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Abstract: For univariate i.i.d. samples, analyses are usually performed on observations
themselves, or on the ranks of the observations when they are ordered. This is true in
both the parametric and non-parametric setting. However, observations and ranks can be
utilized simultaneously. This work concentrates on developing methods that combine ob-
servations and ranks in kernel-based estimation methods. The standard kernel density esti-
mator, transformation kernel density estimator, and the Nadaraya-Watson kernel regression
estimator are modified using ranks. Excluding the modified transformation kernel density
case, the asymptotic properties are investigated for the estimators. For all estimators, vari-
ous bandwidth selection methods are explored. Simulation is used to compare the modified
estimators to the standard estimators. It is demonstrated that when samples are taken from
skewed distributions, the modified kernel density estimator outperforms the standard esti-
mator. Additionally, the modified Nadaraya-Watson outperforms the standard estimator in
a variety of cases. The modified transformation density estimator did not outperform the
unmodified estimator.
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CHAPTER I

LITERATURE REVIEW

1.1 Kernel Density Estimation

Consider a random sample X1,X2, . . . ,Xn. It is typically assumed that the random sam-

ple is taken such that each Xi comes from the same population and the value of Xi is char-

acterized by the probability density function f (x). In general, f (x) may be considered

unknown or may be assumed to be of one several different families of density functions. If

f (x) is unknown, an estimate of it may be desired. The simplest way to estimate f (x) is to

use a histogram that is scaled to ’density’ on the vertical axis. Typically, Ah1, ..., Ahk bins of

equal length h which may be referred as the bandwidth or binwidth are created so that the

bins cover the entire range of the random sample. Then the number of values falling into a

given bin are counted which is then converted to a ’density’ given by

∑
n
i=1 I(xi ∈ Ah j)

nh
.

These densities are plotted on the vertical axis across the range of a bin so that the area

underneath the bin heights is equal to one.

An example histogram for data using varying bandwidths is given in Figure 1.1. It can

be seen that the bandwidth will affect how much detail can be seen in the histogram. If h

is too large, there is not as much detail about the relative shape of the estimated density

formed by the data, whereas if h is too small, too much variability in the data can be seen

1



and too many peaks appear in the histogram. Work by Rosenblatt et al. (1956) and Parzen
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Figure 1.1: Depiction of a 4 histograms with 4 different bandwidths. Data are 600 random
values from 0.5 ·Norm(0,0.52)+0.5 ·Norm(3.2,12) mixture distribution.

(1962) generalized this idea of density estimation into the following form

f̂h(x) =
1

nh

n

∑
i=1

K
(

x−Xi

h

)
, (I.1)

where K is the ”kernel function” and h is the ”bandwidth”. The central idea is to create a

”bin” around every possible value of x and count the number of values in that bin weighted

by K. K is typically chosen such that it is the density function of some known distribution.

Often, the following assumptions are made for K:

1. K(u)≥ 0,−∞ < u < ∞

2.
∫

K(u)du = 1*

2



3.
∫

uK(u)du = 0*

4. σ2
K :=

∫
u2K(u)du < ∞*.

Note that for all integrals in this paper, they are assumed to be from −∞ to ∞ unless stated

otherwise. While assumption 1 is utilized to ensure non-negativity of the estimate, there

has been work (Bartlett 1963; Jones and Signorini 1997) showing that improvements based

on an error criterion, discussed later in this paper, can be made by utilizing kernels that

violate this non-negativity assumption.

As in the histogram case, one of the most important issues is the choice of the band-

width h. This importance can be seen in Figure 1.1. As before, if h is too large, the finer

details of the density estimate are lost, whereas if h is too small, too much fine structure

is represented. These situations are referred to as oversmoothing and undersmoothing, re-

spectively. There are a variety of methods for automatic selection of h which are based

on the statistical properties of the kernel density estimator. More comprehensive reviews

of the results of kernel density estimation are available by Wand and Jones (1994), and

Silverman (1986).

1.1.1 Kernel Density Estimation: Statistical Properties

The kernel density estimate can be evaluated using the standard criteria of bias, vari-

ance, and mean squared error (MSE). Through a Taylor series approximation it can be seen

that the expectation of f̂h(x) is

Bias( f̂h(x)) =
∫

K
(

x− y
h

)
f (y)dy− f (x)

=
∫

K (u) f (x−uh)du− f (x)

=
∫

K (u)
(

f (x)−uh f ′(x)+
u2h2

2
f ′′(x)

)
du+o(h2)− f (x)

=
σ2

Kh2

2
f ′′(x)+o(h2). (I.2)
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Figure 1.2: Depiction of a kernel density estimation of the same data as in Figure 1.1 with
four different bandwidths.

In a similar manner, the variance of f̂h(x) can be derived:

Var( f̂h(x)) =
1

nh

∫
K (u)2 f (x+uh)dy− 1

n
E( f̂h(x))2

=
1

nh

∫
K (u)2 ( f (x)+o(1)) dy− 1

n

(
σ2

Kh2

2
f ′′(x)+o(h2)

)
=

R(K)

nh
f (x)+o

(
(nh)−1) . (I.3)

Note that here, the notation R(K) =
∫

K (x)2 dx is used.

Taking the results of (II.20) and (I.3), the MSE is given by

MSE( f̂h(x)) =
R(K)

nh
f (x)+

σ4
Kh4

4
f ′′(x)2 +o

(
(nh)−1 +h4) . (I.4)
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Note that this gives a point-wise measurement of error. In density estimation, the interest

would be on a measurement of error over all possible values of x. This is the motivation

behind what is referred to as the mean integrated squared error (MISE).

MISE( f̂h(x)) :=
∫

E[( f̂h(x)− f (x))2]dx (I.5)

Using the above definition. The MISE of f̂h(x) is derived by integrating (I.4).

MISE( f̂h(x)) :=
R(K)

nh
+

σ4
Kh4

4
R( f ′′)+o

(
(nh)−1 +h4)

For application, however, the Asymptotic MISE (AMISE) is used for analyses and is the

basis for some methods of bandwidth selection. It is given by

AMISE( f̂h(x)) :=
R(K)

nh
+

σ4
Kh4

4
R( f ′′). (I.6)

1.1.2 Kernel Density Estimation: Bandwidth Selection

There are several automatic selection methods available for kernel density estimation

(KDE). Three main types will be discussed: rule-of-thumb plug-in, cross-validation, and

direct plug-in. The rule of thumb plug-in method is the simplest method, it is attributed

to Silverman (1986). It is based on the idea of minimizing the AMISE given by I.6 with

respect to h. This leads to the following solution for h:

hAMISE =

(
R(K)

σ2
KR( f ′′)n

)1/5

. (I.7)

The major issue with this optimal h is that it requires the use of f ′′ which necessitates direct

knowledge of the density function being estimated. This is the main issue that selection

rules must overcome.

The Silverman Rule-of-Thumb estimator assumes that the density being estimated is
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normally distributed with some mean µ and variance σ2. This leads to the following opti-

mal h:

h =

(
8
√

πR(K)

3σ2
Kn

)1/5

σ .

Note that this formula requires knowledge of the true value of σ which may not be avail-

able. Consequently a reasonable estimate of σ is usually utilized such as the sample stan-

dard deviation s or σ̂IQR, an estimate based on scaling the interquartile range of the sample.

Whichever estimate of σ is used, designate it σ̂ . Thus the Silverman Rule-of-Thumb band-

width selector is

hROT =

(
8
√

πR(K)

3σ2
Kn

)1/5

σ̂ . (I.8)

Another bandwidth selector is the least squared cross-validation (LSCV) selector which

is due to the work of Rudemo (1982) and Bowman (1984). The basis for an LSCV band-

width is to find a way to estimate the parts of the expanded MISE (I.5) that depend on h,

and choose h such that the estimated portion of the MISE is minimized. This gives the

LSCV bandwidth hLSCV of

hLSCV = argmin
h

(∫
f̂h(x)2 dx− 2

n

n

∑
i=1

f̂−i,h(Xi)

)
, (I.9)

where f̂−i,h(x) is the density estimate created by omitting the ith value from the random

sample, the leave-one-out cross-validation kernel density estimator of f (x).

Combining this idea of cross-validation with plug-in estimation results in the biased

cross-validation (BCV) bandwidth selection of h from Scott and Terrell (1987). The BCV

selection method involves optimizing the AMISE (I.6) via an estimator of R( f ′′) denoted
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by R̂( f ′′). This is given by

R̂( f ′′) =
1
n2 ∑∑

i 6= j
K′′ ∗ K′′

(
Xi−X j

h

)
.

Note that f ∗g is the convolution of two functions f and g. This estimator R̂( f ′′) is used to

estimate the AMISE which gives the form for the BCV bandwidth hBCV

hBCV = argmin
h

(
R(K)

nh
+

σ4
Kh4

4
R̂( f ′′)

)
(I.10)

Besides these bandwidth selectors, another type of data-driven bandwidth is that of Park

and Marron (1990) with modest refinements by Sheather and Jones (1991). The approach

is similar in some respects to both the biased cross-validation (I.10) and the rule-of-thumb

idea (I.8). The main hurdle in trying to estimate the asymptotically optimal bandwidth

hAMISE is in estimating the R( f ′′) term in (I.7). The plug-in bandwidth hSJ is given as

outlined by Sheather and Jones (1991) by the solution to

(
R(K)

σ4
K Ŝ(α̂(h))

)1/5

−h = 0 (I.11)

where

Ŝ(α) =
1

n(n−1)α5

n

∑
i=1

n

∑
j=1

φ
iv
(

Xi−X j

α

)

and

α̂(h) = 1.357
(

Ŝ(a)
T̂ (b)

)
.
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T̂ is defined similarly to Ŝ,

T̂ (b) =− 1
n(n−1)b−7

n

∑
i=1

n

∑
j=1

φ
vi
(

Xi−X j

b

)
.

Using λ̂ to denote the sample inter-quartile range,

a = 0.920λ̂n−1/7 ; b = 0.912λ̂n−1/9.

Thus, obtaining hSJ is a root finding procedure where a numerical approach must be uti-

lized.

A review of the performance of these bandwidth selectors and others is given by Jones,

Marron, and Sheather (1996). The findings were that hROT tends to oversmooth, hLSCV

is too variable and tends to undersmooth, hBCV tends to oversmooth, and hSJ typically

performs best. These findings can change depending on the complexity of the underlying

density, but similar results were found by Cao, Cuevas, and Manteiga (1994) and Park,

Turlach, et al. (1992). Confirmation of these conclusions are given Loader (1999) where it

was indicated that hSJ is less variable but it still tends to be too large whenever hAMISE , the

optimal bandwidth, is quite small.

A more recent, and possibly the most comprehensive review, of bandwidth selection

methods is given by Heidenreich, Schindler, and Sperlich (2013). Their examinations

indicated that small modifications of the previously mentioned methods seem best. For

example, a modification called one-sided cross-validation, initially proposed for regres-

sion problems by Hart and Yi (1998), stabilized the LSCV bandwidth technique and did

not increase the bias much. This is taken a step further with Savchuk, Hart, and Sheather

(2010), where a estimator is proposed based off of ”indirect cross-validation.” Heidenre-

ich, Schindler, and Sperlich (2013) indicate that the indirect cross-validation method and

a refinement of the Sheather-Jones plug-in bandwidth typically perform best, though when

sample size increases, cross-validation techniques become computationally expensive.

8



1.2 Kernel Regression

Another application of the usage of kernels is through that of kernel regression. Let

(Xi,Yi), i = 1, . . . ,n be an IID random sample from a bivariate distribution where Yi is de-

scribed by the following model:

Yi = g(Xi)+ εi.

The function g(x) = E [Y |X = x] is a smooth function, not necessarily linear, and εi is a

random variable centered at zero with finite variance σ2
ε . The objective is typically to

estimate g(x). One approach to estimating this function using kernels is from the work of

Nadaraya (1964) and Watson (1964). The estimator proposed is

ĝNW (x) =
∑

n
i=1 K

(
x−Xi

h

)
Yi

∑
n
i=1 K

(
x−Xi

h

) . (I.12)

The intuition behind this estimator lies in trying to estimate the conditional mean,

E [Y |X = x] =
∫

y f (x,y)dy
f (x)

.

The idea is to estimate the displayed densities. The estimation of f (x), the density of X ,

takes the form of the previously discussed KDE methods. For the joint density f (x,y),

an approach is used where f̂ (x,y) = 1
nh2 ∑

n
i=1 K

(
x−Xi

h

)
K
(

y−Yi
h

)
. Integrating over f̂ (x,y)

leaves us with the Nadaraya-Wayson estimator. Defining

Whi(x) =
K
(

x−Xi
h

)
∑

n
i=1 K

(
x−Xi

h

) ,
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(I.12) can be rewritten as

ĝNW (x) =
n

∑
i=1

Whi(x)Yi, (I.13)

so that any estimate of g(x) is a weighted average of the Yi values.

1.2.1 Nadaraya-Watson Estimator: Statistical Properties

A comprehensive review of kernel regression estimators, of which the Nadaraya-Watson

estimator is a special case, can be found in Wand and Jones (1994) or more extensively in Li

and Racine (2007) and Hardle et al. (2012). A brief summary of those works will be given

in this document. The main results will be displayed without proof, as they require more

extensive and tedious workings. The main points of discussion for the Nadaraya-Watson

estimator will be the bias, variance, and then bandwidth selection.

First, the bias is given as follows.

Bias(ĝNW (x)) =
(

σ2
Kg′′(x)

2
+

g′(x) f ′(x)
f (x)

)
h2 +o(h2)+O

(
1

nh

)
(I.14)

The form of this bias can be seen as structurally similar to that of the bias of f̂h(x) in (II.20),

but complexity is added by the inclusion of the g function. As long as it is assumed that

h→ 0 and nh→ ∞ as n→ ∞, it can be seen that the bias goes to zero.

A similar parallel can be seen in the variance of ĝNW (x),

Var(ĝNW (x)) =
1

nh
· σ2

ε

f (x)
R(K)+o

(
1

nh

)
. (I.15)

Details for the bias and variance results were first characterized by Collomb (1976).
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1.2.2 Nadaraya-Watson Estimator: Bandwidth Selection

Just like with the density estimation case, an important attribute of kernel-based regres-

sion is the choice of the bandwidth. The choice of bandwidth in the regression case is

mainly based in the estimation and subsequent optimization of the average squared error

(ASE), which is defined in the following:

ASE(ĝNW (x)) =
1
n

n

∑
i=1

(g(Xi)− ĝNW (Xi))
2 .

An issue with the ASE is that it requires knowledge of the true value of g(Xi). The function

g is not known, and we only know Yi, which is g(Xi) convoluted with the error term. An

obvious solution is to estimate g(Xi) with Yi = g(Xi)+ εi. This gives the residual sum of

squares (RSS),

RSS(ĝNW (x)) =
1
n

n

∑
i=1

(Yi− ĝNW (Xi))
2. (I.16)

Now, the desired objective is the minimization of this value by the choice of h. Unfortu-

nately, RSS→ 0 as h→ 0 since this will guarantee that ĝNW (Xi) = Yi. To counteract this,

a penalization function is applied to (I.16). Another approach is to use cross-validation

techniques similar to those utilized in the density estimation bandwidth selection.

The cross-validation bandwidth selection, initially explored by Clark (1977) for the

regression estimation case, is based on using a leave-one-out estimator. Let ĝ−i,h(x) de-

fine the leave-one-out Nadaraya-Watson estimator where the ith value is removed from the

sample. Then the cross-validation bandwidth selector is chosen as the value of h such that

CV (h) =
1
n

n

∑
i=1

(Yi− ĝ−i,h(x))2, (I.17)

is minimized.

An alternative approach is to penalize the RSS in (I.16) by multiplying each term in the
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sum by a function Ξ(u) such that the first order Taylor expansion of Ξ is Ξ(u) = 1+2u+

O(u2) whenever u→ 0. The value substituted for u is 1
nWhi(x). Denote a penalized sum of

squares by G, then the objective is to minimize

G(h) =
1
n

n

∑
i=1

(Yi− ĝ(Xi))
2
Ξ

(
1
n

Whi(Xi)

)

with respect to h. Several approaches to the choice of Ξ have been proposed. A very direct

approach is to use

ΞS(u) = 1+2u,

which is due to Shibata (1981). Work from Craven and Wahba (1978) gives the generalized

cross-validation penalization function of

ΞGCV =
1

(1−u)2 .

Li and Racine (2007) in their section on bandwidth selection recommend the use of

a modified penalization based on the Akaike information criterion (AIC) due to Akaike

(1974). The modified AIC is given by Hurvich, Simonoff, and Tsai (1998) and is denoted

by AICC,

AICC(h) = log(σ̂2)+
1+ ∑

n
i=1 Whi(Xi)

n

1− ∑
n
i=1 Whi(Xi)+2

n

, (I.18)

where σ̂2 = 1
n ∑

n
i=1(Yi− ĝ(x))2.

There are many different approaches to bandwidth selection and a comprehensive re-

view of them by Köhler, Schindler, and Sperlich (2014) provides many more examples and

details. The most widely used methods are briefly summarized above.
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CHAPTER II

RANK WEIGHTED KERNEL DENSITY ESTIMATION

The objective now is to take the density and regression estimated techniques discussed

in the previous chapter and improve them by including additional information that is always

available when a random sample is taken, the rankings. Typically, in parametric estima-

tion, the values of a sample are all that are used; when dealing with classical nonparametric

techniques, non-parametric techniques such as the Kruskal-Wallis Test (Kruskal and Wallis

1952) or the Mann-Whitney-U Test (Mann and Whitney 1947), only the sample ranks are

used. In hopes of trying to gain improved estimation abilities, here a technique for com-

bining the information of the ranks and sample values will be presented. First, the density

estimation case will be discussed where the bias, variance, MSE, and MISE will be derived.

This will lead to discussion of bandwidth selection for the rank weighted kernel density es-

timator discussed below. The next chapter will be similar but focuses on introducing ranks

into the estimator for the kernel regression case.

Assume an i.i.d. random sample X1,X2, . . . ,Xn is taken from a ”well” behaving distri-

bution with CDF F(x) and density f (x). By well behaved distribution, it is meant that the

variance is finite and the density is continuous. Additionally, the derivatives of the density

up to and including the second derivative are assumed to be continuous. The estimator

being proposed in this chapter uses the order statistics X(1),X(2), ...,X(n), where the density

of the ith order statistic is denoted by f(i)(x) which is

f(i)(x) =
n!

(i−1)!(n− i)!
[F(x)]i−1 [1−F(x)]n−k f (x)
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The proposed rank weighted kernel density estimator of f (x) is:

f̂h(x) =
1

nh

n

∑
i=1

1√
i
K
(

x−X(i)√
ih

)

Note that standard assumptions on the kernel K are being made, namely
∫

K (z) dz = 1,∫
zK (z) dz = 0, and

∫
z2K (z) dz = σ2

K < ∞. An obvious concern is to make sure that the

estimator integrates to one. Here, that is relatively simple to show.

∫
f̂h(x)dx =

1
nh

n

∑
i=1

1√
i

∫
K
(

x−X(i)√
ih

)
dx

=
1
nh

n

∑
i=1

∫ 1√
i
K (y)

√
ihdy

=
1
n

n

∑
i=1

∫
K (y) dy

= 1

Next some motivation for this estimator will be presented. Let f (x) represent the den-

sity function of a right skewed distribution such as the exponential distribution or what is

referred to as the skewed normal distribution. Plots of these density functions are given in

Figure 2.1.

When the density is high, it is expected that several values in a random sample will be in

that region, and when the density is low, far less values are expected in the region. If there

are a lot of values within a small range in a random sample, a smaller bandwidth would be

desirable. As data gets more sparse, a larger bandwidth is more desirable. A small band-

width displays the finer structure of a distribution, such as sharp points or steeper slopes

like in the skewed densities in Figure 2.1. A larger bandwidth is preferred in low density

regions, where a low number of observations are expected, because a large bandwidth flat-

tens out the kernel and prevents spikes from forming where there would not be spikes in

the true density.
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Figure 2.1: Plots of the exponential distribution and skew normal distribution.
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Figure 2.2: Density estimates for a set of data simulated from the skew normal distri-
bution under four different bandwidths. True distribution is in red, and standard density
estimate is in black. The picture on the right shows 1

nh ·K
(
(x−Xi)

h

)
for 11 observations

(i = 1,10,20, · · · ,100 in the ordered sample) in a sample of 100 used to create the den-
sity estimate. This depicts the weight given to sample values when trying to estimate the
density at x. These are given in blue dotted lines.

Figure 2.2 tries to illustrate this trade off in fine structure versus bumpiness of density

estimates for the standard density estimator. When the bandwidths are smaller like in the
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top two density estimates on the left image, the estimate may be fairly accurate around the

peak but as x increases, what should be a smooth tail can be somewhat bumpy in the density

estimate. In the density estimates with larger bandwidths on the bottom of the left image

in Figure 2.2,the tail is now smooth but at lower values of x, the density estimate does not

capture the form of the target distribution.

Because there are changes in the density value, there are changes in how the random

sample is clustered. This means it is desirable to have a bandwidth that adapts to the degree

of clustering in the data. With right skewed distributions, this simply means there should be

a larger bandwidth as the estimation point x increases. Using the rank weights emulates this

idea. If one were to be estimating a distribution with a heavy right tail and an extreme value

is obtained, it would not be desirable to use the same bandwidth as where the mode of the

distribution would be since that would induce a spike in the density estimate. Essentially,

issues may arise when trying to estimate data from distributions with thicker tails.

For a right skewed distribution, the expected structure for a sample would be a cluster-

ing of observations with lower values and sparse observations at higher values. This makes

it seem appropriate to start with a smaller bandwidth and then move to a larger bandwidth

as there is progression along the x-axis, which is indicated by increasing ranks where the

bandwidth given to a particular rank i is
√

ih. In this form, the square root of the rank is a

scaling for h that changes, and
√

ih is the actual bandwidth used for any given value of i

in the ordered sample. Look to Figure 2.3 for a demonstration of how the increasing band-

width works for the skew normal. The image on the right shows how the kernel function

for a given observation flattens as the rank increases. On the left side of Figure 2.3, it can

seen that when the bandwidth is too small in the top two density estimates, there is rather

extreme bumpiness at lower values of x but smoothing in the tail. In the bottom two density

estimates, there is a smooth estimate in both the high density region and right hand tail of

the target distribution in red.

Looking at Figure 2.2, one can get better estimates of the tail at the sacrifice of the
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Figure 2.3: Similar to Figure 2.2 but for the rank weighted density estimator which is the
black line. Again, the image on the right shows how the kernel function weights observa-
tions in blue dotted lines.

estimate near the mode. With Figure 2.3, smooth estimation of both the mode and tails can

be achieved.

In the next sections, the asymptotic statistical properties of this estimator will be dis-

cussed. First a derivation of the form of the bias will be given, and then the variance will be

derived. This will provide the foundation for deriving the asymptotic mean squared error

(MSE) and subsequently the asymptotic mean integrated squared error (AMISE).

2.1 Statistical Properties

Here, the asymptotic form of the bias for the rank weighted kernel density estima-

tor will be derived. First, note that unless otherwise stated, integrals are from −∞ to ∞.

The derivation is quite similar to that of the standard density estimation case. Additional

complications arise due to the inclusion of the ranks which means that the order statistic

distributions must be considered. To get the bias, first the following expectation will be

derived.

The assumptions of the kernel function K are the same as before:

17



1. K(u)≥ 0,−∞ < u < ∞

2.
∫

K(u)du = 1

3.
∫

uK(u)du = 0

4. σ2
K :=

∫
u2K(u)du < ∞.

Using these assumptions and some mild assumptions on f (x), the following theorem is

derived.

Theorem 2.1.1. Let assumptions 1 - 4 on K be true. Let f (x) be a probability density

function with finite mean and variance. Additionally, assume that f (x), and its first two

derivatives are continuous. Then

Bias( f̂h(x)) =
σ2

Kh2

2

[
f
′′
(x)+(n−1)

(
f
′′
(x)F(x)+3 f (x) f

′
(x)
)]

+o(nh2).

Additionally, assume that h→ 0 such that nh→ ∞, but nh2→ 0. Then Bias( f̂h(x))→ 0.

Proof.

1√
ih

E
[

K
(

x−X(i)√
ih

)]
=

1√
ih

∫
K
(

x− y√
ih

)
f(i)(y)dy

=
∫

K (z) f(i)(x− z
√

ih)dz

=
∫

K (z)
{

f(i)(x)− z
√

ih
d
dx

f(i)(x)+
z2ih2

2
d2

dx2 f(i)(x)+o(ih2)

}
dz

= f(i)(x)+σ
2
K

ih2

2
d2

dx2 f(i)(x)+o(ih2)

Then the expected value of f̂h(x) is

E
[

f̂h(x)
]
=

1
nh

n

∑
i=1

1√
i
E
[

K
(

x−X(i)√
ih

)]
=

1
n

n

∑
i=1

{
f(i)(x)+

σ2
Kih2

2
d2

dx2 f(i)(x)+o(ih2)

}

18



= f (x)+
σ2

Kh2

2n
d2

dx2

n

∑
i=1

i f(i)(x)+o(nh2)

= f (x)+
σ2

Kh2

2n
d2

dx2

n

∑
i=1

i
n!

(i−1)!(n− i)!
[F(x)]i−1 [1−F(x)]n−i f (x)+o(nh2)

= f (x)+
σ2

Kh2

2n
d2

dx2
f (x)
F(x)

n

∑
i=0

i2
n!

i!(n− i)!
[F(x)]i [1−F(x)]n−i +o(nh2)

= f (x)+
σ2

Kh2

2n
d2

dx2
f (x)
F(x)

n

∑
i=0

i2
(

n
i

)
[F(x)]i [1−F(x)]n−i +o(nh2)

Note that the sum is now in the form of the second moment of a binomial random variable

of size n, and probability F(x).

= f (x)+
σ2

Kh2

2n
d2

dx2
f (x)
F(x)

[
nF(x)(1−F(x))+n2F(x)2]+o(nh2)

= f (x)+
σ2

Kh2

2n
d2

dx2
f (x)
F(x)

nF(x) [1−F(x)+nF(x)]+o(nh2)

= f (x)+
σ2

Kh2

2
d2

dx2
f (x)
F(x)

F(x) [1−F(x)+nF(x)]+o(nh2)

= f (x)+
σ2

Kh2

2
d2

dx2 f (x) [1+(n−1)F(x)]+o(nh2)

= f (x)+
σ2

Kh2

2

[
f
′′
(x)+(n−1)

(
f
′′
(x)F(x)+3 f (x) f

′
(x)
)]

+o(nh2). (II.1)

Thus, the bias of the estimator is

Bias( f̂h(x)) =
σ2

Kh2

2

[
f
′′
(x)+(n−1)

(
f
′′
(x)F(x)+3 f (x) f

′
(x)
)]

+o(nh2) (II.2)

= O(nh2)

→ 0.

Next, the variance of the rank weighted kernel density estimator will be derived. There

are many steps to this derivation. They will be broken down into several pieces and the

final form will be presented at the end of this section. The main issue in this process is
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that by invoking the ranks and subsequent order statistics, the independence of the values

is lost which complicates the form of the variance since it can no longer be assumed that

the covariances are zero. This is in reference to the basic formula for the variance of the

sum of random variables:

Var(
n

∑
i=1

Xi) =
n

∑
i=1

Var(Xi)+2∑∑
i< j

Cov(Xi,X j).

If the independence assumption were available, the covariance term on the right would be

0.

Theorem 2.1.2. Under the same assumptions of theorem 2.1.1, the variance of f̂h(x) is

Var( f̂h(x)) =
R(K)

n2h
f (x)
F(x)

E
[√

Bn,F(x)

]
+o(
√

nh)

which converges to 0.

Proof. To begin the variance calculation process, the format of the variance is expanded.

Var( f̂h(x)) =
1

n2h2Var(
n

∑
i=1

1√
i
K
(

x−X(i)√
ih

)
)

=
n

∑
i=1

1
n2h2i

Var(K
(

x−X(i)√
ih

)
)+

2
n2h2√i j

Cov(K
(

x−X(i)√
ih

)
,K
(

x−X( j)√
jh

)
)

=
n

∑
i=1

1
n2h2i

{
E

[(
K
(

x−X(i)√
ih

))2
]
−E

[
K
(

x−X(i)√
ih

)]2
}

+∑∑
i< j

2
n2h2√i j

{
E
[

K
(

x−X(i)√
ih

)
K
(

x−X( j)√
jh

)]
−

E
[

K
(

x−X(i)√
ih

)]
E
[

K
(

x−X( j)√
jh

)]}
=

n

∑
i=1

1
n2h2i

E

[(
K
(

x−X(i)√
ih

))2
]
+∑∑

i< j

2
n2h2√i j

E
[

K
(

x−X(i)√
ih

)
K
(

x−X( j)√
jh

)]
−

n

∑
i=1

n

∑
j=1

1
n2√i j

E
[

K
(

x−X(i)√
ih

)]
E
[

K
(

x−X( j)√
jh

)]
(II.3)

Each sum of (II.3) will be handled separately and in the order given. In the following
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derivations, the standard notation,

R( f ) =
∫

f (x)2dx

will be used.

The first sum can be simplified using the following.

1
h2i

E

[(
K
(

x−X(i)√
ih

))2
]
=

1
h2i

∫ (
K
(

x− y√
ih

))2

f(i)(y)dy

=
1

h
√

i

∫
(K (z))2 f(i)(x− z

√
ih)dz

=
1

h
√

i

∫
(K (z))2 ( f(i)(x)+o(1)

)
,dz

=
1

h
√

i
R(K) f(i)(x)+o

(
1

h
√

i

)
(II.4)

The notation Bn,p will be used to denote a random variable that follows a Binomial(n, p)

distribution. To finish work on the first sum, the following can be used.

n

∑
i=1

1√
i

f(i)(x) =
n

∑
i=1

1√
i

n!
(i−1)!(n− i)!

[F(x)]i−1 [1−F(x)]n−i f (x)

=
f (x)
F(x)

n

∑
i=0

√
i

n!
(i)!(n− i)!

[F(x)]i [1−F(x)]n−i

=
f (x)
F(x)

E
[√

Bn,F(x)

]
(II.5)

As for the little-o term in (II.4), note that

n

∑
i=1

1√
i
= o(n),

though sharper bounds may be possible for the little-o error. It may be possible to use
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o(
√

n). This gives the following for the first sum in (II.3).

1
n2h2

n

∑
i=1

1
i

E

[(
K
(

x−X(i)√
ih

))2
]
=

R(K)

n2h
f (x)
F(x)

E
[√

Bn,F(x)

]
+o
(

1
nh

)
(II.6)

≤ R(K)

n2h
f (x)
F(x)

√
E
[
Bn,F(x)

]
+o
(

1
nh

)
=

R(K)

n
3
2 h

f (x)√
F(x)

+o
(

1
nh

)
(II.7)

Where the inequality leading to (II.7) follows from application of Jensen’s inequality.

Next, work on the second sum of (II.3) will be presented. This will require the use of

the joint distribution of two order statistics. The joint density of two order statistics X(i)

and X( j), i < j, is

f(i, j)(s, t) =
n!

(i−1)!( j− i−1)!(n− j)!
[F(s)]i−1[F(t)−F(s)] j−i−1[1−F(t)]n− j f (s) f (t)

where s < t and 0 otherwise.

The next expectation is given by the following.

1
h2√i j

E
[

K
(

x−X(i)√
ih

)
K
(

x−X( j)√
jh

)]
=

1
h2√i j

∫ ∫ t

−∞

K
(

x− s
h
√

i

)
K
(

x− t
h
√

j

)
f(i, j)(s, t)dsdt

=
∫ ∫ v

−∞

K (u)K (v) f(i, j)(x−uh
√

i,x− vh
√

j)dudv

=
∫ ∫ v

−∞

K (u)K (v)
[

f(i, j)(x,x)−uh
√

i
∂

∂ s
f(i, j)(s, t)

∣∣∣∣
s=t=x

− vh
√

j
∂

∂ t
f(i, j)(s, t)

∣∣∣∣
s=t=x

+o
(

h(
√

i+
√

j)
)]

dudv (II.8)

Next, let W (u) be the CDF of the distribution with density K () and let U and V ∼W (u)

∫ ∫ v

−∞

uK (u)K (v)dudb =
∫

uK (u)
∫

∞

u
K (v)dvdu

=
∫

uK (u)(1−W (u))du
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=−E [UW (U)]

=:−γ (II.9)

This is a probability weighted moment (PWM), see Greenwood et al. (1979), which has

general form E
[
X iF(x) j(1−F(x))k] for a distribution with CDF F(x). Here the notation

γ will be used to denote the PWM with i = 1, j = 1,k = 0 for the distribution with density

given by the kernel K.

Next, in a similar manner as above,

∫ ∫ v

−∞

vK (u)K (v)dvdu =
∫

vK (v)W (v)du

= E [VW (V )]

= γ (II.10)

One last item to note from (II.8) is that

∫ ∫ v

−∞

K (u)K (v)dudv =
∫

W (v)K(v)dv

= E[W (V )]

=
1
2

(II.11)

since the expected value of any continuous CDF is 1
2 by virtue of the probability integral

transform. Using (II.9), (II.10), and (II.11), one can obtain the following for (II.8).

f(i, j)(x,x)
2

+ γh
[√

i
∂

∂ s
f(i, j)(s, t)

∣∣∣∣
s=t=x

−
√

j
∂

∂ t
f(i, j)(s, t)

∣∣∣∣
s=t=x

]
+o(h

√
i+
√

j) (II.12)

The double-sum of (II.12) is taken over i < j, j goes to n. Of particular interest is what

happens to the joint order statistics density when this sum is taken. Work from Park et al.
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2013, Theorem 3.5 gives the following result.

1
n(n−1)

n

∑
j=2

j−1

∑
i=1

f(i, j)(s, t) = f (s) f (t)u(t− s)

where

u(x) =


1, x > 0

1
2 , x = 0

0, x < 0

Also, note that ∑
n
i=1
√

i≤ n3/2, thus taking the sum of (II.12) one can obtain

∑∑
i< j

2
n2.h2√i j

E
[

K
(

x−X(i)√
ih

)
K
(

x−X( j)√
jh

)]
= ∑∑

i< j

2
n2

(
f(i, j)(x,x)

2
+ γh

[√
i

∂

∂ s
f(i, j)(s, t)

∣∣∣∣
s=t=x

−
√

j
∂

∂ t
f(i, j)(s, t)

∣∣∣∣
s=t=x

]
+o(h

√
i+
√

j)
)

=
n−1

n
f (x)2 +o(

√
nh). (II.13)

Here, the assumption that nh2→ 0, which is established in (II.1), is used. This gives us the

form for the second sum in (II.3). Lastly, the final sum will be considered.

Note that from (II.1) when calculating the bias, one can obtain

n

∑
i=1

n

∑
j=1

1
n2√i j

E
[

K
(

x−X(i)√
ih

)]
E
[

K
(

x−X( j)√
jh

)]

=

(
1

nh

n

∑
i=1

1√
i
E
[

K
(

x−X(i)√
ih

)])(
1

nh

n

∑
j=1

1√
j

E
[

K
(

x−X( j)√
jh

)])

= f (x)2 +o(nh2) (II.14)

Finally, a form for the variance can be given. Substituting (II.7), (II.13), and (II.14) into
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(II.1) gives

Var( f̂h(x)) =
R(K)

n2h
f (x)
F(x)

E
[√

Bn,F(x)

]
+

n−1
n

f (x)2− f (x)2 +o(
√

nh)+o
(
n−1h−1)+o(nh2)

=
R(K)

n2h
f (x)
F(x)

E
[√

Bn,F(x)

]
− 1

n
f (x)2 +o(

√
nh)

=
R(K)

n2h
f (x)
F(x)

E
[√

Bn,F(x)

]
+o(
√

nh) (II.15)

= O(n−2h−1)

→ 0.

Using the results of Theorems 2.1.1 and 2.1.2 the following corollary results.

Corollary 2.1.1. The MSE of f̂h(x) is

MSE( f̂h(x))=
R(K)

n2h
f (x)
F(x)

E
[√

Bn,F(x)

]
+

σ4
k h4

2

[
f
′′
(x)+(n−1)

(
f
′′
(x)F(x)+3 f (x) f

′
(x)
)]2

+o(
√

nh)

And the MISE of f̂h(x) is

MISE( f̂h(·)) =
R(K)

n2h

∫ f (x)
F(x)

n

∑
i=1

√
i
(

n
i

)
[F(x)]i [1−F(x)]n−i dx

+
σ4

k h4

2
R
(

f
′′
(x)+(n−1)

(
f
′′
(x)F(x)+3 f (x) f

′
(x)
))

+o(
√

nh)

(II.16)

Proof. Combine (II.21) and (II.15) to get an expression for the Mean Squared Error (MSE)

of the estimator.

Then the MSE for the estimator at any given point x is

MSE( f̂h(x)) = Var( f̂h(x))+Bias( f̂h(x))2

=
R(K)

n2h
f (x)
F(x)

E
[√

Bn,F(x)

]
+

σ4
k h4

2

[
f
′′
(x)+(n−1)

(
f
′′
(x)F(x)+3 f (x) f

′
(x)
)]2

+o(
√

nh)
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Integrating out x and expanding the expectation to obtain the Mean Integrated Squared

Error(MISE) gives the expression

MISE( f̂h(·)) =
R(K)

n2h

∫ f (x)
F(x)

n

∑
i=1

√
i
(

n
i

)
[F(x)]i [1−F(x)]n−i dx

+
σ4

k h4

2
R
(

f
′′
(x)+(n−1)

(
f
′′
(x)F(x)+3 f (x) f

′
(x)
))

+o(
√

nh).

(II.17)

The integral in the first term can be simplified.

∫ f (x)
F(x)

n

∑
i=1

√
i
(

n
i

)
[F(x)]i [1−F(x)]n−i dx =

n

∑
i=1

√
i
∫ n!

i!(n− i)!
[F(x)]i−1 [1−F(x)]n−i f (x)dx

=
n

∑
i=1

1√
i

∫ n!
(i−1)!(n− i)!

[F(x)]i−1 [1−F(x)]n−i f (x)dx

=
n

∑
i=1

1√
i

∫
f(i)(x)dx

=
n

∑
i=1

1√
i

Then the expression for the Approximate MISE (AMISE) is

AMISE( f̂h(·)) =
R(K)

n2h

n

∑
i=1

1√
i
+

σ4
k h4

2
R
(

f
′′
(x)+(n−1)

(
f
′′
(x)F(x)+3 f (x) f

′
(x)
))

(II.18)

In the same way that the classical optimal bandwidth is found in Wand and Jones (1994)

(p. 22), one can find the AMISE optimal bandwidth via calculus. Taking the first derivative

of (II.18) with respect to h,

d
dh

AMISE( f̂h(·)) = 2σ
4
k h3R

(
f
′′
(x)+(n−1)

(
f
′′
(x)F(x)+3 f (x) f

′
(x)
))
− R(K)

n2h2

n

∑
i=1

1√
i
.
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Setting this equal to zero when evaluated at hopt gives

0 = 2σ
4
k h3

optR
(

f
′′
(x)+(n−1)

(
f
′′
(x)F(x)+3 f (x) f

′
(x)
))
− R(K)

n2h2
opt

n

∑
i=1

1√
i
,

which leads to the solution

hopt =

[
R(K)∑

n
i=1

1√
i

2n2σ4
k R
(

f ′′(x)+(n−1)
(

f ′′(x)F(x)+3 f (x) f ′(x)
))]1/5

. (II.19)

2.2 Asymptotic Comparison to the Standard Density Estimator

The intention for this estimator is to reduce bias in estimating the density function of a

continuous right skewed distribution. Note that

Bias( f̂Std(x)) =
σ2

Kh2
Std

2
f ′′(x) (II.20)

for the standard estimator.

The rank weighted estimator’s bias asymptotic form is given by

Bias( f̂RW (x)) =
σ2

Kh2
RW

2

[
f
′′
(x)+(n−1)

(
f
′′
(x)F(x)+3 f (x) f

′
(x)
)]

. (II.21)

Define

S( f ) = f
′′
(x)+(n−1)

(
f
′′
(x)F(x)+3 f (x) f

′
(x)
)
,

so that the bias for the rank weighted estimator can be represented in (II.21) in a similar

form to that of the standard estimator in (II.20).

Bias( f̂RW (x)) =
σ2

Kh2
RW

2
S( f ). (II.22)
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Note that the following ratio is of interest.

Bias( f̂Std(x))
Bias( f̂RW (x))

=

σ2
Kh2

Std
2 f ′′(x)

σ2
Kh2

RW
2 S( f )

=
h2

Std f ′′(x)
h2

RW S( f )
.

If the bias of the rank weighted estimator is smaller, than this ratio should be greater than

one.

This ratio has two important parts:

1.
h2

Std

h2
RW

2.
f ′′(x)
S( f )

.

Both of these ratios actually represent quite some difficulty to analyze properly since f

is typically unknown. For the first ratio, substitute in the form for the AMISE optimal

bandwidth of the estimators,

hStd =

(
R(K)

nR( f ′′)

)1/5

, and

hRW =

(
R(K)∑

n
i=1

1√
i

2n2R(S( f ))

)1/5

.

Then the ratio of the bandwidths is

h2
Std

h2
RW

=

(
2nR(S( f ))

R( f ′′)∑
n
i=1

1√
i

)2/5

.

Now, S( f ) = O(n) which implies R(S( f )) = O(n2) since it is the integral of the squared

function. Additionally, the sum of the inverse square roots of the ranks is of order O(
√

n)
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by integral approximation. Then

h2
Std

h2
RW

=

(
O(

n3
√

n
)

)2/5

= O(n),

and so,

Bias( f̂Std(x))
Bias( f̂RW (x))

= O(n) · f ′′(x)
S( f )

= O(n) ·O(n−1)

= O(1).

This indicates that the asymptotic order of the biases could be equivalent up to a constant

as long bandwidth selectors are consistent for choosing a value close to the AMISE optimal

h. However it does not indicate which estimator is better than the other.

Next, take a look at the second ratio, f ′′(x)/S( f ), and expand S( f ).

f ′′(x)
S( f )

=
f ′′(x)

f ′′(x)+(n−1)
(

f ′′(x)F(x)+3 f (x) f ′(x)
)

Consider a right skewed distribution like that depicted in Figure 2.1. At values of x beyond

the mode of the distribution, some generalizations can be made about the structure of the

distribution in terms of the signs of f , f ′, f ′′ and F .

The second derivative of f can be negative as the slope is getting steeper which makes

f ′′(x)F(x) negative. Also, the slope is negative, thus f ′(x) is negative, which indicates that

f ′(x) f (x) is negative. This means that

| f
′′
(x)+(n−1)

(
f
′′
(x)F(x)+3 f (x) f

′
(x)
)
|> | f ′′(x)|.

This does not help as it points to a potentially larger bias for the rank weighted estimator,
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but this would depend on the value of the ratio of the squared bandwidths.

Further consideration on the structure of skewed right distributions may help the rank

weighted estimator. They stereotypically have elongated right tails that asymptotically

approach the horizontal axis. This means that while the slope is negative, it is slowly in-

creasing, indicating a positive second derivative. It may be possible to characterize skewed

distributions by when the following conditions are true:

1. f ′′(x)> 0,

2. |(n−1)( f ′′(x)F(x)+3 f (x) f ′(x))|< f ′′(x), and

3. (n−1)( f ′′(x)F(x)+3 f (x) f ′(x))< 0.

If these condtions are true, the result would be

| f ′′(x)+(n−1)( f ′′(x)F(x)+3 f (x) f ′(x))|< | f ′′(x)|,

which would give

∣∣∣∣ f ′′(x)
f ′′(x)+(n−1)( f ′′(x)F(x)+3 f (x) f ′(x))

∣∣∣∣> 1.

Also, in general h2
Std

h2
RW

should be greater than 1 since the ratio is of order n. Thus, the bias

ratio
Bias( f̂Std(x))
Bias( f̂RW (x))

=
h2

Std f ′′(x)
h2

RW S( f )

should be greater than 1 in this special circumstance. Currently, it is unknown when this

happens for skewed distributions, but at the very least there is an opportunity.

Unfortunately, this look does not take into account the fact that h2
Std/h2

RW = O(n). Sup-

pose that h2
Std/h2

RW = cn for some positive value c. Then the result is

Bias( f̂Std(x))
Bias( f̂RW (x))

=
cn f ′′(x)

f ′′(x)+(n−1)( f ′′(x)F(x)+ f (x) f ′(x))
.
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By rearranging the denominator, the outcome is

cn f ′′(x)
n{ f ′′(x)F(x)+ f ′(x) f (x)}− f ′′(x)[1−F(x)]− f (x) f ′(x)

=
c f ′′(x)

f ′′(x)F(x)+ f ′(x) f (x)−n−1 { f ′′(x)[1−F(x)]+ f (x) f ′(x)}
.

The main interest is in the absolute value of this ratio, therefore examination of the follow-

ing is in order,

c| f ′′(x)|
| f ′′(x)F(x)+ f ′(x) f (x)−n−1 { f ′′(x)[1−F(x)]+ f (x) f ′(x)}|

.

Take n to be large such that the n−1 term is negligible in the denominator; this seems

reasonable given that this is all taken from the asymptotic bias. The main issue is figuring

out when the following is true:

c| f ′′(x)|> | f ′′(x)F(x)+ f ′(x) f (x)|.

Right skewed distributions are the assumed structure for f (x), so f ′(x) f (x) should be neg-

ative for a large portion of the distribution, given that there should be a negative slope over

much of the density. The sign of f ′′(x) could be positive or negative.

Suppose f ′′(x) is positive, i.e., past the right hand inflection point in the distribution.

Then | f ′′(x)F(x)+ f ′(x) f (x)|< | f ′′(x)F(x)| and so, to get the desired outcome a value of

F(x) < c is needed . This will occur at some point as long as the second derivative is

positive at a small enough value of x, since c is positive. This seems plausible for a right

skewed distribution with a fairly stretched out right tail. In fact, when the second derivative

is positive and x is a value located in the right tail with a negative first derivative, there is

room for favorable conditions because | f ′′(x)F(x)+ f ′(x) f (x)|< | f ′′(x)F(x)|.
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2.3 Bandwidth Selection

Though a form for h is given by (II.19), one of the issues that needs to be dealt with is

the fact that the denominator requires F(x), f (x), f ′(x), and f
′′
(x). This is a major issue

given that f (x) unknown and is the objective of estimation. This section will concentrate

on how to approach this issue by adopting methods discussed for bandwidth selection in

the standard estimator in chapter 1: Silverman’s Rule of Thumb Silverman 1986, least

squares cross validation (LSCV), and plug-in. Additionally, the possibility of an bandwidth

selection method that serves as a bridge between the rule-of-thumb and plug-in estimators

is discussed. Results of these methods will be examined via simulations.

The classic rule-of-thumb bandwidth selector, attributed to Silverman (1986), in the

standard density estimation case is based on estimating R( f ′′) by substituting the unknown

second derivative of the target density with the second derivative of the normal distribution.

The rule of thumb in the rank-weighted case will take a similar approach.

First, start with the AMISE optimal bandwidth,

hopt =

[
R(K)∑

n
i=1

1√
i

2n2σ4
T ( f )

]1/5

.

Then expand,

T ( f ) = R
(

f ′′(x)
)
+(n−1)2R

(
f ′′(x)F(x)+3 f (x) f ′(x)

)
+2(n−1)

∫
f ′′(x)( f ′′(x)F(x)+3 f (x) f ′(x))dx. (II.23)

Any normal distribution with a mean of 0, standard deviation σ , and density f (x) can

be rewritten in terms of the standard normal density f (x) = (1/σ)φ(z) where z = x/σ .

Working this into the form for T ( f ) and assuming f is a normal density with mean 0
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results in

T ( f ) =
1

σ5 T (φ)

=
1

σ5

{
R
(

φ
′′
(z)
)
+(n−1)2R

(
φ
′′
(z)Φ(z)+3φ(z)φ

′
(z)
)

+2(n−1)
∫

φ
′′
(z)(φ

′′
(z)Φ(z)+3φ(z)φ

′
(z))dz

}
.

The integrals needed for the R terms in T (φ) are solved numerically. The final step would

be approximating σ in some manner such as using the sample standard deviation. Denote

this approximation by σ̂ . Then, the rule-of-thumb bandwidth for the rank-weighted kernel

is

hROT = σ̂

[
R(K)∑

n
i=1

1√
i

2n2σ4
k T (φ)

]1/5

. (II.24)

Least Squares Cross Validation as shown by Bowman (1984) revolves around the integrated

squared error (ISE) criterion,

ISE( f̂h(x)) =
∫ (

f̂h(x)− f (x)
)2

dx

=
∫

f̂h(x)2 dx−
∫

f̂h(x) f (x)dx+
∫

f (x)2 dx. (II.25)

The objective is to find an optimal h based on this so the right-hand term can be ignored.

First, the left-hand term will be examined. This term can be simplified when assuming K

is the Gaussian kernel. To see this, look at the expanded form:

∫
f̂h(x)2 dx =

∫ ( 1
nh

n

∑
i=1

1√
i
K
(

x−X(i)√
ih

))2

dx

=
∫ 1

n2h2

n

∑
i=1

n

∑
j=1

1√
i j

K
(

x−X(i)√
ih

)
K
(

x−X( j)√
jh

)
dx

=
1
n2

n

∑
i=1

n

∑
j=1

∫ 1√
ih

K
(

x−X(i)√
ih

)
1√
jh

K
(

x−X( j)√
jh

)
dx. (II.26)
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Now, let K be the Gaussian kernel φ . The result is,

∫
f̂h(x)2 =

1
n2

n

∑
i=1

n

∑
j=1

∫ 1√
ih

φ

(
x−X(i)√

ih

)
1√
jh

φ

(
x−X( j)√

jh

)
dx. (II.27)

Inside the integral is the product of two Gaussian pdfs. One with a mean of X(i) and standard

deviation
√

ih, and the other with X( j) and standard deviation
√

jh.

The product of two Gaussian pdfs with means µ1, µ2 and standard deviations σ1, σ2 is

1√
σ2

1 +σ2
2

φ

 µ1−µ2√
σ2

1 +σ2
2

 1√
σ2

1 σ2
2

σ2
1+σ2

2

φ

x− µ1σ2
1+µ2σ2

2
σ2

1+σ2
2√

σ2
1 σ2

2
σ2

1+σ2
2

 .

The right side of this equation is a Gaussian pdf, so integrating the whole equation over x

gives a value of

1√
σ2

1 +σ2
2

φ

 µ1−µ2√
σ2

1 +σ2
2

 .

Therefore, the integral in (II.27) is,

∫
f̂h(x)2 dx =

1
n2

n

∑
i=1

n

∑
j=1

∫ 1√
ih

φ

(
x−X(i)√

ih

)
1√
jh

φ

(
x−X( j)√

jh

)
dx

=
1
n2

n

∑
i=1

n

∑
j=1

1√
ih2 + jh2

φ

(
X(i)−X( j)√

ih2 + jh2

)
. (II.28)

The next term in (II.25) is

2
∫

f̂h(x) f (x)dx = 2E
[

f̂h(X)
]
.

But, f (x) is unknown so the expected value must be estimated. The estimator for E
[

f̂h(X)
]

is

1
n

n

∑
i=1

f̂−i(Xi),
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where

f̂−i(x) =
1

(n−1)h

n

∑
j=1, j 6=i

1√
i
K
(

x−X( j)

h

)
,

which is an adaptation of the standard leave-one-out estimator for the rank-weighted case.

Then, the estimate for 2E
[

f̂h(X)
]

is

2
n(n−1)h

n

∑
i=1

∑
j 6=i

1√
j
K
(

X(i)−X( j)√
jh

)
=

4
n(n−1)h ∑∑

i< j

1√
j
K
(

X(i)−X( j)√
jh

)
,

where the right-hand side comes from assuming a symmetric kernel. The above equation

uses the analog of the leave-one-out estimator discussed by Bowman (1984). Here, the

ith rank is simply deleted but all other values retain their ranks from the whole sample.

Bowman’s original work created an unbiased estimator of 2E
[∫

f̂h(x) f (x)dx
]
. That result

relied on the independence of the Xi values, which is not an available assumption here given

the dependent structure of order statistics. Thus, an estimator the first two terms in (II.25)

is

LSCV (h) =
1
n2

n

∑
i=1

n

∑
j=1

∫ 1√
ih

K
(

x−X(i)√
ih

)
1√
jh

K
(

x−X( j)√
jh

)
− 4

n(n−1)h ∑∑
i< j

1√
j
K
(

X(i)−X( j)√
jh

)
. (II.29)

Then the optimum h is found by minimizing (II.29):

hLSCV = argmin
h

{
1
n2

n

∑
i=1

n

∑
j=1

∫ 1√
ih

K
(

x−X(i)√
ih

)
1√
jh

K
(

x−X( j)√
jh

)

− 4
n(n−1)h ∑∑

i< j

1√
j
K
(

X(i)−X( j)√
jh

)}
. (II.30)

For a general kernel, not much can be done to simplify this. However, if one were

to make a specific choice of kernel, one can show some simplification. For example, if a
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Gaussian kernel were used, (II.30) would become the following,

hLSCV = argmin
h

{
1
n2

n

∑
i=1

n

∑
j=1

1√
ih2 + jh2

φ

(
X(i)−X( j)√

ih2 + jh2

)

− 4
n(n−1)h ∑∑

i< j

1√
j
φ

(
X(i)−X( j)√

jh

)}
. (II.31)

The plug-in estimator in the standard density estimation case was centered around esti-

mating R( f ′′) which is in the denominator of the AMISE optimal h. This provided a basic

framework for how to deal with the T ( f ) term in the rank-weighted estimator. Again, the

T ( f ) term is:

T ( f ) = R
(

f
′′
(x)+(n−1)

(
f
′′
(x)F(x)+3 f (x) f

′
(x)
))

.

There are special techniques for estimating R( f ′′) that cannot be utilized in estimating

T ( f ). Estimation of T will be based on estimating all of the individual derivatives of the

density f , and the CDF F ,

T̂ ( f ) = R
(

f̂ ′′(x)+(n−1)
(

f̂ ′′(x)F̂(x)+3 f̂ (x) f̂ ′(x)
))

.

Work by Rao (2014) gives the following estimator form:

f̂ (p)(x) =
1

nhp+1

n

∑
i=1

K(p)
(

x−Xi

h

)
. (II.32)

The CDF, however, must also be estimated. A simple estimate is the classical empirical

distribution function:

F̂(x) =
1
n

n

∑
i=1

I(Xi ≤ x).

A major issue estimating f (p) for p = 0,1,2, is that for each value of p a different

36



bandwidth would be considered optimal. Scott (1992) shows that the AMISE optimal

bandwidth for a density derivative estimator of the form given in (II.32) is

h(p) =

(2r+1)R
(

K(p)
)

nσ4
KR
(

f (p+2)
)
1/(2r+5)

,

which is going to run into the issue of what to use for f (p) in R
(

f (p+2)
)

of the denominator.

Unfortunately, the literature seems sparse on the estimation of density derivatives. The

latest significant work seems to be from Stoker (1993). In the end, the most straightforward

way of resolving the issue of finding h(p) is through cross validation techniques:

ĥ(p) = argmin
h

{
R(K(p))

nh2r+1 +
(−1)r

n(n−1)h2r+1 ∑∑
i< j

(
K(p) ∗K(p)−2K(2p)

)(Xi−X j

h

)}
.

where ∗ denotes the convolution of two functions. This method was proposed by Hardle,

Marron, and Wand (1990).

For the rank-weighted density estimator, T ( f ) is estimating the derivatives of f , and f

itself with this technique. The CDF is estimated using the empirical distribution function.

All of these estimates are substituted into T ( f ). The rank-weighted plug-in bandwidth is

hRW :Plug =

 R(K)∑
n
i=1

1√
i

2n2σ4
k R
(

f̂ ′′(x)+(n−1)
(

f̂ ′′(x)F̂(x)+3 f̂ (x) f̂ ′(x)
))
1/5

. (II.33)

The final bandwidth choice algorithm used is based on taking the rule-of-thumb ap-

proach given by (II.24) and changing the distribution used for calculating T (φ). To that

end, the distribution used is the skew normal distribution proposed by Azzalini (1985).

The form of the pdf for the skew normal distribution Azzalini 1985 is given by

ψ(x;ξ ,ω,α) =
2
ω

φ

(
x−ξ

ω

)
Φ

(
α

(
x−ξ

ω

))
,
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where φ and Φ represent the standard normal pdf and CDF, respectively. The parameter α

controls the skewness. If α is postive, the distribution is right skewed, and it is left skewed

when α is negative. The magnitude of the skewness increases with the magnitude of α .

Instead of using the normal distribution in the calculation of hROT , the skew normal

distribution is used in its place. Then the bandwidth selection is

h∗SN =

[
R(K)∑

n
i=1

1√
i

2n2σ4
k T (ψ(·;ξ ,ω,α))

]1/5

.

The parameters for the skew normal distribution must be given in order for this to be

utilized. The parameters are therefore estimated using maximum likelihood estimation

(MLE). Solutions to the MLE equations are not of closed form so numerical techniques

must be used. These parameter estimates are then substituted into the above equation,

giving the bandwidth selector:

h∗SN =

 R(K)∑
n
i=1

1√
i

2n2σ4
k T
(

ψ(·; ξ̂ , ω̂, α̂
)
)

1/5

. (II.34)

The motivation behind this methodology is that the rank-weighted estimator is intended

to more accurately model skewed distributions. Therefore, a distribution with a skewness

than can be selected seemed appropriate as a replacement for the normal distribution in the

rule-of-thumb bandwidth selector.

2.4 Rank Weighted Transformation Kernel Density Estimator

For a density function with bounded support, e.g., [0,∞), the standard form for the

density estimator can have issues with increased bias when estimating near the boundary.

Work by Timsina (2015) seeks to correct this issue through a transformation kernel density
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estimator (TKDE):

f̂T (x) =
g′(x)
nh

n

∑
i=1

K
(

g(x)−g(Xi)

h

)
. (II.35)

In this estimator, a function g(x) is some known function used to transform data from a

bounded interval to an unbounded interval so that it is more convenient to estimate the

density of the transformed data.

As an adaptation of the rank weighting technique, the proposed estimator is the rank

weighted transformation kernel density estimator (RWTKDE) and is given by

f̂RWT (x) =
g′(x)
nh

n

∑
i=1

1√
i
K
(

g(x)−g(Xi)

h
√

i

)
(II.36)

An examination of asymptotic bias, variance, MSE, and MISE is currently unavail-

able. A preliminary simulation was done to assess the validity of this estimator. Given

that asymptotic expressions are not available for the MISE, no form can be given for the

optimal value for h. However, the techniques used by Timsina (2015) for bandwidth se-

lection involve using least squares cross validation (LSCV) to find a bandwidth. These do

not require a form for the optimal h and can therefore be used in its absence. Addition-

ally, the work by Timsina concentrated specifically on the log transformation and using a

Gaussian kernel. The comparison between TKDE and RWTKDE will be done using this

transformation and kernel.

The LSCV bandwidth selector using g(x) = log(x) and a Gaussian kernel given by

Timsina is the following:

hTCV = argmin
h

1
2n2h
√

π

n

∑
i=1

n

∑
j=1

exp
{

1
4h2

(
logXi + logX j−h2)− (logXi)

2 +(logX j)
2

2h2

}

− 4
n(n−1)h

√
2π

∑∑
i< j

1
Xi

exp

{
−
(
logXi− logX j

)2

2h2

}
,
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which is the result of adapting the form of the standard LSCV selector given in (I.9).

In this same vein, the RWTKDE version of LSCV is given by

hRWTCV = argmin
h

1
n2h
√

2π

n

∑
i=1

n

∑
j=1

1√
i+ j

exp

−
(

di j +
ci j−i jh2
√

i+ j

)
2i jh2


− 4

n(n−1)h
√

2π
∑∑

i< j

1
Xi
√

j
exp

{
−
(
logX(i)− logX( j)

)2

2 jh2

}
,

where ci j = j logX(i)+ i logX( j) and di j = j(logX(i))
2 + i(logX( j))

2.

Using these forms for the bandwidth, a simulation study to determine the effectiveness

of the RWTKD relative to the TKDE was conducted. Results are provided in chapter 4.
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CHAPTER III

RANK WEIGHTED KERNEL REGRESSION

Next is a presentation of how to utilize both the observations and ranks in the kernel

regression setting. The simplest case will be used where the bivariate relationship between

two random variables, X and Y is examined. For a random sample (X1,Y1),(X2,Y2), ...,(Xn,Yn)

the general model being considered is

Yi = g(Xi)+ εi (III.1)

where g(·) is a continuous function and the εi values are i.i.d. with E [εi] = 0 and Var(εi) =

σ2
ε . Of interest is estimating the conditional expectation of Y given X = x. Denote the

joint0 density of X and Y by f (x,y) and the marginal density of X by fx(x).

g(x) = E [Y |X = x]

=

∫
y f (x,y)dy∫
f (x,y)dy

=

∫
y f (x,y)dy

fx(x)
(III.2)
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3.1 Rank Weighted Nadaraya-Watson Estimator

Both Nadaraya (1964) and Watson (1964) proposed an estimator of the form

ĝ(x) =
∑

n
i=1 K

(
Xi−x

h

)
Yi

∑
n
i=1 K

(
Xi−x

h

) .

The derivation of a rank weighted estimator will be similar to that of the Nadaraya-Watson

estimator shown by Li and Racine (2007). The ranks of the Xi values will be denoted by

Ri and the ranks of the Yi values will be denoted by Si. Then the bivariate rank weighted

estimator is given by the following:

f̂ (x,y) =
1

nh2

n

∑
i=1

1√
RiSi

K
(

Xi− x√
Rih

)
K
(

Yi− y√
Sih

)
.

This leads to the rank weighted regression estimator, derived as follows:

ĝ(x) = ̂E [Y |X = x]

=

∫
y f̂ (x,y)dy∫
f̂ (x,y)dy

=

∫
y

1
nh2

n

∑
i=1

1√
RiSi

K
(

Xi− x√
Rih

)
K
(

Yi− y√
Sih

)
dy∫ 1

nh2

n

∑
i=1

1√
RiSi

K
(

Xi− x√
Rih

)
K
(

Yi− y√
Sih

)
dy

=

n

∑
i=1

1√
Ri

K
(

Xi− x√
Rih

)∫
y

1√
Si

K
(

Yi− y√
Sih

)
dy

n

∑
i=1

1√
Ri

K
(

Xi− x√
Rih

)∫ 1√
Si

K
(

Yi− y√
Sih

)
dy

=

n

∑
i=1

1√
Ri

K
(

Xi− x√
Rih

)∫
(Yi +

√
Sihvi)K (vi)dvi

n

∑
i=1

1√
Ri

K
(

Xi− x√
Rih

)∫
K (vi)dvi
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=

n

∑
i=1

1√
Ri

K
(

Xi− x√
Rih

)
Yi

n

∑
i=1

1√
Ri

K
(

Xi− x√
Rih

) . (III.3)

Another way of displaying this rank weighted Nadaraya-Watson estimator is in the follow-

ing manner:

ĝ(x) =

n

∑
i=1

1√
i
K
(

X(i)− x
√

ih

)
Y[i]

n

∑
i=1

1√
i
K
(

X(i)− x
√

ih

) . (III.4)

Here, X(i) represents the reordered X values where i is the rank of these reordered values:

X(1) ≤ X(2) ≤ . . .≤ X(n). Y[i] denotes the resulting concomitant ordering of the Y by keeping

the paired observations together: (X(1),Y[1]),(X(2),Y[2]), . . . ,(X(n),Y[n]). This means that

i represents the rank of X(i) of the reordered values but it does not necessarily give us

information on the rank of Y[i].

Concomitant ordering is an important part of the literature in order statistics, see David

and Nagaraja (2003). The main point is that depending on the structure of the relationship

between X and Y , the order statistics of X may contain information about the order statistics

of Y . The easiest scenario to visualize this would be in a linear relationship between X and

Y , i.e., Y = aX +b+ε . If there is a positive association, the ranks of X correspond directly

to the ranks of Y . If the association is negative, the ranks of X and Y should be opposing,

i.e, as the rank i increases, X(i) increases while Y[i], the concomitant, decreases.

This leads to some intuition for why the rank weighted Nadaraya-Watson (RWNW)

estimator should have situations where it performs better. At points where the regression

function g(x) is being estimated near low ranks of the X(i)’s, the overall bandwidth
√

ih will

be smaller, allowing for more sensitivity to g(x). At x near higher ranks of X(i), the value

for
√

ih will be larger, so the sensitivity will be decreased to changes in g(x). Thus, the

RWNW estimator may perform best when trying to estimate functions with fine structure
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at low values of x and less structure at larger values of x.

An extra point of discussion can be found by looking back at the ranks Ri and Si used

in deriving (III.3). Ri is the rank of Xi and Si is the rank of Yi. Perform a notation swap so

that Ri is the rank of Yi and Si is the rank of Xi. The same steps in the derivation of (III.3)

would apply, but now the rankings left are those of the response variable instead of those

of the predictor variable. This could leave us with an estimator of the form

ĝ(x) =

n

∑
i=1

1√
i
K
(

X[i]− x
√

ih

)
Y(i)

n

∑
i=1

1√
i
K
(

X[i]− x
√

ih

) , (III.5)

where here i is the rank of the ordered Y values denoted by Y(i), and X[i] denotes the con-

comitant ordering of the X values.

There may be potential for this estimator, but an initial examination of its form may lead

to the conclusion that its usefulness would be for a smaller subset of potential regression

functions g(x). The same idea applies as previously, but the now overall bandwidth
√

ih is

small at low values of y and larger at high values of y. This means that the fine structure

would need to be mostly where there are low ranked values of Y . This is a different type

of restriction from the rank by X case; as the estimator would be beneficial only if the

shape of the function changed rapidly in the bottom half of the y-axis but had relatively

calm behavior in the top half. Surely situations like this exist, but they represent a stronger

restriction on the shape of g(x). As of now, research into this idea is limited, and would be

a strong consideration for future research.

3.2 Statistical Properties

As in the density estimation case, the asymptotic forms for the bias and variance will

be given. The bias can be obtained in a form very similar to Li and Racine (2007). The
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derivation of the bias can be done by breaking the bias into a ratio,

ĝ(x)−g(x) =
(ĝ(x)−g(x)) f̂h(x)

f̂h(x)

=:
m̂(x)
f̂h(x)

. (III.6)

Here, f̂h(x) is the density estimate of fx(x) as shown in Chapter II. The reason the bias

is given this way is show it in the form of an isolated ratio. The following lemma will be

useful in the approximation of the bias. It is a fairly common result, but its proof is simple

so it is presented here.

Lemma 3.2.1. Let X, and Y be random variables where Y cannot be 0 and E [X ] ,E [Y ]<∞.

Let h(x,y) be some continuous function with first order derivatives. Then

E [h(X ,Y )]≈ h(E [X ] ,E [Y ]).

Proof. Denote the partial derivatives of h with respect to x and y by hx and hy, respectively.

The first order Taylor expansion of h about θ = (θ1,θ2) is

h(x,y) = h(θ)+hx(θ)(x−θ1)+hy(θ)(y−θ2)+Rxy,

where Rxy is the remainder. Thus we get

E [h(X ,Y )] = E [h(θ)+hx(θ)(X−θ1)+hy(θ)(Y −θ2)+Rxy]

= h(θ)+hx(θ)(E [X ]−θ1)+hy(θ)(E [Y ]−θ2)+Rxy

≈ h(θ)+hx(θ)(E [X ]−θ1)+hy(θ)(E [Y ]−θ2).

Set θ = (E [X ] ,E [Y ]), and then the second and third terms are 0. Therefore, we are left
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with

E [h(X ,Y )]≈ h(E [X ] ,E [Y ]).

The function that will be used with Lemma 3.2.1 is h(x,y) = x/y. Next, the bias will be

derived.

Theorem 3.2.2. Let ĝ be defined as in (III.4). And assume that the kernel function K has

the same properties as discussed previously. Properties:

1. K(u)≥ 0,−∞ < u < ∞

2.
∫

K(u)du = 1

3.
∫

uK(u)du = 0

4. σ2
K :=

∫
u2K(u)du < ∞.

Next, assume that the regression function g(x) is second order continuous with respect to

its derivative. Lastly, let h→ 0 such that nh2→ 0, but nh→ ∞.

Then Bias(ĝ(x))→ 0 as n→ ∞.

Proof. The function m̂ in (II.21) can be further broken down in the following manner:

m̂(x) = (ĝ(x)−g(x)) f̂h(x)

=
1

nh

n

∑
i=1

1√
i
K
(

X(i)− x
√

ih

)
Y[i]−

1
nh

n

∑
i=1

1√
i
K
(

X(i)− x
√

ih

)
g(x)

=
1

nh

n

∑
i=1

1√
i
K
(

X(i)− x
√

ih

)
(g(X(i))+ ε[i])−

1
nh

n

∑
i=1

1√
i
K
(

X(i)− x
√

ih

)
g(x)

=
1

nh

n

∑
i=1

1√
i
K
(

X(i)− x
√

ih

)
(g(X(i))−g(x))+

1
nh

n

∑
i=1

1√
i
K
(

X(i)− x
√

ih

)
ε[i]

=: m̂1(x)+ m̂2(x),
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where m̂1 is the left hand summation term and m̂2 is the right hand summation term.

To get the bias, the expectations of m̂1 and m̂2 are needed. The expectation of m̂2 is

simply zero since the ε values are generated independently of the X values and E [εi] = 0.

This means that only the expectation of m̂1 need be derived. This can be done in the

following manner:

E [m̂1(x)] = E

[
1

nh

n

∑
i=1

1√
i
K
(

X(i)− x
√

ih

)
(g(X(i))−g(x))

]

=
∫ n

∑
i=1

1
nh

1√
i
K
(

t− x√
ih

)
(g(t)−g(x)) f(i)(t)dt

=
1
n

n

∑
i=1

∫
K (z)(g(x+

√
ihz)−g(x)) f(i)(x+

√
ihz)dz

=
1
n

n

∑
i=1

∫
K (z)

(
g(x)+

√
ihzg′(x)+

ih2z2

2
g′′(x)+o(ih2z2)−g(x)

)
·
(

f(i)(x)+
√

ihz f ′(i)(x)+
ih2z2

2
f ′′(i)(x)+o(ih2z2)

)
dz

=
h2

2n

n

∑
i=1

i
(

2g′(x) f ′(i)(x)+g′′(x) f(i)(x)
)∫

z2K (z) dz+o(nh2)

=
σ2

k h2

2n

n

∑
i=1

i
(

2g′(x) f ′(i)(x)+g′′(x) f(i)(x)
)
+o(nh2)

=
σ2

k h2

2n

(
2g′(x)

n

∑
i=1

i f ′(i)(x)+g′′(x)
n

∑
i=1

i f(i)(x)

)
+o(nh2).

In the derivation of (II.1), it was found that

n

∑
i=1

i f(i)(x) = n f (x)[1+(n−1)F(x)],

which leads to the following:

E [m̂1(x)] =
σ2

k h2

2
(
2g′(x) f (x)[1+(n−1)F(x)]

+g′′(x)
{

f (x)[1+(n−1) f (x)]+ f ′(x)[1+(n−1)F(x)]
})

+o(nh2). (III.7)
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Denote the coefficient of σ2
Kh2/2 by An(x). The expectation can then be written as the

following:

E [m̂(x)] = m̂1(x)

=
σ2

Kh2

2
An(x)+o(nh2). (III.8)

Next, (III.8) can be combined with (II.1) from Chapter 2 to give an approximate bias for

ĝ(x), as follows:

Bias(ĝRNW (x)) = E
[

m(x)
f̂h(x)

]
≈ E [m(x)]

E
[

f̂h(x)
]

=

σ2
Kh2

2 An(x)+o(nh2)

f (x)+ σ2
Kh2

2

[
f ′′(x)+(n−1)

(
f ′′(x)F(x)+3 f (x) f ′(x)

)]
+o(nh2)

= O(nh2).

The next step will be to try to get an asymptotic form for the variance. This can be

done using the following approximation for two random variables X and Y (Stuart and Ord

1987, Section 10.5):

V
(

X
Y

)
≈
(

E [X ]

E [Y ]

)2
[

V (X)

E [X ]2
+

V (Y )

E [Y ]2
− 2 ·Cov(X ,Y )

E [X ]E [Y ]

]
. (III.9)

Theorem 3.2.3. Under the same assumptions of Theorem 3.2.2. Var(ĝ(x))→ 0, with the

additional restriction that h→ 0 such that n2h→ ∞.

Proof. The approximation (III.9) is applied to the ratio given in (III.4) while noting that

Var(ĝ(x)) = Var(ĝ(x)−g(x))
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= Var
(

m̂(x)
f̂h(x)

)
.

Then, Var(m̂(x)) and Cov(m̂(x), f̂h(x)) are needed. For Var(m̂(x)),

Var(m̂(x)) = Var(m̂1(x))+Var(m̂2(x))+2Cov(m̂1(x), m̂2(x)). (III.10)

For Var(m̂1(x)), E
[
m̂1(x)2] is the only component needing to be derived as E [m̂1(x)] is

given in (III.8). Note,

E
[
m̂1(x)2]= 1

n2h2

n

∑
i=1

1
i

∫
K
(

y− x√
ih

)2

(g(y)2−2g(y)g(x)+g(x)2) f(i)(y)dy

+
1

n2h2 ∑∑
i 6= j

1√
i j

∫ ∫ t

−∞

K
(

s− x√
ih

)
K
(

t− x√
jh

)
· [g(s)g(t)−g(x)(g(s)+g(t))g(x)2] f(i, j)(s, t)dsdt

=
1

n2h

n

∑
i=1

1√
i
K (u)2 (g(x+

√
ihu)2−2g(x+

√
ihu)g(x)+g(x)2) f(i)(x+

√
ihu)dy

+
1
n2 ∑∑

i 6= j

∫ ∫ v

−∞

K (u)K (v)

· [g(x+
√

jhu)g(x+
√

jhv)−g(x)(g(x+
√

jhu)+g(x+
√

jhv))+g(x)2]

· f(i, j)(x+
√

jhu,x+
√

jhv)dsdt. (III.11)

The two summations will be worked on separately. First,

1
n2h

n

∑
i=1

1√
i

∫
K (u)2 (g(x+

√
ihu)2−2g(x+

√
ihu)g(x)+g(x)2) f(i)(x+

√
ihu)dy

=
1

n2h

n

∑
i=1

1√
i
K
(
u2)∫ (g(x)2 +2

√
ihug(x)g′(x)−2g(x)2−2

√
ihug(x)g′(x)+g(x)2 +o(

√
ihu))

· ( f(i)(x)+o(1))du

=
1

n2h

n

∑
i=1

1√
i

∫
K (u)2 (g(x)2 +2

√
ihug(x)g′(x)−2g(x)2−2

√
ihug(x)g′(x)+g(x)2 +o(

√
ihu))( f(i)(x)+o(1))

· ( f(i)(x)+o(1))du
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=
1

n2h

n

∑
i=1

1√
i

∫
K (u)2 o(

√
ihu)du

= o(n−1). (III.12)

Secondly,

1
n2 ∑∑

i6= j

∫ ∫ v

−∞

K (u)K (v) [g(x+
√

jhu)g(x+
√

jhv)−g(x)(g(x+
√

jhu)+g(x+
√

jhv))+g(x)2]

· f(i, j)(x+
√

jhu,x+
√

jhv)dsdt

=
1
n2 ∑∑

i 6= j

∫ ∫ v

−∞

K (u)K (v)
[(

g(x)+
√

ihug′(x)+o(
√

ihu)
)(

g(x)+
√

jhvg′(x)+o(
√

jhv)
)

−g(x)
(

g(x)+
√

ihug′(x)+g(x)+
√

jhvg′(x)+o(h(
√

iu+
√

jv)
)
+g(x)2

]
(

f(i, j)(x,x)+o(1)
)

dudv

=
1
n2 ∑∑

i 6= j

∫ ∫ v

−∞

K (u)K (v)
[
g(x)2 +(

√
iu+

√
jv)hg(x)g′(x)+

√
i jh2uvg′(x)2

−2g(x)2− (
√

iu+
√

jv)hg(x)g′(x)+g(x)2 +o(h(
√

iu+
√

jv))
] (

f(i, j)(x,x)+o(1)
)

dudv

=
1
n2 ∑∑

i 6= j

∫ ∫ v

−∞

K (u)K (v)
[√

i jh2uvg′(x)2 +o(h(
√

iu+√ j))
](

f(i, j)(x,x)+o(1)
)

dudv.

Using integral approximations, it can be seen that ∑∑i 6= j
√

i j = o(n3), and just as in the

density estimation case ∑∑i 6= j(
√

i+
√

j) = o(n5/2). Thus, one can get

1
n2 ∑∑

i 6= j

∫ ∫ v

−∞

K (u)K (v)
[√

i jh2uvg′(x)2 +o(h(
√

iu+√ j))
](

f(i, j)(x,x)+o(1)
)

dudv

= o(nh2)+o(
√

nh)

= o(
√

nh). (III.13)

Then using (III.12) and (III.13),

E
[
m̂1(x)2]= o(n−1 +

√
nh), (III.14)
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which gives the asymptotic order of the variance of m̂1(x) when combined with (III.8). The

result is

Var(m̂1(x)) = E
[
m̂1(x)2]−E [m̂1(x)]

2

= o(n−1 +
√

nh)

−
(

σ2
k h2

2
(
2g′(x) f (x)[1+(n−1)F(x)]

+g′′(x)
{

f (x)[1+(n−1) f (x)]+ f ′(x)[1+(n−1)F(x)]
})

+o(nh2)

)2

= o(n−1 +
√

nh). (III.15)

For Var(m̂2(x)) one needs only to find E
[
m̂2(x)2] since E [m̂2(x)] = 0. Thus,

Var(m̂2(x)) = E
[
m̂2(x)2]

=
1

n2h2 E

( n

∑
i=1

1√
i
ε[i]K

(
X(i)− x
√

ih

))2


=
1

n2h2

n

∑
i=1

1
i

E

[
ε

2
[i]K
(

X(i)− x
√

ih

)2
]

+
1

n2h2 ∑∑
i6= j

1√
i j

E
[

ε[i]ε[ j]K
(

X(i)− x
√

ih

)
K
(

X( j)− x
√

jh

)]

=
σ2

ε

n2h2

n

∑
i=1

1
i

∫
K
(

y− x√
ih

)2

f(i)(y)dy+0

=
σ2

ε R(K)

n2h

n

∑
i=1

1√
i

f(i)(x)+o
(

1
nh

)
(III.16)

Lastly, for the covariance of m̂1 and m̂2 (the single and double sum of E
[
m̂1(x)2]) one can

obtain

Cov(m̂1(x), m̂2(x)) = E [m̂1(x)m̂2(x)]+E [m̂1(x)]E [m̂2(x)]

= E

[(
n

∑
i=1

1√
i
K
(

X(i)− x
√

ih

)
(g(X(i))−g(x))

)(
n

∑
i=1

1√
i
K
(

X(i)− x
√

ih

)
ε[i]

)]
+0
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=
1

n2h2

n

∑
i=1

n

∑
j=1

1√
i j

E
[

K
(

X(i)− x
√

ih

)
(g(X(i))−g(x))K

(
X( j)− x
√

jh

)
ε[ j]

]
=

1
n2h2

n

∑
i=1

n

∑
j=1

1√
i j

E
[

K
(

X(i)− x
√

ih

)
(g(X(i))−g(x))K

(
X( j)− x
√

jh

)]
E
[
ε[ j]
]

= 0. (III.17)

Taking the result above, (III.17) , and combining this with (III.15) and (III.16), one can get

an expression for the variance of m̂(x) . This results in

Var(m̂(x)) = Var(m̂1(x))+Var(m̂2(x))+2Cov(m̂1(x), m̂2(x))

= o(n−1 +
√

nh)+
σ2

ε R(K)

n2h

n

∑
i=1

1√
i

f(i)(x)+o
(

n−3/2h−1
)

=
σ2

ε R(K)

n2h

n

∑
i=1

1√
i

f(i)(x)+o
(

n−1 +
√

nh+n−3/2h−1
)
.

Lastly, Cov(m̂(x), f̂h(x)) is needed. Note that

Cov(m̂(x), f̂h(x)) = E
[
m̂(x) f̂h(x)

]
−E [m̂(x)]E

[
f̂h(x)

]
.

The right hand term is known since E [m̂(x)] and E
[

f̂h(x)
]

have already been derived. Thus,

work on the left hand term gives the following:

E
[
m̂(x) f̂h(x)

]
= E

[(
1

nh

n

∑
i=1

1√
i
K
(

X(i)− x
√

ih

)
(g(X(i))−g(x))+

1
nh

n

∑
i=1

1√
i
K
(

X(i)− x
√

ih

)
ε[i]

)

·

(
1

nh

n

∑
i=1

1√
i
K
(

x−X(i)√
ih

))]

= E

[(
1

nh

n

∑
i=1

1√
i
K
(

X(i)− x
√

ih

)
(g(X(i))−g(x))

)(
1

nh

n

∑
i=1

1√
i
K
(

x−X(i)√
ih

))]

+
1

n2h2

n

∑
i=1

n

∑
j=1

1√
i j

E
[

K
(

x−X(i)√
ih

)
K
(

x−X( j)√
jh

)
(g(X(i)−g(x)))

]
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=
1

n2h2

n

∑
i=1

1
i

E

[
K
(

x−X(i)√
ih

)2

(g(X(i)−g(x)))

]

+
2

n2h2 ∑∑
i< j

1√
i j

E
[

K
(

x−X(i)√
ih

)
K
(

x−X( j)√
jh

)
(g(X(i)−g(x)))

]
=

1
n2h

n

∑
i=1

1√
i

∫
K (zi)

2 (g(x+
√

ihzi)−g(x)) f(i)(x+
√

ihzi)dzi

+
2
n2 ∑∑

i< j

∫ ∫ v j

−∞

K (ui)K
(
v j
)
(g(x+

√
ihui)−g(x)) f(i, j)(x+

√
ihui,x+

√
jhv j)duidv j

=
1

n2h

n

∑
i=1

1√
i

∫
K (zi)

2 (
√

ihzig′(x)+o(
√

ih))( f(i)(x)+
√

ihzi f ′(i)(x)+o(
√

ih))

+
2
n2 ∑∑

i< j

∫ ∫ v j

−∞

K (ui)K
(
v j
)
(
√

ihzig′(x)+o(
√

ih))(
f(i, j)(x,x)+uh

√
i

∂

∂ s
f(i, j)(s, t)

∣∣∣∣s=x

t=x+
+ vh

√
j

∂

∂ t
f(i, j)(s, t)

∣∣∣∣s=x

t=x+
+o
(

h(
√

i+
√

j)
))

dudv

=
1

n2h

n

∑
i=1

1√
i

∫
K (zi)

2 (
√

ihzi f(i)(x)g
′(x)+ ih2z2 f ′(i)(x)g

′(x)+o(
√

ih))dzi

+
2
n2 ∑∑

i< j

∫ ∫ v j

−∞

K (ui)K
(
v j
)

(
√

ihui f(i, j)(x,x+)g
′(x)+h2g′(x)

(
u
√

i
∂

∂ s
f(i, j)(s, t)

∣∣∣∣s=x

t=x+
+ v
√

j
∂

∂ t
f(i, j)(s, t)

∣∣∣∣s=x

t=x+

)

+o
(

h(
√

i+
√

j)
) )

dudv

= o(
√

nh).

This allows for the completion of the approximation of the variance of ĝ(x). Let An(x)=

σ2
Kh2/2, and Bn(x) =

σ2
Kh2

2

[
f
′′
(x)+(n−1)

(
f
′′
(x)F(x)+3 f (x) f

′
(x)
)]

. Then we obtain

the following form for the variance:

V (ĝ(x))≈

(
E [m̂(x)]
E
[

f̂h(x)
])2[

V (m̂(x))

E [m̂(x)]2
+

V ( f̂h(x))

E
[

f̂h(x)
]2 − 2 ·Cov(m̂(x), f̂h(x))

E [m̂(x)]E
[

f̂h(x)
] ]

=

 σ2
Kh2

2 An(x)+o(nh2)

f (x)+ σ2
Kh2

2 Bn(x)+o(nh2)

2
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·

[
o(n−1 +

√
nh)(

σ2
Kh2

2 An(x)+o(nh2)
)2 +

R(K)
n2h ∑

n
i=1

1√
i
f(i)(x)+o(

√
nh)(

f (x)+ σ2
Kh2

2 Bn(x)+o(nh2)
)2

+
o(
√

nh)(
σ2

Kh2

2 An(x)+o(nh2)
)(

f (x)+ σ2
Kh2

2 Bn(x)+o(nh2)
) ]

=

 1

f (x)+ σ2
Kh2

2 Bn(x)+o(nh2)

2

·

[
o(n−1 +

√
nh)+

(
σ2

Kh2

2 An(x)+o(nh2)
)2(R(K)

n2h ∑
n
i=1

1√
i
f(i)(x)+o(

√
nh)
)

(
f (x)+ σ2

Kh2

2 Bn(x)+o(nh2)
)2

+

(
σ2

Kh2

2 An(x)+o(nh2)
)

o(
√

nh)

f (x)+ σ2
Kh2

2 Bn(x)+o(nh2)

]
. (III.18)

Note that

f (x)+
σ2

Kh2

2
Bn(x)+o(nh2)→ f (x)

for any x in the distribution support. Additionally, the following converge to 0:

1. n−1 +
√

nh

2. σ2
Kh2

2 An(x)+o(nh2)

3. R(K)
n2h ∑

n
i=1

1√
i
f(i)(x)+o(

√
nh)

Therefore, the variance converges to 0 under the assumptions for the rate of convergence

of h.

Trying to manipulate the form of the variance given in (III.18) into something more

tractable or convenient has not produced any results. The convenient form of the variance

for the standard NW estimator in (I.15) is a result of its simpler overall structure combined

with the use of algebraic approximations.
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3.3 Bandwidth Selection

As mentioned in the review of bandwidth methods for the Nadaraya-Watson (NW)

regression estimator, there are two main types of bandwidth selection methods for h in

ĝNW (x): cross-validation and penalized residual sum of squares. Currently, both types are

being investigated for the rank based Nadaraya-Watson (RNW) estimate. Denote the rank

based Nadaraya-Watson estimate by ĝRNW (x). A similar form for both types of bandwidth

methods will be used.

The cross-validation method will be quite similar to that for the standard NW estimator

in (I.17). The objective function being used for the RNW estimator is

CV (h) =
1
n

n

∑
i=1

(Yi− ĝ−i,h(x))2,

where

ĝ−i,h(x) =

n

∑
j 6=i

1√
j
K
(

X( j)− x
√

jh

)
Y[ j]

n

∑
j 6=i

1√
j
K
(

X( j)− x
√

jh

) ,

the leave-one-out estimator that does not re-rank the data.

The other main bandwidth selection method being used is that of the penalized residual

sum of squares given by

G(h) =
1
n

n

∑
i=1

(Yi− ĝ(Xi))
2
Ξ

(
1
n

Whi(Xi)

)
,

where

Whi =

1√
i
K
(

X(i)− x
√

ih

)
Y[i]

n

∑
i=1

1√
i
K
(

X(i)− x
√

ih

) .

There are several functions that can be tried for Ξ. Additionally, usage of the AIC given

by (I.18) is also easily implemented given the generality of its form. Simulations presented
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within this work are done using the CV, Shibata, and AIC bandwidth selection methods

presented within the literature review.
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CHAPTER IV

SIMULATIONS

This chapter concentrates on some numerical results derived from simulations that are

meant to compare the standard density and Nadaraya-Watson estimators given in the intro-

ductory chapter with their rank weighted counterparts given in the previous two chapters.

A series of simulations was performed to see how the rank-weighted estimator com-

pares to the standard density estimator. First, the bandwidth choices in the simulations will

be discussed, and then the distributions simulated will be listed.

For the rank weighted density estimator, all four discussed bandwidth selectors are

used: Rule-of-Thumb (II.24), LSCV with a Gaussian kernel (II.31), the plug-in estimator

(II.33), and the hybrid rule-of-thumb estimator (II.34). For the standard density estimator,

the bandwidth choices are made by the rule-of-thumb approach, LSCV, and Sheather-Jones

plug-in estimator.

A series of skewed distributions and normal mixtures were simulated. Under each

distribution, 3000 samples were taken under each of the following sample size settings:

n = 20, 50, 100, 200, and 400. For each sample, the density estimators were calculated

using the different bandwidth selection methods discussed. In each distributional setting,

the bias and variance were estimated at 512 equidistant points across the support. These

are combined in MSE estimates at the points. Using numerical integration, these MSE

values are used to approximate the MISE. These MISE estimates are used to evaluate which

estimator performs in a superior manner.

The choice of distributions fall into two main categories: unbounded skewed distribu-
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tions, and normal distribution mixtures. Both of the two unbounded skewed distributions

used are referred to as ”skew normal” distributions; both of these skew normal distributions

allow for a control of a ”skewness parameter” that increases the skewness of the distribu-

tion. These skew normal distributions have distinct shapes as this skewness parameter

increases. They allow for the ability to see under what level of skewness, if any, would the

expected superiority of the RWKDE be achieved.

The first skew normal distribution is the skew normal distribution from Azzalini (1985).

This skew normal distribution will be represented by the notation SkewNormalAZ(µ,σ ,α),

with parameters for location µ , scale σ , and shape α . This skew normal distribution is

characterized by the following density function using φ and Φ to represent the standard

normal density and cumulative distribution functions, respectively.

f (x) =
1
σ

φ

(
x−µ

σ

)
Φ

(
α

x−µ

σ

)
.

As α increases, this distribution becomes more and more skewed. This can be seen in

Figure 4.1. For the simulations, results for when α = 2,6, and 10 will be discussed.

The second skew normal distribution is given by Fernández and Steel (1998). The

notation for this skew normal will be SkewNormalFG(µ,σ ,ξ ). Similarly, the parameters

are for location µ , scale σ , and shape ξ . The density function for the skew normal FG

distribution is given by the following:

f (x) =
2

ξ + 1
ξ

{
φ

(
x−µ

ξ σ

)
I(x≥ µ)+φ

(
ξ (x−µ)

σ

)
I(x < µ)

}
.

Similar to the previous skew normal distribution, the skew normal FG distribution becomes

more and more skewed as ξ increases. This is depicted in Figure 4.2. For the simulations,

results for when ξ = 2,6,10 will be discussed.

A variety of mixtures of normal distributions were also considered. The following table

gives the mixtures. The notation here shows the standard deviation as the second parameter.
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Figure 4.1: Depiction of skew normal AZ distribution as α increases.

A depiction of these mixtures is available in Figure 4.3.

Mixture

1 0.6 ·N(−1.5,1)+0.4 ·N(1.5,1)

2 1/3 ·N(−1,0.4)+1/3 ·N(0,0.3)+1/3 ·N(2,1)

3 1/3 ·N(−1,0.3)+1/3 ·N(0,0.5)+1/3 ·N(2,1)

4 1/9 ·N(−2,
√

0.05)+8/9 ·N(0,4)

Table 4.1: Listing of the Normal Mixtures used in density simulations.

Another set of kernel density estimation simulations were ran for testing the transforma-

tion kernel density estimator (TKDE) versus the rank weight transformation kernel density

estimator. The simulation were ran under the Lognormal(µ,σ) distribution with µ = 0

and σ = 0.5,1,2. Additionally, results were obtained from the Weibull(1,κ) distribution

where κ is the shape parameter and the values chosen were κ = 0.5,1, and 2. Under each

distributional setting, 3000 replications were considered. The MISE was calculated in the
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Figure 4.2: Depiction of skew normal FG distribution as ξ increases.

same manner as in the non-transformation kernel simulations. An investigation of band-

width behavior is not provided due to there being only one bandwidth method under TKDE

and RWTKDE.

The last set of simulations will test the NW estimator versus the RWNW estimator in a

regression setting. Five model functions g(x) were considered for regression simulations.

The form for the functions is given in Table 4.2, and a visualization of these functions is

given in Figure IV.

Function: g(x)

1 1−48x+218x2−315x3 +145x4

2 log(x+ .01)

3 sin(π(1− x)) · cos(4π(1− x)5)

4 e−5x

5 1.5sin(4x)

Table 4.2: The five regression model functions considered for simulations.
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Figure 4.3: Depiction of normal mixture distributions.

Beta Distribution

1 Beta(1,1)

2 Beta(1,3)

3 Beta(1,5)

4 Beta(1,7)

Mixture Distribution

1 .5 ·Beta(1,7)+ .5 ·Beta(1,1)

2 .8 ·Beta(1,5)+ .2 ·Beta(5,2)

Table 4.3: Table listing the distributions for the x variable in the regression simulations.
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Figure 4.4: Depiction of the different functions chosen for regression simulations.

Function 1 was also used by Hurvich, Simonoff, and Tsai (1998) due to it being a

function with ”less fine structure and a trend, in some sense ’typical’ of many regression

situations.” Function 2 was chosen due to it having even less fine structure, but still a mod-

erate trend. The 0.01 was added to avoid values approaching negative infinity. Function 3

has a mixture of both fine structure and steady structure, so it is a good test for the adapt-

ability of an estimator. Functions 4 and 5 are chosen as fairly moderate shapes in terms of

complexity.

Under each function, several different beta distributions were used to simulate the x

values. The beta distribution was selected because it gave quite a bit of variability for how

the x values could distributed. Mixtures of beta distributions were also used. The specific

distributions can be found in Table 4.3. For a visualization of these densities and mixture
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densities, see Figure ??. The unmixed beta densities were chosen due to the increasing right

skew nature when the second shape parameter is increased. The mixtures were chosen to

see how the estimators handle different structures of skewness. In mixture one, the density

does not converge to 0, but in mixture two, the density only goes to 0 at the very far right.

This is somewhat different behavior than in the unmixed beta densities.

For each set of x values simulated the y values were generated using y = g(x)+ε where

ε ∼ N(0,0.12) and N(0,0.52) which represent high and moderate correlation between the

x and y observations. In a similar manner to the density estimation case, the bias, variance,

and MSE were estimated pointwise using 512 points across the horizontal axis. The MISE

was then approximated using the 512 MSE calculations and applying a trapezoidal approx-

imation to numerically integrate the MSE values. These MISE approximations are used as

the comparison tool between the rank-weighted and standard estimator.

The regression simulations were done under several different bandwidth settings for

both the NW and RWNW estimator. Both estimators used the following bandwidth method

discussed previously: Shibata, AIC, and LSCV. Since each of the methods is applied nearly

identically in both estimators, this allows a very direct comparison between the NW and

RWNW estimators.
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Figure 4.5: Depiction of the beta and beta mixture distributions used for simulating the x

variable in regression simulations.

4.1 Kernel Density Estimation Simulations

To review the performance of the RWKDE, an investigation of how the bandwidth

selection methods vary in terms of bandwidth choice is presented. The best case would be

a stable, unimodal distribution of bandwidth choices with minimal variability. If there is

too much spread in the possible choices for bandwidth, the method is less reliable. As a

reference to excellent bandwidth behavior, look to the bandwidth behavior of the rule-of-

thumb method depicted in Figure 4.6. Note that at each sample size, it is unimodal and the
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least varied of the other selection methods. The issue with the rule-of-thumb method is that

is assumes a normal distribution, so it may be centered at values that are too high or low

depending on the underlying distribution of the sample generated.

The following Figures show density plots of the bandwidth choice methods for the rank-

weighted estimator under all distributions discussed so far: Rule-of-Thumb (II.24), LSCV

with a Gaussian kernel (II.31), the plug-in estimator (II.33), and the hybrid rule-of-thumb

estimator(II.34). First, the SkewNormalAZ with α = 2,6,10 results will be discussed.

Then, the SkewNormalFG results with ξ = 2,6,10 will be considered. Finally, the band-

width plots for the normal mixtures will be examined. The plots will display a density plot

of the bandwidth choices at sample sizes of 20, 100, and 400.

In Figures 4.6 and 4.7, a summarization of the skew normal AZ results can be seen.

Results for the other skew normal AZ distribution settings were similar and can be seen

in the appendix. The rule-of-thumb bandwidth seems to be the most stable/least varied

among the various bandwidth selection methods. The hybrid method seems to have the

same stability as the rule-of-thumb method at the largest sample sizes but the bandwidth

choice seems to be bi-modal. This indicates unstable parameter estimation in the MLE

estimates of the skew normal AZ distribution. The most intriguing part about this is that,

this instability in the bandwidth choice gets worse as the skewness parameter increases. The

plug-in estimator and LSCV estimator are the most spread out in bandwidth choice with

the plug-ing estimator regularly selecting the smallest bandwidths as sample size increases.

An interesting result is that the LSCV selector seems to have a mean value that is higher

than the other selectors whenever the sample size increases. This is most likely because,

as mentioned, the LSCV algorithm given may no longer be an unbiased estimator of the

ISE given in (II.25). It should be noted that across all distributions, the behavior of the

rule-of-thumb selector was relatively stable, i.e., not changing much between distributions.

For the skew normal FG distribution, there were some similarities and some differences

in bandwidth selection when compared to the AZ version. First, when the skewness param-
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eter of the FG version is set to ξ = 2, the spread of bandwidth choice was almost identical

to when bandwidths were selected for the skew normal AZ distribution with skewness pa-

rameter of α = 10 (see Figure 4.7). The difference between the skew normal AZ and

FG distributions in terms of bandwidth choice occurred when ξ = 6 and 10 for the skew

normal FG distribution. The results for ξ = 10 are pictured in Figure 4.8, for ξ = 6 the

results were similar. The spike in the hybrid bandwidth method seems much more stable

when compared to that in the skew normal AZ distribution. The spike in hybrid bandwidth

choice occurs near the lowest of bandwidth choices, but there is little bimodality even at

the smallest sample sizes. In the AZ version, the hybrid bandwidth choice showed strong

bimodality in some cases. In both distributions, the LSCV and plug-in selectors are fairly

spread out, showing little to no signs of converging. The LSCV selector seems to have a

mean that is above all other bandwidths, just as in the AZ case.

Bandwidth choice among the normal mixtures did not yield results that were very dif-

ferent from those previously discussed. Mixture 1 had results that were nearly identical to

the skew normal AZ with α = 2 (see Figure 4.6). Mixtures 2 and 3 were also similar to this.

The results for mixture 4 were quite different and are pictured in Figure 4.9. It can be seen

that the behavior of the LSCV and plug-in bandwidth estimators changes a great deal as the

sample size increases. The two bandwidth selection methods are centered at much lower

values than the rule-of-thumb and hybrid methods at the largest sample size. Additionally,

at the largest sample size some rather extreme behavior from the LSCV selector can be

seen in the right tail of the graph. There seems to be a small number of bandwidths chosen

by the LSCV selector that were still far above any other bandwidth choice. This behavior

from the LSCV is inexplicably extreme.

In general, it seems that at smaller sample sizes, say up to n = 100, the rule-of-thumb

selector may be best given its stability. But at larger sample sizes, the hybrid selector may

be a better choice given its similar stability at those sizes. If the main concern is to avoid

undersmoothing, the LSCV seems the proper choice given its higher mean value.
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Figure 4.6: Plot of bandwidths for each of the four bandwidth selection methods dis-

cussed for the rank weighted estimator at sample sizes 20, 100, 200, and 400 of the

SkewNormAZ(0,1,2).
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Figure 4.7: Plot of bandwidths for each of the four bandwidth selection methods dis-

cussed for the rank weighted estimator at sample sizes 20, 100, 200, and 400 of the

SkewNormAZ(0,1,10).
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Figure 4.8: Plot of bandwidths for each of the four bandwidth selection methods dis-

cussed for the rank weighted estimator at sample sizes 20, 100, 200, and 400 of the

SkewNormFG(0,1,10).
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Next, a discussion of the MISE results for the density estimators is presented. For the

same simulation data, rank-weighted density estimates and standard density estimates will

be compared. Again, the rank-weighted MISE results will be displayed for the discussed

bandwidth selection methods. These will be displayed along with the MISE results for

the same data using the standard density estimator with the following bandwidth selectors:

rule-of-thumb, LSCV, and plug-in (Sheather-Jones). To summarize, the following table

lists the type of estimator and the bandwidth selection methods considered.

Estimator

Rank-Weighted Standard

Bandwidth Method Rule-of-Thumb Rule-of-Thumb

LSCV LSCV

Plug-in Plug-in (Sheather-Jones)

Hybrid

Table 4.4: Summary of density estimation methods and bandwidth selection methods.

Figures 4.10 and 4.11 display the MISEs across the various estimation techniques when

simulating from the skew normal AZ distribution. These graphs are for skewness param-

eters of α = 2, and 10. Results for remaining skewness parameters are available in the

appendix as skewness parameters between 2 and 10 yielded similar results. Blue colors

denote MISE results for the standard estimator. Red colors are the rank-weighted results.

At α = 2, it can be seen that standard techniques work best, as would be expected since

this is very close to a symmetric distribution. When the skewness parameter is tuned to the

highest, α = 10, the rule-of-thumb method for the rank-weighted estimator takes the lead

slightly. Among the various bandwidth selection methods for the rank-weighted estimator,

the rule-of-thumb is usually performing best. Under the skew normal AZ distributional set-

ting, this result is very interesting. It would be expected that the hybrid method performs

best for the RWKDE. This is because the hybrid method calculates the bandwidth based

off estimating the parameters of the skew normal AZ distribution using the sample data.
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Figures 4.12 and 4.13 display the MISEs for the skew normal FG distribution with

skewness parameter ξ = 6, and 10. Results are more favorable for the rank-weighted es-

timator in this case. At ξ = 2, the results are very similar to what occurred with the skew

normal AZ distribution at α = 2 pictured in Figure 4.10; the standard methods have bet-

ter MISEs for the most part. However, for ξ > 2 the rank-weighted rule-of-thumb starts

performing best at all sample sizes, and once the sample size is 50 or above, the rank-

weighted LSCV estimator is working better than any of the standard methods as well. At

the highest sample sizes, the rank-weighted hybrid estimator is also performing better than

any standard estimators.

For the normal mixtures, again, refer to Table 4.1 for the corresponding mixtures and

Figure 4.3 to see the shapes of the mixtures, if needed. For mixtures 1 and 2, results are

similar so a display of the results for mixture 1 are given in Figure 4.14. It can be seen

that for these mixtures, the standard estimator works best. These mixtures were chosen be-

cause they do seem to have some factor of right skewness, but it presents in odd ways given

the multi-peaked natures. The most favorable mixture for the rank-weighted estimator was

mixture 3 where at lower sample sizes of 100 or below, the rank-weighted rule-of-thumb

estimator performs best. This can be seen in Figure 4.15. The fact that the RWKDE per-

forms best here is logical given this mixture has a shape that is very similar to that of skew

normal distributions that have a larger skewness parameter. Mixture 4 yielded interest-

ing results given its anomalous spiked shape; results are visible in 4.16. The MISEs have

strange behaviors with some converging at higher values and others continuously shrink-

ing. The rank-weighted LSCV estimator seems to perform best at the highest sample size.
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Figure 4.10: MISEs for the SkewNormAZ(0,1,2).
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Figure 4.11: MISEs for the SkewNormAZ(0,1,10).
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Figure 4.12: MISEs for the SkewNormFG(0,1,6).
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Figure 4.13: MISEs for the SkewNormFG(0,1,10).
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Figure 4.14: MISEs for the normal mixture 1.
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Figure 4.15: MISEs for the normal mixture 3.
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Figure 4.16: MISEs for the normal mixture 4.
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4.2 Transformation Kernel Density Estimation Simulations

Next, the results when using the TKDE and RWTKDE will be discussed. Figures 4.17

and 4.18 display the estimated MISEs under the Lognormal(0,0.5) and Weibull(1,2) set-

tings. It can be seen that the TKDE method of Timsina (2015) out performs the rank

weighted version. Results across all other distributional settings were similar for the trans-

formation estimator.
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Figure 4.17: Plot of MISEs for the TKDE and RWTKDE estimators under the

Lognormal(0,0.5) distribution.
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Figure 4.18: Plot of MISEs for the TKDE and RWTKDE estimators under the Weibull(1,2)

distribution.
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4.3 Kernel Regression Simulations

The last set of simulations discussed will be for the rank weighted Nadaraya-Watson

estimator (RWNW) compared to the standard Nadaraya-Watson (NW) estimator. Results

will be discussed in the order that the functions are listed in the introduction to this chapter.

Results not directly discussed can be viewed in the appendix.

For function 1, results for the Beta(1,1), and Beta(1,7) are viewable in Figures 4.19,

and 4.20, respectively. Under Beta(1,1), the results are similar for both error settings and

no version of either estimator separates from the others. As the second shape parameter

increases to 7, it becomes apparent that the standard NW estimator performs better in both

error settings; specifically, the LSCV bandwidth is best. Under the first mixture, results in

Figure 4.21 show that the rank weighted estimator performs best when the error term 0.5

under all three bandwidth methods once the sample size is greater than fifty. It seems that

when the correlation between variables is lower (larger error term), there is more room for

the RWNW estimator to perform better. The results under the beta mixture distributions

were similar. This pattern will be seen in the results for the remaining functions.

Next, for function 2, the most distinguishing results are visible in Figure 4.22 where the

RWNW estimator outperforms the NW estimator under all three bandwidth methods when

there is a larger error term. A similar pattern occurs in all other beta distributions including

the mixtures. Consistently, the RWNW has a lower MISE using at least two and sometimes

three of the bandwidth selection methods.

For function 3, the main results are visible in Figures 4.24, 4.25, and 4.26. Under the

Beta(1,1) distribution, all estimators seem to perform equivalently. but under the Beta(1,3)

distribution, all RWNW bandwidth methods perform better than the NW methods once the

sample size incerases to fifty. Results are very similar under the first mixture distribution.

Other distributions showed in general that the RWNW estimator performs best using the

LSCV bandwidth method.
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Function 4 results were some of the most clear. All can be summarized by the results

shown in Figure 4.27. Across all sample sizes in the larger error term case, it can be seen

that in the simulations the RWNW estimator was better under all bandwidth methods than

the NW estimator. This is the case for all distributions considered including mixtures.

The last function, function 5, has results visible in Figures 4.28, 4.29, 4.30. Under

the Beta(1,1) distribution for the x variable, the results favor the standard NW estima-

tor, specifically the LSCV bandwidth choice under both error terms. Results are rather

anomalous under the Beta(1,7) distribution where the MISE curve is concave instead of

convex like in most other cases; when the error term is large, the RWNW performs best

under all bandwidth choices until the largest sample size where the NW estimator has the

lower MISE. In the first mixture, the RWNW estimator seems to perform about the same

as the LSCV NW estimator, but all RWNW bandwidth choices have a lower MISE than the

Shibata and AIC bandwidth choices of the NW estimator.

A summarization of results obtained on both the RWKDE and and RWNW estimators

will be given in the next chapter. In general, there are cases favorable to the rank weighting.

An attempted analysis on what is causing the rank weighted or standard estimators to be

better will be given along with potential ideas for future research.
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Figure 4.19: MISEs comparing the estimation abilities of the NW estimator and RWNW

estimator under the indicated bandwidth methods in the legend. Results are for function 1

under the Beta(1, 1) distribution.
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Figure 4.20: MISEs comparing the estimation abilities of the NW estimator and RWNW

estimator under the indicated bandwidth methods in the legend. Results are for function 1

under the Beta(1, 7) distribution.
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Figure 4.21: MISEs comparing the estimation abilities of the NW estimator and RWNW

estimator under the indicated bandwidth methods in the legend. Results are for function 1

under the beta mixture 1.
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Figure 4.22: MISEs comparing the estimation abilities of the NW estimator and RWNW

estimator under the indicated bandwidth methods in the legend. Results are for function 2

under the Beta(1, 1) distribution.
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Figure 4.23: MISEs comparing the estimation abilities of the NW estimator and RWNW

estimator under the indicated bandwidth methods in the legend. Results are for function 2

under the Beta(1, 3) distribution.
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Figure 4.24: MISEs comparing the estimation abilities of the NW estimator and RWNW

estimator under the indicated bandwidth methods in the legend. Results are for function 3

under the Beta(1, 1) distribution.
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Figure 4.25: MISEs comparing the estimation abilities of the NW estimator and RWNW

estimator under the indicated bandwidth methods in the legend. Results are for function 3

under the Beta(1, 3) distribution.
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Figure 4.26: MISEs comparing the estimation abilities of the NW estimator and RWNW

estimator under the indicated bandwidth methods in the legend. Results are for function 3

under the beta mixture 1.
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Figure 4.27: MISEs comparing the estimation abilities of the NW estimator and RWNW

estimator under the indicated bandwidth methods in the legend. Results are for function 4

under the Beta(1, 1) distribution.
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Figure 4.28: MISEs comparing the estimation abilities of the NW estimator and RWNW

estimator under the indicated bandwidth methods in the legend. Results are for function 5

under the Beta(1, 1) distribution.
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Figure 4.29: MISEs comparing the estimation abilities of the NW estimator and RWNW

estimator under the indicated bandwidth methods in the legend. Results are for function 5

under the Beta(1, 7) distribution.
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Figure 4.30: MISEs comparing the estimation abilities of the NW estimator and RWNW

estimator under the indicated bandwidth methods in the legend. Results are for function 5

under the beta mixture 1.
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CHAPTER V

CONCLUSIONS AND FUTURE WORK

The purpose of this work is to try to extract extra information from the data by includ-

ing the use of ranks in estimation of densities and regression functions. In this paper, the

utilization of ranks simultaneously with observations was done under two estimation set-

tings in nonparametric statistics: kernel density estimation and kernel regression. A set of

conclusions summarizing the results from simulations will be given, then a set of ideas for

future research will be presented.

5.1 Conclusions

There were situations where rank-weighting performed better than the standard esti-

mation techniques for both density estimation and kernel regression. First, a discussion of

the performance of the RWKDE bandwidth selection methods will be discussed. A variety

of bandwidth selection methods were examined for the RWKDE setting. The most stable

bandwidth choice was that of the rule-of-thumb. The rule-of-thumb bandwidth method had

a similar spread of bandwidths across all simulated distributions for samples. In contrast to

this is the hybrid method. Typically, the hybrid method seemed to have a bimodal structure

in the distribution of potential bandwidth choices for lower sample sizes. This meant the

bandwidth choice was highly variable, which inflates the MISE. The LSCV and plug-in

bandwidth methods had much higher variability in bandwidth choice than initially hoped.

These results indicate that the rule-of-thumb estimator may perform best in terms of MISE
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in simulations, which is discussed next.

The most important issue with the RWKDE is to establish when this estimator is su-

perior to the standard kernel estimator. Obviously, the RWKDE did not always perform

best. In the case of both skew normal distributions, when the skewness parameter of each

distribution was in the lowest setting, the standard KDE performed best. This would be

because for low values of the skewness parameters, the skew normal distributions are very

close in structure to the normal distribution, and thus, nearly symmetric. At higher values

for the skewness parameters in both skew normal distributions, the RWKDE using the rule-

of-thumb bandwidth selection technique performed better than any bandwidth techniques

in the standard KDE. The LSCV bandwidth estimator in the RWKDE case performed sim-

ilarly, but slightly worse than the rule of thumb. A general trend in the simulations was

that if any bandwidth selection method was performing best in the RWKDE setting, it was

mostly the rule-of-thumb method. The main exception to this was in the case of the fourth

mixture of normal distributions where plug-in and LSCV methods performed better for the

RWKDE, but this is attributed to the shape of the fourth mixture. Overall, simulations show

that as a distribution appears more skewed, it is the RWKDE that performs best using the

rule-of-thumb bandwidth method. It seems that the instability and increased variability of

the other bandwidth methods prevent them from working as well as the rule-of-thumb.

As briefly discussed, a transformation technique explored by Marron and Ruppert (1994)

and Timsina (2015) was considered for use along with the rank-weighting in the density

estimation scenario. Results indicated that the non-rank-weighted TKDE performed better

than the RWTKDE. A possible explanation for this involves the structure of the TKDE:

f̂T (x) =
g′(x)
nh

n

∑
i=1

K
(

g(x)−g(Xi)

h

)
.

The transformation explored in simulations was the log function. Its derivative is 1/x.This

mean that the applied bandwidth when estimating the density at a point x is 1
xh . As x in-

97



creases, this bandwidth increases. In the rank-weighted setting, the ranks further increase

the size of the bandwidth: 1√
ixh

. This results in extremely small bandwidths at low ranks

of the sample and in extremely large bandwidths at high ranks, resulting in poorer perfor-

mance when compared to the non-rank-weighted estimator. Therefore, the recommenda-

tion is to use the TKDE instead of RWTKDE. It may be that if other bandwidth methods are

explored, this conclusion may change, but initial results do not merit further exploration.

Next, is a brief summary of the kernel regression results. One of the most clear results

is that when the error term is larger, the rank-weighted estimator will usually perform

better or equivalently to the standard estimator. The main exception to this was when

the y values were generated using function 5, which had a very mild structure. Initially

it was assumed that when the x values are generated using a Beta(1,1) distribution, the

standard NW estimator would perform best and as the second shape parameter increased,

the RWNW estimator would perform better. In functions 2 and 4, the RWNW estimator

performed better even in the Beta(1,1) setting for the x values. Overall, if the distribution of

the x values is skewed and there seems to be more noise in the data, the RWNW estimator

was performing better. No bandwidth selection method really separated itself in terms

of performance from others, although, the AIC bandwidth method seemed to have the

worst performance out of the three when samples sizes were at their smallest. An initial

suggestion may be to use the Shibata method for kernel regression bandwidths in the rank-

weighted setting.

Overall, there is potential for the rank-weighted estimator in both the density estima-

tion case and the regression case, although there is definitely room for improvements and

innovations.

5.2 Future Work

There are a few clear options for future research for the rank-weighted density esti-

mator. One is further exploration of bandwidth techniques. It seems unsatisfactory that
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a rule-of-thumb method that simply assumes a normal distribution and calculates an opti-

mal bandwidth for the normal distribution performs best. Just as the Sheather-Jones plug-in

method for bandwidth selection is considered a superior choice in the standard KDE, it was

hoped that the plug-in method in the RWKDE would be a better option. One possible issue

is that the plug-in method for the RWKDE used LSCV to estimate the derivatives of the

underlying density f (x). The LSCV method is often criticized for its high variability which

negatively impacts the MISE. Other methods for estimating the functional given by (II.23)

need to be explored in order to improve the plug-in bandwidth selection methods. Another

option for bandwidth selection is to stabilize the hybrid bandwidth selector by alternative

parameter estimation techniques.

For regression estimation, the main avenue for potential research is investigating ap-

plying rank-weighting to the local-linear kernel regression estimator described by Li and

Racine (2007). In the standard case, the local-linear estimator fixes some issues with the

NW estimator. The main issue is that the bias for the NW estimator can increase in magni-

tude by a large amount near boundaries of the regression function. Additionally, the local-

linear estimator usually performs better. Hopefully, this will extend to rank-weighting.

There is another topic of interest for future research that applies to both the rank-

weighted density and regression estimators. There may be potential improvements gained

from examining the rank-weights 1√
i
. In the density estimation case where only one vari-

able requires ranking, it may be beneficial to generalize the rank-weighted kernel density

estimator to the form
1

nh

n

∑
i=1

ψ(i)K
(

ψ(i)
x−X(i)

h

)
,

where ψ is some function. In the current case, ψ(i) = 1/
√

i. For the rank-weighted

Nadaraya-Watson estimator, it may be possible to take this idea a step further and use

some sort of weighting function on Ri and Si, which are defined to be the ranks of both the
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Xi and Yi observations, respectively. The form of the estimator would then be

n

∑
i=1

ψ(Ri,Si)K
(

ψ(Ri,Si)
Xi− x

h

)
Yi

n

∑
i=1

ψ(Ri,Si)K
(

ψ(Ri,Si)
Xi− x

h

) .

In either case, a methodology would need to be developed for finding optimal or near

optimal functions depending on the data at hand. A simplified situation may be to use the

function 1
iq and to find an optimal value for q.
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Appendix A

Density Bandwidth Plots

Plots begin on the next page.
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Figure A.1: Plot of bandwidths for each of the four bandwidth selection methods dis-

cussed for the rank weighted estimator at sample sizes 20, 100, 200, and 400 of the

SkewNormAZ(0,1,2).
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Figure A.2: Plot of bandwidths for each of the four bandwidth selection methods dis-

cussed for the rank weighted estimator at sample sizes 20, 100, 200, and 400 of the

SkewNormAZ(0,1,6).
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Figure A.3: Plot of bandwidths for each of the four bandwidth selection methods dis-

cussed for the rank weighted estimator at sample sizes 20, 100, 200, and 400 of the

SkewNormAZ(0,1,10).
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Figure A.4: Plot of bandwidths for each of the four bandwidth selection methods dis-

cussed for the rank weighted estimator at sample sizes 20, 100, 200, and 400 of the

SkewNormFG(0,1,2).
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Figure A.5: Plot of bandwidths for each of the four bandwidth selection methods dis-

cussed for the rank weighted estimator at sample sizes 20, 100, 200, and 400 of the

SkewNormFG(0,1,6).
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Figure A.6: Plot of bandwidths for each of the four bandwidth selection methods dis-

cussed for the rank weighted estimator at sample sizes 20, 100, 200, and 400 of the

SkewNormFG(0,1,10).
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Figure A.7: Plot of bandwidths for each of the four bandwidth selection methods discussed

for the rank weighted estimator at sample sizes 20, 100, 200, and 400 of the normal mixture
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Figure A.8: Plot of bandwidths for each of the four bandwidth selection methods discussed

for the rank weighted estimator at sample sizes 20, 100, 200, and 400 of the normal mixture
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Figure A.9: Plot of bandwidths for each of the four bandwidth selection methods discussed

for the rank weighted estimator at sample sizes 20, 100, 200, and 400 of the normal mixture
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Figure A.10: Plot of bandwidths for each of the four bandwidth selection methods dis-

cussed for the rank weighted estimator at sample sizes 20, 100, 200, and 400 of the normal

mixture 4.
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Density MISE Plots
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Figure A.11: MISEs for the SkewNormAZ(0,1,2).
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Figure A.12: MISEs for the SkewNormAZ(0,1,6).
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Figure A.13: MISEs for the SkewNormAZ(0,1,10).
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Figure A.14: MISEs for the SkewNormFG(0,1,2).
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Figure A.15: MISEs for the SkewNormFG(0,1,6).
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Figure A.16: MISEs for the SkewNormFG(0,1,10).
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Figure A.17: MISEs for the normal mixture 1.
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Figure A.18: MISEs for the normal mixture 2.

123



●

●

●

●
●

0.025

0.050

0.075

100 200 300 400
Sample Size

M
IS

E

Estimator & BW
● RW.Rule−of−Thumb

RW.Plugin
RW.Hybrid
RW.LSCV
STD.Rule−of−Thumb
STD.Plugin
STD.LSCV

Mix 3:0.33N(−1, 0.3) + 0.33N(0, 0.5) + 0.33N(2, 1)  MISE

Figure A.19: MISEs for the normal mixture 3.
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Figure A.20: MISEs for the normal mixture 4.
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Regression MISE Plots
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Figure A.21: MISEs for the NW estimator and RWNW estimator under the indicated band-

width methods in the legend. Results are for function 1 under the Beta(1, 1) distribution.
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Figure A.22: MISEs for the NW estimator and RWNW estimator under the indicated band-

width methods in the legend. Results are for function 1 under the Beta(1, 3) distribution.
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Figure A.23: MISEs for the NW estimator and RWNW estimator under the indicated band-

width methods in the legend. Results are for function 1 under the Beta(1, 5) distribution.
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Figure A.24: MISEs for the NW estimator and RWNW estimator under the indicated band-

width methods in the legend. Results are for function 1 under the Beta(1, 7) distribution.
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Figure A.25: MISEs for the NW estimator and RWNW estimator under the indicated band-

width methods in the legend. Results are for function 1 under the beta mixture 1.
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Figure A.26: MISEs for the NW estimator and RWNW estimator under the indicated band-

width methods in the legend. Results are for function 1 under the beta mixture 2.
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Figure A.27: MISEs for the NW estimator and RWNW estimator under the indicated band-

width methods in the legend. Results are for function 2 under the Beta(1, 1) distribution.
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Figure A.28: MISEs for the NW estimator and RWNW estimator under the indicated band-

width methods in the legend. Results are for function 2 under the Beta(1, 3) distribution.
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Figure A.29: MISEs for the NW estimator and RWNW estimator under the indicated band-

width methods in the legend. Results are for function 2 under the Beta(1, 5) distribution.
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Figure A.30: MISEs for the NW estimator and RWNW estimator under the indicated band-

width methods in the legend. Results are for function 2 under the Beta(1, 7) distribution.
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Figure A.31: MISEs for the NW estimator and RWNW estimator under the indicated band-

width methods in the legend. Results are for function 2 under the beta mixture 1.
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Figure A.32: MISEs for the NW estimator and RWNW estimator under the indicated band-

width methods in the legend. Results are for function 2 under the beta mixture 2.
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Figure A.33: MISEs for the NW estimator and RWNW estimator under the indicated band-

width methods in the legend. Results are for function 3 under the Beta(1, 1) distribution.
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Figure A.34: MISEs for the NW estimator and RWNW estimator under the indicated band-

width methods in the legend. Results are for function 3 under the Beta(1, 3) distribution.
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Figure A.35: MISEs for the NW estimator and RWNW estimator under the indicated band-

width methods in the legend. Results are for function 3 under the Beta(1, 5) distribution.
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Figure A.36: MISEs for the NW estimator and RWNW estimator under the indicated band-

width methods in the legend. Results are for function 3 under the Beta(1, 7) distribution.
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Figure A.37: MISEs for the NW estimator and RWNW estimator under the indicated band-

width methods in the legend. Results are for function 3 under the beta mixture 1.
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Figure A.38: MISEs for the NW estimator and RWNW estimator under the indicated band-

width methods in the legend. Results are for function 3 under the beta mixture 2.
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Figure A.39: MISEs for the NW estimator and RWNW estimator under the indicated band-

width methods in the legend. Results are for function 4 under the Beta(1, 1) distribution.
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Figure A.40: MISEs for the NW estimator and RWNW estimator under the indicated band-

width methods in the legend. Results are for function 4 under the Beta(1, 3) distribution.
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Figure A.41: MISEs for the NW estimator and RWNW estimator under the indicated band-

width methods in the legend. Results are for function 4 under the Beta(1, 5) distribution.
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Figure A.42: MISEs for the NW estimator and RWNW estimator under the indicated band-

width methods in the legend. Results are for function 4 under the Beta(1, 7) distribution.
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Figure A.43: MISEs for the NW estimator and RWNW estimator under the indicated band-

width methods in the legend. Results are for function 4 under the beta mixture 1.
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Figure A.44: MISEs for the NW estimator and RWNW estimator under the indicated band-

width methods in the legend. Results are for function 4 under the beta mixture 2.
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Figure A.45: MISEs for the NW estimator and RWNW estimator under the indicated band-

width methods in the legend. Results are for function 5 under the Beta(1, 1) distribution.
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Figure A.46: MISEs for the NW estimator and RWNW estimator under the indicated band-

width methods in the legend. Results are for function 5 under the Beta(1, 3) distribution.
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Figure A.47: MISEs for the NW estimator and RWNW estimator under the indicated band-

width methods in the legend. Results are for function 5 under the Beta(1, 5) distribution.
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Figure A.48: MISEs for the NW estimator and RWNW estimator under the indicated band-

width methods in the legend. Results are for function 5 under the Beta(1, 7) distribution.
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Figure A.49: MISEs for the NW estimator and RWNW estimator under the indicated band-

width methods in the legend. Results are for function 5 under the beta mixture 1.
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Figure A.50: MISEs for the NW estimator and RWNW estimator under the indicated band-

width methods in the legend. Results are for function 5 under the beta mixture 2.
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