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of Ca2+ in CF lung, P. aeruginosa is surrounded with elevated Ca2+ that could be 
recognized by the bacterium as a cue for adaptation in this environment. Previous 
research by our group and others identified Ca2+ responsive regulators and defined 
their role in Ca2+-dependent virulence factor production. In addition, tightly 
maintained intracellular Ca2+ ([Ca2+]in) homeostasis suggests the signaling role of 
Ca2+ in P. aeruginosa. Our current study report that growth at 5 mM/ 10 mM Ca2+ 
increases the antibiotic resistance of PAO1 more than 10 fold. Here, our main goal 
was to elucidate the regulatory role of Ca2+ in adaptive antimicrobial resistance and 
virulence of PAO1. We identified several of the RND superfamily efflux pumps 
involved in Ca2+-regulated tobramycin resistance, plant infectivity and [Ca2+]in 
homeostasis maintenance. We have established that Ca2+ transcriptionally regulates 
five of the six efflux pumps involved in Ca2+-induced tobramycin resistance in a 
growth phase dependent manner. Ca2+ reliant tobramycin resistance and increase 
transcription of mexAB-oprM, one of the efflux pumps involved in Ca2+-induced 
tobramycin resistance, requires intact Ca2+ homeostasis. We have also identified a 
putative calcium channel in PAO1, homologous to the pH-sensitive Ca2+ leak 
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virulence of this organism. Previously our lab identified calmodulin-like EF hand 
protein (EfhP), Ca2+-regulated two-component system (CarSR), Ca2+ binding 
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regulated virulence in PAO1. Here, we established that Ca2+ regulated transcription 
of calC is dependent on CarSR, CarP and EfhP.  Finally, we also identified three 
hypothetical proteins involved in Ca2+-induced polymyxin B resistance of PAO1. 
Overall, the findings of this research identifies the genes involved in Ca2+ 
regulatory cascade of P. aeruginosa and how they contribute to Ca2+ regulated 
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PREFACE 

OVERVIEW OF THE DISSERTATION 

CHAPTER ONE. A Brief review on the current knowledge of infection epidemics, 

virulence, pathogenicity, extent of antimicrobial resistance and the mechanisms 

involved is depicted in this chapter. An emphasis is given on the different 

mechanisms of antibiotic resistance in P. aeruginosa. A broader discussion on 

efflux as a mechanism of resistance in bacterium including P. aeruginosa is done. 

An elaboration of each efflux pumps and their clinical relevance in multidrug 

resistance of P. aeruginosa is described. Overall, this signifies the niche of current 

research putting an emphasis on the urgency to identify novel therapeutic approach 

to manage Pseudomonas infection. 

CHAPTER TWO. This chapter focuses on identifying the regulatory role of 

surrounding Ca2+ in antimicrobial resistance of P. aeruginosa. By using modern 

molecular tools, we were able to identify underlying mechanisms of Ca2+ regulated 

tobramycin resistance of this pathogen. We have also established the regulatory 

role of Ca2+ homeostasis in efflux mediated tobramycin resistance of P. aeruginosa, 

PAO1.  

CHAPTER THREE. This is a collaborative project where me and my former 

colleague Dr. Manita Guragain are equal contributing author. Here we have 
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identified a calcium channel protein which is homologous to the pH sensitive Ca2+ 

leak channel, BsYetJ in Bacillus subtilis. Absence of this channel protein in PAO1 

abolished the intracellular Ca2+ [Ca2+]in signaling signature as well as Ca2+ regulated 

phenotypes like, pyocyanine production, swarming motility, etc in the pathogen. 

We have used global transcriptomic analysis as well as other molecular techniques 

to define the regulatory role of [Ca2+]in in genotypic and phenotypic adaptation of 

P. aeruginosa in environment surrounded with increased Ca2+. 

CHAPTER FOUR. This section elucidates the investigation and identification of 

the mechanisms involved in Ca2+- induced polymyxin-B resistance of P. 

aeruginosa, PAO1. Through genetic expression studies as well as mutational 

studies we have determined that none of the previously known mechanisms of 

polymyxin-B resistance contribute to Ca2+ regulated polymyxin-B resistance in P. 

aeruginosa. Through random mutagenesis we were able to identify three 

hypothetical proteins, loss of which makes P. aeruginosa susceptible to polymyxin-

B even when the bacterium was grown at 5mM or 10mM Ca2+. These proteins were 

never found to be directly or indirectly involved in polymyxin-B ressitance or any 

polycationic peptide resistance in any bacterium including P. aeruginosa. 

CHAPTER FIVE. This chapter dissects our understanding of current knowledge 

on Ca2+ as a signaling ion both in prokaryotes and eukaryotes. Here we compare 

the characteristic features of Ca2+ signaling in eukaryotes and prokaryotes and how 
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P. aeruginosa fit in this scenario. This helped us identifying the significance of our 

current research in this area. 

CHAPTER SIX. In this section three of my either collaborative or individual 

projects have been discussed under the roof of ‘Additional chapters’. 

I. This is an additional project in collaboration with my previous colleague, Dr. 

Manita Guragain. Here I have contributed as a co-author of this project. This section 

identified the involvement of Ca2+ regulated two component system CarSR 

regulated Ca2+ binding proteins CarP and OB-fold protein CarO in Ca2+ regulated 

tobramycin resistance. 

II. In collaboration with my former colleague Shalaka lotliker, I have characterized 

the Ca2+ regulated transcriptional profile of three putative carbonic anhydrases in 

P. aeruginosa by RT-qPCR. 

III. This chapter describes the approach to establish an animal infectivity model to 

assess regulatory role of Ca2+ on infectivity of P. aeruginosa. Here we have used 

C. elegans and Fruit fly (D. melanogaster) killing assay and tried to modify the 

already established animal killing model in order to appropriate our experimental 

goal. The infection assay protocols were approved by the Biosafety department of 

OSU to confirm eh safety regulation is maintained during the assay. 
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CHAPTER SEVEN. This chapter describes in-detail all the materials and methods 

those have been used for the current study. For commercial kit-based protocols, 

modifications, if any, were described with the reason why such modifications were 

performed. 
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CHAPTER I 

LITERATURE REVIEW 
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Pseudomonas aeruginosa, first isolated from surgical wounds, later 

identified as a rod shaped Gram-negative bacteria, is a facultative multidrug 

resistant human pathogen. It causes severe infections in lung airways of cystic 

fibrosis (CF) patients, burn wounds and intensive care patients, as well as patients 

with indwelling medical devices, catheters and shunts (1-4).  P. aeruginosa is also 

one of the leading causes of infective endocarditis in intravenous drug users, young 

children, and patients with prosthetic valve replacement (5, 6). The ability of this 

bacterium to produce an arsenal of virulence associated factors and its multidrug 

resistant nature makes the infections caused by this pathogen so life threatening (7, 

8). Strategic use of different virulence factors is the key component of successful 

establishment of persistent P. aeruginosa infection (9). Also, these combative 

components combined with extraordinary multidrug resistance is what makes P. 

aeruginosa a “super bug”. According to CDC (Center for Disease Control) 

antibiotic resistance threat report in 2013 (https://www.cdc.gov/drugresistance/ 

threat-report-2013/index.html), P. aeruginosa has been considered as a serious 

threat. World health organization (WHO) has announced P. aeruginosa as the 

second most dangerous pathogen in their report on global priority of antibiotic 

resistance bacteria (http://www.who.int/medicines/publications/global-priority-

list-antibiotic-resistant-bacteria/en/). Among 51,000 of total cases of healthcare 

associated infections (HAIs), almost 13% are accounted for P. aeruginosa infection 

estimating about 400 deaths per year. Fatality associated with P. aeruginosa is 
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mainly reported for  individuals with chronic obstructive pulmonary disease 

(COPD), infective endocarditis, as well as cancer patients undergoing 

chemotherapy, and intravenous drug users (6, 10, 11). This impact of P. aeruginosa 

infection is mainly attributed to the combination of virulence associated factors and 

outstanding antimicrobial resistance of this organism (7, 8). P. aeruginosa displays 

highly flexible genetic features with the ability to alter the genes either by mutation 

or by uptake of extracellular genetic material (12). Also, multiple mechanisms of 

intrinsic and adaptive resistance make this pathogen so robust that it can withstand 

almost all the antimicrobials available for treatments (13) thus making it almost 

impossible to treat Pseudomonas infections. 

Antibiotic Resistance of P. aeruginosa 

The widespread global distribution of Pseudomonas aeruginosa in hospital 

acquired infections is extremely troublesome mainly due to its extraordinary 

multidrug resistant nature. Although the statistics may vary in different places, P. 

aeruginosa represents a second major cause of hospital acquired infections in 

intensive care unit (ICU) patients, surgery and burn wound patients, as well as 

patients with COPD and endocarditis, following the Gram-positive Staphylococcus 

(14). Although scarce in frequency, community acquired infections caused by this 

pathogen have also been reported globally. Such infections include keratitis, 

pneumonia, acute conjunctivitis, otitis, and infective endocarditis (15). These 



8 
 

infections, however, once diagnosed, can be treated using multiple groups of 

antibiotics, in contrast to hospital-acquired infections.  

Mechanisms of Antimicrobial resistance  

Extreme adaptability of this organisms allows the emergence of pan drug 

resistant (PDR), extreme drug resistant (XDR) and multidrug resistant strains, 

particularly during the course of antimicrobial therapy, which leads to re-

occurrence and persistence of this infection (16). This development of antibiotic 

resistance can be attained by the organism through acquisition of genetic materials 

(plasmids, integrons etc.), mutational alteration of drug targets, enzymatic 

modification of drugs or by active efflux of a broad range of antibiotics (13, 17). 

These mechanisms belong to either intrinsic or adaptive mechanisms of 

antimicrobial resistance of this bacterium. 

Intrinsic Mechanisms of Antimicrobial Resistance 

P. aeruginosa is intrinsically resistant to many antimicrobials due to its 

ability to produce antimicrobial modifying enzymes, alteration of membrane 

permeability as well as active efflux of multiple groups of antibiotics. One of the 

most remarkable features of P. aeruginosa physiology is its membrane barrier. P. 

aeruginosa is impermeable to a large number of toxic chemicals including 

antimicrobials due to its ability to alter the permeability of outer membrane to these 
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compounds (18). Porins are channels which allow permeation of different 

molecules through membrane in a size-dependent manner. This  selective 

mechanism of permeation of hydrophilic molecules excludes many large toxic 

compounds, thus making P. aeruginosa more impermeable and less vulnerable 

(19). Several examples of outer membrane porins include OprM, OprF, and OprD 

that are highly abundant and tightly regulated (18, 20). OprD is a major channel for 

carbapenem uptake and therefore, the inactivation of OprD porin has been 

identified as a major contributor to carbapenem resistance of this bacterium (21) . 

Besides the porins, the LPS layer of outer membrane and alteration in lipid A 

molecules can alter the permeability of membrane to many charged molecules 

including EDTA, divalent cations like Mg2+, polycationic antimicrobials such as 

aminoglycosides and polycationic peptides (22-25). P. aeruginosa can also protect 

itself against many membrane permeabilizing molecules by producing proteins 

such as OprH (H1) to stabilize the electrochemical change of the membrane. These 

mechanisms are essential for this bacterium to survive in the environment rich in 

cationic molecules, including the presence of cationic antibiotics such as 

aminoglycosides, polycationic polypeptides or host immunopeptides (24).  

Usually, the wild type P. aeruginosa (PAO1) is susceptible to a range of β-

lactums, like carboxipenicillins, ureidopenicillins, third and fourth generation 

cephalosporins as well as carbapenems. On the contrary, the clinically abundant 

multidrug resistant strains of P. aeruginosa display outstanding ability to produce 
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a variety of β-lactamases and survive against these antibiotics (17). Specifically, 

cephalosporinase (AmpC β-lactamases), which is encoded by chromosome of many 

Enterobacteriacae including P. aeruginosa, is highly inducible (100-1000 times in 

clinical strains) in P. aeruginosa. This enzyme in P. aeruginosa is not inactivated 

by co administration of β-lactamase inhibitors in clinical settings (13, 17). In 

addition to these chromosomally encoded inducible β-lactamases, the clinical 

strains of P. aeruginosa also have acquired several β-lactamases that are part of 

either transposable genetic elements or integrons. These include extended spectrum 

β-lactamase (ESBL) class A and D, carbanicillin hydrolyzing β-lactamases, SHV1 

and TEM β-lactamases, all of which confer resistance to a very wide variety of β-

lactam antibiotics(12, 13). However, the production of antimicrobial modifying 

enzymes is not exclusive for β-lactams only. Aminoglycosides modifying enzymes 

(AMEs) are known to be the major mechanism for the resistance to aminoglycoside 

antibiotics (gentamycin, amikacin, tobramycin, neomycin, etc.). These antibiotics 

are one of the most popular choices for Pseudomonas infection management and 

treatment at the hospitals, particularly in CF patients (26, 27). In addition to AMEs, 

rRNA methylases also contribute to the reistance. These enzymes inactivate 

aminoglycoside antibiotics by acetylation of the amino groups (aminoglycoside 

acetyletransferase, AAC), adenylation (aminoglycoside nucleotidyltransferase, 

ANTs), phosphorylation (aminoglycoside phosphoryle transferase, APHs), or by 

transferring methyl group to 16SrRNA (methyl transferase, rmtA-D genes) (28). P. 
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aeruginosa harbors several variants of these enzymes with an ability to modify 

amino groups at different positions of different aminoglycoside antibiotics 

(reviewed in(12)). Such intrinsic ability to readily produce antimicrobial 

inactivating enzymes provides a fitness benefit and allows this bacterium to persist 

in clinical settings. Another choice of treatment for P. aeruginosa infection is 

fluoroquinolones, which target DNA gyrase and topoisomerases in bacterium. 

These enzymes are required to maintain DNA unfolding and supercoiling thus are 

essential for replication, transcription and translation of the bacterium (12). 

Mutational changes in these drug targets , DNA gyrase genes (gyrA and gyrB) as 

well as topoisomerases (pare and parC) in P. aeruginosa has been documented in 

clinical isolates displaying high ressitance to fluoroquinolone antibiotics (13, 17). 

In addition to the production of energetically costly antimicrobial 

modifying enzymes, P. aeruginosa can use a variety of efflux transporters to pump 

out a wide variety of antibiotics. Five different super families of multidrug efflux 

pumps have been identified in bacteria. They include ABC (ATP-binding cassette), 

SMR (small multidrug resistance), MFS (major facilitator superfamily), MATE 

(multiple antibiotic and toxin extrusion), and RND (Resistance-Nodulation-

Division) (29, 30). Among these five groups, the RND family of efflux pumps in 

P. aeruginosa has been recognized as a major contributor to both intrinsic and 

adaptive resistance of this bacterium to a wide range of antimicrobials. To date P. 

aeruginosa has been shown to possess 12 RND efflux pumps with variable 
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substrate specificity, MexAB-OprM, MexCD-OprJ, MexEF-OprN, MexPQ-OprM, 

MexXY-OprM, MexVW-OprM, MexMN-OprJ, MexJK-OprM, TriABC-OpmB, 

MuxABC-OpmB, MexGHI-OpmD, and CzcCBA-OpmY (13, 31, 32). These 

pumps are tripartite systems composed of inner membrane RND component, which 

is driven by H+ ion gradient and is connected to the outer membrane porin channel 

through a periplasmic component known as membrane fusion protein (MFS). 

Together these three components span the membranes and effectively extrude a 

variety of toxic substrates including antimicrobials from the cytoplasm to outside 

of the bacteria, enabling their survival in hostile environments including those with 

high levels of antibiotics (30). In the presence of antimicrobials, the abundance and 

activity of these pumps is enhanced to serve in extruding drugs (33-37). Among 12 

RND pumps identified in P. aeruginosa, one can define two large groups: with 

broad and narrow substrate specificities. MexAB-OprM, MexCD-OprJ, MexXY-

OprM, MexVW-OprM and MuxABC-OpmB are known to extrude several 

antibiotics form chemically diverse groups including β-lactams, fluoroquinolones, 

cephalosporines, carbapenems, aminoglycosides as well as macrolids (12, 13, 28). 

On the other hand, MexEF-OprN, MexPQ-oprM, MexJK-OprM, MexMN-oprJ, 

MexGHI-OpmD as well as TriABC-opmB (13, 32, 38, 39) are known to transport 

fluoroquinolones, macrolids, chloramphenicol, triclosan and some biocides such as 

EDTA. A standing alone RND pump is CzcCBA-OpmY, which is the only P. 
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aeruginosa RND efflux pump known to efflux metal ions and protecting the 

bacterium from toxicity caused by high levels of such ions (40, 41).  

RND efflux pumps are integrated into the bacterial physiology and play role 

in a variety of cellular functions quorum sensing, virulence as well as infectivity of 

the pathogen (38, 42, 43). For example, TriABC-OpmB enables survival of P. 

aeruginosa in the presence of triclosan and EDTA (32), and is also important for 

plant infectivity in presence of Ca2+ (43). MexCD-OprJ (44) contributes to both 

antibiotic resistance and virulence of this pathogen. Overexpression of the 

multidrug efflux pump MexAB-OprM is known to be associated with reduced lasI 

expression.(42) MexEF-OpnN is known to transport the HHQ (4-hydroxy 2-

heptyle quinolone) which is an intermediate precursor molecule of PQS(45), thus 

contributes in PQS associated quorum sensing pathway. Mutant lacking MexGHI-

OpmD failed to produce the quorum sensing molecules N-(3-oxododecanoyl)-L-

homoserine lactone (3-oxo-C12-HSL) and PQS. This in turn reduced the ability of 

this mutant to cause infection in both mice and plant model(38) . This pump also 

transports phenazine molecule that controls the biofilm development by the 

organism(46) This definitely reflects the importance of this group of efflux pumps 

for resistance of P. aeruginosa as well as it survival in a host environment. The fact 

that P. aeruginosa possess a large number of them further improves the fitness of 

the bacterium to a variety of environmental settings. 
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Adaptive Mechanisms of Antimicrobial resistance.  

P. aeruginosa is an ubiquitous organism with an outstanding ability to sense 

and respond to environmental stimuli by modulating its physiology and developing 

multiple adaptation strategies, ultimately enhancing its survival (47). A 

manifestation of genomic and physiological plasticity of the organism is its ability 

to survive host immune response and antimicrobial therapies, persist and establish 

chronic infection (14, 48). The mechanisms of this plasticity are in the basis of 

adaptive resistance that has been illustrated in P. aeruginosa both in vivo and in 

vitro (49-51). One mechanism of adaptive resistance in P. aeruginosa involves 

occurrence of point mutations in genes encoding the targets of antimicrobials, such 

as gyrA and parC. DNA gyrase encoded by gyrA is the target of fluoroquinolone 

antibiotics and in clinical strains of P. aeruginosa, mutations in the 86 and 87 codon 

of gyrA have been identified and shown to dramatically increase the resistance of 

the pathogen (52). Another example is mutations occurring in mexZ, mexR, nfxB, 

nfxC, negative regulators of efflux pumps (52). These mutations lead to 

overexpression of the corresponding efflux pumps, and were observed in a large 

number of multidrug-resistant clinical isolates. Other examples include mutations 

leading to overexpression in ampC (β-lactamase), efflux pumps mexAB-oprM, 

mexXY-oprM, or downregulation of OprD, observed in clinical P. aeruginosa 

strains isolated from CF and burn patients undergoing aminoglycoside, β-lactamase 

or carbapenem antimicrobial treatments (21).  Daily exposures to antimicrobials in 
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clinical settings lead to accumulation of such mutations, which enable the bacteria 

to thrive even when treated with a high dosage of antimicrobials (35, 53-56). All 

this proves the genetic plasticity of P. aeruginosa and the ability of this organism 

to readily attain multidrug resistance resulting in failure of the drug therapy. 

Another outstanding adaptation that makes P. aeruginosa superior against 

antimicrobial treatment is its ability to form biofilms. The biofilm acets as a shield 

and cause reduced drug penetration therefore allows the bacterium to alter genetic 

behavior. This indeed is an outstanding fitness that supports bacterial survival as 

well as persistence in a hostile host niche. Therefore biofilm mediated resistance 

has made this bacterium so robust that it is almost untreatable with available 

antimicrobials (1, 37, 57). Biofilm mediated antimicrobial resistance is a huge 

problem, particularly in cases of indwelling catheters, implanted medical devices 

as well as in burn wounds, the conditions enhancing biofilm formation (58). 

Besides the intrinsic and adaptive ressitance mechanisms, P. aeruginosa 

displayes another way of antimicrobial resistance: acquired ressitance. This 

bacterium can also acquire antibiotic resistant genes by horizontal gene transfer 

from the neighboring bacteria using mobile genetic elements, and achieve further 

increased resistance to antimicrobials. One such example is the transfer of the blaimp 

integrin from Serretia mercessance, which renders resistance to carbapenem group 

of antibiotics (59) Together, the intrinsic and adaptive features enable P. 

aeruginosa to become multidrug, pan drug or extreme drug resistant.   
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Finally, resistance to antibiotics can be enhanced in response to host factors 

serving as a que  representing a hostile environment (60). Such cues signal 

Pseudomonas about the environment and may trigger physiological 

rearrangements. One such crucial decision is a switch from free-swimming to 

sessile mode of growth. The establishment of biofilms can be initiated or enhanced 

upon exposure to several host factors as well as antimicrobials; thus protect eh 

bacterium against the environmental odds (23, 58, 61-63). Calcium (Ca2+) is one of 

such environmental cue. It is not only abundant in nature, but also serves as an 

essential secondary messenger regulating many physiological processes in 

eukaryotic systems. Imbalance in Ca2+ homeostasis has been associated with 

functional disorders in immune responses (64, 65). Furthermore, in CF lungs there 

is an increased level of Ca2+ in the secreted fluids (66-68). So, for P. aeruginosa 

being able to sense the imbalance in Ca2+ may be advantageous and help their 

survival as well as persistence in a host (69-71).  

Earlier, Patrauchan’s group determined that exposure to increased levels of 

Ca2+ changes the expression profiles of many genes including those encoding for 

mechanisms of stress response, virulence, transport as well as antimicrobial 

resistance in P. aeruginosa (71-74).  Furthermore, it was shown that P. aeruginosa 

is able to maintain a basal intracellular Ca2+ concentration at low micromolar level 

and utilize a variety of Ca2+ transporters for balancing this homeostasis (72). These 

Ca2+ transporters also contribute to Ca2+ regulated phenotypes such as swarming 
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and tobramycin resistance. Lack of at least three of these Ca2+ transporters reduced 

the expression of mexAB-oprm at 5 mM Ca2+ suggesting the impostance of Ca2+ 

homeostasis in bacterial resistance to efflux mediated tobramycin resistance(43, 

72). Such regulatory role of Ca2+ however suggests the requirement of Ca2+ sensing 

regulatory component on the membrane, periplasm or cytoplasm to relay the 

regulatory response.  Our lab has also determines two component regulators CarSR, 

on the outermembrane of P. aeruginosa which is highly Ca2+ responsive and 

controls Ca2+ regulated physiological features(70). This two component system 

controls the expression of a downstram β-propeller protein CarP and putative OB-

fold protein CarO. CarP contributed to Ca2+ regulated tobramycin resistance while 

CarO is found to be required to protect he cells from Ca2+ toxicity(70). Patrauchan 

lab also has identified calmoduline like Ca2+ binding protein, EfhP which is 

important for maintenance of basal [Ca2+]in in PAO1. Deletion of this gene in both 

PAO1 and FRD1 strain of Pseudomonas aeruginosa reduced the expression of 

protein abundance of genes belonging to pvd operon which is involved in 

siderophore biosynthesis. Also, Ca2+ dependent expression of virulence associated 

proteins such as proteases or phenazine biosynthesis proteins as well as proteins 

protecting Pseudomonas from stress were found to be regulated by EfhP in both 

PAO1 and FRD1. Loss of efhP also affected the Ca2+ regulated infectivity of P. 

aeruginosa (71). This regulatory role of Ca2+ responsive regulators in antibiotic 

resistance, virulence as well as infectivity of P. aeruginosa suggests a possible 
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signaling role of this molecule in this organism (61, 70, 71). PAO1 displays the 

potential intracellular signaling role of Ca2+ via the transient changes in intracellular 

Ca2+ in response to increased extracellular Ca2+ (47). However, the role of 

intracellular Ca2+ signaling in regulation ofgenotypic and physiological changes in 

P. aeruginosa is yet to be explored. Such knowledge is required to link the external 

Ca2+ sensing ability to the Ca2+ response of this bacterium. This will also help in 

constructing the network of genes which is involved in response and relay of this 

Ca2+ signal. 

In my study, I have investigated the regulatory role of Ca2+ in antibiotic 

resistance of P. aeruginosa. Upon identifying that growth at elevated level of Ca2+ 

significantly increases PAO1 resistance to tobramycin and polymyxin-B, we have 

studied and identified contributing Ca2+-regulated mechanisms. These included 

multidrug efflux pumps from RND superfamily of transporters. Six of the total 12 

RND efflux pumps identified in PAO1 are are involved in Ca2+ regulated 

tobramycin resistance. These pumps are either regulated by Ca2+ or play role in 

Ca2+ efflux in the bacterium. We have also identified three novel proteins to be 

involved in Ca2+ regulated polymyxin-B ressitance. Furthermore, we have 

characterized the role of intracellular Ca2+ signaling in controlling the antibiotic 

resistance as well as virulence traits of P. aeruginosa. We aimed to initiate 

identification of the Ca2+ regulatory network for better understanding of Ca2+ role 

in regulating the interaction between this pathogen and its host. This knowledge 
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will help understanding of the mechanisms that P. aeruginosa utilizes for 

recognizing and responding to Ca2+, which is leading to increased adaptation of the 

pathogen to the hostile host environment and antibiotic therapies. These findings, 

in future, will enable the development of novel and efficient therapies for 

preventing or treating P. aeruginosa infections. 
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CHAPTER II 

 

CALCIUM INDUCES TOBRAMYCIN RESISTANCE IN 

PSEUDOMONAS AERUGINOSA BY REGULATING RND 

EFFLUX PUMPS 
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ABSTRACT 

Pseudomonas aeruginosa is an opportunistic multidrug resistant pathogen 

causing severe chronic infections. Our previous studies showed that elevated 

calcium (Ca2+) enhances production of several virulence factors and plant 

infectivity of the pathogen. Here we show that Ca2+ increases resistance of P. 

aeruginosa PAO1 to tobramycin, antibiotic commonly used to treat Pseudomonas 

infections. LC-MS/MS-based comparative analysis of the membrane proteomes of 

P aeruginosa grown at elevated versus not added Ca2+, determined that the 

abundances of two RND (resistance-nodulation-cell division) efflux pumps, 

MexAB-OprM and MexVW-OprM, were increased in the presence of elevated 

Ca2+.  Analysis of twelve transposon mutants with disrupted RND efflux pumps 

showed that six of them (mexB, muxC, mexY, mexJ, czcB, and mexE) contribute to 

Ca2+-induced tobramycin resistance.  Transcriptional analyses by promoter activity 

and RT-qPCR showed that the expression of mexAB, muxABC, mexXY, mexJK, 

czcCBA, and mexVW is increased by elevated Ca2+.  Disruption of mexJ, mexC, 

mexI, and triA significantly decreased Ca2+-induced plant infectivity of the 

pathogen. Earlier, our group showed that PAO1 maintains intracellular Ca2+ 

(Ca2+
in) homeostasis, which mediates Ca2+ regulation of P. aeruginosa virulence, 

and identified four putative Ca2+ transporters involved in this process (Guragain, 

et.al, 2013). Here we show that three of these transporters (PA2435, PA2092, 

PA4614) play role in Ca2+-induced tobramycin resistance and one of them 
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(PA2435) contributes to Ca2+ regulation of mexAB-oprM promoter activity. 

Furthermore, mexJ, czcB, and mexE contribute to the maintenance of Ca2+
in 

homeostasis. This provides the first evidence that Ca2+
in homeostasis mediates Ca2+ 

regulation of RND transport systems, which contribute to Ca2+-enhanced 

tobramycin resistance and plant infectivity in P. aeruginosa.  
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INTRODUCTION 

Pseudomonas aeruginosa causes severe infections in lung airways of cystic 

fibrosis (CF) patients, in burn wounds, as well as in intensive care patients and 

patients with indwelling medical devices, catheters and shunts (3, 4).  P. aeruginosa 

is also one of the leading causes of infective endocarditis (5, 6).  The high morbidity 

and mortality of Pseudomonas infections is mainly attributed to the combination of 

multifactorial virulence, outstanding antimicrobial resistance, and physiological 

adaptability of this organism (7, 8). Besides its ability to undergo genetic 

alterations, P. aeruginosa possesses multiple mechanisms of intrinsic and adaptive 

resistance, that together make it resistant to most antimicrobials available for 

treatments. Efflux mediated antibiotic resistance in P. aeruginosa has been 

recognized as one of the  major determinants of its intrinsic resistance (7, 30). 

Among five families of efflux pumps, resistance nodulation division (RND) family 

of transporters has drawn the most attention in this regard. It is mainly due to the 

fact that RND transporters effectively pump out a broad range of toxic substances, 

including antimicrobial drugs (29, 30). So far, 12 efflux pumps have been identified 

in P. aeruginosa PAO1 genome: MexAB-OprM, MexCD-OprJ, MexEF-OprN, 

MexPQ-OprM, MexXY-OprM, MexVW-OprM, MexMN-OprJ, MexJK-OprM, 

TriABC-OpmB, MuxABC-OpmB, MexGHI-OpmD, and CzcCBA-OpmY (13).  

RND efflux pumps are comprised of three components including inner 

membrane component (RND), periplasmic membrane fusion protein (MFP) and 
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outer membrane porin, thus spanning both inner and outer membranes. Their role 

in P. aeruginosa physiology is not limited to efflux, and includes growth control 

(38), biofilm formation (75), oxidative (76) and nitrosative stress responses (77), as 

well as transport of signaling molecules involved in cell-cell communication (38, 

78, 79). Furthermore, RND efflux pumps play role in host colonization by 

modulating such mechanisms of pathogen invasion as pyocyanin production and 

cell motility (78, 80-82).  

Calcium (Ca2+) is an essential messenger regulating a great number of vital 

eukaryotic processes (83, 84). Imbalance in Ca2+ homeostasis is associated with 

many human diseases including those associated with bacterial infections, for 

example, infective endocarditis and CF (66, 68, 85). There is an elevated level of 

Ca2+ in mitral annulus of endocarditis patients (86), as well as in pulmonary fluids 

of CF patients (67, 87).  Thus, Ca2+ likely serves as a host factor triggering 

physiological adjustments in the invading bacterial pathogens. In agreement, our 

earlier studies showed that elevated Ca2+ enhances P. aeruginosa biofilm 

formation, production of several virulence factors, including pyocyanin, 

extracellular proteases, and alginate (74, 88). Furthermore, Ca2+ and Mg2+ modulate 

antibiotic resistance in P. aeruginosa to gentamycin (89), tetracycline, 

carbenicillin, polymyxin B (69, 90), and chloramphenicol (91). Whereas several 

resistance mechanisms regulated by low Mg2+ have been characterized (22, 23), 

very little is known about the underlying mechanisms of Ca2+ regulation. The roles 
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of cations in P. aeruginosa antimicrobial resistance have been mainly attributed to 

reduced cell membrane permeability, which consequently reduces the uptake of 

cationic antibiotics like polycationic polypeptides and aminoglycosides (92, 93).  It 

has been also suggested that P. aeruginosa can utilize the outer membrane protein 

OprH (H1), also cationic in nature, to  stabilize the membrane integrity and to 

reduce the uptake of cationic antibiotics when deficient in magnesium (94). Finally, 

the multidrug efflux pump MexXY-OprM has been shown to be required for the 

antagonistic effect of Ca2+ and Mg2+ on aminoglycosides resistance in P. 

aeruginosa (95) .  

Earlier we showed that P. aeruginosa maintains intracellular Ca2+ 

homeostasis, and the level of intracellular Ca2+ concentration ([Ca2+
in]) is 

responsive to changes in extracellular Ca2+ (72) as well as to membrane 

permeabilizers (not published). Furthermore, we identified several putative Ca2+ 

transporters playing role in maintaining Ca2+
in

 homeostasis, whose disruption 

disturbed Ca2+- induced swarming (72). Here we hypothesize that Ca2+-dependent 

increase of antibiotic resistance in P. aeruginosa is regulated by the transient 

changes in [Ca2+
in], which are generated in response to sudden addition of 

extracellular Ca2+.  This novel perspective is important for understanding the 

mechanisms of adaptive antibiotic resistance in bacterial pathogens. 
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This study showed that tobramycin resistance is significantly increased in 

P. aeruginosa grown at elevated Ca2+. To characterize the mechanisms of this 

induction, we applied a global proteomic approach and identified several RND 

transporters, whose abundance was affected during growth at elevated Ca2+. 

Analysis of the corresponding transposon mutants determined that six RND 

transporters are involved in Ca2+-induced tobramycin resistance. We also 

determined that Ca2+ affects the transcription of several RND transporters, and this 

effect is mediated by changes in [Ca2+
in]. Finally, we identified the role of RND 

transporters in maintaining Ca2+
in homeostasis and Ca2+-induced plant infectivity 

in P. aeruginosa.  Overall, this is the first report of the regulatory relationship 

between [Ca2+
in] homeostasis and Ca2+-induced antibiotic resistance. 

MATERIAL AND METHODS 

Bacterial strains, plasmids, and media    

P aeruginosa strain PAO1, the non-mucoid sequenced strain was used in 

the study (96) . Biofilm minimal medium (BMM) (74) contained (per liter): 9.0 

mM sodium glutamate, 50 mM glycerol, 0.02 mM MgSO4, 0.15 mM NaH2PO4, 

0.34 mM K2HPO4, 145 mM NaCl, 20 µl trace metals, and 1 ml vitamin solution. 

Trace metal solution (per liter of 0.83 M HCl): 5.0 g CuSO4.5H2O, 5.0 g 

ZnSO4.7H2O, 5.0 g FeSO4.7H2O, 2.0 g MnCl2.4H2O). Vitamins solution (per liter): 



27 
 

0.5 g thiamine, 1 mg biotin. pH of the medium was adjusted to 7.0.  Transposon 

mutants were obtained from the University of Washington transposon mutant 

library (97) and are listed in table 2.S1. The mutants were generated by ISphoA/hah 

or ISlacZ/hah insertions and contain tetracycline resistance cassette. The mutations 

were confirmed by PCR in two steps: first, gene flanking primers were used to 

verify that the intact gene is disrupted, and second, transposon-specific primers 

were used to confirm the transposon insertion. The primer sequence is available at 

www.gs.washington.edu.  

The reporter plasmids for promoter activity assay were either received from 

Dr. Kangmin Duan or constructed (Table 2S1) For this, putative promoter regions 

of RND operons were amplified and cloned upstream of the promoterless lux 

operon in pMS402. 
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Table 2.S1: Strains and plasmids used in this study. 

Strains/ Plasmids  

 

Description Ref. 

E. coli DH5α fhuA2 Δ(argF-lacZ)U169 phoA glnV44 
Φ80Δ (lacZ)M15 gyrA96 recA1 relA1 
endA1 thi-1 hsdR17 

 

P. aeruginosa PAO1 Wild type (96) 

PW1780a (mexB:Tn5b) PA0426 H01::ISlacZ/hah (98) 

PW8752 (mexC:Tn5)  PA4599E04::ISlacZ/hah (98) 

PW5233 (muxC: Tn5) PA2526A07::ISlacZ/hah (98) 

PW8386 (mexV:Tn5) PA4374D09::ISlacZ/hah (98) 

PW8137 (mexI:Tn5) PA4207H08::ISlacZ/hah (98) 

PW5180 (mexE:Tn5) PA2493H04::ISlacZ/hah (98) 

PW6963 (mexQ:Tn5) PA3522H12::ISlacZ/hah (98) 

PW7220(mexJ:Tn5) PA3677D11::ISlacZ/hah (98) 

PW4499 (mexY:Tn5) PA2019D05::ISlacZ/hah (98) 

PW3609 (mexM:Tn5) PA1435G06::ISlacZ/hah (98) 

PW1265 (triA:Tn5) PA0156E03::ISlacZ/hah (98) 

PW5224 (czcB:Tn5) PA2521B08::ISlacZ/hah (98) 

PW5099 (PA2435:Tn5) PA2435A02::ISphoA/hah (98) 

PW7626 (PA3920:Tn5) PA3920G01::ISphoA/hah (98) 

PW4602 (PA2092:Tn5) PA2092F01::ISlacZ/hah (98) 
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PW4772 (PA4614:Tn5) PA4614B11::ISphoA/hah (98) 

pMS402 Reporter vector, luxCDABE; KanR 

TmpR 

(82) 

pKD-mexA pMS402 carrying the promoter region of 

mexAB-oprM; KanR TmpR 

(82) 

pKD-mexX pMS402 carrying the promoter region of 

mexXY-oprM; KanR TmpR 

(82) 

pKD-czcC pMS402 carrying the promoter region of 

czcCBA; KanR TmpR 

(82) 

pSK-muxA pMS402 carrying the promoter region of 

muxABC-opmB; KanR TmpR 

This 

study 

pSK-mexJ pMS402 carrying the promoter region of 

mexJK-oprM; KanR TmpR 

This 

study 

pSK-mexE pMS402 carrying the promoter region of 

mexEF-oprN; KanR TmpR 

This 

study 

aThe mutant identifier from UW transposon mutant library. 

bThe designated name of the mutant strain in this study. 

Growth and antibiotic susceptibility assays  

For growth studies, cells were inoculated into 3 ml of BMM with no (not 

added) or 5 mM Ca2+ and grown for 12 h at 37 °C and 200 rpm shaking. Thus 

obtained pre-cultures were normalized to OD600 of 0.1 and inoculated into 100 ml 

of BMM with the corresponding Ca2+ concentration at 1:1000 ratio, and OD600 was 
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measured every 2-4 h. Minimum inhibitory concentration (MIC) of tobramycin 

(aminoglycoside) was determined using both commercially available E-strips 

(Biomerieux) and conventional serial dilution assay. In brief, cultures were grown 

in BMM medium at no or 5 mM Ca2+ for 18 h and normalized to OD600 of 0.1. Then 

100 μl of the normalized cultures was spread on BMM agar plates with or without 

Ca2+. Individual E- strips containing antibiotic gradient were placed onto the 

inoculated plates, and after 24 h of incubation, the MICs were recorded by 

determining the concentration of tobramycin on the strip, at which no bacterial 

growth was detected. For plate dilution assay, middle log cultures grown in BMM 

with or without added Ca2+ were normalized to OD600 of 0.3, and inoculated at 

1:100 ratio into BMM with the corresponding Ca2+ concentration with or without 

tobramycin. Tobramycin was added at the final concentration of 0.25, 0.5, 0.75, 

0.1, 1.5 μg/ml to BMM without added Ca2+ and of 1.0, 1.5, 1.75, 2.0, 3.5 μg/ml to 

BMM supplemented with 5 mM Ca2+. The cultures were incubated with slow 

(Biotek setting) shaking for 8 h in 96 well plates, and OD600 was measured at the 

8th h using Synergy Mx Microplate Reader (Biotek). At least three replicates were 

tested in at least two independent experiments; the mean values of MICs are 

reported. 



31 
 

Proteomic analysis  

Membrane proteins were isolated by carbonate extraction as described in 

(99) with modifications. Briefly, cell pellets of PAO1 grown at no or elevated 

[Ca2+] were washed in saline (0.14 M NaCl) and resuspended in TE buffer (10mM 

Tris/HCl, 1 mM EDTA, pH 8.0), containing Mini Complete protease inhibitor 

cocktail (1:100 (v/v)). Cells were disrupted by sonication (5 cycles of 30 sec with 

1 min interval on ice) using 550 Sonic Dismembrator (Fisher Scientific, Pittsburgh, 

PA), and then centrifuged at 6,000 g for 10 min at 4 0C. The procedure was repeated 

two times. The collected supernatants were combined, diluted with ice-cold 0.1 M 

sodium carbonate followed by gentle stirring for 1 h, and centrifuged at 100,000 g 

for 1 h at 4 0C in a Beckman L8-70M ultracentrifuge. The pellets were collected, 

washed twice in 50 mM Tris pH 7.3, and subjected to liquid chromatography–

tandem mass spectrometry (LC-MS/MS) – based peptide counting. Protein 

concentration was determined using the 2D Quant kit (GE Healthcare). LC-MS/MS 

spectrum counting was performed at the OSU Proteomics Facilities. Proteins were 

identified using Mascot (v2.2.2 from Matrix Science, Boston, MA, USA) and a 

database generated by in silico digestion of the P. aeruginosa PAO1 proteome 

predicted from the genome. Search results were validated using Scaffold 03 

(Proteome Software Inc., Portland, OR). Criteria for accepting each ID will 

conform to the "Paris" guidelines for proteomics results 

(http://www.mcponline.org/misc/ParisReport_Final.dtl). A set of stringent criteria 
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for protein identification was used, where only protein probability thresholds 

greater than 99 % were accepted and at least three peptides needed to be identified, 

each with 95 % certainty.  

RNA isolation and cDNA synthesis  

Total RNA was isolated from P. aeruginosa PAO1 grown in BMM with no 

or 5 mM Ca2+ using RNeasy Protect Bacteria Mini kit (Qiagen) following the 

manufacturer's protocol. The purified RNA was eluted with diethylpyrocarbonate 

(DEPC) treated sterile nanopure water. An additional DNase treatment was 

performed for eluted RNA sample using turbo DNase (Ambion). The absence of 

genomic DNA was confirmed by conventional PCR and real time quantitative PCR 

(RT-qPCR) using rpoD primers. RNA yield was measured using NanoDrop 

spectrophotometer (NanoDrop Technologies Inc.), and the quality of the purified 

RNA was assessed by Bioanalyzer 2100 (Agilent) and 1% agarose gel 

electrophoresis. Following the MIQE guidelines (100), only the RNA samples with 

an OD260/OD280 ratio of 1.8-2.0 and an RIN value of  ≥ 9.0 were selected for further 

analyses. RNA samples were stored at -80 °C. Reverse transcription was performed 

using Transcriptor First Strand cDNA Synthesis Kit (Roche) according to the 

manufacturer’s protocol and stored at -20 °C. 
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Primers design for RT-qPCR  

Primers for 12 RND transporter genes (triA, mexB, muxC, mexI, mexC, 

mexE, mexJ, mexQ, mexV, mexX, czcB, and mexM) were designed using 

Primer3Plus (101) or Primer BLAST (102) and listed in Supplementary Table 2S2. 

Primers were tested in silico using OligoAnalyzer (IDT). Their specificity was 

tested by BLAST alignment against P. aeruginosa genome available at 

www.pseudomonas.com and confirmed by PCR and RT-qPCR melt curve analysis 

using gDNA as a template. For primer efficiency, RT-qPCR was performed for 

each primer pair using 10 fold serial dilution of gDNA, and the obtained Cp values 

were plotted against the concentration of nucleotides. The efficiency was calculated 

using linear regression analysis. Following the MIQE guidelines (100), the primers 

with an R2 value of 0.99 and an efficiency of  97% ± 10 % were selected. Among 

the four tested housekeeping genes, rpoD, rpoS, proC and 16S rRNA, which have 

been previously used in PAO1 RT-qPCR studies (103, 104), the transcription of 

rpoD gene was not affected by Ca2+, and therefore this gene was selected as a 

control. 
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Table 2.S2: Primers used in this study 

Primer 
name 

Primer sequence (5´ - 3´) Primer 
efficiency 
(%) 

Reference 

0576_F1 CTCAACTACCAGCGGCAGAA 97 (103) 

0576_R1 CGCAGCTCGGTATAGGAAAG (103) 

0156_F1 CTCAACTACCAGCGGCAGAA 93 This study 

0156_R1 CGCAGCTCGGTATAGGAAAG This study 

0426_F1 TACGAAAGCTGGTCGATTCC 100 This study 

0426_R1 GCGAACTCCACGATGAGAAT This study 

2526_Fiv AGGAACAGGAAGACCACCAG 100 This study 

2526_Riv TCAAGCTGAACGTGATGGAC This study 

4207 F1 GTCGAACCGAACAAGCTGAT 100 This study 

4207 R1 TGTTGCCTTCCTGGGTGTAT This study 

4599_F2 TTCCGAACTCAGCGCCAG 97 This study 

4599_R2 ATAGGAAGGATCGGGGCGTT This study 

2493_F1 TGGAACAGTCATCCCACTTC 93 This study 

2493_R1 AATTCGTCCCACTCGTTCAG This study 

3677_F3 CGGTAGCTGTTCTGGATGTTC 96 This study 

3677_R3 GAGCGGGTAAAGAAGGACCA This study 

3522_F3 CGACGGATAGCCGTTGTAGT 93 This study 

3522_R3 TCGCACCTACAAGGTCACTG This study 

2019_F3 TTCTCGACGATCACCCACTC 97 This study 

2019_R3 TCAAGGTGGTCAACCCAAAG This study 

4374_F3 AAGGTCTACTCCATCCGTCAG 96 This study 

4374_R3 CCGGAAAGGAACAGTACGTC This study 
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2521_F2 TGCCCAGTTCGGATTTGAGG 97 This study 

2521_R2 CGAGGACGTGGTGTTCGTC This study 

1435_3rt F GCACCGATCTCCGTAGTCTT 89 This study 

1435_3rt 
R GGTGGAACTGTCGATCTGGT This study 

muxA- f 
AACCTCGAGTTTCAACGGGTC
GATCATCT 

 
(82) 

muxA- r 
CCGGATCCATCACCAGGCCGA
TCAC 

 
(82) 

mexJ- f 
AAACTCGAGGGCGATATTCAG
CAGGAC 

 
(82) 

mexJ- r 
CAGGATCCGGTACATGTGACA
CCTTC 

 
(82) 

mexE- f 
AATCTCGAGCATGTTCATCGG
CGATCC 

 
(82) 

mexE- r 
CAGGATCCAGGCGCTCAGGAC
CAGTA 

 
(82) 

    

XhoI and BamHI restriction sites are incorporated (Bold) in the primer to 

facilitate cloning. 
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Gene expression analysis  

To characterize the transcription profiles of RND genes, RT-qPCR was 

performed following the manufacturer’s protocols (Roche). For this, 5 μl of SYBR 

green master mix (Roche, Indianapolis, IN), 0.5 μM of each primer and 5 ng of 

RNA were added to a total volume of 10 μl of reaction mixture. RT-qPCR was run 

using 384 well plates sealed with LightCycler 480 Sealing Foil (Roche, 

Indianapolis, IN) in Roche LightCycler 480. At least five technical replicates for 

each biological replicate and a minimum of three biological replicates for every 

sample were analyzed. A no-template control was used as a negative control. The 

cycle included 10 min denaturation at 95 °C followed by 35 cycles of 95 °C for 10 

s, 61 °C for 15 s, and 72 °C for 10 s. A fold change in gene transcription was 

calculated using 2-ΔΔCt method (105). Statistical analysis was performed by using 

two tailed T-test assuming equal variances. 

Promoter activity assay  

To characterize the effect of Ca2+ on transcription of selected RND 

transporters during different phases of growth, we assayed their promoter activities 

in response to Ca2+ or tobramycin. For this, putative promoter regions (300-400 bp 

upstream) of muxABC, mexJK and mexEF were amplified and cloned upstream of 
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a promoterless luxCDABE reporter in pMS402 (82). The vector and promoter 

constructs for mexAB-oprM, mexXY-oprM, and czcCBA-opmY were generously 

provided by Drs. Duan and Mengmeng. Promoter constructs were transformed into 

PAO1 by electroporation as described in (82). The resultant strains were grown for 

12 h in BMM, normalized to OD600 0.3, inoculated at 1:100 ratio into fresh BMM 

with no or 5 mM Ca2+, and grown in 96 well-plate at 37°C with continuous shaking 

for 10 h. Tobramycin was added to a final concentration of 0.25 - 2.5 µg/ml (Sub 

inhibitory concentration, SIC, determined by plate dilution assay). Both OD600 and 

luminescence were measured every 30 min using Synergy Mx Microplate Reader. 

Luminescence measurements were normalized by cell density (OD600) of the 

corresponding cultures, followed by subtraction of the empty vector normalized 

luminescence. Finally, ratios between promoter activities determined with and 

without Ca2+ or tobramycin were calculated and averaged over at least three 

biological replicates. Every experiment was repeated at least twice.   

To study the role of intracellular Ca2+ homeostasis in Ca2+ regulation of 

RND transcription, the mexAB-oprM promoter activity reporter construct was 

transformed by electroporation into the earlier characterized transposon mutants 

with disrupted putative Ca2+ transporters, PA2435:Tn5, PA2092:Tn5 and PA4614: 

Tn5 (72). Successful transformants were tested for trimethoprim resistance and 

light production using Synergy Mx Microplate Reader (Biotek) and used to 

measure promoter activity as described above.  
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Virulence assays  

To assess the role of RND transporters in P. aeruginosa virulence, we used 

a plant infection model following the modified protocol described in (71, 106). 

Briefly, organic romaine lettuce leaves were purchased fresh, and healthy looking 

leaves were detached, washed in 0.1 % bleach and rinsed twice with distilled water 

and once with nanopure water. Midribs were cut and placed in Petri dish containing 

Whatman No.1 filter paper soaked in 10 mM MgSO4.  P. aeruginosa strains grown 

for 18 h in BMM at no or 5 mM Ca2+ were harvested, washed and resuspended in 

10 mM MgSO4, containing the same amount of Ca2+ as the original culture.  The 

obtained cell suspensions were normalized to an OD600 of 0.2 and inoculated into 

one end of each midrib by injecting 10 µL using a pipette tip. The other end of the 

midrib was inoculated with MgSO4 containing no or 5 mM Ca2+ to be used as a 

negative control.  The Petri dishes were placed in a clear plastic bin, to the bottom 

of which about 10 ml of water was added to maintain humidity.  The bins were 

incubated at room temperature near a window for six days, and then the developed 

zones of disease were measured. At least 3 biological replicates were analyzed from 

the minimum of two independent experiments, and the mean values are reported. 

Measurement of intracellular calcium concentration ([Ca2+]in)  

PAO1 and the transposon mutants with disrupted mexB, mexY, muxA, mexJ, 

mexE or czcB were transformed with pMMB66EH (courtesy of Dr. Delfina 
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Dominguez and Dr. Anthony Campbell), carrying aequorin (107) and carbenicillin 

resistance genes, using a heat shock method described in (108). The transformants 

were selected on Luria Bertani (LB) agar containing carbenicillin (300 µg/ml) and 

verified by PCR using aequorin specific primers (For: 

5′CTTACATCAGACTTCGACAACCCAAG, Rev: 

5′CGTAGAGCTTCTTAGGGCACAG). Aequorin was expressed and 

reconstituted as described in (72). Luminescence measurements and estimation of 

free [Ca2+]in was done as described previously (72) with slight modifications. 

Briefly, mid-log phase cells were induced with IPTG (1 mM) for 2 h for 

apoaequorin production, and then harvested by centrifugation at 15,000 g for 5 min 

at 4 0C. Aequorin was reconstituted by incubating cells in the presence of 2.5 µM 

coelenterazine for 30 min in the dark. 100 µl of the cells with reconstituted aequorin 

were equilibrated for 10 min at room temperature in the dark. Luminescence was 

measured using Synergy Mx Microplate Reader (Biotek). To estimate the basal 

level of [Ca2+]in, the measurements were recorded for 1 min at 5 sec intervals then 

the cells were challenged with 1 mM Ca2+, mixed for 1 sec, and the luminescence 

was recorded for 20 min at 5 sec intervals. Injection of buffer alone was used as a 

negative control, and did not cause any significant fluctuations in [Ca2+]in.  [Ca2+]in 

was calculated by using the formula pCa= 0.612 (-log10k) + 3.745, where k is a rate 

constant for luminescence decay (s-1) (109). The results were normalized against 

the total amount of available aequorin as described (72). The discharge was 
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performed by permeabilizing cells with 2 % Nonidet 40 (NP40) in the presence of 

12.5 mM CaCl2. The luminescence released during the discharge was monitored for 

10 min at 5 sec intervals. The estimated remaining available aequorin was at least 

10 % of the total aequorin. The experimental conditions reported here were 

optimized to prevent any significant cell lysis.  

RESULTS 

Ca2+ enhances resistance of P. aeruginosa PAO1 to tobramycin  

To determine whether Ca2+ affects tobramycin resistance in P. aeruginosa 

PAO1, we measured the minimal inhibitory concentration (MIC) of this 

aminoglycoside antibiotic that is commonly used to treat P. aeruginosa infections.  

For this, PAO1 was grown in BMM at high (5 mM) and low (not added) 

concentrations of CaCl2, and the MIC of the antibiotic was determined by using 

both conventional serial dilution approach and E-strips from BioMerieux. 

Resistance to tobramycin was increased almost 10 fold from 0.38 µg/ml in PAO1 

cells grown at no Ca2+ to 3.67 µg/ml in cells grown at elevated Ca2+. This level of 

tobramycin is within the range detected at infection sites (110-113). On the other 

hand, increased tobramycin resistance is typical for CF clinical isolates of P. 

aeruginosa (114), which may reflect their adaptation to the elevated Ca2+ in 

pulmonary fluids of CF patients (67, 87).  
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Ca2+ alters the production of RND transporters and porins  

To identify the molecular mechanisms responsible for Ca2+-induced 

antibiotic resistance in P. aeruginosa, we compared membrane proteomes of cells 

grown at 5 mM versus not added CaCl2 by using a semi-quantitative LC-MS/MS-

based spectrum (peptide) counting approach. This allowed confident identification 

of about 90 membrane and membrane-associated proteins, differentially expressed 

during growth at elevated Ca2+. The proteins with a higher number of peptides 

detected at elevated Ca2+ include those representing efflux pumps MexAB-OprM 

and MexVW-OprM (Table 2.1). Three more efflux pumps (MuxABC-OpmB, 

MexGHI-OpmD, and TriABC-OpmD) were induced by Ca2+ in P. aeruginosa 

FRD1 strain (data not shown). On the contrary, the abundance of CzcA, 

representing another RND transporter, CzcCBA-OpmY, was reduced in PAO1 in 

the presence of 5 mM Ca2+. These efflux pumps belong to the RND superfamily of 

transporters, known for their role in P. aeruginosa antibiotic resistance (29, 30).   In 

addition, five porins were induced in the presence of Ca2+, including OprM, which 

serves as the outer membrane components (OMF) of RND tripartite systems. 

Together with the inner membrane RND components and the periplasmic 

membrane fusion proteins (MFS), OMF form functional RND systems (13, 29, 30). 

OprM can be shared by multiple RNDs, and its overexpression leads to increased 

multidrug resistance in P. aeruginosa (18). Although semi-quantitative, these data 
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suggest that RND mediated efflux in P. aeruginosa is affected by Ca2+ and that 

RND transporters may be involved in Ca2+-induced tobramycin resistance. 

  



43 
 

Table 2.1: 3 LC-MS/MS analysis of selected P. aeruginosa PAO1 proteins, whose 
abundance changed during growth at 5 mM Ca2+. 

Protein name  

(PA No.) 

Protein description # of 
peptides 
detected at 
no Ca2+ 

# of 
peptides 
detected at 
5 mM Ca2+ 

RND proteins    

MexB (PA0426) RND efflux pump MexAB-
OprM 

15 22  

MexV (PA4374) RND efflux pump MexVW-
OprM 

3 5 

    

CzcA (PA2520) RND efflux pump CzcCBA 6 0 

Porins    

OprD (PA0958) a Outer membrane porin 1 22 

ChtA (PA4675) TonB dependent porin 9 27 

OprF (PA1777) Outer membrane porin  73 99 

OprM (PA0427) Outer membrane porin 5 8 

Opr86 (PA3648)  Outer membrane porin 4 10 

 

aProteins: PA0156 (TriA, which is a part of TriABC-OpmH efflux pump), PA0958 
(OprD) was also detected as induced by Ca2+ by 2D-PAGE (not shown here). 
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Several RND transporters are involved in Ca2+ regulated tobramycin resistance  

To test whether RND transporters play role in Ca2+-induced resistance to 

tobramycin, we measured the MIC of this antibiotic in the transposon insertion 

mutants deficient in each of the twelve RND genes encoded in the PAO1 genome. 

For this, the wild type (WT) PAO1 and transposon mutant strains were grown at 5 

mM Ca2+ or not added Ca2+, and the MICs were measured by using E-strips and 

compared. The disruption of mexB, mexY, muxC, mexE, mexJ and czcB reduced 

Ca2+-induced tobramycin resistance at least twofold (Fig. 1), whereas the other six 

RND mutants showed no significant difference in tobramycin resistance (Fig. S1).  

These observations indicate that six out of twelve P. aeruginosa RND systems 

respond to the presence of Ca2+ and contribute to P. aeruginosa increased resistance 

to tobramycin under elevated Ca2+ conditions. In addition, the mutants with 

disrupted mexB and mexY showed significantly lower resistance to tobramycin 

when grown without added Ca2+ (Fig. 2.1), suggesting that MexAB and MexXY 

efflux pumps are involved in both Ca2+-induced and Ca2+-independent resistance to 

tobramycin in the organism. The intriguing difference between the two pumps is 

that in the mexB mutant, elevated Ca2+ partially recovers the level of resistance to 

about 45% of that in the WT, suggesting there is an alternative mechanism of 

tobramycin resistance that is induced by Ca2+ in this mutant as well as the mutants 

with disrupted muxC, mexE, mexJ, and czcB. However, in the mexY mutant, the 

addition of Ca2+ did not make a difference; supporting previous observations that 
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MexXY is required for tobramycin resistance (95). To test if the observed 

differences are not due to possible growth defects in the mutants, we monitored 

growth of the mutants at elevated Ca2+ and detected no significant changes in their 

growth rates in response to Ca2+ (Fig. S2.2). 
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Figure 2.1: MIC of tobramycin for PAO1 and transposon mutants with 

individually disrupted RND transporters. MIC of tobramycin for PAO1 and 

transposon mutants with individually disrupted RND transporters. Cells were 

grown without or with 5 mM Ca2+, normalized to OD600 of 0.1, and plated onto 

BMM agar plates with the corresponding concentration of Ca2+. E-strips with 

gradient of tobramycin were placed on the bacterial lawns. MIC was recorded after 

24 h incubation. Statistical significance of the difference in MIC between PAO1 

and RND mutant strains was calculated using student’s T-test. *, p < 0.05  

* * 

* * * * * 

* * * * 

* * * * * 

* * 
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Figure 2.S1: The role of RND transporters in Ca2+- induced tobramycin 

resistance of PAO1. The cultures were grown without or with 5 mM Ca2+, 

normalized to OD600 of 0.1, and plated onto BMM agar plates with the 

corresponding concentration of Ca2+. E-strips with gradient of tobramycin were 

placed on the bacterial lawns. The MIC was recorded after 24 h incubation.  
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Figure32.S2: The role of Ca2+ on growth rate of PAO1 and RND transporter 

mutants. The cultures were grown in BMM without or with 5 mM Ca2+, collected, 

normalized to OD600 of 0.1 and inoculated into 100 ml BMM with the 

corresponding Ca2+ concentration at a 1:1000 ratio. The OD600 was measured every 

4 h. Growth rates were calculated as described in (115).   
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Ca2+ regulates transcription of efflux pumps involved in Ca2+-induced 

tobramycin resistance   

To determine whether Ca2+-dependent involvement of multiple RND 

systems in tobramycin resistance is mediated by the regulatory effect of Ca2+on the 

transcription of RND genes, we used RT-qPCR and promoter activity approaches. 

For RT-qPCR, we tested WT cells grown to mid-log growth phase at elevated and 

low levels of Ca2+.  The analysis revealed that growth at elevated Ca2+ affected the 

expression of four RND genes by at least two fold. Transcripts of mexV were 

twofold more abundant at elevated Ca2+, whereas transcription of mexX, muxC, and 

mexM was reduced in response to 5 mM Ca2+ (Fig. 2.2).  We did not detect the czcB 

transcripts in mid-log PAO1 cells, and the transcription of the other five tested RND 

systems was not affected by Ca2+ (Fig. S2.3). This transcriptional profile did not 

correlate with the involvement of mexB, mexY, muxC, mexE, mexJ, czcB, and mexX 

in Ca2+ regulated tobramycin resistance.  Therefore, we hypothesized that Ca2+ 

effect on the transcription of the six RND transporters that are involved in Ca2+-

induced tobramycin resistance, may be growth-phase-dependent. To test this 

hypothesis, we monitored the temporal effect of Ca2+ on promoter activities of the 

six RND transporters by using lux-based reporter system (Fig. 2.3). We also 

assayed the activity of the promoters in response to tobramycin at sub-inhibitory 

concentration.  The results confirmed that promoter activities of five RND 

transporters were transiently increased by Ca2+ in a growth-phase-dependent 
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manner (Fig. 2.3B-F). Interestingly, several spikes of activity were observed, all 

during transitions between different growth phases. The most significant effect of 

Ca2+ was observed for mexAB-oprM promoter, whose activity increased 7 fold after 

2 h of growth during the transition to early-log phase (Fig. 2.3 B). At the same time, 

the promoter responded to the sub-inhibitory concentration of tobramycin. During 

the mid-log phase (4 h), promoter activities for mexXY, muxABC-opmB, mexJK and 

czcCBA-opmY were moderately (about two-three fold) increased in response to 

Ca2+ (Fig. 2.3 C-F). At the same time, two of these promoters, mexXY, muxABC-

opmB, responded to tobramycin. Further, all the tested promoters responded to 

tobramycin during the transition to stationary phase (8 h), and all, except for 

PmexAB-oprM, showed about twofold activity increase in response to Ca2+ at this 

point of growth. In agreement with (82), the activity of mexEF-oprN promoter was 

not detected under the tested conditions. 
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Figure 42.2: The effect of Ca2+ on transcript levels of RND genes. RT-qPCR 

was used to estimate changes in the transcripts levels. PAO1 cells were grown in 

BMM without or with 5 mM Ca2+ until middle log. rpoD was used as an internal 

control. The change in transcript abundance was calculated using 2-ΔΔCt method. 

Statistical significance of the difference was calculated using t-test for paired 

samples assuming equal variances. *, p < 0.05 
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Figure 2.S3:5The effect of Ca2+ on transcript levels of RND genes. RT-qPCR 

was used to estimate changes in the abundance of transcripts. PAO1 cultures were 

grown in BMM without or with 5 mM Ca2+ until middle log phase. rpoD was used 

as an internal control. The change in transcript abundance was calculated using 2-

ΔΔCt method.  Statistical significance of the difference was calculated using t-test 

for paired samples assuming equal variances. *, p < 0.05 
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Figure 2.3: 6Promoter activity analyses of the selected RND transporters. Cells 

were grown in BMM at 37° C in 96 well clear bottom white plates at fast shaking 

setting in Synergy Mx microplate reader. A. Growth of PAO1:pMS402 was 

monitored by absorbance at 600 nm. Black empty circles: 0 mM Ca2+, black 

squares: 5 mM Ca2+, grey squares: tobramycin. B-F. Fold change in promoter 

activities for mexAB-oprM, mexXY, muxABC-opmB, mexJK and czcCBA-opmY. 

Black squares: effect of Ca2+ and grey squares: effect of tobramycin. The horizontal 

lines across the diagrams show the two fold increase in promoter activity. At least 
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three biological replicates were included in every experiment. Phases of growth: 

EL (early logarithmical), Log (logarithmical), and Stat (stationary).  
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 Intracellular Ca2+ (Ca2+
in) homeostasis mediates Ca2+ regulation of mexAB-

oprM promoter  

Earlier we established that addition of extracellular Ca2+ causes transient 

changes in the intracellular levels of the ion, and suggested that this response likely 

mediates Ca2+ regulation in P. aeruginosa (72). Several putative Ca2+ transporters 

were identified and shown to be required for maintaining Ca2+
in homeostasis. They 

include P-type ATPase PA2435, ion exchanger PA2092, and mechanosensitive 

channel PA4614 (72). We hypothesized that Ca2+
in homeostasis is involved in 

regulating the transcriptional changes detected for several RND efflux pumps. To 

test this hypothesis, we measured the activity of mexAB-oprM promoter in the 

mutants with disrupted PA2435, PA2092, or PA4614, and therefore disturbed 

Ca2+
in

 homeostasis. PmexAB-oprM, was selected due to its highest response to Ca2+ 

(Fig. 2.3 B). The promoter activity was measured at 5 mM Ca2+ or no added Ca2+, 

and the fold difference was plotted (Fig. 2.4).  The most significant reduction of 

Ca2+ induction of PmexAB-oprM activity was detected in PA2435:Tn5 mutant. In 

this mutant, the activity of PmexAB-oprM was increased in response to elevated 

Ca2+ by only two fold (versus 7 fold in PAO1) (Fig. 2.4 B). This suggests that Ca2+
in 

homeostasis regulated by PA2435 mediates Ca2+ effect on PmexAB-oprM activity. 
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Figure 2.4:7Effect of Ca2+ on the activity of PmexAB-oprM in P. aerugionosa 

PAO1 and transposon mutants with disrupted PA2435, PA2092, and PA4614. 

Cells were grown in BMM at 37° C in 96 well clear bottom white plates at fast 

shaking setting in Synergy Mx microplate reader. A. PAO1 B. PA2435:Tn5 C. 

PA2092:Tn5 D. PA4614:Tn5 . The horizontal lines across the diagrams show the 

two fold increase in promoter activity. At least three biological replicates were used 

for each experiment. 
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Figure 2.S4: 8Free [Ca2+]in profiles of P. aeruginosa challenged with 

tobramycin and Ca2+. Black lines represent the response to addition of Ca2+ alone 

and grey lines represent the response to addition of Ca2+ together with tobramycin.  

Compounds were added at the time indicated by the arrow. Changes in free [Ca2+]in 

were calculated as described in the Methods section. Data shown is representative 

of at least three biological replicates. 
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We also tested the effect of tobramycin on Ca2+
in homeostasis. Sub inhibitory 

concentration of tobramycin, 0.25 µg/ml (defined for PAO1 growing in BMM) as 

well as higher levels of the antibiotic: 2.5, 5, 10, and 20 µg/ml were used. However 

no significant changes in the Ca2+
in levels were detected (Fig. S2.4). In case if 

external source of Ca2+ is required for elevating Ca2+
in, we added 1 mM extracellular 

Ca2+ either during cell growth or during sample preparation (either 6 min prior to 

the addition of tobramycin or simultaneously with tobramycin). As above, no effect 

of tobramycin on Ca2+
in levels was detected.  

Putative Ca2+ transporters contribute to Ca2+-induced tobramycin resistance in 

PAO1  

Since at least one putative Ca2+ transporter (PA2435), required for 

maintaining Ca2+
in

 homeostasis, plays role in Ca2+ regulation of mexAB-oprM 

transcription, we tested the role of all four earlier identified putative Ca2+ 

transporters (PA2435, PA2092, PA3920, and PA4614) in Ca2+-induced tobramycin 

resistance. For this, we measured antibiotic susceptibility of the transposon mutants 

with individually disrupted PA2435, PA2092, PA3920, and PA4614 by using a 

dilution assay at high and low Ca2+ (Fig.2. 5). No significant changes in the 

tobramycin MIC were detected when the mutants were grown at no added Ca2+.  

However, when cells of three mutants with disrupted PA2435, PA2092, or PA4614 

were grown at 5 mM Ca2+, the MIC was reduced by almost twofold (from 3.5 µg/ml 



59 
 

in PAO1 to 1.75-2.0 µg/ml in the mutants).  Considering that in response to 

extracellular Ca2+, these mutants increase [Ca2+]in to the level of the wild type, but 

are not able to bring it back to the basal level (72), we propose that this failure of 

generating a temporally transient elevation of [Ca2+]in reduces their responses to 

Ca2+ regulation and decreases the level of Ca2+-induced tobramycin resistance. 

These observations support the hypothesis that Ca2+
in response i.e. a combination 

of both the amplitude and the duration of [Ca2+]in changes, mediates Ca2+ regulation 

of tobramycin resistance.  
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Figure 2.5: 9MIC of tobramycin measured for PAO1 and transposon mutants 

with individually disrupted putative Ca2+ transporters. The cells were grown in 

BMM without or with 5 mM Ca2+ with serially diluted tobramycin in 96 well plates 

at 37° C and slow shaking for 8 h. Cell density was measured at 600 nm. At least 

three biological replicates were used. Statistical significance of the difference in 

MIC between PAO1 and RND mutant strains was calculated using student’s T-test. 

*, p < 0.001  
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RND efflux pumps are involved in maintenance of intracellular Ca2+ homeostasis  

Since CzcCBA-OpmY RND system was shown to translocate ions (116), 

we tested whether the RND pumps involved in Ca2+-induced tobramycin resistance 

play role in transporting Ca2+ and maintaining its intracellular concentration. For 

this, we monitored [Ca2+
in] in the transposon mutants with disrupted mexB, mexY, 

mexJ, muxC, mexE or czcB.  For measuring [Ca2+
in], we used a recombinant Ca2+-

binding luminescence protein, aequorin. Each strain producing aequorin was 

cultured without Ca2+ or in the presence of 5 mM CaCl2
 and challenged with 1 mM 

CaCl2. We chose 1 mM of Ca2+ primarily because in this case the available 

intracellular aequorin remaining after the completion of the measurements was at 

least 10% of the total aequorin, enabling accurate estimation of [Ca2+
in] (72). When 

no CaCl2 was added during growth, WT PAO1 maintained 0.3 µM ± 0.09 µM of 

[Ca2+
in], which transiently increased nine fold in response to 1mM CaCl2, followed 

by slow recovery to 1.1 ± 0.3 µM in 20 min (black line in Fig. 2.6 A-C). Disruption 

of mexJ, czcB (grey lines in Fig. 2.6 A, B), mexB, mexY (grey lines in Fig. S5), and 

muxC (not shown) did not affect Ca2+
in homeostasis. However, disruption of mexE 

significantly affected the Ca2+
in profile in PAO1.  This mutant showed 35% lower 

transient increase of [Ca2+
in] than the WT and generated a second transient increase 

before lowering the level of Ca2+
in to the WT level (Fig. 2.6 C).  When grown at 5 

mM Ca2+, PAO1 maintained [Ca2+
in] at 0.3 ± 0.06 µM, which increased in response 

to the addition of 1 mM extracellular Ca2+ by eight fold (black lines in Fig. 2.6 D-
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F). Then the level of [Ca2+
in] further increased reaching 3.3 ± 0.24 µM after 20 min 

of monitoring. Similarly, to the cells grown without Ca2+, disruption of mexB, 

mexY, and muxC (grey lines in Fig. S5) did not affect [Ca2+
in] homeostasis in cells 

grown at elevated Ca2+. However, disruption of czcB and mexE abolished the ability 

of PAO1 to maintain [Ca2+
in] level, which began to increase rapidly after about 18 

min of monitoring (Fig. 6 E, F). Disruption of mexJ reduced the response to Ca2+, 

with 37% less transient increase compared to WT (Fig. 2.6 D). This level remained 

almost unchanged and reached only about 36% of that of WT after 20 h of 

monitoring. 
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Figure 2.6: 10[Ca2+]in profiles of P. aeruginosa PAO1 (black lines) and mutants 

(grey lines). A and D, mexJ::Tn5; B and E, czcB::Tn5; C and F, mexE::Tn5. Cells 

were grown in BMM media without CaCl2 (A, B,  and C) or with 5 mM CaCl2 (D, 

E, and F,). 1 mM CaCl2 was added at the time indicated by the arrows. Changes in 

free [Ca2+]in were calculated as described in the Methods section. Data show the 

mean and standard deviation for at least three independent experiments.  
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Figure 2.S5. 11Free [Ca2+]in profiles of P. aeruginosa PAO1 (black lines) and 

transposon mutants (grey lines). mexB::Tn5 (A and B) and mexY::Tn5 (C and D). 

Cells were grown in BMM media without added CaCl2 (A and C) or 5 mM CaCl2 

(B and D). Cells were challenged with 1 mM CaCl2 at the time indicated by the 

arrows. Changes in free [Ca2+]in were calculated as described in the Methods 

section. Data shown is the mean and standard deviation of at least two independent 

experiments. 
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Several RND transporters are involved in Ca2+-induced virulence of P. 

aeruginosa   

Our earlier studies showed that elevated Ca2+ induces the production of 

secreted virulence factors and plant infectivity in P. aeruginosa (74). Several RND 

systems exemplified by MuxABC-OpmB and MexGHI-OpmD were shown to 

contribute to P. aeruginosa virulence (38, 82). Considering the above and the 

presented here findings that Ca2+ regulates the expression of multiple RNDs and 

that at least three RNDs contribute to maintaining Ca2+
in homeostasis, we tested 

whether any of the 12 RND transporters play role in Ca2+-induced virulence of the 

pathogen. For this, we used lettuce leaves (Lactuca sativa) as an infection model 

and measured the disease area in the midribs of the leaves infected with PAO1 or 

RND transposon mutants cells grown at different Ca2+ levels.  In agreement with 

our earlier observations, injecting PAO1 cells grown at 5 mM Ca2+ caused the 

disease area at least five fold greater (9 ± 0.2 cm2) than that caused by injecting 

cells grown without added Ca2+ (1.6 ± 0.6 cm2) (Fig. 7).  In contrast, four mutants 

with disrupted mexC, mexI, mexJ, or triA, when grown at elevated Ca2+, reduced 

their ability to cause disease by at least twofold in comparison to PAO1, but showed 

no significant difference in disease development when grown without added Ca2+.  

This indicates that the RND systems contribute to Ca2+-induced virulence of the 

pathogen. Injection of mexB::Tn5 grown at both low and high Ca2+ conditions 

showed a significant decrease in disease development, indicating Ca2+-independent 
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role of this transporter in P. aeruginosa virulence. Interestingly, mutants with 

disrupted mexY, muxC, mexE, mexQ, czcB, and particularly mexM showed 

significantly greater zones of disease development when grown and injected at no 

Ca2+, suggesting that the maintenance of these transporters may be energetically 

costly for the organism and therefore reduces P. aeruginosa virulence (Fig. S6).  
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Figure 2.7:12The role of RND transporters in Ca2+-induced infectivity of P. 

aeruginosa. Cells were grown without or with 5 mM Ca2+, harvested during mid-

log, normalized with 10 mM MgSO4 solution without or with 5 mM Ca2+, and 

injected into sterilized mid ribs of lettuce leaves. MgSO4 with or without Ca2+ was 

injected as a negative control. The disease area was calculated by multiplying the 

length and width of the zone of apparent necrosis.  A. The disease area (cm2) on 

lettuce leaf midribs caused by PAO1 and the RND transporter mutants. B. 

Representative photographs of the infected lettuce leaves. Statistical significance 

of the difference in disease area between PAO1 and RND mutant strains grown at 

5 mM Ca2+ was calculated using student’s T-test. *, p < 0.05  
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Figure 2.S6:13The role of RND transporters in Ca2+- induced plant infectivity 

of PAO1. The cell cultures were grown without or with 5 mM Ca2+, collected at 

the middle log phase, normalized to OD600 of 0.1 and injected into sterilized mid 

ribs of lettuce leaves. MgSO4 with or without Ca2+ was injected as a negative 

control. Disease area was calculated by multiplying the length and width of the 

apparent necrosis. 
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DISCUSSION 

Pseudomonas is one of the leading causes of severe and life threatening 

infections in patients with compromised immune system, CF patients, patients with 

burn wounds, chronic obstructive pulmonary diseases, endocarditis, etc. At present, 

several types of antibiotics including aminoglycosides are considered to be an 

effective choice for treating Pseudomonas infections (26, 27, 117). However, the 

increasing resistance of P. aeruginosa to most available antimicrobials represents 

a serious threat and requires a new knowledge of the mechanisms of resistance and 

their regulation in response to host factors. Here we show that Ca2+ at the 

concentration commonly detected in CF lungs (67, 87), increases P. aeruginosa 

resistance to tobramycin. Proteomic and transcriptomic analyses determined that 

Ca2+ regulates the expression of several RND family efflux pumps, six of which 

are involved in Ca2+-induced tobramycin resistance.  This regulation is mediated 

via transient changes in the intracellular Ca2+ levels (summarized in Fig. 2.8). Such 

response to Ca2+, one of the host factors, exemplifies a successful adaptation 

strategy that is regulated by Ca2+ signaling and leads to the increased resistance and 

fitness of the pathogen. 
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Figure 2.8: 14The proposed model of Ca2+ regulation of tobramycin resistance 

in P. aeruginosa. Elevation of extracellular Ca2+ causes a transient spike in [Ca2+]in. 

Several Ca2+ transporters from different families, including PA2902, PA4614, and 

PA2435 (72), and three RND systems (MexJK-OprM, MexEF-OprN, CzcCBA-

OpmY) contribute to the maintenance of Ca2+
 in homeostasis. The intracellular Ca2+ 

signal (both the amplitude and the duration of [Ca2+]in increase) regulates the 

transcription of several efflux pumps involved in Ca2+-induced tobramycin 

resistance (MexAB-OprM, MexXY-OprM, MuxABC-OpmB, MexJK-OprM, 

MexEF-OprN, CzcCBA-OpmY). Black solid arrows: tobramycin efflux, grey solid 

arrows: Ca2+ efflux, grey dashed arrows: Ca2+ influx.  
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Ca2+ enhancement of P. aeruginosa resistance to aminoglycosides has been 

shown before (24, 91). Increased efflux and decreased membrane permeability have 

been suggested as major contributing factors (95). It has been proposed that divalent 

cations, such as Ca2+ and Mg2+, are attracted by the negatively charged binding sites 

on the outer membrane surface, where cationic antibiotics, including 

aminoglycosides, would bind. Due to comparatively smaller size of the divalent 

cations, upon binding, they stabilize the membrane and inhibit the self-promoted 

uptake of antibiotics (24). It has also been identified that the antagonistic effect of 

Mg2+ and Ca2+ on aminoglycoside resistance in P. aeruginosa requires the presence 

of functional MexXY RND transporter (95). Our data confirmed that MexXY-

OprM is a major determinant of P. aeruginosa aminoglycoside resistance, the lack 

of which abolishes resistance to tobramycin at both Ca2+ conditions.  In addition, 

we detected five other RND systems (MexAB-OprM, MuxABC-OpmB, MexEF-

OprN, MexJK-OprM, and CzcCBA) to be involved in Ca2+-induced tobramycin 

resistance, of which the first two and MexXY-OprM also contribute to tobramycin 

resistance at low Ca2+.  Most of these RND transporters have a broad specificity. 

For example, MexAB-OprM is known to transport chemically diverse compounds, 

including cephems, meropenems, fluoroquinolones (18), nalidixic acid (53) 

tigarcillin (118), ethidium bromide (119) and quorum sensing (QS) signaling 

molecules (42, 120). MexXY-OprM pumps aminoglycosides, fluoroquinolones, 

macrolides, and tetracyclines (121-123). MuxABC-OpmB is required for 
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ampicillin and carbanicillin resistance and was found associated with virulence 

traits of PAO1, including plant infectivity and twitching motility (82). MexEF-

OprN is known to export low levels of ciprofloxacin (39) and a Pseudomonas 

Quinolone Signal (PQS) precursor, HHQ (4-hydroxy-2-heptylquinoline) (78, 79). 

MexJK-OprM transports erythromycin and triclosan (124). CzcCBA is the only 

RND system involved in metal ion efflux, maintaining the heavy metal homeostasis 

in P. aeruginosa and other Gram-negative bacteria (41, 125).  However, none of 

these systems, except for MexXY, have been shown to be associated with Ca2+ 

regulation or Ca2+- regulated processes in bacteria. 

Most RND pumps with the exception of mexAB-oprM, known to be 

constitutively expressed in model strains (126), are highly inducible by diverse 

factors, including antibiotics, (Table 2). Multiple RND systems, such as MexAB-

OprM and MexXY, as well as MexEF-OprN and MexJK, can be simultaneously 

overexpressed in clinical samples from patients undergoing antibiotic treatments 

(35, 127). Here we report the effect of host levels of Ca2+ on the expression of at 

least seven P. aeruginosa RND systems. Although RT-qPCR of mid-log cells only 

detected elevated transcription of mexV, which was not involved in Ca2+-induced 

resistance, the promoter activities measured over time were increased in a growth-

phase-dependent manner for five RND systems, involved in Ca2+-induced 

tobramycin resistance. The changes were transient and mostly occurring during the 

transitions between different growth phases, indicating the importance of these 
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transporters in the growth-related physiological rearrangements of this bacterium. 

Interestingly, the highest activity increase in response to both Ca2+ and tobramycin 

was observed for the promoter of mexAB-oprM, mostly known as constitutively 

expressed in laboratory strains (126). These data suggest that (1) the involvement 

of several RND transporters in Ca2+-induced tobramycin resistance is likely due 

their elevated transcription in response to Ca2+; (2) it is important to measure 

temporal changes in gene expression for a more accurate characterization of cellular 

transcriptional profile. 

In our and others earlier studies, bacteria were shown to generate 

intracellular Ca2+ transients in response to several environmental and physiological 

conditions, including extracellular Ca2+, nitrogen starvation, oxidative stress, and 

carbohydrate metabolism (47, 72). We also showed that changes in Ca2+
in level 

have a regulatory effect on multiple aspects of P. aeruginosa physiology (71, 72). 

Here we explored the role of Ca2+
in homeostasis in mediating the regulatory effect 

of Ca2+ on RND transcription. First, we showed that P. aeruginosa does not produce 

any changes in the [Ca2+]in, in response to tobramycin, clarifying that the antibiotic 

alone does not trigger intracellular Ca2+ signaling.  Second, we determined that 

three out of six RND pumps, contributing to Ca2+-induced tobramycin resistance, 

play role in maintaining Ca2+
in homeostasis, particularly in the cells grown at 

elevated extracellular Ca2+. MexJK is likely involved in Ca2+ uptake, CzcCBA – in 

Ca2+ efflux, and MexEF – possibly, in both,  This is a novel observation, since 
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although RND systems are known to efflux chemically diverse substances (Table 

2.2), only CzcCBA-OpmY has been shown to maintain flux of several divalent 

cations, such as copper, cobalt, cadmium, nickel, and zinc, but not  Ca2+ or Mg2+ 

(41, 128, 129). However, the contribution of this ability of MexJK, MexEF, and 

CzcCBA to the regulatory role of Ca2+
in is not clear and warrants further studies. 

Third, we showed that the mutants with disrupted putative Ca2+ transporters, 

PA2435, PA2092, PA4614, which, as shown  in our earlier studies, fail to recover 

the elevated [Ca2+
in] to the basal level (72), decreased resistance to tobramycin at 

least twofold. Furthermore, one of them, PA2435:Tn5, showed a significantly lower 

Ca2+-induced mexAB-oprM promoter activity. These observations support the 

hypothesis that the Ca2+
in response i.e. a combination of both the amplitude and the 

duration of [Ca2+]in changes, mediates Ca2+ regulation of Ca2+-induced tobramycin 

resistance.  
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Table 2.2. 4Fold change in transcript abundance for P. aeruginosa PAO1 RND 

genes in response to different stimuli. 

RND 
transport 
system 

Gene 
name 

aSIC of 
TOBR 
in 
biofilm 
(37) 

aSIC of 
TOBR 
in 
plankto
nic cells 
(37) 

aOxi
dativ
e 
stres
s 
(130
) 

aCu2

+ 
shoc
k 
(131
) 

 
aSI
C of 
AZ 
(36) 

MDR 
HAI 
isolate
sb (35) 

MDR 
CF 
isolate
sb 
(127) 

MexAB-
OprM 

mexB 0.3 1.1 1.5 1.2 0.4 6.2 2 

MexCD-
OprJ 

mexC 1.9 2.5 0.9 2.3 61 83  

MexXY-
OprM 

mexX 1.4 0.8 1.8 2.3 25.7 5,880 5 

MuxABC
-OpmB 

muxC 0.3 0.9 1.5 0.6 1.1   

MexVW-
OprM 

mexV 1.5 0.9 1.0 1.7 1.8 583  

MexGHI-
OpmD 

mexI 1.3 1.9 1.0 1.7 0.1   

MexEF-
OprN 

mexE 1.5 5.0 2.7 0.7 0.7 35.9  

MexPQ-
OpmE 

mexQ 1.1 1.5 1.7 65.8 0.3   

MexJK-
OprM 

mexJ 1.8 1.1 1.2 3.0 3.9 4.2  
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MexMN-
OprM 

mexM 1.7 0.9 1.4 3.7 1.1   

TriABC-
OpmH 

triA 1.4 0.8 1.2 1.0 0.2   

CzcCBA czcB 1.9 0.3 1.3 3.6 1.4   

The increased abundances of transcripts 1.5 fold and above are shown in bold. 

aThe data were collected from the Geo profiles at 

http://www.ncbi.nlm.nih.gov/geoprofiles. 

bFold change in expression compared to that of PAO1. Only the highest fold change 

in expression level is mentioned.  

SIC, Sub-inhibitory concentration. TOBR, Tobramycin. AZ, Azithromycin. 
MDR, Multidrug resistant. HAI, Hospital acquired infection. 
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Recently, Mg2+-dependent two-component system ParRS was shown to 

positively regulate the transcription of two RND efflux pumps MexXY-OprM and 

MexEF-OprN (132, 133), which we showed to be involved in Ca2+ regulated 

tobramycin resistance. However, disruption of parR did not affect Ca2+–induced 

tobramycin resistance (data not shown). On the other hand, the disruption of two 

putative Ca2+-binding proteins, CarP and CarO, that play role in the development 

of intracellular Ca2+ responses and whose expression is positively regulated by 

Ca2+-dependent two-component system CarSR, reduced Ca2+ induction of 

tobramycin resistance (70). This suggests a possible role of Ca2+ recognizing two 

component regulatory system CarSR in regulating Ca2+ responses in P. aeruginosa, 

including Ca2+-induced tobramycin resistance.  

Finally, we identified that four RNDs: MexCD-OprJ, MexGHI-OpmD, 

MexJK-OprM, and TriABC-OpmB contribute to Ca2+-induced plant infectivity, of 

which only MexJK-OprM responded to Ca2+ and was involved in Ca2+
in

 

homeostasis and tobramycin resistance. The involvement of RND systems in 

virulence of diverse bacteria has been reported before (134-136), which is mostly 

due to their role in transporting virulence factors or signaling molecules regulating 

virulence. In P. aeruginosa, several RNDs were shown play role in virulence, 

including detected here MexCD-OprJ and MexGHI-OpmD (38, 44, 55). The 

involvement of the RND transporters in Ca2+-enhanced plant infectivity of the 
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pathogen may be a cumulative result of multiple factors, including Ca2+-regulated 

transcription of the RND genes or the genes encoding virulence factors.   

Overall, as summarized in Fig. 8, elevation of extracellular Ca2+ causes a 

transient increase in [Ca2+]in, which regulates the transcription of several efflux 

pumps involved in Ca2+-induced tobramycin resistance or infectivity. This 

illustrates a novel mechanism of P. aeruginosa adaptive resistance that relies on a 

large set of RND efflux systems regulated in response to host elevated Ca2+.    
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ABSTRACT 

Calcium (Ca2+) is a major second messenger regulating essential processes 

in eukaryotes. However, the regulatory role of intracellular Ca2+ in prokaryotes has 

not been experimentally proven. Our earlier studies established the global effect of 

elevated Ca2+ on gene expression of Pseudomonas aeruginosa, a human pathogen 

causing severe acute and chronic infections. We have also established that P. 

aeruginosa maintains low free intracellular Ca2+ level, which transiently increases 

in response to extracellular Ca2+. These findings suggested that intracellular Ca2+ 

transients play a regulatory role in Ca2+ global responses. Here we report 

identification of a putative Ca2+ channel, PA2604, designated as CalC, that is 

required for the development of transient increases in [Ca2+]in in P. aeruginosa. 

Genome-wide RNA-Seq analysis revealed that PA2604 is involved in Ca2+ 

regulation of at least 800 genes. These genes include those involve in biosynthesis 

of siderophores, LPS, peptidoglycan, lipid A modification, phosphate metabolism, 

and global regulators of virulence factors required for the development of the 

pathogen’s chronic infections. Furthermore, disruption of PA2604 abolished 

regulatory effect of Ca2+ on the transcription of multidrug efflux pump mexAB-

oprM required for Ca2+-induced tobramycin resistance in PAO1. We have also 

established that Ca2+ regulates transcription of PA2604 via Ca2+ responsive two-

component regulator, CarRS, and Ca2+-binding EF hand protein, EfhP. The results 

provide the first experimental evidence of intracellular Ca2+ signaling in 
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prokaryotes and identify the components of intracellular Ca2+ regulatory network 

controlling the virulence and antibiotic resistance of P. aeruginosa. 
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INTRODUCTION 

Calcium ions (Ca2+) represent one of the most essential secondary 

messengers in eukaryotes, which regulates many vital cellular processes including 

cell cycle, apoptosis, transport, motility, and metabolism (reviewed in (47)). 

Therefore, even slight abnormalities in cellular Ca2+ homeostasis may cause human 

diseases, including diseases associated with bacterial infections, such as cystic 

fibrosis (CF) pulmonary infections and endocarditis (137). As a result of such 

abnormal Ca2+ homeostasis, CF patients accumulate Ca2+ in airway epithelia, 

pulmonary and nasal liquids (67, 138). There is growing evidence suggesting that 

Ca2+ also plays a significant role in the physiology of bacteria by regulating gene 

expression, providing structural support or activating enzyme activities. The 

affected processes include maintenance of cell structure, motility, chemotaxis, cell 

division and differentiation, transport, and spore formation (139-143). It has been 

shown that extracellular Ca2+
 regulates expression of a large number of genes 

involved in such global aspects of bacterial life as general metabolism (electron 

transport chain, RNA synthesis, protein synthesis/degradation, and carbohydrate 

metabolism), lifestyle switch and physiological adaptations (spore formation, 

heterocyst formation, chemotaxis, swarming motility, biofilm formation, iron 

acquisition, oxidative stress response, and quorum sensing), as well as transport 

and virulence (T3SS, extracellular proteases, alginate, and toxins) (144-148).  
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Mechanisms of Ca2+ signaling are well studied in eukaryotes. Eukaryotic 

cells tightly regulate the intracellular calcium concentration [Ca2+]in, which 

transiently changes in response to various stimuli. These transient changes in 

[Ca2+]in serve as the informational input that is decoded by Ca2+-binding sensors 

and further transduced via protein-protein interactions and post-translational 

modifications to regulate various cellular processes. Similarly, prokaryotes appear 

to possess all the prerequisites necessary for using intracellular Ca2+ as a mean for 

informational networking. In addition to the global regulatory effect of fluctuations 

in environmental Ca2+ outlined above, bacteria possess Ca2+ transporters, Ca2+ 

storage structures, and calmodulin like Ca2+ binding proteins.  Furthermore, several 

bacteria have been shown to maintain [Ca2+]in at sub-micromolar levels produce 

Ca2+ transients in response to environmental and physiological factors (72, 142, 

149). Overall, this suggests that bacteria may possess a prototype Ca2+ signaling. 

However, the experimental evidence proving that changes in [Ca2+]in play a 

regulatory role is still missing. 

Pseudomonas aeruginosa is a facultative pathogen and a leading cause of 

severe nosocomial infections in both immunocompetent and immunocompromised 

patients (150, 151). P. aeruginosa is one of the primary organisms that form 

biofilms on airway mucosal epithelium of patients with cystic fibrosis (CF) where 

it contributes to airway blockage and cellular damage.  P. aeruginosa also causes 

infective endocarditis and device-related infections with high morbidity and 
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mortality rates (152-154). P. aeruginosa biofilm infections are increasingly 

difficult to treat with traditional antibiotic therapy, and are often not eradicated by 

host defense processes (155, 156). Our earlier studies revealed that growth in high 

Ca2+ enhances biofilm formation (146), swarming motility (72), and plant 

infectivity of P. aeruginosa (157). In search of the mechanisms, we showed that 

Ca2+ modulates the expression of a large number of genes including those 

responsible for production of secreted virulence factors (pyocyanin, rhamnolipid, 

alginate, extracellular proteases), adaptation to host environment (iron acquisition, 

oxidative stress response, nitrogen metabolism), antibiotic resistance (multidrug 

efflux), and quorum sensing signaling (73, 158). We established that P. aeruginosa 

maintains submicromolar level of [Ca2+]in, which is transiently increased in 

response to elevated external Ca2+ and identified four putative Ca2+ transporters 

required for [Ca2+]in homeostasis (72). The disruption of these transporters impaired 

multiple Ca2+-regulated traits, including antibiotic resistance and virulence factor 

production. Finally, we identified several putative Ca2+ binding proteins, including 

calmodulin like EfhP (157), that mediate Ca2+ responses in P. aeruginosa. Based 

on these findings we hypothesized that intracellular Ca2+ serves as a second 

messenger regulating Ca2+-dependent physiology. Here we provide the first direct 

experimental evidence confirming the regulatory link between the intracellular Ca2+ 

transients and Ca2+ response. We identified PA2604, a homolog of B. subtilis Ca2+ 

leak channel (159, 160), to be responsible for generating the intracellular Ca2+ 
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transient increase in response to extracellular Ca2+. We designated it CalC, calcium 

channel, and characterized its role in genome-wide transcriptional response to 

elevated external Ca2+. We also studied the effect of Ca2+ on transcription of 

PA2604 and the role of several Ca2+ responsive regulators in mediating this 

response. The results support the hypothesis that the transient changes in the 

intracellular [Ca2+] are required for regulating the physiological response to Ca2+ 

manifested in Ca2+-induced virulence in P. aeruginosa and therefore confirm that 

intracellular Ca2+ plays a signaling role in P. aeruginosa. 

MATERIALS AND METHODS 

Bacterial strains, plasmids and media and chemicals.  

Strains and plasmids used in this study are listed in Table 3S1. P. 

aeruginosa strain PAO1 used in this study is the non-mucoid strain with genome 

sequence available. Biofilm minimal media (BMM) (146) contained (per liter): 9.0 

mM sodium glutamate, 50 mM glycerol, 0.02 mM MgSO4, 0.15 mM NaH2PO4, 

0.34 mM K2HPO4, and 145 mM NaCl, 20 µl trace metals, 1 ml vitamin solution. 

Trace metal solution (per liter of 0.83 M HCl): 5.0 g CuSO4.5H2O, 5.0 g 

ZnSO4.7H2O, 5.0 g FeSO4.7H2O, 2.0 g MnCl2.4H2O). Vitamins solution (per liter): 

0.5 g thiamine, 1 mg biotin. The pH of the medium was adjusted to 7.0.  Cells were 

first grown in 5 ml tubes for 16 h (mid-log) and then used to inoculate (0.1%) 100 
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ml fresh medium in 250 ml flasks. The cultures were grown to mid-log or stationary 

phase and harvested by centrifugation. Transposon insertion mutants were obtained 

from the University of Washington Two - Allele library (98) (NIH grant # P30 

DK089507) (Table 3.S1).  

TABLE 3.S1: 5Strains and plasmids used in this study 

Strains/Plasmids Description Reference 

Strains   

P. aeruginosa PAO1 Wild type sequenced strain  (161) 

calC::Tn5 PW5376 

PA2604-G04::ISPhoA/hah 

(98) 

PA5056::Tn5 PW9491 

lacZbp03q3G11 

(98) 

PA5058::Tn5 PW9495 

phoAwp10q1D06 

(98) 

PA5241::Tn5 PW9824 

phoAwp03q3A10 

(98) 

PAO1:pMS402 PAO1 with promoterless pMS402 (82) 

PAO1:PmexAB-oprM PAO1 with PmexBA-orM (82) 

calC::Tn5:pMS402 calC::Tn5 with promoterless 
pMS402 

This study 
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calC::Tn5: PmexAB-
oprM 

calC::Tn5 with PmexBA-orM This study 

ladS :: Tn5 PW7727 phoAwp05q1G04 (98) 

ladS :: Tn5 PW7726 phoAwp03q1D01 (98) 

ΔcarR PAO1 with deletion of carS gene. (70) 

ΔcarP PAO1 with deletion of carP gene. (70) 

ΔcarO PAO1 with deletion of carO gene. (70) 

ΔefhP PAO1 with deletion of efhP gene (71) 

ΔbfmR PAO1 with deletion of bfmR gene. (162) 

ΔlasR (lasR:Gm) PAO1 with deletion of lasR gene (163) 

ladS :: Tn5 / pMS402 ladS::Tn5 with promoterless 
pMS402 

This study 

ladS :: Tn5 / pSK-
2604F 

ladS::Tn5 with pSK2604F This study 

ΔcarR / pMS402 ΔcarS with promoterless pMS402 This study 

ΔcarR / pSK2604F ΔcarS  with with pSK2604F This study 

ΔcarP / pMS402 ΔcarP with promoterless pMS402 This study 

ΔcarP / pSK2604F ΔcarP with with pSK2604F This study 

ΔcarO / pMS402 ΔcarO with promoterless pMS402 This study 

ΔcarO / pSK2604F ΔcarO with with pSK2604F This study 

ΔefhP / pMS402 ΔefhP with promoterless pMS402 This study 

ΔefhP / pSK2604F ΔefhP with with pSK2604F This study 

ΔbfmR / pMS402 ΔbfmR with promoterless pMS402 This study 
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ΔbfmR / pSK2604F ΔbfmR with with pSK2604F This study 

ΔlasR / pMS402 ΔlasR with promoterless pMS402 This study 

ΔlasR / pSK2604F ΔlasR with with pSK2604F This study 

PAO1 / CTX6.1 PAO1 transformed with promoter 
activity reporter empty plasmid 
CTX6.1 

(164) 

PAO1 / CTX-rsmA PAO1 electroporated with 
promoter activity reporter 
construct for rsmA 

(164) 

PAO1 / CTX-rsmZ PAO1 electroporated with 
promoter activity reporter 
construct for rsmZ 

(164) 

calC::Tn5 / CTX6.1 calC::Tn5 transformed with 
promoter activity reporter empty 
plasmid CTX6.1 

(164) 

calC::Tn5 / CTX-
rsmA 

calC::Tn5 electroporated with 
promoter activity reporter 
construct for rsmA 

(164) 

calC::Tn5 / CTX-
rsmZ 

calC::Tn5 electroporated with 
promoter activity reporter 
construct for rsmZ 

(164) 

Plasmids   

pMMB66EH-AEQ pMMB66EH plasmid containing 
aequorin gene from Aequorea 
Victoria 

(165) 

   

pMS402 Expression reporter plasmid 
carrying promoterless luxCDABE 

(82) 
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gene, ori of pRO1615. KanR, 
TmpR. 

pSK2604 Promoter region of PA2604 cloned 
upstream of lux operon on 
pMS402, 

This study 

CTX 6.1 Integration plasmid origins of 
plasmid mini-CTX-lux; Tcr 

(164) 

CTX-rsmA Integration plasmid, CTX6.1 with 
a fragment of pKD-rsmY 
containing rsmA  
promoter region and luxCDABE 
gene; Kn, Tmp, Tc 

(164) 

CTX-rsmZ Integration plasmid, CTX6.1 with 
a fragment of pKD-rsmY 
containing rsmZ 
promoter region and luxCDABE 
gene; KanR, TmpR, TcR. 
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The mutants contained ISphoA/hah or ISlacZ/hah insertions with 

tetracycline resistance cassette that disrupted the genes of interest. The mutations 

were confirmed by two-step PCR: first, transposon flanking primers were used to 

verify that the target gene is disrupted, and second, gene-specific primers listed in 

Table 3.S2, were used to confirm the transposon insertion. The primer sequence is 

available at www.gs.washington.edu. For convenience, the mutants were 

designated as PA::Tn5, where PA is the identifying number of the disrupted gene 

from P. aeruginosa PAO1 genome (www.pseudomonas.com). Coelenterazine was 

purchased from Life Technologies (California, USA). Primers were obtained from 

Integrated DNA technologies. 
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Table 3.S2: 6Primers used in this study 

Primer name Sequence (5´- 3´) Ref. 

49172F.f GGAAGAGTCTCCCCTTCGAC (98) 

49172F.r TAGAAGAACAGGCGGACGAT (98) 

Aeq-Forward CTTACATCAGACTTCGACAACCCAAG (72) 

Aeq-reverse CGTAGAGCTTCTTAGGGCACAG (72) 

PA2604F-F AACCTCGAGGGTGTGGGTACTCCTTAAC This 
study 

PA2604F-R CCGGATCCGACCGTTGCCTTAAACC This study 

Enzyme Restriction sites (HindIII, SacI, XhoI and BamHI) are incorporated (Bold) 

in the primer to facilitate cloning. 
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Estimation of Free Intracellular Calcium ([Ca2+]in).  

PAO1 and mutants were transformed with pMMB66EH (courtesy of Dr. 

Delfina Dominguez and Dr. Anthony Campbell), carrying aequorin (107) and 

carbenicillin resistance genes, using a heat shock method described in (108). The 

transformants were selected on Luria bertani (LB) agar containing carbenicillin 

(300 µg/ml) and verified by PCR using aequorin specific primers Aeq-Forward and 

Aeq-Reverse (Table S2). Aequorin was expressed and reconstituted as described 

in (72). Briefly, mid-log phase cells were induced with IPTG (1 mM) for 2 h for 

apoaequorin production, and then harvested by centrifugation at 5,232 g for 5 min 

at 4°C. Aequorin was reconstituted by incubating the cells in the presence of 2.5 

µM coelenterazine for 30 min. 

Luminescence measurements and estimation of free [Ca2+]in were 

performed as described in (72) with slight modifications. Briefly, 100 µl of cells 

with reconstituted aequorin were equilibrated for 10 min in the dark at room 

temperature. Luminescence was measured using Synergy Mx Multi-Mode 

Microplate Reader (Biotek) at the interval of 5 min. For basal level of [Ca2+]in, the 

measurements were recorded for 1 min, then the cells were challenged with 1 mM 

Ca2+ and the luminescence was recorded for next 20 min. [Ca2+]in was calculated 

by using the formula pCa = 0.612(−log10k)+3.745, where k is a rate constant for 
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luminescence decay (s-1) (109). The aequorin standard curve was shared by Dr. 

Anthony Campbell. The results were normalized against the total amount of 

available aequorin as described in (72). The discharge was performed by 

permeabilizing cells with 2% Nonidet 40 (NP40) in the presence of 12.5 mM CaCl2. 

The luminescence released during the discharge was monitored for 10 min at 5 sec 

intervals. Injection of buffer alone was used as a negative control, and did not cause 

any significant fluctuations in [Ca2+]in.  The estimated remaining available aequorin 

was at least 10% of the total aequorin. The experimental conditions reported here 

were optimized to prevent any significant cell lysis. 

Sequence analysis  

Sequence homology searches were performed using the NCBI nr database 

(GenBank release 160.1). Functional domains were predicted using Pfam 31.0. 

Protein subcellular localization was predicted using pSORTb v3.0 analysis. 

Predictions of transmembrane helices and signal peptides were performed using 

TMHMM and SignalP 4.0, respectively. Protein three-dimensional (3D) structure 

was predicted using iTASSER and SWISS-MODEL and visualized using PyMOL 

(version 1.8.6.0; Schrödinger, LLC) 
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Swarming motility assay  

Swarming motility was assayed as described in (72). Briefly, PAO1 and 

mutants were grown in BMM at no added or 5 mM Ca2+. 2 μl of the mid-log cultures 

normalized to the OD600 of 0.3 were spot inoculated onto the surface of BM2 swarm 

agar (166). After inoculation, the plates were incubated at 37°C for 15 h and the 

colony diameters were measured. The effect of Ca2+ was calculated as a fold 

difference (ratio) between the diameters of the colonies grown at 5 mM and no 

added Ca2+.  

Pyoverdine assay  

Production of pyoverdine was assessed by measuring fluorescence intensity 

emitted at wavelength of 460 nm following the excitation at 400 nm as described 

in (55, 167, 168). Mid-log phase bacterial cultures grown in BMM were normalized 

to OD600 of 0.3. 100 µl of normalized culture was inoculated into 100 mL of BMM 

and grown at 37°C with shaking 200 rpm until mid-log (12 h) and late stationary 

phase (24 h).  After the OD600 of the cultures was measured, cells were pelleted, 

and the collected supernatants were analyzed for pyoverdine fluorescence. The 

fluorescence values were normalized by the corresponding cell density measured 

at OD600. 
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Antibiotic susceptibility assays  

P. aeruginosa resistance to tobramycin and polymyxin B (Pol-B) was 

assayed as described in (43) . PAO1 and mutants were grown in BMM at no added 

or 5 mM Ca2+. 100 µl of the mid-log cultures normalized to the OD600 of 0.1 were 

spread inoculated onto the surface of BMM agar containing no added or 5 mM 

Ca2+. E-test strips for tobramycin or Pol-B (Biomeurix) were placed on the surface 

of the inoculated plates and incubated at 37 0C for 24 h. The minimum inhibitory 

concentration (MIC) was measured as a point at which the edge of the zone of 

inhibition crosses the e-test strip. The effect of Ca2+ was calculated as a fold 

difference (ratio) between the MIC at 5mM vs. no added Ca2+. 

For plate dilution assay, middle log cultures grown in BMM with or without 

added Ca2+ were normalized to OD600 of 0.3, and inoculated at 1:100 ratio into 

BMM with the corresponding Ca2+ concentration with or without tobramycin. 

Considering the earlier established Ca2+-induced tobramycin resistance in P. 

aeruginosa (43), tobramycin was added at the final concentration of 0.25, 0.5, 0.75, 

0.1, 1.5 μg/ml to BMM without added Ca2+ and of 1.0, 1.5, 1.75, 2.0, 3.5 μg/ml to 

BMM supplemented with 5 mM Ca2+. The cultures were incubated with slow 

shaking for 8 h in 96 well plates, and OD600 was measured using Synergy Mx Plate 

reader (Biotek). At least three replicates were tested, and the mean values of MICs 

were reported. 
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RNA isolation  

Total RNA was isolated from P. aeruginosa PAO1 grown in BMM with no 

or 5 mM Ca2+ using RNeasy Protect Bacteria Mini kit (Qiagen) or ZR Fungal/ 

Bacterial RNA MiniPrepTM (Zymo Research) where cells were processed with 50 

µg/ml of lysozyme followed by the manufacturer's protocol for isolation. The 

purified RNA was eluted with diethylpyrocarbonate (DEPC) treated sterile 

nanopure water. DNase treatment was performed for eluted RNA sample using 

turbo DNase (Ambion). The absence of genomic DNA was confirmed by 

conventional PCR using rpoD primers. RNA yield was measured using NanoDrop 

spectrophotometer (NanoDrop Technologies Inc.), and the quality of the purified 

RNA was assessed by Bioanalyzer 2100 (Agilent) and 1% agarose gel 

electrophoresis. Following the MIQE guidelines, only the RNA samples with an 

OD260/OD280 ratio of 1.8-2.0 and an RIN value of ≥ 9.0 and/ or rRNA ratio of 1:2 

were selected for further analysis. RNA samples were stored at -80 °C.  

Library preparation and RNA Seq  

RNA Seq analysis was performed at Vertis Biotechnology AG, Germany. 

First, RNA samples were assessed by capillary gel electrophoresis using Shimadzu 

MultiNa microchip and RNA samples with a 16S:23S ratio of 1:1- 1:3 were selected 

for further analysis. For capable RNA Seq, the RNA samples were enriched by 

capping the 5´ triphosphorylated RNA with 3´-desthiobiotin-TEG-guanosine 5´ 
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triphosphate (DTBGTP) (NEB). For reversible binding of biotinylated RNA 

species to streptavidin vaccinia capping enzyme (VCE) (NEB) was used. An 

elution step was performed to capture the biotinylated species to streptavidin and 

obtain the 5' fragments of the primary transcripts. 

To deplete the ribosomal RNA, RNA samples were treated with Ribo-Zero 

rRNA kit for bacteria (Illumina). These RNA samples were then used for cDNA 

library preparation. In brief, the RNA was first poly(A) tailed using poly(A) 

polymerase. Then the 5´ triphosphate or CAP were removed by pyrophosphatase 

(Cellsript) and an RNA adapter was ligated to the 5´ monophosphate end of RNAs. 

cDNA synthesis was performed using the oligo (dT)-adapter primer and M-MLV 

reverse transcriptase. The resultant cDNA was PCR amplified to yield about 10-20 

nm/µl using high fidelity polymerase. The cDNA pool for sequencing was 

generated by taking equimolar cDNA samples followed by elution of samples to a 

size range of 200-500 bp from preparative agarose gel. The size fractionation was 

confirmed by capillary gel electrophoresis. The True-seq primers designed 

following the Illumina instructions were used for the sequencing. The cDNA pools 

were sequenced on an Illumina NextSeq 500 system using 75 bp read length. 
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Promoter activity reporter construction  

To study the transcription activation of PA2604, pMS402 with a promoter 

less luxCDABE reporter was used. The vector was generously shared by Drs. 

Kangmin Duan (Manitoba University, Canada) and Mengmeng (Northwest 

University, China). The promoter region of PA2604 was predicted by BPROM 

algorithm. The 139 bp region upstream of PA2604 harboring the predicted 

promoter was PCR amplified by using pfx polymerase kit (Thermo Fischer 

Scientific) and primers flanking BamHI and XhoI restriction sites and cloned 

upstream of the luxCDABE operon. The resultant plasmid was designated pSK-

2604F (Table S1). The empty vector pMS402 and pSK-2604F were electroporated 

into PAO1 wild type (WT) and the following mutants ΔcarR, ΔcarP, ΔefhP, and 

ΔlasR (Table S1). Successful transformants were selected on LB agar plates 

containing trimethoprim at 300 µg/ml final concentration.  To measure the 

promoter activities of rsmA and rsmZ, the integron based promoter activity integron 

based reporter Empty vector CTX6.1 and promoter activity reporter plasmids CTX-

rsmA and CTX rsmZ were generously provided by Dr. Kangmin Duan. These 

vectors (Table 3.S1) were electroporated into PAO1 WT and PA2604:Tn5 mutant. 

The transformed clones were selected on LB agar plates containing trimethoprim 

at 300 µg/ml.   
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Promoter Activity Assay  

Strains carrying promoter regions of genes of interest upstream of 

luxCDABE operon were grown in BMM with or without added Ca2+ at 37 °C, while 

shaking at 200 rpm for 12 h. Then OD600 of the cultures were measured and 

normalized to an OD600 of 0.3 using BMM with the corresponding Ca2+.The 

normalized cultures were inoculated into a total volume of 200 µl of BMM at the 

ratio of 1:100 in 96 well clear bottom plate (Grenier Bio-One) and incubated at fast 

shaking in Synergy MX plate reader (Biotek). When needed, 5 mM of CaCl2 or sub 

inhibitory concentration (SIC) of tobramycin defined as two-fold below the 

experimentally measured MIC 0.25 µg/ ml, were added to BMM. Cell density at 

OD600 as well as luminescence was measured every 30 minute for 10 h. For 

experiments performed to assess the immediate effect of Ca2+ addition on the 

promoter activity of PA2604, the precultures were grown in 5 ml BMM without 

added Ca2+ for 12 h. Cell density was normalized as described above and 200 µl of 

the normalized cultures were added to each well of 96 clear bottom plate (Grenier 

Bio-One).  After 5 h of growth in the Synergy MX plate reader (Biotek) at 37 °C 

and fast shaking, the plate was taken out briefly and Ca2+ was added to a final 

concentration of 5 mM to respective wells. The control wells received the same 

volume sterile nanopure water. 

Luminescence measurements were normalized by cell density (OD600) of 

the corresponding cultures, followed by subtraction of the empty vector normalized 
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luminescence. Finally, ratios between promoter activities determined with and 

without Ca2+ or tobramycin were calculated and averaged over at least three 

biological replicates. Every experiment was repeated at least twice.   

RESULTS 

In silico search for proteins required for Ca2+ uptake in P. aeruginosa PAO1  

Previous studies identified two types of Ca2+ influx channels in bacteria: 

PHB-PP, a non-proteinaceous Ca2+ influx channel in E. coli  (109) and BSYetJ, a 

pH sensitive Ca2+ leak channel in B. subtilis (159).  Sequence analysis of PAO1 

genome revealed no closely clustered homologs of PHB-PP synthases. Further, it 

was shown that P. aeruginosa PAO1 produces medium chain length 

polyhydroxyalkanoate (PHA) (169) and PP. Biosynthesis of PHA requires two 

PHA synthases: PA5056 and PA5058 (169). The level of PP is determined by the 

activities of exopolyphosphatase PA5241 and polyphosphate kinase PA5242 (170, 

171). We hypothesized that PAO1 produces PHA-PP to serve as Ca2+ influx 

channel and that the proteins involved in PHA-PP synthesis play role in the 

intracellular Ca2+ homeostasis.  In-silico search for homologs of BSYetJ identified 

only one homolog PA2604 that shares 23% amino acid sequence identity with 

BSYetJ in B. subtilis. Unlike bsYetJ surrounded by genes encoding peptidase, DNA 

repair proteins, flavin oxidoreductase, and lipoprotein, PA2604 does not occur in 
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operon-like structure. Further sequence analysis of PA2604 showed that similarly 

to BSYetJ, this protein contains a Bax Inhibitor-1 (B1-I) domain spanning the entire 

protein (Fig 3.1 A). B1-I containing proteins are conserved membrane spanning 

proteins that transport Ca2+ in and out of the endoplasmic reticulum. The i-

TASSER-predicted 3D structure of PA2604 forms seven membrane spanning α-

helixes, which is typical for the proteins with B1-I domain (Fig. 3.1 B). Based on 

this analysis, we predicted that PA2604 is a calcium channel and designated it CalC. 
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Figure 3.1:15Sequence analysis of CalC. A. Schemetic drawing of CalC. Seven 

transmembrane regions (TM) are shown as light grey boxes. α-helix locations were 

predicted using TMHMM v. 3.0. The Bax-1 inhibitor domain as predicted by Pfam 

is indicated by the checkered rectangle. B. 3D structure of CalC predicted by 

iTASSER: side and top view. Transmembrane domains are shown in light grey. 
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PA2604 is required for generating transient increase in [Ca2+]in.   

Earlier we showed that P. aeruginosa generates transient changes in [Ca2+]in 

in response to elevated external Ca2+. We hypothesized that proteins responsible 

for Ca2+ uptake would define the transient increase in [Ca2+]in in response to 

externally added Ca2+. Therefore, four candidates predicted to uptake Ca2+, 

PA5056, PA5058, calC, and PA5241 were tested for their role in [Ca2+]in 

homeostasis. For this, the corresponding transposon mutants were obtained from 

the UW mutant library (Table 3S1), confirmed by PCR, subjected to measurements 

of their [Ca2+]in responses to 1 mM Ca2+, and compared to that of the wild type 

PAO1 cells (Fig. 3.2 A - D). 

As established earlier, (72) WT PAO1 maintains [Ca2+]in at the level of 0.3 

± 0.09 µM, which transiently increases nine fold (2.68 ± 0.44 µM) over the period 

of 0.6 min in response to 1 mM external Ca2+. Disruption of calC reduced the basal 

level of [Ca2+]in by three fold. Further, calC mutant showed highly attenuated 

transient increase [Ca2+]in, reaching only 23% of the WT (0.62±0.09 µM) in 0.08 

min after addition of 1 mM Ca2+ (Fig.3. 2 A). This low increase was not followed 

by a decline, but instead was followed by a second slow wave of [Ca2+]in increase 

reaching 3.26 ± 0.27 µM over 9.7 min, and then a slow decline to 2.34±0.37µM, 

which is two-fold above the recovery level in WT cells. Gene complementation 
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restored the initial transient increase to WT level, however, did not restore the 

recovery to the basal level of Ca2+
in. 

The mutants with disrupted PHA synthases, PA5056, PA5058, or PA5241 

did not exhibit a reduction in the initial increase of [Ca2+]in in response to Ca2+ 

addition (Fig. 3.2 B-D). On contrary, all three of them showed a greater [Ca2+]in 

increase and a significantly reduced (PA5058::Tn5) or abolished (PA5056::Tn5, 

PA5241::Tn5) recovery to the [Ca2+]in basal level. Thus, over 15 min, the WT cells 

recovered their [Ca2+]in to 0.15 ± 0.19, whereas the mutants recovered only to 

1.18±0.2 µM (PA5058::Tn5), 2.42 ± 0.83  µM (PA5056::Tn5), and 3.24 ± 0.23  µM 

(PA5241::Tn5).  

  



107 
 

 

Figure 3.2: 16 Free [Ca2+]in profiles of transposon mutant with disrupted 

putative Ca2+ channels. The mutants were obtained from the University of 

Washington Two-Allele library. Cells were grown in BMM media with no added 

Ca2+. The basal level of luminescence was monitored for 1 min. 1 mM CaCl2 was 

added at the time indicated by the arrow, followed by luminescence measurements 

for 20 min. Changes in free [Ca2+]in were calculated as described in the Methods 

section. PA numbers represent the open reading frames in PAO1 genome. (A) 

calC::Tn5. (B) PA5056:Tn5. (C) PA5058:Tn5. (D) PA5241:Tn5. Black, PAO1 
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wild type; grey, transposon mutant; dashed grey, complemented strain. The data is 

an average of at least three biological replicates. 
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Ca2+ regulates the transcription of calC  

The RNA-Seq analysis showed that growth at 5 mM Ca2+ increased the 

transcript abundance of PA2604 by more than two fold (Fig. 3.3A). To validate 

these data and monitor the transcription of calC over time during different growth 

phases, promoter activity assay was used. In cells growing at 5 mM Ca2+, promoter 

activity of calC increased up to 35 fold during early log phase (Fig. 3.3B). This 

increase in promoter activity was until the early stationary phase of growth, at 

which the effect of Ca2+ became negative. 
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Figure 3.3: 17 Regulatory role of Ca2+ on calC transcription. A. promoter 

activity of calC at 0 mM (grey circle) and 5 mM Ca2+ (black circle). Cells of 

PAO1, transformed with either the promoterless empty vector or the promoter 

activity reporter construct of PA2604 (pSK-2604F) were grown in BMM at 37° C 

in 96 well clear bottom white plates at fast shaking in Synergy Mx microplate 

reader.  The luminescence and cell density (OD600) was measured every two hours 

Phases of growth: EL (early log), Log and Stat (stationary). The data analyses 

followed the steps: 1) the averaged luminescence reading of non-inoculated 

controls was subtracted; 2) the luminescence at time 0 was subtracted from 

subsequent readings. The obtained luminescence readings were 3) normalized by 

the corresponding cell density and 4) averaged. 5) averaged normalized 

luminescence of the promoterless vector controls was subtracted from that of the 

promoter carrying constructs, 6) fold change was calculated versus the condition 

when no Ca2+ or tobramycin were added. At each step of data normalization, any 
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negative values were replaced by the basal luminescence reading of empty vector 

at that point.  At least 3 biological replicates in each experiment and 2 independent 

experiments were used. B. RNA seq data for Ca2+ regulated differential 

transcription of calC in PAO1. RNA polymerase D (rpoD) is added as a controle 

gene that shows no differential expression due to Ca2+.  
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Ca2+ responsive two-component regulator CarRS and putative Ca2+ binding 

proteins CarP and EfhP are involved in Ca2+ regulation of calC transcription  

In order to identify the mechanism involved in regulating Ca2+-dependent 

transcription of calC, we tested the promoter activity of PA2604 in several mutants 

lacking earlier identified genes encoding Ca2+-induced two-component system 

carRS and two putative Ca2+-binding proteins CarP and EfhP. In PAO1, PA2604 

transcription was dramatically increased by growth at 5 mM Ca2+ (≥ 16 fold). On 

the other hand, in the mutants lacking carS, carP and efhP, this fold change in 

transcription was significantly low; 3.8 fold, 1.2 and 0.4 fold respectively (Fig. 3.4). 

We also tested, whether a global quorum sensing regulator lasR, is involved in 

Ca2+-dependent upregulation of PA2604 transcription. However, the calC promoter 

activity in the mutant lacking lasR was 30-fold higher than that in PAO1, 

suggesting a negative regulation, possibly explaining the abrupt decrease of calC 

promoter activity during a stationary phase (Fig. 3S1). 
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Figure 3.4:18Fold change in calC promoter activity. Cells of PAO1, ΔcarR, 

ΔcarP and Δefh carrying either the promoterless empty vector or the promoter 

activity reporter construct of calC (pSK-2604F) were grown in BMM at 37° C in 

96 well clear bottom white plates at fast shaking in Synergy Mx microplate reader.  

The luminescence and cell density (OD600) was measured every two hours. Phases 

of growth: EL (early log), Log and Stat (stationary). Fold change in PA2604 

promoter activity in Black sqare: PAO1, grey square: ΔcarS grey triangle: ΔcarP 

and grey circle: ΔefhP. The data analysis is same as above. At least 3 

biological   replicates in each experiment and 2 independent experiments were 

used.  
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Figure 3.S1:19Ca2+ regulation of calC promoter activity in PAO1 and ΔlasR 

mutant. Cells of PAO1 and ΔlasR carrying either the promoterless empty vector 

or the promoter activity reporter construct of calC (pSK-2604F) were grown in 

BMM at 37° C in 96 well clear bottom white plates at fast shaking in Synergy Mx 

microplate reader.  The luminescence and cell density (OD600) was measured every 

two hours Phases of growth: EL (early log), Log and Stat (stationary). Fold 

change in PA2604 promoter activity in Black sqare: PAO1, grey square: 

ΔlasR. The data analyses followed the steps: 1) the averaged luminescence reading 

of non-inoculated controls was subtracted; 2) the luminescence at time 0 was 

subtracted from subsequent readings. The obtained luminescence readings were 3) 

normalized by the corresponding cell density and 4) averaged. 5) averaged 

normalized luminescence of the promoterless vector controls was subtracted from 

that of the promoter carrying constructs, 6) fold change was calculated versus the 



115 
 

condition when no Ca2+ or tobramycin were added. At each steps of data 

normalization, any negative values were replaced by the basal luminescence 

reading of empty vector at that point.  At least 3 biological   replicates in each 

experiment and 2 independent experiments were used. 
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CalC regulates Ca2+ induced swarming motility, pyoverdin and pyocyanin 

production  

Our previous study showed that P. aeruginosa swarming motility is induced 

by Ca2+ (72). To test whether the [Ca2+]in
 transient increase mediates this regulation, 

swarming abilities of PAO1 and PA2604:Tn5 were tested at no added or 5 mM 

Ca2+. Similar to our previous observation, 5 mM Ca2+ induced swarming in PAO1. 

Disruption of PA2604 reduced the swarming diameter by at no added Ca2+. At 

elevated Ca2+, the mutant’s swarming was further reduced by 54% and showed 

increased branching (Fig. 3S2 A).  

Earlier, we showed that Ca2+ induces pyocyanin production in PAO1 during 

growth on both liquid and agar media (146). Disruption of PA2604 did not affect 

the Ca2+ induced pyocyanin production while growing on agar, but abolished Ca2+ 

induction of pyocyanin production during growth in liquid (Fig. 3S2 B). 
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Figure 3.S2:20Swarming motility and pycoycanin production. Cells were 

grown on BM2 swarm agar containing 0 mM or 5 mM Ca2+. (A) Growth in 

swarming agar plates.  Colony diameters were measured, and fold differences (5 

mM vs. 0 mM) were calculated. The averages of at least three biological replicates 

were used to calculate the fold changes. Significance was calculated using student’s 

T-test. ** p≤0.01. (B)  pyocyanin production in liquid media. 
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PA2604 in involved in Ca2+ induced tobramycin resistance by controlling the 

transcription of multidrug efflux pump  

Earlier we showed that elevated Ca2+ enhanced PAO1 resistance to 

tobramycin (Chapter 2) and Pol-B (Chapter 4). Further, the disruption in Ca2+
in 

homeostasis by mutating calcium transporters, PA2435, PA2092, PA3920 and 

PA4614 affects the efflux mediated tobramycin resistance (43). In order to 

characterize the role of [Ca2+]in transient increase in Ca2+ induction of antibiotic 

resistance, MICs of tobramycin and Pol-B B for PA2604 mutant were determined. 

Both E-strip (Fig. 3S3) and plate dilution assay (Fig.3.5) showed that disruption of 

PA2604 reduced the positive effect of Ca2+ on tobramycin resistance by at least 

50%. However, no such effect was identified for Pol-B resistance.  

To identify the mechanism responsible for this decrease of Ca2+ induction, 

we tested whether disruption of calC affects the earlier characterized Ca2+-

dependent increase in transcription of mexAB-oprM required for tobramycin 

resistance. In PAO1, growth at 5 mM Ca2+ increases by almost 7 fold (Fig.3.5 B, 

C) (43). However, in calC:Tn5 mutant, this Ca2+ regulated increase of mexAB-

OprM transcription is inhibited and was only 2.5 fold (Fig. 3.5 D).  
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Figure 3.5:21Role of calC in Ca2+ regulated efflux mediated tobramycin 

resistance in PAO1. A. Tobramycin MIC of PAO1, calC:Tn5 and CSK231 by 

plate dilution assay. 200µl of normalized cultures (OD 0.003) grown in BMM with 

0 or 5 mM Ca2+ were into each well of clear 96 well-plates with tobramycin 

Tobramycin was added at the final concentration of 0.25, 0.5, 0.75, 0.1, 1.5 μg/ml 

to BMM without added Ca2+ and of 1.0, 1.5, 1.75, 2.0, 3.5 μg/ml to BMM 

supplemented with 5 mM Ca2+. No antibiotic control and non-inoculated media 

controls were added to the wells. The cultures were incubated at 37 °C and slow 
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shaking for 8 hours before recording the cell density at OD600. The MIC was 

determined by no growth at the certain tobramycin concentration. At least 3 

biological replicates were used. B. Tobramycin MIC of PAO1 and mexB:Tn5 by E-

test (43). Cells were grown without or with 5 mM Ca2+, normalized to OD600 of 

0.1, and plated onto BMM agar plates with the corresponding concentration of Ca2+. 

E-strips with gradient of tobramycin were placed on the bacterial lawns. MIC was 

recorded after 24 h incubation. Statistical significance of the difference in MIC 

between PAO1 and mexB:Tn5 mutant was calculated using student’s T-test. *, p < 

0.05. C, D and E. Fold change in promoter activity of mexAB-OprM in C. PAO1 

D. calC::Tn5.  Cells of PAO1, calC::TN5 as well as containing either the 

promoterless empty vector or the promoters for mexAB-oprM were grown in BMM 

at 37° C in 96 well clear bottom white plates at fast shaking in Synergy Mx 

microplate reader.  The luminescence and cell density (OD600) was measured every 

two hours Phases of growth: EL (early log), Log and Stat (stationary). The data 

analyses were performed same way as above. At least 3 biological   replicates in 

each experiment and 3 independent experiments were used.  
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Figure 3.S3: 22MIC of tobramycin for PAO1 and calC::Tn5. Cells were grown 

without or with 5 mM Ca2+, normalized to OD600 of 0.1, and plated onto BMM 

agar plates with the corresponding concentration of Ca2+. E-strips with gradient of 

tobramycin were placed on the bacterial lawns. MIC was recorded after 24 h 

incubation. Statistical significance of the difference in MIC between PAO1 and 

calC::Tn5 mutant was calculated using student’s T-test. *, p < 0.05. 
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PA2604 disruption alters the global regulatory effect of Ca2+ on gene expression 

in P. aeruginosa PAO1  

In order to establish the regulatory effect of intracellular Ca2+ signaling on 

global gene transcription, RNA seq analysis was performed in calC::Tn5 and 

PAO1 grown at no added or 5 mM Ca2+. The RNA seq data displayed an overall 

95%-97% alignment rate with a number of read ranging from ~18,000- 22,000. 

Growth at 5 mM Ca2+ significantly affected the transcription of at least 1016 genes 

(≥ 2-fold change in transcription with an *adjP (q) value of ≤ 0.05. The Ca2+ 

regulated transcription of at least 881 genes were identified to be correlated to 

PA2604. Of these, 342 genes were positively regulated by Ca2+ in PAO1 (Fig. 3.6). 

Transcript abundances of remaining 539 genes, that were down regulated by Ca2+ 

growth in wild type, was increased in the calC::Tn5 mutant (Fig. 3.6). Importantly, 

the transcription of these 881 genes was not affected by the mutation in cells 

growing without added Ca2+.  
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Figure 3.6: 23 Scatter plot of RNA seq data. Differential gene expression in 

PAO1 and calC:Tn5 mutant grown at 5 mM Ca2+. Black circles: PAO1 and 

grey circles: calC:: Tn5. The effect of Ca2+ was assessed by comparing the 

transcript abundance of a gene in bacteria grown at 5 mM Ca2+ to that of the same 

bacteria grown at no added Ca2+. The dots represent the log2 fold change in 

transcript abundance of genes which showed significant (≥ 2 fold change in 

transcript abundance with adjusted P* value (q value) ≤ 0.05) effect of Ca2+. 
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Table 3.1: 7RNA seq analyses. These are selected from a total number of 342 

genes whose transcription was increased by growth at 5 mM Ca2+ in PAO1 but 

reduced in calC::Tn5 mutant grown at 5 mM Ca2+. Also, transcription of these 

genes was unaffected in the mutant grown without any added Ca2+.  

 Gene  PAO1 calC::Tn5 

 

log2Fold 
Change padj* 

log2Fold 

Change padj* 

Alginate biosynthesis  

algB 1.22 3.81E-02 -1.20 1.91E-02 

clpP 1.13 4.76E-03 -1.07 1.97E-02 

cysB 1.59 7.08E-05 -1.29 1.25E-03 

Swarming motility 

clpS 1.35 5.30E-03 -0.20 8.35E-01 

bswR 1.63 2.74E-04 -0.23 8.00E-01 

Biofilm regulation 

bfmR 2.11 1.74E-02 -1.37 4.53E-02 

rhlB 1.65 2.38E-02 -0.40 6.92E-01 

Chemotaxis 

motA 1.25 1.91E-03 -0.76 9.07E-02 

ctpL 2.84 1.56E-03 -1.30 4.93E-02 

pctB 1.82 3.58E-05 -1.49 3.36E-04 
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flagella biosynthesis  

flgC 1.67 4.68E-05 -1.28 2.52E-03 

flgF 1.40 1.08E-03 -1.80 9.22E-06 

flgG 1.57 3.72E-04 -1.45 6.91E-04 

flgH 1.52 4.78E-03 -0.65 2.81E-01 

flgM 1.33 1.97E-03 -0.87 5.84E-02 

fliD 1.00 1.24E-02 -0.97 3.70E-02 

fliE 2.67 1.72E-09 -2.56 1.51E-09 

motY 1.30 8.17E-03 -1.51 5.98E-04 

Phosphate regulation  

phoA 2.71 3.57E-02 -1.96 2.99E-02 

phoB 4.04 2.27E-16 -1.95 1.23E-04 

phoR 1.83 9.43E-05 -0.62 2.68E-01 

PA4847 1.30 1.54E-03 -0.69 1.51E-01 

pstS 2.80 1.44E-11 -1.48 6.08E-04 

phnC 3.66 1.11E-03 -2.53 4.95E-04 

Pyoverdine biosynthesis/ Transport  

fpvA 4.29 5.75E-13 -7.03 8.25E-23 

PA2393 5.91 7.41E-17 -7.53 7.59E-27 

PA2403 5.02 1.07E-20 -7.79 4.30E-30 

PA2412 8.41 4.02E-47 -10.17 1.10E-59 

pvdA 6.22 1.09E-24 -8.33 4.01E-35 
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pvdE 5.24 8.56E-10 -6.40 1.02E-17 

pvdG 5.95 2.48E-08 -6.06 2.44E-15 

pvdH 5.54 2.98E-09 -6.29 5.10E-17 

pvdJ 3.66 2.39E-08 -6.35 2.11E-17 

pvdL 5.17 5.48E-06 -5.30 6.36E-11 

pvdN 4.41 1.22E-06 -5.65 6.26E-13 

pvdO 3.54 8.44E-05 -5.19 1.89E-10 

pvdP 5.78 1.24E-24 -8.30 8.19E-35 

pvdQ 3.04 4.21E-03 -4.41 4.63E-07 

PA0192 5.37 1.02E-10 -5.53 1.43E-19 

tonB2 4.87 6.04E-10 -5.57 4.27E-18 

Infection phase regulation  

Small RNA RsmZ 1.06 1.08E-02 -1.52 3.88E-05 

Global regulation  

mvaT 1.03 1.62E-02 -1.54 1.42E-04 

mvaU 1.91 3.15E-07 -1.53 4.99E-05 

Bacteriocin, Phage and antibiotic resistance  

cat 1.22 8.61E-03 -0.62 2.78E-01 

pys2 1.11 1.85E-02 -0.04 9.76E-01 

armZ 1.53 1.72E-02 -0.63 4.19E-01 

Stress response  

ahpC 1.01 2.27E-02 0.08 9.59E-01 
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obg 1.50 1.46E-03 -1.15 2.04E-02 

dps 1.07 1.28E-02 -0.21 8.64E-01 

Cell division/ DNA repair  

zipA 1.10 3.57E-03 -0.92 2.26E-02 

nusA 1.05 2.24E-02 -0.72 2.26E-01 

Sulfar metabolism  

msuE 6.23 3.13E-15 -7.35 8.35E-26 

cysD 1.37 2.24E-04 -1.42 2.50E-04 

cysI 1.34 9.74E-04 -1.25 1.66E-03 

cysP 2.62 3.87E-13 -2.97 2.33E-17 

cysT 3.11 2.52E-15 -3.24 1.58E-17 

sbp 3.01 9.21E-19 -3.39 1.80E-24 

atsA 3.20 3.09E-04 -3.62 1.93E-07 

metY 2.18 5.40E-04 -2.09 4.81E-05 

msuD 5.50 2.09E-11 -6.69 3.10E-20 

Iron homeostasis  

ftnA 1.25 8.14E-03 -1.04 1.94E-02 

hitA 1.19 6.89E-03 -1.16 5.20E-03 

nitrogen metabolism  

gdhB 2.21 5.65E-06 -1.15 9.93E-03 

 Oxidative phosphorylation 

atpE 1.84 1.08E-07 -1.09 8.72E-03 
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cyoA 2.42 6.42E-03 -1.91 3.47E-03 

ohr 3.18 3.20E-06 -2.09 1.60E-04 

lsfA 3.45 2.13E-22 -3.83 6.56E-32 

Transcriptional regulation 

atuR 1.69 2.59E-03 -1.62 8.13E-04 

gpuR 1.59 1.55E-02 -0.90 1.41E-01 

liuR 1.25 1.57E-02 -1.30 4.89E-03 

ohrR 1.98 3.56E-06 -1.55 1.69E-03 

alpR 1.38 1.81E-03 -1.44 5.69E-04 

prtN 1.42 1.04E-03 -1.24 6.27E-03 

vreA 3.53 1.92E-03 -1.37 7.92E-02 

Cation transport  

mgtA 4.73 3.80E-13 -0.29 7.29E-01 

mgtE 2.66 4.88E-14 -1.00 1.85E-02 

mscL 1.11 4.16E-03 -0.60 2.81E-01 

ABC transporter 

puuR 3.37 1.82E-17 -3.61 2.56E-23 

pstC 1.78 2.76E-05 0.47 4.24E-01 

Potassium transport 

kdpA 3.64 7.74E-16 -2.79 5.77E-13 

kdpB 1.97 5.00E-04 -1.70 4.61E-04 

kdpF 3.91 1.21E-21 -3.19 2.30E-16 
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Other transporters 

exbB1 4.79 1.62E-17 -4.55 3.93E-22 

exbD1 3.21 2.61E-12 -4.15 1.00E-22 

oprP 2.33 3.31E-02 -2.47 2.21E-03 

Two component systems 

fleQ 1.04 1.33E-02 -0.97 2.22E-02 

irlR 1.35 2.07E-02 -0.47 5.55E-01 

Protein secretion  

exsB 1.14 2.95E-02 -1.02 7.79E-02 

exsA 1.61 3.12E-04 -2.29 3.76E-08 

tssA1 1.17 7.88E-03 -2.35 1.87E-09 

tssB1 1.20 1.90E-03 -2.46 4.40E-12 

amino acid biosynthetic processes  

aruC 2.35 3.42E-09 -1.75 7.17E-06 

aruG 1.96 3.92E-04 -0.98 5.26E-02 

cysK 1.47 2.65E-03 -1.45 1.84E-03 

ilvA2 2.49 1.77E-02 -1.73 2.22E-02 

phhA 1.75 4.47E-02 -1.87 4.89E-03 

 

O antigen biosynthesis  

himD 1.65 4.76E-05 -1.18 2.48E-03 
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peptidoglycan biosynthesis  

pbpG 1.05 3.22E-02 -0.30 7.30E-01 

Phospholipid biosynthesis 

psd 1.23 3.24E-02 -0.33 7.12E-01 

Metabolic processes 

pcs 1.12 2.96E-02 -0.91 5.76E-02 

nadD2 1.64 1.35E-02 -1.24 3.27E-02 

ppiB 2.06 1.22E-06 -1.19 9.66E-03 

trpG 2.27 7.76E-09 -1.51 1.25E-04 

bioA 1.43 1.62E-03 -1.17 8.09E-03 

bioB 2.64 3.54E-14 -1.78 5.90E-07 

rubA2 1.57 1.56E-03 -0.59 3.38E-01 

betT3 2.54 1.30E-05 -3.01 5.10E-10 

gshB 2.94 5.56E-10 -2.28 4.41E-08 

exaC 1.47 3.57E-02 -2.23 8.34E-05 

aruF 2.28 2.42E-08 -1.43 2.50E-04 

liuA 1.33 1.74E-02 -1.42 2.91E-03 

hdhA 2.83 4.40E-08 -2.43 9.11E-09 

pepA 1.72 4.98E-05 -1.27 2.49E-03 

tpm 1.03 3.48E-02 -0.92 5.38E-02 

nadE 1.42 3.33E-03 -0.85 8.39E-02 

pncB1 2.14 3.73E-07 -1.68 1.95E-05 
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pcnA 3.41 8.17E-17 -2.97 6.83E-16 

tal 1.03 4.38E-02 -0.88 7.26E-02 

dadA 4.81 9.62E-21 -3.56 1.88E-20 

pauD2 1.11 3.31E-02 -0.55 3.63E-01 

aspP 1.12 6.55E-03 -0.70 1.35E-01 

nrdA 1.02 2.66E-02 0.14 9.05E-01 

trxB1 1.40 1.43E-03 -0.71 1.73E-01 

accB 1.11 1.65E-02 -1.32 3.47E-03 

gloA3 1.26 7.22E-03 -0.33 6.99E-01 

mqoA 1.84 1.27E-03 -0.86 1.26E-01 

sdhD 2.02 4.61E-06 -1.36 4.95E-03 

accD 1.02 1.22E-02 -1.48 9.29E-05 

trpE 1.93 2.85E-06 -1.05 1.69E-02 

cadA 1.22 1.89E-02 -1.03 3.22E-02 

proB 1.17 1.44E-02 -0.88 9.07E-02 

*padJ, Adjusted P value/ q value ≤ 0.05.  

 

Among the genes whose gene expression was affected by intracellular Ca2+ 

transients, there were genes responsible for pyoververdine biosynthesis, Pho-

regulon, swarming motility, flagella biosynthesis, quorum sensing and biofilm 

regulation, LPS biosynthesis, peptidoglycan biosynthesis, type 3 and type six 



132 
 

secretion systems, polycationic antimicrobial resistance and manyother genes for 

transpost and cellular metabolism in general. The most significant positive 

regulatory effect of [Ca2+]in was found on the genes involved in pyoverdine 

biosynthesis (≥ 60 fold increase in PAO1; ≥ 250 fold decrease in PA2604:Tn5 

mutant) (Table 3.1). Besides pyoverdine, the pho regulon that contributes 

significantly in regulation of biofilm formation and type 3 secretion system in P. 

aeruginosa (172, 173) as well as the genes involved in positive regulation of 

biofilm formation, bfmR, rhlB, alginate biosynthesis genes ( algB ) (174) were 

highly induced more than two fold in transcription upon exposure to Ca2+ in PAO1 

and inhibited in the PA2604 mutant at 5 mM Ca2+. On the contrary, negative 

regulator of biofilm rsmA, small RNA RsmZ, genes for type three secretion systems 

were downregulated in PAO1 but induced in the mutant lacking PA2604 at 5 mM 

Ca2+ (Table 3.2).  
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Table 3.2: 8RNA seq analyses. These are selected from a total number of 539 

genes whose transcription was decreased by growth at 5 mM Ca2+ in PAO1 but 

increased in calC::Tn5 mutant grown at 5 mM Ca2+. Also, transcription of these 

genes was unaffected in the mutant grown without any added Ca2+.  

  PAO1 calC::Tn5 

 Gene 
log2Fold 

padj* 
log2Fold 
Change 

padj* 
Change 

ABC transporter 
ccmB -1.67 7.38E-04 1.83 6.01E-05 
modC -2.05 3.64E-03 1.22 1.11E-01 
spuH -1.43 3.18E-03 1.49 1.58E-03 

Other Transporters 
znuB -1.39 4.07E-02 0.63 5.06E-01 
trkH -1.62 2.62E-03 0.83 2.20E-01 
amtB -2.12 4.28E-07 1.67 1.32E-03 
oprL -1.08 4.45E-03 1.22 5.39E-03 
tolA -1.55 4.89E-05 1.67 7.13E-06 
uraA -1.21 2.88E-02 1.07 4.52E-02 
ATP synthesis 
atpA -1.13 6.71E-03 1.13 2.81E-02 
atpC -2.53 1.89E-08 1.77 1.63E-04 
atpD -1.25 9.66E-03 1.36 7.55E-03 
atpF -1.83 2.17E-06 1.65 3.38E-05 
atpG -1.09 2.31E-02 1.44 3.31E-03 
Biofilm formation 
fimX -2.06 7.59E-06 1.46 1.78E-03 
mucR -1.25 1.74E-02 1.18 2.07E-02 
ppkA -1.94 1.30E-02 0.48 7.73E-01 
pppA -1.81 7.26E-03 0.20 9.29E-01 
rsmA -1.43 5.87E-04 1.88 2.99E-07 
tpbA -2.96 1.56E-03 -0.02 9.99E-01 
tpbB -1.89 3.69E-04 1.67 1.38E-03 
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wspD -2.23 4.86E-03 1.75 1.94E-02 

Extracellular polysaccharide/ Biofilm regulation 
pelA -1.83 4.52E-03 0.96 2.13E-01 
pelB -2.71 1.77E-03 1.30 2.17E-01 
pelC -2.60 1.05E-02 0.84 6.14E-01 
pelD -1.99 4.04E-02 0.73 6.33E-01 
pelF -2.23 1.98E-02 0.76 6.23E-01 

Flagella biosynthesis 
fgtA -2.23 3.75E-03 1.33 1.16E-01 
flgK -1.38 9.34E-03 1.29 1.03E-02 
flhB -2.01 3.67E-03 0.91 3.16E-01 
fliI -2.19 4.78E-03 0.98 3.41E-01 
fliJ -3.47 1.74E-05 1.69 7.32E-02 
fliP -1.13 1.66E-02 0.88 1.05E-01 
fliQ -1.17 3.45E-02 1.42 2.69E-03 
fliR -2.14 6.71E-05 1.24 3.56E-02 
motC -2.58 1.95E-08 1.79 1.98E-04 

Pili biosynthesis/ motility 
chpA -2.33 8.18E-05 1.71 3.27E-03 
lipB -1.29 3.41E-03 1.02 2.44E-02 
pilC -1.44 1.55E-03 0.88 9.24E-02 
pilD -1.63 1.90E-04 0.88 8.74E-02 
pilE -1.99 6.14E-04 1.38 1.82E-02 
pilF -1.61 1.11E-05 1.53 9.10E-05 
pilH -1.91 5.44E-07 1.32 8.80E-04 
pilJ -1.82 2.51E-05 1.68 5.62E-05 
pilK -2.58 1.48E-09 2.03 3.00E-06 
pilR -2.50 9.31E-04 1.67 2.81E-02 
pilS -3.07 4.04E-08 1.89 1.50E-03 
pilW -1.92 2.36E-04 0.85 2.05E-01 
pilY1 -1.38 1.65E-02 0.92 1.40E-01 
Cell signaling 
pqqE -2.61 9.37E-03 1.23 3.22E-01 
braG -1.92 2.90E-03 1.55 1.13E-02 
quiP -1.25 3.58E-02 1.14 4.02E-02 
sahH -1.29 1.75E-03 1.29 2.13E-03 
ppx -1.06 1.25E-02 0.43 5.18E-01 
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rhlB -1.27 1.61E-03 0.87 6.07E-02 

Chemotaxis 
chpB -2.46 3.38E-06 1.88 3.18E-04 
motB -1.12 2.38E-02 1.11 2.07E-02 

DNA repair/ Heat-shock/ Stress response protein 
holA -3.17 1.14E-09 2.86 3.36E-09 
mutL -1.71 8.48E-04 1.22 2.50E-02 
nth -2.24 4.45E-03 1.94 5.94E-03 
recJ -1.39 4.30E-02 0.81 3.17E-01 
recR -1.66 4.76E-03 1.30 2.81E-02 
uvrC -2.58 2.19E-06 1.40 2.21E-02 
rnhB -2.93 4.56E-10 1.10 6.99E-02 
groES -1.32 7.20E-04 1.61 1.39E-05 
hscA -1.45 1.56E-03 2.61 2.08E-11 
hslU -2.65 3.53E-07 2.76 3.62E-09 
hslV -2.59 1.52E-09 2.38 6.03E-09 
htpG -1.62 2.19E-04 1.86 5.30E-06 
glnK -1.10 9.29E-03 1.35 7.98E-03 
clpB -1.65 1.44E-03 1.73 2.26E-04 
dnaJ -1.67 2.20E-03 1.66 8.55E-04 
PA0961 -1.17 2.81E-02 0.25 8.35E-01 
pcoB -3.11 1.06E-11 2.24 1.24E-06 
recG -1.54 2.40E-03 0.88 1.24E-01 
sspB -1.70 5.32E-05 1.10 2.27E-02 
dnaK -1.78 1.32E-05 1.89 1.28E-06 
groEL -1.32 2.49E-03 1.03 2.85E-02 

Cell cycle/cell division/cell shape regulation 
sss -2.53 2.72E-03 1.18 2.72E-01 
ftsA -2.17 3.88E-07 1.79 3.46E-05 
ftsQ -2.36 1.80E-07 2.24 4.32E-07 
ftsX -1.28 5.24E-03 0.84 8.77E-02 
minE -1.91 1.31E-06 1.04 2.08E-02 
spoOJ -1.14 9.73E-03 1.11 8.96E-03 
surA -2.32 7.02E-09 2.29 5.83E-09 
mrec -2.13 4.18E-07 1.91 5.74E-06 
mreD -3.46 9.36E-17 2.79 2.94E-11 
 



136 
 

Antibiotic biosynthesis 
glmM -1.37 2.05E-03 1.96 5.31E-07 
dapB -2.01 6.18E-05 1.96 3.03E-05 
β lactamase resistance 
pbpA -2.07 3.47E-05 1.68 5.23E-04 
mrcB -1.74 1.29E-05 1.20 5.09E-03 
Cationic antimicrobial peptide (CAMP) resistance 
oprH -6.17 1.84E-48 0.21 8.64E-01 
phoQ -5.02 4.96E-29 0.75 3.86E-01 
parS -1.55 1.71E-02 1.70 1.85E-03 
arnA -5.63 5.07E-19 -0.01 9.99E-01 
arnB -6.53 1.40E-19 -0.11 9.75E-01 
arnC -6.32 1.61E-15 -0.27 9.40E-01 
arnD -5.99 1.78E-08 NA NA 
arnE -6.58 4.57E-14 -0.58 7.05E-01 
arnF -8.25 1.70E-29 -0.24 9.47E-01 
arnT -5.89 4.12E-13 -0.26 9.42E-01 
phoP -3.78 7.74E-20 -0.54 5.72E-01 
pmrA -3.32 1.98E-09 -0.38 8.27E-01 
pmrB -4.07 3.72E-15 0.24 9.00E-01 

LPS biosynthesis    

kdsA -1.13 8.17E-03 1.57 9.64E-05 
lpxA -1.15 2.42E-02 0.64 3.61E-01 
lpxB -2.05 3.30E-05 0.74 2.83E-01 
lpxD -1.65 2.72E-05 1.23 4.02E-03 
msbA -2.44 1.92E-09 1.61 1.76E-04 
murG -1.31 1.29E-02 1.01 6.89E-02 
ostA -1.04 1.15E-02 1.31 1.53E-03 
ptsN -1.00 2.17E-02 1.07 1.38E-02 
waaC -1.76 8.40E-04 1.39 8.10E-03 
waaG -2.09 6.96E-05 1.74 5.31E-04 
wbpG -2.86 1.28E-10 2.32 5.55E-08 
wbpH -2.89 2.53E-11 2.16 2.84E-07 
wbpI -1.42 2.64E-03 1.01 3.01E-02 
wbpK -1.40 3.35E-03 0.96 4.83E-02 
wbpW -1.27 4.56E-02 1.08 7.47E-02 
wbpX -1.38 4.37E-02 1.28 3.78E-02 
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wzm -1.85 3.54E-04 1.57 2.24E-03 
wzt -1.60 7.97E-03 1.19 4.82E-02 
wzx -3.17 8.35E-13 3.15 5.53E-13 
O antigen biosynthesis 
waal -1.63 4.14E-04 1.61 1.80E-04 
wzy -1.96 4.76E-06 2.02 2.25E-06 
Peptidoglycan biosynthesis 
glmS -1.67 4.60E-03 0.96 1.50E-01 
ddlB -2.13 6.93E-05 1.66 1.41E-03 
murB -1.90 3.01E-05 1.15 1.84E-02 
murC -1.53 1.10E-03 1.28 9.01E-03 
murE -1.47 3.43E-03 1.30 6.87E-03 
murF -1.52 2.86E-04 1.47 4.18E-04 
murI -2.42 2.27E-05 1.52 1.35E-02 
mltB1 -1.02 4.22E-02 0.79 1.56E-01 
PA1689 -1.80 2.43E-04 0.73 2.75E-01 
Non-coding RNA 
PA1030.1 -1.64 2.43E-04 0.84 1.12E-01 
PA1781.1 -5.64 5.33E-17 3.35 8.37E-07 
PA4406.1 -1.14 1.38E-02 0.60 3.98E-01 
PA4451.1 -3.41 1.02E-12 0.85 2.22E-01 
PA4726.1 -1.09 4.42E-02 0.27 8.43E-01 
Oxidative phosphorylation 
atpH -1.03 9.64E-03 1.59 2.55E-05 
ccmE -1.44 1.24E-03 0.46 4.82E-01 
ccmF -1.36 2.23E-02 1.31 1.60E-02 
ccmG -1.90 2.42E-04 1.99 2.00E-05 
ccmH -2.64 1.90E-07 2.43 5.12E-07 
ccoO1 -2.03 2.00E-05 2.10 1.10E-05 
ccoP1 -1.68 4.01E-04 1.80 9.31E-05 
coIII -1.59 1.37E-02 2.76 5.36E-08 
exaB -2.88 2.69E-02 0.56 8.17E-01 
nuoD -1.45 5.87E-04 0.44 5.59E-01 
nuoE -3.29 5.39E-16 2.26 1.44E-07 
nuoF -3.33 2.91E-10 1.95 5.34E-04 
nuoG -3.23 1.62E-09 2.16 7.94E-05 
nuoH -2.36 2.22E-07 1.69 8.78E-04 
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nuoJ -2.17 6.43E-06 1.08 5.43E-02 
nuoK -1.23 2.90E-02 0.76 2.71E-01 
nuoL -2.61 7.88E-08 1.49 6.08E-03 
nuoM -2.59 2.05E-07 1.92 1.52E-04 
nuoN -2.96 1.20E-09 2.14 1.96E-05 

Phospholipid biosynthesis 
acpP -1.68 2.07E-05 0.60 2.59E-01 
cdsA -1.71 1.48E-03 0.69 3.65E-01 
pgpA -1.01 2.66E-02 0.22 8.33E-01 
Regulation of transcription 
glmR -1.42 1.91E-03 1.28 5.17E-03 
greA -1.77 1.27E-05 1.00 3.62E-02 
greB -1.39 5.91E-03 1.32 5.77E-03 
Ribosomal protein 
ffs -1.52 1.13E-02 0.08 9.65E-01 
ftsI -1.14 4.57E-03 0.84 6.49E-02 
rplJ -1.38 1.84E-04 0.84 1.09E-01 
rplQ -1.03 7.81E-03 1.28 8.70E-04 
rpmA -1.48 6.19E-04 0.69 2.17E-01 
rpmE -1.19 2.80E-02 0.70 3.29E-01 
rpmF -2.68 4.94E-09 2.04 1.10E-05 
rpmJ -2.43 2.98E-09 1.56 1.68E-04 
rpsB -1.13 4.93E-03 1.25 2.62E-03 
rpsN -1.15 1.23E-02 0.51 4.62E-01 
rpsU -1.29 6.57E-03 1.06 3.08E-02 
rnt -1.60 1.59E-03 1.35 8.26E-03 
trmA -1.92 8.77E-04 1.85 3.75E-04 
Protein secretion 
xcpU -1.93 1.50E-02 1.16 1.82E-01 
pscU -2.00 1.77E-02 0.26 9.15E-01 
vgrG1 -1.37 1.89E-02 -0.28 8.37E-01 
csaA -1.01 4.41E-02 0.14 9.18E-01 
tatC -1.98 4.18E-05 1.73 2.49E-04 
xcpQ -2.02 5.55E-05 1.56 1.92E-03 
xcpX -1.49 3.49E-02 1.06 1.48E-01 
secF -1.33 1.93E-03 0.80 1.07E-01 
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Sulfer metabolism 
metZ -2.33 3.20E-06 1.21 2.48E-02 
moeB -2.39 2.17E-04 1.45 3.54E-02 
Two component system 
ansB -1.51 7.02E-03 0.79 2.66E-01 
ccoQ1 -1.51 5.63E-03 1.56 3.57E-03 
creC -1.42 2.69E-02 0.50 6.24E-01 
glnD -2.83 5.29E-06 2.99 1.19E-07 
ntrC -2.98 3.07E-13 1.99 2.78E-06 
Urea degradation 
speC -1.07 4.46E-02 1.46 2.57E-03 
ureA -2.99 3.69E-03 1.68 1.21E-01 
ureC -3.01 1.25E-03 1.98 3.16E-02 
ureE -2.42 2.16E-02 1.91 4.40E-02 
ureG -1.97 2.04E-02 1.98 7.19E-03 
TCA cycle/ Acetyle co-A 
aceF -1.91 9.67E-05 1.78 1.61E-04 
eno -2.03 2.45E-07 2.07 3.68E-07 
sdhB -1.44 1.34E-04 1.63 2.74E-05 
sucA -1.86 4.24E-05 1.91 3.27E-05 
hemK -1.93 2.05E-03 1.48 1.51E-02 

 

*padJ, Adjusted P value/ q value ≤ 0.05 

The pvdAEGLOHQ genes, which are part of pyoverdine biosynthesis 

operon, were highly induced in PAO1 grown at 5 mM Ca2+.  However, their 

transcription in calC mutant was either reduced or remained unchanged (Fig. 3.7A). 

To validate this observation, we measured pyoverdine production. In agreement, 

PAO1 cells grown at 5 mM Ca2+ produced almost 140-fold more pyoverdine during 

both middle log and 78-fold more during stationary phases of growth. However, in 
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the calC::Tn5 mutant, production of  pyoverdine synthesis was almost same as that 

at no added Ca2+. (Fig. 3.7B and Fig. 3S4), whereas the mutation alone did not 

affect the level of pyoverdine produced at no added Ca2+. The transcription of 

biofilm regulator gene bfmR, negative regulator for acute infection, sRNA RsmZ 

showed a similar trend: induced in PAO1 in the presence of Ca2+, but not induced 

in the calC mutant under the same conditions. On the contrary, genes encoding 

structural or secreted components of type three secretion system spcS, pscU, and 

the regulators which upregulate the T3SS in PAO1, PA1629, RsmA  were 

downregulated by Ca2+in PAO1, but either upregulated or remained unchanged in 

calC:Tn5 mutant at 5 mM Ca2+ (Fig. 3.7C).  

MreB is an actin like cytoskeleton protein which, in association with the 

peripheral peptidoglycan synthesis proteins, MreC, MreD, RodZ determines the rod 

shape of bacteria. Upon down regulation of MreB, rod shaped bacterial cells 

displays a spherical morphology (175, 176). The mreC and mreD genes were 

downregulated in PAO1 in response to Ca2+ by 11 fold and 4 fold respectively, but 

upregulated in the calC mutant about four fold (Fig. 3.7D). Electron microscopy of 

the WT and mutant cells grown at elevated Ca2+ revealed that PAO1 cells lost their 

regular rod cell shape in the presence of 10 mM Ca2+, whereas calC::Tn5 mutant 

retained its cell shape (Fig.3. 7E). 
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Figure 3.7: 24The role of calC::Tn5 in Ca2+-regulated pathogenicity and 

virulence of PAO1. A. Effect of 5 mM Ca2+ on the transcript abundance of pvd 

genes on pyoverdine biosynthesis operon B. Effect of 5 mM Ca2+ on pyoverdine 

biosynthesis in PAO1 during middle log. C.  Transcript abundance of genes 
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involved in pathogenic lifestyle switch in PAO1 : Solid black and calC::Tn5 : Grey. 

Adjusted *P value ≤ 0.05. D. Transcript abundance of genes involved in cellular 

shape maintenance in PAO1 : Solid black and calC::Tn5 : Grey. Adjusted *P value 

≤ 0.0001. E. Electron microscopic photograph of PAO1 and calC::Tn5 grown in 

presence of 10 mM Ca2+.  

  



143 
 

 

Figure 3.S4: 25 Pyoverdine biosynthesis during stationary phase. Effect of 5 

mM Ca2+ on pyoverdine biosynthesis in PAO1 and calC::Tn5 at no added Ca2+ 

(solid black) and 5 mM Ca2+ (grey) 
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DISCUSSION 

Earlier research by others and our work in P. aeruginosa identified that 

bacteria, in general, and P. aeruginosa, in particular, possess all the components 

necessary for functional intracellular Ca2+ signaling. These components include 

tightly regulated Ca2+
in homeostasis; Ca2+ transporters and Ca2+ binding proteins 

maintaining this homeostasis (70-72); generation of transient spikes in [Ca2+
in] in 

response to external Ca2+
 addition; global regulatory effect of external Ca2+ 

fluctuations on cell physiology; and Ca2+ responsive transcriptional regulators (70, 

177). However, the experimental evidence supporting the regulatory role of the 

transient changes in [Ca2+
in] was missing.  Here we report the identification of the 

first putative Ca2+ channel, CalC, in P. aeruginosa, that is required for the 

development of transient increases in [Ca2+]in. We also show that the lack of this 

protein reduced the effect of external Ca2+
 on gene expression. The latter was 

supported by testing several Ca2+-dependent phenotypes, such as antibiotic 

resistance and production of virulence factors. These results provide the first 

experimental evidence of Ca2+
in signaling in prokaryotes and identify novel 

components of Ca2+
in regulatory network controlling the virulence and antibiotic 

resistance of this pathogen. 

Our first goal was to identify mechanisms responsible for generating the 

intracellular Ca2+ transient in response to extracellular Ca2+. By using a 

bioinformatic approach  we identified PA2604, a homologue of BsYetJ, the Ca2+ 
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leak channel in B. subtilis (159, 160). Based on the predicted domain and structure 

similarity with BsYetJ and the observation of significantly reduced Ca2+
in transients 

in the mutant with disrupted PA2604, we predicted it to be a functional Ca2+ channel 

and designated it CalC. Another homologue of BsYetJ, human Bax inhibitor-1 

(HbI-1) protein, is highly conserved and widely distributed transmembrane proteins 

on cellular organelles enabling the stored Ca2+ to release into the cytoplasm and 

generate cytoplasmic Ca2+ transients recognized as a signal. These channels are 

driven by concentration gradient and can passively transport Ca2+ in or out of 

cytoplasm or cellular membrane bound organelles(178). We have previously 

established that P. aeruginosa maintains its resting intracellular Ca2+ at 90 - 190 

nM. When 1 mM external Ca2+ is added, this generates almost 10,000 fold gradient 

of Ca2+ across the cell wall, and causes  [Ca2+]in to be increased about 13 fold 

transiently followed by almost a full recovery back to the basal level (72). If the 

gradient is removed by chelating external Ca2+, the resting level of [Ca2+]in is fully 

recovered (not published). Measuring the [Ca2+]in in calC::Tn5 revealed that CalC 

is primarily involved in influx of Ca2+. However, it also showed that the loss of 

CalC resulted in reduced resting level of [Ca2+]in and a partial loss of Ca2+ efflux 

enabling recovery back to basal [Ca2+]in level. The former suggests that CalC is 

involved in maintaining Ca2+
in homeostasis at low external Ca2+ levels as well. The 

latter may indicate a more complex role of CalC and its interactions with proteins 

involved in Ca2+ efflux. For the purpose of this study, we took advantage of the fact 
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that disruption of calC significantly reduced the initial increase of [Ca2+]in in 

response to external Ca2+. Since we hypothesized that P. aeruginosa has a 

functional Ca2+
in, the [Ca2+]in transient would serve as a second messenger. Then its 

amplitude should be recognized as a signal and trigger the changes in gene 

expression shaping the global response to external Ca2+. Therefore, the calC mutant 

with significantly impaired [Ca2+]in should lack Ca2+-regulated gene expression and 

the earlier observed phenotypic response to Ca2+. Thus, the mutant provided us with 

a tool to generate a direct evidences confirming the signaling role of intracellular 

Ca2+ in P. aeruginosa. 

The effect of Ca2+
in in global gene transcription has been a key piece in our 

study that establishes the impact of Ca2+
in transients in adaptive genetic modulation.  

Among the 1016 Ca2+ regulated genes in PAO1, 881 are dependent on the 

generation of Ca2+
in transients. We also report here that Ca2+

in transients positively 

regulates 342 genes and negatively regulates 539 which includes the genes. The 

genes whose transcription is affected by loss of Ca2+
in transients are, genes for 

pyoververdine biosynthesis, Pho-regulon, swarming motility, flagella biosynthesis, 

quorum sensing, biofilm regulation, LPS biosynthesis, peptidoglycan biosynthesis, 

type 3 and type six secretion systems, polycationic antimicrobial resistance and 

manyother genes for transpost and cellular metabolism in general. The most 

significant positive regulatory effect of Ca2+
in transients is observed for pyoverdine 

biosynthesis.  Pyoverdine is a siderophore molecule and one of the major virulence 



147 
 

factors in P. aeruginosa(179). Primarily the iron chelating properties of pyoverdine 

serves in the pathogen for sequestering iron from host. This molecule also actively 

regulates the cell-cell communication as well as virulence of P. aeruginosa (180, 

181). The phenotypic assay confirmed this regulatory effect of Ca2+
in  on the 

biosynthesis of pyoverdine. The Ca2+ regulation of increase in pyoverdine 

biosynthesis in PAO1 was completely abolishes in the calC::Tn5 mutant during 

both middle log as well as stationary phase of growth.  Similarly, reduction in Ca2+ 

regulated transcript abundance for PhoABR, bfmR, rhlB in calc::Tn5 mutant is 

displayed. The pho regulon in P. aeruginosa, which is involved in phosphate 

metabolism, also contributes significantly in regulation of biofilm formation type 3 

secretion system in P. aeruginosa (172, 173). BfmR, RhlB also controls the alginate 

biosynthesis genes ( algB ) and contributes in biofilm formation of P. aeruginosa 

(174). This may reflect a validation of regulatory role of Ca2+ on formation of robust 

biofilm formation in P. aeruginosa (74) at the transcriptional level. Simultaneouly, 

the negative regulation of the rsmA, small RNA RsmZ,  (174) genes for type three 

secretion systems, pscU, spcS (61, 164) further supporta that Ca2+
in transients 

positively regulate the biofilm formation, therefore promotes chronic infection 

caused by P. aeruginosa. Divalent cations are known to interrupt the cellular 

integrity for P. aeruginosa (24, 182). 

However, most of the studies on cell membrane alteration is focused on the 

impact of polycationic polypeptides like host immune peptides or polycationic 
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antibiotics. Therefore mainly reflects the involvement of underlying mechanisms 

involved in resistance to such cationic compounds (24, 183, 184). Here we have 

identified the role of Ca2+ on the cellular shape (membrane integrity) maintenance 

of P. aeruginosa. Our transcriptional analysis reveals decrease in transcript 

abundance of mreC and mreD genes in PAO1 when cells are grown in presence of 

5 mM Ca2+. This decrease is however recovered in the calC::Tn5 mutants. 

merC and merD genes are involved in peptidoglycan synthesis pathway and 

thus contributes to cell shape maintenance of bacteria (176, 185). Although this is 

an exciting establishment, assessment of role of Ca2+ on membrane integrity as well 

as role of CalC , MreC and MreD is required to further validate such finding. 

Finally, our RNA seq analysis reveales at least 219 genes of unknown 

function whose transcription was differentially regulated by [Ca2+
in] at 5 mM Ca2+. 

Investigating the function of these genes might bring forth new knowledge in Ca2+ 

signaling of PAO1 and help us understand the significance of Ca2+ regulation in 

cellular adaptation as well as pathogenicity. 

The finding that exposure to elevated Ca2+ increases transcription of calC 

was not anticipated and suggests that CalC is not a part of the mechanisms evolved 

to protect cells against toxic levels of Ca2+. Here we aimed to identify the 

mechanisms involved in this regulation and tested a potential role of the previously 

identified Ca2+ responsive two component regulator CarSR (70), sensory kinase, 
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LadS (61), putative Ca2+ binding phytase CarP (70), and putative Ca2+ binding EF 

hand protein EfhP. CarSR is a Ca2+ regulated two component system which controls 

the transcription of two downstream Ca2+ regulated genes, carO and carP. Both 

CarO and CarP are involved in Ca2+ regulated tobramycin resistance. CarP also 

protects PAO1 from Ca2+ toxicity at high Ca2+ environment (70). LadS is another 

inner membrane sensory kinase that responds to external Ca2+ and mediates 

phosphorylation of GacA to turn on GacS-GacA mediated upregulation of chronic 

infection caused by P. aeruginosa (177). The Ca2+ binding calmoduline like EF 

hand protein EfhP of P. aeruginosa contributes to Ca2+ homeostasis and Ca2+ 

regulated virylence factor production (71). The identified role of these proteins in 

mediating Ca2+ regulation of calC promoter activity in PAO1 will help elucidate 

the relationship between these Ca2+ responsive regulatory proteins and CalC in 

mediating Ca2+ regulated phenotypic changes in this organism. Since, our previous 

microarray (70) data shows a regulatory role of Ca2+ on the genes involved in 

quorum sensing network, we included lasR to investigate the possible connection 

between Ca2+ signaling and quorum sensing in PAO1. We have determined that, 

CarR, CarP and EfhP are involved in the transcriptional enhancement of calC at 5 

mM Ca2+. This definitely interconnects these regulatory and functional component 

of Ca2+ signaling together (Fig. 3.8). 
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Figure 3.8: 26Relationship of CalC to other Ca2+ responsive regulators.  
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Earlier we showed that Ca2+ regulates efflux mediated tobramycin 

resistance in PAO1 (43). Here we investigated the role of calC, i.e.  Ca2+
in 

transients, in mediating this regulation.   Disruption of calC significantly reduced 

Ca2+ induction of tobramycin resistance in PAO1. The mutant also showed lower 

level of promoter activity of mexAB-oprM genes.   

Overall, this study identified intracellular Ca2+ as a second messenger in P. 

aeruginosa and established its role in regulating P. aeruginosa adaptations to the 

environments with fluctuating levels Ca2+, one example of which is a human host. 

This signaling likely enables a recognition of changes in host Ca2+ homeostasis and 

provides a mean for fine tuning of P. aeruginosa physiology increasing its fitness 

and enhancing its chances for survival. Identification of several global regulators, 

including quorum sensing, responding to [Ca2+
in] uncovers another level of 

complexity in the structure of signaling and regulatory networks in P. aeruginosa.  
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ABSTRACT 

Calcium (Ca2+) is an essential second messenger in eukaryotes and regulates 

vital processes in both eukaryotes and bacteria. Ca2+ homeostasis is impaired during 

diseases, which may lead to its elevated levels, as exemplified in mucous and nasal 

secreted fluids in patients with cystic fibrosis (CF). Our earlier work identified that 

Ca2+ enhances production of several secreted virulence factors and induces 

tobramycin resistance in Pseudomonas aeruginosa, a primary pathogen causing 

life-threatening antibiotic-resistant infections in CF patients. Here, we have 

identified that growth in the presence of elevated Ca2+ increases P. aeruginosa 

resistance to polymyxin B (Pol-B) more than 30 fold. To investigate the molecular 

mechanisms of Ca2+ induced Pol-B resistance, we performed random mutagenesis 

and identified three genes, whose products contribute to Ca2+-induced Pol-B 

resistance of P. aeruginosa: PA2803, PA3237, and PA5317. Sequence analysis 

predicted that PA2803 encodes for a cytoplasmic phosphonoacetaldehyde 

hydrolase, PA3237 - metal-binding inner membrane protein and PA5317 - peptide-

binding periplasmic component of ABC transporter. Genome-wide RNA-Seq 

analyses determined that transcription of PA2803 and PA3237 is induced at least 3 

fold by elevated Ca2+. RNA-Seq analyses also demonstrated the two-component 

regulators (PhoPQ, PmrAB and ParRS) and their regulatory targets arnB, arnC, 
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arnD, arnT, arnE earlier identified to enable Pol-B resistance, were negatively 

regulated by Ca2+. In agreement, none of mutants lacking phoP, pmrB and parR 

contributed to Ca2+-induced Pol-B resistance. We have also tested the mutants 

lacking Ca2+ inducible two component regulator CarR for it’s involvement in Ca2+-

induced Pol-B resistance and determined no contribution of carR in this process. 

Further functional characterization of the three proteins will lead to 

discovery of novel Ca2+-regulated Pol-B resistance mechanisms, providing a better 

understanding of polycationic polypeptide antibiotics action mechanisms and a 

basis for developing novel therapeutic approaches to treat P. aeruginosa infections. 
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INTRODUCTION 

Pseudomonas aeruginosa is one of the major causes of nosocomial 

infections in both immunocompromised and immune competent patients in the 

U.S.A. and worldwide (7, 8). P. aeruginosa is known to also infect indwelling 

medical devices, such as shunts and catheters (186) and cause severe and life-

threatening infections in the lung airways of patients with cystic fibrosis (CF) (2). 

Despite being an opportunistic pathogen, P. aeruginosa is often mentioned as one 

of the deadliest pathogens due to its outstanding ability to adapt to the host 

environment and persist antimicrobial treatments (187). A vast repertoire of 

intrinsic, adaptive, and acquired antimicrobial resistance mechanisms allow the 

bacterium to become remarkably resistant to almost all antibiotics available for 

treatment (7).  

The continuous failure of conventional antimicrobials for treating 

Pseudomonas infections has forced scientists to look for alternative therapeutic 

approaches. Cationic peptides are antimicrobial molecules naturally produced in a 

host body, and therefore represent an excellent potential for treating infections. 

Particularly in immunocompromised patients where the lack of immune response 

facilitates persistence of pathogens (188). Two polycationic peptides, Pol-B and 

Pol-E (Colistin), have been used as antimicrobials since their early discovery as an 

effective drug against Pseudomonas infection by Edger and Dickenson (189, 190). 

Currently, since modern antibiotics fail, and new ones are lagging in the pipeline, 
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polymyxins made a comeback to treatments plans (190, 191). In fact, polycationic 

antibiotics are considered as one of the last hope in the treatment of nosocomial 

infections caused by many gram negative bacteria, including P. aeruginosa (22). 

Among them, Pol-B and Pol-E are the most popular choice due to their high 

efficacy (191, 192). Although, adaptive resistance mechanisms for these 

antimicrobials have been studied since 1970 in laboratory strains, resistant strains 

have been rarely documented in clinical studies (193-195). The known resistance 

mechanisms include adaptive features protecting the bacteria  via alterations in 

membrane permeability, as well as modification of LPS and lipid A molecules (22, 

24, 196).  

Like in any other Gram-negative bacteria, outer membrane in P aeruginosa 

acts as a protective shield against many environmental stresses, including toxic 

metals, antibiotics, and host immune responses. In P. aeruginosa, lipid A 

significantly contributes to the virulence of the organism (197, 198). P. aeruginosa 

is able to modify lipid A molecule and generate a variety of lipid A species, 

particularly during biofilm formation. Some of these changes, for example, the 

length of the side chain, have been associated with the degree of P. aeruginosa 

virulence (199, 200). Lipid A modifications with added palmitoyl, amino arabinose, 

or 3- hydroxyl decanoate have been detected in the lung airways of patients with 

CF (197). Furthermore, acylation of usual penta- or hexa-acylated lipid A has been 

associated with severe forms of CF infection. This modification also strengthens 
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the bacterial resistance and persistence in a host (199, 201). Polymyxins are known 

to target lipid A and thus anchor themselves followed by forceful disruption of the 

membrane and killing the bacteria. Therefore lipid A modifications disabling the 

interaction with polymyxins provides a resistance mechanism (25, 202). There are 

at least 8 enzymes shown to be involved in lipid A modification. ArtnT transfers 

4-amino-4-deoxy-l-arabinose to the aminoarabinose moieties, EptA and EptB add 

phosphoethanolamine). LpxT is responsible for dephosphorylation, PagL and LpxR 

-deacylation, PagP – acylation, and LpxO - hydroxylation of lipid A molecule (202, 

203). The primary research on the enzymatic modifications of lipid A and its effect 

on polymyxin-B is broadly perfomed using Salmonella sp. However, P. aeruginosa 

carries all the enzymes and is known to use them for the same purpose, except the 

PagL orthologues which causes deacylation of lipid A (reviewed in (25)). 

Nonetheless, the deacylation of lipid A has been observed in the polymyxin 

resistant strains (203, 204). Besides spontaneously occurring lipid A modifications 

during infections, lipid A modifications can be enhanced in the presence of 

polymyxin-B or growth at limited Mg2+ condition (25, 205, 206), suggesting that 

lipid A modification is an adaptive mechanism of P. aeruginosa regulated in 

response to its environment. 

To date, five two component systems have been identified in P. aeruginosa 

to control lipid A modification based resistance to Pol-B (207) .  Among them, 

PhoPQ and PmrAB both were displayed with ArnBCDTE operon mediated L-
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Ara4N transfer to lipidA resulting into Pol-B resistance of P. aeruginosa (208, 

209). Two other two-component systems ParR-ParS and CprR-CprS are induced 

by a variety of polycationic antibiotics leading to amino arabinose transferase, 

ArnT by activation of Arn operon and the  modification of lipid A (22). The latter 

two-component regulators are induced during growth at limited Mg2+ (23) and 

upregulate the PmrAB responsible for ArnBCDTE expression(22, 210). 

Interestingly, mutation in ParRS is known to cause constitutive expression of this 

operon independent of PmrAB (207). Although exact mechanism is yet to be 

disovered, mutants of colR/ colS two component regulator/ sensor has been reported 

to enhance the Pol-B resistance of P. aeruginosa in mutants lacking phoQ (211). 

Here we have determined that growth at elevated Ca2+ increases resistance 

of P. aeruginosa to Pol-B by more than 30 fold. RNA-Seq analyses showed that 

none of the known mechanisms of Pol-B resistance contribute to this Ca2+ effect. 

This study aimed to identify the mechanisms of Ca2+-induced Pol-B resistance.  

MATERIALS AND METHODS 

Bacterial strains, plasmids and media  

Strains and plasmids used in this study are listed in Supplementary table 

S4.1. P. aeruginosa strain PAO1 used in this study is the non-mucoid strain with 

genome sequence available. The bacterial strains were maintained on LB agar 
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containing corresponding antibiotics. For antimicrobial susceptibility and growth 

analysis Biofilm minimal media (BMM) was used. BMM (146) contained (per 

liter): 9.0 mM sodium glutamate, 50 mM glycerol, 0.02 mM MgSO4, 0.15 mM 

NaH2PO4, 0.34 mM K2HPO4, and 145 mM NaCl, 20 µl trace metals, 1 ml vitamin 

solution. Trace metal solution (per liter of 0.83 M HCl): 5.0 g CuSO4.5H2O, 5.0 g 

ZnSO4.7H2O, 5.0 g FeSO4.7H2O, 2.0 g MnCl2.4H2O). Vitamins solution (per liter): 

0.5 g thiamine, 1 mg biotin. The pH of the medium was adjusted to 7.0.  For growth 

analysis cells were first grown in 5 ml tubes for 16 h (mid-log) and then used to 

inoculate (0.1%) 100 ml fresh medium in 250 ml flasks. This middle log cultures 

were harvested for transcriptomic analysis. Transposon insertion mutants were 

obtained from the University of Washington Two - Allele library (98) (NIH grant 

# P30 DK089507) (Table S4.1). The mutants contained ISphoA/hah or ISlacZ/hah 

insertions with tetracycline resistance cassette that disrupted the genes of interest. 

The mutations were confirmed by two-step PCR: first, transposon flanking primers 

were used to verify that the target gene is disrupted, and second, transposon-specific 

primers were used to confirm the transposon insertion. The primer sequence is 

available at www.gs.washington.edu. For convenience, the mutants were 

designated as PA::Tn5, where PA is the identifying number of the disrupted gene 

from P. aeruginosa PAO1 genome (www.pseudomonas.com).  
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Table 4.S1: 9Strains and plasmids used in this study. 

Strains/ Plasmids  

 

Description References 

E. coli DH5α fhuA2 Δ(argF-lacZ)U169 phoA glnV44 
Φ80Δ (lacZ)M15 gyrA96 recA1 relA1 
endA1 thi-1 hsdR17 

 

P. aeruginosa PAO1 Wild type (96) 

PW3128 (phoP:Tn5) PA1179F08::ISlacZ/hah (98) 

PW9024 (pmrB:Tn5) PA4777A09::ISlacZ/hah (98) 

PW4167 (parR:Tn5) PA1799G12::ISlacZ/hah (98) 

ΔcarR:Gm (ΔPA2657) PAO1 with deletion of carR by 
replacing with GmR gene. 

(70) 

PW5693(PA2802:Tn5) PA2802D02::ISlacZ/hah (98) 

PW5694(PA2803:Tn5) PA2803A12::ISlacZ/hah (98) 

PW5696(PA2804:Tn5) PA2804G06::ISlacZ/hah (98) 

PW6426(PA3237:Tn5) PA3237F01::ISlacZ/hah (98) 

PW6427 (PA3238:Tn5) PA3238A02::ISlacZ/hah (98) 

PW9960(PA5317:Tn5) PA5317H12::ISlacZ/hah (98) 

PW5349(PA2590:Tn5) PA2590H04::ISlacZ/hah (98) 

PAOH26NTG22.3 Selected Polymyxin-B sensitive PAO1 
mutant of PAO1 

This study 

PAOH27NTG22.5 Selected Polymyxin-B sensitive PAO1 
mutant of PAO1 

This study 
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PAOH28NTG22.5 Selected Polymyxin-B sensitive PAO1 
mutant of PAO1 

This study 

PAOH29NTG22.17 Selected Polymyxin-B sensitive PAO1 
mutant of PAO1 

This study 

PA2803::pDOH30 PA2803:Tn5 containing pDH30 
plasmid with the PA2802-PA2804 
region 

This study 

PA3237:: pDOH31 PA3237:Tn5 containing pDH31 
plasmid with the PA3237-PA3238 
region 

This study 

PA5317:: pDOH33 PA5317:Tn5 containing pDH33 
plasmid with the PA5317 region 

This study 

 

pMF36 A broad host range trc expression 
vector 

(212) 

pDOH30 pMF36 with PAO1 gene fragments 
containing part of PA2802- PA2804 

This study 

pDOH31 pMF36 with PAO1 gene fragments 
containing part of PA3237- PA3238 

This study 

pDOH32 pMF36 with PAO1 gene fragments 
containing part of PA2590 

This study 

pDOH33 pMF36 with PAO1 gene fragments 
containing Part of PA5317 

This study 
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Antibiotic susceptibility assays  

P. aeruginosa resistance to Pol-B was assayed as described in (43). Briefly, 

bacterial strains were grown in BMM at no added or 5 mM Ca2+. 100 µl of the mid-

log cultures normalized to the OD600 of 0.1 were spread inoculated onto the 

surface of BMM agar containing no added or 5 mM Ca2+. E-test strips for Pol-B 

(Biomeurix) were placed on the surface of the inoculated plates and incubated for 

24 h. The minimum inhibitory concentration (MIC) was measured as a point at 

which the edge of the zone of inhibition crosses the e-test strip.  

Proteomic analysis 

Membrane proteins were isolated by carbonate extraction as described in 

(99) with modifications. Briefly, cell pellets of PAO1 grown at no or elevated 

[Ca2+] were washed in saline (0.14 M NaCl) and resuspended in TE buffer (10mM 

Tris/HCl, 1 mM EDTA, pH 8.0), containing Mini Complete protease inhibitor 

cocktail (1:100 (v/v)). Cells were disrupted by sonication (5 cycles of 30 s with 1 

min interval on ice) using 550 Sonic Dismembrator (Fisher Scientific, Pittsburgh, 

PA), and then centrifuged at 6,000 g for 10 min at 4 0C. The procedure was repeated 

two times. The collected supernatants were combined, diluted with ice-cold 0.1 M 

sodium carbonate followed by gentle stirring for 1 h, and centrifuged at 100,000 g 

for 1 h at 4 0C in a Beckman L8-70M ultracentrifuge. The pellets were collected, 

washed twice in 50 mM Tris pH 7.3, and subjected to liquid chromatography–
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tandem mass spectrometry (LC-MS/MS) – based peptide counting. Protein 

concentration was determined using the 2D Quant kit (GE Healthcare). LC-MS/MS 

spectrum counting was performed at the OSU Proteomics Facilities. Proteins were 

identified using Mascot (v2.2.2 from Matrix Science, Boston, MA, USA) and a 

database generated by in silico digestion of the P. aeruginosa PAO1 proteome 

predicted from the genome. Search results were validated using Scaffold 03 

(Proteome Software Inc., Portland, OR). Criteria for accepting each ID will 

conform to the "Paris" guidelines for proteomics results 

(http://www.mcponline.org/misc/ParisReport_Final.dtl). A set of stringent criteria 

for protein identification was used, where only protein probability thresholds 

greater than 99 % were accepted and at least three peptides needed to be identified, 

each with 95 % certainty.  

Random mutagenesis and selection of Pol-B sensitive mutants at 10 mM Ca2+  

Random mutants were generated as described in (213, 214). Briefly, PAO1 

cells were grown in the presence of NTG (N-methyl N-nitro-N-nitrosoguanidine) 

in BMM at 37° C for 12 h while shaking at 200 rpm. The cells were collected and 

washed with 10 mM phosphate buffer (pH 7). Pelleted cells were serially diluted in 

the buffer and plated on BMM agar at 10 mM Ca2+ and incubated at 37° C for 24 

h. To select polymyxin-B susceptible mutants at elevated Ca2+, plate dilution MIC 

assay was used. The individual clones were grown in BMM with no added or 10 
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mM Ca2+ for 12 h, then cultures were normalized to OD600 of 0.3. 10 µl of these 

normalized cultures were added to BMM with the corresponding Ca2+ and 

polymyxin-B added to the media. The clones displaying no or poor growth in BMM 

supplied with Ca2+ and Pol-B were selected from the replica culture and used for 

complementation and sequencing. 

DNA manipulation and sequencing  

Genomic DNA from PAO1 was isolated and fragmented by standard 

procedure. The fragments were cloned into pMF36 to create a PAO1 genome 

library. Selected random mutants susceptible to Pol-B at high Ca2+ were 

electroporated with the plasmid library. Clones with restored Pol-B resistance at 

elevated Ca2+ selected, their complementing plasmid extracted, transformed into E. 

coli DH5α cells. The E. coli transformants were selected on ampicillin LB plates. 

The plasmids were purified and sequenced using tac promoter specific primer. 

Bioinformatics analyses  

Sequence homology searches for identified genes involved in Ca2+ 

regulated Pol-B ressitance were performed using the NCBI nr database (GenBank 

release 160.1), Refseq as well as PDB database. Percent identity was calculated 

over entire length of the protein. Functional domains were predicted using Pfam 

31.0. Protein subcellular localization was predicted using pSORTb V3.0 analysis. 
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Protein three-dimensional (3D) structure was predicted using I-TASSER (215-217) 

and visualized using PyMOL(218) (version 1.8.6.0; Schrödinger, LLC). To predict 

the conserved domains CDD database (219) was used. TMHMM 2.0 (220)was used 

for identifying transmembrane component of the proteins.  

RNA isolation 

Total RNA was isolated from P. aeruginosa PAO1 grown in BMM with no 

or 5 mM Ca2+ using RNeasy Protect Bacteria Mini kit (Qiagen) or ZR Fungal/ 

Bacterial RNA MiniPrepTM ( Zymo Research) where cells were processed with 

50µg/ml of lysozyme followed by the manufacturer's protocol for isolation. The 

purified RNA was eluted with diethylpyrocarbonate (DEPC) treated sterile 

nanopure water. DNase treatment was performed for eluted RNA sample using 

turbo DNase (Ambion). The absence of genomic DNA was confirmed by 

conventional PCR using rpoD primers. RNA yield was measured using NanoDrop 

spectrophotometer (NanoDrop Technologies Inc.), and the quality of the purified 

RNA was assessed by Bioanalyzer 2100 (Agilent) and 1% agarose gel 

electrophoresis. Following the MIQE guidelines, only the RNA samples with an 

OD260/OD280 ratio of 1.8-2.0 and an RIN value of ≥ 9.0 and/ or rRNA ratio of 1:2 

were selected for further analysis. RNA samples were stored at -80 °C.  
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Library preparation and RNA seq 

RNA seq analysis was performed at Vertis Biotechnology AG, Germany. 

First, RNA samples were assessed by capillary gel electrophoresis using Shimadzu 

MultiNa microchip and RNA samples with a 16S/23S ratio of 1:1- 1:3 were selected 

for further analysis. 

For capable RNA seq, first the RNA samples were enriched by capping the 

5´ triphosphorylated RNA with 3´-desthiobiotin-TEG-guanosine 5´ triphosphate 

(DTBGTP) (NEB). For reversible binding of biotinylated RNA species to 

streptavidin vaccinia capping enzyme (VCE) (NEB) was used. And elution step 

was performed to capture the biotinylated species to streptavidin and obtain the 5' 

fragments of the primary transcripts. 

Two different aliquots of RNA samples were then treated with Ribo-Zero 

rRNA kit for bacteria (Illumina) to deplete the ribosomal RNA. These RNA 

samples were then used for cDNA library preparation. In brief, the RNA sampleas 

were poly(A) tailed using poly(A) polymerase. The 5´ triphosphate or CAP were 

then removed by pyrophosphatase (Cellsript) and an RNA adapter was ligated to 

the 5´ monophosphate end of RNAs. cDNA synthesis was performed using the 

oligo (dT)-adapter primer and M-MLV reverse transcripase. The resultant cDNA 

was then PCR amplified by up to 13 cycle to yield about 10-20 nm/µl using high 

fidelity polymerase. The cDNA pool for Illumina NextSeq sequencing was 
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generated by taking equimolar cDNA samples followed by elution of samples to a 

size range of 200-500 bp from preparative agarose gel. The size fractionation was 

confirmed by capilary gel electrophoresis. The True-seq primers designed 

following the illumine instructions were used for the sequencing. The cDNA pools 

were sequenced on an Illumina NextSeq 500 system using 75 bp read length. 

RESULTS 

Ca2+ increases the Pol-B resistance of P. aeruginosa  

In agreement with previous studies (221-224), we show that growth at 

elevated Ca2+ increased resistance to Pol-B in P. aeruginosa. By using E-strips with 

gradient of Pol-B, we determined that the MIC for Pol-B in PAO1 increased by 32 

fold at 10 mM Ca2+ (Fig. 4.1A) and 28 fold at 5 mM (Fig.4.1 C). We also measured 

Pol-B susceptibility in planktonic cultures and determined almost 12 fold increase 

in MIC of PAO1 grown at 10 mM Ca2+ (Fig.4.1B). 
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The earlier identified mechanisms of Pol-B resistance do not contribute to Ca2+- 

regulated polymyxin-B resistance in PAO1 

In order to test whether the earlier characterized regulators of Pol-B 

resistome of PAO1, such as two component systems PhoPQ, PmrAB, and ParRS 

(22, 23, 210, 225), are also involved in the observed Ca2+-enhanced resistance, we 

determined Pol-B MIC in the transposon mutants for phoP, pmrB, and parR (Table 

4S.1) by using E-strips. We also included a deletion mutant of the earlier identified 

Ca2+ responsive two component regulator carSR (70). The antimicrobial 

susceptibility test showed that none of these mutations had any significant effect on 

Ca2+-increased Pol-B resistance in P. aeruginosa (Fig. 4S.1). In agreement, the 

proteomic analysis detected that although PhoP, ParR, and PmrB peptides were 

detected in cells grown at 0 mM Ca2+, they were below detection level at 5 mM 

Ca2+ (Table 4.1).  A similar reduction in response to elevated Ca2+ was observed for 

the transcripts of the corresponding genes. Furthermore, the enzymes regulated by 

the two-component systems and known to be responsible for lipid A modifications 

enabling resistance to Pol-B: ArnT (8), ArnB (19), ArnC (15), and ArnD (30), were 

also down-regulated in the cells grown at 5 mM Ca2+ both at transcriptional and 

protein levels (Table 4.1). One exception is WbpM, a protein important for O 

antigen biosynthesis, membrane permeability as well as peptide susceptibility of P. 
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aeruginosa (226, 227), whose  peptide abundance was increased at least threefold 

at 5 mM Ca2+, but whose transcription was not affected by Ca2+  (Table 4.1). 
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Figure 4.S1: 27Role of two component systems Ca2+ induced Pol-B resistance. 

Cells were grown without or with 5 mM Ca2+, normalized to OD600 of 0.1, and 

plated onto BMM agar plates with the corresponding concentration of Ca2+. E-strips 

with gradient of Pol-B were placed on the bacterial lawns. MIC was recorded after 

24 h incubation. Solid Black: no added Ca2+, Solid Grey: 5 mM Ca2+. 
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Table 4.1. 10Effect of elevated Ca2+ on transcription and translation of selected P. 
aeruginosa PAO1 genes and proteins known to contribute to polymyxin-B 
resistance in PAO1. assessed by, correspondingly, RNA Seq and LC-MS/MS 
analyses 

Gene name 

(PA No.) 

Protein description transcript 
abundance at 5 
mM Ca2+ 

# of 
peptides 
detected 
at no 
Ca2+ 

# of 
peptides 
detected 
at 5 
mM 
Ca2+ 

  Log2 
fold 
change 

padj*   

Two component systems 

phoP(PA1179) Two-component 
response regulator  

-3.8 7.1E-
22 

20 ND 

pmrB(PA4777) Two-component 
response regulator  

-4.0 5.7E-
17 

14 ND 

parR(PA1799) Two-component 
response regulator  

-1.6 
(parS) 

0.003 1 ND 

cprR(PA3077) Two-component 
response regulator  

-1.5 0.57 ND ND 

colR (PA4381) Two-component 
response regulator  

0.4 0.29E-
1 

ND ND 

Outer membrane protein 

oprH(PA1178) Outer membrane 
protein, H1 

-6.2 1.5E-
51 

20 ND 

Lipid A modifying enzymes 
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arnT(PA3556) Inner membrane L-
Ara4N transferase 

-5.9 8.0E-
15 

8 ND 

arnB(PA3552) UDP-4-amino-4-
deoxy-L-arabinose--
oxoglutarate 
aminotransferase 

-6.5 1.3E-
21 

19 ND 

arnC(PA3553) Glycosyl transferase  -6.3 2.3E-
17 

15 ND 

arnD(PA3554) 4-deoxy-4-
formamido-L-
arabinose-
phosphoundecaprenol 
deformylase  

 

-6.0 7.0E-
10 

30 ND 

Protein for membrane integrity 

wbpM(PA3141) 

 

Nucleotide sugar 
epimerase 

0.44 0.16 4 13 

ND, Not detected. 
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 Three hypothetical proteins of unknown function are involved in Ca2+- induced 

Pol-B resistance of PAO1  

To identify the mechanisms enabling Ca2+-induced Pol-B resistance, we 

employed genome-wide random chemical mutagenesis followed by Pol-B 

susceptibility tests of the individual clones. A total number of 20 mutants with 

increased Pol-B susceptibility at elevated Ca2+ were selected. Complementation of 

these mutants with PAO1 genome library resulted in at least 50% recovery of the 

wild type resistance in four of the mutants (Fig.4.1). Sequencing of the 

complementing genome fragment identified several regions of PAO1 genome. 

Region 1 contained, PA2802, PA2803, PA2804; region 2: PA3237, PA3238; region 

3: PA2590; and region 4:  PA5317. In order to further determine which of these 

genes are involved in Ca2+ regulated Pol-B resistance, the corresponding transposon 

mutants with individually disrupted genes of interest were obtained from the 

University of Washington transposon mutant library (98) and tested their Ca2+-

dependent Pol-B susceptibility. This allowed identification of three genes: PA2803, 

PA3237 and PA5317, the mutation of which reduced Pol-B resistance at elevated 

Ca2+ by more than 50% (Fig. 4,2). The complementation of the mutants with the 

corresponding genome fragments restored the wild type level of Pol-B (Fig. 4.2). 
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Interestingly, the disruption of PA3238 resulted in increased Pol-B resistance at 5 

mM Ca2+ (Fig. 4S2).  
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 Figure 4.1: 28Pol-B susceptibility assay. A. E-test for PAO1 Cells were grown 

without or with 5 mM Ca2+, normalized to OD600 of 0.1, and plated onto BMM 

agar plates with the corresponding concentration of Ca2+. E-strips with gradient of 

pol-B were placed on the bacterial lawns. MIC was recorded after 24 h 

incubation. B. Plate dilution assay for PAO1 and selected complemented NTG 
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mutants. The cultures were grown without or with 10 mM Ca2+, normalized to 

OD600 of 0.3, and normalized cultures were inoculated into corresponding media 

at 1:100 ratio. 200 µl of this culture were then added to each well of 96 well plate 

with or without pol-B at different concentration. Plates were incubated at 37° C 

with fast shaking in Biotek plate reader. The MIC was recorded after 24 h 

incubation. C. E-test for PAO1 and transposon mutants. The MIC assay was 

performed as described above. Solid Black: no added Ca2+, Solid Grey: 5 mM or 

10 mM Ca2+. 
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Figure 4.S2: 29Role of the genes identified by random mutagenesis in Ca2+ 

induced polymyxin-B resistance. Cells were grown without or with 5 mM Ca2+, 

normalized to OD600 of 0.1, and plated onto BMM agar plates with the 

corresponding concentration of Ca2+. E-strips with gradient of pol-B were placed 

on the bacterial lawns. MIC was recorded after 24 h incubation. Solid Black: no 

added Ca2+, Solid Grey: 5 mM Ca2+. 
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Figure 4.S3: 30Growth analysis of PAO1 and A. PA2803, B. PA3237 and C. 

PA5317. Cells were grown without or with 10 mM Ca2+, normalized to OD600 of 

0.1, and normalized culture was added to 100 ml of BMM with corresponding Ca2+ 

at 1:1000 ratio. Cell density at 600 nm was measured every 2-4 hours. PAO1: Black 

and the mutants: Grey. No added Ca2+: square, 10 mM Ca2+: triangle. 
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Sequence analyses predicted PA2803 to encode a putative 

phosphonoacetaldehyde hydrolase, PA3237 - a DNA binding protein and PA5317 

- a peptide binding component of ABC transporter 

Through BLASTP homologue search in non-redundant protein data base 

PA2803 is found to be conserved among gram negative proteobacteria.  Based on 

99% amino acid identity over the entire protein length with phosphonoacetaldehyde 

phosphoglucomutase YcjU from Enterobacter cloacae, PA2803 was predicted to 

encode a phosphonoacetaldehyde hydrolase. Through genome wide sequence 

homologue searchin E. coli, YcjU has been identified among other haloacid 

dehalogenase like phosphatases (228). In E. coli YcJu catalyzes the conversion of 

D-glucose 1-phosphate to D-glucose 6-phosphate through the intermediate beta-D-

glucose 1,6-bisphosphate (227). According to functional domain prediction in 

Conserved Domain Database (CDD), PA2803 contains a haloacid dehalogen 

(HAD)-like domain, which is conserved throughout all kingdoms of life and serves 

in a wide variety of enzymatic reactions (Fig. 4.2 A). For instance, HAD domain is 

required for phosphate hydrolysis in SERCA (Sarcoendoplasmic reticulum Ca2+-

ATPase) (229). By using PSORTb 3.0 algorithms, PA2803 was predicted to reside 

in cytoplasm. Further, this protein is conserved among pseudomonads. Among 184 

complete sequenced Pseudomonas genome, homologue of PA2803 is identified in 

40 genomes with a percent identity ranginf from 25% to 63%. In P. aeruginosa 

genome, the closest paralog is PhnX (PA1311), a phosphonoacetaldehyde 
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hydrolase sharing 25 % amino acid identity. In addition, PA2803 and PhnX have 

similar genomic environments, including transcriptional regulator 

(PA2802/PA1309) and phsphonohydrolase/2-aminoethylphosphonate-pyruvate 

transaminase (PA2804/PA1310) (Fig. 4.2B). According to I-Tasser algorithm and 

based on structural homology to phoshonoacetaldehyde hydrolase from Oleispira 

antarctica, PA2803 was predicted to form a 3D structure with 10 α-helices and one 

parallel β-sheet. It was also predicted to bind Ca2+ via Gly16, Ser18, Ser49, Ala164 

residues, but with a moderately low C score (0.33) (Fig. 4.2C).  

PA3237 shares 100% amino acid identity with a hypothetical membrane 

protein in E. cloacae, PA3237 which also carries the domain of unknown function 

(DUF2061) like PA3237.BLASP analysis in Pseudomonas.com database identified 

homologues of PA3237 in chromosome of P. stutzeri, P.resinovorus, P. alcaligens, 

P. mendocina, P. pseudoalcaligens, P. plecoglossicida and P. balaerica with a % 

identity ranging from 42% to 81%. In P. aeruginosa however, only one paralogue, 

PA2183 has been detected with DUF2061 domain.  By using TMHMM 2.0 

algorithm, PA3237 was predicted to have 23 amino acid residues (13-35) embedded 

into the inner membrane (Fig. 4.2 A). Further analysis with PSORTb 3.0 supported 

the prediction of PA3237 to be localized within an inner membrane. According to 

I-Tasser, PA3237 is structurally similar to the archaeal metal-binding protein 

SS06904 from hyperthermophilic Sulfolobus solfataricus (Fig. 4.2C).  
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Very recently, two dpp operons (dppBCDF and dppA1-A5) have been 

annotated in PAO1 genome, with PA5317 annotated as dppA5 (230) . These 

operons were previously identified by using dipeptide utilization based screening 

by Pletzer et al (231). According to CDD functional domain prediction, PA5317 

contains dipeptide binding domain, PBP2-DppA (Fig. 4.2A) present in the 

periplasmic fold of ABC transporters. DppA is a periplasmic dipeptide transporter 

protein found in E. coli that has the identical functional domain as PA5317, DppA5. 

DppA is a membrane protein that transports peptides, proteins and contributes to 

peptide chemotaxis (232). Dpp proteins are also known to function as drug 

receptors (233). Structural prediction by I-Tasser PA5317 modeled a globular 

structure based on homology to dipeptide binding protein from Pseudoalteromonas 

sp. SM9913, a Gram-negative marine bacterium (Fig. 4.2C).   
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Figure 4.2: 31Sequence analysis for PA2803, PA3237 and PA5317. A. Prediction 
of functional domains of PA2803, PA3237 and dppA5. Analysis was done using 
Coserved Domains and Protein Classification (CDD) data base, X ref: Pfam, 
Iterative Threading Assembly Refinement Algorithm (I-Tasser) and 
Transmembrane Helices; Hidden Markov Model (TMHMM) 2.0. The HAD 
domain of PA2803 was predicted by I-Tasser analysis and CDD database. The 
transmembrane helices of PA3237 was predicted by TMHMM analysis. The PBP2-
DppA like conserved domain in PA5317 was identified using CDD, X-ref: P-fam. 
The peptide binding sites in DppA5; W404, I 408, MGWA 421-424 and D 426, 
was determined by sequence alignment in CDD database. B. Schematic 
presentation of genomic neighborhood of PA2803, PA3237 and dppA5. The gene 
annotation is as in http://www.pseudomonas.com. C. 3D Structure prediction by I-
Tasser for PA2803, PA3237 and DppA5. The modeling was done by PyMOL 
Version 3.0. PA2803 is predicted to bind Ca2+ at the core region surrounded by  
G16, S18, S49 and A164 with a confidence score (C score) of 0.33 (C score ranges 
from 0-1, higher C score represents the reliability of prediction). 

  

i ii
i 

ii 

C 



185 
 

 

 

Ca2+ regulates the transcription of PA2803 and PA3237  

RNA-Seq transcriptional analysis revealed that Ca2+ regulates transcription 

of PA2803 and PA3237 in P. aeruginosa PAO1. The transcript abundance of 

PA2803 and PA3237 was elevated by almost 7 and 3 fold, respectively during 

growth at 5 mM Ca2+ (Fig 4.3). This supported the earlier observation by 

microarray analysis that PA2803 and PA3237 were up-regulated at least 3 fold in, 

respectively, planktonic and biofilm cultures of P. aeruginosa FRD1 grown at 10 

mM Ca2+ (Table 4.2). These genes were also reported induced in PAO1 in response 

to subinhibitory concentrations (SIC) of tobramycin (5 µg/ml) and Cu2+ shock (10 

mM ) (37, 131). Response to tobramycin constituted 2-3 fold induction, whereas 

response to Cu2+ shock was about 2 fold for PA2803 and 357 fold for PA3237. 

Furthermore, when PAO1 cells were grown at 10 mM Cu2+, transcription of all 

three, PA2803, PA3237 and PA5317, was increased by at least 20 fold (131). 
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Figure 4.3: 32RNA-seq analysis: Fold change in transcript abundance of PA2803, 

PA3237 and PA5317 in PAO1 in response to 5 mM Ca2+. For this RNA was isolated 

from PAO1 cultures growth in BMM with no added or 5 mM Ca2+ till middle log. 

RNA-seq was performed using Illumina NextSeq sequencing. Adjusted *P value ≤ 

0.01. 
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DISCUSSION 

With the current problem of global rise in increasing multidrug resistance, 

polycationic polypeptides were considered as one of the last line of defense against 

multidrug resistant bacterial infections (22) and became one of the most popular 

choices of combinatorial antimicrobial therapy (190, 234, 235). However, 

resistance to these antibiotics is not unfounded in P. aeruginosa (191, 236), and 

represents a great concern.  Here, we showed that the earlier discovered lipid A 

modification-based mechanism of PolB resistance are not involved in Ca2+- 

induced pol-B resistance in PAO1, and identified three genes potentially 

constituting novel mechanisms of resistance to this antibiotic in the presence of the 

cation.  

The involvement of two component systems PhoPQ, PmrAB, ParRS in Pol-

B resistance in P. aeruginosa, (23, 210, 237) as well as its association to another 

divalent cation, Mg2+ (23) are the major reason we selected these systems to 

investigate their role in Ca2+ regulated Pol-B ressitance. Besides the enzymes which 

govern the lipidA modification, OprH (H1), a membrane protein, also cationic in 

nature, can stabilize the membrane integrity to reduce the uptake of cationic 

antibiotics (94) Interestingly, both the protein abundance and well as transcript 

abundance of the two component proteins and the the enzymes regulated by them 

as well as the membrane protein H1 was found un detected or reduced when PAO1 

was grown in presence of 5 mM Ca2+ compared to that at no added Ca2+ (Table 1). 
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This suggests that there might be some other mechanisms of adaptive Pol-B 

resistance yet to be discovered. To further confirm the role of the already known 

mechanisms of Pol-B resistance in the Ca2+ regulated pol-B resistance of PAO1, 

antimicrobial susceptibility assay were performed for the mutants lacking 

functional individual genes belonging to the two component systems. In addition, 

we also tested the mutant lacking carR, part of Ca2+ responsive two component 

system, CarSR, for its Pol-B susceptibility at 5 mM Ca2+. CarSR is a two 

component system which can sense the presence of external Ca2+ in the 

environment and regulate many Ca2+ regulated phenotypes in P. aeruginosa (70). 

None of the two component regulators showed any involvement in Ca2+ regulated 

Pol-B resistance (Fig. S1), confirming our previous observation through the 

proteomic and transcriptomic analysis. Therefore, we pursued NTG mediated 

random mutagenesis to identify the genes involved in Ca2+-induced pol-B 

resistance. 

Through an extensive screening of Pol-B susceptible random mutants at 10 

mM Ca2+, we identified three hypothetical proteins whose absence make P. 

aeruginosa susceptible to Pol-B even when 5 mM or 10 mM Ca2+ was added to the 

medium. PA2803 is predicted as a Phosphonoacetaldehyde dehydrolase by BLAST 

homologue search. Phosphonoacetaldehyde dehydrolases are enzymes involved in 

hydrolysis of phosphate in the phosphor-molecule biosynthesis (238). PAO1 itself 

carries another Phosphonoacetaldehyde dehydrolases, PhnX, which hydrolyzes 
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Aminoethylphosphonic acid to liberate phosphate for the bacterium to utilize (239). 

The best functionally characterized homologue of PA2803, YcjU, a 

phosphoglucomutase, is a phosphatase with the HAD domain in E. coli which 

belongs to the glucose metabolism pathway of the bacterium (228). In E. coli, loss 

of ycjU has been documented for quinolone and nalidixic acid resistance of the 

bacterium (240, 241). This protein is also required for the bacterium to survive 

against oxidative stress (241). However, the phnX in PAO1 has never been 

documented to play role in stress protection or antibiotic resistance of the 

bacterium. Since, phosphonohydrolase dehydrolases are known enzymes to 

hydrolyze phosphate intermediates of phosphonolipid, phosphonoprotein and 

phosphonosugar metabolism (228, 242), it would be plausible to investigate its role 

in membrane integrity and thus Pol-B resistance of PAO1. Also, since PA2803 

displays Ca2+ binding potential (Fig. 2 C). An investigation of the protein function 

in presence of Ca2+ may shed light on how this enzyme can be involved in Ca2+ 

regulated Pol-B resistance of PAO1. 

Very little knowledge is available on PA3237 as well as its closely related 

homologues. However, through global gene expression analysis PA3237 has been 

hound to be regulated positively by PQS, quorum sensing molecule (243). This 

gene is also highly upregulated at the swarm center of swarming colonies of 

PAO1(244). Lastly, PA5317, recently annotated as dppA5 (230) is a predicted 

peptide binding component of an ABC transporter . With the peptide binding ability 
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predicted by I-Tasser, PA5317 is likely to be involved in transport of molecule 

which either inactivate Pol-B or inhibit it from binding and disrupting the 

membrane. 

The Pol-B or TLR4 mediated alteration of bacterial outer membrane 

involves the mechanisms which protect the bacterium from initial attack of the 

compounds on the membrane (25, 245). Since none of these mechanisms contribute 

to Ca2+ regulated Pol-B resistance, it is likely that Ca2+ may protect the bacterium 

from attack of Pol-B on the inner membrane, which in fact is the lethal effect of the 

antibiotic (192). Specially, the transcriptional regulation of PA2803 and PA3237 

by growth at increased Ca2+ (Fig. 3) and other stimuli such as Cu2+ or tobramycin 

at sub inhibitory concentration (Table 4.2) indicates significance of these genes in 

adaptive physiological response in P. aeruginosa. Therefore, involvement of 

PA2803, a cytoplasmic protein, PA3237, a cytoplasmic membrane protein and 

PA5317 a periplasmic peptide binding protein in Ca2+ regulated Pol-B resistance 

may reveal unique mechanisms of adaptive polycationic peptide resistance in 

PAO1.   
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Table 4.2: 11Effect of different stimuli on transcription of  PA2803, PA3237, and 

PA5317 genes in P. aeruginosa PAO1.  

Gene 

ID 

Gene 
annotation 

Fold change in 
Gene transcription 
in response to Ca2+ 

cSIC of 
TOBR in 
planktoni
c cells 
(37) 

dCu
2+ 
sho
ck 
(13
1) 

eAdapte
d Cu2+ 
shock 
(131) 

  aPlankt
onic 
culture 

bBiofilm    

PA2803 Probable  
phosphonohy
drolase 

1.4 1 2 5 89 

PA3237 probable 
metal binding 
protein 

0.8 1.7 3 357 21 

PA5317 Probable 
periplasmic 
peptide 
binding 
component of 
ABC 
transporter 

0.8 1 1 1 20 

The increased abundances of transcripts 2 fold and above are shown in bold. 

The data were collected from the Geo profiles at 

http://www.ncbi.nlm.nih.gov/geoprofiles. 
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aMicroarray was performed using RNA isolated from P. aeruginosa FRD1 strain 

grown in BMM with no added or 10 mM Ca2+. 

bMicroarray was performed using RNA isolated from microsection of Biofilm of 

P. aeruginosa FRD1 strain grown at no added or 10 mM Ca2+ 

c Planktonic cultues were grown in presence of 5 µg/ml of tobramycin and RNA 

isolated from late exponential phase cultures.(37) 

d 10 mM CuSO4 was added to PAO1 culture. For Cu2+ shock, cells were harvested 

at middle log and treated with CuSO4 for 4.5 Hrs and for adapted Cu2+ shock, 

CuSO4 was added at the beginning of the growth and the cells were grown in 

presence of added 10 mM CuSO4 (131) 
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However, more investigation is required to identify the underlying 

mechanisms governed by PA2803, PA3237 and PA5317 and determine how these 

proteins protect P. aeruginosa from Pol-B at high Ca2+. In depth bioinformatics 

analysis to make a relationship tree for each of these proteins will help us predict 

its true function. Such prediction can be utilized to design and assay the function of 

the proteins and how they contribute to Ca2+ regulated Pol-B resistance of PAO1.  

Overall, we identified that there are three novel proteins which are involved 

in Ca2+ regulated Pol-B resistance. This can lead to identification of novel 

mechanisms which can be utilized by the bacterium to thrive against polycationic 

polypeptides, either antibiotics or from host. The identification of the function of 

this proteins in Ca2+ regulated Pol-B can direct us toward discovery of alternative 

treatment therapy to avoid rising antimicrobial resistance toward this antibiotic. 
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CHAPTER V 

DISCUSSION 
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The main goal of this research was to establish the regulatory role of Ca2+ 

on antibiotic resistance of P. aeruginosa, specifically tobramycin and polymyxin-

B (Pol-B). 

 Our lab focuses on elucidating the signaling role of Ca2+ and determine the 

Ca2+ regulatory network in human pathogen P. aeruginosa, PAO1. Previous 

research in our lab has identified that PAO1 maintains Ca2+ homeostasis via  

multiple mechanisms including influx and efflux of Ca2+ with the help of several 

Ca2+ transporters (72) and several Ca2+-binding proteins(70, 71) with diverse 

functions. The global regulatory effect of Ca2+ on transcriptomic (70) and 

proteomic expression (73) including many virulence associated factors (74) 

suggests that Ca2+ may play a role as a second messenger modulating PAO1 

physiology. Both in our lab and others have identified Ca2+ responsive regulators 

that can sense the presence of external Ca2+ and relay the signal to control virulence 

and pathogenicity associated regulatory network as well as other physiological 

responses in P. aeruginosa, PAO1 (61, 70, 177, 246). Our current research mainly 

focuses on the intracellular Ca2+ [Ca2+]in signaling in P. aeruginosa and its 

involvement in Ca2+ regulated virulence and antibiotic resistance in this pathogen. 

Here we have determined the regulatory role of Ca2+ on tobramycin 

(aminoglycoside) and polymyxin-B (polycationis polypeptide) resistance of PAO1. 

We have identified the role of at least six RND efflux pumps in Ca2+ regulated 

tobramycin resistance, three of which also participates in efflux of Ca2+ in this 
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organism (43). We have also identified three novel proteins which contribute to 

Ca2+ regulated polymyxin-B resistance of PAO1. Furthermore, through homologue 

search we have identified a Ca2+ channel protein, PA2604 (designated CalC), which 

is required for the development of [Ca2+]in transient increases.  Lack of functional 

calC disrupted Ca2+ regulation of many virulence and cell integrity associated genes 

in this organism and abolished Ca2+ induction of tobramycin resistance. Altogether, 

these discoveries support our hypothesis that Ca2+ regulatory network is involved 

in regulation of adaptive resistance and virulence of P. aeruginosa.  

Evolution of Ca2+ signaling in living organisms developed as a mean to 

utilize abundant environmental Ca2+ as a resource for survival and adaptation. On 

the other side, to protect themselves from the toxicity of the environmental Ca2+, 

living organisms developed mechanisms to maintain a balanced access of Ca2+ into 

their cellular systems and control Ca2+-dependent changes in their physiology (83, 

247, 248). Thus, from the very ancestral life form, Ca2+ has been established as a 

powerful first and second messenger controlling a variety of cellular processes 

(247, 249, 250). The maintenance of basal [Ca2+]in at a very low concentration (nM 

level) in the presence of a gradient with the extracellular Ca2+ (mM level) of more 

than 100,000 fold requires Ca2+ chelating, buffering, extruding in a high rate and 

efficiency. Such homeostasis is maintained by copious numbers of proteins with 

selective affinity toward Ca2+ that can chelate or bind Ca2+ to keep the intracellular 

and extracellular Ca2+ gradient intact. Besides, numbers of transporters, channels 
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and pumps, have been known to extrude Ca2+ with an extraordinarily high speed 

and efficiency (248). In eukaryotes, the amplitude and frequency of changes 

[Ca2+]in hold the key feature for [Ca2+]in signaling and is orchestrated by proteins 

with C2 domains or PIP2 domains, the P-type ATPases, Na+/Ca2+ or K+/Ca2+ ion 

exchanger as well as voltage gated channels in eukaryotic cells (251-253). In 

eukaryotic cells the transient changes in [Ca2+]in level are generated by both 

acquisition of stored Ca2+ (254) via voltage-gated channels (248) as well as 

transporters of extracellular Ca2+ across the plasma membrane by transient receptor 

potential (TRP) ion channels (255). This transient increase in [Ca2+]in allows the 

signaling initiation. However, increased Ca2+ is buffered by Ca2+ binding proteins 

(CaBPs) (256) or extruded out of cytoplasm by sarcoendoplasmic reticulum P-type 

ATPases (SERCA) into the ER or plasma membrane P-Type ATPases (PMCAs) to 

outside of the cells very quickly in order to bring back the cytoplasmic level of Ca2+ 

to basal level (248, 252, 253). This synchronized change in [Ca2+]in is the key 

feature that mediates signaling by Ca2+ as both primary and second messenger 

regulating cellular processes such as cell division, fertilization, muscle contraction, 

nerve cell stimulation, as well as heart function, regulation of hormone secretion 

and balance, and immune response (64, 83, 84, 248).  

Since evolution of Ca2+ signaling is a natural phenomenon happened at the 

earlier developmental stages of earth, it is likely that the single celled organisms 

pioneered in adaptation of Ca2+ homeostasis and signaling mechanisms. The 
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experimental evidence of [Ca2+]in homeostasis in prokaryotes dates back to late 

1980s (257). This delay reflects the limitation of tools to assess the Ca2+ 

homeostasis in prokaryotes. The structural differences in prokaryotes and 

eukaryotes as well as the toxicity of the reagents used to measure [Ca2+]in made the 

use of many [Ca2+]in measurement tools unusable for bacteria (reviewed in (251)). 

Nonetheless, identifying the ability of prokaryotes to maintain tightly regulated 

basal [Ca2+]in at a very low level (170-300 nM), which is similar to eukaryotes (100-

300 nM), became a big breakthrough in this area of research (257, 258). The 

construction of aequorin based [Ca2+]in measurement tool (258) allowed to further 

advance the progress in this area. Although the knowledge on Ca2+ signaling in 

bacteria is at its early phase, many CaBPs as well as Ca2+ transporters and channels 

have been identified in different bacteria starting from the very first discovery of 

Ca2+ signaling potential in E. coli in 1987 (257). These proteins, particularly 

bacterial P-type ATPases share strong similarity to those in eukaryotes. For 

instance, the P-type ATPase, YloB in Bacillus subtilis is similar to the SERCA P-

type ATPase on ER of eukaryotic cells (259). Also, many other bacteria have been 

shown to possess P-type ATPases, such as CaxP in Streptococcus pneumonia, 

PMAI in Synechocystic sp., PacL in Synechococcus sp, Cda in Flavobacterium 

adoratum, Lmo818 and LMCAI in Listeria monocytogens, some of which were 

shown to be involved in Ca2+ transport or Ca2+ regulated physiological responses. 

In addition to P-type ATPases, there are electrochemical potential driven 
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transporters that also contribute in Ca2+ homeostasis maintenance (reviewed in 

(47)). Among channels, the pH sensitive Ca2+ leak channel BsYetJ in B. subtilis has 

been experimentally characterized to transport extracellular Ca2+ into cytoplasm 

and is activated by change in pH of the environment (178). Prokaryotes also encode 

a large number of proteins with characteristic features indicating their ability to 

bind Ca2+. Some of these proteins carry Ca2+ binding motifs ranging from 

calmoduline like EF- hand to β-roll, Greek key, Blg domain (47). The discovery of 

acidocalcisome like Ca2+ storage membrane components in Rhodospirillum rubrum 

and Agrobacterium tumefaciens is an evidence that bacteria may be able to instigate 

the changes in [Ca2+]in by storing Ca2+ in these compartmentalized Ca2+ stores (260, 

261). Along with the presence of transporters and other CaBPs, there is a growing 

evidence of Ca2+ regulation of bacterial physiology strongly suggesting the 

signaling role of Ca2+ in bacteria. Binding of Ca2+ may provide protein stability 

which is required for enzymatic activity of that protein. One such example is 

transglycolase Slt35 in E. coli which has EF-hand like Ca2+ binding site. Binding 

of Ca2+ to this site stabilizaes the protein to allow enzymatic function, catalyzing 

intermediates of peptidoglycan biosynthesis  (262). Besides this, Ca2+ sensing two 

component regulators CarR-CarS in Vibrio cholerae has been experimentally 

established to bind external Ca2+ and relay the signal to control biofilm formation 

(263)   Altogether the above knowledge suggests that there may be an intricate 
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regulatory cascade which actively response and relay the Ca2+ signal in bacteria 

(reviewed in (47). 

In our lab, we study the signaling role of Ca2+ using the model organism 

Pseudomonas aeruginosa, PAO1. P. aeruginosa, though opportunistic in nature, is 

a notorious pathogen with outstanding multidrug resistance. The study of Ca2+ 

signaling is important for P. aeruginosa since the pathogen resides in the lungs of 

Cystic fibrosis (CF) patients where there is an abundance of free Ca2+ (67, 68).  

Furthermore, due to the aberrations in ion homeostasis in CF lungs, the level of 

Ca2+ is elevated in lung, nasal, and oral liquids (67). Regulatory role of Ca2+ in 

adaptive virulence and pathogenicity traits of P. aeruginosa including production 

of biofilm, extracellular proteases, rhamnolipid, pyocyanin   (73, 74) as well as 

T3SS and T6SS (264, 265) in P. aeruginosa raises a fundamental question: whether 

P. aeruginosa can utilize Ca2+ as a signaling ion to modulate it’s physiological 

response. In my research, I have observed a striking spike in antibiotic tolerance of 

P. aeruginosa toward tobramycin (aminoglycoside) and Pol-B (polycationic 

polypeptide) when grown at elevated Ca2+. Both of these antibiotics are cationic in 

nature and represent one of the most effective choices for treatment against P. 

aeruginosa infections. Since our main goal is to elucidate the Ca2+ regulatory 

network, we aimed to identify the mechanisms of Ca2+-induced antibiotic 

resistance. The increase in the MIC for aminoglycosides in the presence of divalent 

cations has been observed in the clinical isolates of P. aeruginosa (266). However, 
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no underlying mechanisms of Ca2+ regulated antibiotic resistance were known. P. 

aeruginosa is an organism capable of using a multitude of mechanisms to obtain 

antibiotic resistance. Therefore, it was important to first study whether any of the 

known mechanisms are responsible for Ca2+ regulated antibiotic resistance. In order 

to do so, we used global proteomic and transcriptomic approaches. The former 

identified several transporters from the RND superfamily of efflux pumps to be 

significantly more abundant when the bacterium was grown in presence of elevated 

Ca2+. Efflux pumps are one of the major cause of antimicrobial resistance to 

multiple antibiotics (30). Interestingly, these transporters play a multi-layered role 

in many processes such as stress responses (76, 77) , virulence (45, 81), extruding 

chemically diverse toxic chemicals, biocides (32), cell signaling molecules (38, 78) 

, toxic metals (41, 267) as well as antibiotics (21, 34, 122). Furthermore, there is a 

large number of efflux pumps encoded in P. aeruginosa genome. Among the twelve 

efflux pumps identified in P. aeruginosa PAO1, six were identified in our research 

to be involved in Ca2+ regulated tobramycin resistance. This is a novel discovery, 

since prior to our study, MexXY-OprM was the only efflux pump known to 

contribute to efflux mediated aminoglycoside resistance of P. aeruginosa (33, 121, 

122, 268). Also, in our data, mexY mutant was the only one that showed reduction 

in tobramycin resistance even when Ca2+ was not present in the growth medium 

(43). However, the other five efflux pumps appear to be involved in tobramycin 

resistance of this pathogen only at elevated Ca2+. The involvement of six efflux 
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pumps in Ca2+ regulated tobramycin resistance indicates the possibility of more 

than one type of Ca2+ regulation. The pumps’ activity could be enhanced upon 

exposure to external Ca2+. Either the gene expression of this pumps are regulated 

by Ca2+ or tobramycin could be co-effluxed along with the Ca2+.  First, we identified 

that except MexEF-OprN, all five of these pumps are transcriptionally regulated by 

Ca2+. Second, involvement of MexJK-OprM, MexEF-OprN and CzcCBA in Ca2+ 

efflux indicated that tobramycin resistance by these pumps could be as a result of 

co-efflux of the tobramycin and Ca2+ through the pumps. Interestingly, sequence 

analysis prediction identifies CzcCBA as a cation transporting pump in P. 

aeruginosa (41, 116), our study is the first experimental evidence that it plays role 

in Ca2+ efflux in this organisms. Besides involvement of several efflux pumps in 

Ca2+ regulated tobramycin ressitance and plant infectivity requirement of intact 

Ca2+ homeostasis for transcriptional regulation of the efflux pumps indicates 

possible role of Ca2+ signaling in this regulatory effect (72)   
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Figure 5.1:33The proposed model of Ca2+ regulation of tobramycin resistance 

in P. aeruginosa. Elevation of extracellular Ca2+ causes a transient spike in [Ca2+]in. 

Several Ca2+ transporters from different families, including PA2902, PA4614, and 

PA2435 [39], and three RND systems (MexJK-OprM, MexEF-OprN, CzcCBA-

OpmY) contribute to the maintenance of Ca2+
 in homeostasis. The intracellular Ca2+ 

increase regulates the transcription of several efflux pumps involved in Ca2+-

induced tobramycin resistance (MexAB-OprM, MexXY-OprM, MuxABC-OpmB, 
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MexJK-OprM, MexEF-OprN, CzcCBA-OpmY). Black arrows: tobramycin efflux, 

grey solid arrows: Ca2+ efflux, grey dashed arrows: Ca2+ influx. 
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Loss of Ca2+ transporters causes reduction in Ca2+- induced tobramycin 

resistance as well as Ca2+ regulated transcriptional upregulation for the mexAB-

oprM efflux pump. These findings are summarized in figure 5.1 and support an 

intriguing possibility that intracellular Ca2+ signaling is involved in regulation of 

Ca2+-enhanced antibiotic resistance and virulence of this pathogen. 

In order to determine the role of [Ca2+]in transients in regulating Ca2+-

induced antibiotic resistance and virulence of PAO1, our first goal was to identify 

a channel protein which is required for generating the cytoplasmic [Ca2+]in 

transients. In eukaryotes, such channels allow the transient entry of Ca2+ and 

generation of a peak in [Ca2+]in followed by buffering or extrusion of the Ca2+ out 

of cytoplasm by CaBPs and Ca2+ transporters (248). Poly β hydroxy-bytyrate- poly 

phosphate (PHB-PP) complexes are kwon to form channel like structure identified 

in the cell membrane of many bacterium including, Azotobacter vinelandii, Bacillus 

subtilis, Haemophilus influenzae, and E. col etc(269-271).  Both Ca2+ influx 

channels and (PHB-PP) channels have been identified in bacteria as involved in 

generating the transient peak of [Ca2+]in (272). Although homologue search for 

PHB synthase gene in PAO1 did not identify any protein clusters. However P. 

aeruginosa is known to produce polyhydroxyalkanoate (PHA) which requires the 

PHA synthesases, PA5056 and PA5058. The polyphosphate (PP) regulation in P. 

aeruginosa involves the exopolyphatase PA5241 and the polyphosphate kinase, 
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PA5242 (170, 171). Therefore, it is likely that P. aeruginosa uses PHA-PP channels 

instead of PHB-PP channels to bind to Ca2+. We have also, in our research, 

identified a homologue of Ca2+ channel BsYetJ of B. subtilis (178), PA2604 (CalC) 

in PAO1. Among the PHA synthases, PP regulators and the calcium hannel CalC, 

CalC is the only one without which the transient changes in [Ca2+]in that potentially 

holds the ‘[Ca2+]in signaling signature’ was nearly abolished (chapter 3). 

Furthermore, the disruption of calC caused the loss of Ca2+ regulated pigment 

production, swarming motility as well as tobramycin resistance. The global 

transcriptional analysis with RNA–Seq of the mutant with disrupted calC revealed 

the regulatory role of [Ca2+]in transients in transcription of many virulence 

associated genes as well as genes for transport, cellular metabolism and catabolism, 

oxidative phosphorylation, phosphate regulation etc in response to Ca2+. These 

most significant effect has been identified for the genes included pvd genes whose 

expression was downregulated in the mutant but was > 200 fold upregulated by 

Ca2+. Supporting this, we measured pyoverdine production in PAO1 and detected 

no pyoverdine accumulation in the mutant at 5 mM Ca2+. Considering that CalC is 

required for generating the [Ca2+]in transients and that its mutation reduced Ca2+ 

effect on global transcription in PAO1, we concluded that [Ca2+]in transients are 

required to mediate Ca2+ regulation in P. aeruginosa physiology. This supports our 

hypothesis that Ca2+
in plays a signaling role in this organism. 
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The next task was to determine the relationship between CalC with other 

Ca2+ responsive regulators and Ca2+ binding proteins, that were earlier identified to 

mediate Ca2+ regulation in PAO1. One major event of Ca2+ signaling in eukaryotes 

involves binding Ca2+ to calmodulin sensors, leading to conformational changes 

and facilitating binding of calmodulin to other regulatory proteins, thus transducing 

the Ca2+ signal towards regulation of gene expression (248). Previously our lab 

identified calmodulin-like CaBP in P. aeruginosa, EfhP which has Ca2+ binding EF 

hand regions and contributes to Ca2+-regulated virulence (71). We predict that EfhP 

functions in Ca2+ signal transduction. In addition to EfhP, our group identified CarP, 

an inner membrane anchored periplasmic protein, regulated by Ca2+responsive two 

component system CarSR and contributes to both Ca2+ homeostasis as cellular 

tolerance to increased surrounding Ca2+ (70). The actual mechanism how CarP 

mediates this function is yet to be discovered. However, based on sequence 

analyses, it may bind Ca2+ and either transduce this signal or activate a putative 

phytase domain releasing inorganic phosphate and potentially contributing to 

protecting cells against elevated Ca2+. Another putative periplasmic Ca2+-binding, 

CarO, is regulated by CarSR in Ca2+-dependent manner and contributes to Ca2+ 

homeostasis in PAO1. CarP and CarO both contribute to Ca2+-regulated tobramycin 

resistance in P. aeruginosa. Besides the CaBP identified in our lab, LadS is a sensor 

kinase, which is phosphorylated upon exposure to increased external Ca2+ and 

regulates GacA-GacS controlling lifestyle of P. aeruginosa. The involvement of all 
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these proteins in Ca2+ regulation is summarized in Figure. 5.2. By using promoter 

activity, we showed a regulatory relationship of calC with carR, carP and efhP. 

The Ca2+ regulated increase of calC transcription was completely abolished in the 

mutants of carR, carP, and efhP, thus identifying Ca2+ regulatory network. 

Although the RNA-seq analysis suggested that Ca2+ regulated transcription of 

rsmA, which is a GacA-GacS dependent regulator contributing to inhibition of 

acute infection and promote chronic infection by upregulating the genes involved 

in this process, , is also dependent on calC, further analysis is required to confirm 

this relationship. Promoter activity of calC in the mutant lacking ladS as well as the 

promoter activity of the LadS regulated downstream regulator rsmA and sRNA 

RsmZ (Figure 5.2) will help us to build the connection between calC- and ladS-

dependent Ca2+ regulon. 
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Figure 5.2.34Relationship between CalC and other Ca2+ responsive regulators, 

transporters and CaBPs in P. aeruginosa. 
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Finally, we have also investigated the mechanisms of Ca2+ -induced Pol-B 

resistance in P. aeruginosa. PhoPQ, PmrAB, ParRS and CprRS-dependent lipid A 

modifications are the known key resistance mechanisms of Pol-B in Gram-negative 

bacteria including P. aeruginosa (22, 205, 210). These modifications include 

enzymatic acylation or deacylation of the acyle chains, amino-arabinose, 

phosphoethanolamine  attachment ot the phosphate residues on the glucosamine or 

KdO of lipid A (22, 23, 225, 236, 273, 274). Interestingly, our global proteomic 

and transcriptomic (RNA-seq and microarray) analyses supported that none of the 

known mechanisms of Pol-B-B resistance respond to Ca2+. Further analysis by 

mutational study confirmed that the two component regulators PhoPQ, PmrAB and 

ParRS controlling the lipid A modifications mediated Pol-B resistance in P. 

aeruginosa (22, 236) do not contribute to Ca2+-dependent increase in Pol-B 

resistance of this pathogen. Instead, we have discovered three hypothetical proteins, 

PA2803, PA3237 and PA5317 which contributes to this phenomenon. While 

PA3237 is homologous to archaeal metal binding protein and PA5317 is a predicted 

peptide binding component of ABC transporter, PA2803 shares homology to 

phosphonoacetaldehyde hydrolase in Enterobacter cloacae (Chapter 4). Although 

YcjU, (241) the homologue of PA2803 is known to contribute to bacterial 

resistance to the antibiotic nalidixic acid , none of the PA2803, PA3237 and 

PA5317 have ever been identified to be involved in Pol-B resistance. Further 
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analysis is required to determine the functional roles of these proteins in Ca2+ 

regulated polymyxin-B resistance of P. aeruginosa. 

Overall, we have identified the mechanisms involved in Ca2+ regulated 

tobramycin resistance and how the [Ca2+]in homeostasis is involved in this process. 

Further extension of the relationship between Ca2+ responsive mechanisms and 

CalC will allow reconstruction of Ca2+ signaling network in P. aeruginosa. Such 

knowledge with provide us with in-depth understanding of how this pathogen can 

utilize Ca2+ as a source of information in an attempt to adapt to its environment. 

This will further our understanding of adaptive resistance and virulence of P. 

aeruginosa and its interactions with the host and help to come up with better 

strategies to treat or prevent Pseudomonas infections. 
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CHAPTER VI 

CO-AUTHORED PROJECTS 
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I 

ROLE OF THE TWO-COMPONENT REGULATOR, CarSR, IN 

REGULATING PSEUDOMONAS AERUGINOSA CALCIUM-

INDUCED ANTIBIOTIC RESISTANCE.  

M. Guragain, M. King, K.S. Williamson, A.C. Perez-Osorio, T. Akyama, 
S. Khanam, M.A. Patrauchan, and M.J. Franklin.  2016, Journal of 
Bacteriology. The Pseudomonas aeruginosa PAO1 two-component regulator, 
CarSR, regulates calcium homeostasis and calcium-induced virulence factor 
production through its regulatory targets, CarO and CarP. 

 

It is included in this dissertation under Creative Commons 
Attribution (CCBY) license from the publisher 

 

INTRODUCTION 

Pseudomonas aeruginosa, a natural inhabitant of soil and water, is able to 

infect a variety of hosts, including plants and humans. In humans, it causes severe 

acute and chronic infections by colonizing respiratory and urinary tracts, burned or 

wounded epithelia, cornea, and muscles (161, 275, 276). The versatility of P. 

aeruginosa pathogenicity is associated with diverse metabolic capabilities, multiple 

mechanisms of resistance, a large repertoire of virulence factors, and adaptability, 

due in part to tightly coordinated regulation of gene expression. A large portion of 
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the P. aeruginosa PAO1 genome, approximately 9.4%, encodes transcriptional 

regulators (277, 278), including two-component regulators (TCS): 89 response 

regulators, 55 sensor kinases, and 14 sensor-response regulator hybrids (161). The 

regulatory targets for most of these regulatory systems are unknown.  

Calcium plays an important signaling role in both eukaryotic and 

prokaryotic cells. In prokaryotes, Ca2+ is an essential nutrient, since it is a necessary 

cofactor for many enzymes.  However, Ca2+ can be toxic to cells at high 

concentrations, and therefore bacteria maintain a low sub-micromolar intracellular 

concentration of Ca2+ (279).  P. aeruginosa may encounter environments where 

external Ca2+ levels are in the milimolar range, varying from 10 mM in soil (280) 

to 40 mM in hypersaline lakes (281). As a plant and human pathogen, P. aeruginosa 

may be exposed to lower but also varying Ca2+ levels. For example, in plants, Ca2+ 

concentration ranges from 0.01 to 1 mM in extracellular spaces (282) and from 1 

to 10 mM in apoplasts (283). In a human body, Ca2+ levels may reach about 1 - 2 

mM in extracellular  fluids and saliva (284) (285), and 5 mM in blood (286) and 

human milk (287). In case of disease, for example, during cystic fibrosis (CF) 

pulmonary infections, both intracellular and extracellular Ca2+ levels fluctuate in 

response to inflammation (87, 288), and the overall Ca2+ levels in nasal secretions 

and sputum increase at least two fold (285) reaching up to 3-7 mM (289, 290). 
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In a previous study, we demonstrated that P. aeruginosa maintains a sub-

micromolar intracellular concentration of Ca2+ ([Ca2+]in) (279).  However, when the 

cells are exposed to high levels of extracellular Ca2+, characteristic of the 

environments described above, the cells undergo a transient increase of [Ca2+]in.  

The transient increase is followed by a return to sub-micromolar levels of [Ca2+]in 

and a maintenance of homeostatic concentration of internal Ca2+, apparently due to 

the transport of excess Ca2+ through Ca2+ export pumps. Interestingly, in addition 

to maintenance of Ca2+ homeostasis, P. aeruginosa recognizes the external 

concentration of Ca2+ as a physiological signal, and responds through changes in 

the abundances of intracellular proteins and secreted virulence factors, alginate, 

pyocyanin, and secreted proteases (146, 291). This Ca2+ triggered change in P. 

aeruginosa physiology leads to enhanced plant infectivity (157), biofilm formation, 

and swarming motility (146, 279, 291). Furthermore, Ca2+ alters the abundance of 

P. aeruginosa proteins involved in iron acquisition, quinolone signaling, nitrogen 

metabolism, and stress responses (146, 291). These observations suggest that Ca2+ 

plays an important regulatory role in P. aeruginosa virulence. However, the 

molecular mechanisms responsible for sensing environmental Ca2+ and regulating 

the Ca2+-induced responses are not known.  Therefore, the goals of this study were 

to identify and characterize Ca2+-mediated molecular responses. 

Bacteria use two-component regulatory systems (TCSs) to sense and 

respond to diverse and continuously changing environmental stimuli, including 



216 
 

changing cation concentrations.  TCSs help regulate responses to Na+, Mg2+, and 

other cations, and therefore are likely involved in Ca2+-dependent regulation. A 

typical TCS contains a sensor kinase  located partially in the cytoplasmic membrane 

and a cognate response regulator (292). Upon exposure to a stimulus, the sensor 

kinase autophosphorylates at histidine residues.  The consequent conformation 

change enables the transfer of a phosphate group to the aspartate residue on the 

cognate response regulator, which typically results in DNA binding to an activator 

DNA sequence and changes in gene expression (278, 293).  P. aeruginosa has many 

TCSs, and some of these have been characterized.  For example, PhoPQ and 

PmrAB regulate resistance to polymyxin B and antimicrobial peptides via lipid A 

modification at low magnesium  (Mg2+) concentration (294-297). PhoPQ also 

regulates aminoglycoside resistance, twitching and swarming motility, surface 

attachment, and biofilm formation, ultimately contributing to regulation of 

virulence (298, 299). PmrAB is induced by cationic antimicrobial peptides 

including polymyxins (295), whereas PhoPQ is induced by polyamines and low 

[Mg2+] (300). Other TCSs respond to metals, including the CzcRS and CopRS 

systems that regulate the resistance to zinc and copper, respectively (131, 301). 

CzcRS also regulates the transcription of CzcrBCA Resistance-Nodulation-

Division (RND) efflux pump, which is responsible for carbapenem resistance 

(301).  GacAS and AlgRZ regulate the production of several virulence factors 

including pyocyanin, cyanide, lipase, and alginate, as well as systemic virulence 
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and motility (166, 299, 302-305). GacAS also controls the production of the 

quorum sensing signaling molecule N-butyryl-homoserine lactone (306) and 

resistance to diverse antibiotics, including the aminoglycosides, gentamicin, and 

chloramphenicol (299). Transcription of gacS is repressed by sub-inhibitory 

concentrations of tobramycin, ciprofloxacin, and tetracycline (307). AlgRZ also 

regulates early stages of biofilm formation (308) and the expression of quorum 

sensing genes (309). Another TCS, FleRS regulates flagella synthesis, adhesion 

(310), motility, and antibiotic resistance (311). Five TCS response regulators 

PA1099, PA3702, PA4547, PA4493, and PA5261 are involved in coordinating the 

interactions of the bacterium with the host lung epithelium (312). However, most 

other TCS encoded on the P. aeruginosa genome remain uncharacterized, with their 

signals and regulatory targets yet to be identified.  

In this study, we used microarray analysis to characterize the global 

transcriptional response of P. aeruginosa to elevated external Ca2+. From these 

analyses, we identified the TCS, PA2656-PA2657 (here referred to as calcium 

regulator, carSR), whose transcription is highly induced by elevated Ca2+ in 

planktonic cultures of P. aeruginosa PAO1. Using deletion mutations and 

microarray analysis, we identified the regulatory targets of carSR, which include 

the hypothetical proteins PA0320 and PA0327. Further characterization of PA0320 

and PA0327 indicate that they play roles in maintaining Ca2+ homeostasis.  PA0327 
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also influences production of the virulence factor, pyocyanin, and swarming 

motility in a Ca2+-dependent manner.   

MATERIALS AND METHODS 

Bacterial strains, plasmids, and media.    

Strains and plasmids used in this study are listed in Table S1. P. aeruginosa 

PAO1 is a non-mucoid strain with the complete genome sequence available (161). 

The gene PA2657 (carR) was deleted from PAO1 using allelic exchange as 

described previously (146).  PAO1 mutants with transposon insertion in PA0320 

(PA0320-H07::ISlacZ/hah) and PA0327 (PA0327-B11::ISphoA/hah) were provide 

by the University of Washington two-allele library.  The sites of transposon 

insertions were confirmed by two-step PCR, using the primer sequences available 

at www.gs.washington.edu. For convenience, the transposon mutants were 

designated as PA::Tn5, where PA is the identifying number of the disrupted gene 

from the P. aeruginosa PAO1 genome (www.pseudomonas.com).  Each mutant 

gene was complemented by cloning the gene behind the arabinose-inducible PBAD 

promoter in the Tn7 vector, pTJ1 (313) (graciously provided by Dr. Joanna 

Goldberg).  For complementing vectors, PA0320 and PA0327 were amplified using 

PCR with gene-specific primers listed in Table S1. The PCR products were cloned 

into TA cloning vectors (Invitrogen).  The resulting plasmids were digested with 
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NcoI and HindIII, and the bands containing PA0320 and PA0327 were ligated into 

pTJ1, producing plasmids pTA56 and pTA57, respectively.  A Tn7-based construct 

containing both PA2657 and PA2656 was used to complement the PA2657 mutant, 

to correct for any possible polar effects due to the disruption of PA2657. PA2656 

and PA2657 were amplified separately using Phusion® High-Fidelity DNA 

polymerase (NEB). After addition of 3' A-overhang by Taq DNA polymerase, PCR 

products were cloned into TA cloning vectors. The EcoRI-EcoRV fragment 

containing PA2656 was ligated into pTJ1, followed by ligation of the EcoRI 

fragment containing PA2657.  The resulting plasmid was labeled pTA104.  The 

Tn7-based vectors were integrated into the chromosome of the respective P. 

aeruginosa mutant strains using electroporation, along with the Tn7 transposase 

helper plasmid, pTNS1, with selection for trimethoprim resistance.  The 

trimethoprim resistance marker was then removed using pFLP2 (314).  pTNS1 and 

pFLP2 were graciously provided by Dr. Herbert Schweizer.  
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Table 6.1.1. 12Strains and plasmids used in this study 

Strains/Plasmids Description          Reference 

Pseudomonas aeruginosa 

PAO1 

Wild type sequenced strain  (161) 

∆carR:Gm PAO1 with deletion of carR 

by replacing with GmR 

gene. 

This study 

PA0320-H07::ISlacZ/hah PAO1 with Tn5 disruption 

in PA0320 

(97) 

PA0327-B11::ISphoA/hah PAO1 with Tn5 disruption 

in PA0327 

(97) 

∆carR:Gm::pBAD-carRS Deletion of carR 

complemented with carRS 

This study 

PA0320-

H07::ISlacZ/hah/pBADPA0320 

Tn5 disruption of PA0320 

complemented by pBAD-

PA0320 

This study 

PA0327-

B11::ISphoA/hah/pBADPA327 

Tn5 disruption of PA0327 

complemented by pBAD-

PA0327 

This study 

pTJ1 TN7 ventor containing 

pBAD promoter , TmpR. 
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Antibiotic susceptibility assays  

Antibiotic susceptibility assays were performed using tobramycin and 

polymyxin B E-strips (Biomerieux).  In brief, strains were cultured in BMM 

medium with no added CaCl2 or 10 mM CaCl2 for 18 h and normalized to an OD600 

of 0.1. 100 μl of the normalized cultures was then spread on BMM agar plates with 

or without added CaCl2. E- Strips with tobramycin and Polymyxin B gradients were 

placed onto the inoculated plates. After 24 h of incubation at 37°C, the MICs were 

recorded by determining the concentration of antibiotics on the strip at which no 

bacterial growth was detected. At least three replicates were tested in at least two 

independent experiments; the reported MICs are the mean values of the collected 

measurements. The coefficient of variation between biological replicates was less 

than 25%. 

RESULTS  

PA0327 and PA0320 contributes to Ca2+ regulated tobramycin resistance in 

PAO1  

To assess the role of PA2657, PA0327 and PA0320 in Ca2+- induced 

tobramycin and polymyxin-B resistance, antibiotic susceptibility of ΔPA2657, 

PA0327:IS, PA0320:IS and complemented strains ΔPA2657:A2657, 

PA0327:IS:PA0327, PA0320:IS:PA0320 were performed and compared to that of 
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PAO1. PAO1, when grown in presence of 10 mM Ca2+ had tobramycin MIC of 4 

which is 8 fold higher than that of PAO1 grown without any added Ca2+ (0.5 µg/ml) 

(Fig. 6.1). However, both PA0327:IS, PA0320:IS showed almost 2 fold reduction 

in MIC for tobramycin when the bacteria was grown in presence of 10 mM Ca2+. 

This loss of Ca2+ regulated tobramycin resistance was further restored to the level 

of tobramycin susceptibility of PAO1 in the complemented strains, 

PA0327:IS:PA0327, PA0320:IS:PA0320 (Fig. 6.1.1).  

PAO1 grown in BMM without added Ca2+ showed 32-fold increase in MIC 

for polymyxin-B when the bacteria were grown in presence of 10 mM Ca2+ 

(32µg/ml) than that of the bacteria grown without any added Ca2+ (1.0 µg/ml). 

However, PA2657, PA0327 and PA0327 did not show any involvement in Ca2+- 

induced polymyxin-B resistance of PAO1 (Fig. 6.1.2). 
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Figure 6.1.1: 35Minimum inhibitory concentrations (MICs) of tobramycin for P. 

aeruginosa PAO1, mutants carO::Tn5, and carP::Tn5, and their complemented 

counterparts carO::Tn5/carO, and carP::Tn5/carP grown on BMM with 0 mM 

CaCl2 (dark grey bars) or 10 mM CaCl2 (light grey bars).  Cells were grown in 

BMM without adding CaCl2 until mid-log phase, their OD600 were normalized to 

0.1, and the aliquots of 100 µL were plated onto BMM agar for MIC measurements. 

E-strips with tobramycin gradient were placed on the bacterial lawns, and the MICs 

were recorded after 24 h incubation. The data represent the mean and standard 

deviations of at least three biological replicates from two independent experiments. 

Statistical significance of the differences was calculated using Student’s T-test. *, 

p<0.05. 
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Figure 6.1.2: 36Minimum inhibitory concentrations (MICs) of polymyxin-B for P. 

aeruginosa PAO1, mutants carP::Tn5, and carO::Tn5, and carR::Gm grown on 

BMM with 0 mM CaCl2 (dark grey bars) or 10 mM CaCl2 (light grey bars).  Cells 

were grown in BMM without adding CaCl2 until mid-log phase, their OD600 were 

normalized to 0.1, and the aliquots of 100 µL were plated onto BMM agar for MIC 

measurements. E-strips with polymyxin-B gradient were placed on the bacterial 

lawns, and the MICs were recorded after 24 h incubation. The data represent the 

mean and standard deviations of at least three biological replicates from two 

independent experiments.  
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DISCUSSION AND CONCLUSION 

Global microarray analysis identified two component system CarRS that is 

highly inducible by growth at 10 mM Ca2+ and regulates the expression of two 

genes encoding for β-propeller protein CarP and OB-fold protein CarO in Ca2+ 

dependent manner. Loss of these proteins abolished many Ca2+ regulated 

phenotypes such as swarming motility, tolerance to Ca2+, and Ca2+ regulated 

pyocyanin production. Since Ca2+ upregulates PA2656-PA2657, PA0327 and 

PA0320, we have investigated their role in Ca2+- induced polymyxin-B and 

tobramycin resistance. We found that loss of PA2657, PA0327 and PA0320 did not 

make any effect on Ca2+ induced polymyxin-B resistance of PAO1. Lack of 

PA2657 has no contribution in Ca2+- induced tobramycin resistance as well. On the 

contrary, lack of functional PA0327 and PA0320 caused two fold reductions in Ca2+ 

regulated increase of tobramycin MIC in PAO1. This was further restored in these 

mutants complemented with corresponding genes. This suggests, PA0327 and 

PA0320 contributes in Ca2+- induced tobramycin resistance and it is independent 

of PA2656-PA2657 mediated regulation of PA0327 and PA0320. This also 

indicates that, Ca2+- induced tobramycin efflux by six efflux pumps identified (43) 

could be controlled by PA0327 and PA0320. 

 Overall these data indicate that CarRS plays a major role in sensing and 

relaying extracellular Ca2+ signaling in P. aeruginosa, which controls several 
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modulates the production of several virulence factors and antibiotic resistance of 

the pathogen. 
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II 

CALCIUM REGULATES THE TRANSCRIPTION OF THREE 

BETA-CARBONIC ANHYDRASES IN PSEUDOMONAS 

AERUGINOSA 

Part of this project has been included into the dissertation of Shalaka 

Lotlikar and is part of OSU library materials. 

S. R. Lotlikar, S. S. Khanam, B. Kayastha, and M. A. Patrauchan. Beta-Carbonic 
Anhydrases play role in calcium mineralization and virulence of Pseudomonas 
aeruginosa. (Manuscript in preparation) 

 

INTRODUCTION 

 Calcium (Ca2+) is one of the key signaling molecules in eukaryotes. Its 

homeostasis in human cells is essential for a number of cellular processes including 

innate immune response (315) and is tightly controlled (reviewed in (316). Ca2+ 

cellular concentrations fluctuate in response to diseases. For example, in cystic 

fibrosis (CF) patients, an elevated level of Ca2+ is found in pulmonary fluids and 

nasal secretions (317, 318). Increased levels of Ca2+ are also found in serum of 

patients with cardiovascular disease (CVD) and hypertension (319, 320). Elevated 
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Ca2+concentration and scattered Ca2+ deposits are characteristic to calcified 

atherosclerotic lesions of endocarditis patients (321). Imbalance in 

Ca2+ homeostasis has been also implicated in soft tissue calcification, which is 

commonly associated with chronic kidney disease (322), arteriosclerosis (323), and 

diseases associated with bacterial infections, for example, late stages of cystic 

fibrosis (CF) and infective endocarditis (324-326).   

             Soft tissue calcification is the deposition of Ca2+ in the form of phosphates 

or carbonates in soft tissues of a human body. Most commonly Ca2+ deposits 

contain phosphates or hydroxyapatites, which may disrupt normal processes, cause 

metastatic calcification, and lead to numerous diseases including hypervitaminosis 

D, tumoral calcinosis. arteriosclerosis, venous calcifications, or dermatomyositis 

(327, 328). Ca2+ carbonate deposition has been observed in a variety of soft tissues 

including the cervical spine, and was associated with collagen-vascular diseases 

(329), gallstones and kidney stones (330). A variety of factors may lead to soft 

tissue calcification. In addition to aging and injury, the factors may include 

infection (331), osteoporosis (332), and genetic (333) or autoimmune disorder 

(334).  Ca2+ carbonate precipitation (CCP) can be carried out abiotically (335) or 

triggered by biological factors. The key chemical factors contributing to CCP 

include the concentrations of Ca2+ and carbonate (CO3
2-), saturation index (Ω, 

where Ω > 1 means system is saturated and precipitation may occur), Ca2+/CO3
2- 

ratio, and availability of nucleation sites (336, 337). The concentration of CO3
2-- 
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ions is dependent on pH, temperature, and partial pressure of CO2 (338). Biological 

factors include the presence of bacterial cell surfaces and metabolic activity of the 

organisms involved. Bacterial cell surfaces provide negatively charged groups, 

which bind Ca2+ ions and thus may foster nucleation (339-341). The metabolic 

activities may favor CCP by providing CO3
2- ions and increasing pH (339). Several 

metabolic pathways were shown to generate CO3
2- and contribute to CCP. They 

include autotrophic pathways such as photosynthesis, methanogenesis and 

heterotrophic pathways including nitrogen cycle, urea hydrolysis and sulfate 

reduction (342, 343) (337). Although several Gram positive and Gram negative 

species including Bacillus, Myxococcus, and Pseudomonas, have been shown to be 

involved in CCP (344-346), the molecular mechanisms of microbially induced CCP 

are not clearly defined. 

             Carbonic anhydrases (CAs), EC 4.2.1.1, are metalloenzymes that catalyze 

the reversible hydration of CO2 to HCO3
- (CO2 + H2O ⇔ HCO3

-
 + H+). They are 

present in all three domains of life and involved in different physiological functions 

including pH homeostasis, CO2/ HCO3
- transport, and carbon fixation (reviewed in 

(347)).  Due to the catalytic activity, CAs may drive the formation of CaCO3 under 

appropriate environmental conditions. In-vitro studies with purified bovine CA 

(eukaryotic CA) have shown the role of CAs in the biocatalytic capture of CO2 and 

precipitation of CaCO3 (348). The role of eukaryotic CAs in calcification has been 
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shown in mollusks shells (349) and fish otoliths (350). Membrane bound α-CAs 

from coral Stylophora pistillata (351) were shown to be involved in CCP. Several 

prokaryotic CAs including extracellular CA from Bacillus sp (352) and β-CA 

from Citrobacter freundii SW3 (353) were suggested to contribute to CCP , 

however these studies only  aimed biotechnological applications associated with 

CCP.  Here we hypothesize that P. aeruginosa is capable of CaCO3 deposition, 

which contributes to the virulence of the organism. Earlier we showed that P. 

aeruginosa PAO1 produces three functional β-CAs designated psCA1, psCA2, and 

psCA3 (354), which may contribute to the process of Ca2+ deposition. In this study, 

we applied real time quantitative PCR to study the assess the expression profiles of 

psCAs. 

 

MATERIALS AND METHOD 

RNA isolation and cDNA synthesis  

Total RNA was isolated from P. aeruginosa PAO1 grown in BMM with no 

added or 5mM Ca2+ using RNeasy Protect Bacteria Mini kit (Qiagen) following the 

manufacturer's protocol. PAO1 was grown until middle-log phase (13 h; OD600 

0.2), and 15 ml of the culture was used for RNA isolation. DNase treatment was 

performed using column-based kit (Qiagen) and Turbo DNase treatment (Ambion). 
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The absence of genomic DNA (gDNA) was confirmed by conventional PCR and 

real time quantitative PCR (RT-qPCR) using 16SrRNA primers. RNA yield was 

measured using NanoDrop spectrophotometer (NanoDrop Technologies Inc.), and 

the quality of the purified RNA was assessed by Bioanalyzer 2100 (Agilent) and 

1% agarose gel electrophoresis. Following the MIQE guidelines (100), only the 

RNA samples with an OD260/OD280 ratio of 1.8-2.0 and an RIN value of  ≥ 9.0 was 

taken for further analyses. A total amount of 6 μg – 20 μg of RNA was purified 

from each sample. RNA samples were stored at -80 °C. Reverse transcription of 

total RNA (1 μg) was performed using Transcriptor First Strand cDNA Synthesis 

Kit (Roche) according to the manufacturer’s protocol. The obtained cDNA was 

quantified by RT-qPCR using 16S rRNA primers and stored at -20 °C. 

Primers design and selection for RT-qPCR  

Primers for CA encoding genes, psCA1 (PA0102), psCA2 (PA2053) and 

psCA3 (PA4676) (Table 6.2.1) were designed using Primer3 Plus (101) and Primer 

BLAST (102). Primers were tested in silico for secondary structure formation using 

IDT oligoanalyzer. Their specificity was tested by BLAST alignments against 

Pseudomonas genome available at www.pseudomonas.com and confirmed by 

conventional PCR and RT-qPCR melt curve analysis. Primer efficiency was 

calculated using linear regression curve analysis. For this, RT-qPCR was performed 

for each primer pair using 10 fold serial dilution of gDNA, and the obtained Cp 
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values were plotted. Primers with an R2 value of 0.99 and an efficiency of 93 

(efficiency of the primer for the control gene) ± 10 % were accepted for further 

work according to the MIQE guidelines (100). The efficiency of the selected 

primers was: 97 %, (psCA1), 93 %, (psCA2), and 94 % (psCA3). Four housekeeping 

genes, rpoD, rpoS, proC and 16SrRNA (103, 104) were selected and tested for their 

transcriptional response to Ca2+. The transcription of 16SrRNA gene was not 

affected by Ca2+ and therefore this gene was selected as a control. Due to the low 

Cp value of 16SrRNA (≤ 8 for 5 ng of cDNA), transcriptional profiling for this gene 

was done using 10 fold diluted cDNA.   
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Table:6.2.113Primers for RT-qPCR 

Name Sequence (5’  3’) Ref. 
psCA1-F AGAGAGCATATGCCAGACCGTATG This study 
psCA1-R AGAGAGGGATCCTCACGAGCTCAG This study 
psCA2-F AGAGAGCATATGCGTGACATCATCG This study 
psCA2-R AGAGAGGGATCCTCAGGCGAC This study 
psCA3-F AGAGAGCATATGAGCGACTTGCAG This study 
psCA3-R AGAGAGGGATCCTCAGCAGCAAC This study 
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Gene expression analysis  

To characterize the transcription profiles of psCA1, psCA2 and psCA3 

genes, RT-qPCR was performed. For this, 5 μl of SYBR green master mix (Roche, 

Indianapolis, IN), 0.5 μM of each primer and 5 ng of nucleotides were added to a 

total volume of 10 μl of reaction mixture. RT-qPCR was run using 384 well plates 

sealed with LightCycler 480 Sealing Foil (Roche, Indianapolis, IN) in Roche 

LightCycler 480. At least five technical replicates for each biological replicate and 

a minimum of three biological replicates for every sample were analyzed. A no-

template control was used as negative control. The cycle included 10 min 

denaturation at 95 °C followed by 35 cycles of 95 °C for 10 s, 61 °C for 15 s, and 

72 °C for 10 s. A fold change in gene transcription was calculated using 2-ΔΔCt 

method (105). Statistical analysis was performed by using two tailed T-test 

assuming equal variances.  

RESULTS  

Ca2+ regulates the expression of at least one β-CA in P. aeruginosa  

In the earlier studies, we showed that externally added Ca2+ alters both 

transcription and translation of a number of proteins in P. aeruginosa, and increases 

the expression of several virulence factors including alginate, proteases, and 

pyocyanin (146). In order to determine the effect of Ca2+ on the transcription of the 
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three P. aeruginosa PAO1 β-CAs, we performed RT-qPCR. For this, PAO1 cells 

were grown at no added or in the presence of 5 mM Ca2+ and subjected to RNA 

extraction and analysis. The transcription of psCA1 and psCA3 was increased by 

about 5 and 11 fold, respectively, in the cells grown at 5 mM Ca2+ (Fig. 6.2.1). The 

psCA2 transcripts were not detected under the tested conditions.   
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Figure 6.2.1: 37Effect of Ca2+ on transcription of psCAs; psCA1 (PA0102), 

psCA2 (PA2053), and psCA3 (PA4676) in P. aeruginosa PAO1. The fold 

difference was calculated based on four biological replicates using 16S rRNA gene 

as a control. The two-tailed student’s t-test was performed, and the P values were 

as follows 0.02 for psCA1, 0.08 for psCA3. The transcripts of psCA2 were not 

detected under either condition. * indicates P ≤ 0.05. 
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The comparison of transcriptomic (microarray and RNA-seq) and 

proteomic analyses (Table 6.2.2) for PAO1 grown in presence of either 5 mM or 

10 mM Ca2+ revealed that Ca2+ positively regulates the expression of psCA1. 

However, the expression of psCA2 was found unchanged in response to Ca2+ in all 

three sets of analysis. Interestingly, RT-qPCR data shows highest induction of Ca2+ 

on transcription of psCA3 while microarray, RNA-seq as well as proteomic analysis 

displays otherwise. The expression of psCA3 remains unchanged in transcriptomic 

(microarray and RNA-seq) and proteomic analysis of PAO1 grown in presence of 

Ca2+. Therefore, RT-qPCR for psCA3 requires further validation.  
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Table 6.2.2: 14Ca2+ regulated expression profile of three carbonic anhydrases in 
P. aeruginosa. 

Gene name, 
Gene 
Identifier. 

Log2fold 
change in 
transcript 
abundance in 
response to 10 
mM Ca2+ 
(Microarray a) 
(70) 

Log2fold 
change in 
transcript 
abundance in 
response to 5 
mM Ca2+ 
(RNA-seq a ) 

Fold change 
in transcript 
abundance in 
response to 5 
mM Ca2+ 
(RT-qPCR a ) 

Fold change 
in protein 
abundance in 
response 
Ca2+ (LC-
MS/MSb) 

psCA1, 
PA0102 

2.8 1.08 5 ± 2 3.2 

psCA2, 
PA2053  

0.1 -0.06 ND ND 

psCA3, 
PA4676 

0.4 -0.89 11 ± 8 ND 

a. RNA was isolated from planktonic culture of PAO1 grown in BMM with 
or without Ca2+ (10 mM/ 5 mM) till middle log. 

b. Protein was extracted from planktonic culture of FRD1 strain grown in 
BMM with or without 10 mM Ca2+. 
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DISCUSSION AND CONCLUSION  

Both psCA1 and psCA3 have a moderate to high catalytic activity in 

contributing to Ca2+ deposition. The transcriptional regulation of these enzymes by 

Ca2+ suggests the presence of Ca2+ dependent transcriptional regulators which can 

sense the presence of increased surrounding Ca2+ and modulate the CaCO3 

deposition. Another possibility is a direct binding of Ca2+ to a CA as a co-factor and 

enhancing the activity of the enzymes. A similar Ca2+ dependent regulation was 

observed for the CmpA, a subunit of the BCT1 HCO3
− transporter, whose binding 

to HCO3
−  is dependent on Ca2+ (355). The disagreement between the undetectable 

level of psCA2 transcripts and the increased abundance of the protein at elevated 

Ca2+ is difficult to explain, but may be due to a short life-time of the transcript and 

increased stability of the protein in the presence of Ca2+. 

Finally, the phenomenon of Ca2+-regulated CAs-mediated CaCO3 

precipitation by P. aeruginosa may present a mechanism enabling the pathogen to 

survive, grow and proliferate within a host. It may represent a novel virulence factor 

increasing the ability of the pathogen to invade a host. In agreement, the 

transcription of psCA1 and psCA2 was induced at least threefold in P. aeruginosa 

isolates from CF lung sputa (GDS2869) (356), the transcription of psCA1 increased 

fourfold in burn wound model and nine-fold in P. aeruginosa isolates from CF 

sputum (GDS2869) (357). This suggests a potential role of these proteins in the 
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ability of P. aeruginosa to survive in a host, as it has been shown for β-CAs in H. 

pylori (358), S. Typhimurium (359), S. pneumoniae (360), and M. tuberculosis 

(361) . Further studies are needed to decipher the role of CaCO3 precipitation in 

virulence and pathogenicity of P. aeruginosa as well as other pathogenic bacteria, 

many of which contain multiple β-CAs as well as γ-CAs. This knowledge may 

provide the basis for the development of novel approaches for treating robust 

bacterial infections.  
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III 
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ROLE OF CALCIUM ON INFECTIVITY OF PSEUDOMONAS 

AERUGINOSA.  
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Department of Microbiology and Molecular Genetics,  

Oklahoma State University, Stillwater, OK, US 

  

 

INTRODUCTION 

Pseudomonas aeruginosa is a multidrug resistant human pathogen. The 

infection caused by this pathogen is of a serious concern for the 

immunocompromised patients, patients with Cystic fibrosis (CF), endocarditis, 

indwelling medical devices, and burn wounds  (15, 113, 186, 362). P. aeruginosa 

associated morbidity and mortality occurs in individual with Chronic obstructive 

pulmonary disease (COPD), infective endocarditis, cancer patients undergoing 

chemotherapy, intravenous drug users(6, 10, 11). The high morbidity and mortality 

of Pseudomonas infections is mainly attributed to the combination of virulence 
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factors and outstanding antimicrobial resistance of this organism (7, 8). Strategic 

use of different virulence factors is the key component of successful establishment 

of persistent P. aeruginosa infection (9). The remarkable ability of P. aeruginosa 

to adapt to a wide range of environments is reflected in the broad distribution of 

this organism in diverse niches ranging from terrestrial to freshwater to human body 

(363). The genus Pseudomonas is highly diversified in its symbiotic relationships 

with a host, including non-pathogenic P. putida, nitrogen-fixing symbiont P. 

stutzeri, beneficial for plans P. fluorescence, plant pathogen P. syringe, and human 

pathogen P. aeruginosa (364). Many studies focused on comparison of genotypic 

and phenotypic diversity among P. aeruginosa isolated from different 

environmental niches (365) (58). The population of P. aeruginosa isolates found in 

a single niche can display a great amount of heterogeneity in their metabolism . For 

example the biofilm community of Pseudomonas consist of population of 

bacterium producing cell signaling molecule as well as the population which do not 

produce the molecules and rather cheat on their neighbors who does (362).  

Among many adaptations in Pseudomonas genus, the most dominant 

mechanism is its ability to alter genetic information by mutations or uptake of 

extracellular DNA from neighboring bacteria (366). P. aeruginosa genome 

contains many characteristic features that allow P. aeruginosa to maintain genetic 

plasticity (363). Presence of repetitive intergenic palindromic (REP) elements, 

lineage specific regions (LSR), regions of genetic plasticity (RGP), allow the 
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adaption to a diverse niche (364). Pathogenicity caused by P. aeruginosa involves 

a broad array of virulence factors, which allow successful entry, invasion and 

establishment of P. aeruginosa infection. For instance, in this organism, lipid A 

induces mucin production in the lung of CF patients (197, 198). It has been 

identified that the biofilm community of P. aeruginosa contains variety of lipid A 

species, and the length of the side chain of lipid A molecule is major contributor in 

the degree of virulence in P. aeruginosa (199, 200). Type IV pili are used for 

twitching motility and are of high importance for entry and dispersion of P. 

aeruginosa in the site of infection (367). In CF patients, the initial entry and 

establishment of P. aeruginosa is facilitated by binding of the pathogen with asialo 

GM1 by means of pili. This ensures adherence of P. aeruginosa and allows the 

pathogen to exert other virulence traits (368) and biofilm formation. (367). Flagella 

is a filamentous appendage like structure, which aids in adherence and movement. 

Due to the immunogenic nature of flagella, P. aeruginosa tends to get rid of it at 

later stages of establishment of infection (48). P. aeruginosa produces a mucoid 

exopolysaccharide which protects the bacteria against hostile reactive oxygen 

species produced by the host PMNs (polymorphonuclear cells) (369) as well as  

rhamnolipids molecules which aid in early onset of infection (370, 371). In 

addition, P. aeruginosa possesses 5 different secretory systems among which type 

II and type III secretion systems are known to secret toxins of high importance 

(372). Type II secretion system is involved in secretion of extracellular proteases 
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LasA, LasB, lipases, alkaline phosphatases, phospholipases, exotoxin-A, etc. These 

secreted virulence factors are essential to break the epithelial barrier of host tissue 

and enable invasion of P. aeruginosa with an attempt to establish a chronic 

infection (48, 369, 372). Type III secretion system is responsible for secretion of 

exotoxins, ExoT, ExoU, ExoS and ExoY which play a major role if disruption of 

immune response and establishment of pathogen in the host body (48, 372). Also, 

Pyocyanin, another toxin produced by P. aeruginosa,  is a redox reactive blue-green 

pigmented toxin (373) and plays a major role in infection establishment by this 

pathogen.  

Ca2+ is an important signaling ion which controls a variety of cellular 

processes in human body including the immune system (65, 374). In CF patients 

there is an increased Ca2+ level present in the pulmonary and nasal secreted fluids 

(110). Therefore, any positive regulatory effect of elevated Ca2+ on Pseudomonas 

virulence can increase the adversity of infection and worsen the prognosis for 

patients. Dr. Patrauchan’s group studies the regulatory role of Ca2+ on P. 

aeruginosa physiology and determined that growth at Ca2+ increases the production 

of many virulence factors(74) as well as infectivity of P. aeruginosa in plant 

(lettuce leaf) infection model (43). However, considering that P. aeruginosa is a 

human pathogen, we aimed to study Ca2+ regulation of the pathogen’s virulence in 

animal models, such as nematode worm, Caenorhabditis elegans and fruit fly, D. 

melanogaster. 
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Both models, C. elegans and fruit fly, have been in use for assessment of P. 

aeruginosa infectivity and determining the virulence factors associated with the 

infectivity (375-379). Here we have optimized the established killing assays for 

both animal models and assessed the role of Ca2+ in virulence of P. aeruginosa 

strain PAO1. 

MATERIALS AND METHOD 

Strains, plasmids and media  

P. aeruginosa PAO1, the non-mucoid strain with genome sequence 

available (www.pseudomonas.com) was used in the study. The C. elegans wild type 

(N2 bristol) and temperature sensitive sterile mutant CF 512 (rrf-3(b26) II; fem-

1(hc17) IV) were received from Caerhabditis Genetic Center (CGC) in University 

of Minnesota and was maintained on Nematode growth medium monoxenic culture 

with E coli OP50. LB medium, modified synthetic cystic fibrosis mimicking 

medium (mSCFM) (380), biofilm minimal medium (BMM) (146) contained (per 

liter): 9.0 mM sodium glutamate, 50 mM glycerol, 0.02 mM MgSO4, 0.15 mM 

NaH2PO4, 0.34 mM K2HPO4, and 145 mM NaCl, 20 µl trace metals, 1 ml vitamin 

solution. Trace metal solution (per liter of 0.83 M HCl): 5.0 g CuSO4.5H2O, 5.0 g 

ZnSO4.7H2O, 5.0 g FeSO4.7H2O, 2.0 g MnCl2.4H2O). Vitamins solution (per liter): 

0.5 g thiamine, 1mg biotin. The pH of the medium was adjusted to 7.0. When 
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required, CaCl2
.2H2O was added to a final concentration of 5 mM. Nematode 

growth medium (NGM). Cornmeal agar medium. 

PAO1 and mutant cells were grown at no added or 10 mM Ca2+. Middle log 

cultures grown in 5 ml BMM were inoculated (0.1 %) into 100 ml of fresh BMM 

(no added or 10 mM Ca2+) and incubated at 37°C, shaking at 200 rpm in a MaxQ 

5000 floor-model shaker (Thermo Scientific). Absorbance at 600 nm was recorded 

every 2-4 h using a Biomate 3 spectrophotometer (Thermo Scientific). 
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Table 6.3.1. 15Strains and plasmids used in this study 

Strains/Plasmids Description          Reference 

Pseudomonas aeruginosa 

PAO1 

Wild type sequenced strain  (161) 

C elegans N2 bristol Wild type C. elegans (375, 381) 

C. clegans, CF 512 (rrf-

3(b26) II; fem-1(hc17) IV) 

Temperature sensitive sterile 

mutant of C. elegans 

(375) 
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Maintenance of C. elegans and fruit fly  

Both C. elegans worms and fruit flies were grown and maintained in lab for 

animal infectivity assays. For regular maintenance of worms, permanent stock 

preparation and worm synchronization prior to the assay was performed according 

to the procedure described in the worm book 

(http://www.wormbook.org/chapters/www_strainmaintain/strainmaintain.html). 

C elegans N2 bristol and temperature sensitive sterile mutant CF 512 were 

received on a NGM plates. Worms were fed on E coli OP50 strain. The worms were 

maintained on NGM plates with E. coli OP50 as food for the worm (381). Briefly, 

the bacteria from the monoxenic (containg only E. coli, OP50 cells on plate) C 

elegans culture were streaked onto an LB plate and one single clone was inoculated 

into LB broth overnight culture. 100 μl of the overnight culture was inoculated 

(seeded) onto NGM plates and grown overnight at 37°C. Prior to inoculation, the 

plates were dried by incubation in 37°C incubator for about 15 min. Then the 

bacterial inoculation was performed and paltes were incubated at 37° C for  24 

hours.  Chunk of agar from the original NGM plates containing the worms were cut 

and transferred to the new plates containing E. coli OP50 lawn. Plates were 

incubated  at room temperature (upside-up position) for the spread and growth of 

C elegans worms.  Since the L1 and L2 stage of larvae are metabolically the best 
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one to keep at -80°C freezer for longer period, the worms to be stocked were age 

synchronized and collected at these stages of their growth. For synchronization, the 

gravid (worms with eggs) worms were collected by washing with M9W media and 

worms were collected by spinning down in a clinical centrifuge at 1,000 rpm for 5 

min. The eggs were released by adding 1:4 ratio of 5N NaOH and household bleach 

at a total volume of 500 µl and spinning down the mixture at 4,500 rpm in a clinical 

centrifuge for 5 min. The pelleted eggs were washed with M9W media at least twice 

before adding a final of 5 ml of M9W into the tubes. The tubes were incubated at 

room temperature at slow shaking for about 12 h before inoculating the eggs onto 

fresh NGM plates with E coli OP50 cells. Once the L1, L2 larvae of C. elegans 

were hatched, they were collected from NGM plates. The plates were rinsed 

superficially with M9W buffer (0.3% (w/v) KH2PO4, 0.6% (w/v) Na2HPO4, and 

0.5% (w/v) NaCl in sterilized nanopure water. Autoclave at 121°C for 30 min, cool 

to 60°C, and add filtersterilized 1 mM MgSO4.),  and the solute were collected into 

cryovials at a 1:1 ratio of 30 % glycerol and worms in M9W buffer. The cryovials 

then were placed into container box inside a Styrofoam box. The Styrofoam box 

was kept in -80 0C to allow gradual freezing. The container box was taken out of 

the Styrofoam box after 7 days and kept in -800 C freezer. 

The fruit flies were maintained in cornmeal agar for daily maintenance as 

described in (382). D. melanogaster OR flies were maintained in plastic 250 mL 

Erlenmeyer flasks (VWR) capped with a foam plug (VWR) containing cornmeal 
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agar. Standard cornmeal fly medium (28 g dried brewer’s yeast, 77 g cornmeal 

(Sigma), 27 g sucrose, 53 g glucose, 3.5 mL propionic acid, 0.3 mL 85 % 

phosphoric acid and 6 g select agar (Invitrogen) per liter) was used for regular 

maintenance.  The flies were transferred from old maintenance flasks to new ones 

on a regular basis and maintained at room temperature. The medium was monitored 

for possible contamination with indigenous mold population carried by the flies.  

For the infectivity assay, flies were transferred from maintenance vials to empty 

vials first  in a cold room and sedated by placing them on a cold surface (tile placed 

directly on ice in a foam container).  For feeding assays, the synchronized flies 

separated and collected as above, were transferred to fly vials containing 6 mL of 

sucrose agar (1.2 g Bacto-agar (Difco), 14 mL 20% sucrose and 41 mL sterile 

distilled water). 

C. elegans and fruit fly killing assay optimization  

There are two different C. elegans killing assay previously been established 

to characterize the effect of Pseudomonas infection in this worm (375). The fast 

killing assay is performed on brain heart infusion media BHI medium where mostly 

toxin secreted by Pseudomonas pathogenic strains can kill C. elegans within as 

quickly as 4 hours- 24. On the contrary the slow killing assay is performed on NGM 

plates where the PA14 strains killd the C. elegans over the period of 2-3 days (375). 

FTo assess the effect of Ca2+ on killing of C. elegans by P. aeruginosa, slow killing 
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assay was selected over the fast killing assay. It was mainly because BHI medium 

contains an undefined Ca2+. On the other hand, NGM medium is defined, and the 

level of Ca2+ could be controlled to the final concentration of 5 mM.  

In order to determine the effect of Ca2+ regulated pseudomonas infection on 

the death of fruitflies, 5 mM Ca2+ was added to the sucrose agar medium. Also, the 

pelleted bacterium was resuspended into sucrose containing 5 mM Ca2+ prior to 

adding these suspensions to the sucrose agar medium assay vials. as well as the 

bacteria to be added to the media as a food source. Three different media, LB (Luria 

Bertani), BMM (Biofilm minimal media) and SCFM (Synthestic Cystic Fibrosis 

Mimicking media) were assessed to finalize the one that shows regulatory 

(negative/positive) effect of Ca2+on the infectivity of P. aeruginosa. For this, P. 

aeruginosa was grown in those media containing no added or added 5 mM Ca2+ 

prior to the assay. 

C. elegans slow killing assay  

Modified slow killing assay was performed using Caenorhabditis elegans 

wild type N2 bristol strain and temperature sensitive sterile mutant CF-512 (fer-

15(b26) II (CGC). In order to identify the role of Ca2+ in virulence of P. aeruginosa 

PAO1, bacterial lawn was grown on NGM agar plates with no added Ca2+ or 5 mM 

Ca2+. Previously well grown adult gravid worms were used for worm 

synchronization. Gravid worms were removed from the worm plate with M9W 
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buffer followed by disruption of worms to release eggs by adding  5 N NaOH and 

household bleach at 1:4 ratio. The mixture was vigorously vortexed for no more 

than 4 min and 14ml of M9W buffer was added. The eggs were washed three times 

with M9W buffer and resuspended into 5 ml of M9W buffer. The 15 ml falcon 

tubes containing the eggs were placed in a shaker at 200 rpm and room temperature 

(25°C) for 12 hours. Synchronized L1 stage larvae were transferred to NGM agar 

plates provided with E coli OP50. The worms were grown for 34 h until they reach 

the young adult stage. 30-40 young adult worms were then seeded in to the slow 

killing assay plates: NGM agar with bacterial lawn on it at 0mM or 5mM Ca2+. 

Dead worms were displaying no movements on the plate were scored using 

dissection microscopy every 12 hours. 

Fruit fly assay  

D. melanogaster (OR) flies were maintained in foam plugged plastic 250 

mL Erlenmeyer flasks (VWR).  Standard cornmeal fly medium (28 g dried brewer’s 

yeast, 77 g cornmeal (Sigma), 27 g sucrose, 53 g glucose, 3.5 mL propionic acid, 

0.3 mL 85 % phosphoric acid and 6 g select agar (VWR) per liter) was used for 

regular maintenance of the fly.  For fly feeding assays, sucrose agar (1.2 g Bacto-

agar (Difco), 14 mL 20% sucrose and 41 mL sterile distilled water) was used. Fly 

synchronization was done prior to each feeding assay. In brief, the adult flies from 

fly maintenance vial were transferred at least twice at two days’ interval and the 
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same age larvae were grown. Two- day-old synchronized flies were finally 

transferred to a new fly maintenance vial and left overnight. The flies were 

separated into polystyrene fly vials (Applied Scientific) and starved for 6 h before 

separating the male flies from the female flies and transferring the synchronized 

male flies to the assay vials. Simultaneously, 16 h bacterial precultures were 

harvested, and adjusted to the OD600 of 3.0 by resuspending the bacterial pellet in 

200 µl of 5% sucrose with or without added 5 mM Ca2+, in which the bacteria were 

grown. The normalized culture was then inoculated into the fly vials containing 2.3 

cm whatman filter disk placed on top of sucrose agar (5% sucrose and 2.2% select 

agar). The assay vials inoculated with 5% sucrose alone were used as negative 

controls.  Starved synchronized male flies were transferred to the sucrose feeding 

vials containing the bacterial suspensions and incubated at 25oC. Dead flies were 

scored daily for 14 days. 

RESULTS  

Growth at BMM showed greater lethal effect of P. aeruginosa compared to 

growth at LB or SCFM  

At first, we have investigated the effect of different bacterial growth media 

on Pseudomonas infectivity in D. melanogaster (fruit flies). For this, PAO1 was 

grown in either LB, BMM, or SCFM before inoculating into the sucrose agar vials 
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for the infectivity assay. After 14 days of incubation it was determined that growth 

of PAO1in BMM showed the highest mortality rate compared to that of LB or 

SCFM. 50% of the flies dies out of Pseudomoans infection within 7 days when the 

bacterium was grown in BMM medium (LT50, 7days). On the contrary, for PAO1 

grown in LB and SCFM , it took 13-14 days for the death of 50% flies. While, by 

13 days all flies fed with PAO1 grown in BMM were found dead (Fig. 6.3.1). 

Therefore, the BMM growth medium was selected for further studies. 
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Figure 6.3.1: 38Effect fo Different medium on fruitfly killing by PAO1 

infection. PAO1 was grown overnight for 12 hours at 37° C and 200 rpm in BMM, 

LB or SCFM media before the cells were harvested, normalized to an OD600 of 3.0 

and resuspended in 5% sucrose solution. This cell supensions were added to the 

feeding assay vials on filter papers soaked with 5% sucrose solution. Age 

synchronized 10 male flies were added to each test vials. Vials containing sucrose 

solution (prepared into LB, BMM or SCFM medium) soaked filter paper without 

any bacterium were used as negative control of infection. Dead flies were scored 

every day for 15 days. At least 3 biological replicates were used.  
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Growth at 5 mM Ca2+ increases the death rate in flies caused by PAO1 infection 

To elucidate the effect of Ca2+ on infectivity of PAO1 in fruit fly infection 

model, the cells were grown in BMM with or without 5 mM Ca2+.  The bacterial 

suspension to be added to the feeding vial was prepared in 5% sucrose with or 

without 5 mM Ca2+. This allowed uptake of Ca2+ in the fly gut through feeding. We 

have deterimined that growth at 5 mM Ca2+ increased the P. aeruginosa infection 

mediated killing of fruit flies. Here we observed that, the LT50 for PAO1 grown 

with added Ca2+ was 9 days where after 15 days PAO1 grown in BMM without any 

added Ca2+ was unable to kill 50% of the fly population. However, variation in 

death rate was observed for the Bcaterium grown in BMM without added Ca2+ 

performed in different batches (Fig. 6.3.1and Fig. 6.3.2).  This might reflect a 

possible limitation of such assay where individual experiment sets may not be 

compared due to the effect of external unknown variables (room temperature, 

humidity etc.) affecting the outcome of the event. Besides, another limitation of this 

experimentation was lack of evidence on the virulence factors which may 

contribute in the death of the flies. 
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Fig. 6.3.2: 39 Effect of Ca2+ on fruitfly killing by PAO1 infection. PAO1 was 

grown overnight for 12 hours at 37° C and 200 rpm in BMM with no added or 5 

Mm Ca2+ prior to the cells harvested, normalized to an OD600 of 3.0 and 

resuspended in 5% sucrose solution with corresponding Ca2+ concentration. This 

cell supensions were added to the feeding assay vials on filter papers soaked with 

5% sucrose solution and respective Ca2+. Age synchronized 10 male flies were 

added to each test vials. Vials containing filter paper soaked with sucrose solution 

(prepared into BMM) with 0 Mm OR 5 Mm Ca2+ were used as negative control of 

infection. Dead flies were scored every day for 15 days. At least 3 biological 

replicates were used. 
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Ca2+ slows down the P. aeruginosa infection mediated killing of C. elegans  

C. elegans assay has been widely used for studying the infectivity of P. 

aeruginosa and both the host factors and the pathogens virulence factors contribute 

to both fast killing assay and slow killing assay are identified (375, 376). We 

selected slow killing assay, as the medium for bacterial lawn preparation in this 

assay, NGM is defined and allows controling Ca2+ levels.  We further optimized 

the assay by adding 5 mM Ca2+ to the NGM plates, and thus providing the 

conditions for inducing virulence in growing bacterial lawn, which the worms were 

fed on during the assay. Furthermore, to avoid progeny overlap during the slow 

killing assay, we used temperature sensitive sterile mutant of C. elegans. 

Interestingly, killing of C. elegans was faster when P. aeruginosa cells were 

grown at no added Ca2+. Under these conditions, the worms displayed a 

distinctively slow movement as early as after one day of observation. Although by 

the end of the fifth day most worms fed on PAO1 grown at both 0 mM and 5 mM 

Ca2+ were dead, the worms grown at no added Ca2+ showed more dramatic effect 

of P. aeruginosa infection with engorgement of the body as well as green pigments 

produced by the bacterium (Fig 6.3.3). This may suggest that type III secretion-

dependent toxins mediated killing of C. elegans. This secretion system is known to 
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be negatively regulated by Ca2+ (70, 73). Therefore, additional Ca2+ in the media 

may prevent faster killing of the worms by C. elegans. 
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Fig. 6.3.3: 40Effect of Ca2+ on killing of C. elegans mediated by P. aeruginosa 

infection. P. aeruginosa were grown in BMM with or without 5 mM Ca2+ for 12 

hours prior to normalization of cell culture and inoculation onto NGM plates with 

corresponding Ca2+. These plates were incubated at 37° C for 24 hours to grow 

bacterial lawn before adding age synchronized temperature sensitive sterile C. 

elegans strains. The worms were then observed under either dissection microscope 
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or fluorescence microscope at 400X magnification. Camera magnification were 

used often to get more detailed features of the worms. C. elegans fed with non-

pathogenic E. coli OP50 were added as controls.  
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DISCUSSION AND CONCUSION 

P. aeruginosa is highly virulent human pathogen, quite well known for its 

multi drug resistance (110, 117). Besides its remarkable antibiotic resistance, P. 

aeruginosa is highly adaptable (362). Considering its extreme versatility, it is 

essential to understand how this pathogen can adapt to a certain environment and 

become virulent. Among various animal models currently in use for studying the 

virulence of P. aeruginosa, the mouse ant rat models exemplifying the acute and 

chronic infection models of CF lung are most popular (383, 384). However, 

invertebrate models such as D. melanogaster (385), Galleria melonella (386), C. 

elegans (375) are often appreciated for their cost-and time-efficiency and overall 

usefulness in screening for factors contributing to the virulence of this pathogen. 

The goal of this study was to investigate the regulatory effect of Ca2+ on the 

infectivity of P. aeruginosa using invertebrate models, D. melanogaster and C. 

elegans.  

Since Ca2+ is a host associated environmental factor (387) with a potential 

to be utilized by P. aeruginosa as a signaling molecule (47, 70, 71), it is essential 

to identify the molecular mechanisms of Ca2+ regulation of the pathogenic lifestyle 

of P. aeruginosa. Both fruitfly assay and C. elegans infection models are widely 

used to study virulence and infectivity of P. aeruginosa. However, one of the 
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greatest challenge in our studies is to generate diverse Ca2+ conditions during P. 

aeruginosa growth. We have optimized both assays to generate controlled 

conditions of no-added and elevated Ca2+ levels for bacterial growth. The fruit fly 

assay showed a potential to be useful for studying the mechanisms of Ca2+ regulated 

killing due to the positive effect of Ca2+ on killing of fruit flies by P. aeruginosa. 

However, further studies of the model are required. They include understanding of 

the environmental factors, such as temperature/ humidity, as well as the knowledge 

of the mechanisms involved in fruit fly killing by Pseudomonas, Furthermore, C. 

elegans killing by P. aeruginosa appeared to be downregulated in the presence of 

Ca2+, likely due to the involvement of type III secretion system, which limits its 

usefulness for our studies. Therefore, for further studies of the regulatory role of 

Ca2+ on infectivity of P. aeruginosa, other animal models such as Galleria 

mellonella, rat, or mouse should be considered.   

  



264 
 

CHAPTER VII 

MATERIALS AND METHODS 
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MATERIALS  

Transposon insertion mutants were purchased from the University of 

Washington Two-Allele library (grant # NIH P30 DK089507) (98). All 

Caenorhabditis elegans strains were purchased from Caenorhabditis Genetic 

Center (CGC) (Grant# NIH P40 OD010440), University of Minnesota, USA 

(website: http://cbs.umn.edu/cgc/home). D. melanogaster OR strain was purchased 

from Carolina (website: http: //www.carolina.com Burlington, NC, USA). 

Antimicrobial strips for tobramycin, polymyxin-B, ceftazidin, ciprofloxacin and 

doripenem were purchased from Biomerieux (Biomerieux, USA). Coelenterazine 

was purchased from Life Technologies (California, USA). RNeasy Bacterial mini 

kits, ZR Fungal/Bacterial MiniPrepTm, High Pure RNA Isolation Kit were 

purchased from Qiagen (Valencia, CA), Zymo Research (Zymo, Irvine, USA) and 

Roche Diagnostics corporations (Roche, Indianapolis, USA) respectively. 

Transcriptor First Strand cDNA Synthesis Kit, LightCycler® 480 SYBR Green I 

Master, LightCycler® 480 Multiwell Plate 384, white, TriPure Isolation Reagent 

were purchased from Roche Diagnostics corporations (Roche, Indianapolis, USA). 

Gel red was purchased from Phoenix research. Deoxynucleotide (dNTP) and Taq 

polymerase were purchased from New England Biolabs (Ipswich, MA). 2 M 

MgCl2 solution, was purchased from Thermo Scientific (Pittsburgh, PA). QIAprep 
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Mini-spin kit, was purchased from Qiagen (Valencia, CA). Oligonucleotide primers 

were obtained from Integrated DNA Technologies (Coralville, IA). Ragent grade 

ingredients for LB-agar, cornmeal agar, and nematode agar were purchased from 

VWR (Atlanta, GA, USA) unless otherwise specified. All other reagent grade 

chemicals were purchased from Thermo-Fisher Scientific (Waltham, MA) or 

Sigma- Aldrich (St. Louis, MO), unless otherwise indicated. 

Preparation of Buffers and Reagents 

All buffers were made with ultrapure deionized water from Barnstead-

thermolyne deionization system at resistance of 18.2 MΩ. See Appendix A for 

buffer compositions, media and other recipes. The pH of buffers and solutions were 

adjusted by concentrated hydrochloric acid (HCl) or 5N sodium hydroxide (NaOH) 

as required. 

Bacterial strains, media, and growth conditions  

All bacterial strains and plasmids used in this study are listed in the table 

7.1. 

  



267 
 

Table 7.1: 16 Strains and plasmids used in this study. 

Strains/ Plasmids  

 

Description Ref. 

E. coli DH5α fhuA2 Δ(argF-lacZ)U169 phoA glnV44 
Φ80Δ (lacZ)M15 gyrA96 recA1 relA1 
endA1 thi-1 hsdR17 

 

P. aeruginosa PAO1 Wild type (96) 

PW1780a (mexB:Tn5b) PA0426 H01::ISlacZ/hah (98) 

PW8752 (mexC:Tn5)  PA4599E04::ISlacZ/hah (98) 

PW5233 (muxC: Tn5) PA2526A07::ISlacZ/hah (98) 

PW8386 (mexV:Tn5) PA4374D09::ISlacZ/hah (98) 

PW8137 (mexI:Tn5) PA4207H08::ISlacZ/hah (98) 

PW5180 (mexE:Tn5) PA2493H04::ISlacZ/hah (98) 

PW6963 (mexQ:Tn5) PA3522H12::ISlacZ/hah (98) 

PW7220(mexJ:Tn5) PA3677D11::ISlacZ/hah (98) 

PW4499 (mexY:Tn5) PA2019D05::ISlacZ/hah (98) 

PW3609 (mexM:Tn5) PA1435G06::ISlacZ/hah (98) 

PW1265 (triA:Tn5) PA0156E03::ISlacZ/hah (98) 

PW5224 (czcB:Tn5) PA2521B08::ISlacZ/hah (98) 

PW5099 (PA2435:Tn5) PA2435A02::ISphoA/hah (98) 

PW7626 (PA3920:Tn5) PA3920G01::ISphoA/hah (98) 

PW4602 (PA2092:Tn5) PA2092F01::ISlacZ/hah (98) 
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PW4772 (PA4614:Tn5) PA4614B11::ISphoA/hah (98) 

PA5056::Tn5 PW9491 

lacZbp03q3G11 

(98) 

PA5058::Tn5 PW9495 

phoAwp10q1D06 

(98) 

PA5241::Tn5 PW9824 

phoAwp03q3A10 

(98) 

PAO1:pMS402 PAO1 with promoterless pMS402 (82) 

PAO1:PmexAB-oprM PAO1 with PmexBA-orM (82) 

calC::Tn5:pMS402 calC::Tn5 with promoterless pMS402 This study 

calC::Tn5: PmexAB-

oprM calC::Tn5 with PmexBA-orM 

This study 

ladS :: Tn5 PW7727 phoAwp05q1G04 (98) 

ladS :: Tn5 PW7726 phoAwp03q1D01 (98) 

ΔcarR PAO1 with deletion of carS gene. (70) 

ΔcarP PAO1 with deletion of carP gene. (70) 

ΔcarO PAO1 with deletion of carO gene. (70) 

ΔefhP PAO1 with deletion of efhP gene (71) 

ΔbfmR PAO1 with deletion of bfmR gene. (162) 

ΔlasR (lasR:Gm) PAO1 with deletion of lasR gene (163) 

ladS :: Tn5 / pMS402 ladS::Tn5 with promoterless pMS402 This study 
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ladS :: Tn5 / pSK-2604F ladS::Tn5 with pSK2604F This study 

ΔcarR / pMS402 ΔcarS with promoterless pMS402 This study 

ΔcarR / pSK2604F ΔcarS  with with pSK2604F This study 

ΔcarP / pMS402 ΔcarP with promoterless pMS402 This study 

ΔcarP / pSK2604F ΔcarP with with pSK2604F This study 

ΔcarO / pMS402 ΔcarO with promoterless pMS402 This study 

ΔcarO / pSK2604F ΔcarO with with pSK2604F This study 

ΔefhP / pMS402 ΔefhP with promoterless pMS402 This study 

ΔefhP / pSK2604F ΔefhP with with pSK2604F This study 

ΔbfmR / pMS402 ΔbfmR with promoterless pMS402 This study 

ΔbfmR / pSK2604F ΔbfmR with with pSK2604F This study 

ΔlasR / pMS402 ΔlasR with promoterless pMS402 This study 

ΔlasR / pSK2604F ΔlasR with with pSK2604F This study 

PAO1 / CTX6.1 PAO1 transformed with promoter activity 

reporter empty plasmid CTX6.1 

(164) 

PAO1 / CTX-rsmA PAO1 electroporated with promoter 

activity reporter construct for rsmA 

(164) 

PAO1 / CTX-rsmZ PAO1 electroporated with promoter 

activity reporter construct for rsmZ 

(164) 

calC::Tn5 / CTX6.1 calC::Tn5 transformed with promoter 

activity reporter empty plasmid CTX6.1 

(164) 

calC::Tn5 / CTX-rsmA calC::Tn5 electroporated with promoter 

activity reporter construct for rsmA 

(164) 
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calC::Tn5 / CTX-rsmZ calC::Tn5 electroporated with promoter 

activity reporter construct for rsmZ 

(164) 

CSK231 calC::Tn5 mutant complemented with 

calC on mini-TN7 transposon inserted on 

the chromosome. 

This study 

E. coli DH5α fhuA2 Δ(argF-lacZ)U169 phoA glnV44 
Φ80Δ (lacZ)M15 gyrA96 recA1 relA1 
endA1 thi-1 hsdR17 

 

P. aeruginosa PAO1 Wild type (96) 

PW3128 (phoP:Tn5) PA1179F08::ISlacZ/hah (98) 

PW9024 (PmrB:Tn5) PA4777A09::ISlacZ/hah (98) 

PW4167 (parR:Tn5) PA1799G12::ISlacZ/hah (98) 

ΔcarR:Gm (ΔPA2657) PAO1 with deletion of carR by replacing 

with GmR gene. 

(70) 

PW5693(PA2802:Tn5) PA2802D02::ISlacZ/hah (98) 

PW5694(PA2803:Tn5) PA2803A12::ISlacZ/hah (98) 

PW5696(PA2804:Tn5) PA2804G06::ISlacZ/hah (98) 

PW6426(PA3237:Tn5) PA3237F01::ISlacZ/hah (98) 

PW6427 (PA3238:Tn5) PA3238A02::ISlacZ/hah (98) 

PW9960(PA5317:Tn5) PA5317H12::ISlacZ/hah (98) 

PW5349(PA2590:Tn5) PA2590H04::ISlacZ/hah (98) 

PAOH26NTG22.3 Selected Polymyxin-B sensitive PAO1 

mutant of PAO1 

This study 
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PAOH27NTG22.5 Selected Polymyxin-B sensitive PAO1 

mutant of PAO1 

This study 

PAOH28NTG22.5 Selected Polymyxin-B sensitive PAO1 

mutant of PAO1 

This study 

PAOH29NTG22.17 Selected Polymyxin-B sensitive PAO1 

mutant of PAO1 

This study 

PAOH30 PAOH26NTG22.3 mutant with pDOH30 This study 

PAOH31 PAOH27NTG22.5 mutant with pDOH31 This study 

PAOH32 PAOH28NTG22.5 mutant with pDOH32 This study 

PAOH33 PAOH29NTG22.17 mutant with pDOH33 Thisstudy 

PA2803::pDOH30 PA2803:Tn5 containing pDH30 plasmid 

with the PA2802-PA2804 region 

This study 

PA3237:: pDOH31 PA3237:Tn5 containing pDH31 plasmid 

with the PA3237-PA3238 region 

This study 

PA5317:: pDOH33 PA5317:Tn5 containing pDH33 plasmid 

with the PA5317 region 

This study 

C elegans N2 bristol Wild type C. elegans (375, 381) 

C. clegans, CF 512 (rrf-

3(b26) II; fem-1(hc17) 

IV) 

Temperature sensitive sterile mutant of C. 

elegans 

(375) 

   

Plasmids   

pMMB66EH-AEQ pMMB66EH plasmid containing aequorin 

gene from Aequorea Victoria 

(165) 
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pTNS1 Helper plasmid carrying transposase 

genes. 

 

pUC18T-miniTN7-GM-

eyfP  

pUC18 based mini TN7 delivery plasmid, 

GmR, YFP tagged, modified Plac 

promoter. 

(388) 

pSK231 PA2604 cloned into pUC18T-miniTN7-

GM-eyfP, AmpR, GmR. 

This study 

pMS402 Expression reporter plasmid carrying 

promoterless luxCDABE gene, ori of 

pRO1615. KanR, TmpR. 

(82) 

pSK2604 Promoter region of PA2604 cloned 

upstream of lux operon on pMS402, 

This study 

CTX 6.1 Integration plasmid origins of plasmid 

mini-CTX-lux; Tcr 

(164) 

CTX-rsmA Integration plasmid, CTX6.1 with a 

fragment of pKD-rsmY containing rsmA  

promoter region and luxCDABE gene; Kn, 

Tmp, Tc 

(164) 

CTX-rsmZ Integration plasmid, CTX6.1 with a 

fragment of pKD-rsmY containing rsmZ 

promoter region and luxCDABE gene; 

KanR, TmpR, TcR. 

(164) 

pMS402 Reporter vector, luxCDABE; KanR TmpR (82) 

pKD-mexA pMS402 carrying the promoter region of 

mexAB-oprM; KanR TmpR 

(82) 
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pKD-mexX pMS402 carrying the promoter region of 

mexXY-oprM; KanR TmpR 

(82) 

pKD-czcC pMS402 carrying the promoter region of 

czcCBA; KanR TmpR 

(82) 

pSK-muxA pMS402 carrying the promoter region of 

muxABC-opmB; KanR TmpR 

This study 

pSK-mexJ pMS402 carrying the promoter region of 

mexJK-oprM; KanR TmpR 

This study 

pSK-mexE pMS402 carrying the promoter region of 

mexEF-oprN; KanR TmpR 

This study 

pMF36 A broad range trc expression vector (212) 

pDOH30 pMF36 with PAO1 gene fragments 

containing part of PA2802- PA2804 

This study 

pDOH31 pMF36 with PAO1 gene fragments 

containing part of PA3237- PA3238 

This study 

pDOH32 pMF36 with PAO1 gene fragments 

containing part of PA2590 

This study 

pDOH33 pMF36 with PAO1 gene fragments 

containing Part of PA5317 

This study 

 

aThe mutant identifier from UW transposon mutant library. 

bThe designated name of the mutant strain in this study. 
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Genomic DNA and Plasmid Isolation  

All DNA manipulation procedures were performed according to 

manufacturar’s protocol with a slight modification. Genomic DNA was isolated 

using DNA isolation kit (Promega, Fitchburg, WI). For Genomic DNA used for 

cloning, a thread of DNA was separated at the precipitation step and transferred to 

a new tube, washed with ethanol, air dried before adding the appropriate amount of 

nanopure water. This was to avoid fragmentation of DNA. Plasmid DNA was 

isolated using the QIAprep mini-spin kit. Concentration of both genomic DNA and 

plasmid DNA was determined spectrophotometrically (A260 nm) using Nanodrop 

2000 spectrophotometer (Thermo Fischer Scientific, Waltham, MA). The genomic 

DNA or plasmid DNA samples with the 260/230 and 260/280 ratios within the 

range of 1.8-2.0 were used for experiments. 

Colony PCR (Polymerase Chain Reaction). In order to perform colony PCR 

  Taq-polymerase based PCR was used. For this, the pipette tip or sterilized 

tooth pick tip was dipped into single isolated bacterial colony once or twice and the 

collected bacterial sample was mixed into 25µl sterilized nanopure water. The PCR 

tubes containing this cell mixture was incubated into heat block at 90°C- 100°C to 

boile open the cells to rescue exposed nucleotides. A 25 μl reaction was prepared 

by adding 15.5 μl of nuclease free water, 2.5 μl of 25 mM MgCl2, 2 μl of 2.5 mM 

dNTP, 2 μl of 10 x PCR buffer, 0.5 μl of 10 μM forward primer, 0.5 μl of 10 μM 
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reverse primer, 0.5 μl of template (gDNA or colony template DNA), 1.5 μl of 100 

% DMSO and 0.25 μl of Taq DNA polymerase. To carry out the reaction, T3 

Thermocycler (Whatman Biometra, Gottingen, Germany) was used and 

programmed with following steps: 1. Initial denaturation at 94 °C for 5 min (1 

cycle), 2. 30 cycles of denaturation at 94 °C for 45 s, annealing at temperature 5 °C 

lower than the lowest melting temperature of the primer pair for 40 s and extension 

at 72 °C for 1 min 30s (1 kb/min); 3. Final extension at 72° C for 10 min and 4. 

Incubation at 15° C prior to running the sample on agarose gel. 

PCR with genomic DNA or plasmid DNA  

The PCR reaction with genomic DNA was perfomed similarly as above 

except, gDNA or plasmid DNA was used as template instead of boiled bacterial 

cell lysate. 

Gel electrophoresis 

For agarose gel electrophoresis, any nucleotide sample with a size of 100-

250 bp was run on 1.8% agarose gel and nucleotides larger in size were run on 1% 

agarose gel for better resolution of stained product. Agarose gel was prepared by 

adding 1% (W/V) of agarose to 1X TAE buffer (0.5 gm in 50 ml buffer) and 

microwaving the mixture until the agarose was completely dissolved (2-3 min). The 

liquid hot agarose solution was poured onto a gel-cast with gel-comb already palced 
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into the cast. Any bubble formed during pouring the agarose can be disrupted by 

poking the bubbles with pipette tip. Once solidified, the solidified gel on a cast was 

moved into the electrophoresis tank filled with 1X TAE buffer in such a way that 

the gel is merged under the buffer. The gel need to be placed in a way that the wells 

on the gel will be toward the anode and the rear end of the gel is toward the cathode. 

The PCR product is mixed with DNA loading dye at 1:6 ratio. The mixture is then 

inoculated into the wells very carefully avoiding any bubble formation or poking 

the neighboring wells. Molcular marker (DNA/RNA ladder) was added to at least 

one well as a reference for size determination. The cord connecting the gel tank 

then is connected to the voltage generator. The gel is run at 125-130 MV for 30-45 

min. 

Bacterial Growth Analysis  

Growth analysis of PAO1 and each mutant were performed in BMM with 

no added or 5 mM Ca2+. The growth rate was calculated according to (115). The 

growth of each mutant was compared to that of the PAO1 to identify any growth 

defect due to mutation. For this, bacterial cells were grown on LB agar plates with 

selective antibiotics when needed. Isolated individual colonies were inoculated into 

3 ml of BMM with no or 5 mM Ca2+, incubated at 37°C and 200 rpm for 12 hours. 

Upon collecting the cultures at 12th hour, OD of each cultures were measured at 

600nm wavelength using the Biomate 3 spectrophotometer (Fisher Scientific). The 
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cultures were then normalized by diluting the initial cultures in corresponding 

media in such a way that the final OD600 would be 0.1. These normalized cultures 

were then inoculated into 100 ml of corresponding media (BMM with no or 5 mM 

Ca2+) at 1:1000 ratio into 250 ml ehrmyer flasks. The flasks were incubated at 37°C 

and 200 rpm and OD600 was measured every 2-4 hours until the bacteria reached 

to stationary phase. At least three biological replicates were used for each 

experimental set. 

Antimicrobial Susceptibility Assay (E-strips)  

Bacterial cultures were first grown on LB agar plates containing selective 

antibiotics. for PAO1 there was no antibiotic and for transposon mutants received 

from University of Washington genome center, tetracycline was added at the final 

concentration of 60µg/ml. Isolated individual colonies were inoculated into 3ml of 

BMM with no or 5 mM Ca2+, incubated at 37°C and 200 rpm for 18 hours (early 

stationary). The OD600 of each bacterial cultures were measured. The bacterial 

cultures were then diluted into corresponding media in such a way that the final 

OD600 of cultures were 0.1. In parallel, BMM agar plates with no added or 5 mM 

Ca2+ were dried under UV (Hood) for 15 min prior to the experiment to dry up 

excess moisture on the plate.100 µL of the normalized culture were spread-plated 

onto BMM agar plates with Ca2+ concentrations corresponding to the growth media. 

Once the cultures were dried onto the plates (5-10 min after spreading), the 
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commercially available E-strips containing gradient of antibiotics on them, were 

placed on the middle of the plate. It is crucial to make sure no bubble has been 

formed in between the E-strip and the agar. Any resultant bubble would inhibit 

dispersion of the antibiotic from that part of the strip and provide incorrect 

concentration of antibiotic around that area of the plate. Also, once the strips 

touched the plate, it should not be moved to make a better placement. Moving the 

strips results into inappropriate dispersion of antibiotic onto the agar and might 

generate wrong experimental result. The plates were then incubated at 37°C  for 24 

hours. Then the minimum concentration of antibiotics that prevented the growth of 

bacteria around the strips was recorded for each bacterial strains grown at each 

condition. At least three replicates were used to assure the statistical significance 

of the result. 

Antimicrobial Susceptibility assay (Plate dilution assay)  

For plate dilution assay, isolated individual colonies from plates were 

inoculated into 3ml of BMM with no or 5 mM Ca2+, incubated at 37°C and 200 rpm 

for 12 hours (middle log.) These middle log cultures grown in BMM with or 

without added Ca2+ were then diluted into corresponding media in such a way that 

the final OD600 is 0.3. The normalized cultures were then inoculated at 1:100 ratio 

into BMM with the corresponding Ca2+ concentration. For each tube 10µl of 

tobramycin was added at the final concentration of 0.25, 0.5, 0.75, 0.1, 1.5 μg/ml 
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to BMM without added Ca2+ and of 1.0, 1.5, 1.75, 2.0, 3.5 μg/ml to BMM 

supplemented with 5 mM Ca2+. 200 μl of the final cultures were added to each well 

of 96 well clear plates with sterilized triton treated cover on it. For treating the 

covers, 5% triton solution (10 ml sterilized nanopure water, 2.5 ml 95% ethanol, 

and 5μl concentrated triton) was used to rinse the inside surface of the cover 

thoroughly. Then both the plate and the cover was UV treated under UV hood for 

15 min before the experiment. Once aliquoted into 96 well plates, the cultures were 

incubated with fast shaking for 8 h, and OD600 was measured using the Synergy 

MS plate reader (Biotek). At least three replicates were tested. To determine the 

minimum concentration of antibiotic that inhibited growth of the bacteria, positive 

control for growth (without added antibiotic) and no growth (no bacteria added, 

non-inoculated control) were added to the plate. The OD600 of cultures containing 

antibiotics that was same as the non-inoculated control was considered as growth 

inhibited culture and the concentration of antibiotic in the corresponding well was 

recorded as MIC for that antibiotic. 

Efflux inhibitor assay 

For efflux inhibitor assay, a plate dilution technique was used. First, isolated 

individual colonies from plates were inoculated into 3ml of BMM with no or 5 mM 

Ca2+, incubated at 37°C and 200 rpm for 12 hours (middle log.) These middle log 

cultures grown in BMM with or without added Ca2+ were then diluted into 
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corresponding media in such a way that the final OD600 is 0.3. The normalized 

cultures were then inoculated at 1:100 ratio into BMM with the corresponding Ca2+ 

concentration with or without PAβN. For each tube 10µl of PAβN was added at the 

final concentration of 10, 20, 30, 40, 50, 60, 70, 80, 90 and 100 μg/ml to both BMM 

without added Ca2+ or supplemented with 5 mM Ca2+. 200 μl of the final cultures 

were added to each well of 96 well clear plates with sterilized triton treated cover 

on it. For treating the covers, .5% triton solution (10 ml sterilized nanopure water, 

2.5 ml 95% ethanol, and 5μl concentrated triton) was used to rinse the inside surface 

of the cover thoroughly. Then both the plate and the cover was UV treated under 

UV hood for 15 min before the experiment. Once aliquoted into 96 well plates, the 

cultures were incubated with medium for 24 h, and OD600 was measured every 2 

hours using the Synergy MS plate reader (Biotek). At least three replicates were 

tested. To determine the minimum concentration of PAβN that inhibited growth of 

the bacteria, positive control for growth (without added antibiotic) and no growth 

(no bacteria added, non-inoculated control) were added to the plate. The OD600 of 

cultures were then plotted on a connected scatter plot to visualize the growth curve. 

The growth curve performed for bacteria grown at BMM with no Ca2+ was 

compared to that of BMM with 5 mM Ca2+ to assess the effect of Ca2+ on the PAβN 

tolerance. 

For plate assay, isolated individual colonies were inoculated into 3ml of 

BMM with no or 5 mM Ca2+, incubated at 37°C and 200 rpm for 18 hours (early 
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stationary). The OD600 of each bacterial culture were measured. The bacterial 

cultures were then diluted into corresponding media in such a way that the final 

OD600 of cultures were 0.1. Before spreading the bacterial cultures, it was essential 

to get rid of excess moistures on the BMM agar plates to be used for this 

experiment. For this, plates were dried under UV (Hood) for 15 min prior to the 

experiment.100 µL of culture was spread-plated onto BMM agar plates with Ca2+ 

concentrations corresponding to the growth media. Once the cultures were dried 

onto the plates (5-10 min after spreading), sterilized dry 0.3 mm disks were placed 

onto the bacterial lawn and 15μl of PaβN were added onto the disks. For this assay 

PAβN were used at the concentration of 10, 20, 30, 40 and 50 µg/ml for each Ca2+ 

concentration. The plates were then incubated at 37° C in the table top incubator 

for 24 hours. This experiment was performed to determine the concentration at with 

PAβN had no effect on growth of PAO1 at both no added or 5 mM Ca2+. 

Primer Design and selection for RT-qPCR. 

Primers for 12 RND transporter genes (triA, mexB, muxC, mexI, mexC, 

mexE, mexJ, mexQ, mexV, mexX, czcB, and mexM), three carbonic anhydrase genes 

PA2053, PA4614 and PA102, as well as PA2604 were designed using Primer3Plus 

or Primer BLAST and listed in Supplementary Table 7.2. For this the FASTA 

format gene sequence for each gene was copied from http://www.ncbi.nlm.nih.gov/ 

onto a word document. In order to design the primers, 1. On the primer3 plus home 
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(http://primer3plus.com/cgi-bin/dev/primer3plus.cgi) main page sequences were 

copied-pasted into the box or files were uploaded via “upload” tool on the right top 

of the box, 2. On “General settings tab , primer size was chosen to be 100-250 bp 

long with optimum size of 200, primer Tm was selected to be 50-65 with an 

optimum Tm of 60 and primer GC % was selected to be within the range of 45%-

55% with an optimum GC content of 50%. Maximum Tm difference between two 

primers were selected to be 5° C. 3. Moving onto the Advanced settings, “Max 

poly-X” was set at 3, “number to return” set to 10 and “Max 3' stability” set to 8. 

4. Besides this everything else was at default settings. 5. “Pick primer” tab on the 

top-right of the page was selected to derive the paired primers designed. 6. The 

output information was then copied to an excel file for further analysis. 

To design primers in Primer BLAST, the same selective criteria were used. 

These Primers were then tested in silico using OligoAnalyzer (IDT, 

https://www.idtdna.com/calc/analyzer ) for their primer compatibility and stability. 

Each individual primer was copied-pasted on the toolbox and “analyze” tab was 

selected to generate the information on the primer melting Tm, GC content and 

these informations were compared to the paired primer to confirm their 

compatibility. Similarly, the individual primers were assessed for “Hairpin” 

analysis. Any primer with a ΔG ≥ 0 was automatically selected for further analysis. 
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Primers with ΔG ≤ 0 were only chosen if the ΔG value was found at a temperature 

much less than the annealing temperature of the pair. 
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Table 7.2: 17Primers used in this study 

Primer name Primer sequence (5´ - 3´) Primer 
efficiency 
(%) 

Reference 

0576_F1 CTCAACTACCAGCGGCAGAA 97 (103) 

0576_R1 CGCAGCTCGGTATAGGAAAG (103) 

0156_F1 CTCAACTACCAGCGGCAGAA 93 This study 

0156_R1 CGCAGCTCGGTATAGGAAAG This study 

0426_F1 TACGAAAGCTGGTCGATTCC 100 This study 

0426_R1 GCGAACTCCACGATGAGAAT This study 

2526_Fiv AGGAACAGGAAGACCACCAG 100 This study 

2526_Riv TCAAGCTGAACGTGATGGAC This study 

4207 F1 GTCGAACCGAACAAGCTGAT 100 This study 

4207 R1 TGTTGCCTTCCTGGGTGTAT This study 

4599_F2 TTCCGAACTCAGCGCCAG 97 This study 

4599_R2 ATAGGAAGGATCGGGGCGTT This study 

2493_F1 TGGAACAGTCATCCCACTTC 93 This study 

2493_R1 AATTCGTCCCACTCGTTCAG This study 

3677_F3 CGGTAGCTGTTCTGGATGTTC 96 This study 

3677_R3 GAGCGGGTAAAGAAGGACCA This study 

3522_F3 CGACGGATAGCCGTTGTAGT 93 This study 

3522_R3 TCGCACCTACAAGGTCACTG This study 

2019_F3 TTCTCGACGATCACCCACTC 97 This study 

2019_R3 TCAAGGTGGTCAACCCAAAG This study 

4374_F3 AAGGTCTACTCCATCCGTCAG 96 This study 

4374_R3 CCGGAAAGGAACAGTACGTC This study 
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2521_F2 TGCCCAGTTCGGATTTGAGG 97 This study 

2521_R2 CGAGGACGTGGTGTTCGTC This study 

1435_3rt F GCACCGATCTCCGTAGTCTT 89 This study 

1435_3rt R GGTGGAACTGTCGATCTGGT This study 

muxA- f 
AACCTCGAGTTTCAACGGGTCG
ATCATCT 

 
(82) 

muxA- r 
CCGGATCCATCACCAGGCCGAT
CAC 

 
(82) 

mexJ- f 
AAACTCGAGGGCGATATTCAGC
AGGAC 

 
(82) 

mexJ- r 
CAGGATCCGGTACATGTGACAC
CTTC 

 
(82) 

mexE- f 
AATCTCGAGCATGTTCATCGGCG
ATCC 

 
(82) 

mexE- r 
CAGGATCCAGGCGCTCAGGACC
AGTA 

 
(82) 

49172F.f GGAAGAGTCTCCCCTTCGAC  (98) 

49172F.r TAGAAGAACAGGCGGACGAT  (98) 

Aeq-
Forward 

CTTACATCAGACTTCGACAACCC
AAG 

 (72) 

Aeq-reverse CGTAGAGCTTCTTAGGGCACAG  (72) 

PA2604-
SH-F 

AGAGAGaagcttATGCAAGAACAG
CAATATCAGC 

 This study 

PA2604SH-
R 

AGAGAGgagctcTCAGTCGTCGCC
GC 

 This study 

PA2604F-F 
AACCTCGAGGGTGTGGGTACTC
CTTAAC 

 This study 

PA2604F-R 
CCGGATCCGACCGTTGCCTTAAA
CC 

 This study 

TN7-seq-F 
CTCCTCTTTAATTCTAGATGTGTG
AAATTG 

 This study 
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TN7-SEQ-R CACAGCATAACTGGACTGATTTC  This study 

PTn7R ATTAGCTTACGACGCTACACCC  (388) 

PTn7L ATTAGCTTACGACGCTACACCC  (388) 

PglmS-down GCACATCGGCGACGTGCTCTC  (388) 

PglmS-up CTGTGCGACTGCTGGAGCTGA  (388) 

psCA1-F AGAGAGCATATGCCAGACCGTAT
G 

97 This study 

psCA1-R AGAGAGGGATCCTCACGAGCTC
AG 

 This study 

psCA2-F AGAGAGCATATGCGTGACATCAT
CG 

93 This study 

psCA2-R AGAGAGGGATCCTCAGGCGAC  This study 
psCA3-F AGAGAGCATATGAGCGACTTGC

AG 
94 This study 

psCA3-R AGAGAGGGATCCTCAGCAGCAA
C 

 This study 

 

Primer specificity and efficiency assessment  

At First, The primer specificity was tested by BLAST alignment against P. 

aeruginosa genome available at www.pseudomonas.com. On 

http://pseudomonas.com/ page (Now, http://beta.pseudomonas.com/ ) under the 

sequence search section on the main toolbar, BLAST was selected. On the 

redirected page, under the BLASTN the primer sequence was copied to the 

sequence box. The primer sequence was then used to perform a BLAST against 

PAO1 reference genome. It was expected that the primer sequence will be 100% 

identical to the specific target only. As long as the second best hit showed less than 

50% identity, the primers were selected for further analysis.   
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In vitro, Primer specificity of each pair of oligos was confirmed by gradient PCR. 

PCR master mix was prepared same way as the general PCR described in “PCR” 

section of methodology chapter. For PCR, gradient of annealing temperature were 

used. The range of temperature was based on the melting temperature of the primer 

pair. Lowest temperature for he gradient was 5° C below the lowest Tm of the oligo 

pair and highest temperature was maximum 5° C above the highest Tm of the pair, 

making sure the range between two temperature chosen was no more than 10° C. 

Gradient PCR also revealed the annealing temperature at which primers were 

mostly specific to the target gene. For this, genome DNA of PAO1 at the 

concentration of 5 ng/µl was used.  

Also, RT-qPCR melt curve analysis using gDNA as a template was 

performed to confirm the primer specificity. RT-qPCR was performed following 

the manufacturer’s protocols (Roche). For this, 5 μl of SYBR green master mix 

(Roche, Indianapolis, IN), 0.5 μM of each primer and 5 ng of RNA were added to 

a total volume of 10 μl of reaction mixture. RT-qPCR was run using 384 well plates 

sealed with LightCycler 480 Sealing Foil (Roche, Indianapolis, IN) in Roche 

LightCycler 480. At least three technical replicates were used. A no-template 

control was used as a negative control. The cycle included 10 min denaturation at 

95° C followed by 35 cycles of 95° C for 10 s, specific annealing temperature (this 

was selected by gradient PCR) for 15 s, and 72° C for 10 s. 
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Prior to each experiment, the light cycler program was prepared for each set 

of experiment following the manufacturer’s protocol. For this, the sample 

information as it is distributed on the plate was entered into the experiment file’s 

plate template. All the technical replicates were selected and grouped under the 

specific category. For each set of experiment, housekeeping gene control and no 

template controls were also added. The step by step protocol for creating a new 

experiment to run on LightCycler480 is described in the machines instruction 

manual (http://plantbio.okstate.edu/resources/files/Roche_RT-PCR_Manual.pdf)  

For primer efficiency, RT-qPCR was performed for each primer pair using 10 fold 

serial dilution of gDNA, and the obtained Cp values were plotted against the 

concentration of nucleotides. The plot generated the values for the following 

equation 

𝐘 = −(𝒎𝒙) + 𝒄  

Here, ‘m’ represents the slope. And the R2 value for the plot was ≤ 1. 

The efficiency was calculated using linear regression analysis using the equation 

10(-1/slope)-1. 

 Following the MIQE guidelines (100), the primers with an R2 value of 0.99 and 

an efficiency of  (The efficiency of control gene primer pair) 97% ± 10 % were 

selected. 
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Selection of Housekeeping genes  

At first, four tested housekeeping genes, rpoD, rpoS, proC and 16S rRNA 

were selected based on the current literatures on the field (103). The primers were 

previously designed in (103) and (389).These primers were also subjected to 

gradient PCR and RT-PCR melt curve analysis for primer efficiency calculation 

and determination of annealing temperature. Then the efficiency of the primers was 

measured by above method. Upon the qualitative assessment of the primers, these 

primers were further tested to assess the transcript abundance of corresponding 

genes for PAO1 grown at no added Ca2+ and 5 mM Ca2+ (The gene expression 

analysis protocols follows). The housekeeping genes which displayed no change in 

the transcript abundance due to exposure to elevated Ca2+ was (were) selected as a 

control.  

RNA Isolation 

Several RNA isolation techniques were used to optimize the standard protocol 

to be used in our lab. For all RNA extraction method 3 biological replicates for each 

type of bacterial cultures were used. The first step was starting bacterial culture in 

three ml BMM with no added or added 5 mM Ca2+. After 12 hours of incubation 

the precultures were taken out and the cell density was measured by 

spectrophotometer. The cultures were then normalized to an OD600 of 0.1 and 

added to 100 ml of BMM with corresponding Ca2+ to a 1:1000 ratio in 250 ml 
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flasks. The cultures were grown at 37º C, 200rpm (using the floor shaker incubator) 

for 13 hours ± 15 min (for RNA extraction for RNA-seq and second batch of RNA 

extraction) with an OD reaching up to (0.23 ± 0.01- 0.03). Cultures were harvested 

into RNA later (prepared in lab)/ RNeasy RNA protect reagent (Qiagen)/ RNA later 

(Ambion) in 1:1 volume and mix well by inversion. It was kept at room temperature 

for 5 min prior to RNA extraction. Each protocols were modified from 

manufacturer’s protocol to get highest yield and good quality RNA. 

1. HighpureRNA isolation Kit (Roche) based extraction. For this bacterial 

cultures were transferred to a 50 ml falcon tubes and placed into ice before 

pelleting the cells by centrifugation at 4500 rpm for 15 min. 1 ml of TriPure 

isolation reagent (Roche) solution was added to resuspend the cells and was 

then transferred to RNase free screw-capped 2 ml microfuge tubes. This 

was incubated at room temperature for 6 min and 200 µl of chloroform was 

added to the tube followed by mixing with inversion. Three distinct layers 

were visible in the tube after centrifugation at 15,000 rpm for 5 min. Upper 

aqueous layer containing RNA was transferred into highpure tube and 

centrifuged at 11,000 rpm for 15 s. On column DNase treatment was 

performed with DNase (Roche). 20 µl of DNase was mixed with 90 µl of 

DNase incubation buffer in a RNase free PCR tube and transferred onto the 

column. The column was then incubated at room temperature for an hour. 

After DNase treatment the column was washed 500 µl of with wash buffer 
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I and wash buffer II at 11,000 rpm for 15 s. The final wash step was 

performed with 200 µl of wash buffer II. At 14,000 rpm for 2 min. 100 µl 

of elution buffer was added and the RNA was eluted at 11,000 rpm for 1 

min. The RNA sample was transferred to a new RNase free tube. 

2. HighpureRNA isolation Kit (Roche) based extraction combined with 

Phenol-Chloroform extraction protocol. For this bacterial cultures were 

transferred to a 50 ml falcon tubes and placed into ice before pelleting the 

cells by centrifugation at 4500 rpm for 15 min. 1 ml of TriPure isolation 

reagent (Roche) solution was added to resuspend the cells and was then 

transferred to RNase free screw-capped 2 ml microfuge tubes. This was 

incubated at room temperature for 6 min and 200 µl of chloroform was 

added to the tube followed by mixing with inversion. Three distinct layers 

were visible in the tube after centrifugation at 15,000 rpm for 5 min. Upper 

aqueous layer containing RNA was transferred into a new RNase free 2 ml 

tube already aliquoted with 500 µl of isopropanol followed by 

centrifugation at 15,000 rpm for 10 min. The supernatant was discarded and 

the pelleted nucleotides were washed with 1 ml of 75% ethanol at 15,000 

rpm for 5 min. The pellets were air dried and was resuspended into 43 µl of 

RNase free water and incubated at 55º C on hot plate for 1 hour. For DNase 

treatment 2 µl of DNase and 5 µl of DNase buffer (Ambion) was added to 

this sample was kept at room temperature for 1 hour. After the DNase 
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treatment, 200 µl of RNase free water was added to the tube and the 

enzymes were precipitated by phenol-chloroform based extraction. For this 

low pH (4.3) phenol was added to the tube at 250 µl and was mixed by 

gentle inversion. This was centrifuged at 15,000 rpm for 6 min. 250 µl of 

upper phase (avoid the interphase) was transferred to a new RNase free tube 

and 250 µl of pheol-chloroform was mixed to it. A centrifugation at 15,000 

rpm  for 6 min, transfer of 250 µl of upper phase to another tube, addition 

of 25 µl of sodium acetate (3 mM) followed by addition of 625 µl of 100% 

ethanol was performed sequentially. The final solution was kept at -20 ºC 

for overnight. The next morning this solution was centrifuged at 15,000 rpm 

for 6 min and the supernatant was discarded. The pellet was washed with 

75% ethanol at 15,000 rpm for 3 min and air dried after decanting the 

supernatant to get rid of residual ethanol The pelleted RNA was 

reconstituted into 50 µl of RNase free water. 

3. RNeasy Bacterial mini kit (Qiagen) based extraction. A total volume of 

30 ml solution of 15 ml bacterial culture and 15 ml of RNeasy protect 

solution (Qiagen) were centrifuged at 4500 rpm and 4º C for 10 min. The 

supernatant of eact tube was decanted and the tubes were dabbed on 

kimwipes to get rid of residual liquid leaving the cell pellet at the bottom of 

the tubes. 200 µl of lysozyme (1µg/ml) was used to resuspend the pellet and 

transferred to a sterile 1.5 ml RNase free tube, before adding 700 µl of the 
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cell lysis buffer RLT (1% β- markeptoethanol added to RLT right before it 

was added to the cell pellet). The mixture was then vortexed vigorously for 

10 s. This mixture was centrifuged at 15,000 rpm for 6 min. The clear 

supernatant was transferred carefully (without touching the pellet) to a fresh 

RNase free 1.5 ml tube. 500 µl of 95% ethanol was added to the tube and 

was mixed by gentle pipetting (DNA may precipitate as white fiber like 

substance inside the tube). 700 µl of this lysate was then transferred to a 

column placed on 2 ml collection tube (Qiagen). The collection tube with 

the column was centrifuged briefly at 11,000 rpm for 15 s. If any residual 

lysate were left, this step was repeated. The columns were washed with 350 

µl of RW1 buffer and then on column DNase treatment wqas performed 

using QDNase (Qiagen). For this 20 µl of DNase and 140 µl of buffer RDD 

(Qiagen) was mixed into a separate RNase free tube and transferred to the 

column. The columns were kept at room temperature for 2 hours to allow 

complete digestion of DNA and washed with 350 µl of buffer RW1 

(Qiagen). Buffer RPE (Qiagen) was added to each column at a volume of 

500 µl and centrifuged for 2 m. at 11,000 rpm. An additional centrifugation 

step for 30 s. was performed to get ridof residual buffer from the colums. 

The columns were tehn transferred to new collection tubes. 30 µl of RNase 

free water (Qiagen or DEPC treated at he lab) was added to the column. The 

RNA was eluted by centrifuging the columns at 15,000 rpm for 3 min. The 
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eluted RNA sample was transferred to a RNase free 500 µl snap-cap 

microfuge tube. An additional DNase treatment was performed using 

DNase treatment kit (Ambion). 

4. RNA extraction using combination of trizol (Roche) based and RNeasy 

bacteria mini kit (Qiagen). For this bacterial cultures were transferred to 

prechilled 50 ml falcon tubes and placed into ice before pelleting the cells 

by centrifugation at 4500 rpm for 15 min. 1 ml of Trizol (Roche) solution 

was added to resuspend the cells and was then transferred to RNase free 

screw-capped 2 ml microfuge tubes.200 µl of chloroform was added to the 

tube and mixed by inversion. This solution was then centrifuged at 15,000 

rpm for 15 min. at this point three distinct layers were created inside the 

tube with a clear aqueous layer at the top. This aqueous layer was carefully 

transferred to a new RNase free 2 ml microfuge tube and 500 µl of 95% 

ethanol was mixed by inversion. 700 µl of this lysate was then added to qia 

column (Qiagen) followed by a wash step with buffer RW1 (Qiagen). The 

rest of the steps are exactly same as described in the RNA extraction by 

RNeasy Bacterial mini kit (Qiagen). 

5. Direct-zol RNA kit based extraction. For this, 15 ml of RNA later was 

added to 15 ml of culture and was centrifuged at 4500 rpm for 10 min. The 

pelleted cells were resuspended into 200µl of lysozyme (1mg/ml) followed 
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by adding 1 ml of Trizol (Roche) solution and incubated at room 

temperature for 5 min. This solution was centrifuged at 15,000 rpm for 10 

min. The supernatant was then transferred to a new RNase free tube and 

equivolume 95% ethanol was added to the solution. This mixture was then 

transferred to zymospin column at the volume of 700 µl and was spun at 

15,000 rpm for 15 s. once all lysates were spun down, 400 µl of RNA 

prewash buffer was added to the column and then centrifuged at 11,000 rpm 

for1 min. Then 700 µl of RNA wash buffer was added to the column and 

centrifuged at 11,000 rpm for 1 min. This step was further repeated without 

any addition of buffer to get rid of residual buffer from the column. The 

column was then transferred to a new collection tube. 25-30 µl of RNase 

free water was added tot eh column and kept at room temperature for 1 min 

prior to elute the RNA sample by centrifugation at 15,000 rpm for 3 min. 

6. Zymo Bacterial/Fungal RNA mini prep based extraction. 15 ml RNA 

later (prepared in lab) aliquot was added to a 50 ml falcon tube, labeled with 

sample names prior to harvesting the middle log bacterial cells (the mid- 

log phase and OD600 was selected based on growth profile of the bacterium). 

Upon harvesting the cells, cultures were added to the corresponding tubes 

at a 1:1 ratio and incubated at room temperature no more than 10 min (for 

more than 10 min incubation, cells should be kept at ice; I consistently 

incubated for 6 min and then went for centrifugation). The cultures were 
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centrifuged at 42,00 rpm for 15 min at 4º C. Cell pellets can be stored at -

20 for ~ 3 months to extract RNA later (I kept for couple of weeks only). 

Cell pellets were resuspended into 200 µl of lysozyme (1mg/ml) followed 

by adding 800 µl of RNA lysis buffer to the cell suspension. A very good 

mixing is necessary at this point to make sure no pellets are left unmixed. 

This solution was then added to the bashing bead tube and centrifuged at 

13,000 rpm for 1 min. 800 µl of the solution was taken out carefully 

avoiding the beads (this step can be skipped and the solution can be added 

to the column directly) and transferred to the zymo spin IIIC column. The 

column was then centrifuged at 13,5000 rpm for 30 s. The flowthrough was 

collected into an RNase free 2 ml tube already aliquoted with equivolume 

of 95% ethanol and was mixed by inversion. This lysate was then 

transferred to zymo spin column at 700 µl volume at a time and spun down 

by 13,500 rpm for 30 s. The flowthrough was discarded. 400 µl of RNA 

prep buffer was added to the column and centrifuged at 13, 500 rpm for 30 

s. The columns were then washed by 700 µl and 400 µl of RNA wash buffer 

consecutively with a 2 min. centrifugation at 13,500 rpm. An additional 1 

min spin was performed at the end without adding any buffer to get rid of 

residual wash buffer. 40 µl of RNase free water was used to elute the RNA 

at 15,000 rpm for 3 min. This step was repeated with 10 µl of RNase free 

water to ensure complete elution of RNA sample. 
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DNase treatment of RNA samples  

Upon isolation of RNA at first the RNA samples were measured by 

Nanodrop 2000 (Thermofischer) at the botany core facility. The samples with a 

260/280 ratio of (1.8-2.2) and 260/230 ratio of 1.6-2.0 were selected and diluted to 

a concentration of 100 ng/μl with RNase free water. These samples were then 

subjected to general PCR using rpoD primers and genomic DNA as a positive 

control for presence of DNA. If DNA was present, the RNA samples were treated 

with Turbo DNase (Invitrogen). In a 25μl of RNA solution, 3 μl of Turbo DNase 

buffer and 1μl of DNase were added and were mixed thoroughly, spun down and 

incubated at 37° C for 2-4 hours. Then the tubes were cooled down at room 

temperature and moistures on the tube wall were spun down prior to adding the 

DNase inactivation buffer. The inactivation buffer has a tendency to settle down, 

so it was mixed occasionally (every 2 min) while incubating at room temperature 

for 10 min. The mixed solution was then centrifuged at 15000 rpm () for 4 min. The 

supernatant was transferred very carefully without touching the pellet. The RNA 

sampleas were then again measured by Nanodrop 200 and assessed for presence of 

residual DNA by general PCR. If DNA still remained, additional DNase treatment 

were carried out and the removal of DNA was confirmed by same PCR method. 
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Qualitative assessment of RNA by Gel electrophoresis 

1% agarose gel electrophoresis of RNA samples followed by Bioanalyzer 

assay has been established to be an effective way of assessing the RNA integrity 

(100). For this, the RNA samples were linearized by incubating at 65° C for 10 min 

prior to running on the gel. 1% agarose gel was prepared by adding agarose to 1X 

TAE buffer at the ratio of 1% (W/V). The mixture was microwaved to dissolve the 

agarose into buffer. 5% of gel red (V/V) was added to the gel before pouring it to 

the cast. This minimizes the time of gel electrophoresis and chance of RNA 

degradation while staining after running the gel. For each gel electrophoresis 500 

ng-1μg of RNA was used and gel loading dye was added to the RNA samples before 

loading onto the wells. 1 KB plus DNA ladder were used as a reference to assess 

the ribosomal RNA bands. The gels were visualized under UV (machine name). 

Also, a general PCR as well as RT-qPCR of RNA samples were performed using 

rpoD primers to confirm no DNA was present. For this genomic DNA was used as 

positive control and no template as negative control for amplification. 

Bio-analyzer Assay  

In combination with 1% agarose gele analysis, RNA bioanalyzer assay has 

been established and required to claim validation of transcriptional analysis. Upon 

selecting the RNA samples with very strong bands representing the 16S and 23S 

ibosomal RNAs on the 1% agarose gele, the samples were sent to OSU RNA core 
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facility for qualitative assessment by Agilent bionalyzer nano (Agilent 

technologies). The analyzed results were provided by the core facility in three 

format. 1. Diagrams of RNA samples with peaks for different RNA species 2. 

Image of RNA samples on gel with the ladder showing the bands for different RNA 

species. 3. Excell file containing detailed information about the RNA including the 

16S:23S rRNAs, total RNA and most importantly calculated RNA integrity value. 

Any RNA samples with an RIN value ≤ 6 were rejected. Samples with RIN value 

within 5-6 were only accepted when the rRNA species were quite visible on the gel 

image (only when there were no other option).  

cDNA Synthesis  

For cDNA synthesis, Transcriptor first strand cDNA synthesis kit from Roche 

was used. The detailed protocol is as follows, 

1. 1µg of total RNA was mixed with the following reagents at the defined 

volume in a sterile DNase-RNase free PCR tube to a final volume of 13µl: 

I. Anchored oligo dT 1.0 μl 

II. Random hexamer 2.0μl 

III. PCR grade water 0.5μl 

At this point the mixture was incubated at 65°C for 10 min in a thermocycler. Immediately 

after this step the tubes were kept back into an ice block and 7 µl of a master mix consist 

of  
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I. Transcriptor reverse transcriptase reaction buffer (8mM MgCl2) 

 4μl 

II. Protector Rnase inhibitor     

 .5μl 

III. dNTPs        

 2.0μl 

IV. Transcriptor reverse transcriptase    

 .5μl 

Was added to the tube to make the final volume 20µl. This mixture was then run for one 

cycle with 25°C for 10 min, 55°C for 30 min and 85°C for 5 min. Once the cycle was 

completed the cDNA samples were stored at -20° C. 

RT-qPCR 

To characterize the transcription profiles of RND genes, RT-qPCR was 

performed following the manufacturer’s protocols (Roche). For this, 5 μl of SYBR 

green master mix (Roche, Indianapolis, IN), 0.5 μM of each primer and 5 ng of 

RNA were added to a total volume of 10 μl of reaction mixture. RT-qPCR was run 

using 384 well plates sealed with LightCycler 480 Sealing Foil (Roche, 

Indianapolis, IN) in Roche LightCycler 480. At least five technical replicates for 

each biological replicate and a minimum of three biological replicates for every 

sample were analyzed. A no-template control was used as a negative control. The 

cycle included 10 min denaturation at 95 °C followed by 35 cycles of 95 °C for 10 
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s, 61 °C for 15 s, and 72 °C for 10 s. A fold change in gene transcription was 

calculated using 2-ΔΔCt method. Statistical analysis was performed by using two 

tailed T-test assuming equal variances. 

RNA seq analysis  

Library preparation and RNA seq.(The tables and gel picture was 

generated and provided by Vertis biotechnologies, Germany) RNA seq analysis 

was performed at Vertis Biotechnology AG, Germany. First, RNA samples were 

assessed by capillary gel electrophoresis using Shimadzu MultiNa microchip and 

RNA samples with a 16S/23S ratio of 1:1- 1:3 were selected for further analysis 

(Table 7.3 and Fig. 7.1). 
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Table 7.3: 18Sample information for RNA-seq (from Vertis technologies) 

N
o. 

Sample C
on
c. 
(n
g/
µl) 

Am
ount 
(µg) 

Co
nc. 

(ng/µ
l) 

Amou
nt (µg) 

R
ati
o 

23
S/1
6S 

Yiel
d 

Cap
pabl

e-
seq 
enri
che
d 

RN
A 

(%) 

Recovery 
after rRNA 
depletion 

(%) 

    Custome
r-specified 

Own 
measurements (see 
Fig.1) 

    

1 PAO1_0.1 53
5 

16,1 443 12,9 1,1 0,1 0,4 

2 PAO1_0.2 1.0
45 

31,4 839 24,3 1,1 0,2 0,8 

3 PAO1_5.2 75
3 

22,6 595 17,3 1,3 0,7 3,8 

4 PAO1_5.3 73
3 

22,0 606 17,6 1,2 0,6 4,0 

5 PA2604:IS
_0.1 

1.1
55 

34,7 1.332 38,6 1,3 0,2 2,2 

6 PA2604:IS
_0.2 

1.2
01 

36,0 1.123 32,6 1,3 0,6 3,0 

7 PA2604:IS
_5.1 

1.9
97 

59,9 1.831 53,1 1,3 0,1 3,6 

8 PA2604:IS
_5.2 

1.9
09 

57,3 1.776 51,5 1,3 0,3 1,3 

The RNA samples were analyzed by Capillary electrophoresis (Fig. 1) 
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Figure 7.1: 41Analysis of the total RNA samples on a Shimadzu MultiNA 

microchip electrophoresis system. M = RNA marker 

  

nt         M       1         2        3        4        5        6       7        8  
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For capable RNA seq, first the RNA samples were enriched by capping the 

5´ triphosphorylated RNA with 3´-desthiobiotin-TEG-guanosine 5´ triphosphate 

(DTBGTP) (NEB). For reversible binding of biotinylated RNA species to 

streptavidin vaccinia capping enzyme (VCE) (NEB) was used. And elution step 

was performed to capture the biotinylated species to streptavidin and obtain the 5' 

fragments of the primary transcripts. 
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Table: 7.4. 19Sample information for RNA-seq (from Vertis technologies) 

Sample name Barcode i5 Sequence file (R1/R2 in 
case of PE 

Number of 
Read 

PAO1-01-
minusT 

ATTAGACG PAO1-01-
Cap_S11_R1_001.fastq.gz 

11.160.550 

 

PAO1-02-
minusT 

CGGAGAGA PAO1-02-
Cap_S12_R1_001.fastq.gz 

10.141.937 

PAO1-52-
minusT 

CTAGTCGA PAO1-52-
Cap_S13_R1_001.fastq.gz 

13.728.521 

PAO1-53-
minusT 

CTTAATAG PAO1-53-
Cap_S14_R1_001.fastq.gz 

17.115.224 

PA2604-IS-
01-minusT 

ATAGCCTT PA2604-IS-01-
Cap_S15_R1_001.fastq.gz 

7.618.125 

PA2604-IS-
02-minusT 

TAAGGCTC PA2604-IS-02-
Cap_S16_R1_001.fastq.gz 

21.756.300 

PA2604-IS-
51-minusT 

TCGCATAA PA2604-IS-51-
Cap_S17_R1_001.fastq.gz 

21.597.390 

PA2604-IS-
52-minusT 

AGTCTTCT PA2604-IS-52-
Cap_S18_R1_001.fastq.gz 

21.074.901 

 
Summary of Sequencing run: 
The NGS library pool was analysed on a Shimadzu MultiNA microchip 
electrophoresis system. 
Cluster(PF) 405.827.653 
% Index 94,9 
Total Reads 457.487.654 
Reads ident. 385.129.516 

% Cluster 88,7 
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Table: 7.5. 20Sample information for RNA-seq (from Vertis technologies) 

Sample name Barcode i5 Sequence file (R1/R2 in 
case of PE 

Number of 
Read 

PAO1-01-
Cap 

ATTAGACG PAO1-01-
Cap_S11_R1_001.fastq.gz 

17.653.416 

 

PAO1-02-
Cap 

CGGAGAGA PAO1-02-
Cap_S12_R1_001.fastq.gz 

20.556.173 

 

PAO1-5.2-
Cap 

CTAGTCGA PAO1-52-
Cap_S13_R1_001.fastq.gz 

21.059.039 

 

PAO1-5.3-
Cap 

CTTAATAG PAO1-53-
Cap_S14_R1_001.fastq.gz 

21.533.521 

 

PA2604-IS-
01-Cap 

ATAGCCTT PA2604-IS-01-
Cap_S15_R1_001.fastq.gz 

20.837.183 

 

PA2604-IS-
02-Cap 

TAAGGCTC PA2604-IS-02-
Cap_S16_R1_001.fastq.gz 

20.565.312 

 

PA2604-IS-
51-Cap 

TCGCATAA PA2604-IS-51-
Cap_S17_R1_001.fastq.gz 

18.083.533 

 

PA2604-IS-
52-Cap 

AGTCTTCT PA2604-IS-52-
Cap_S18_R1_001.fastq.gz 

19.552.189 
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Summary of Sequencing run: 
 
The NGS library pool was analysed on a Shimadzu MultiNA microchip 
electrophoresis system. 
Cluster(PF) 430.061.763 
% Index 95,9 
Total Reads 471.674.507 
Reads ident. 412.355.367 
% Cluster 91,2 
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Two different aliquots of RNA samples were then treated with Ribo-Zero 

rRNA kit for bacteria (Illumina) to deplete the ribosomal RNA. These RNA 

samples were then used for cDNA library preparation. In brief, the RNA sampleas 

were poly(A) tailed using poly(A) polymerase. The 5´ triphosphate or CAP were 

then removed by pyrophosphatase (Cellsript) and an RNA adapter was ligated to 

the 5´ monophosphate end of RNAs. cDNA synthesis was performed using the 

oligo (dT)-adapter primer and M-MLV reverse transcripase. The resultant cDNA 

was then PCR amplified by up to 13 cycle to yield about 10-20 nm/µl using high 

fidelity polymerase. The cDNA pool for Illumina NextSeq sequencing was 

generated by taking equimolar cDNA samples followed by elution of samples to a 

size range of 200-500 bp from preparative agarose gel. The size fractionation was 

confirmed by capilary gel electrophoresis. The True-seq primers designed 

following the illumine instructions were used for the sequencing. The cDNA pools 

were sequenced on an Illumina NextSeq 500 system using 75 bp read length. 

Preparation of chemically competent cells (P. aeruginosa) cells using MgCl2.  

P. aeruginosa PAO1 cells were inoculated from frozen stock in LB agar 

(Appendix A) at 37ºC for 24 h. An overnight culture was started from isolated 

colony in 5 ml LB broth (Appendix A) at 37 °C for ~ 16hrs with shaking at 200 

rpm. 1.25 ml of overnight culture was inoculated into the 250 ml LB in 500 ml 

Erlenmeyer flask and incubated at 37ºC with shaking at 200 rpm. After 
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approximately 3.5 – 4h at an A600 of 0.5-0.6, the culture was transferred to 250 ml 

centrifuge bottle and chilled on ice to 4 °C for 10 min. The cells were then 

centrifuged at 6,000 g for 5 min at 4 °C and supernatant was discarded completely. 

Cell pellet was washed twice with ice cold 150 mM MgCl2, first with 250 ml and 

finally with 125 ml. Cell pellets were resuspended in 125 ml of ice cold 150 mM 

MgCl2 followed by incubation on ice with gentle shaking for 1h. Cells were 

harvested by centrifugation at 6,000 g for 5 min at 4 ºC. Cell pellet was finally 

resuspended in 10 ml ice cold 150 mM MgCl2 containing 15% glycerol and mixed 

gently. The cells were prepared as 500 μl aliquots in sterile microfuge tubes and 

incubated at 4 ºC for 12-24h. The competent cells were flash frozen by storing for 

1h in pre-chilled ethanol -80 ºC. Cells were then stored at -80 ºC until use. 

Preparation of electrocompetent cells (P. aeruginosa).  

PAO1 cells were grown in 5 ml of LB broth (Appendix A) for ~ 14 hours. 

Cells were divided in four microcentrifuge tubes in 1.5 ml aliquots and harvested 

by centrifugation for 2 min at 13,000 rpm at room temperature. Each cell pellet was 

washed twice with 1 ml of 300 mM sucrose at room temperature (RT). Two pellets 

were combined in a total of 100 μl 300 mM sucrose. Competent cells were stored 

at RT until transformed with plasmid DNA (388)  
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Electroporation of electro-competent P. aeruginosa cells.  

For electroporation, 300-500ng of non-replicative plasmid DNA was added 

to previously described 100 μl of electrocompetent cells and transfer to a 2 mm gap 

width electroporation cuvette kept at R.T. A pulse at settings: 25 μF; 200 Ohm; 2.5 

kV (Setting EC2) was applied on to a Bio-Rad Gene Pulser X cell™. 

Preparation of chemically competent cells (E. coli DH5α) using CaCl2.  

E. coli DH5α cells were inoculated in 5 ml of LB broth from a frozen 

glycerol stock and incubated for ~ 14 hours at 37 °C with shaking at 200 rpm. The 

main culture was inoculated in 1 liter Erlenmeyer flask containing 500 ml LB and 

incubated at 37 0C with shaking at 200 rpm. After approximately 3.5 – 4h at an 

A600 of 0.5-0.6, the culture was transferred to 2 x 500 ml centrifuge bottles and 

chilled on ice for 10 min with shaking. The cells were then centrifuged at 6,000 g 

for 5 min at 4 °C and supernatant was discarded completely. Each pellet was 

resuspended in 125 ml ice cold 0.1 M CaCl2 and combined into a single 500 ml 

centrifuge bottle. The resuspended cells were centrifuged at 6,000 g for 5 min at 4 

0C. Cell pellet was resuspended in 250 ml ice cold 0.1 M CaCl2 and chilled on ice 

for 30 min. Cell pellet was harvested by centrifugation at 6,000 g for 5 min at 4 0C. 

Post centrifugation, cell pellet was resuspended in 20 ml of ice cold buffer 

containing 0.1 M CaCl2 and 15% glycerol. 100 μl of cells suspension was aliquoted 

in each chilled sterile microfuge tubes and stored at -80 0C. 
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Heat-shock transformation of E. coli DH5α CC.  

DH5α heat-shock competent cells (prepared in lab) were thawed in ice 

during the ligation period. The whole ligated product was added to a tube of HSCC 

and mixed by gentle pipetting. This mixture was tncubated for 30 minutes in ice. 

Then the cells were exposed to heat shock at 42° C using a hot plate (or hot water 

bath) for 1.30 minute. The tubes were kept back into ice immediately after and 

incubated for 10 minutes. 1 ml of warm (pre heated LB at 37 °C) LB were added 

to the cells and the mixtures were then transferred to individual 15 ml glass tubes 

and incubated at 37°C for 1 hour. 100 μl of the cultures were spread-plated onto 

LB agar plates containing selective antibiotics.  

Promoter prediction and construction of promoter activity reporter plasmid.  

The promoter regions were either already defined at the 

beta.pseudomonas.com or was predicted by using promoter prediction tool 

BPROM. Usually 200-300 bp around the predicted promoter region was selected 

to be cloned into promoter activity reporter plasmid. The promoter less lux based 

reporter plasmid pMS402 was used for this. 

 Primers for promoter activity reporter plasmids were constructed on the 

both end of the selected intergenic region. The primers were flanked by six basepair 

long sequence to facilitate the restriction of the ends with corresponding restriction 

enzymes. The flanked region had sequence specific for recongnition by specific 
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restriction enzymes and three-four basepair for landing of restriction enzymes on 

the sequence. Primers were analyzed for melting temperature, GC content (45%-

55%) as well as secondary structure formation (ΔG≥ 0) by using OligoAnalyzer 

(IDT). 

The promoter regions were amplified using pfx polymerase (Life 

technologies). The reaction mixtures constitute of, 2.5 μl of Pfx buffer, 10 mM 

dNTPs 0.75 μl, 50 mM MgSO4 0.5 μl, primers (10 μM) 0.3 μl each, DNA 100 ng 

to a total voleme of 25 μl of PCR mixtrure. The PCR was programmed as, 94 °C 

for 5 min (1 time), 30 cycles of 94 °C for 45 sec, annealing temperature for 40 sec 

and 72 ° C for 1.30 min, then one time 72°C for 10 min and finally incubated at 4° 

C. Amplicons were column purified by ( ). The right amplicons as well as empty 

vector pMS402 were digested with BamHI and xhoI restriction enzymes either in 

separate tubes or in a single tube with the molar ratio of 1:3 of vector and insert. 

Restriction digestion was performed using manufacturars protocol, where 5 μl of 

restriction buffer and 1 μl of each enzyme were added to 1 μg (volume may vary) 

of vector or insert in a total volume of reaction of 50 μl obtained by adding sterilized 

nanopure water. This reaction mixture was then incubated at 37 °C for overnight 

for complete digestion. Upon completion of the digestion process, the enzymes 

were first inactivated by incubating at 80 °C for 15 min. The vector only reaction 

mixture was then exposed to diphosphatase treatment by TSAP (Promega) using 

manufacturar’s protocol. The TSAP was then deactivated at 74° C for 15 min.  The 
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digested samples were column purified by…. And the concentration of the purified 

samples was measured using nanodrop 2000 (Thermofischer). Vector and insert 

were ligated at the molar ratio of 1:3 using quick ligase. 10 μl of quick ligase buffer 

and 1 μl of quick ligase was added to the vector-insert and the total volume was 

brought up to 20 μl by adding sterilized nanopure water. This mixture was 

incubated at room temperature for 15 min and the transformation was performed 

right after. The transformed cells after 1 hour of incubation at 37 °C was spread-

plated onto LB agar with kanamycin (50µg/ml). These plates were incubated at 37° 

C for 12-16 hours. Only heat shock competenct cells and the cells transformed with 

digested-dephosphorylated (not ligated) vectors were spread-plated on LB agar 

plates containing kanamycin (50µg/ml) as negative controls for transformation. 

Isolated colonies on the transformant plates were selected and target gene (insert) 

specific colony PCR was performed to identify the transformant carrying the 

plasmid with successfully cloned insert.  DH5α cells transformed with empty vector 

were used as a negative control, PAO1 was used as positive control and a non-

inoculated control was included in the group to confirm the purity of the PCR 

ingredients. 

Promoter activity assessment 

pMS402 with a promoterless luxCDABE (82) reporter and pMSO4 with 

luxABCDE reporter under the specific promoters to be tested were transformed into 
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PAO1 as well as other bacterial strains (eg. PA2604:Tn5). To select the 

successfully transformed clones, trimethoprim resistant individual clones were 

tested for light production using 96 well clear bottom plates (Grenier bio one). For 

promoter activity assay, bacterial pre-cultures were grown for 12 hours in biofilm 

minimal media (BMM) with no added Ca2+ or 5mM Ca2+. Normalized precultures 

(OD600 0.3) were then inoculated at 1:100 ratio making the final OD600 of the 

starting culture to 0.003into 1 ml of BMM containing corresponding Ca2+ and with 

or without tobramycin at final concentration of 2.5 µg/ml of. 200µl of this solution 

was added to each well of 96 well clear bottom plates. Both cell density and the 

luminescence level were measured every 2 hours at 37°C, continuous shaking at 

fast shaking mode for 24 hours using Synergy MS microplate reader (Biotek). To 

measure the promoter activity of individual RND systems, luminescence readings 

were normalized by the absorbance of corresponding cultures and the luminescence 

produced by empty vector was subtracted from the luminescence produced by the 

vector containing corresponding RND promoter. At least 4 biological replicates 

were used for each strains used. 

The data analyses followed the steps: 1) the averaged luminescence reading 

of non-inoculated controls was subtracted; 2) the luminescence at time 0 was 

subtracted from subsequent readings. The obtained luminescence readings were 3) 

normalized by the corresponding cell density and 4) averaged. 5) averaged 

normalized luminescence of the promoterless vector controls was subtracted from 
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that of the promoter carrying constructs, 6) fold change was calculated versus the 

condition when no Ca2+ or tobramycin were added. At each steps of data 

normalization, any negative values were replaced by the basal luminescence 

reading of empty vector at that point.  At least 3 biological   replicates in each 

experiment and 2 independent experiments were used. 

Plant Infectivity Assay. Lettuce Leaf Assay.  

The assay was performed with modification to the described method by 

(106).Fresh organic Romaine lettuce leaves from market (Walmart/ Food Pyramid) 

were purchased and healthy looking leaves from the core (do not use very young 

looking leaves) were detached. The leaves were then washed with 0.1% bleach and 

rinsed with distilled water (Note: wear gloves during this step and during 

subsequent steps when handling leaves). The excess leaf material was trimmed 

using scissors flamed with ethanol, from around the midrib and the midribs were 

placed in petri dish containing piece of Whatman no. 1 filter paper soaked in 10 

mM MgSO4 (Note: one petri dish can contain up to two midribs if desired). For 

Bacterial inoculation, bacteria were grown in 3 mL BMM at 37° for 16 hours at 

appropriate Ca2+ concentrations for 12 hours. The cultures were then harvested and 

1.5 mL of culture was centrifuged at 13000X for 6 min. (add volume if pellet is not 

easily visible) The pellet was then washed with 10mM MgSO4 of corresponding 

Ca2+ concentration. The cultures were resuspended in 10mM MgSO4 (of 
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appropriate Ca2+ concentration) and diluted to an OD600 of 0.1. These cultures were 

then inoculated into the midribs with 10 µL of culture ~15 mm from one end and 

10 µL of MgSO4 ~15 mm from the other end (at appropriate Ca2+ concentration). 

The petri dishes containing inoculated midribs were kept at room temperature in 

the sunlight in clear plastic bins with water added to the bottom. The zone of 

necrosis was recorded for each midrib, measuring length and width of the zone. The 

following color intensity value was assigned to the necrosis zone. 

                    

       0.1      0.2    0.3     0.4     0.5     0.6     0.7    0.8     0.9     1.0 

C. elegans Killing Assay 

Maintenance: C elegans N2 bristol wild type strain was received on a 

NGM plates. Worms supplied were fed on E coli OP50 strain. The bacteria from 

the monoxenic C elegans culture were streaked onto an LB plate and one single 

clone was inoculated into LB broth over -night culture. 100 μl of the overnight 

culture was inoculated(seeded) onto NGM plates and were left to grow overnight 

at 37°C (The plates were dried before putting into 37°C incubator. The plates after 

24 hours of growth of bacteria on to it, were then supplied with chunk of agar from 

the original NGM plates containing the worms. 5 plates were inoculated and the 
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plates were kept at RT (upside-up position) for the spread and growth of C elegans 

worms. 

Frogen stock preparation: According to the literature (Maintenance of C 

elegans,wormbook.org ) the L1 and L2 stage of larvae are the best one to keep at -

80°C freezer for longer period. An NGM plate with hatched L1, L2 larvae of C 

elegans was selected. The plates were rinsed superficially with S buffer and the 

solute were collected into cryovials containing 50% of 30%glycerol (500μl S buffer 

containing larvae+ 500μl of 30% glycerol). The cryovials then were placed into 

container box inside a sterofoam box. The stereofoam box was kept in -80 to allow 

gradual freezing. The container box was taken out of the sterofoam box after 7 days 

and kept on the shelf of -80 freezer. 

Slow Killing assay 

Slow killing assay was performed using C elegans wild tpe N2 bristol strain 

and temperature sensitive sterile mutant CF-512 (fer-15(b26) II (CGC). In order to 

identify the role of Ca2+ in virulence of Pseudomonas aeruginosa, PAO1,  bacterial 

lawn was grown on NGM agar plates with no added Ca2+ and 5 mM Ca2+. 

Previously well grown adult gravid worms were used for worm synchronization. 

Gravid worms were washed off the worm plate with M9W buffer and 100μl of 5N 

NaOH and 400μl of household bleach were added to the worms to lyse open the 

worms and release the eggs. The mixture was vigorously vortexed for no more than 
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4 min and 14ml of M9W buffer was added to the solution after 4 min. The eggs 

were washed three times with M9W buffer and resuspended into 5 ml of M9W 

buffer. The 15 ml falcon tubes containing the eggs were placed in a shaker at 200 

rpm and room temperature (25°C) for 12 hours. Synchronized L1 stage larvae were 

transferred to NGM agar plates provided with E coli OP50. The worms were grown 

for 34 hours until they reach the young adult stage. 30-40 Young adult worms were 

then seeded in to the slow killing assay plates; NGM agar with bacterial lawn on it 

at 0mM and 5mM Ca2+. Dead worms were scored every 12 hours. 

Fruit fly Maintenance 

D. melanogaster (OR) flies were maintained in foam plugged plastic 250 

mL Erlenmeyer flasks (VWR).  Standard cornmeal fly medium (28 g dried brewer’s 

yeast, 77 g cornmeal (Sigma), 27 g sucrose, 53 g glucose, 3.5 mL propionic acid, 

0.3 mL 85 % phosphoric acid and 6 g select agar (VWR) per liter) was used for 

regular maintenance of the fly.  The adult flies were transferred to new vials 

containing fresh medium every 5-7 days to allow continuation of progeny with 

healthy and viable fruitflies. 

Fruitfly Killing assay  

To assess the role of Ca2+ in virulence caused by P. aeruginosa, Drosophyla 

melanogaster infection models was used. For fly feeding assays, sucrose agar (1.2 
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g Bacto-agar (Difco), 14 mL 20% sucrose and 41 mL sterile distilled water) was 

used. Fly synchronization was done prior to each feeding assay was performed 

(382, 385). In brief, the adult flies from fly maintenance vial were transferred at 

least twice at two days interval and the same age larvae were left to grow. 2 day old 

synchronized flies were finally transferred to a new fly maintenance vial and left 

overnight. The flies were separated into polystyrene fly vials (Applied Scientific) 

and starved for 6 hours before separating and transferring the synchronized male 

flies to the assay vials. Simultaneously, the bacterial precultures were harvested at 

the 16th hour and the OD600of the culture was normalized to 3.0 by resuspending the 

bacterial pellet into 200 µl of 5% sucrose prepare with the corresponding media at 

which the bacteria was grown. The normalized culture was then inoculated onto fly 

vials containing 2.3 cm whatman filter disk placed on top of sucrose agar (5% 

sucrose and 2.2% select agar). The assay vials inoculated with only 5% sucrose 

were used as negative controls.  Starved synchronized male flies were transferred 

to the sucrose feeding vials containing the bacterial suspensions and incubated at 

25oC. Dead flies were scored daily for 14 days. 

Data analysis for Fly Killing assay (PRISM).  

The survival curve for fruitfly infection model was performed by Kaplan 

Meyer analysis of the data was performed using PRISM 3.0.   
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Gene complementation  

For Genetic complementation, mini TN7-GM-eyfP was used and the 

cloning, transformation and transformed bacteria selection was perfomed according 

to (388). At first, primers were designed flanking the start and end site of PA2604 

gene. Forward primer and reverse primer was had six bp long overhangs with 

sequence specific for HindIII and SacI restriction sites respectively along with extra 

3-4 bases to facilitate landing of the restriction enzymes. Primers were analyzed for 

compatibility, secondary structure formation as well as GC content (as described in 

the promoter activity reporter plasmid construction section). It was made sure that 

the primers had no more than 5° C temperature difference between them. Also, for 

gene tic complementation, it was essential to amplify and clone the sequence “in 

frame” to keep the genetic signature intact.  

To amplify the product gradient PCR using phusion polymerase (NEB) was 

used. The amplicons of correct size were restricted from gel and purified by 

QIAquick Gel extraction kit (Qiagen). The purified amplicons as well as vector 

containing the mini TN7 plasmid, pUC18T-miniTN7-GM-eyfP were subjected to 

restriction digestion, dephosphorylation of vector, inactivation of enzymes, column 

purification as well as 15 min ligation by quick ligase ( NEB) as described before 

in promoter activity reporter construct section of the methodology.  The ligated 

plasmids were then transformed into E. coli DH5α competent cells by heat shock 

transformation and transformants were selected on LB agar plates with 100 µg/ ml 
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of ampicillin. Colony PCR was performed to identify individual clones carrying the 

insert for PA2604 gene. For this plasmid specific primer (Table 7.2.) right up and 

down of the insert was used to confirm the presence of the gene was in the 

transposon. 

Upon successful identification of individual colonies with PA2604 insert in 

them, the plasmids were purified and exposed to restriction analysis where the 

purified plasmids were digested with HindIII and SacI. Presence of two bands 

corresponding to the vector and insert further confirmed the successful cloning of 

the insert into the vector. Empty vector was used as a control. 

The plasmid construct was then sent to OSU sequencing core facility to 

sequence the insert using the plasmid specific primer (table…). The received 

sequence was then aligned to the original FASTA sequence of the gene using 

Clustal Omega tool available online (website: 

http://www.ebi.ac.uk/Tools/msa/clustalo/ ). The plasmid construct with the insert 

aligning to the original sequence 100% was then finalized for incorporation into P. 

aeruginosa genome. 

The finalized plasmid construct pUC18T-GM-PA2604-eyfP (pSK231) 

combined with pTNS1 (total 1 µg maximum) were electroporated into PAO1 

electrocompetent cells as described in (ref). pTNS1 carries the gene for transposase 

that enables the miniTN7 plamid jump into P. aeruginosa genome in a site directed 
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manner up of glmS gene. The transformants were selected on LB agar plates 

containing gentamycin at the concentration of 30 µg/ml. The final individual clones 

(15- 20 of them) were then transferred to LB agar plates containing 30 µg/ml of 

gentamycin and 5% of sucrose to get rid of the plasmid since the mini TN7 was 

expected to be incorporated into P. aeruginosa genome. pUC18T-GM-eyfP plasmid 

has the sacB gene which makes the transformant P. aeruginosa intolerant to sucrose, 

thus adding sucrose as a carbon source on the agar plate help removal of the plasmid 

once but having gentamycin as a selective antimicrobial on the plate will allow the 

growth of the transformants those had minTN7-GM-PA2604-eyfP already 

incorporated into the genome. The gene was cloned into the transposon in frame 

and under the constitutively active modified promoter PA1/04/03. 
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Sequence analysis for complemented gene. 

CLUSTAL multiple sequence alignment by MUSCLE (3.8) 

 

PA2604cl3.                            --------------------ATGGAACTTCCGGCCGTTCGCGG-ACAGCGTGAAGTCAGC 

gb|AE004091.2|:2947803-2948471|P      ATGCAAGAACAGCAATATCAGCTGAACT--CCGCCG-

TCGCGGAACAGCGTGAAGTCAGC 

PA2604cl19.                           -------------------AGTTGAAACTCCCGCCG-TCGCGG-ACAGCGTG-AGTCAGC 

                                                             ***    * **** ****** ******** ******* 

 

PA2604cl3.                            

GGCGTTCTGCGCAATACCTACGGCCTGCTGGCACTCACCCTGGCCTTCAGCGGCCTGGTG 

gb|AE004091.2|:2947803-2948471|P      

GGCGTTCTGCGCAATACCTACGGCCTGCTGGCACTCACCCTGGCCTTCAGCGGCCTGGTG 

PA2604cl19.                           

GGCGTTCTGCGCAATACCTACGGCCTGCTGGCACTCACCCTGGCCTTCAGCGGCCTGGTG 

                                      ************************************************************ 

 

PA2604cl3.                            

GCCTACGTTTCGCAGCAGATGCGCCTGCCCTATCCGAACGTGTTCGTGGTGCTGATCGGC 

gb|AE004091.2|:2947803-2948471|P      

GCCTACGTTTCGCAGCAGATGCGCCTGCCCTATCCGAACGTGTTCGTGGTGCTGATCGGC 

PA2604cl19.                           

GCCTACGTTTCGCAGCAGATGCGCCTGCCCTATCCGAACGTGTTCGTGGTGCTGATCGGC 

                                      ************************************************************ 

 

PA2604cl3.                            

TTCTACGGCCTGTTCTTCCTCACCGTGAAGCTGCGCAACAGCGCCTGGGGTCTGGTCAGC 
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gb|AE004091.2|:2947803-2948471|P      

TTCTACGGCCTGTTCTTCCTCACCGTGAAGCTGCGCAACAGCGCCTGGGGTCTGGTCAGC 

PA2604cl19.                           

TTCTACGGCCTGTTCTTCCTCACCGTGAAGCTGCGCAACAGCGCCTGGGGTCTGGTCAGC 

                                      ************************************************************ 

 

PA2604cl3.                            

ACTTTCGCCCTGACCGGCTTCATGGGCTACACGCTCGGCCCGATCCTCAACATGTACCTC 

gb|AE004091.2|:2947803-2948471|P      

ACTTTCGCCCTGACCGGCTTCATGGGCTACACGCTCGGCCCGATCCTCAACATGTACCTC 

PA2604cl19.                           

ACTTTCGCCCTGACCGGCTTCATGGGCTACACGCTCGGCCCGATCCTCAACATGTACCTC 

                                      ************************************************************ 

 

PA2604cl3.                            

GGCCTGCCCAACGGCGGCAGCGTCATCACTTCGGCGTTCGCCATGACCGCCCTGGTGTTC 

gb|AE004091.2|:2947803-2948471|P      

GGCCTGCCCAACGGCGGCAGCGTCATCACTTCGGCGTTCGCCATGACCGCCCTGGTGTTC 

PA2604cl19.                           

GGCCTGCCCAACGGCGGCAGCGTCATCACTTCGGCGTTCGCCATGACCGCCCTGGTGTTC 

                                      ************************************************************ 

 

PA2604cl3.                            

TTCGGCCTGTCCGCCTATGTGCTGACCACCCGCAAGGACATGAGCTTCCTGTCCGGCTTC 

gb|AE004091.2|:2947803-2948471|P      

TTCGGCCTGTCCGCCTATGTGCTGACCACCCGCAAGGACATGAGCTTCCTGTCCGGCTTC 

PA2604cl19.                           

TTCGGCCTGTCCGCCTATGTGCTGACCACCCGCAAGGACATGAGCTTCCTGTCCGGCTTC 

                                      ************************************************************ 
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PA2604cl3.                            

ATCACCGCCGGCTTCTTCGTCCTGCTGGGCGCCGTGCTGGTATCGCTGTTCTTCCAGATC 

gb|AE004091.2|:2947803-2948471|P      

ATCACCGCCGGCTTCTTCGTCCTGCTGGGCGCCGTGCTGGTATCGCTGTTCTTCCAGATC 

PA2604cl19.                           

ATCACCGCCGGCTTCTTCGTCCTGCTGGGCGCCGTGCTGGTATCGCTGTTCTTCCAGATC 

                                      ************************************************************ 

 

PA2604cl3.                            

AGTGGCCTGCAACTGGCGATCAGCGCCGGCTTCGTCCTGTTCTCCTCGGCGATGATCCTC 

gb|AE004091.2|:2947803-2948471|P      

AGTGGCCTGCAACTGGCGATCAGCGCCGGCTTCGTCCTGTTCTCCTCGGCGATGATCCTC 

PA2604cl19.                           

AGTGGCCTGCAACTGGCGATCAGCGCCGGCTTCGTCCTGTTCTCCTCGGCGATGATCCTC 

                                      ************************************************************ 

 

PA2604cl3.                            

TACCAGACCAGCGCGATCATCCACGGCGGCGAACGCAACTACATCATGGCCACCATCAGC 

gb|AE004091.2|:2947803-2948471|P      

TACCAGACCAGCGCGATCATCCACGGCGGCGAACGCAACTACATCATGGCCACCATCAGC 

PA2604cl19.                           

TACCAGACCAGCGCGATCATCCACGGCGGCGAACGCAACTACATCATGGCCACCATCAGC 

                                      ************************************************************ 

 

PA2604cl3.                            

CTGTACGTGTCGATCTACAACCTGTTCATCAGCCTGTTGCAGATCTTCGGCATCGCCGGC 

gb|AE004091.2|:2947803-2948471|P      

CTGTACGTGTCGATCTACAACCTGTTCATCAGCCTGTTGCAGATCTTCGGCATCGCCGGC 

PA2604cl19.                           

CTGTACGTGTCGATCTACAACCTGTTCATCAGCCTGTTGCAGATCTTCGGCATCGCCGGC 

                                      ************************************************************ 
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PA2604cl3.                            

GGCGACGACTGAGAGCTCATGCATGATCGAATTAGCTTCAAAAGCGCTCTGAAGTTCCTA 

gb|AE004091.2|:2947803-2948471|P      GGCGACGACTGA------------------------------------------------ 

PA2604cl19.                           

GGCGACGACTGAGAGCTCATGCATGATCGAATTAGCTTCAAAAGCGCTCTGAAGTTCCTA 

                                      ************                                                 

 

PA2604cl3.                            

TACTTTCTAGAGAATAGGAACTTCGGAATAGGAACTTCAAGATCCCCTGATTCCCTTTGT 

gb|AE004091.2|:2947803-2948471|P      ------------------------------------------------------------ 

PA2604cl19.                           

TACTTTCTAGAGAATAGGAACTTCGGAATAGGAACTTCAAGATCCCCTGATTCCCTTTGT 

                                                                                                   

 

PA2604cl3.                            

CAACAGCAATGGATCGAATTGACATAAGCCTGTTCGGTTCGTAAACTGTAATGCAAGTAG 

gb|AE004091.2|:2947803-2948471|P      ------------------------------------------------------------ 

PA2604cl19.                           

CAACAGCAATGGATCGAATTGACATAAGCCTGTTCGGTTCGTAAACTGTAATGCAAGTAG 

                                                                                                   

 

PA2604cl3.                            

CGTATGCGCTCACGCAACTGGTCCAGAAACCTTGACCGAACGCAGCGGTGGTAACGGCGC 

gb|AE004091.2|:2947803-2948471|P      ------------------------------------------------------------ 

PA2604cl19.                           CGTATGCGCTCACGCAACTGGTCCAG-

AACCTTGACCGAACGCAGCGGTGGTAACGGCGC 

                                                                                                   

 

PA2604cl3.                            

AGTGGCGGTTTTCATGGCTTGTTATGACTGTTTTTTTTGTACAGTCTATGCCTCGGGCAT 
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gb|AE004091.2|:2947803-2948471|P      ------------------------------------------------------------ 

PA2604cl19.                           AGTGGCGGTTTTCATGGCTTGTTATGACTG-

TTTTTTTGTACAGTCTATGCCCTCGGGCA 

                                                                                                   

 

PA2604cl3.                            

CCCAAGCAGCAAGCGCGTTACGCCGTGGGTCGATGTTTGATGTTATGGGAGCAGCAACGA 

gb|AE004091.2|:2947803-2948471|P      ------------------------------------------------------------ 

PA2604cl19.                           TCCAAGCAGCAAGCGCGTTACGCCGT-

GGTCGATGTTTGATGTTTTGGAAGCAGCACGAT 

                                                                                                   

 

PA2604cl3.                            TGTTACGCAGCAGCCAACGATGTTACGCCAGCAAGGCAAGTCGCCCTTAAAA--

CAAAGT 

gb|AE004091.2|:2947803-2948471|P      ------------------------------------------------------------ 

PA2604cl19.                           GTTTACGCAGCAG-

CAACGATGTTTACGCAAGCAGGCAGTCGGCCCTTAAAAACAAAGGT 

                                                                                                   

 

PA2604cl3.                            TAGTTGCTTCAAAGTTATGGGCATCATTTCGCACCATGTAG--

CTCGGACCTGACCAAAG 

gb|AE004091.2|:2947803-2948471|P      ------------------------------------------------------------ 

PA2604cl19.                           TAGGTGGCTCAAGGT--

ATGGCATCATTTCGGCACATGGTAGCCTCGGTCCCTTGACCAG 

                                                                                                   

 

PA2604cl3.                            TCCAATCC--

ATGCGGCCTTGCTCCTTGATCTTTTCGGTCGTGAAGTTCCGGAGACGTAA 

gb|AE004091.2|:2947803-2948471|P      ------------------------------------------------------------ 

PA2604cl19.                           TCAAATTCCAATGCGGACTGCTCTTTGAATCTTTTCGGTCTGGAG---

TCGGAAACGTAG 
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PA2604cl3.                            -CCACCTACTTCCAAAATCAGTGCGTAC--

CCGATATCCTCGGGGAACTCTTGGTCCTAC 

gb|AE004091.2|:2947803-2948471|P      ------------------------------------------------------------ 

PA2604cl19.                           

CCCACCTACCTCCCAACTCCATCAGTACCTCCGATAACCTTCCGGAAACCTTGGCCTCTC 

                                                                                                   

 

PA2604cl3.                            GTTA- 

gb|AE004091.2|:2947803-2948471|P      ----- 

PA2604cl19.                           CCGGT 
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The co-ordinates in Pseudomonas.com: 2947803 – 2948471 

LUSTAL multiple sequence alignment by MUSCLE (3.8) 

PA2604cl19R.                          CCGAATGCCA----GTGCGAGACTTG--------CACAGGCTGATG-ACAGGTTGTAGAT 

gb|AE004091.2|:2947803-2948471|P      

TCAGTCGTCGCCGCCGGCGATGCCGAAGATCTGCAACAGGCTGATGAACAGGTTGTAGAT 

PA2604cl3R.                           CCCGGGGCCA-----GGCGAGACTG---------CACAGGCTGATGAACAGGTTGTAGAT 

                                       *    * *       ****  *            *********** ************* 

 

PA2604cl19R.                          

CGACACGTACAGGCTGATGGTGGCCATGATGTAGTTGCGTTCGCCGCCGTGGATGATCGC 
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gb|AE004091.2|:2947803-2948471|P      

CGACACGTACAGGCTGATGGTGGCCATGATGTAGTTGCGTTCGCCGCCGTGGATGATCGC 

PA2604cl3R.                           

CGACACGTACAGGCTGATGGTGGCCATGATGTAGTTGCGTTCGCCGCCGTGGATGATCGC 

                                      ************************************************************ 

 

PA2604cl19R.                          

GCTGGTCTGGTAGAGGATCATCGCCGAGGAGAACAGGACGAAGCCGGCGCTGATCGCCAG 

gb|AE004091.2|:2947803-2948471|P      

GCTGGTCTGGTAGAGGATCATCGCCGAGGAGAACAGGACGAAGCCGGCGCTGATCGCCAG 

PA2604cl3R.                           

GCTGGTCTGGTAGAGGATCATCGCCGAGGAGAACAGGACGAAGCCGGCGCTGATCGCCAG 

                                      ************************************************************ 

 

PA2604cl19R.                          

TTGCAGGCCACTGATCTGGAAGAACAGCGATACCAGCACGGCGCCCAGCAGGACGAAGAA 

gb|AE004091.2|:2947803-2948471|P      

TTGCAGGCCACTGATCTGGAAGAACAGCGATACCAGCACGGCGCCCAGCAGGACGAAGAA 

PA2604cl3R.                           

TTGCAGGCCACTGATCTGGAAGAACAGCGATACCAGCACGGCGCCCAGCAGGACGAAGAA 

                                      ************************************************************ 

 

PA2604cl19R.                          

GCCGGCGGTGATGAAGCCGGACAGGAAGCTCATGTCCTTGCGGGTGGTCAGCACATAGGC 

gb|AE004091.2|:2947803-2948471|P      

GCCGGCGGTGATGAAGCCGGACAGGAAGCTCATGTCCTTGCGGGTGGTCAGCACATAGGC 

PA2604cl3R.                           

GCCGGCGGTGATGAAGCCGGACAGGAAGCTCATGTCCTTGCGGGTGGTCAGCACATAGGC 

                                      ************************************************************ 
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PA2604cl19R.                          

GGACAGGCCGAAGAACACCAGGGCGGTCATGGCGAACGCCGAAGTGATGACGCTGCCGCC 

gb|AE004091.2|:2947803-2948471|P      

GGACAGGCCGAAGAACACCAGGGCGGTCATGGCGAACGCCGAAGTGATGACGCTGCCGCC 

PA2604cl3R.                           

GGACAGGCCGAAGAACACCAGGGCGGTCATGGCGAACGCCGAAGTGATGACGCTGCCGCC 

                                      ************************************************************ 

 

PA2604cl19R.                          

GTTGGGCAGGCCGAGGTACATGTTGAGGATCGGGCCGAGCGTGTAGCCCATGAAGCCGGT 

gb|AE004091.2|:2947803-2948471|P      

GTTGGGCAGGCCGAGGTACATGTTGAGGATCGGGCCGAGCGTGTAGCCCATGAAGCCGGT 

PA2604cl3R.                           

GTTGGGCAGGCCGAGGTACATGTTGAGGATCGGGCCGAGCGTGTAGCCCATGAAGCCGGT 

                                      ************************************************************ 

 

PA2604cl19R.                          

CAGGGCGAAAGTGCTGACCAGACCCCAGGCGCTGTTGCGCAGCTTCACGGTGAGGAAGAA 

gb|AE004091.2|:2947803-2948471|P      

CAGGGCGAAAGTGCTGACCAGACCCCAGGCGCTGTTGCGCAGCTTCACGGTGAGGAAGAA 

PA2604cl3R.                           

CAGGGCGAAAGTGCTGACCAGACCCCAGGCGCTGTTGCGCAGCTTCACGGTGAGGAAGAA 

                                      ************************************************************ 

 

PA2604cl19R.                          

CAGGCCGTAGAAGCCGATCAGCACCACGAACACGTTCGGATAGGGCAGGCGCATCTGCTG 

gb|AE004091.2|:2947803-2948471|P      

CAGGCCGTAGAAGCCGATCAGCACCACGAACACGTTCGGATAGGGCAGGCGCATCTGCTG 

PA2604cl3R.                           

CAGGCCGTAGAAGCCGATCAGCACCACGAACACGTTCGGATAGGGCAGGCGCATCTGCTG 

                                      ************************************************************ 
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PA2604cl19R.                          

CGAAACGTAGGCCACCAGGCCGCTGAAGGCCAGGGTGAGTGCCAGCAGGCCGTAGGTATT 

gb|AE004091.2|:2947803-2948471|P      

CGAAACGTAGGCCACCAGGCCGCTGAAGGCCAGGGTGAGTGCCAGCAGGCCGTAGGTATT 

PA2604cl3R.                           

CGAAACGTAGGCCACCAGGCCGCTGAAGGCCAGGGTGAGTGCCAGCAGGCCGTAGGTATT 

                                      ************************************************************ 

 

PA2604cl19R.                          

GCGCAGAACGCCGCTGACTTCACGCTGTTCCGCGACGGCGGAGTTCAGCTGATATTGCTG 

gb|AE004091.2|:2947803-2948471|P      

GCGCAGAACGCCGCTGACTTCACGCTGTTCCGCGACGGCGGAGTTCAGCTGATATTGCTG 

PA2604cl3R.                           

GCGCAGAACGCCGCTGACTTCACGCTGTTCCGCGACGGCGGAGTTCAGCTGATATTGCTG 

                                      ************************************************************ 

 

PA2604cl19R.                          

TTCTTGCATAAGCTTATTACTTGTACAGCTCGTCCATGCCGAGAGTGATCCCGGCGGCGG 

gb|AE004091.2|:2947803-2948471|P      TTCTTGCAT--------------------------------------------------- 

PA2604cl3R.                           

TTCTTGCATAAGCTTATTACTTGTACAGCTCGTCCATGCCGAGAGTGATCCCGGCGGCGG 

                                      *********                                                    

 

PA2604cl19R.                          

TCACGAACTCCAGCAGGACCATGTGATCGCGCTTCTCGTTGGGGTCTTTGCTCAGGGCGG 

gb|AE004091.2|:2947803-2948471|P      ------------------------------------------------------------ 

PA2604cl3R.                           

TCACGAACTCCAGCAGGACCATGTGATCGCGCTTCTCGTTGGGGTCTTTGCTCAGGGCGG 
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PA2604cl19R.                          

ACTGGTAGCTCACGTAGTGGTTGTCGGGCAGCAGCACGGGGCCGTCGCCGATGGGGGTGT 

gb|AE004091.2|:2947803-2948471|P      ------------------------------------------------------------ 

PA2604cl3R.                           

ACTGGTAGCTCAGGTAGTGGTTGTCGGGCAGCAGCACGGGGCCGTCGCCGATGGGGGTGT 

                                                                                                   

 

PA2604cl19R.                          

TCTGCTGGTAGTGGTCGGCGAGCTGCACGCTGCCGTCCTCGATGTTGTGGCGGATCTTGA 

gb|AE004091.2|:2947803-2948471|P      ------------------------------------------------------------ 

PA2604cl3R.                           

TCTGCTGGTAGTGGTCGGCGAGCTGCACGCTGCCGTCCTCGATGTTGTGGCGGATCTTGA 

                                                                                                   

 

PA2604cl19R.                          

AGTTCACCTTGATGCCGTTCTTCTGCTTGTCGGCCATGATATAGACGTTGTGGCTGTTGT 

gb|AE004091.2|:2947803-2948471|P      ------------------------------------------------------------ 

PA2604cl3R.                           

AGTTCACCTTGATGCCGTTCTTCTGCTTGTCGGCCATGATATAGACGTTGTGGCTGTTGT 

                                                                                                   

 

PA2604cl19R.                          AGTTGTACTCCAGCTTGTGCCCC-

AGGATGTTGCCGTCCTCCTTGAAGTCGATGCCCTTC 

gb|AE004091.2|:2947803-2948471|P      ------------------------------------------------------------ 

PA2604cl3R.                           

AGTTGTACTCCAGCTTGTGCCCCAAGGATGTTGCCGTCCTCCTTGAAGTCGATGCCCTTC 

                                                                                                   

 

PA2604cl19R.                          AGCTCGATGCGGTTCACCA--

GGTGTCGCCCCTCGAACTTCACTTCGGCGCGGGTCTTTG 

gb|AE004091.2|:2947803-2948471|P      ------------------------------------------------------------ 
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PA2604cl3R.                           

AGCTCGATGCGGGTCACCAAGGGTGTCGCCCCTCGAACTTCACCTCGGCCGCGGGTCCTG 

                                                                                                   

 

PA2604cl19R.                          TAGTGCC--GTCGTCTTGA--GAAGATGCTGCGCTCCTGACGTAGCTCCGGCATG---

CG 

gb|AE004091.2|:2947803-2948471|P      ------------------------------------------------------------ 

PA2604cl3R.                           

TAGTGCCCGTTCGTCCTGAAGAAAGATGTTGCGCTCTGAACGTAGCTCCGGCAATGGCCG 

                                                                                                   

 

PA2604cl19R.                          GACTTGAAGA--GTCATGCTGCCTCATG-----TGGCTCAGTAGCGTCCAGCACTGCAGG 

gb|AE004091.2|:2947803-2948471|P      ------------------------------------------------------------ 

PA2604cl3R.                           

AACCTGAAGAAGGTCCTGCCTGCTCATGGTCATCGGGTAGCCGATCGAAGGCACTGCAGG 

                                                                                                   

 

PA2604cl19R.                          --CGTAGCGAAAGGGTGGTCCACAC----AATG 

gb|AE004091.2|:2947803-2948471|P      --------------------------------- 

PA2604cl3R.                           ACCGTAGACGAAAGCTGGCTCACACACGAAATG       

                                                        

Membrane permeability assay  

In order to assess the effect of Ca2+ in modification of outermembrane , 

membrane permeability assay was performed according to loh et al (390) with 

modifications. Fort his first Bacterial cells were grown in 3 ml of BMM without 

any added Ca2+ for 12 hours at 37º C and 200 rpm using the floor shaker incubator. 

At 12th hour the OD600 of the culture was measured and normalized to 0.1. 100µl 
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od normalized culture was added to 100 ml of corresponding media (1:1000) in 

ehrlmyer flasks and was incubated at 37º C and 200 rpm till middle log (Both time 

and OD600 was considered). 40 ml of this culture was taken into 50 ml falcon tubes 

and was washed with HEPES buffer (pH 7.2) at 4200 rpm for 5 min at room 

temperature. The cell pellets were resuspended into 3ml of the buffer. OD600 of this 

cell suspension was measured and normalized to OD600 of 0.5. 100 µl of 

normalized cell suspension was added to each well of 96 well clear bottom black 

plates. 4 replicates of non-inoculated buffer controls were also added to the wells. 

Then the cell density was measured at 600nm and fluorescence was measured at 

350/420 excitation/ emission. Then 50 ml of 30 µM 1-N-Phenylenaphthylamine, 

NPN (sigma) was added to each well including the non-inoculated controls 

followed by cell density and fluorescence measurement. Finally, 50 µl of 20 mM 

Ca2+ or 1 µg/ml polymyxin-B was added to the wells to determine the effect of the 

added molecules on change in fluorescence level. The cell density as well as 

fluorescence was measured the same way as above. Data analysis was performed 

as follows: 1. The average readings of non-inoculated samples were subtracted 

from each set of readings for the experimental. 2. The fluorescent readings were 

divided by the OD600 of corresponding wells. 3. Normalized fluorescence of cells 

only (before adding NPN to the solution) was subtracted from the fluorescence 

reading of the cells after adding NPN as well as that of the cells after adding the 

Ca2+ or Pol-B. The changes in the fluorescence was observed by plotting the 
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fluorescence level before and after adding the Ca2+ and Pol-B. A students T-test on 

Microsoft excel was performed to confirm the statistical validation.  
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Appendix A: Recipes 
 
 
Antibiotics: 
 
Ampicillin stock solution (100 mg/ml) 
              1 g Ampicillin 
              10 ml Nano-pure water 
              Sterilize using 0.22 µm pore-size filter. Store in 1 ml aliquots at -20 °C. 
 
Carbenicillin stock solution (300 mg/ml) 
              3 g Carbenicillin 
              10 ml Nano-pure water 
              Sterilize using 0.22 µm pore-size filter. Store in 1 ml aliquots at -80 °C. 
 
Gentamycin stock solution (30 mg/ml) 
              300 mg Gentamycin 
              10 ml Nano-pure water 
              Sterilize using 0.22 µm pore-size filter. Store in 1 ml aliquots at -20 °C. 
 
Gentamycin stock solution (100 mg/ml) 
              1 g Gentamycin 
              10 ml Nano-pure water 
              Sterilize using 0.22 µm pore-size filter. Store in 1 ml aliquots at -20 °C. 
 
Tetracycline hydrochloride stock solution (20mg/ml) 
              200 mg Tetracycline 
              10 ml Nano-pure water 
              Sterilize using 0.22 µm pore-size filter. Store in 1 ml aliquots at -20 °C. 
Note: Solubility limit of Tetracycline hydrochloride in water is 20 mg/ml. 
 
Trimethoprim stock solution (50mg/ml) 

500 mg Trimethoprim 
10 ml of chloroform:ethanol = 1:1 
Sterilize using 0.22 μm pore-size filter. Store in 1 ml aliquots at -20 °C, 
dark. 

Note: Trimethoprim is hard to dissolve. Solubility can be enhanced by vortexing 
and 
leaving at room temperature for 15 -30 min. 
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Kanamycin stock solution (50mg/ml) 
500 mg Kanamycin 
10 ml Nano-pure water 
Sterilize using 0.22 μm pore-size filter. Store in 1 ml aliquots at -20 °C, 
dark. 
 

Buffers: 
 
Discharge buffer (5 ml) 

12.5 mM CaCl2 
62.5 µl CaCl2 (1M) 

 
2% NP40 (70%) 
143 µl NP40 (70%) 

 
Coelenterazine (50mM) 

250 µg coelenterazine 
1.136 ml ethanol (95%) 

 
HEPES buffer (1000ml) 

25 mM HEPES 
5.96 g HEPES 
125 mM NaCl 
7.3 g NaCl 
1mM MgCl2 
0.0952 g MgCl2 

Adjust pH to 7.2 with 1M NaOH 
Add CCCP to a final concentration of 5µM and Glucose to a final concentration 
of 5 mM. (This is used for membrane permeability assay and CCP and glucose 
was added on the day of the experiment each time) 
 
Potassium Phosphate buffer (20mM) 

Solution 1: 
620 mM K2HPO4 
107.99 g K2HPO4 
Q.S to 1 L 
Solution 2: 
620 mM KH2PO4 
84.37g KH2PO4 
Q.S to 1 L 

Mix 615 ml of solution 1 and 385 ml of solution 2 
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The ratio ensures that the pH of the buffer is pH 7.0. 
 
Phosphate-Buffered Saline (PBS) 

130 mM NaCl  
10 mM Na2HPO4  
1.5 mM K2HPO4  
30 mM KCl  
pH – 7.4 
Q.S to 1 L 

 
50 X TAE (running buffer for agarose gel DNA electrophoresis) 

242 g Trisma base 
57.1 ml Glacial acetic acid 
100 ml 0.5 M EDTA, pH – 8.0 
Q.S. to 1 L 
Dilute to 1X for running DNA-agarose gel. 
 

Media: 
 
1x Biofilm Minimal Media (BMM) 
This bacterial growth medium is well defined and supports excellent growth of P. 
aeruginosa. 
 
 9mM Monosodium Glutamate 

50mM Glycerol (w/v) 
0.15 mM Sodium Phosphate Monobasic 
0.34 mM Dipotassium phosphate 
145 mM Sodium Chloride 
pH: 7 
Q.S. to 1 L and Autoclave 
 
After cooling down add the following: 
1 ml of Vitamin solution 
200 µl of Trace Metal Solution 
0.02 Mm (20 µl) of Magnesium sulfate solution 
 

1X BMM agar medium (for antibiotic susceptibility assay) 
 

9mM Monosodium Glutamate 
50mM Glycerol (w/v) 
0.15 mM Sodium Phosphate Monobasic 
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0.34 mM Dipotassium phosphate 
145 mM Sodium Chloride 
15 g of Becto agar 
pH: 7 
 
Q.S. to 1 L and Autoclave 
 
After cooling down add the following: 
1 ml of Vitamin solution 
200 µl of Trace Metal Solution 
0.02 Mm (20 µl) of Magnesium sulfate solution 
 

~ 20 ml media poured onto the each 16 mm petridishes under UV hood and dried 
15 minuite after the plates solidified 

 
Luria-Bertani (LB) Broth 

10 g Bacto-Tryptone 
5 g Yeast Extract 
5 g Sodium Chloride 
Q.S. to 1 L. Autoclave. 
 

LB Agar  
10 g Bacto-Tryptone 
5 g Yeast Extract 
5 g Sodium Chloride 
15 g Agar 
Q.S. to 1 L. Autoclave. 
 

LB Agar with 10% sucrose 
10 g Bacto-Tryptone 
5 g Yeast Extract 
15 g Agar 
Q.S. to 800 ml. Autoclave 
Add 200 ml of filter sterilized 50 % sucrose stock solution. 
 

Nematode growth medium 
 

Nanopure water          975 ml 
Nacl   3g 
Agar   17g 
Peptone  2.5g 
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Autoclave, cool afterward and add following: 
 
1M CaCl2   1ml 
etOH solublized  
Cholestrol(5mg/ml)  1ml 
1M MgSO4   1ml 
1M KPO4 buffer  25ml 
 

Pour the medium onto NGM plates (petridishes, 3 mM) 
 

Brain Heart Infusion Broth (BHI) 
             37 g BHI (ready-made mix) 
             Q.S to 1 L. Autoclave. 
 
Brain Heart Infusion agar (BHI agar) 
             37 g BHI (ready-made mix) 

15 g of Becto agarose 
             Q.S to 1 L. Autoclave. 
 
Cornmeal agar 

28 g dried brewer’s yeast  
77 g cornmeal (Sigma) 
 27 g sucrose, 53 g glucose 
 3.5 mL propionic acid 
 0.3 mL 85 % phosphoric acid  
6 g select agar (Invitrogen) 
  

Q.S. to 1 L and bring to boil slowly on magnetic hot plate by continuous stirring. 
 
Sucrose agar 

1.2 g Bacto-agar (Difco) 
 14 mL 20% sucrose  
41 mL sterile distilled water 
 

Microwave and pour 6 ml into each fly vial. 
 
Stock Solutions: 
 
Biotin Stock Solution (BSS) 
            1 mg Biotin 
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            Q.S. to 10 ml 
            Filter Sterilize 
 
Vitamin Solution for BMM (100 ml) 
            50 mg Thiamine  
            1 ml BSS  
            Q.S. to 100 ml 
            Filter Sterilize 
 
Trace Metal Solution for BMM (100 ml) 
            0.5g Copper (II) sulfate pentahydrate 
            0.5 g Zinc sulfate heptahydrate 
            0.5 g Ferrous sulfate heptahydrate 
            0.2 g Manganese chloride tetrahydrate 
            0.83 M Hydrochloric acid (10 ml) 
            Q.S to 100 ml 
            Filter sterilize 
 
1 M Magnesium Sulfate Solution for BMM  
            24.65 g of Magnesium sulfate heptahydrate 
            Q.S. to 100 ml 
            Filter Sterilize 
 
1 M Calcium chloride solution (CaCl2.2H2O) 
             11.098 g Calcium chloride  

Q.S. to 100 ml  
 

500 mM IPTG stock solution (isopropyl β-D-1- thiogalactpyranoside) 
             1.19 g IPTG 

10 ml diH2O 
             Filter through 0.22 µm filter. Store at -20 °C in 1 ml aliquots. 
 
50% Sucrose stock solution 
             100 g Sucrose 
             Q.S to 200 ml.  
             Sterilize using 0.22 µm pore-size filter. Store at 4 °C. 
 
10% Glucose stock solution 
             10 g Glucose 
             Q.S to 100 ml.  
             Sterilize using 0.22 µm pore-size filter. Store at 4 °C. 
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50% DMSO stock solution 
             2.5 ml DMSO 
             2.5 ml Nanopure water 
             Sterilize using 0.22 µm pore-size filter. Store at 4 °C. 
 
Saline solution (0.85 % NaCl) 
             8.5 g NaCl 
             Q.S to 1 L 
             Autoclave. Store at R.T  
 
1N Sodium hydroxide (NaOH) solution 
             40 g NaOH 
             Q.S to 1 L 
 
Ethylenediaminetetraacetic acid (EDTA) solution (0.5 M) 
             73. 06 g EDTA 

Add 300 ml of water             
Adjust pH to 8 with 1N NaOH 
Q.S to 500 ml    

300 mM Sucrose stock solution 
51.34 g Sucrose 
Q.S to 500 ml. 
Sterilize using 0.22 μm pore-size filter. Store at 4 °C. 

Recipe for an RNAlater‐like buffer solution: For 1.5 liters: 
 
935 ml of autoclaved, MilliQ water 
700 g Ammonium sulfate  

Stir until dissolved. 
 
Add 25 ml of 1 M Sodium Citrate 
And 40 ml of 0.5 M EDTA 

Adjust to pH 5.2 using concentrated H2SO4 (about 20 drops= 1 ml) Store at RT  
 
DEPC treated water (DNase and RNase free water) 

Add 100 µl of Diethyle Pyrocarbonate (sigma) to 1L water.  
Incubate at 37° C for overnight. 
Autoclave for 1 Hr. 
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Other receipes: 
 
Agarose gel for DNA electrophoresis 

50 ml 1 X TAE 
0.5 g agarose (electrophoresis grade) 
Final concentration of agarose (1 % w/v) 
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