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CHAPTER 1

INTRODUCTION

1.1 Motivation

In today’s competitive economy, satisfying customer needs with the right product at

the right time at a competitive price is key to orchestrating a successful supply chain.

Customers’ needs and tastes evolve and vary widely posing forecasting challenges

to firms in making effective resource1 investment decisions. In addition, exogenous

factors such as raw-material or inventory availability, plant disruptions etc. add

additional complexity to the firm’s decision making process.

Firms typically face three types of uncertainties: demand uncertainties, resource

capacity uncertainties and supply disruptions. Uncertainties in demand is typically

caused due to imperfect demand forecasts or forecasting with insufficient information

(Chod and Rudi 2005). Jordan and Graves (1995) note a strategic average forecast

error of 40% in the automotive industry. When Mercedes-Benz first introduced its M-

class cars in 1997, it forecasted its annual demand to be about 65,000 vehicles. This

forecast was, in fact, too low and the capacity was expanded to 80,000 vehicles during

1998-1999, which was still supposedly insufficient to meet the actual demand (Van

Mieghem 2007). Peidro et al. (2009) provide a comprehensive summary of literature

related to supply chain planning methods under uncertainties.

1We use the term “resource” in its broader sense to include units of manufacturing capacity,

inventory of products (raw materials, finished goods), hiring/training workers etc. In this context,

resource capacity is measured in terms of output production units such as number of cars or number

of computer memory chips in a given time horizon.
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Temporary production line shutdowns, machine breakdowns or faulty manufac-

turing processes that result in lower than expected output can result in capacity

uncertainties. In the first-quarter of 2004 IBM reported a $150 million loss in its

electronic division due to yield problems at its plant in New York (Krazit 2004). This

reduced capacity created a direct mismatch between supply and demand. Hendricks

and Singhal (2005) report that such uncertainties have gained momentum in recent

years due to their high impacts on profits and shareholder values.

Supply disruptions, caused by natural or man-made disasters, may leave firms

crippled due to complete unavailability of resources. The Taiwan earthquake in 1999

caused an industry-wide shortage of memory for personal computers (Tomlin 2006).

Other events, such as the Japanese earthquake (2011), the Thailand flood (2011), the

west coast port labor strike (2008, 2015), and the 9/11 attacks, also caused severe

shortages of supplies. Sheffi (2005) provides comprehensive real-world examples and

offers a detailed review of the impact of such disruptions.

Resource flexibility investment and responsive product pricing are two commonly

employed hedging strategies against demand uncertainties (Chod and Rudi 2005).

Resource flexibility entails a firm to invest in a flexible resource that is capable of

producing multiple products. As opposed to product-specific or dedicated resources,

flexible resources allow capacities to be allocated later between products. With re-

sponsive pricing a firm can influence the demand by setting prices according to the

actual demand conditions and available resource capacity.

While these two strategies are known to mitigate uncertainties in demand (Lus and

Muriel 2009), their effectiveness on capacity uncertainties and supply disruptions have

not been explored in detail. For example, does responsive pricing mitigate capacity

loss? Is investment in flexibility a good hedging strategy when one resource could be

completely unavailable in the production stage? How does product substitutability

affect capacity investment and profit under supply disruptions? If the demand for

2



the products are correlated, does the investment portfolio change with the type of

correlation?

In this research we investigate the capacity, flexibility and pricing decisions of a

price-setting firm facing the three different types of uncertainties described above.

The firm produces and sells two products that could vary in the degree of their

substitutability. In the planning stage (Stage I), under demand uncertainty, the firm

decides on the optimal capacity and flexibility levels. In the selling stage (Stage II),

once the market potentials for these two products are revealed, the firm decides on

optimal production quantities (and hence sets prices) contingent on the capacity and

flexibility level investments in Stage I. Two types of uncertainties are considered in

Stage II: (1) capacity uncertainty, where only a proportion of the invested capacities

in Stage I is available in Stage II, and (2) 0-1 type supply disruptions where plants or

machines may be shut down completely and a resource maybe completely unavailable

in Stage II. Figure 1.1 shows the timeline of the decision making process.

Gaps also exist between academic studies and industry practice in resource flex-

ibility planning. The product-mix flexibility literature (e.g., Fine and Freund 1990)

typically assumes that resources are either dedicated or flexible. A dedicated resource

can only produce a particular product while a flexible resource can produce multiple

products without affecting the output. The process flexibility literature (e.g., Jordan

and Graves 1995) considers resources with partial (or limited) flexibility. Their notion

of partial flexibility is that multiple plants can produce a subset of the products but

not all of them. In this research, a completely flexible resource can produce multiple

products without any efficiency loss. A partially flexible resource, however, incurs

efficiency loss if it produces a product it was not designed for.

In practice very few resources are completely flexible. When a resource de-

signed for one type of product is used to produce another type productivity may

decrease resulting in shrunk capacities for the other product. Machine set-ups, prod-

3
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Figure 1.1: Sequence of events

uct changeovers and tooling reconfigurations are some examples where efficiency loss

prevails and the process cycle time increases (Coste and Malhotra 1999). Boyer and

Leong (1996) defined “changeover costs as the percentage reduction in the available

capacity of a manufacturing plant”. Hence it is imperative to take efficiency losses

into consideration while modeling investment strategies utilizing flexible resources.

Cross-production, a term we coined to represent a resource flexibility management

strategy, focuses on switching a specialized resource capacity to produce another

type of product, with certain efficiency loss incurred. For example, consider a firm

producing two products with two types of resources, and each resource is designed for

a single product. Because the two products share common features, one production

facility could be reconfigured to produce the second product, but this will still incur a

certain degree of efficiency loss. Cross-production provides flexibility to manufacturers

on the supply side. The lack of cross production abilities may seriously decrease a

4



firm’s capacity utilization, profitability, and market share. In 2000, Chrysler put out

its PT Cruiser, a new design based on the Neon, and it turned out to be very successful

soon after its debut. Its dedicated plant in Toluca, Mexico, however, was not able to

satisfy the unexpected high demand. At the same time, the dedicated plant for the

original Neon in Belvidere, Illinois, was under-utilized. It has been estimated that

Chrysler lost up to $240M pre-tax profit, due to this lack of production flexibility in

the first three years (Biller et al. 2006).

Many manufacturers prefer to choose the degree of resource flexibility at the ca-

pacity investment stage. An investment in higher degree of flexibility in the planning

stage usually leads to lower efficiency loss in the production stage. However, the

higher degree of flexibility, the more expensive is the investment. Thus a moderate

degree of flexibility that hedges against capacity and demand uncertainties to an ac-

ceptable extent might be desirable. A recent industry example of this scenario is of

Intel Corp. which announced converting its 22 nm facilities in Chandler, AZ to also

produce the next generation 14 nm chips used in processors (Randewich 2014). In

fact, the company has postponed opening its new chip factory originally scheduled

for 2013 and refocused its efforts on “better capital utilization”. Another practical

example would be when a firm has to decide how many workers to hire and whether

or not to cross-train workers across skill sets, and if yes, to what extent.

1.2 Problem Statement

For a firm facing demand uncertainties, literature has established that resource flex-

ibility and responsive product pricing are excellent risk hedging strategies. However,

the acquisition cost of a completely flexible resource is usually extremely high to

justify the investment (Chou et al. 2010). Very few resources are completely flexi-

ble giving rise to efficiency losses during the production stage. Since a majority of

the capacity investment decisions made in the planning stage are irreversible, it is

5



imperative to understand the economic impact of these efficiency losses.

Literature has also typically assumed that the capacities invested in planning

stage are completely available in the selling stage. In many cases yield problems or

supply disruptions cause only a fraction of the invested capacities to be available for

production. It then becomes important to investigate the effectiveness of resource

flexibility and responsive pricing under different types of capacity uncertainties.

Strategic capacity and flexibility investment decisions feed into tactical and op-

erational decisions affecting multiple periods. Investment in hedging strategies such

as the desired degree of flexibility is intimately influenced by factors such as level of

product substitutability and correlation of product demands. Further, accounting for

the type as well as degree of uncertainty faced by the firm is crucial in making effec-

tive resource investment decisions. Hence, a careful and thorough understanding of

the various tradeoffs in investment is necessary to make firm-level strategic decisions.

1.3 Research Objectives

The objective of this research is to contribute to the operations management knowledge-

base on effective resource investment and product pricing decisions under cross-

production efficiency losses where firms face demand as well as supply uncertainties.

We study the capacity investment decisions of a firm investing in partially flexible

resources to produce two substitutable products under demand uncertainty in the

planning stage. Many firms consider retro-fitting their existing dedicated capacities

to produce multiple products rather than investing in a separate flexible resource. We

model the efficiency loss incurred when switching a resource for one product to pro-

duce another product. In the production stage, the firm then sets prices based on the

realized demand contingent on the capacity and flexibility investment decisions made

earlier. The pricing decision is also influenced by reduced capacity availability due to

uncertainties in the yield or complete unavailability of resources due to disruptions.

6



Using linear demand models that capture the relationship between the demand

of a product, its own price as well as price of a substitutable product, we show that

investment in complete flexibility is seldom required. We outline conditions under

which a moderate degree of flexibility hedges the firm against demand uncertainties,

capacity uncertainties, and supply disruptions. These conditions include the degree

and type of uncertainty faced by the firm as well as product demand variability,

correlation and nature of product substitutability.

The specific objectives of this research are as follows.

Objective 1: To explicitly model efficiency losses when a product-dedicated

resource is switched to produce a different product. We model two different types

of efficiency losses: In the Shrinking Capacity model, fewer units of products will

be produced if a resource originally specialized for one type of product is switched

to produce another type (i.e., cross-produced). In the Additional Cost model, the

firm incurs an increase in unit production cost during cross-production. The firm can

improve the flexibility of the resource in the planning stage thus lowering this efficiency

loss during the production stage. However, flexibility is typically very expensive and

hence it is imperative to study conditions under which flexibility is desired and if so,

how much (investment level). The Shrinking Capacity and Additional Cost models

investigate the need for partially flexible resources.

Objective 2: To model uncertainties in product demand in the capacity

investment stage. Many investment decisions are made much before the selling season

hence it is important to consider demand uncertainties when making capacity and

flexibility investment decisions. All the three models studied in this dissertation

consider demand uncertainties through the randomness of the demand intercepts

in the price-demand relationship. In the planning stage, when only the mean and

standard deviation of the product demand intercepts are available, the firm decides

on the optimal capacity and flexibility levels. In the selling stage the firm observes

7



the realization of these random variables (a.k.a. market potentials) and subsequently

makes the production and pricing decisions. We study the effect of increasing demand

uncertainties by increasing the CV of the demand distribution of the intercepts of each

product.

Objective 3: To extend the efficiency loss models studied under Objectives 1

and 2 to include uncertainties in capacity and supply disruptions. The pricing

decision in the selling stage is not only affected by invested capacities and realized

demands, but is also affected by the realized capacities. Hence in addition to demand

uncertainties, we study two more types of uncertainties viz., capacity uncertainties

and 0-1 type disruptions in the selling stage. Capacity uncertainties indicate that only

a proportion of the invested capacities are available during the production stage and

there is always an average amount of capacity for production. We use Normally dis-

tributed random variables in conjunction with installed capacities of the two products

to model the variability in the available capacity in selling stage. To study supply

disruptions that indicate complete unavailability of one or both resources, we use

Bernoulli RVs to model scenarios where the resource is available or not. We increase

the CV of these distributions to study the impact of increasing capacity uncertainties

and disruptions.

Objective 4: To incorporate the effect of product demand correlation and

degree of substitutability between the two products produced by flexible resources.

We numerically investigate the impact of correlation between product demand inter-

cepts in both the Shrinking Capacity as well as Additional Cost models. Specifically,

for a given level of product substitutability we generate demand scenarios from a

multivariate normal distribution whose means are correlated. We vary this level of

correlation to study the impact of increasing correlation of demand intercepts.

These objectives lend themselves to be addressed through a two-stage stochastic

programming framework. Determining how the optimal capacity and flexibility levels

8



change with exogenous demand and supply parameters is the focus of this research.

The following section presents an overview of the three models in this dissertation

that help achieve these objectives.

1.4 Dissertation Overview

We study the resource investment and pricing decisions for a profit-maximizing firm

producing two substitutable products under three different settings as outlined below:

1.4.1 The Contingent Flexible Capacity Model

We investigate the pricing and capacity investment decisions for a monopolistic firm

that faces stochastic price-dependent demand for two substitutable products. The

firm produces the two products with two dedicated resources and a separate contin-

gent flexible resource. The firm makes capacity and pricing decisions in two stages:

In Stage I the firm decides the capacity portfolio of dedicated and flexible resources;

And in Stage II, after demand information is revealed, the firm decides the produc-

tion quantities and prices for the products. We examine two demand models, the

so-called γ- and the b-demand models, and we give out the closed-form solutions un-

der both models. Both γ and b represent the degree of product substitutability but

the functional form representing the price-demand relationship under these models

are different. Our analysis shows that the b-demand model, which is supported by a

utility function, better represents the product substitution relationship than the γ-

demand model. Further, using the b-demand model, we show that responsive pricing

is a more cost-effective strategy than utilizing the contingent flexible capacity.

The model with contingent capacity considers a separate flexible resource. The

next two models consider the notion of cross-production where a specialized resource

is converted to produce another type of product and hence incurs efficiency losses.

They utilize the b-demand model that accurately captures the effect of product sub-

9



stitutability.

1.4.2 The Shrinking Capacity Model

This model examines the interplay between the cost of investing in flexibility, the

efficiency loss due to cross-production as well as the responsive pricing for substi-

tutable products. We consider a firm producing two products with two partially

flexible resources and facing three types of uncertainties separately: demand uncer-

tainties, capacity uncertainties, and supply disruptions. The firm can choose the level

of resource flexibility in the investment stage. The higher flexibility level, the less ef-

ficiency loss will be incurred when switching a resource for one product to produce

another product.

We use shrinking capacity to study the efficiency loss that occurs when switching

a resource for one product to produce another product. Shrinking capacity explicitly

captures the fact that fewer units of products will be produced if a resource originally

specialized for one type of product is switched to produce another type. In the

resource planning stage, the firm determines the degree of flexibility (the percentage

of shrinking capacity) in addition to capacity. In the production stage, after the

resource capacities and the market potentials are realized, the firm makes capacity

allocation and pricing decisions to maximize its profits. In this model if the firm does

not invest in any degree of flexibility in Stage I it will not be able to cross-produce in

Stage II.

We find that product substitutability, type and severity of the uncertainty play a

key role in deciding the optimal investment strategies under cross-production. The

ability to use responsive pricing in conjunction with selling substitutable products

largely mitigates the need for any flexibility investment in many cases. However,

under severe supply disruptions flexibility proves to be extremely beneficial.

10



1.4.3 The Additional Cost Model

Efficiency losses may not be always related to number of units produced during cross-

production. In many cases, producing a product using a non-dedicated resource may

increase the unit production cost rather than reducing output. For example, firms

train workers and this requires extra hours that incurs wages. It is also costly to

convert one product to another (e.g. change the color, or downward conversion) as it

requires additional effort that directly translates to cost.

We use the additional cost model to capture this type of efficiency loss. A higher

investment in flexibility in Stage I incurs a lower additional cost in Stage II indicative

of lower efficiency loss. In this model, even if the firm does not invest in any flexibility

in Stage I it can still cross-produce in Stage II by incurring a higher additional cost.

The effect of demand uncertainties, capacity uncertainties and supply disruptions are

also investigated.

We find that the firm generally does not invest in flexibility under all three un-

certainties. Even under a very high degree of capacity uncertainties or supply dis-

ruptions, the firm prefers to simply invest in higher amounts of cheaper dedicated

capacities and use cross-production rather than invest in flexibility. This result is

true under any level of demand correlation or degree of product substitutability.

When cost of dedicated capacities and/or cross-production increases, the firm may

still invest in flexibility under specific conditions.

Next, we summarize our key contributions.

1.5 Contribution

The contribution of this dissertation to the theory and practice of operations man-

agement is stated below:

• First, we explicitly model two different forms of efficiency loss that occurs during

11



cross-production.

• Second, contrary to reviewed literature, we show that flexibility is unnecessary

when facing low or moderate demand and capacity uncertainties. The firm can

typically mitigate these uncertainties through responsive product pricing.

• Third, even when facing high demand uncertainties, we show that depending on

the type of efficiency loss, only a limited amount of flexibility maybe necessary to

mitigate over/under investment costs. Selling substitutable products decreases

the need for investing in costly flexibility as demand can be better managed

through responsive pricing.

• Fourth, we show that when facing a high degree of 0-1 type supply disruptions,

flexibility is extremely valuable under any demand intercept correlation even for

highly substitutable products. This result also depends on the type of efficiency

loss that is faced by the firm as well as relative cost of flexibility.

The rest of the document is structured as follows. Chapter 2 presents a review

of literature on resource flexibility planning, responsive product pricing as well as

impact of disruptions and capacity uncertainties. Chapter 3 contains the Contingent

Flexible Capacity model, its analytical solutions and insights. We then investigate the

impact of efficiency losses, demand uncertainties, capacity uncertainties and supply

disruptions through the Shrinking Capacity model in Chapter 4 and the Additional

Cost model in Chapter 5. Chapter 6 summarizes the dissertation and concludes with

the scope for future research.
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CHAPTER 2

LITERATURE REVIEW

Two streams of literature are relevant to this research: flexibility planning and re-

sponsive pricing. Due to the large volume of articles in each of these areas we narrow

our focus to papers that are closely related to our study.

Investment trade-offs between flexible and dedicated resources to mitigate demand

uncertainties have been well studied in literature. Fine and Freund (1990) study the

capacity investment decisions for a monopolistic firm producing n products with both

flexible and dedicated resources. They use a set of discrete demand-price scenarios,

and conclude that the flexible capacity has no value with perfectly positively corre-

lated demands. Van Mieghem (1998) shows that, however, such a conclusion may not

hold when the two products have exogenous, different prices. Bish and Wang (2004)

investigate the capacity investment decisions with responsive pricing for independent

products with both dedicated and fully flexible resources. They show that the flexible

resource investment decision follows a threshold policy. Chod and Rudi (2005) model

the capacity and pricing decisions for a firm that produces two substitutable prod-

ucts with only one flexible resource. Bish et al. (2009) study the optimal capacity

and pricing decisions under additive and multiplicative demand uncertainties for a

monopolist investing in a single flexible capacity. These studies focus on the nature of

demand uncertainty while supply risk or partial flexibility is not considered. Tomlin

and Wang (2008) consider a flexible resource with uncertain yield to produce two

vertically differentiated products (in contrast to aggregate linear demand models to

model horizontally differentiated products as in our research) to investigate the im-
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pact of demand and yield uncertainties. Bish and Suwandechochai (2010) explore the

impact of product substitution under demand uncertainty for a firm producing two

substitutable products with a flexible resource. They find that the firm’s cost struc-

ture and the degree of product substitution play a key role in determining whether

flexibility and pricing are strategic substitutes or complements. Goyal and Netes-

sine (2010) model the trade-off between volume flexibility and product flexibility and

investigate the impact of demand correlation in each setting.

In the aforementioned papers, the firm is restricted to investing in a single com-

pletely flexible resource to produce both products. Another common assumption in

these papers (except Tomlin and Wang 2008) is that the capacities invested in the

planning stage are 100% available in the production stage. While demand uncer-

tainties have typically been the dominant focus in the literature on flexibility and

pricing, capacity uncertainties and supply disruptions have garnered very little atten-

tion. However, these uncertainties may cause capacity shortages in the production

stage.

A paper more closely related to ours is Tomlin and Wang (2005), who study the

value of mix flexibility and dual sourcing in a newsvendor network setting consider-

ing both risk neutral and risk averse firms. They model 0-1 supply disruptions as

Bernoulli random variables and investigate the impact of several attributes such as

demand correlation, contribution margin, number of products, resource reliabilities

and risk tolerance that influence the preference of the network structure. Our re-

search is different from Tomlin and Wang (2005) in that: (1) We study the degree

of efficiency loss when switching a dedicated resource to produce a secondary prod-

uct that differs in it’s degree of substitutability with the primary product. Tomlin

and Wang (2005) do not consider efficiency loss or product substitutability. (2) In

our model, the firm is a price-setter i.e, after demand and capacity uncertainties are

resolved the firm decides on both the production levels as well as selling prices for
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the products. In their model the firm allocates production but does not set prices

in the second stage. (3) We model the impact of increasing demand uncertainties by

varying the coefficient of variation of its distribution. However, demand variability is

not the focus of their study. (4) Finally, one of our major conclusions that flexibility

is highly valuable under increasing capacity uncertainties and supply disruptions is a

stark contrast to their results on flexible networks. In their model, the preference for

flexibility decreases as resource investments become less reliable.

The following three papers consider both dedicated and flexible resources, and

the latter two consider capacity uncertainties or supply disruptions. Lus and Muriel

(2009) study the optimal resource portfolio (two dedicated and one fully flexible

resource) of a price-setting firm selling two substitutable products. They compare

the impact of product substitutability and demand correlation for a price-setting firm

selling substitutable products, and they show that utilizing the correct demand model

(obtained from Singh and Vives 1984) leads to realistic results on optimal prices and

profit. Capacity uncertainties or supply disruption risks are not considered.1 Tomlin

(2009) considers a firm that may employ any combination of three strategies: supplier

diversification, contingent sourcing, and demand switching. Using a two-product

newsvendor setting they model product substitutability by the fraction of customers

switching to buy the substitutable product. The firm incurs a switching cost to induce

a customer to purchase her non-preferred product. Bish and Chen (2008) study the

optimal resource portfolio (again two dedicated and one fully flexible resource) of

1We note here that in a related dissertation, Lus (2008) develop analytical solutions for the two

different demand models using a state space decomposition approach. Our work on the Contin-

gent Flexible Capacity model is very similar to theirs but was independently developed before this

dissertation became available to us through an external review. Our model includes closed form ex-

pressions (albeit under the “clearance” assumption) for the optimal capacities that do not rely on any

distributional assumptions about product demands. This gives rise to a much finer representation

of the state-space of the input-output vector compared to Lus (2008).
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a price-setting firm selling two vertically differentiated products using a consumer

choice model with both supply and demand uncertainties. They consider capacity

disruptions (as modeled by Bernoulli random variables) for the multi-resource case

and discuss the impact of yield uncertainties when the firm invests in only a single

fully-flexible resource. Because of the complexity of their model the comparative

statics on product substitution and demand uncertainty are restricted to the single-

resource case.

Related to cross-production, Li et al. (2014) study a two-product two-capacity

multi-period planning model in which a newer product replaces an older one at Intel’s

wafer fabrication, assembly and testing units. Capacity in the form of new production

lines can be purchased in addition to converting existing production lines and in

both cases “retro-fitted” (i.e., produce the older product). Accounting for inventory

carry-over as well as back-orders, they compare an open loop system where both

capacity and production decisions are made ex-ante with a closed loop system where

production decisions are made ex-post. Due to the nature of the problem, they

provide a heuristic solution for the multi-period closed loop system and compare

the impact of holding cost and target service level changes. Li et al. (2010) use

dynamic programming to model and solve an inventory planning problem for product

transitions without replenishment. Allowing for product substitutions they model

the optimal planning quantities for both old and new products under deterministic

transition start date as well as a stochastic transition start date. In both these papers,

the impact of product demand uncertainty, substitutability, correlation, responsive

pricing, capacity uncertainties and supply disruptions are not considered.

Moreno and Terwiesch (2015) empirically study the impact of flexibility and en-

dogenous pricing in the U.S. automotive industry. They use manufacturer provided

incentives as discounts from the list price to account for the effect of responsive

pricing. They find that flexibility is only beneficial to firms that operate under very
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high demand uncertainty, with highly differentiated (or complementary) products and

limited competition. In these situations the flexible firm offers lower discounts and

hence avoids substantially marking down the price. They do not study the impact of

capacity uncertainties or plant shutdowns.

To summarize, our research differs from existing literature in the following ways:

• We model the investment in partially flexible resources in the planning stage by

considering the efficiency loss that may occur when a resource for one product

is used to produce other products (i.e., cross-production).

• We study (for the multi-resource case) the different impacts caused by demand

uncertainties, capacity uncertainties and supply disruptions on the firm’s opti-

mal resource portfolio.

• We also investigate the role of product substitutability, resource investment

cost and demand correlation in influencing the capacity, flexibility and pricing

decisions.

Our model contributes to the literature on flexibility investment by simultaneously

studying the interplay between the cost of flexibility investment and cross-production

efficiency loss, as well as responsive pricing for substitutable products. While these

effects have been studied in isolation (see for e.g., Bish and Suwandechochai 2010,

Lus and Muriel 2009, Tang and Tomlin 2009), our research shows that accounting for

them together significantly changes the optimal investment portfolio of a price-setting

firm.
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CHAPTER 3

CAPACITY, FLEXIBILITY AND PRICING DECISIONS: THE

CONTINGENT FLEXIBLE CAPACITY MODEL

3.1 Introduction

Demand for a product is typically affected by many factors. Two of the most im-

portant ones are its own price as well as price of its substitute (Talluri and van

Ryzin 2005). In order to make effective pricing decisions, this relationship must be

accurately captured. In this chapter, we compare and contrast two commonly used

(linear) forms of the price-demand relationship for substitutable products. Specifi-

cally, we use both the forms to model and solve a price-setting firm’s capacity and

flexibility investment problem and derive insights on which form is more appropriate

and when.

Fine and Freund (1990) study the capacity investment decisions for a monopolistic

firm producing n products with both flexible and dedicated resources. They use a

set of discrete demand-price scenarios, and conclude that the flexible capacity has no

value with perfectly positively correlated demands. Van Mieghem (1998) shows that,

however, such a conclusion may not hold when the two products have exogenous,

different prices. Bish and Wang (2004) investigate the capacity investment decisions

with responsive pricing for independent products. They show that the contingent

flexible resource investment decision follows a threshold policy. Chod and Rudi (2005)

model the capacity and pricing decisions for a firm that produces two substitutable

products with only one flexible resource. They show that the optimal flexible capacity

increases as the products become more substitutable.
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The demand models used in the above papers all belong to the so-called γ-demand

model whose functional form is as follows:

p1 =
E1 + γE2

1− γ2
− Q1α

1− γ2
− γαQ2

1− γ2
, p2 =

E2 + γE1

1− γ2
− Q2α

1− γ2
− γαQ1

1− γ2

where pi is the price of product i, Ei is the market potential (also called demand

intercept), Qi is the demand, α represents the demand sensitivity to its own price,

and γ ∈ [0, 1) is the degree of product substitutability (also called cross-pricing fac-

tor). E = (E1, E2)T are continuous random variables with positive support and finite

expectation, and the joint probability density function of E1 and E2 is denoted by

Ψ(., .).

The direct demand function is given by:

Q1 =
E1 − p1 + γp2

α
, Q2 =

E2 − p2 + γp1

α

Demand uncertainties: E1 and E2 are RVs in Stage I (planning stage) and represent

the uncertainties in market demand for the two products. At this time, the firm

decides the optimal capacity investments so as to maximize its expected profit. In

Stage II, uncertainty is resolved indicating that the realization of RV Ei, denoted by

εi for product i, is observed by the firm. The firm then maximizes its revenue through

pricing and resource allocation decisions. Prices and production quantity decisions

in Stage II are dependent on demand realizations ε1,ε2 as well as Stage I capacity

levels K1, K2, Kf and parameters such as degree of product substitutability and price

sensitivity. The RVs in the inverse and direct demand functions stated above can

then be replaced by their respective realizations in Stage II.

Given an output vector Q, the profit vector is determined by the following func-

tion,

1

1− γ2

 1 γ

γ 1

 (E − αQ) = D(E − αQ)
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While the above linear demand model is widely adopted, and its parameters are

easy to obtain through linear-regression techniques, it does come with limitations.

An issue that needs justification is the use of γ as the substitutability factor. Lus

and Muriel (2009) point out that the use of the γ-demand model has led to unreal-

istic conclusions such as that optimal prices and profits increase unboundedly as the

product substitutability γ increases.

A different linear demand function, the so-called b-demand model in the current

research1, has recently been used by Goyal and Netessine (2007) and Lus and Muriel

(2009) to model the demand and product substitutability relationship. The demand

for a product is modeled as a downward sloping function of its own price with the

effect of its substitute product. This demand model is derived by maximizing the

utility function given by Singh and Vives (1984) as follows:

max
Q1,Q2

U(Q1, Q2) = A1Q1 + A2Q2 − (ϑ1Q
2
1 + 2bQ1Q2 + ϑ2Q

2
2)/2

where b ∈ [0, 1) is the measure of product substitutability or complementarity, Ran-

dom Variables (RVs) Ai are the market potentials, for i = 1, 2, with ϑ3−iAi ≥ bA3−i

(to enforce positive demand realizations). A = (A1, A2) are continuous RVs with pos-

itive support and the mean of their marginal distribution is denoted by µi for i = 1, 2.

Their joint distribution is denoted by Ψ(A1, A2) . In Stage II the realizations of A1,

A2 is denoted by a1 and a2, respectively.

By maximizing the utility function, we obtain the following linear demand func-

tion:

Q1(p,a) =
ϑ2a1 − ba2

ϑ1ϑ2 − b2
− ϑ2

ϑ1ϑ2 − b2
p1 +

b

ϑ1ϑ2 − b2
p2 (3.1)

Q2(p,a) =
ϑ1a2 − ba1

ϑ1ϑ2 − b2
− ϑ1

ϑ1ϑ2 − b2
p2 +

b

ϑ1ϑ2 − b2
p1 (3.2)

1We note here that Chapters 4 and 5 that model cross-production efficiency loss through the

Shrinking Capacity and Additional Cost models use the b-demand model
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where pi is the price for product i, where i = 1, 2. To simplify expressions in subse-

quent sections we assume parameters ϑ1=ϑ2=1 as they can be easily incorporated into

the model without changing any of the insights derived. The inverse of the demand

function is as follows,

p1 = a1 −Q1 − bQ2; p2 = a2 −Q2 − bQ1. (3.3)

Recall that as products become more substitutable (i.e., as b increases), customers

become more sensitive to price changes and the overall market size decreases (Talluri

and van Ryzin 2005). Further, we need ϑi > |b| to ensure that the demand for a

product is more sensitive to it’s own price than to price changes of the substitutable

product.

The γ-demand model can be related to the b-demand model by letting

ε1 = a1 − ba2; ε2 = a2 − ba1; γ = b; α = ϑ1ϑ2 − b2.

The key difference between the γ- and b-demand functions is whether the demand

intercepts and sensitivity α change with product substitutability. In the b-demand

model, they are all dependent on b, the product substitutability factor. This confirms

the realistic situation that as products become more substitutable (i.e., as b increases),

the customers become more sensitive to price changes and the overall market size

decreases (Talluri and van Ryzin 2005). However, in the γ-demand model, they are

all independent of γ.

In this research, we investigate the pricing and contingent capacity investment

decisions under both demand models and obtain closed-form analytical solutions for

each model. Our results underscore the importance of selecting an appropriate rep-

resentation of the demand and product substitutability relationship. The results will

help avoid over-investment in dedicated and contingent capacities.

Our work differs from the existing literature as follows: Bish and Wang (2004)

study the capacity investment problem for a monopolistic firm with independent
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products (i.e., γ=0). We extend their model by considering product substitution,

and we also analyze the setting with the b-demand model. Chod and Rudi (2005) use

the γ-demand model to study the capacity and pricing decisions for a monopolistic

firm that produces two substitutable products with only a flexible resource. Goyal

and Netessine (2007) use the b-demand to investigate the optimal capacity investment

decisions for two competing firms. Each firm can invest in either dedicated or flexible

capacities but not both. Our work differs from Chod and Rudi (2005) and Goyal

and Netessine (2007) by using both the γ- and the b-demand models and considering

both dedicated and contingent capacities. The current research is similar to Lus and

Muriel (2009), who examine the dedicated and flexible resource investment decisions

under both the γ- and the b-demand models. In their model the firm incurs only

the unit cost of investment in a flexible resource in the planning stage (Stage I). In

our model the firm also incurs an additional cost of using this flexible resource in

the production stage (Stage II). This additional cost reflects changes in economic

conditions such as market entry of a competitor, currency valuations or labor costs

between the planning and selling stages due to long lead times.

Our research reveals contrasting results between the two models. We find that

when γ is used as the measure of product substitutability (i.e., the γ-demand model),

the firm invests more in contingent flexible capacity as products become closer sub-

stitutes. However, when the measure of product substitutability is b (the b-demand

model), the investment in contingent capacity decreases as products become closer

substitutes.

The rest of the chapter is organized as follows. In Section 3.2 we formulate the

problem as two-stage optimization problem. In Section 3.3, we solve the Stage II

problem analytically under the γ-demand model. We use these solutions from the

second stage to obtain the optimal expected profit in the first stage. In addition, we

also obtain necessary and sufficient conditions for the capacity investment (Stage I)
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problem. In Section 3.4, we solve the Stages I and II problems under the b-demand

model. In Section 3.5, with the clearance assumption, we obtain the closed-form

solutions for the optimal contingent and dedicated capacities under both demand

models, and compare the different insights under the two demand models. Finally,

we summarize our results and conclude in Section 3.6.

3.2 Model

We consider a firm that produces two products, indexed by i = 1, 2. The firm makes

capacity and production decisions in two stages. Before the demand information is

revealed, the firm needs to determine the capacities invested in the two dedicated

resources (K̄1, K̄2) and a contingent resource (K̄f ), that can be used to produce both

products. After the demand information becomes available, the firm determines the

production quantities (Q1, Q2) and hence prices (p1, p2) to maximize its revenue. We

model the decision problem as a two-Stage stochastic programming problem where

at the beginning of the planning horizon i.e. Stage I, the firm seeks to determine

a capacity investment portfolio, (K̄1, K̄2, K̄f ) under demand intercept uncertainty.

In Stage II, when the demands are realized (i.e., uncertainty is resolved), the firm

determines the capacity allocation and sets the prices to maximize its revenue subject

to the capacity investment constraints in Stage I.

In addition to the premium unit investment costs (g1, g2, gf ), an additional pro-

duction cost ci will be incurred if product i is produced by the contingent resource.

We again note here that this additional production cost in Stage II was not part of

Lus and Muriel (2009).

Let Πs denote the expected profit in Stage I and Rs denote the revenue in Stage

II, where s ∈ {γ, b} indicates the underlying demand model. The two-stage decision
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problem for the γ-demand model can be formulated as follows:

Stage I : Πs = max E [Rs(K̄1, K̄2, K̄f )]−
∑
i=1,2,f

giK̄i (3.4)

subject to : K̄1, K̄2, K̄f ≥ 0

Stage II : Rγ = max [QTD(E − αQ)− ((Q-K)+)Tc] (3.5)

or Rb = max [pQ− ((Q-K)+)Tc] (3.6)

subject to : Q1 ≤ K1 +Kf

Q2 ≤ K2 +Kf

Q1 +Q2 ≤ K1 +K2 +Kf

Q1, Q2 ≥ 0

where Rγ and Rb represent the Stage II objective function for the γ- and b-demand

functions, respectively.

3.3 Solution for γ-demand Model

We solve the two stage problem by first solving the Stage II formulation subject to

capacity constraints. The Stage II decision variables Q1 and Q2 are functions of

demand realizations (a1, a2), available capacities (K1,K2,Kf ), additional production

costs c1, c2 as well as product substitutability γ. We note here that under only demand

uncertainties the firm does not face any resource supply uncertainties and the invested

capacities in Stage I (K̄1, K̄2, K̄f ) are the same as the available capacities K1, K2 and

Kf in Stage II. To simplify the exposition we hence use K1,K2 and Kf as the capacity

decision variables in Stage I.

The Stage II objective function could have four possible forms depending on the

four feasible regions as shown in Figure 3.1-Right: (1) In Region I, no capacity flex-

ibility is required, and thus no additional production cost is incurred. Q1 ≤ K1 and
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Q2 ≤ K2 and Q1 ≤ K1 + K2 + Kf (2) In region II, demand realization of product 1

is higher than that of product 2 and contingent capacity is used to produce product

1, and thus an additional production cost c1 is incurred. Q1>K1 and Q1 ≤ K1 +Kf

while Q2 ≤ K2. (3) Symmetrically, in region III, contingent capacity is used to

produce product 2, and thus an additional production cost c2 is incurred. We have

Q2>K2 and Q2 ≤ K2 + Kf while Q1 ≤ K1. (4) In region IV, contingent capacity

is used to produce both products as demand for each product exceeds its own ded-

icated capacity. Q1 ≥ K1, Q2 ≥ K2 and Q1 + Q2 ≤ K1 + K2 + Kf . The partition

of the feasible region enables us to solve the individual optimization problems and

obtain closed form solutions to the production quantities in many regions using KKT

conditions. At boundaries we have either Q1 = K1 or Q2 = K2 where the objective

function is non-differentiable. The Stage II problem in those regions can be solved

without using KKT optimality conditions.

The demand space can be partitioned into eleven different regions (Figure 3.1-Left)

where each region belongs to one of the scenarios described above. The partition of

the feasible region enables us to solve the individual optimization problems and obtain

closed form solutions to the production quantities as well as avoid non-differentiability

at the boundaries.

3.3.1 Stage II Solution

We apply the KKT conditions (cf. see Bazaraa et al. 1993) to solve the Stage II prob-

lem under the γ-demand model in regions where the objective function is differen-

tiable. The constraints can be binding /non-binding in eleven different combinations

and hence the state space of ε is partitioned into eleven regions, each corresponding

to one of these combinations as shown in Figure 3.1-Left.
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The demand regions are defined as follows:

Ω1 : {(ε1, ε2) : 0 ≤ ε1 ≤ 2αK1 + c1, 0 ≤ ε2 ≤ 2αK2 + c2,

ε1 + γε2 ≤ 2α(K1 + γK2) + (1− γ2)c1, γε1 + ε2 ≤ 2α(γK1 +K2) + (1− γ2)c2};

Ω2 : {(ε1, ε2) : 2αK1 + c1 ≤ ε1 ≤ 2α(K1 +Kf ) + c1, 0 ≤ ε2 ≤ 2αK2 − γc1};

Ω3 : {(ε1, ε2) : 0 ≤ ε1 ≤ 2αK1 − γc2, 2αK2 + c2 ≤ ε2 ≤ 2α(K2 +Kf ) + c2};

Ω4 : {(ε1, ε2); ε1 ≥ 2αK1 + c1 − γc2, ε2 ≥ 2αK2 + c2 − γc1,

ε1 + ε2 ≤ 2α(K1 +K2 +Kf ) + (1− γ)(c1 + c2)};

Ω5 : {(ε1, ε2) : 2αK2 − γc1 ≤ ε2 ≤ 2αK2 − c2 − γc1,

2α(K1 + γK2) + (1− γ2)c1 ≤ ε1 + γε2 ≤ 2α(K1 + γK2 +Kf ) + (1− γ2)c1};

Ω6 : {(ε1, ε2) : 2αK1 − γc2 ≤ ε1 ≤ 2αK1 − c1 − γc2,

2α(K2 + γK1) + (1− γ2)c2 ≤ ε2 + γε1 ≤ 2α(K2 + γK1 +Kf ) + (1− γ2)c2};

Ω7 : {(ε1, ε2) : ε1 ≥ 2α(K1 +Kf ) + c1, ε2 ≥ 0, γε1 + ε2 ≤ 2αγ(K1 +Kf ) + 2αK2};

Ω8 : {(ε1, ε2) : ε2 ≥ 2α(K2 +Kf ) + c2, ε1 ≥ 0, γε2 + ε1 ≤ 2αγ(K2 +Kf ) + 2αK1};

Ω9 : {(ε1, ε2) : ε1 + ε2 ≥ 2α(K1 +K2 +Kf ) + (1− γ)(c1 + c2),

2α(K2 −K1 +Kf )− (1 + γ)(c1 − c2) ≤ ε1 − ε2 ≤ 2α(K1 −K2 +Kf )

+(1 + γ)(c1 − c2)};

Ω10 : {(ε1, ε2) : ε2 ≥ 0, γε1 + ε2 ≥ 2αγ(K1 +Kf ) + 2αK2,

ε1 + γε2 ≥ 2α(K1 + γK2 +Kf ) + (1− γ2)c1, ε1 − ε2 ≥ 2α(K1 −K2 +Kf )

+(1 + γ)(c1 − c2)};

Ω11 : {(ε1, ε2) : ε1 ≥ 0, γε2 + ε1 ≥ 2αγ(K2 +Kf ) + 2αK1,

ε2 + γε1 ≥ 2α(K2 + γK1 +Kf ) + (1− γ2)c2, ε1 − ε2 ≤ 2α(K2 −K1 +Kf )

−(1 + γ)(c1 − c2)};

The corresponding optimal production quantities are shown in Figure 3.1-Right

and are classified into four regions: In Region I, no contingent capacity is used; In
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Figure 3.1: Mapping of the state space of E into the output space

region II, the contingent capacity is used to produce product 1, and thus an additional

production cost c1 is incurred; In region III, the contingent capacity is used to produce

product 2, and thus an additional production cost c2 is incurred; In region IV, the

contingent capacity is used to produce both products.

The objective function of the Stage II problem is jointly concave and all the

constraints are linear in Q1 and Q2. The following theorem characterizes the optimal

solution of the Stage II problem.

Theorem 3.1 Given the realizations of the demand (ε1, ε2) and the investment vector

(K1, K2, Kf ), the optimal production quantities for the Stage II problem are given as
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follows:

Ω1 : Q1 = ε1/2α,Q2 = ε2/2α;

Ω2 : Q1 =
ε1 − c1

2α
,Q2 =

ε2 + γc1

2α
;

Ω3 : Q1 =
ε1 + γc2

2α
,Q2 =

ε2 − c2

2α
;

Ω4 : Q1 =
ε1 − c1 + γc2

2α
,Q2 =

ε2 − c2 + γc1

2α
;

Ω5 : Q1 =
ε1 + γε2 − (1− γ2)c1

2α
− γK2, Q2 = K2;

Ω6 : Q1 = K1, Q2 =
ε2 + γε1 − (1− γ2)c2

2α
− γK1;

Ω7 : Q1 = K1 +Kf , Q2 =
ε2 + γε1

2α
− γ(K1 +Kf );

Ω8 : Q1 =
ε1 + γε2

2α
− γ(K2 +Kf ), Q2 = K2 +Kf ;

Ω9 : Q1 =
K1 +K2 +Kf

2
+
ε1 − ε2 − (1 + γ)(c1 − c2)

4α
,

Q2 =
K1 +K2 +Kf

2
− ε1 − ε2 − (1 + γ)(c1 − c2)

4α
;

Ω10 : Q1 = K1 +Kf , Q2 = K2;

Ω11 : Q1 = K1, Q2 = K2 +Kf .

Please refer to the appendix for all the proofs in this chapter.

By plugging in the above quantities into equation (3.5) we obtain closed-form

solutions for optimal revenue of the Stage II problem Rγ(ε1, ε2). Please refer to the

appendix for the closed form solutions for Rγ.

3.3.2 Optimal Capacity Investment Decisions for γ-demand model

We now discuss the optimality conditions for the Stage I problem. The lemma below

implies the existence of a unique optimal capacity solution (K1, K2, Kf ).

Lemma 3.1 The Stage I objective function Πγ is strictly jointly concave in (K1, K2, Kf)

Theorem 3.2 The Stage I optimal capacity investment vector (K1, K2, Kf) is opti-

mal if and only if the Lagrangian multipliers given by λi, i = 1, 2, f exist and satisfy

the following condition:
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∂Rγ(K1,K2,Kf )

∂Ki
= gi − λi for i ∈ {1, 2, f} (3.7)

and Kiλi = 0 (3.8)

Hence, conditioning on (E1, E2) we obtain,


g1 − λ1

g2 − λ2

gf − λf

 =Pr(Ω2)E


c1

0

0

+ Pr(Ω3)E


0

c2

0

+ Pr(Ω4)E


c1

c2

0



+ Pr(Ω5)E


c1

E2 − 2αK2 + c1γ

0

+ Pr(Ω6)E


E1 − 2αK1 + c2γ

c2

0



+ Pr(Ω7)E


c1

E2 − 2α(K2 +Kf ) + γc1

E2 − 2α(K2 +Kf ) + γc1 − c2



+ Pr(Ω8)E


E1 − 2α(K1 +Kf ) + γc2

c2

E1 − 2α(K1 +Kf ) + γc2 − c1



+ Pr(Ω9)E


E1+E2−2α(K1+K2+Kf )

2(1−γ) + c1−c2
2

E1+E2−2α(K1+K2+Kf )
2(1−γ) − c1−c2

2

E1+E2−2α(K1+K2+Kf )
2(1−γ) − c1+c2

2



+ Pr(Ω10)E


1

1−γ2 [E1 + γE2 − 2α(K1 +Kf )− 2αγK2]

1
1−γ2 [E1γ − 2αγ(K1 +Kf ) + E2 − 2αK2]

1
1−γ2 [E1 + γE2 − 2α(K1 +Kf )− 2αγK2]− c1



+ Pr(Ω11)E


1

1−γ2 [E1 − 2αK1 − 2αγ(K2 +Kf ) + γE2]

1
1−γ2 [E1γ − 2αγK1 − 2α(K2 +Kf ) + E2]

1
1−γ2 [E1γ − 2αγK1 − 2α(K2 +Kf ) + E2]− c2
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When the contingent capacity is too costly, the firm may be better off with just

investing in the dedicated resources. As shown in the following lemma, the decision

to invest in contingent capacity is of a threshold type, and it depends on both the

initial investment cost gf and the additional production costs ci for i=1, 2 using the

contingent capacity.

Lemma 3.2 The firm invests in the flexible contingent capacity if and only if gf < g′f ,

where g′f is given as

g′f = gf − λf = Pr(Ω′7)E

{
E2 − 2αK2 + γc1 − c2

}
+ Pr(Ω′8)E

{
E1 − 2αK1 + γc2 − c1

}
+ Pr(Ω′9)E

{
E1+E2−2α(K1+K2)

2(1−γ)
− c1+c2

2

}
+ Pr(Ω′10)E

{
1

1−γ2 [E1 + γE2 − 2αK1 − 2αγK2]− c1

}
+ Pr(Ω′11)E

{
1

1−γ2 [E1γ − 2αγK1 − 2αK2 + E2]− c2

}

3.4 Solution for the b-demand Model

In this section we analyze the Stage II and Stage I decisions of the firm utilizing

the b-demand model. We solve the two stage problem by first solving the Stage II

formulation subject to capacity constraints.

The solution methodology employed for the b-demand model very similar to the

methodology described in Section 3.3 for the γ-demand model. The Stage II decision

variables Q1 and Q2 are functions of demand realizations (a1, a2), invested capacities

(K1,K2,Kf ), additional production costs c1, c2 as well as product substitutability b.

The Stage II objective function could have four possible forms depending on the

four feasible regions as shown in Figure 3.2-Right: (1) In Region I, no capacity flex-

ibility is required, and thus no additional production cost is incurred. Q1 ≤ K1 and

Q2 ≤ K2 and Q1 ≤ K1 + K2 + Kf (2) In region II, demand realization of product 1
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is higher than that of product 2 and contingent capacity is used to produce product

1, and thus an additional production cost c1 is incurred. Q1>K1 and Q1 ≤ K1 +Kf

while Q2 ≤ K2. (3) Symmetrically, in region III, contingent capacity is used to

produce product 2, and thus an additional production cost c2 is incurred. We have

Q2>K2 and Q2 ≤ K2 + Kf while Q1 ≤ K1. (4) In region IV, contingent capacity

is used to produce both products as demand for each product exceeds its own ded-

icated capacity. Q1 ≥ K1, Q2 ≥ K2 and Q1 + Q2 ≤ K1 + K2 + Kf . The partition

of the feasible region enables us to solve the individual optimization problems and

obtain closed form solutions to the production quantities in many regions using KKT

conditions. At boundaries we have either Q1 = K1 or Q2 = K2 where the objective

function is non-differentiable. The Stage II problem in those regions can be solved

without using KKT optimality conditions.

The demand space can be partitioned into eleven different regions (Figure 3.2-Left)

where each region belongs to one of the scenarios described above. The partition of

the feasible region enables us to solve the individual optimization problems and obtain

closed form solutions to the production quantities as well as avoid non-differentiability

at the boundaries.

3.4.1 Stage II Solution

We apply the KKT conditions (cf. see Bazaraa et al. 1993) to solve the indi-

vidual Stage II problems under the b-demand model. At the boundaries (regions

Ω5,Ω6,Ω10,Ω11) the Stage II problem can be solved without using KKT optimality

conditions. The constraints can be binding /non-binding in eleven different com-

binations and hence the state space of A is partitioned into eleven regions, each

corresponding to one of these combinations. Imposing the conditions A1 − bA2 ≥ 0,

A2−bA1 ≥ 0 to enforce positive demand realizations (see, e.g., Singh and Vives 1984),

the demand regions are shown in Figure 3.2-left.
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Space of output vector (Q1, Q2)

Q1

2(1-b2)K2- b c1

2(1-b2) K1+c1

Figure 3.2: Mapping of the state space of A into the output space

The demand regions are defined as follows:

Ωb
1 : {0 ≤ a1 − ba2 ≤ 2(1− b2)K1 + c1, 0 ≤ a2 − ba1 ≤ 2(1− b2)K2 + c2,

a1 ≤ 2(K1 + bK2) + c1, a2 ≤ 2(bK1 +K2) + c2};

Ωb
2 : {2(1− b2)K1 + c1 ≤ a1 − ba2 ≤ 2(1− b2)(K1 +Kf ) + c1,

0 ≤ a2 − ba1 ≤ 2(1− b2)K2 − c1};

Ωb
3 : {0 ≤ a1 − ba2 ≤ 2(1− b2)K1 − bc2,

2(1− b2)K2 + c2 ≤ a2 − ba1 ≤ 2(1− b2)(K2 +Kf ) + c2};

Ωb
4 : {a1 − ba2 ≥ 2(1− b2)K1 + c1 − bc2, a2 − ba1 ≥ 2(1− b2)K2 + c2 − bc1,

a1 + a2 ≤ 2(1 + b)(K1 +K2 +Kf ) + (c1 + c2)};

Ωb
5 : {2(1− b2)K2 − bc1 ≤ a2 − ba1 ≤ 2(1− b2)K2 − c2 − bc1,

2(K1 + bK2) + c1 ≤ a1 ≤ 2((K1 + bK2 +Kf ) + c1};

Ωb
6 : {2(1− b2)K1 − bc2 ≤ a1 − ba2 ≤ 2(1− b2)K1 − c1 − bc2

2(K2 + bK1) + c2 ≤ a2 ≤ 2(bK1 +K2 +Kf ) + c2};
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Ωb
7 : {a2 − ba1 ≥ 2(1− b2)(K2 +Kf ) + c2, a1 ≥ ba2, a1 ≤ 2b(K2 +Kf ) + 2K1};

Ωb
8 : {a1 − ba2 ≥ 2(1− b2)(K1 +Kf ) + c1, a2 ≥ ba1, a2 ≤ 2b(K1 +Kf ) + 2K2};

Ωb
9 : {a1 + a2 ≥ 2(K1 +K2 +Kf )(1 + b) + c1 + c2,

2(1− b)(K2 −K1 +Kf )− (c1 − c2) ≤ a1 − a2 ≤ 2(1− b)(K1 −K2 +Kf ) + c1 − c2};

Ωb
10 : {a2 ≥ ba1, a2 ≥ 2b(K1 +Kf ) + 2K2,

a1 ≥ 2(K1 + bK2 +Kf ) + c1, a1 − a2 ≥ 2(1− b)(K1 −K2 +Kf ) + c1 − c2};

Ωb
11 : {a1 ≥ ba2, a1 ≥ 2b(K2 +Kf ) + 2K1,

a2 ≥ 2(K2 + bK1 +Kf ) + c2, a1 − a2 ≤ 2(1− b)(K2 −K1 +Kf ) + c2 − c1}

For the b-demand model, the following theorem gives out the optimal production

quantities in Stage II that maximize Rb.

Theorem 3.3 Given the realizations of the price intercepts (a1, a2) and the capacities
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(K1, K2, Kf), the optimal production quantities of the Stage II problem are as follows:

Ω1 : Q1 =
a1 − ba2

2(1− b2)
, Q2 =

a2 − ba1

2(1− b2)
;

Ω2 : Q1 =
a1 − ba2 − c1

2(1− b2)
, Q2 =

a2 − ba1 + bc1

2(1− b2)
;

Ω3 : Q1 =
a1 − ba2 + bc2

2(1− b2)
, Q2 =

a2 − ba1 − c2

2(1− b2)
;

Ω4 : Q1 =
a1 − ba2 + bc2 − c1

2(1− b2)
, Q2 =

a2 − ba1 − c2 + bc1

2(1− b2)
;

Ω5 : Q1 =
a1 − c1

2
− bK2, Q2 = K2;

Ω6 : Q1 = K1, Q2 =
a2 − c2

2
− bK1;

Ω7 : Q1 = K1 +Kf , Q2 =
a2

2
− b(K1 +Kf );

Ω8 : Q1 =
a1

2
− b(K2 +Kf ), Q2 = K2 +Kf ;

Ω9 : Q1 =
K1 +K2 +Kf

2
+
a1 − a2 − (c1 − c2)

4(1− b2)
,

Q2 =
K1 +K2 +Kf

2
− a1 − a2 − (c1 − c2)

4(1− b2)
;

Ω10 : Q1 = K1 +Kf , Q2 = K2;

Ω11 : Q1 = K1, Q2 = K2 +Kf .

The closed-form solution for the Stage II problem Rb(a1, a2) can be obtained by

inserting the Q1 and Q2 values in equation (3.6). Please refer to Appendix A for the

Stage II optimal revenues under the b-demand model.

3.4.2 Optimal Capacity Investment Decisions for b-demand model

Using the above results, we now analyze the firm’s optimal investment decisions under

the b-demand model.

Lemma 3.3 The Stage I objective function Πb is jointly concave in (K1, K2, Kf)

Hence, the following theorem establishes the necessary and sufficient conditions

for the optimal capacity investment vector (K1, K2, Kf ).
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Theorem 3.4 The Stage I optimal capacity investment vector (K1, K2, Kf) is opti-

mal if and only if the Lagrangian multipliers given by λi exist and satisfy the following

condition:

∂Rb(K1,K2,Kf )

∂Ki
= gi − λi for i ∈ {1, 2, f} (3.9)

and Kiλi = 0. (3.10)

Hence, conditioning on (A1, A2), we obtain,


g1 − λ1

g2 − λ2

gf − λf

 =Pr(Ω2)E


c1

0

0

+ Pr(Ω3)E


0

c2

0

+ Pr(Ω4)E


c1

c2

0



+ Pr(Ωb
5)E


c1

A2 − bA1 − 2(1− b2)K2 + c1b

0



+ Pr(Ωb
6)E


A1 − bA2 − 2(1− b2)K1 + c2b

c2

0
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+ Pr(Ωb
7)E


c1

A2 − bA1 − 2(1− b2)(K2 +Kf ) + bc1

A2 − bA1 − 2(1− b2)(K2 +Kf ) + bc1 − c2



+ Pr(Ωb
8)E


A1 − bA2 − 2(1− b2)(K1 +Kf ) + bc2

c2

A1 − bA2 − 2(1− b2)(K1 +Kf ) + bc2 − c1



+ Pr(Ωb
9)E


A1+A2−2(1+b)(K1+K2+Kf )

2 + c1−c2
2

A1+A2−2(1+b)(K1+K2+Kf )
2 − c1−c2

2

A1+A2−2(1+b)(K1+K2+Kf )
2 − c1+c2

2



+ Pr(Ωb
10)E


A1 − 2(K1 +Kf )− 2bK2

A2 − 2b(K1 +Kf )− 2K2

A1 − 2(K1 +Kf )− 2bK2 − c1



+ Pr(Ωb
11)E


A1 − 2b(K2 +Kf )− 2K1

A2 − 2bK1 − 2(K2 +Kf )

A2 − 2bK1 − 2(K2 +Kf )− c2


3.5 Optimal Contingent and Dedicated Capacities under clearance

In this section, we analytically characterize the impacts of product substitution factors

(γ and b) on the optimal contingent flexible capacity (Kf ) and the optimal dedicated

capacities (K1 and K2). We note here that the firm faces only demand uncertainties

and hence we drop the supply disruption RVs making θ1K1=K1 and θ2K2=K2. Sub-

sequently we use this notation to obtain insights on the optimal contingent flexible

and dedicated capacities.

The first order conditions for the optimal capacity portfolio derived in Theo-

rems 2 and 4 are implicit functions. We need a closed form expression to show the

impacts of γ and b on Kf , K1 and K2 clearly. Hence, we make the following two as-
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sumptions: (1) Probability distributions of demand intercepts are independent, i.e.,

Ψ(E1, E2) = Ψ1(E1)Ψ2(E2); (2) The firm always produces to both the dedicated and

flexible capacity levels irrespective of any demand intercept realization. The second

assumption is known in literature as clearance (please refer to Van Mieghem and Dada

1999 for details on clearance and holdback strategies). Note that although committed

contingent capacity must be completely utilized, the firm still has the flexibility to

allocate the resource between the two products.

Obviously, clearance is sub-optimal behavior since the firm is forced to produce at

the capacity level for any demand intercept realization. However, this is not unrealis-

tic as Goyal and Netessine (2007) note “...firms often find it difficult to produce below

capacity in view of large fixed costs...car makers have been forced to slash prices to

keep lines running as models fall out of favor with the public, rather than reduce pro-

duction”. Chod and Rudi (2005) numerically investigate the impact of the clearance

assumption and conclude that they generally yield close-to-optimal solutions.

In our model, in regions Ω9, Ω10 and Ω11 the capacities are completely utilized to

produce either one or both products under both the γ and b-demand models. Hence

the clearance assumption is satisfied naturally in these regions. Each region has its

own expressions for optimal contingent and dedicated capacities. However, as shown

in Figures 3.1 and 3.2, the capacity allocation solutions in Ω10 and Ω11 are special

cases of that in Ω9 at the boundaries. Therefore, we use the solution for Ω9 to conduct

analysis under the clearance assumption.

3.5.1 Optimal Contingent Flexible Capacity

In this sub-section, we compare the impacts of γ and b on optimal contingent capacity

Kf under the clearance assumption, given the dedicated resource investment K1 and

K2.

In many industries firms already have a basic level of capacity built up as a
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long-term investment in plant and resource acquisitions which incur significant cap-

ital. For short term decisions such as single period selling seasons, the only decision

variable may be the level of additional resource to acquire in addition to already

existing resources. Moreno and Terwiesch (2015) report several industries that al-

ready have a sunk capital cost in existing plants and invest in either adding capacity

to already existing plants or invest in new resources altogether. Further, related to

cross-production, Li et al. (2014) cite the example of Intel’s wafer fabrication units

where capacity in the form of new production lines can be purchased in addition to

converting existing production lines to produce multiple products.

We hence study this setting and assume that dedicated capacity levels K1 and K2

are exogenous and the only decision variable in Stage I is the level of contingent flexible

capacity Kf . The other advantage in studying this setting is that with the closed form

expressions we can explicitly compare the impact of product substitutability γ and b

(which forms the basis of the respective demand models) on the contingent flexible

capacity levels.

Theorem 3.5 Given K1, K2, and gf (gf < g′f), the optimal contingent capacity

Kf =
ε1 + ε2

2α
− (K1 +K2)− (1− γ)(c1 + c2 + 2gf )

2α
in the γ-demand model;

Kf =
µ1 + µ2

2(1 + b)
− (K1 +K2)− c1 + c2 + 2gf

2(1 + b)
in the b-demand model.

The closed-form expressions for Kf under both demand models have three terms.

The first term could be interpreted as the impact of market size because a higher

expected mean µi for product i also implies a higher expected demand for the product.

The second term involves the available dedicated capacities of the firm. The third is

the impact of the various production costs on the flexible capacity.

Some interesting results can be derived from Theorem 3.5.

Corollary 3.1 In the γ-demand model the optimal contingent capacity Kf increases

as γ increases, i.e.,
∂Kf

∂γ
> 0.
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Corollary 3.1 reveals that under the γ-demand model, as products become closer

substitutes optimal Kf increases. Notice that as γ increases, the first term represent-

ing the total market size remains unaffected. This is inconsistent with the intuition

that more differentiated (less substitutable) products reach a larger customer base

(see, e.g., Talluri and van Ryzin 2005).

Lemma 3.4 In the b-demand model if the optimal contingent capacity Kf > 0, then

Kf decreases as b increases, i.e.,
∂Kf

∂b
< 0.

Lemma 3.4 implies that if the firm invests in flexible capacity under the b-demand

model, then the optimal flexible capacity level decreases if the two products become

closer substitutes. Intuitively, as products become closer substitutes consumers tend

to be more sensitive to price changes. Hence, a small price increase of one product,

say product 1, would allow the firm to shift a large portion of product 1’s demand

to its substitute- product 2. Responsive pricing reduces the investment in contingent

capacity.

Thus the b-demand model reveals that contingent capacity is less desired, and

responsive product pricing may be more beneficial to the firm when products become

more substitutable. This is consistent with the intuition that consumers are less price-

sensitive when purchasing a unique item and more differentiated (less substitutable)

products reach a larger customer base (see, e.g., Talluri and van Ryzin 2005).

If we denote the optimal solution under γ demand model as Kγ
f and that under

b-demand model as Kb
f , the following corollary helps compare the level of optimal Kf

under both the demand models.

Corollary 3.2 Given the same model parameters and existing dedicated capacities,

the optimal contingent capacity Kγ
f is higher than the corresponding capacity Kb

f for

(γ = b) ∈ (0, 1).

When γ = b = 0 (independent products) it is easy to see that Kγ
f = Kb

f . For
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(γ = b) ∈ (0, 1) we have, from corollary 3.1 and lemma 3.4, that Kγ
f > Kb

f . Thus,

corollary 3.2 reveals that the γ-demand model suggests a higher investment in con-

tingent capacity than the b-demand model under same model parameters. Hence,

our results presented in this section indicate that the γ-demand model, which lacks

the support of a utility function, may not be an accurate representation of product

substitution relationships, and maybe misleading if used in practice.

3.5.2 Optimal Dedicated Capacity

In this sub-section, we focus on the impact of product substitutability (γ and b) on

the optimal dedicated capacity under the clearance assumption. Without loss of gen-

erality we assume that the firm tries to decide the level of investment in dedicated

capacity K2, given that K1 and Kf are fixed. By doing so, we are able to study

the difference between the investment structures between the b and γ-demand mod-

els. This enables to evaluate which functional form represents reality more closely:

more differentiated products reach a larger customer base and consumers are less

price sensitive when purchasing highly differentiated item. Consequently, as product

substitutability increases, the overall market size decreases (Talluri and van Ryzin

2005). Under a high degree of product substitutability, we expect the need for overall

capacity levels to decrease due to lower market size.

Theorem 3.6 Given K1, Kf , the optimal dedicated capacity

K2 =
ε1 + ε2

2α
− (K1 +Kf )−

(1− γ)(c1 − c2 + 2g2)

2α
in the γ-demand model;

K2 =
µ1 + µ2

2(1 + b)
− (K1 +Kf )−

(c1 − c2 + 2g2)

2(1 + b)
in the b-demand model.

Some interesting results can be derived from Theorem 3.6.

Corollary 3.3 In the γ-demand model K2 increases as γ increases, i.e., ∂K2

∂γ
> 0.

Corollary 3.3 reveals that the investment trend in optimal dedicated capacity

considering the γ-demand model is very similar to the result for contingent flexi-
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ble capacity using this model. As γ increases the investment in dedicated capacity

increases. Hence, the γ-demand model suggests an increased investment in K2 as

products become closer substitutes.

Lemma 3.5 In the b-demand model if the optimal dedicated capacity K2 > 0, then

K2 decreases as b increases, i.e., ∂K2

∂b
< 0.

Similar to the previous sub-section, the b-demand model exhibits a consistent trend

in the optimal dedicated capacity investment i.e., the need for dedicated capacity

decreases as products become closer substitutes. This is again consistent with the

intuition that the overall market demand decreases as products are highly substitutes.

If we denote the optimal solution under γ demand model as Kγ
2 and that under

b-demand model as Kb
2, the following corollary helps compare the level of optimal K2

under both the demand models.

Corollary 3.4 Given the same model parameters and existing capacities K1 and Kf ,

the optimal dedicated capacity Kγ
2 is higher than the corresponding capacity Kb

2 for

(γ = b) ∈ (0, 1).

Corollary 3.4 reveals that the γ-demand model suggests a higher investment in

dedicated capacity than the b-demand model under same model parameters. This

result is similar to corollary 3.2 under optimal contingent capacity.

The γ-demand model and the b-demand model suggest completely different capac-

ity investment strategies. Literature using the γ measure of product substitutability

(see, e.g., Choi 1991, Birge et al. 1998, Chod and Rudi 2005 and Biller et al. 2006)

conclude that as products become more substitutable, flexible capacity is highly pre-

ferred and that optimal prices and profits increase. However, we show that when

using the b-demand model, the investment in contingent flexible capacity decreases

as product substitutability increases. Hence, the demand model using γ as the prod-

uct substitutability factor may not be appropriate to study the optimal capacity
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investment decision problem when products are substitutes.

3.6 Summary

In this chapter we study the pricing and capacity investment decisions for a firm that

faces stochastic price-dependent demand for two substitutable products. We exam-

ined two related but different functional form of linear demand models, namely the

γ-demand model and the b-demand model. We show that the selection of correct

demand models plays a crucial role in deciding the optimal dedicated and flexible

capacity for substitutable products. Specifically, we demonstrate that under the b-

demand function the firm always invests less in contingent flexible capacity as prod-

ucts become substitutable. In this case responsive pricing can be used as an effective

strategy hence reducing the need to invest in costly flexibility. However, under the

γ-demand model, the firm prefers to invest more in contingent flexible capacity as

products become more substitutes. The b-demand model has the foundational sup-

port of a consumer utility function which reflects the fact that as products become

more substitutable (i.e., as b increases), customers become more sensitive to price

changes and the overall market size decreases. When using γ instead of b as product

substitutability factor in the demand functions, an increase in γ does not impact own

price effect or thew total market potential. Therefore, in subsequent chapters of this

dissertation we will use the b-demand model which correctly captures the impact of

product substitutability on market potentials as well as price and cross-price effects,

to investigate the impact of different types of efficiency loss.
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CHAPTER 4

CAPACITY, FLEXIBILITY AND PRICING DECISIONS UNDER

CROSS-PRODUCTION: THE SHRINKING CAPACITY MODEL

4.1 Introduction

In this chapter we study the capacity, flexibility and pricing decisions of a price-setting

firm that uses cross-production to produce two substitutable products. In addition

to facing demand uncertainties at the capacity investment stage (Stage I), the firm

may also face additional uncertainties in production stage (Stage II) such as capacity

uncertainties which may lower the yield or 0-1 type disruptions that may shut down

an entire resource altogether.

Recall from Chapter 1 that under cross-production there is no separate flexible

resource. The firm produces two products each with it’s own dedicated resource and

if capacity is insufficient for a product, it can use the other resource to produce the

product with a certain degree of efficiency loss. This efficiency loss may be caused by

machine specialization, changeover time, or shortage of cross-trained workers. In the

capacity investment stage, under demand uncertainty, the firm decides on the optimal

dedicated capacities and the optimal degree of flexibility. The higher the degree of

flexibility investment in Stage I the lower the efficiency loss in Stage II. However,

flexibility investment is costly and thus a moderate degree of flexibility that hedges

against the three uncertainties to an acceptable extent might be desirable.

The rest of the chapter is organized as follows. A two-stage optimization model

with capacity, flexibility, and pricing decisions is formulated in Section 4.2 and its

solutions and analytical properties are derived in Section 4.3. Section 4.4 presents
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the numerical analysis to obtain managerial insights into the impacts of uncertainties,

disruption risks and resource investment costs on the optimal capacity and flexibility

investment, as well as pricing decisions. Finally, Section 4.5 concludes the chapter.

4.2 Model

We first introduce the linear price-demand relationship that is the basis of this dis-

sertation. Demand for a product is modeled as a downward sloping function of its

own price with the effect of its substitute product. This demand model is derived by

maximizing the utility function given by Singh and Vives (1984) as follows:

max
Q1,Q2

U(Q1, Q2) = a1Q1 + a2Q2 − (ϑ1Q
2
1 + 2bQ1Q2 + ϑ2Q

2
2)/2

where Qi is the amount of product i, for i = 1, 2. The parameter b ∈ [0, 1) is the

measure of product substitutability, ai are the observed/realized market potentials,

for i = 1, 2, with ϑ2a1 ≥ ba2 and ϑ1a2 ≥ ba1 (to enforce positive demand realizations).

ϑi for i = 1, 2, are the demand sensitivity parameters for each product and we assume

ϑ1ϑ2 − b2> to ensure strict concavity of the utility function.

By maximizing the utility function, we obtain the following linear demand func-

tion:

Q1(p,a) =
ϑ2a1 − ba2

ϑ1ϑ2 − b2
− ϑ2

ϑ1ϑ2 − b2
p1 +

b

ϑ1ϑ2 − b2
p2 (4.1)

Q2(p,a) =
ϑ1a2 − ba1

ϑ1ϑ2 − b2
− ϑ1

ϑ1ϑ2 − b2
p2 +

b

ϑ1ϑ2 − b2
p1 (4.2)

where pi is the price for product i, where i = 1, 2. To simplify expressions in subse-

quent sections we assume parameters ϑ1=ϑ2=1 as they can be easily incorporated into

the model without changing any of the insights derived. The inverse of the demand

function is as follows,

p1 = a1 −Q1 − bQ2; p2 = a2 −Q2 − bQ1. (4.3)
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This demand function captures the fact that as products become more substi-

tutable (i.e., as b increases), customers become more sensitive to price changes and

the overall market size decreases (Talluri and van Ryzin 2005).

We consider a two-stage optimization problem for a firm producing two products,

indexed by i = 1, 2. In Stage I, while the demands for the two products are uncertain,

the firm determines the optimal capacity investment levels for each product denoted

by K1 and K2. In addition the firm also decides on the level of flexibility captured as

the degree of efficiency loss as described below.

Cross-production efficiency loss: We denote βij < 1, for i 6= j, as the partial

flexibility factor when using resource j to produce product i. That is one unit of

resource j (which normally can produce one unit of product j) can only be used to

produce βij units of product i. For simplicity, in the following, we denote β12 as β1

and β21 as β2. The firm can now choose the level of (partial) flexibility by deciding

on optimal β1 and β2 in Stage I. A higher degree of flexibility investment in Stage I

leads to lower efficiency loss during cross-production in Stage II.

Demand uncertainties: The product demand uncertainty in Stage I is modeled

by random demand intercepts A = (A1,A2) with positive support and the mean of

their marginal distribution is denoted by µi for i = 1, 2. Their joint distribution

is denoted by Ψ(A1, A2). Essentially, demand uncertainty is modeled by assuming

that the demand curve intercepts A1,A2 have a continuous probability distribution

characterized by the joint density function described above. Their variance is denoted

by σ2
2, σ2

2, for products 1 and 2, respectively. Using ρ ∈ [−1, 1] as the correlation

coefficient, the covariance of the joint distribution is σ12 = ρσ1σ2. We denote the

total demand uncertainty of the two produces by σ2
T = σ2

1 + σ2
2 − 2ρσ1σ2. The firm

thus decides K1,K2, β1 and β2 in Stage I based on the distribution of A1 and A2.

In Stage II the firm observes the realizations of product demands denoted by a1

and a2 corresponding to RVs A1 and A2, respectively, and available capacity lev-
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els K1 and K2 contingent on the level of resource uncertainties. Given a level of

product substitutability b and other Stage II parameters (K1,K2,β1,β2,a1,a2) the firm

then determines the optimal production quantities Q1,Q2 of the two products while

maximizing its profit.

Under responsive pricing, the price is set only after the demand curve intercepts

are realized. Since we assume a monopolistic price-setting firm the prices and sold

quantities are duals and we hence use the firm’s decision variables in Stage II to be

the production quantities Q1,Q2 which may be sold at market clearing prices.

Let Π̃ denote the expected profit in Stage I and R̃ denote the revenue in Stage II.

The two-stage decision problem for the firm can be formulated as follows:

Stage I : Π̃ = max
K̄1,K̄2,β1,β2

E [R̃(K̄1, K̄2, β1, β2)]−
∑
i=1,2

giK̄i − g3(β1K̄1 + β2K̄2)

(4.4)

subject to : K̄1, K̄2 ≥ 0

0 ≤ β1, β2 ≤ 1

where K̄1 and K̄2 are the capacity invested, and g1 and g2 are the unit capacity costs.

In the third term, g3 is the additional cost for a resource with the flexibility degree

(shrinking capacity factor) equal to β1 and β2.

At the beginning of Stage II, the market potentials, a1 and a2, and the available

capacities, K1 = θ1K̄1 and K2 = θ2K̄2, are realized. In the numerical analysis in

Section 4.4 the resource uncertainty factor Θi follows a Normal distribution in the

capacity uncertainty case and is modeled as a 0-1 binary variable through a Bernoulli

distribution in the supply disruption case. In Stage II, the firm makes production

decisions to maximize its profit. By Equation (4.3), the prices are obtained from the

optimal production quantities as they are linearly related.
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Stage II : R̃ = max
Q1,Q2

[pQ] (4.5)

subject to : Q1 ≤ K1 + β1(K2 −Q2) (4.6)

Q2 ≤ K2 + β2(K1 −Q1) (4.7)

Q1, Q2 ≥ 0

4.3 Analytical Results

4.3.1 Solution Methodology

We study the capacity, flexibility and pricing decision problems under a two-stage

stochastic program framework where the demand intercepts Ai, i=1, 2 are random

variables. We solve the problem backwards by first solving the Stage II revenue

maximization problem utilizing a state-space decomposition approach of the feasible

region to obtain optimal production quantities (and prices). Once we obtain the

optimal Stage II solutions, we use those as inputs to obtain the optimal capacity

and flexibility levels in Stage I as well as the optimal expected profit. This solution

methodology is similar to Fine and Freund (1990), Chod and Rudi (2005), Bish and

Wang (2004), Goyal and Netessine (2007) and Lus and Muriel (2009).

The problem formulation described in equation 4.4 consists of two inter-linked

stages. In Stage I, before the demand intercepts are realized (i.e., under demand

uncertainties), the firm decides the capacity levels (K1K2) and degrees of flexibility

(β1,β2). In this stage only the distributions of these random variables are assumed

to be known i.e., the mean of the demand intercepts denoted by µi, i=1, 2 and the

standard deviations denoted by σi, i=1, 2. The expectation E is with respect to

random demand intercepts Ai, i=1, 2. In Stage II, after observing the corresponding

realizations of the demand intercepts ai, i=1, 2, the production quantities Q1, Q2 are

determined. The prices p1, p2 are linearly related to the production quantities as given
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by equation (4.3) and hence can be easily obtained. The Stage II decision variables

are a function of the observed demand realizations as well as invested capacities in

Stage I. While we analytically investigate the impact of demand uncertainties, we

numerically investigate the impact of capacity uncertainties and supply disruptions.

We solve this two-stage problem backwards by first considering the Stage II prob-

lem and determining the optimal solutions and their properties. Since the realizations

of the demand intercepts ai, i=1, 2, for the two products could be above or below

their invested capacities Ki, i=1, 2, we must consider all possible cases together with

the capacity constraints. We note here that under only demand uncertainties the firm

does not face any resource supply uncertainties and the invested capacities in Stage

I (K̄1, K̄2) are the same as the available capacities K1, K2 in Stage II. To simplify

the exposition we hence use K1 and K2 as the capacity decision variables in Stage I

under only demand uncertainties.

Given a resource investment vector (K1, K2, β1, β2), demand realizations a1, a2

and degree of product substitutability b, we partition the demand intercept space

into disjoint sets also called demand regions. Each case (demand region) corresponds

to an optimization problem in Stage II and can be solved in closed form and the

production quantities can be obtained.

In the Shrinking Capacity model, there are 5 possible cases as described below:

Case (1): The available capacities for both products are individually sufficient to

meet the respective product demands and the firm does not need to use all the

invested capacities nor invest in any cross-production. Q1 <K1 + β1(K2 − Q2) and

Q2 <K2 + β2(K1 −Q1) and the unconstrained solution is feasible.

Case (2): Demand realization of product 1 (a1) is high and available dedicated

capacity for product 1 is insufficient i.e., Q1 ≥ K1. Demand realization of product

2 (a2) is low and does not utilize all of its dedicated capacity and hence Q2 <K2 +

β2(K1 − Q1). In this case firm needs to cross-produce product 1 in using resource 2
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and hence constraint 4.6 is binding Q1 =K1 + β1(K2 −Q2).

Case (3): This case is symmetric to the previous case where demand realization

of product 2 (a2) is high while demand observed for product 1 (a1) is lower than

available dedicated capacity and the firm chooses to cross-produce product 2 using

resource 1. We have Q2=K2 + β2(K1 −Q1) and Q1 <K1 + β1(K2 −Q2).

Case (4): The demand realization for product 1 (a1) is much higher than the demand

realization for product 2 (a2) so the firm uses all of its capacities to make product 1

which means Q1 =K1 + β1K2 and Q2 = 0. The firm hence uses cross-production in

this scenario and sells only product 1.

Case (5): This case is symmetric to the previous case as demand for product 2

(a2) is much higher than the demand realization for product 1 (a1) and the optimal

production quantities are Q2 =K2 + β2K1 and Q1 = 0.

In the next section we obtain the optimal Stage II solutions for each of the cases

considered above.

4.3.2 Stage II Optimal Production Quantities

Before solving the Stage II problem, we first algebraically define the demand regions

corresponding to each case described in the previous section:

Ω1 : a1(1− bβ1) + a2(β1 − b) ≤ 2(1− b2)(K1 + β1K2),

a2(1− bβ2) + a1(β2 − b) ≤ 2(1− b2)(K2 + β2K1);

Ω2 : 2(1− b)(K1 −K2) ≤ a1 − a2 ≤ 2(1− b)(K1 + β1K2),

a1 − ba2 + β1(a2 − ba1) ≥ 2(1− b2)(K1 + β1K2);

Ω3 : 2(1− b)(K2 −K1) ≤ a2 − a1 ≤ 2(1− b)(K2 + β2K1),

a2 − ba1 + β2(a1 − ba2) ≥ 2(1− b2)(K2 + β2K1);

Ω4 : a1 − a2 ≥ 2(1− b)(K1 + β1K2);

Ω5 : a2 − a1 ≥ 2(1− b)(K2 + β2K1);
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The demand regions for the independent products case (i.e., when b=0) are shown

in Figure 4.1-left and the corresponding optimal production quantities on the right.

In region Ω1 the demand curve intercepts for both the products are low and hence

the unconstrained solution is achieved. In regions Ω2 and Ω3 the firm sells positive

quantities of both products. However, since demand is higher for one product in a

region the corresponding optimal production quantity is also higher. In regions Ω4

and Ω5 the demand for one product is significantly higher than the other and hence

the firm utilizes all of the available capacities to make this product.

Figure 4.1: Mapping of the state space of A into the output space for b = 0 case
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Theorem 4.1 Given the realizations of the market potentials (a1, a2) and the capac-

ities (K1, K2), the optimal production quantities for the Stage II problem are given as

follows:

Ω1 : Q1 =
a1 − ba2

2(1− b2)
, Q2 =

a2 − ba1

2(1− b2)
;

Ω2 : Q1 =
(a1 − a2)β1 + 2(1− b)(K1 + β1K2)

2(1− b)(1 + β1)
, Q2 =

a2 − a1 + 2(1− b)(K1 + β1K2)

2(1− b)(1 + β1)
;

Ω3 : Q1 =
a1 − a2 + 2(1− b)(K2 + β2K1)

2(1− b)(1 + β2)
, Q2 =

(a2 − a1)β2 + 2(1− b)(K2 + β2K1)

2(1− b)(1 + β2)
;

Ω4 : Q1 = K1 + β1K2, Q2 = 0;

Ω5 : Q1 = 0, Q2 = K2 + β2K1;

Please refer to Appendix B for all the proofs in this chapter.

In each region, by solving the Stage II problem, the optimal revenue Ri(a1, a2)

equals,

Ω1 : R1 =
a2

1 + a2
2 − 2ba1a2

4(1− b2)
;

Ω2 : R2 =
a2

2 + a2
1β

2
1 − 4a1(bβ1 − 1)(K1 + β1K2) + 4(b2 − 1)(K1 + β1K2)2

4(1 + β2
1)− 8bβ1

−2a2[a1β1 + 2(b− β1)(K1 + β1K2)]

4(1 + β2
1)− 8bβ1

;

Ω3 : R3 =
a2

1 + a2
2β

2
2 − 4a2(bβ2 − 1)(K2 + β2K1) + 4(b2 − 1)(K2 + β2K1)2

4(1 + β2
2)− 8bβ2

−2a1[a2β2 + 2(b− β2)(K2 + β2K1)]

4(1 + β2
2)− 8bβ2

;

Ω4 : R4 = a1(K1 + β1K2)− (K1 + β1K2)2;

Ω5 : R5 = a2(K2 + β2K1)− (K2 + β2K1)2;

4.3.3 Stage I Optimal Capacity and Flexibility Investment

Using the above results, we now analyze the firm’s optimal capacity investment port-

folio (K1, K2, β1, β2) in Stage I. To simplify the Stage I problem, we assume β1=β2=β

indicating that any increase in flexibility for one resource also increases the flexi-

bility for both resources (and hence incurs costs). While this assumption impacts
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the results on degree of flexibility of the individual resource, it does not impact our

primary objectives of understanding the impact of increasing uncertainties, demand

correlation ρ as well as increasing b as our numerical studies show.

Lemma 4.1 The Stage I objective function Π̃ is strictly jointly concave in (K1, K2, β)

Hence, the following theorem provides the necessary and sufficient conditions for

the optimal capacity investment portfolio (K1, K2, β).

Theorem 4.2 The Stage I optimal capacity investment vector (K1, K2, β) is optimal

if and only if the Lagrangian multipliers given by λi exist and satisfy the following

conditions:

∂R̃(K1,K2, β)

∂Ki
= gi − λi for i ∈ {1, 2},

∂R̃(K1,K2, β)

∂β
= g3 − λ3,

Kiλi = 0 for i ∈ {1, 2}, βλ3 = 0.

Hence, conditioning on (A1, A2), we obtain,


g1 − λ1

g2 − λ2

g3 − λ3

 =Pr(Ω2)E


2(A1(1−bβ)+A2(β−b)−2(1−b2)(K1+βK2))

(1−b)(1+β)2

2β(A1(1−bβ)+A2(β−b)−2(1−b2)(K1+βK2))
(1−b)(1+β)2

(A1−A2+2(b−1)(K1−K2))(A1(1−bβ)+A2(β−b)+2(b2−1)(K1+βK2))
(b−1)2(1+β)3



+ Pr(Ω3)E


2β(A2(1−bβ)+A1(β−b)−2(1−b2)(K2+βK1)

(1−b)(1+β)2

2(A2(1−bβ)+A1(β−b)−2(1−b2)(K2+βK1))
(1−b)(1+β)2

(A2−A1+2(b−1)(K2−K1))(A2(1−bβ)+A1(β−b)+2(b2−1)(K2+βK1))
(b−1)2(1+β)3



+ Pr(Ω4)E


[A1 − 2(K1 + βK2)]

β[A1 − 2(K1 + βK2)]

K2[A1 − 2(K1 + βK2)]



+ Pr(Ω5)E


β[A2 − 2(K2 + βK1)]

A2 − 2(K2 + βK1)

K1[A2 − 2(K2 + βK1)]
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4.3.4 Properties of Optimal Solutions

Theorem 4.3 The firm’s optimal expected profit decreases as product substitutability

b increases, i.e., ∂Π̃
∂b
< 0.

Theorem 4.3 states that as products become increasingly substitutable, the optimal

expected profit decreases. This is not so surprising since we know that as b increases,

customers become more sensitive to price changes and the overall market size de-

creases (Talluri and van Ryzin 2005).

Next we study the impact of b on the optimal capacities K1 and K2.

Theorem 4.4 Given β and Kj, the optimal capacity Ki decreases with b, i.e., ∂Ki

∂b
<

0, i, j = {1, 2} and i 6= j.

Investment in capacity is costly as compared to utilizing responsive pricing to

shift demand. When products are substitutes the demand from one product can be

efficiently shifted to the other using pricing and hence an additional investment in

capacities is discouraged. Hence demand management through responsive pricing is

an effective strategy compared to investment in capacity. This trend exists even β

and Kj are endogenous as verified by our numerical analysis in Section 4.4.

4.3.5 Optimal solutions under clearance assumption

We now analyze the impact of the optimal capacity and flexibility investments using

the clearance assumption. We assume that the firm always produces to available

capacity Ki, i = 1, 2, irrespective of any demand intercept realization and that the

production quantities Qi, i = 1, 2 are always positive (please refer to Van Mieghem

and Dada 1999 for details on clearance and hold-back strategies). We derive closed

form expressions of capacities Ki to better understand the impacts of other parame-

ters.
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Obviously, clearance is sub-optimal behavior since the firm is forced to produce at

the capacity level for any demand intercept realization. However, this is not unrealis-

tic as Goyal and Netessine (2007) note “...firms often find it difficult to produce below

capacity in view of large fixed costs...Car makers have been forced to slash prices to

keep lines running as models fall out of favor with the public, rather than reduce pro-

duction”. Chod and Rudi (2005) numerically investigate the impact of the clearance

assumption and conclude that they generally yield close-to-optimal solutions.

In our demand model, the clearance assumption for capacities K1 (K2) is satis-

fied naturally in regions Ω2 (Ω3) and Ω4(Ω5). When A ∈ Ω2 dedicated capacity K1

is used completely to produce product 1. Assuming a symmetric capacity invest-

ment (K1=K2=K), symmetric investment cost (g1=g2=g) and exogenous β, we have

the following theorem that characterizes the relationship between optimal clearance

capacity K and other parameters in the model.

Theorem 4.5 Given β, g and b, the optimal clearance capacity

K̂∗ =
µ1 + µ2 − 2g

4(1 + b)
+

(µ1 − µ2)(1− β)

4(1− b)(1 + β)

The first term in Theorem 4.5 reveals that optimal capacity increases in total mar-

ket size (µ1 + µ2) and decreases in its investment cost. The second term reveals that

the optimal capacity increases with the difference between the market size (µ1 − µ2)

which is in turn impacted by the level of product differentiation b and flexibility β.

As b increases the market size difference is amplified which increases investment in

capacity. However this increase is tempered by the level of inherent flexibility β: A

firm with very high efficiency loss (low β) invests in a higher amount of dedicated ca-

pacity whereas a firm with low efficiency loss (high β) invests in much lower dedicated

capacity. Term 1 in conjunction with term 2 reveals that as product substitutability

increases the overall optimal capacity investment decreases because when products

are less differentiated the two markets overlap more and hence the total expected

54



market size is lower (i.e., term 1 dominates).

Due to the assumptions made in clearance, viz., the firm produces up to capacity

levels and production quantities are always positive, the optimal capacities are inde-

pendent of variability or correlation of the demand intercepts. The total capacities

translate directly into expected prices. In Section 5, we endogenize β and numeri-

cally study the effect of different parameters when the firm simultaneously invests in

K1,K2 and β under increasing demand uncertainty and correlation (without clearance

assumption).

Next we study the impact of increasing b on the reconfiguration loss or shrinking

capacity factor β.

Theorem 4.6 Given K1, K2, the optimal shrinking capacity factor β∗ decreases as

products become more substitutable i.e., ∂β∗

∂b
< 0

Theorem 4.6 reveals that as the products become less differentiated (more substi-

tutable) the firm prefers to invest in lower degree of resource flexibility. As the level

of product substitutability b increases, the price potentials (intercepts) Ai for the two

products tend to be highly correlated, reducing the benefit associated with shifting

production. In addition, demand for the substitutes can be easily managed through

pricing, which reduces the need for flexibility to balance supply and demand. Hence,

the optimal flexibility levels decrease with product substitutability.

Our extensive numerical analysis in Section 4.4 reveals that these trends remain

the same when product substitutability b increases across all demand realizations.

4.4 Numerical Analysis

In this section we report the key results of extensive numerical experiments con-

ducted to understand the impact of the nature and severity of demand and capacity

uncertainties. In 4.4.1 we study the impact of high demand uncertainty by changing
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the coefficient of variation (CV) of the Normal distribution of the demand. Next

in 4.4.2 we investigate the impact of capacity uncertainties by changing the CV of

the Normal distribution of the yields. In 4.4.3 we study the impact of supply dis-

ruptions (also called 0-1 disruptions) by changing the disruption probability of the

Bernoulli distribution of the yields. Under supply disruptions, a resource is either

completely available or completely unavailable in the production stage. We use the

scenario-based stochastic programming approach to study the impacts of product

substitutability, demand correlation, demand uncertainty, capacity uncertainty, and

supply disruptions on the expected profit and the capacity and the flexibility invest-

ment decisions. In 4.4.4 we investigate the impact of responsive pricing by studying

the case of a firm that does not have any pricing power. The firm faces capacity

and demand uncertainties and price is exogenous in Stage I. Finally, in section 4.4.5

we evaluate the sensitivity of the investment decisions in sections 4.4.1-4.4.3 to unit

capacity investment cost as well as relative cost of flexibility.

Experimental Design: In the first four sub-sections, we generate demand scenar-

ios from a multivariate Normal distribution with means ϑ2E[A1]−bE[A2]
ϑ1ϑ2−b2 and ϑ1E[A2]−bE[A1]

ϑ1ϑ2−b2

as recommended in Lus and Muriel (2009). Notice that the distribution means are cal-

culated by Equation (4.2) with symmetric slope intercepts (ϑ1 = ϑ2 = 1), symmetric

market potential (E[A1] = E[A2] = 2500), and nonnegative product substitutabil-

ity b ≥ 0. We set the product demand correlation ρ at -0.5, 0 and +0.5 for each

of the cases and compare the impact of increasing b on the optimal total capacity

(K∗t = K∗1 +K∗2), the partial flexibility degree (β∗), and the optimal expected profit.

The cost of a unit of dedicated capacity for each product (g1, g2) is 1 while the ad-

ditional cost rate for the flexibility degree (g3) is 0.2. Please note that the above

parameter setting satisfies the conditions in the demand model: ϑ2A1 − bA2 > 0,

ϑ1A2 − bA1 > 0, ϑ1ϑ2 − b2 > 0 and ϑ1, ϑ2 > b. In addition, the normalized ratio b2

ϑ1ϑ2
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represents the relative degree of substitutability between the two products: it is 0

when b = 0 (independent) and 1 when A1 ≈ A2 and b = ϑ1 = ϑ2 (perfect substitutes)

theoretically.

In the first case, we study the impact of the demand uncertainty by increasing

the CV of demand from 0.1 to 0.4. To be comparable with Cases 2 and 3, where the

capacity yields are uncertain, we fix the capacity yield rates θi = 0.5, i = 1, 2 in Case

1.

In the second case, the capacity uncertainty is modeled with independent and

Normally distributed yield rates Θi, i = 1, 2, with both means equal to 0.5. We study

the impact of the capacity uncertainty by increasing the CV from 0.1 to 0.4. The

demand follows Normal distribution with CV equal to 0.2 with other parameters as

stated above, and we assume that the capacity uncertainties are independent of the

demand uncertainties.

In the third case, supply disruption is modeled with identically and independently

distributed Bernoulli random variables Θi ∈ {0, 1}, i = 1, 2. A resource either has

full yield (realization θi=1) or is completely disrupted (θi=0) in the production stage.

There are four scenarios corresponding to the two resources: (0,0), (0,1), (1,0) and

(1,1). The probability of each scenario reflects the disruption risk. We study the

impact of disruption by increasing the CV. A higher CV indicates a higher risk of

disruption. The demands for the two products are normally distributed with CV=0.2,

and we assume that the the supply disruptions are independent of demand uncertain-

ties.

Under the no responsive pricing scenario, the firm first determines the optimal

prices to be set in Stage I assuming that the demand and the yield rates are determin-

istic at the expected value. We analyze this scenario using the capacity uncertainty

case with Θi, i = 1, 2 as 0.5 and varying the CV from 0.1 to 0.4. Once the prices are

set we subsequently calculate capacities, reconfiguration levels and expected profits
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by the methodology described in the experimental design.

To analyze the sensitivity of results to the investment cost, we increase g=g1=g2

from 1 to 9 and for each value of g we study the effect of increasing the cost of

flexibility g3 . This is done for each of the three types of uncertainties noted earlier.

With this analysis we are able to comprehensively compare how the firm’s optimal

portfolio changes as investment cost increases.

4.4.1 Impacts of Demand Uncertainties

We study the impact of demand uncertainties modeled by increasing the CV of nor-

mally distributed product demands under different correlation scenarios. We also

consider the demand correlation, as it is a key factor influencing capacity investment

decisions in operational and financial hedging models (Chod et al. 2010). We fix the

correlation of the demand intercepts and study the effect of product substitutabil-

ity for each demand correlation level. We report the representative cases where ρ

was fixed at -0.5, 0 and +0.5. In addition, to compare these results with capacity

uncertainties, we restrict the capacities available in the production stage to 0.5Ki,

i = 1, 2. While this restriction affects the capacities numerically it ensures that the

investment trends, which is the major focus of this research, are unaltered. In Case 1,

we assume the firm does not face any yield uncertainties or risk of supply disruptions,

i.e., θm1 = θm2 = 1.

The results for the demand uncertainty case are shown in Table 4.1, and they are

summarized as follows: (1) Flexibility is preferred only under very high demand CV

for highly differentiated products under negative demand correlation ρ. (2) As the

demand CV increases, the total dedicated capacity investment K∗t and the optimal

profits increase. (3) With a fixed positive product substitutability b, total capacity

K∗t and the optimal profits increase with ρ. (4) As the product substitutability b

increases, the total capacities and the expected profits decrease.
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Table 4.1: Impacts of Demand Uncertainties

CV=0.1 CV=0.2 CV=0.4

ρ b K∗t β∗ Profit K∗t β∗ Profit K∗t β∗ Profit

-0.5 0 4960 0.001 57737 5378 0.001 58579 5748 0.49 63183

0.2 4092 0.001 48044 4382 0.001 48445 4834 0.41 51190

0.4 3482 0.001 41142 3684 0.001 41379 4198 0.23 43016

0.6 3036 0.001 36039 3170 0.001 36109 3624 0.001 37178

0.8 2688 0.001 31967 2784 0.001 32072 3100 0.001 32799

0 0 4964 0.001 57743 5392 0.001 58615 6324 0.15 63095

0.2 4108 0.001 48068 4416 0.001 48517 5276 0.001 51585

0.4 3504 0.001 41164 3742 0.001 41531 4406 0.001 43666

0.6 3058 0.001 36061 3234 0.001 36211 3772 0.001 37881

0.8 2708 0.001 31985 2854 0.001 32195 3282 0.001 33465

0.5 0 4960 0.001 57737 5378 0.001 58578 6470 0.001 62889

0.2 4116 0.001 48088 4430 0.001 48557 5294 0.001 51877

0.4 3518 0.001 41183 3778 0.001 41651 4476 0.001 44163

0.6 3076 0.001 36073 3284 0.001 36308 3868 0.001 38458

0.8 2728 0.001 32003 2910 0.001 32311 3406 0.001 34058

A major difference in the results between our cross-production model and liter-

ature is the value of flexibility. Flexibility is usually assumed free and thus is often

recommended in the literature (e.g., Chod and Rudi 2005, Goyal and Netessine 2007,

Goyal and Netessine 2010) even when uncertainty in demand is low. However, when

flexibility is not free, with just a moderate cost (g3 = 0.2), investment in flexibil-

ity is not recommended in most of the cases as shown in Table 4.1. Flexibility is

recommended only when the demand uncertainty is very high and the demand corre-

lation is negative or zero. In those settings, the manufacturer frequently needs cross

production to increase the quantity of higher demand product. As we would see in

59



the next sub-sections, this investment trend dramatically changes when the type of

supply uncertainty changes.

In the literature (e.g., Lus and Muriel 2009), the total dedicated capacity usually

decreases (while flexible capacity increases) with the demand uncertainty. In contrast,

Table 4.1 shows that the total dedicated capacity investment K∗t and the optimal

expected profit always increase as the demand uncertainty increases. To cope with

demand variability the firm simply invests in higher amount of dedicated capacities

rather than the higher level of flexibility. It is much more economical to increase the

investment levels of dedicated capacities and invest in partially reconfiguring them as

opposed to investing in full flexibility. In our numerical results, we find that if the

demand for a product is very low then the firm employs a hold-back strategy, i.e., it

sells only a restricted quantity of the product at a higher price than selling all of it

at much lower market-clearing prices, mitigating the over-investment risk.

For a fixed positive product substitutability (b > 0), the optimal expected profit

increases as the demand correlation ρ increases. This trend under partially flexible

resources is consistent with literature that considers completely flexible resources (e.g.,

Lus and Muriel 2009, Goyal and Netessine 2007). Lus and Muriel (2009) showed that

as ρ increases the optimal profit increases (or decreases) under high (or low) product

substitutability b. In their model, flexibility was highly valuable under low product

substitutability but also incurred a higher investment cost. With high values of b,

the price intercepts are generally highly correlated since customers are more sensitive

to product price changes which makes flexibility less valuable. In addition, Oi (1961)

showed that a firm using responsive pricing makes more money in the high demand

states than it loses in the low demand states. Hence, as ρ increases the probabilities

of both demands being high increases due to which the firm benefits from higher

expected profit. In our model, even when products are highly differentiated and under

negative demand correlation, the investment in flexibility is generally zero (CV=0.1
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and 0.2 cases). This is because if β∗ were to increase to produce say product 1

(with higher demand) on resource 2, it also implicitly reconfigures resource 1 (since

β∗1 = β∗2 = β∗), a very costly effort given the cost structure.

Our results on limited flexibility is also substantiated by Tang and Tomlin (2009)

who argue that “The higher the degree of flexibility required the more costly the

investment and, therefore, the more likely it is that a precise ROI analysis will be

required to justify the investment. The fact that a relatively low degree of flexibility

is often sufficient may enable managers to justify flexibility investments more readily,

even if precise estimates of costs, impacts, and likelihoods are not available.”

4.4.2 Impacts of Capacity Uncertainties

Next we investigate the optimal investment decisions when the firm faces capacity

uncertainties. The results are shown in Table 4.2.

Our study reveals that: (1) A moderate degree of flexibility hedges the firm against

high capacity uncertainty (CV=0.4) only under negative demand correlation and low

product substitutability. Flexibility is generally unnecessary when capacity uncer-

tainty is low. (2) The total capacity investment K∗t and the profit increase with ρ.

This trend is also observed in Table 4.1 under only demand uncertainty. (3) For a

fixed b, the total capacity investment K∗t increases as capacity uncertainty increases.

The profit, however, decreases with the capacity uncertainty, which is different from

Table 4.1.

When the degree of capacity uncertainties is low or moderate, no degree of flex-

ibility is required because there is always a certain amount of realized capacity still

available for each product. An increased investment in cheaper dedicated capacities

in planning stage ensures that the firm has enough realized capacity in the selling

stage. As product substitutability b increases, the firm can also adjust the prices to

match the demands for the two products with the available capacities. Investing in

61



Table 4.2: Impacts of Capacity Uncertainties

CV=0.1 CV=0.2 CV=0.4

ρ b K∗t β∗ Profit K∗t β∗ Profit K∗t β∗ Profit

-0.5 0 5414 0.001 58478 5528 0.04 58177 5662 0.49 57071

0.2 4416 0.001 48368 4520 0.001 48137 4830 0.13 47188

0.4 3714 0.001 41318 3798 0.001 41136 4086 0.001 40395

0.6 3194 0.001 36060 3266 0.001 35912 3508 0.001 35324

0.8 2804 0.001 32030 2864 0.001 31907 3074 0.001 31432

0 0 5428 0.001 58514 5564 0.001 58211 5826 0.33 57021

0.2 4448 0.001 48440 4550 0.001 48210 4896 0.001 47253

0.4 3768 0.001 41471 3848 0.001 41291 4128 0.001 40554

0.6 3256 0.001 36164 3322 0.001 36021 3556 0.001 35441

0.8 2872 0.001 32157 2926 0.001 32041 3126 0.001 31577

0.5 0 5414 0.001 58477 5552 0.001 58175 5934 0.17 56922

0.2 4460 0.001 48481 4560 0.001 48251 4904 0.001 47295

0.4 3802 0.001 41592 3880 0.001 41414 4154 0.001 40679

0.6 3302 0.001 36262 3364 0.001 36122 3590 0.001 35547

0.8 2924 0.001 32275 2974 0.001 32162 3170 0.001 31705

additional capacities is relatively cheaper than improving the flexibility for the whole

resource capacity.

When facing high capacity uncertainties, the firm invests in moderate flexibility

in both resources. As risk increases, the firm simultaneously increases both β∗ and

K∗i in the planning stage to compensate for the capacity loss during production. The

firm can transfer capacity from the product with low demand to the product with

higher demand through cross-production. Further, with low b, responsive pricing is

not a viable strategy and hence demand switching is ineffective.

Despite the increase in the overall capacity investment, the firm’s profit decreases
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as the capacity uncertainty increases. This trend is different from Table 4.1 and the

literature where the total capacity and the profit increase under only demand uncer-

tainty. Under capacity uncertainties, only a proportion of the invested capacities is

available in the production stage. As the capacity uncertainty increases, the capacity

available and hence the production quantities decrease, and thus the firm’s revenue

decreases.

4.4.3 Impacts of Supply Disruptions

Now we investigate the impact of supply disruptions on the capacity and flexibility

decisions by modeling Θ1 and Θ2 with Bernoulli random variables. To reflect the

increasing level of uncertainty in supply disruptions, we increase the probabilities

of scenarios with disruption. Table 4.3 shows the optimal capacities, the flexibility

levels, and the profits for a firm facing capacity disruptions.

From Table 4.3 we find that: (1) Under moderate or high supply disruptions, the

firm invests in a high degree of flexibility making cross-production an excellent risk

hedging strategy for all levels product demand correlations. Under a low degree of

supply disruption the firm invests in flexibility only when the two products are not

substitutable to each other, i.e., b = 0 and the demand correlations are low. (2) For

a fixed b, total capacity investment K∗t increases as supply disruption risk increases.

However, the optimal expected profit decreases. (3) When the two products are not

substitutable to each other, the firm’s profit decreases as the demand correlation

increases. However, with higher levels of product substitutability, the profit increases

with the demand correlation.

The nature of uncertainty plays a key role in determining if flexibility is desirable

or not. The risk is more severe under 0-1 disruptions than under capacity uncertain-

ties, and the firm responds by investing in higher level of flexibility. As the level of

disruption increases, the optimal expected profit decreases while the total capacity
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Table 4.3: Impacts of Supply Disruptions

CV=0.1 CV=0.2 CV=0.4

ρ b K∗t β∗ Profit K∗t β∗ Profit K∗t β∗ Profit

-0.5 0 2644 0.8 60845 2748 0.99 59932 4022 0.99 57575

0.2 2344 0.001 50268 2368 0.99 49492 3350 0.99 47536

0.4 1982 0.001 42971 2028 0.99 42031 2872 0.99 40534

0.6 1706 0.001 37509 1778 0.001 36814 2512 0.99 35302

0.8 1488 0.001 33318 1578 0.001 32780 2086 0.001 31155

0 0 2754 0.66 60789 2854 0.99 59903 4034 0.99 57578

0.2 2362 0.001 50356 2372 0.99 49527 3356 0.99 47555

0.4 2008 0.001 43149 2038 0.99 42349 2878 0.99 40660

0.6 1739 0.001 37649 1808 0.001 36956 2516 0.99 35406

0.8 1534 0.001 33486 1620 0.001 32960 2098 0.001 31311

0.5 0 2865 0.001 60705 2924 0.99 59790 4048 0.99 57391

0.2 2366 0.001 50400 2430 0.99 49524 3368 0.99 47562

0.4 2025 0.001 43286 2068 0.001 42339 2890 0.99 40745

0.6 1764 0.001 37771 1828 0.001 37078 2526 0.99 35494

0.8 1566 0.001 33635 1646 0.001 33114 2110 0.001 31446

investment increases. This is similar to the capacity uncertainty case except that the

firm does not invest in any degree of flexibility in Table 4.2, whereas it invests in

complete flexibility under the risk of disruptions. This can be explained as follows:

As the disruption levels increase, the probability of both resources being up (1,1)

decreases. In addition, due to the disruptions of the resources being independent

Bernoulli random variables, the probability of only one resource being down, (0,1) or

(1,0), increases faster than that of both resources being down, (0,0). Thus the firm

invests in a high degree of flexibility in both resources in the planning stage.

In the production stage, when one resource is disrupted completely, then the firm
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is left with no other choices but to produce the two products from the other resource.

Without resource flexibility, more capacity cannot provide more help. As ρ increases,

the probability of higher demand realizations of both products increase. If resource

flexibility levels are very low, then the firm would end up selling mostly only one

product although market potentials are high for both products. If, however, the

other resource has a sufficient capacity and with a high flexibility level, the firm can

produce a substantial amount of both products. Hence in the cross-production model,

flexibility is beneficial even with positively correlated demands.

Our results on the value of flexibility under 0-1 disruptions are very different

from Tomlin and Wang (2005). In their research, the firm’s preference for flexibility

decreased as resource investments became less reliable and the firm leaned more

toward utilizing the dedicated capacities. Also, as demands became more negatively

correlated flexibility preference increased in general. In our cross-production model,

as the failure probabilities of the resources increased, flexibility was highly preferred

due to reasons stated above. Furthermore, accounting for the degree of product

substitutability, we find that flexibility is not beneficial when the value of b is very

high under any level of disruption even when product demands are highly negatively

correlated.

To summarize, under supply disruptions, flexibility is a potent tool in spite of

its higher investment cost. This is in contrast to results considering just demand

uncertainties (see for e.g., Lus and Muriel 2009, Goyal and Netessine 2010). Further,

the optimal profit decreases as the capacity uncertainty (Table 4.2) or the disruption

risk increases (Table 4.3) as compared to the demand variability case (Table 4.1). The

nature of capacity risk faced by a firm plays a key role in evaluating the effectiveness

of the hedging strategies. Cross production is not a viable strategy under low demand

or capacity uncertainties and when the product substitutability is very high. When

the firm faces low demand or capacity uncertainties, it is better off adjusting the
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prices than reconfiguring its resources.

4.4.4 Impact of Pricing

In this section we examine the firm’s optimal capacity and flexibility decisions without

responsive pricing. Specifically, the firm decides on capacity levels (K1, K2) and

reconfiguration factor β in Stage I where product prices (p1, p2) are exogenous. Table

4.4 summarizes optimal total capacities, flexibility levels and expected profit for a

firm facing increasing capacity uncertainties.

Table 4.4: Impact of Capacity Uncertainties under No Responsive Pricing

CV=0.1 CV=0.2 CV=0.4

ρ b K∗t β∗ Profit K∗t β∗ Profit K∗t β∗ Profit

-0.5 0 10922 0.19 51061 11811 0.94 48363 16733 0.99 42354

0.2 9018 0.19 42566 9751 0.94 40339 13814 0.99 35377

0.4 7804 0.19 36409 8439 0.94 34482 11956 0.99 30188

0.6 6785 0.19 31883 7337 0.94 30207 10395 0.99 26474

0.8 6058 0.19 28328 6551 0.94 26832 9281 0.99 23498

0 0 10922 0.19 51061 11811 0.94 48363 16733 0.99 42354

0.2 9018 0.19 42520 9751 0.94 40293 13814 0.99 35331

0.4 7804 0.19 36421 8439 0.94 34494 11956 0.99 30200

0.6 6785 0.19 31843 7337 0.94 30168 10395 0.99 26434

0.8 6058 0.19 28325 6551 0.94 26829 9281 0.99 23496

0.5 0 10922 0.19 51061 11811 0.94 48363 16733 0.99 42354

0.2 9018 0.19 42492 9751 0.94 40265 13814 0.99 35304

0.4 7804 0.19 36436 8439 0.94 34509 11956 0.99 30215

0.6 6785 0.19 31819 7337 0.94 30144 10395 0.99 26410

0.8 6058 0.19 28324 6551 0.94 26828 9281 0.99 23494

When the degree of capacity uncertainties is low (CV=0.1) the average ex ante
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capacity investment is about 52% higher and average profit is 14% lower than cor-

responding values in Table 4.2. When capacity yield is highly uncertain (CV=0.4)

the average capacity investment in Table 4.4 is about 66% higher and average profit

is 34% lower than corresponding (average) values in Table 4.2. The firm without

responsive pricing invests in a very high degree of flexibility for all levels of capacity

uncertainties under any demand correlation ρ. In addition, β does not change with

b and remains constant for all levels of product substitutability. Recall that as b

increases the price premiums of the two products tend to be closer to each other and

hence it was inexpensive to shift demand through pricing making flexibility less desir-

able under responsive pricing. However, faced with exogenous prices, the firm invests

in higher levels of reconfiguration under all levels of b (and ρ) which undermines its

overall expected profit. These results clearly indicate that responsive pricing is a very

potent tool to mitigate demand uncertainties, capacity uncertainties as well as supply

disruptions.

4.4.5 Sensitivity to Flexibility Cost

We now investigate the sensitivity of the investment decisions in Sections 4.4.1-4.4.3

to unit capacity cost g and the relative cost of cross-production i.e, g3/g. In the

interest of space, we report the key results of this analysis in Table 4.5 only for the

0-1 disruption case with CV=0.4 while summarizing the results for other cases below.

For the firm facing low demand uncertainties we find that for a fixed g as g3/g

increases total capacity K∗t remains unchanged while the profit decreases. However,

when demand uncertainty is high, K∗t increases as cost of flexibility increases. This

is not surprising given that the firm does not invest in any degree of flexibility when

demand uncertainty is low (Table 4.1). The firm invests in flexibility only under

high demand uncertainty and when the cost of flexibility investment increases, it

mitigates demand uncertainties by increasing the capacity investment. We also note
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that when dedicated capacity cost g increases the firm’s optimal price increases as

the firm uses responsive pricing to maintain its margins as opposed to increasing its

flexibility investment.

The investment decision of the firm facing capacity uncertainties is very similar

to the case of demand uncertainties described above. For a fixed g, as g3/g increases,

only under high capacity uncertainty does K∗t increase and expected profit decrease.

This is because the firm does not invest in any degree of flexibility under low capacity

uncertainties (Table 4.2) and relies on responsive pricing to mitigate capacity risk.

While the capacity investment trends of the firm facing low degree of supply

disruptions are similar to the demand and capacity uncertainty cases, it is completely

reversed under high levels of 0-1 disruptions. Table 4.5 presents a snapshot of the

results under negatively correlated demands (ρ = −0.5) for different values of g with

a disruption CV of 0.4. For a given g, the firm’s total capacity K∗t decreases as

relative cost of flexibility increases. Recall that when the probability of disruption

increases, the probability of one of the resources being down (0,1) and (1,0) increases

faster than that of both resources (0,0). If the resource producing the product with

a higher demand survives, a higher capacity of this resource may benefit the firm.

However, a lower capacity level can be managed through responsive pricing mitigating

the cost of under-investment. If the resource producing the product with a lower

demand survives then without a high level of flexibility a higher capacity of this

resource alone cannot produce the more popular product. Consequently, the cost of

over-investment in the latter case (added with increased flexibility cost) dominates

the under-investment cost inducing the firm to invest less in overall capacity levels.

4.5 Summary

This chapter examines the interplay between the cost of investing in flexibility, the effi-

ciency loss due to cross-production as well as the responsive pricing for substitutable
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Table 4.5: Impact of cost under ρ = −0.5 and 0-1 disruption CV=0.4

g3/g = 0.1 g3/g = 0.3 g3/g = 0.5

g b K∗t β∗ Profit K∗t β∗ Profit K∗t β∗ Profit

1 0 4108 0.99 57977 3938 0.99 57180 3772 0.99 56417

0.2 3420 0.99 47869 3280 0.99 47205 3140 0.99 46570

0.4 2930 0.99 40820 2810 0.99 40251 2692 0.001 38766

0.6 2564 0.99 35555 2458 0.99 35057 2354 0.001 34468

3 0 2670 0.99 50829 2568 0.99 49276 2510 0.001 47057

0.2 2222 0.99 41919 2136 0.99 40626 2114 0.001 39931

0.4 1906 0.99 35719 1848 0.001 34796 1848 0.001 34793

0.6 1666 0.99 31093 1648 0.001 30825 1648 0.001 30823

5 0 2390 0.99 45312 2308 0.001 42254 2308 0.001 42252

0.2 1990 0.99 37326 1944 0.001 35887 1942 0.001 35885

0.4 1706 0.99 31781 1688 0.001 31269 1688 0.001 31268

0.6 1494 0.001 27699 1494 0.001 27697 1494 0.001 27684

7 0 2220 0.99 40252 2146 0.001 37806 2146 0.001 37803

0.2 1848 0.99 33113 1810 0.001 32137 1810 0.001 32135

0.4 1584 0.99 28169 1572 0.001 28010 1572 0.001 28008

0.6 1392 0.001 24816 1392 0.001 24814 1392 0.001 24813

products. We model a firm producing two products with two partially flexible re-

sources and facing three types of uncertainties separately: demand uncertainty, yield

uncertainty, and supply disruptions. The firm can choose the level of resource flexi-

bility in the investment stage. The higher flexibility level, the less efficiency loss will

be incurred when switching a resource for one product to produce another product.

We investigate how the type and severity of the uncertainties affect capacity invest-

ment and resource reconfiguration decisions. The impacts of demand correlation and

product substitutability on the firm’s investment decisions are also examined.

A firm facing demand or yield uncertainties does not benefit much by investing in
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resource flexibility. Investing in additional dedicated capacities is relatively cheaper

than improving the flexibility for the whole resource capacity. There is a certain

amount of capacity available for each resource, and the firm can mitigate the impact

of demand and capacity uncertainties through responsive pricing. So flexibility is not

very valuable.

When the firm faces supply disruptions, however, flexibility becomes extremely

valuable. This is because, in the 0-1 disruption case, when one resource is completely

unavailable, a higher flexibility level of the other resource ensures that demands for

both products are met in conjunction with pricing. This is true irrespective of the

nature of demand correlation. Hence one product does not completely cannibalize

the other product and the firm can sell both products while mitigating the impact

of disruption through pricing. Even though investment in flexibility is costly, it is an

effective hedging strategy under severe capacity disruptions.
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CHAPTER 5

CAPACITY, FLEXIBILITY AND PRICING DECISIONS UNDER

CROSS-PRODUCTION: THE ADDITIONAL COST MODEL

5.1 Introduction

In Chapter 4 we studied one form of efficiency loss in cross-production through explicit

modeling of the partial flexibility factor. Partial flexibility implies that fewer units of a

product will be produced if a resource originally specialized for one type of product is

switched to produce another type (i.e., many-to-one mapping). Even if the dedicated

resource can produce all units of another product (i.e., one-to-one mapping) there

may be an increase in unit production cost during cross-production. This additional

cost may be caused by machine reconfiguration, additional manufacturing processes,

changeover cost, overtime working, or extra training for workers. Li et al. (2014)

cite examples of wafer manufacturing and testing units at Intel where retro-fitting is

usually done at a much higher expense to produce the newer or more popular product.

In this chapter we model the trade-off between investing in costly flexibility in the

planning stage and incurring additional production cost in the selling stage. Specifi-

cally, if the degree of flexibility invested in Stage I is higher then the additional cost

of cross-production incurred in Stage II is lower. The firm faces uncertain demand in

Stage I and may also face capacity uncertainties or 0-1 type resource disruptions in

Stage II.

The rest of the chapter is organized as follows. A two-stage optimization model

with additional production cost is formulated in Section 5.2 and its solutions and

analytical properties are derived in Section 5.3. Section 5.4 presents the numerical
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analysis to obtain managerial insights into the impacts of uncertainties and resource

investment costs on the optimal capacity and flexibility investment decisions. Finally,

Section 5.5 concludes the chapter.

5.2 Model

We model a price-setting firm manufacturing two products, i and j. Demands are ob-

served before production and the inverse demand curve for the products are assumed

to be linear and of the form pi = Ai − Qi − bQj and pj = Aj − Qj − bQi. (Ai, Aj)

are the demand curve intercepts that indicate the customer’s willingness-to-pay and

(Qi, Qj) are production quantities for products i and j sold by the firm that sets prices

(pi, pj). The parameter b ∈ [0, 1] is called the product substitutability parameter and

indicates that the demand for a product (say i) increases with increase in the price of

product j. In Stage I (Ai, Aj) are random variables from a bi-variate continuous dis-

tribution F (., .) with density function Ψ(., .). The mean of the marginal distribution

is denoted by µi and µj and the variance by σ2
i , σ

2
j , for products i and j, respectively.

Using ρ ∈ [−1, 1] as the correlation coefficient, the covariance of the joint distribution

is σ12 = ρσ1σ2. We denote the total demand uncertainty of the two produces by

σ2
T = σ2

1 + σ2
2 − 2ρσ1σ2. In Stage II the firm observes the demand realizations (ai, aj)

after the uncertainty in market conditions is resolved but before production begins.

We denote cij as the additional unit production cost incurred if resource j is used

to produce product i and C = (c1, c2)′. In some parts of the research to simplify

the exposition we use a symmetric cost c=c1=c2 without losing any insights. Let Π̃

denote the expected profit in Stage I and R̃ denote the revenue in Stage II. We also

assume c >g3 i.e., the cross-production cost in Stage II is higher than the flexibility

investment cost in Stage I. Otherwise the firm will not invest in flexibility as it may

never be used. The two-stage decision problem for the firm can be formulated as

follows:
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Stage I : Π̃ = max E [R̃(K̄1, K̄2, f)]−
∑
i=1,2

giK̄i − g3(K̄1 + K̄2)f (5.1)

subject to : K̄1, K̄2 ≥ 0

0 ≤ f ≤ 1

Stage II : R̃ = max [pQ]− ((Q−K)+)′c(1-f) (5.2)

subject to : Q1 +Q2 ≤ K1 +K2

Q1, Q2 ≥ 0

where K̄1 and K̄2 are the capacity invested, and g1 and g2 are the unit capacity costs.

Note that if the firm does not invest in any flexibility (i.e., f=0) then it incurs an

additional cost c to cross-produce in Stage II. As flexibility investment increases the

effect of additional cost decreases and under full flexibility(f=1) there is no additional

cost.

A key difference between this model and the Shrinking Capacity model in Chapter

4 is that here if the firm did not invest in any flexibility in Stage I (f=0), it can still

use cross-production in Stage II although at a much higher cost. However, if β=0 in

that formulation, the Shrinking Capacity model reduces to a pure dedicated system

and hence cannot use any cross-production in Stage II.

In Stage I the firm selects its capacities K̄1 and K̄2, and the degree of flexibility

f under demand uncertainties. In Stage II the firm selects the production quanti-

ties (Q1, Q2) constrained by the capacity and flexibility decisions in Stage I and the

additional production cost in Stage II. This model captures the investment trade-off

between cost savings in the capacity planning stage to higher cross-production cost

in the production stage. In Stage I, the firm decides on the optimal flexibility level

and maximizes its expected revenue. In this stage, the firm incurs a cost to invest in

flexibility g3(K̄1 + K̄2)f which is incremental in the capacity levels. Specifically, g3
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is incurred in addition to unit cost of capacity g1 or g2 and to avoid trivialities we

also assume that the cost of a fully flexible resource (f=1) is greater than the unit

investment cost of a dedicated resource but is lesser than the cost of two units of the

dedicated resource.

At the beginning of Stage II, the market potentials, A1 and A2, and the available

capacities, K1 = θ1K̄1 and K2 = θ2K̄2, are realized. In the numerical analysis in

Section 5.4 the resource uncertainty factor Θi follows a Normal distribution in the

capacity uncertainty case and is modeled as a Bernoulli Random Variable in the

supply disruption case. In Stage II, the firm makes production decisions to maximize

its profit.

5.3 Analytical Results

In this section we analyze the Stage II and Stage I decisions of the firm with additional

production cost. We first start by describing the solution methodology.

5.3.1 Solution Methodology

We solve the two stage problem by first solving the Stage II formulation subject to

capacity constraints. The solution methodology employed for the Additional Cost

model is very similar to the methodology described in Section 4.3 for the Shrinking

Capacity model. The Stage II decision variables Q1 and Q2 are functions of demand

realizations (a1, a2), available capacities (K1,K2), degree of flexibility (f) as well as

product substitutability b. We note here that under only demand uncertainties the

firm does not face any resource supply uncertainties and the invested capacities in

Stage I (K̄1, K̄2) are the same as the available capacities K1, K2 in Stage II. For

clarity we hence use K1 and K2 as the capacity decision variables in Stage I under

only demand uncertainties.

The Stage II objective function could have three possible forms under different
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scenarios: (1) If Q1 ≤ K1 and Q2 ≤ K2, i.e., no cross-production is required, no

additional cost is incurred; (2) If Q1>K1 and Q2 <K2, an additional production

cost c1 is incurred for each unit of product 1 that is produced using resource 2;

(3) If Q2>K2 and Q1 <K1, an additional cost c2 is incurred. The demand space

can be partitioned into 10 different regions where each region belongs to one of the

scenarios. The partition of the feasible region enables us to solve the individual

optimization problems and obtain closed form solutions to the production quantities

in many regions using KKT conditions. At some boundaries when the objective

function is non-differentiable, we have either Q1 = K1 or Q2 = K2. The Stage

II problem can then be solved at those boundaries without using KKT optimality

conditions.

The three scenarios (10 cases) corresponding to the three different forms of the

Stage II objective function are described below:

Scenario 1: We have Q1 ≤ K1 and Q2 ≤ K2. This leads to four possible cases:

• Case (1): The demand realizations of both the products are so low that the

firm does not use up even the available dedicated capacities. Q1 < K1 and

Q2 < K2. Notice that the objective function is devoid of the cross production

terms and the unconstrained solution is optimal.

• Case (2): The demand for product 1 is high enough to use its dedicated

capacity completely while demand for product 2 is lower than its available

capacity. Q1 = K1 and Q2 < K2. No cross-production is required and hence

the objective function does not contain any of the (Qi −Ki)
+ terms, i=1, 2.

• Case (3): This case is symmetric to Case 2: The demand for product 2 is high

enough to use its dedicated capacity completely while demand for product 1 is

lower than its available capacity. Q1 < K1 and Q2 = K2. No cross-production is

required and hence the objective function does not contain any of the (Qi−Ki)
+
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terms, i=1, 2.

• Case (4): When demand realizations for both products are very high then

cross production does not benefit either product. The firm simply produces

up capacity levels for both products and Q1 = K1 and Q2 = K2. Since no

cross-production is required we still do not incur any additional cost and the

objective function does not contain any of the (Qi −Ki)
+ terms, i=1, 2.

Scenario 2: We have Q1>K1 as the demand for product is is relatively high

compared to demand for product 2, Q2 <K2. This leads to three possible cases as

the firm incurs additional production cost c1:

• Case (1): Cross-production cost c1 is incurred as Q1>K1. However demand

for product 2 is very low and total capacity is not used by the firm i.e., Q1 +

Q2 < K1 +K2. The Stage II objective function includes the cross-cost term for

resource 1 and the revenue is denoted by R̃ = p1Q1 +p2Q2−(Q1−K1)c1(1−f).

• Case (2): Demand for product 1 is such that the firm uses all its available

capacities Q1 + Q2 = K1 + K2 while still cross-producing product 1. Demand

for product 2 is low enough to not use its entire dedicated capacity and hence

the Stage II objective function only includes the cross-cost term for resource 1

similar to Case 1 in this scenario.

• Case (3): The demand realization of product 1 is so high relative to product

2 that the firm decides to allocate capacity K2 to produce only product 1.

Cross-production cost c1 is incurred as Q1>K1 but in this case Q2=0 while

Q1 +Q2 = K1 +K2.

Scenario 3: This scenario is symmetric to Scenario 2 where demand realization

of product 2 is higher than that of product 1. We have Q1<K1 and Q2 >K2. This

leads to three possible cases as the firm incurs additional production cost c2:
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• Case (1): Cross-production cost c2 is incurred as Q2>K2. However demand

for product 1 is very low and total capacity is not used by the firm i.e., Q1 +

Q2 < K1 +K2. The Stage II objective function includes the cross-cost term for

resource 2 and the revenue is denoted by R̃ = p1Q1 +p2Q2−(Q2−K2)c2(1−f).

• Case (2): Demand for product 2 is such that the firm uses all its available

capacities Q1 + Q2 = K1 + K2 while still cross-producing product 2. Demand

for product 1 is low enough to not use its entire dedicated capacity and hence

the Stage II objective function only includes the cross-cost term for resource 2

similar to Case 1 in this scenario.

• Case (3): The demand realization of product 2 is so high relative to product

1 that the firm decides to allocate capacity K1 to produce only product 2.

Cross-production cost c2 is incurred as Q2>K2 but in this case Q1=0 while

Q1 +Q2 = K1 +K2.

For each of the cases described above under the three scenarios we next mathe-

matically define the feasible regions and proceed to solve the Stage II and Stage I

problems.

5.3.2 Stage II Optimal Production Quantities

Since the objective function of the Stage II problem is jointly concave in Q1 and Q2

and the constraint is linear, the first order KKT conditions are necessary and sufficient

for optimality. At boundaries (regions Ω2,Ω3,Ω8) where the objective function is non-

differentiable, we have either Q1 = K1 or Q2 = K2 or Q1 = K1 and Q2 = K2 . The

Stage II problem can then be solved in those regions without using KKT optimality

conditions.

The constraint can be binding /non-binding in ten different combinations and

hence the state space of A is partitioned into ten regions, each corresponding to one
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of these combinations. Imposing the conditions A1−bA2 ≥ 0, A2−bA1 ≥ 0 to enforce

positive demand realizations (see, e.g., Singh and Vives 1984), the demand regions

are shown in Figure 5.1-Left.

The corresponding optimal production quantities are shown in Figure 5.1-Right.

Ω1
Ω2

Ω3

Ω4

Ω5

Ω6

Ω7

Ω10

Ω8

Ω9

Q2

State space of (A1, A2)

A2

Space of output vector (Q1, Q2)

A1 Q1
K1

K2

K1+K2

K2+K1

2K1

2K2

2K1+c1 2(K1+K2)+c1

2K2+c2

2(K1+K2)+c2

Figure 5.1: Mapping of the state space of A into the output space for b = 0 case
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The demand regions are defined as follows:

Ω1 : 0 ≤ a1 − ba2 ≤ 2(1− b2)K1, 0 ≤ a2 − ba1 ≤ 2(1− b2)K2;

Ω2 : 2(1− b2)K1 ≤ a1 − ba2 ≤ 2(1− b2)K1 + c1(1− f), a2 ≤ 2(K2 + bK1);

Ω3 : 2(1− b2)K2 ≤ a2 − ba1 ≤ 2(1− b2)K2 + c2(1− f), a1 ≤ 2(K1 + bK2);

Ω4 : a1 − ba2 > 2(1− b2)K1 + c1(1− f), a1 + a2 ≤ 2(1 + b)(K1 +K2) + c1(1− f);

Ω5 : a2 − ba2 > 2(1− b2)K2 + c2(1− f), a1 + a2 ≤ 2(1 + b)(K1 +K2) + c2(1− f);

Ω6 : a1 + a2 > 2(1 + b)(K1 +K2) + c1(1− f),

2(1− b)(K1 −K2) + c1(1− f) < a1 − a2 ≤ 2(1− b)(K1 +K2) + c1(1− f);

Ω7 : a1 + a2 > 2(1 + b)(K1 +K2) + c2(1− f),

2(1− b)(K2 −K1) + c2(1− f) < a2 − a1 ≤ 2(1− b)(K1 +K2) + c2(1− f);

Ω8 : a1 ≥ 2(bK2 +K1), a2 ≥ 2(bK1 +K2),

2(1− b)(K1 −K2)− c2(1− f) ≤ a1 − a2 ≤ 2(1− b)(K1 +K2) + c1(1− f);

Ω9 : a1 − a2 > 2(1− b)(K1 +K2) + c1(1− f);

Ω10 : a2 − a1 > 2(1− b)(K1 +K2) + c2(1− f);

The following theorem characterizes the optimal solution of the Stage II problem.

Theorem 5.1 Given the realizations of the market potentials (a1, a2) and the invest-

ment vector (K1, K2, f), the optimal production quantities for the Stage II problem
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are given as follows:

Ω1 : Q1 =
a1 − ba2

2(1− b2)
, Q2 =

a2 − ba1

2(1− b2)
;

Ω2 : Q1 = K1, Q2 =
a2

2
− bK1;

Ω3 : Q1 =
a1

2
− bK2, Q2 = K2;

Ω4 : Q1 =
a1 − ba2 − c1(1− f)

2(1− b2)
, Q2 =

a2 − ba1 + bc1(1− f)

2(1− b2)
;

Ω5 : Q1 =
a1 − ba2 + bc2(1− f)

2(1− b2)
, Q2 =

a2 − ba1 − c2(1− f)

2(1− b2)
;

Ω6 : Q1 =
K1 +K2

2
+
a1 − a2 − c1(1− f)

4(1− b)
, Q2 =

K1 +K2

2
− a1 − a2 − c1(1− f)

4(1− b)
;

Ω7 : Q1 =
K1 +K2

2
− a2 − a1 − c2(1− f)

4(1− b)
, Q2 =

K1 +K2

2
+
a2 − a1 − c2(1− f)

4(1− b)
;

Ω8 : Q1 = K1, Q2 = K2;

Ω9 : Q1 = K1 +K2, Q2 = 0;

Ω10 : Q1 = 0, Q2 = K1 +K2;

Please refer to Appendix C for all the proofs in this chapter.

In each region, by solving the Stage II problem, the optimal revenue Ri(a1, a2)
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equals,

Ω1 : R1 =
a2

1 + a2
2 − 2ba1a2

4(1− b2)
;

Ω2 : R2 =
a2

2

4
+ (a1 − ba2)K1 − (1− b2)K2

1 ;

Ω3 : R3 =
a2

1

4
+ (a2 − ba1)K2 − (1− b2)K2

2 ;

Ω4 : R4 =
a2

1 + a2
2 − 2a1(a2b+ c1(1− f)) + c1(1− f)(c1(1− f) + 4K1 + 2b(a2 − 2bK1))

4(1− b2)
;

Ω5 : R5 =
a2

1 + a2
2 − 2a2(a1b+ c2(1− f)) + c2(1− f)(c2(1− f) + 4K2 + 2b(a1 − 2bK2))

4(1− b2)
;

Ω6 : R6 =
a2

1

8(1− b)
+

a2
2

8(1− b)
+
a2(c1(1− f) + 2(1− b)(K1 +K2))

4(1− b)

+
c2

1(1− f)2 + 4(1− b)c1(1− f)(K1 −K2)− 4(1− b2)(K1 +K2)2

8(1− b)

−a1(a2 + c1(1− f)− 2(1− b)(K1 +K2))

4(1− b)
;

Ω7 : R7 =
a2

1

8(1− b)
+

a2
2

8(1− b)
− a2(c2(1− f)− 2(1− b)(K1 +K2))

4(1− b)

+
c2

2(1− f)2 − 4(1− b)c2(1− f)(K1 −K2)− 4(1− b2)(K1 +K2)2

8(1− b)

−a1(a2 − c2(1− f)− 2(1− b)(K1 +K2))

4(1− b)
;

Ω8 : R8 = a1K1 + a2K2 − (K2
1 +K2

2 + 2bK1K2);

Ω9 : R9 = (a1 − (K1 +K2))(K1 +K2)−K2(c1(1− f));

Ω10 : R10 = (a2 − (K1 +K2))(K1 +K2)−K1(c2(1− f));

5.3.3 Stage I Optimal Capacity and Flexibility Investment

Using the above results, we now analyze the firm’s optimal capacity investment port-

folio (K1, K2, f) in Stage I. To simplify the exposition we assume that the firm invests

in capacity K=K1=K2. Our analytical insights are unaffected by this assumption as

shown by our numerical studies.

Lemma 5.1 The Stage I objective function Π̃ is strictly jointly concave in (K1, K2, f)
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Hence, the following theorem provides the necessary and sufficient conditions for

the optimal capacity investment portfolio (K1, K2, f).

Theorem 5.2 The Stage I optimal capacity investment vector (K1, K2, f) is opti-

mal if and only if the Lagrangian multipliers given by νi and τ exist and satisfy the

following conditions:

∂Π̃(K1,K2, f)

∂Ki
= gi − νi for i ∈ {1, 2}, (5.3)

∂Π̃(K1,K2, f)

∂f
= g3 − τ, (5.4)

Kiνi = 0, for i ∈ {1, 2}, (5.5)

(1− f)τ = 0. (5.6)

Hence, conditioning on (A1, A2), we obtain,
g1 + g3f − ν1

g2 + g3f − ν2

g3(K1+K2)
2f + τ

 =Pr(Ω2)E


A1 − bA2 − 2(1− b2)K1

0

0



+ Pr(Ω3)E


0

A2 − bA1 − 2(1− b2)K2

0



+ Pr(Ω4)E


c1(1− f)

0

c1[A1−bA2−c1(1−f)−2K1(1−b2)]
4(1−b2)f



+ Pr(Ω5)E


0

c2(1− f)

c2[A2−bA1−c2(1−f)−2K2(1−b2)]
4(1−b2)f
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+ Pr(Ω6)E


[A1+A2+c1(1−f)−2(1+b)(K1+K2)]

2

[A1+A2−c1(1−f)−2(1+b)(K1+K2)]
2

c1[A1−A2−c1(1−f)−4(1−b)(K1+K2)]
2



+ Pr(Ω7)E


[A1+A2−c2(1−f)−2(1+b)(K1+K2)]

2

[A1+A2+c2(1−f)−2(1+b)(K1+K2)]
2

c2[A2−A1−c2(1−f)−4(1−b)(K1+K2)]
2



+ Pr(Ω8)E


A1 − 2(K1 + bK2)

A2 − 2(K2 + bK1)

0



+ Pr(Ω9)E


A1 − 2(K1 +K2)

A1 − 2(K1 +K2)− c1(1− f)

c1K2
2f



+ Pr(Ω10)E


A2 − 2(K1 +K2)− c2(1− f)

A2 − 2(K1 +K2)

c2K1
2f


5.3.4 Optimal solutions under clearance assumption

We now analyze the impact of the optimal capacity and flexibility investments using

the clearance assumption. We assume that the firm always produces to available

capacity Ki, i = 1, 2, irrespective of any demand intercept realization and that the

production quantities Qi, i = 1, 2 are always positive (please refer to Van Mieghem

and Dada 1999 for details on clearance and hold-back strategies). We derive closed

form expressions of optimal clearance capacities Ki, flexibility level f as well as ex-

pected profit to better understand the impacts of other parameters. Despite being

generally sub-optimal, an approximation of clearance can be solved in closed form

and analyzed for any demand distribution. We supplement the analytical solutions

with extensive numerical analysis to corroborate the insights gained from clearance.
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In our additional cost model, the clearance assumption for capacities K1, K2 is

satisfied naturally in regions Ω6, Ω7 and Ω8. However, since we are interested in

the optimal flexibility levels and region Ω8 is a pure dedicated solution (no flexibility

component or cross production cost c), we restrict our analysis to Ω6 (results for

region Ω7 can be easily derived as they are symmetric).

Theorem 5.3 Given g3, c=c1=c2, g=g1=g2 and b, the closed form solutions for op-

timal clearance capacities K̂i
∗
i ∈ 1, 2, optimal flexibility level f ∗ and total capacity

investment K̂1

∗
+K̂2

∗
=K̂t

∗
is given by

K̂1

∗
=
µ1 − bµ2

2(1− b2)
− g3

2c(1 + b)
[µ1 + µ2 + c− 2(g + g3)]− g

2(1 + b)

K̂2
∗

=
µ2 − bµ1

2(1− b2)
+

g3

2c(1 + b)
[µ1 + µ2 − (c+ 2(g + g3))]− g

2(1 + b)

f̂ ∗ = 1

K̂t

∗
=
µ1 + µ2 − 2(g + g3)

2(1 + b)

Some interesting insights can be derived from the above results.

Corollary 5.1 The total capacity investment K̂t

∗
increases with overall market size

µ1 + µ2.

Corollary 5.1 reveals that as total market size increases the firm gains by investing

in and hence selling a higher quantity of both products. The firm takes advantage of

the high demand state by pricing higher and hence gains through an overall higher

profit.

Corollary 5.2 K̂t
∗

decreases with product substitutability b

Corollary 5.2 shows that as products become less differentiated (high b) demand

can be managed through pricing and hence responsive pricing is more effective than

investing in higher capacity. Recall that consumers are less price-sensitive when

purchasing a unique item and more differentiated (less substitutable) products reach
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a larger customer base (see, e.g., Talluri and van Ryzin 2005). However, as b increases

the market sizes for the products overlap and hence results in lower effective total

market potentials. With overall lower market potentials the firm does not gain by

investing in higher capacities as they may go unused. Hence K̂t
∗

decreases with

product substitutability b.

We also note that K̂t
∗

decreases with unit cost of capacity (g) and flexibility

investment (g3). We also note that K̂t

∗
is independent of cross-production cost c

while K̂1
∗

and K̂2
∗

are dependent on c.

When the firm’s optimal portfolio includes flexibility investment (f > 0), clearance

suggests that it always invest in full flexibility. We note here that the actual solution

under clearance for flexibility is f̂ ∗=1 + g2−g1

c
in region Ω6, f̂ ∗=1 + g1−g2

c
in region

Ω7 or f̂ ∗=0 in region Ω8. Clearance is generally sub-optimal as the firm is forced to

utilize all it’s available capacities even by offering products at market clearing prices.

A lower total capacity level helps the firm to produce and sell what it may just need

thus deterring the firm from investing in cheaper dedicated capacities. Hence the firm

invests in a high degree of flexibility in the planning stage.

The above analysis also suggests that the clearance solution maybe closer to the

no-clearance optimal solution under negatively correlated demands. To verify this

and the other results we conduct a numerical analysis in Section 5.4.5 to compare the

solutions under clearance and no-clearance cases. While we observe that clearance is

closer to the optimal solution when demands are negatively correlated, investment in

full flexibility is recommended only when the relative cost of flexibility is cheap.

We next proceed to analyze the impact of parameters on on the optimal profit

under clearance. By plugging in the above solutions from Theorem 5.3 into the Stage

I profit function, we obtain the following characterization of the optimal profit under

clearance (Π̃c):

Theorem 5.4 Given g3, c=c1=c2, g=g1=g2 and b, total demand variability σ2
T =
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σ2
1 +σ2

2 − 2ρσ1σ2 and b, the optimal profit under the clearance assumption is given by

Π̃c =
(µ1 + µ2)2

8(1 + b)
− (µ1 + µ2)g3(c− 2g)

2c(1 + b)
+

(µ1 − µ2)(1 + 4g)

8(1− b)

+
σ2
T

8(1− b)
+
g3

3 − g2

2(1 + b)
+

2gg2
3 + 2g2g3

c(1 + b)

Our results on the impact of total market size (µ1 +µ2) on optimal profit is similar

to what was observed in Chapter 4: as total market size increases the firm’s profit also

increases. However, the presence of additional cross-production cost c plays a role in

moderating this benefit: under a low value of c (say, c=g), the component related to

market size is (µ1+µ2)2

8(1+b)
+ (µ1+µ2)g3

2(1+b)
. If, however, c is large (say, c=3g) then the market

size component becomes (µ1+µ2)2

8(1+b)
− (µ1+µ2)g3

6(1+b)
indicating that the firm experiences a

lower profit. We also observe here that a higher level of product substitutability b

lowers the effect of the market size. This is consistent with literature (for e.g., Goyal

and Netessine (2007)) because as products become closer substitutes the two markets

overlap more and the total market size becomes smaller.

Corollary 5.3 Π̃c increases with the difference in the market size µ1 − µ2.

Corollary 5.3 shows that profit also depends on the difference between the mar-

ket sizes µ1 − µ2 and the nature of product substitutability. When the total market

size µ1 + µ2 is held fixed, the firm prefers to maximize the difference in two market

sizes. Hence profit increases with difference in market sizes. The firm can now use

responsive pricing to charge higher prices for the product with the larger market to

compensate for the lower price for the product in the smaller market. A higher degree

of product substitutability b simply adds to this effect because an increase in demand

for one product decreases the demand for the other.
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Corollary 5.4 Π̃c increases with total demand variability σ2
T .

Corollary 5.4 shows that the optimal profit under clearance increases with total

demand variability σ2
T . As degree of demand uncertainty (variance) increases so does

the realization of high demand states. Oi (1961) showed that a firm using responsive

pricing makes more money in the high demand states than it loses in the low demand

states. Under clearance the firm always invests in full flexibility and hence it can

easily allocate capacity from one market to another enabling it to take advantage of

the higher demand states. A higher degree of substitutability b between the products

amplifies this effect benefitting the firm with a higher profit.

Our comprehensive numerical analysis in the next section reveals that a majority

of the insights derived from the solutions assuming clearance still hold in the general

case.

5.4 Numerical Analysis

We now investigate numerically how changes in the degree of the three types of

uncertainties viz., demand uncertainties (Section 5.4.1), capacity uncertainties (Sec-

tion 5.4.2) and 0-1 disruptions (Section 5.4.3) affect the capacity and flexibility in-

vestment decisions of the firm using cross-production. We also analyze the impact

of parameters such as demand correlation and the degree of product substitutability.

Finally, we also investigate the sensitivity of the investment decisions to increase in

the additional cost of cross-production (Section 5.4.4).

Experimental Design: We generate demand scenarios as described in Chapter 4

(Section 4.4) and hence avoid repetition. The cost of a unit of dedicated capacity for

each product (g1, g2) is 1 while the additional cost rate for the flexibility degree (g3)

is 0.2. The additional cost of cross-production c was set at 2 for the experiments on

increasing uncertainties. To study the impact of the additional cost c, we increase c

87



from 3 to 7 (relatively very high) and report results on the high demand uncertainty

(Coefficient of Variation CV=0.4), high capacity uncertainties (Normally distributed

uncertainties with CV=0.4) as well as high supply disruption scenarios (Bernoulli

RVs corresponding to CV=0.4).

5.4.1 Impacts of Demand Uncertainties

We study the impact of demand uncertainties modeled by increasing the CV of nor-

mally distributed product demands under different correlation scenarios. We also

consider the demand correlation, as it is a key factor influencing capacity investment

decisions in operational and financial hedging models (Chod et al. 2010). To com-

pare these results with capacity uncertainties, we restrict the capacities available in

the production stage to 0.5Ki, i = 1, 2. While this restriction affects the capacities

numerically it ensures that the investment trends, which is the major focus of this

research, are unaltered. In this scenario, we assume the firm does not face any yield

uncertainties or disruptions, i.e., θm1 = θm2 = 1.

The results for the demand uncertainty case shown in Table 5.1 reveal that: (1)

Flexibility is never preferred under any demand CV and under any demand corre-

lation ρ when relative cost of dedicated capacities is cheaper. (2) As the demand

CV increases, the total dedicated capacity investment K∗t and the optimal profits

increase. (3) With a fixed positive product substitutability b, total capacity K∗t and

the optimal profits increase with ρ. (4) As the product substitutability b increases,

the total capacities and the expected profits decrease.

The Additional Cost model shows that despite a moderate cost of flexibility (g3 =

0.2), flexibility is not recommended in any of the cases as shown in Table 5.1. The

firm prefers to incur the cost of cross-production rather than invest in flexibility.

These results also generally support the results from the Shrinking Capacity model

discussed in Chapter 4 (Table 4.1). In general, to cope with demand variability the
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Table 5.1: Impacts of Demand Uncertainties

CV=0.1 CV=0.2 CV=0.4

ρ b K∗t f∗ Profit K∗t f∗ Profit K∗t f∗ Profit

-0.5 0 4852 0.001 57752 5038 0.001 58875 5518 0.001 63693

0.2 4042 0.001 48024 4187 0.001 48585 4598 0.001 51595

0.4 3461 0.001 41099 3588 0.001 41424 3941 0.001 43322

0.6 3029 0.001 35984 3133 0.001 36087 3448 0.001 37323

0.8 2684 0.001 31915 2776 0.001 31994 3058 0.001 32791

0 0 4891 0.001 57716 5153 0.001 58714 5904 0.001 63541

0.2 4074 0.001 48023 4285 0.001 48574 4920 0.001 51879

0.4 3489 0.001 41109 3677 0.001 41506 4217 0.001 43816

0.6 3053 0.001 36003 3212 0.001 36203 3677 0.001 37919

0.8 2705 0.001 31932 2848 0.001 32141 3254 0.001 33423

0.5 0 4923 0.001 57672 5249 0.001 58639 6125 0.001 63100

0.2 4099 0.001 48021 4365 0.001 48530 5100 0.001 51978

0.4 3510 0.001 41118 3748 0.001 41606 4368 0.001 44187

0.6 3072 0.001 36013 3271 0.001 36259 3819 0.001 38427

0.8 2724 0.001 31949 2904 0.001 32268 3391 0.001 33997

firm simply invests in higher amount of relatively cheaper dedicated capacities rather

than a higher level of flexibility. In addition responsive pricing is a more cost effective

strategy as demand for substitutable products can be easily managed through pricing.

Table 5.1 also shows that the optimal expected profit always increases as the

demand uncertainty increases. Recall from Theorem 5.4 that under clearance the

firm’s profit increased with total demand variability σ2
T . Even without clearance

the firm benefits from increased demand variability because of its ability to charge

higher prices in the larger market. High realizations of the demand leads to a higher

marginal revenue while marginal revenue is constant for low realizations of demand.
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This asymmetry causes the expected profit to increase as the total demand variability

increases. If the demand for a product is very low then the firm employs a hold-back

strategy, i.e., it sells only a restricted quantity of the product at a higher price than

selling all of it at much lower market-clearing prices, mitigating the over-investment

risk.

5.4.2 Impacts of Capacity Uncertainties

Next we investigate the optimal investment decisions when the firm faces capacity

uncertainties by modeling ∆1 and ∆2 with independent Normal random variables.

To reflect increasing degree of capacity uncertainties, we increase the CV of these

distributions. The results are shown in Table 5.2.

Our study reveals that: (1) Flexibility is not preferred under any capacity CV and

under any demand correlation ρ. (2) The total capacity investment K∗t and the profit

increase with ρ. This trend was also also observed in Table 5.1 under only demand

uncertainty. (3) For a fixed b, the total capacity investment K∗t increases as capacity

uncertainty increases. The profit, however, decreases with the capacity uncertainty,

which is different from Table 5.1 but similar to the results under Shrinking Capacity

model in Table 4.2.

Flexibility is not required under capacity uncertainties because there is always

a certain amount of realized capacity still available for each product. The firm in-

creases it’s investment in cheaper dedicated capacity hence protecting itself against

uncertainties in the selling stage. As product substitutability b increases, the firm can

also adjust the prices to match the demands for the two products with the available

capacities. Investing in additional capacities is relatively cheaper than improving the

flexibility for the whole resource capacity. Compared to the results of Shrinking Ca-

pacity model in Table 4.2 even when facing high capacity uncertainties, flexibility is

not recommended. Unlike the Shrinking Capacity model, the firm can cross-produce
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Table 5.2: Impacts of Capacity Uncertainties

CV=0.1 CV=0.2 CV=0.4

ρ b K∗t f∗ Profit K∗t f∗ Profit K∗t f∗ Profit

-0.5 0 5071 0.001 58628 5199 0.001 58353 5822 0.001 56419

0.2 4225 0.001 48470 4331 0.001 48241 4852 0.001 46729

0.4 3623 0.001 41354 3714 0.001 41156 4167 0.001 39894

0.6 3167 0.001 36078 3251 0.001 35905 3654 0.001 34810

0.8 2803 0.001 31894 2877 0.001 31741 3240 0.001 30772

0 0 5213 0.001 58540 5303 0.001 58271 5910 0.001 56369

0.2 4340 0.001 48505 4419 0.001 48281 4931 0.001 46788

0.4 3715 0.001 41442 3788 0.001 41250 4237 0.001 40000

0.6 3246 0.001 36193 3316 0.001 36026 3715 0.001 34942

0.8 2872 0.001 32023 2934 0.001 31878 3291 0.001 30921

0.5 0 5299 0.001 58396 5416 0.001 58125 5979 0.001 56247

0.2 4413 0.001 48503 4513 0.001 48279 4995 0.001 46795

0.4 3780 0.001 41511 3869 0.001 41318 4292 0.001 40074

0.6 3306 0.001 36297 3383 0.001 36131 3763 0.001 35050

0.8 2929 0.001 32144 2984 0.001 32001 3333 0.001 31050

in the Additional Cost model without investing in any degree of costly flexibility.

Hence even under conditions where flexibility is typically preferred i.e., negatively

correlated demands (ρ <0) and high degree of product differentiation (low b) the firm

never invests in any degree of flexibility.

Despite the increase in the overall capacity investment, the firm’s profit decreases

as the capacity uncertainty increases. This trend is different from Table 5.1 and the

literature where the total capacity and the profit increase under only demand uncer-

tainty. Under capacity uncertainties, only a proportion of the invested capacities is

available in the production stage. As the capacity uncertainty increases, the capacity
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available and hence the production quantities decrease, and thus the firm’s revenue

decreases.

5.4.3 Impacts of Supply Disruptions

Table 5.3 shows the optimal capacities, the flexibility levels, and the profits for a firm

facing increasing capacity disruptions.

Table 5.3: Impacts of Supply Disruptions

CV=0.1 CV=0.2 CV=0.4

ρ b K∗t f∗ Profit K∗t f∗ Profit K∗t f∗ Profit

-0.5 0 2707 0.001 61124 2832 0.001 60093 3176 0.001 56415

0.2 2274 0.001 50574 2380 0.001 49805 2882 0.001 47230

0.4 1957 0.001 43163 2052 0.001 42530 2670 0.001 40602

0.6 1696 0.001 37662 1798 0.001 37109 2464 0.001 35561

0.8 1481 0.001 33294 1592 0.001 32798 2248 0.001 31475

0 0 2810 0.001 61127 2860 0.001 60109 3192 0.001 56449

0.2 2340 0.001 50685 2410 0.001 49922 2896 0.001 47343

0.4 2001 0.001 43315 2096 0.001 42686 2687 0.001 40741

0.6 1744 0.001 37830 1849 0.001 37285 2480 0.001 35711

0.8 1539 0.001 33468 1634 0.001 32984 2261 0.001 31634

0.5 0 2838 0.001 61048 2889 0.001 60043 3193 0.001 56411

0.2 2368 0.001 50736 2462 0.001 49980 2907 0.001 47403

0.4 2029 0.001 43427 2141 0.001 42804 2703 0.001 40846

0.6 1773 0.001 37971 1881 0.001 37431 2498 0.001 35836

0.8 1570 0.001 33623 1666 0.001 33146 2277 0.001 31770

From Table 5.3 we find that: (1) Even under high supply disruptions, the firm

does not invest in costly flexibility. (2) For a fixed b, total capacity investment K∗t

increases as supply disruption risk increases. However, the optimal expected profit
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decreases. (3) When the two products are not substitutable to each other, the firm’s

profit decreases as the demand correlation increases. However, with higher levels of

product substitutability, the profit increases with the demand correlation.

In the Shrinking Capacity model in Chapter 4 (Table 4.3) we saw that the firm

invested in a high degree of flexibility when the degree of disruption was very high.

However the Additional Cost model suggests that when the relative cost of flexibility is

expensive then flexibility is not required for any level of supply disruption. When one

resource is completely unavailable then the firm can still incur the cross-production

cost in Stage II and produce the other product. The firm would rather rely on a

higher investment in (cheaper) dedicated capacities in Stage I and cross-produce in

Stage II rather than investing in flexibility.

Our results from the Additional Cost model supports the results from Shrinking

Capacity model on the value of flexibility under low and moderate 0-1 disruptions.

Under very high disruptions the type of efficiency loss as well as relative cost param-

eters play a key role in determining the value of flexibility. Specifically, when the loss

is in terms of number of units (partial flexibility factor β in the Shrinking Capacity

model) the firm then invests in a high degree of flexibility to allow cross-production.

When the efficiency loss is in terms of the cost of cross-production (c in Additional

Cost model) the firm is willing to forego investment in costly flexibility in the planning

stage and instead incur additional cost in the selling stage.

5.4.4 Impact of Additional Cost of Cross-Production

To better understand the trade-off between flexibility investment in Stage I and cross-

production cost in Stage II we study the impact of increasing c under all three types of

uncertainties. Results for demand uncertainties are shown in Table 5.4 while results

for capacity uncertainties are shown in Table 5.5. The results for the 0-1 uncertainty

case are omitted as they are very similar to the capacity uncertainty scenario.
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Table 5.4: Impact of Cross Production Cost c under CV=0.4 Demand Uncertainties

c=3 c=5 c=7

ρ b K∗
t f∗ Profit K∗

t f∗ Profit K∗
t f∗ Profit

-0.5 0 5578 0.001 63553 5780 0.001 63323 5868 0.001 63152

0.2 4649 0.001 51484 4783 0.001 51310 4863 0.001 51183

0.4 3985 0.001 43236 4065 0.001 43107 4141 0.001 43020

0.6 3483 0.001 37262 3526 0.001 37179 3567 0.001 37136

0.8 3073 0.001 32762 3087 0.001 32741 3092 0.001 32738

0 0 5962 0.001 63458 6015 0.001 63316 6095 0.001 63201

0.2 4955 0.001 51814 5000 0.001 51706 5071 0.001 51627

0.4 4235 0.001 43766 4273 0.001 43688 4326 0.001 43640

0.6 3694 0.001 37883 3724 0.001 37839 3742 0.001 37817

0.8 3265 0.001 33410 3273 0.001 33401 3274 0.001 33401

0.5 0 6144 0.001 63052 6184 0.001 62969 6237 0.001 62906

0.2 5118 0.001 51941 5152 0.001 51882 5194 0.001 51842

0.4 4384 0.001 44159 4416 0.001 44120 4428 0.001 44099

0.6 3834 0.001 38410 3849 0.001 38392 3856 0.001 38384

0.8 3394 0.001 33993 3397 0.001 33991 3397 0.001 33991

Under high demand uncertainty (CV=0.4) Table 5.4 reveals that as cost of cross-

production increases the optimal total capacity K∗t increases under all levels of ρ. This

increase, however, depends on the level of product substitutability b: When products

are highly differentiated (low b) then increase in capacity is higher as c increases.

When products are highly substitutable (very high b) the increase in optimal total

capacity is very minimal and for very high values of c it is constant. The firm still

does not invest in flexibility despite a very high cost of cross-production. This is

because the relative cost of dedicated capacity is cheaper. In addition, the firm

invests in higher dedicated capacities only when products are highly differentiated.

If the products are very close substitutes then the overall market potential is lower

and any investment in extra capacity is unnecessary. Further, demand can be easily
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managed through responsive pricing. This investment trend holds for all levels of

demand correlation ρ.

Table 5.5 shows the results for increasing c under high capacity uncertainties

(CV=0.4). It is easy to see that despite an increase in additional cost of cross-

production and the increased uncertainty in capacity availability, the investment trend

is very similar to the demand uncertainty case in Table 5.4. Flexibility is never

preferred under any degree of product substitutability b or demand correlation ρ.

The optimal total capacity K∗t increases as c increases and the firm once again invests

more in cheaper dedicated capacities under low b.

Table 5.5: Impact of Cross Production Cost c under CV=0.4 Capacity Uncertainties

c=3 c=5 c=7

ρ b K∗
t f∗ Profit K∗

t f∗ Profit K∗
t f∗ Profit

-0.5 0 5852 0.001 56286 5929 0.001 56039 6043 0.001 55826

0.2 4882 0.001 46616 4943 0.001 46416 5001 0.001 46247

0.4 4193 0.001 39802 4235 0.001 39646 4264 0.001 39521

0.6 3677 0.001 34740 3689 0.001 34632 3704 0.001 34560

0.8 3245 0.001 30735 3248 0.001 30696 3248 0.001 30684

0 0 5940 0.001 56241 6031 0.001 56007 6117 0.001 55806

0.2 4959 0.001 46681 5033 0.001 46491 5074 0.001 46331

0.4 4261 0.001 39913 4296 0.001 39766 4327 0.001 39648

0.6 3732 0.001 34876 3742 0.001 34774 3761 0.001 34707

0.8 3295 0.001 30886 3295 0.001 30850 3295 0.001 30839

0.5 0 6008 0.001 56124 6112 0.001 55902 6172 0.001 55710

0.2 5020 0.001 46692 5093 0.001 46513 5127 0.001 46361

0.4 4312 0.001 39990 4349 0.001 39851 4377 0.001 39740

0.6 3773 0.001 34988 3790 0.001 34892 3802 0.001 34831

0.8 3335 0.001 31018 3335 0.001 30986 3335 0.001 30975

Next we study the impact of the clearance assumption.
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5.4.5 Impact of Clearance

We now study the impact of clearance on the optimal capacity and flexibility in-

vestment decisions when the firm faces demand uncertainties. We report the results

from moderate demand uncertainty case (CV=0.2) as the results for the other cases

are similar. We study two settings of the cost parameters: (1) Table 5.6 shows re-

sults from setting g1=g2=1, g3=0.2 and c=2. This corresponds to the settings in

Sections 5.4.1, 5.4.2 and 5.4.3. (2) Table 5.7 shows results from setting g1=g2=2,

g3=0.1 and c =3.

In addition to optimal total capacity K∗t , flexibility level f ∗ and profit, we also

report the difference between the no-clearance and with-clearance cases in terms of

Profit ∆ and capacities K∗t ∆. A positive ∆ indicates that values under the no-

clearance case are higher than the values under with-clearance case.

We find that under clearance full flexibility is never recommended for any val-

ues of b or ρ in Table 5.6 when the relative cost of flexibility is high. Under these

parameters flexibility is expensive (for e.g., g3/g=0.2 and g3/c=0.1) and hence even

under clearance the firm does not invest in any degree of flexibility. The results from

Theorem 5.3, however, suggested f=1 indicating full flexibility. This is because in our

analytical model clearance could be evaluated in three different regions in Figure 5.1:

Region 6, Region 7 as well as Region 8. In Region 8, the firm simply produces up to

its dedicated capacities and hence cross-production or flexibility was not required i.e,

f=0 in that solution.

We also find that clearance solutions are generally more closer to optimal solu-

tions under no-clearance when demands are negatively correlated: The capacities and

profits under ρ <0 are generally closer to the solutions under no-clearance compared

to ρ >0. Overall the capacity difference is about 6.6% lower on average while the

profit difference is only about 0.77% lower compared to the no-clearance solution.

Due to the assumptions made in clearance, viz., the firm produces up to capacity
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Table 5.6: Impact of Clearance under Demand Uncertainties: g=1, g3=0.2, c=2

Without Clearance With Clearance

ρ b K∗t f∗ Profit K∗t f∗ Profit Profit ∆ K∗t ∆

-0.5 0 5038 0.001 58875 4796 0.001 58641 0.40% 4.8%

0.2 4187 0.001 48585 3994 0.001 48393 0.39% 4.6%

0.4 3588 0.001 41424 3423 0.001 41261 0.39% 4.6%

0.6 3133 0.001 36087 2994 0.001 35949 0.38% 4.4%

0.8 2776 0.001 31994 2662 0.001 31880 0.36% 4.1%

0 0 5153 0.001 58714 4796 0.001 58242 0.80% 6.9%

0.2 4285 0.001 48574 3994 0.001 48188 0.80% 6.8%

0.4 3677 0.001 41506 3423 0.001 41175 0.80% 6.9%

0.6 3212 0.001 36203 2994 0.001 35919 0.79% 6.8%

0.8 2848 0.001 32141 2662 0.001 31902 0.74% 6.5%

0.5 0 5249 0.001 58639 4796 0.001 57948 1.18% 8.6%

0.2 4365 0.001 48530 3994 0.001 47968 1.16% 8.5%

0.4 3748 0.001 41606 3423 0.001 41121 1.16% 8.7%

0.6 3271 0.001 36259 2994 0.001 35840 1.16% 8.5%

0.8 2904 0.001 32268 2662 0.001 31910 1.11% 8.3%

levels and production quantities are always positive, the optimal capacity expressions

are independent of variability or correlation of the demand intercepts.

When cost of flexibility is low relative to the cost of dedicated capacities or unit

cost of cross-production (for e.g., g3/g=0.05 and g3/c=0.03) Table 5.7 shows that

the firm is inclined to invest in full flexibility under negatively correlated demands

and moderate degrees of product substitutability b. This can be explained as follows:

Under clearance, having a higher capacity level may force the firm to lower prices to

sell higher quantities of the products. With full flexibility, the firm will invest less in

total dedicated capacity levels and hence has a better chance of utilizing all of it’s
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installed capacities. In this situation, by investing in full flexibility the firm avoids any

additional cost of cross-production. We also note that when demands are positively

correlated the firm does not invest in any flexibility under clearance. Instead the firm

responds to positive demand correlation by further lowering it’s dedicated capacity

investment as seen from the higher levels of K∗t ∆.

Table 5.7: Impact of Clearance under Demand Uncertainties: g=2, g3=0.1, c =3

Without Clearance With Clearance

ρ b K∗t f∗ Profit K∗t f∗ Profit Profit ∆ K∗t ∆

-0.5 0 2478 1.0 58915 2395 1.0 58749 0.28% 3.4%

0.2 2106 0.001 48591 1994 1.0 48474 0.24% 5.3%

0.4 1804 0.001 41438 1709 1.0 41321 0.28% 5.2%

0.6 1573 0.001 36112 1495 1.0 35984 0.35% 4.9%

0.8 1391 0.001 32031 1332 0.001 31914 0.37% 4.3%

0 0 2592 0.001 58741 2395 1.0 58306 0.74% 7.6%

0.2 2156 0.001 48603 1994 1.0 48233 0.76% 7.5%

0.4 1850 0.001 41537 1710 1.0 41205 0.80% 7.6%

0.6 1612 0.001 36239 1498 0.001 35940 0.82% 7.1%

0.8 1427 0.001 32182 1332 0.001 31939 0.76% 6.6%

0.5 0 2640 0.001 58689 2400 0.001 57959 1.24% 9.1%

0.2 2194 0.001 48577 1997 0.001 47986 1.22% 9.0%

0.4 1880 0.001 41650 1713 0.001 41145 1.21% 8.9%

0.6 1639 0.001 36303 1497 0.001 35874 1.18% 8.7%

0.8 1454 0.001 32311 1332 0.001 31950 1.12% 8.4%

5.5 Summary

This chapter examines the interplay between the cost of investing in flexibility, the

efficiency loss due to cross-production incurred through additional production cost as
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well as the responsive pricing for substitutable products. We model a firm producing

two products with two partially flexible resources and facing three types of uncertain-

ties separately: demand uncertainty, yield uncertainty, and supply disruptions. The

firm can choose the level of resource flexibility and the level of dedicated resources

in the investment stage. A higher flexibility level in the planning stage would incur

a lower additional production cost in the selling stage. We investigate how the type

and severity of the uncertainties affect capacity investment and resource reconfigu-

ration decisions. The impacts of demand correlation, additional cost and product

substitutability on the firm’s investment decisions are also examined.

The results from the Additional Cost model are generally consistent with results

from the Shrinking Capacity model: When the relative cost of flexibility is high,

a firm facing demand or yield uncertainties does not benefit much by investing in

resource flexibility. Investing in higher amount of dedicated capacities is relatively

cheaper than investing in flexibility because the firm can mitigate the impact of

cross-production cost through pricing. Even under very high capacity uncertainties

the firm does not invest in flexibility under negatively correlated demands. This result

is different from the Shrinking Capacity model because here the firm can still cross-

produce without any investment in flexibility. It would simply incur an additional

unit cost of cross-production in the selling stage. As there is a certain amount of

capacity available for each resource, the firm can mitigate the impact of demand and

capacity uncertainties through responsive pricing. So flexibility is not very valuable

in these circumstances.

Similarly, under supply disruptions the firm prefers to invest in cheaper dedicated

capacities and use cross-production without flexibility investment. If one resource

were completely unavailable, a higher amount of dedicated capacity of the other

resource combined with the ability to cross-produce deters the firm from investing in

flexibility. This is true irrespective of the nature of demand correlation or the degree

99



of product substitutability. Hence one product does not completely cannibalize the

other product and the firm can sell both products while mitigating the impact of

disruption through pricing.
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CHAPTER 6

CONCLUSION

This research investigates the resource investment and pricing decisions for a profit-

maximizing firm producing two substitutable products facing three types of uncertain-

ties separately: demand uncertainties, capacity uncertainties and supply disruptions.

In the planning stage (Stage I) the firm must decide on the optimal capacity and

flexibility investment levels. Only the distribution of these uncertainties is typically

known i.e., the firm makes these investment decisions under demand, capacity and

supply uncertainties. In the production stage (Stage II) once the market potentials

as well as realized capacity levels are revealed, the firm must then determine optimal

production quantities and prices.

In the Contingent Flexible Capacity model the firm can invest in a separate con-

tingent flexible capacity in addition to product dedicated capacities in the planning

stage. In the Shrinking Capacity model the firm uses cross-production to switch a re-

source designed for one product to produce another product which incurs an efficiency

loss in the production stage. In the Additional Cost model the firm incurs efficiency

loss in cross-production through an increase in unit production cost in the selling

stage. In the latter two models, if the firm invests in a higher degree of flexibility

in the planning stage then the efficiency loss is lower in the production stage. This

captures the resource investment trade-off that is typically faced by firms in practice.
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The main findings from our research can be summarized as follows:

• From the Contingent Flexible Capacity model we find that utilizing the cor-

rect functional form of the demand-price relationship that captures the impact

of product substitutability produces more realistic results that is in line with

practice. We hence use this correct functional form in subsequent models to

analyze the impact of cross-production.

• Utilizing the Shrinking Capacity model we show that:

– Cross-production is not an optimal hedging strategy when facing low or

moderate demand uncertainties. The firm prefers to invest in higher ded-

icated capacities as opposed to any level of investment in flexibility. How-

ever, if degree of demand uncertainties is very high, product demands are

negatively correlated and level of product substitutability is low, then par-

tial flexibility is necessary.

– Only when facing high degree of capacity uncertainties the firm invests in

any flexibility. In fact, cross-production is never preferred under low or

moderate capacity uncertainties. Investment in partial flexibility is suf-

ficient to mitigate high capacity uncertainties. As demand correlation

increases flexibility is unnecessary as the firm can increase it’s investment

in cheaper dedicated capacities and avoid cross-production

– When facing a high degree of supply disruptions, the firm’s optimal in-

vestment strategy includes a high degree of investment in flexibility. This

result is independent of the nature of demand correlation as well as product

substitutability

• The Additional Cost model reveals that:

– When the relative cost of flexibility is high, flexibility is generally unnec-

102



essary when facing any of the three types of uncertainties. This is because

the firm can cross-produce even without any flexibility investment. It sim-

ply prefers to incur the additional cost of cross-production rather than

investing in costly flexibility that may never be used.

– Flexibility is also not recommended under any demand correlation or level

of product substitutability. Investing in higher amounts of cheaper dedi-

cated capacities and utilizing responsive pricing is a more economical way

for the firm to mitigate these risks. However, if unit cost of dedicated ca-

pacities were higher then the firm may invest in flexibility under negatively

correlated demands under clearance.

• As degree of demand uncertainties increases the firm’s optimal expected profit

increases. This was also observed in the reviewed literature. However, our

cross-production models also show that as the degree of capacity uncertainties

and supply disruptions increase the firm’s optimal expected profit decreases.

Our results emphasize that product differentiation and responsive pricing are ex-

cellent risk hedging strategies even under capacity uncertainties and supply disrup-

tions. Flexibility, on the other hand, is a potent tool depending on the type of effi-

ciency loss incurred by the firm as well as the type and degree of uncertainty. While

literature (for e.g., Tomlin and Wang 2005) has shown flexibility to be less beneficial

as resource investments become less reliable, our research shows that this is not al-

ways true. A partial degree of flexibility may be desired depending on the type of loss.

Further, our findings on demand uncertainties fully support the empirical evidence of

Moreno and Terwiesch (2015) and extend the analysis to capacity uncertainties and

supply disruptions. It also explains why completely flexible resources are still rare in

industrial practice, although it has been highly advocated in academia.

This dissertation can be extended in several ways. We model a risk-neutral firm
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that maximizes it’s expected profit. In practice there may be several types of decision

makers: risk-neutral, risk-taking as well as risk-averse. Conditional Value-at-Risk

(CVaR), also known as the expected shortfall, can be used to model the different

types of these decision makers and their inclination towards risk. In our models the

risk-neutral firm maximizes its expected profit in Stage I. To model a loss-averse

investment, the firm may try to maximize the CV aRη, the mean of the left η-tail

of the profit function. The percentile η ∈ (0, 1) is the parameter that reflects the

firm’s inclination for downside risk. At η = 1 the firm is risk-neutral and for η<1

the firm maximizes the mean of the profit falling below a specified percentile level η.

CVaR is a coherent risk measure (Rockafellar and Uryasev 2002) that also has some

nice analytical properties that is amenable to closed form solutions as illustrated in

Tomlin and Wang (2005).

In this research we have assumed that uncertainties or disruptions are independent

of each other. Similar to demand correlation, disruptions or uncertainties may be

correlated with each other. Hence it may be very beneficial for the firm to understand

how the optimal portfolio changes with changes in these correlations. In Stage II when

realization of capacity uncertainties or supply disruptions are revealed the nature

of disruption correlation could have a key impact on the flexibility levels. Finally,

we have also assumed that the additional cost of cross-production is deterministic.

This may not always be true as lead times are much longer and currency valuations,

labor costs, changing market conditions and entry/ exit of a competitor could impact

the cost of cross-production. Hence modeling the cost as a random variable in the

planning stage would be a worthwhile extension to this research.
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APPENDIX A

Proofs for Chapter 3: The Contingent Flexible Capacity Model

In this technical appendix we provide detailed solutions to the Stage II and Stage I

problems.

Proof of Theorem 3.1

In Stage II given the invested capacities K1,K2,Kf in Stage I, additional produc-

tion costs c1, c2 and demand intercept realizations ε1 and ε2, the firm decides the

production quantities. Recall from Section 3.3 that there are four different scenar-

ios corresponding to eleven different regions depending on the demand realizations

and available capacity levels. Since we partition the feasible region and solve the

optimization problem within each region, this avoids any non-differentiability due to

terms (Qi −Ki)
+, i=1, 2. At these boundaries we have either Q1 = K1 or Q2 = K2

and the Stage II problem can be solved at those boundaries without using KKT

conditions and we can directly obtain the demand region inequalities. The Stage II

objective function consists of the revenue term p1Q1 + p2Q2 and additional terms

depending on the demand realizations. The revenue term by itself can be shown to

be strictly jointly concave in the production quantities (see, for example Appendix B)

for the proof of b-demand model). The cross-production terms here are linear func-

tions of Q1 or Q2 and the constraints are linear. In each region where the function

is differentiable we can use KKT conditions which are both necessary and sufficient

to obtain the production quantities in these regions. As stated above, the function is

non-differentiable at the boundaries but since we have either Q1 = K1 or Q2 = K2 the

Stage II problem can be solved at those boundaries without invoking KKT conditions.
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Optimal production quantities in Stage II

Combinations of the Lagrange multipliers and slack variables gives rise to eleven

different optimization problems each corresponding to the eleven feasible regions (de-

noted by Ω1, ..,Ω11). In each region the Stage II problem can be solved in closed

form.

We now solve eleven different cases corresponding to the four scenarios depending

on whether the capacity constraints are binding or non-binding.

Region Ω1

The corresponding Lagrange multipliers λ1 = λ2 = λ3 = 0 by complementary slack-

ness and hence solving for quantities we obtain

Ω1 : Q1 = ε1/2α, Q2 = ε2/2α

Regions Ω2,3

Here, Q1 ≥ K1, Q2 ≤ K2 and Q1 +Q2 < K1 +K2 +Kf as the contingent capacity is

not used fully. All three lagrangian multipliers (µ1, µ2 and µ3 ) are 0 which leads us

to Q1 +Q2 = ε1+ε2−(c1+c2)((1−γ
2α

, which gives us the demand region ε2 ≤ 2γ(K2 − γc1).

For region 2, we have Q2 < K2, hence c2 = 0 solving for quantities after setting up

the equations yields,

Ω2 : Q1 =
ε1 − c1

2α
, Q2 =

ε2 + γc2

2α

Ω3 : Q2 =
ε2 − c2

2α
, Q1 =

ε1 + γc1

2α

Region Ω4

Only a portion of the contingent capacity is utilized and it incurs a cost to produce

a positive quantity of both the products. Hence, we have

Ω4 : Q1 =
ε1 − c1 + γc2

2α
, Q2 =

ε2 − c2 + γc1

2α
;
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From the binding constraints we obtain, after substituting the above optimal values,

ε1 ≥ 2αK1 + c1 − γc2, ε2 ≥ 2αK2 + c2 − γc1 and ε1 + ε2 ≤ 2α(K1 +K2 +Kf ) + (1−

γ)(c1 + c2)

Regions Ω5,6

We solve in region Ω5 first. Product 2 is produced only using the dedicated capacity

i.e., Q2 = K2 but product 1 is produced using a portion of the contingent flexible

capacity. Q1 < K1 +Kf and Q1 ≥ K1. Also the other two constraints are not binding

since the contingent capacity is not utilized fully. This is similar to region Ω2 except

that product 2 is produced fully utilizing the dedicated capacity K2. Since Q2=K2

we only need to obtain solution of Q1 which can be easily obtained from its first order

conditions as the function is differentiable in Q1 in this region. The solution yields

Q1 = ε1+γε2−(1−γ2)c1
2b

− γK2 in region Ω5. We also obtain 2α(K1 + γK2) + (1− γ2)c1 ≤

ε1 + γε2 and ε1 + γε2 ≤ 2α(K1 + γK2 + Kf ) + (1 − γ2)c1 from Q1 ≤ K1 + Kf and

Q1 ≥ K1.

Similarly we obtain,

Ω6 : Q1 = K1, Q2 =
ε2 + γε1 − (1− γ2)c2

2b
− γK1;

Regions Ω7,8

When the contingent capacity is utilized to produce product 1 completely (in addition

to its dedicated capacity) while product 2 is produced utilizing the available dedicated

capacity (region Ω8), Q1 = K1 +Kf , Q2 < K2 and Q1 +Q2 < K1 +K2 +Kf . Hence,

λ1 6= 0, λ2, λ3 and c2 = 0, yield

Ω8 : Q1 = K1 +Kf , Q2 =
ε2 + γε1

2α
− γ(K1 +Kf )

where the defining equations for the two regions are obtained by substituting the

values of the optimal solutions and lagrangian multipliers to yield,

Ω8 : {(ε1, ε2) : ε1 ≥ 2α(K1 +Kf ) + c1, ε2 ≥ 0, γε1 + ε2 ≤ 2αγ(K1 +Kf ) + 2αK2}
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and symmetrically

Ω7 : {(ε1, ε2) : ε1 ≥ 2α(K2 +Kf ) + c2, ε1 ≥ 0, γε2 + ε1 ≤ 2αγ(K2 +Kf ) + 2αK1}

Region Ω9

When both products are produced using the contingent flexible capacity in addition

to their dedicated capacities, the third capacity constraint (Q1 +Q2 = K1 +K2 +Kf )

is binding which gives rise to µ3 =
ξ1+ξ2−2α(K1+K2+Kf )−(c1+c2)(1−γ)

2(1−γ)
> 0.

Ω9 : Q1 =
K1 +K2 +Kf

2
+
ε1 − ε2 − (1 + γ)(c1 − c2)

4α
,

Q2 =
K1 +K2 +Kf

2
− ε1 − ε2 − (1 + γ)(c1 − c2)

4α
;

after substituting the values for Lagrange multipliers and the optimal production

quantities, we obtain the defining regions.

Regions Ω10,11

Here product 3 − i is not produced utilizing any of the contingent capacity. Hence

only product i’s constraint is binding (where i = 1 for ε∈ Ω10 and i = 2 for ε∈ Ω11).

We obtain,

Ω10 : Q1 = K1 +Kf , Q2 = K2;

Ω11 : Q1 = K1, Q2 = K2 +Kf

It is easy to see that both quantities as well as prices are non-negative. The de-

mand regions can be obtained from substituting these values into first order condition

for Q1 and we have . The other defining inequalities can be obtained directly from

borders with region Ω5 as ε1 + γε2 ≥ 2α(K1 + γK2 + Kf ) + (1− γ2)c1, region as Ω7

γε1 + ε2 ≥ 2αγ(K1 +Kf ) + 2αK2 and from region Ω9, ε1 − ε2 ≥ 2α(K1 −K2 +Kf ) .

We now briefly describe the Lagrangian for the four main scenarios in the b-

demand model. The solution methodology is very similar to the γ-demand model.
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The Lagrangian of the Stage II objective function RL has four possible forms depend-

ing on the four regions as it was shown in Figure 3.2-Right.

In Region I, contingent flexible capacity is not required , and thus no additional

production cost is incurred. We have

RLI = ε1Q1 + ε2Q2 −Q2
1 −Q2

2 − 2bQ1Q2 − λ1[Q1 −K1 −Kf ]− λ2[Q2 −K2 −Kf ]

−λ3[Q1 +Q2 −K1 −K2 −Kf ] + v1Q1 + v2Q2.

λ1, λ2, λ3, v1 and v2 are the corresponding Lagrange multipliers and slack variables

for each of the capacity and non-negativity constraints.

In region II, demand realization of product 1 is higher than that of product 2 and

contingent capacity is used to produce product 1, and thus an additional production

cost c1 is incurred. We have

RLII = ε1Q1 + ε2Q2 −Q2
1 −Q2

2 − 2bQ1Q2 − (Q1 −K1)c1 − λ1[Q1 −K1 −Kf ]

−λ2[Q2 −K2 −Kf ]− λ3[Q1 +Q2 −K1 −K2 −Kf ] + v1Q1 + v2Q2.

In region III, contingent capacity is used to produce product 2, and thus an

additional production cost c2 is incurred. We have

RLIII = ε1Q1 + ε2Q2 −Q2
1 −Q2

2 − 2bQ1Q2 − (Q2 −K2)c2 − λ1[Q1 −K1 −Kf ]

−λ2[Q2 −K2 −Kf ]− λ3[Q1 +Q2 −K1 −K2 −Kf ] + v1Q1 + v2Q2.

In region IV, contingent capacity is used to produce both products as demand for

each product exceeds its own dedicated capacity. We have

RLIV = ε1Q1 + ε2Q2 −Q2
1 −Q2

2 − 2bQ1Q2 − (Q1 −K1)c1 − (Q2 −K2)c2

−λ1[Q1 −K1 −Kf ]− λ2[Q2 −K2 −Kf ]

−λ3[Q1 +Q2 −K1 −K2 −Kf ] + v1Q1 + v2Q2.

In summary, in each region, the optimal revenue of the Stage II problem Rγ(ε1, ε2),

are as follows:
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Ω1 : R1 =
ε21 + ε22 + 2γε1ε2

4α(1− γ2)
;

Ω2 : R2 =
(ε1 − c1 + γε2 + γc1)(ε1 + c1) + (γε1 + ε2)(ε2 + γc1)

4α(1− γ2)
− c1(ε1 − c1 − 2αK1)

2α
;

Ω3 : R3 =
(ε2 − c2 + γε1 + γc2)(ε2 + c2) + (γε2 + ε1)(ε1 + γc2)

4α(1− γ2)
− c2(ε2 − c2 − 2αK2)

2α
;

Ω4 : R4 =
(ε1 + c1 − γc2)(ε1 + γε2 − c1(1− γ2)) + (ε2 + c2 − γc1)(γε1 + ε2 − c2(1− γ2))

4α(1− γ2)

+
c1(ε1 − c1 + γc2 − 2αK1)

2α
− c2(ε2 − c2 + γc1 − 2αK2)

2α
;

Ω5 : R5 =
(ε1 + γε2 − (1− γ2)c1)(1− γ2)(c1 − γε2)

2α

+
γ(ε1 + γε2 − (1− γ2)c1 − 2αK2γ + 2αK2)(ε2 − αK2)

2α

−c1(ε1 + γε2 − (1− γ2)c1 − 2αγK2 − 2αK1)

2α
;

Ω6 : R6 =
(ε2 + γε1 − (1− γ2)c2)(1− γ2)(c2 − γε1)

2α

+
γ(ε2 + γε1 − (1− γ2)c2 − 2αK1γ + 2αK1)(ε1 − αK1)

2α

−c2(ε2 + γε1 − (1− γ2)c2 − 2αγK1 − 2αK2)

2α
;
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Ω7 : R7 =
1

1− γ2
[
(ε1 + γε2)(ε1 − γε2 + 2αγ(K2 +Kf ))

4α

+(γ
ε1 + γε2

2α
− (K2 +Kf )(1 + γ2))(ε2 − α(K2 +Kf ))]

−c1(
ε1 + γε2

2α
− γ(K2 +Kf )−K1)− c2Kf ;

Ω8 : R8 =
1

1− γ2
[
(ε2 + γε1)(ε2 − γε1 + 2αγ(K1 +Kf ))

4α

+(γ
ε2 + γε1

2α
− (K1 +Kf )(1 + γ2))(ε1 − α(K1 +Kf ))]

−c2(
ε2 + γε1

2α
− γ(K1 +Kf )−K2)− c1Kf );

Ω9 : R9 =
K1 +K2 +Kf

4(1− γ)
−
c1(2α(K1 +K2 +Kf ) + ε1 − ε2 − (1 + γ)(c1 − c2)− 4αK1)

4α

−
c2(2α(K1 +K2 +Kf )− ε1 − ε2 − (1 + γ)(c1 − c2)− 4αK2)

4α
;

Ω10 : R10 =
ε1(K1 +Kf + γK2)− α(K1 +Kf )2 − 2αγK2(K1 +Kf ) + ε2(γ(K1 +Kf ) +K2)

1− γ2

−αK2
2

1− γ2
− c1Kf

Ω11 : R11 =
ε2(γK1 +K2 +Kf )− α(K2 +Kf )2 − 2αγK1(K2 +Kf ) + ε1(K1 + γ(K2 +Kf )

1− γ2

−αK2
1

1− γ2
− c2Kf

Proof of Lemma 3.1

In this section we prove that the stage I objective function Πγ is strictly jointly

concave in the investment vector K=(K1, K2, Kf ) for any continuous distribution of

ξi, i = 1, 2 having positive support. Let Ψ denote the joint pdf of the random variables

ξ1 and ξ2. We define the following elements:

e5 ≡ 2α

ˆ ˆ
Ω5

Ψ(ε1, ε2)dε1dε2; e6 ≡ 2α

ˆ ˆ
Ω6

Ψ(ε1, ε2)dε1dε2;

e7 ≡ 2α

ˆ ˆ
Ω7

Ψ(ε1, ε2)dε1dε2; e8 ≡ 2α

ˆ ˆ
Ω8

Ψ(ε1, ε2)dε1dε2;

e9 ≡
α

1− γ

ˆ ˆ
Ω9

Ψ(ε1, ε2)dε1dε2; e10 ≡
2α

1− γ2

ˆ ˆ
Ω10

Ψ(ε1, ε2)dε1dε2;

e11 ≡
2α

1− γ2

ˆ ˆ
Ω11

Ψ(ε1, ε2)dε1dε2.
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We further denote

A ≡ e8 + e9 + e10; B ≡ e7 + e9 + e11.

We now write -H, negative of the Hessian matrix of Πγ(K) corresponding to K,

as follows:

-H =


A+ e6 + e11 e9 + γe10 + e11 A+ γe11

e9 + γe10 + e11 B + e5 + e10 B + γe10

A+ γe11 B + γe10 A+B − e9


Next, we apply the super diagonalization theorem to check the positive definiteness

of -H. Observing that all elements on the diagonal are positive, -H reduces to the

following by elementary row operations:

-H =


A+ e6 + e11 e9 + γe10 + e11 A+ γe11

0 B + e5 + e10 − (e9+γe10+e11)2

A+e6+e11
B + γe10 − (A+γe11)(e9+γe10+e11)

A+e6+e11

0 B + γe10 − (A+γe11)(e9+γe10+e11)
A+e6+e11

A+B − e9 − (A+γe11)2

A+e6+e11


We let

Hsub ≡

 h22 h23

h32 h33


represent the lower right sub-matrix.

Now, since A + e6 + e11 > 0, -H is positive definite if and only if Hsub is positive

definite [using Bazaara, Sherali and Shetty (1993)]. Rewriting the matrix entries and

canceling negative quantities we observe that for any values of γ ∈ (−1, 1), the terms

h22, h23 and h22h33 − h2
23 are all strictly positive. Hence, we conclude that Hsub is

positive definite, and therefore, -H is positive definite for any continuous distribution

of ξi, i = 1, 2, having positive support. Thus, H is negative definite and Πγ is strictly

jointly concave in investment vector K.

117



Proof of Theorem 3.2

From Lemma 3.1, it is easy to see that optimal investment vector is unique and

the first order KKT conditions given in Theorem 3.2 are necessary and sufficient for

optimality. This completes the proof.

Proof of Lemma 3.2

The proof is straightforward and can be obtained by setting Kf=0 in the third

optimality condition in Theorem 3.2. Ω′i, i = 7, 8, . . . , 11, are the demand regions for

the new solution (with Kf=0).

Proof of Theorem 3.3

The proof is similar to the one under the γ-demand model and thus omitted.

Optimal stage II revenue under b-demand model

In each region, by solving the Stage II problem of the b-demand model, the optimal

revenue Rb(ε1, ε2) equals,
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Ω1 : R1 =
a2

1 + a2
2 − 2ba1a2

4(1− b2)
;

Ω2 : R2 =
(a1(1 + b)− c1))(a1 − ba2 + c1)(1− b) + a2(1− b2)(a2 − ba1 + bc1)

4(1− b2)2

−c1(a1 − ba2 − c1 − 2(1− b2)K1)

2(1− b2)
;

Ω3 : R3 =
(a2(1 + b)− c2))(a2 − ba1 + c2)(1− b) + a1(1− b2)(a1 − ba2 + bc2)

4(1− b2)2

−c2(a2 − ba1 − c2 − 2(1− b2)K2)

2(1− b2)
;

Ω4 : R4 =
(a1 − ba2 + c1 − bc2)(a1 − ba1)− c1(1− b2)) + (a2 − ba1 + c2 − bc1)(a2 − ba2)

4(1− b2)2

− c2(1− b2)

4(1− b2)2
+
c1(a1 − ba2 − c1 + bc2 − 2(1− b2)K1)

2(1− b2)

−c2(a2 − ba1 − c2 + bc1 − 2(1− b2)K2)

2(1− b2)
;

Ω5 : R5 =
(a1 − ba1 − (1− b2)c1)(1− b2)(c1 − ba2 − ba1)

2(1− b2)
+

(b(a1 − ba1 − (1− b2)c1 − 2(1− b2)K2b+ 2(1− b2)K2)(a2 − ba1 − (1− b2)K2)

2(1− b2)

−c1(a1 − ba2 + ba2 − ba1 − (1− b2)c1 − 2(1− b2)bK2 − 2(1− b2)K1)

2(1− b2)
;

Ω6 : R6 =
(a2 − ba2 − (1− b2)c2)(1− b2)(c2 − ba1 − ba2)

2(1− b2)
+

(b(a2 − ba2 − (1− b2)c2 − 2(1− b2)K1b+ 2(1− b2)K1)(a1 − ba2 − (1− b2)K1)

2(1− b2)

−c2(a2 − ba1 + ba1 − ba2 − (1− b2)c2 − 2(1− b2)bK1 − 2(1− b2)K2)

2(1− b2)
;
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Ω7 : R7 =
1

1− b2
[
(a1 − ba1)(a1 − 2ba2 − ba1 + 2(1− b2)b(K2 +Kf ))

4(1− b2)
+

(b
a1 − ba1

2(1− b2)
− (K2 +Kf )(1 + b2))(a2 − ba1 − (1− b2)(K2 +Kf ))]

−c1(
a1 − ba1

2(1− b2)
− b(K2 +Kf )−K1)− c2Kf ;

Ω8 : R8 =
1

1− b2
[
(a2 − ba2)(a2 − 2ba1 − ba2 + 2(1− b2)b(K1 +Kf ))

4(1− b2)
+

(b
a2 − 2ba1 − ba2

2(1− b2)
− (K1 +Kf )(1 + b2))(a1 − ba2 − (1− b2)(K1 +Kf ))]

−c2(
a2 − ba2

2(1− b2)
− b(K1 +Kf )−K2)− c1Kf );

Ω9 : R9 =
(K1 +K2 +Kf )

4(1− b)
−
c1(2(1− b)(K2 +Kf −K1) + a1 − a2 − (c1 − c2))

4(1− b)

−
c2(2(1− b)(K1 −K2 +Kf )− (a1 + a2 + (c1 − c2)))

4(1− b)
;

Ω10 : R10 = a1(K1 +Kf ) + a2K2 − ((K1 +Kf )(K1 +Kf + 2bK2) +K2
2 )− c1Kf

Ω11 : R11 = a2(K2 +Kf ) + a1K1 − ((K2 +Kf )(K2 +Kf + 2bK1) +K2
2 )− c2Kf .

Proof of Lemma 3.3

The stage I problem under the b-demand model is a linear transformation of the

γ-demand model. Hence the proof is similar to the proof of Lemma 3.1 and is omitted.

Proof of Theorem 3.4

The proof is similar to one under the γ-demand model and thus omitted.

Proof of Theorem 3.5

When Kf > 0, the lagrangian multiplier ψg in both demand models (see theorems

3.2 and 3.4) is 0. Note that under the clearance assumption we use the solution for Ω9

to conduct our analysis which renders other regions as 0 probability regions. Hence,

treating Kf as a function of K1 and K2, i.e. for a given dedicated capacity investment,

we rearrange the terms in the third vector to obtain the optimal contingent capacity

expressions given in theorem 3.5.
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Proof of Lemma 3.4

Since Kf > 0, it follows from proof of theorem 3.5 that
µ1 + µ2

2(1 + b)
> (K1 + K2) +

c1 + c2 + 2gf
2(1 + b)

in the b-demand model. Rearranging the terms we have µ1+µ2−(c1+c2+2gf )
2(1+b) >

(K1 +K2). As long as Kf > 0, we then have
∂Kf

∂b
< 0 as stated in the lemma.

Proof of Theorem 3.6

In this case the firm invests in dedicated capacity K2, i.e., K2 > 0, if g2 < g′2

where g′2 is defined similar to g′f in lemma 3.2. The proof is similar to the proof of

theorem 3.5.

Proof of Lemma 3.5

The proof is similar to the proof of lemma 3.4 and thus omitted.
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APPENDIX B

Proofs for Chapter 4: The Shrinking Capacity Model

Proof of Theorem 4.1

The Hessian matrix for the Stage II objective function in terms of the quantities Q1

and Q2 (HSC) can be written as:

HSC =

 −2 −2b

−2b −2


Recall that the consumer utility model also required ϑ1ϑ2−b2>0 to ensure its strict

concavity and under our assumptions ϑ1=ϑ2=1 the determinant is 4(1− b2)> 0. HSC

is negative definite and hence the Stage II objective function is strictly jointly concave,

the constraints are linear in Q1 and Q2 and therefore the production quantities (and

prices) can be uniquely determined.

The Lagrangian of the Stage II problem can be written as:

RL = a1Q1 + a2Q2 −Q2
1 −Q2

2 − 2bQ1Q2 − (Q1 −K1 − β1(K2 −Q2))u1

−(Q2 −K2 − β2(K1 −Q1))u2 + v1Q1 + v2Q2.

Let u1 and u2 be the Lagrangian multipliers corresponding to constraints Q1 ≤

K1 +β(K2−Q2) and Q2 ≤ K2 +β(K1−Q1) respectively. v1, v2 are the slack variables

for the non-negativity constraints on the production quantities.

Different combinations of the Lagrange multipliers and slack variables gives rise

to 5 different optimization problems each corresponding to the 5 cases described in
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the Section 4.3 under solution methodology. The feasible regions are denoted by

Ω1, ..,Ω5. In each region the Stage II problem can be solved in closed form using

KKT conditions to obtain the corresponding optimal production quantities.

a1 − 2Q1 − 2bQ2 − u1 − β2u2 + v1 = 0,

a2 − 2bQ1 − 2Q2 − β1u1 − u2 + v2 = 0,

u1(Q1 − (K1 + β1(K2 −Q2)) = 0,

u2(Q2 − (K2 + β2(K1 −Q1)) = 0,

u1, u2 ≥ 0,

v1, v2 ≥ 0

Case 1: Region Ω1

In this region capacities are not binding for any of the products i.e., Qi <Ki for

i = 1, 2. The unconstrained solution lies in the interior of the feasible region and

we have u1=u2=v1=v2=0. The conditions above reduce to solving the following two

equations:

a1 − 2Q1 − 2bQ2 = 0,

a2 − 2bQ1 − 2Q2 = 0

The optimal production quantities when demand realizations (a1,a2)∈ Ω1 are given

by:

Q1 =
a1 − ba2

2(1− b2)
, Q2 =

a2 − ba1

2(1− b2)
;

Recall that for the strict concavity of the consumer utility function it was required

that a1 − ba2> 0, a1 − ba2< 0 and 1 − b2> 0. Hence, quantities are positive. Prices

are given by:

p1 =
a1

2
, p2 =

a2

2
;
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Case 2: Region Ω2

Next we consider Case 2 where capacity is binding only for resource 1. The demand

realization for product 1 is high compared to product 2 (Q2<K2) and the firm uses

cross-production to produce product 1 using resource 2. This corresponds to Region

Ω2 where we have Q1 = K1 + β1(K2 −Q2) and hence u1 > 0 and u2 = 0. Solving for

quantities we obtain,

Q1 =
(a1 − a2)β1 + 2(1− b)(K1 + β1K2)

2(1− b)(1 + β1)
, Q2 =

a2 − a1 + 2(1− b)(K1 + β1K2)

2(1− b)(1 + β1)

If this solution also satisfies Q1 ≥ K1 and Q2 ≥ 0 then it is optimal for the Stage

II problem. That is, if a1−a2≥2(1−b)(K1−K2) and a1−a2≤2(1−b)(K1+β1K2) then

the solutions are optimal. From the Lagrange multiplier we also obtain the defining

equation for the Region 2 as a1 − ba2 + β1(a2 − ba1) ≥ 2(2 − b2)(K1 + β1K2). The

three inequalities together define the demand region where this solution is optimal.

In general, the expressions below represent production quantities, Qi, and optimal

prices, pi, obtained from the KKT conditions.

Q1 =
(a1 − ba2)− u1(1− bβ1) + u2(b− β1)

2(1− b2)
,

Q2 =
(a2 − ba1)− u2(1− bβ2) + u1(b− β2)

2(1− b2)
,

p1 =
a1 + u1 + βu2

2
≥ 0, p2 =

a2 + u2 + βu1

2
≥ 0

It is easy to see that optimal prices are always non-negative because ui ≥ 0 for

i ∈ 1, 2. Quantities are also non-negative once we substitute the corresponding values

of Lagrange multipliers in each region and under the assumption that ai− baj > 0 for

i, j = 1, 2 and i 6= j. In the absence of any cross-production (i.e., when the constraint

set is only given by Q1 ≤K1 and Q2 ≤K2), we can show that the amount of product

i produced will be at least min((ai− baj)/(2(1− b2)), Ki) ≥ 0 for i, j = 1, 2 and i 6= j

and the solution is always feasible.
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Case 3: Region Ω3

The proof for region Ω3 under Case 3 is symmetric to Case 2 (region Ω2) and hence

omitted.

Case 4: Region Ω4

Next we consider Case 4 where when the demand realization for product 1 is much

higher compared to product 2 and the firm uses cross-production to produce only

product 1 using both resources. We have Q1 = K1 + β1K2 and Q2 = 0. Therefore,

u1 > 0 and v2 > 0 and we have a1 − a2≥2(1 − b)(K1 + β1K2). Hence if the demand

realizations are within this region, the solutions are optimal for the Stage II problem.

Case 5: Region Ω5

The proof for region Ω5 under Case 5 is symmetric to Case 4 (region Ω4) and hence

omitted.

Proof of Lemma 4.1

In this section we prove that the Stage I objective function Π is strictly jointly concave

in the investment vector (K, β) for any continuous distribution of Ai, i = 1, 2 having

positive support. We assume a symmetric capacity investment where K1 = K2 = K

as the proof is shorter (the asymmetric case can be proved along similar lines). The

profit function is continuous and the first derivatives are bounded in each region. We

hence write -H, negative of the Hessian matrix of Π(K, β) as:



˜
Ω2

∂2Π2

∂K2 Ψ(A1, A2) +
˜
Ω3

∂2Π3

∂K2 Ψ(A1, A2)

+
˜
Ω4

∂2Π4

∂K2 Ψ(A1, A2) +
˜
Ω5

∂2Π5

∂K2 Ψ(A1, A2)

˜
Ω2

∂2Π2

∂K∂β
Ψ(A1, A2) +

˜
Ω3

∂2Π3

∂K∂β
Ψ(A1, A2)

+
˜
Ω4

∂2Π4

∂K∂β
Ψ(A1, A2) +

˜
Ω5

∂2Π5

∂K∂β
Ψ(A1, A2)

˜
Ω2

∂2Π2

∂K∂β
Ψ(A1, A2) +

˜
Ω3

∂2Π3

∂K∂β
Ψ(A1, A2)

+
˜
Ω4

∂2Π4

∂K∂β
Ψ(A1, A2) +

˜
Ω5

∂2Π5

∂K∂β
Ψ(A1, A2)

˜
Ω2

∂2Π2

∂β2 Ψ(A1, A2) +
˜
Ω3

∂2Π3

∂β2 Ψ(A1, A2)

+
˜
Ω4

∂2Π4

∂β2 Ψ(A1, A2) +
˜
Ω5

∂2Π5

∂β2 Ψ(A1, A2)


The derivatives in each region are obtained as follows:
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• Ω1: ∂Π1

∂K
= 0; ∂Π1

∂β
= 0.

• Ω2: ∂Π2

∂K
= 2(A1(1−bβ)+A2(β−b)−2(1−b2)(1+β)K)

(1−b)(1+β)

∂2Π2

∂K2 =−4(1 + b) < 0.

∂2Π2

∂K∂β
= 2(1+b)(A1−A2)

(−1+b)(1+β)2 < 0; ∂2Π2

∂β2 = (A1−A2)(A1(−3+b(−1+2β))+A2(1+3b−2β)+4(1−b2)K(1+β))
(−1+b)2(1+β)4 ;

• Ω3: ∂Π3

∂K
= 2(A2(1−bβ)+A1(β−b)−2(1−b2)(1+β)K)

(1−b)(1+β)
< 0; ∂2Π3

∂K2 =−4(1 + b) < 0.

∂2Π3

∂K∂β
= 2(1+b)(A2−A1)

(−1+b)(1+β)2 −2g < 0; ∂
2Π3

∂β2 = (A2−A1)(A2(−3+b(−1+2β))+A1(1+3b−2β)+4(1−b2)K(1+β))
(−1+b)2(1+β)4 ;

• Ω4: ∂Π4

∂K
= A1(1 + β)− 2K(1 + β)2 ∂2Π4

∂K2 =−2(1 + β)2 < 0.

∂2Π4

∂K∂β
= A1 − 4K(1 + β)− 2g < 0; ∂2Π4

∂β2 =−2K2 < 0;

• Ω5:∂Π5

∂K
= A2(1 + β)− 2K(1 + β)2 ∂2Π5

∂K2 =−2(1 + β)2 < 0.

∂2Π5

∂K∂β
= A2 − 4K(1 + β) < 0; ∂2Π5

∂β2 =−2K2 < 0;

Except ∂2Π2

∂β2 and ∂2Π3

∂β2 all other terms in the Hessian are strictly negative. Consider

∂2Π2

∂β2 .

When K1=K2=K the inequalities defining Ω2 can be rewritten as follows: A1 −

A2 ≥ 0, A1− bA2 +β(A2− bA1) ≥ 2(1− b2)K(1+β) and A1−A2 ≤ 2K(1− b)(1+β).

We rearrange the second term as 0 ≥ −2(A1 − bA2) + 4(1− b2)K(1 + β)− 2β(A2 −

bA1). In ∂2Π2

∂β2 we have A1 − A2 ≥ 0 and (1 − b)2(1 + β)4 ≥ 0 from the defini-

tions of the region. Hence the sign of the entire term depends upon the sign of

A1(−3 + b(−1 + 2β)) +A2(1 + 3b− 2β) + 4(1− b2)K(1 + β) which can be simplified

as −3(A1− bA2) + (A2− bA1)(1− 2β) + 4K(1− b2)(1 + β). This can be re-written as

−2(A1− bA2) + 4K(1− b2)(1 +β)− 2β(A2− bA1) + (A2−A1)(1 + b). Comparing this

term with the regional inequality 0 ≥ −2(A1−bA2)+4K(1−b2)(1+β)−2β(A2−bA1)

and noting that in this region A2 − A1 ≤ 0 we conclude that this term is negative.

Proof for Ω3 is along similar lines. Since the terms in the Hessian as well as the
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determinant are negative, we conclude that the Stage I objective function is jointly

concave in (K, β).

Proof of Theorem 4.2

Using Lemma 4.1, we differentiate the Stage I objective function Π w.r.t. capaci-

ties K1, K2 to obtain the first order conditions.

Proof of Theorem 4.3

It is easy to see that the Stage II optimal production quantities decrease as b

increases. Hence the Stage II profit decreases overall. Since the Stage I objective

function is concave in the capacities and flexibility, this trend exists in expectation.

Hence overall optimal expected profit decreases.

Proof of Theorem 4.4

We assume β1=β2=β. The optimal revenue R(A1, A2) in regions 2 and 3 are

symmetric and, regions 4 and 5 are symmetric. We prove for K1 as proof for K2 is

along similar lines.

We evaluate ∂K
∂b

which in turn is obtained by implicit differentiation as: ∂
∂b

( ∂Π
∂K

)

= ∂2Π
∂K2 |K=K∗(b)

∂K∗(b)
∂b

+ ∂2Π(b)
∂K∂b

|K=K∗(b). Then, ∂K∗(b)
∂b

= -
∂2Π(b)
∂K∂b

|K=K∗(b)

∂2Π
∂K2 |K=K∗(b)

. Since Π(b)

is strictly concave, ∂2Π
∂K2

1
|K=K∗(b) < 0. For K∗(b) > 0 , ∂K

∂b
is of the same sign as

∂2Π(b)
∂K∂b

|K=K∗(b). We apply Leibniz rule for differentiating under the integral sign and

after tedious algebra obtain,

∂K1

∂b
= −4K2

ˆ
Ω4

A1 − 2(K1 + βK2)

1 + β
h(A1, A1 − 2(K1 + βK2)dA1dA2 +

ˆ ˆ
Ω2

(A2 − 2K2)(1− β)− 2(A1 − 2K1)

(1 + β)3
h(A1, A2)dA1dA2

Clearly each term is < 0 (by definitions of the respective demand regions) and hence

∂K1

∂b
< 0 in all regions. Similar proof follows for K2.
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Proof of Theorem 4.5

The clearance assumption is satisfied in Region 2. Using the first order conditions

for the firm for K1 in Region 2 we directly derive this result.

Proof of Theorem 4.6

Using the expression in Region 2 for first order conditions of the optimal recon-

figuration level, and under the clearance assumption we use the logarithm of beta to

obtain the following expression: log(A1−A2) + log(K1−K2) + log(1 +β) + 10logβ+

2log(3g2
3) = 2log(1 + b). It is easy to see that the optimal reconfiguration factor

is linearly related to product substitutability b and hence as b increases optimal β

increases.
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APPENDIX C

Proofs for Chapter 5: The Additional Cost Model

Proof of Theorem 5.1

In Stage II given the invested capacities K1, K2 and degree of flexibility f in Stage I

and demand intercept realizations a1 and a2, the firm decides the production quan-

tities. Recall from Section 5.3 that there are three different scenarios and sub-cases

corresponding to each scenario. Since we partition the feasible region and solve the

optimization problem within that region, this avoids any non-differentiability due to

terms (Qi − Ki)
+, i=1, 2. Depending on the demand region we are either left with

no cross-production terms (corresponding to the four cases in Scenario 1) or we have

(Q1 − K1)c1(1 − f) (corresponding to the three cases under Scenario 2) or we have

(Q2 − K2)c2(1 − f) (corresponding to the three cases under Scenario 3), which are

linear terms and hence are differentiable. At the boundaries we do not use KKT

conditions as the solutions are either Q1 = K1 or Q2 = K2 and hence the demand

regions can be directly obtained from boundaries of other demand regions.

The Stage II objective function consists of the revenue term p1Q1 + p2Q2 and

additional terms depending on the demand regions. The revenue term was shown to

be strictly jointly concave in the proof for Shrinking Capacity model in Appendix B.

The additional cross-production terms here are linear functions of Q1 or Q2. Thus the

Stage II function is strictly jointly concave with linear constraints and in each region

where the objective function is differentiable, we can use KKT conditions which are

both necessary and sufficient to obtain the production quantities. As stated above,

the function is non differentiable at the boundaries but since we have either Q1 = K1
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or Q2 = K2 the Stage II problem can be solved at those boundaries without using

KKT conditions.

Let u, v1 and v2 be the Lagrangian multipliers corresponding to constraints Q1 +

Q2 ≤ K1 + K2 and Q1 ≥ 0 and Q2 ≥ 0 respectively. Combinations of the Lagrange

multipliers and slack variables gives rise to 10 different optimization problems each

corresponding to the 10 feasible regions (denoted by Ω1, ..,Ω10). In each region the

Stage II problem can be solved in closed form.

Scenario 1: We have Q1 ≤ K1 and Q2 ≤ K2 leading to four different optimization

problems. The Stage II objective function does not include any of the additional cost

terms. We discuss the solutions of the four possible cases:

The Lagrangian of the Stage II problem for Scenario 1 (for each of the demand

regions Ω1,Ω2,Ω3,Ω8) can be written as:

RL = a1Q1 + a2Q2 −Q2
1 −Q2

2 − 2bQ1Q2

−[Q1 +Q2 − (K1 +K2)]u+ v1Q1 + v2Q2.

Case 1 corresponds to Q1 < K1 and Q2 < K2. In this region (Ω1) capacities

are not binding for any of the products i.e., Qi <Ki for i = 1, 2. The unconstrained

solution lies in the interior of the feasible region and we have u=v1=v2=0. The

conditions above reduce to solving the following two equations:

a1 − 2Q1 − 2bQ2 = 0,

a2 − 2bQ1 − 2Q2 = 0

The optimal production quantities when demand realizations (a1,a2)∈ Ω1 are given

by:

Q1 =
a1 − ba2

2(1− b2)
, Q2 =

a2 − ba1

2(1− b2)
;
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Recall that for the strict concavity of the consumer utility function it was required

that A1− bA2> 0, A1− bA2< 0 and 1− b2> 0. Hence, quantities are positive. Prices

are given by:

p1 =
a1

2
, p2 =

a2

2
;

Case 2 corresponds to Q1 = K1 and Q2 < K2. In this region (Ω2) capacity is

binding only for resource 1 but no cross production is used. u=v1=v2=0 and Q1 = K1.

From the first order condition of quantity Q2, a2 − 2bK1 − 2Q2 = 0, we obtain Q2.

Q1 = K1, Q2 =
a2

2
− bK1;

This solution is optimal if and only if Q2 ≤ K2 and we obtain the inequality

a2 ≤ 2(K2 + bK1).

Case 3 is symmetric to Case 2 and hence the production quantities in this region

(Ω3) are given by:

Q1 =
a2

2
− bK2, Q2 = K2;

Case 4 corresponds to very high realizations of demands for both products (region

Ω8) . In this case Q1 = K1 and Q2 = K2. Cross-production is not optimal and hence

is never used.

Scenario 2: In this scenario we have Q1>K1 and Q2 <K2. This leads to three

possible cases as the firm incurs additional production cost c1. The Lagrangian of the

Stage II problem for Scenario 2 for each of the three cases corresponding to demand

regions Ω4,Ω6 and Ω9 can be written as:

RL = a1Q1 + a2Q2 −Q2
1 −Q2

2 − 2bQ1Q2 − (Q1 −K1)c1(1− f)

−[Q1 +Q2 − (K1 +K2)]u+ v1Q1 + v2Q2.
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Combinations of the Lagrangian multipliers and slack variables enables us to obtain

closed form solutions for the production quantities in each of the three regions as

shown below:

Case 1

In Region Ω4 we have demand for product 1 to be high and hence we use cross-

production to produce product 1 using resource 2. We have Q1 >K1 implying c1(1−

f) >0 and Q2 < K2 and c2(1 − f)=0. When Q1 > 0, Q2 > 0 and constraint is not

binding i.e, Q1 +Q2 <K1 +K2 the corresponding Lagrange multipliers u=0, v1=0 and

v2=0 by complementary slackness and hence solving for quantities using the above

equations we obtain

Q1 =
a1 − ba2 − c1(1− f)

2(1− b2)
, Q2 =

a2 − ba1 + bc1(1− f)

2(1− b2)
;

If these solutions also satisfy the constraints a1−ba2 > 2(1−b2)K1+c1(1−f) obtained

from Q1 ≥ K1, and a1 + a2 ≤ 2(1 + b)(K1 +K2) + c1(1− f) obtained from Q2 ≤ K2

and Q2 ≥ 0, then they are optimal. Quantities and prices are non-negative (similar

to proof of Theorem 4.1) once we substitute the corresponding values of Lagrange

multipliers in each region and under the assumption that ai − baj > 0 for i, j = 1, 2

and i 6= j.

Case 2

In Region Ω6 the constraint Q1 + Q2=K1 + K2 is binding and Q1 >K1 implying

c1(1 − f) >0 and Q2 < K2 and c2(1 − f)=0. Hence the corresponding Lagrange

multipliers u >0, v1=0 and v2=0 by complementary slackness. Solving for quantities

using the three equations we obtain the production quantities as:

Q1 =
K1 +K2

2
+
a1 − a2 − c1(1− f)

4(1− b)
,

Q2 =
K1 +K2

2
− a1 − a2 − c1(1− f)

4(1− b)
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From Q2 ≤ K2, Q2 ≥ 0 and Q1 ≥ K1 we obtain the defining equations for this

region.

Case 3

In Region Ω9 the demand realization of product 1 is so high the firm uses all of its

resources to produce only product 1. Q1 = K1 +K2 and Q2 = 0 and the firm incurs

the additional cost of cross-production. These solutions are optimal as long as the

difference between the demands are defined by a1−a2 > 2(1−b)(K1 +K2)+c1(1−f).

Scenario 3: In this scenario we have Q1<K1 and Q2 >K2. This leads to three

possible cases as the firm incurs additional production cost c2. The Lagrangian of the

Stage II problem for Scenario 3 for each of the three cases corresponding to demand

regions Ω5,Ω7 and Ω10 can be written as:

RL = a1Q1 + a2Q2 −Q2
1 −Q2

2 − 2bQ1Q2 − (Q2 −K2)c2(1− f)

−[Q1 +Q2 − (K1 +K2)]u+ v1Q1 + v2Q2.

The three cases in Scenario 3 are symmetric to the cases described in Scenario 2

for product 1. For each combination of the Lagrange multiplier and slack variables

we can solve three different problems to obtain the production quantities in regions

Ω5,Ω7 and Ω10. The proofs are along very similar lines as developed for Scenario 2

and hence omitted.

Proof of Theorem 5.1

To prove the concavity of the objective function, we let h=f 2. If there exists a

unique solution for h, then there exists a unique solution for f . Assuming K1=K2=K

and c1=c2=c the derivatives in each region are obtained as follows:

• Ω1: ∂2Π1

∂K2 = 0; ∂2Π1

∂h2 = 0.
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• Ω2: ∂Π2

∂K
= A1 − bA2 − 2(1− b2)K

∂2Π2

∂K2 =−2(1− b2) < 0.

∂2Π2

∂K∂h
= 0; ∂2Π2

∂h2 =0;

• Ω3: ∂Π3

∂K
= A2 − bA1 − 2(1− b2)K; ∂2Π3

∂K2 =−2(1− b2) < 0.

∂2Π3

∂K∂h
= 0; ∂2Π3

∂h2 =0;

• Ω4: ∂2Π4

∂K2 =0.

∂2Π4

∂K∂h
= −c

2(
√
h)
< 0; ∂2Π4

∂h2 = −c
h

3
2 8(1−b2)

(A1 − bA2 − c− 2K(1− b2);

• Ω5: ∂2Π5

∂K2 =0.

∂2Π5

∂K∂h
= −c

2(
√
h)
< 0; ∂2Π5

∂h2 = −c
h

3
2 8(1−b2)

(A2 − bA1 − c− 2K(1− b2);

• Ω6: ∂Π6

∂K
= A1 + A2 + c(1−

√
h)− 4(1 + b)K ∂2Π6

∂K2 =−4(1 + b) < 0.

∂2Π6

∂K∂h
= 0; ∂2Π6

∂h2 = −c
h

3
2 16(1−b)

(A1 − A2 − c);

• Ω7: ∂Π7

∂K
= A1 + A2 + c(1−

√
h)− 4(1 + b)K ∂2Π7

∂K2 =−4(1 + b) < 0.

∂2Π7

∂K∂h
= 0; ∂2Π7

∂h2 = −c
h

3
2 16(1−b)

(A2 − A1 − c);

• Ω8: ∂2Π8

∂K2 =−2 < 0.

∂2Π8

∂K∂h
= 0; ∂2Π8

∂h2 =0;

• Ω9: ∂Π9

∂K
= 2A1 − 8K ∂2Π9

∂K2 =−8 < 0.

∂2Π9

∂K∂h
= c

2
√
h
; ∂2Π9

∂h2 =−cK
4h

3
2

;

• Ω10: ∂Π10

∂K
= 2A1 − 8K ∂2Π10

∂K2 =−8 < 0.

∂2Π10

∂K∂h
= c

2
√
h
; ∂2Π10

∂h2 =−cK
4h

3
2

;
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Let Ψ denote the joint pdf of the random variables A1 and A2. We define the

following elements:

B ≡
ˆ ˆ

Ω4

Ψ(A1, A2)dA1dA2 +

ˆ ˆ
Ω5

Ψ(A1, A2)dA1dA2;

L ≡
ˆ ˆ

Ω4

A1 − bA2 − c(2K)(1− b2)Ψ(A1, A2)dA1dA2;

Z ≡
ˆ ˆ

Ω5

A2 − bA1 − c(2K)(1− b2)Ψ(A1, A2)dA1dA2;

X ≡
ˆ ˆ

Ω9

Ψ(A1, A2)dA1dA2 +

ˆ ˆ
Ω10

Ψ(A1, A2)dA1dA2;

Y ≡
ˆ ˆ

Ω2

Ψ(A1, A2)dA1dA2 +

ˆ ˆ
Ω3

Ψ(A1, A2)dA1dA2;

M ≡
ˆ ˆ

Ω6

Ψ(A1, A2)dA1dA2 +

ˆ ˆ
Ω7

Ψ(A1, A2)dA1dA2;

T ≡
ˆ ˆ

Ω8

Ψ(A1, A2)dA1dA2;

D ≡
ˆ ˆ

Ω6

(A1 − A2 − c)Ψ(A1, A2)dA1dA2;

E ≡
ˆ ˆ

Ω7

(A2 − A1 − c)Ψ(A1, A2)dA1dA2;

We hence write H, the Hessian matrix of Π(K,h) as:


−2(1− b2)Y − 4(1 + b)M − 2T − 8X −c

2
√
h
B + c

2
√
h
X − g3√

h

−c
2
√
h
B + c

2
√
h
X − g3√

h

−c(L+Z)
8(1−b2)h1.5 − c(D+E)

16(1−b)h1.5 − cKX
4h1.5 + g3K

2h1.5
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Observe that all elements on the diagonal of -H, the negative of the Hessian, are

positive due to the definitions of the regions. We now calculate the determinant of

the Hessian -H as follows: Let

N ≡ 1

h1.5
;S ≡ 1√

h
;

Hence, the determinant can be simplified as:

Det(-H) : =

[
cN

16

(
D + E

1− b
+ 4KX +

2(L+ Z)

1− b2
− g3N

2

)] [
2(Y (1− b2) + 2(1 + b)M + T + 4X

]
− [Bc+ 2g3 − cX]2

S2

4
> 0.

We hence conclude that -H is positive definite for any continuous distribution

of A1 and A2 and hence H is negative definite and the objective function is strictly

jointly concave in (K, f) and the first-order conditions are necessary and sufficient

for optimality.
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APPENDIX D

Notations

Table D.1: Common Notation

RV Random Variable

CV Coefficient of Variation

A1, A2 RVs denoting demand intercepts of products in Stage I

a1,a2 Realizations of RVs A1, A2 in Stage II

Θ1,Θ2 RVs denoting degree of uncertainties of resources in Stage I

θ1,θ2 Realizations of RVs Θ1,Θ2 in Stage II

µ1, µ2 Mean of RVs A1, A2

σ1, σ2 Standard Deviation of RVs A1,A2

ρ ∈ [−1, 1] Correlation of demand intercepts of RVs A1,A2

b ∈ [0, 1) Product substitutability factor in the b-demand model

ϑ1, ϑ2 Price sensitivity parameters of products in b-demand model

K̄1,K̄2 Invested resource capacities in Stage I

K1,K2 Available resource capacities in Stage II

Q1,Q2 Decision variables denoting selling quantities in Stage II

p1,p2 Decision variables denoting unit selling prices in Stage II

g1,g2 Unit capacity cost of resources
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Table D.2: Additional Notation for Contingent Flexible Capacity Model

E1 and E2 RVs of product demand intercepts in Stage I (γ-demand model)

ε1, ε2 Realization of RVs E1 and E2 in Stage II (γ-demand model)

γ ∈ [0, 1) Product substitutability factor (γ-demand model)

α Price sensitivity parameter (γ-demand model)

gf Unit cost of flexibility

c1, c2 Additional cost of using flexible resource in Stage II

Table D.3: Additional Notation for Shrinking Capacity Model

β1, β2 ∈ (0, 1) Decision variables denoting partial flexibility in Stage I

g3 Unit cost of flexibility

Table D.4: Additional Notation for Additional Cost Model

f Decision variable denoting degree of flexibility in Stage I

c1, c2 Additional unit cost of cross-production in Stage II

g3 Unit cost of flexibility
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