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Stream fishes are among the most threatened species due to natural flow regime 

alterations and fragmented habitats stemming from both anthropogenic activities and 

climate change. A fundamental challenge of establishing stream fish-environment 

relationships is variable detection (the proportion of available individuals captured or the 

probability of detecting a species when present), which confounds perceived species 

distributions. My overarching goals were to improve detection estimates for common 

stream-fish sampling methods and identify multiscale factors related to stream-fish 

distributions in Ozark Highland streams. I used gear calibration to model tow-barge 

electrofishing detection among stream fishes across environmental conditions at multiple 

spatial scales. Multiple stream reach-scale variables were associated with stream-fish 

detection including water depth and clarity, emergent vegetation, and a discharge-

proportion riffle interaction, where the magnitude of these relationships varied among 

species in relation to habitat use. Lithological characteristics of stream segments 

explained additional variation in stream-fish electrofishing detection. I compared 

snorkeling to tow-barge electrofishing to examine tendencies in the number of species 

detected and evaluated the efficacy of snorkeling for estimating stream-fish abundance. 

Electrofishing tended to detect more rare species than snorkeling. Snorkeling typically 

underestimated stream-fish abundance, particularly for cryptic species such as Green 

Sunfish and Rock Bass; however, snorkeling did provide informative population 

estimates for Smallmouth Bass. I improved the applicability of electrofishing for 

monitoring stream-dwelling Smallmouth Bass using a multinomial N-mixture model. 

Water clarity, effort, and a wetted channel width-water depth interaction explained 

variation in Smallmouth Bass electrofishing detection. Smallmouth Bass abundance 

estimates derived from the model agreed with baseline estimates via snorkeling. 

Empirical Bayes confidence intervals for Smallmouth Bass abundance from the model 

were more precise than unbiased Petersen mark-recapture estimates. Lastly, I examined 

stream fish-environment relationships at multiple spatial scales. Variation in stream-fish 

densities were associated with stream reach-scale groundwater contribution and stream 

segment-level lithology. Variation in stream-fish occurrence was associated with riffle-

run-pool sequence area and stream reach-scale substrate size, groundwater contribution, 

and residual pool depth. My project demonstrates the complexity of stream-fish detection 

across environmental conditions, highlights the importance of multiscale approaches for 

examining stream-fish environment relationships, and contributes to advancements in 

stream-fish ecology and management.  
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CHAPTER I 
 

 

INTRODUCTION 

PROBLEM STATEMENT 

The loss of biodiversity in freshwater ecosystems is alarming. Freshwater fishes experienced the 

highest extinction rate among vertebrates in the twentieth century and the current extinction rate 

is estimated at eight species per decade (Burkhead 2012). To put the magnitude of the problem in 

perspective, consider that the background extinction rate for freshwater fishes was only one 

species per three million years. Stream fishes are perhaps the most threatened vertebrates due to 

major alterations of the natural flow regime (magnitude, timing, duration, rate of change, and 

frequency of streamflow; Poff et al. 1997) and fragmented habitats stemming from both 

anthropogenic activities (e.g., damming and water withdrawals) and climate change (e.g., shifting 

precipitation patterns and increased water temperatures). As interconnected linear systems, 

habitat perturbations can affect fish assemblages in both upstream and downstream directions 

(Meyers et al. 1992; Pringle 1997; Guenther and Spacie 2006). Despite increased awareness of 

the multifaceted threats to the persistence of stream fishes, the ability of stream systems to 

support aquatic life continues to decline (EPA 2013). Unfortunately, stream scientists often rely 

on reactive rather than predictive management because fish-environment relationships remain 

poorly understood. 

 Predictive stream-fish management and conservation strategies require both identifying 

factors related to species occurrence (e.g., environmental flow requirements and channel 
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formation) and understanding how populations respond to changing environments (e.g., altered 

timing or magnitude of high-flow events). Although stream fishes appear to form structured, 

nonrandom assemblages across space and time (Jackson et al. 2001), interacting factors across 

multiple scales and dimensions (Ward 1989) present difficulty for explaining observed patterns. 

Furthermore, increased insight into why some life-history strategies succeed while other fail 

under certain environmental conditions may require improved conceptual, as well as 

methodological, approaches to stream fish ecology (Verberk et al. 2013). Effective sampling 

protocols are also integral to predictive stream-fish management and conservation as the timing, 

nature, and extent of sampling largely influences perceived patterns of species occurrence across 

the stream landscape (Jackson et al. 2001; Poff and Zimmerman 2010; Gwinn et al. 2016). 

Variable detection (either the proportion of available individuals captured or the 

probability of detecting a species when present) among sampling methods, environmental 

conditions, and species confounds perceived patterns of fish distributions across the stream 

landscape. The failure to account for variable stream-fish detection can impede effective 

management and conservation, limit advancements in ecology, and result in wasted resources 

(i.e., time and money spent on sampling). Improved analytical approaches to address variable 

detection are increasingly prevalent in the ecological literature (e.g., Williams et al. 2002; 

MacKenzie et al. 2005; Royle et al. 2013). However, catch-per-unit-effort (CPUE) remains the 

most common metric used to evaluate and monitor stream fish assemblages (Gwinn et al. 2016), 

despite that it calculates only an indirect measure of abundance, relies on a typically untested and 

often unrealistic assumption of constant detection, and provides no insight into detection 

relationships among species. Standardizing sampling conditions (e.g., sampling only at 

baseflows) to support the use of CPUE may minimize variation in site-specific short-term stream-

fish detection; however, this strategy severely limits the ability to identify regional long-term 

trends in populations because environmental conditions in streams vary extensively across space 

and time. Furthermore, identifying relationships between stream fishes and the environment (e.g., 
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flow-ecology relationships), often fundamental research goals, are not possible when sampling is 

limited to a narrow range of environmental conditions. Standardized sampling also does not 

ensure constant detection among stream fishes (Price and Peterson 2010; McManamay et al. 

2014), which can lead to misrepresentations of both assemblage structure and stream conditions 

(Seegert 2000; Price and Peterson 2010). For example, biotic integrity indices (e.g., IBI) that use 

the relative abundance of indicator fish species as a surrogate for stream water quality require 

standardized sampling; however, variation in detection among surveys and species is ignored. 

THE STREAM LANDSCAPE 

Stream landscapes are dynamic environments that operate across multiple spatial and temporal 

scales to form the physical habitat where aquatic organisms evolve, adapt, and interact 

(Southwood 1977; Gorman and Karr 1978; Zwick 1992). Streams are hierarchically structured, 

where characteristics at finer scales are largely constrained by coarser-scale factors (Frissell et al. 

1986; Stevenson 1997). At the coarsest scale, the climate and geology of the surrounding valley 

(Hynes 1975), along with land use (the human element) and biogeography (Stevenson 1997), are 

ultimate determinants of stream ecosystems and dictate species pools within ecoregions (Poff 

1997). Moving from ecoregions to progressively finer scales (i.e., watersheds to microhabitats), 

observed species assemblages in streams are a result of both local abiotic factors and physical 

characteristics of coarser scales. For example, species occurrence at the stream reach scale may 

reflect local characteristics (e.g., substrate and channel form), the flow regime of the stream 

segment (a length of stream between tributary confluences), and underlying lithology. Biotic 

factors play only a minimal role in structuring species assemblages in streams due to the high 

frequency of disturbance (e.g., extreme high and low flows), which essentially “resets” systems 

and limits population growth and competitive exclusion (Resh et al. 1988; Jackson et al. 2001; 

Peres-Neto 2004). 

Spatial factors are also hypothesized to play an important role in structuring biotic 

assemblages in streams. One of the most influential contributions to stream ecology was the river 
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continuum concept (RCC; Vannote et al. 1980), which provided a theoretical model to predict 

patterns in invertebrate assemblages across increasing stream order in relation to the processing 

of allochthonous organic matter (i.e., energy) and riparian characteristics (e.g., soil and vegetation 

type). Schlosser (1991) extended the basic principles of the RCC to a conceptual view of patterns 

in stream-fish assemblages, particularly in relation to land use, across the terrestrial-aquatic 

interface. As a simplistic model, the RCC falls short of providing an accurate realization of the 

stream landscape as a heterogeneous spatially-continuous mosaic (i.e., “riverscape”; Ward 1998; 

Fausch et al. 2002; Wiens 2002; Allan 2004). For example, spatial position relative to a tributary 

(Osbourne and Wiley 1992; Magalhaes et al. 2002), heterogeneity in local habitat characteristics 

along the downstream continuum (Fauch et al. 2002), and the characteristics of adjacent habitat 

(Jackson et al. 2001; Scheurer et al. 2003; Falke and Fausch 2010) can also influence the structure 

of stream-fish assemblages. 

Incorporating traits into stream-fish research can both simplify complex datasets by 

grouping species based on shared characteristics and generalize patterns in assemblages across 

the stream landscape. Species traits are morphological, physiological, behavioral, and life-history 

characteristics. This definition of traits excludes habitat use because habitat preferences are the 

species-environment relationship researchers typically seek to explain through traits (Violle et al. 

2007; Verberk et al. 2013). A trait-based approach to examine species distributions can both 

transcend taxonomy in generalizing environment relationships (Westoby et al. 1995; Verberk et 

al. 2013), increase the applicability of individual research efforts by providing useful comparisons 

among ecoregions (Winemiller 1991; Lamouroux et al. 2002; Stuart-Smith et al. 2013), and 

provide insight into the ecology of rare and poorly-studied species (Cornelissen et al. 2003; Poff 

et al. 2006; Frimpong and Angermeier 2010). Grouping species based on shared traits can both 

generalize relationships and improve statistical power by reducing data dimensionality (Goldstein 

and Meador 2004; Frimpong and Angermeier 2010; Verberk et al. 2013). Despite the profusion of 

trait-based research in the scientific literature, the establishment of trait-environment relationships 
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has largely favored terrestrial plants and aquatic invertebrates (Verberk et al. 2013). Applications 

of trait-based approaches to improve stream-fish ecology and management do exist (e.g., Olden et 

al. 2008; Craven et al. 2010; Bergerot et al. 2015); however, overall success has been limited 

(Olden et al. 2010; Heino et al. 2013; Verberk et al. 2013) and the vast majority of species and 

systems remain unexplored (Frimpong and Angermeier 2010).  

Although improved theoretical perspectives of the dynamic stream landscape have been 

invaluable to stream fish ecology, proper applications of these concepts to research and 

management are equally essential. The recognition of multiscale processes and the importance of 

the variety of physical factors required for species persistence has led to notable advancements in 

stream-fish ecology; however, much more progress by researchers is needed to meet the 

challenges ahead (Matthews 2010; Fausch 2010). Another step forward for stream-fish ecology 

would be increased implementation of study designs and analyses that accurately account for the 

hierarchical spatiotemporal nature of streams (Fausch et al. 2002; Wagner et al. 2006; Stewart-

Koster et al. 2013) to better identify underlying factors related to observed assemblage patterns. 

SAMPLING THE STREAM LANDSCAPE 

Assessments of animal distributions are confounded by both species and environmental 

characteristics that influence variation in detection. Addressing detection when sampling stream 

fishes is particularly challenging because the stream environment varies considerably across both 

space and time and there is a wide range of variation in species characteristics. Wetted channel 

width, water depth, water clarity, ambient water conductivity, flow (i.e., water velocity and 

discharge), and instream structure are all common environmental factors that contribute to variation 

in stream-fish detection (Rabeni et al. 2009; Peterson and Paukert 2009); however; these factors 

have disparate relationships among gear types. Although dynamic instream characteristics 

primarily determine species-specific detection probabilities, relatively temporally-stable variables 

(e.g., substrate and bank formation) also contribute. In addition to size, both morphology and 
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habitat use contribute to variable stream-fish detection (Peterson and Paukert 2009; Rabeni et al. 

2009; McManamay et al. 2014). 

The challenges of variable stream-fish detection have long been recognized and addressing 

the problem remains an evolving process. The first research efforts focused on stream-fish sampling 

methodologies were around 1950 (e.g., Funk 1949; Cleary and Greenbank 1954; Sullivan 1956). 

In fact, Cleary and Greenbank (1954) were perhaps the first authors to explicitly discuss the 

implications of variable detection on long-term stream-fish conservation and management and 

highlight the importance of efforts at the research level. Larimore (1961) was the first to 

demonstrate the substantial variation in electrofishing detection among species. A proliferation of 

research dedicated to stream-fish sampling methodologies occurred in the latter part of the 

twentieth century; however, the primary focus was often on comparing the numbers of fish captured 

between or among gear types (i.e., more fish was considered “better”; e.g., Dauble and Gray 1980; 

Layher and Maughan 1984; Dewey et al. 1989) than estimating detection probability (but see 

Peterson and Cederholm 1984; Slaney and Martin 1987; Rodgers et al.1992). Likely due to 

increased attention by ecologists in general, there has been considerable stream-fish research 

focused on variable detection in the twenty-first century (e.g., Bayley and Peterson 2001; Peterson 

et al. 2004; Hense et al. 2010); however, studies have been largely biased toward coldwater streams 

and salmonids (but see Peterson et al. 2001; Price and Peterson 2010; Brewer and Ellersieck 2011). 

For example, only 7% of published studies focused on detection have been performed in wadeable 

warmwater streams of the southern United States (Mollenhauer et al., unpublished data). Recently, 

there has also been increased emphasis on standardizing freshwater fish sampling protocols to 

improve the comparability of population estimates among sites and surveys, with Bonar et al. 

(2009) representing a major step forward for inland fisheries. Appropriate crew training and 

consistent methodologies are essential aspects of sound stream-fish monitoring protocols; however, 

standardization seldom results in constant detection. For example, assuming constant effort or 

identical stream environments (e.g., considering sampling conditions among sites comparable at 
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baseflows) are not only unrealistic expectations, but also constrain both the development of 

strategic monitoring plans and the comparison of populations or assemblages across a large study 

area (see also Problem Statement). Despite notable progress in addressing stream-fish detection by 

researchers, the lack of major strides, particularly across different systems, has also constrained 

advancements in ecology (Brewer and Orth 2015; Gwinn et al. 2016). Continued progress in 

stream-fish sampling methodologies requires not only a broader examination and application of 

contemporary approaches to address the challenges of variable detection, but also expanding 

research efforts in poorly studied regions.  

Improved analytical techniques for addressing detection are readily available to stream-

fish scientists, but their use has been relatively minimal. One notable advancement for improving 

the reliability of animal population surveys was occupancy estimation and modeling (hereafter 

referred to as occupancy modeling; MacKenzie et al. 2005). Occupancy modeling provides a highly 

flexible framework that uses binary detection-nondetection data from spatially- or temporally-

replicated surveys to independently model both species detection and species occupancy (i.e., the 

probability of presence) given detection probability, where both occupancy and detection can vary 

among sites and surveys as a function of covariates. Although originally designed for single-species 

single-season studies (MacKenzie et. al 2002), occupancy modeling has been extended to a wide 

range of applications including multiple seasons (MacKenzie et al. 2003), multiple species 

(MacKenzie et al 2004; Dorazio et al. 2010; Mihaljevic et al. 2015), and community metrics (Kéry 

and Royle 2008; Kéry et al. 2009; Dorazio et al. 2010). The use of occupancy models in stream-

fish ecology have been relatively limited despite their broad applicability (but see Falke et al. 2010; 

Wagner et al. 2013; McManamay et al. 2014; Pregler et al. 2015; Peterson and Shea 2015). The 

general concept of occupancy modeling has been extended to models that accommodate count data 

to provide inference on both species occurrence and abundance (see also MacKenzie and Nichols 

2004 for applications of occupancy models to infer abundance), thus providing a useful approach 

to survey common species (i.e., counts are typically > 0 across sites). For example, N-mixture 
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models (Royle 2004a, Royle 2004b; Royle and Dorazio 2006) independently estimate site-level 

abundance and detection, where both parameters can vary among sites and surveys as a function of 

covariates (see also Webster et al. 2008). Multinomial N-mixture models (Royle 2004b; Royle and 

Dorazio 2006) are particularly attractive for stream-fish sampling because they accommodate 

common estimation methods with temporally-replicated surveys such as removal (known also as 

depletion) and mark-recapture (known also as capture-recapture); however, applications for stream 

fishes have been rare (but see Dorazio et al 2005; Coggins et al. 2011; Yard et al. 2011; Dodrill et 

al. 2015; Mollenhauer and Brewer 2016). Sampling-gear calibration is another method to estimate 

abundance while explicitly account for variable detection among stream fishes and across sampling 

conditions (e.g., Peterson and Rabeni 2001; Price and Peterson 2010; Brewer and Ellersieck 2011). 

Gear calibration requires establishing detection by repeat sampling across a range of environmental 

conditions using either known population sizes (e.g., marking or stocking) or comparisons with a 

previously calibrated gear (Peterson and Paukert 2009). Once a large number of fish have been 

sampled across the range of environmental conditions, a model can be developed to estimate 

detection for a single sampling event, which can be used to estimate site-specific abundance by 

adjusting raw catch data (Thompson and Seber 1994; Peterson and Paukert 2009). Effective gear 

calibration requires extensive sampling effort, which despite the long-term benefits for stream-fish 

monitoring, likely explains their limited examination in the scientific literature. 

STUDY AREA 

My field work was conducted in the Ozark Highlands ecoregion of northeast Oklahoma and 

southwest Missouri. The Ozark Highlands ecoregion is characterized by oak-hickory forests, with 

valleys primarily converted to pasture (Woods et. al 2005). The dominant underlying lithology of 

the Ozark Highlands is cherty limestone; however, there is considerable variation, particularly 

near the ecotones. Many Ozark Highland streams are classified as groundwater dominated with 

clear water (but with substantial variation in water clarity under baseflows; Nigh and Schroeder 

2002). Ozark Highland streams have diverse fish assemblages including black basses, sunfishes, 
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minnows, darters, and suckers. The primary sportfish of interest in Ozark Highland streams is the 

Smallmouth Bass Micropterus dolomieu. 

OBJECTIVES 

The overarching goals of my dissertation were to (1) examine approaches that would improve 

estimates of detection probability and abundance using common stream-fish sampling methods 

and (2) identify multiscale factors related to stream-fish distributions in Ozark Highland streams. 

My project will both contribute to the advancement of stream ecology and improve predictive 

aspects of stream-fish ecology and management by applying current theory and contemporary 

analytical approaches. My specific objectives were: 

Objective 1. Construct groups of Ozark Highland stream fishes based on morphological traits 

using a novel clustering approach. 

Objective 2. Develop a multiscale multi-species electrofishing detection model for Ozark 

Highland stream fishes using sampling-gear calibration. 

Objective 3. Compare tendencies in species detection for warmwater stream fishes between 

snorkeling and electrofishing and evaluate the effectiveness of snorkel counts to provide reliable 

warmwater stream-fish abundance estimates. 

Objective 4. Develop an electrofishing detection model for Smallmouth Bass using a 

multinomial mark-recapture N-mixture model.  

Objective 5. Identify multiscale factors associated with Ozark Highland stream-fish densities and 

occurrence, with an emphasis on intermediate-scale environmental factors.  

 For objective one, I evaluated the effectiveness of hierarchical clustering with multiscale 

bootstrapping to group members of a large assemblage of stream fishes based on morphology and 

identified traits that distinguished groups at multiple levels of the assemblage. The trait groups 

developed in objective one were integrated into objectives two, three, and five. For objective two, 

I modeled tow-barge electrofishing detection among multiple stream fishes across a range of 

environmental conditions at multiple spatial scales using a mixed (i.e. random effects) regression 
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model. The performance of the electrofishing detection model was evaluated using both a cross 

validation and a comparison of abundance estimates with unbiased Petersen mark-recapture 

estimates. I also examined variation in electrofishing detection in relation to both morphological 

groups developed for objective one and differences in habitat use among stream fishes. For 

objective three, I assessed the utility of snorkel surveys for surveying warmwater stream fishes. In 

addition to a general comparison of species detection between snorkeling and tow-barge 

electrofishing, I used electrofishing catch data adjusted for variable detection to evaluate the 

reliability of unadjusted snorkel counts. The stream-fish detection model developed for chapter 

two was used to adjust electrofishing catch data. I also examined tendencies in snorkeling 

detection in relation to both morphological groups developed for objective one and differences in 

habitat use among stream fishes. For objective four, I developed a single-species multinomial N-

mixture model to improve the applicability of mark-recapture electrofishing for Smallmouth 

Bass, where abundance estimates were derived using a hierarchical empirical Bayes estimator. 

The performance of the Smallmouth Bass electrofishing detection model was evaluated using 

baseline snorkel counts when appropriate for reliable estimates, unbiased Petersen mark-recapture 

estimates, and simulations. Lastly, objective five addressed the ecological components of my 

dissertation while incorporating objectives one and two. I used hierarchical models to identify 

factors related to both stream-fish densities and stream-fish occurrence at multiple spatial scales. 

Stream-fish density data was adjusted for variable detection using the electrofishing detection 

model developed in chapter 2. I also attempted to generalize relationships between stream-fish 

densities and environmental variables using both life-history traits and morphological groups 

developed in chapter one. 
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CHAPTER II 
 

 

MORPHOLOGICAL GROUPS OF STREAM FISHES OF THE OZARK HIGHLANDS 

ABSTRACT 

Ecologists commonly grouping species based on shared traits to simplify multi-species datasets. 

Hierarchical clustering, in particular, is well suited for grouping species based on trait 

combinations; however, determining where meaningful associations exist within the dendrogram 

is inherently challenging. Multiscale bootstrapping generates approximately unbiased p-values to 

provide a quantitative measure of strength for each nested cluster within the hierarchy. I used 

hierarchical clustering with multiscale bootstrapping to group Ozark Highland stream fishes 

based on combinations of morphological traits. The cluster analysis resulted in 53 significant 

groupings where significant clusters at finer scales of the species assemblage were nested within 

higher-level significant clusters throughout the dendrogram.  A linear discriminant analysis 

confirmed group membership of species at multiple levels of the hierarchy. Variable loadings of 

discriminant functions indicated that similar combinations of body shape, swimming, and feeding 

traits distinguished groups of species at multiple levels of the hierarchy. The approach is not 

limited to either fishes or morphology and can be applied to both other organisms and alternative 

sets of species traits.
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INTRODUCTION 

A fundamental challenge of ecology is to reduce the complexity of multi-species data while 

retaining enough information to detect patterns both within and among assemblages. One 

common approach for simplifying multi-species datasets is to group species based on shared traits 

(e.g., reproductive and trophic guilds). Generalizing species relationships by grouping based on 

traits can reduce data dimensionally when studying large groups of species (Growns 2004; 

Frimpong and Angermeier 2010) and trait combinations can be represented by a single variable 

(e.g., trait group A, trait group B, etc.) to examine how traits relate to species distributions across 

an environmental gradient (e.g., Gross et al. 2007; Douma et al. 2012). 

Transforming an ecological continuum to discrete classes is inherently arbitrary and 

resulting classifications are not necessarily related to underlying mechanisms of nature. Even the 

most widely accepted form of grouping in ecology, the species concept, is an artifact of 

anthropocentrism that arbitrarily groups individuals to provide a convenient basis to study natural 

phenomena (Allen and Hoekstra 2015). The uncertainties inherent to ecological grouping make 

diagnostic tests of group strength (i.e., the certainty of the relationship among group members 

based on chosen characteristics) challenging (Lyons et al. 2016). Therefore, analytical methods 

that provide quantitative assessments of group strength are invaluable to ecologists. 

Hierarchical clustering, which merges objects based on a specified distance measure, 

results in a dendrogram that allows users to visualize groupings. A unique feature of hierarchical 

clustering is that groupings can simultaneously be visualized at multiple levels due to the nested 

structure of the analysis. However, the nested groupings resulting from hierarchical clustering 

also make identifying strong associations among objects contained in individual groupings 

difficult to identify. Common approaches used by ecologists to determine “good” groups when 

using hierarchical clustering include distance cut-offs based on branching in the dendrogram  
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(e.g., Growns 2004; Dumay et al. 2004) and identifying levels of the dendrogram where “distinct” 

groupings occur (e.g., McCune 1988; Perry and McIntosh 1991); however, neither criteria 

explicitly provides a measure of group strength. Multiscale bootstrapping a method that improves 

the interpretation of hierarchical clustering (Suzuki and Shimodaira 2006). Hierarchical clustering 

with multiscale bootstrapping (HCMB) generates approximately unbiased probability values (AU 

p-values) at each node of the dendrogram for assessing the strength of resulting clusters, where 

high values suggest a significant association among objects contained within the cluster (Jackson 

et al. 2010). Multiscale bootstrapping provides a better approximation of classification error than 

traditional bootstrap probability values and does not require an assumption of multivariate 

normality (Efron et al. 1996; Shimodaira 2004).   

HCMB has been widely applied in genetic research (e.g., Brambrink et al. 2006; Gaur et 

al. 2007; Ebert et al. 2009) and has also been effectively used for ecological questions (e.g., 

Jackson et al. 2010; Jouffray et al. 2015). HCMB is well suited for examining species trait 

questions. For example, Kelly and Motani (2015) used HCMB to identify drivers of trait 

convergence in marine tetrapods. HCMB also provides a means to examine how unique trait 

combinations define groups of species at various levels of the assemblage. The level of an 

assemblage to be examined may vary based on individual research questions for trait-based 

studies. Ecologists may be interested in either traits that broadly define groups of species across 

an entire assemblage or traits that are related to fine-scale habitat use (or both). For example, 

different trait combinations may explain differences in species abundances across an 

environmental gradient (e.g., Yan et al. 2013) versus local-scale microhabitat use (e.g., Lürig et 

al. 2016). For stream fishes, a recent study incorporated HCMB into a trait-based analysis of 

minnows (Burress et al. 2016); however, the authors examined only 15 species at a single level of 

the assemblage.  Thus, further research is needed to assess the utility of HCMB for identifying 

trait associations among a large number of species at multiple scales. Accordingly, my objective 
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was to use HCMB to develop trait groups from an assemblage of Ozark Highland stream fishes 

and identify trait combinations separating groups at multiple levels of the hierarchy (McCune and 

Grace 2002).  Detection tendencies and ecological relationships both within and among groups 

are explored in other objectives (see Chapters 3, 4, and 6). 

METHODS 

An extensive number of fish traits can be used to characterize species (Frimpong and Angermeier 

2010). I focused on morphological traits because (1) morphological characteristics provide a 

measurable value that can be applied to each species that is less subjective than nominal traits 

(e.g., guilds and behavioral categories), (2) basic knowledge about the ecology and life history of 

many stream fishes is lacking (Matthews 2010); therefore, the use of morphological traits allowed 

rare and poorly studied species to be included, (3) effectively grouping stream fishes based on  

morphology supports research efforts that further examine the functional importance of 

morphological traits, and (4) morphological characteristics represent continuous variables that are 

easily incorporated into a framework that examines trait combinations by allowing the range of a 

trait to be expressed across a species assemblage. 

I measured external morphological traits (referred to hereafter as traits) on 92 stream 

fishes of the Ozark Highlands ecoregion, Oklahoma (Appendix 1). Traits were chosen that 

encompassed the overall morphology of an individual (e.g., body shape, swimming, and feeding; 

Appendix 2) and are hypothesized to be surrogates for ecological-niche relationships among 

stream fishes (Winemiller 1991; Gatz 1979). Fish specimens were acquired either via field 

sampling or from the Oklahoma State University Collection of Vertebrates. All specimens were 

preserved in 70% ethanol. I measured body traits using digital calipers (0.01 mm) on a minimum 

of 10 adult specimens for each species (Appendix 1). Traditional fin and body measurements 

using calipers remain an effective method to represent morphological variation among an 
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assemblage of stream fishes (Franssen et al. 2014). Because fins were damaged on the vast 

majority of specimens due to sampling and storage, all fin measurements were obtained from 

digital photographs. I conducted an internet search to locate regional photographs that provided 

the best representation of “natural” fin positions (i.e., the spread of each fin during swimming) for 

each species. The majority of fin traits was obtained from FishBase (www.fishbase.org) and 

Fishes of Texas (www.fishesoftexas.org); however, the large number of species in our analysis 

required photographs to be obtained from a variety of sources and multiple photographs were 

sometimes required to provide comprehensive fin morphology for each species. Using online 

photographs to acquire fish traits is not uncommon (e.g., Clavel et al. 2013) as a comprehensive 

traits database is severely lacking for freshwater fishes (Frimpong and Angermeier 2010). I used 

the image-analysis program AnalyzingDigitalImages (Draft 2.0, 2011, Museum of Science, 

Boston, MA) for the fin measurements and to calculate body area for each species (rounded to 

nearest pixel). Each photograph was measured twice and the average value was used for a given 

trait.  

Ecologically-relevant trait combinations can provide insight into relationships among 

species (Southwood 1977; Frimpong and Angermeier 2010; Verberk et al. 2013). Accordingly, I 

used certain trait values to calculate indices hypothesized to represent stream-fish morphology 

(Gatz 1979). These indices encompassed combinations of trait values and were used in the 

analyses in lieu of the associated point measurements. Both single traits and trait indices were 

used to represent the morphology of each species in the cluster analysis (Table 1).  

Correlation between variables was expected due to the nature of the dataset. I examined 

the Pearson product-moment correlation coefficient for each pair of traits and removed certain 

traits to achieve |r| ≤ 0.70. Because a certain trait was often correlated with multiple alternate 

traits, I was able to address correlations in the dataset while maintaining a comprehensive set of 

morphological fish traits. 
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Traits with considerable within-species variation may be less informative in detecting 

ecological relationships across an assemblage (McGill et al. 2006; Poff et al. 2006). Therefore, I 

performed a one-sided F-test (Freund et al. 2010) on the variance of each trait to confirm that 

interspecific variation was significantly higher than intraspecific variation (α < 0.05). Because 

only one individual was used for each fin measurement, I was unable to test whether interspecific 

variation was higher than intraspecific variation for fin traits.  

I converted traits to ratios using standard length, body area, or maximum body depth to 

adjust for differences in body size (Table 1 and Appendix 2). The mean of each trait ratio was 

used as a representative value for each species. An alternative to dividing by body size to adjust 

for non-isometric scaling among individuals is to regress each trait against body size and use the 

residuals in the analysis (e.g., Pease et al. 2012; Lundsgaard-Hansen et al. 2013). However, the 

lack of replication of fin measurements for each species resulted in a single individual 

representing fin traits for each species, which precluded the use of residuals. I was mindful to use 

only adults for the body traits, which minimized any intraspecific variation due to ontogenetic 

changes. I also used a standardized major axis to test for allometry in body traits in relation to 

standard length (Warton et al. 2006). The slopes for body traits ranged from 0.98 to 1.40, 

suggesting a reasonably proportional relationship with body size. Additionally, due to the large 

number of individuals used for the body measurements, I was constrained to assigning a single 

value for each trait per species (i.e., clustering nearly 2,000 individuals would make the 

dendrogram difficult to interpret). A mean residual rather than a mean trait ratio would still only 

represent the “average” individual and may not have accurately reflected variation among 

individuals within a species. Therefore, I chose to use ratios for both body and fin traits to 

maintain consistency. 

I used the library “pvclust” (Suzuki and Shimodaira 2006) in the statistical software R 

(version 3.2.2, R Core Development Team, 2014) to construct groups of Ozark stream fishes 
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based on morphological trait combinations (referred to hereafter as trait groups). Fish species 

were clustered using HCMB with the unweighted paired group with arithmetic means (UPGMA) 

linkage method based on chord distance. Chord distance is essentially a standardized Euclidian 

distance method and puts differently scaled variables on equal footing (Legendre and Gallagher 

2001; McCune and Grace 2002; Austen et al. 2014). Data were resampled with 100,000 

bootstraps to minimize standard error (SE) associated with AU p-values. Significant clusters were 

assessed using (AU p-value - SE) ≥ 0.95). My analyses could have resulted in 91 (i.e., n -1) 

significant clusters, which would suggest strong groupings of stream fishes based on 

combinations of morphological traits at all levels of the dendrogram. For simplicity, I chose 

significant groupings at three of levels of the hierarchy for further examination.  

I used the library “MASS” (Venables and Ripley 2002) in the statistical software R to 

perform a linear discriminant analysis (LDA) on selected trait groups. A LDA identifies 

combinations of variables (i.e., discriminant functions) that provide the best possible separation 

between predefined groups by maximizing among-group variation relative to within-groups 

variation (McCune and Grace 2002). A preliminary examination of residual plots using multiple 

regression indicated that all traits used in the cluster analysis conformed to a normal error 

distribution; therefore, I did not perform any data transformations for the LDA. All traits were 

scaled such that the mean of each covariate was zero with a variance of one to improve the 

interpretation of variable loadings (i.e., variable importance). 

RESULTS 

Body traits varied more among species than among individuals within a species, although 

there was a high degree of correlation between several fin and body traits. The F-tests confirmed 

that interspecific variation was significantly higher than intraspecific variation for each body trait 
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across all fish species. However, I removed seven traits from the dataset based on Pearson 

product-moment correlation coefficients prior to the cluster analysis (Table 1).  

HCMB resulted in 90 clusters with 54 significant groupings (Figure 1). Standard errror 

was ≤ 0.01 for all AU p-values associated with each cluster (Figure 2). Only two species were not 

included in significant clusters. River Darter Percina shumardi clustered with Banded Sculpin 

Cottus carolinae (AU p-value = 0.94), suggesting that River Darter may be morphologically 

different from other darters (Etheostoma and Percina) despite the degree of relatedness. 

First, I evaluated three significant clusters which comprised 90 stream fishes at the 

highest level of the hierarchy in the dendrogram (trait groups 1-3; Figure 1). Trait group 1 

comprised darters, topminnows (Fundulus), and Western Mosquitofish Gambusia affinis. Trait 

group 2 comprised four genera of catfishes (Ictaluridae). Trait group 3 comprised the remainder 

of fishes, which were primarily suckers (Catostomidae), black basses and sunfishes 

(Centrarchidae), and minnows and chubs (Cyprinidae). The LDA for trait groups 1-3 resulted in 

63.3% separation using the first discriminant function. A plot of the discriminant functions for 

trait groups 1-3 confirmed group membership for all species (Figure 3a). Traits with the highest 

loadings based on coefficients of the first discriminant function for trait groups 1-3 were mouth 

width, trunk length, caudal peduncle flatness, and dorsal fin aspect ratio (Table 2). Pectoral fin 

area and eye position were important for providing additional separation among species in trait 

groups 1-3 based on loadings of the coefficients for the second discriminant function. 

I then evaluated 10 significant clusters that comprised 85 stream fishes at a lower level of 

the hierarchy in the dendrogram (trait groups A-J; Figure 1). Trait group H was identical to trait 

group 2 as it contained no significant nested clusters, suggesting that the traits I measured did not 

provide additional separation among catfishes. Most of the significant clusters contained “core” 

fish species that one would intuitively group together due to a high degree of relatedness or 
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obvious similarity in morphology. However, the significant clusters at this level of the 

dendrogram also provided considerable diversity among member species to further evaluate the 

effectiveness of HCMB for generating trait groups. Multiple families were represented in two or 

more significant clusters and no significant clusters consisted of only a single genus. For 

example, suckers and black basses and sunfishes were represented in two significant clusters (trait 

groups A and D and trait groups E and G, respectively) with white basses (Morone) grouped with 

the black basses (Micropterus). Chubs and minnows were distributed among three significant 

clusters (trait groups B, C, and D) with Common Carp Cyprinus carpio grouped with two genera 

of suckers (Ictiobus and Carpiodes). Some significant clusters also included taxonomically-

unique fishes that would provide difficulty in determining group membership based on 

morphology without analytical support. For example, Freshwater Drum Aplodinotus grunniens, 

the sole member of Sciaenidae in my species pool, grouped with Common Carp and suckers. 

Western Mosquitofish, the sole member of Poeciliidae in my species pool, grouped with 

topminnows (trait group J). The LDA for trait groups A-J resulted in 67.9% separation using the 

first two discriminant functions and 83.0% separation using the first three discriminant functions 

(Table 3). A plot of the first two discriminant functions confirmed group membership for trait 

groups A-E and trait groups G-J (Figure 3b). Trait group F, which comprised only two species, 

overlapped with trait group D, which suggested the traits I measured did not sufficiently separate 

Skipjack Herring Alosa chrysochloris and Gizzard Shad Dorosoma cepedianum at this level of 

the assemblage. Traits with the highest loadings based on coefficients of the first discriminant 

function for trait groups A-J were dorsal fin aspect ratio, pectoral fin area, flatness index, and 

caudal peduncle length. (Table 3); however, eye position mouth width, and trunk length had high 

loadings for the second and third discriminant functions, suggesting that these traits were 

important for providing additional separation among the fish species. 



31 
 

Significant clusters were nested within trait groups A-E, trait group G, and trait groups I 

and J (i.e., at lower levels of the dendrogram; Figure 1). For example, four significant clusters 

comprising 15 small-bodied cyprinids were nested within trait group C (trait groups C1-C4; 

Figure 1 and Figure 4). Small-bodied cyprinids are often challenging to distinguish based solely 

on external morphology and perceived phylogenetic relationships are often fluid. Cyprinella was 

split between two clusters (trait group C1 and C2) and Notropis was distributed among all four 

trait groups, suggesting that the traits I measured may better differentiate these species than 

phylogeny. I did not perform a LDA on trait groups C1-C4 because the species to trait ratio 

(15:15) was unfavorable for an accurate interpretation of variable loadings (McGarigal et al. 

2002).  

DISCUSSION 

Groups of Ozark Highland stream fishes developed using HCMB suggested strong 

associations among species based on combinations of external morphological traits at various 

levels of the assemblage. Interestingly, similar body shape, feeding, and swimming traits 

distinguished significant clusters at two levels of the hierarchy in the dendrogram. Trunk length, 

measures of body flatness, eye position, mouth width, dorsal fin aspect ratio, and pectoral fin area 

had high coefficient loadings for both trait groups 1-3 and trait groups A-J. Unfortunately, a LDA 

would have been both unreliable and difficult to interpret for significant groupings at lower levels 

of the dendrogram due to the species-trait ratio; however, this also highlights an advantage of 

HCMB. A favorable trait-to-species ratio can be achieved using HCMB and, due to nested groups 

with associated AU p-values, significant groupings comprising a small number of species can be 

identified.  

 Arbitrariness in identifying groupings is an inherent aspect of hierarchical clustering 

(Romesburg 2011).  However, criteria such as AU p-values that provide quantitative assessments 
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of uncertainty in clusters to complement visual assessments of a dendrogram are superior when 

compared to relying solely on distance cut-offs. For trait-based studies, AU p-values both guide 

where separation may occur among species with similar trait combinations and provide a measure 

of the strength of the relationship between unique species and other members of an assemblage. 

Furthermore, assessing the strength of groupings at various levels of the dendrogram promotes 

flexibility to examine multiple questions related to trait relationships across a species assemblage.  

I demonstrated how HCMB can identify trait combinations that distinguish species at 

various levels of an assemblage. Research that studies traits in combination, rather than 

individually, can help advance the predictive ability of community ecology (Lavorel and Garnier 

2002; Villéger et al. 2008; Verberk et al. 2013). Individual traits may not be ecologically 

meaningful to a species unless taken in the context of its entire suite of characteristics and the size 

of certain traits (e.g., eye diameter) may represent an evolutionary choice to give up advantages 

of alternative variations. Examining how traits combine due to interactions and trade-offs during 

the course of a species evolution can enhance insight into mechanistic species-environment 

relationships (Verberk et al. 2013). For example, single traits of aquatic macroinvertebrates only 

described the habitat use of abundant species rather than revealing more complex community 

dynamics (Pilière et al. 2016). Additionally, four unique trait combinations explained the 

response of grassland plant species to land-use change (Gross et al. 2007).  

Although phylogenetic relationships were apparent (and expected) in significant clusters, 

my results suggested that variation in the measured morphological traits among closely related 

species was an important factor in the observed trait groups. The influence of phylogeny was 

beyond the scope of this objective; however, isolating similarities and differences between 

closely related species can provide important insight into potential functional roles of traits 

(Westoby et al. 1995; Verberk et al. 2013). Because convergent evolution is such a common 

phenomenon in freshwater fishes (e.g., Muschick et al. 2012; Montaña and Winemiller 2013; 
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Furness et al. 2015) phylogenetic relationships among study species may be an asset to 

identifying key trait adaptations across coarse spatial and temporal scales. Of course, for many 

research questions phylogenic inertia remains an important consideration.  

The trait groups I constructed using HCMB encompassed the holistic morphology of a 

species and comprised stream fishes that were similar in trait combinations. A further assessment 

of ecological relationships among species, while considering the traits removed due to high 

correlations, is required to determine if my results represent functional groups. For example, 

Freshwater Drum grouped with suckers and common does not necessarily indicate a functional 

relationship; however, Freshwater Drum have been shown to have ecological similarities with 

these fishes (Edsall 1967). A detailed evaluation of the functional importance of these trait groups 

is beyond the scope of the objective here, which was to group stream fishes based on similar 

morphology. Although I chose to focus on morphological fish traits, the approach described here 

is easily adaptable to both other species traits and different taxa. 
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Table 1. Description of the morphological traits used for hierarchical clustering with multiscale 

bootstrap resampling (HCMB) for 92 Ozark Highland stream fishes incorporating ecologically-

important indices (see also Appendix 2 for complete definitions of individual traits). Asterisks 

indicate traits that were removed prior to the cluster analyses due to high correlations with other 

traits (See Methods for details). 

Trait Definition  

*Head depth  Vertical distance from dorsum to ventrum 

passing through the left pupil divided by 

standard length 

*Head length  Horizontal distance from the anterior tip of the 

jaw to the posterior margin of opercular 

membrane divided by standard length  

Flatness Maximum body depth divided by body width 

*Body depth below midline Vertical distance along line of maximum body 

depth from the point of an imaginary 

perpendicular line coming from the pupil 

divided by standard length 

Trunk length  Horizontal distance from the anterior tip of the 

jaw to point of maximum body depth divided 

by standard length 

Caudal peduncle length  Horizontal distance from the anterior margin 

of the posterior base of the caudal fin to an 

imaginary vertical line from the posterior base 

of the anal fin divided by standard length 

Caudal peduncle flatness  Caudal peduncle depth divided by caudal 

peduncle width 

Eye position  

 

 

Eye diameter 

Vertical distance from the center of the pupil 

to the ventrum divided by standard length 

Distance from between fleshy orbits of the eye 

along an anterior-posterior axis divided by 

standard length 
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Snout length  Distance from the pupil to the tip of the upper 

jaw with mouth shut divided by standard 

length 

Mouth width  Horizontal distance across the mouth when 

fully open divided by standard length 

*Mouth height Vertical distance across the mouth when fully 

open divided by standard length 

*Jaw length Distance of the lower jaw mandible divided by 

standard length 

*Dorsal fin area  Surface area of the dorsal fin divided by body 

area 

Dorsal fin aspect ratio Dorsal fin height divided by dorsal fin length 

Caudal fin span  Maximum distance from the top edge of the 

caudal fin to the bottom edge of the caudal fin 

divided by maximum body depth 

Caudal fin aspect ratio Maximum distance from the top edge of the 

caudal fin to the bottom edge of the caudal fin 

squared divided by the surface area of the 

caudal fin 

Anal fin area  Surface area of the anal fin divided by body 

area 

Anal fin aspect ratio Anal fin height divided by anal fin length 

*Pelvic fin area  Surface area of the pelvic fin divided by body 

area 

Pelvic fin aspect ratio Pelvic fin height divided by pelvic fin length 

Pectoral fin area  Surface area of the pectoral fin divided by 

body area 

Pectoral fin aspect ratio Pectoral fin height divided by pectoral fin 

length 
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Table 2. The first three discriminant functions resulting from a linear discriminant analysis 

(LDA) for 3 groups (trait groups 1-3) comprising 90 Ozark Highland stream fishes using external 

morphological traits (see also Figure 3). Groups were selected based on results of hierarchical 

clustering with multiscale bootstrapping (HCMB; Figure 1).  

 

 

  

Trait First 

discriminant 

 function 

Second 

discriminant  

Function 

Trunk length  0.98  0.82 

Caudal peduncle length  0.72 -0.09 

Caudal peduncle flatness -0.93 -0.20 

Flatness   0.81 -0.26 

Eye position  0.12 -1.02 

Eye diameter  0.28  0.37 

Mouth width -1.11  0.07 

Anal fin area -0.47  0.24 

Anal fin aspect ratio  0.25 -0.19 

Pectoral fin area -0.40  1.81 

Pectoral fin aspect ratio -0.35 -0.22 

Dorsal fin aspect ratio -0.93 -1.06 

Pelvic fin aspect ratio  0.03  0.33 

Caudal fin span -0.22 -0.05 

Caudal fin aspect ratio  0.55  0.04 
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Table 3. The first three discriminant functions resulting from a linear discriminant analysis 

(LDA) for 10 groups (trait groups A-J) comprising 85 Ozark Highland stream fishes using 

external morphological traits (see also Figure 3). Groups were selected based on results of 

hierarchical clustering with multiscale bootstrapping (HCMB; Figure 1).  

Trait First 

discriminant 

 function 

Second 

discriminant  

function 

Third 

discriminant  

function 

Trunk length  0.33 -0.27  1.17 

Caudal peduncle length  0.93 -0.25  0.26 

Caudal peduncle flatness  0.44 -0.13 -0.94 

Flatness  -0.94 -1.42 -0.17 

Eye position -0.13 -1.54 -0.65 

Eye diameter -0.50 -0.13 -0.12 

Mouth width  0.63  1.09 -0.83 

Anal fin area -0.22  0.81 -0.37 

Anal fin aspect ratio  0.21 -0.36  0.65 

Pectoral fin area -1.95  1.38  0.78 

Pectoral fin aspect ratio  0.75  0.17 -0.07 

Dorsal fin aspect ratio  2.15  0.57 -0.65 

Pelvic fin aspect ratio -0.55 -0.06  0.09 

Caudal fin span  0.21  0.37  0.01 

Caudal fin aspect ratio -0.17 -0.48  0.10 
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Figure 1. Results of hierarchical clustering with multiscale bootstrapping (HCMB) for 92 Ozark 

Highland stream fishes using external morphological traits (Table 1 and Appendix 2). Values at 

nodes of the dendrogram are approximately unbiased (AU) p-values. Standard error was ≤ 0.01 

for all AU p-values (Figure 2). Significant clusters (n = 54) were identified as (AU p-value minus 

SE) ≥ 0.95 and are indicated by circles at nodes of the dendrogram. Vertical red lines with bars 

indicate species members of trait groups 1-3 comprising 90 species. Color-coded circles 

represents 10 significant clusters comprising 85 species (trait groups A through J), where purple 

is trait group A, light green is trait group B, light blue is trait group C, light gray is trait group D, 

dark green is trait group E, pink is trait group F, orange is trait group G, brown is trait group H, 

and red is trait group I, and dark blue is trait group J. The red box around trait group C highlights 

one example of significant nested clusters (trait groups C1-C4; Figure 4).  
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Figure 2. Standard error (y-axis) for approximately unbiased probability values (AU p-values; x-

axis) associated with 90 clusters (circles) resulting from hierarchical clustering with multiscale 

bootstrapping (HCMB) for 92 Ozark Highland stream fishes based on external morphological 

traits (Table 1 and Appendix 2). 
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Figure 3.  Scatterplot of the first two discriminant functions for trait Groups 1-3 and trait groups 

A-J resulting from hierarchical clustering with multiscale bootstrapping (HCMB) for 92 Ozark 

Highland stream fishes based on external morphological traits (Table 1 and Appendix 2). For 

Figure 3A, orange represents trait group 1, dark green represents trait group 2, and light blue 

represents trait group 3. Color coding for fish species in Figure 3B corresponds with Figure 1.  
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Figure 4. View of dendrogram for trait groups C1-C4. Color coding represents four significant 

clusters comprising 15 species nested within trait group C (Figure 1), where red is trait group C1, 

orange is trait group C2, blue is trait group C3, and green is trait group C4. Significant clusters 

were assessed using approximately unbiased (AU) p-values as (AU p-value minus SE) ≥ 0.95 

based on results of hierarchical clustering with multiscale bootstrapping (HCMB) for 92 Ozark 

Highland stream fishes based on external morphological traits (Table 1 and Appendix 2). 
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APPENDICES 

Appendix 1.  Common name and Latin name of 92 Ozark Highland stream fishes used for 

hierarchical clustering with multiscale bootstrapping (HCMB) to group species based on 

combinations of external morphological traits.  

 

Common name Latin name 

Arkansas Darter Etheostoma cragini 

Banded Darter Etheostoma zonale 

Banded Sculpin Cottus carolinae 

Bigeye Chub Hybopsis amblops  

Bigeye Shiner Notropis boops  

Bigmouth Buffalo Ictiobus cyprinellus  

Black Buffalo Ictiobus niger  

Black Bullhead  Ameiurus melas  

Black Crappie Pomoxis nigromaculatus  

Black Redhorse Moxostoma duquesnei  

Blackside Darter Percina maculata  

Blackspotted Topminnow Fundulus olivaceus  

Blackstripe Topminnow Fundulus notatus  

Bluegill Lepomis macrochirus  

Bluntface Shiner Cyprinella camura  

Bluntnose Darter Etheostoma chlorosomum  

Bluntnose Minnow Pimephales notatus  

Brindled Madtom Noturus miurus 

Brook Silverside Labidesthes sicculus  

Bullhead Minnow Pimephales vigilax  

Cardinal Shiner Luxilus cardinalis  

Carmine Shiner   Notropis percobromus 

Channel Catfish Ictalurus punctatus  

Channel Darter Percina copelandi  

Common Carp Cyprinus carpio  

Creek Chub Semotilus atromaculatus  
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Emerald Shiner Notropis atherinoides  

Fantail Darter Etheostoma flabellare  

Fathead Minnow Pimephales promelas  

Flathead Catfish Pylodictis olivaris  

Freckled Madtom Noturus nocturnus  

Freshwater Drum Aplodinotus grunniens  

Ghost Shiner  Notropis buchanani  

Gizzard Shad Dorosoma cepedianum  

Golden Redhorse Moxostoma erythrurum  

Golden Shiner Notemigonus crysoleucas  

Gravel Chub Erimystax x-punctatus  

Green Sunfish Lepomis cyanellus  

Greenside Darter Etheostoma blennoides  

Highfin Carpsucker Carpiodes velifer  

Largemouth Bass  Micropterus salmoides 

Least Darter Etheostoma microperca  

Logperch Percina caprodes  

Longear Sunfish Lepomis megalotis   

Longnose Darter  Percina nasuta 

Mimic Shiner Notropis volucellus   

Neosho Madtom Noturus placidus  

Northern Hogsucker Hypentelium nigricans  

Northern Studfish Fundulus catenatus  

Orangespotted Sunfish Lepomis humilis  

Orangethroat Darter Etheostoma spectabile   

Ozark Minnow Notropis nubilus   

Plains Killifish Fundulus zebrinus  

Plains Topminnow Fundulus sciadicus   

Quillback Carpiodes cyprinus  

Red Shiner Cyprinella lutrensis   

Redear Sunfish Lepomis microlophus   

Redfin  Darter Etheostoma whipplei   

Redfin Shiner Lythrurus umbratilis    
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Redspot Chub Nocomis asper   

River Carpsucker Carpiodes carpio   

River Darter Percina shumardi   

Rock Bass Ambloplites rupestris   

Sand Shiner   Notropis stramineus   

Shorthead Redhorse  Moxostoma macrolepidotum 

Silver Chub Macrhybopsis storeriana    

Skipjack Herring Alosa chrysochloris   

Slender Madtom Noturus exilis    

Slenderhead Darter Percina phoxocephala    

Slim Minnow Pimephales tenellus   

Slough Darter Etheostoma gracile    

Smallmouth Bass  Micropterus dolomieu   

Smallmouth Buffalo Ictiobus bubalus  

Southern Redbelly Dace Phoxinus erythrogaster   

Speckled Darter Etheostoma stigmaeum   

Spotfin Shiner Cyprinella spiloptera    

Spotted Bass Micropterus punctulatus   

Spotted Sucker Minytrema melanops   

Steelcolor Shiner Cyprinella whipplei   

Stippled Darter  Etheostoma punctulatum   

Stonecat Noturus flavus   

Stoneroller Campostoma spp.   

Striped Bass Morone saxatilis   

Striped Shiner   Luxilus chrysocephalus   

Suckermouth Minnow Phenacobius mirabilis   

Warmouth Lepomis gulosus    

Wedgespot Shiner   Notropis greenei   

Western Mosquitofish Gambusia affinis   

White Bass  Morone chrysops   

White Crappie Pomoxis annularis   

White Sucker Catostomus commersoni   

Yellow Bullhead Ameiurus natalis   
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Appendix 2.  Description of external morphological traits measured on 92 Ozark Highland 

stream fishes. 

Trait Definition  

Standard length Horizontal distance from the anterior tip of the jaw to 

the anterior margin of the  posterior base of the caudal 

fin 

Body area Total surface area of the body excluding fins 

Maximum body depth  Maximum vertical distance from dorsum to ventrum   

Head depth               Vertical distance from dorsum to ventrum passing 

through the left pupil divided by standard length 

Head length              Horizontal distance from the anterior tip of the jaw to 

the posterior margin of opercular membrane divided by 

standard length   

Maximum body depth   Maximum body depth divided by standard length 

Body depth below midline Vertical distance along line of maximum body depth  

from the point of an imaginary perpendicular line 

coming from the pupil divided by standard length 

Trunk length           Horizontal distance from the anterior tip of the jaw to 

point of maximum body depth divided by standard 

length 

Body width              Maximum horizontal distance of body perpendicular to 

an imaginary vertical line at the point of maximum body 

depth divided by standard length 

Caudal peduncle length         Horizontal distance from the anterior margin of the 

posterior base of the caudal fin to an imaginary vertical 

line from the posterior base of the anal fin divided by 

standard length 

Caudal peduncle depth           Vertical distance from dorsum to ventrum of the caudal 

peduncle at midlength divided by standard length 

Caudal peduncle width           Maximum horizontal distance of the caudal peduncle at 

midlength perpendicular to caudal peduncle depth 

measurement divided by standard length 
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 Eye position             Vertical distance from the center of the pupil to the 

ventrum divided by standard length 

Snout length             Distance from the pupil to the tip of the upper jaw with 

mouth shut divided by standard length 

Dorsal fin area         Surface area of the dorsal fin divided by body area 

Dorsal fin height Maximum distance from the base to the tip of the dorsal 

fin divided by standard length 

Dorsal fin length Maximum distance from the anterior edge of the dorsal 

fin to the posterior edge of the dorsal fin divided by 

standard length 

Caudal fin area                

  

Surface area of the caudal fin divided by body area 

Caudal fin span                    Maximum distance from the top edge of the caudal fin 

to the bottom edge of the caudal fin divided by 

maximum body depth 

Anal fin area               Surface area of the anal fin divided by body area 

Anal fin length             Maximum distance from the base to the tip of the anal 

fin divided by standard length 

Anal fin height             Maximum distance from the top edge of the anal fin to 

the bottom edge of the anal fin divided by standard 

length 

Pelvic fin area             Surface area of the pelvic fin divided by body area 

Pelvic fin length            Maximum distance from the base to the tip of the left 

pelvic fin divided by standard length 

Pelvic fin height           Maximum distance from the top edge of the pelvic fin to 

the bottom edge of the pelvic fin divided by standard 

length 

Pectoral fin area           Surface area of the pectoral  fin divided by body area 

Pectoral fin length         Maximum distance from the base to the tip of the left 

pectoral fin divided by standard length 

Pectoral fin height         Maximum distance from the top edge of the pectoral fin 

to the bottom edge of the pectoral fin divided by 

standard length 
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CHAPTER III 
 

A MULTISCALE MULTI-SPECIES ELECTROFISHING DETECTION MODEL FOR 

STREAM FISHES OF THE OZARK HIGHLANDS 

ABSTRACT 

Variable detection across sampling conditions and among species confounds perceived patterns 

of fish distributions across the stream landscape and presents challenges for research and 

management. Approaches to account for variable detection that strike a balance between 

complexity and practicality promote increased implementation by stream-fish scientists. I used a 

straight-forward gear calibration method to model tow-barge electrofishing capture probability 

among Ozark Highland stream fishes across environmental conditions at multiple spatial scales. 

A primary advantage of gear calibration is that it can be used to derive temporally- and spatially-

comparable estimates of absolute abundance across a range of environmental conditions with 

equivalent sampling effort as catch-per-unit-effort. Multiple reach-scale variables were associated 

with variation in stream-fish detection including water depth and clarity, emergent vegetation, 

and a discharge-proportion riffle interaction. The magnitude of the relationship between detection 

probability and reach-scale variables also varied among species. Additionally, lithological 

characteristics of stream segments explained additional variation in detection. Multiple validation 

methods indicated good model performance. Average model bias and average root mean square 

error of detection probability based on a cross validation was -0.01 and 0.09, respectively. The 

model-predicted detection probability was contained in a binomial probability confidence interval 

for observed data 83% of the time. Species abundance estimates using model-predicted detection   



54 
 

probability were contained in the Petersen capture-recapture confidence intervals 86% of the 

time. Application of this relatively simple approach to model variation in stream-fish detection 

can both maximize available resources and promote advances in stream-fish ecology and 

management. 

INTRODUCTION 

Perceived fish distributions across the dynamic stream landscape are largely influenced by the 

timing and nature of sampling (Jackson et al. 2001; Poff and Zimmerman 2010; Gwinn et al. 

2016). Variation in detection (the proportion of available individuals captured) among sampling 

methods, environmental conditions, and species hinders our ability to detect changes in stream-

fish abundance and assemblage structure. The importance of addressing variable detection for 

sound management and conservation has long been recognized by stream-fish researchers (e.g., 

Cleary and Greenbank 1954; Larimore 1961). Despite improved analytical approaches to account 

for variable detection (e.g., Williams et al. 2002; MacKenzie et al. 2005; Royle et al. 2013), 

catch-per-unit-effort (CPUE) remains the most common metric used to evaluate and monitor 

stream-fish populations (Gwinn et al. 2016). Major limitations of CPUE include calculating only 

an indirect measure of abundance, relying on a typically untested and often unrealistic assumption 

of constant detection, and providing no insight about detection relationships among species.  

Standardizing sampling conditions (e.g., sampling only at baseflows) to support the use 

of CPUE may minimize variation in site-specific, short-term detection. However, maintaining 

constant detection during long-term stream-fish monitoring or across a broad study area is 

challenging because environmental conditions in streams vary extensively across space and time, 

with interactions among environmental variables across varying scales further increasing the 

complexity (Jackson et al. 2001; Price and Peterson 2010; Gwinn et al. 2016). Furthermore, 

identifying relationships between stream fishes and the environment (e.g., flow-ecology 
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relationships), often fundamental research and management goals, are not possible when 

sampling is limited to a narrow range of environmental conditions (Gwinn et al. 2016 provide a 

detailed discussion of the limitations of CPUE for stream-fish sampling).  

One approach to account for variable detection when sampling stream-fish populations is 

gear calibration (Peterson and Rabeni 2001; Peterson and Paukert 2009). Gear calibration 

requires repeat sampling over a broad range of sampling conditions using either capture-recapture 

or comparisons with a previously calibrated gear. Although a substantial amount of effort and 

data are initially required for effective gear calibration, a model can be developed to explicitly 

account for variable detection. The detection model can be used to adjust catch data to an 

absolute abundance estimate based on site-specific conditions (Thompson and Seber 1994; 

Peterson and Paukert 2009). Therefore, the long-term benefit of gear calibration is temporally- 

and spatially-comparable abundance estimates with equivalent sampling effort as CPUE (i.e., a 

single sampling event). However, an inherent challenge of developing an effective detection 

model is capturing the complex relationships across environmental conditions and among species 

while providing an end product that remains practical for implementation into long-term 

monitoring or research.  

My objective was to develop a practical, flexible, multiscale model to predict detection 

among stream fishes in wadeable warmwater streams across a range of environmental conditions 

using tow-barge electrofishing. A novel aspect of my approach was to incorporate spatial data to 

generalize coarse-scale lithology among sites. Differences in morphology can also contribute to 

variation in stream-fish detection (Peterson and Paukert 2009; Rabeni et al. 2009). Thus, I also 

evaluated electrofishing detection tendencies among morphological trait groups developed in 

Chapter 2. Previous research addressing stream-fish detection has been biased toward salmonids 

and my study represents a rare effort to model multi-species electrofishing detection in wadeable 

warmwater streams of the southern United States (see also Price and Peterson 2010).  I detail an 
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effective, yet straightforward, approach to model detection and adjust catch data that can be easily 

be implemented by stream-fish scientists in other systems or with other sampling gears. 

METHODS 

Study sites. - I sampled stream fishes in 34 stream reaches (referred to hereafter as sites) in the 

Ozark Highlands ecoregion of northeast Oklahoma and southwest Missouri during summer 2014-

2015 (Fig. 1). All sites were wadeable (i.e., most habitat was < 1 m deep; Rabeni et al. 2009) and 

comprised three to five riffle-run-pool sequences to characterize stream habitat. The sites 

provided both environmental variation and geographic diversity, with some streams located at the 

southern ecoregion boundary. I focused on nine species of Centrarchidae (Table 1) because they 

are both common and abundant in Ozark Highland streams, include popular sportfishes, and 

recover quickly from electrofishing with minimal mortality (Bardygula-Nonn et al. 1995; Dolan 

et al. 2002; Dolan and Miranda 2004). These stream fishes also comprised three significant 

morphological trait groups developed in Chapter 2 (trait groups A-C; Table 1). 

Fish sampling. - I installed two sets of block-off nets at both the upstream and downstream end of 

each site to close the area to fish movement. Block-off nets were preferentially placed at shallow 

riffles to further inhibit fish movement (Peterson et al. 2004; Price and Peterson 2010). Either a 

low-water bridge at base flows or a dry riffle located at one end of the site provided an adequate 

fish barrier at a few sites and no block-off nets were installed.  

On day one (marking day), I used both a tow-barge electrofisher (Midwest Lake 

Management, Polo, Missouri) and angling to establish marked populations of centrarchids. 

Marked fish were not released until the sampling crew had proceeded a minimum of one riffle-

run-pool sequence upstream to minimize the probability of being recaptured (none were 

recaptured). Angling was used on marking day primarily to increase the number of marked 

Smallmouth Bass Micropterus dolomieu because detection is often low using electrofishing 
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(Lyons and Kanehl 1993; Heimbuch et al. 1997; Dauwalter and Fisher 2007), although other 

captured centrarchids were also included in the marked population. All captured centrarchids 

were identified to species, measured (1.0-mm TL), and marked with a caudal fin clip. The 

minimum size for fish was 50-mm TL for Lepomis and Rock Bass Ambloplites rupestris and 80-

mm TL for Micropterus. The size restrictions excluded most age-0 fishes not recruited to 

electrofishing (McClendon and Rabeni 1986) and was also based on observed mortalities for very 

small centrarchids (Dolan and Miranda 2004; personal observations). Marked fish were released 

throughout the site and allowed to recover and redistribute for ~48 h. The time between 

electrofishing events was nearly double the commonly accepted guideline for system recovery 

(Peterson and Cederholm 1984). Fish injured during sampling or that showed signs of excessive 

stress were released outside of the blocked-off area. 

I used several methods to assess delayed fish mortality and potential emigration. The 

blocked-off area was routinely inspected from the surface for dead marked centrarchids, which 

were removed from the study. The block-off nets and the area between them were inspected 

periodically for trapped or dead fish. The method used to inspect the area between the block nets 

was dependent on water depth (typical depth was < 0.3 m) and water clarity, where I used a 

visual inspection from the surface, snorkeling, or electrofishing. As an additional assessment of 

fish mortality, a snorkel pass was performed at sites with reasonable water clarity (n = 22) to 

identify dead centrarchids. I also evaluated fish movement at a subset of sites to provide insight 

into potential emigration in an instance where the block nets were ineffective. At three sites, I 

marked fish in the lower portion of the site with an upper caudal fin clip and fish in the upper 

portion of the site with a lower caudal fin clip, where the location of the fin clip was noted for 

recaptured centrarchids. At each of the three sites, the depth of the riffle that divided the lower 

and upper portion of the site was ≥ 0.3 m (i.e., deeper than the typical depth of riffles where block 

nets were set). 
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The recapture event (calibration day) consisted of two standardized removal 

electrofishing passes per riffle-run-pool sequence. The electrofishing crew comprised three 

people: one tow-barge operator (myself) armed with a hand net and two persons equipped with 

dip nets each operating one of the two anodes. I used pulsed direct current (DC), 60 Hz, and a 

25% duty cycle for electrofishing. Voltage was adjusted to achieve a target power (W) that 

maintained a consistent electric field across levels of ambient water conductivity while 

minimizing electrofishing-induced injuries as described by Miranda (2009). During each 

electrofishing pass, we sampled areas ≥ 0.2-m deep, which excluded most riffle habitat, in an 

upstream direction with a zigzag pattern. Logistic constraints of the tow-barge made very shallow 

habitats difficult to sample effectively, although use of these habitats are uncommon by 

centrarchids (Probst et al. 1984; Schlosser 1987; Brewer 2013). Care was taken to thoroughly 

electrofish areas of structure (e.g., instream large wood, rootwads, and boulders). All captured 

centrarchids were identified to species and measured (1.0-mm TL). Unmarked fish data were later 

used for model validation. 

Environmental measurements. - I measured environmental variables hypothesized to influence 

detection of stream fishes (see also Table 2). A conductivity pen (Myron L Company, Carlsbad, 

California; Model PT1) was used to measure water temperature (0.1ºC) and ambient water 

conductivity (µS/cm) at the downstream end of the site. Wetted channel width (1.0 m) and 

thalweg depth (0.1 m) were measured at 50-m transects. Stream discharge (0.01 m3/s) was 

measured in a homogenous area of a run using the velocity-area method (Gordon et al. 2004). 

Water clarity (0.5 m) was measured as the horizontal distance an underwater observer could see a 

fish silhouette. I used the same fish silhouette at all sites to maintain consistency and it was 

designed to mimic the color, markings, and typical size (~200 mm) of Smallmouth Bass in the 

study streams. GPS coordinates were taken at both the upstream and downstream end of each site 

to estimate reach length (1.0 m). I also measured the length of each riffle (1.0 m) to calculate the 
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proportion of riffle habitat. Both instream large wood and emergent vegetation were estimated as 

the length (1.0 m) and width (1.0 m) of each patch to calculate proportional coverage. 

I used spatial data to group stream segments (hereafter referred to as segment) into 

categories based on geology and soils (hereafter referred to “geosoil” groups) as cherty limestone, 

cherty alluvium, stony alluvium, and shale. The geosoil categories provided surrogates for 

substrate and streambank characteristics (e.g., lithologic complexity and interstitial spaces). 

Segments were defined as a stream length between 3rd order and higher tributary confluences. 

GIS layers were obtained for both rock fragment type (Miller and White 1998; Pennsylvania State 

University 2008) and geology type (USGS 2005). Using ArcMap (version 10.2.1, ESRI, Red 

Lands, California), a 50-m buffer was generated around each segment, where the dominant rock 

fragment type and geology type were used to characterize each segment. 

Electrofishing detection model. - I modeled variation in electrofishing detection among 

centrarchids across environmental conditions at multiple spatial scales using a generalized linear 

mixed model (GLMM). GLMMs are a flexible, powerful class of statistical models that allow for 

the inclusion of random effects, which broadens the scope of inference, accounts for a lack of 

independence among observations (i.e., pseudoreplication), and accommodates the multiscale 

(i.e., nested) structure of stream systems and unequal sample sizes common in ecological data 

(Wagner et al. 2006; Jamil et al. 2013). I implemented models using the package “lme4” (Bates et 

al. 2014) in the statistical software R (version 3.2.2, R Core Development Team, 2014). Detection 

was modeled as a Bernoulli process using a binomial error distribution, where recapture was a 

binary response variable (i.e., recaptured or not recaptured). I assigned recaptures by matching 

each recaptured fish to a marked fish for each species ± 5.0-mm TL to incorporate variation in 

fish size into the model. Individual recognition was not required from a modeling perspective 

(e.g., if 2 of 5 Smallmouth Bass ~200-mm TL were recaptured, the results of the model would be 

identical regardless of which two were assigned as recaptured); however, accurate species 
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identification and measurements of fish length were critical for reliable results. The model can be 

written as 

(1)       logit(pijk) = 0 + 0i + 0j  + 0k + 1xijk + 2xijk  + nxijk + 1xj  + nxj  

where p is estimated detection probability, 0 is the grand mean intercept,  is the random species 

intercept,  is the random site intercept,  is the random segment intercept, x is a variable 

corresponding to observation (fish) i at site j nested in segment k, and ixj is the random species 

by site-scale variable slope. Random effects were assumed normally distributed as N(0,τ2), where 

τ is the population variance among levels of a random effect. All continuous variables were 

natural-log transformed due to asymmetry and standardized such that each variable had a mean of 

zero and a variance of one to improve interpretation of model coefficients and promote model 

convergence.   

I fitted models using a tiered forward selection similar to Jamil et al. (2013). I chose 

forward selection because, due to the number of variables being examined, a backward selection 

would have resulted in convergence issues with the most complex models. Pearson’s product 

moment coefficient (r) was calculated among site-scale variables to allow levels of correlation to 

be considered during the model-selection process. At each step, a variable was only included if it 

decreased Akaike information criterion (AIC; Burnham and Anderson 2001) by at least one. 

Remaining variables with |r| ≥ 0.50 were eliminated as each site-scale variable was added to the 

model. A moderate level of correlation among variables is tolerable for predictive modeling and 

can actually improve predictive power of a model despite increasing the standard error of 

coefficients (Allison 1999). Also, multicollinearity among predictor variables does not affect 

measures of model fit using AIC with |r| < 0.50 (Burnham and Anderson 2001; Cohen et al. 

2003). The null model contained both random effects (species, site, and segment) and TL as a 

fixed effect to account for the influence of fish size on capture probability prior to examining 

environmental variables. I considered 13 site-scale environmental variables for the random tier of 
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the model-selection process (Table 2), where selected variables were added only as species-

dependent random terms (i.e., each species had a random intercept and a random slope for each 

included site-scale variable). I did not anticipate ambient water conductivity would explain 

variability in electrofishing detection because electrofishing power was standardized; however, I 

included it in the set of site-scale variables to examine if the approach was effective. For the next 

tier, I added fixed effects for site-scale variables selected during the random tier, considered 

remaining site-scale variables, and examined all two-way interactions between site-scale 

variables. Lastly, I added the geosoil categories to the model as a segment-scale variable, where 

shale was the reference. Although variance components on a logit scale cannot be interpreted in 

the same fashion as Gaussian distributions (Nakagawa et al. 2013), I chose to perform a 

calculation to assess relative variation explained in the final model at both the site scale and 

segment scale as: (𝜎̂2
null model - 𝜎̂2

full model) / 𝜎̂2
null model, where 𝜎̂ is the variance component for each 

random effect (Wagner et al. 2006). A measure of total variation explained in the final model 

(i.e., R2) would not have provided a useful assessment of the model’s ability to predict the 

proportion of available individuals captured. The interpretation of R2 would have been the ability 

of the final model to predict an individual observation (i.e., the probability of recapturing an 

individual fish; Mittlböck and Heinzl 2001) because recapture was a binary response variable.  

Reported estimates of detection probability for validation methods and model 

interpretation were back transformed. Standard error was first estimated with the delta method 

(Oehlert 1992) using the package “msm” (Jackson 2011) in the statistical software R. Both the 

detection estimate and standard error were then back transformed from the logit scale using 

calculations described by Jørgensen and Pedersen (1998).  

The final model was evaluated using both a cross-validation method and a comparison of 

model-predicted fish abundance to a widely used population estimation method with known 

reliability when assumptions were met. These approaches assessed model performance, site-level 
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bias, and the general applicability of the model for reliable stream-fish abundance estimates. I 

performed a 10-fold cross validation, where data were randomly split into 10 groups of three to 

four sites (~10% of the sites). At each cross-validation step, I modeled the remaining data and 

assessed model bias and accuracy based on observed recapture proportions at each site not 

included in the model for species with ≥ 20 marked individuals and model-predicted detection 

probabilities. I assessed bias as the average of predicted detection probability minus observed 

recapture proportion across all cross-validation steps. I assessed accuracy as root mean square 

error (RMSE; see Appendix 1). Values of fish size and environmental variables were used to 

calculate species-specific capture probabilities based on linear combinations of model 

coefficients. Species-specific detection was calculated individually for 25-mm TL size classes 

using median fish size, where the weighted average was used to represent overall detection 

probability. Because detection was modeled as a Bernoulli process, I also calculated 95% 

confidence intervals for species-specific observed recapture proportions at sites not included in 

the model using the exact Clopper-Pearson method (Freund et al. 2010) and evaluated how often 

predicted detection probabilities were contained in the intervals. Although the binomial 

probability confidence intervals did not account for individual variation in detection (e.g., fish 

size), it provided a more restrictive test of the model (i.e., confidence intervals that introduced 

individual variation in detection would have been wider). Additionally, I used catch data from 

calibration day at each site to calculate Petersen capture-recapture estimates with the Chapman 

(1954) bias correction (hereafter referred to as Petersen estimates) when criteria were met for 

unbiased estimates as defined by Ricker (1975): 

(2)       N̂ = {(M + 1) (C + 1) / (R + 1)} – 1, 

where N̂ is the population estimate, M is the number of fish marked during the capture event, C is 

the number of fish captured during the recapture event, and R is the number of recaptured fish 

that were marked. I used the package “Rcapture” (Baillargeon and Rivest 2007) in the statistical 

software R to calculate the Petersen estimates. I compared the Petersen estimates to species- and 
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site-specific abundance estimates derived from the final model using catch data from calibration 

day. Detection probability was calculated without the random site intercept and used to adjust 

catch data as N̂ = c / q̂, where q̂ is the species- and site-specific estimated detection probability, 

and c is the species- and site-specific number of individuals captured on calibration day 

(Thompson and Seber 1994; Peterson and Paukert 2009). I then evaluated how often N̂ was 

contained in 95% confidence intervals for the Petersen estimates calculated as: N̂ ± zα/2(SE), 

where we used a bias-corrected SE (Seber 1970). Although Petersen estimates do not require an 

assumption of constant detection between capture and recapture events (Williams et al. 2002), the 

population estimator does assume constant among individual during an event. The assumption of 

constant detection among individuals was not strictly met, particularly due to variation in fish 

size; however, the Petersen estimates still provided a useful supplemental method to assess model 

performance. Additionally, data collected on calibration day was used to calculate both the 

recapture proportions and the Petersen estimates, which may have somewhat biased the 

comparisons. However, the modeled detection probability estimates are a reflection of all data 

collected (i.e., all 34 sites), whereas the Petersen estimates only reflect site-specific recapture 

proportions.   

RESULTS 

Fish sampling and environmental measurements. - I marked 17,123 centrarchids across a range of 

site- and segment-level environmental conditions (Table 1 and Table 2). As expected, 

Micropterus size was greater and more variable than other centrarchids and Rock Bass tended to 

be larger than Lepomis. Site-scale environmental variables varied considerably with the exception 

of instream large wood and water temperature (Table 2). Sites were distributed among 20 

segments and approximately half were classified as cherty limestone.   

Assessments of delayed mortality and emigration suggested that both were trivial to the 

results of the study. No dead centrarchids were discovered during the snorkel passes and only one 
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was found in the block nets. Less than 0.05% of the marked centrachids (n =69) were discovered 

dead during routine surface inspections. No trapped live centrarchids were discovered in the 

block nets or in the area between them. Only 4 fish marked in the lower portion of the site were 

captured in the upper portion (2 Longear Sunfish and 2 Smallmouth Bass and only 3 fish found in 

the upper portion of the site were captured in the lower portion (2 Longear Sunfish and 1 Green 

Sunfish) at the three sites where I evaluated movement. 

 Electrofishing detection model. - In addition to fish length, I identified six site-scale 

environmental characteristics and the segment-scale geosoils category as variables that were 

related to variation in electrofishing detection (Table 2). As expected, there was a strong positive 

relationship between detection and fish length (Table 3). The site-scale variables included in the 

model provided a comprehensive characterization of stream sampling conditions, where the most 

correlated variables were water depth and discharge (r = 0.48). Relative variation explained at the 

site scale was 0.93 (remaining variance ± SD: 0.04 ± 0.20). Detection was higher for all geosoil 

categories relative to shale but the effect was more pronounced (i.e., greater positive slope) for 

stony alluvium. Relative variation explained at the segment scale was 0.96 (remaining variance ± 

SD: 0.02 ± 0.15).  

Proportion of emergent vegetation, water clarity, and width-depth ratio were site-scale 

variables modeled as fixed effects only, where estimated detection decreased with increasing 

levels of each of these stream habitat characteristics (Table 3). The model-selection process also 

identified a discharge-proportion riffle interaction term that was included as a fixed effect, where 

the magnitude of the interaction was the same among species after accounting for random 

components. An examination of the discharge-proportion riffle interaction indicated a sharp 

increase in detection at lower flows, with the magnitude of the relationship greater at high 

proportions of riffle habitat (Figure 2).   
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The random tier of the model-selection process identified discharge, proportion of riffle, 

and water depth as site-scale variables that improved model fit; therefore, I included species-

specific random slopes in the model (Table 3 and Table 4). Detection tendencies among species 

were not related to similar morphology (i.e., no tendencies among the three trait groups were 

apparent based on a visual examination). Detection decreased with increasing discharge across 

species; however, the magnitude of the relationship was considerably variable and most 

pronounced for Smallmouth Bass. For example, Smallmouth Bass had higher detection at lower 

flow and lower detection at higher flow when compared to other species (Figure 3). Conversely, 

there was little influence of discharge on Green Sunfish Lepomis cyanellus detection, which 

resulted in much higher detection than other species at higher flows. There was generally a 

negative relationship between detection and water depth; however, this relationship was also 

variable among species (Table 4). For example, there was virtually no relationship between water 

depth and Longear Sunfish Lepomis megalotis detection (Figure 4). Alternatively, there was a 

strong negative relationship between water depth and Smallmouth Bass detection, which resulted 

in higher detection in shallower conditions and lower detection in deeper conditions when 

compared to other species. The relationship between detection and riffle habitat was also variable 

among species (Table 4). For example, Bluegill Lepomis macrochirus detection increased sharply 

with higher proportions of riffle when compared to other species (Figure 5). Interestingly, Rock 

Bass detection decreased with higher proportions of riffle with other site-scale variables held 

constant. Similar to other species, Rock Bass detection increased as flow decreased and was 

higher at lower flows with higher proportions of riffle. However, Rock Bass detection actually 

increased at higher flows with higher proportions of riffle. 

 The validation methods indicated that the model typically provided reliable detection 

estimates with minimal site-level bias. Average model bias based on the cross validation was        

-0.01, which suggests the model did not tend to overestimate or underestimate detection 
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probability (n = 126; Table 5). Average model bias for species with > 10 observations was 

highest for Bluegill (-0.03) and lowest for Green Sunfish (0.00), Longear Sunfish (0.00), and 

Rock Bass (0.00). Average RMSE based on the cross validation was 0.09 (n = 126; Table 5; 

Appendix 1). Average RMSE for species with > 10 observations was highest for Smallmouth 

Bass (0.12) and lowest for Longear Sunfish (0.07). The model-predicted detection probability 

was contained in the binomial probability confidence interval for observed data 83% of the time. 

Predicted detection was contained in the binomial probability confidence interval for observed 

data the highest percent of the time for Rock Bass (85%) and the lowest percent of the time for 

Smallmouth Bass (72%) for species with > 10 observations. Species abundance estimates using 

model-predicted detection probability were contained in the Petersen confidence interval 86% of 

the time (n = 106; Table 5). Predicted species abundance was contained in the Petersen 

confidence interval the highest percent of the time for Green Sunfish and Longear Sunfish (85%) 

and the lowest percent of the time for Smallmouth Bass (75%) for species with > 10 observations. 

There was no evidence that the model-predicted detection estimates were not reliable for species 

with fewer observations. The average RMSE was within levels observed for species with larger 

sample size for Largemouth Bass Micropterus salmoides, Redear Sunfish Lepomis microlophus, 

and Warmouth Lepomis gulosus. Also, both predicted detection and abundances for these three 

species were contained in respective confidence intervals with a similar frequency as species with 

a larger sample size. I was unable to provide any evaluations of model-predicted detection for 

Spotted Bass Micropterus punctulatus due to sample size limitations. Data collected for Spotted 

Bass still provided information to the model; however, its estimated detection largely reflected 

the overall intercept and slopes in the model due to the small sample size. 

DISCUSSION 

I detailed an effective, yet straight-forward, approach to model detection among stream fishes at 

multiple spatial scales with practical applications for ecology and management. A major 



67 
 

advantage of this approach is that, after an initial intensive data collection period, subsequent 

sampling requires the same sampling effort as CPUE, while data can be adjusted for variable 

detection. Additionally, standardization of environmental conditions is not required and catch 

data can be adjusted for an absolute, rather than relative, abundance estimate. Thus, this approach 

promotes both improved long-term, datasets for stream-fish management and conservation and 

the establishment of species-environment relationships. Site- and species-specific detection 

probability estimates can be easily derived from model coefficients in a spreadsheet using values 

for environmental variables and fish size. Although I chose to model detection of stream-dwelling 

centrarchids using tow-barge electrofishing, the gear calibration and modeling methods are easily 

adaptable to other fish species and sampling gear types. 

The multiscale structure of the model allowed detection to vary as functions of both 

reach- and segment-scale characteristics. A novel aspect of my study was using spatial data to 

generalize lithological characteristics among sites, which reduces field effort and increases the 

spatial extent of the model’s applicability. For example, sites across a broad spatial extent may 

sometimes share reach-scale characteristics but differ in underlying geology and soils that can 

also contribute to variation in stream-fish detection.  

My findings also highlight the complexity of variable detection across the dynamic 

stream landscape. Low flows resulted in very shallow (sometimes dry) riffles and sharp increases 

in detection, particularly with high proportions of riffle habitat. The disconnected riffle-run-pool 

sequences not only eliminated potential fish movement across deeper riffle areas, but may have 

altered centrachid habitat use. For example, Hafs et al. (2010) found that Smallmouth Bass tended 

to congregate in shallow areas at low flows, presumably due to altered foraging strategies. The 

combination of less available run and pool habitat and the occupancy of shallow areas at low 

flows potentially explains the sharp increase in detection at sites with high proportions of riffle 

(i.e., fish were highly susceptible to electrofishing by being concentrated in shallow areas).  
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I also identified species-dependent detection tendencies for closely-related fishes that 

were associated with habitat use and behavior rather than morphology. For example, the lack of a 

relationship between Green Sunfish detection and discharge was presumably due to their sit-and-

wait feeding strategy resulting in an affinity for structure in calmer stream areas (Werner and Hall 

1977; Stuber et al. 1982). The average-size Smallmouth Bass (200 mm) in my study streams 

tended to occupy open water (Probst et al. 1984; personal observations during snorkeling), which 

lowered detection at higher flows and deeper conditions. Conversely, Longear Sunfish typically 

occupy shallow pools and runs (Laughlin and Werner 1980; Bietz 1981); therefore, increased 

availability of deep water habitats did not decrease detection. The relationship between Rock 

Bass detection and the proportion of riffle is curious. I found that, under low-flow conditions, 

Rock Bass detection increased with higher proportions of riffle habitat (similar to other species). 

Conversely, under higher-flow conditions, Rock Bass detection decreased with increasing riffle 

habitat. Rock Bass have been associated with shallow cover (Probst et al. 1984; Grossman et al. 

1995); however, little is known about their habitat use or behavior under higher-flow conditions 

(i.e., use of refuge habitat, feeding behavior, etc.). My findings suggest Rock Bass response to 

variable flows may be an area of research interest. 

The inclusion of random effects in the model increased the robustness of the detection 

estimates, accommodated both the nested structure of the data and the variability in sample size, 

and promoted general flexibility in study design. In a GLMM, each coefficient for a random 

effect is pulled towards a common value that is a reflection of information compiled across all 

levels of the random effect (shrinkage estimates; Pinheiro and Bates 2000). For example, treating 

site as a random effect (i.e., modeling the variance) resulted in random intercepts that represented 

a compromise between site-specific fit and the overall mean intercept. Additionally, treating 

species as a random effect was both a superior and more statistically-appropriate approach than 

fitting separate generalized linear models (GLMs) for each species because (1) species-specific fit 

was presumably improved and estimated error was more likely more accurate due to the 
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shrinkage estimates (Jamil et al. 2013) and (2) a usable single-species model for species with 

smaller samples size would have been impossible, where as a random effect these species have a 

degree of robustness. A multi-species GLM that treated species as a fixed categorical effect 

would have been unlikely to converge if many species were included due to the additional 

parameters and unequal sample sizes. As a random effect, model performance actually benefited 

from the inclusion of additional species as it improved the robustness of the variance component. 

Also, additional species can seamlessly be added to the model if management objectives change 

or the existing model is incorporated into a new research project. 

Gear calibration results in a model that uses data collected across all sites to explicitly 

account for variable detection; therefore, this approach has advantages over other abundance 

estimation methods available to stream-fish scientists. For example, “traditional” mark-recapture 

(e.g., Carle and Strub 1978) and removal (e.g., Zippin 1958; Manly and Seber 1973) do account 

for variable detection. However, these population estimators do not provide information about 

specific factors influencing variation in detection and a reduction in sampling effort over time is 

not possible. Gear calibration ultimately allows for catch data from a single sampling event to be 

adjusted for detection once sufficient data have been acquired (see Introduction). Modeling 

detection across sites also minimizes wasted data and resources. For example, I was unable to 

calculate unbiased Petersen estimates when assumptions were not met. Detection estimates are a 

reflection of data collected across all sites with approaches such as gear calibration (see also 

Dorazio et al. 2005; Price and Peterson 2010; Gwinn et al. 2011), which reduces bias in site-

specific estimates and promotes increased reliability in all collected data. Additionally, when 

model-derived estimates were considerably different than the observed recapture proportion and 

the Petersen estimate, the discrepancy could be related to unusually high or low recapture rates. 

For example, Rock Bass recapture proportion was curiously high at Five-mile Creek (0.55), while 

Longear Sunfish recapture proportion was unexplainably low at Lost Creek (0.03). It is 

reasonable to assume that the model-derived estimates better reflected “true” detection (i.e., based 
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on trends across all sites) on occasions where recapture proportions were atypical, which also 

supports that the model performance results are conservative. Of course, unusual events and 

unexplained heterogeneity are inherent to the nature of sampling and no modeling approach will 

result in accurate detection probability estimates 100 percent of the time.  

The relationships that I identified between stream-fish detection and environmental 

variables may not be analogous to other systems, species, or sampling gears. For example, 

variation in stream-fish detection has been attributed to the amount of instream large wood (Kruse 

et al. 1998; Rosenberger and Dunham 2005; Price and Peterson 2010) but it likely did not vary 

enough in my study streams to contribute to variability among sites or species. Also, seining can 

have different detection relationships with environmental variables than electrofishing (Price and 

Peterson 2010; Pregler et al. 2015). Stream-fish researchers and managers might benefit from 

measuring a comprehensive suite of environmental variables they hypothesize will influence 

detection rather than solely relying on results of other studies, particularly those involving 

dissimilar species or conducted in different ecoregions.   

My study highlights the advantages of implementing contemporary approaches to stream- 

fish sampling. Despite increased prevalence in the ecological literature of abundance estimation 

methods that address variable detection, CPUE remains the dominant metric used by stream-fish 

scientists (Gwinn et al. 2016). Potential reasons variable detection is often not considered during 

stream-fish sampling include the statistical complexity of available options and increased field 

effort. For example, approaches to model detection with potentially more precise estimators than 

a GLMM do exist (e.g., Webster et al. 2008; Price and Peterson 2010); however, the increased 

statistical complexity may not be a desirable trade-off with practicality for many stream managers 

and researchers. I used a relatively simple modeling approach that effectively identified 

tendencies in stream-fish detection across varying environmental conditions and among species. 

In addition to the ability to reduce sampling effort over time, the environmental variables were 

either measured on site in ~2 h or were available via spatial data. Approaches that strike a balance 
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between complexity and applicability can result in increased implementation of stream-fish 

studies and monitoring efforts that both account for variable detection and sample across a 

broader range of conditions. I believe application of the approach presented here both maximizes 

available resources and promotes advances in stream-fish ecology and management.



72 
 

 

Table 1. Summary of fish species marked in 34 stream reaches in the Ozark Highlands ecoregion of northeast Oklahoma and southwest Missouri 

during summer 2014-2015 to develop a detection model for tow-barge electrofishing. Morphological groups A-C correspond to trait groups 

developed in Chapter 1 (see Figure 1 of Chapter 1). 

 

Common name 

 

Scientific name 

Morphological  

group 

Number  

marked 

Mean TL  

± SD (mm) 

Total length  

range (mm) 

Bluegill Lepomis macrochirus B 1,904   94 ± 25 50 - 215 

Green Sunfish Lepomis cyanellus A 2,503 106 ± 29 50 - 207 

Longear Sunfish Lepomis megalotis  A 8,595   94 ± 21 50 - 196 

Redear Sunfish Lepomis microlophus B    158   85 ± 24 50 - 186 

Rock Bass Ambloplites rupestris A 2,032 128 ± 37 50 - 286 

Warmouth Lepomis gulosus A    240 113 ± 23 52 - 182 

Largemouth Bass Micropterus salmoides C    513 175 ± 73   80 - 460 

Smallmouth Bass Micropterus dolomieu  C 1,150 200 ± 61 80 - 404 

Spotted Bass Micropterus punctulatus C      28 165 ± 67 90 - 360 
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Table 2. Site-scale variables to characterize 34 stream reaches in the Ozark Highlands ecoregion of northeast Oklahoma and southwest Missouri 

during summer 2014-2015 to develop a detection model for tow-barge electrofishing. Asterisks indicate site-scale variables included in the model 

using the model-selection process described in the text.                   

Variable  Definition Mean ± SD Range 

Cross-sectional area (m2) Mean of wetted width times thalweg depth measured at 50 m transects     13.45 ± 6.52        5 - 39 

*Discharge (m3/s) Mean of three replicates in a homogenous area of a run        1.86 ± 2.11 0.09 - 8.52 

Proportion cover Percent emergent vegetation plus percent instream large wood        0.06 ± 0.06 0.00 - 0.28 

*Proportion emergent vegetation Total area divided by sampling area       0.03 ± 0.06 0.00 - 0.25 

Proportion instream large wood Total area divided by sampling area       0.03 ± 0.02 0.00 - 0.10 

*Proportion riffle Total length divided by reach length       0.22 ± 0.09 0.07 - 0.42 

Pool depth (m) Mean maximum pool depth       1.35 ± 0.33     0.7 - 2.5 

*Water clarity (m) Horizontal distance an underwater observer could see fish silhouette       3.25 ± 1.53     1.0 - 8.5 

Water conductivity (µS/cm) Ambient water conductivity measured at the downstream end of reach 284.23 ± 80.35   160 - 510 

*Water depth (m) Mean thalweg depth measured at 50 m transects       0.82 ± 0.17     0.5 - 1.3 

Water temperature (°C) Measured at downstream end of the reach     21.60 ± 2.64 16.1 - 25.7 

Wetted channel width (m) Mean wetted width measured at 50 m transects     15.11 ± 4.73          9 -32 

*Width-depth ratio Mean wetted width of reach divided by mean thalweg depth of reach     18.69 ± 5.12       10 - 34 
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Table 3. Coefficients for fixed effects from a generalized linear mixed model developed to model 

two-pass tow-barge electrofishing detection for stream fishes of the Ozark Highlands ecoregion 

using the model-selection method described in the text (see Methods and Table 2 for a full 

description of variables). Model coeffiecients are reported on a logit scale. All continuous 

variables were standardized such that each variable had a mean of zero and a standard deviation 

of one, where the model intercept estimates detection at mean conditions and coefficients for 

continuous variables represent a unit change of one standard deviation. Geosoil is the only 

categorical variable, where shale is the reference category. Asterisks indicate site-scale variables 

that were also modeled as species-dependent random terms (see Table 4). 

 

Parameter Coefficient ± SE 

Intercept -1.77 ± 0.21 

Fish length  0.31 ± 0.02 

*Discharge -0.25 ± 0.10 

Proportion emergent vegetation -0.26 ± 0.07 

*Proportion riffle  0.04 ± 0.07 

Water clarity -0.23 ± 0.06 

*Water depth -0.10 ± 0.09 

Width-depth ratio  -0.12 ± 0.07 

Discharge x proportion riffle -0.14 ± 0.06 

Geosoil (Cherty alluvium)  0.51 ± 0.23 

Geosoil (Stony alluvium)  1.16 ± 0.28 

Geosoil (Cherty limestone)  0.52 ± 0.21 
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Table 4. Species-dependent coefficients from a generalized linear mixed model developed to 

model tow-barge electrofishing detection for stream fishes of the Ozark Highlands ecoregion 

using the model-selection method described in the text. The row labeled all provides the grand 

intercept and slopes for the model. 

 

Species 

 

Intercept 

 

Discharge 

 

Water depth 

Proportion 

riffle 

All -1.77 ± 0.21 -0.25 ± 0.10 -0.10 ± 0.09  0.04 ± 0.07 

Bluegill -1.58 ± 0.06 -0.25 ± 0.06 -0.05 ± 0.03  0.11 ± 0.06 

Green Sunfish -1.54 ± 0.06 -0.06 ± 0.05 -0.11 ± 0.03  0.03 ± 0.05 

Largemouth Bass  -1.94 ± 0.09 -0.34 ± 0.08 -0.11 ± 0.05  0.02 ± 0.08 

Longear Sunfish -1.66 ± 0.05 -0.27 ± 0.04  0.02 ± 0.02  0.08 ± 0.04 

Redear Sunfish -1.62 ± 0.14 -0.29 ± 0.11  0.01 ± 0.06  0.10 ± 0.10 

Rock Bass -2.00 ± 0.07 -0.16 ± 0.06 -0.13 ± 0.04 -0.10 ± 0.06 

Smallmouth Bass -2.25 ± 0.08 -0.37 ± 0.06 -0.40 ± 0.04 -0.04 ± 0.07 

Spotted Bass  -1.88 ± 0.20 -0.27 ± 0.12 -0.12 ± 0.08  0.01 ± 0.11 

Warmouth -1.42 ± 0.11 -0.26 ± 0.09  0.06 ± 0.05  0.15 ± 0.10 
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Table 5. Results of performance evaluations of a generalized linear mixed model to predict tow-

barge electrofishing detection of stream fishes using both a 10-fold cross validation to compare 

model-predicted detection to observed recapture proportions and model-predicted abundances to 

Petersen capture-recapture estimates. Bias was calculated as the predicted detection probability 

minus the observed recapture proportion. Root mean square error (RMSE) was calculated as 

√( (observed recapture proportion −   predicted detection probability)2) /𝑛 ,where n is 

the number of observations used for the cross validation (see also Appendix 1). CI is a 95% 

confidence interval (see Methods for a full description of calculations). 

 

 

Species 

 

Average 

bias 

 

Average 

RMSE 

Percent model-predicted 

recapture proportion in  

binomial probability CI 

Percent model-

predicted abundance 

in Petersen CI 

All -0.01 0.09  83% (104 of 126) 86% (91 of 106) 

Bluegill -0.03 0.09  84% (16 of 19) 88% (15 of 17) 

Green Sunfish  0.00 0.08  78% (18 of 23) 89% (17 of 19) 

Largemouth Bass  -0.02 0.03 100% (10 of 10) 90% (9 of 10) 

Longear Sunfish  0.00 0.07  80% (24 of 30) 89% (23 of 26) 

Redear Sunfish -0.08 0.08 100% (2 of 2) 50% (1 of 2) 

Rock Bass  0.00 0.10  85% (17 of 20) 88% (14 of 16) 

Smallmouth Bass  0.01 0.12  72% (13 of 18) 75% (9 of 12) 

Warmouth -0.05 0.11 100% (4 of 4) 75% (3 of 4) 
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Figure 1. Study sites in the Ozark Highland ecoregion of northeast Oklahoma and southwest 

Missouri. Black dots represent the 34 stream reaches sampled during summer 2014-2015 to 

develop a detection model for tow-barge electrofishing.   

  



78 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Relationship between detection and discharge with respect to riffle habitat using 

estimates derived a generalized linear mixed model. The x-axis represents values of discharge 

from -2 to 2 standard deviations. Proportion of riffle habitat was held at 1 standard deviation. 

Other site-scale variables included in the model were held at mean values and the geosoil 

category was cherty limestone. Detection was calculated for the average-sized Longear Sunfish 

using species-specific random terms (see Table 4), although the magnitude of the discharge-

proportion riffle interaction was the same among species. Dashed lines are 95% confidence 

intervals. 
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Figure 3.  Example of the relationship between detection and discharge among stream fishes 

using estimates derived from a generalized linear mixed model. Species-specific detection was 

obtained using random terms (see Table 4), where red represents the average-size Bluegill, blue 

represents the average-size Green Sunfish, and green represents the average-size Smallmouth 

Bass. The x-axis represents values of discharge from -2 to 2 standard deviations. Other site-scale 

variables included in the model were held at mean values and the geosoil category was cherty 

limestone. I did not report standard error in the figure to improve visualization.  
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Figure 4. Example of the relationship between detection and water depth among stream fishes 

using estimates derived from a generalized linear mixed model. Species-specific capture 

probability was obtained using random terms (see Table 4), where green represents the average-

size Smallmouth Bass, blue represents the average-size Green Sunfish, and orange represents the 

average-size Longear Sunfish. The x-axis represents values of mean water depth from -2 to 2 

standard deviations. Other site-scale variables included in the model were held at mean values 

and the geosoil category was cherty limestone. I did not report standard error in the figure to 

improve visualization. 
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Figure 5. Example of the relationship between detection and proportion of riffle habitat among 

stream fishes using estimates derived from a generalized linear mixed model. Species-specific 

capture probability was obtained using random terms (see Table 4), the red the average-size 

Bluegill, blue represents the average-size Green Sunfish, and black represents the average-size 

Rock Bass. The x-axis represents values of proportion riffle from -2 to 2 standard deviations. 

Other site-scale variables included in the model were held at mean values and the geosoil 

category was cherty limestone. I did not report standard error in the figure to improve 

visualization. 
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APPENDICES 

Appendix 1.  Results of a 10-fold cross validation for a generalized linear mixed model to predict 

tow-barge electrofishing detecion for Ozark Highland stream fishes, where data were randomly 

split the data into 10 groups of three to four sites (~10% of the sites). For each cross-validation 

step, the remaining data were modeled and estimated detection was compared to observed 

recapture proportions (see Methods for details). Root mean square error (RMSE) was calculated 

as √( (observed recapture proportion −   predicted detection probability)2) /𝑛 ,where n 

is the number of observations used for the cross validation. 

Cross validation RMSE 

One 0.101 

Two 0.116 

Three 0.083 

Four 0.082 

Five 0.135 

Six 0.113 

Seven 0.104 

Eight 0.085 

Nine 0.080 

Ten 0.086 

Mean 0.098 
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CHAPTER IV 
 

 

AN EVALUATION OF SNORKELING FOR                                                         

WARMWATER STREAM FISH DETECTION AND ABUNDANCE ESTIMATES 

     ABSTRACT 

The continued evaluation and comparison of stream-fish sampling methods are essential to 

inform managers when developing long-term monitoring protocols. Snorkeling has potential 

advantages relative to other stream-fish sampling methods including minimal intrusion, cost 

effectiveness, and increased detection in deep areas. However, applicability of snorkeling to 

monitor fishes in warmwater stream has not been adequately researched. I compared snorkeling 

to tow-barge electrofishing to examine tendencies in the number of Ozark stream fish species 

detected and evaluated the reliability of snorkel counts to provide informative stream-fish 

abundance estimates. Electrofishing tended to more effectively detect rarer species than 

snorkeling, although using both sampling methods sometimes increased the number of stream 

fishes encountered. Snorkel counts typically underestimated stream-fish abundance; however, 

they did often provide informative population estimates for black basses, particularly Smallmouth 

Bass. The effectiveness of snorkeling was attributable to differences in behavioral traits and 

habitat use, where snorkel counts for cryptic stream fishes (e.g., Green Sunfish and Rock Bass) 

grossly underestimated population size. My findings suggest that snorkeling may be a useful 

supplemental stream-fish sampling method in Ozark streams for certain objectives and species. 

However, managers may consider implementing sampling designs that account for variable 
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detection across environmental conditions and among species if snorkeling is used as a primary 

method for long-term stream-fish monitoring. 

INTRODUCTION 

The continued evaluation and comparison of fish sampling methods are essential aspects of 

progressive stream ecology and management. In particular, there is considerable value in 

examining both the general applicability and tendencies in detection of different stream-fish 

sampling methods among systems and species. A comprehensive understanding of fish sampling 

method options promotes informed decisions by managers when developing monitoring 

protocols. Bonar et al. (2009) represents a substantial effort to provide a detailed summary of 

available methods for sampling fishes in inland freshwater systems. However, Bonar et al. (2009) 

fails to deliver an all-inclusive overview of stream-fish sampling methods, with no discussion of 

the applicability of snorkel surveys in warmwater streams. 

 Although electrofishing and seining are the most common stream-fish sampling methods 

(Rabeni et al. 2009), snorkel surveys are also sometimes used to both identify species presence 

and estimate abundance, particularly in coldwater streams. Snorkeling is relatively cost effective 

(e.g., typically requires only a mask, snorkel, and wetsuit), minimally intrusive, and often has 

higher detection in deeper stream areas relative to other stream-fish sampling methods (Bonneau 

et al. 1995; Dunham et al. 2009; Thurow et al. 2012). However, the applicability of snorkeling is 

severely limited by water clarity and time of day because stream-fish detection is extremely low 

in poor visibility (Dunham et al. 2009). Additionally, discriminating between similar-looking 

stream fishes underwater is a challenging aspect of snorkeling (Dauwalter et al. 2005; Rieman et 

al. 2006) and may be a limiting factor for certain objectives. The requirements of crew members 

also differ for snorkeling compared to other stream-fish sampling methods. In addition to 

adequate training being critical for replicable snorkeling protocols, all crew members must be 
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comfortable navigating underwater structure, adept at swimming in current, and tolerant of 

underwater thermal conditions (Bozek and Rahel 1991; Dunham et al. 2009). Effective 

communication among snorkelers is also essential to minimize double counting of fish. A major 

limitation of relying solely on snorkel surveys for stream-fish management is that demographic 

information (i.e., age and growth) is not easily attained. For example, estimating fish size 

accurately enough to establish year classes is challenging with snorkeling and structures for aging 

(e.g., scales and otoliths) are difficult (if not impossible) to obtain using snorkeling (Dunham et 

al. 2009). 

 Environmental conditions that contribute to variable electrofishing detection (e.g., flow 

and water conductivity) often have little influence on variation in snorkeling detection (Schill and 

Griffith 1984; Bonneau et al. 1995); however, certain environmental variables and stream-fish 

characteristics (i.e., species traits and habitat use) are important to consider. McManamay et al. 

(2014) showed that species detection using snorkeling varied considerably among an assemblage 

of stream fishes. In addition to poor visibility, excessive structure or interstitial spaces (Mullner et 

al. 1998; Wildman and Neuman 2003) and cryptic coloration or behavior (Bozek and Rahel 1991; 

Korman et al. 2010; Macnaughton et al. 2014) can substantially reduce stream-fish snorkeling 

detection. Additional environmental variables that can result in variable detection when 

snorkeling include surface glare (Bozek and Rahel 1991), water depth (Schill and Griffith 1984; 

Brewer and Ellersieck 2011), and lithology (Ensign et al. 1995; Albanese et al. 2011). 

Information from repeat surveys across varying environmental conditions can be used to estimate 

species detection (e.g., occupancy modeling; McManamay et al. 2014) if the objective is species 

occurrence or species richness. However, common population estimation methods that account 

for variable detection (e.g., capture-recapture and removal) are challenging for stream-fish 

snorkeling because individuals are usually not physically captured (i.e., only visually observed; 

but see Dorazio et al. 2005; Jordan et al. 2008 for removal examples). Capture-recapture 
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abundance estimates can be derived from snorkel counts if an alternate sampling method is used 

to capture and mark fish; however, this approach is only effective when the mark is highly visible 

(Bonneau et al. 1995), the surveys are conducted in exceptional water clarity (Zubik and Frayley 

1988), or target species are gregarious (e.g., age-0 Smallmouth Bass Micropterus dolomieu; 

Brewer and Ellersieck 2011), where these factors are not mutually exclusive. In addition, 

markings must not be too visible or large that they result in considerable variability in snorkeling 

detection between marked and unmarked fish, which would violate a basic assumption of capture-

recapture estimation. For example, extremely colorful tags may increase the detectability of 

marked fish relative to unmarked fish and heavy tags may alter marked fish behavior.  

Given the inherent challenges of using abundance estimation methods with snorkeling, 

point counts are often used to characterize stream-fish populations (Dunham et al. 2009). Point 

counts provide informative abundance estimates (i.e., useful for establishing baseline populations 

or identifying major changes in population size) in ideal environmental conditions (i.e., good 

water clarity) and with certain species (e.g., non-cryptic or open water fishes). For example, both 

Hillman et al. (1992) and Bonneau et al. (1995) found snorkeling detection probability was ~70% 

for non-cryptic fishes in clear-water streams, with > 90% detection when fish were found in 

groups of < 40 individuals (Hillman et al. 1992).  

Studies that have evaluated snorkel surveys largely favor coldwater streams (e.g., Zubrick 

and Fraley 1988; Mullner et al. 1998; Wildman and Neumann 2003; Thurow et al. 2006, 

Macnaughton et al. 2014), which is likely due to both the general bias of stream-fish sampling 

research towards salmonids and the clear conditions of many spring-fed coldwater streams. 

However, clear water is also common to warmwater streams. Many Ozark Highland streams are 

characterized by clear water with excellent underwater visibility during dry weather periods 

(Nigh and Schroeder 2002). Nevertheless, relatively few studies have examined the applicability 

of snorkeling for effective fish monitoring in warmwater streams (but see McManamay et al. 



94 
 

2014; Weaver et al. 2014; Hain et al. 2016). Additionally, I am not aware of any studies in Ozark 

Highland streams that have evaluated snorkeling stream-fish detection for multiple species (see 

Dauwalter et al. 2007; Brewer and Ellersieck 2011 for Smallmouth Bass examples) or compared 

snorkeling detection to other stream-fish sampling methods. Accordingly, my objectives were to: 

(1) compare the number of stream fishes encountered between a single snorkel pass and a single 

tow-barge electrofishing pass, (2) evaluate the efficacy of a single snorkel pass for providing 

informative abundance estimates for common stream-dwelling centrarchids, and (3) relate 

tendencies in snorkeling detection and abundance estimates among stream fishes to species traits 

and habitat use. 

METHODS 

I sampled stream fishes in 23 reaches that each comprised three to five riffle-run-pool sequences 

to characterize habitat (referred to hereafter as sites) in 19 streams of the Ozark Highlands 

ecoregion of northeast Oklahoma and southwest Missouri from late spring to early fall 2014-2015 

(Appendix 1). Data collection largely corresponded to streams sampled for Chapter 3 (see study 

area and Figure 1 of Chapter 3). I also sampled two additional sites on Spavinaw Creek and one 

additional site on Baron Fork, Buffalo Creek, Evansville Creek, and Spring Creek in 2014. I 

considered two centrachid species rare to Ozark Highland streams (Orangespotted Sunfish 

Lepomis humilis and White Crappie Pomoxis annularis) in 2014-2015 and eight additional stream 

fishes in 2015 for the species detection objective, where I defined species detection as observing 

at least one individual of a species. Detection tendencies among certain species were considered 

visually with respect to four significant morphological groups from Chapter 1 (trait groups A-D; 

Appendix 2), where trait groups A-C comprised centrarchids and trait group D comprised several 

Catostomids (suckers). I also visually examined abundance estimates among trait groups A-C.   
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I installed two sets of block-off nets at both the upstream and downstream ends of each 

site to ensure a closed system during the sampling period. Block-off nets were preferentially 

placed at shallow riffles to further inhibit fish movement (Peterson et al. 2004; Price and Peterson 

2010). Either a low-water bridge at base flows or a dry riffle located at one end of the site 

provided an adequate fish barrier at a few sites and no block-off nets were installed.  

I performed snorkel surveys ~24 h prior to the electrofishing event. Three persons were 

typically used for the snorkel surveys; however, only two snorkelers were used in stream areas 

where wetted channel width was < 10 m. The snorkel surveys occurred ~24 h after marking day 

to allow the system to recover (Peterson and Cederholm 1984) for sites that overlapped with 

sampling described in Chapter 3 (see Chapter 3 methods). All crew members were trained in 

snorkeling protocols and participated in “practice” surveys with experienced snorkelers. 

Horizontal water clarity was ≥ 3.0 m at all sites that were snorkeled. The water clarity criterion is 

consistent with other stream-fish snorkeling studies (e.g., Schill and Griffith 1984) and also 

coincides with the minimum distance between crew members and a fish before identification. The 

opportunity to snorkel was somewhat limited, particularly in 2015, due to periodic heavy rainfall 

that resulted in extended periods of poor water clarity. We snorkeled areas ≥ 0.2-m deep in a slow 

upstream direction while avoiding sudden movements and carefully inspected areas of structure 

(e.g., searched for fish under logs and between boulders). Each snorkeler maintained a designated 

lane and stayed approximately in line laterally with other crew members. In general, snorkeling 

lanes with higher amounts of structure were narrower and snorkeling lanes with mostly open 

water were wider. Snorkelers maintained communication with each other to minimize double 

counting of individual fish. For snorkel counts (i.e., abundance estimates), Micropterus estimated 

to be ≥ 80-mm TL and Lepomis and Rock Bass ≥ 50-mm TL were tallied on an underwater wrist 

cuff when they either passed or were passed by the snorkeler. We used fish silhouettes and rocks 

of known sizes to confirm the ability of crew members to recognize the fish-size cutoffs 
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underwater. All fish sizes were considered for species detection, where snorkelers noted the 

presence of a species on their wrist cuff. Redhorses (Moxostoma spp.) were only considered at the 

genus level because species are difficult to distinguish underwater. Similarly, snorkelers did not 

differentiate between Largemouth Bass Micropterus salmoides and Spotted Bass Micropterus 

punctatus because confident identification underwater is challenging; however, electrofishing 

data suggested that the vast majority of these individuals at my sites were Largemouth Bass. 

I used a combination of data from calibration day in 2014-2015 (see Chapter 3 methods), 

the six additional sites sampled in 2014, and from marking day in 2015 (see Chapter 3 methods). 

Electrofishing protocols at the six additional sites in 2014 were identical to methods described in 

Chapter 3, where I performed two standardized electrofishing removal passes per riffle-run-pool 

sequence. I used data from the first electrofishing pass on calibration day in 2014 and from the 

first electrofishing pass on marking day in 2015 to evaluate species detection. I chose to perform 

the detection surveys in 2015 on marking day due to observed mortalities using tow-barge 

electrofishing for many of the fishes added to the species detection objective (e.g., cyprinids and 

suckers). Fish-size cutoffs for both abundance estimates and species detection were identical to 

those described for snorkeling. I only considered species detection at Spring Creek3 and Spring 

Creek4 (i.e., we did not perform snorkel counts for any species). 

I (1) compared single-pass tow-barge electrofishing and single-pass snorkeling based on 

both the number and identity of species detected, (2) evaluated if the number of stream fishes 

encountered increased using both snorkeling and electrofishing compared to each sampling 

method individually, (3) and assessed the effectiveness of a single snorkel pass for abundance 

estimates of common centrarchids. I derived electrofishing abundance estimates adjusted for 

variable detection using the model developed in Chapter 3, where the abundance estimates were 

used to evaluate the snorkel counts. Model-predicted electrofishing detection estimates were 

calculated using fish size and reach- and segment-scale environmental data with methods 
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described in Chapter 3. Standard error for model-predicted capture probabilities were estimated 

with the delta method (Oehlert 1992) using the package “msm” (Jackson 2011) in the statistical 

software R (version 3.2.2, R Core Development Team, 2014). Both the model-predicted detection 

estimates and standard errors were backtransformed using calculations described by Jørgensen 

and Pedersen (1998). I then calculated 95% confidence intervals for model-predicted detection as: 

q̂ ± zα/2(SE), where q̂ is the back transformed species- and site-specific detection estimate. The 

range of abundances from the electrofishing data were calculated using both the lower and upper 

the confidence intervals of the detection estimates as N̂ = c / q̂ where N̂ is the species- and site-

specific abundance estimate, c is the species- and site-specific catch, and q̂ corresponds to the 

lower and upper bounds of the back transformed species- and site-specific detection 95% 

confidence interval (Thompson and Seber 1994; Peterson and Paukert 2009).  

RESULTS 

Single-pass tow-barge electrofishing tended to detect more stream fish species than a single 

snorkel pass, although more species were sometimes encountered using both methods. 

Electrofishing detected more species than snorkeling at 17 of 23 sites (Table 1). Electrofishing 

typically resulted in the detection of one or two additional stream fishes but did result in the 

detection of three additional species at both Butler Creek and Caney Creek and four additional 

species at Buffalo Creek3. Snorkeling detected more species than electrofishing only at 

Evansville Creek2 (both White Crappie and Largemouth Bass). One additional species was 

encountered at four sites using both electrofishing and snorkeling. 

Species detection tendencies were not apparent based on morphology. There was no 

apparent tendency in species detection between trait groups A and B but rather among stream 

fishes of each group based on a visual examination. Electrofishing tended to more effectively 

detect less common centrarchids than snorkeling. Warmouth Lepomis gulosus was detected at six 
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additional sites using electrofishing and I also detected Orangespotted Sunfish at two sites (Table 

1). Conversely, I failed to detect Bluegill and Rock Bass using snorkeling at only one site where 

these species were detected using electrofishing. Both Smallmouth Bass and Longear Sunfish 

were either detected at a site using both electrofishing and snorkeling or not detected by either 

sampling method. Similar to centrarchids, I detected the less common White Sucker Catostomus 

commersoni more often using electrofishing than snorkeling among suckers (detected at five sites 

not detected with snorkeling). Redhorses and Northern Hogsucker Hypentelium nigricans were 

either detected using both electrofishing and snorkeling at a site or not detected by either 

sampling method.  

Fish counts for common centrarchids obtained from a single snorkel pass tended to 

underestimate stream-fish abundance (severely for most species in trait group A) when compared 

to tow-barge electrofishing abundance estimates adjusted for variable detection; however, 

snorkeling often provided informative abundance estimates for black basses (trait group C). 

Smallmouth Bass snorkel counts were contained in the electrofishing abundance range at around 

50 percent of the sites (10 of 21) and within 20 percent of the lower end of the range at two 

additional sites (Table 2). Additionally, Smallmouth Bass snorkel counts were less than 50 

percent of the lower end of the electrofishing abundance range at only 14-mile Creek1 and 14-

mile Creek2. Although less frequent than Smallmouth Bass, snorkel counts often provided 

informative abundance estimates for Largemouth Bass-Spotted Bass as they were either 

contained or within 20 percent of the electrofishing range at nine sites. The reliability of snorkel 

counts to provide informative abundance estimates was either inconsistent or extremely 

ineffective for other common centrarchids, which comprised one member of trait group A both 

members of trait group B. Snorkel counts were either contained or within 20 percent of the 

electrofishing range at five sites for Bluegill (trait group B), seven sites for Longear Sunfish (trait 

group A), and two sites for Redear Sunfish Lepomis microlophus (trait group B). Snorkel counts 
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were not within 50 percent of the lower end of the electrofishing abundance range at any sites and 

more typically greater than 90 percent lower for the other three members of trait group A (Green 

Sunfish, Warmouth, and Rock Bass). 

DISCUSSION 

A single snorkel pass tended to both detect fewer species than tow-barge electrofishing and often 

considerably underestimated abundance for common Ozark Highland centrarchids recruited to 

both sampling methods; however, employing both approaches sometimes increased the number of 

species encountered. Both Albanese et al. (2011) and Chamberland et al. (2014) found that 

snorkeling detected more warmwater stream fishes than electrofishing, although both of these 

studies used backpack electrofishing. Backpack electrofishing is considered much less efficient 

(i.e., lower detection in comparable conditions) than tow-barge electrofishing (Rabeni et al. 

2009). My results are similar to McManamay et al. (2014) who showed that using electrofishing 

in addition to snorkeling increased the number of species detected in warmwater streams, where 

the authors found that estimated species richness was 13% higher with a dual-method approach. 

The tendency of snorkel surveys to greatly underestimate stream fish-abundance is also consistent 

with other studies in warmwater streams. For example, Weaver et al. (2014) found that snorkeling 

detection across an assemblage of warmwater stream fishes was only ~0.15. Brewer and 

Ellersieck (2011) showed that age-0 Smallmouth Bass detection in warmwater streams was 

highly variable and as low as ~0.20. 

Species detection tendencies were evident among stream fishes and were related to fish 

densities rather than morphology. Snorkeling consistently detected stream fishes usually found in 

high abundance when present (e.g., Longear Sunfish, Redspot Chub Nocomis asper, and Northern 

Hogsucker) but often failed to detect species typically found in low abundance that were detected 

at sites using tow-barge electrofishing (e.g., White Sucker and Warmouth). Interestingly, 
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snorkeling was reliable for detecting more common centrarchids even when abundance was 

grossly underestimated by snorkel counts. For example, species detection was reasonable for 

Green Sunfish and effective for Rock Bass (18 of 23 sites and 22 of 23 sites when detected using 

electrofishing, respectively). 

The reliability of stream-fish abundance estimates from snorkeling were related to the 

morphological groups but, in general, could better be explained by other characteristics. 

Snorkeling grossly underestimated abundance for three of the four members of trait group A, 

which could be related to behavioral traits and habitat use. For example, the extremely low Rock 

Bass snorkel counts relative to electrofishing abundance estimates can be attributed to both their 

cryptic coloration (Casterlin and Reynolds 1979) and the tendency to occupy cover (Probst et al. 

1984; Grossman et al. 1995) and interstitial spaces (personal observations). Similarly, Green 

Sunfish tend to occupy structure (Werner and Hall 1977; Stuber et al. 1982) and submerged 

vegetation (personal observations), which likely contributed to their severe underestimation of 

abundance using snorkeling. Longear Sunfish are less cryptic than other members of trait group A 

and share characteristics with Bluegill (trait group B) and my findings do not suggest that a single 

snorkel pass could consistently be used to provide informative abundance estimates for either 

species. Longear Sunfish and Bluegill were typically observed in areas outside of structure during 

snorkeling; however, both species exhibit social behavior and grouping (Witt and Marzolf 1954; 

Colgan et al. 1979; Bietz 1981; Dugatkin and Wilson 1992), which can inhibit accurate snorkel 

counts (Heggenes et al. 1990; Hillman et al. 1992). Black basses (trait group C), particularly 

Smallmouth Bass, were the only species where snorkel counts often provided informative 

abundance estimates, which suggests that a single snorkel pass can be used to identify major 

changes in local populations or provide baseline estimates in Ozark streams. Trait group C was 

also the only group where snorkeling detection tendencies were similar among member species, 

thus suggesting an association with morphology. Black basses also exhibit behavioral traits that 
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promote higher snorkeling detection because they are non-cryptic and were typically found in 

groups of < 5 fish. The effectiveness of snorkel counts to estimate Largemouth Bass-Spotted Bass 

abundance was slightly less consistent than Smallmouth Bass, possibly due to different habitat 

use. Largemouth Bass, which were much more common than Spotted Bass at my sites, are 

associated with areas of slow-moving water with submerged vegetation (Durocher et al. 1984; 

Brown and Maceina 2002). A large section of Spavinaw Creek4, where Largemouth Bass 

abundance was severely underestimated using snorkeling, was a heavily vegetated backwater that 

was challenging to snorkel effectively (and prime snake habitat for an added bonus). Conversely, 

typical-sized Smallmouth Bass in Ozark Highland streams (i.e., 200-220 mm) tended to occupy 

open water areas of pool and runs (Probst et al. 1984; personal observations), which likely 

promoted accurate snorkel counts. Larger Smallmouth Bass were often found in structure but 

were much easier to discover than Green Sunfish and Rock Bass because they occupied crevices 

big enough to be accessed by snorkelers.  

My findings support that, for certain management objectives, single-pass snorkel counts 

can be an effective sampling method for black basses in “typical” Ozark Highland streams. 

Snorkel counts generally provided informative Smallmouth Bass abundance estimates; however, 

they did substantially underestimate abundance at some sites. In particular, Smallmouth Bass 

detection was low at sites located near the southern boundary of the Ozark Highlands ecoregion 

(e.g., 14-mile Creek). Sites near the ecotone resembled streams of the Boston Mountains 

ecoregion with different underlying lithology (Woods et al. 2005), which increased 

countershading and inaccessible interstitial spaces during snorkeling. Snorkeling offers a cost-

effective approach to identify major changes in site-specific black bass abundance. For example, 

snorkeling could provide rankings of low and high Smallmouth Bass abundance in “typical” 

Ozark Highland streams given good visibility. The desired precision and accuracy of snorkel 

counts is largely related to management objectives.  However, using snorkeling as a primary 
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sampling method limits the ability to detect and understand spatial and temporal trends in black 

bass populations, particularly if age structure is an objective. If snorkeling is deemed a desirable 

sampling method option, stream managers may consider implementing approaches that provide 

insight on variable detection to better understand and quantify uncertainty in snorkel counts. 

My study only considered one benthic stream fish for snorkeling species detection 

(Banded Sculpin) and none for snorkeling abundance estimates. Snorkeling has been shown to be 

an effective fish sampling method for some benthic species in warmwater streams (e.g., Ensign et 

al. 1995; Dorazio et al. 2005; Jordan et al. 2008). In fact, Hain et al. (2016) found that point 

counts were similar to capture-recapture abundance estimates for a benthic fish (O‘opu Nākea 

Awaous stamineus) in Hawaiian streams. I found Banded Sculpin snorkeling detection to be 

reasonable (detected at 5 of 8 sites when detected with electrofishing). However, more research is 

needed to determine the applicability of snorkel surveys for both Banded Sculpin and other 

benthic fishes in Ozark Highland streams (e.g., Etheostoma and Percina). 

Stream conditions vary considerably across space and time; therefore, both short-term 

studies (e.g., a single season) and studies conducted across a limited spatial extent (e.g., a few 

streams) may not accurately reflect potential variability in fish snorkeling detection. In addition to 

inaccurate species-specific abundance estimates, the use of snorkeling for multi-species studies 

without considering variable detection (e.g., Matthews and Marsh-Matthews 2006) may lead to 

false inferences about stream-fish composition. Because applications of removal and capture-

recapture estimation methods are limited for stream-fish snorkeling (see Introduction), a more 

intensive examination of alternative approaches by researchers in warmwater streams is needed. 

One option is to account for variable stream-fish snorkeling detection is dual sampling. For 

example, Weaver et al. (2014) calibrated snorkel counts using abundance estimates obtained from 

a prepositioned areal electrofisher. Spatially-replicated counts (e.g. Royle 2004) are an approach 

to account for variable detection without requiring either a second gear type or physical capture 
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that remains largely unexplored for warmwater stream-fish snorkeling. For example, Webster et 

al. (2008) developed a model to estimate juvenile Coho Salmon Oncorhynchus kisutch abundance 

using repeat snorkel counts at sites, where detection varied as a function of covariates. Sighting-

based sampling methods (e.g., Royle et al. 2004; Koneff et al. 2008) that account for variable 

detection using covariates also have applications to stream-fish snorkeling. 

Snorkeling has useful applications in warmwater streams as a fish sampling method to 

detect species presence and monitor populations for certain species. In addition to potentially 

improving estimates of species richness, a sampling protocol that uses both snorkeling and 

electrofishing results in increased flexibility. For example, managers could use snorkeling in non-

wadeable streams inaccessible with a boat electrofisher given that a subset of sites are sampled 

using both approaches to examine differences in detection. Unfortunately, the overall advantages 

and trade-offs of snorkeling to sample fishes in warmwater streams are poorly understood. My 

results suggest that snorkeling detection is highly variable among stream fishes and inappropriate 

for estimating the abundance of cryptic species. Given the inherent advantages of snorkeling as a 

stream-fish sampling method (e.g., minimal cost and intrusion), more research is needed to better 

understand factors contributing to variable detection and to better inform managers concerning 

the long-term applicability of snorkel surveys in warmwater streams.  
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Table 1. Comparison of the number of species detected using single-pass electrofishing and single-pass snorkeling for 19 stream fishes at 23 sites 

in the Ozark Highlands ecoregion (see Appendix 2 to interpret site codes). Columns 2-20 provide records of species detection at each site (see 

Appendix 1 to interpret two-letter species codes), where E indicates electrofishing, S indicates snorkeling, zero indicates detection, and one 

indicates non-detection. Species records with an NA correspond to sites sampled in 2014, where less species were considered. The last column 

provides both the number of species detected with each sampling method at each site and the total number of species detected at each site, where 

the number in the parentheses is the total number of species detected considering both sampling methods. 

 

 

 

Site 

 

BS 

E/S 

 

BG 

E/S 

 

CC 

E/S 

 

GS 

E/S 

 

LB 

E/S 

 

LS 

E/S 

 

MX 

E/S 

 

NH 

E/S 

 

NS 

E/S 

 

OS 

E/S 

 

RS 

E/S 

 

RB 

E/S 

 

RC 

E/S 

 

SB 

E/S 

 

SS 

E/S 

 

WA 

E/S 

 

WC 

E/S 

 

WS 

E/S 

Total  

detected 

E/S (Both) 

BAFO2 NA 0/0 NA 1/1 1/1 1/1 NA NA NA 0/0 0/0 1/1 NA 1/1 NA 0/0 0/0 NA     5/5 (6) 

BISU1  1/0 1/1 0/0 1/1 1/1 1/1 1/1 1/1 1/1 0/0 1/1 1/1 1/1 1/1 0/0 0/0 0/0 1/1 13/12 (13) 

BUFF1 NA 1/1 NA 1/1 1/1 1/1 NA NA NA 0/0 1/0 1/1 NA 1/1 NA 1/1 0/0 NA     8/7 (8) 

BUFF2 NA 1/1 NA 1/1 1/1 1/1 NA NA NA 1/0 0/1 1/1 NA 1/1 NA 1/0 0/0 NA     8/7 9) 

BUFF3 1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/0 0/0 0/0 1/1 1/1 1/1 0/0 1/0 1/0 1/0 15/11 (15) 

BUFF4 1/0 1/1 0/0 1/1 1/1 1/1 1/1 1/1 0/0 0/0 1/1 1/1 1/1 1/1 0/0 1/1 0/0 1/0 13/11 (13) 

BUTL1 1/0 1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1 0/0 1/1 1/1 1/1 1/1 0/0 1/0 0/0 1/0 15/12 (15) 

CANE1 1/1 1/1 0/0 1/1 1/1 1/1 1/1 1/1 0/0 0/0 1/0 1/1 1/1 1/1 1/0 1/1 0/0 1/0 14/11 (14) 

EVAN1 NA 1/1 NA 1/1 1/1 1/1 NA NA NA 0/0 0/0 1/1 NA 1/1 NA 0/0 0/0 NA      6/6 (6) 

EVAN2 NA 1/1 NA 1/1 0/1 1/1 NA NA NA 0/0 0/0 1/1 NA 1/1 NA 0/0 0/1 NA     5/7 (7) 

FIVE1 1/1 1/1 0/1 1/1 1/1 1/1 1/1 1/1 1/1 0/0 1/0 1/1 1/0 1/1 0/0 1/0 0/0 0/0 13/11 (14) 

FLIN2 NA 1/1 NA 1/1 1/1 1/1 NA NA NA 0/0 1/1 1/1 NA 1/1 NA 0/0 0/0 NA     7/7 (7) 
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FOUR1 NA 1/1 NA 1/1 1/1 1/1 NA NA NA 1/0 0/0 1/1 NA 1/1 NA 1/0 0/0 NA     8/6 (8) 

FOUR2 NA 1/1 NA 1/1 1/1 1/1 NA NA NA 0/0 1/0 1/1 NA 1/1 NA 0/0 0/0 NA     7/6 (7) 

SALI1 NA 1/1 NA 1/0 1/0 1/1 NA NA NA 0/0 0/0 1/1 NA 1/1 NA 0/0 0/0 NA     6/4 (6) 

SPAV1 NA 1/1 NA 1/1 1/1 1/1 NA NA NA 0/0 0/0 1/1 NA 1/1 NA 0/0 0/0 NA     6/6 (6) 

SPAV3 NA 1/1 NA 1/0 1/1 1/1 NA NA NA 0/0 0/0 1/1 NA 1/1 NA 0/0 0/0 NA     6/5 (6) 

SPAV4 NA 1/1 NA 1/0 1/1 1/1 NA NA NA 0/0 1/1 1/0 NA 1/1 NA 1/0 0/0 NA     8/6 (9) 

SPAV5 NA 1/1 NA 1/0 1/1 1/1 NA NA NA 0/0 1/0 1/1 NA 1/1 NA 0/0 0/0 NA     7/6 (8) 

SPRI1 NA 0/0 NA 1/1 0/0 0/0 NA NA NA 0/0 0/0 1/1 NA 1/1 NA 0/0 0/0 NA     3/3 (3) 

SPRI2 NA 1/0 NA 1/1 1/0 0/0 NA NA NA 0/0 0/0 1/1 NA 1/1 NA 0/0 0/0 NA     5/3 (5) 

SPRI3 1/1 1/1 1/1 1/1 1/1 0/0 1/1 1/1 0/0 0/0 0/0 1/1 1/1 1/1 0/0 1/1 0/0 1/0 12/11 (12) 

SPRI4 1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1 0/0 0/0 0/0 1/1 1/1 1/1 0/0 1/0 0/0 1/0 13/11 (13) 
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Table 2.  Comparison of snorkel counts and tow-barge electrofishing catch data adjusted for detection for 9 stream fishes at 21 sites in the Ozark 

Highlands ecoregion (see Appendix 2 to interpret site codes), where data for Largemouth Bass and Spotted Bass were combined. Columns 2-8 

provide snorkel counts and a range of abundance estimates at each site, where E indicates electrofishing and S indicates snorkeling. The range of 

abundance estimates were derived from the electrofishing detection model in Chapter 3 using 95% confidence intervals of estimated detection (see 

Methods for details).  

 

 

 

Site 

 

Bluegill 

E/S 

Green 

Sunfish 

E/S 

Largemouth- 

Spotted Bass 

E/S 

Longear 

Sunfish 

E/S 

Redear 

Sunfish 

E/S 

 

Rock Bass 

E/S 

Smallmouth  

Bass 

E/S 

 

Warmouth 

E/S 

BAFO2 (0)/0 (15-26)/1 (99-169)/59 (371-661)/182 (0)/0 (81-146)/3 (124-216)/73 (0)/0 

BISU1  (30-71)/130 (97-187)/44 (23-48)/42 (976-2048)/819 (16-29)/17 (112-231)/14 (106-242)/138 (0)/0 

BUFF1 (146-212)/25 (242-354)/3 (21-32)/17 (398-589)/121 (2-3)/0 (70-108)/1 (176-250)/139 (67-93)/6 

BUFF2 (186-296)/149 (182-291)/5 (22-31)/6 (538-883)/374 (0)/1 (100-167)/11 (356-601)/192 (79-122)/0 

BUFF3 (54-120)/30 (283-617)/7 (3-7)/2 (57-122)/26 (0)/0 (71-165)/1 (84-207)/86 (3-6)/0 

BUFF4 (289-502)/125 (165-285)/7 (176-319)/69 (482-841)/231 (15-26)/6 (45-83)/7 (103-206)/59 (223-361)/8 

BUTL1 (273-431)/207 (378-573)/15 (16-24)/17 (596-917)/597 (8-12)/1 (154-235)/6 (185-288)/244 (6-9)/0 

CANE1 (315-553)/140 (259-441)/11 (140-255)/41 (889-1641)/424 (5-9)/0 (8-15)/1 (16-28)/18 (56-95)/8 

EVAN1 (22-35)/27 (104-179)/2 (3-4)/5 (749-1201)/344 (0)/0 (77-147)/7 (87-162)/66 (0)/0 

EVAN2 (16-29)/81 (122-213)/2 (0)/10 (428-720)/500 (100-100)/0 (29-56)/18 (126-234)/115 (0)/0 

FIVE1 (263-491)/192 (176-324)/3 (9-17)/26 (197-354)/264 (3-6)/0 (91-172)/4 (47-91)/72 (4-6)/0 

FLIN2 (10-15)/4 (41-62)/1 (11-17)/9 (1903-2956)/686 (3-5)/2 (794-1217)/184 (206-319)/208 (0)/0 

FOUR1 (193-399)/83 (362-764)/22 (50-107)/47 (2062-4363)/536 (0)/0 (60-122)/1 (165-347)/59 (9-19)/0 

FOUR2 (34-57)/4 (262-439)/5 (32-51)/14 (665-1154)/142 (2-4)/0 (11-19)/17 (152-219)/66 (0)/0 

SALI1 (30-51)/16 (37-66)/0 (6-10)/0 (271-491)/216 (0)/0 (297-539)/23 (119-202)/156 (0)/0 
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SPAV1 (19-33)/12 (21-37)/4 (8-14)/12 (126-239)/416 (0)/0 (479-846)/94 (288-555)/205 (0)/0 

SPAV3 (49-75)/16 (56-88)/0 (7-11)/3 (240-375)/278 (0)0 (576-908)/114 (255-411)/167 (0)/0 

SPAV4 (1991-5868)/603 (160-457)/0 (506-1484)/102 (415-1245)/153 (879-2616)/143 (117-346)/0 (35-112)/36 (83-233)/0 

SPAV5 (126-271)/54 (37-77)/0 (7-15)/7 (162-366)/127 (6-13)/0 (128-292)/9 (117-302)/196 (0)/0 

SPRI1 (0)/0 (13-24)/1 (0)/0 (0)/0 (0)/0 (182-352)/53 (229-445)/247 (0)/0 

SPRI2 (6-10)/0 (22-37)/4 (4-7)/0 (0)/0 (0)/0 (425-776)/11 (168-291)/146 (0)/0 
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APPENDICES 

Appendix 1.  Sites and site code for 23 stream reaches in 19 streams of the Ozark Highlands 

ecoregion sampled to evaluate tow-barge electrofishing and snorkeling for species detection and 

evaluate snorkeling to provide reliable stream fish abundance estimates (See Figure 1 in Chapter 

3 for site locations). 

 
 

  

Site code Site 

BAFO2 Baron Fork2 

BISU1 Big Sugar Creek 

BUFF1 Buffalo Creek1 

BUFF2 Buffalo Creek2 

BUFF3 Buffalo Creek3 

BUFF4 Buffalo Creek4 

BUTL1 Butler Creek 

CANE1 Caney Creek 

EVAN1 Evansville Creek1 

EVAN2 Evansville Creek2 

FIVE1 Five-mile Creek 

FLIN2 Flint Creek2 

FOUR1 14-mile Creek1 

FOUR2 14-mile Creek2 

SALI1 Saline Creek1 

SPAV1 Spavinaw Creek1 

SPAV3 Spavinaw Creek3 

SPAV4 Spavinaw Creek4 

SPAV5 Spavinaw Creek5 

SPRI1 Spring Creek1 

SPRI2 Spring Creek2 

SPRI3 Spring Creek3 

SPRI4 Spring Creek4 



116 
 

Appendix 2.  Species code, common name, and Latin name of 19 stream fishes of the Ozark 

Highlands ecoregion considered for an evaluation of tow-barge electrofishing and snorkeling for 

species detection and an evaluation of snorkeling to provide reliable stream fish abundance 

estimates. Species with no asterisk were considered for both stream fish abundance and detection. 

Species with a single asterisk were considered only for species detection in both 2014 and 2015. 

Species with a double asterisk were considered only for species detection in 2015 only.  

Species code Common name Latin name Trait group 

MX **Redhorses  Moxostoma spp. D 

MH **Northern Hogsucker Hypentelium nigricans  D 

SS **Spotted Sucker Minytrema melanops   D 

WS **White Sucker Catostomus commersoni   D 

BB Largemouth Bass  Micropterus salmoides C 

BB Spotted Bass Micropterus punctulatus   C 

SB Smallmouth Bass  Micropterus dolomieu   C 

BG Bluegill Lepomis macrochirus  B 

GF Green Sunfish Lepomis cyanellus  A 

LS Longear Sunfish Lepomis megalotis   A 

OS *Orangespotted Sunfish Lepomis humilis  NA 

RS Redear Sunfish Lepomis microlophus   B 

RB Rock Bass Ambloplites rupestris   A 

WH Warmouth Lepomis gulosus    A 

WC *White Crappie Pomoxis annularis   NA 

RC **Redspot Chub Nocomis asper   NA 

CC **Creek Chub Semotilus atromaculatus  NA 

NS **Northern Studfish Fundulus catenatus  NA 

BS **Banded Sculpin Cottus carolinae NA 
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CHAPTER V 
 

USING A MULTINOMIAL N-MIXTURE MODEL TO IMPROVE THE APPLICABILITY OF 

ELECTROFISHING FOR MONITORING STREAM-DWELLING SMALLMOUTH BASS  

ABSTRACT 

Despite major advancements in accounting for variable detection when surveying animal 

populations, contemporary approaches remain largely ignored by stream-fish scientists and catch-

per-unit-effort remains the most commonly used metric. One notable advancement for addressing 

the challenges of variable detection are multinomial N-mixture models; however, the applicability 

of these models for stream-fish sampling has not been adequately evaluated. Multinomial N-

mixture models use a flexible hierarchical framework to model detection across sites as a function 

of covariates. My objective was to examine the use of multinomial N-mixture models to improve 

the applicability of electrofishing for estimating Smallmouth Bass Micropterus dolomieu 

abundance. I sampled Smallmouth Bass populations using tow-barge electrofishing across a range 

of environmental conditions in Ozark Highland streams. The covariates water clarity, wetted 

channel width, water depth and effort explained variation in Smallmouth Bass electrofishing 

detection. Smallmouth Bass abundance estimates derived from the top model consistently agreed 

with baseline snorkel counts. Additionally, confidence intervals obtained from the final model 

using an empirical Bayes estimator were consistently more precise than unbiased Petersen 

capture-recapture estimates. Simulations that evaluated the performance of multinomial N-

mixture models supported their use for monitoring and managing stream-dwelling Smallmouth 

Bass populations. I demonstrated how the application of a contemporary population estimation
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can be a viable alternative to CPUE but while using similar sampling methods. In addition to 

improving the reliability of population estimates, hierarchical models allow for absolute 

abundance estimates to be calculated across a range of conditions, thus promoting the 

establishment of species-environment relationships and advancements in stream-fish ecology. 

INTRODUCTION 

Variability in detection confounds perceived patterns of fish populations across the landscape 

(Peterson and Paukert 2009). The failure to account for variable detection can hinder effective 

sportfish management (Price and Peterson 2010) and rare species conservation (Dorazio et al. 

2005). Stream-fish populations present unique challenges for addressing variable detection due to 

highly dynamic environments (Jackson et al. 2001; Poff and Zimmerman 2010). Standardizing 

environmental conditions (e.g., sampling only at base flows) to maintain constant stream fish 

detection among surveys is not only challenging, but often impractical for meeting management 

and conservation objectives. For example, surveying across a wide range of environmental 

conditions is essential for establishing stream fish-environment relationships that set the 

foundation of environmental-flow standards (Gwinn et al. 2016).  

 Examples of how variable detection can influence stream-fish management and 

conservation decisions are pervasive in the fisheries literature. Sammons (2014) showed that 

seasonal variation in electrofishing detection influenced abundance estimates for lotic centrachid 

sportfishes. Suspected decline of the Brindle Shiner Notropis bifrenatus in northeastern streams 

of the U.S. was attributed to varying detection between sampling gears across environmental 

conditions rather than local extirpations (Pregler et al. 2015). An additional challenge for reliable 

stream-fish sampling data is the considerable variability in species traits (e.g., morphology, 

behavior, and mobility) that results in different tendencies in detection among streams fishes 

(Rabeni et al. 2009; Peterson and Paukert 2009). Variable detection among fishes confounds 
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assessments of instream habitat restoration to improve species diversity (Price and Peterson 2010) 

and hinders accurate interpretations of assemblage-level stream-fish monitoring efforts 

(McManamay et al. 2014). In fact, the validity of Biotic Integrity Indices (e.g., IBI) that use 

certain stream fishes as surrogates for water quality have come under scrutiny for ignoring 

variable detection (e.g., Seegert 2000; Price and Peterson 2010). More recently, Gwinn et al. 

(2016) illustrated how not accounting for variable detection hinders the establishment of 

meaningful environmental flow standards for stream fishes. Improved and highly flexible 

approaches to address variable detection are increasingly common in the ecological literature 

(e.g., Williams et al. 2002; MacKenzie et al. 2005; Royle et al. 2013). Despite the numerous 

options available to the stream fish scientist, the lack of widespread implementation of these 

contemporary approaches to account for variable detection has impeded progress in both ecology 

and management (Brewer and Orth 2015; Gwinn et al. 2016).  

The Smallmouth Bass Micropterus dolomieu, a stream fish of recreational and ecological 

value (Brewer and Orth 2015), provides an applied example of how the lack of progressive 

monitoring approaches has prevented improved insight into life-history characteristics and 

demographics and the development of long-term management strategies. Although electrofishing 

is the most common, and often most practical, stream-fish sampling method (Rabeni et al. 2009), 

its use for studying and monitoring local Smallmouth Bass populations is challenging. Long-

standing issues using electrofishing to monitor Smallmouth Bass populations are prevalent in the 

grey literature. For example, Lyons and Kanehl (1993) conducted extensive Smallmouth Bass 

surveys using electrofishing and determined that both removal (e.g., Zippin 1958; Carle and Strub 

1978) and capture-recapture (e.g., Manly and Seber 1973) estimation methods were generally 

inappropriate for estimating the abundance of stream-dwelling populations because they fail to 

meet model assumptions. In particular, Lyons and Kanehl (1993) demonstrated that highly 

variable detection among removal passes and low Smallmouth Bass capture rates (i.e., low 
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detection) resulted in biased abundance estimates, inflated variance, and wasted resources (i.e., 

time and money spent on surveying that does not result in usable data). Low detection when 

sampling Smallmouth Bass in streams using electrofishing is also supported by peer-reviewed 

studies (e.g., Heimbuch et al. 1997; Dauwalter and Fisher 2007; Hense et al. 2010). The failure to 

successfully apply electrofishing to population estimation methods that account for variable 

detection has led to a reliance on catch-per-unit-effort (CPUE) for ecological information and 

management decisions pertaining to Smallmouth Bass (Brewer and Orth 2015). For example, a 

review of the biology and ecology of genetically-distinct Smallmouth Bass stream populations 

(Brewer and Long 2015) relied primarily on data collected via CPUE electrofishing. In addition 

to providing only an indirect measure of abundance, CPUE assumes constant detection across 

time and space, which is often unrealistic in stream environments (Price and Peterson 2010; 

Gwinn et al. 2016). Thus, the usefulness of CPUE data for long-term datasets or large study areas 

is limited. An examination of agency reports shows how variable electrofishing detection 

confounds the results of statewide long-term monitoring efforts of lotic Smallmouth Bass 

populations using CPUE (e.g., Meneau 2010). It is surprising that contemporary approaches have 

rarely been applied to improve the applicability of electrofishing for population estimation 

methods given the importance of Smallmouth Bass. Although Dauwalter and Fisher (2007) 

developed an electrofishing detection model that provided absolute abundance estimates of 

stream-dwelling Smallmouth Bass populations, the authors surveyed only two streams located in 

different ecoregions. Additionally, Dauwalter and Fisher (2007) used channel units (e.g., 

individual pools, backwaters, etc.) to define the 28 “sites”, which not only provided a misleading 

sample size, but was also too fine a spatial scale to be practical for comparable estimates of 

Smallmouth Bass abundance among distinct populations.  

One notable advancement in addressing the challenges of variable detection when 

sampling animal populations is a class of models known as multinomial N-mixture (Royle 2004; 
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Dorazio et al. 2005; Royle and Dorazio 2006). Multinomial N-mixture models use a flexible 

hierarchical framework to independently estimate both abundance and detection probability of 

spatially-distinct subpopulations as a function of covariates, where detection can vary among both 

sites and surveys. In contrast to similar models that predict species occupancy by reducing counts 

to binary detection-nondetection data (see MacKenzie et al. 2005), multinomial N-mixture 

models provide inference on both species occurrence and abundance (Royle and Dorazio 2006). 

Thus, multinomial N-mixture models are applicable for common species (i.e., counts are typically 

> 0 across sites), where the primary focus is typically to estimate variation in local abundance. 

Multinomial N-mixture models also accommodate temporally-replicated counts at sites, which 

makes them applicable for common fish population estimation methods such as removal and 

capture-recapture (Royle 2004). The hierarchical structure of multinomial N-mixture models 

enables an empirical Bayes approach (Carlin and Louis 2000) to estimate abundance across 

spatially-distinct sites. Empirical Bayes estimates, unlike removal and capture-recapture 

approaches that calculate abundance at each site separately, provide site-specific abundance 

estimates that are a reflection of data collected across all sites (i.e., the sites “borrow” 

information; Dorazio et al. 2005; Royle and Dorazio 2006). The dependency among datasets in 

the hierarchical multinomial N-mixture model framework not only improves the precision of 

confidence intervals but also reduces bias and improves the estimability of abundance at sites 

with sparse or insufficient data (e.g., low detection or sample size) given adequate data are 

available at some sites; therefore, all data are informative (i.e., no wasted resources).  

There are multiple approaches that can be used to increase confidence in the reliability of 

abundance estimates. One option is to provide a comparison using results from another sampling 

method associated with high detection probability. Snorkel counts can provide informative 

minimum population estimates (i.e., a reliable baseline) to compare with abundance estimates 

obtained via other methods given adequate water clarity in Ozark Highland streams (see Chapter 
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4). Another option for assessing the reliability of abundance estimates is to compare the results to 

an estimation method with known reliability. For example, the traditional Petersen capture-

recapture estimator (hereafter referred to as Petersen capture-recapture) remains a viable 

approach for estimating stream-fish abundance given that assumptions are met for unbiased 

estimates (e.g., adequate sample size and recapture rate and minimal individual detection 

variability; Lockwood and Schneider 2000; Rosenberger and Dunham 2005). 

Despite the applicability of multinomial N-mixture models to common fish estimation 

methods, their use for stream fishes has been relatively rare in the scientific literature. Coggins et 

al. (2011), Yard et al. (2011), and Dodrill et al. (2015) used multinomial N-mixture models for 

boat electrofishing surveys in the Colorado River basin. Korman et al. (2016) demonstrated the 

advantages of multinomial N-mixture models for multiple gear sampling designs. I am not aware 

of any capture-recapture applications for electrofishing in wadeable warmwater streams (but see 

Dorazio et al. 2005 for a snorkeling removal example) or for estimating Smallmouth Bass 

populations. Accordingly, my objective was to use a multinomial N-mixture capture-recapture 

model (hereafter referred to as multinomial capture-recapture model) to improve the applicability 

of electrofishing for estimating the abundance of Smallmouth Bass > age 1 in wadeable streams. 

Although Smallmouth Bass were included in the multi-species detection model in Chapter 3, it 

was also important to use a single-species approach to examine variation in electrofishing 

detection given their value as a sportfish. Site-specific detection probability using the generalized 

linear mixed model represents a trade-off with estimates across all species (see Chapter 3 

methods for details) and certain management objectives may involve targeting only Smallmouth 

Bass during sampling. I performed tow-barge electrofishing surveys across a range of 

environmental conditions to identify variables that influenced variation in Smallmouth Bass 

detection. As a basis of comparison with my abundance estimates derived from the multinomial 

capture-recapture model, I also conducted snorkel surveys at a subset of sites where water clarity 
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was ideal. Snorkeling is an appropriate method to survey Smallmouth Bass in clear, warmwater 

streams (Brewer and Ellersieck 2011; Chapter 4). Lastly, I compared Smallmouth Bass 

abundance estimates derived from the multinomial capture-recapture model to Petersen capture-

recapture when assumptions were met for unbiased estimates. I used two approaches for 

comparisons because a wide range of environmental conditions and fish densities across the study 

site was expected.  

METHODS 

Study sites. - I sampled > age-1 Smallmouth Bass in 25 stream reaches that each comprised three 

to five riffle-run-pool sequences to characterize habitat (referred to hereafter as sites) in the Ozark 

Highlands ecoregion of northeast Oklahoma and southwest Missouri (Figure 1). Among the sites, 

the mean ± SD water temperature was 21.5± 2.7 ºC and the mean ± SD ambient water 

conductivity was 276 ± 68 µS/cm. The sites represented spatially-distinct subpopulations of 

Smallmouth Bass that were demographically closed during the sample event with mixing of 

individuals permitted over longer time periods, which is consistent with assumptions of 

multinomial N-mixture models (Royle 2004; Dorazio et al. 2005).  

Environmental measurements. - At each site, I measured environmental variables hypothesized to 

influence electrofishing detection of Smallmouth Bass. Wetted width (1.0 m) and thalweg depth 

(0.1 m) were measured at 50-m transects to calculate mean wetted channel width and mean depth. 

Stream discharge (0.01 m3/s) was measured in a homogenous area of a run using the velocity-

area method (Gordon et al. 2004), where I reported the average of three replicates. Water clarity 

(0.5 m) was measured as the horizontal distance an underwater observer could see a fish 

silhouette. I designed my fish silhouette to mimic the color, markings, and typical size (~200 mm) 

of Smallmouth Bass in my study streams (Dunham et al. 2009). I also estimated the total 

sampling area at each site by subtracting the summed length of riffles from total reach length and 
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multiplying by the mean wetted channel width. Environmental measurements are reported as 

mean ± SD. 

Fish sampling. –I installed two sets of block-off nets at both the upstream and downstream ends 

of each site to ensure a closed system during the sampling event. Block-off nets were 

preferentially placed at shallow riffles further inhibit fish movement (Peterson et al. 2004; Price 

and Peterson 2010). Either a low-water bridge at low flow or a dry riffle located at one end of the 

site provided an adequate fish barrier at a few sites and no block-off nets were installed.  

I sampled Smallmouth Bass subpopulations over a three-day period. On day one 

(hereafter referred to as capture day), I used a tow-barge electrofisher (Midwest Lake 

Management, Polo, Missouri) to establish marked populations of Smallmouth Bass. All 

Smallmouth Bass were measured and fish < 80 mm TL were excluded from the study. My 

minimum fish size excluded most age-0 Smallmouth Bass and was also based on both observed 

mortalities and lack of recapture via electrofishing of Smallmouth Bass < 80 mm TL. In addition 

to size, age-0 Smallmouth Bass were easily recognizable due to prominent tri-colored tails. I used 

pulsed direct current (DC), 60 Hz, and a 25% duty cycle for electrofishing. Voltage was adjusted 

based on ambient water conductivity (ranging from 300-400 V) to maintain a target power that 

maintained a consistent electric field across levels of ambient water conductivity while 

minimizing electrofishing-induced injuries as described by Miranda (2009). The electrofishing 

crew consisted of three people: one tow-barge operator (myself) armed with a hand net and two 

persons equipped with dip nets each operating one of the two anodes. I electrofished areas ≥ 0.2 

m deep in an upstream direction with a zigzag pattern. The depth limitation of the tow-barge 

electrofisher excluded most riffle areas, but use of this habitat by Smallmouth Bass > 80 mm TL 

is very uncommon (Brewer 2013; unpublished snorkel data from the Oklahoma Department of 

Wildlife Conservation). Care was taken to thoroughly electrofish areas with structure (e.g., large 

wood, rootwads, and boulders). A minimum of two electrofishing passes were performed per 
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riffle-run-pool sequence, although additional passes were performed at some sites to increase the 

marked population of Smallmouth Bass for Petersen capture-recapture estimates. Electrofishing 

time was recorded at each site to estimate variation in effort both among sites and between 

capture and recapture events, where electrofishing effort was calculated as electrofishing time 

divided by sampling area. I marked captured Smallmouth Bass with an upper caudal fin clip. 

Marked Smallmouth Bass were released throughout the site and allowed to recover and 

redistribute for ~24 h prior to snorkeling and ~ 48 h prior to the electrofishing recapture event to 

allow the system to fully recover (Peterson and Cederholm 1984). Smallmouth Bass injured 

during the sampling episode or that showed signs of excessive stress were released outside of the 

blocked-off area. I inspected the block-off nets and the area between them periodically for 

trapped or dead Smallmouth Bass. 

I conducted snorkel counts of Smallmouth Bass subpopulations on day two of the 

sampling event at 13 sites to provide a coarse estimate of abundance, where the protocol was 

identical to methods described in Chapter 4. Snorkel surveys were only performed when 

horizontal water clarity was ≥ 3.0. I also did not use snorkeling data at sites located at the 

southern ecoregion boundary (Evansville Creek and 14-mile Creek) of the Ozark Highlands due 

to evidence of low detection (see Chapter 4). I inspected the blocked-off area for dead 

Smallmouth Bass prior to the snorkel surveys and mortalities were removed from the marked 

population. Smallmouth Bass estimated to be ≥ 80-mm TL with no prominent tri-colored tail 

were recorded on an underwater wrist cuff when they either passed or were passed by the 

snorkeler. I also instructed snorkelers to collect dead Smallmouth Bass for an additional method 

to estimate delayed mortality. 

The electrofishing recapture event for the Smallmouth Bass subpopulations were 

conducted on day three of the sample. The electrofishing procedure was identical to capture day, 

with the exception that only two passes were performed for each riffle-run-pool sequence at each 
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site. Prior to sampling, I again inspected the blocked-off area for dead Smallmouth Bass and 

mortalities were removed from the marked population. I recorded both marked and unmarked 

Smallmouth Bass ≥ 80 mm TL. Fish counts are reported as mean ± SD. 

Subpopulation estimates. - I developed multinomial capture-recapture models using the package 

“unmarked” (Fiske and Chandler 2011) in the statistical software R (version 3.2.2, R Core 

Development Team, 2014). Specifically, I used the function “gmultmix” with a single primary 

period, which fits a generalized form of the multinomial N-mixture model described by Royle 

(2004) and assumes a closed system during the capture-recapture event at each site. In the 

multinomial N-mixture model framework, capture-recapture data collected at a set of sites can be 

used to model variation in both abundance and detection probability, where site-specific 

abundance N is treated as a latent variable with a discrete distribution (Chandler 2015). I specified 

a negative-binomial error distribution, which introduces a dispersion parameter to the model, due 

to evidence of overdispersion in the dataset. Overdispersed subpopulations of animals are a 

common phenomenon because spatial randomness is uncommon in distributions (Dorazio et al. 

2005). Following Chandler (2015), the multinomial capture-recapture model is written as: 

(1)      Ni ~ Negative binomial(θ, )                                                 

          Yi|Ni ~ Multinomial{Ni, π(p)}, 

where θ is the overdispersion parameter,  is the estimated number of individuals at each site i, Yi 

is a vector of counts at each site representing the three possible capture histories for the capture 

and recapture events H  (11, 10, 01), and π(p) is a function that converts detection probability p 

to multinomial cell probabilities as: 

(2)     π (p) = {p2, p(1 - p), (1 - p)p},                                                

where the probability of not capturing an individual is H = 00 is (1 – p)2.. Site-specific 

Smallmouth Bass abundance was modeled using a log-link function as: 

(3)     log(i) = 0.                                                               
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I did not include covariates to explain variation in abundance because the objective was solely to 

model Smallmouth Bass abundance (i.e., my focus was on “how many fish were there” rather 

than “why”); however, their inclusion is straight forward (see Fiske and Chandler 2011; Chandler 

2015). Detection probability was modeled using a logit-link function as 

(4)     logit(pij) = 0 + 1vij + 2vij + nvij,                                             

where vij is a detection covariate corresponding to survey j at site i.  

I fitted a candidate set of 12 multinomial capture-recapture models with varying 

complexity (Table 1). An effort detection covariate was included in every model to account for 

variation in electrofishing intensity among surveys. I used the detection covariates mean wetted 

channel width, mean water depth, discharge, and water clarity in the candidate models to 

characterize environmental variation in survey conditions, where discharge was natural-log 

transformed due to a right-skewed distribution. An examination correlations among detection 

covariates indicated that the Pearson product-moment correlation coefficient (r) was > |0.50| 

between discharge and water depth (r = 0.51), thus these covariates did not co-occur in any 

candidate models. Water temperature was not included in the candidate models because it did not 

vary considerably among sites (see study area). The candidate models were ranked using Akaike 

information criterion corrected for small sample size (AICc; Burnham and Anderson 2002), 

where site was the sample size. The number of sites represents the most conservative estimate of 

sample size for multinomial N-mixture models. The number of residuals in the model corresponds 

to the number of vector counts across sites (here n = 75) and is a more accurate, yet less 

conservative, estimate of sample size. I used AICc to compare the top-ranked model to a model 

that also included a conductivity detection covariate to assess if water conductivity influenced 

Smallmouth Bass electrofishing detection despite standardizing power. Fish size is also an 

important consideration when estimating electrofishing detection (Peterson and Paukert 2009; 

Price and Peterson 2010); however, I did not anticipate it would influence our abundance 
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estimates because mean Smallmouth Bass TL did not vary considerably among sites (200 ± 28 

mm). To evaluate this expectation, I used AICc to compare the top-ranked model to a model that 

also included a fish size detection covariate, where I used mean Smallmouth Bass TL to represent 

each site. Lastly, I used AICc to compare the top-ranked model to a model that also included a 

categorical survey event detection covariate (i.e., capture and recapture) to confirm that included 

covariates adequately accounted for variation in detection between capture and recapture events. 

All detection covariates were scaled such that each had a mean of zero and a standard deviation 

of one to both promote model convergence and simplify interpretation of coefficients. 

I assessed fit of the top model using both a visual examination of residuals and a 

calculation of c-hat (an estimate of overdispersion where c-hat > 1 suggests overdispersion). I 

used a Chi-squared test as described by MacKenzie and Bailey (2004) with 10,000 bootstraps for 

the calculation of c-hat. I also calculated 95% confidence intervals for coefficients in the top-

ranked model using a profile likelihood method (see Fiske and Chandler 2011). 

I calculated site-specific detection and abundance estimates for the Smallmouth Bass 

subpopulations from the estimation methods. I derived cumulative detection probability and 

abundance at each site using the top-ranked multinomial capture-recapture model. Cumulative 

detection probability was calculated as the sum of the multinomial cell probabilities at each site 

and is interpreted as the proportion of available individuals detected across the capture and 

recapture events. Empirical Bayes calculations were used for both multinomial capture-recapture 

abundance estimates and 95% confidence intervals. I calculated Petersen capture-recapture 

estimates with the Chapman (1954) bias correction (hereafter referred to as Petersen capture-

recapture) using the library “Rcapture” (Baillargeon and Rivest 2007) in the statistical software R 

as 

(5)     N̂ = {(M + 1) (C + 1) / (R + 1)} – 1,                                                 

where N̂ is the population estimate, M is the number of Smallmouth Bass marked during the 

capture event, C is the number of Smallmouth Bass captured during the recapture event, and R is 
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the number of recaptured Smallmouth Bass that were marked. I only calculated Petersen capture-

recapture at sites where assumptions were met for unbiased population estimates outlined by 

Lyons and Kanehl (1993): (1) At least 20 fish were marked, (2) At least 5 fish were recaptured, 

and (3) At least 15% of the number of fish captured during the recapture event were marked. We 

calculated 95% confidence intervals for site-specific Petersen capture-recapture estimates as N̂ ± 

zα/2(SE), where we used a bias-corrected SE (Seber 1970). I compared estimates of Smallmouth 

Bass abundance derived from empirical Bayes calculations to both snorkel counts and Petersen 

capture-recapture estimates.  

I further assessed the utility of snorkeling and Petersen estimates to evaluate Smallmouth 

Bass abundance estimates by comparing them to removal estimates. My dataset also allowed for 

two-pass electrofishing removal estimates to be calculated (Appendix 1). Reliable two-pass 

removal estimates depend on declining capture between passes, reasonable “depletion” of 

individuals, and higher detection relative to capture-recapture (Lockwood and Schneider 2000). 

My data and field observations suggested these essential two-pass removal assumptions were 

seldom (if ever) met; therefore, I expected that Smallmouth Bass abundance estimates using two-

pass removal, even in the multinomial N-mixture model framework, would tend to overestimate 

electrofishing detection (thus underestimating abundance). I developed a multinomial two-pass 

removal N-mixture model (hereafter referred to as multinomial removal model) as described for 

the multinomial capture-recapture model (Appendix 2) and compared the snorkel counts and 

Petersen estimates to Smallmouth Bass abundance estimates derived from the top-ranked model. 

I also performed simulations using various levels of detection and abundance to assess 

the robustness of the multinomial capture-recapture model. I performed simulations under 18 

scenarios (1000 runs per scenario) with combinations of four levels of mean abundance, detection 

probability and standard deviation of detection probability (i.e., unexplained variation), and both 

25 and 50 sites (Table 2). I chose the scenarios to reflect the number of sites used in the model 
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and Smallmouth Bass abundance estimates typical to south-central streams. I used a level of 

average detection and standard error similar to estimates from the top-ranked multinomial 

capture-recapture model, as well as simulations with lower levels of detection and higher 

unexplained variation in detection. I also doubled the number of sites under some scenarios, 

particularly those with very low detection or very high unexplained heterogeneity, to assess how 

increasing sample size affected multinomial capture-recapture model performance. The 

multinomial capture-recapture model was assessed based on bias in estimated abundance and root 

mean square error (RMSE). I also calculated a coefficient of variation (CV) for RMSE as 

(RMSE/mean estimated abundance)*100 to improve the interpretation of precision for varying 

levels of abundance. 

RESULTS 

Environmental measurements. - I sampled Smallmouth Bass subpopulations across a range of 

environmental conditions (Table 3). Mean wetted channel width varied among sites from 9-18 m 

(14 ± 3 m) and mean thalweg depth varied among sites from 0.5-1.1 m (0.8 ± 0.1 m). Discharge 

and water clarity varied the most among sites, ranging from 0.091-5.81 m3/s (1.50 ± 1.43 m3/s) 

and 1.5-7.0 m (3.5 ± 1.3 m), respectively. Electrofishing effort varied both among surveys, 

ranging from 0.013 -0.053 min/m2 (0.033 ± 0.011 min/m2), and between capture and recapture 

events (mean of 0.036 min/m2 and 0.030 min/m2, respectively). 

Fish sampling. – Monitoring of the study area provided evidence that I maintained a closed 

system during the surveys and that delayed mortality of Smallmouth Bass due to capture and 

handling was trivial. No Smallmouth Bass (living or dead) were found in the block-off nets or in 

the area between them. Only three dead marked Smallmouth Bass were found during routine 

inspections of the site (one fish at Buffalo Creek2 and two fish at 14 Mile Creek2).  
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 The number of marked Smallmouth Bass, the proportion of fish recaptured, and the 

number of fish encountered during snorkeling were highly variable among sites. The number of 

Smallmouth Bass marked at a site ranged from 8 fish at Caney Creek to 120 fish at 14 Mile 

Creek2 (39 ± 30 fish; Table 3). The proportion of Smallmouth Bass recaptured at a site ranged 

from 0.00 at Flint Creek1 to 0.57 at 14 Mile Creek2 (0.24 ± 0.15). Baseline population estimates 

of Smallmouth Bass obtained using snorkel counts ranged from 18 fish at Caney Creek to 247 

fish at Spring Creek1 (127 ± 75 fish). 

Subpopulation estimates. – A top-ranked multinomial capture-recapture model was evident and 

included the detection covariates electrofishing effort, water clarity, and a mean wetted channel 

width and mean water depth interaction (AICc = -7184.09; Table 1 and Table 4). There was no 

evidence that either water conductivity or mean fish size influenced Smallmouth Bass detection 

among sites when these covariates were added to the top-ranked model (AICc = -7179.95 and -

7179.35, respectively). A comparison of the top-ranked model to a model that also included a 

categorical survey event detection covariate provided evidence that the detection covariates 

adequately explained variation in detection probability between capture and recapture events 

(AICc = -7180.41). Site-specific cumulative detection of Smallmouth Bass varied considerably 

from 0.23 at Big Sugar Creek to 0.84 at 14-mile Creek3 (0.45 ± 0.15; Table 3). Estimated 

detection probability at mean levels of covariates for a single survey was 0.25 ± 0.02 (Table 3). 

Smallmouth Bass detection increased with both increased electrofishing effort and increased 

water clarity (Table 4; Figure 2). The interaction term in the model indicated that the relationship 

between Smallmouth Bass detection and both wetted channel width and water depth varied at 

different levels of these covariates. To interpret the interaction term, I predicted Smallmouth Bass 

detection probability at various levels of mean wetted channel width and mean water depth using 

linear combinations of model coefficients. Detection decreased sharply as mean water depth 

increased in narrower surveying conditions; however, the magnitude of the relationship 
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diminished at higher levels of depth (Figure 3a). Conversely, there was only a slight negative 

relationship between detection and water depth in wider surveying conditions (Figure 3b). 

Similarly, detection increased with mean wetted channel width in shallower surveying conditions 

(Figure 3c), with virtually no relationship between detection and wetted width in deeper 

surveying conditions (Figure 3d). The interaction between mean water depth and mean wetted 

channel width on Smallmouth Bass detection probability indicated that the influence of each of 

the covariates was more pronounced at lower levels of the alternate covariate, there was no 

influence of wetted width in deep conditions, and detection (although low) no longer decreased 

considerably at high levels of width and depth (i.e., very wide and very deep). The estimate of c-

hat from the Chi-squared test (c-hat < 1) did not indicate overdispersion in the model. A plot of 

predicted versus fitted residuals (n = 75) also suggested adequate model fit (i.e., no evidence of 

heteroscedasticity).   

A comparison of the empirical Bayes calculations derived from the multinomial capture-

recapture model to secondary methods increased confidence in the reliability of the estimates. 

Although I only met assumptions for unbiased Petersen capture-recapture at 11 of 25 sites, the 

estimates were in general agreement with the empirical Bayes estimates and the 95% confidence 

intervals overlapped at every site (Table 3). However, the range of the confidence intervals for 

the empirical Bayes estimates were more precise at every site compared to the Petersen capture-

recapture confidence intervals. The width of the confidence intervals for empirical Bayes and 

Petersen capture-recapture was 48 ± 16 fish and 109 ± 83 fish, respectively, at sites where both 

estimates were available. There was a similar level of precision for empirical Bayes confidence 

intervals calculated across all sites, where the width of the interval ranged from 14 to 87 fish (49 

± 20 fish). The empirical Bayes confidence intervals contained the snorkel count at 8 of 13 sites. 

The empirical Bayes confidence intervals exceeded the Smallmouth Bass snorkel count at four 

sites; however, the snorkel count was within 9 fish of the lower bound of the confidence interval 
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at two sites (Buffalo Creek3 and Caney Creek) and within 16 fish of the lower bound of the 

confidence interval at Buffalo Creek1. The Smallmouth Bass snorkel count exceeded the 

empirical Bayes confidence interval only at Spring Creek1. The three approaches compared 

favorably at the sites where I could compare the empirical Bayes abundance estimate to both 

snorkel counts and Petersen capture-recapture (Buffalo Creek1, Butler Creek, Spring Creek1, and 

Spring Creek2). I could not compare Smallmouth Bass abundance estimates derived from the 

multinomial capture-recapture model to secondary methods at only five sites. 

As expected, estimated cumulative Smallmouth Bass detection for the top-ranked 

multinomial removal model (Appendix 3) was higher (often by 20-30%) than the top-ranked 

multinomial capture-recapture model at 24 of 25 sites (Appendix 1). More importantly, both 

snorkel counts and Petersen capture-recapture estimates supported my expectation that the 

multinomial removal model would consistently underestimate Smallmouth Bass abundance. The 

snorkel counts were contained in the empirical Bayes confidence intervals derived from the 

multinomial removal model at only 2 of 13 sites where I was able to make the comparison. The 

snorkel count was more than double the empirical Bayes estimates at the other 11 sites, where the 

counts were > 50 fish higher than the upper bound of the confidence interval at seven sites and > 

100 fish higher at four sites. The snorkel count was over double the value of the upper bound of 

the empirical Bayes confidence interval at five sites. The empirical Bayes confidence intervals 

derived from the multinomial removal model overlapped with Petersen confidence intervals at 

only 3 of 11 sites where I was able to make the comparison.  The lower bound of the Petersen 

confidence interval was higher than the upper bound of the empirical Bayes confidence interval at 

the other eight sites, where the difference was > 50 fish at three sites. 

Simulations indicated that the multinomial capture-recapture model performed well under 

conditions similar to my model estimates. Bias and precision was acceptable for meeting typical 

stream-dwelling Smallmouth Bass management objectives and with other levels of abundance, 
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detection, and unexplained variation in detection reasonable for Smallmouth Bass tow-barge 

electrofishing scenarios in Ozark Highland streams (assuming that covariates related to variable 

detection could be identified). However, the model performed poorly with both considerably 

lower detection and higher unexplained variation in detection. Estimated abundance and RMSE 

with scenarios similar to my model-estimated average detection probability (0.25) and 

unexplained variation (0.05) were -5 fish and 25 fish, respectively (Table 2). Bias was -7 fish and 

RMSE was 31 fish with slightly lower detection probability (0.20). Bias in estimated abundance 

and RMSE were also reasonable at a lower level of detection (-12 fish and 40 fish, respectively, 

with detection probability of 0.15); however, bias increased and RMSE decreased considerably at 

very low levels of detection (-60 fish and 96 fish, respectively, with detection probability of 

0.05). Bias in estimated abundance and RMSE were also reasonable with double the unexplained 

heterogeneity of my model estimate (0.10) with a detection probability of 0.25 (bias of-18 fish 

and RMSE of 44 fish). A “breaking point” of the multinomial capture-recapture model was 

identified at a detection probability of 0.20 and unexplained variation of 0.10 (bias of -25 fish and 

RMSE 54 fish), where model performance diminished substantially with increasing levels of 

unexplained variation. For example, bias in estimated abundance and RMSE with a detection 

probability of 0.20 and unexplained variation of 0.15 were -66 fish and 89 fish, respectively. Not 

surprisingly, model performance was exceptionally poor with a combination of low detection and 

high unexplained heterogeneity. The performance of the multinomial capture-recapture model did 

not appear sensitive to varying levels of abundance or number of sites. Bias in estimated 

abundance was < 7 fish and the CV of RMSE was ≤ 30% for abundances ranging from 35-185 

fish with a detection probability of 0.25 and unexplained heterogeneity of 0.05. Model results 

were virtually identical for scenarios simulated with both 25 and 50 sites. 
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DISCUSSION 

I used a highly flexible hierarchical population estimation model to address a long-

standing stream-fish management issue. Dynamic stream environments present a widespread 

challenge for both effective stream-fish monitoring and quality research due to variable detection 

among surveys. The application of electrofishing, the most common stream-fish sampling 

method, to population estimation methods has been particularly challenging for Smallmouth Bass 

due to both highly variable and often low detection. The modeling approach presented here 

effectively addresses concerns raised by Lyons and Kanehl (1993) regarding the use of capture-

recapture electrofishing to estimate Smallmouth Bass abundance in streams. The covariates 

included in the multinomial capture-recapture model effectively accounted for variable 

Smallmouth Bass detection across a range of electrofishing effort, environmental conditions, and 

fish densities. Abundance estimates for spatially-distinct Smallmouth Bass populations derived 

from my model compared favorably to both baseline estimates obtained via snorkel counts and 

unbiased Peterson capture-recapture estimates. Additionally, the confidence intervals derived 

using an empirical Bayes estimator were much more precise than the Petersen capture-recapture 

confidence intervals. The increased precision of the empirical Bayes confidence intervals was due 

to the hierarchical framework of multinomial N-mixture models introducing a dependency among 

datasets (i.e., sites are models simultaneously using data collected across all sites), which also 

improves the reliability of abundance estimates at sites with deficient data (Dorazio et al. 2005; 

Royle and Dorazio 2006). Dorazio et al. (2005) presented similar results using multinomial N-

mixture models for sampling Okaloosa Darter Etheostoma okaloosae populations with a removal 

estimation method, where confidence intervals were consistently more precise than those derived 

from an approach that modeled each site individually. Although Dauwalter and Fisher (2007) 

proposed a model to address the challenges of Smallmouth Bass electrofishing detection, the 

authors failed to provide stream managers with a usable approach due to both an extremely 
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limited number of streams (n = 2; each in a different ecoregion) and the modeling of detection at 

a spatial scale far too fine to be practical for comparing local abundance estimates across a study 

area (i.e., managers typically do not sample individual channel units for comparison across sites). 

Conversely, I modeled the abundance of Smallmouth Bass subpopulations in reaches of 15 

streams across a large study area with similar geologic and climate constraints (i.e., a single 

ecoregion). Thus, I demonstrated a broadly applicable approach to monitor stream-fish 

populations at an ecologically-meaningful scale (i.e., representative habitat directly related to 

variation in local abundance). Although I focused on stream-dwelling Smallmouth Bass using 

electrofishing, the approach detailed here is easily adaptable to other stream fishes and gear types. 

Multiple environmental covariates explained variation in Smallmouth Bass detection 

probability. I observed a positive relationship between detection and water clarity, which 

contradicts findings of studies that examined backpack electrofishing detection of stream fishes 

(e.g., Price and Peterson 2010). A common behavioral response of Smallmouth Bass during the 

electrofishing surveys was to evade capture by moving in a downstream direction around 

sampling crews, even if initially pushed upstream. The reduced detection with reduced water 

clarity was presumably due to Smallmouth Bass shocked behind the anode operators going 

unseen by the tow-barge operator, thus suggesting the operator netting fish under clear conditions 

increased detection probability. I also identified wetted channel width and water depth, which 

together characterize the cross-sectional survey area in a stream, as factors contributing to 

variable Smallmouth Bass electrofishing detection. The observed interaction of wetted channel 

width and water depth highlights both the complexity of factors that contribute to variable 

electrofishing detection in streams and the need to survey across a wide range of environmental 

conditions. Although I identified specific environmental covariates that explained Smallmouth 

Bass electrofishing detection probability among the study sites, many environmental factors 

affect stream-fish detection and the magnitude of influence varies considerably among both 
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systems and species (Peterson et al. 2004; Hense et al. 2010; Price and Peterson 2010). Thus, 

stream-fish managers might benefit from measuring a comprehensive suite of environmental 

covariates they hypothesize will influence detection rather than solely relying on results of other 

studies, particularly those involving dissimilar species or conducted in different ecoregions.   

Hierarchical population estimation approaches, such as multinomial N-mixture models, 

offer many advantages to stream-fish managers relative to both CPUE and population estimation 

methods that model each site separately; however, there are trade-offs that should be considered. 

The primary advantages of all population estimation methods over CPUE are the ability to 

calculate a direct measure of abundance and account for variable detection across environmental 

conditions. Accounting for variable detection across time and space is of particular importance in 

dynamic streams systems because standardizing environmental conditions is often unrealistic. 

Adjusting for variable detection allows stream-fish abundance estimates to be comparable over 

long time periods across broad study areas. For example, long-term statewide stream-fish 

monitoring is a common agency objective and relying on CPUE data can hinder both identifying 

trends in populations and refining management strategies (see Introduction). The ability to 

estimate abundance across variable conditions at greater temporal scales also promotes the 

establishment of stream fish-environment relationships, which are essential to both ecology and 

management. Hierarchical population estimation methods also have other advantages. In addition 

to decreased uncertainty in Smallmouth Bass abundance estimates (i.e., narrower confidence 

intervals) compared to Petersen capture-recapture, the multinomial capture-recapture model 

provided reliable population estimates at sites with deficient data. I would have only been able to 

calculate unbiased Smallmouth Bass abundance estimates at less than half of the sites using 

Petersen capture-recapture. For long-term stream-fish monitoring, the failure to obtain usable data 

at all sites results in both lost information and wasted resources. However, adequate data at some 

sites (e.g., reasonable sample size and detection) is required for hierarchical population estimation 
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methods to be effective (Dorazio et al. 2005). Requirements of multinomial N-mixture models do 

include collecting environmental covariate information at each site and repeat surveys (i.e., both a 

capture and recapture event or additional removal passes), which necessitates extra time and 

labor. However, both the hierarchical framework and the use of covariates to explicitly model 

detection for each survey event enables an optional application of multinomial capture-recapture 

models that is not possible with capture-recapture methods that both model each site separately 

and only implicitly account for variable detection. Once covariates that influence detection are 

well established, a site-specific detection probability from a single survey (i.e., identical survey 

effort to CPUE) can be derived from the multinomial N-mixture model to adjust catch data to an 

absolute abundance estimate (see Thompson and Seber 1994; Peterson and Paukert 2009). I 

identified relationships between Smallmouth Bass electrofishing detection and environmental 

covariates with a reasonable number of sites. The increased statistical complexity of multinomial 

N-mixture models is another important consideration. However, necessary R code is well 

described in both the “unmarked” manual (Fiske et al. 2015) and related literature (e.g., Fiske and 

Chandler 2014; Chandler 2015; Fiske and Chandler 2015). Multinomial N-mixture models also 

have the additional flexibility to incorporate covariates that explain variation in abundance 

independent of detection. The metapopulation structure of multinomial N-mixture models views 

local abundance as a random process and allow users to focus on examining variation in fish 

populations at a spatial scale often of interest to stream researchers and managers (i.e., the reach) 

independent of detection. Thus, another advantage of multinomial N-mixture models is that the 

pooling of surveys for small populations (i.e., scaling up), where site-level information on 

abundance and detection can be lost, is not necessary (Royle 2004). 

My findings also highlight the advantage of using secondary methods to increase 

confidence in the reliability of abundance estimates (see also Rosenberger and Dunham 2005). 

Baseline snorkel counts and unbiased Petersen capture-recapture estimates, both independently 
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and in conjunction, supported Smallmouth Bass abundance estimates derived from the 

multinomial capture-recapture model. Petersen capture-recapture confidence intervals were 

consistently in general agreement with the empirical Bayes estimates, thus supporting the 

Smallmouth Bass abundance estimates at sites where I was able to make the comparison. The 

snorkel surveys provided a coarse comparison for the empirical Bayes estimates at sites where 

unbiased Petersen capture-recapture estimates were not obtainable. For example, the Smallmouth 

Bass snorkel count at Caney Creek supported a low abundance rather than suggesting a detection 

probability lower than what was estimated by the multinomial capture-recapture model. Whereas 

at Big Sugar Creek, the Smallmouth Bass snorkel count supported the low detection estimated by 

the multinomial capture-recapture model rather than low abundance. All three approaches were in 

general agreement at sites where such a comparison was possible, which provided weighted 

evidence to support the reliability of the empirical Bayes estimates. The secondary methods 

supporting the expectation that a multinomial electrofishing removal model would underestimate 

Smallmouth Bass abundance provided further support of their usefulness to assess the reliability 

of the multinomial capture-recapture estimates. 

Although the simulations supported the use of a multinomial capture-recapture model to 

survey Smallmouth Bass populations in Ozark Highland streams using tow-barge electrofishing, 

they also identified scenarios where the models may be inappropriate. Bias in estimated 

abundance and precision were acceptable for promoting effective monitoring of stream-dwelling 

Smallmouth Bass under conditions similar to the multinomial capture-recapture estimates and 

were well within reported estimates of uncertainty (e.g., the precision of the empirical Bayes 

confidence intervals). Bias and precision were also satisfactory under less optimal conditions (i.e., 

decreased detection and increased unexplained heterogeneity) realistic to Smallmouth Bass tow-

barge electrofishing in south-central streams. For example, an inherent bias of 10-20 Smallmouth 

Bass and precision of 20-40 Smallmouth Bass is reasonable for stream managers because changes 



140 
 

in abundance at these levels would likely not trigger management actions, particularly when 

considering year-to-year variation in mortality rates and movement between stream reaches. 

However, these levels of bias and precision may be not desirable for monitoring other stream 

fishes (e.g., species of conservation concern where identifying even very slight changes in 

population sizes may be critical). Multinomial capture-recapture model performance was poor 

under scenarios with much lower detection and much higher unexplained heterogeneity. 

Reevaluating the sampling method may be a consideration when average detection probability is 

extremely low (i.e., < 0.10) and approaches that only evaluate species presence-absence (e.g., 

occupancy modeling) may be more appropriate when low detection is a function of low 

abundance. The simulations also further highlight the importance of identifying factors (i.e., 

covariates) that account for variable detection. Multinomial capture-recapture model performance 

decreased substantially and greatly underestimated abundance with high levels of unexplained 

heterogeneity in detection (see also Webster et al. 2008 for similar findings using a repeated-

count model). Furthermore, model diagnostics to assess fit are essential for reliable detection 

estimates (here c-hat and residual plots suggested adequate model fit). Overdispersion results in 

an underestimation of standard error around model coefficients (i.e., higher unexplained 

heterogeneity in detection than estimated by the model). Thus, multinomial N-mixture models 

may be inappropriate for stream fishes with very low detection, when variation in detection is 

difficult to explain through covariates, or when subtle changes in populations are critical for 

effective management and conservation.  

 One limitation of multinomial N-mixture models (common to most population 

estimation methods; but see Ford et al. 2012), is the inability to account for variation in detection 

among individuals (Chandler 2015). Veech et al. (2016) showed that when detection probability 

is < 0.50 nonrandom individual variation (e.g., behavior) may result in erroneous abundance 

estimates using N-mixture models. Two primary sources of individual variation in detection for 
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single-species electrofishing are fish size and a “trap response” (i.e., variation in detection 

between marked and unmarked individuals during the recapture event). My results support that 

neither fish size nor a trap response influenced estimated Smallmouth Bass detection. Mean 

Smallmouth Bass TL did not vary considerably among sites and the inclusion of a fish size 

covariate did not improve model fit. Additionally, the mean and variation of Smallmouth Bass TL 

at my sites were consistent with other studies in the Ozark Highlands ecoregion (e.g., Brewer and 

Long 2015), suggesting that the results are applicable at sites within the study area that were not 

surveyed. I also found no evidence of considerable remaining variation in detection between 

capture and recapture events, which precludes a trap response. If a trap response is suspected, the 

influence on detection can be addressed by modifying the capture-recapture function in 

“unmarked” by introducing a behavioral covariate to the capture histories (see Chandler 2015).  

I demonstrated how a contemporary population estimation method can be a viable 

alternative to CPUE but while using similar sampling methods. I argue that the long-term benefits 

of hierarchical population estimation methods greatly outweigh the additional effort and learning 

curve. Although standardized sampling is an important aspect of sound fisheries research and 

management (Bonar et al. 2009), attempting to maintain equal stream-fish detection across space 

and time by replicating environmental conditions is often an unrealistic expectation that 

constrains progressive ecology and management. Additionally, I concur with Gwinn et al. (2016) 

that examining relationships between stream fishes and the environment (e.g., seasonal changes 

in populations and flow-ecology relationships) is fundamental to advancing science and requires 

surveying across a broad range of conditions. Flexible contemporary approaches, such as 

multinomial N-mixture models, that account for variable detection and promote both strategic and 

flexible monitoring protocols are readily available to stream-fish scientists. 
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Table 1. Results from 12 candidate multinomial capture-recapture models fitted with a negative-

binomial error distribution to estimate site-specific detection abundance and detection probability 

for Smallmouth Bass using tow-barge electrofishing in 25 stream reaches of the Ozarks 

Highlands in northeast Oklahoma and southwest Missouri from July to October 2014-2015. In the 

model set,  is latent abundance, p is the estimated detection probability, effort is electrofishing 

effort, width is average wetted width., Q is discharge, depth is average thalweg depth, clarity is 

horizontal water clarity and θ is the overdispersion parameter. K is the number of the parameters 

in each model, AICc is the Akaike information criterion score for the model corrected for small 

sample size, and wi is the relative support for the model.  

 

Model K Log-likelihood AICc Δ AICc wi 

, p(effort + width * depth + clarity), θ 8 3604.54 -7184.09  0.00 0.95 

, p(effort + width + depth + clarity), θ 7 3598.67 -7176.75  7.34 0.02 

, p(effort + width * depth), θ 7 3598.34 -7176.09  8.00 0.02 

, p(effort + width + depth), θ 6 3595.29 -7173.91 10.18 0.01 

, p(effort + depth), θ 5 3591.39 -7169.61 14.48 0.00 

, p(effort + width * Q + clarity), θ 8 3594.18 -7163.36 20.73 0.00 

, p(effort + width + Q + clarity), θ 7 3591.58 -7162.58 21.51 0.00 

, p(effort + width + Q), θ 6 3587.67 -7158.68 25.41 0.00 

, p(effort + width + Q), θ 7 3588.97 -7157.35 25.41 0.00 

, p(effort + Q), θ 5 3883.79 -7154.42 29.67 0.00 

, p(effort + width), θ 5 3572.88 -7132.61 51.48 0.00 

, p(effort), θ 4 3562.54 -7115.08 69.01 0.00 
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Table 2. Results of simulations to assess bias, root mean square error (RMSE), and coefficient of 

variation (CV) of RMSE fo a capture-recapture multinomial N-mixture models under 18 different 

scenarios (1000 runs per scenario) with varying levels of number of sites, mean abundance, 

detection probability, and standard deviation (SD) of detection probability. CV of RMSE was 

calculated as (RMSE/mean estimated abundance)*100. Mean abundance SD was 20 for all 

simulations. 

 

 

Test 

 

Number 

of sites 

 

Mean 

abundance 

 

Detection 

probability 

Detection 

probability  

SD 

Bias in 

estimated 

abundance 

 

 

RMSE 

 

CV of  

RMSE 

1 25 135 0.25 0.05     -4.6   24.7     19% 

2 25   85 0.25 0.05     -3.1   17.7     22% 

3 25   35 0.25 0.05     -1.0   10.3     30% 

4 25 185 0.25 0.25     -6.3   32.4     18% 

5 25 135 0.20 0.05     -6.8   30.7     24% 

6 25 135 0.15 0.05   -11.7   39.6     32% 

7 25 135 0.05 0.05   -59.7   96.1   126% 

8 25 135 0.25 0.10   -17.5   43.8     37% 

9 25 135 0.25 0.15   -33.8   61.7     61% 

10 25 135 0.25 0.25   -65.9   89.3   130% 

11 25 135 0.20 0.10   -25.3   54.4     50% 

12 25 135 0.15 0.10   -39.1   69.6     72% 

13 25 135 0.05 0.20 -124.1 132.3 1256% 

14 50 135 0.25 0.05     -4.8   24.8     19% 

15 50 135 0.05 0.05   -63.3   93.5   131% 

16 50 135 0.25 0.25   -67.0   90.0   133% 

17 50 135 0.20 0.10   -26.4   55.1     51% 

18 50 135 0.05 0.20 -126.4 132.4 1553% 
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Table 3. Summary of snorkel surveys and capture-recapture estimates for 25 Smallmouth Bass subpopulations in streams of the Ozarks Highlands, 

where M is the total number of fish captured during the capture event, C is the total number of fish captured during the recapture event (both 

marked and unmarked), recap is the proportion of marked fish recaptured, and cumulative detection is the estimated proportion of Smallmouth 

Bass captured across both capture and recapture events and was calculated as the sum of the multinomial cell probabilities. Cumulative detection, 

multinomial abundance estimates, and multinomial 95% confidence intervals (CI) were derived from a multinomial negative-binomial-mixture 

model. Petersen abundance estimates were calculated using Peterson capture-recapture with the Chapman (1954) bias correction. Petersen 95% CI 

were calculated with a bias-corrected SE (Seber 1970) as N̂ ± zα/2(SE). NA’s for snorkel count indicate sites that were not surveyed due to 

insufficient water clarity. NA’s for Petersen abundance estimates and Petersen 95% CI indicate sites where assumptions for unbiased estimates 

were not met as described by Lyons and Kanehl (1993). 

 

 

Site 

 

 

M  

 

 

C 

 

 

Recap 

 

Cumulative 

detection 

 

Snorkel  

count  

Multinomial  

abundance 

estimate 

Petersen 

abundance 

estimate 

 

Multinomial  

95% CI 

 

Petersen  

95% CI 

Baron Fork1 71 37 0.13 0.46 NA 214 299 185 - 246 147 - 451 

Baron Fork2 16 11 0.38 0.54 NA   41 NA     30 - 53 NA 

Big Sugar Creek 24 11 0.08 0.23 138 144 NA 105 - 188 NA 

Buffalo Creek1 79 96 0.47 0.75 153 183 204 169 - 199 167 - 241 

Buffalo Creek2 11 17 0.09 0.32   85   86 NA   62 - 114 NA 

Buffalo Creek3 15 17 0.07 0.35   59   91 NA   68 - 118 NA 

Butler Creek 64 60 0.36 0.43 244 232 164 200 - 267 123 - 204 

Caney Creek   8   6 0.13 0.45   18   31 NA     21 - 45 NA 

Evansville Creek 70 44 0.36 0.52 NA 170 128 147 - 195 101 - 155 

Five-mile Creek 15 13 0.20 0.50   61   52 NA     39 - 67 NA 
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Flint Creek1 14 21 0.00 0.33 NA 107 NA   81 - 137 NA 

Flint Creek2 28 45 0.18 0.30 208 224 NA 183 - 270 NA 

14-mile Creek1 32 40 0.25 0.40 NA 159 150 131 - 190   75 - 224 

14-mile Creek2 36 25 0.14 0.51 NA 109 162   91 - 130   57 - 268 

14-mile Creek3 120 97 0.57 0.84 NA 176 173 166 - 188 157 - 188 

Honey Creek1 59 50 0.42 0.62 NA 135 117 118 - 153   93 - 141 

Honey Creek2 12 12 0.17 0.30 NA   75 NA   52 - 103 NA 

Indian Creek 14 19 0.21 0.31 NA   97 NA 7  2 - 128 NA 

Lost Creek   9   4 0.22 0.62 NA   19 NA    13 - 27 NA 

Saline Creek 48 29 0.04 0.40 156 186 NA 156 - 220 NA 

Spavinaw Creek1 63 59 0.13 0.40 167 282 NA 244 - 323 NA 

Spavinaw Creek2 41 32 0.34 0.44 NA 133   92 110 - 160   64 - 120 

Spring Creek1 29 39 0.31 0.33 247 176 120 142 - 214   66 - 174 

Spring Creek2 85 84 0.40 0.62 225 215 207 194 - 238 167 - 248 

Spring Creek3 17 18 0.47 0.40   84   69 NA     51 - 90 NA 
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Table 4. Coefficients from a multinomial negative-binomial-mixture capture-recapture model to 

estimate the abundance of 25 Smallmouth Bass subpopulations in streams of the Ozarks 

Highlands surveyed using tow-barge electrofishing. The model was chosen using AICc from a set 

of 12 candidate models that incorporated the detection covariates discharge, mean wetted width, 

mean depth, water clarity, and electrofishing effort. The model had a high level of support (AICc 

weight = 0.95; Supplemental Table S1). Detection covariates were reported on a logit scale and 

were standardized such that the intercept estimates detection at mean values and the coefficients 

represent a unit change of one SD. The 95% confidence intervals (CI) were calculated using a 

profile likelihood method (see Fiske and Chandler 2011). 

 

  

  

  

  

  

  

  

  

  

  

   

Parameter Estimate ± SE Lower 95% CI Upper 95% CI 

Latent abundance   136 ± 17.6  4.66  5.18 

Detection - intercept -1.08 ± 0.08 -1.24  -0.92 

Detection - water clarity  0.24 ± 0.07  0.11  0.36 

Detection – electrofishing effort  0.28 ± 0.06  0.17  0.39 

Detection – mean wetted width -0.13 ± 0.09 -0.30  0.04 

Detection – mean depth -0.39 ± 0.07 -0.52 -0.25 

Detection – width x depth  0.21 ± 0.06  0.09  0.33 

Overdispersion   3.01 ± 0.88  0.49  1.65 
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Figure 1. Location of 25 stream reaches of the Ozarks Highlands in northeast Oklahoma and 

southwest Missouri where spatially-distinct Smallmouth Bass subpopulations were surveyed  

using tow-barge electrofishing and snorkeling from July to October 2014-2015. 
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Figure 2. The relationship between Smallmouth Bass detection and increasing electrofishing 

effort (a) and water clarity (b) in Ozarks Highland streams. Estimates of detection probability 

were derived from a multinomial negative-binomial capture-recapture model with mean wetted 

channel width and mean depth held at mean sampling levels. Dashed lines indicate 95% 

confidence intervals. 
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Figure 3. Interaction of mean wetted channel width and mean depth on Smallmouth Bass 

electrofishing detection probability in Ozark Highland streams. Estimates of detection probability 

were derived from a multinomial negative-binomial capture-recapture model with electrofishing 

effort and water clarity held at mean sampling levels. Narrow and wide represent values of mean 

wetted width of -1 and +1 SD, respectively Shallow and deep represent values of mean depth of -

1 and +1 SD, respectively. Dashed lines indicate 95% confidence intervals. 

a) b) 

c) d) 
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APPENDICES 

Appendix 1. Summary and comparison of Smallmouth Bass tow-barge electrofishing abundance estimates derived from a multinomial negative-

binomial-mixture removal model for 25 subpopulations in streams of the Ozarks Highlands, where pass 1 is the number of fish captured on 

removal pass 1 and pass 2 is the number of fish captured on removal pass 2 ,and cumulative detection is the estimated proportion of Smallmouth 

Bass captured across both capture and recapture events and was calculated as the sum of the multinomial cell probabilities. Petersen abundance 

estimates were calculated using Peterson capture-recapture with the Chapman (1954) bias correction. Petersen 95% CI were calculated with a bias-

corrected SE (Seber 1970) as N̂ ± zα/2(SE). NA’s for Petersen abundance estimates and Petersen 95% CI indicate sites where assumptions for 

unbiased estimates were not met as described by Lyons and Kanehl (1993). 

 

 

 

Site 

 

 

Pass 1 

 

 

Pass 2 

Removal 

cumulative 

detection 

Capture-recapture 

cumulative 

detection 

 

Snorkel 

count 

 

Removal 

95% CI 

 

Petersen 

95% CI 

Baron Fork4 28   9 0.77 0.46 NA 41 - 56 147 - 451 

Baron Fork5 13   5 0.85 0.54 NA 18 - 26 NA 

Big Sugar Creek2 17 11 0.25 0.23 138 76 - 141 NA 

Buffalo Creek5 79 18 0.90 0.75 153 102 - 115 167 - 241 

Buffalo Creek6   9   1 0.50 0.32   85 14 - 32 NA 

Buffalo Creek7   7   8 0.28 0.35   59 34 - 77 NA 

Butler Creek2 43 32 0.65 0.43 244 101 - 131 123 - 204 

Caney Creek2   4   4 0.69 0.45   18 9 - 16 NA 

Evansville Creek3 28 16 0.69 0.52  NA 54 - 75 101 - 155 

Five-mile Creek2   6   6 0.78 0.50   61 12 - 21 NA 
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Flint Creek3 12   9 0.55 0.33 NA 29 - 51 NA 

Flint Creek4 23 22 0.55 0.30 208 67 - 98  NA 

14-mile Creek4 26 14 0.69 0.40 NA 49 - 69 75 - 224 

14-mile Creek5 29   8 0.78 0.51 NA 41 - 56 57 - 268 

14-mile Creek6 78 19 0.95 0.84 NA 98 - 106 157 - 188 

Honey Creek3 30 16 0.81 0.62 NA 50 - 64   93 - 141 

Honey Creek4   8   5 0.36 0.30 NA 24 - 55 NA 

Indian Creek2 10   4 0.45 0.31 NA 22 - 46 NA 

Lost Creek2   7   2 0.81 0.62 NA 9 - 16 NA 

Saline Creek3 19 10 0.73 0.40 156 33 - 48 NA 

Spavinaw Creek8 30 29 0.55 0.40 167 89 - 125 NA 

Spavinaw Creek9 32 10 0.55 0.44 NA 62 - 92   64 - 120 

Spring Creek5 23 16 0.50 0.33 247 62 - 95   66 - 174 

Spring Creek6 47 38 0.69 0.62 225 109 - 137 167 - 248 

Spring Creek7 11  6 0.69 0.40   84 19 - 33 NA 
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Appendix 2. Results from 12 candidate multinomial removal models fitted with a negative-

binomial error distribution to estimate site-specific detection abundance and detection probability 

for Smallmouth Bass using tow-barge electrofishing in 25 stream reaches of the Ozarks 

Highlands in northeast Oklahoma and southwest Missouri from July to October 2014-2015. In the 

model set,  is latent abundance, p is the estimated detection probability, effort is electrofishing 

effort, width is average wetted width., Q is discharge, depth is average thalweg depth, clarity is 

horizontal water clarity and θ is the overdispersion parameter. K is the number of the parameters 

in each model, AICc is the Akaike information criterion score for the model corrected for small 

sample size, and wi is the relative support for the model.   

Model K Log-likelihood AICc ΔAICc wi 

, p(width + depth), θ 5 2044.57 -4075.97  0.00 0.51 

, p(width * depth), θ 6 2044.97 -4073.28  2.69 0.13 

, p(width * depth + clarity), θ 6 2044.93 -4073.20  2.77 0.13 

, p(width * Q), θ 6 2044.76 -4072.84  3.13 0.11 

, p(width + Q), θ 5 2042.28 -4071.41  4.56 0.05 

, p(depth), θ 4 2039.89 -4069.78  6.19 0.02 

, p(width + depth + clarity), θ 7 2045.11 -4069.64  6.33 0.02 

, p(width * Q + clarity), θ 7 2044.81 -4069.02  6.95 0.02 

, p(width + Q + clarity), θ 6 2042.56 -4068.46  7.51 0.01 

, p(width), θ 4 2038.38 -4066.76  9.22 0.01 

, p(Q), θ 4 2036.71 -4063.41 12.56 0.00 

, p, θ 3 2028.66 -4050.17 25.80 0.00 
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Appendix 3. Coefficients from a multinomial negative-binomial-mixture removal model to 

estimate the abundance of 25 Smallmouth Bass subpopulations in streams of the Ozarks 

Highlands surveyed using tow-barge electrofishing. The model was chosen using AICc from a set 

of 12 candidate models that incorporated the detection covariates discharge, mean wetted width, 

mean depth, water clarity, and electrofishing effort. The model had a high level of support (AICc 

weight = 0.51; Appendix 1). Detection covariates were reported on a logit scale and were 

standardized such that the intercept estimates detection at mean values and the coefficients 

represent a unit change of one SD. The 95% confidence intervals (CI) were calculated using a 

profile likelihood method (see Fiske and Chandler 2011). The estimate of c-hat for the model 

from the Chi-squared test (c-hat =1.02) did not indicate overdispersion in the model. A plot of 

predicted versus fitted residuals (n = 50) also suggested adequate model fit (i.e., no evidence of 

heteroscedasticity).   

Parameter Estimate ± SE Lower 95% CI Upper 95% CI 

Latent abundance      59  ± 9.2  3.79  4.41 

Detection - intercept -0.36 ± 0.17 -0.70 -0.05 

Detection – mean wetted width -0.48 ± 0.14 -0.79 -0.17 

Detection – mean depth -0.47 ± 0.16 -0.75 -0.21 

Overdispersion   2.61 ± 0.76  0.35  1.51 
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CHAPTER VI 

MULTISCALE FACTORS INFLUENCING THE DISTRIBUTION                              

OF OZARK HIGHLAND STREAM FISHES 

ABSTRACT 

Stream-fish assemblages are structured by complex, multiscale abiotic processes, which makes 

identifying relationships with environmental and spatial factors challenging. The intermediate 

scale (i.e., stream reaches and stream segments) is of particular importance to both research and 

management because it largely reflects the life-history characteristics of stream fishes. 

Furthermore, management actions at the intermediate scale are more feasible than at coarser 

scales. I used a hierarchical modeling approach to examine multiscale environmental and spatial 

factors associated with the distribution of Ozark Highland stream fishes. I collected density and 

occurrence data for Ozark Highland stream fishes using tow-barge electrofishing, where densities 

were adjusted for variable detection. Variation in sunfish densities were associated with both 

reach-scale groundwater contribution and segment-level lithology. Variation in stream-fish 

occurrence was associated with the area of riffle-run-pool sequences and reach-scale substrate 

size, groundwater contribution, residual pool depth. The modeled relationship between sunfish 

densities and relative groundwater contribution explained notable observed trends for Longear 

Sunfish Lepomis megalotis and Rock Bass Ambloplites rupestris. My results also suggest that 

variation in sunfish densities associated with underlying lithology, rather than land use or spatial 

factors. The occurrence of Redspot Chub Nocomis asper, a stream-fish species
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of conservation concern, was associated with higher reach-scale groundwater contribution, which 

supports their perceived reliance on spring flow. Intermediate-scale environmental factors were 

also associated with the occurrence of Northern Studfish Fundulus catenatus and Smallmouth 

Bass Micropterus dolomieu. My findings demonstrate both the importance of using appropriate 

analytical approaches to identify multiscale relationships between stream-fish distributions and 

environmental variables and how different stream-fish environmental relationships may emerge 

when viewed from different scales. In addition to promoting advances in stream-fish ecology, a 

multiscale perspective, with an emphasis on intermediate scales, is essential to successful long-

term stream-fish conservation and management.  

INTRODUCTION 

Stream fishes are hypothesized to form structured, non-random assemblages (Jackson et al. 

2001); however, relationships among species with environmental and spatial factors remain 

poorly understood (Fausch 2010; Matthews 2010; Winemiller 2010). Our limited understanding 

of stream fish-environment relationships is largely due to the inherent challenges of studying 

dynamic, hierarchically-structured stream systems, where observed assemblages across the 

landscape are a result of complex, multiscale abiotic processes (Jackson et al. 2001; Fausch et al. 

2002; Lowe et al. 2006; see also Chapter 1). For example, lithology and climate are hypothesized 

to be primary determinants of biotic assemblages in streams (Hynes 1975; Frissell et al. 1986), 

but local environmental characteristics (e.g., channel formation and instream cover) also 

contribute to variation in species abundance and occurrence (Frissell et al. 1986; Stevenson 

1997). Stream-fish assemblages are also a reflection of complex spatial factors. The structure of 

biotic assemblages is theorized to change in a predictable fashion along a downstream continuum 

(Vannote et al. 1980); however, heterogeneity in local habitat and spatial position in the stream 

network (e.g., distance to tributaries) can lead to variation within downstream trends (i.e., 

variability around a common theme; Osborne and Wiley 1992; Fausch et al. 2002). Land use (the 
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human element) confounds species-environment relationships by interacting with variables across 

multiple scales (Allan et al. 1997; Stevenson 1997; Allan 2004). Anthropogenic activities also 

alter the spatial dynamics of the stream landscape. For example, impoundments disrupt the 

downstream continuum and obstruct connectivity within the stream network, which can alter both 

the nature of biotic assemblages (Guenther and Spacie 2006; Falke and Gido 2006) and 

population dynamics (e.g., local colonization and extinction; Pringle 1997; Pringle 2003).    

Each length of stream has unique geomorphic characteristics and channel patterns (e.g., 

channel dimensions, substrate, and channel unit diversity; Leopold 1994) that result in highly 

diverse instream environments at intermediate scales (e.g., stream reaches and segments). Life-

history characteristics of stream fishes are largely a reflection of these intermediate-scale 

environmental factors (Fausch et al. 2002). However, stream-fish research at intermediate scales 

is generally lacking as studies have tended to focus on either very coarse scales (e.g., ecoregions 

and watersheds) or very fine scales (e.g., channel units and microhabitats; Fausch et al. 2002; 

Falke and Fausch 2010). Fausch et al. (2002) provide a detailed discussion on the importance of 

examining species-environment relationships at intermediate scales to promote advancements in 

stream-fish ecology and their assertions are supported by empirical studies. For example, Brewer 

et al. (2007) found significant relationships between Smallmouth Bass Micropterus dolomieu 

populations and segment-scale soil characteristics. Brassy Minnow Hybognathus hankinsoni 

occurrence was associated with pool characteristics at intermediate scales (Scheurer et al. 2003). 

Walters et al. (2003) determined that reach-scale geomorphology was the primary factor 

associated with patterns in stream-fish composition. Flow dynamics at intermediate scales can 

also influence stream-fish distributions. Differential declines among salmonids have been 

associated with the timing and magnitude of flows at the segment scale (Wenger et al. 2010). 

Peterson and Shea (2014) found that the duration of reach-scale low-flow events explained 

variation in metademographic rates among an assemblage of stream fishes. Additionally, 
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groundwater has profound effects on the instream environment including stabilizing water 

temperature, providing areas of thermal refuge, increasing productivity, and influencing riparian 

characteristics (Stanford and Ward 1993). Groundwater contribution can influence both the 

occurrence and abundance of stream fishes (Power et al. 1999) and reach-scale variation in 

groundwater contribution has been associated with patterns in assemblages (Wang et al. 2003).  

Understanding species-environment relationships at intermediate scales is also essential 

for effective stream-fish management and conservation. The influence of reach- and segment-

scale characteristics on the life history and ecology of stream fishes constrains management 

efforts at finer scales. For example, instream habitat enhancements (e.g., the addition of large 

wood) at the channel unit- or microhabitat-scale would be unlikely to improve the population 

status of target stream fishes if coarser-scale environmental factors (e.g., available pool habitat 

across a stream reach) were not adequate. Additionally, managing the stream environment at 

intermediate scales is more feasible than at coarser scales. Channel unit diversity, 

geomorphology, land use, and flow regime can be manipulated at the reach- and segment- scale, 

whereas factors at the watershed-scale (although important considerations for effective long-term 

stream-fish management) are difficult (e.g., land use) or impossible (e.g., lithology) to address.  

My primary objectives were to use a hierarchical modeling approach to identify factors at 

multiple spatial scales that explained (1) variation in sunfish densities, where stream reaches 

(defined as multiple riffle-run-pool sequences) were nested within stream segments (defined as a 

length of stream between 3rd order and higher tributary confluences) and (2) the occurrence of 

characteristic Ozark stream fishes, where riffle-run-pool sequences (hereafter referred to as 

channel unit sequences), were nested within stream reaches. I also examined sunfish trait-

environment relationships using variables that were associated with variation in densities (see 

Chapter 1). I developed parsimonious models using a comprehensive set of environmental and 

spatial variables hypothesized to structure stream-fish assemblages. 
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METHODS 

Stream-fish assemblage - Characteristic stream fishes of the Ozark Highlands ecoregion include 

multiple species of black basses (Micropterus), sunfishes (e.g., Lepomis, Ambloplites, and 

Pomoxis), suckers (Catostomidae), large-bodied cyprinids (e.g., Creek Chub Semotilus 

atromaculatus and Redspot Chub Nocomis asper), and sculpins (Cottus). Redspot Chub and 

redhorses (Moxostoma spp.) are among stream fishes of conservation concern in Oklahoma Ozark 

Highland streams (ODWC 2005). Redspot Chub are also a protected species in Kansas streams 

(KDWPT 2016). In addition to black basses (particularly Smallmouth Bass Micropterus 

dolomieu), many sunfishes are popular recreational fishes. Sunfishes also play important 

functional roles in stream ecosystems as both top-level predators and prey. Longear Sunfish 

Lepomis megalotis, Green Sunfish Lepomis cyanellus Bluegill Lepomis macrochirus, and Rock 

Bass Ambloplites rupestris are common to Ozark Highland streams with varying degrees of 

abundance (Pflieger 1997; Miller and Robison 2004). Redear Sunfish Lepomis microlophus and 

Warmouth Lepomis gulosus are less common sunfishes in Ozark Highland streams, but are 

locally abundant. Despite their recreational and ecological importance, few studies have 

examined factors related to variation in abundance among stream-dwelling sunfishes (but see 

Rabeni and Jacobson 1993; Peterson and Rabeni 2001), particularly across multiple spatial scales.  

I estimated stream fish-density and occurrence with tow-barge electrofishing using 

methods described in Chapter 3. I sampled six common Ozark Highland sunfishes at 40 stream 

reaches nested within 20 streams segments. (Table 1; Appendix 1, Appendix 2, and Appendix 3). 

Sampling coincided with streams surveyed in Chapter 3 and Chapter 4 in 2014-2015 (see Figure 

1 of Chapter 3). Catch data were adjusted using the electrofishing detection model developed in 

Chapter 3 as  N̂ = c / q̂, where N̂ is the species- and site-specific estimated abundance, q̂ is the 

species- and site-specific estimated detection, and c is the species- and site-specific number of 

individuals captured. (Thompson and Seber 1994; Peterson and Paukert 2009). I converted the 
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sunfish abundances to site-specific densities as abundance divided by reach length (fish/m) 

because the length of stream reaches was variable. I used a removal design to establish stream-

fish occurrence at 80 channel unit sequences nested within 22 stream reaches in 2015 (Table 2; 

Appendix 2).  Stream fishes were considered present in a channel unit sequence once encountered 

and absent if not encountered during four electrofishing passes. A removal design was necessary 

due to a dependency among electrofishing passes (e.g., multiple individuals of a species were 

often shocked during a pass and the time between passes did not allow for system recovery), 

which limited information about detection among stream fishes and channel unit sequences. 

Subadults and adults were considered separately for Smallmouth Bass and Largemouth Bass 

Micropterus salmoides. I used 250-mm TL as the cutoff between subadults and adults for both 

Smallmouth Bass and Largemouth Bass, which is consistent with both age-3 Smallmouth Bass in 

Ozark Highland streams (Brewer and Long 2015) and the minimum size for mature Largemouth 

Bass (Claassen 2015). I did not consider subadults and adults separately for Spotted Bass 

Micropterus punctulatus because their life history is poorly understood (Churchill and Bettoli 

2015) and individuals large enough likely to have been adults were only encountered at four 

channel unit sequences. Individuals < 80 mm for all black basses were considered age 0 and not 

included in the study because they are not readily recruited to electrofishing (see Chapter 3 

methods). Redhorses were considered only at the genus level because accurate species 

identification is difficult in the field. I did not consider Redspot Chub for channel unit sequences 

surveyed in Turnback Creek and Little Sac River because these streams are located outside of 

their native range (Pflieger 1997).  

Sunfish traits. - I used sunfish morphological and life-history characteristics to examine trait-

environment relationships (Table 1). Each sunfish species was assigned to a morphological group 

(trait group A and B) based on groups developed in Chapter 2. Longevity and age at maturation 
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were acquired from “Fishes of Texas” (http://www.fishesoftexas.org/home/) to promote the 

regional accuracy of sunfish trait information.  

Environmental and spatial variables- I characterized instream environmental variation among 

channel unit sequences. Wetted channel width (1.0 m) and thalweg depth (0.1 m) were measured 

at 50-m transects unless the channel unit sequence was < 150 m (allowing for ± 5 m GPS error). 

For shorter channel unit sequences, I measured wetted channel width and thalweg depth near the 

upstream end of the run, near deepest area of the pool, and near the downstream end the pool. 

Wetted channel width and thalweg depth measurements were averaged for each channel unit 

sequence, where I also used the mean values to calculate a wetted width-depth ratio. GPS 

coordinates were recorded at both the upstream and downstream end of each channel unit 

sequence to estimate length (1.0 m). The area of each channel unit sequence (1.0 m2) was 

estimated as length multiplied by mean wetted channel width. I also measured the length of each 

riffle (1.0 m) to calculate the proportion of riffle habitat as riffle length divided by channel unit 

sequence area. The length (1.0 m) and width (1.0 m) of each patch of instream large wood and 

emergent vegetation were estimated to calculate area (1.0 m2). I calculated proportion of instream 

large wood, emergent vegetation, and total cover (i.e., instream large wood plus emergent 

vegetation) as the area of each divided by channel unit sequence area.  

 I characterized spatial factors for each stream reach and stream segment. I used distance 

to the nearest downstream impoundment to characterize the spatial location of each stream reach. 

Using ArcMap (version 10.2.1, ESRI, Red Lands, California), locations of stream reaches were 

georeferenced to 1:100,000 National Hydrography Dataset (NHD) flowlines 

(http://nhd.usgs.gov/data.html). Locations of impoundments were acquired from the National 

Anthropogenic Barrier Dataset 

(https://www.sciencebase.gov/catalog/item/56a7f9dce4b0b28f1184dabd/), the Oklahoma Dams 

Inventory (http://www.owrb.ok.gov/hazard/dam/dams.php), or the Missouri Dams Inventory 
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(https://www.gisinventory.net/GISI-26268-MO-2014-Dams-SHP-Dam-Inventory.html). The 

stream distance from the upstream end of the stream reach to the upstream edge of the nearest 

downstream impoundment (1.0 km) was calculated manually in ArcMap. Downstream link 

magnitude (D-link; Osborne and Wiley 1992), which incorporates both stream size and the size of 

the next downstream confluence to provide a measure of spatial location within the stream 

network, was calculated for each stream segment using ArcMap spatial analyst tools. 

Connectivity was a binary variable, where I assigned a one to a stream segment if a higher order 

downstream tributary occurred before an impoundment based on NHD flowlines. Because my 

sites were distributed from the southern boundary of the Ozark Highlands ecoregion to locations 

considerably further northeast, I also estimated the distance of the downstream end of each stream 

segment from the ecoregion centroid to account for variability in stream-fish assemblages due to 

spatial position relative to the ecoregion interior. Using ArcMap, the Ozark Highlands ecoregion 

centroid was determined based on Level III polygon geometry 

(https://archive.epa.gov/wed/ecoregions/web/html/level_iii_iv-2.html) and the Euclidean distance 

to the centroid (1.0 km) was measured manually from the downstream end of each stream 

segment. 

I also characterized instream environmental variation among stream reaches. I calculated 

D50 from pebble counts to characterize substrate size. (Gordon et al. 2004). Fifty “rocks” were 

collected haphazardly from three transitional zones at each stream reach (e.g., runs and 

downstream areas of pools). I measured the intermediate diameter (1.0 m) of each “rock” except 

for sand and silt, which were distinguished using texture. I used 0.25 mm to represent sand and 

0.05 mm to represent silt, which is consistent with average grain size on the Wentworth scale. I 

measured residual pool depth (a measure of pool depth independent of discharge) to characterize 

pool habitat. Residual pool depth was calculated for three pools at each stream reach as the 

difference in depth between the deepest point of a pool and the crest of the downstream riffle (0.1 
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m; Lisle 1987), where pools were chosen haphazardly at stream reaches with > 3 channel unit 

sequences. I calculated a bankfull width-depth ratio (Gordon et al. 2004) to characterize channel 

formation. In three transitional zones of each stream reach, I established bankfull using bank 

slope (i.e., a flat area adjacent to an abrupt slope towards the floodplain), point bars, deposition of 

fine sediment, and exposed root masses in undercut banks as indicators. I measured bankfull 

width (1.0 m) and bankfull depth (0.01 m), where depth was measured at 5.0-m intervals along a 

transect. I used the average D50, residual pool depth, and bankfull width-depth ratio to represent 

each stream reach. I calculated the proportion of riffle habitat. GPS coordinates were recorded at 

both the upstream and downstream ends of the reach to estimate length (1.0 m) and proportion of 

riffle habitat was estimated as the summed length of riffles divided by reach length. The length 

(1.0 m) and width (1.0 m) of each patch of instream large wood and emergent vegetation were 

estimated and proportional coverage was calculated in relation to reach area, where reach area 

was calculated as length multiplied by mean wetted channel width (see Chapter 3 methods). I 

used water temperature variation as a surrogate for relative groundwater contribution. Two water 

temperature loggers (HOBO ProV2, Onset, Bourne, Massachusetts) were deployed at stream 

reaches in a pool area ~ 1.0-m deep for ~4 weeks. When stream reaches were located within 0.5 

stream kilometers, the same loggers were used to characterize each reach. I used the mean water 

temperature and mean standard deviation between the two loggers to calculate a coefficient of 

variation (CV). The time period water temperature was recorded varied among reaches, where 

~70% of the loggers were active during January-February and the remaining loggers were active 

during April-May. I scaled the CV for each set of stream reaches by subtracting the mean CV and 

dividing by the standard deviation to improve comparability, where the resulting z-scores were 

used to represent relative groundwater contribution.  

Lastly, I characterized variation in environmental characteristics among stream segments. 

The sinuosity of each stream segment was calculated manually in ArcMap as stream length (1.0 
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m) divided by valley length (1.0 m). GIS layers were obtained for rock fragment type 

(http://www.soilinfo.psu.edu/), geology (https://gdg.sc.egov.usda.gov/), and land use 

(http://www.mrlc.gov/nlcd2011.php). I used the percentage of agriculture and development, the 

dominant rock fragment type, and the dominant geology type within a 500-m buffer to 

characterize each stream segment. Geosoil categories for the stream segments (see also Chapter 3 

methods) were developed based on rock fragment type and geology type as cherty limestone, 

cherty alluvium, cherty dolostone, stony alluvium, and shale. I calculated two-year flood 

magnitude to characterize the flow regime among stream segments. For ungaged stream 

segments, I predicted two-year flood magnitude based on the relationship between upstream 

drainage area and two-year flood magnitude at gaged hydrologically-similar segments with 

USGS gages. I defined a hydrologically-similar stream segment as being within both the 

“boundaries” of my study area and the range of drainage areas. Two-year flood magnitude for 

gaged stream segments was estimated with the Bulletin 17B method (IACWD 1982) using the 

online program PeakFQ (http://water.usgs.gov/software/PeakFQ/). Drainage area estimates for 

gaged and ungaged stream segments were obtained from USGS records and the NHD, 

respectively. Drainage area for a subset of the gaged stream segments was calculated using 

ArcMap to confirm consistency between USGS records and the NHD. I modeled the relationship 

between drainage area and two-year flood magnitude using ordinary-least-squares linear 

regression in the statistical software R (version 3.2.2, R Core Development Team, 2014), where 

the resulting equation was used to predict two-year flood magnitude at ungaged stream segments 

(Appendix 4). Two-year flood magnitude was log10 transformed to improve linearity and 

promote homoscedastic variance.  

Stream-fish density and occurrence models. – I used a linear mixed model to examine reach- and 

stream segment-scale factors influencing both variation in sunfish densities and trait-environment 

relationships. Sunfish density was natural-log transformed due to evidence of heteroscedastic 

variance. The natural log-transformation of sunfish density is also justifiable ecologically because 
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it diminishes the influence of extremely high densities in the analysis. D50, proportion emergent 

vegetation, proportion instream large wood, proportion total cover, distance to dam, and two-year 

flood magnitude were also natural-log transformed due to skewness. Shale was the reference for 

the geosoil categories. I included both stream reach and stream segment as random effects, where 

reaches were nested within segments. Because stream-fish occurrence can also vary considerably 

across temporal scales (Jackson et al. 2001), I incorporated both a year (2014 and 2015) and 

season random effect to account for temporal variability among the sampling events, where 

season was defined as late spring (May-June), summer (July-August), and early fall (September-

October). Stream fish was also treated as a random effect, where included environmental and 

spatial variables in the model had species-dependent terms (i.e., both slopes and intercepts varied 

among species). The trait-environment relationship was modeled as an interaction term (see Jamil 

et al. 2013). The model can be written as: 

(1)      (yijk) = b0 + 0i + 0j  + 0k + Ω0l + Φ0m + zijklm + (1xijklm + 1xjklm)  + (nxijklm + nxjklm ) +  

           (1aijklm + 1ajklm)  + (naijklm + najklm) + 1zxijklm + nzxijklm, 

where y is natural-log transformed sunfish density, b0 is the grand mean intercept,  is the random 

stream-fish intercept,  is the random stream reach intercept,  is the random stream segment 

intercept, Ω is the random season intercept, Φ is the random year intercept, z is a sunfish trait 

corresponding to observation i at reach  j nested in segment k in season l of year m, x is an 

environmental variable corresponding to observation i at reach  j nested in segment k in season l 

of year m, a is a spatial variable corresponding to observation i at reach  j nested in segment k in 

season l of year m, ixjklm  is the random species by environmental variable slope, iajklm  is the 

random species by spatial variable slope, and zxijklm is the sunfish trait-environment interaction 

term. Random effects were assumed normally distributed as N(0,τ2), where τ is the population 

variance among levels of a random effect. 
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 I used a generalized linear mixed model (GLMM) with a binomial error distribution to 

examine channel unit sequence- and reach-scale factors influencing variation in the occurrence of 

stream fishes, where occurrence was a binary response variable and a one indicated the stream 

fish was encountered in a channel unit sequence. Water depth, wetted channel width, width-depth 

ratio, channel unit sequence area and length, D50, distance to dam, and proportion cover, 

instream large wood, and emergent vegetation (both channel unit sequence and reach) were 

natural-log transformed due to asymmetry. I included both channel unit sequence and stream 

reach as random effects. I also incorporated a season random effect to account for temporal 

variability as described for the sunfish density model (only data collected in 2015 was used so a 

random year effect was not necessary). Stream fish was again treated as a random effect, where 

included environmental and spatial variables in the model had stream fish-dependent terms. The 

model can be written as: 

(2)      logit(yijk) = b0 + 0i + ω0j  + 0jk +  Ω0l + (1xijkl + 1xjkl)  + (nxijkl + nxjkl ) + (1aijkl + 1ajkl)  +   

           (naijkl + najkl), 

where y is the probability of stream-fish occurrence, b0 is the grand mean intercept,  is the 

random species intercept, ω is the random channel unit sequence intercept,  is the random stream 

reach intercept, Ω is the random season intercept, x is an environmental variable corresponding to 

observation i at channel unit sequence  j nested in reach k in season l, a is a spatial variable 

corresponding to observation i at channel unit sequence  j nested in reach k in season l, ixjkl  is the 

random species by environmental variable slope, iajklm  is the random species by spatial variable 

slope. Random effects were assumed normally distributed as N(0,τ2), where τ is the population 

variance among levels of a random effect. 

I used a tiered forward model selection similar to Jamil et al. (2013) for both the sunfish 

density model and stream-fish occurrence model. A forward selection is ideal for mixed models 
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when many variables are hypothesized to be important because it results in a parsimonious 

solution and overcomes convergence issues with the most complex models using a backward 

selection. I calculated the Pearson’s product moment coefficient (r) between variables prior to the 

model-selection process to allow levels of correlation to be considered. As variables were added 

to the models, remaining variables with |r| ≥ 0.28 (Graham 2003) were eliminated. I was more 

conservative with levels of correlation between variables than the detection models (see Chapter 

3 and Chapter 5 methods) to minimize confounded relationships between variables when 

interpreting model coefficients. The null models contained only the random intercepts. I 

considered environmental and spatial variables only as stream fish-dependent random terms 

during the first tier. In addition to individual variables, I also assessed interactions between 

percentage of agriculture and development and environmental variables for pairs of variables that 

were not correlated. The variable or interaction term that most decreased Akaike information 

criterion (by at least one) adjusted for small sample size (AICc; Burnham and Anderson 2001) 

was added to models at each step. The first tier of the model selection process stopped when no 

variables or interaction terms further decreased AICc and I then included fixed effects for 

selected environmental and spatial variables. 

I conducted an additional model selection tier to consider trait-interaction terms using 

selected environmental variables for the sunfish density model. Longevity and age at maturation 

were highly correlated (r = 0.72). Thus, I only considered morphology and age at maturation as 

sunfish traits. An environmental-trait interaction term was only retained in the final model if it 

decreased AICc by at least one. 

I assessed the variation in sunfish density and stream-fish occurrence explained by the 

models. Using the “MuMIn” package (Bartoń 2016) in the statistical software R, I also calculated 

conditional R2 (variation explained by both fixed effects and random factors) for both final 

models (Nakagawa and Schielzeth 2013; Johnson 2014) and compared them to the conditional R2 
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for null models to assess how much variation in sunfish density and stream-fish occurrence, 

respectively, was explained by included spatial and environmental variables. I did not calculate 

marginal R2, which assesses the variation explained only by fixed effects because I was only 

interested in specific relationships among stream fishes rather than general relationships across 

species. For example, coefficients for fixed effects in the sunfish model explain relationships 

between sunfish densities and variables regardless of species identity, which was not a study 

objective. I developed the models using the package “lme4” (Bates et al. 2014) in the statistical 

software R. All continuous variables were standardized such that each had a mean of zero and a 

variance of one to improve interpretation of model coefficients and promote model convergence.   

RESULTS 

Stream-fish assemblage. - Sunfish density among stream reaches was highly variable (Table 1). 

On average, Longear Sunfish had the highest and most variable densities among stream reaches. 

Warmouth and Redear Sunfish had the lowest densities among stream reaches. Densities were 

similar for Bluegill, Rock Bass, and Green Sunfish among stream reaches, although Bluegill and 

Green Sunfish densities were considerably more variable.  

 The occurrence of stream fishes among channel unit sequences was also considerably 

variable (Table 2). Redspot Chub, Longear Sunfish, and Green Sunfish were the most common 

stream fishes (encountered in ~ 90% of the channel unit sequences) and Spotted Sucker 

Minytrema melanops and White Crappie Pomoxis annularis were the least common 

(encountered in ~10% of the channel unit sequences). Both subadult Largemouth Bass and 

subadult Smallmouth Bass were more common than adults and were encountered in a similar 

proportion of channel unit sequences (~80%). Adult Smallmouth Bass were more common than 

adult Largemouth Bass (encountered in ~60% and ~30% of the channel unit sequences, 

respectively). Banded Sculpin Cottus carolinae, Bluegill, Northern Hogsucker Hypentelium 
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nigricans, Redhorses, and Rock Bass were relatively common (i.e., encountered in > 50 % of the 

channel unit sequences), whereas Creek Chub, Northern Studfish, Fundulus catenatus, Redear 

Sunfish, Spotted Bass, Warmouth, and White Sucker Catostomus commersonii were less 

common. Orangespotted Sunfish Lepomis humilis were not encountered in any channel unit 

sequence. 

Sunfish traits. – Trait characteristics were not considerably variable among sunfishes. Bluegill 

and Redear Sunfish (trait group A) were more similar in morphology than other sunfishes (Table 

1). Age at maturation and longevity among sunfishes ranged from 1-3 y and 3-7 y, respectively. 

Longear Sunfish and Rock Bass tend to live longer and reproduce at a later age than other 

sunfishes. Bluegill and Green Sunfish mature at a younger age, whereas Warmouth was the 

shortest-lived sunfish. 

Environmental and spatial variables. Channel unit sequence-, reach-, and segment-scale variables 

provided considerable environmental and spatial variability to examine relationships with both 

sunfish densities and stream-fish occurrence. All instream environmental variables used to 

characterize channel unit sequences were highly variable (Table 3). Values for instream 

environmental variables and distance to downstream impoundment were similar for all stream 

reaches (i.e., 2014 and 2015; Table 4; Appendix 2) and for reaches surveyed only in 2015 (Table 

5; Appendix 2). Water temperature variation was the most variable environmental characteristic 

among stream reaches. Stream reaches tended to be located close to impoundments (i.e., ~10-20 

km), although some were considerably closer (< 5 km; e.g., Saline Creek1, Spavinaw Creek2, and 

Caney Creek1) or further (> 50 km; Flint Creek1, Flint Creek2; Appendix 2). The proportion of 

agriculture and development varied considerably among stream segments, with Greenleaf Creek1 

having a particularly low proportion (0.05) and Turnback Creek1, Saline Creek1, Lost Creek1, 

Honey Creek1, and 14-mile Creek1 having much higher proportions (~0.70; Table 6; Appendix 

3).). Stream segments were generally a similar distance from the Ozark Highlands ecoregions 
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centroid (~ 200-250 km); however, Greenleaf Creek1 and Sallisaw Creek1 were located further 

(> 280 km) than other segments and Little Sac River1 and Turnback Creek1 were considerably 

closer (~100 km). D-link was a considerably variable spatial characteristic among stream 

segments and approximately half of the segments (11 of 20) were upstream of a higher order 

tributary.  

Stream-fish density and occurrence models. - I identified one reach-scale environmental 

characteristic and one segment-scale environmental characteristic associated with variation in 

sunfish densities; however, the model-selection process did not identify any spatial or trait-

environment relationships. Reach-scale water temperature variation and the segment-scale geosoil 

category were included in the final sunfish density model (Table 7). Estimated densities of 

Longear Sunfish, Bluegill, and Green Sunfish increased with increasing reach-scale water 

temperature variation (thus decreasing relative groundwater influence); however, the magnitude 

of the relationship was much stronger (i.e., greater positive slope) for Longear Sunfish (Table 7; 

Figure 1). Estimated Rock Bass and Warmouth densities decreased with increasing reach-scale 

water temperature variation, with the relationship much more pronounced for Rock Bass. There 

was virtually no relationship between Redear Sunfish densities and reach-scale water temperature 

variation (Table 7). Relative to shale, increased Longear Sunfish and Green Sunfish densities 

were associated with stream segments classified as stony alluvium (Figure 2). Higher Bluegill, 

Redear Sunfish, and Warmouth densities were associated with shale relative to other segment-

scale geosoil groups, although the magnitude of the relationship was difficult to interpret for 

Warmouth due to very low estimated densities in all geosoil groups. Estimated Rock Bass 

densities increased with cherty alluvium and cherty limestone relative to shale, whereas decreased 

densities at the segment scale were associated with stony alluvium (Table 7). 

  My final model explained a moderate amount of total variation in sunfish densities and 

remaining variation due to temporal factors was minimal. Remaining variation in sunfish 
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densities due to random temporal factors was minimal (remaining variance ± SD: 0.03 ± 0.18 and 

0.02 ± 0.14 for season and year, respectively), although sunfish densities tended to be slightly 

lower at reaches sampled in season one (May and June) and reaches sampled in 2014. Remaining 

variation in sunfish densities was higher at the stream segment scale than the stream reach scale 

(remaining variance ± SD: 0.51 ± 0.71 and 0.31 ± 0.56, respectively). Conditional R2 for the null 

model and final model was 0.63 and 0.80, respectively. Thus, reach-scale water temperature 

variation and segment-scale geosoil explained 17% of the variation in sunfish densities among 

stream reaches. 

 I identified one channel unit sequence-scale characteristic and three reach-scale 

environmental characteristics associated with variation in the stream-fish occurrence. Identical to 

the sunfish density model, the model-selection process identified reach-scale water temperature 

variation as a factor related to Ozark Highland stream-fish distributions. Channel unit sequence 

area and both reach-scale D50 and residual pool depth were also included in the final model 

(Table 8).  

The probability of occurrence increased for all stream fishes with increasing channel unit 

sequence area; however, the magnitude of the relationship varied. For example, Northern Studfish 

was much more likely to occur in channel unit sequences with greater area, where occurrence 

probability was much higher (~0.80 with other variables at mean levels; Figure 2). Spotted 

Sucker and White Crappie were also more likely to occur in channel unit sequences with greater 

area relative to other stream fishes (Table 8). Conversely, the probability of Redspot Chub 

occurrence had virtually no relationship with increasing channel unit sequence area (Figure 2).  

The relationship between occurrence and reach-scale substrate size varied among stream 

fishes. For example, the probability of adult Largemouth Bass occurrence increased sharply with 

increasing substrate size (Figure 3). Subadult Largemouth Bass, Spotted Bass, and Warmouth 
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were more likely to occur in channel unit sequences nested in reaches with larger substrate 

relative to other stream fishes (Table 8). Conversely, both subadult and adult Smallmouth Bass 

were less likely to occur as reach-scale substrate size increased, although the magnitude of the 

relationship was stronger for subadults. Rock Bass was the only sunfish with a negative 

relationship with larger reach-scale substrate, where occurrence probability decreased sharply 

with increasing D50 (Table 8; Figure 3). Northern Studfish occurrence probability also decreased 

considerably in channel unit sequences nested in stream reaches with larger substrate (Table 8). 

There was virtually no relationship with reach-scale substrate size and occurrence probability for 

some stream fishes (e.g., Bluegill, redhorses, and Spotted Sucker). The occurrence of Banded 

Sculpin, a benthic species, was also not associated with reach-scale substrate size (Figure 3).  

The occurrence of most stream fishes among channel unit sequences was associated with 

reach-scale water temperature variation. For example, the occurrence probability of Redspot 

Chub, a very common species across my sites, decreased sharply with increasing reach-scale 

water temperature variation (thus decreasing reach-scale relative groundwater contribution; 

Figure 4). Although the relationship was weaker for Banded Sculpin and Northern Hogsucker, 

these stream fishes were also less likely to occur in channel unit sequences nested in stream 

reaches with greater water temperature variation (Table 8). Among black basses, the probability 

of occurrence for both subadult and adult Smallmouth Bass declined with increasing reach-scale 

water temperature variation, but increased for Spotted Bass and both subadult and adult 

Largemouth Bass. The relationship between reach-scale water temperature variation and sunfish 

occurrence, with the exception of Redear Sunfish, was similar to relationships with densities. 

Green Sunfish, Longear Sunfish, Bluegill, and Redear Sunfish occurrence was positively 

associated with greater water temperature variation, whereas Rock Bass and Warmouth showed 

opposite relationships (Table 8; Figure 4).  
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The relationship between occurrence among channel unit sequences and reach-scale 

residual pool depth was not as variable as reach-scale substrate size and water temperature 

variation, although there were notable relationships among stream fishes. Green Sunfish and 

Longear Sunfish were more likely to occur in channel unit sequences nested in stream reaches 

with deeper residual pools (Table 8; Figure 5). Conversely, occurrence probability for Northern 

Studfish, White Sucker, and Rock Bass was higher in reaches with shallower residual pools. 

Among black basses, increased occurrence of Spotted Bass and both subadult and adult 

Largemouth Bass was associated with stream reaches with deeper residual pools, whereas 

occurrence probability for both subadult and adult Smallmouth Bass decreased with increasing 

with residual pool depth (Table 8). There was virtually no relationship between reach-scale 

residual pool depth and occurrence probability for redhorses and White Crappie. 

 My final model explained a respectable amount of total variation in stream-fish 

occurrence and remaining variation was somewhat due to temporal factors. There was more 

remaining temporal variation in stream-fish occurrence (remaining variance among seasons ± SD: 

0.37 ± 0.50) than at the channel unit sequence scale and stream reach scale, where overall stream-

fish occurrence was lower in season one (May-June). Remaining variation in stream-fish 

occurrence was higher at the channel unit sequence scale than the stream-reach scale (remaining 

variance ± SD: 0.25 ± 0.50 and 0.12 ± 0.35, respectively). Conditional R2 for the null model and 

final model was 0.50 and 0.79, respectively. Thus, channel unit sequence area, reach-scale 

substrate size, reach-scale water temperature variation, and reach-scale residual pool depth 

explained 29% of the variation in stream-fish occurrence among channel unit sequences. 

DISCUSSION 

My findings highlight the advantages of using a hierarchical approach to identify 

multiscale abiotic factors associated with the distribution of stream fishes. I identified 
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relationships between Ozark Highland stream fishes and environmental variables at three spatial 

scales. Multiple intermediate-scale (i.e., stream reach and segment scale) environmental variables 

explained variation in either sunfish densities or stream-fish occurrence (or both). Variation in 

sunfish densities was associated with both reach-scale relative groundwater contribution and 

segment-scale lithology, which provides insight into environmental relationships at scales that 

both reflect their life history and are relevant to long-term management. Variation in the 

occurrence of stream fishes, including both sportfishes and species of conservation interest, was 

explained to some degree by channel unit sequence area but was also associated with multiple 

intermediate-scale environmental characteristics (reach-scale relative groundwater contribution, 

reach scale-substrate size, and reach-scale residual pool depth).  

Relationships with relative groundwater contribution based on water temperature 

variability were similar for both sunfish densities and occurrence; however, this reach-scale 

environmental characteristic was most strongly associated with variation in Longear Sunfish and 

Rock Bass densities. Both Longear Sunfish and Rock Bass were unusually rare in some reaches, 

which can somewhat be explained by model results. For example, reaches in lower Spring Creek 

(Spring Creek1, Spring Creek2, and Spring Creek3), which had high relative groundwater 

contribution, were void of Longear Sunfish (with low sunfish densities in general), but had high 

densities of Rock Bass. However, Longear Sunfish were found at moderate densities at a reach of 

Spring Creek ~15 km upstream (Spring Creek4), which had considerably lower relative 

groundwater contribution than reaches of lower Spring Creek. A similar trend in densities was 

observed at stream reaches nested in the upper segment of Spavinaw Creek (Spavinaw Creek1), 

which also had high relative groundwater contribution, where Longear Sunfish were found at 

relatively low densities and Rock Bass were found at high densities. Conversely, reaches of Little 

Sac River and Greenleaf Creek, which had relatively low groundwater contribution were void of 

Rock Bass, but one could walk across Longear Sunfish. Presumably, the relationship between 
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groundwater contribution and variation in sunfish densities was associated with thermal 

requirements and preferences (e.g., reaches with more groundwater contribution would have less 

extremes in water temperature). For example, the “FishTraits” database reports a lower thermal 

tolerance for Rock Bass (29° C) than other sunfishes considered here (33° C). However, 

groundwater has numerous influences on instream processes (see Introduction) and it is difficult 

to speculate on functional relationships based solely on empirical observations, especially given 

the considerable unexplained variation in sunfish densities. The relationship between 

groundwater contribution and Rock Bass and Longear Sunfish densities may also have been 

somewhat confounded with differing relationships between the species with water turbidity. 

Water clarity is high at both Spavinaw Creek and Spring Creek under baseflows, whereas Little 

Sac River is consistently turbid (personal observations); however, I did not quantify water 

turbidity at baseflows among stream reaches. 

Notable observed trends in sunfish densities can also be somewhat explained by the 

modeled relationship with segment-scale lithology. Longear Sunfish and Green Sunfish densities 

were very high at Sallisaw Creek, which was classified as stony alluvium, but Rock Bass 

densities were low. However, the relationship between Longear Sunfish, Green Sunfish, and 

Rock Bass densities with lithology may be correlated with water turbidity because Sallisaw Creek 

is relatively turbid under baseflows (personal observation). The relationship between shale and 

both Bluegill and Redear Sunfish densities is particularly interesting. I observed the highest 

densities of Bluegill and Redear Sunfish in the lower stream segment of Spavinaw Creek 

(Spavinaw Creek2), which was classified as shale, where nested stream reaches were located ~1 

km from an impoundment. The model results suggest that high Redear Sunfish and Bluegill 

densities in lower Spavinaw Creek were associated with lithology rather than spatial position, 

which is supported by much lower densities at other stream reaches in close proximity of 

impoundments (e.g. Saline Creek1, Saline Creek2, and Honey Creek1).  
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My findings also provided insight into multiscale factors associated with the occurrence 

of both a stream-fish species of conservation concern and less common Ozark stream fishes 

across my study area. Reach-scale relative groundwater contribution was associated with the 

occurrence of both Redspot Chub and Banded Sculpin among channel unit sequences. The strong 

negative relationship between Redspot Chub occurrence and decreasing groundwater contribution 

supports the perceived importance of spring flow for their persistence (Seilheimer and Fisher 

2010; KDWPT 2016). My finding that Banded Sculpin occurrence was not associated with reach-

scale substrate size is consistent with other research. Burr et al. (2001) found that Banded Sculpin 

were more common in cave streams, but occurred across a range of substrate sizes. Northern 

Studfish was not associated with groundwater contribution; however, their occurrence was 

strongly associated with larger channel unit sequence area, smaller reach-scale substrate, and 

shallower reach-scale residual pools. The relationship between Northern Studfish and 

environmental factors is noteworthy because they were relatively uncommon across my study 

area, but fairly abundant when encountered. Although Northern Studfish is a poorly studied 

species, my findings are consistent with research at a finer scale. Northern Studfish have been 

associated with shallower pools and sand-gravel substrate at the channel-unit scale (Lonzarich et 

al. 2000). Lonzarich et al. (2000) also documented considerable diurnal movement for Northern 

Studfish, which may explain their increased occurrence in larger channel unit sequences (i.e., 

more room to mingle). The increased occurrence of White Crappie and Spotted Sucker (very rare 

species in my study area) in larger channel unit sequences is likely related to their tendency to 

occupy large rivers (Pflieger 1997) and also suggests they select habitat in smaller streams at a 

finer scale (i.e., no reach-scale variables that I measured were associate with the occurrence of 

either species). The positive relationship between the occurrence of Spotted Bass, a rare black 

bass species across my study area, and both deeper reach-scale residual pools and lower reach-

scale groundwater contribution was not surprising. Spotted Bass are associated with warmer 

streams and commonly inhabit reservoirs (Warren 2009). Although Spotted Bass is associated 
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with sand-gravel (Churchill and Bettoli 2015), my results suggest a relationship with larger 

substrate at the reach-scale. For example, Spotted Bass was encountered at reaches of Little Sac 

River and Turnback Creek, which despite having a notable amounts of fines (i.e., sand and silt), 

had larger substrate on average. The modeled relationship between Spotted Bass occurrence and 

substrate size may also be confounded with water turbidity. Spotted Bass is also associated with 

turbid water (Warren 2009) and stream reaches of Turnback Creek and Little Sac River, where 

they were encountered, were very turbid at baseflows (personal observation). However, Spotted 

Bass was also encountered at a reach of Caney Creek, which also had larger substrate but is clear 

under baseflows (personal observation).  

My findings concerning Smallmouth Bass, a stream fish of both ecological and 

recreational value, demonstrate how different stream fish-environment relationships (similar to 

Spotted Bass; see above) can emerge when viewed at different scales. McClendon and Rabeni 

(1987) found that Smallmouth Bass in Ozark Highland streams were associated with larger 

substrate at the channel-unit scale, whereas my results indicated that increased occurrence among 

channel unit sequences (for both subadults and adults) was associated with smaller reach-scale 

substrate. Thus, Smallmouth Bass may be associated with larger substrate from a finer-scale 

perspective; however, they may tend to occupy stream reaches with relatively smaller substrate. 

The nature of the relationship between Smallmouth Bass and substrate size is perhaps related to 

crayfish, which are an important forage base for Smallmouth Bass (Brewer and Orth 2015). 

Ringed Crayfish Orconectes neglectus neglectus, a common species in my study area (Morehouse 

and Tobler 2013), is associated with gravel (i.e., smaller) substrate (Pflieger 1996). Also, Ringed 

Crayfish tended to be found in higher abundance at sites with relatively lower D50 (i.e., 20-25 

mm; unpublished data), which is consistent with gravel on the Wentworth scale. However, the 

relationship between Smallmouth Bass and substrate size may also be confounded with water 

turbidity because stream reaches with larger substrate (e.g., Turnback Creek1 and Little Sac 
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River1) tended to have higher turbidity. Increased occurrence of both subadult and adult 

Smallmouth Bass among channel unit sequences was also associated with shallower reach-scale 

residual pools. Increased subadult Smallmouth Bass occurrence in reaches with shallower 

residual pool depth was not surprising because fish > 250-mm TL in Ozark Highland streams 

tend to occupy runs and shallower pool areas (Probst et al. 1984; personal observations). 

However, the increased occurrence of adult Smallmouth Bass, contrary to Largemouth Bass, in 

reaches with shallower residual pools is interesting. Other studies have also found reach-scale 

relationships between Smallmouth Bass and pool habitat. For example, Sowa and Rabeni (1995), 

Dauwalter et al. (2007), and  Brewer (2013a) showed that increased Smallmouth Bass densities 

were associated with stream reaches with lower proportions of pool habitat, presumably due to 

increased crayfish biomass. The increased occurrence of both subadult and adult Smallmouth 

Bass with increasing reach-scale relative groundwater contribution is consistent with Brewer 

(2013b) who found that > age-0 Smallmouth Bass were associated with areas of higher spring 

flow at both the channel unit- and segment-scale. 

I did not identify any relationships between stream-fish distributions and land use or 

spatial factors. Sunfish densities were not associated with segment-scale agriculture and 

development as either an individual or interaction effect. However, my findings do not discount 

the importance of land use on stream-fish distributions, particularly at coarser scales. For 

example, relationships may have emerged if I had examined variation in densities among stream 

fishes (preferably with the inclusion of additional species) in relation to watershed-scale land use; 

however, this was both not a study objective and could not be adequately addressed given both 

my dataset and the spatial extent of the study area. Despite variability in spatial factors among 

both stream reaches and steam segments, I also did not identify any relationships with either 

sunfish densities or stream-fish occurrence. Nevertheless, it was fundamentally important to 
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incorporate spatial variables into the analyses to promote improved interpretation of relationships 

with environmental factors among stream fishes. 

The failure to establish sunfish trait-environment relationships was not surprising. Stream 

fish-trait relationships with groundwater contribution would likely be a function of thermal 

preferences, rather than reproductive or morphological traits; however, variation in thermal 

tolerances among sunfishes were not adequate to examine in a trait-based context (see above). 

Lithology has a profound effect on the instream environment, including influencing forage bases 

for fishes (e.g., invertebrate populations; Neff and Jackson 2012). Morphological traits related to 

feeding strategies could certainly be associated with lithology, although relationships would be 

more likely to emerge when examining a larger group of stream fishes with more morphological 

variation.  

I used a coarse method to estimate relative groundwater contribution that was not without 

its limitations; however, it still provided a useful way to characterize stream reaches. The most 

notable caveat of my approach is that water temperature loggers need to be deployed at stream 

reaches during the same time period to provide direct comparisons of relative groundwater 

contribution. Another consideration is that, although air temperature variation was the same for 

each set of loggers, canopy cover and solar radiation may have varied somewhat among stream 

reaches in the spring. However, the z-scores derived to improve comparably between the two sets 

of loggers provided a general ranking of stream reaches appropriate to address my study 

objectives. The exact ordering of stream reaches may have differed if all the loggers were 

deployed during the same period (preferably in the winter), although it is unlikely this would have 

drastically altered findings related to sunfish densities or stream-fish occurrence.  

Although variable detection can be estimated for a removal design (MacKenzie and 

Royle 2005), the nature of my dataset prevented an informative assessment. Most commonly, 
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stream fishes were encountered either during the first or second electrofishing pass or not all, 

which provided limited information about species detection. My data also suggested that 

additional removal passes would have rarely resulted in the encounter of additional stream fishes 

or provided more insight into species detection (e.g., only ~3% of the encounters occurred on the 

fourth electrofishing pass). Snorkeling surveys were also performed at a subset of channel unit 

sequences (n = 30) ~24 h after the electrofishing passes when water clarity was adequate and no 

additional stream fishes were encountered. Thus, my data and field observations support that the 

electrofishing effort was adequate to establish stream-fish occurrence among channel unit 

sequences, although it represented naïve occurrence. 

Despite considerable research efforts, stream fishes continue to decline at alarming rates 

and species-environment relationships remain poorly understood (see also both Introduction and 

Chapter 1). A critical aspect of establishing empirical relationships between species and the 

environment are analytical methods that accommodate the hierarchical nature common to stream-

fish datasets. Ignoring the hierarchy (i.e., nested structure) common to stream-fish datasets when 

performing analyses can lead to false inferences and represents a form of pseudoreplication 

(Wagner et al. 2006; Stewart-Koster et al. 2013). For example, examining finer scale-

observations (e.g., channel unit- or reach-scale population assessments) in relation to watershed-

scale characteristics without including grouping factors (i.e., random effects) to accommodate the 

nested study design is both fundamentally inappropriate and can result in spurious conclusions. 

By incorporating random effects (i.e., using a mixed model), I found that remaining variation in 

sunfish densities in the final model was higher among segments than reaches and a traditional 

regression model (i.e., ordinary least squares and generalized linear models) would have ignored 

this coarser-scale variation. Furthermore, simply including multiscale fixed effects in a traditional 

regression model (i.e., they are not nested) does not account for hierarchically-structured data and 

confounds results. The inclusion of a seasonal random effect in the stream-fish occurrence model 
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identified additional variation at different temporal scales. Also, the variance partitioning (i.e., 

grouping factors) in mixed models provides not only an assessment of remaining variation for 

each random effect, but also allows for an evaluation of the total variation accounted for among 

observations. For example, the conditional R2 for both the final sunfish density model and stream-

fish occurrence model indicated that I accounted for (albeit not explained) ~80% of the variation 

among observations, which lends support to the validity of my findings. There are also 

advantages of using mixed models to analyze multi-species datasets, where species is also treated 

as a random effect (see both Chapter 3 Methods and Discussion). In fact, treating species as a 

random effect is advisable even when only a few species are considered. When there are only a 

few levels of a random effect, mixed model performance is at a minimum equal to using a 

categorical fixed effect in a traditional regression model and a reference category is not needed, 

thus simplifying interpretation (Gelman and Hill 2007). A trade-off of modeling multiple species 

simultaneously using a mixed model is that the random components (i.e., intercepts and slopes) 

represent a compromise between species-specific fit and overall model fit (shrinkage estimates; 

Pinheiro and Bates 2000); therefore, different relationships may emerge if a single-species model 

is used (here the explicit objective was to examine variation among species). Although mixed 

models may lack the elegance of Canonical Correspondence Analysis (Palmer 1993), they are an 

effective, flexible approach to identify species-environment relationships, where the magnitude of 

relationships can be both visualized and quantified. Additionally, a mixed model is superior to 

ordination for both predictive applications and accommodating the inherent pseudoreplication and 

unequal sample sizes common to ecological datasets (Jamil et al 2013). 

Conservation and management implications. - A multiscale perspective is essential to the long-

term success of stream-fish conservation and management. The consideration of coarser-scale 

factors that constrain stream-fish distributions at finer scales promotes both the efficient use of 

resources and sound decisions. For example, the likelihood of channel-unit scale habitat 
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enhancements to improve stream-fish population status is greatly increased when coarser-scale 

factors (e.g., land use and flow regime) are favorable for target species. The effective 

manipulation of instream habitat is also constrained by coarser-scale factors. For example, 

restoring groundwater flow in streams is plausible, but its success largely depends on watershed-

scale land use (Kasahara and Hill 2006a; Kasahara and Hill 2006b). Furthermore, life-history 

characteristics of stream fishes are often a reflection of factors at multiple scales and habitat use 

may be primarily due to intermediate-scale factors (Fausch et al. 2002). For example, I found 

Northern Studfish occurrence was associated with larger channel unit sequences, but also 

multiple reach-scale factors. Similarly, my findings support other studies that suggest 

Smallmouth Bass habitat associations may differ when viewed from the intermediate scale. Thus, 

managers may consider addressing multiple scales simultaneously to maximize success, with a 

particular emphasis on intermediate-scale characteristics.
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Table 1.  Mean density and trait characteristics of six stream fish species sampled using tow-barge electrofishing at 40 stream reaches in 

the Ozark Highlands ecoregion of northeast Oklahoma and southwest Missouri in 2014-2015. Trait groups are morphological groups 

developed in Chapter 2. Age at maturation and longevity reflected both male and female individuals.

 

Common name 

 

Latin name 

Mean density 

(fish/m) ± SD 

Trait 

group 

Longevity  

(yr) 

Age at maturation  

(yr) 

Bluegill Lepomis macrochirus  0.48 ± 0.80 A 5 1 

Green Sunfish Lepomis cyanellus  0.48 ± 0.70 B 5 1 

Longear Sunfish Lepomis megalotis   1.77 ± 2.18 B 6 3 

Redear Sunfish Lepomis microlophus 0.07 ± 0.27 A 5 2 

Rock Bass Ambloplites rupestris   0.35 ± 0.31 B 7 3 

Warmouth Lepomis gulosus    0.06 ± 0.12 B 3 1 
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Table 2.  Twenty-one stream fishes of the Ozark Highlands ecoregion included in an examination 

of stream-fish occurrence using both channel unit sequence- and stream reach-scale variables. 

 

Common name 

 

Latin name 

Proportion of 

occurrence 

Banded Sculpin Cottus carolinae 0.74 

Bluegill Lepomis macrochirus  0.79 

Creek Chub Semotilus atromaculatus  0.45 

Green Sunfish Lepomis cyanellus  0.88 

Largemouth Bass (subadult) Micropterus salmoides 0.70 

Largemouth Bass (adult) Micropterus salmoides 0.28 

Longear Sunfish Lepomis megalotis   0.88 

Northern Hogsucker Hypentelium nigricans  0.78 

Northern Studfish Fundulus catenatus  0.23 

Redhorses  Moxostoma spp. 0.66 

Redear Sunfish Lepomis microlophus 0.31 

Redspot Chub Nocomis asper   0.87 

Rock Bass Ambloplites rupestris   0.74 

Smallmouth Bass (subadult) Micropterus dolomieu   0.79 

Smallmouth Bass (adult) Micropterus dolomieu   0.58 

Spotted Bass Micropterus punctulatus   0.18 

Spotted Sucker Minytrema melanops   0.09 

Warmouth Lepomis gulosus    0.38 

White Crappie Pomoxis annularis   0.10 

White Sucker Catostomus commersoni   0.18 
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Table 3. Continuous variables to characterize 80 channel unit sequences in the Ozark Highlands 

ecoregion of northeast Oklahoma and southwest Missouri. See Methods for a detailed description 

of variables. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Variable  Minimum Maximum Mean ± SD 

Mean water depth (m)   0.23         1.55             0.81 ± 0.28 

Mean wetted channel width (m)   4.00       34.50          13.42  ± 6.25 

Wetted width-depth ratio    4.55       49.17           17.75 ± 8.48 

Proportion emergent vegetation   0.00         0.31            0.03  ± 0.05 

Proportion instream large wood   0.00         0.40            0.04  ± 0.06 

Proportion total cover   0.00         0.40             0.06 ± 0.08 

Proportion riffle   0.02         0.68             0.26 ± 0.16 

Area (m2) 75.00 12938.00 2422.96 ± 2433.16 

Length (m) 15.00     456.00       154.53 ± 99.71 
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Table 4. Continuous variables to characterize 40 stream reaches in the Ozark Highlands 

ecoregion of northeast Oklahoma and southwest Missouri surveyed in 2014-2015. Relative 

groundwater contribution is reported as a z-score. See Methods for a detailed description of 

variables. 

 

 

 

 

 

 

 

Variable  Minimum Maximum Mean ± SD 

Bankfull width-depth ratio  17.00   72.00  45.90 ± 15.40 

D50 (mm) 20.00 131.00  34.63 ± 23.25 

Water temperature variation   -1.37     1.87    -0.32 ± 0.89 

Proportion riffle   0.07     0.42     0.23 ± 0.09 

Residual pool depth (m)   0.50     2.00     1.23 ± 0.36 

Proportion emergent vegetation   0.00     0.25     0.04 ± 0.05 

Proportion instream large wood   0.00     0.10     0.04 ± 0.02 

Proportion total cover   0.00     0.28     0.07 ± 0.05 

Distance to impoundment (km)   1.00   86.00 21.88 ± 22.19 
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Table 5. Continuous variables to characterize 22 stream reaches in the Ozark Highlands 

ecoregion of northeast Oklahoma and southwest Missouri surveyed in 2015 using tow-barge 

electrofishing. Relative groundwater contribution is reported as a z-score. See Methods for a 

detailed description of variables. 

  Variable  Minimum Maximum Mean ± SD 

Bankfull width-depth ratio  17.00   67.00 38.59 ± 14.37 

D50 (mm) 20.00 131.00 38.11 ± 27.41 

Water temperature variation   -1.37     1.87    -0.10 ± 0.92 

Proportion riffle   0.12     0.42     0.24 ± 0.09 

Residual pool depth (m)   0.50     1.70     1.09 ± 0.35 

Proportion emergent vegetation   0.00     0.21     0.03 ± 0.05 

Proportion instream large wood   0.00     0.10     0.04 ± 0.02 

Proportion total cover   0.00     0.23     0.06 ± 0.05 

Distance to impoundment (km)   2.00   71.00 18.35 ± 15.94  
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Table 6. Continuous variables that characterized 20 stream segments in the Ozark Highlands 

ecoregion of northeast Oklahoma and southwest Missouri. See Methods for a detailed description 

of variables. 

 

 

 

 

 

  

Variable  Minimum Maximum Mean ± SD 

D-link      4.00  325.00 108.93 ± 100.75 

Proportion agriculture and development      0.05      0.71         0.49 ± 0.18 

Distance to ecoregion centroid (km)    92.00  285.00   230.20 ± 41.04 

Sinuosity      1.09      1.73         1.35 ± 0.19 

Two-year flood magnitude (m3/sec)    87.00  355.00   160.93 ± 79.02 
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Table 7. Fixed effects and species-dependent coefficients with standard error from a linear mixed model to identify environmental and spatial 

factors related to variation in sunfish density, where sunfish density was natural-log transformed. All continuous variables were standardized such 

that each had a mean of zero and a standard deviation of one, where the model intercept estimates sunfish density at mean conditions and 

coefficients for continuous variables represent a unit change of one standard deviation. Geosoil is categorical, where shale is the reference 

category. Water temperature variation was measured as a surrogate for relative groundwater contribution, where a negative coefficient represents a 

positive relationship with increased groundwater contribution. 

 

 

Effect 

 

 

Intercept 

Reach water 

temperature 

variation  

 

Segment geosoil  

(Cherty alluvium) 

 

Segment geosoil  

(Stony alluvium) 

 

Segment geosoil  

(Cherty limestone) 

 

Segment geosoil  

(Cherty dolostone) 

Fixed -1.88 ± 0.85  0.17 ± 0.39 -1.34 ± 1.08  0.52 ± 1.18 -0.77 ± 1.10 -0.82 ± 1.00 

Bluegill -1.04 ± 0.43  0.51 ± 0.21 -1.77 ± 0.55  0.79 ± 0.62 -0.96 ± 0.54 -0.66 ± 0.24 

Green Sunfish -1.11 ± 0.43  0.67 ± 0.21 -1.09 ± 0.55  1.40 ± 0.62 -0.16 ± 0.54 -0.22 ± 0.24 

Longear Sunfish -0.53 ± 0.43  1.13 ± 0.21 -0.77 ± 0.55  2.33 ± 0.62  0.48 ± 0.54  0.32 ± 0.24 

Redear Sunfish -2.13 ± 0.43 -0.01 ± 0.21 -3.94 ± 0.55 -0.38 ± 0.62 -3.65 ± 0.54 -2.72 ± 0.24 

Rock Bass -2.99 ± 0.43 -1.03 ± 0.21  1.60 ± 0.55 -1.29 ± 0.62  1.65 ± 0.54  0.55 ± 0.24 

Warmouth -3.49 ± 0.43 -0.26 ± 0.21 -2.09 ± 0.55  0.25 ± 0.62 -1.95 ± 0.54 -2.20 ± 0.24 
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Table 8. Fixed effects and species-dependent coefficients with standard error from a multiscale generalized linear mixed model to identify 

environmental and spatial factors related to variation in occurrence of 20 stream fishes of the Ozark Highlands ecoregion Stream-fish occurrence 

was a binary variable and the probability of stream-fish occurrence is reported on a logit scale. All variables were standardized such that each had 

a mean of zero and a standard deviation of one, where the model intercept estimated the probability of stream-fish occurrence at mean conditions 

and coefficients for continuous variables represent a unit change of one standard deviation. Water temperature variation was measured as a 

surrogate for relative groundwater contribution, where a negative coefficient represents a positive relationship with increased groundwater 

contribution. 

 

 

Effect 

 

 

Intercept 

 

Channel unit 

sequence area (m2)  

 

 

Reach D50 (mm)  

Reach water 

temperature 

variation 

Reach 

residual pool 

depth (m) 

Fixed -0.01 ± 0.56   0.92 ± 0.13  0.03 ± 0.18  0.04 ± 0.24 -0.04 ± 0.15 

Banded Sculpin  1.13 ± 0.38   0.69 ± 0.14 -0.09 ± 0.26 -0.67 ± 0.26 -0.14 ± 0.15 

Bluegill  1.36 ± 0.38   0.95 ± 0.16  0.16 ± 0.27  0.64 ± 0.30  0.17 ± 0.15 

Creek Chub -0.39 ± 0.36   1.09 ± 0.14 -0.24 ± 0.22  0.27 ± 0.25 -0.15 ± 0.14 

Green Sunfish  2.12 ± 0.44   0.88 ± 0.17  0.36 ± 0.32  0.91 ± 0.39  0.38 ± 0.19 

Largemouth Bass (subadult)  0.86 ± 0.36   0.69 ± 0.15  0.68 ± 0.27  0.36 ± 0.27  0.38 ± 0.15 

Largemouth Bass (adult) -1.27 ± 0.38   0.77 ± 0.15  0.70 ± 0.25  0.29 ± 0.26  0.29 ± 0.14 

Longear Sunfish  2.15 ± 0.45   0.86 ± 0.17  0.41 ± 0.32  0.93 ± 0.40  0.41 ± 0.19 

Northern Hogsucker  1.37 ± 0.39   0.81 ± 0.14 -0.27 ± 0.26 -0.51 ± 0.26 -0.21 ± 0.15 

Northern Studfish -1.83 ± 0.42   1.38 ± 0.17 -0.69 ± 0.30  0.10 ± 0.30 -0.53 ± 0.18 

Redear Sunfish -1.09 ± 0.37   1.03 ± 0.14  0.25 ± 0.23  0.66 ± 0.26  0.14 ± 0.14 

Redhorses  0.62 ± 0.36   0.92 ± 0.14  0.11 ± 0.24  0.29 ± 0.25  0.07 ± 0.14 
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Redspot Chub  2.78 ± 0.62   0.35 ± 0.20 -0.46 ± 0.40 -1.87 ± 0.43 -0.38 ± 0.23 

Rock Bass  1.41 ± 0.42   0.81 ± 0.14 -0.83 ± 0.28 -1.06 ± 0.31 -0.51 ± 0.17 

Smallmouth Bass (subadult)  1.55 ± 0.41   0.86 ± 0.15 -0.51 ± 0.27 -0.53 ± 0.27 -0.31 ± 0.16 

Smallmouth Bass (adult)  0.19 ± 0.36   0.93 ± 0.14 -0.35 ± 0.24 -0.53 ± 0.27 -0.34 ± 0.15 

Spotted Bass -2.15 ± 0.44   0.97 ± 0.16  0.76 ± 0.26  0.74 ± 0.29  0.30 ± 0.16 

Spotted Sucker -2.89 ± 0.50   1.24 ± 0.18  0.13 ± 0.28  0.49 ± 0.34 -0.13 ± 0.17 

Warmouth -0.70 ± 0.36   0.56 ± 0.14  0.65 ± 0.24 -0.30 ± 0.27  0.23 ± 0.14 

White Crappie -2.91 ± 0.51   1.30 ± 0.17  0.25 ± 0.28  0.80 ± 0.33 -0.04 ± 0.17 

White Sucker -2.10 ± 0.43   1.13 ± 0.17 -0.25 ± 0.27 -0.23 ± 0.35 -0.38 ± 0.17 
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Figure 1. The relationship between fish density and relative groundwater contribution for three 

sunfishes, where black represents Longear Sunfish, light green represents Green Sunfish, and red 

represents Rock Bass. Estimates were derived from a linear mixed model, where the geosoil 

category was cherty limestone. Water temperature variation (x-axis) was used as a surrogate for 

groundwater contribution where more variation represents less groundwater contribution and 

(reported as a z-score). 
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Figure 2. The relationship between occurrence and channel unit sequence area for three stream 

fishes, where brown represents Redspot Chub, blue represents Northern Studfish, and orange 

represents redhorses. Estimates of stream-fish occurrence were derived from a generalized linear 

mixed model, where other variables were held at mean levels. 
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Figure 3. The relationship between substrate size and occurrence for three stream fishes, where 

light blue represents Banded Sculpin, dark green represents adult Largemouth Bass, and red 

represents Rock Bass. Estimates of stream-fish occurrence were derived from a generalized linear 

mixed model, where other variables were held at mean levels. 
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Figure 4. The relationship between relative groundwater contribution and occurrence for three 

stream fishes, where orange represents Northern Studfish, brown represents Redspot Chub, and 

light green represents green sunfish. Estimates were derived from a generalized linear mixed 

model, where other variables were held at mean levels. Water temperature variation (x-axis) was 

used as a surrogate for groundwater contribution, where more variation represents less 

groundwater contribution (reported as a z-score). 
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Figure 5. The relationship between residual pool and occurrence for three stream fishes, where 

blue represents redhorses, gray represents subadult Largemouth Bass, and orange represents 

Northern Studfish. Estimates were derived from a generalized linear mixed model, where other 

variables were held at mean levels.
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APPENDICES 

Appendix 1.  Year and season of sampling and associated stream segments for 40 stream 

reaches surveyed using tow-barge electrofishing in the Ozark Highlands ecoregion of 

northeast Oklahoma and southwest Missouri in 2014-2015, where season one is May- 

June, season two is July-August, season three is September-October.  

Reach Year Season Segment 

Baron Fork1 2014 2 Baron Fork1 

Baron Fork2 2014 3 Baron Fork1 

Baron Fork3 2015 2 Baron Fork1 

Big Sugar Creek1 2015 2 Big Sugar Creek1 

Buffalo Creek1 2014 2 Buffalo Creek1 

Buffalo Creek2 2014 3 Buffalo Creek1 

Buffalo Creek3 2015 2 Buffalo Creek1 

Buffalo Creek4 2015 2 Buffalo Creek1 

Butler Creek1 2015 2 Butler Creek1 

Caney Creek1 2015 2 Caney Creek1 

Evansville Creek1 2014 2 Evansville Creek1 

Evansville Creek2 2014 3 Evansville Creek1 

Five-mile Creek1 2015 2 Five-mile Creek1 

Flint Creek1 2014 1 Flint Creek1 

Flint Creek2 2014 2 Flint Creek1 

14-mile Creek1 2014 2 14-mile Creek1 

14-mile Creek2 2014 2 14-mile Creek1 

14-mile Creek3 2015 2 14-mile Creek1 

Greenleaf Creek1 2015 1 Greenleaf Creek1 

Greenleaf Creek2 2015 1 Greenleaf Creek1 

Honey Creek1 2015 1 Honey Creek1 

Honey Creek2 2015 2 Honey Creek1 

Indian Creek1 2015 2 Indian Creek1 

Little Sac River1 2015 1 Little Sac River1 

Lost Creek1 2015 2 Lost Creek1 

Saline Creek1 2014 2 Saline Creek1 
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Saline Creek2 2015 2 Saline Creek1 

Sallisaw Creek1 2015 2 Sallisaw Creek1 

Spavinaw Creek1 2014 1 Spavinaw Creek1 

Spavinaw Creek2 2014 2 Spavinaw Creek2 

Spavinaw Creek3 2014 2 Spavinaw Creek1 

Spavinaw Creek4 2014 3 Spavinaw Creek2 

Spavinaw Creek5 2014 3 Spavinaw Creek1 

Spavinaw Creek6 2015 1 Spavinaw Creek1 

Spavinaw Creek7 2015 3 Spavinaw Creek1 

Spring Creek1 2014 2 Spring Creek1 

Spring Creek2 2014 3 Spring Creek1 

Spring Creek3 2015 3 Spring Creek1 

Spring Creek4 2015 3 Spring Creek1 

Turnback Creek1 2015 1 Turnback Creek1 
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Appendix 2. Environmental and spatial variables for 40 stream reaches surveyed using tow-barge electrofishing in the Ozark Highlands 

ecoregion of northeast Oklahoma and southwest Missouri in 2014-2015. See Methods for a complete description of variables. 

 

 

Reach 

Distance to 

impoundment 

(km) 

 

D50 (mm) 

 

Bankfull 

width (m) 

 

Residual 

pool (m) 

 

Proportion 

riffle 

Relative 

groundwater 

contribution 

Proportion 

emergent 

vegetation 

Proportion 

instream    

large wood 

Baron Fork1 23   34 66 2.0 16 -0.59 0.02 0.07 

Baron Fork2 23   34 66 2.0 16 -0.59 0.02 0.07 

Baron Fork3 24   34 66 1.5 18 -0.59 0.04 0.04 

Big Sugar Creek1 35   25 40 1.5 14 -0.83 0.05 0.03 

Buffalo Creek1   4   25 42 1.4 29 -0.83 0.01 0.09 

Buffalo Creek2   4   25 42 1.4 29 -0.83 0.01 0.09 

Buffalo Creek3 14   27 29 0.5 42 -0.59 0.00 0.01 

Buffalo Creek4   5   25 42 1.4 30 -0.83 0.00 0.04 

Butler Creek1 17   20 42 1.3 14 -0.46 0.00 0.03 

Caney Creek1   2 131 49 0.8 23 -0.46 0.00 0.01 

Evansville Creek1 54   30 72 1.6 38  0.23 0.03 0.02 

Evansville Creek2 54   30 72 1.6 38  0.23 0.03 0.02 

Five-mile Creek1 27   29 39 1.2 33  1.48 0.00 0.01 

Flint Creek1 86   23 56 1.0 16 -0.30 0.03 0.02 

Flint Creek2 85   23 56 1.2   8 -0.30 0.03 0.02 

14-mile Creek1   7   23 49 1.5   7  0.45 0.25 0.03 

14-mile Creek2 14   21 35 1.0 24  0.45 0.01 0.04 
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14-mile Creek3 15   21 35 1.0 27  0.45 0.01 0.04 

Greenleaf Creek1 14   37 17 1.3 28  1.74 0.00 0.00 

Greenleaf Creek2 13   37 17 1.3 18  1.87 0.00 0.00 

Honey Creek1   4   38 33 0.7 20  0.19 0.01 0.01 

Honey Creek2   3   38 22 0.6 15  0.19 0.00 0.10 

Indian Creek1 71   33 46 0.8 28 -0.33 0.00 0.02 

Little Sac River1 32   46 36 0.8 21  1.80 0.00 0.01 

Lost Creek1 15   26 23 0.9 42 -0.33 0.03 0.05 

Saline Creek1   2   37 50 0.7 15 -0.85 0.01 0.02 

Saline Creek2   3   37 57 0.8 30 -0.85 0.07 0.04 

Sallisaw Creek1 21   41 42 1.1 13  0.71 0.21 0.02 

Spavinaw Creek1   9   27 39 1.6 22 -1.24 0.00 0.05 

Spavinaw Creek2   1   25 43 1.3 18 -0.83 0.10 0.01 

Spavinaw Creek3 10   25 58 1.6 22 -1.24 0.00 0.03 

Spavinaw Creek4   1   27 43 1.3 18 -0.83 0.10 0.01 

Spavinaw Creek5   9   25 39 1.6 22 -1.24 0.00 0.05 

Spavinaw Creek6 10   25 58 1.6 18 -1.24 0.00 0.01 

Spavinaw Creek7   8   25 59 1.2 12 -1.24 0.00 0.05 

Spring Creek1 34   29 67 1.1 26 -1.37 0.05 0.02 

Spring Creek2 34  29 67 1.1 26 -1.37 0.05 0.02 

Spring Creek3 34  29 67 1.1 21 -1.37 0.00 0.03 

Spring Creek4 47  29 26 1.7 29 -0.20 0.01 0.01 
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Turnback Creek1   7 131 29 0.9 18  0.75 0.01 0.03  
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Appendix 3. Environmental and spatial variables for 20 stream segments surveyed using tow-barge electrofishing in the Ozark Highlands 

ecoregion of northeast Oklahoma and southwest Missouri in 2014-2015, where a one for connectivity indicates the segment was located 

upstream of a higher order tributary. See Methods for a complete description of variables and Appendix 1 for associated reaches. 

 

 

Segment 

 

 

Geosoil 

 

Distance to 

centroid (km) 

Proportion 

agriculture-

development 

 

 

D-link 

 

 

Connectivity 

 

 

Sinuosity 

Two-year  

flood magnitude 

(m3/sec) 

Baron Fork1 Cherty alluvium 250 0.60 219 1 1.36 355 

Big Sugar Creek1 Cherty dolostone 183 0.50   90 1 1.62 305 

Buffalo Creek1 Cherty limestone 208 0.50 301 1 1.23 139 

Butler Creek1 Cherty dolostone 197 0.56 280 1 1.19   97 

Caney Creek1 Stony alluvium 266 0.63   69 0 1.21 158 

Evansville Creek1 Cherty alluvium 240 0.55   34 1 1.62 109 

Five-mile Creek1 Cherty alluvium 203 0.33     4 1 1.24   90 

Flint Creek1 Cherty limestone 228 0.43   50 1 1.31 129 

14-mile Creek1 Cherty alluvium 279 0.67   32 0 1.38 107 

Greenleaf Creek1 Shale 285 0.05   12 1 1.15   87 

Honey Creek1 Cherty limestone 215 0.66   14 0 1.29 105 

Indian Creek1 Cherty limestone 168 0.53   17 1 1.57 142 

Little Sac River1 Cherty dolostone 92 0.62 178 0 1.73 144 

Lost Creek1 Cherty limestone 193 0.71     5 1 1.10   97 

Saline Creek1 Cherty limestone 259 0.68   44 1 1.55 118 

Sallisaw Creek1 Stony alluvium 281 0.21   91 0 1.41 150 



217 
 

Spavinaw Creek1 Cherty limestone 225 0.26   97 0 1.26 180 

Spavinaw Creek2 Shale 231 0.37 162 0 1.10 290 

Spring Creek1 Cherty alluvium 261 0.50   56 0 1.51 115 

Turnback Creek1 Cherty dolostone 125 0.67 325 0 1.51 276 
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Appendix 4.  Results of ordinary-least-squares regression modeling the relationship between 

drainage area and two-year flood interval for hydrologically-similar Ozark Highland stream 

segments (R2 = 0.69). Two-year flood interval was log10 transformed. 

Coefficients Estimate SE p-value 

Intercept 7.93 0.15 < 0.01 

Drainage area (mile2) 0.01 0.01 < 0.01 
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