 0.0001 

2 UT  =  0.32 [Clay] + 1.45 [Silt] 0.996 81 0.094 < 0.0001 

3 UT  =  0.64 DT 0.985 158 < 0.0001  - 
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Figures 

 

 

 

Figure 2.1. Flowchart for predicting undispersed turbidity based on suspended sediment 

concentration and particle size distribution for a given soil. DTL,cl, DTL,si and DTL,sa are turbidities 

due to sand, silt and clay in dispersed suspended sediment water samples in Nephelometric 

Turbidity Unit (NTU); [Clay],[Silt] and [Sand] are concentrations of suspended sand , silt and 

clay-sized sediment in mg/l, respectively; and, k1L, k2L and k3L are turbidity coefficients (NTU-

l/mg)for sand, silt and clay in the linear relationship, respectively. DTL is dispersed turbidity in 

linear relationship and DTm is measured undispersed turbidity, c-factor is correction factor 

obtained from Table 2.4. Similarly, UT is turbidity for undispersed soil (NTU), [Clay]; [Silt] and 

[Sand] are dispersed suspended sediment concentrations, α is dispersed turbidity constant (unit-

less), β, γ and ω are concentration factor (NTU-l/mg) for clay, silt and sand. 
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Figure 2.2. Study soil location map: a) studied soils distribution in Oklahoma, b) studied soil 

distribution in South Carolina (data source: Soil Survey Staff, 2011). 
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Figure 2.3. Samples in 750- ml centrifuge bottles: a) before the centrifuge runs b) after 13th 

centrifuge run, which were considered as clay-free samples. 
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CHAPTER III 
 

 

QUANTIFYING THE RELATIONSHIP BETWEEN WATER COLOR AND 

DISSOLVED ORGANIC CARBON BASED ON ORGANIC MATTER SOURCE 

 

Abstract 

 Water color is often used as a water-quality parameter to evaluate and assess 

aesthetic impairments, ecosystem functioning, and drinking water standards. Using 

dissolved organic carbon (DOC) for site-specific assessment of water color in surface 

waters has been attempted with mixed success, partially due to the complex nature of 

heterogeneous sources of organic matter. In this study, laboratory scale-based 

experiments were conducted using four types of homogeneous organic sources (peat 

moss, decomposing bark chips, cotton burr compost, and composted cow manure). The 

study objective was to develop a prediction equation to estimate water sample color with 

multiple sources of DOC. Results showed source-wise linear regression equations among 

water color and DOC were significantly different (p < 0.05). There was a high correlation 

(R
2
 = 0.99 and Nash-Sutcliffe efficiency = 0.95) between predicted and measured color 

for heterogeneous sources. The results of this study could be useful to predict water color 

in runoff from field-scale watersheds. 
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Introduction 

 An application of organic matter as a soil amendment is common in agricultural, 

gardening, nursery, and landscaping activities. In large-scale plant nurseries, organic 

matter is used as potting media in nursery pots. As a result of plant nursery operations, 

dissolved organic residuals mixed with nursery effluent often ultimately enter into nearby 

surface and subsurface water bodies by means of irrigation and precipitation runoff 

(Huett et al. 2005). In addition, during large precipitation events, organic matter from 

upland areas are transported to surface waters through runoff (Morel et al. 2009; 

Sulzberger and Durisch-Kaiser 2009; Brezonik and William 2011; Kokorite 2012). The 

organic-matter containing runoff is often colored in nature due to presence of complex 

organic compounds from humic matter (APHA et al. 2012), including carbohydrates and 

proteins of plant and animal origins (Mostofa et al. 2013). 

 The nature and origin of water color in surface waters has been reported in the 

literature. Water color, also called yellow substance (Kirk 1976; Bricaud et al. 1981; 

Davies-Colley and Vant 1987), is an optical property of the water and is related to 

impairments in aesthetic quality as well as habitat potential in natural waters (Smith et al. 

1995; Wissel et al. 2003; Novoa et al. 2015). It is commonly reported in Hazen Units 

(Hazen 1982) or Platinum-Cobalt Units (Pt-Co or PCU). When measured and reported in 

this manner, natural water color is measured by a spectrophotometer with reference to 

known standard color units of Platinum-Cobalt solution (Crowther and Evans 1981; 

Bennett and Drikas 1993; Hongve and Åkesson 1996; APHA et al. 2012). The color 
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generally refers to the true color obtained by removing suspended sediment particles from 

the collected water sample. Christman and Ghassemi (1966) reported that water color 

was caused by the presence of organic phenolic compounds, including vanillin, vanillic 

acid, syringic acid, carechol, resorcinol, protocatechuic acid, and 3,5-dihydroxybenzoic 

acid.  

 The fraction of organic carbon that dissolves in water is called dissolved organic 

carbon (DOC). DOC is commonly measured as the fraction of organic carbon that passes 

through a 0.45 μm filter (Sulzberger and Durisch-Kaiser 2009). DOC in a surface water 

sample is commonly measured to evaluate the carbon cycle and aquatic ecosystem 

functioning (Carter et al. 2012; Stasko et al. 2012; Peacock et al. 2014; Faithfull et al. 

2015; Robidoux et al. 2015). In addition to aesthetic and aquatic habitat, water color and 

DOC are closely related to water-quality impairments for drinking water. Drinking-water 

treatment often uses chlorination to remove water color and DOC, which may result in 

toxic by-products such as trihalomethane formation (Reckhow and Singer 1990; Morris 

et al. 1992; King and Marrett 1996; Magnus et al. 1999; Hwang et al. 2002; Kim et al. 

2002; Mishra et al. 2014; Kumar et al. 2015). It has been reported that 50 to 75% of DOC 

in natural waters contain color-causing humic substances (Thurman 1985; Collier 1987). 

Recently, an increasing trend of DOC content in surface waters has been found in the 

literature (Worrall and Burt 2010; Filella and Rodriguez-Murillo 2014), which may result 

in an increase in the water color (Pagano et al. 2014). 

 In many studies, water color has been used as surrogate measurement for DOC 

(Molot and Dillon 1997; Worral et al. 2003; Ishikawa et al. 2006; Yallop and Clutterbuck 

2009). These studies showed the linear correlation between color and DOC. Molot and 
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Dillon (1997) quantified the relationship between color and DOC in peat-dominated 

watershed in central Ontario, Canada. In this study, a strong linear relationship (R
2
 > 0.9) 

between DOC and color was shown. Further, Molot and Dillon reported a variation in 

color to DOC ratio (slope of the linear relationship) ranging from 3.3 to 9.9 in seven lakes 

and showed the variation was correlated to the percent of peat cover in catchment areas. 

Christman and Ghassemi (1966) showed a color and DOC that varied from 3.34 to 8.8 in 

a tree bark (Douglas fir)-dominated watershed in western Washington, USA. Worrall et 

al. (2003) showed the linear relationship between DOC and color (R
2
 > 0.8) in peat 

dominated watershed in the United Kingdom.  Similarly, Yallop and Clutterbuck (2009) 

presented the linear relationship between DOC and color (R
2
 > 0.9) for peat dominated 

waters. Ishikawa et al. (2006) studies on rainforest-dominated watershed in Indonesia 

indicated the linearity between DOC and Color (R
2
 > 0.9). 

 In natural waters, DOC is a composite of  heterogeneous sources of organic 

matter. Source-wise color-DOC relationships may help to predict natural water color in 

complex, heterogeneous surface waters, especially in field-scale modeling efforts of 

receiving waters where water color is of concern. If organic matter source or DOC is 

known, the water color in runoff from that source area can be measured before entering 

into receiving water bodies. To characterize the color-DOC interaction, a small 

laboratory-scale experiment was designed. Source-specific relationships between water 

color and DOC was developed based on sources of organic matter commonly found in 

surface waters. The specific objectives of the study were (1) to quantify the relationship 

between water color and DOC in water based on specific organic matter sources and (2) 
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to test a method to predict the water color on water samples with multiple sources of 

DOC.  

 

Methods 

 

Organic Source Materials  

 To represent the common sources of DOC-containing runoff samples, four types 

of organic materials were collected (Figure 3.1): Sphagnum peat moss (PM), composted 

cow manure (CM), cotton burr compost (CC), and decomposing bark chips (BC). PM 

(Majestic Earth, Sun Gro Horticulture, Agawam, Massachusetts) and CC (Oldcastle 

Lawn and Garden, Inc., Georgia) were purchased in in Stillwater, Oklahoma. CM was 

obtained from a cattle farm in Gerty, Oklahoma. BC were collected from a tree service in 

Stillwater, Oklahoma.  

 

Predictive Relationships between Color and DOC  

 Previous studies have demonstrated a linear relationship between water color and 

DOC in streams and lakes (Molot and Dillon 1997; Worral et al. 2003; Ishikawa et al. 

2006; Yallop and Clutterbuck 2009; Ishikawa et al. 2006). Based on this previous 

research, the relationship between color and DOC for water samples with organic matter 

from a specific source was defined as: 

Color = β [DOC]                 (1) 
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where color is in PCU, the coefficient β is called a color coefficient in (L/mg -PCU), and 

DOC is dissolved organic carbon (mg/L) present in the colored solution for that source of 

organic matter. 

 To predict the color-DOC relationship for water samples with heterogeneous 

sources of organic matter, the following relationship was proposed as: 

       ∑    [   ]   
 
                        (2) 

where n is number of individual DOC sources, and Pi is volumetric proportion of the i
th 

color and DOC water source.  

 

Water Sample Preparation 

 From each source of organic material, color-DOC solutions were prepared by 

soaking 2 kg of source material in deionized water (sufficient amount to saturate the 

source material) in a clean 5-gallon bucket for 16 hours. After several trials, 16 hours of 

soaking period was considered as a consistent color extraction time for all sources. After 

16 hours, the soaked sample was filtered through 0.45 μm glass-fiber filter (DSC, Encino, 

CA). Filter clogging was common during the filtration process. To minimize clogging of 

the 0.45 μm filter paper, filters with larger pore sizes than the 0.45 μm filter paper were 

used as pre-filter. Coffee filter paper that was rinsed three times was used as pre-filter to 

avoid the residual DOC leaching. Khan and Subramania-Pillai (2006) showed that 

residual DOC may be released from unwashed filter papers. In this study, the filter paper 

was washed with 100-ml of deionized water prior to sample filtration to ensure the filter 

paper was free of any organic residuals. The filtered samples for each source were stored 
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in a refrigerator at 4
0
C. The stored samples were used for deriving the relationship for 

water color and DOC (equation 1 and equation 2) within 10 days of filtering. 

 From each filtered solution, 10 diluted sample solutions (100 ml each) were 

prepared from individual source samples. For quality control, there were duplicate 

dilutions for every other sample, which made 15 diluted samples for each source (Figure 

3.2). A minimum sample size of 12 was estimated based on the peat moss color-DOC 

sample (n=30) using Minitab statistical software (Minitab 2010) with a 5% margin of 

error; therefore, the sample size of 15 was considered sufficient to develop the 

relationship between color and DOC. 

 

Color and DOC Measurement 

 To analyze the linearity of color and DOC based on a homogenous source of 

organic matter (equation 1), 100 ml diluted samples were prepared for each source. 

Sample pH was recorded for each source sample using a benchtop pH meter. AHPA et al. 

(2012) reported that pH adjustments are required if sample pH is less than 4 or greater 

than 10. All source samples used in this study were within the APHA et al. (2012) 

recommended range, so pH adjustments were not required. For quality control, sub-

samples for color and DOC measurements were taken from same batch of the 100 ml 

diluted sample. 

 Out of the 100 ml diluted sample, a 10 ml subsample was collected using a glass 

pipette and analyzed for color. Color measurements were performed on DR 6000 

Spectrophotometer using Hach Company standard method of color measurement called 

Platinum-Cobalt Standard Method (Method 8025, Hach Company 2014a) at a 
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wavelength of 455 nm (cell path length = 1 inch) and color units were reported in PCU.  

A blank sample of deionized (DI) water was used to define zero color. For quality 

control, 250 PCU solution was prepared with a 1:1 dilution of 500 PCU standard 

solution; all quality control color readings on the standard solution were within the 2% 

error range (245-255 PCU). For DOC measurement, a simple and direct method was 

selected from Hach‟s direct methods (Method 10129, Hach Company 2014b and Method 

10173, Hach Company 2014c). 

 The Hach method is designed for total organic carbon (TOC) analysis. All the 

samples used in this study were filtered through 0.45 μm filter, so the measured TOC was 

considered as DOC. There are three types of standard procedures for this method based 

on the range of DOC concentration in the sample: low range (0.3 to 20 mg/L), mid-range 

(15 to 150 mg/L, and high range (100 to 700 mg/L). The method procedure differs based 

on the sample volume required for the test. In this study, low range (LR) and mid-range 

(MR) test procedures were followed for DOC measurements for diluted samples based on 

the trial test sample DOC measurement for each source. The detail description of Hach 

method is found in Hach Company, 2014b. In DR 6000 spectrophotometer, program 427 

was selected for DOC test for LR samples and program 425 was selected for MR 

samples. 

 For accuracy check, 100 mg/L standard solution (for MR) and 50 mg/L (for LR) 

were prepared from Hach TOC standard (Potassium hydrogen phthalate, 1000 mg/L 

TOC), and measurements were checked for every source of samples. For quality control, 

every other sample was analyzed as duplicates and results were compared. If the 

duplicate DOC sample was more than 5%, test results were disregarded and a new test 
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was performed. The measured color-DOC data for all four sources are presented in the 

Appendix (Table A.1 to A.5). 

 

Validation  

 In order to validate equation 2, a range of heterogeneous solutions using four 

organic source materials were prepared in varying proportions (1:1, 1:1:1, and 1:1:1:1). 

Prior to making the heterogeneous combinations, the DOC for each homogeneous-source 

sample was measured and recorded. Equal volume (10 ml) of each filtered colored 

sample was taken and mixed well in a volumetric flask. Color measurements were 

performed for each heterogeneous source sample using a DR 6000 spectrophotometer. 

There were three sets of heterogeneous mixture (source combination), and each set had 

11 combinations (Appendix: Table A.7 to A.10). Combination sets ranged from 

approximately 100 to 200 PCU (set-I), 200 to 400 PCU (set-II) and 400 to 500 PCU (set -

III). 

 

Statistical Methods 

 Color coefficients for equation 1 were determined by linear regression analysis 

using Minitab 16 (Minitab 2010). An analysis of covariance (ANCOVA) analysis was 

conducted to test differences between source-wise color-DOC relationships. In the 

ANCOVA tests, the response variable was „Color,‟ the covariate was „DOC,‟ and 

treatment was „organic source.‟ Statistical results were reported based on APA (2010). 

 Based on the color coefficients and known DOC of individual source organic 

materials, water color for the heterogeneous mixture (equation 2) was predicted. The 
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predicted color in each relationship was compared with measured colors with reference to 

R
2
, Nash-Sutcliffe efficiency (NSE), and absolute percentage relative error (RE,%) for all 

combinations. The NSE value (Nash and Sutcliffe 1970) was computed as: 

      [
∑ (       )

  
   

∑ (      )
  

   

]                         (3) 

where Cmi was measured color (PCU) in the i
th

 mix-sample, Cpi was predicted color for 

the i
th

 mix-sample, Ca was average color (PCU) of measured samples, and n was the 

number of sample. The relative percentage error (RE) was evaluated as: 

   
|       |

   
                              (4) 

where Cmi is measured color (PCU) in the i
th

 sample, Cpi is predicted color (PCU) for the 

i
th

 sample. 

 

Results and Discussion 

 A simple method that did not require detailed chemical analysis of organic matter 

to predict water sample color  for known homogeneous sources of DOC has been 

developed and method was applied for multiple sources with defined proportions of 

selected organic sources. Further implications of this methodology are also discussed. 

 

Individual Sources 

 The light absorbance capacity was hypothesized to be different for water with 

DOC from different organic material sources. Each source of organic matter had different 

physical and chemical characteristics. The complex chemical properties of humic and 

fulvic acids content in organic matter (Brezonik and William 2011; Mostafa et al. 2013) 

may vary by source and cause a range of color coefficients for each source. Variations of 
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light absorbance in surface waters are a result of these physical and chemical properties 

of DOC in the water (Baricaud et al. 1981; Baker and Spencer 2004; Del Vecchio and 

Blough 2004; Helms et al. 2008; Sulzberger and Durisch-Kaiser 2009).   

 Linear relationships were developed between color and DOC for four sources of 

organic matter (Figure 3.3). The slope (color coefficient, β) was obtained from a linear 

regression analysis for each sources (Table 3.1). The intercept term in the linear 

regression  was insignificant (p < 0.05) for all organic sources analyzed. A two-way 

ANCOVA showed the covariate, DOC was significantly related to the color, F(1, 70) = 

5418.3, p < 0.001. There was a significant main effect of organic source on color after 

controlling for DOC, F(3, 70) = 4.08, p = 0.01. There was a significant interaction 

between DOC and source type F(3, 70)= 510.48 , p < 0.001 (Table 3.2). Tukey pairwise 

comparison test showed that color was significantly different among four organic  

sources at p < 0.05. Among the four sources tested, CC had highest color coefficient 

followed by CM (Table 3.1). These two sources are well composted materials.   

 The PM color coefficient of 5.68 was within the range of 3.3 to 9.9 reported by 

Molot and Dillon (1997). Worrall (2003), and Yallop and Clutterbuck (2009) studies 

showed color/DOC ratio of almost 20 for peat-dominated area, which is greater than our 

reported ratio. The percent cover or extent of the peat present in the watershed is directly 

related to the DOC yield (Dillon and Molot 1997). BC color coefficient of 10.24 was 

slightly higher than 3.3 to 8.8 as reported by Christman and Ghassemi (1966). A 

color/DOC ratio for CM and CC were not found in literature.  

 The effects of pH on color measurements were reported in the literature 

(Chritman and Ghassemi 1966; Ishiawa et al. 2006). The PM sample was acidic (pH = 
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4.42) whereas other samples were neutral or slightly basic, with pH for undiluted CM, 

CC and decomposing BC of 7.79, 7.10 and 7.83, respectively. The electrical conductivity 

of lab-grade DI water was 1.6 micro-Siemens/cm and pH ranged from 5.1 to 6.5. pH 

measurements on a subset of test samples indicated that dilution with DI water did not 

change the pH of the diluted samples.   

 

Multiple Sources 

 Based on the color coefficient and known DOC of individual organic sources, 

water color was predicted with reference to equation 2 for three combination sets 

(Appendix Table A7 to A10). The predicted versus measured comparison showed 

excellent results for combined set-I and set-II (R
2
 = 0.99, NSE = 0.97 and relative 

absolute error = 5.4%, Figure 3.4), whereas set-III did not perform as well (R
2
 = 0.84, 

NSE = -2.56 and relative absolute error = 12.0%, Appendix: Figure A.1). The set-III data 

had either measurement or instrument error that was likely a result of using Hach test kits 

that had been stored at too high of a temperature, so it was not included for relationship 

validation. 

 For a field-scale watershed, where the predominate proportion of source(s) of 

organic matter and runoff from source may be able to be more easily determined, color 

may be highly predictable. Studies have shown that DOC variation in runoff water can be 

quantified with reference to land-use practices (Larson et al. 2014; Gergel et al. 1999). In 

natural waters, the heterogeneous sources of organic matter may be determined using 

land-use practices and management records in the catchment area. For example, in 

production nurseries where application of organic matter and fertilizers is common and 
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the receiving water body‟s water color may be of concern, the color of runoff water from 

the site with a limited number of DOC sources can be determined as follows: 

1. Dominant DOC sources can be determined based on potted fertilizer 

applications, organic matter applications, plant density, and/or other 

management records for specific areas/subwatersheds.  

2. The proportion of DOC sources contributing to the watershed outlet can 

be estimated with reference to runoff volume and DOC concentrations 

derived from a hydrologic model, utilizing subwatersheds defined based 

on areas with a common dominant source(s).  

3. With known DOC proportion and color coefficient, the color from a 

watershed could be estimated using Equation (2) and color coefficients 

determined in the laboratory for the dominant sources.  

4. At the outlet of the watershed and each subwatershed, DOC, color and 

runoff volume can be measured for validation of the predicted values.   

 On a larger watershed scale, however, the application may be more difficult as the 

number and proportion of DOC sources would be much more difficult to accurately 

estimate. In addition, organic matter entering into the surface waters on a large scale with 

many DOC sources may create more complex chemical and physical properties of DOC 

(Massicotte  and  Frenette 2011;  Nebbioso and Piccolo 2013) than is present in these 

laboratory experiments, and could potentially change the DOC-color relationships 

derived from single-source samples. 
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Further Applications 

 The methodology used in this study is applicable to predict water color based on 

DOC from a known source, assuming an absence of significant chemical or mineral 

interferences. There have been reported interferences of chemical agents or metals for 

DOC measurements, for example Fe inferences (Kritzberg and Ekström 2012). Future 

studies could include investigating the effects of chemical agents or minerals on 

heterogeneous sources of organic matter contained in colored-water samples. 

 Drinking water treatment depends upon the nature, source, and content of DOC 

(Volk et al. 2002; Matilainen et al. 2011). Coagulant dosing requirement is often 

determined by the amount of water color (Ratnaweera et al. 1999). The source-wise 

quantification of color and dissolved organic matter may also be useful for water 

treatment facilities (Volk et al. 2005; Kim and Yu 2005; Grayson et al. 2012; Parry et al. 

2015), as well as management of DOC yield from drinking water catchment (Holden et 

al. 2012; Ritson  et al. 2014; Bloodworth et al. 2015). Landscape-based management of 

organic materials and their sources can minimize the DOC yield into surface water. 

Proper quantification of the color-DOC relationship of source waters may help to 

determine chemical dosing for water treatment facilities, thereby minimizing the potential 

carcinogenic by-products in drinking water.   

 Based on the USEPA (2016) wadeable streams‟ water chemistry data (DOC and 

color from 2000-2004 throughout the conterminous United States), the relationship 

between color and DOC was determined by linear regression analysis in Minitab 16 

(Minitab 2010). There was a significant linear relationship between color and DOC (R
2
 = 

0.68, and p < 0.001) (Figure 3.5). A possible contributing factor for the variation in this 
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relationship may be the origin and spatial distribution of natural organic matters in these 

streams which ranged in size from first to fifth order (USEPA 2006). Decomposed 

vegetation, forest litters, human waste, animal manure, soil nutrients and, soil organic 

matter often originate from terrestrial landscapes whereas, decomposed aquatic plants or 

algal biomass may contribute organic matter directly in surface waters (Brezonik and 

William 2011, Mostofa 2013). Such variations in organic matters spatially would impact 

the physical and chemical properties of DOC in the stream at the watershed outlet. In 

addition, there could be industrial chemicals transported to the water bodies which would 

impact the water color in surface waters. 

  The color coefficient (slope) in Figure 5 for the stream water was lower than the 

samples analyzed in present study (Figure 3.3). The organic source samples used in 

present study were selected such a way that the water samples had concentrated color to 

develop color-DOC relationship. As discussed above, there are various sources organic 

matters in watersheds, which could have less color that were not analyzed in this study. 

Therefore, the color coefficients found for the sources analyzed in this study would likely 

be expected to be higher than the composite-source samples collected from natural 

streams shown in Figure 5.  

  

Conclusions 

 The quantification of natural water color and DOC is important to evaluate 

aesthetic, aquatic habitat, ecosystem function, and drinking-water standards in natural 

waters. A color prediction methodology for single-source and heterogeneous organic 

matter present in water was developed and validated using laboratory-scale experiments. 

The study approach does not require separation of the complex chemical nature of 
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organic matter. Results demonstrate that a linear relationship exists between water color 

and DOC in surface waters for specific DOC sources. This study also shows that water 

color for heterogeneous sources of organic matter content in surface waters can be 

predicted based on the proportion of various organic sources, at least for up to four 

defined sources of DOC.  

 The method used in this study will be especially useful to predict color based on 

sources and levels of organic matter for modeling of color in runoff from field-scale 

watersheds when predominant DOC sources are known (such as animal or plant based 

compost, manure, or potting soils). In larger watershed applications, future research will 

be required to test the applicability of the method to predict color for heterogeneous 

sources of organic matter. 
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Tables 

 

Table 3.1. Regression equations to predict color for individual organic source. PM = 

sphagnum peat moss ; CM = composted cow manure; CC = cotton-burr compost ; BC = 

decomposing bark chips; DOC = dissolved organic carbon; R
2
 = coefficient of 

determination; SE = standard error; PCU= Platinum-Cobalt Unit.  

Source Type Regression Equation R
2
 

SE 

(PCU) 
p-value 

Peat Moss ColorPM = 5.68 [DOC]PM 0.99 7 < 0.001 

Composted 

Cow Manure 
ColorCM = 15.75 [DOC]CM 0.98 14 < 0.001 

Cotton-burr 

Compost 
ColorCC = 19.19 [DOC]CC 0.97 24 < 0.001 

Bark Chips ColorBC = 10.24 [DOC]BC 0.99 10 < 0.001 

 

 

Table 3.2 Analysis of covariance summary for color prediction by dissolved organic 

carbon (DOC) and organic source type. DF = degrees of freedom; SS = sum of squares 

and MS = mean squares; R
2
 = coefficient of determination. 

Term Source of Variation DF SS MS F-value p-value 

Covariate DOC 1 792954 792954 5418.3 <0.001 

Intercept Organic Source 3 1791 597 4.1 0.01 

Slope DOC* Organic 

Source 
3 224122 74707 510. <0.001 

 Error 70 10244 146     

Note: S= 12.1; R
2
 = 99.23%, adj. R

2
 = 99.16%  
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Figures 

 

 

Figure 3.1. Types of source organic source materials used in this study. 

 

 

Figure 3.2. Example of 15 dilutions made for composted cow manure.  
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Figure 3.3. Linear relationships between color and dissolved organic carbon (DOC) for 

decomposing bark chips (BC), cotton burr compost (CC), cow compost (CM) and, 

Sphagnum peat moss (PM). The color unit is on Platinum Cobalt Unit (PCU). R
2
 is 

coefficient of determination. 

 

 

Figure 3.4. Comparison between measured color and predicted color for heterogeneous 

sources of organic matter contained in colored water samples. The color unit is on 

Platinum Cobalt Unit (PCU). R
2 

is a coefficient of determination.  
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Figure 3.5.  The relationship between color and dissolved organic carbon (DOC) for 

conterminous United States (data source: USEPA 2016). The color unit is on Platinum 

Cobalt Unit (PCU). R
2
 = coefficient of determination; SE = standard error 
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CHAPTER IV 
 

 

AN INTEGRATED APPROACH TO CHARACTERIZE LONG-TERM CHANNEL 

PLANFORM CHANGES IN AN AGRICULTURAL WATERSHED WITH LIMITED 

FIELD DATA  

 

Abstract 

 Planform stability of stream channels can be impacted by anthropogenic factors 

such as settlement, agricultural practices, deforestation, construction activities, dam 

operations, and urban developments. However, most streams lack on-the-ground 

measurements over time to document these changes. Analysis of aerial images in 

geographic information system (GIS) is commonly used to determine changes in channel 

planform stability. Relevant historical events and records may be associated with the 

planform changes shown in aerial images. The objective of this study was to develop and 

apply an integrated approach to evaluate channel planform stability in an agricultural 

watershed using historical records such as plat maps, aerial images, and relevant 

historical events. The methodology has been applied in the Cobb Creek watershed in 

west-central Oklahoma. The Cobb Creek watershed channel networks in 1873 and 2013 

were compared based on the total length of all channels in each network. Total channel 

length in 2013 network was almost 70% greater than in 1873 channel network, which 
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was concurrent with settlement and associated erosion problems in the watershed that 

occurred during the early portion of this period. Further, a 31-km section of the main 

stem of Cobb Creek was selected and divided into 12 segments (SEGs) based on bridge 

constrictions on the channel. The channel migration rates were estimated for each SEGs 

and periods of 1940-1966, 1966-2003, and 2003-2013. Channel migration rates and 

cumulative effective stream power were normalized by average SEG‟s to compare 

historical planform changes for the period of 1966-2003 and 2003-2013. Channel 

migration was significantly decreasing from the period of 1940-1966 to 2003-2013. 

Based on the integrated approach framework developed in this study using only limited, 

on-the-ground field measurements, results indicated that the main stem of Cobb Creek 

had planform stability from 1940 to 2013. The approach presented in this paper could be 

applicable for other anthropogenically impacted agricultural watersheds. 

Keywords: Channel migration, planform, historical changes, integrated method 

 

Introduction 

 Natural geomorphic functions of streams and rivers are altered by anthropogenic 

factors such as impoundments, infrastructure development and land-use practices (Hooke 

2000; James and Marcus 2006; Gregory 2006; Hooke et al 2012). Stream corridor 

restoration, planning and river management often require historical assessments of stream 

hydrology, climate, geological and geomorphological features, and land-use practices. 

Historical data can provide important information for changes in watershed hydrology 

and river morphology (Gurnell et al. 2003) which can, in turn, be utilized to develop 

future river management strategies (Brierley and Hooke 2015). Historical evaluations of 
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changes in channel planform are useful to identify impacts of anthropogenic disturbances 

in natural streams and rivers (Benner and Sedell 1997; Trimble 2008; Lagasse et al. 2004; 

Erskine 2011; Deb and Ferreira 2014; Rhoads et al. 2016). Channel planform refers to the 

aerial or planimetric view of stream channel geometric features including sinuosity, 

meandering, channel width and centerlines. Historic channel planform is often compared 

with existing planform to evaluate changes in channel geomorphic functions. 

 In many studies, aerial photographs and maps have been used for spatial analysis 

of channel planform changes (e.g., Gurnell et al. 1994; Micheli and Kirchner 2002; Heo 

et al. 2009; Yao et al. 2013; Scorpio et al. 2015; Rhoads et al. 2016). Gurnell et al. (1994) 

investigated channel planform changes from 1876 to 1992 for the River Dee in the United 

Kingdom using historical aerial photographs and maps in geographic information system 

(GIS). In their study, limited channel migration was shown in the River Dee during the 

115-year period because of flow regulations. Micheli and Kirchner (2002) used 1955-

1995 aerial photographs for spatial analysis of channel lateral migration in Sierra Nevada, 

California. This study digitized the channel centerlines for 1955, 1976 and 1995 and 

estimated channel migration rates based on eroded area polygon made by two channel 

centerlines divided by the elapsed time period in years.  

 Heo et al. (2009) characterized channel meander migration for the Sabine River in 

the southern USA using historical orthophotos to digitize channel centerlines from 1974 

to 2004 in GIS. Yao et al. (2013) used similar GIS techniques to evaluate channel 

planform changes and migration rates in the Yellow River, China. Scorpio et al. (2015) 

analyzed channel morphology for five rivers in Italy from 1869 to 2012 using aerial 

images and topographic maps. Their results showed that deforestation, agricultural 
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practices and river training works were the primary causes of channel planform 

alteration.   

 More recently, Rhoads et al. (2016) evaluated changes in channel planform and 

the watershed channel network from the 1820s to 2012 in the Sangamon River basin, 

Illinois. In their study, the 1820s‟ channel network was digitized from historic plat maps 

for the watershed and was compared to the digitized 2012 channel network. Their results 

showed that the channel network in 2012 was almost three times larger in length than the 

1820s‟ channel networks. Further, Rhoads et al. (2016) reported that the majority of 

channel network expansion was due to the addition of agricultural drains in the watershed 

after European settlement. 

 Digitized historical channel centerlines have been used to predict future channel 

flow path using channel migration models (e.g., Abad and Garcia 2008; Güneralp and 

Rhoads 2009; Motta et al. 2012; Chakraborty and Mukhopadhyay 2014). In valleys with 

stream channels that have exhibited historical stream migration, channel migration zones 

are identified by comparing spatial and temporal channel planform shape and patterns 

(Rapp and Abbe 2003). Channel migration zones are useful for flood management, 

potential infrastructure construction planning and damage prevention, conservation 

practices (CPs), and streambank erosion control. 

 Numerous studies across the USA have demonstrated that best management 

practices (BMPs) and flow regulation can reduce lateral channel migration in fluvial 

systems (Shields et al. 2000; Ritter et al. 2007; Fremier et al. 2014). Shields et al. (2000) 

showed significant reduction in downstream channel lateral migration after construction 

of dams in the Missouri River in Montana. However, studies showed that reservoirs could 
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result in downstream incision (Kondolf 1997; Legleiter et al. 2015). In west-central Ohio, 

soil conservation and river management activities helped to maintain geomorphic 

equilibrium for previously impacted channels (Ritter et al. 2007). Fremier et al. (2014) 

demonstrated that the combined effects of BMPs on soil erosion and flow regulation or 

control reduced lateral channel migration by nearly 40% in the Sacramento River, 

California.  

 In the USA, many soil CPs have been implemented by farmers and ranchers with 

support from the United States Department of Agriculture (USDA) (Tomer and Locke 

2011). In west-central Oklahoma, numerous studies have shown a reduction in upland 

soil erosion, sediment yield and nutrient loading into the Fort Cobb reservoir due to 

USDA soil CPs (Simon and Klimetz 2008; Garbrecht and Starks 2009; OCC  2009; 

Becker and Steiner 2011; Garbrecht 2011; Moriasi et al. 2011; Steiner et al. 2014). In 

2010, the United States Geological Survey (USGS) published 10 scientific investigation 

reports for the Fort Cobb watershed focusing on evaluation of CPs, land use change, 

climate and water quality (Andrews et al. 2011; Becker 2011). More recently, authors 

from the USDA–ARS, Grazinglands Research Laboratory in El Reno, Oklahoma, 

published a series of 10 journal papers in a special section of the Journal of 

Environmental Quality (Volume 43, Issue 4, July-August 2014). These papers include 

up-to-date hydro-climatic, land use, geological and soil physiographic data for the Fort 

Cobb watershed (Steiner et al. 2014). However, those studies have only attempted limited 

investigation of channel geomorphic changes over the long term. To better understand 

these changes, relevant historical events and records associated with the planform 

changes in the watershed need to be evaluated.  
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 The objective of this study was to develop and apply an integrated approach to 

evaluate channel planform stability in an agricultural watershed using historical records 

such as plat maps, aerial images, and relevant historical events. The methodology was 

applied in the Cobb Creek watershed in west-central Oklahoma.  

 

Methods and Materials  

 

Integrated Approach 

 For this integrated approach, channel planform characterization techniques have 

been coupled within a systematic framework that uses historic records and limited field 

data to describe long-term channel planform changes within a watershed. The framework 

for this approach included nine steps (Figure 4.1). These steps are described as follows. 

 

1. Historical Maps and Aerial Photographs. The first step of integrated approach 

is gathering of survey plat maps, topographic maps, and aerial photographs from 

the area of interest. Rhoads et al. (2016) demonstrated that historical land-survey 

records and aerial images were useful in evaluating physical channel planform 

changes. In most watersheds, such maps and photographs are available. For 

example, in the USA, land aerial images are generally available from 1937 

onward with varying degrees of temporal resolution (Trimble and Cooke 1991).  

2. Anthropogenic Impacts and Conservation Practices. The second step is 

collecting historical records of anthropogenic impacts in the watershed. More than 

50-percent of the earth‟s landscape has been disturbed by anthropogenic impacts 
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(Hooke et al 2012). Agricultural practices, grazing, irrigation, deforestation, 

construction activities, dam operations, and urban developments are some of the 

human activities that may degrade watershed. In addition, information of 

conservation practices or best management practices should be collected that have 

been implemented in the watershed. 

3. Data Needs: Precipitation, Streamflow, and Representative Channel Survey. 

In the third step, historical precipitation and streamflow records are required. 

Precipitation data can be obtained from government agency data archives. For 

example, in the USA, National Oceanic and Atmospheric Administration collects 

and archives precipitation records . Streamflow has been altered by dam 

operations and flood control impoundments in several watersheds. In many 

studies, effect of reservoir operation in downstream geomorphic changes have 

been evaluated (e.g.,  Shields et al. 2000; Kondolf 1997; Legleiter et al. 2015). In 

many streams, local agencies have recorded daily streamflows. For example, 

USGS has operated gaging stations at most of the streams in the USA. Acquire 

channel survey records for gage station or representative reaches survey records, 

otherwise, channel geomorphic serving is required to determine representative 

channel reaches in the watershed. 

4. Channel Network. In the fourth step, the channel network should be digitized in 

GIS from maps and aerial images obtained from step 1. For the USA, channel 

flowlines for watersheds can be obtained from the USGS‟s Nation Hydrography 

Dataset in a shapefile format. While digitizing the channel network for the year of 

interest, NHD flowlines can be taken as a reference guide (Rhoads et al 2016). 
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With historic maps and aerial photographs, channel flowlines or centerlines are 

traced to determine the channel network and channel planform. 

5. Channel Segment Selection. In the fifth step, select the representative channel 

reach length or section with reference to step 1 and step 2. Divide up the study 

channel reach into segments (SEGs) based on anthropogenic impacts and/or 

conservation practices implemented. Road bridge crossing locations are a 

convenient way to identify SEG since their location generally does not change 

over time. In this step, channel centerlines on each aerial images need to be 

accurately digitize with reference to channel banks. 

6.  Segment-wise Streamflow and Power. In the sixth step, mean daily streamflow 

and available stream power are required for each SEG. If there is not a gage site 

in each SEG, mean daily flows from gaged SEG could be transferred to the other 

segments (ungaged locations) using the drainage area ratio method assuming no 

major tributaries influences (Esralew and Smith 2009) as:  

    
   

    
                                               (1) 

where Qug is mean daily flow at ungaged site (m
3
/s), DAg is drainage area at gaged 

station(km
2
), DAug is drainage area at ungaged site (km

2
), and Qg is mean daily 

flow at gaged site. Available stream power for each SEG and period should be 

estimated. Available power for channel work is defined by Leopold et al. (1964) 

as: 

Ω = ρgSQ                                                                                  (2) 

where ρ is density of water (kg/m
3
), g is acceleration due to gravity (m/s

2
), S is 

channel slope and Q is discharge (m
3
/s), which gives Ω in W/m.  
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7. Channel Planform. In the seventh step, estimate channel planform characteristics 

(SEG length, valley length, sinuosity) from channel digitized channel centerlines 

from step 5 in GIS.  

8. Lateral Channel Migration. In the eighth step, lateral channel migration is 

estimated between time periods. With reference to step 1, 2, and 3, years can be 

grouped into periods. For example, if historical records have 1940, 1950, 1980 

and 2010 aerial images, the groups will be 1940-1950 and 1980-2010. The 

channel lateral migration can be estimated for each period from digitized channel 

centerlines for each SEG and period.  

9. Historical Channel Planform Characterization and Comparison. After 

quantifying and evaluating step 1 to 8 (Figure 4.1), historical channel planform 

characterization and comparison of study watershed can be completed in the last 

step. In this step, statistical comparisons between various parameters that control 

channel planform changes such as year, period, SEG and, stream power are 

completed. If parametric statistical tests are use, channel migration and stream 

power could be normalized  with SEG channel lengths. 

 

Application of Integrated Approach  

Study Area 

 The 426-km2 Cobb Creek watershed is located in west-central Oklahoma (Figure 

4.2). The watershed includes all or parts of Caddo, Custer and Washita counties in 

Oklahoma that drain to Fort Cobb Reservoir. In 1958-1959, the U.S. Bureau of 

Reclamation (USBR) constructed a reservoir on Cobb Creek called the Fort Cobb 
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Reservoir (Garbrecht 2011). The 31.4-km long segment of the main stem of Cobb Creek 

was selected for channel planform and lateral migration studies. 

  The watershed has various types of geological formations. The area is comprised 

of 58 percent Rush Springs Sandstone, 24 percent Cloud Chief rock, 15 percent 

Weatherford Gypsum and 3 percent alluvium deposits (Cederstrand 1996; Starks et al. 

2011a; USDA-ARS 2013a; Moriasi et al. 2014a). The corridor along the study section is 

alluvial deposits and surrounded by the Rush Springs Sandstone formation. The Rush 

Springs Sandstone is a major rock formation that extends up to 102 m deep (Starks et al. 

2011a).   

The soils are primarily fine sandy loam based on USDA Natural Resources Conservation 

Services (NRCS) State Soil Geographic database (STATSGO) soil mapping unit of 

OK110 (Starks et al. 2011a; Moriasi et al. 2014a). The most recently compiled data for 

land use are from 2001 and 2005 (Storm 2003; Starks et al. 2011b). In 2001, about 51 

percent of the Fort Cobb watershed was covered by cultivated crops, 40 percent by 

pastureland and 7 percent by forest land (Storm et al. 2003). In 2005, the cultivated land 

area was 56 percent, whereas pastureland was 34 percent and forest land was 5 percent 

(Starks et al. 2011b). In addition, there was 5 percent road in 2005 which was undetected 

in 2001 land use analysis because of spatial resolution (Storm et al. 2003). Yue (2006) 

reported that the Cobb Creek watershed has about 86 percent agricultural land, 14 percent 

pastureland and 0.1 percent forest land.  

 Approximately 29 percent of the watershed‟s contributing drainage area has 

NRCS regulated reservoirs (USDA-ARS 2013b, USGS 2016a). There are six flood 

control dams in the watersheds (Figure 4.2) which were constructed during the late 1950s 
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(Moriasi et al. 2014b). The study watershed has an active USGS stream gage station near 

Eakly, Oklahoma (USGS 07325800, Figure 4.2), which has flow record available from 

1969 to the present. Average annual precipitation was 690 mm/year from 1895-1970, 773 

mm/yr from 1970-2000, and 716 mm/yr from 2000-2012 (Garbrecht et al. 2014). 

 The application of the previously described integrated approach to the Cobb 

Creek watershed is described as follows. 

 

Step 1: Historical Maps and Aerial Images 

 All available historical maps and aerial images information including historical 

for the Cobb Creek watershed were collected. The earliest available maps for the 

watershed are from 1873. The U.S. Bureau of Land Management, General Land Office 

(BLM-GLO) was established on April 12, 1812, and started record keeping survey plats 

(township and range) as per the Land Ordinance Act of May 20, 1785 (BLM-GLO 2016). 

In this study, the earliest detailed historical survey maps were obtained from BLM-GLO 

(2015). The BLM-GLO collection of plat maps for the study watershed were surveyed 

between October and November 1873 (approved in March 1874), hereafter referred to as 

the “1873 plat map.” 

 The plat maps obtained from BLM-GLO (2015) had 12 townships and ranges (8N 

13W to 12N 13 W, 9N 14W to 12N 14W and, 10N 15W to 12N 15W). Collected plat 

maps were georectified with four known vertices of townships and ranges in ArcGIS 10.0 

(ESRI 2010). The average georectification  root mean squared error (RMSE) in 

georectified plat map was 6.7 m at first-order polynomial transformation. The coordinate 
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system was on the North American Datum (NAD) of 1983 in Universal Transverse 

Mercator (UTM).  

 The earliest available aerial images for the watershed are from 1940. In order to 

evaluate historic channel planform changes in the watershed, aerial images of 1940, 

1966, 2003 and 2013 were selected based on availability. The 1940 and 1966 images 

were obtained from USDA-ARS, Grazinglands Research Laboratory, El Reno, 

Oklahoma. Aerial images of 2003 and 2013 were obtained from the Agriculture Imagery 

Program (NAIP) (USDA-FSA 2003, 2013). Based on personal communication with Dr. 

Patrick Starks (USDA-ARS, EI Reno, February 10, 2016), USDA-ARS used a “rubber-

sheet” method whereby individual black-and-white images were “stretched” to match a 

basemap with a RMSE value as close to 1 as possible. The rubber-sheet is a method of 

geometric transformation in GIS while georeferencing a target raster layer to base map 

raster layer (ESRI 2010). The aerial imagery obtained from USDA-ARS had incomplete 

coverage for 1966 photographs of the watershed. The incomplete sections for the 

watershed images were filled with 1966 aerial photographs obtained from ASCS (1966) 

and georeferenced in ArcGIS 10.0 (ESRI 2010) with seven to eight known ground 

control points. The NAIP 2003 and 2013 images were georectified to the NAD 1983 in 

UTM coordinate system (USDA-FSA 2003, 2013). 

 

Step 2: Anthropogenic Impacts and Conservation Practices  

 Historically, the study watershed was impacted by soil erosion that resulted from 

agricultural practices. Historical events related to settlement, soil erosion, CPs, and 

relevant studies in the watershed were determined, and with details of these events are 
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listed in Table 4.1. Five time periods, pre-1873, 1873-1940, 1940-1966, 1966-2003, and 

2003 - 2013, were chosen based on availability plat maps, aerial images, and historical 

events. CPs refer to the soil erosion protection measures that have been implemented by 

farmers and ranchers. Based on the BMPs spatial dataset provided by the Oklahoma 

Conservation Commission (OCC) in January 2016, common CPs for erosion control were 

gully shaping, terrace removal or addition, cross-fencing, grade-stabilization structures, 

diversions, grassed waterways, critical area planting, and no-tillage. 

 

Step 3: Precipitation, Streamflow, and Representative Channel Survey 

 Garbrecht et al. (2014) developed a weather dataset from 1949 to 2012 for the 

watershed with reference to nearby weather stations and available databases. The study 

watershed has only one gage station (USGS 07325800) (Figure 4.2), which has 

continuous daily stream-flow record available from 1969 to present. In 1959, a dam was 

constructed at Crowder Lake, the upstream-most section of the study stream (Figure 4.2). 

Flow records prior to water year 1969 were not available for the watershed. Daily flows 

for water year 1966 to water year 1968 were determined by a second-order polynomial 

relationship between  three-day cumulative daily precipitation and daily mean flows for 

water year 1969 to 2012 (R
2
 = 0.21). Precipitation data was obtained from Garbrecht et 

al. (2014). Considering the temperature, vegetation types, soil, runoff time and associated 

infiltration effects, three-day cumulative precipitation was correlated with daily average 

flow. The hydrograph of simulated daily mean flows for 1969 to 1968 gaged daily mean 

flows for 1968-2003 and 2003-2013 at the gaged site is shown in Figure 4.3.  
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 As part of the present study, a channel cross-section and profile survey was 

conducted at a site on the mainstem of the Cobb Creek in July 27, 2015. The surveyed 

cross-section (35
o
17‟28.8‟‟, 98

o
35‟38.9‟‟) was approximately 64-m upstream from the 

USGS gage station (USGS 07325800) (Figure 4.2). The water surface elevation and time 

of the survey were recorded. In addition, sediments from the surface of the streambed 

were collected. 

 

Step 4: Channel Network  

 The 1873 channel network was digitized in a georectified plat map for the study 

watershed in ArcGIS 10.0 (ESRI 2010). In discussing the guidelines for defining the 

characteristics of water bodies on the 1873 plat maps, the General Land Office (GLO) 

manual of surveying instructions (GLO 1871) explicitly instructed the surveyors to note 

extent of streams and other water bodies up to the head water and origin. In addition, 

surveyors had well documented field notes for each of the townships and ranges (BLM-

GLO 2015). Surveyors were instructed to note intersection of lines by water bodies 

(BLM-GLO 1871, p18). The lines described in survey notes were the section lines in 

1873 plat maps. Surveyors followed the township section lines while recording the extent 

of streams (GLO 1871). If it is assumed that the surveyors followed the survey guidelines 

as described by the GLO, then the likely delineated the extent of stream up to the 

headwater.  

 The 2013 channel network for the Cobb Creek watershed was digitized in a 1-m 

resolution NAIP 2013 aerial imagery. Rhoads et al. (2016) digitized the 2012 channel 

network with reference to NHD flowlines in east-central Illinois. While digitizing the 
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Cobb Creek 2013 channel network, 2015 NHD flowlines (USGS 2015) layer was 

overlaid to the 2013 aerial images as a reference guide. The 2013 channel network was 

extended up to the headwater. The grass channels observed in the 2013 aerial image were 

not included, and offset-flowlines in the 2015 NHD were corrected to match the channels 

in the 2013 aerial image. The lengths of the total channel segments on the 1873 and 2013 

channel networks were measured in NAD 1983 UTM coordinate system. 

 

Step 5: Channel Segment Selection 

 In this study, 31.4 km (based on NAIP 2013 aerial imagery) of the main stem of 

Cobb Creek was considered as a study-channel section for channel planform 

characterization. The section extends from the outlet of Crowder Lake to approximately 

2.5 km upstream from Fort Cobb Reservoir (Figure 4.2). Twelve channel segments in the 

main stem were defined to analyze the channel planform changes using the bridge 

locations as upstream and downstream end points of each segment (Figure 4.4). Full 

descriptions of the SEG endpoints are listed in Table 4.2. Most of the bridge structures 

were visible in the 1940 aerial imagery, except at the segment 2 and 3 boundary and the 

segment 6 and 7 boundary which were constructed in 1976 and 1950, respectively 

(ODOT 2016). The surveyed section and gage station is in SEG-5. 

 

Channel Centerline Digitization 

 The channel centerlines in the main stem of Cobb Creek in 1940, 1966, 2003 and 

2013 were digitized with ArcGIS software (ESRI 2010). To interpolate the channel 

centerline, an ArcGIS add-in called “Channel Planform Statistics” developed by Lauer 
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(2006) was used. This tool interpolates and creates a smooth channel centerline with 

reference to the right and left channel bank. Lauer and Parker (2008) demonstrated that 

channel centerline digitization may not be accurate if digitized by only considering the 

channel thalweg because streamflow and width varies with flow events. It was 

recommended to use the right and left bank of the stream to locate the channel centerline 

because banks, especially with vegetation, are easier to identify than the channel 

centerline. The digitized channel centerlines for 1940, 1966, 2003 and 2013 were used to 

estimate lateral channel migration. Note that the channel centerline digitized for the main 

stem of Cobb Creek was different than the channel network digitization in 2013. Channel 

networks were digitized with reference to NHD flowlines, not the banklines. 

 

Step 6: Segment-wise Streamflow and Stream Power  

 Mean daily flows from SEG-5 were transferred to the other segments using 

equation (1). Drainage area of each SEG was determined from StreamStats Version 3.0 

(USGS 2016b). The recurrence flood events of 2-yr, 10-yr, and 50-yr were determined 

using USGS flood-frequency analysis software called PeakFQ Version 7.1 (Flynn et al. 

2006). The estimated 2-yr, 10-yr and 50-yr flood events at SEG-5 were 55 m
3
/s, 187 m

3
/s 

and 385 m
3
/s. 

 Stream power is often related with channel migration (Larsen et al. 2006). The 

available power for channel work is defined in equation (2). Larsen et al. (2006) 

introduced the term instantaneous effective stream power (Ωe) as: 

Ωe = 0 (if Qd ≤ Qd, threshold) 

            =  ρgSQd (if Qd > Qd,threshold)                                                                                       (3) 
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where Ωe is in W/m,  Qd is mean daily discharge (m
3
/s). Larsen et al. (2006) defined a 

lower threshold discharge to initiate the bank erosion. In addition, they defined upper 

threshold discharge as discharge that overtops the bank. Their results showed no 

significant difference between with or without the upper threshold discharge. In this 

study, threshold discharge was estimated with reference to critical shear stress criterion 

(discussed in next section). Further, cumulative effective stream power (Ωce) was 

estimated by a similar procedure from Larsen et al. (2006) as: 

    ∑   
  
  

                           (4) 

where t1 is starting time and t2 is ending time in seconds for the period of interest (1966-

2003 and 2003-2013). Cumulative effective stream power was estimated for two periods 

1966-2003 and 2003-2013 for all SEGs except SEG-7.   

 A new concept of normalized cumulative stream power was introduced. The 

normalized cumulative effective (NCE) stream power per period (Ωnce) was determined 

as: 

Ωnce = Ωce  Lavg                     (5)                                   

where Lavg was each period‟s average SEG‟s channel length (m) which gives Ωnce in 

Watts. Further, in order to compare NCE stream power with normalized migration rate, 

NCE stream power by year (Ωnce,y) was determined as: 

Ωnce,y = Ωnce /n                                                                                                                     (6) 

where n was number of years in each period of interest, which gives Ωnce,y in W/yr. Ωnce,y 

NCE stream power per year (Ωnce,y) was estimated to for two periods 1966-2003 and 

2003-2013 for all SEGs except SEG-7.  
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Threshold Discharge 

 Stream power is often related to bed shear stress (Larsen et al. 2006) as: 

Ω = τb v w              (7) 

where τb is bed shear stress (N/m
2
), v is channel flow velocity (m/s), w is channel width 

(m), which gives Ω in W/m. Bed shear stress is defined as: 

 τb = ρ g R S               (8) 

where ρ is density of water (kg/m
3
), g is acceleration due to gravity (m/s

2
), R is hydraulic 

radius (m) and S is channel slope (m/m), which gives τb in N/m
2
. Critical bed shear stress 

is normally estimated with reference to Shields-stress criterion (Shields 1936) for 

initiation of particle in motion (Buffington and Montgomery 1997) as: 

      
 (    )                 (9) 

where τc is critical bed shear stress (N/m
2
),  τc* is dimensionless critical shear stress, g is 

acceleration due to gravity (m/s
2
),  ρs is density of sediment (kg/m

3
), ρ is density of water 

(kg/m
3
) and d50 is median grain size (m).  The d50 was calculated as 0.5 mm from 

streambed surface sediment with hydrometer analysis based on ASTM (2007) at 

surveyed reach. 

 The Hydrologic Engineering Center‟s River Analysis System (HEC-RAS) 

(USACE 2010) was used to determine hydraulic depth and shear stress parameters in 

steady state condition. Manning‟s „n‟ was calibrated with known discharge at the 

surveyed cross-section. Stream discharge at USGS gage station (USGS 07325800) was 

reported as 0.34 m
3
/s (USGS 2016c) during survey time. No tributaries existed between 

the surveyed cross-section and gage station, so the same discharge was assumed for the 

surveyed section.  
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 Using Shields curve (Vanoni 1964), τc* was estimated at 0.032 and critical bed 

shear stress (τc) was calculated from equation (10) as 0.26 N/m
2
. Critical bed shear 

stresses for particle size 0.25-0.5 mm typically range from 0.194-0.27 (Berenbrock and 

Tranmer 2008, Julian 2010). The critical hydraulic radius corresponding to the critical 

shear stress was calculated from equation (9). With trial and error, the threshold 

discharge corresponding to the critical hydraulic radius was determined from HEC-RAS 

(USACE 2010) steady state simulation. 

 

Step 7: Channel Planform  

 The channel planform characteristics of valley length, channel length and 

sinuosity were estimated for all SEGs and years 1940, 1966, 2003 and 2013. Valley 

length was kept constant for all periods because the SEG was bound by bridge structures. 

Channel sinuosity was estimated as the ratio of channel length to the valley length 

(Schumm 1963).  

 

Step 8: Lateral Channel Migration 

 Lateral channel migration has been estimated by a method called “Eroded Area 

Polygons” (e.g., Kirchner et al. 1998; Micheli and Kirchner 2002; Wallick et al 2006; 

Constantine et al. 2009). In this method, channel centerlines are digitized for years of 

interest and a polygon is created by joining the two centerlines. Legg et al. (20014) 

developed an ArcGIS tool called “The Channel Migration Toolbox.” The toolbox 

calculates total channel centerline migration (m) by dividing the eroded area polygon by 

the user defined reach length. In this study, the reach length was considered as half of the 
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perimeter of eroded-area polygons as recommended by Wallick et al. (2006). Net lateral 

channel migration area between three periods 1940-1966, 1966-2003 and 2003-2013 for 

each SEG were estimated by the Channel Migration Toolbox. The lateral channel 

migration rates (LCM) (m/yr) were obtained by dividing the net channel lateral migration 

by the elapsed time (yr) for each time period and SEG. The SEGs were not equal in 

length. In order make fair comparison between segments, LCM for each period were 

normalized as: 

Normalized migration rate = LCM* Lavg,SEG                                                                   (10) 

where LCM is in m/yr, Lavg,SEG is the average SEG‟s channel length (m) for each period, 

which gives normalized migration rate in m
2
/yr. 

 

Errors on Lateral Channel Migration 

 The 1940 and 1966 aerial images were in black and white, whereas the NAIP 

2003 and 2013 aerial images were color with 1 m resolution. Registration error is often 

used as spatial error between two aerial images (Perroy et al. 2010; Tobergte 2012). In 

the proximity of the main stem of the Cobb Creek, 12 feature points (buildings, road 

centerline, permanent landmark) were selected in 2013 aerial images and the distance 

between 2003 and 2013 feature points were measured as registration error using the UTM 

coordinate system.  

 The registration error was not calculated for 1940-1966 and 1966-2003. There 

were not distinguishable and comparable features such as buildings and permanent 

landmark within proximity to the main stem of the Cobb Creek in the 1940 and 1966 

aerial images. In addition, those images were black and white, and the resolutions were 
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not consistent between two years. Micheli and Kirchner (2002) used a similar geo-

rectification technique and estimated spatial error as ± 5.4m for such historical aerial 

images in California. Further, Hughess et al. (2005) estimated ± 5.0 m spatial error for 

historic aerial images in Oregon. 

 

Step 9: Historical Channel Planform Characterization and Comparison  

 In this study, channel planform condition in Cobb Creek was characterized in two 

parts based on availability of historical records such as plat maps, aerial images, and 

relevant historical events within the framework of integrated approach (Figure 4.1) and 

outline of historical events (Table 4.1). In the first part, stream channel network in 1873 

plat maps was compared with 2013 channel network.  In the second part, planform 

characteristics of valley length, channel length and sinuosity were characterized for 1940, 

1966, 2003 and 2013. Further, lateral channel migration rates were estimated for the 

period of 1940-166, 1966-2003 and 2003-2013. In addition, lateral channel migration 

rates for the period of 1966-2003 and 2003-2013 were coupled with stream power. 

 Statistical test were conducted to compare various parameters of channel 

planform characteristics with year, period, and SEG as factors. One-way analysis of 

variance (ANOVA) was performed at α = 0.05 level using sinuosity as response variables 

and year as the factor. Similarly, one-way ANOVA was conducted to determine 

significant differences in annual precipitation between three periods (1949-1966, 1966-

2003 and 2003-2013) and the mean annual stream flow between two periods (1966-2003 

and 2003-2013) at α = 0.05 level. A two-way ANOVA without intercept was conducted 

to evaluate year-and SEG-wise significant differences in channel length. Similarly, a two-
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way ANOVA was conducted to evaluate the difference between normalized migration 

rates among the period and SEGs. In addition, a two-way analysis of covariance 

(ANCOVA) test was performed to determine the effects of stream power on channel 

migration using normalized channel migration as a response variable, period and segment 

as factors, and NCE stream power per year as a covariate  at α = 0.1. All statistical 

analysis were performed with Minitab statistical software, version17 (Minitab 2016), and 

test statistics reporting was based on APA (2010). 

 

Results and Discussion   

 

Channel Network Comparison  

    The Cobb Creek watershed channel networks in 1873 and 2013 were compared 

based on total channel segment length in each year. The total channel lengths in 1873 and 

2013 channel network were 233 km and 393 km, respectively. The Cobb Creek channel 

network had expanded nearly 70% over the period (Figure 4.5). The accuracy of hand 

drawn plat maps was unknown; however, the 1873 survey guidelines (GLO 1871) 

indicated that surveyors had most likely correctly delineated the extent of the stream. 

Although direct causation of increasing channel length between 1873 and 2013 cannot be 

demonstrated from these data, the potential channel network expansion was concurrent 

with settlement and associated erosion problems in the watershed that occurred during 

this period (Table 4.1).  

 In Oklahoma, non-Native American settlement began with the 1889 Land Run 

(Hoig 2009). Wilson (2009) reported that Caddo County (almost half of the Cobb Creek 
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watershed) was extensively occupied by settlement, and, as a result, 80 percent of the 

land had been converted to farmland at the time of Oklahoma statehood in 1907. In 

Oklahoma, due to the effects of human settlement and agricultural practices, extensive 

gully erosion was noted to begin around 1914 and had become a major issue by the 1920s 

(Phillips and Harrison 2004). In 1931, the first soil erosion survey was conducted in 

Oklahoma, which showed more than 80 percent of agricultural land was impacted by soil 

erosion (Phillips and Harrison 2004). A plausible conclusion is that the longer extent of 

the channel network in 2013 compared to1873 was likely a result, at least in part, by 

anthropogenic disturbances (agricultural practices and associated erosion problem) that 

occurred in the watershed during this time period.  

 

Channel Planform, Lateral Migration and Stream Power Characterization and 

Comparison 

 

Channel Planform Characterization 

 Several road bridge crossings were observed on the mainstem (Figure 4.4). 

Centerlines were not offset at those bridge structures when compared between years 

1940, 1966, 2003 and 2013. Therefore, an assumption was made that the road bridge 

crossings created constraints to the lateral channel migration at those specific locations, 

which supports the selection of segment breakpoints at the bridges.  

 The estimated channel morphological characteristics for each segment (valley 

length, channel length, sinuosity and slope) are shown in Table 4.3. Eight of the segments 

(SEG-1, SEG-2, SEG-5, SEG-6, SEG-10, SEG-11, and SEG-12) exhibited relatively 
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constant sinuosity from 1940 to 2013. The most sinuous channel segments were SEG-5 

and SEG-7. For the relatively short channel segments (SEG-3 and SEG-4), channels 

tended to straighten from 1966 to 2013.  The channel length and sinuosity sharply 

decreased from 1966 to 2003 in SEG-7 and remained constant from 2003 to 2013. Aerial 

images showed a channel cutoff that occurred in this segment sometime between 1966 

and 2003 (Figure 4.6). The SEG-7 was considered as outlier because of this channel 

cutoff and excluded from statistical analysis.  

 A two-way ANOVA without the intercept term was conducted to compare the 

main effects of year and segment on channel length. The year factor included 1940, 1966, 

2003 and 2013 whereas segment factor consisted of SEG-1 to SEG-12 except SEG-7.  

There were significant effects of year, F(3, 30) = 4.08, p = 0.015, and segment F(10, 30) 

= 1475.88, p < 0.001 on channel length. Tukey‟s pairwise comparison of mean channel 

length among year and segment factors is shown in Figure 4.7. A one-way ANOVA was 

conducted to evaluate year wise significant differences in sinuosity. The year factor 

included 1940, 1966, 2003 and 2013. The ANOVA revealed that the channel sinuosity 

was not significantly different year-wise, F(3, 40) = 0.04, p = 0.989;  at α = 0.05.  

 

Lateral Channel Migration Rates   

 For 2003-2013, spatial (registration) error was 1.6 m for the period of 2003 to 

2013 (Table 4.4). By dividing 1.63 m by 11 years, spatial error in lateral migration rate 

was estimated as ± 0.1 m/yr for 2003-2013. As there was insufficient information to 

estimate spatial error for the period of 1940-1966 and 1966-2003, spatial error estimated 

by Micheli and Kircher (2002) was applied in the present study. By dividing the spatial 
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error of ± 5.4 m by 27 and 11 years, spatial error in lateral channel migration was 

estimated as ± 0.2 m/yr and ± 0.1 m/yr for 1940-1966 and 1966-2003, respectively. The 

estimated channel migration rate (m/yr) with spatial error for each period and segment is 

shown in Table 4.5.   

 All channel migration rates are at or below the estimated error, except SEG-2 and 

SEG-6 in period 1940-1966 (Table 4.5). However, these two SEGs were included in 

statistical analysis. This was similar to Tobergte (2012), which did not exclude channel 

migration rates below the spatial error, considering aerial images had not detected small 

changes in fluvial erosion. A two-way ANOVA was conducted to evaluate the difference 

between normalized migration rates among the period and segment. The period factor 

included 1940-1966, 1966-2003 and 2003-2013 whereas segment factor consisted of 

SEG-1 to SEG-12 except SEG-7. Note that normalized migration rate (m
2
/yr) was 

determined using equation (10).  The two-way ANOVA showed significant main effects 

for period, F(2, 20) = 15.01, p < 0.001, and segment, F(10, 20) = 4.39, p = 0.002 on 

normalized migration rate. Tukey‟s pairwise comparison of mean normalized migration 

rates among year and segment factors are shown in Figure 4.8. The mean of normalized 

migration rates in 1940-1966 was significantly different from 1966-2003 and 2003-2013 

at α = 0.05. In segment-wise, the mean of normalized migration rates in SEG-1, which 

was the longest SEG, (Figure 4.8) were significantly different  compared to other SEGs, 

whereas means of normalized migration rates in other SEGs were not significantly 

different at α = 0.05.  
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Precipitation and Streamflow   

 An one-way ANOVA was conducted to determine significant differences in 

annual precipitation (mm/yr) between three periods (1949-1966, 1966-2003 and 2003-

2013) at α = 0.05 level. The ANOVA revealed that annual precipitation (mm/yr) was not 

significantly different among the periods, F(2,61) = 0.67, p = 0.517. Similarly, a one-way 

ANOVA was performed to determine differences in the mean annual stream flow (m
3
/s) 

between two periods (1966-2003 and 2003-2013) at α = 0.05 level. Mean annual flow 

(m
3
/s) was not significantly different between 1966-2003 and 2003-2013, F(1, 47) = 

0.03, p = 0.868. This indicates that after constructing upstream reservoirs (Figure 4.2), 

the mean annual flow didn‟t change significantly in Cobb Creek. 

 

Stream Power and Lateral Channel Migration 

 A HEC-RAS steady state (USACE 2010) simulated water surface elevation 

matched the measured water surface elevation of 25.19 m at surveyed cross-section 

(Table 4.6 and Figure 4.9). The calibrated channel manning‟s roughness parameter was 

0.035 (Chow 1959). The estimated threshold discharge was 0.01 m
3
/s. There was 

negligible difference (less than 0.05%) between Ωce for the period of 1966-2003 and 

2003-2013 with and without considering the threshold discharge in SEG-5. Therefore, 

threshold discharge was not considered in the calculation of Ωce for all SEGs. 

 NCE stream power per year (W/yr) was estimated for periods 1966-2003 and 

2003-2013 to all SEGs except SEG-7. A two-way analysis of covariance (ANCOVA) test 

was performed to determine the effects of stream power on channel migration using 

normalized channel migration (m
2
/yr) as a response variable, period and segment as 
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treatment variables, and normalized cumulative effective (NCE) stream power per year 

(Ωnce,y) as a covariate  at α = 0.1. There were significant main effects of NCE stream 

power per year (W/yr), F (1,8) =14.61, p = 0.005 ; period, F(1,8 ) = 4.55, p = 0.065; 

segment, F(10,8 ) = 2.63, p = 0.092 on normalized migration rate (m
2
/yr). There was no 

interaction between NCE stream power and segment; period and segment; and interaction 

between NCE stream power and period was insignificant, F(1,8 ) = 2.48 , p = 0.154 

(Table 4.7).  

 A significant linear relationship between normalized migration rate (m
2
/yr) and 

NCE stream power per year (W/yr) was observed (Table 4.7 and Figure 4.10). However, 

parallel lines show that there was no significant difference in slope at α = 0.1 (Table 4.7), 

which indicated that NCE stream power per year (W/yr) in 1966-2003 and 2003-2013 

were not significantly different. Stream power is directly related to stream flow (Leopold 

et al. 1964). As there was no statistical difference in mean annual flow and annual 

precipitation between two periods (1966-2003 and 2003-2013), stream power was 

expected to follow a similar pattern. Tukey‟s pairwise comparison of mean normalized 

migration rate (as NCE stream power as a covariate) among year and segment factors are 

shown in Figure 4.11. In period wise, the means of normalized migration rate were 

significantly different between 1966-2003 and 2003-2013 at α = 0.1.  

  

Temporal Channel Planform Comparisons 

 The results of temporal comparison of channel planform in the study watershed 

are shown in Table 4.8. The channel network was 70% longer in 2013 than in 1873. The 

channel in the study reach was significantly longer in 1966 than in 1940 whereas the 
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length in 2003 was not significantly longer than in 1966. There was similar results for the 

period of 2003-2013. While comparing channel sinuosity over time, the sinuosity was not 

significantly different compared to previous periods. Note that normalized migration rate 

in 1960-2003 was significantly lower than in 1940-1966 and similarly, significantly 

lower in 2003-20013 than in 1966-2003. This indicates that the overall channel migration 

rate has been decreasing from 1940 to 2013.  

 

Planform Stability  

 In the study stream, climatic factors (precipitation and streamflow) and stream 

power didn‟t link with planform stability and channel migration reduction. One 

explanation for the lack of sinuosity change and lateral migration many of the segments is 

that bridge structures have acted as a fixed rigid boundary at each bridge section. Another 

potential explanation for that is flow controlled by impoundments (Figure 4.2) because 

mean annual flow were not changed significantly from 1949 to 2013. In the Cobb Creek 

watershed, after constructing upstream reservoirs (Figure 4.2), the frequency and timing 

of channel forming or peak flow were likely altered and the lateral channel migration thus 

reduced. 

  In discussing possible other factors in the watershed, CPs implemented in the 

watershed can be a major contributing factor. Normalized channel migration rate was 

decreasing from 1940-1966 to 2003-2013 in SEG-1, SEG-3, SEG-6 and SEG-11 where 

CPs were visible (Figure 4.12 and 4.13). However, there was no statistical evidence to 

differentiate the means of normalized migration rates Segment-wise with respect to CPs 

implemented areas. CPs implemented spatial data provided by the OCC in January 2016 
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included location but did not include temporal information on when the CPs were 

implemented. 

 Before 1940 there were minimum CPs in the watershed (Phillips and Harrison 

2004). There have been numerous CPs implemented by farmers and ranchers after 1940 

(Table 4.1). The normalized channel migration rate was significantly decreasing from 

1940 to 2013, and channel sinuosity didn‟t change significantly in the main stem of Cobb 

Creek where continuous CPs were implemented. Vegetation planting along the stream 

banks, CPs might have helped to stabilize the bank and decreased the migration rate. 

Studies by Beeson and Doyle (1995) in British Columbia, Canada, indicated that non-

vegetated channel banks significantly eroded compared with vegetated channel banks.  

 The results from aerial image interpretation of channel sinuosity changes and 

lateral channel migration characterization in the study section of Cobb Creek showed that 

the channel has stable planform. From an RGA study of Simon and Klimetz (2008), the 

majority of study segments in the main stem of Cobb Creek were in stage V (aggradation 

and widening) or stage VI (quasi-equilibrium). Their study indicated that those were 

stable channel segments. The present study agrees with these conclusions of Simon and 

Klimetz (2008). 

 Previous studies have shown a reduction in upland soil erosion and sediment 

loading to the Fort Cobb Reservoir due to CPs (Simon and Klimetz 2008; Garbrecht and 

Starks 2009; OCC  2009; Becker and Steiner 2011; Garbrecht 2011; Moriasi et al. 2011; 

Steiner et al. 2014). However, it is difficult to make the conclusion that reduction in 

channel migration by itself is an indicator of reduction in sediment loading to the 

reservoir without quantifying the in-channel aggradation and/or incision. In addition, 
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assessment of channel planform changes in other tributaries and creeks of the Fort Cobb 

Reservoir would need to be evaluated.  

 

Conclusions 

 In this study, channel planform characterization techniques have been coupled 

within an integrated, systematic framework that uses historic records and limited field 

data to describe long-term channel planform changes within a watershed. This integrated 

approach was then applied in the Cobb Creek watershed in west-central Oklahoma. The 

developed method integrates factors that control channel planform changes in the 

watershed. Segment-wise characterization and comparison between long-term channel 

planform changes can be completed to highlight the smaller-scale changes. The approach 

provides a step-by-step methodology to evaluate long-term channel planform changes in 

agricultural watershed in the absence of long-term streambank monitoring data.  

Application of the integrated method in the Cobb Creek watershed determined 

that the total length in the channel network in 2013 was almost 70 percent greater than in 

1873. In addition, channel planform (sinuosity) did not change significantly from 1940 to 

2013. Two newly defined parameters, normalized channel migration and NCE stream 

power, were introduced to compare changes in historical lateral channel migrations. 

Mean annual streamflow and precipitation were not significantly different from 1966 to 

2013, which has contributed to consistent NCE stream power per year in the main stem of 

Cobb Creek. Channel migration rates were significantly decreasing from the periods of 

1940-1966 to 2003-2013. The decreasing trend of normalized channel migration rates and 

CPs implementation were concurrent. However, the present results cannot verify 
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statistically that CPs helped to stabilize the channel in main stem of Cobb Creek. It could 

be a combination of flow and bridge structure constraints and CPs that created a fairly 

stable planform and channel migration reduction in the mainstem of Cobb Creek.  

  Future research could focus on bank-stability analysis with processed-based 

models and long-term bank erosion measurement using erosion pins at local reaches 

where bank erosion is of prime concern. Documentation and lessons learned on a 

historical time scale can help examine the implications of future natural resource 

management in the watershed (Brierley and Hooke 2015). In the planning stages of 

developing future river management, the integrated method used in this study can provide 

essential background information for natural resource management agencies to formulate 

necessary polices and recommendations for joint management of the stream channel and 

the overall watershed. In addition, the integrated approach presented can be used for 

planform stability assessment in other similar agricultural watersheds.  
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Tables 

Table 4.1. Synopsis of settlement, soil erosion, conservation practices (CPs), and 

significant studies in the Fort Cobb watershed in Oklahoma 

 Timeline Notable Events 

p
re

-1
8

7
3
 

 

1803 Louisiana Purchase (with present day Oklahoma) from France (Mundende 2009) 

1820s-

1830s 

Native American-Choctaw and Chickasaw arrival (Wilson 2009) 

1862 Homestead Act of 1862, beginning of non-native settlement nationwide (Everett 2009) 

1867 Kiowa, Comanche and Apache  settlement started in present day Caddo County (Wilson 

2009) 

1869 Cheyenne and Arapaho settlement started in present day Washita County (O'Dell 2009) 

1
8

7
3
-1

9
4

0
 

  

1873 General map survey (plat maps) by General Land Office  ( BLM-GLO 2015) 

1883-1885 Native Indian land used for grazing cattle in present day Washita County (O'Dell 2009) 

1886 Cheyenne and Arapaho settlement began in present day Washita County (O'Dell 2009) 

1889 Non-native settlement began in Oklahoma including present day Caddo and Washita 

Counties (Everett 2009) 

1907 Oklahoma statehood 

1913-1914 Gulley erosion started (Phillips and Harrison 2004) 

1920 Gulley erosion became major issue in Oklahoma (Phillips and Harrison 2004) 

1920-1930 Minimum soil CPs (Phillips and Harrison 2004) 

1931 Soil erosion survey in Oklahoma, about 80% farmland impacted by erosion (Phillips and 

Harrison 2004) 

1933 Soil Erosion Service (SES) established 

1935 Oklahoma Dust bowl, Soil Conservation Service (SCS) established under the USDA 

(Phillips and Harrison 2004) 

1936 Soil Conservation and Domestic Allotment Act, establishment of Agricultural 

Conservation Program (ACP) (Phillips and Harrison 2004) 

1937 Soil conservation districts formation (Phillips and Harrison 2004) 

1
9

4
0
-1

9
6

6
 

   

1944 Flood Control Act of 1944 (PL 78-534) (Mundende 2009) 

1954 Watershed Protection and Flood Prevention Act of 1954 (PL 83-566) also called Small 

Watershed Program, began flood control dams constructions (Mundende 2009) 

1956-1959 Soil Conservation Service constructed flood control reservoirs (Garbrecht 2010) 

1956 Great Plains Conservation Program (GPCP), which resulted in development of 

conservation techniques (Mundende 2009) 

1961 Erosion and flood control monitoring started (Steiner et al. 2014) 

1
9

4
0
-1

9
6

6
 

 

1981 Water Quality Problem mainly suspended sediment, turbidity and nutrients detected in Ft. 

Cobb Reservoir (OCC 2009) 

1985 Food Security Act, which addressed conservation issues, followed by Farm Bill of 1990 

(Mundende 2009) 

1990s 

1996 

Active CPs (Mundende 2009) 

Environmental Quality Incentives Program (EQIP) through Farm Bill of 1996 

1998 Fort Cobb watershed listed Clean Water Act section 303(d) as impaired water and 

sediment (Becker and Steiner 2011) 

2001 Oklahoma Conservation Commission started FY 2001 319 project (OCC 2009) 

2
0

0
3
-2

0
1

3
 

    

2003 Sediment, erosion, and nutrient modeling for the Fort Cobb watershed (Storm et al. 2003) 

2003 Fort Cobb watershed became Benchmark Watershed in Conservation Effectiveness 

Assessment Project (Becker and Steiner 2011) 

2005 Oklahoma Conservation Commission started FY 2005 319 project, focusing on no-tillage 

practices (OCC 2009) 

2011 US Geological Survey published special report on assessment of CPs in the Fort Cobb 

watershed (Becker 2011) 
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Table 4.2 . Physical location of study channel segments and their stability stages. SEG 

refers to the segment name followed by numerical value.  

Segment 

Name 

Boundary 

Upstream End Downstream End 

SEG-1 E1210 Road N2500 Road 

SEG-2 Unnamed Road E1210 Road 

SEG-3 N2470 Road Unnamed Road 

SEG-4 State Hwy 152 N2470 Road 

SEG-5 N2460 Road State Hwy 152 

SEG-6 N2450 Road N2460 Road 

SEG-7 N2440 Road N2450 Road 

SEG-8 N2430 Road N2440 Road 

SEG-9 E1150 Road N2430 Road 

SEG-10 E1140 Road E1150 Road 

SEG-11 E1130 Road E1140 Road 

SEG-12  Crowder Lake Outlet E1130 Road 

 

 

Table 4.3. Channel morphological characteristics (valley length, channel length and 

sinuosity) for study channel segments for year 1940, 1966, 2003 and 2013. Valley length 

is same for all years because upstream and downstream point of study channel segment 

has bridge as a boundary. SEG refers to the segment name followed by numerical value. 

Segment 

Name 

Slope 

(m/m) 

Valley 

Length 

(km) 

Channel Length (km) 
 

Sinuosity (km/km) 

1940 1966 2003 2013 
 

1940 1966 2003 2013 

SEG-1 0.0008 3.5 4.2 4.3 4.3 4.4  1.2 1.2 1.2 1.2 

SEG-2 0.0009 2.6 3.1 3.2 3.2 3.2  1.2 1.2 1.2 1.2 

SEG-3 0.0017 0.7 0.8 0.9 0.8 0.8  1.3 1.4 1.2 1.2 

SEG-4 0.0015 0.6 0.8 0.7 0.6 0.6  1.4 1.2 1.0 1.0 

SEG-5 0.0011 1.4 3.0 3.1 3.2 3.2  2.1 2.2 2.2 2.3 

SEG-6 0.0009 1.8 2.3 2.4 2.4 2.4  1.3 1.3 1.3 1.3 

SEG-7 0.0019 1.7 3.4 3.6 2.7 2.7  2.0 2.1 1.6 1.6 

SEG-8 0.0010 2.5 3.6 3.8 3.7 3.8  1.4 1.1 1.1 1.1 

SEG-9 0.0013 2.3 2.8 2.7 2.7 2.8  1.2 1.2 1.2 1.2 

SEG-10 0.0014 1.7 2.1 2.2 2.2 2.2  1.3 1.3 1.3 1.3 

SEG-11 0.0016 1.9 2.2 2.3 2.2 2.2  1.1 1.2 1.2 1.2 

SEG-12 0.0018 2.1 2.9 3.1 3.1 3.1  1.4 1.5 1.4 1.5 
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Table 4.4. Registration error estimation for lateral channel migration between 2003 and 

2013.  

Feature Type 
UTM Coordinate (2003) UTM Coordinate (2013) Difference 

(m) 
X (m) Y (m) X (m) Y (m) 

Building 539259.21 3901974.10 539260.03 3901974.78 1.1 

Building 537494.43 3902239.15 537495.21 3902239.37 0.8 

Building 537446.02 3903944.44 537445.97 3903946.71 2.3 

Road Intersection 537427.62 3905364.64 537426.25 3905365.80 1.8 

Building 536993.25 3905667.96 536994.64 3905669.15 1.8 

Building 534272.27 3907544.81 534272.49 3907544.95 0.3 

Road Intersection 529395.71 3914948.66 529395.07 3914950.21 1.7 

Building 528367.12 3915328.44 528365.56 3915328.14 1.6 

Crowder Lake Outlet 527237.05 3916710.33 527236.13 3916711.03 1.2 

Building 529318.22 3914221.37 529316.34 3914223.01 2.5 

Building 537603.11 3902667.43 537604.35 3902666.70 1.4 

Building 531152.28 3911478.37 531150.16 3911480.96 3.3 

      Mean difference 1.6 

 

Table 4.5. Lateral channel migration rate for individual channel segments for periods of 

1940-1966, 1966-2003 and 2003-2013. SEG refers to the segment name followed by 

numerical value. Spatial error for 1940-1966 and 1966-2003 are based on Micheli and 

Kirchner (2002).  

Segment 

Name 

 Channel Segment Migration Rate (m/yr) 

(1940-1966)
a
 (1966-2003)

b
 (2003-2013)

c
 

 SEG-1 0.4 0.3 0.2 

SEG-2 0.2 0.3 0.2 

SEG-3 0.9 0.4 0.2 

SEG-4 0.8 0.7 0.1 

SEG-5 0.4 0.2 0.3 

SEG-6 0.1 0.2 0.1 

SEG-7 0.3 0.7 0.1 

SEG-8 0.5 0.1 0.1 

SEG-9 0.4 0.1 0.1 

SEG-10 0.3 0.1 0.1 

SEG-11 0.3 0.2 0.1 

SEG-12 0.3 0.1 0.1 

Error: a (± 0.2 m/yr), b (± 0.1 m/yr), and c (± 0.1 m/yr)  
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Table 4.6. Output from HEC-RAS (USACE 2010) simulation of known, maximum daily 

and threshold discharges and their corresponding hydraulic properties.  

Profile 
Discharge 

(m
3
/s) 

Water 

Surface 

Elevation    

(m) 

 Slope 

(m/m) 

Hydraulic 

Radius 

(m) 

Flow 

Area 

(m
2
) 

Shear 

Stress 

(N/m
2
) 

Known Discharge 0.34 25.19 0.00096 0.21 1.1 1.93 

Maximum Daily 

Discharge 
106.2 29.52 0.00096 2.44 66.2 22.98 

Threshold 

Discharge 
0.01 24.96 0.00096 0.03 0.07 0.26 

 

 

 

Table 4.7. Two way-analysis of covariance summary table for normalized channel 

migration rate (m
2
/yr) as normalized cumulative effective (NCE) stream power per year ( 

W/yr) is a covariate among period and segment. Period group includes 1966-2003 and 

2003 to 2013. Segment group includes SEG-1 to SEG 12 except SEG-7. DF= degrees of 

freedom; SS = sum of squares and MS = mean squares; S= standard error; R
2
 = 

coefficient of determination. 

Term Source DF SS MS F p 

Covariate 
NCE Stream Power 

(W/yr) 
1 105046 105046 14.61 0.005 

Intercept Period 1 32729 32729 4.55 0.065 

Intercept Segment 10 189201 18920 2.63 0.092 

Slope 
NCE Stream Power 

(W/yr)* Period 
1 17800 17800 2.48 0.154 

 Error 8 57503 7188 
  

 Total 21 1530599 
   

S = 84.79, R
2 
= 0.96 adj. R

2 
= 0.90  
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Table 4.8. Results of temporal comparisons (NC = not calculated; CC = cannot compare 

to previous period with current information) 

Segment 

Parameter 

Length Sinuosity 
Normalized Migration 

Rate (NMR) 

Channel Network      

(1873-2013) 

70% longer in 2013 

than in 1873 
NC NC 

Cobb Creek Study 

Reach (1940-1966) 

Significantly longer in 

1966 than in 1940 

[Figure 4.7] 

Not significantly 

different in 1966 

than in 1940 

CC 

Cobb Creek Study 

Reach (1966-2003) 

Not significantly 

longer in 2003 than in 

1966 

[Figure 4.7] 

Not significantly 

different in 2003 

than in 1966 

Significantly lower NMR 

compared to previous 

period [Figure 4.8] 

Cobb Creek Study 

Reach (2003-2013) 

Not significantly 

longer in 2013 than in 

2003 

[Figure 4.7] 

Not significantly 

different in 2013 

than in 2003 

Similar NMR compared to 

previous period, [Figure 

4.8]; significantly lower 

NMR than previous period 

when NCE stream power is 

covariate [Figure 4.11] 
 

 

 



92 

 

Figures 

 

 

 

Figure 4.1. Framework for an integrated approach to characterize long-term channel 

planfrom changes in an agricultural watershed with limited field data.  
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Figure 4.2. Map showing study location at Cobb Creek, Oklahoma, USA [Data source: 

base map (ESRI 2010), Reservoir (USDA-ARS 2013b)]. The reservoir built years 

(Moriasi et al. 2014b) are shown in the legend. 
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Figure 4.3. Hydrograph of daily mean flows for water year 1699 to1969 (simulated) and,   

1969 to 2003, 2003-2013 (gaged  data) at  USGS 07325800 gage station, near Eakly, 

Oklahoma. Dash-line represents divided line between periods 1966-1969, 1966-2003, and 

2003-2013.  

 

Mean  Period 

0.83  m3/s 1966-2003 

0.80 m3/s 2003-2013 
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Figure 4.4. Map showing study segments for main stem of the Cobb Creek. The segment 

divide lines are shown to identify the channel segments (SEG). The bridge locations were 

identified from aerial photographs of 1940, 1966, USDA-FSA (2003, 2013) and verified 

with ODOT (2016). Road levels were identified with ERSI (2010) basemap layer.   
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Figure 4.5. Map shows a comparison between 1873 and 2013 channel networks in Cobb 

Creek watershed. The1873 channel network was digitized on the 1873 plat maps (BLM-

GLO 2015) and 2013 channel network was digitized on the NAIP 2013 aerial image 

(USDA-FSA 2013) with refrence to NHD flowlines (USGS 2015).  
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Figure 4.6. Channel cutoff between 1966 (a) and 2003 (b) in SEG-7 (ASCS 1966, 

USDA-FSA 2003). The cutoff channel segment is approximately 1 km in length. 
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Figure 4.7. Two-way analysis of variance‟s main effects plot for channel length by year 

and segment. Means that do not share a letter are significantly different at α = 0.05 level 

using Tukey‟s pairwise comparisons. SEG refers to the segment name followed by 

numerical value.  

 

 

Figure 4.8. Two-way analysis of variance‟s main effects plot for normalized migration 

rate (m/yr) by period and segment. Means that do not share a letter are significantly 

different at α = 0.05 level using Tukey‟s pairwise comparisons. SEG refers to the 

segment name followed by numerical value. 
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Figure 4.9. A surveyed cross-section at SEG-5 and HEC-RAS (USACE 2010) steady 

state simulation for water surface elevations at known, maximum, and threshold 

discharges (incipient motion for channel sediment particle).  
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Figure 4.10. Relationship between normalized migration rate and normalized cumulative 

effective stream power per year. The slopes of regression lines were not significantly 

different whereas intercept was significantly different at α = 0.1  based on two-way 

analysis of covariance (Table 4.6).  

 

 

Figure 4.11. Two-way analysis of covariance‟s main effects plot for normalized 

migration rate (m/yr) by period and segment as NCE stream power per year (W/yr) as 

covariate. Means that do not share a letter are significantly different at α = 0.05 level 

using Tukey‟s pairwise comparisons. SEG refers to the segment name followed by 

numerical value.  
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Figure 4.12. The chart shows the segment and period wise normalized migration rate 

(m/yr). SEG refers to the segment name followed by numerical value. 
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Figure 4.13. Best management practices implemented in the study watershed for the 

FY2001 Fort Cobb Watershed Implementation 319 Project funded by the US 

Environmental Protection Agency. Spatial data provided by Oklahoma Conservation 

Commision on January 21, 2016. Basemap source: ESRI (2010). SEG refers to the 

segment name followed by numerical value. 
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CHAPTER V 
 

 

CONCLUSIONS AND RECOMMENDATIONS 

 

Conclusions 

 The research findings from this dissertation may be applied to reduce 

environmental impacts from anthropogenic activities in several ways. In urban settings, 

water bodies are impaired by excessive suspended sediment loading due to development 

and construction activities. Agricultural streams are impaired due to suspended sediment 

and nutrients loading from agricultural fields. The turbidity prediction methodology can 

be applied to reduction of suspended sediment loading into surface water bodies as well 

as evaluate the effectiveness of BMPs in erosion reduction. The water-color prediction 

methodology can be applied to big plant nurseries and small watersheds, where the 

predominate source of organic matter and runoff measurement from that source is 

measurable. Aerial images and maps were shown to evaluate the impacts of conservation 

practices on channel stability.   

Research Project One 

 The overall study goal of the first research project was to develop a turbidity 

prediction methodology for existing runoff-erosion models. The research objectives of 

this project were to (i) develop a simple, reliable method to predict dispersed turbidity 
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and (ii) develop a simple, reliable method to predict undispersed turbidity. Based on the 

results of this project, the following conclusions were made: 

 A simple method of turbidity prediction, which can be easily integrated into an 

existing runoff-erosion model, was developed based on percentage of soil 

particles and suspended sediment concentration. 

 General methodologies to predict dispersed runoff turbidity were developed, 

which showed the mostly linear relationships between primary soil particles 

(sand, silt and clay) and turbidity. 

 Undispersed runoff turbidity showed a function of dispersed turbidity and a 

percentage of sand, silt and clay in the runoff sediment samples.  

 The results indicated the possibility of integrating various water quality 

parameters with turbidity and incorporating them with existing runoff erosion 

models, which help to estimate water quality parameters and runoff-erosion rates 

in the impacted landscape. 

 Overall, the research findings indicated the importance of all-in-one surrogate 

measurement of turbidity and integration in runoff-erosion models to evaluate 

associated anthropogenic impacts on soil erosion and surface water quality. 

 

Research Project Two 

 The overall goal of the second research project was to quantify the relationship 

between water color and dissolved organic carbon (DOC) based on the sources of organic 
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matter. The specific objectives of the study were (i) to quantify the relationship between 

water color and DOC in water, based on specific organic matter sources and (ii) to test a 

method to predict the water color of water samples with multiple sources of DOC.  Based 

on the results of this project, following conclusions were made:  

 A small laboratory scale experiment was designed for this study. The source-

specific relationship between water color and DOC was quantified based on 

sources of organic matter commonly found in surface waters. 

 A methodology was developed that predicts water color without separating the 

complex chemical constituents and instead estimates water color based on DOC 

on organic matter in natural waters. 

 Color prediction methodology for heterogeneous organic matter present in surface 

waters was developed and validated using laboratory scale-based experiments.  

 Overall, the research findings indicated that the water color for heterogeneous 

sources of organic matter content in surface waters can be predicted based on the 

proportion of various organic sources.  

 

Research Project Three  

 As an indicator of human impacts on riverine landscape, historic channel 

morphological changes were evaluated in the Cobb Creek watershed. The objective of 

this study was to develop and apply an integrated approach to evaluate channel planform 

stability in an agricultural watershed using historical records such as plat maps, aerial 
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images, and relevant historical events. Based on the findings of this project, the following 

conclusions were drawn:  

 The notable events related to settlement, soil erosion, conservation practices 

and significant studies in the Fort Cobb watershed were documented. 

 The extent of the channel network from 1873 to 2013 reflected the land 

disturbance activities in the watershed occurred at the same time of channel 

network extension  

 Results indicated that streamflow and precipitation were not changed over the 

periods that contributed to consistent stream power in the Cobb Creek.  

 Lateral channel migration significantly decreased from 1940 to 2013. 

 Overall, stable channel planform sinuosity, consistent average annual stream 

power and decreased lateral migrations indicated that the main stem of Cobb 

Creek tended to be stable in terms of aerial view.   

 

Future Research Recommendations 

 As this dissertation has three research components based on surface water quality 

and stream channel stability parameters, possible future research recommendations are 

described in subsequent sub-sections. 

Turbidity and Suspended Sediment Concentration 

 Based on the findings of the research project on turbidity and suspended sediment 

concentrations, future research recommendations identified for this subject are:  
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 The factors associated with the relationship between dispersed turbidity and 

predicted turbidity were unknown, and thereby were corrected with a c-factor. 

Future research may study possible factors including interactions between 

change in particle shape and size during the turbidity measurement and primary 

soil particles separation process.  

 In addition, the findings of this research suggest the necessity of developing a 

link between turbidity, water color and particle size distributions in runoff. 

  The present method does not require the separation of large and small particles 

beyond sand, silt and clay fractions in the runoff sediment sample to predict 

runoff turbidity. Future research could investigate the effects of small and large 

aggregates in turbidity prediction for runoff-erosion water samples. 

Water Color and Dissolved Organic Carbon 

 Based on the laboratory based measurements and results analysis of color 

prediction for heterogeneous organic source in runoff samples, potential future research 

opportunities identified are: 

 All the water color and DOC samples were prepared with lab-grade deionized water. 

The effect of pH on natural water samples needs to be evaluated. In natural systems, 

the temporal variation of pH in waters cannot be avoided. Therefore, the relationship 

between water color and pH variations should be investigated. 
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 The interferences of minerals on color-DOC measurements were not investigated in 

this study. Future studies could investigate such effects, which may help develop 

methods to measure water color more precisely than those presently available. 

 This study was based on laboratory experiments; however, a small watershed scale 

study should be conducted to investigate whether water color for runoff can be 

predicted based on the proportion of various organic matters or not. 

An Integrated Approach on Channel Planform Changes 

 Based on the aerial images and maps interpretation method to analyze channel 

planform and lateral migrations, several potential research areas are recommended: 

 As channel stability itself cannot be addressed by channel planform changes or 

lateral migrations, there could be potential in-channel erosion such as channel 

incisions and bank failures. Future studies should focus on process-based 

channel stability assessment with reference to historic planform changes. 

 Historic hydrological records for the watershed were not available before 1966. 

Future research should focus on reconstructing or generating historic flow 

patterns in the watershed. 

  Channel geomorphic processes associated with changes in sediment supply 

regimes were not directly studied in this research. Assessment of channel 

sediment dynamics before and after soil conservation practices may address 

problems associated with streambank failures in the watershed.  
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APPENDICES 

 

COLOR-DOC RAW DATA 

 

Individual Sources 

 

Table A.1. Color-DOC measurement data for set-I, Sphagnum peat moss. DOC = 

dissolved organic carbon; PCU = platinum cobalt unit; Abs = absorbance; ID = 

identification; max =  maximum; PMA = peat moss sample set A followed by sample 

number; KHP = Potassium hydrogen phthalate 

Peat Moss (PM): Set-I 

Sample ID 
Color 

(PCU) 

DOC 

(mg/l) 

Abs 

(455) 

Abs 

(max) 

Wavelength 

(max) 

PMA-1 400 68 0.258 2.878 288 

PMA-2 357 61 0.230 2.629 289 

PMA-3 319 59 0.206 2.417 290 

PMA-4 281 49 0.181 2.132 289 

PMA-5 245 44 0.158 1.898 287 

PMA-6 203 37 0.131 1.601 281 

PMA-7 163 27 0.105 1.313 281 

PMA-8 121 23 0.078 0.966 282 

PMA-9 82 15. 0.053 0.659 281 

PMA-10 41 6.2 0.026 0.315 283 

 

Standard Check:  

KHP (100 mg/L) = 99 mg/L (measured)
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Table A.2. Color-DOC measurement data for set-II, Sphagnum peat moss. DOC = 

dissolved organic carbon; PCU = platinum cobalt unit; Abs = absorbance; ID = 

identification; max = maximum; PMA = peat moss sample set B followed by sample 

number and KHP = Potassium hydrogen phthalate  

Sphagnum Peat moss (PM): Set-II 

Sample ID 
Color 

(PCU) 

DOC 

(mg/l) 

Abs 

(455) 

Abs 

(max) 

Wavelength 

(max) 

PMB-1 396 71 0.256 2.907 289 

PMB-2 360 66 0.232 2.663 292 

PMB-3 316 56 0.203 2.439 288 

PMB-4 278 49 0.179 2.166 287 

PMB-5 246 44 0.159 1.879 287 

PMB-6 200 34 0.129 1.601 284 

PMB-7 161 28 0.104 1.284 283 

PMB-8 122 21 0.079 0.997 281 

PMB-9 84 15.2 0.054 0.656 281 

PMB-10 42 6.7 0.027 0.33 281 

Standard Check:  

KHP (50 mg/L) = 47 mg/L (measured) 

 

Table A.3. Color-DOC measurement data for set-III, Sphagnum peat moss. DOC = 

dissolved organic carbon; PCU = platinum cobalt unit; Abs = absorbance; ID = 

identification; max = maximum; PMA = peat moss sample set B followed by sample 

number and KHP = Potassium hydrogen phthalate  

Sphagnum peat moss (PM): Set-III 

Sample ID 
Color 

(PCU) 

DOC 

(mg/l) 

Abs 

(455) 

Abs 

(max) 

Wavelength 

(max) 

PMC-1 394 69 0.254 2.911 292 

PMC-2 355 62 0.229 2.606 293 

PMC-3 315 53 0.204 2.402 292 

PMC-4 276 49 0.178 2.146 286 

PMC-5 238 41 0.154 1.868 288 

PMC-6 200 35 0.129 1.638 278 

PMC-7 163 28 0.105 1.3 282 

PMC-8 121 21 0.078 0.977 281 

PMC-9 87 14.4 0.056 0.662 281 

PMC-10 44 6.3 0.028 0.313 281 

Standard Check:  

KHP (10 mg/L) = 9.2 mg/L (measured) 
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Table A.4. Color-DOC measurement for decomposing bark chips. DOC = dissolved 

organic carbon; PCU = platinum cobalt unit; Abs = absorbance; ID = identification; max 

= maximum; BC = bark chips followed by sample number; R = replicate sample and 

KHP = Potassium hydrogen phthalate 

Decomposing bark chips (BC) 

Sample ID 
Color 

(PCU) 

DOC 

(mg/l) 

Abs 

(455) 

Abs 

(max) 

Wavelength 

(max) 

BC-1 437 43 0.282 2.98 290 

BC-2 390 36 0.251 2.71 292 

BC-2R 391 38 0.252 2.69 292 

BC-3 346 33 0.223 2.55 288 

BC-4 302 30 0.195 2.21 287 

BC-4R 303 30 0.196 2.28 284 

BC-5 259 26 0.167 1.91 283 

BC-6 213 22 0.138 1.71 281 

BC-6R 215 22 0.139 1.64 282 

BC-7 170 16 0.109 1.33 282 

BC-8 127 14 0.082 1.00 281 

BC-8R 137 13 0.088 1.01 282 

BC-9 82 7.6 0.053 0.70 281 

BC-10 43 3.2 - 0.34 281 

BC-10R 40 2.6 0.026 0.32 283 

 

Standard Check:  

KHP (100 mg/L) = 101 mg/L (measured) 
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Table A.5. Color-DOC measurement data for cotton burr compost. DOC = dissolved 

organic carbon; PCU = platinum cobalt unit; Abs = absorbance; ID = identification; max 

= maximum; CB = cotton burr compost followed by sample number; R = replicate 

sample and KHP = Potassium hydrogen phthalate 

Cotton burr compost (CC) 

Sample 

ID 

Color 

(PCU) 

DOC 

(mg/l) 

Abs 

(455) 

Abs 

(max) 

Wavelength 

(max) 

CB-1 490 26 0.316 1.862 282 

CB-2 437 24 0.282 1.723 281 

CB-2R 438 23 0.282 1.756 281 

CB-3 391 19 0.252 1.557 281 

CB-4 339 17 0.219 1.366 281 

CB-4R 339 16 0.219 1.362 281 

CB-5 291 15 0.187 1.180 280 

CB-6 242 14 0.156 0.990 281 

CB-6R 241 14 0.156 0.994 280 

CB-7 195 11 0.125 0.798 280 

CB-8 144 5.6 0.093 0.596 280 

CB-8R 144 6.3 0.093 0.598 280 

CB-9 95 3.4 0.061 0.410 278 

CB-10 46 0.5 0.030 0.226 279 

CB-10R 48 1.5 0.031 0.228 278 

 

Standard Check:  

KHP (100 mg/L) = 97 mg/L (measured); KHP (10 mg/L) = 9.8 mg/L (measured) 
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Table A.6. Color-DOC measurement data for set-III, cow compost. DOC = dissolved 

organic carbon; PCU = platinum cobalt unit; Abs = absorbance; ID = identification; max 

= maximum; CM = cow compost, followed by sample number; R = replicate sample and 

KHP= Potassium hydrogen phthalate 

Composted cow manure (CM) 

Sample ID 
Color 

(PCU) 

DOC 

(mg/l) 
Abs (455) 

Abs 

(max) 

Wavelength 

(max) 

CM-1 471 - - - - 

CM-2 382 - - - - 

CM-2R 379 - - - - 

CM-3 335 21 - - - 

CM-4 286 19 0.185 1.459 287 

CM-4R 288 18 0.185 1.493 284 

CM-5 242 16 0.156 1.27 283 

CM-6 206 14 0.133 1.073 281 

CM-6R 205 13 0.132 1.041 282 

CM-7 165 9.5 0.107 0.846 282 

CM-8 128 7.5 0.082 0.619 281 

CM-8R 128 6.9 0.082 0.627 282 

CM-9 84 3.6 0.054 0.408 281 

CM-10 42 2 0.027 0.71 281 

CM-10R 43 1.8 0.028 0.71 283 

 

Standard Check:  

KHP (100 mg/L) = 94 mg/L (measured) 
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Heterogeneous Mixture 

Table A.7.  Measured DOC for individual source for heterogeneous mixture (set-I). DOC 

= dissolved organic carbon; Abs = absorbance; max = maximum; PM = peat moss; CM = 

cow manure; BC = bark chips and CC = cotton compost 

Source  
Measured 

DOC (mg/L) 

Abs 

(max) 

Wavelength 

(max) 

PM 34 1.563 282 

CM 15. 1.243 282 

BC 16 1.247 281 

CC 6.4 0.566 281 

 

 

Table A.8. Color measurement for heterogeneous mixture of color-DOC sample on set-I 

source combination. All sources were in equal proportions for these samples. DOC = 

dissolved organic carbon; Abs = absorbance; max = maximum; PM = peat moss; CM = 

cow manure; BC = bark chips and CC = cotton compost 

Source Combination 
Measured 

Color (PCU) 

PM + CM 216 

PM + BC 175 

PM + CC 170 

CM + BC 173 

CM + CC 174 

BC + CC 133 

PM + CM + BC 188 

PM + CM + CC 195 

PM + BC + CC 156 

CM + BC + CC 160 

PM+ CM + BC + CC 174 
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Table A.9. Measured DOC for individual source for heterogeneous mixture (set-II). DOC 

= dissolved organic carbon; Abs = absorbance; max = maximum; PM = peat moss; CM= 

cow manure; BC = bark chips and CC = cotton compost 

Source  
DOC Measured 

(mg/L) 

Abs   

(max ) 

Wavelength 

(max) 

PM 64 1.563 282 

CM 19 1.243 282 

BC 37 1.247 281 

CC 5.6 0.566 281 

 

 

Table A.10. Color measurement for heterogeneous mixture of color-DOC sample on set-

II source combination. All sources were in equal proportions for these samples.  DOC = 

dissolved organic carbon; PM = peat moss; CM = cow manure; BC = bark chips; CC = 

cotton compost and PCU = Platinum Cobalt Unit 

Source Combination 
Measured 

Color (PCU) 

PM + CM 357 

PM + BC 383 

PM + CC 266 

CM + BC 308 

CM + CC 198 

BC + CC 222 

PM + CM + BC 349 

PM + CM + CC 277 

PM + BC + CC 291 

CM + BC + CC 245 

PM+ CM + BC + CC 291 
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Table A.11. Measured DOC for individual source for heterogeneous mixture (set-III). 

DOC = dissolved organic carbon; Abs = absorbance; max = maximum; PM = peat moss; 

CM = cow manure; BC = bark chips and CC = cotton compost 

Source  

 Measured 

DOC 

(mg/L) 

Abs 

(max) 

Wavelength 

(max) 

PM 64 2.821 289 

CM 27 2.566 288 

BC 32 2.588 288 

CC 21 1.898 282 

 

 

Table A.12. Color measurement for heterogeneous mixture of color-DOC sample on set-

III source combination. All sources were in equal proportions for these samples.  DOC = 

dissolved organic carbon; PM = peat moss; CM = cow manure; BC = bark chips; CC = 

cotton compost and PCU = Platinum Cobalt Unit 

Source Combination 
Measured 

Color (PCU) 

PM + CM 464 

PM + BC 388 

PM + CC 461 

CM + BC 408 

CM + CC 480 

BC + CC 402 

PM + CM + BC 415 

PM + CM + CC 462 

PM + BC + CC 413 

CM + BC + CC 427 

PM+ CM + BC + CC 437 
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Figures 

 

Figure A.1. Comparison between measured color and predicted color for heterogeneous 

sources of organic matter contained in colored water samples (set-III). The color unit is 

on Platinum Cobalt Unit (PCU). It was determined that the Hach test kits were likely not 

good for this data set due to being stored at too high of a temperature, so these data were 

not included in the validation. 
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