
 MACHINE LEARNING:

A POTENTIAL FORECASTING TOOL

 By

 JASDEEP SINGH BANGA

 Bachelor of Science (Hons.) in Agriculture

 Punjab agricultural University

 Punjab, India

 2004

 Master of Business Administration

 Punjab Agricultural University

 Punjab, India

 2006

 Submitted to the Faculty of the

 Graduate College of the

 Oklahoma State University

 in partial fulfillment of

 the requirements for

 the Degree of

 DOCTOR OF PHILOSOPHY

 December, 2017

ii

 MACHINE LEARNING:

A POTENTIAL FORECASTING TOOL

 Dissertation Approved:

 Dr. B. Wade Brorsen

 Dissertation Adviser

Dr. Kim Anderson

Dr. Eric A. DeVuyst

Dr. Tim Krehbiel

.

iii

Name: JASDEEP SINGH BANGA

Date of Degree: DECEMBER, 2017

Title of Study: MACHINE LEARNING: A POTENTIAL FORECASTING TOOL

Major Field: AGRICULTURAL ECONOMICS

Abstract: Technical analysis involves predicting asset price movements from analysis

of historical prices. Many studies have been conducted to determine the profitability

of technical analysis. A composite prediction is considered here by using the buy and

sell signals from technical indicators as inputs. Both machine learning methods like

neural networks and statistical methods like logistic regression are used to get

composite forecasts. Signals from trend-following and mean-reversal technical

indicators are used in addition to variance of prices as inputs. Variance is added to

help technical indicators switch between trend-following and mean-reversal systems.

Five commodities from agricultural, livestock and foreign exchange futures markets

are selected to test the hypothesis of profitability of technical indicators. Special care

is taken to avoid data snooping error.

None of the individual indicators or machine learning models generate significant

profit in single day forecasts. In twenty-day forecasts, only random forest and pipeline

models are profitable. Neural networks and statistical models both failed to deliver

here. The out of sample failure of the neural networks is partly due to the relatively

large number of parameters. Managed futures, however also did poorly in the out of

sample period so the results could also be due to picking a time period where

technical analysis did poorly. Individual indicators did occasionally show significant

profits. Random forests and decision tree find variance as the most important input.

Future research should consider alternative time periods, commodities, systems, and

machine learning algorithms. If a scale neutral variable for variance could be

developed, it should be used so that the models could be trained on data from multiple

commodities to provide more training data.

iv

TABLE OF CONTENTS

Chapter Page

I. I. MACHINE LEARNING: A POTENTIAL FORECASTING TOOL

 Introduction ..1

 Technical Indicators ...5

 Prediction Models ..9

 Data and Methods ..16

 Results ..20

 Conclusions ..31

REFERENCES ..34

APPENDICES ...39

v

LIST OF TABLES

Table Page

1. Selected Technical Indicators and Their Formulas ...10

2. Summary Statistics for the Indicators ...17

3. Summary of Model Performance in Copper ...25

4. Summary of Model Performance for Corn ...26

5. Summary of Model Performance for Feeder Cattle ..27

6. Summary of Model Performance for Japanese Yen ...29

7. Summary of Model Performance for Eurodollar ..32

8. Summary of Significance of Profitability of Technical Indicators33

9. Summary of Variable Importance Using Random Forest...................................34

10. Summary of Variable Importance Using Decision Tree.....................................34

2

Introduction

Technical analysis involves predicting asset price movements from analysis of historical price

movements. Beja and Goldman (1980) argue that the trends exploited by technical analysis are due to

markets frictions that cause markets to be slow to adjust in the absence of technical trading. The trend-

following systems ride along on the actions of informed traders and work best when the market is

unstable. Reversal systems like oscillators should work well when the market is stable. One concern is

that the actions of trend-following technical traders can cause phenomena unrelated to economic

fundamentals.

Brorsen and Irwin (1988) report that among a survey of 32 large commodities fund managers,

only two were not using objective technical analysis. Oberlechner (2001) surveyed foreign exchange

traders and find that a majority of the foreign exchange traders use some sort of technical analysis.

Allen and Taylor (1992) found that 90 percent of traders in London use technical analysis as a primary

or secondary source of information. Park and Irwin (2007) found trading strategies based on technical

analysis were profitable in the futures markets until at least the early 1990s. As more money was

devoted to trading based on technical analysis, its profitability dropped. A large number of trend-

following technical traders may create market bubbles. Improved technical trading systems that could

optimally switch back and forth between trend-following and reversal systems could increase trader’s

profits as well as potentially reduce instability created by trend followers.

The efficient markets hypothesis says that the current price reflects all available information

about the commodity (Malkiel, 1989). In the absence of technical traders, markets have proven to be

slow to adjust due to market frictions such as risk averse traders and behavioral anomalies such as loss

aversion. Technical analysts recognize the trends arising from slow adjustments and exploit them.

Sometimes, even if the trend is random but many investors follow it then the subsequent prediction

becomes self-fulfilling, and sometimes creates a bubble. Boyd and Brorsen (1991) find a strong

3

relationship between market volatility and technical trading profits. This relationship could be useful

to traders in determining whether to use a trend-following or a reversal system.

Various technical trading rules have been used in past research. Lukac, Brorsen, and Irwin

(1988) use 14 trading systems approximating the full “universe” of trading systems. They find that

technical trading systems produced statistically significant net returns, as compared to the buy-and-

hold benchmark strategy over 1978-1985. Park and Irwin (2005) use 9,385 trading rules from 15 trading

systems to study the profitability of technical analysis and find that technical trading strategies have

not been profitable in the U.S. markets after correction for the costs and data snooping biases over

1985-2004. Various other studies like Ulrich (2009), Szakmary et al. (2010), Roberts (2005), Sullivan

et al. (2003), Olson (2004), and Neely (2003) find evidence both in favor and against profitability of

technical analysis. Roberts (2005) finds that technical rules were capable of generating significant out-

of-sample profits in only 2 of 24 futures markets studied. Park and Irwin (2007) find that out of 95

modern studies, 56 find technical trading strategies being profitable, 20 studies obtaining non-profitable

results and 19 studies having mixed results. They have expressed concerns about data snooping or

publication bias in these studies.

Pruitt et al. (1992) use a combination system of cumulative volume, relative strength, and

moving-averages to document profitability of a technical strategy over a buy-and-hold strategy in stock

markets over 1986-1990. Irwin et al. (1997) compare ARIMA models to performance of technical

trading system in soybean futures markets and find channel systems generate statistically significant

mean returns in their out of sample period. Allen and Karjalainen (1999) use a genetic algorithm to

learn technical trading rules and find that trading rules do not earn consistent excess returns over a buy-

and-hold strategy after considering transaction costs in the out-of-sample test periods of S&P 500 index.

Hamm and Brorsen (2000) develop a neural network trading model for agricultural commodities using

lagged prices as inputs to determine the profitability of trading using signals from neural networks and

find that neural networks did not produce significant profits. Ou and Wang (2009) use a logit model,

4

neural networks, classification tree based models among ten data mining techniques for prediction of

stock markets index movement and find that they have accuracy in forecasting stock price movements.

Most studies of technical trading strategies exhibit one or many flaws like no statistical tests of

return, no out-of-sample verification, data snooping problems are not given proper attention, and

significance of economic profit after transaction costs are not considered. Park and Irwin (2007, p. 817

) put forward three conditions for technical trading strategies that have to be satisfied for meaningful

inference: “(1) markets and trading systems should be comprehensively represented in original study

such that they can be considered broadly representative of the actually use technical systems, (2) testing

procedure must be carefully documented, so they can be ‘written in stone’ at the point in time the study

is published, and (3) the publication date of the original work should be sufficiently far in the past that

a follow-up study can have a reasonable sample size.” This study takes into consideration all three

conditions of Park and Irwin (2007).

One major difference between the present study and past studies is that, this study uses long-

short trading signals as inputs instead of technical indicators themselves, and also an additional input

representing the variance of prices is used. The potential of using long-short trading signals is that the

model trained on the signals from one commodity can be extended to other commodities. The idea

behind inclusion of variance of change in prices is that it should facilitate the switch between trend-

following and mean-reversal trading systems depending on market conditions. In addition to

determining the profitability of trading rules, random forests and decision trees can rank various trading

rules according to their importance in trend recognition. The other main contribution of this study is

comparison of the performance of random forests, decision tree, ensemble methods (Gaussian naive

Bayesian, random forests, support vector machine, linear regression, and decision tree classifier) and

single classifier models (Neural networks (NN), and logistic regression (LR)) in predicting the

commodity futures market’s direction using technical indicators. In addition, random restarts are used

5

to avoid the local minima problem of neural networks. This study also evaluates the individual technical

indicators.

Technical Indicators

Technical indicators provide buy-sell trading recommendations. Even though charting is also a major

type of technical analysis, this study only uses mathematically-derived trading rules. Mathematically-

derived technical indicators can be divided into two main groups: trend-following (lagging indicators)

and trend-reversal (leading indicators). Trend-following indicators are designed to follow price

movements and work best when markets have large price movements. Some popular trend-following

indicators include dual moving-average crossover, moving average convergence divergence (MACD),

and price channels.

Trend-reversal or leading indicators measure the momentum in the markets. They are designed

to lead the price movements and identify reversal of the trend. They represent price momentum over a

fixed past period and all prior price action before that period is ignored. This study uses both trend-

following and mean-reversal technical indicators such as moving average indicators, relative strength

index (RSI), stochastic oscillator, commodity channel index (CCI), price channels, and variance.

This study uses the dual moving average crossover system to generate buy and sell signals.

Moving-averages are trend-following techniques. Purcell and Koontz (1999, p. 175) say that “the idea

is that in an upward- or downward-trending market, the shorter moving average tends to move faster

and ‘leads’ the longer average. When the market turns, the shorter average turns more quickly and

crosses the longer and slower-moving average. It is this crossover action that generates the buy and sell

signals” (table 1). This study uses three types of dual moving averages namely (5, 10), (5, 20) and (10,

50). In the dual moving average (5, 10) and (5, 20) the 5 day moving average is considered the short

moving average (SMA) while 10 and 20 day moving average is considered the long moving average

6

(LMA). Dual moving average (10, 50) uses 10-day moving average as SMA and 50-day moving

average as LMA.

Relative strength index (RSI) is a popular momentum indicator and an oscillator. Like many

other momentum oscillators, RSI works best when prices move sideways within a range. RSI is

effective in both upward-and downward-trending markets. Purcell and Koontz (1999, p. 191).

Schwager (1984) consider RSI as important in bringing discipline to a hedging program. Usually a 14-

day look-back period is used for RSI calculation. RSI fluctuates between 0 and 100. RSI at zero means

prices moved lower for all of the 14-day period and average gain equals zero. RSI at 100 means prices

moved up all 14-days. If the RSI drops below 30 then it represents an oversold market and gives a buy

signal. If RSI moves to 70 or higher, it is signaling a correction towards the downside will occur and it

is a sell signal. This study uses both 14-day RSI and 9-day RSI (table 1).

Another oscillator used is the stochastic oscillator. It is a momentum indicator and compares

the closing price to the range of prices over a certain period of time. Thus it is used to forecast reversal

in the commodity markets when it has reached oversold or overbought levels. It can range between zero

and 100. Usually a 14-day stochastic oscillator is used. The oversold threshold for a 14-day stochastic

oscillator is considered to be at 20, and overbought threshold is represented by 80. Stochastic oscillator

values below 20 indicate that the security is trading near its bottom level and thus generates a buy

signal. Value above 80 indicates that the security is trading near its top level and thus provides a sell

signal (table 1).

Another oscillator used is the commodity channel index (CCI). CCI is first developed to

identify cyclical turns in commodities markets but is now used for equities and currencies too. CCI

when used along with other oscillators can be helpful in estimating direction of price movement. CCI

usually fluctuates between -100 to +100 but values can go beyond this range. If readings on CCI move

above +100, it generates a buy signal and if it moves below -100, it is a sell signal. This study uses the

7

20-day period to calculate the CCI (CCI 20-day) and uses the typical price (obtained by the combined

average of high, low and closing price of the commodity on a given day) as well as mean deviation of

typical price. It is calculated by dividing the difference between “typical price (TP)” and 20-day SMA

of TP with the mean deviation of the TP. TP is calculated by taking the average of high, low and closing

price of the day. This study uses 20-day period to calculate the CCI. A constant (0.015) is added to

ensure that approximately 70 to 80 percent of the CCI values would fall between -100 and +100. It

measures the current price level relative to the average price level over a look-back period and CCI

readings are higher when prices are above their average and they represent a strong trend. While CCI

readings below -100 signal weakness in prices and thus give a sell signal (table 1).

A price channel is a trend-following system that consists of two lines representing support and

resistance (table 1). For a 20-day channel, the support line is the 20-day low and the resistance line is

the 20-day high. Price channels are used to represent trend direction for any security. They are used to

identify the start of an uptrend or downtrend. In the case of a 20-day price channel, a buy signal is

generated if the last day’s closing price is higher than the maximum of the previous 20 days (excluding

last day) and vice versa. While in the case of 50-day price channel, a buy signal is generated if the last

day’s closing price is higher than the maximum of the previous 50 days. Price channel does not include

the most recent period. For example a 50-day price channel for August 11 would be based on the 50-

day high and 50-day low ending the day before, August 10. This is done as a channel is not possible if

the most recent period was used. Table 2 provides the summary statistics for the indicators.

Boyd and Brorsen (1992) use simulated technical trading profits to study correlation of price

statistics and technical returns. They find trend-following systems are more profitable when price

volatility is high. Another important variable for the present study is standard deviation (CV) of changes

in close price. Yao et al. (2000) has indicated the importance of having a measure of volatility as an

input for the formulation of the neural network for forecasting. Volatility is an indication of an

8

impending (or in process) major move. The idea behind it is to include a variable that can help switching

between trend-following and mean-reversal systems.

Table 1. Selected Technical Indicators and Their Formulas

Name of Indicators Buy Signal Sell Signal Formulas

Dual moving average crossover* SMA>LMA SMA<LMA

Relative strength index (RSI)** RSI>70 RSI<30

Commodity channel index (CCI)* CCI<-100 CCI>100

Stochastic oscillator %k**

Stochastic oscillator %D** %D > 80 %D <20

20-day price channel 𝐶𝑛−1 > 𝑀𝑋 𝐶𝑛−1 < 𝑀𝑋

CV

Note: * denotes trend-following system, ** denotes mean-reversal system, SMA is small

moving average (5 days), LMA is larger moving average (10 days), 𝐶𝑡 is the closing price, 𝐿𝑡

is the low price, 𝐻𝑡the high of the day, 𝑈𝑡 is the upward price change, 𝐷𝑡 is the downward

price change, 𝑀𝑡: (𝐻𝑡 + 𝐿𝑡 + 𝐶𝑡)/3, 𝑀𝐴𝑡 = (∑ 𝑀𝑡−𝑖+1
20
𝑖=1)/𝑛, 𝐷𝑡 = (∑ 𝑀𝑡−𝑖+1 − 𝑀𝐴𝑡

𝑛
𝑖=1),

𝑆𝐷𝑡 = √1 14⁄ (∑ (𝐶𝑡 − µ)214
𝑡=1 , µ is the mean of 14-days, 𝑆𝐷𝑠 is the standard deviation of

training data set, µ𝑆 is the mean of training data set (Purcell and Koontz, 1999).

Table 2. Summary Statistics for the Indicators

𝑅𝑆𝐼 = 100 − 100/(1 + (
∑ 𝑈𝑡−𝑖

𝑛−1
𝑖

𝑛
/

∑ 𝐷𝑡−𝑖
𝑛−1
𝑖

𝑛
))

𝑥 =
𝐶𝑡 + 𝐶𝑡−1 + 𝐶𝑡−2 + ⋯ + 𝐶𝑡−10

10

%𝑘 =
𝐶𝑡−𝐿14

𝐻14−𝐿14
*100

𝐶𝐶𝐼 =
𝑀𝑡−𝑀𝐴𝑡

0.015∗𝐷𝑀𝑡

%𝐷 =
∑ %𝑘𝑡−1

𝑛−1
𝑖−0

𝑛

𝐶𝑉 = (𝑆𝐷𝑡 − µ𝑆)/𝑆𝐷𝑠

𝑀𝑋 = 𝑀𝑎𝑥(𝐶𝑛−2: 𝐶𝑛−21)

9

Commodity %k

%D

(Three

Day

Average

of %k)

CCI 20-

day

Dual

Moving

Average

(10,5)

Dual

Moving

Average

(20,5)

Dual

Moving

Average

(50,10)

RSI

(14-

day)

RSI

(9-day)

Copper
Max 100 100 362.25 1484.09 1477.81 1467.98 99.61 100

Min 0 0 -666.67 996.79 996.91 997.41 0.16 0

Mean 52.26 52.27 8.58 1152.62 1152.51 1152.19 51.29 51.37

SD 37.28 34.5 111.93 117.53 117.5 117.38 17.21 20.78

Japanese Yen

Max 100 100 494.14 1000.55 1000.54 1000.52 100 100

Min 0 0 -666.67 999.6 999.61 999.61 0 0

Mean 46.6 46.6 -5.95 1000.01 1000.01 1000.01 48.87 48.58

SD 37.35 34.66 112.65 0.17 0.17 0.17 17.94 21.52

Feeder cattle

Max 100 100 442.68 1127.64 1126.62 1124.79 100 100

Min 0 0 -666.67 983.16 983.55 984.26 0 0

Mean 53.31 53.31 6.68 1041.28 1041.26 1041.19 51.42 51.32

SD 37.44 34.81 110.63 28.76 28.75 28.72 17.35 21.72

EuroDollar

Max 100 100 566.76 1030.95 1030.91 1030.85 100 100

Min 0 0 -666.67 999.97 1000.31 1000.8 0 0

Mean 56.53 56.53 18.16 1021.6 1021.58 1021.53 53.91 53.75

SD 38.9 36.32 114.15 6.71 6.72 6.77 21.37 25.8

Corn

Max 100 100 350.64 1287.95 1285.49 1275.31 95.68 100

Min 0 0 -666.67 425.95 426.94 438.95 0 0

Mean 47.58 47.57 -7.09 871.79 871.99 872.6 48.7 48.58

SD 37.35 34.57 111.5 188.91 188.64 187.8 17.11 20.84

Prediction Models

Several classification techniques have been use to predict the direction of financial markets e.g.

logistic regression (Ohlson, 1980; Pantalone and Platt, 1987; Dimitras et al., 1996, Brownstone, 1996),

multiple discriminant approaches (Altman et al., 1977, Ou and Wang, 2009), support vector machines

(SVM) (Huang et al., 2006; Kim, 2003; Lee, 2009), k-nearest neighbors (Subha and Nambi, 2012),

http://www.sciencedirect.com/science/article/pii/S095741740600159X#bib12
http://www.sciencedirect.com/science/article/pii/S095741740600159X#bib13
http://www.sciencedirect.com/science/article/pii/S095741740600159X#bib4
http://www.sciencedirect.com/science/article/pii/S0957417415003334#b0085
http://www.sciencedirect.com/science/article/pii/S095741740600159X#bib2
http://www.sciencedirect.com/science/article/pii/S0957417415003334#b0350
http://www.sciencedirect.com/science/article/pii/S0957417415003334#b0230
http://www.sciencedirect.com/science/article/pii/S0957417415003334#b0255
http://www.sciencedirect.com/science/article/pii/S0957417415003334#b0290
http://www.sciencedirect.com/science/article/pii/S0957417415003334#b0440

10

decision trees (Wu, Lin, and Lin, 2006), neural networks (Kim and Chun, 1998), and ensemble models

(Chun and Park, 2005; Lunga and Marwala, 2006 ; Patel et al., 2015).

Lukac et al. (1988) use twelve technical systems for trading commodities and find four trading systems

produced significant net returns and significant risk-adjusted returns. Various statistical and machine

learning models like logistic regression, decision trees, random forests, artificial neural networks, etc.

are used for predicting accuracy of trading indicators. These models use their capabilities to recognize

pattern and trend of prices and use this knowledge to predict the direction of trade using technical

indicators. Direction of trade in buy-and-hold strategy essentially becomes a dichotomous classification

problem where class labels can take values of 1 or -1, with 1 representing a buy signal and -1

representing a sell signal.

Logistic regression is one of most commonly used modeling techniques of data classification

and is used to estimate the probability of arbitrary response based on one or more predictor variables.

Logistic regression uses a binary output value instead of a numeric value and uses the logistic

distribution function as the link function

𝑝𝑟𝑜𝑏(𝑦 = 1) =
𝑒(𝑏0+𝑏1𝒙)

(1 + 𝑒(𝑏0+𝑏1𝒙))

𝑦 ∈ [−1,1]

where, y is a measure of the actual direction of prices (1 if prices went up and -1 if prices went down),

𝒙 is a vector of independent variables, 𝑏0 is the bias or intercept term and 𝑏1 is the coefficient for the

𝒙, D is the trading signal where 𝐷 = 1 (buy signal) if prob of success (price increase) > 0.5 , 𝐷 =

 −1 (sell signal) if prob of success (price increase) < 0.5.

Decision trees are an important machine learning model. A decision tree algorithm splits the

data set according to a criterion that maximizes the separation of the data, resulting in a tree-like

http://www.sciencedirect.com/science/article/pii/S0957417415003334#b0485
http://www.sciencedirect.com/science/article/pii/S0957417415003334#b0260
http://www.sciencedirect.com/science/article/pii/S0957417415003334#b0405
http://www.sciencedirect.com/science/article/pii/S0957417415003334#b0315
http://www.sciencedirect.com/science/article/pii/S0957417415003334#b0365

11

structure (Breiman et al. 1984). Gini impurity is one of the most commonly used criterions to split each

step in building the tree and is used to minimize misclassification. Gini impurity is computed as:

𝐺𝑖𝑛𝑖 (𝐸) = 1 − ∑ 𝑝𝑗
2

𝑐

𝑗=1

where, Gini impurity for a set of items with 𝑐 classes, and 𝑗 ϵ {1,2,3, … , 𝑐} and 𝑝𝑗 is fraction of items

labeled with class 𝑗 in the set. The major advantage of using decision trees is that they are easy to

express as rules while the major disadvantage is that continuous variables are implicitly discretized by

the splitting process, losing information along the way (Dreiseitl and Ohno-Machado, 2002).

Random forests are another highly used machine learning technique for classification due to

their ability to model complex interactions among predictor variables. They have very high

classification accuracy and are considered robust with respect to noise. They can also be used for

determining variable importance. Random forest grows many classification trees, and each tree gives a

classification. The random forests prediction is the classification that receives the most votes across all

trees.

In random forest, each tree is grown as 1) N number of bootstrap samples of size N are drawn

at random with replacement from N observations (for this study the number of observations in the

training data set of each commodity is used as N). This bootstrapping procedure leads to better model

performance because the combination of multiple trees, decreases the variance of the predictions,

without increasing the bias. The process called “feature bagging” is used for candidate split in the

learning process. Under this process if there are M input variables, a number m <M is specified at each

node, m variables (held constant during the growing forest) are selected at random out of the M and the

best split on these m variables is used to split the node (for this study m= 4 and M = 11). This feature

helps to avoid the correlation due to the presence of very strong predictor variables and helps to avoid

overfitting of the training set. Each tree is grown to the largest possible extent without pruning.

12

All the above models are used independently, but forecasting research has long found that

composite forecasts outperform individual forecasts (Brandt and Bessler 1981). Lately new ensemble

learning algorithms provide tools to combine machine learning models and use them together as a single

model for classification purposes. An ensemble is a set of classifiers that learn a target function, and

their individual predictions are combined to classify new examples. Ensemble learning can improve

the performance of one or a number of models, and can be extremely useful when dealing with large

and complex data sets (Dietterich 2000). The idea of ensemble methodology is to weigh several

individual classifiers, and build a predictive model by integrating multiple models. In the simple

majority voting ensemble model that is used here, every model makes a voting (prediction) for each

instance of testing and the final prediction receives the maximum votes (lam and Suen, 1997). In simple

majority ensemble model, an equal weight of 1 𝑘⁄ to each classifier where 𝑘 is the number of classifiers

in an ensemble. The main advantage of the ensemble model is that the different classifiers are unlikely

to make same mistake. In fact, as long as every error is made by a minority of the classifiers, you will

achieve optimal classification. In particular, ensemble models tend to reduce the variance of the

classifiers, and thus can be very useful for reducing the overfitting of the data. Various studies (Maslov

and Gertner, 2006; Rodriguez et al., 2006; and Zhang and Zhang, 2008) have shown that the ensemble

can outperform individual predictors in many cases.

Neural networks are considered universal approximators due to their non-linear approximation

capabilities. Due to their flexible nature, they have potential to combine signals from various technical

indicators and recognize patterns. This flexible nature also results in overfitting the data and thus can

result in poor out of sample results. Hamm and Brorsen (2000) use closing prices as inputs for trading

using neural networks and conclude that it does not work. Neural networks require a large amount of

data to be estimated precisely. Daily futures data provides only a few thousand observations, so pre-

filtering via technical indicators might be helpful. In the present study, neural networks are trained

using the signals from technical indicators as described in appendix 18.

13

Data and Methods

Commodity futures have been of renewed interest due to the need of diversification in periods of high

volatility and potential equity-like benefits of commodity indexes (BIS, 2006). Commodity futures

have potential to generate higher returns of a security on a risk adjustment basis (alpha generation)

through long-short dynamic trading as well as their role of risk diversifiers (Chong, and Miffre, 2010).

These among several other features like deep and liquid exchange-traded futures contracts make futures

markets more attractive for active trading strategies than stock markets. It is interesting to consider

various ways to improve profitability of quantitative trading rules for commodity trading. Many studies

like Stevenson and Bear (1970), Lukac et al. (1988), Kidd and Brorsen (2004), and Sweeney (1986)

find technical trading to be useful for commodity and foreign exchange markets. A total of five futures

prices are selected based on these previous studies, continuity of contract, agricultural importance and

volume of trade. Data consisted of one grain (Corn, C), one currency (JapaneseYen, JY), one interest

rate (EuroDollar, ED), one metal (Copper, HG), and one livestock (feeder cattle, FC) futures markets.

The data used for trading is Corn(C) March 1969 futures contract to December 2016, JapaneseYen (JY)

March 1977 to December 2016, EuroDollar (ED) March 1982 to December 2016, copper (HG) October

1959 to December 2016, and feeder cattle data from March 1974 to December 2016. The time periods

were determined by data availability. The data is divided into training, validation and test data. Training

data comprise 70% of the whole data set while validation data comprise 20% and test data set comprises

10%. Depending on the commodity, training data usually represented start of the contract to 2003, while

validation data set represents the time period of 2004-2012, and the test data set is 2012-2017. For the

continuity of the trading signal, rollovers are used. The 20th day of the penultimate contract month is

used as the rollover date. Continuous contracts are created by adding the change to the contract price

of the old contract month from the previous day. Continuous contracts are commonly used in simulating

technical trading as the technical signals in Table 1 depend upon changes in prices rather than price

14

levels. If the 20th is not a trading day then the last trading day before it is considered for calculations.

This is done to avoid distortions caused by high volatility during the final contract month and would

keep liquidity costs low by trading in a high volume contract. Closing prices are used for calculating

changes in prices..

Special care is taken to meet all three requirements laid down by Park and Irwin (2007) for

replication of technical trading strategies that have to be satisfied for meaningful inference. A pre-

analysis plan was prepared before starting work on the data and is given in appendix 16. Secondly data

snooping error in neural networks is avoided by using three sets of data (training, validation and testing)

while for other models only training and testing data sets are used.

The dependent variable is also bivariate, and consists of buy and sell signals. It is also scale neutral

and represents the direction of the futures markets. All the signals for the technical indicators are

calculated based on the pseudo price series. This is done to maintain continuity of contract roll overs

and scale neutral inputs. This price series is formed using changes in the closing prices of the futures

contract. Initial price level is assumed to be 1000 and subsequent prices are calculated by adding the

change in closing price to initial price level

𝑃1 = 1000

𝑃2 = 𝑃1 + 𝐶2

𝑃𝑁 = 𝑃𝑁−1 + 𝐶𝑁

where, 𝑃1is the first pseudo price, and 𝐶𝑁 is the change in closing price. A raw variable is calculated

by taking the difference of natural log of pseudo price series

𝑅𝑖 = 𝑙𝑜𝑔𝑃𝑖 − 𝑙𝑜𝑔𝑃𝑖+20

15

where, 𝑅𝑖 is the raw variable, 𝑃𝑖 is the pseudo price series. Dependent variable is the signals from the

raw variable which takes the form of -1 or +1

𝐷𝑖 = {
−1
+1

where, 𝐷𝑖 is the dependent variable, and 𝑅𝑖 is the raw variable, 𝐷𝑖 = −1 if 𝑅𝑖 > 0 and 𝐷𝑖 = 1

otherwise.

Comparison of the profit and loss based on prediction using logistic regression, random forests,

voting ensemble model, pipeline model and neural networks is done. Voting ensemble model is built

using logistic regression, random forests, Gaussian Naïve Bayes, decision tree, and support vector

classification models. Random forest model is initially built with ‘20 trees’ and a batch of ’10 trees’ is

added until the optimum is reached with lowest ‘Gini’ criteria.

A random number generator is used to pick 20 seeds initially and then the final seed for neural

networks is selected based on the profit of predictions. A validation data set is used for computing the

best random number for use in neural networks. This is done to ensure the purity of out of sample (test

data set) and also as neural networks suffer from the problem of local minima, best seed is selected

based on the highest revenue generated using the validation data set. The selected model is then used

for final neural network using the testing data set. This is done so as to avoid local optima and reach

global optima in neural networks. Three types of neural network models are built:

a) Single hidden layer neural network with five and 17 neurons using “limited-memory BFGS (l-

bfgs)” algorithm and “Softmax” activation function, and Single layer with 17 neurons and

“tanh” activation function.

b) Three hidden layer neural network with five and 17 neurons using “l-bfgs” algorithm and

“Softmax” activation function.

16

c) Three hidden layer neural network with five and 17 neurons using “l-bfgs” algorithm and

“tanh” activation function.

L-bfgs is an optimization algorithm in the family of quasi-newton methods that approximates

Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm using a limited amount of computer memory.

The difference between l-bfgs and bfgs is that l-bfgs uses only a few vectors that represent the

approximation implicitly rather than n*n as in bfgs. While “Softmax” (normalized exponential

function) is a generalization of the logistic function that transforms a 𝐾 -dimensional vector 𝑧 of

arbitrary real values to a 𝑘 -dimensional vector 𝜎 (𝑧) of real values in the range [0, 1] that adds up to

1. The function is given by

𝜎(𝑧)𝑗 =
𝑒𝑗

𝑧

∑ 𝑒𝑘
𝑧𝐾

𝑘=1
 for 𝑗 = 1, … , 𝐾.

Also, tanh is the hyperbolic tangent function where output values range from (-1, 1). Thus

strongly negative inputs to the tanh will map to negative outputs in the neural network. Also, only

zero-values inputs are mapped to near-zero outputs. These properties helps the neural network to train

regularly.

More details about the neural networks (ANNs) have been discussed in appendix 13. Also ANNs

having more than one hidden layer is considered deep learning by some authors (Erhan et al., 2010).

No study to knowledge has compared the profitability of technical indicators in the commodity and

foreign exchange futures options markets using voting ensemble model and compared them with other

highly use statistical and1 machine learning methods.

The inputs used are the bivariate buy-sell signals from the technical indicators while previous

studies have directly used the technical indicators directly (Sullivan, Timmermann, and White, 1999;

17

Chang and Osler, 1999; Neely, 2002; Lukac, Brorsen, and Irwin, 1988; Slezak, 2003). Most studies

scale the data into a range of [-1.0, 1.0] with the goal of independently normalizing each feature

component to a specific range, but doing so would result in a commodity specific model. This study

uses the technical signals (-1 or 1), this way the information in the technical indicator can be as a

classification problem and the trained model can potentially be extended to other commodities (if the

variance term was excluded). The idea behind this is that the model should be able to recognize the

complex trend and pattern of various indicators, theoretically this pattern should be same for all the

commodities. Thus theoretically, a model formed on one commodity could be used to make predictions

in any other commodity. In addition to the signals, a commodity specific input representing the variance

of the prices has also been used.

The training data is used to search for optimal parameters and these parameters are employed to

evaluate the out of sample performance of the model. Gross profit is calculated on the out of sample

data set. Number of trades is calculated based on the change in buy or sell signal from the previous

signal. Commission cost is assumed to be $5 per single turn (CME group (2016, 4 February). Net profit

is calculated by considering cost of trading and revenue generated from the trades. A short trading

position is taken initially and the account is settled at the end of the trading day

𝑆𝑖 = 𝑂𝑖 − 𝑂𝑖+1

𝑇𝑖 = 𝑂𝑖 − 𝑂𝑖+20

where, 𝑆𝑖 is the single day revenue, 𝑇𝑖 is the twenty day revenue, and 𝑂𝑖 is the opening price of the

21st day. Opening price of the next trading day is used to calculate profit to avoid liquidity bias.

Transaction cost is calculated by multiplying no. of trades with cost of trading per unit and size of the

contract. Total profit is then calculated by subtracting the total cost from total revenue

18

𝑇𝑜𝑡𝑎𝑙 𝐶𝑜𝑠𝑡 = 𝑛𝑜. 𝑜𝑓 𝑡𝑟𝑎𝑑𝑒𝑠 ∗ 𝑐𝑜𝑠𝑡 𝑝𝑒𝑟 𝑢𝑛𝑖𝑡 ∗ 𝑠𝑖𝑧𝑒 𝑜𝑓 𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡

 𝑇𝑜𝑡𝑎𝑙 𝑝𝑟𝑜𝑓𝑖𝑡 𝑓𝑜𝑟 𝑠𝑖𝑛𝑔𝑙𝑒 𝑑𝑎𝑦 = ∑ 𝑆𝑖 − 𝑐𝑜𝑠𝑡𝑛
𝑖=1

𝑇𝑜𝑡𝑎𝑙 𝑝𝑟𝑜𝑓𝑖𝑡 𝑓𝑜𝑟 𝑡𝑤𝑒𝑛𝑡𝑦 𝑑𝑎𝑦 = ∑ 𝑇𝑖 − 𝑐𝑜𝑠𝑡

𝑛

𝑖=1

Two types of forecasts, a) single day forecast, and b) 20 day forecast, are used to calculate costs per

trade and profit per contract. With a 20-day forecast, the position is held for 20 days without regard to

later price movements. Evaluation is done based on these two types.

This study is hypothesizing that signals from a pool of trend-following and mean-reversal

technical indicators in addition to a variable helping to switch between them when paired with modern

day statistical and machine learning tools have the potential to generate profit in commodity futures

markets.

Both individual and joint hypothesis tests are performed. The first hypothesis is to determine

if the technical indicators and quantitative methods generate significant profit for individual

commodities and the second hypothesis tests determine if any individual indicator or quantitative model

generates significant profit in all the five commodities.

Hypothesis test will be performed by combining the t-values of all the five commodities for

every individual indicator as well as each model

[
1

5
,

1

5
,

1

5
,

1

5
,

1

5
] 𝑥 = 𝐴𝑥,

𝐴𝑥
𝑑
→ (0,

1

5
),

 𝑁𝑒𝑡 𝑡 − 𝑣𝑎𝑙𝑢𝑒 =
𝐴𝑣𝑔.𝑡−𝑣𝑎𝑙𝑢𝑒

1

√5

,

𝐴𝑣𝑔. 𝑡 − 𝑣𝑎𝑙𝑢𝑒 =
1

5
∑ 𝑡𝑖

5

𝑖=1

19

where, 𝑡𝑖 is t-value for each commodity. Plugging numbers into the above formulas, gives the critical

t-value as 0.87.

Results

Trading is simulated on five commodities. Table 3 describes the profit and number of trades for copper.

None of the individual indicators or models generated significant profit for single day profit. For 20-

day trading forecast, moving average (10, 50) and stochastic indicator generate significant profit.

Number of trades increase by more than two times when neural networks are used, this increases the

transaction costs and thus reduces the profitability of the technical trading systems using neural

networks. Number of trades is highest for the neural network with three hidden layers and each layer

with 17 neurons and ‘tanh’ activation function and 20 day prediction. Future research may want to

consider reinforcement learning (Deng et al. 2017) as a way of imposing a penalty for the number of

trades.

Table 4 gives the summary of model performance for corn. Only RSI (9 days), CCI 20 day,

and stochastic indicator have significant profit for single day forecast. Number of trades is highest for

stochastic indicator for both single day and twenty day forecast. For twenty day forecast but only

moving average (10, 50) generates significant profit. Stochastic indicator has the highest number of

trades for 20-day forecasts.

Table 5 presents the summary of model performance for feeder cattle. In feeder cattle, neither any

individual indicator nor any statistical or machine learning model is significantly profitable for both

single as well as twenty day forecasts. For single as well as 20 day forecasts, neural networks with three

hidden layers and 17 neurons with ‘l-bfgs’ algorithm and ‘tanh’ activation function has the highest

number of trades, while the pipeline model has the lowest number of trades.

20

Table 6 presents a summary of forecasting performance on Japanese Yen. Most of the statistical

and machine learning models are profitable in Japanese Yen, but only RSI (9 days) and CCI 20 days

individual indicators are profitable and only CCI 20 day generates significant profit for single day

forecasts. None of the other commodities have this high of a success rate for statistical and machine

learning models. Another particular point is that these models are profitable not only in single day

forecast but also in twenty day forecasts. In the case of 20 day forecasts, six of the seven neural networks

generate significant profit along with random forest and moving average (5, 20). Neural networks with

three hidden layers and 17 neurons with ‘l-bfgs’ algorithm and ‘tanh’ activation function has the highest

number of trades, while moving average indicator (5, 20) has the lowest number of the lowest number

of trades with single day forecast. For twenty day forecast neural networks with three hidden layers and

17 neurons with ‘l-bfgs’ algorithm and ‘tanh’ activation function is having highest number of trades,

while moving average indicator (10, 50) has the lowest number of trades.

Table 7 presents the summary of model performance for EuroDollar. As seen in Japanese Yen,

neural networks performed better in EuroDollar. Out of the five neural networks, three are profitable

but none of the statistical and machine learning methods are significantly profitable. While most of the

individual indicators do not generate profit in Japanese Yen, their performance is better in EuroDollar.

In fact, individual indicators performed best in EuroDollar as compared to the other four futures

markets. For single day forecast RSI 9 days and stochastic indicator generate significant profit. For

twenty day forecast moving average (5, 20), 20 day channel, and 50 day channel generate significant

profit. Neural networks with three hidden layer and 17 neurons with ‘l-bfgs’ algorithm and ‘tanh’

activation function has the highest number of trades for both single day and 20-day forecast.

Table 8 summarizes the results. No single technical indicator is significantly profitable in both

single day and 20 day projections. RSI (9 days), CCI (20 days), and stochastic oscillator do generate

significant profit in single day projections. Trend-following indicators like moving average (5, 20) and

moving average (10, 50) generated significant profit in 20 day forecast. RSI (14-days), 20 day channel,

50 day channel, and machine learning methods like neural networks do not produce any significant

21

result. Statistical methods like logistic regression, voting ensemble models, and random forests do not

generate any significant result in single day projections and logistic regression, pipeline model, and

voting ensemble models are loss making in 20 day projections.

22

Table 3. Summary of Model Performance in Copper

Model

Single
Day
Profit
(cents/
lb.)

Mean
profit
(Single
Day

Standard
Deviation

t-
value
for
Single
Day

No. of
Trades
(Single
Day)

20 Day
Profit
(cents/
lb.)

Mean
Profit
(20-
day)

Standard
Deviation

t-
value
for
20-
day

No. of
Trades
(20
Day)

Cost of
Trades
for Single
Day
Forecast
($)

Profit for
Single Day
($
/contract)

Net Profit
for Single
Day ($
/contract)

Cost of
Trades
for 20-
day
Forecast
($)

Profit for 20-
days ($/
contract)

Net Profit
for 20-days
($
/contract)

Moving average (5,10) -10.7 -0.01 0.98 -0.35 110 -92.58 -0.1 4.19 -0.71 110 550 -2673.75 -3223.75 550 -23145.63 -23695.63

Moving average (5,20) -23.66 -0.02 0.98 -0.77 60 149.63 0.15 4.19 1.15 60 300 -5915 -6215 300 37407.5 37107.5

Moving average (10,50) 23.6 0.02 0.98 0.77 28 661.52 0.68 4.14 5.13 27 140 5899.75 5759.75 135 165380 165245

RSI (14-day) 5.86 0.01 0.98 0.19 25 -545.17 -0.56 4.16 -4.21 25 125 1465 1340 125 -136292 -136417

RSI (9-day) 20.54 0.02 0.98 0.67 47 -313.47 -0.32 4.18 -2.41 46 235 5134 4899 230 -78367.25 -78597.25

CCI 20-day 22.7 0.02 0.98 0.74 43 -141.32 -0.15 4.19 -1.08 43 215 5675.25 5460.25 215 -35328.75 -35543.75

20-day channel -28.48 -0.03 0.98 -0.93 92 -580.72 -0.6 4.15 -4.49 92 460 -7121 -7581 460 -145179.75 -145639.75

50-day channel -28.46 -0.03 0.98 -0.93 24 -608.59 -0.63 4.15 -4.71 24 120 -7115.5 -7235.5 120 -152146.75 -152266.75

Stochastic indicator 22.53 0.02 0.98 0.73 3 583.62 0.6 4.15 4.51 3 15 5633 5618 15 145904.88 145889.88

Logistic regression -29.28 -0.03 0.98 -0.95 33 -643.72 -0.66 4.28 -4.83 34 165 -7319.25 -7484.25 170 -160929.63 -161099.63

Random forest -27.75 -0.03 0.98 -0.9 37 -640.02 -0.66 4.28 -4.8 37 185 -6938.5 -7123.5 185 -160004.88 -160189.88

Pipeline model -27.93 -0.03 0.98 -0.91 1 -676.3 -0.7 4.27 -5.08 1 5 -6983 -6988 5 -169075.38 -169080.38

Voting ensemble model -28.41 -0.03 0.98 -0.93 242 -473.18 -0.49 4.3 -3.53 238 1210 -7101.5 -8311.5 1190 -118295.75 -119485.75

Neural network (single
layer with 5 neurons)

1.97 0 0.98 0.06 129 -74.07 -0.08 4.33 -0.55 116 645 493.25 -151.75 580 -18518.38 -19098.38

Neural network (three
layers with 5 neurons)

-27.62 -0.03 0.98 -0.9 125 -656.36 -0.68 4.27 -4.93 126 625 -6906 -7531 630 -164089.13 -164719.13

Neural network (three
layers, 5 neurons, tanh)

-11.97 -0.01 0.98 -0.39 83 -521.02 -0.54 4.29 -3.9 144 415 -2991.75 -3406.75 720 -130256.13 -130976.13

Neural network (single
layer with 17 neurons)

36.74 0.04 0.98 1.2 155 -550.75 -0.57 4.29 -4.12 159 775 9184.25 8409.25 795 -137687.63 -138482.63

Neural network (single
layer, 17 neurons, tanh)

-21.35 -0.02 0.98 -0.7 204 -53 -0.05 4.33 -0.39 157 1020 -5336.5 -6356.5 785 -13248.88 -14033.88

Neural network (three
layers with 17 neurons)

4.49 0 0.98 0.15 243 -244.1 -0.25 4.32 -1.81 250 1215 1122.5 -92.5 1250 -61024.88 -62274.88

Neural network (three
layers, 17 neurons,
tanh)

-90.35 -0.09 0.98 -2.94 255 -368.04 -0.38 4.31 -2.74 255 1275 -22587.5 -23862.5 1275 -92009.88 -93284.88

23

Table 4. Summary of Model Performance for Corn

Model

Single
Day
Profit
(cents/
lb.)

Mean
profit
(Single
Day

Standard
Deviation

t-value
for
Single
Day

No. of
Trades
(Single
Day)

20 Day
Profit
(cents/
lb.)

Mean
Profit
(20-
day)

Standard
Deviation

t-
value
for
20-
day

No. of
Trades
(20-
Day)

Cost of
Trades
for
Single
Day
Forecast
($)

Profit for
Single Day
Forecast
($
/contract)

Net Profit
for Single
Day
Forecast
($
/contract)

Cost of
Trades
for 20-
day
Forecast
($)

Profit for
20-day ($/
contract)

Net Profit
for 20-day
Forecast
($
/contract)

Moving average (5,10) -693 -0.58 8.02 -2.49 145 -1416.75 -1.2 39.42 -1.05 141 725 -34650 -35375 705 -70837.5 -71542.5

Moving average (5,20) -350.5 -0.29 8.04 -1.26 75 352.25 0.3 39.41 0.26 73 375 -17525 -17900 365 17612.5 17247.5

Moving average (10,50) -140.5 -0.12 8.04 -0.5 35 3972.75 3.36 39.29 2.94 34 175 -7025 -7200 170 198637.5 198467.5

RSI (14-day) 418 0.35 8.03 1.5 22 45.75 0.04 39.44 0.03 22 110 20900 20790 110 2287.5 2177.5

RSI (9-day) 560.5 0.47 8.03 2.01 48 1348.75 1.14 39.42 1 48 240 28025 27785 240 67437.5 67197.5

CCI 20-day 598.5 0.5 8.03 2.15 48 -3174.25 -2.69 39.35 -2.35 47 240 29925 29685 235 -158712.5 -158947.5

20-day channel -231.5 -0.19 8.04 -0.83 114 -10.75 -0.01 39.44 -0.01 110 570 -11575 -12145 550 -537.5 -1087.5

50-day channel -265.5 -0.22 8.04 -0.95 66 -1699.25 -1.44 39.42 -1.25 62 330 -13275 -13605 310 -84962.5 -85272.5

Stochastic indicator 1269.5 1.06 7.97 4.6 478 1182.75 1 39.41 0.87 468 2390 63475 61085 2340 59137.5 56797.5

Logistic regression 54 0.05 8.04 0.19 88 -1448.25 -1.23 40.66 -1.04 84 440 2700 2260 420 -72412.5 -72832.5

Random forest 274.5 0.23 8.04 0.99 82 929.75 0.79 40.67 0.66 79 410 13725 13315 395 46487.5 46092.5

Pipeline model 224 0.19 8.03 0.8 114 204.25 0.17 40.68 0.15 111 570 11200 10630 555 10212.5 9657.5

Voting ensemble model 262 0.22 8.03 0.94 154 -1519.75 -1.29 40.66 -1.09 151 770 13100 12330 755 -75987.5 -76742.5

Neural network (single
layer with 5 neurons)

192.5 0.16 8.04 0.69 161 -2090.25 -1.77 40.65 -1.5 135 805 9625 8820 675 -104512.5 -105187.5

Neural network (three
layers with 5 neurons)

39 0.03 8.04 0.14 181 -973.75 -0.82 40.68 -0.7 161 905 1950 1045 805 -48687.5 -49492.5

Neural network (three
layers, 5 neurons, tanh)

-61 -0.05 8.04 -0.22 180 -1228.25 -1.04 40.67 -0.88 177 900 -3050 -3950 885 -61412.5 -62297.5

Neural network (single
layer with 17 neurons)

-88 -0.07 8.04 -0.32 261 -211.25 -0.18 40.68 -0.15 213 1305 -4400 -5705 1065 -10562.5 -11627.5

Neural network (single
layer, 17 neurons, tanh)

279 0.23 8.04 1 229 1674.25 1.42 40.66 1.2 221 1145 13950 12805 1105 83712.5 82607.5

Neural network (three
layers with 17 neurons)

-316 -0.26 8.04 -1.13 291 -2579.75 -2.18 40.63 -1.85 282 1455 -15800 -17255 1410 -128987.5 -130397.5

Neural network (three
layers, 17 neurons,
tanh)

-114 -0.1 8.04 -0.41 327 -2777.25 -2.35 40.62 -1.99 380 1635 -5700 -7335 1900 -138862.5 -140762.5

24

Table 5. Summary of Model Performance for Feeder Cattle

Model

Single
Day

Profit
(cents/

lb.)

Mean
profit
(Single
Day n

Standard
Deviation

t-
value

for
Single
Day

No. of
Trades
(Single
Day)

20 Day
Profit

(cents/
lb.)

Mean
Profit
(20-
day)

Standard
Deviation

t-value
for 20-

day

No. of
Trades

(20-
Day)

Cost of
Trades

for
Single
Day

Forecast
($)

Profit for
Single Day
Forecast

($
/contract)

Net Profit
for Single

Day
Forecast

($
/contract)

Cost of
Trades
for 20-

day
Forecast

($)

Profit for
20-day

($/
contract)

Net Profit
for 20-day
Forecast

($
/contract)

Moving average (5,10) -205.6 -0.02 1.83 -0.35 97 -76.01 -0.08 8.61 -0.29 96 485 -1028 -1513 480 -380.03 -860.03

Moving average (5,20) -104.91 -0.01 1.84 -0.18 54 -200.48 -0.22 8.61 -0.77 53 270 -524.55 -794.55 265 -1002.38 -1267.38

Moving average (10,50) 6.41 0 1.85 0.01 28 -221.94 -0.24 8.61 -0.85 27 140 32.05 -107.95 135 -1109.68 -1244.68

RSI (14-day) 54.46 0.01 1.85 0.09 21 150.54 0.16 8.61 0.58 20 105 272.3 167.3 100 752.68 652.68

RSI (9-day) 125.74 0.01 1.84 0.21 47 189.42 0.21 8.61 0.73 47 235 628.7 393.7 235 947.08 712.08

CCI 20-day 149.45 0.02 1.84 0.25 29 68.76 0.07 8.61 0.26 28 145 747.25 602.25 140 343.78 203.78

20-day channel -119.22 -0.01 1.84 -0.2 116 -729.16 -0.79 8.58 -2.8 116 580 -596.1 -1176.1 580 -3645.78 -4225.78

50-day channel -72.88 -0.01 1.84 -0.12 82 -1064.09 -1.16 8.54 -4.11 82 410 -364.4 -774.4 410 -5320.45 -5730.45

Stochastic indicator 94.76 0.01 1.84 0.16 49 367.78 0.4 8.6 1.41 49 245 473.8 228.8 245 1838.88 1593.88

Logistic regression -41.93 0 1.85 -0.07 15 -696.99 -0.76 8.82 -2.61 15 75 -209.65 -284.65 75 -3484.95 -3559.95

Random forest -64.59 -0.01 1.84 -0.11 43 -74.58 -0.08 8.85 -0.28 43 215 -322.95 -537.95 215 -372.9 -587.9

Pipeline model -33.14 0 1.85 -0.06 1 -645.68 -0.7 8.82 -2.41 1 5 -165.7 -170.7 5 -3228.4 -3233.4

Voting ensemble model -38.1 0 1.85 -0.06 129 -215.89 -0.23 8.85 -0.8 129 645 -190.5 -835.5 645 -1079.45 -1724.45

Neural network (single
layer with 5 neurons)

-15.24 0 1.85 -0.03 77 -110.46 -0.12 8.85 -0.41 77 385 -76.2 -461.2 385 -552.3 -937.3

Neural network (three
layers with 5 neurons)

-78.53 -0.01 1.84 -0.13 129 169.85 0.18 8.85 0.63 125 645 -392.65 -1037.65 625 849.25 224.25

Neural network (three
layers, 5 neurons, tanh)

-23.8 0 1.85 -0.04 117 -52.57 -0.06 8.85 -0.2 116 585 -119 -704 580 -262.85 -842.85

Neural network (single
layer with 17 neurons)

-0.19 0 1.85 0 151 309.92 0.34 8.85 1.16 147 755 -0.95 -755.95 735 1549.6 814.6

Neural network (single
layer, 17 neurons, tanh)

-5.56 0 1.85 -0.01 179 211.18 0.23 8.85 0.79 177 895 -27.8 -922.8 885 1055.9 170.9

Neural network (three
layers with 17 neurons)

-16.72 0 1.85 -0.03 197 635.56 0.69 8.83 2.38 196 985 -83.6 -1068.6 980 3177.8 2197.8

Neural network (three
layers, 17 neurons,
tanh)

12.47 0 1.85 0.02 246 226.85 0.25 8.85 0.85 246 1230 62.35 -1167.65 1230 1134.25 -95.75

25

Table 6. Summary of Model Performance of Japanese Yen

Model

Single
Day

Profit
(cents/

¥)

Mean
profit
(Single

Day

Standard
Deviation

t-value
for

Single
Day

Forecast

No. of
Trades
(Single
Day)

Twenty
Day

Profit
(cents/

¥)

Mean
Profit

(20-day)

Standard
Deviation

t-value
for 20-

day
Forecast

No. of
Trades

Cost of
Trades
(Single
Day)

Profit
Single Day

($/
contract)

Net Profit
for Single
Day ($/

contract)

Cost of
Trades

(20-
day)

Profit 20-
day ($/

contract)

Net Profit
20-day ($/
contract)

Moving average
(5,10)

-0.49 -0.0005 0.01 -2.63 104 0.92 0.0010 0.03 1.22 103 520 -61712.50 -62232.50 515 114706.25 114191.25

Moving average
(5,20)

-0.25 -0.0003 0.01 -1.34 2 1.78 0.0020 0.03 2.38 61 9 -31500.00 -31508.92 305 223081.25 222776.25

Moving average
(10,50)

-0.12 -0.0001 0.01 -0.66 28 -1.49 -0.0017 0.03 -1.99 27 140 -15537.50 -15677.50 135 -186243.75 -186378.75

RSI (14-day) -0.21 -0.0002 0.01 -1.10 27 -3.37 -0.0038 0.02 -4.63 27 135 -25912.50 -26047.50 135 -421531.25 -421666.25

RSI (9-day) 0.26 0.0003 0.01 1.36 47 -3.66 -0.0041 0.02 -4.94 46 235 32050.00 31815.00 230 -457993.75 -458223.75

CCI 20-day 0.33 0.0004 0.01 1.78 37 -0.85 -0.0009 0.03 -1.13 35 185 41100.00 40915.00 175 -105856.25 -106031.25

20-day channel 0 0.0000 0.01 0.00 86 -0.44 -0.0005 0.03 -0.59 84 430 -12.50 -442.50 420 -55418.75 -55838.75

50-day channel -0.12 -0.0001 0.01 -0.64 32 -1.57 -0.0018 0.03 -2.10 32 160 -14975.00 -15135.00 160 -196643.75 -196803.75

Stochastic
indicator

-0.11 -0.0001 0.01 -0.57 51 -2.12 -0.0024 0.03 -2.83 50 255 -13400.00 -13655.00 250 -264906.25 -265156.25

Logistic regression 0.06 0.0001 0.01 0.30 103 1.00 0.0011 0.03 1.31 101 515 6987.50 6472.50 505 125356.25 124851.25

Random forest 0.21 0.0002 0.01 1.13 69 1.84 0.0021 0.03 2.41 67 345 25625.00 25280.00 335 229687.50 229352.50

Pipeline model 0 0.0000 0.01 0.01 87 0.52 0.0006 0.03 0.68 85 435 125.00 -310.00 425 65393.75 64968.75

Voting ensemble
model

-0.03 0.0000 0.01 -0.16 153 -0.62 -0.0007 0.03 -0.81 151 765 -3650.00 -4415.00 755 -77900.00 -78655.00

Neural network
(single layer with 5
neurons)

0.03 0.0000 0.01 0.17 119 -0.53 -0.0006 0.03 -0.70 143 595 3962.50 3367.50 715 -66712.50 -67427.50

Neural network
(three layers with
5 neurons)

0.3 0.0003 0.01 1.57 143 2.65 0.0030 0.03 3.49 156 715 36912.50 36197.50 780 331356.25 330576.25

Neural network
(three layers, 5
neurons, tanh)

0.09 0.0001 0.01 0.47 171 1.93 0.0022 0.03 2.53 145 855 11136.25 10281.25 725 241356.25 240631.25

Neural network
(single layer with
17 neurons)

0.15 0.0002 0.01 0.80 161 2.83 0.0032 0.03 3.73 167 805 18912.50 18107.50 835 354106.25 353271.25

Neural network
(single layer, 17
neurons, tanh)

0.11 0.0001 0.01 0.61 149 1.95 0.0022 0.03 2.55 190 745 14248.75 13503.75 950 243175.00 242225.00

Neural network
(three layers with
17 neurons)

0.03 0.0000 0.01 0.14 211 1.30 0.0015 0.03 1.70 210 1055 3286.25 2231.25 1050 162581.25 161531.25

Neural network
(three layers, 17
neurons, tanh)

0.09 0.0001 0.01 0.48 265 1.70 0.0019 0.03 2.23 247 1325 11361.25 10036.25 1235 212406.25 211171.25

26

Most of the validation sample is from year 2008 to 2012. In this period neural networks worked very well

and produced good profit (Appendix 1-10). Since the validation data set is also a kind of out of sample data

set, it is interesting to find that when these neural networks are tested on the test sample, many neural

networks were not profitable. Negative returns of commodity trading advisors for the period of 2011- 2016

is also observed by Barclay’s CTA index (Appendix 12). Neural networks are supposed to switch between

the trend-following and mean-reversal system as they have high potential for pattern recognition. But, they

were not successful.

Table 9 presents the ranking of variables performed by random forests on the basis of the impact

on predictor variable. Variance is ranked top among all the variables studied and has the most impact in all

the commodities. RSI (14-days) and RSI (9 days), Moving average (10, 50), and CCI 20 days are the other

main variables important for prediction. 20 day channel and 50 day channel are always ranked lowest

impact on the predictor variable.

Table 10 presents the ranking of variables performed by decision tree. As ranked by random forest,

decision tree also ranked variance as the most important variable in having an impact on prediction. Also

RSI (14-days) and RSI (9 days), Moving average (10, 50), and CCI 20 days are the other main variables

important for prediction but one difference is that the importance percentage increased for RSI and other

variables but decreased for variance. Decision tree also ranked 20 day channel and 50 day channel as the

variables having lowest impact on the output variable.

27

Table 7. Summary of Model Performance for EuroDollar

Model

Single
Day

Profit
(cents/
EUR)

Mean
profit
(Single
Day)

Standard
Deviation

t-
value
for
Single
Day

No. of
Trades

20-Day
Profit

(Cents/
EUR)

Mean
Profit
(20-day)

Standard
Deviation

t-
value
for
20-
day

No. of
Trades

Cost of
Trades
(Single
Day)

Profit
Single Day

($/
contract)

Net Profit
Single Day

($/
Contract)

Cost of
Trades

(20-
day)

Profit 20-
day ($/

contract)

Net Profit
20-day ($/
contract)

Moving average (5,10) -0.46 -0.0006 0.01 -1.21 85 1.71 0.0022 0.05 1.22 81 425 -57187.50 -57612.50 405 214062.50 213657.50

Moving average (5,20) -0.37 -0.0005 0.01 -0.99 46 3.35 0.0044 0.05 2.40 45 230 -46562.50 -46792.50 225 419062.50 418837.50

Moving average (10,50) 0.08 0.0001 0.01 0.20 22 1.33 0.0017 0.05 0.95 22 110 9687.50 9577.50 110 165937.50 165827.50

RSI (14-day) -0.09 -0.0001 0.01 -0.24 33 -6.84 -0.0089 0.05 -4.95 33 165 -11562.50 -11727.50 165 -854687.50 -854852.50

RSI (9-day) 0.79 0.0010 0.01 2.09 41 -6.39 -0.0083 0.05 -4.62 41 205 98437.50 98232.50 205 -799062.50 -799267.50

CCI 20-day 0.35 0.0004 0.01 0.94 33 -3.85 -0.0050 0.05 -2.76 32 165 44062.50 43897.50 160 -480937.50 -481097.50

20-day channel 0.43 0.0005 0.01 1.13 108 4.98 0.0065 0.05 3.58 108 540 53437.50 52897.50 540 622187.50 621647.50

50-day channel 0.61 0.0008 0.01 1.62 90 4.68 0.0061 0.05 3.36 90 450 76562.50 76112.50 450 585312.50 584862.50

Stochastic indicator 0.89 0.0011 0.01 3.98 137 -1.05 -0.0014 0.04 -1.05 133 685 111562.50 110877.50 665 -131250.00 -131915.00

Logistic regression -0.26 -0.0003 0.01 -0.70 1 -4.75 -0.0062 0.05 -3.34 1 5 -32812.50 -32817.50 5 -593125.00 -593130.00

Random forest 0.06 0.0001 0.01 0.17 19 -0.78 -0.0010 0.05 -0.55 15 95 7812.50 7717.50 75 -98112.50 -98187.50

Pipeline model -0.26 -0.0003 0.01 -0.70 1 -4.75 -0.0062 0.05 -3.34 1 5 -32812.50 -32817.50 5 -593125.00 -593130.00

Voting ensemble model -0.23 -0.0003 0.01 -0.61 125 -5.61 -0.0073 0.05 -3.96 119 625 -29050.00 -29675.00 595 -701237.50 -701832.50

Neural network (single
layer with 5 neurons)

0.03 0.0000 0.01 0.09 118 -0.93 -0.0012 0.05 -0.65 132 590 4062.50 3472.50 660 -116862.50 -117522.50

Neural network (three
layers with 5 neurons)

0.32 0.0004 0.01 0.84 142 -4.21 -0.0055 0.05 -2.96 191 710 39687.50 38977.50 955 -526125.00 -527080.00

Neural network (three
layers, 5 neurons, tanh)

-0.61 -0.0008 0.01 -1.61 134 0.39 0.0005 0.05 0.27 128 670 -75925.00 -76595.00 640 48750.00 48110.00

Neural network (single
layer with 17 neurons)

-0.08 -0.0001 0.01 -0.22 120 0.52 0.0007 0.05 0.36 117 600 -10300.00 -10900.00 585 65000.00 64415.00

Neural network (single
layer, 17 neurons, tanh)

0.43 0.0005 0.01 1.15 107 -4.23 -0.0055 0.05 -2.98 139 535 54062.50 53527.50 695 -529362.50 -530057.50

Neural network (three
layers with 17 neurons)

0.51 0.0007 0.01 1.36 148 -1.89 -0.0025 0.05 -1.32 132 740 64062.50 63322.50 660 -236237.50 -236897.50

Neural network (three

layers, 17 neurons, tanh) 0.20 0.0003 0.13 0.05 166 -1.19 -0.0016 0.05 -0.84 164 830 25312.50 24482.50 820 -149362.50 -150182.50

28

Table 8. Summary of Significance of Profitability of Technical Indicators

Model
 Net t-value for

Single Day Forecast
Net t-value for 20-Day

Forecast

Moving average (5,10) -1.41 0.08

Moving average (5,20) -0.91 1.08*

Moving average (10,50) -0.04 1.24*

RSI (14-day) 0.09 -2.64

RSI (9-day) 1.27* -2.05

CCI 20-day 1.17* -1.41

20-day channel -0.17 -0.86

50-day channel -0.2 -1.76

Stochastic indicator 1.78* 0.58

Logistic regression -0.25 -2.1

Random forest 0.25 -0.51

Pipeline model -0.17 -2

Voting ensemble model -0.16 -2.04

Neural network (single layer
with 5 neurons)

0.2 -0.76

Neural network (three layers
with 5 neurons)

0.3 -0.89

Neural network (three layers, 5
neurons, tanh)

-0.36 -0.43

Neural network (single layer
with 17 neurons)

0.29 0.19

Neural network (single layer, 17
neurons, tanh)

0.41 0.23

Neural network (three layers
with 17 neurons)

0.1 -0.18

Neural network (three layers, 17

neurons, tanh) -0.56 -0.5

Note:[
1

5
,

1

5
,

1

5
,

1

5
,

1

5
] 𝑥 = 𝐴𝑥, 𝐴𝑥

𝑑
→ (0,

1

5
), 𝑁𝑒𝑡 𝑡 − 𝑣𝑎𝑙𝑢𝑒 =

𝐴𝑣𝑔.𝑡−𝑣𝑎𝑙𝑢𝑒
1

√5

,

𝐴𝑣𝑔. 𝑡 − 𝑣𝑎𝑙𝑢𝑒 =
1

5
∑ 𝑡𝑖 5

𝑖=1 where, 𝑡𝑖 is mean t-value for each commodity. Critical t-value is

calculated as 0.87.

29

Table 9. Summary of Variable Importance Using Random Forest

Variable/ Commodity Corn Copper Japanese Yen EuroDollar Feeder Cattle

Moving average (5, 10) 1.00% 0.91% 1.08% 0.87% 1.15%

Moving average (5,20) 0.88% 0.23% 0.94% 0.70% 0.92%

Moving average (10,50) 1.17% 0.38% 1.26% 1.07% 1.10%

RSI (14-day) 1.17% 1.24% 1.76% 1.30% 1.08%

RSI (9-day) 1.14% 0.90% 1.02% 0.88% 1.26%

Stochastic indicator 0.87% 0.71% 0.96% 0.72% 1.13%

CCI 20-day 1.05% 1.00% 1.36% 0.38% 1.15%

20-day channel 0.33% 0.21% 0.35% 0.20% 0.40%

50-day channel 0.25% 0.38% 0.18% 0.09% 0.25%

Variance 92.14% 94.04% 91.11% 93.79% 91.56%

Table 10. Summary of Variable Importance Using Decision Tree

Variable/ Commodity Corn Copper Japanese Yen EuroDollar Feeder Cattle

Moving average (5, 10) 0.67% 0.89% 0.80% 0.84% 0.78%

Moving average (5,20) 0.59% 0.13% 0.75% 0.55% 0.66%

Moving average (10,50) 0.99% 0.19% 0.96% 1.00% 0.72%

RSI (14-day) 0.94% 1.02% 1.34% 1.12% 0.68%

RSI (9-day) 0.94% 1.11% 0.93% 0.94% 1.05%

Stochastic indicator 0.56% 0.58% 0.70% 0.59% 0.60%

CCI 20-day 0.49% 0.77% 1.22% 0.29% 0.48%

20-day channel 0.25% 0.12% 0.21% 0.14% 0.25%

50-day channel 0.25% 0.22% 0.08% 0.11% 0.16%

Variance 94.33% 94.99% 93.00% 94.41% 94.64%

27

Conclusion

Numerous studies have determined profitability of technical indicators in commodity markets. This

study uses individual indicators alone as well as statistical and machine learning methods with

signals from technical indicators as inputs. Models like the voting ensemble model and pipeline

models are studied for the first time in commodity markets. These models are compared with most

commonly used models like logistic regression, random forests, decision trees, and neural

networks. Three types of neural networks (in total seven neural networks) are studied and special

care has been taken to prevent data snooping error. Among all the individual technical indicators,

RSI 9 days, stochastic indicator, and CCI 20 days generate significant profit for single day forecast.

Trend-following systems like moving average (5, 20) and moving average (10, 50) generate

significant profit for twenty day forecast (long term forecast). Statistical and machine learning

methods are theoretically better as they are supposed to recognize the patterns, but practically they

fail to live up to their potential and work only during certain time periods. None of the statistical

and machine learning methods made significant profit in all the cases, even though they are

profitable in a very few cases but never always.

None of the individual indicators or models generated significant profit in single day

forecast for corn. In twenty day forecasts, only random forests and pipeline models are profitable.

Japanese Yen is an interesting case where six of the seven neural networks studied generated

significant profit for 20 day forecast. Neural networks should be explored more in foreign currency

markets. EuroDollar did not give a similar result for neural networks. Feeder cattle is an interesting

case, it is the only market where 20 day forecast of neural networks is better than single day

forecast. For single day forecasts, all technical indicators, machine learning and statistical models

failed to generate significant profit. For 20 day forecasts neural network with 3 hidden layers of 17

neurons each and “Softmax” activation function generated significant profit. Copper is the only

28

precious metal in this study. Here, twenty day forecasts are not profitable for any quantitative

model, be it statistical or machine learning. Only stochastic oscillator and moving average (10, 50)

generated significant profit and that too only in 20 day forecasts.

In general oscillators did better than trend-following systems in short term forecasting

(single day forecast) but with long term forecasts (twenty day forecast) trend-following indicators

had better success than mean-reversal indicators. Technical indicators should switch between bull

and bear markets. One new indicator, namely the variance of change in closing prices is added to

the other technical indicators, so as to help the switch, but it did not generate profit in all time

periods. Performance of neural networks depend on the time period, they can be highly profitable

for one period and completely fail in another. Neural networks generated profit in validation data

set but the same neural networks worked poorly in testing data, even though both these data sets

are out of sample. For neural networks one problem is likely to be lack of training data, given the

relatively large number of parameters. One possibility is to use intraday data as the remedy. Another

possibility is to pool data across commodities. As the present research clearly shows the value of

composite forecasting, combining the forecasts from all 20 neural network models might have led

to better forecasts. Future research should look into these possibilities. Future research should

consider using reinforcement learning to estimate the parameters of all models. Future research

should also include a new type of technical indicator to help the system switch between trend-

following and mean-reversal technical trading systems. Variance is the only variable that is not

unit-less. Variance for most of these commodities is higher in the training period than in the out-

of-sample period. Future research needs to develop a scale neutral volatility measure so that it can

estimate a model across a set of commodities.

29

REFERENCES

Allen, F., & Karjalainen, R. (1999). Using genetic algorithms to find technical trading rules. Journal

of Financial Economics, 51(2), 245-271.

Altman, E. I., Haldeman, R. G., & Narayanan, P. (1977). ZETATM analysis: A new model to

identify bankruptcy risk of corporations. Journal of Banking & Finance, 1(1), 29-54.

Barclay’s CTA index . Retrieved June 22, 2017, from

https://www.barclayhedge.com/research/indices/cta/sub/cta.html

Beja, A., & Goldman, M. B. (1980). On the dynamic behavior of prices in disequilibrium. The Journal

of Finance, 35(2), 235-248

Boyd, M. S., & Brorsen, B. W. (1991). Factors related to futures markets disequilibrium. Canadian

Journal of Agricultural Economics, 39(4), 769-778.

Brandt, JA, & Bessler, D.A. (1981). Composite forecasting: an application with US hog prices.

American Journal of Agricultural Economics 63(1), 135-140.

Breiman, L., Friedman, J. H., & Olshen, R. A., Stone, C. J., (1984) Classification and regression

trees. Wadsworth, Belmont, California.

Breiman, L. (2001). Random forests. Machine learning, 45(1), 5-32.

Chang, J., Jung, Y., Yeon, K., Jun, J., Shin, D., & Kim, H. (1996). Technical indicators and
analysis methods. Seoul: Jinritamgu Publishing.

Chang, P. K., & Osler, C. L. (1999). Methodical madness: Technical analysis and the irrationality
of exchange‐rate forecasts. The Economic Journal, 109(458), 636-661.

Chong, J., & Miffre, J. (2010). Conditional correlation and volatility in commodity futures and
traditional asset markets. The Journal of Alternative Investments, 12(13), 061-075.

Chun, S. H., & Park, Y. J. (2005). Dynamic adaptive ensemble case-based reasoning: application

to stock markets prediction. Expert Systems with Applications, 28(3), 435-443.

CME group, (2016, 4 February). The big picture: A cost comparison of futures and ETFs.

Retrieved June 22, 2017, from http://www.cmegroup.com/trading/equity-index/report-a-cost-

comparison-of-futures-and-etfs.html.

De Groot, C., & Würtz, D. (1991). Analysis of univariate time series with connectionist nets: A

case study of two classical examples. Neurocomputing, 3(4), 177-192.

Deng, Y., Bao, F., Kong, Y., Ren, Z. & Dai, Q. (2017). Deep direct reinforcement learning for

financial signal representation and trading. IEEE Transactions on Neural Networks and Learning

Systems 28(3), 653-664.

http://www.cmegroup.com/trading/equity-index/report-a-cost-comparison-of-futures-and-etfs.html
http://www.cmegroup.com/trading/equity-index/report-a-cost-comparison-of-futures-and-etfs.html

30

Dietterich, T. G. (2000, June). Ensemble methods in machine learning. In International workshop

on multiple classifier systems (pp. 1-15). Springer Berlin Heidelberg.

Dimitras, A. I., Zanakis, S. H., & Zopounidis, C. (1996). A survey of business failures with an

emphasis on prediction methods and industrial applications. European Journal of Operational

Research, 90(3), 487-513.

Dreiseitl, S., & Ohno-Machado, L. (2002). Logistic regression and artificial neural network

classification models: a methodology review. Journal of Biomedical Informatics, 35(5), 352-359.

Erhan, D., Courville, A., & Bengio, Y. (2010). Understanding representations learned in deep

architectures. Department d’Informatique et Recherche Operationnelle, University of Montreal, QC,

Canada, Tech. Rep, 1355.

Hamm, L., & Wade Brorsen, B. W., (2000). Trading futures markets based on signals from a neural

network. Applied Economics Letters, 7(2), 137-140.

Huang, C. L., & Wang, C. J. (2006). A GA-based feature selection and parameters optimization

for support vector machines. Expert Systems with applications, 31(2), 231-240.

Kang, S., (1991). An Investigation of the Use of Feedforward Neural Networks for Forecasting.

Ph.D. Thesis, Kent State University.

Kidd, W. V., & Brorsen, B. W. (2004). Why have the returns to technical analysis

decreased? Journal of Economics and Business, 56(3), 159-176.

Kim, K. J. (2003). Financial time series forecasting using support vector machines.

Neurocomputing, 55(1), 307-319.

Kim, S. H., & Chun, S. H. (1998). Graded forecasting using an array of bipolar predictions:

application of probabilistic neural networks to a stock markets index. International Journal of

Forecasting, 14(3), 323-337.

Kuan, C. M., & Liu, T. (1995). Forecasting exchange rates using feedforward and recurrent neural

networks. Journal of Applied Econometrics, 10(4), 347-364.

Lam, L., & Suen, S. Y. (1997). Application of majority voting to pattern recognition: an analysis of

its behavior and performance. IEEE Transactions on Systems, Man, and Cybernetics-Part A:

Systems and Humans, 27(5), 553-568.

Lee, M. C. (2009). Using support vector machine with a hybrid feature selection method to the

stock trend prediction. Expert Systems with Applications, 36(8), 10896-10904.

Lukac, L. P., Brorsen, B. W., & Irwin, S. H. (1988). A test of futures markets disequilibrium using

twelve different technical trading systems. Applied Economics, 20(5), 623-639.

Lunga, D., & Marwala, T. (2006). Time series analysis using fractal theory and online ensemble

classifiers. AI 2006: Advances in Artificial Intelligence, 312-321.

Maslov, I. V., & Gertner, I. (2006). Multi-sensor fusion: an evolutionary algorithm

approach. Information Fusion, 7(3), 304-330.

31

Malkiel, B. G. (1989). Efficient market hypothesis. The New Palgrave: Finance. Norton, New

York, 127-134.

Mitchell, T. M. (1997). Machine learning. 1997. Burr Ridge, IL: McGraw Hill, 45(37), 870-877.

Neely, C. J. (2002). The temporal pattern of trading rule returns and exchange rate intervention:

intervention does not generate technical trading profits. Journal of International Economics, 58(1),

211-232.

Neely, C. J., & Weller, P. A. (2003). Intraday technical trading in the foreign exchange

markets. Journal of International Money and Finance, 22(2), 223-237.

Oberlechner, T. (2001). Importance of technical and fundamental analysis in the European foreign

exchange markets. International Journal of Finance & Economics, 6(1), 81-93.

Ohlson, J. A. (1980). Financial ratios and the probabilistic prediction of bankruptcy. Journal of
Accounting Research, 109-131.

Olson, D. (2004). Have trading rule profits in the currency markets declined over time? Journal of

Banking & Finance, 28(1), 85-105.

Ou, P., & Wang, H. (2009). Prediction of stock markets index movement by ten data mining

techniques. Modern Applied Science, 3(12), 28.

Pantalone, C. C., & Platt, M. B. (1987). Predicting commercial bank failure since
deregulation. New England Economic Review, (July/August 1987b), 37-47.

Park, C. H., & Irwin, S. H. (2005). The profitability of technical trading rules in US futures markets:

A data snooping free test. AgMAS Research Report, 2005-04.

Park, C. H., & Irwin, S. H. (2007). What do we know about the profitability of technical

analysis? Journal of Economic Surveys, 21(4), 786-826.

Park, C. H., & Irwin, S. H. (2010). A reality check on technical trading rule profits in the US futures

markets. Journal of Futures Markets, 30(7), 633-659.

Patel, J., Shah, S., Thakkar, P., & Kotecha, K. (2015). Predicting stock markets index using

fusion of machine learning techniques. Expert Systems with Applications, 42(4), 2162-2172.

Patuwo, E., Hu, M. Y., & Hung, M. S. (1993). Two‐group classification using neural

networks. Decision Sciences, 24(4), 825-845.

Pruitt, S. W., Tse, K. M., & White, R. E. (1992). The CRISMA trading system: The next five

years. The Journal of Portfolio Management, 18(3), 22-25.

Purcell, W.D. and S.R. Koontz. 1999. Agricultural futures and options: Principles and strategies,

2nd edition, Upper Saddle River, NJ, Prentice Hall.

Roberts, M. C. (2005). Technical analysis and genetic programming: Constructing and testing a

commodity portfolio. Journal of Futures Markets, 25(7), 643-660.

32

Rodriguez, J. J., Kuncheva, L. I., & Alonso, C. J. (2006). Rotation forest: A new classifier

ensemble method. IEEE transactions on pattern analysis and machine intelligence, 28(10), 1619-

1630.

Rosenblatt, F. (1961). Principles of neurodynamics. perceptrons and the theory of brain

mechanisms (No. VG-1196-G-8). Cornell Aeronautical Lab Inc Buffalo NY.

Schwager, J. D. (1984). A complete guide to the futures markets: Fundamental analysis, technical

analysis, trading, spreads, and options. New York, John Wiley & Sons.

Shah, S., Brorsen, B. W., & Anderson, K. B. (2009, April). Liquidity costs in futures options

markets. In Proceedings of the NCCC-134 Conference on Applied Commodity Price Analysis,

Forecasting, and Markets Risk Management, St. Louis, MO.

Sharda, R., & Patil, R. (1990, June). Neural networks as forecasting experts: an empirical test.

In Proceedings of the International Joint Conference on Neural Networks (Vol. 2, pp. 491-494).

IEEE.

Slezak, S. L. (2003). On the impossibility of weak-form efficient markets. Journal of Financial and

Quantitative Analysis, 38(03), 523-554.

Stevenson, R. A., & Bear, R. M. (1970). Commodity futures: Trends or random walks? The Journal

of Finance, 25(1), 65-81.

Subha, M. V., & Nambi, S. T. (2012). Classification of stock index movement using k-nearest
neighbors (k-NN) algorithm. Wseas Transactions on Information Science and Applications, 9, 261-
270.

Sullivan, R., Timmermann, A., & White, H. (1999). Data‐snooping, technical trading rule

performance, and the bootstrap. The Journal of Finance, 54(5), 1647-1691.

Sullivan, R., Timmermann, A., & White, H. (2003). Forecast evaluation with shared data

sets. International Journal of Forecasting, 19(2), 217-227.

Sweeney, R. J. (1988). Some new filter rule tests: Methods and results. Journal of Financial and
Quantitative Analysis, 23(03), 285-300.

Szakmary, A. C., Shen, Q., & Sharma, S. C. (2010). Trend-following trading strategies in
commodity futures: A re-examination. Journal of Banking & Finance, 34(2), 409-426.

Tang, Z., de Almeida, C., & Fishwick, P. A. (1991). Time series forecasting using neural networks

vs. Box-Jenkins methodology. Simulation, 57(5), 303-310.

Taylor, M. P., & Allen, H. (1992). The use of technical analysis in the foreign exchange

markets. Journal of International Money and Finance, 11(3), 304-314.

Weigend A., Huberman B.A. and Rummelhart D.E. (1992), Predicting sunspots and exchange

rates with connectionist networks, in: Nonlinear Modeling and Forecasting, eds. M. Casdagli and

S. Eubank, SFI Studies in the Sciences of Complexity, Vol. Xll (Addison-Wesley, Reading, MA),

pp. 397-434.

33

Wu, M. C., Lin, S. Y., & Lin, C. H. (2006). An effective application of decision tree to stock

trading. Expert Systems with Applications, 31(2), 270-274.

Yao, J., & Tan, C. L. (2000). A case study on using neural networks to perform technical

forecasting of Forex. Neurocomputing, 34(1), 79-98.

Zhang, C. X., & Zhang, J. S. (2008). A local boosting algorithm for solving classification

problems. Computational Statistics & Data Analysis, 52(4), 1928-1941.

Zhang, G., Patuwo, B. E., & Hu, M. Y. (1998). Forecasting with artificial neural networks: The

state of the art. International Journal of Forecasting, 14(1), 35-62.

34

APPENDICES

Appendix 1. Profit from Random Numbers for Single Day Forecast in Copper

 5 Neurons 17 Neurons

Sr. No.
Random

Numbers
MLP Only

MLP with
Three

Hidden
Layers

MLP with
“tanh”

Function
(Three

Layers)

MLP only

MLP with
“tanh”

Function
(Single
Layer)

MLP with
“Logistic”
Function

MLP
with

“tanh”
Function

(Three
Layers)

1 66109 498.35 436.25 588.95 400.95 566.65 531.05 206.25

2 78747 176.35 175.95 608.65 717.25 651.15 518.05 470.95

3 50408 610.05 542.15 377.05 404.75 442.85 585.85 607.95

4 93875 175.95 632.75 271.35 671.85 276.85 453.85 372.45

5 44434 168.55 471.25 496.65 629.25 571.55 458.25 460.95

6 40150 489.35 764.15 767.45 388.05 361.35 377.85 735.55

7 25600 69.75 179.15 103.85 548.75 568.15 420.15 486.95

8 30450 1018.05 -67.35 430.45 545.75 958.65 328.45 287.05

9 15476 614.15 164.95 348.35 409.75 623.85 380.95 534.75

10 59372 398.85 180.15 311.75 633.35 360.75 593.25 -41.65

11 4988 426.65 437.95 -193.45 491.55 541.15 -14.65 309.45

12 96774 1140.25 385.15 799.35 663.65 673.15 672.55 476.05

13 81503 469.75 374.95 164.75 754.55 757.55 682.55 255.05

14 24885 214.05 506.95 317.15 831.95 200.95 331.65 649.15

15 82716 577.35 361.65 496.75 462.15 587.05 377.65 78.85

16 27177 544.35 327.55 318.55 519.55 384.55 421.75 306.45

17 96878 233.75 929.05 112.15 528.75 384.95 522.35 665.25

18 14024 717.45 188.95 387.45 526.95 642.35 608.65 318.35

19 74705 386.65 238.25 353.95 353.65 627.15 502.25 453.15

20 6769 218.15 -239.85 500.95 300.85 597.75 674.25 471.45

 Mean 457.39 349.5 378.11 539.17 538.92 471.34 405.22

35

Appendix 2. Profit from Random Numbers for 20-day Forecast in Copper

 5 Neurons 17 Neurons

Sr. No.
Random

Numbers
MLP Only

MLP with
Three

Hidden
Layers

MLP with
“tanh”

Function
(Three

Layers)

MLP only

MLP with
“tanh”

Function
(Single
Layer)

MLP with
“Logistic”
Function

MLP with
“tanh”

Function
(Three

Layers)

1 66109 4408.8 1994.8 5900.3 5407.3 3479.1 517 615.8

2 78747 3139.1 -68.9 1229.4 3113.2 4082.1 3937 3692.3

3 50408 2334.3 4731 5290 5440.1 2703.7 3060 3707.3

4 93875 2152 5239 -2156 5069.8 4266.7 4094.1 1097.2

5 44434 1994.4 3119.9 7086 4353.1 4699.3 2369 2857.8

6 40150 3075 7364.1 4629.5 2865.4 1343 3167.3 5124

7 25600 772.5 1346.4 901.4 5311 2984.5 1711.5 3340.7

8 30450 5522.6 -280.6 4412.2 5537.1 6143.7 3292.2 830.5

9 15476 8054.2 2841.3 2970.5 4624.7 6636.4 2844.6 4651.4

10 59372 3135.4 3682.2 2629 6272 3636.1 5429.5 364.1

11 4988 771.2 3912.8 1035 5498.6 2711.4 225 654

12 96774 4385.9 2626.9 3499.3 5853 6074.1 4635 4069.7

13 81503 7595.3 1177.2 1454 5336.8 6246.7 5202.9 2895.1

14 24885 4121.9 4180.2 4640.6 5801.3 1753.5 2118.6 3777.3

15 82716 944.8 2122.9 5719.8 5440.9 5348.3 3191 2967

16 27177 6130.1 4938.7 2923.2 6064.5 4928.9 4492.7 1495.9

17 96878 4830.8 3986.1 2537.5 2858.8 4523.6 70.2 1994.1

18 14024 4499.4 2459.5 2737.9 4643.5 5414.4 4739.4 1385.8

19 74705 3694.4 2406.7 2882 6217.3 4215.2 2889 1812.5

20 6769 4226.2 -2248.2 2916.2 2417.6 4687.6 5139 2063.1

 Mean 3789.42 2776.6 3161.89 4906.3 4293.92 3156.25 2469.78

36

Appendix 3. Profit from Random Numbers for Single Day Forecast in Japanese Yen

 5 Neurons 17 Neurons

Sr. No.
Random

Numbers
MLP Only

MLP with
Three

Hidden
Layers

MLP with
“tanh”

Function
(Three

Layers)

MLP only

MLP with
“tanh”

Function
(Single
Layer)

MLP with
“Logistic”
Function

MLP with
“tanh”

Function
(Three

Layers)

1 66109 0.7571 0.9145 0.3909 1.1497 0.5467 0.8137 0.7079

2 78747 1.0711 0.8044 0.5452 1.0709 1.0047 0.8395 0.4861

3 50408 0.9919 0.995 1.2795 0.7601 0.8677 0.8243 1.0891

4 93875 1.0591 0.5723 0.8205 0.7457 0.7421 0.9223 0.9997

5 44434 0.2495 1.0721 1.0385 0.7497 0.8475 0.9121 0.1305

6 40150 0.5456 1.2763 0.8913 0.6775 0.8563 0.9753 0.7023

7 25600 1.6641 0.8245 1.2897 1.0275 0.8567 0.6822 0.6021

8 30450 1.1375 0.8837 1.0533 0.9961 1.2121 0.7633 0.5743

9 15476 1.5931 1.3857 1.4693 0.8191 0.8679 0.6635 0.5163

10 59372 1.4065 0.9297 0.7083 1.1289 0.7477 0.9119 0.8065

11 4988 1.3149 0.3099 1.0405 1.0873 0.9518 0.8959 0.7631

12 96774 1.1733 0.9619 1.3707 0.7293 0.8895 0.8809 0.6523

13 81503 1.4119 0.9373 0.7543 0.9983 1.2749 0.7929 1.0637

14 24885 0.5918 0.5401 1.1413 0.7581 0.9907 0.8367 0.6213

15 82716 1.2719 0.7826 1.3381 1.2997 0.9779 0.6781 0.7391

16 27177 1.7763 0.5445 1.0453 0.6661 0.7861 0.4805 0.9006

17 96878 0.6623 1.1661 1.7701 0.6533 0.6603 0.2927 0.7319

18 14024 1.1553 1.1277 1.3425 0.6349 0.8949 0.3417 0.7195

19 74705 0.8126 0.8931 0.5133 0.6263 0.7241 0.6245 1.2611

20 6769 0.6947 0.4199 1.5881 1.1365 0.8192 0.6089 0.4857

 Mean 1.067025 0.867065 1.069535 0.88575 0.87594 0.73705 0.727655

37

Appendix 4. Profit from Random Numbers for 20-day Forecast in Japanese Yen

 5 Neurons 17 Neurons

Sr. No.
Random

Numbers
MLP Only

MLP with
Three

Hidden
Layers

MLP with
“tanh”

Function
(Three

Layers)

MLP only

MLP with
“tanh”

Function
(Single
Layer)

MLP with
“Logistic”
Function

MLP with
“tanh”

Function
(Three

Layers)

1 66109 0.71 (0.57) (2.04) 2.67 0.35 (1.17) (0.08)

2 78747 1.07 0.80 0.55 1.07 1.00 0.84 0.49

3 50408 (0.46) (1.19) (1.15) (0.91) (0.14) 2.23 2.23

4 93875 0.83 0.18 (0.96) (0.97) 0.11 0.04 1.89

5 44434 (0.75) 0.57 (1.62) 0.42 0.08 (0.52) 2.08

6 40150 (2.16) (1.13) 1.17 0.83 (1.03) 1.50 (0.91)

7 25600 0.23 (2.58) (1.30) 0.59 1.35 0.03 0.39

8 30450 (2.30) (1.25) (1.77) 1.45 0.16 1.37 0.42

9 15476 (0.07) (0.26) (0.06) (0.84) (0.59) 0.11 1.24

10 59372 (0.59) 1.08 (1.68) 1.96 1.12 (0.01) 1.50

11 4988 (1.49) (1.69) (3.77) 1.63 (1.03) (0.31) 0.87

12 96774 (2.06) 2.48 (0.92) (0.23) 0.86 0.93 (0.30)

13 81503 (0.55) (0.09) 2.17 (0.79) 0.54 (1.45) 1.62

14 24885 (2.29) (1.25) (2.10) 0.24 1.80 (0.09) (0.94)

15 82716 (1.30) (2.17) 2.02 0.17 (1.43) (0.67) 0.29

16 27177 (0.29) (1.04) (1.39) (0.89) 0.83 0.10 0.74

17 96878 (0.90) (1.27) 0.93 0.39 0.51 1.18 0.91

18 14024 0.84 (1.05) (0.14) 0.32 (0.62) (1.05) (0.05)

19 74705 0.66 (1.50) (3.01) (1.15) (0.32) (0.46) 1.33

20 6769 (2.42) (1.37) (0.38) (0.55) (0.08) 0.68 1.87

 Mean (0.66) (0.66) (0.77) 0.27 0.17 0.16 0.78

38

Appendix 5. Profit from Random Numbers for Single Day Forecast in Feeder Cattle

 5 Neurons 17 Neurons

Sr. No.
Random

Numbers
MLP Only

MLP with
Three

Hidden
Layers

MLP with
“tanh”

Function
(Three

Layers)

MLP only

MLP with
“tanh”

Function
(Single
Layer)

MLP with
“Logistic”
Function

MLP with
“tanh”

Function
(Three

Layers)

1 66109 44.02 75.49 244.07 74.47 94.24 124.53 52.85

2 78747 128.18 129.45 108.49 156.20 111.73 117.18 75.80

3 50408 (53.47) 46.17 312.84 74.15 94.50 89.46 56.76

4 93875 173.80 130.15 107.13 89.64 86.65 121.05 92.77

5 44434 116.86 59.62 91.10 130.91 99.08 108.61 101.47

6 40150 77.47 46.60 65.25 143.20 57.19 104.80 132.74

7 25600 (39.48) 104.71 69.78 136.01 154.00 130.49 48.44

8 30450 161.83 159.62 77.78 104.83 57.86 57.33 48.93

9 15476 196.67 79.76 194.45 81.71 76.78 66.63 74.59

10 59372 118.92 24.78 94.65 116.39 60.51 121.68 131.11

11 4988 75.18 145.11 133.12 53.15 101.27 87.08 55.64

12 96774 209.14 148.50 61.59 88.37 105.80 73.10 85.47

13 81503 66.66 140.99 51.15 126.36 78.70 48.27 41.01

14 24885 249.26 3.13 215.77 95.14 89.15 89.37 50.58

15 82716 144.51 215.40 24.31 143.65 88.84 70.19 40.93

16 27177 102.55 147.84 240.16 122.55 77.50 98.35 74.31

17 96878 137.65 136.72 209.65 58.95 75.22 105.32 42.26

18 14024 118.88 73.13 167.55 112.82 125.08 86.51 60.35

19 74705 77.23 118.23 21.49 122.90 143.22 98.52 49.91

20 6769 118.35 81.10 171.39 95.06 91.00 96.73 71.54

 Mean 111.21 103.33 133.09 106.32 93.42 94.76 69.37

39

Appendix 6. Profit from Random Numbers for 20-day Forecast in Feeder Cattle

 5 Neurons 17 Neurons

Sr. No.
Random

Numbers
MLP Only

MLP with
Three

Hidden
Layers

MLP with
“tanh”

Function
(Three

Layers)

MLP only

MLP with
“tanh”

Function
(Single
Layer)

MLP with
“Logistic”
Function

MLP with
“tanh”

Function
(Three

Layers)

1 66109 1176.17 1228.78 1017.26 1149.44 1040.69 884.35 403.25

2 78747 384.02 1347.35 1528.64 1095.95 1023.6 945.78 549.44

3 50408 94.81 1288.79 1490.02 621.99 917.71 847.78 642.21

4 93875 1024.68 1317.26 887.03 1137.43 753.43 886.97 1144.79

5 44434 887.51 846.1 1079.96 1047.77 1012.09 921.56 688.15

6 40150 1086.64 938.14 232.34 1001.29 880.81 588.1 980.86

7 25600 675.6 34.76 1113.15 789.02 699.71 1091.5 692.82

8 30450 981.55 1082.64 33.36 637.76 1008.72 910.46 554.09

9 15476 1070.44 488.2 1036.73 354.01 665.64 773.19 510.61

10 59372 1075.82 613.04 735.7 1055.14 899.88 790.17 987.93

11 4988 990.35 1296.74 1053.35 798.81 956.08 736.71 508.71

12 96774 1069.58 849.63 622.02 757.5 1239.59 596.3 603.26

13 81503 897.89 860.62 843.09 944.17 1043.64 605.26 722.84

14 24885 1364.88 1215.29 1134.21 722.88 951.76 994.46 884.18

15 82716 1127.72 932.61 908.85 1118.56 1371.37 759.24 718.93

16 27177 1070.53 1340.92 1645.99 1098.45 939.53 890.18 339.56

17 96878 1731.16 1160.18 1130.89 838.32 807.29 783.41 534.34

18 14024 577.61 798.01 1218.79 901.6 976.69 703.23 540.38

19 74705 889.99 465.46 294.56 1132.91 910.85 881.08 653.91

20 6769 1368.05 1061.73 1588.5 915.74 884.55 849.92 738.52

 Mean 977.25 958.3125 979.722 905.937 949.1815 821.983 669.939

40

Appendix 7. Profit from Random Numbers for Single Day Forecast in EuroDollar

 5 Neurons 17 Neurons

Sr. No.
Random

Numbers
MLP Only

MLP with
Three

Hidden
Layers

MLP with
“tanh”

Function
(Three

Layers)

MLP only

MLP with
“tanh”

Function
(Single
Layer)

MLP with
“Logistic”
Function

MLP with
“tanh”

Function
(Three

Layers)

1 66109 (5.99) (6.09) (5.61) (3.30) (1.71) (1.86) (2.63)

2 78747 (6.69) (3.58) (6.82) (4.56) (1.90) (3.73) (3.13)

3 50408 (8.99) (4.54) (4.31) (3.22) (2.39) (1.66) (1.68)

4 93875 (5.32) (6.87) (7.67) (4.50) (3.59) (2.17) (1.79)

5 44434 (7.76) (4.30) (4.96) (2.91) (4.32) (2.49) (0.07)

6 40150 (6.07) (7.38) (5.94) (2.99) (4.23) (0.84) (1.72)

7 25600 (7.99) (6.21) (6.70) (3.48) (3.04) (0.79) (1.22)

8 30450 (6.68) (5.61) (5.09) (5.41) (3.09) (2.08) (0.61)

9 15476 (1.29) (6.05) (3.52) (4.22) (3.72) (1.45) (3.01)

10 59372 (7.55) (5.54) (5.48) (3.89) (2.41) (1.95) (2.81)

11 4988 (5.59) (7.54) (6.49) (3.42) (4.39) (4.15) (1.31)

12 96774 (8.00) (3.59) (6.01) (3.17) (3.41) (3.13) (2.16)

13 81503 (5.87) (5.68) (1.50) (3.22) (2.43) (2.16) (2.40)

14 24885 (3.90) (3.69) (7.26) (3.51) (3.56) (2.42) (2.96)

15 82716 (8.15) (4.74) (1.37) (5.40) (4.34) (1.38) (2.63)

16 27177 (3.88) (2.73) (5.49) (4.17) (5.94) (4.60) (2.64)

17 96878 (6.04) (6.09) (6.59) (5.07) (3.94) (4.33) (2.61)

18 14024 (7.31) (6.50) (4.56) (4.87) (4.69) (1.05) (2.03)

19 74705 (7.91) (4.73) (7.64) (3.57) (2.46) (2.52) (1.09)

20 6769 (6.33) (4.33) (6.94) (2.43) (4.52) (1.91) (0.46)

 Mean (6.37) (5.29) (5.50) (3.86) (3.50) (2.33) (1.95)

41

Appendix 8. Profit from Random Numbers for 20-day Forecast in EuroDollar

 5 Neurons 17 Neurons

Sr. No.
Random

Numbers
MLP Only

MLP with
Three

Hidden
Layers

MLP with
“tanh”

Function
(Three

Layers)

MLP only

MLP with
“tanh”

Function
(Single
Layer)

MLP with
“Logistic”
Function

MLP with
“tanh”

Function
(Three

Layers)

1 66109 (58.71) (87.28) (45.73) (58.71) (39.93) (37.81) (36.05)

2 78747 (84.39) (62.52) (86.72) (35.96) (40.40) (38.75) (27.78)

3 50408 (71.02) (64.34) (72.42) (50.51) (58.41) (40.69) (32.46)

4 93875 (62.72) (34.95) (73.71) (41.17) (51.74) (40.02) (34.76)

5 44434 (79.92) (53.32) (80.53) (44.40) (40.50) (32.79) (15.71)

6 40150 (68.70) (71.45) (92.35) (33.99) (18.97) (39.47) (28.36)

7 25600 (85.88) (65.37) (86.41) (56.72) (29.32) (39.03) (30.10)

8 30450 (71.05) (78.00) (67.65) (58.06) (22.36) (28.93) (22.44)

9 15476 (48.56) (75.61) (58.07) (57.51) (47.38) (23.87) (27.72)

10 59372 (73.24) (69.61) (79.99) (37.96) (39.34) (34.62) (32.57)

11 4988 (59.98) (79.30) (54.24) (53.05) (48.78) (37.74) (30.10)

12 96774 (60.22) (35.79) (77.49) (42.01) (53.01) (36.53) (24.49)

13 81503 (75.49) (85.22) (51.98) (56.13) (52.64) (45.51) (38.88)

14 24885 (74.15) (82.10) (88.31) (39.84) (28.16) (34.24) (28.40)

15 82716 (80.44) (51.54) (60.62) (50.95) (49.44) (25.36) (36.67)

16 27177 (27.07) (67.09) (53.02) (39.95) (34.66) (46.36) (25.67)

17 96878 (84.51) (80.67) (94.72) (61.49) (37.06) (23.51) (38.45)

18 14024 (73.20) (61.93) (70.93) (47.09) (48.58) (24.76) (27.94)

19 74705 (81.41) (66.62) (75.93) (49.45) (36.19) (43.60) (32.31)

20 6769 (80.83) (66.55) (80.73) (49.80) (51.47) (31.59) (35.03)

 Mean (70.07) (66.96) (72.58) (48.24) (41.42) (35.26) (30.29)

42

Appendix 9. Profit from Random Numbers for Single Day Forecast in Corn

 5 Neurons 17 Neurons

Sr. No.
Random

Numbers
MLP Only

MLP with
Three

Hidden
Layers

MLP with
“tanh”

Function
(Three

Layers)

MLP only

MLP with
“tanh”

Function
(Single
Layer)

MLP with
“Logistic”
Function

MLP with
“tanh”

Function
(Three

Layers)

1.00 66109 223.00 363.00 350.00 514.50 218.00 (144.00) 243.00

2.00 78747 187.00 (2.00) 215.00 856.00 152.50 478.50 694.00

3.00 50408 (239.00) 557.50 184.50 367.00 537.50 431.50 (76.50)

4.00 93875 818.50 644.00 667.50 190.50 172.00 694.00 (26.50)

5.00 44434 308.50 804.50 269.00 520.50 (29.00) 439.00 (183.00)

6.00 40150 145.50 (3.50) (196.00) 238.00 596.50 356.00 (448.00)

7.00 25600 (61.50) 211.00 627.00 364.00 641.00 445.00 63.50

8.00 30450 278.50 437.00 92.50 210.50 375.50 385.50 469.50

9.00 15476 415.50 357.50 170.00 516.50 788.00 204.00 386.50

10.00 59372 137.00 149.50 141.50 407.00 509.00 176.00 50.50

11.00 4988 388.00 78.00 (179.50) 30.00 153.00 498.00 222.50

12.00 96774 116.00 255.00 187.00 188.00 236.50 176.50 397.50

13.00 81503 (95.50) 450.00 205.50 (30.00) 431.00 46.50 460.00

14.00 24885 586.50 141.00 95.00 458.50 464.50 696.50 237.50

15.00 82716 81.00 410.50 298.50 434.50 205.00 26.50 117.00

16.00 27177 367.00 547.00 437.00 529.50 381.50 79.50 225.00

17.00 96878 (66.00) 209.50 450.50 286.00 742.50 323.00 511.50

18.00 14024 494.00 207.00 (35.00) 360.00 137.00 512.50 46.50

19.00 74705 (41.00) 273.50 357.50 383.00 404.00 450.00 126.00

20.00 6769 (74.00) 213.00 319.50 557.50 607.00 287.00 636.00

 Mean 198.45 315.15 232.85 369.08 386.15 328.08 207.63

43

Appendix 10. Profit from Random Numbers for 20-day Forecast in Corn

 5 Neurons 17 Neurons

Sr. No.
Random

Numbers
MLP Only

MLP with
Three

Hidden
Layers

MLP with
“tanh”

Function
(Three

Layers)

MLP only

MLP with
“tanh”

Function
(Single
Layer)

MLP with
“Logistic”
Function

MLP with
“tanh”

Function
(Three

Layers)

1.00 66109 (1340.75) 2496.25 3130.75 4859.25 1686.75 1010.75 3958.75

2.00 78747 5201.25 608.25 4545.75 6235.25 5060.25 4331.25 2611.75

3.00 50408 (2221.75) 3985.75 7093.75 5801.25 4986.25 1570.25 3123.25

4.00 93875 3526.25 5372.25 7942.75 (1229.75) 3876.25 5827.25 (961.25)

5.00 44434 2235.25 3545.75 1625.25 3391.75 343.75 3953.25 2708.75

6.00 40150 5070.75 (2729.75) (931.75) 2819.75 2447.25 3172.75 3856.25

7.00 25600 (2012.25) 3929.25 5527.25 4382.75 5827.25 4946.25 1484.25

8.00 30450 5992.75 6218.25 7007.75 2277.25 4729.25 1684.75 (348.75)

9.00 15476 5075.75 3316.25 4451.25 3421.25 7766.25 4253.75 (164.75)

10.00 59372 (2936.25) 6881.25 3535.75 3449.25 3482.25 1186.75 2306.25

11.00 4988 4233.75 202.75 (4124.25) 2843.25 (1250.75) 2384.75 3028.25

12.00 96774 (5477.25) 5009.75 (5812.25) 2605.25 3598.75 2566.25 6253.25

13.00 81503 (2758.25) 7784.75 1463.25 4722.75 6984.25 2428.25 4220.75

14.00 24885 5575.25 (2246.25) (4824.25) 2287.25 2955.25 4444.75 (2353.75)

15.00 82716 (824.75) 5035.75 (2696.75) 4381.75 843.25 1273.25 1929.75

16.00 27177 (3010.75) (1163.25) 3884.25 5699.75 (245.25) 3773.75 5030.75

17.00 96878 3607.75 (1690.75) 7267.75 (1055.25) 2287.25 3022.75 3674.75

18.00 14024 5662.25 2223.75 805.25 2971.25 (2547.25) 3759.25 2437.75

19.00 74705 (1997.75) 6945.25 5594.75 (2819.25) 4789.75 2677.25 2510.75

20.00 6769 (2223.25) (4190.75) 7442.25 3685.75 3312.25 (914.25) 1976.50

 Mean 1068.90 2576.73 2646.43 3036.53 3046.65 2867.65 2364.16

44

Appendix 11. t-values for Profit/ Loss of Corn

Model
Mean

Single Day
Profit

Standard
Deviation

t-value for
Single Day
Forecast

Mean 20-
day Profit

Standard
Deviation

t-value for
20-day

Forecast
Moving average (5,10) -0.58 8.019 -2.49472 -1.2 39.42 -1.04581

Moving average (5,20) -0.29 8.0354 -1.25919 0.3 39.411 0.260081

Moving average (10,50) -0.12 8.039 -0.50453 3.36 39.29 2.942282

RSI (14-day) 0.35 8.033 1.502131 0.04 39.44 0.033754

RSI (9-day) 0.47 8.027 2.015727 1.14 39.42 0.995611

CCI 20-day 0.5 8.028 2.152118 -2.69 39.35 -2.34732

20-day channel -0.19 8.038 -0.8314 -0.01 39.44 -0.00793

50-day channel -0.22 8.0376 -0.95356 -1.44 39.416 -1.25447

Stochastic indicator 1.06 7.97 4.598157 1 39.41 0.873296

Logistic regression 0.05 8.04 0.193886 -1.23 40.66 -1.03646

Random forest 0.23 8.0374 0.985907 0.79 40.67 0.665223

Pipeline model 0.19 8.03 0.805271 0.17 40.68 0.146102

Voting ensemble model 0.22 8.03 0.941879 -1.29 40.66 -1.08763

Neural network (single layer
with 5 neurons)

0.16 8.039 0.691255 -1.77 40.6476 -1.49637

Neural network (three layers
with 5 neurons)

0.03 8.04 0.140029 -0.82 40.6778 -0.69657

Neural network (three layers,
5 neurons, tanh)

-0.05 8.0405 -0.21901 -1.04 40.672 -0.87875

Neural network (single layer
with 17 neurons)

-0.07 8.04 -0.31596 -0.18 40.68 -0.15111

Neural network (single layer,
17 neurons, tanh)

0.23 8.0373 1.002082 1.42 40.6614 1.198155

Neural network (three layers
with 17 neurons)

-0.26 8.0363 -1.13512 -2.18 40.6273 -1.84771

Neural network (three layers,
17 neurons, tanh)

-0.1 8.04 -0.40932 -2.35 40.618 -1.98963

45

Appendix 12. t-values for Profit/ Loss of Copper

Model
Mean

Single Day
Profit

Standard
Deviation

t-value for
Single Day
Forecast

Mean 20-
day Profit

Standard
Deviation

t-value for
20-day

Forecast
Moving average (5,10) -0.01 0.9759 -0.3485 -0.1 4.1946 -0.7087

Moving average (5,20) -0.02 0.9757 -0.7711 0.15 4.1928 1.1459

Moving average (10,50) 0.02 0.9757 0.7691 0.68 4.1397 5.1308

RSI (14-day) 0.01 0.9759 0.1909 -0.56 4.157 -4.2108

RSI (9-day) 0.02 0.9757 0.6693 -0.32 4.1832 -2.406

CCI 20-day 0.02 0.9757 0.7398 -0.15 4.1932 -1.0821

20-day channel -0.03 0.9756 -0.9284 -0.6 4.1527 -4.4901

50-day channel -0.03 0.9756 -0.9277 -0.63 4.1484 -4.7104

Stochastic indicator 0.02 0.9757 0.7343 0.6 4.152 4.5132

Logistic regression -0.03 0.9755 -0.9543 -0.66 4.2771 -4.8324

Random forest -0.03 0.9756 -0.9046 -0.66 4.2776 -4.804

Pipeline model -0.03 0.9755 -0.9105 -0.7 4.271 -5.0842

Voting ensemble model -0.03 0.9755 -0.9259 -0.49 4.3007 -3.5327

Neural network (single layer
with 5 neurons)

0 0.976 0.0643 -0.08 4.3277 -0.5496

Neural network (three layers
with 5 neurons)

-0.03 0.9756 -0.9004 -0.68 4.2749 -4.9298

Neural network (three layers,
5 neurons, tanh)

-0.01 0.9759 -0.3899 -0.54 4.2948 -3.8952

Neural network (single layer
with 17 neurons)

0.04 0.9752 1.1979 -0.57 4.2908 -4.1213

Neural network (single layer,
17 neurons, tanh)

-0.02 0.9757 -0.6957 -0.05 4.328 -0.3932

Neural network (three layers
with 17 neurons)

0 0.9759 0.1463 -0.25 4.321 -1.8138

Neural network (three layers,
17 neurons, tanh)

-0.09 0.9759 -2.9439 -0.38 4.311 -2.7411

46

Appendix 13. t-values for Profit/ Loss of EuroDollar

Model
Mean

Single Day
Profit

Standard
Deviation

t-value for
Single Day
Forecast

Mean 20-
day Profit

Standard
Deviation

t-value for
20-day

Forecast
Moving average (5,10) -0.0006 0.0135 -1.2105 0.0022 0.0505 1.2221

Moving average (5,20) -0.0005 0.0135 -0.9853 0.0044 0.0504 2.3990

Moving average (10,50) 0.0001 0.0135 0.2049 0.0017 0.0506 0.9470

RSI (14-day) -0.0001 0.0135 -0.2445 -0.0089 0.0498 -4.9518

RSI (9-day) 0.0010 0.0134 2.0873 -0.0083 0.0499 -4.6206

CCI 20-day 0.0004 0.0134 0.9371 -0.0050 0.0503 -2.7567

20-day channel 0.0005 0.0135 1.1309 0.0065 0.0502 3.5781

50-day channel 0.0008 0.0135 1.6218 0.0061 0.0502 3.3628

Stochastic indicator 0.0011 0.0080 3.9757 -0.0014 0.0359 -1.0548

Logistic regression -0.0003 0.0134 -0.6978 -0.0062 0.0512 -3.3413

Random forest 0.0001 0.0134 0.1662 -0.0010 0.0515 -0.5496

Pipeline model -0.0003 0.0134 -0.6978 -0.0062 0.0512 -3.3413

Voting ensemble model -0.0003 0.0135 -0.6145 -0.0073 0.0511 -3.9620

Neural network (single layer
with 5 neurons)

0.0000 0.0134 0.0864 -0.0012 0.0515 -0.6546

Neural network (three layers
with 5 neurons)

0.0004 0.0134 0.8441 -0.0055 0.0512 -2.9645

Neural network (three layers,
5 neurons, tanh)

-0.0008 0.0134 -1.6148 0.0005 0.0515 0.2731

Neural network (single layer
with 17 neurons)

-0.0001 0.0134 -0.2191 0.0007 0.0515 0.3641

Neural network (single layer,
17 neurons, tanh)

0.0005 0.0134 1.1498 -0.0055 0.0512 -2.9827

Neural network (three layers
with 17 neurons)

0.0007 0.0135 1.3564 -0.0025 0.0515 -1.3233

Neural network (three layers,
17 neurons, tanh)

0.0003 0.1347 0.0535 -0.0016 0.0515 -0.8367

47

Appendix14. t-values for Profit/ Loss of Feeder Cattle

Model

Mean
Single Day

Profit
Standard
Deviation

t-value for
Single Day
Forecast

Mean 20-
day Profit

Standard
Deviation

t-value for
20-day

Forecast
Moving average (5,10) -0.0106 1.84 -0.1755 -0.2181 8.61 -0.7680

Moving average (5,20) 0.0006 1.85 0.0107 -0.2415 8.61 -0.8503

Moving average (10,50) 0.0055 1.85 0.0910 0.1638 8.61 0.5766

RSI (14-day) 0.0127 1.84 0.2105 0.2061 8.61 0.7256

RSI (9-day) 0.0150 1.84 0.2504 0.0748 8.61 0.2633

CCI 20-day -0.0120 1.84 -0.1995 -0.7934 8.58 -2.8043

20-day channel -0.0073 1.84 -0.1218 -1.1579 8.54 -4.1125

50-day channel 0.0095 1.84 0.1584 0.4002 8.60 1.4100

Stochastic indicator -0.0042 1.85 -0.0700 -0.7584 8.82 -2.6071

Logistic regression -0.0065 1.84 -0.1079 -0.0812 8.85 -0.2779

Random forest -0.0033 1.85 -0.0553 -0.7026 8.82 -2.4137

Pipeline model -0.0038 1.85 -0.0636 -0.2349 8.85 -0.8048

Voting ensemble model -0.0015 1.85 -0.0254 -0.1202 8.85 -0.4117

Neural network (single layer
with 5 neurons)

-0.0079 1.84 -0.1312 0.1848 8.85 0.6331

Neural network (three layers
with 5 neurons)

-0.0024 1.85 -0.0397 -0.0572 8.85 -0.1959

Neural network (three layers,
5 neurons, tanh)

0.0000 1.85 -0.0003 0.3372 8.85 1.1557

Neural network (single layer
with 17 neurons)

-0.0006 1.85 -0.0093 0.2298 8.85 0.7872

Neural network (single layer,
17 neurons, tanh)

-0.0017 1.85 -0.0279 0.6916 8.83 2.3756

Neural network (three layers
with 17 neurons)

0.0013 1.85 0.0208 0.2468 8.85 0.8457

Neural network (three layers,
17 neurons, tanh)

-0.0106 1.84 -0.1755 -0.2181 8.61 -0.7680

48

Appendix 15. t-values for Profit/ Loss of Japanese Yen

Model
Mean Single

Day Profit
Standard
Deviation

t-value for
Single Day
Forecast

Mean 20-
day Profit

Standard
Deviation

t-value for
20-day

Forecast
Moving average (5,10) -0.0005 0.0062 -2.6325 0.001 0.0251 1.2214

Moving average (5,20) -0.0003 0.0062 -1.3398 0.002 0.025 2.3809

Moving average (10,50) -0.0001 0.0062 -0.6604 -0.0017 0.0251 -1.9859

RSI (14-day) -0.0002 0.0062 -1.1018 -0.0038 0.0244 -4.6267

RSI (9-day) 0.0003 0.0062 1.3632 -0.0041 0.0248 -4.9388

CCI 20-day 0.0004 0.0061 1.7752 -0.0009 0.0251 -1.127

20-day channel 0 0.0062 -0.0005 -0.0005 0.0251 -0.5897

50-day channel -0.0001 0.0062 -0.6364 -0.0018 0.0251 -2.0973

Stochastic indicator -0.0001 0.0062 -0.5695 -0.0024 0.025 -2.8311

Logistic regression 0.0001 0.0062 0.297 0.0011 0.0256 1.3087

Random forest 0.0002 0.006 1.1295 0.0021 0.0255 2.4073

Pipeline model 0 0.0062 0.0053 0.0006 0.0256 0.6822

Voting ensemble model 0 0.0062 -0.1551 -0.0007 0.0256 -0.8133

Neural network (single layer
with 5 neurons)

0 0.0062 0.1684 -0.0006 0.0256 -0.6965

Neural network (three layers
with 5 neurons)

0.0003 0.0062 1.5708 0.003 0.0254 3.4866

Neural network (three layers,
5 neurons, tanh)

0.0001 0.0062 0.4733 0.0022 0.0255 2.5257

Neural network (single layer
with 17 neurons)

0.0002 0.0062 0.804 0.0032 0.0254 3.7259

Neural network (single layer,
17 neurons, tanh)

0.0001 0.0062 0.6057 0.0022 0.0255 2.5487

Neural network (three layers
with 17 neurons)

0 0.0062 0.1397 0.0015 0.0255 1.704

Neural network (three layers,
17 neurons, tanh)

0.0001 0.0062 0.4831 0.0019 0.0255 2.2262

49

Appendix 16.

50

Appendix 17. Barclay’s CTA Index

Year CTA Index Year CTA Index Year CTA Index

1980 63.69% 1993 10.37% 2006 3.54%

1981 23.90% 1994 -0.65% 2007 7.64%

1982 16.68% 1995 13.64% 2008 14.09%

1983 23.75% 1996 9.12% 2009 -0.10%

1984 8.74% 1997 10.89% 2010 7.05%

1985 25.50% 1998 7.01% 2011 -3.09%

1986 3.82% 1999 -1.19% 2012 -1.70%

1987 57.27% 2000 7.86% 2013 -1.42%

1988 21.76% 2001 0.84% 2014 7.61%

1989 1.80% 2002 12.36% 2015 -1.50%

1990 21.02% 2003 8.69% 2016 -1.23%

1991 3.73% 2004 3.30% 2017 -0.67%†

1992 -0.91% 2005 1.71%

51

Appendix 18. Neural Networks (Artificial neural networks, ANNs)

ANNs with the 𝑘 output nodes can be used to forecast multi-step ahead points directly using all the

useful past observations as inputs. ANNs are considered as the universal function approximators

hence, they can capture nonlinear relationships in a better way. In addition to these characteristics

ANNs have more properties like ANN learning methods are quite robust to noise in the training

data, long training times are acceptable for ANNs, and they use the black box approach which may

or may not be acceptable to all humans (Mitchell, 1997). Weigend et al. (1992) find the ANN model

to be better than random walk model.

ANN can be constructed using many ways including feedforward and recurrent networks.

Most studies have used the straightforward Multilayer perceptron (MLP) for forecasting (Kang,

1991; Sharda and Patil, 1990). A MLP is an feedforward ANN model that maps sets of input data

onto a set of appropriate outputs (Rosenblatt 1961). This study uses MLP neural networks.

An ANN is typically composed of layers of nodes. MLP neural networks have all the input

nodes in input layer, hidden layer is distributed into one or more hidden layers between input and

output nodes, while the output layer consists of the ouput nodes.

52

Figure: An illustrative example of MLP neural network.

There are many critical parameters that effect the performance of an ANN. One of them is

determining the architecture of the ANN. Number of hidden layers, number of hidden neurons ,

number of output neurons, transfer (activation) function for hidden and ouput layer, training

algorithm, Evaluating criteria, number of training iterations and learning rate and momentum are

very crucial for the architecture of the ANN. Several researchers have tried to address these issues,

but there is no consensus on method of determination of these parameters.

Kang (1991) use 1 hidden layer with variable hidden neurons, 1 output neuron, sigmoid

transfer function for both hidden and ouput layer, generalized reduced gradient algortihm and MSE,

mean algebaric percent error (MAPE) and MAD as evaluating criteria with simulated and real time

series data. Schoneburg(1990) use the daily stock price data for forecasting daily stock prices with

10 input neurons, 2 hidden layers, 1 output neuron, sigmoid and sine,sigmoid transfer function for

hidden and output layer respectively, backpropagation (BP) algorithm and MAPE as the evaluating

criteria. Weigend et al. (1992) 12 input neurons. 1 hidden layer with 8 neurons, 1 output neuron,

sigmoid and tanh as activation function, linear function for ouput layer, BP algorithm, average

relative variance (ARV) as evaluation criteria in his forecasting for sunspots daily exchange rate.

Kuan and Liu, 1995 in their work on daily exchange rates use the Newton training algorithm with

sigmoid activation function and linear transfer function with root mean sqare error (RMSE) as

evaluation criterion.

One hidden layer is considered sufficient to approximate any complex nonlinear function

with desired accuracy (Cybenco, 1989) , but one hidden layer results in long training time and bad

network generalization as it requires a very large number of hidden nodes. Also ANNs having more

than one hidden layer is considered deep learning by some authors (Erhan et al., 2010).

53

Number of hidden nodes is another crucial aspect of making ANN. Networks with too few

hidden nodes (neurons) may not be able to train and model data while it is preferred to have fewer

hidden nodes so as to have lower overfitting and better generalization. There is no universal rule

for selecting the number of hidden nodes, it is mostly done by trial and error methods. Generally

the number of hidden nodes depend on the number of input nodes. Many researchers have use

different rules for number of hidden nodes. Lippman (1987) use “2n+1”, while Kang (1991) uses

“n/2” hidden nodes where n is the number of input nodes. Tang et al. (1993) and De Groot and

Wurtz (1991) set the number of hidden nodes to be equal to number of input nodes.

Number of input nodes is considered to be the most critical decision variable for a time

series forecasting problem as it contains the important information about the linear/nonlinear

autocorrelation structure in the data. Zhang et al. (1998), prefer the use of theoretical research to

determine the number of input nodes for nonlinear time series analysis. Many others have adopted

some intuitive or empirical ideas for selecting the number of input nodes. Tang et al. (1991) use

the four input nodes for the quarterly data while Sharda and Patil (1992) use 12 input nodes for the

monthly data. For the purpose of this paper we have relied on theoratical research to decide the

number of input nodes. This study uses five and 17 neurons with one and three hidden layers.

Transfer functions also called activation function determines the relationship between

inputs and output nodes of the neural network. They are known to introduce nonlinearity in the

neural networks. Generally speaking any differentiable continous function can be used as a transfer

function. But for the purpose of time series data bounded, monotonically increasing and

differentiable functions like sigmoid (logistic) , hyperbolic tangent (tanh), sine or cosine function

are use. We can use one activation function for all nodes or we can use different activation functions

for different nodes. Mostly, networks use the same activation function for the nodes in the same

layer. Majority of the reserachers simply use the logistic activation function for all the hidden and

54

output nodes but few reserachers like De Groot and Wurtz (1991) use tanh activtion function but

there is no consensus about this. This study uses the sigmoid function which is special case of

softmax where the number of classes eequals to two.

Training algorithm also known as the optimization method is a nonlinear minimization

problem which works by giving arc weights to parameters to minimize the total or mean squared

errors between the actual and desired output levels. There are many training algorithms like

backpropagation, Levenberg-Marquardt, quasi-Newton (like BFGS and l-BFGS) available to the

researchers. None of these algortims guarantee the global optimal solution to the problem so the

emphasis is mainly on finding the “best” local optima for the solution if global solution is not

available. Patuwo et al. (1993). Apart from being a widely available algorithm in optimization

software, it does not require the learning parameters such as learning rate and momentum which

are required in backpropagation methods. This study uses the l-BFGS algorithm (as explained

earlier in the main text).

Evaluation criteria also known as the cost function or objective function is another

important issue in the neural network architecture. Objective functions such as SSE and MSE or

others that can be described as error are used.

This study uses the L2 penalty (regularization term) parameter of 0.0001. As this study

uses the “constant” (0.5) base learning rate for weight updates and as it stands “constant” keeps the

learning rate constant throughout training. Maximum iterations (i, epochs) is 20,000. Also tolerence

for optimization criteria is 0.00001 for this study. This means that when the loss at iteration i+1

differs less than 0.00001 from that at iteration i, convergence is considerd to be reached and the

algorithm exits.

55

Yao et al. (2000) suggested using a measure of volatiltiy as input for the formulation of the

neural network for forecasting. The ANN should be self-adapting to different situations, for the

pupose of the volatility of the current measurement should be incorporated to the model. A sudden

change in the volatility is an indication of an impending major move. It can signal the beginning of

a trend, an end or a reversal of a trend, or possibly even a price crash or a switch from trend to

reversal.

Appendix 19.

Python code:

56

"""Utilities for the neural network modules
"""
from numpy import genfromtxt
import gzip, cPickle
from glob import glob
import numpy as np
from itertools import chain
import pandas as pd
import baseMultilayerPerceptron
class MultilayerPerceptronClassifier as MLP
csvFile = "C:\\Users\\jasdeep\\Desktop\\datacopper.csv"
csvFileY="C:\\Users\\jasdeep\\Desktop\\datacopper1.csv"
my_data = genfromtxt(csvFile, delimiter=',', skip_header=1)
my_data1 = genfromtxt(csvFileY, delimiter=',', skip_header=1)
Data and labels are read
train_set_x = my_data[:7140]
valid_set_x = my_data[7171:9191]
test_set_x = my_data[9221:10210]
train_set_y = my_data1[:7140]
valid_set_y = my_data1[7171:9191]
test_set_y = my_data1[9221:10210]
Divided dataset into 3 parts. 70%,20%,10%
train_set = train_set_x, train_set_y
valid_set = valid_set_x, valid_set_y
test_set = test_set_x, test_set_y
#random_state = 0
n_hidden=50
import numpy as np
from sklearn.utils.fixes import expit as logistic_sigmoid

def identity(X):
 return X
def logistic(X):
 return logistic_sigmoid(X, out=X)
def tanh(X):
 return np.tanh(X, out=X)
def relu(X):
 np.clip(X, 0, np.finfo(X.dtype).max, out=X)
 return X
def softmax(X):
 tmp = X - X.max(axis=1)[:, np.newaxis]
 np.exp(tmp, out=X)
 X /= X.sum(axis=1)[:, np.newaxis]
 return X
ACTIVATIONS = {'identity': identity, 'tanh': tanh, 'logistic': logistic,
 'relu': relu, 'softmax': softmax}
def logistic_derivative(Z):
 return Z * (1 - Z)
def tanh_derivative(Z):
 return 1 - (Z ** 2)
def relu_derivative(Z):
 return (Z > 0).astype(Z.dtype)
DERIVATIVES = {'tanh': tanh_derivative, 'logistic': logistic_derivative,
 'relu': relu_derivative, 'identity': lambda x: 1}
def squared_loss(y_true, y_pred):
 return ((y_true - y_pred) ** 2).sum() / (2 * y_true.shape[0])

def log_loss(y_true, y_prob):
 y_prob = np.clip(y_prob, 1e-10, 1 - 1e-10)
 return -np.sum(y_true * np.log(y_prob) +
 (1 - y_true) * np.log(1 - y_prob)) / y_prob.shape[0]

57

LOSS_FUNCTIONS = {'squared_loss': squared_loss, 'log_loss': log_loss}
def binary_KL_divergence(p, p_hat):

 p_hat = np.clip(p_hat, 1e-10, 1 - 1e-10)
 return (p * np.log(p / p_hat)) + ((1 - p) * np.log((1 - p) / (1 - p_hat)))
from __future__ import print_function
print(__doc__)
import numpy as np
from sklearn.cross_validation import train_test_split
from sklearn.datasets import load_digits
from sklearn.neural_network import BernoulliRBM
from sklearn.pipeline import Pipeline
from sklearn import linear_model, datasets, metrics
random_state = 66109
print("Random_state:", random_state)
mlp = MultilayerPerceptronClassifier(hidden_layer_sizes=(5,), activation="logistic",
 algorithm='l-bfgs', alpha=0.00001,
 batch_size=10, learning_rate="constant",
 learning_rate_init=0.5, power_t=0.5, max_iter=20000,
 shuffle=False, random_state=random_state, tol=1e-5,
 verbose=False, warm_start=False)

mlp.fit(train_set_x, train_set_y)
#score_with_mlp_only = mlp.score(test_set_x, test_set_y)
x = [mlp.predict(valid_set_x)];
a = np.array(x)[np.newaxis]
x2= a.T
#print ("mlp only prediction: ",x2 [:50])
#print ("shape of x2: ",x2.shape)
x3 = len(x2)
x4 = np.reshape(x2, (x3,-1))
df = pd.read_excel("C:\\Users\\jasdeep\\Desktop\\reserach_data\\Copper\\random_number_check_data.xlsx")
#df.head()
#print (df)
df1 = pd.DataFrame(df)
list6 = pd.DataFrame(x4)
list7 = pd.DataFrame(data = list6).reset_index()
list7.columns = ['Second_Index', 'prediction']
del list7['Second_Index']
result = pd.concat([list7, df1], axis=1)
prediction=result.values[:,0]
orgdep=result.values[:,1]
opnpr=result.values[:,2]
#rev=result.values[:,3]
#clospr=result.values[:,4]
rev = 0
#for index,val in np.ndenumerate(prediction[:-1]):
for index,val in np.ndenumerate(prediction[:-21]):
 # For some reason, index is a tuple, so to get the integer index, it is index[0]
 rev += val * (opnpr[index] - opnpr[index[0]+20])
 df['rev'][index] = val * (opnpr[index] - opnpr[index[0]+20])
 #print("index: "+str(index)+" val: "+str(val)+" rev: "+str(rev))
#rev = df['rev'].sum()
#print(rev,df['rev'][:-1].sum())
print("Revenue from mlp 20 day,single layer, 5 neurons:", rev)
mlp2 = MultilayerPerceptronClassifier(hidden_layer_sizes=(5,5,5,), activation="logistic",
 algorithm='l-bfgs', alpha=0.00001,
 batch_size=10, learning_rate="constant",
 learning_rate_init=0.25, power_t=0.5, max_iter=20000,
 shuffle=False, random_state=random_state, tol=1e-5,
 verbose=False, warm_start=False)

mlp2.fit(train_set_x, train_set_y)

58

#score_without_pretraining = mlp2.score(test_set_x, test_set_y)
x = [mlp2.predict(valid_set_x)];
a = np.array(x)[np.newaxis]
x2= a.T
x3 = len(x2)
x4 = np.reshape(x2, (x3,-1))
df = pd.read_excel("C:\\Users\\jasdeep\\Desktop\\reserach_data\\Copper\\random_number_check_data.xlsx")
#df.head()
 df1 = pd.DataFrame(df)
list6 = pd.DataFrame(x4)
list7 = pd.DataFrame(data = list6).reset_index()
list7.columns = ['Second_Index', 'prediction']
del list7['Second_Index']
result = pd.concat([list7, df1], axis=1)
prediction=result.values[:,0]
orgdep=result.values[:,1]
opnpr=result.values[:,2]
rev = 0
#for index,val in np.ndenumerate(prediction[:-1]):
for index,val in np.ndenumerate(prediction[:-21]):
 # For some reason, index is a tuple, so to get the integer index, it is index[0]
 rev += val * (opnpr[index] - opnpr[index[0]+20])
 df['rev'][index] = val * (opnpr[index] - opnpr[index[0]+20])
print("Revenue from 20 day, three layers, 5 neurons :", rev)

Cross-validate multi-layer perceptron with rbm pre-training
rbms = [BernoulliRBM(batch_size=10, n_components=n_hidden, random_state=random_state,
 learning_rate=0.5, n_iter=1000),
 BernoulliRBM(n_components=n_hidden, random_state=random_state,batch_size=10,
 learning_rate=0.5, n_iter=1000)]

mlp3 = MultilayerPerceptronClassifier(hidden_layer_sizes=(5,5,5,), activation="tanh",
 algorithm='l-bfgs', alpha=0.00001,
 batch_size=10, learning_rate="constant",
 learning_rate_init=0.25, power_t=0.5, max_iter=20000,
 shuffle=False, random_state=random_state, tol=1e-5,
 verbose=False, warm_start=rbms)

mlp3.fit(train_set_x, train_set_y)
x = [mlp3.predict(valid_set_x)];
a = np.array(x)[np.newaxis]
x2= a.T
x3 = len(x2)
x4 = np.reshape(x2, (x3,-1))
df = pd.read_excel("C:\\Users\\jasdeep\\Desktop\\reserach_data\\Copper\\random_number_check_data.xlsx")
df1 = pd.DataFrame(df)
list6 = pd.DataFrame(x4)
list7 = pd.DataFrame(data = list6).reset_index()
list7.columns = ['Second_Index', 'prediction']
del list7['Second_Index']
result = pd.concat([list7, df1], axis=1)
prediction=result.values[:,0]
orgdep=result.values[:,1]
opnpr=result.values[:,2]
rev = 0
#for index,val in np.ndenumerate(prediction[:-1]):
for index,val in np.ndenumerate(prediction[:-21]):
 # For some reason, index is a tuple, so to get the integer index, it is index[0]
 rev += val * (opnpr[index] - opnpr[index[0]+20])
 df['rev'][index] = val * (opnpr[index] - opnpr[index[0]+20])
print("Revenue from tanh, 20 day, three layres, 5 neurons:", rev)
mlp = MultilayerPerceptronClassifier(hidden_layer_sizes=(17,), activation="logistic",
 algorithm='l-bfgs', alpha=0.00001,
 batch_size=10, learning_rate="constant",

59

 learning_rate_init=0.5, power_t=0.5, max_iter=20000,
 shuffle=False, random_state=random_state, tol=1e-5,
 verbose=False, warm_start=False)

mlp.fit(train_set_x, train_set_y)
x = [mlp.predict(valid_set_x)];
a = np.array(x)[np.newaxis]
x2= a.T
x3 = len(x2)
x4 = np.reshape(x2, (x3,-1))
df = pd.read_excel("C:\\Users\\jasdeep\\Desktop\\reserach_data\\Copper\\random_number_check_data.xlsx")
df1 = pd.DataFrame(df)
list6 = pd.DataFrame(x4)
list7 = pd.DataFrame(data = list6).reset_index()
list7.columns = ['Second_Index', 'prediction']
del list7['Second_Index']
result = pd.concat([list7, df1], axis=1)
prediction=result.values[:,0]
orgdep=result.values[:,1]
opnpr=result.values[:,2]
rev = 0
#for index,val in np.ndenumerate(prediction[:-1]):
for index,val in np.ndenumerate(prediction[:-21]):
 # For some reason, index is a tuple, so to get the integer index, it is index[0]
 rev += val * (opnpr[index] - opnpr[index[0]+20])
 df['rev'][index] = val * (opnpr[index] - opnpr[index[0]+20])
print("Revenue from mlp, 20 day, 17 neurons, 1 layer:", rev)
mlp = MultilayerPerceptronClassifier(hidden_layer_sizes=(17,), activation="tanh",
 algorithm='l-bfgs', alpha=0.00001,
 batch_size=10, learning_rate="constant",
 learning_rate_init=0.5, power_t=0.5, max_iter=20000,
 shuffle=False, random_state=random_state, tol=1e-5,
 verbose=False, warm_start=False)
mlp.fit(train_set_x, train_set_y)
x = [mlp.predict(valid_set_x)];
a = np.array(x)[np.newaxis]
x2= a.T
x3 = len(x2)
x4 = np.reshape(x2, (x3,-1))
import pandas as pd
import numpy as np
df = pd.read_excel("C:\\Users\\jasdeep\\Desktop\\reserach_data\\Copper\\random_number_check_data.xlsx")
df1 = pd.DataFrame(df)
list6 = pd.DataFrame(x4)
list7 = pd.DataFrame(data = list6).reset_index()
list7.columns = ['Second_Index', 'prediction']
del list7['Second_Index']
result = pd.concat([list7, df1], axis=1)
prediction=result.values[:,0]
orgdep=result.values[:,1]
opnpr=result.values[:,2]
rev = 0
for index,val in np.ndenumerate(prediction[:-21]):
 # For some reason, index is a tuple, so to get the integer index, it is index[0]
 rev += val * (opnpr[index] - opnpr[index[0]+20])
 df['rev'][index] = val * (opnpr[index] - opnpr[index[0]+20])
print("Revenue from tanh, 20 day, 17 neurons, 1 layer:", rev)
mlp2 = MultilayerPerceptronClassifier(hidden_layer_sizes=(17,17,17,), activation="logistic",
 algorithm='l-bfgs', alpha=0.00001,
 batch_size=10, learning_rate="constant",
 learning_rate_init=0.25, power_t=0.5, max_iter=20000,
 shuffle=False, random_state=random_state, tol=1e-5,
 verbose=False, warm_start=False)
mlp2.fit(train_set_x, train_set_y)

60

x = [mlp2.predict(valid_set_x)];
a = np.array(x)[np.newaxis]
x2= a.T
x3 = len(x2)
x4 = np.reshape(x2, (x3,-1))
import pandas as pd
import numpy as np
df = pd.read_excel("C:\\Users\\jasdeep\\Desktop\\reserach_data\\Copper\\random_number_check_data.xlsx")
df1 = pd.DataFrame(df)
list6 = pd.DataFrame(x4)
list7 = pd.DataFrame(data = list6).reset_index()
list7.columns = ['Second_Index', 'prediction']
del list7['Second_Index']
result = pd.concat([list7, df1], axis=1)
prediction=result.values[:,0]
orgdep=result.values[:,1]
opnpr=result.values[:,2]
rev = 0
#for index,val in np.ndenumerate(prediction[:-1]):
for index,val in np.ndenumerate(prediction[:-21]):
 # For some reason, index is a tuple, so to get the integer index, it is index[0]
 rev += val * (opnpr[index] - opnpr[index[0]+20])
 df['rev'][index] = val * (opnpr[index] - opnpr[index[0]+20])
print("Revenue from without_pretraining, 20 day, 17 neurons, 3 layers:", rev)
n_hidden =5
rbms = [BernoulliRBM(batch_size=10, n_components=n_hidden, random_state=random_state,
 learning_rate=0.5, n_iter=1000),
 BernoulliRBM(n_components=n_hidden, random_state=random_state,batch_size=10,
 learning_rate=0.5, n_iter=1000)]
mlp2 = MultilayerPerceptronClassifier(hidden_layer_sizes=(17,17,17,), activation="tanh",
 algorithm='l-bfgs', alpha=0.00001,
 batch_size=10, learning_rate="constant",
 learning_rate_init=0.25, power_t=0.5, max_iter=20000,
 shuffle=False, random_state=random_state, tol=1e-5,
 verbose=False, warm_start=False)
mlp2.fit(train_set_x, train_set_y)
x = [mlp2.predict(valid_set_x)];
a = np.array(x)[np.newaxis]
x2= a.T
x3 = len(x2)
x4 = np.reshape(x2, (x3,-1))
df = pd.read_excel("C:\\Users\\jasdeep\\Desktop\\reserach_data\\Copper\\random_number_check_data.xlsx")
df1 = pd.DataFrame(df)
list6 = pd.DataFrame(x4)
list7 = pd.DataFrame(data = list6).reset_index()
list7.columns = ['Second_Index', 'prediction']
del list7['Second_Index']
result = pd.concat([list7, df1], axis=1)
prediction=result.values[:,0]
orgdep=result.values[:,1]
opnpr=result.values[:,2]
rev = 0
#for index,val in np.ndenumerate(prediction[:-1]):
for index,val in np.ndenumerate(prediction[:-21]):
 # For some reason, index is a tuple, so to get the integer index, it is index[0]
 rev += val * (opnpr[index] - opnpr[index[0]+20])
 df['rev'][index] = val * (opnpr[index] - opnpr[index[0]+20])
print("Revenue from tanh, 20 day, 17 neurons, 3 layers:", rev)

VITA

JASDEEP SINGH BANGA

Candidate for the Degree of

Doctor of Philosophy

Thesis: MACHINE LEARNING: A POTENTIAL FORECASTING TOOL

Major Field: Agricultural Economics

Biographical:

Education:

Completed the requirements for the Doctor of Philosophy/Education in

Agricultural Economics at Oklahoma State University, Stillwater, Oklahoma in

December, 2017.

Completed the requirements for the Master of Quantitative Financial Economics

at Oklahoma State University, Stillwater, Oklahoma in December, 2017.

Completed the requirements for the Master of Business Administration at

Punjab Agricultural University, Ludhiana, Punjab, India in May, 2006.

Completed the requirements for the Bachelor of Science (Agriculture) at Punjab

Agricultural University, Ludhiana, Punjab, India in May, 2004.

