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Abstract:

With the increase in health care costs, there is a great need to develop a low-cost
and efficient health care system with better accessibility. Recent advances in the
fields of embedded sensing, mobile computing, and wireless communication have led
to the development of several low-cost wearable health sensors that can noninvasively
collect different physiological signals such as electrocardiogram (ECG), peripheral
oxygen saturation (SpO2), blood pressure, airflow, etc. With the availability of these
wearable sensors and powerful smartphones, it is now possible to build a smart health
monitoring system that can continuously monitor and track a person’s health without
the need of a hospital visit. In this research, we primarily focus on the signal pro-
cessing and statistical inference aspects of the smart health system. First, we develop
a biometric recognition system using the ECG signal, which is easily measured by
several wearable devices. A multitask learning framework, in which the feature selec-
tion and classifier design are combined, is proposed to improve the overall learning
efficiency. Experimental results on real ECG data show the effectiveness of the pro-
posed method over other approaches. In the next part, we focus on the mathematical
modeling of the local control mechanism of the cardiorespiratory system. We use a
nonlinear model of the cardiorespiratory system with heart rate and ventilation rate
as the control signals. An iterative algorithm is proposed to calculate the optimal
control signals. In the final part, we focus on the detection of a chronic respiratory
sleep disorder, sleep apnea, using measurement signals from wearable sensors. A new
framework combining multiple sensor measurement data with the cardiorespiratory
system model information is proposed. Experimental results on both synthetic and
real data show the effectiveness of the proposed framework. Comparisons with purely
data-driven apnea detection methods demonstrate the advantage of combining the
sensor measurement data with cardiorespiratory model information.
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CHAPTER 1

INTRODUCTION

Rising health care cost is an important economic issue in many countries around

the world. For example, the United States health care spending reached $3 trillion

in 2014, which is 17.5% of the nation’s Gross Domestic Product [14]. A significant

portion of the health care costs does not lead to better health care [15]. There is a

great need to develop a better health care system at lower cost that is accessible to

more people worldwide.

According to the United States National Academy of Medicine, a health care

system should be safe, effective, patient-centered, timely, efficient, and equitable [16].

The National Academy of Medicine proposed the following ten general principles to

help redesign the health care system [16]:

• Health care is available to patients whenever they need it and in many forms

such as by telephone, over the Internet, etc. in addition to in-person visits.

• Health care is customized according to the patient needs and preferences.

• Patients should have all the necessary information and opportunity to make

their health care decisions. The system should encourage shared decision mak-

ing.

• Patients should have unrestricted access to their medical information and to

the clinical knowledge.

• The system should have evidence-based decision making. Health care based
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on the best available scientific knowledge should be provided and it should not

vary from one clinician to another.

• The system should be safe and error-free.

• The system should be transparent and should enable patients or their families

to make informed decisions regarding the treatments.

• The system should be able to anticipate patient needs.

• The system should not waste patient’s time and resources.

• Clinicians and medical institutions should have proper cooperation, collabora-

tion, and coordination to provide the best health care.

The United States President’s Council of Advisors on Science and Technology (PCAST)

recommends the use of data science and systems engineering approaches to provide

an affordable and high-quality health care to the people [15]. Systems engineering

reduces waste and increases safety, reliability, and efficiency of the health care system.

1.1 Wearable Sensing and Smart Health Monitoring

Recent advances in the fields of sensing and wireless communication have led to the

development of nano- and micro-electromechanical systems (NEMS/MEMS) based

wearable smart sensors. Advanced very-large-scale integration (VLSI) and ultra-

large-scale integration (ULSI) technologies have led to the development of powerful

system-on-a-chip (SoC) and system-in-a-package (SiP) integrated circuits, which are

used in smartwatches, smartphones, and tablet computers. For example, the 64-bit

Apple A10 Fusion SoC in iPhone 7 contains around 3.3 billion transistors in a die area

of 125 mm2 [17]. The success and rapid increase in the adoption of wearable sensors

and smart mobile devices can be illustrated by the fact that over 86 billion ARM-
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based processors have been shipped to date.1 A vast majority of these processors

are used in the SoCs and SiPs of various wearable sensors, embedded systems, and

mobile devices [18].

Due to these technological advances, several low-cost wearable health devices are

now available that can collect various physiological signals like electrocardiogram

(ECG), heart rate, respiratory rate, peripheral oxygen saturation, etc. noninvasively.

For example, some popular wearable health devices are shown in Figure 1.1, which

typically cost few hundred dollars. The Hexoskin biometric smart shirt has a single-

lead ECG sensor, thoracic and abdominal respiratory bands, three-axis accelerometer,

and can measure motion activity, ECG, heart rate, breathing and ventilation rates.

The Beddit sleep tracker has a piezoelectric force sensor, humidity sensor, tempera-

ture sensor, and measures heart rate and breathing signals using ballistocardiography

(BCG) technique. The AliveCor Kardia Band for Apple Watch and Nymi Band mea-

sure the ECG signal. Moreover, Apple Inc. recently announced ResearchKit [19] and

CareKit [20] software frameworks to help develop iPhone mobile applications capable

of monitoring and tracking the user’s health.

These wearable health devices have wireless connectivity and can record the cor-

responding physiological signals for several hours at a time. Rapid increase in the

adoption of smartphones, smartwatches, and the availability of several low-cost wear-

able sensors has led to movements like mHealth, quantified self [21], and personal

informatics [22], where a person is able to monitor different health metrics and self-

track themselves throughout the day.

1https://www.arm.com/company
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(a) Hexoskin smartshirt [23] (b) AliveCor Kardia Band for Ap-

ple Watch [24]

(c) Beddit sleep tracker [25]

(d) Nymi Band [26] (e) Omron Project Zero

Wrist Blood Pressure

Monitor (BP6000) [27]

Figure 1.1: Wearable health devices.
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With the availability of these low-cost wearable health devices that can provide

real-time physiological information, it is now possible to develop a noninvasive smart

health monitoring system capable of providing accurate diagnostic information. Such

a system can continuously monitor the user’s health and provide timely vital medical

alerts. These timely health alerts will greatly help physicians in providing an accurate

diagnosis and prognosis. The monitoring system helps in providing the best possible

proactive personal health care. Thus, the smart health monitoring system plays a

significant role in providing better health care to more people at lower cost. The

basic architecture of such a smart health monitoring system is shown in Figure 1.2.

Physician

Cloud

WLAN / WWAN

WPAN
User

WLAN / WWAN

Figure 1.2: Smart health monitoring system.

1.1.1 Ambient Intelligence

Ambient Intelligence (AmI) is a new intelligent computing paradigm where smart

environments (embedded with smart sensors) empower people inhabiting them. An

AmI system is context aware, personalized, anticipatory, adaptive, ubiquitous, and

transparent [28].
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Wearable sensor-based intelligent computing was first used in activity recognition.

In [29], Lee and Mase propose a method to determine a person’s location and recog-

nize activities such as walking, standing, and sitting using wearable accelerometers

and gyroscopes. In [30], a network of three-axis accelerometers distributed on a per-

son’s body are used to calculate the orientation and movement of the corresponding

body part. Lukowicz et al. [31] use body-worn microphones and accelerometers to

recognize workshop activities. Rashidi et al. [32] propose an unsupervised method of

discovering and tracking activities in a smart home environment. A sequential mining

and clustering method is used to group the activities, and a hidden Markov model

(HMM) is used to recognize them.

In [33], Gouaux et al. develop a portable and intelligent personal ECG monitor

(PEM) for the early detection of cardiac ischemia and arrhythmia. Sung et al. [34]

use a Gaussian mixture model (GMM) to detect hypothermia by classifying shivering

through wearable accelerometers. In [35], Heilman and Porges studied the accuracy

and precision of heart rate detection by the noninvasive physiological monitoring

system LifeShirt (developed by VivoMetrics Inc.). Wearable sensor-based systems

are also used to develop efficient assisted living technologies. In [36], Mubashir et

al. survey different fall detection algorithms based on wearable, ambient, and vision

sensors. Debes et al. [37] review different sensor technologies, signal processing and

machine learning methods for monitoring the activities of daily living (ADLs). The

monitoring of ADLs can be used to develop ambient assisted living (AAL) technologies

to help elderly people.

Multiple wearable sensors measure different physiological and hence provide dif-

ferent viewpoints of the person’s health. The main challenge here is the fusion of the

multimodal sensor data to extract useful information. The information from multiple

sensors needs to be efficiently processed and fused to provide an accurate represen-

tation of the person’s health status. In some cases, the information from multiple
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sensors can be redundant. It is also important to identify the redundancy between

different sensors. Another main challenge is the fusion of the multisensor data with

other health information of the person such as health records, previous diagnostic

reports, medical lab test results, etc. to detect a certain disease or health disorder.

1.2 Research Objectives and Contributions

In this research, we mainly focus on the signal processing and statistical inference as-

pects of the smart health monitoring system. Since ECG signal is widely popular and

is collected by many wearable health devices, we first find an interesting application

of the ECG signal for biometric recognition. Biometric recognition systems based on

traditional traits such as fingerprint, face, etc. can be easily attacked by duplicating

the corresponding traits. However, it is very hard to attack an ECG-based biomet-

ric recognition system. So instead of relying on the traditional biometric recognition

methods, an efficient biometric recognition system using the ECG signal is developed.

The main challenge here is extracting the relevant features from the ECG signal. We

propose a multitask learning framework, in which the feature selection and classifier

design are combined, to improve the overall learning efficiency. The proposed recog-

nition framework can easily deal with high-dimensional and nonlinearly separable

data.

Mathematical modeling is a powerful way to study the underlying physiological

systems when direct interaction with the system is not possible. Mathematical models

try to capture and quantify the complex interactions between different physiological

systems processes. We focus on modeling the control mechanism of the cardiores-

piratory system. Control mechanisms play a vital role in effectively regulating the

cardiorespiratory system. We specifically develop a model of the local control mech-

anism in which the optimal control signals of heart rate and ventilation rate are

calculated. We adopt a nonlinear model of the cardiorespiratory system and propose
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an iterative algorithm to compute the optimal control signals of the system.

Finally, we focus on detection of a serious chronic respiratory sleep disorder, sleep

apnea. Individuals with sleep apnea are rarely aware of the condition and are often

left untreated. If left untreated, sleep apnea leads to some serious adverse physiolog-

ical conditions such as hypertension, cardiac arrhythmia, heart attack, and stroke.

We develop a new framework for sleep apnea detection, in which multiple sensor mea-

surement data are combined with the cardiorespiratory model information to achieve

better detection accuracy.

1.3 Organization

This chapter has introduced the background and motivation for the development of

a smart health monitoring system using low-cost wearable sensors. The remainder of

this dissertation is organized as follows.

In Chapter 2, we consider the biometric recognition problem. A biometric recog-

nition system based on a single-lead ECG signal is developed. A multitask learning

approach is proposed to efficiently perform feature selection and classifier design si-

multaneously.

In Chapter 3, we review several existing mathematical models of cardiovascular

and respiratory systems.

In Chapter 4, we describe the local control mechanism modeling of the cardiores-

piratory system. The optimal control problem is formulated as a convex optimization

problem, which can be solved efficiently using interior-point methods.

In Chapter 5, the problem of sleep apnea detection is considered. A new fusion

framework combining multiple sensor measurement data and the cardiorespiratory

model information is proposed.

Finally, conclusions and suggestions for future work are provided in Chapter 6.
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CHAPTER 2

ECG-BASED BIOMETRIC RECOGNITION

Biometric recognition is the science of recognizing the identity of a person based

on the person’s physical or behavioral attributes [38]. Biometric recognition systems

operate on the fact that certain physical or behavioral attributes of humans are unique

to an individual. The attributes used in a biometric recognition system are referred

to as biometric traits. In general, to determine the suitability of a biometric trait,

the following seven factors are considered [38]:

• Universality: Every individual should possess the trait.

• Uniqueness: The trait should be sufficiently different across individuals in the

population.

• Permanence: The trait of an individual must be sufficiently invariant with

respect to the biometric matching algorithm over a period of time.

• Measurability: The trait should be easy to acquire using suitable devices without

causing any inconvenience to the individual.

• Performance: Recognition accuracy and the computational resources required

to achieve that accuracy and throughput should meet the constraints of the

biometric application.

• Acceptability: Individuals utilizing the application should be willing to present

their trait to the biometric system.
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• Circumvention: It should be hard to mimic the trait and fool the biometric

system.

In practice, no single biometric trait effectively meets all the above requirements

imposed by all applications all the time. However, based on nature and type of

application, certain traits are acceptable. The commonly used biometric traits can

be broadly classified into the following two categories:

• Physical: Traits based on the direct measurement of a part of the human body

such as fingerprint, palmprint, retina, iris, face, ear, etc.

• Behavioral: Traits based on a certain behavioral action of a person such as

signature, gait, voice, keystroke, etc.

Behavioral traits are generally less secure compared to the physical traits as it is

relatively easy to mimic a behavioral trait of an individual. Current biometric recog-

nition systems mostly use physical biometric traits such as fingerprint, face, iris, etc.

These systems can also be fooled as one may impersonate others by copying their

fingerprints, face images, iris scans, etc [39]. For example, in December 2014, a Ger-

man hacker reproduced a fingerprint of the German Defense Minister using some

high-resolution photos of her hand [40]. In [41], Sharif et al. developed a new class

of attacks against facial biometric recognition systems, which can be implemented by

printing a pair of eyeglass frames.

Nowadays, it is easy to acquire physiological signals such as electrocardiogram

(ECG) signal with the available low-cost wearable sensors. So it is now possible to

develop biometric recognition systems based on the traits from such physiological

signals. These physiological biometric traits are hard to copy, and hence can be used

in high security biometric applications.

An ECG signal records the electrical activity of the heart through electrodes

placed on a subject’s body. The electrodes measure changes in the electric potential
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on the skin which arise due to the depolarization and repolarization of the heart

muscles during each heartbeat. The ECG signal during a single heart beat is shown

in Figure 2.1. The ECG consists of three waves per heart beat: a P wave, a QRS

wave, and a T wave. The P wave is caused by the electric potential changes during

the depolarization of the atria. The QRS wave is caused by the electric potential

changes during the depolarization of the ventricles. The T wave is caused by the

electric potential changes during the repolarization of the ventricles. Since ventricles

have a larger muscle mass compared to the atria, the QRS wave has larger amplitude

than the P wave. ECG is one of the most widely used noninvasive measurement signal

for several clinical diagnosis purposes.

Figure 2.1: ECG signal during a single heart beat.
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In this chapter, we develop a biometric recognition system based on the ECG

signal. Recent years have seen a growing interest in ECG based biometric recognition

techniques, especially in clinical medicine [42]. Each person has a unique ECG pattern

due to the unique physical and geometrical structure of his/her heart and body [43],

which makes ECG useful for biometric recognition.

Generally in ECG based biometric recognition systems, features are defined in two

ways: fiducial and non-fiducial [44]. In fiducial methods, the ECG features are defined

using certain fixed fiducial points such as the peaks of P, QRS, and T waves. Using

the time intervals between and amplitudes at these fiducial points, we can define

several features for an ECG signal. Non-fiducial methods do not require detecting

fiducial points, and usually consist of defining features using the ECG record of a

longer duration. For example, a discrete cosine transform can be used to define the

non-fiducial features of an ECG signal, where the transform coefficients are used as

features [44]. After defining the ECG features, standard classification algorithms are

used to identify the individuals.

In [45], Biel et al. defined features using the fiducial points from a standard

12-lead ECG, and used the soft independent modeling by class analogy (SIMCA)

method for classification. Israel et al. also defined features using the fiducial points,

and used linear discriminant analysis (LDA) for classification [46]. Wübbeler et al.

used a non-fiducial method for defining features [47]. A two-dimensional heart vector

signal is constructed using three Einthoven leads. Wang et al. defined non-fiducial

features using autocorrelation and discrete cosine transform (DCT) methods [44].

Irvine et al. also used a non-fiducial method based on principal component analysis

(PCA) to define features [48]. The nearest neighbor method was used for classification

in [44, 47, 48]. Tawfik et al. defined non-fiducial features using DCT of the QRS

complex, and used neural networks for classification [49].
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Table 2.1: Related work on ECG-based biometric recognition

Features Classifier

Biel et al. ’01 [45] Fiducial Soft independent

modeling by class

analogy (SIMCA)

Israel et al. ’05 [46] Fiducial Linear discriminant

analysis (LDA)

Wübbeler et al. ’07 [47] Non-fiducial (from 2D

heart vector signal)

Nearest neighbor

Wang et al. ’08 [44] Non-fiducial (autocor-

relation and DCT)

Nearest neighbor

Irvine et al. ’08 [48] Non-fiducial (PCA) Nearest neighbor

Tawfik et al. ’11 [49] Non-fiducial (DCT of

QRS complex)

Neural network

13



Most of existing work uses simple classification algorithms such as linear classifiers,

nearest neighbor methods, etc., which may not be robust in practice. Since the ECG

feature vectors need not always be linearly separable, the linear classifiers may not

perform well. ECG feature vectors may also be noisy in practice. The performance

of nearest neighbor methods degrades as evidenced in [50] and our experimental

results. Moreover, existing methods have not applied feature selection/extraction to

identify only relevant ECG features for classification. The redundant or irrelevant

features may not only lead to the problem of overfitting, but also increase the overall

computational complexity [50].

In this chapter, we develop an efficient biometric recognition system using a single-

lead ECG signal. A single-lead ECG signal can be easily acquired in many situations

[51]. A novel recognition framework is proposed capable of dealing with nonlinearly

separable data of a high dimension. We convert the classification problem of multiple

subjects into a set of binary classification problems (tasks). Each binary classification

task corresponds to identifying one subject. For each binary classification task, a

robust nonlinear kernel classifier is designed. In each classifier, the features are scaled

according to their relevance so that more relevant features have more effect during

classification. This step not only removes redundancy/irrelevance in features, but

also greatly enhances the generalization of the classification algorithm. The classifier

parameters and feature scaling parameters for all the tasks are jointly estimated

using the available training data. More specifically, we combine feature selection and

classifier design into a single learning problem. Furthermore, we combine the learning

of all the tasks, as the tasks are not completely independent. The learning of one

classification task may be useful for the learning of other (related) tasks. This greatly

improves the learning efficiency.
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2.1 Related Work on Joint Feature Selection and Classifier Design

Recent years have seen growing research interest in simultaneous (or joint) feature

selection and classifier design due to the fact that selecting features independently of

the classifier is not always optimal. The relative importance of features may some-

times depend on the type of classifier used. For linear classifiers, joint feature selection

and classifier design can be easily done as the number of classifier parameters is de-

termined by the number of features. In such cases, we can directly use the classifier

parameters to model the relevance of individual features to classification. However,

for nonlinear classifiers, joint feature selection and classifier design is not straightfor-

ward. In [52], Weston et al. proposed a feature selection approach for support vector

machines (SVMs) by using scaling factors for individual features. The scaling fac-

tors were found by minimizing the SVM generalization bound through the gradient

descent approach. The similar problem was also studied in [53], where the scaling

factors and the SVM parameters were jointly obtained by minimizing the standard

SVM empirical risk function. In [54], Krishnapuram et al. proposed a Bayesian ap-

proach for this type of problem. Sparsity promoting zero-mean Gaussian priors were

placed on both the feature scaling factors and the classifier parameters. With these

priors, the final estimates of the feature scaling factors and classifier parameters were

found by maximizing the posterior probability.

In general, each binary classifier in an M -ary classification problem is trained

separately using the available training data. This is referred to as single task learning

(STL). Often, these learning tasks are not completely independent, as they may

share some common information (or structure). Hence, learning of one task may be

useful for learning of other tasks. Multitask learning (MTL) is an approach in which

multiple related tasks are learned in parallel with some shared representation [55].

This greatly improves the efficiency of learning, as each task learns from the other

related tasks as well. For example, in face recognition, learning one particular human’s
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face will be useful for learning others’ as all humans share the same facial structure

and biology. The MTL approach has been applied to several other prediction and

classification problems. In [55], Caruana proposed a multitask learning approach

based on backpropagation neural networks. The hidden layer of the backpropagation

neural network was shared between all the tasks. In [56], the authors proposed a

Bayesian approach for a set of similar classification and regression problems, where

some model parameters (input-hidden layer weights) were shared among all the tasks

and a joint prior distribution was placed on the other parameters.

Figure 2.2: Multitask learning.

The MTL approach has also been applied to feature selection. In [57], Jebara

proposed a common feature selection method for multiple SVMs based on maximum

entropy discrimination. In [58], Argyriou et al. proposed an approach for learning

common sparse features across multiple related supervised learning tasks. They for-

mulated this multitask feature learning problem as a convex optimization problem

and used the alternating minimizing algorithm to solve it. In [59], Chen et al. consid-

ered the problem of learning sparse and low-rank patterns from multiple tasks. They
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considered linear classifiers for each task, the feature scaling parameters of which were

decomposed into sparse and low-rank components. The sparse component highlights

the discriminative features for each classification task, and the low-rank component

captures the common discriminative feature subspace between different tasks.

Most of the existing work still treats feature selection and classifier design for

multiple tasks as separate learning problems. Even though in [59], joint feature se-

lection and classifier design for multiple tasks was proposed, the authors focused on

linear classifiers only. Linear classifiers have limited performance for many real-world

problems, and cannot be extended to nonlinear ones straightforwardly. As mentioned

in Section I, we formulate ECG based biometric recognition as a multitask learning

problem. The original classification problem with more than two classes is first con-

verted into a set of kernel based binary classification tasks. A matrix is formed which

consists of the feature scaling factors for all the tasks. It is then decomposed into a

sparse component and a low-rank component. The sparse component determines the

features that are relevant only to each individual task, and the low-rank component

determines the common feature subspace that is relevant for all the tasks. Thus, the

relatedness between different tasks is modeled through the feature subspace sharing

between tasks.

2.2 ECG Signal Processing and Feature Extraction

We use a non-fiducial method to define the features of a single-lead ECG signal.

Non-fiducial features are generally preferred over fiducial features, as using a small

number of fiducial features may not generalize well to a large number of subjects

[48]. Moreover, reliably detecting fiducial points in ECG signals for all the subjects

automatically is not always possible in practice [48]. Our data preprocessing has two

main steps:

1. filtering,
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2. non-fiducial feature value calculation.

To remove the noise in raw ECG signals, a fourth-order Butterworth bandpass

filter with cutoff frequencies 1 and 40 Hz is first applied. Then, the entire ECG

record of a subject is divided into non-overlapping windows of 5 second duration.

The non-fiducial features for each window are computed using the autocorrelation

and DCT technique in [44]. Using the autocorrelation reduces the effect of heart rate

variability on the recognition task [60]. Specifically, the normalized autocorrelation

function is given by,

Rxx[m] =

∑N−m−1
i=0 x[i]x[i+m]

Rxx[0]
, (2.1)

where x[i] is the ith ECG sample in one window, N is the window length, and x[i+m]

is the time-shifted version of x[i] with time lag m = 0, 1, ...,M − 1, M � N . The

DCT of the obtained autocorrelation is as follows,

Z[k] = w[k]
M−1∑
m=0

Rxx[m] cos

(
π(2m+ 1)k

2M

)
, (2.2)

where k = 0, 1, ...,M − 1, and w[k] is given by

w[k] =


√

1
M
, k = 0,√

2
M
, 1 ≤ k ≤M − 1.

(2.3)

In general, the first d DCT coefficients, {Z[k], k = 0, ..., d−1}, may contain significant

information, d < M . Therefore, these d DCT coefficients are defined as the non-

fiducial features of one ECG window.

2.3 Problem Formulation

We consider an L-class classification problem (recognition of L subjects), L > 2. We

convert this into L one-versus-rest binary classification problems (tasks). That is,

we decide whether the input ECG record belongs to subject l or not, l = 1, 2, ..., L.

For each subject, we initially divide the entire ECG record into non-overlapping
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windows of 5 second duration. The non-fiducial ECG features are then computed

for each window. Let Tl = {(xli, yli); i = 1, ..., N} be the available training data for

the lth binary task, where N is the number of training ECG windows for each task.

Let d be the total number of non-fiducial features defined for the ith window, i.e.,

xli ∈ Rd. The label of the sample xli is yli ∈ {0, 1} corresponding to “not subject l”

and “subject l”, respectively. Let fl(·) be the classifier function for the lth binary

task, i.e., yl = fl(x
l; wl), where wl are the classifier parameters. In general, these L

different tasks are related to each other. Our goal here is to learn the relevant subset of

non-fiducial features for each task and the L binary classifier functions simultaneously

using the available data D = {T1,T2, ...,TL}.

2.3.1 Binary classifier

For each binary classification task, we consider the following probabilistic kernel clas-

sifier based on the generalized linear model [61],

P (yl = 1|xl) = σ

(
wl0 +

N∑
i=1

wliK(xl,xli)

)
, (2.4)

where wl = [wl0, w
l
1, ..., w

l
N ]T are the classifier parameters, N is the size of the training

dataset, K(·, ·) is a valid kernel function, and σ(a) = 1
1+e−a . The classifier function

fl(·) assigns the class label based on thresholding the class probability, P (yl = 1|xl).

Here, the Gaussian kernel function is applied as it corresponds to an infinite dimen-

sional feature mapping,

K(x, z) = exp

(
−

d∑
j=1

(xj − zj)2
)
. (2.5)

The main advantage of the probabilistic kernel classifier is that it directly models the

class probabilities without the need of modeling the underlying class generative dis-

tributions. Moreover, the data is projected to a very high dimensional space (infinite

in our case) where the data is well separated. The kernel function eliminates the need

of defining this feature mapping explicitly.
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2.3.2 Feature scaling

For each task, a nonnegative scaling factor is introduced corresponding to each feature.

This factor measures the relevance of a particular feature for the given task. Higher

its value, the more relevant the corresponding feature is to the learning of the task.

Let θlj be the scaling factor corresponding to feature j for task l. Accordingly, θl =

[θl1, θ
l
2, ..., θ

l
d]
T is a vector of all the scaling factors for task l. For all the tasks, the

scaling factors can be represented in a matrix form as follows,

Θ =
[
θ1|θ2| . . . |θL

]
d×L .

(2.6)

Hence, feature relevance is modeled through matrix Θ. We decompose Θ into

two components, one sparse and one low rank, as follows:

Θ = S + R, (2.7)

where S is the sparse matrix, which means that only a few elements of the matrix are

nonzero. In other words, there will be only a few features selected corresponding to

each task. R is the low-rank matrix. That is, a common low dimensional subspace is

extracted for all tasks. Note that all the matrices here are of dimension d × L, and

each column corresponds to a task. Let the rank of matrix R be r ≤ min(d, L). We

can decompose R further as follows,

Rd×L = Bd×rCr×L

=


| | |

b1 b2 . . . br

| | |





c11 c21 . . . cL1

c12 c22 . . . cL2
...

...
. . .

...

c1r c2r . . . cLr


,

(2.8)

where B is a matrix with r basis column vectors each having a unit norm, and C

is the coefficient matrix. Therefore, for the l-th task, the feature scaling vector (or
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feature weight vector) is given by

θl = sl + rl

= sl + cl1b1 + cl2b2 + . . .+ clrbr

= sl +
r∑
i=1

clibi,

(2.9)

where sl is the l-th column of the sparse matrix S and is different for each task. The

basis vectors {b1,b2, ...,br} span a linear subspace. So the low-rank matrix R relates

all tasks by sharing this common feature subspace.

By integrating the feature scaling factors into the Gaussian kernel, we have1

Kθ(x, z) = exp

(
−

d∑
j=1

θj (xj − zj)2
)
. (2.10)

This scaled kernel function, Kθ(·, ·), is used in the classifier (2.4) instead. By putting

all classifier parameters together, we have a more compact representation,

W =
[
w1|w2| . . . |wL

]
(N+1)×L .

(2.11)

Our goal is to learn both matrices W and Θ based on the available training data

D efficiently.

2.4 Multitask Learning Algorithm

With the generalized probabilistic kernel classifier (as in (2.4)) for each task, the

multitask likelihood function of all training data is given by

L(W,Θ) = P (Y|{Xl},W,Θ) =
L∏
l=1

P (yl|Xl,wl,θl), (2.12)

where the likelihood function of task l is given by

P (yl|Xl,wl,θl)

=
N∏
i=1

[
σ
(
wlTkθl(xli)

)]yli [σ (−wlTkθl(xli)
)](1−yli), (2.13)

1Task index l is omitted here because the kernel form is the same for all tasks.
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where kθl(x) = [1, e−θ
lT z1 , e−θ

lT z2 , ..., e−θ
lT zN ]T , zi = [(x1 − x1i)2, (x2 − x2i)2, ..., (xd −

xdi)
2]T , and x = [x1, x2, ..., xd]

T is a sample.

In this likelihood function, we have the following unknown variables: W, the

(N + 1)×L classifier parameter matrix, Θ = S + R, the scaling factor matrix with S

being a d× L sparse matrix and R a d× L low-rank matrix. We intend to estimate

these parameters in the sense that the multitask likelihood in (2.12) is maximized.

Therefore, our optimization problem can be formulated as follows,

min
W,S,R

− logL (W,S,R) + λ1 ‖W‖0 + λ2 ‖S‖0 + α rank(R)

s.t. S + R � 0,

(2.14)

where {λ1, λ2, α} are the regularization parameters, ‖·‖0 is the `0 norm (the number

of nonzero elements), and rank(·) denotes the rank of the matrix. The regularization

term of W penalizes the number of nonzero elements in W, which reduces overfitting.

Similarly, the regularization term of S penalizes the number of nonzero elements in

S, which results in a sparse feature scaling component. The regularization term of R

penalizes the rank of matrix R, which results in a low dimensional common feature

subspace. The constraint S + R � 0 ensures that the feature scaling factors are

nonnegative.

The rank function and the `0 norm are nonconvex functions. Nonconvex opti-

mization is in general difficult, as nonconvex functions have many local optima. So

we replace the `0 norm by its convex envelope (tightest convex approximation), `1

norm [62], and the rank function by its convex envelope, nuclear (or trace) norm [63].

Therefore, the new optimization problem becomes

min
W,S,R

− logL (W,S,R) + λ1 ‖W‖1 + λ2 ‖S‖1 + α ‖R‖∗

s.t. S + R � 0,

(2.15)

where ‖A‖1 =
∑

i,j |aij| is the `1 norm and ‖A‖∗ =
∑

i σi is the trace norm (or

nuclear norm), σi are the singular values of the matrix A. Under the availability of
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large datasets, convex relaxation achieves a good trade-off between decreasing the

computational complexity and minimizing the risk objective function [64].

2.4.1 Optimization algorithm

It is still difficult to solve the optimization problem (2.15) directly as the objective

function has some non-differentiable components (`1 norm and nuclear norm). Be-

sides, the objective function is not strictly convex due to the quasiconvexity of the

negative log-likelihood term. Note the non-differentiable components in the objective

function are separable in the variables, which can be exploited. Accordingly, we di-

vide the optimization problem into three optimization problems in the three variables

W, S, and R. At each step, we perform optimization with respect to one variable

while fixing the other two. Specifically, at the kth iteration, we solve the following

subproblems:

• Optimizing with respect to W by fixing S and R:

W(k) = arg min
W
− logL

(
W,S(k−1),R(k−1)

)
+ λ1 ‖W‖1. (2.16)

• Optimizing with respect to S by fixing W and R:

S(k) = arg min
S
− logL

(
W(k),S,R(k−1)

)
+ λ2 ‖S‖1

s.t. S + R(k−1) � 0.

(2.17)

• Optimizing with respect to R by fixing W and S:

R(k) = arg min
R
− logL

(
W(k),S(k),R

)
+ α ‖R‖∗

s.t. R + S(k) � 0.

(2.18)

The optimization with respect to W is unconstrained. We convert the above second

and third subproblems into unconstrained problems by using the logarithmic barrier
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function. So we have

S(k) = arg min
S

− logL
(
W(k),S,R(k−1)

)
+ λ2 ‖S‖1

− 1

t1

d·L∑
i=1

log
(
si + r

(k−1)
i

)
,

R(k) = arg min
R
− logL

(
W(k),S(k),R

)
+ α ‖R‖∗

− 1

t2

d·L∑
i=1

log
(
s
(k)
i + ri

)
.

(2.19)

Note that all the above subproblems are in the following form:

min
y

h(y) = f(y) + λg(y), (2.20)

where y is the optimization variable, f(·) is a smooth (differentiable) quasiconvex

function, and g(·) is a nonsmooth convex function. We adopt the proximal gradient

method [65] to solve these three problems. At each iteration, we linearize the function

f(·) at the estimate from the previous iteration and then minimize it. That is, at

step k, we have

y(k) = arg min
y

fl(y,y
(k−1)) + λg(y), (2.21)

where fl(y,y
(k−1)) is given by

fl(y,y
(k−1)) = f(y(k−1)) +

〈
y− y(k−1),∇f(y(k−1))

〉
+ γ

∥∥y− y(k−1)∥∥2
2
.

(2.22)

Here, ∇ denotes the gradient of the function and 〈·, ·〉 denotes the inner product (dot

product). We initially start with a feasible point, and stop when
∥∥h (y(k)

)
− h

(
y(k−1))∥∥2

2
<

ε, where h(·) is the objective function and ε is some preset tolerance level. More ex-

plicitly, at the kth iteration, we have2

2We vectorize the matrices W and S for simplicity in calculations. That is, we convert the

matrices W and S into column vectors w and s, respectively, by stacking their columns on top of

one another.
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• Optimizing with respect to W by fixing S and R:

w(k) = arg min
w

〈
w−w(k−1),∇f1

(
w(k−1))〉

+ γ1
∥∥w−w(k−1)∥∥2

2
+ λ1 ‖w‖1 ,

(2.23)

where f1(w) = − logL
(
w, s(k−1), r(k−1)

)
.

• Optimizing with respect to S by fixing W and R:

s(k) = arg min
s

〈
s− s(k−1),∇f2

(
s(k−1)

)〉
+ γ2

∥∥s− s(k−1)
∥∥2
2

+ λ2 ‖s‖1 ,
(2.24)

where f2 (s) = − logL
(
W(k),S,R(k−1)

)
− 1

t1

∑d·L
i=1 log

(
si + r

(k−1)
i

)
.

• Optimizing with respect to R by fixing W and S:

R(k) = arg min
R

〈
R−R(k−1),∇f3

(
R(k−1)

)〉
+ γ3

∥∥∥R−R(k−1)
∥∥∥2
F

+ α ‖R‖∗ ,
(2.25)

where f3 (R) = − logL
(
W(k),S(k),R

)
− 1

t2

∑d·L
i=1 log

(
s
(k)
i + ri

)
.

The optimization problems (2.23) and (2.24) can be solved in closed forms. Specif-

ically, the solution of (2.23) is given by

w(k) = soft

(
w(k−1) − 1

2γ1
∇f1

(
w(k−1)) , λ1

2γ1

)
, (2.26)

where soft(·, ·) is the soft thresholding operator defined as [65]

(soft(y, α))i = sgn(yi) ·max(|yi| − α, 0), i = 1, 2, ..., n, (2.27)

where sgn(·) is the sign function, y ∈ Rn and α ∈ R+. Similarly, the solution of

(2.24) is given by

s(k) = soft

(
s(k−1) − 1

2γ2
∇f2

(
s(k−1)

)
,
λ2
2γ2

)
. (2.28)
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The problem (2.25) can be simplified into the following form:

R(k) = arg min
R

γ3

∥∥∥∥R− (R(k−1) − 1

2γ3
∇f3

(
R(k−1)

))∥∥∥∥2
F

+ α ‖R‖∗ ,
(2.29)

where ‖·‖F is the Frobenius norm of the matrix and is defined as ‖A‖F =
√∑

i

∑
j |aij|2.

Let UΣVT be the SVD of the matrix R(k−1) − 1
2γ3
∇f3

(
R(k−1)

)
. Then the solution

of the problem (2.29) is given by

R(k) = UΣαV
T , (2.30)

where (Σα)ii = max{0,Σii − α}.

2.4.2 Convergence and computational complexity

The proximal gradient method is known to have a sublinear rate of convergence [65],

h
(
x(k)
)
− h (x?) ' O

(
1

k

)
, (2.31)

where x? is the global minimum. The proximal gradient method converges to the

global minimum when the smooth (differentiable) function f(·) is convex. Here in

our case, the smooth functions are not strictly convex, but are quasiconvex. For

quasiconvex functions, the first order condition of convexity,

f(y) ≥ f(x) +∇f(x)T (y− x), ∀ x,y ∈ dom f, (2.32)

does not hold strictly. This means that the gradient ∇f(x) can be zero even when

x is not a global minimum. This may sometimes lead us to a local minimum. To

mitigate this issue, we run the algorithm using different initial starting points and

finally pick the solution with minimum objective value. This will not have major

effect in practice, as we often use parallel computation techniques.

Based on (2.26)-(2.29), the number of computations in each iteration is propor-

tional to the number of parameters in the matrices W, S, and R. The computational
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complexity of the algorithm in each iteration is O((N + 2d)L), where N is the size

of the training data, d is the number of non-fiducial features, and L is the number of

subjects.

2.4.3 Final classification decision rule

After obtaining W, S, and R, we calculate the class probabilities of all subjects,

P (yl = 1|x), l = 1, 2, ..., L, given a data sample x. The probability P (yl = 1|x)

represents the total evidence available for telling whether the data sample x belongs

to subject l or not. Using the Dempster-Shafer theory of evidence, we assign the

new data sample x to the class (subject) with the highest belief [66]. Since all the

available belief of class l is given by its class probability P (yl = 1|x), the data sample

x is assigned to a class with the highest class probability, i.e.,

l? = arg max
l

P (yl = 1|x). (2.33)

2.5 Experimental Results

For performance evaluation, the MIT-BIH Normal Sinus Rhythm ECG database from

PhysioNet [13] is adopted. The database contains long-term (about 24 hours) two-

lead ECG recordings of 18 subjects referred to the Arrhythmia Laboratory at Boston’s

Beth Israel Hospital. All the ECG records are sampled at 128 Hz. Subjects include

5 men, aged 26 to 45, and 13 women, aged 20 to 50. These 18 subjects were found

to have had no significant arrhythmias. Lead I ECG data is used in our experiments,

as it is most commonly used and easy to acquire in many situations [51]. For each

person, ECG signal from hour 1 to hour 2 is used as training data, and the ECG

signal from hour 13 to hour 14 is used as test data.

The ECG records are preprocessed as described above. The non-fiducial features

are defined as the first d DCT coefficients of the autocorrelation function with 70

time lags, for different values of d. Since the QRS wave is more stable than the P and
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T waves, we choose the number of lags of the autocorrelation function corresponding

to the length of the QRS wave portion in the ECG signal. With the sampling rate of

128 Hz and each window of 5 seconds, 70 time lags are considered sufficient for the

autocorrelation function. Based on the size of the available data, 20% of the training

data is used as validation data to set the regularization parameters of the algorithm.

Choosing 10% results in a smaller validation set. We can also use 30% instead of

20%. 20% is chosen since it is adequate in our experiments. The estimated sparse

components for all the tasks are shown in Figure 2.3, when d = 40. From the figure,

we can see the features that are relevant to each individual task. Note that the least

relevant features have the scaling factors close to zero. The rank of the estimated

low-rank matrix R̂ is 12. To demonstrate the advantage of computing the underlying

low-rank subspace, we use the scaled linear kernel, Kθ(x, z) = xTΘz, where Θ is

a diagonal matrix with θ as its main diagonal. Since the scaling parameters are

all nonnegative, matrix Θ is symmetric and positive semidefinite. Hence, the above

scaled linear kernel is a valid kernel. For illustration, we project the training data

of arbitrary subjects into arbitrary two-dimensional subspaces of the space spanned

by the estimated low-rank matrix (using its left singular vectors). The projections

of the data with respect to different left singular vectors (basis vectors) are shown in

Figure 2.4. From the figure, we can see that the computed low-rank space is useful

for the recognition of these subjects.

Support vector machine (SVM) is one of the best supervised classifiers, since it is

flexible in handling nonlinearly separable classes by projecting the data into a very

high dimensional space, and constructing maximum margin decision hyperplanes in

that space [67]. We use SVM with a Gaussian kernel for comparison. We extend the

binary SVM classifiers to multi-class classification using posterior class probabilities.

Platt’s approach is used to compute the posterior class probabilities [68]. The basic

idea is to fit a logistic sigmoid function to the outputs of the trained SVM. The
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Figure 2.3: Estimated sparse components showing the feature relevance for each

individual task.

proposed sigmoid model is as follows,

P (y = 1|f(x)) =
1

1 + eµf(x)+γ
, (2.34)

where µ and γ are the parameters of the model and they can be found by minimizing

the negative log-likelihood of the training data using the standard Newton’s method

with backtracking line search. The final classification decision rule is to assign a test

sample to the class with the highest posterior probability.

We also compare the classification performance of the proposed method with the

nearest neighbor method in [44], and the neural network method in [49]. For all the

methods, we use the same set of non-fiducial features. We use a normalized Euclidean

distance measure in the nearest neighbor classifier. For the neural network method

in [49], we use a network of one hidden layer with d nodes. The correct detection

rates, training and testing time of all the methods are shown in Figure 2.5.
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From the results, we can see that the proposed method outperforms the SVM-

based method and the neural network and nearest neighbor methods in [49] and

[44], especially for higher numbers of non-fiducial features. This is because in the

proposed method, the features are scaled according to their relevance. Besides, the

multitask learning approach is effective in estimating the classifier and feature scaling

parameters. The computational complexity of the proposed method, SVM, and neural

network during training is O((N + 2d)L), O(LN2) [69], and O(N(d2 + dL)2) [50],

respectively. The total training time of the proposed method in the experiments

is a bit higher because multiple initializations are required. In practice, training is

generally conducted offline. Therefore, the practical applicability of the method is

not affected. Note that the testing time is low and comparable to other methods.

Unlike other methods, the nearest neighbor method does not require a training step.

But it consumes more time in testing. The computational complexity of the nearest

neighbor method during testing is O(dN). Also, it has a high space complexity as it

needs to store the entire training data over time.

In real situations, there may exist measurement noise in the acquired ECG signal,

due to poor electrode contact, inherent sensor thermal noise, power line interference,

etc. The noise due to poor electrode contact can be modeled as a randomly occurring

step signal with exponential decay [70]. Majority of the high frequency noise is

often removed by bandpass filtering in the preprocessing step. Our method is also

tested in the presence of additive white Gaussian noise. The performance degrades

smoothly with the increase of noise variance. In [71] [72], the SVM and neural network

algorithms are shown insensitive to the additive measurement noise like our method,

while the nearest neighbor classifier is sensitive [73]. The presence of artifacts in the

ECG signal due to arrhythmia or ischemia will have little effect on the performance

of the proposed method as long as they are present in both training and test data. If

the ECG pattern significantly changes due to the development of heart diseases, the
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classification performance of the proposed method will be affected and new training

samples should be collected for those subjects.

2.6 Summary

In this chapter, a biometric recognition system based on single-lead ECG signal is

developed. A new framework based on multitask learning is proposed. The pro-

posed framework combines feature selection and classifier design into a single learn-

ing problem. A fast first-order optimization algorithm is used to estimate the model

parameters. The performance of the proposed method is evaluated using a real ECG

database.
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Figure 2.4: Projection of the training data of arbitrary subjects into arbitrary two-

dimensional subspaces of the estimated low-rank space.
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CHAPTER 3

REVIEW: MATHEMATICAL MODELING OF

CARDIORESPIRATORY SYSTEM

Noncommunicable diseases (NCDs) are the major leading causes of death in the world.

There are four main types of noncommunicable diseases: cardiovascular diseases,

chronic respiratory diseases, cancers, and diabetes. According to the World Health

Organization (WHO) estimates [74]:

• NCDs kill 38 million people each year.

• Around 75% of NCD deaths (about 28 million) occur in low-income and middle-

income countries.

• Around 16 million NCD deaths are premature (occurring before the age of 70),

and 82% of these deaths occur in low-income and middle-income countries.

• Cardiovascular and respiratory diseases account for most NCD deaths. Around

17.5 million annually due to cardiovascular diseases and 4 million annually due

to respiratory diseases.

According to the Centers for Disease Control and Prevention (CDC), around 610,000

people die of heart disease in the United States every year (1 in every 4 deaths)

and around 47% of cardiac deaths occur outside a hospital [75]. NCDs also have

far-reaching socioeconomic consequences. For example, health care costs associated

with the NCDs are forcing millions of people into poverty, especially in low-income

countries. The WHO recommends developing a comprehensive approach that requires
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different sectors such as health, finance, agriculture, education, planning, etc. to work

in conjunction with each other to reduce and control the risk factors associated with

the NCDs. Moreover, according to the WHO [74]:

• “NCDs can be reduced through high impact essential NCD interventions that

can be delivered through a primary health-care approach to strengthen early

detection and timely treatment.”

• “Evidence shows that such interventions are excellent economic investments

because, if applied to patients early, can reduce the need for more expensive

treatment.”

• “The greatest impact can be achieved by creating healthy public policies that

promote NCD prevention and control and reorienting health systems to address

the needs of people with such diseases.”

Hence, a smart health monitoring system that can track and monitor the health

of the cardiorespiratory system plays a significant role in reducing the number of

cardiorespiratory deaths.

Mathematical modeling is a powerful way to study the underlying systems when

direct interaction with the system is not possible. Mathematical modeling allows us

to accurately capture and quantify the complex interactions between different subsys-

tems, physiological processes, and control mechanisms. It can help to detect certain

diseases which alter the normal system function. Mathematical models of the car-

diorespiratory system can greatly help to provide more information for a physician

to diagnose a cardiorespiratory disease. In this chapter, we will review several math-

ematical models of the cardiovascular and respiratory systems that can be useful

to our studies. The blood circulation in the cardiorespiratory system is shown in

Figure 3.1.1 Mathematical models of the cardiorespiratory system mainly focus on

1Source: http://anatomy-bodychart.us/
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modeling the various physiological mechanisms, subsystems, and complex dynamics

in the cardiorespiratory circulation system.

Figure 3.1: Cardiorespiratory circulation system.
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3.1 Cardiovascular System Models

Mathematical modeling of the cardiovascular physiology can be traced back to mid-

twentieth century works of Grodins [2] and Guyton et al. [3]. In [2], the cardiovascular

system is modeled and analyzed using a feedback regulator. The cardiovascular sys-

tem is divided into two subsystems: a controlling system and a controlled system.

The controlling system consists of medullary cardiac and vasomotor centers, and en-

docrine glands which operate on the heart and blood vessels. The controlled system

consists of mechanical and gas exchange elements. Each block of this cardiovascular

regulator system is defined using the corresponding input-output relationships (using

certain physical laws). Each block is represented using an electrical system consisting

of resistances, compliances, etc. The system model is shown in Figure 3.2.

In [3], system analysis of the circulatory regulation is developed. The circula-

tory system is divided into 18 major subsystems like circulatory dynamics, capillary

membrane dynamics, pulmonary dynamics, vascular stress relaxation, etc. Each sub-

system is further divided into several small blocks, each representing a particular

function like blood flow in aorta, venous resistance, sympathetic stimulation, etc.

There are about 354 blocks in the developed system model. Each block is described

by a set of mathematical equations derived using the physical laws. The developed

circulatory system model is shown in Figure 3.3.
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(a) Cardiovascular regulator

(b) Cardiovascular mechanical system

Figure 3.2: Cardiovascular system model [2].
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Kappel and Peer develop a model of the response of the cardiovascular system

to constant workload on a person after a period of complete rest [4]. Under these

conditions, the cardiovascular system responds by increasing the heart rate in order

to increase blood flow and oxygen supply to the muscles. In this process, the barore-

ceptor control loop plays a central role. This is one the local control systems (auto

regulation mechanism of the cardiovascular system). This local control mechanism is

modeled in [4], using the four compartment model of the cardiovascular system. The

cardiovascular system is divided into four basic compartments: arterial systemic part,

venous systemic part, arterial pulmonary part, and venous pulmonary part. These

four compartments are connected by the left and right ventricles, and peripheral re-

gions. The system model is shown in Figure 3.4. The variation of heart rate with

respect to time is considered as the control input variable (u). The pressures and

volumes in different parts of this system are considered as state variables. The main

task of the baroreceptor control loop is to stabilize the arterial systemic pressure.

This is mathematically formulated as an optimal control problem, where the goal is

to find the control input u that minimizes a quadratic cost function.
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Figure 3.4: Cardiovascular system model [4].

In [76], Batzel et al. model the cardiovascular-respiratory control system. Similar

to [4], the cardiovascular and respiratory control systems are modeled by a linear

negative feedback control which minimizes a quadratic cost function (denoting an

optimal system performance). The model is used to estimate several parameters (like

heart rate, pulmonary resistance, etc.) in the case of a congestive heart failure. A

person going from quiet awake state to stage 4 non-REM sleep is considered in the

simulated experiments.

In [5], the interaction between the autonomic nervous system (ANS) and the

cardiovascular system (CVS) is modeled using bond graph formalism. A bond graph
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is used to represent multi-energy systems using power exchanges. The proposed

model takes into account the three important subsystems: cardiac ventricular activity,

circulatory system, and autonomic modulation (baroreflex loop). These subsystems

are modeled using the bond graphs, as shown in Figure 3.5.

(a) Pulmonary and systemic circulation models

(b) Coupling between the ANS model and the models of the ventricles and the circulatory system

Figure 3.5: Bond graph model [5].
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In [6], a closed-loop computational model of the cardiovascular system and its

interaction with the autonomic nervous system during the Valsalva maneuver is de-

veloped. The cardiovascular system is represented by an electric analog circuit model

with 42 compartments. The lumped parameter model of each compartment represent

the dynamics of different hemodynamic variables of the cardiovascular system. The

model diagram is shown in Figure 3.6.

Figure 3.6: Autonomic nervous system and its interaction with the the cardiovascular

system [6].

3.2 Respiratory System Models

Mathematical modeling of the respiratory physiology began with early works of

Grodins et al. [7]. In [7], the respiratory system is modeled using a closed-loop

feedback regulator in which CO2 concentration controls the ventilation and the venti-
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lation regulates the CO2 concentration. Thus, the pulmonary ventilation acts as the

controlling system, the CO2 concentration is the controlled quantity, and a negative

feedback exists between these two. An electric analog circuit model is developed for

the pulmonary ventilation system. The system model is shown in Figure 3.7.

(a) Feedback regulator

(b) Closed-loop model

Figure 3.7: Respiratory system model [7].

A lumped parameter model of the respiratory control system is developed in [8].

The system contains three major compartments: lungs, brain, and tissue. The lung-
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blood-tissue gas transport and exchange system is represented by a set of differential

equations with time delays. A control function is defined to monitor the concen-

trations of different chemical quantities at carotid chemoreceptors. The developed

control system model is shown in Figure 3.8.

Figure 3.8: Respiratory control system model [8].

A mathematical model describing the pressure-flow relationship in the ventilatory

system under conditions of constant lung volume is developed in [9]. A lumped

parameter model of the ventilatory system is developed, as shown in Figure 3.9.
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An electrical analog of the model is developed, and the airway dynamics equations

are derived using the Kirchhoff’s circuit laws. A least squares parameter estimation

technique is used to adjust the model parameter values to fit the data from human

subjects.

Figure 3.9: Ventilatory system lumped model [9].

A model defining the relation between respiratory neural and mechanical outputs

is described in [77]. A model for the inspiratory muscle activity during breathing

is developed, which is then used to calculate the respiratory volume and flow from

different neural output profiles. In the model, different factors such as the relation

between inspiratory activity and isometric pressure, muscle reaction time, relation

between respiratory volume and pressure output, relation between respiratory flow

and pressure output, expiratory muscle pressure and flow, are considered.
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In [10], a model of the respiratory control system is developed. The model de-

scribes the gas exchange between pulmonary blood, tissue capillary blood, venous

blood and tissue compartments. The state variables are the concentrations of carbon

dioxide, acid, hemoglobin, bicarbonate, and a generic buffer. The proposed model

has 23 ordinary differential equations (ODEs) containing terms of blood flow, gas

diffusion, and chemical reactions. The ODEs have the standard form:

ẏ = f(y,β),

y(t0) = η,

where β are the model parameters, and η are the initial values. Sensitivity analysis

is performed to measure the effect of the model parameters on the respiratory con-

trol system. The model parameters and initial values are estimated by minimizing

a quadratic error function between the estimated and observed trajectories of the

system over a period of time. The developed system model is shown in Figure 3.10.
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Figure 3.10: Respiratory system model [10].
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Integrated Model

An integrated model of the cardiovascular and respiratory systems is constructed

in [11]. This model is constructed by combining several existing models of the cardio-

vascular system, respiratory system, central neural control system, and sleep mecha-

nism system. The model can simulate different conditions such as normal sleep-wake

cycle, obstructive sleep apnea (OSA), Cheyne-Stokes respiration with CSA, hypoxia-

induced periodic breathing, etc. and generate the corresponding physiological signals.

The model has a total of 80 states and 472 parameters. The block diagram of this

integrated model is shown in Figure 3.11. A Simulink model of this is also developed

in [11]. The Simulink models of different parts of the system are shown in Figures 3.12

to 3.16.

Figure 3.11: Block diagram of the integrated system model in [11].
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3.3 Summary

In this chapter, we have reviewed several mathematical models of the cardiovascular

and respiratory systems. Each model focuses on certain aspects of the cardiorespira-

tory system and tries to model the underlying physiological processes, mechanisms,

and interactions between different subsystems. These models can be simulated using

computer programs, and thus can be used to perform some virtual experiments and

simulations. In the next chapters, we will use some of these mathematical models for

modeling and statistical inference.
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CHAPTER 4

CONTROL MECHANISM MODELING OF CARDIORESPIRATORY

SYSTEM

Control mechanisms are vital for maintaining the homeostasis (stable equilibrium) in

the human body. In this chapter, we focus on modeling the control mechanism of

the cardiorespiratory system during sleep transition stage. The control mechanism

model can be helpful in detecting certain sleep disorders such as difficulty initiating

sleep and insomnia.

Specifically, we model the local control mechanism of the cardiorespiratory system

as the human body goes from awake state to stage 4 non-REM sleep state. The tran-

sition from awake state to stage 4 non-REM sleep state can be modeled by stabilizing

certain states of the cardiorespiratory system. Since the cardiorespiratory system

model is nonlinear, solving the corresponding optimal control problem is hard.

In [76], Batzel et al. solve this continuous-time optimal control problem by lin-

earizing the system at the final sleep state. However, linearizing the system at just

one point is not optimal. Moreover, it is difficult to know the final steady state (sleep)

values of all the states in practice. Here, we propose an iterative algorithm to solve

the optimal control. We initially start with a nominal state and input sequences, and

iteratively update these sequences to get the final optimal sequences. In each itera-

tion, the system is linearized with the sequences obtained from the previous iteration.

Using the linearized system, we formulate the optimal control problem as a convex

optimization problem and efficiently solve it using interior-point methods.
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4.1 Cardiorespiratory System Model

We adopt the cardiovascular-respiratory system model in [76]. The model is described

by 13 ordinary differential equations as follows,

VACO2 ṖaCO2(t) = 863Fp(t) (CvCO2(t− τ)− CaCO2(t))

+ V̇A(t) (PICO2 − PaCO2(t)),

VAO2 ṖaO2(t) = 863Fp(t) (CvO2(t− τ)− CaO2(t))

+ V̇A(t) (PIO2 − PaO2(t)),

VTCO2 ĊvCO2(t) = MRCO2

+ Fs(t) (CaCO2(t− τ)− CvCO2(t)),

VTO2 ĊvO2(t) = −MRO2

+ Fs(t) (CaO2(t− τ)− CvO2(t)),

cas Ṗas(t) = Ql(t)− Fs(t),

cvs Ṗvs(t) = Fs(t)−Qr(t),

cvp Ṗvp(t) = Fp(t)−Ql(t),

Ṡl(t) = σl(t),

Ṡr(t) = σr(t),

σ̇l(t) = −γl σl(t)− αl Sl(t) + βlH(t),

σ̇r(t) = −γr σr(t)− αr Sr(t) + βrH(t),

Ḣ(t) = u1(t),

V̈A(t) = u2(t),

(4.1)
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where

Pap(t) =
V0 − cas Pas(t)− cvs Pvs(t)− cvp Pvp(t)

cap
,

Fs(t) =
Pas(t)− Pvs(t)

Rs(t)
,

Rs(t) = Apesk CV O2(t),

Fp(t) =
Pap(t)− Pvp(t)

Rp

,

Ql(t) = H(t)Vstr(t) = H(t)Sl(t)
cl Pvp(t)

Pas(t)
,

Qr(t) = H(t)Vstr(t) = H(t)Sr(t)
cr Pvs(t)

Pap(t)
,

CaCO2(t) = KCO2 PaCO2(t) + kCO2 ,

CaO2(t) = K1

(
1− e−K2 PaO2

(t)
)2
.

(4.2)

The block diagram of the 13-state model is shown in Figure 4.1. The system

states and parameters are described in Table 4.1 and Table 4.2. The delay (τ) in the

differential equations represents the transport delay between the cardiovascular and

respiratory systems.
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Table 4.1: Cardiovascular system states and parameters

Pas Mean arterial blood pressure in systemic part

Pvs Mean venous blood pressure in systemic part

Pap Mean arterial blood pressure in pulmonary part

Pvp Mean venous blood pressure in pulmonary part

Q Cardiac output

R Peripheral resistance

S Ventricle contractility

Vstr Stroke volume

V0 Total blood volume

H Heart rate

F Blood flow

ca Arterial compliance

cv Venous compliance

l, r subscripts for left and right sides of the heart

s, p subscripts for systemic and pulmonary parts

a, v subscripts for arterial and venous circuits
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Table 4.2: Respiratory system states and parameters

Pa Partial pressure of arterial blood gas

Pv Partial pressure of venous blood gas

PI Partial pressure of inspired gas

Ca Concentration of arterial blood gas

Cv Concentration of venous blood gas

MR Metabolic production rate

VA Lung gas storage volume

V̇A Ventilation rate

VT Tissue gas storage volume

τ Transport delay

O2, CO2 subscripts for oxygen and carbon dioxide

60



 

 

 

 

 

Right 

Ventricle 

Qr 

Arterial 

Pulmonary 

Pap 

Venous Systemic 

Pvs, PvO2, PvCO2 

Pulmonary 

Peripheral (Rp) 

Lungs 

PaO2, PaCO2 

Venous 

Pulmonary 

Pvp 

Left 

Ventricle 

Ql 

Arterial Systemic 

Pas, PaO2, PaCO2 

Systemic 

Peripheral (Rs) 

Body Tissue 

Oxygenated blood flow 

 

Deoxygenated blood flow 

 

Control mechanism 

Regulator 

Figure 4.1: Block diagram of the cardiorespiratory system.
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4.2 Problem Formulation

Based on the model described above, the cardiorespiratory system model has 13 state

variables and 2 control input variables:

x(t) = [PaCO2(t), PaO2(t), CvCO2(t), CvO2(t), Pas(t), Pvs(t),

Pvp(t), Sl(t), Sr(t), σl(t), σr(t), H(t), V̇A(t)]T ,

u(t) = [Ḣ(t), V̈A(t)]T .

(4.3)

The transition from awake state to stage 4 non-REM sleep state can be modeled by

stabilizing PaCO2 , PaO2 , and Pas states of the cardiorespiratory system [76]. Thus,

the optimal control problem that transfers the cardiorespiratory system from awake

to sleep steady state can be formulated as,

u?(t) = arg min
u

∫ tf

t0

(
q1(x1(t)− x̄1)2 + q2(x2(t)− x̄2)2+

q5(x5(t)− x̄5)2 + r1u
2
1(t) + r2u

2
2(t)
)
dt,

(4.4)

subject to the system model:

ẋi(t) = Fi(x(t),x(t− τ)) + bTi u(t), t ∈ [t0, tf ],

x(t) = x0(t), t ∈ [t0 − τ, t0],

u(t) ≤ 0,

(4.5)

where i = 1, 2, ..., 13, x̄i is the final steady state value of state i, x0(t) is the given

initial history, qi and rj’s are positive coefficients that assign weight to the state and

input terms in the above cost function. The inequality constraint, u(t) ≤ 0, models

the fact that the heart and ventilation rates do not increase when going from awake

to sleep state.

We first discretize the system using first-order Euler approximation as follows,

xi[k + 1] = gi (x[k],x[k − a],u[k])

= xi[k] + hFi (x[k],x[k − a]) + hbTi u[k],

(4.6)
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where h is the step size, and the delay a = τ/h. Using this discrete system, we

reformulate the optimal control problem in (4.4) as follows,

min
U

N−1∑
k=0

(x[k]− x̄)T Q0 (x[k]− x̄) + u[k]TR0u[k]

+ (x[N ]− x̄)T Q0 (x[N ]− x̄)

s.t. x[k + 1] = g (x[k],x[k − a],u[k]) ,

u[k] ≤ 0,

(4.7)

where N =
tf−t0
h

, U = {u[0],u[1], ...,u[N − 1]} is the optimal control input sequence,

x̄ = [x̄1, x̄2, 0, 0, x̄5, 0, ..., 0]T , Q0 is a 13×13 diagonal matrix with [q1, q2, 0, 0, q5, 0, ..., 0]T

as its main diagonal, and R0 is a 2× 2 diagonal matrix with [r1, r2]
T as its main di-

agonal. Since the matrices Q0 and R0 are positive definite, the objective function in

(4.7) is quadratic and convex. However, note that the equality constraints in (4.7) are

not linear. Also, the system difference equations in (4.6) are not first-order. In the

next section, we discuss about solving the optimal control problem (4.7) with these

issues.

4.3 Proposed Control Model

We first convert the higher order difference equations in (4.6) into first-order difference

equations by augmenting the states {x[k],x[k − 1], ...,x[k − a]} to construct a new

state vector as, z[k] =
[
x[k]T ,x[k − 1]T , ...,x[k − a]T

]T
. Note that z[k] ∈ R13(a+1).

With this new state vector, the system in (4.6) can be written as follows,

zi[k + 1] = fi (z[k],u[k]) = gi (z[k],u[k]) , i = 1, 2, ..., 13,

zi[k + 1] = fi (z[k],u[k]) = zi−13[k], i = 14, ..., 13(a+ 1).

(4.8)
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We now define the new steady state as z̄ = [x̄T , 0, 0, ..., 0]T . The optimal control

problem in (4.7) can be reformulated using the new states as follows,

min
U

J =
N−1∑
k=0

(z[k]− z̄)T Q (z[k]− z̄) + u[k]TRu[k]

+ (z[N ]− z̄)T Q (z[N ]− z̄)

s.t. z[k + 1] = f (z[k],u[k]) ,

u[k] ≤ 0,

(4.9)

where R = R0, and Q is a block diagonal matrix with the matrices {Q0,0, ...,0} as

its main diagonal.

Note that the system, z[k+ 1] = f (z[k],u[k]), is nonlinear. So we cannot directly

solve the optimal control problem in (4.9) using convex optimization. The iterative

linear quadratic regulator method [78] can be adopted. We assume some nominal

sequences u0[k] and z0[k] are available. The system is first linearized around these

nominal sequences as follows,

δz[k + 1] = Ak δz[k] + Bk δu[k], (4.10)

where Ak = ∇z f (z0[k],u0[k]) and Bk = ∇u f (z0[k],u0[k]). Here, δu[k] and δz[k]

represent the deviations of the input and state variables from their nominal sequences.

Defining δz̄[k] = z̄−z0[k] and δū[k] = −u0[k], we reformulate the optimal control

problem as a tracking problem as follows,

min
δU

J̃ =
N−1∑
k=0

1

2
(δz[k]− δz̄[k])T Q (δz[k]− δz̄[k])

+
1

2
(δu[k]− δū[k])T R (δu[k]− δū[k])

+
1

2
(δz[N ]− δz̄[N ])T Q (δz[N ]− δz̄[N ])

s.t. δz[k + 1] = Ak δz[k] + Bk δu[k],

u0[k] + δu[k] ≤ 0,

(4.11)

where δU = {δu[0], δu[1], ..., δu[N − 1]}.
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We use interior-point methods [79] to solve the above convex problem. The above

inequality constrained optimization problem is first converted into an equality con-

strained problem using barrier functions, which is then solved using the Newton’s

method. After computing the optimal δu[k], we update the nominal input sequence

as, u[k] = u0[k] + δu[k], k = 0, 1, ..., N − 1. To update the nominal state sequence,

we simulate the nonlinear system, z[k + 1] = f (z[k],u[k]), with the above updated

nominal input sequence.

We initially start with a nominal input sequence, u0[k] = 0. We run the system

model with this input sequence to get the initial nominal state sequence z0[k]. We

find the optimal δu[k] as described above, and update the nominal input and state

sequences. We repeat this until ||J (i) − J (i−1)||2 < ε, where J (i) is the objective

function value of ith iteration.

4.4 Experimental Results

We perform simulations of the optimal control of the cardiovascular and respiratory

system under the transition from awake to stage 4 non-REM sleep using step size,

h = 1 sec.

The steady state values of all the cardiovascular and respiratory system states in

both awake and sleep stages are determined by running the discrete system in (4.6)

for a long period of time with zero control inputs. The calculated steady state values

during awake and sleep stages are respectively,

x̄a = [39.0974, 103.4, 0.5563, 0.1273, 104.5, 3.515,

7.857, 61.54, 4.691, 0, 0, 75, 5.736]T ,

x̄s = [51.0767, 89.1, 0.6386, 0.1187, 91.23, 3.788,

7.742, 55.79, 4.253, 0, 0, 68, 4.392]T .

(4.12)

These steady state values are in fact reasonable [76, 80–83]. The transition of the
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cardiovascular-respiratory system from awake to sleep state is modeled by stabilizing

the states PaCO2(t), PaO2(t), and Pas(t) to their corresponding sleep steady state

values: x̄1 = 51.0767, x̄2 = 89.1, x̄5 = 91.23. We consider tf = 40 minutes.

The final optimal control input sequences of the cardiovascular and respiratory

system are shown in Figure 4.2. The corresponding optimal state trajectories are

shown in Figures 4.3 to 4.6. From the results, we can see that the optimal control

inputs, Ḣ(t) and V̈A(t) (rate of change of heart rate and ventilation rate), stabilize to

zero as the cardiovascular-respiratory system goes from awake to sleep state, which is

expected. From the results, we can see that the states PaCO2(t), PaO2(t), and Pas(t)

converge to their sleep steady state values. Remaining system states also converge to

their sleep steady state values.

To validate our simulation results, we collected real data from a healthy 25-year-

old male subject using Hexoskin biometric smart shirt. The measured physiological

signals of the subject during awake to sleep transition are shown in Figure 4.7. From

the results, we can see that the real heart rate and ventilation rate trajectories are

close to the simulated optimal state trajectories. Since the cardiorespiratory system

model is not tuned to this specific subject, the real heart rate and ventilation rate

values are different from the simulated model state values. However, the control

mechanism model captures the cardiorespiratory system dynamics (during awake to

sleep transition) in general. Comparisons with real physiological signals show that

the control mechanism model can catch the system dynamics of the subject from

awake to sleep state.
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Figure 4.2: Optimal control input sequences of the cardiorespiratory system.
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Figure 4.3: Optimal state trajectories of the cardiorespiratory system.
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Figure 4.6: Optimal state trajectories of the cardiorespiratory system.
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Figure 4.7: Real data from a healthy 25-year-old male subject during awake to sleep

transition.

4.5 Summary

In this chapter, we focused on modeling the control mechanism of the cardiorespi-

ratory system during the transition from an awake state to stage 4 non-REM sleep

state. A cardiorespiratory system model with transport delays is considered. An

iterative algorithm is proposed to find the optimal control inputs that drive the car-

diorespiratory system from awake state to sleep state. Simulation results show the

effectiveness of the proposed control mechanism model. The cardiorespiratory system

states converge to their sleep steady state values. Comparisons with real physiological

signals show that the control mechanism model captures the system dynamics of a

subject during awake to sleep state transition.
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CHAPTER 5

CARDIORESPIRATORY MODEL-BASED FUSION FRAMEWORK

FOR SLEEP APNEA DETECTION

Sleep apnea is a serious chronic sleep disorder in which a person experiences frequent

pauses in breathing during sleep. A sleep apnea episode is defined as the lack of

airflow at the nose and mouth for at least 10 seconds [84]. There are two types of

sleep apnea: central sleep apnea (CSA) and obstructive sleep apnea (OSA). In CSA,

a person experiences breathing pauses due to the lack of respiratory effort neural

signals from the brain. This usually occurs due to some feedback instabilities in the

respiratory control system. In OSA, the breathing pauses are due to the upper airway

obstruction. OSA is the most common type of sleep apnea affecting millions of people

worldwide. According to multiple international surveys and studies, around 2-10% of

adults have OSA [85].

Sleep apnea has some serious adverse physiological effects. Repetitive apneic

episodes during sleep reduce the blood oxygen saturation level. Surges in heart rate

and blood pressure after each apneic episode cause arousal from sleep, thereby af-

fecting the overall sleep quality. Individuals with sleep apnea are rarely aware of

the condition, and hence it is often left untreated. According to one study, around

93% of women and 82% of men with sleep apnea are not diagnosed [86]. When left

untreated, sleep apnea increases the risk of hypertension, cardiac arrhythmia, heart

attack, and stroke [87, 88]. Sleep apnea also increases the risk of motor vehicle col-

lisions [89]. There is a great chance of the at-risk population to be left undiagnosed

and untreated for a long time.
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Figure 5.1: Anatomy of obstructive sleep apnea (OSA) [12].

Sleep apnea is usually diagnosed through a polysomnography (PSG) sleep study.

It involves overnight monitoring of the patient’s physiological signals like electrocar-

diogram (ECG), electroencephalogram (EEG), electrooculogram (EOG), electromyo-

gram (EMG), peripheral oxygen saturation (SpO2), airflow, thoracic and abdominal

movement signals, etc. in a sleep lab at the hospital. The PSG signals are then ana-

lyzed by a sleep specialist to diagnose sleep apnea. Due to first-night effect [90,91] and

night-to-night variability, multiple night studies may often be required. Polysomnog-

raphy is expensive, labor-intensive, time consuming, and inconvenient to the patient.

Polysomnography sleep study typically costs few thousand dollars [1, 85]. Moreover,
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limited availability of sleep labs and sleep medicine specialists often leads to longer

wait times for diagnosis and treatment of sleep apnea. The demand for sleep labs and

waiting time for diagnosis and treatment of sleep apnea in different countries is shown

in Table 5.1. Hence, there is a great need to develop a low-cost, noninvasive, safe and

accurate method of detecting sleep apnea that is easily accessible to everyone [92].

Table 5.1: Sleep study rates and waiting time for diagnosis and treatment of sleep

apnea in different countries [1]

Country Population Number of Number of Sleep Waiting Time

(million) Sleep Labs Studies/year/100,000 (months)

United States 280 1,292 427 2 to 10

United Kingdom 58.8 84 42.5 7 to 60

Canada 31.4 100 370.4 4 to 36

Australia 18.97 65 282 3 to 16

Belgium 10 50 177.2 2

With the availability of several low-cost wearable sensors that can conveniently

collect different physiological signals such as ECG, SpO2, respiration (airflow), etc. in

a noninvasive manner, it is now possible to develop low-cost and easy-to-implement

methods for detection of OSA. In this chapter, we propose a new framework for OSA

detection combining cardiorespiratory model-based and data-driven approaches. We

combine the available sensor measurement data with the cardiorespiratory model in-

formation to further improve the OSA detection performance. The proposed frame-

work can combine measurement signals of different sensor modalities with the car-

diorespiratory system model information for better detection performance. Mathe-

matical models of the cardiovascular, respiratory, and sleep regulation systems can

capture the physiological system dynamics, mechanisms, and interactions to certain

extent and this model information can be used to increase the sleep apnea detection
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accuracy. Since the models represent the basic physiological dynamics in general

and do not reflect the actual dynamics in any specific individual, in order to model

the physiological variations among different individuals, vector-valued Gaussian pro-

cesses (GPs) are adopted and imposed upon existing mathematical models of multiple

physiological signals. The proposed OSA detection framework can integrate different

measurement signals such as heart rate, peripheral oxygen saturation (SpO2), airflow,

etc. which can be easily acquired using the available wearable sensors noninvasively,

and hence can be used to detect sleep apnea at home. The main advantage of such

home sleep apnea test (HSAT) is less cost compared to the traditional in-lab PSG

test. Other potential advantages of HSAT include no first-night effect and collection

of more representative and accurate physiological data during sleep.

5.1 Related Work

Several sleep apnea detection methods are proposed in the literature recently, and the

sensors used, features extracted and classifiers adopted are summarized in Table 5.2.

In [93], Mendez et al. present a method for detecting OSA based on a single-lead ECG

signal. A bivariate time-varying autoregressive model is used to define features from

the power spectral densities of RR interval and QRS complex area signals. Artificial

neural networks and k-nearest neighbor algorithm are then used to classify the apneic

and non-apneic episodes. Khandoker et al. apply support vector machine (SVM) clas-

sifier for detecting OSA using the wavelet-based features of the ECG signal [94]. The

features are extracted from the wavelet decomposition of heart rate variability (HRV)

and ECG-derived respiration (EDR) signals. In [95], Bsoul et al. develop a real-time

sleep apnea monitoring system using the support vector machine (SVM) classifier

and implement it on an Android operation system based smartphone. A total of 111

temporal and spectral features are extracted from a single-lead ECG signal. Xie et al.

propose a sleep apnea detection method based on the features extracted from both
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ECG and SpO2 signals [96]. For classification of apneic episodes, several classifiers

(such as support vector machine, k-nearest neighbor, decision tree, multilayer percep-

tron) are combined using ensemble methods such as Adaptive Boosting, Bagging, etc.

In [97], Nguyen et al. propose an online sleep apnea detection method based on re-

currence quantification analysis (RQA) statistics of the heart rate variability (HRV)

signal extracted from the ECG signal. For classification of apneic episodes, a soft

decision fusion rule is proposed to combine the decisions of support vector machine

and artificial neural network classifiers. Koley and Dey propose an online sleep apnea

detection method using the SpO2 signal measured at the fingertip through a pulse

oximeter [98]. A total of 34 time domain features are extracted from the SpO2 signal.

Support vector machine classifier is used for classification. Varon et al. propose an

algorithm for automatic detection of sleep apnea from the ECG signal [99]. From the

ECG signal, the authors extract RR interval signal and three ECG derived respiration

(EDR) signals. A total of 28 features are defined from these ECG-derived signals. For

classification, linear discriminant analysis (LDA) and support vector machine (SVM)

classifiers are used.

All these existing sleep apnea detection methods are purely data-driven approaches.

First, certain features are defined and extracted from the commonly available physi-

ological signals such as ECG, SpO2, etc. Then, supervised machine learning methods

are used to classify the apneic and non-apneic data. The main drawback of these

data-driven approaches is that their performance greatly depends on the quality and

quantity of the sensor data available for training. Also, the data-driven methods re-

quire a lot of feature engineering to define features for each physiological signal, and

their detection performance also depends on the type of features extracted from the

physiological signals. Moreover, these methods treat different physiological signals

as independent data sources and perform feature extraction for each physiological

signal separately. However, in reality the physiological signals are dependent. For
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Table 5.2: Related work on sleep apnea detection

Sensors Features Classifiers

Mendez et al. ’09 [93] One-lead ECG Power spectral densi-

ties of RR interval and

QRS complex area sig-

nals

Neural network, k-

nearest neighbor

Khandoker et al. ’09 [94] One-lead ECG Wavelet decomposi-

tion of HRV and EDR

signals

Support vector ma-

chine

Bsoul et al. ’11 [95] One-lead ECG 111 temporal and

spectral features ex-

tracted from ECG

signal

Support vector ma-

chine

Xie et al. ’12 [96] One-lead ECG,

SpO2

Temporal and spectral

features

Ensemble classifier

Nguyen et al. ’14 [97] One-lead ECG Recurrence quantifica-

tion analysis (RQA)

statistics of the HRV

signal

Soft decision fusion

combining support

vector machine and

neural network

Koley and Dey ’14 [98] SpO2 34 time domain fea-

tures extracted from

the SpO2 signal

Support vector ma-

chine

Varon et al. ’15 [99] One-lead ECG 28 features extracted

from RR interval and

EDR signals

Linear discriminant

analysis, support

vector machine
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instance, ECG signal contains respiratory effort information and the photoplethys-

mography (PPG) signal of pulse oximeter contains heart rate and respiration rate

information [100].

5.2 Measurement Models

5.2.1 Heart rate

The heart rate measurement signal can be modeled as a measurement of the actual

heart rate of the heart. We model the sensor measurement noise as additive white

Gaussian noise (AWGN). The heart rate measurement model is given by,

zHRt+1 = xHRt+1 + n, t ≥ 0, (5.1)

where xHRt is the true heart rate, zHRt is the measured heart rate, and n ∼ N (0, σ2
n)

is the independent and identically distributed (i.i.d.) measurement noise following a

Gaussian distribution with zero mean and variance σ2
n.

5.2.2 Peripheral oxygen saturation (SpO2)

Oxygen is vital to the human metabolism. It reacts with carbohydrates, fats, and

proteins to release the energy necessary for cellular function in the human body [101].

Hemoglobin (Hb) in the red blood cells transports oxygen from the lungs to the

tissues in the human body. Oxygen level in the human body can be defined using the

arterial oxygen saturation (SaO2), which is the percentage of hemoglobin saturated

with oxygen molecules in the arterial blood. SaO2 plays a vital role in the detection

of sleep apnea. Due to the lack of airflow during each sleep apnea episode, the oxygen

saturation levels in the human body vary greatly during apnea episodes. However,

measurement of SaO2 is invasive and requires sampling blood from arteries [102]. A

noninvasive estimate of SaO2 can be obtained by measuring the peripheral oxygen
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saturation (SpO2) near extremities (such as fingers, ears, forehead, etc.) using a pulse

oximeter [103].

Even though SpO2 is related to SaO2, modeling their relationship is hard as it is

difficult to obtain SaO2 measurements in practice. The SpO2 signal is also related

to the respiration signal. For instance, during sleep apnea episodes, the lack of air-

flow for a certain amount of time decreases the amount of available oxygen in the

lungs, and the SpO2 value drops below a certain level. In this section, we propose a

mathematical model relating the SpO2 signal to the respiration signal such as tidal

volume signal, airflow signal, etc. These respiration signals can be easily acquired

using noninvasive techniques such as respiratory inductance plethysmography (RIP)

and impedance pneumography (IP). The proposed model tries to capture the phys-

iological interactions between respiration and peripheral oxygen saturation (SpO2),

and it takes into account the time delay between these two signals.

Respiration-SpO2 model

Let xr(t) and xs(t) be the respiration and SpO2 signals, respectively. We first

construct a signal µr(t), where µr(t) is the mean of xr(t) over the time window

t ∈ [t− tw, t]. We choose the window size tw = 4 sec., which is the average duration of

a single breath (one inhalation and exhalation). Generally, changes in the respiration

signal are reflected in the SpO2 signal with a certain time delay. For example, the

respiration, respiration mean, and SpO2 signals of a subject with sleep apnea are

shown in Figure 5.2. From the figure, we can clearly see that the SpO2 value changes

according to the respiration mean signal with a time delay.
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Figure 5.2: Sample respiration xr(t), respiration mean µr(t), and SpO2 xs(t) signals

from PhysioNet [13]. A sleep apnea episode is indicated by the red vertical lines.

Let xr[k] and xs[k] be the discrete-time respiration and SpO2 signals, respectively.

We model the relation between the SpO2 and respiration signals as follows:

• We first generate a signal ys[·] as,

ys[k] = f(xr[k − d])

= ys[k − 1] + (µr[k − d]− c) ts,
(5.2)

where k ≥ 1, µr[k] is the discrete-time respiration mean signal, c is a threshold,

ts is the sampling time interval, d > 0 is the time delay, and the initial value

ys[0] = 0.
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• We then scale and shift the above signal ys[·] to get the SpO2 signal,

xs[k] = a ys[k] + b, k ≥ 0, (5.3)

where a is the scaling parameter and b is the shift parameter (bias).

The model parameters, θ = {a, b, c, d}, are estimated by solving the following non-

linear least square problem,

min
θ

E(θ) = ‖xs − x‖22, (5.4)

where x = [x[1], x[2], ..., x[N ]]T is the available SpO2 measurement signal. For ease of

optimization, we fix the time delay d and optimize over the other parameters.

Using the respiration signal xr = [xr[1], xr[2], ..., xr[N ]]T , the model SpO2 signal

with time delay d > 0 is given by,

xs[k] = a

(
k−d∑
j=2

µr[j]− (k − d− 1) c

)
ts + b, (5.5)

where k = d+ 1, d+ 2, ..., N , µr[j] is the mean of the respiration signal xr[·] over the

last breath window at time instant j. Specifically, xs[d + 1] = b. We estimate the

model parameters a, b, c, and d by minimizing the residual sum of squares,

min
a,b,c,d

E(a, b, c, d) = ‖xs − x‖22, (5.6)

where x = [x[d + 1], x[d + 2], ..., x[N ]]T is the discrete-time measured SpO2 signal,

xs = [xs[d+ 1], xs[d+ 2], ..., xs[N ]]T is the discrete-time model SpO2 signal with time

delay d > 0.

For ease of optimization, we fix the time delay d, and estimate the corresponding

optimal parameters a?, b?, and c? by minimizing the sum of squares objective function,

min
a,b,c

E(a, b, c)

=
N∑

k=d+1

(xs[k]− x[k])2

=
N∑

k=d+1

(a (µ[k − d]− (k − d− 1) c) ts + b− x[k])2,

(5.7)
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where µ[k] =
∑k

j=2 µr[j]. Note that the above optimization problem has implicit

constraints on the scale and shift parameters: a ≥ 0 and b > 0.

By equating the derivatives of the sum of squares function E(·) with respect to a,

b, and c to zero, we get the following system of nonlinear equations,

∂E

∂a
= 0

=⇒

a ts(Qµ2 + cQµk) + c(a ts(Qµk + cQk2)−Qxk) = Qxµ,

(5.8a)

∂E

∂b
= 0 =⇒ (N − d) b+ a ts Pµ + c a ts Pk = Px, (5.8b)

∂E

∂c
= 0 =⇒ a (a ts (Qµk + cQk2)−Qxk) = 0, (5.8c)

where the partial sums are

Px =
N∑

k=d+1

x[k],

Pµ =
N∑

k=d+2

µ[k − d], Pk =
N∑

k=d+2

(1− k + d),

Pµ2 =
N∑

k=d+2

µ[k − d]2, Pk2 =
N∑

k=d+2

(1− k + d)2,

Pxµ =
N∑

k=d+2

x[k]µ[k − d], Pxk =
N∑

k=d+2

x[k] (1− k + d),

Pµk =
N∑

k=d+2

µ[k − d] (1− k + d),

Qµ2 = (N − d)Pµ2 − P 2
µ , Qk2 = (N − d)Pk2 − P 2

k ,

Qxµ = (N − d)Pxµ − Px Pµ, Qxk = (N − d)Pxk − Px Pk,

Qµk = (N − d)Pµk − Pµ Pk.

(5.9)

From (5.8c), we have

a =
Qxk

ts (Qµk + cQk2)
, or

a = 0.

(5.10)

Accordingly, we get the following two sets of solutions:
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• When a 6= 0, from (5.8a), we get the optimal threshold,

c? =
QxkQµ2 −QxµQµk

QxµQk2 −QxkQµk

. (5.11)

By substituting the optimal threshold c? in (5.10) and (5.8b), we get

a? =
Qxk

ts (Qµk + c?Qk2)
,

b? =
Px − a? ts Pµ − c? a? ts Pk

N − d
.

(5.12)

• When a = 0, from (5.8a) and (5.8b), we get

a? = 0, b? =
Px

N − d
, c? = −Qxµ

Qxk

. (5.13)

We choose the feasible set {a?, b?, c?} with the least objective function value. To find

the optimal time delay (d?), we try different delay values from a finite set of time

delays (typically ranging from 1 sec. to 60 sec.) and choose the time delay with the

minimum mean squared error (MSE).

To test the proposed model, we use real sleep apnea data from Apnea-ECG

database in PhysioNet [13]. The database contains continuous digitized ECG sig-

nals of 32 subjects with OSA. For eight subject records, four additional physiological

signals are available: SpO2, oronasal airflow signal, chest and abdominal respiratory

inductance plethysmography signals. We consider the abdominal respiratory induc-

tance plethysmography signal as the respiration signal in the proposed model.

In our experiments, we consider four subjects (a01-a04) and use the first two hours

of sleep apnea data for testing the proposed model. For each subject, we divide the

entire data into five-minute windows. We then estimate the model parameters model

parameters a, b, c, and d using the respiration and SpO2 signal data from one window

as training data, and then test the model using the data from the next window. For

each training window, we try different delay values from 1 sec. to 35 sec. and choose

the time delay with the minimum mean squared error (MSE). The MSE for different

82



time delays for a training window and the model vs. measurement SpO2 signals of a

test window of subjects 1 and 4 are shown in Figure 5.3 and Figure 5.4, respectively.

From the results, we can see that the model SpO2 signal accurately tracks the actual

SpO2 measurement signal. Also, the estimated model parameters over a series of

subject 1 windows is shown in Figure 5.5. From the figure, we can see that the

estimated model parameters of consecutive windows are very close to each other.
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Figure 5.3: Subject 1 results.
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Figure 5.5: Model parameter estimates of Subject 1 windows.

5.3 State Models

We adopt the integrative model of the cardiovascular and respiratory systems in [11]

to define the cardiorespiratory system state-space model. By setting the upper airway

sensitivity parameter value to at least 0.38 (from its normal value of 0.01), the model

generates each OSA episode as follows. Increased upper airway sensitivity leads to

a decrease in the airflow. This leads to hypoxia (decreased O2 concentration) and
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hypercapnia (elevated CO2 concentration). The respiratory effort will then increase,

which increases the pleural pressure in the lungs. This triggers an arousal from sleep,

which leads to an increase in the sympathetic nervous activity and decrease in the

parasympathetic nervous activity. This finally leads to an increase in heart rate and

blood pressure. Also, the hypoxia and hypercapnia states additionally lead to an in-

crease in the sympathetic nervous activity through the chemoreflex mechanism. Some

key physiological signals generated by the model under normal and OSA conditions

are shown in Figure 5.6 and Figure 5.7, respectively. From the figure, we can see that

the model generated signals represent the OSA dynamics and trends in general.
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Figure 5.6: Normal sleep simulation signals: partial pressure of carbon dioxide in

arterial blood (PaCO2), oxygen saturation (SaO2), arterial blood pressure (ABP),

heart rate (HR), tidal volume (Vt).
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Figure 5.7: OSA simulation signals: partial pressure of carbon dioxide in arterial

blood (PaCO2), oxygen saturation (SaO2), arterial blood pressure (ABP), heart rate

(HR), tidal volume (Vt).

5.3.1 Introducing virtual oxygen saturation state

In the cardiorespiratory system model, we consider the following states: partial pres-

sure of carbon dioxide in arterial blood (PaCO2), arterial oxygen saturation (SaO2),

arterial blood pressure (ABP), heart rate (HR), and tidal volume (Vt), since they

are most relevant to OSA symptoms. Note that not all these states can be nonin-

vasively measured in practice. Even though SpO2 is related to SaO2, modeling their

relationship is hard as it is difficult to obtain SaO2 measurements in practice. From

the previous section, we observe that the SpO2 can also be related to the respiration

signal such as airflow, tidal volume, etc. So in addition to the cardiorespiratory sys-
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tem states, we define a new virtual oxygen saturation state (VSO2) using the tidal

volume state. Note that there is usually a time delay between the respiration and

SpO2 signals. We do not consider the time delay in the state model as the time delay

is not constant and often varies from subject to subject. The time delay will first

be estimated and measurement synchronization will be conducted accordingly before

detection. The new VSO2 state is generated as follows:

• Let xvt[k] and xvs[k] be the discrete-time tidal volume and VSO2 states, respec-

tively. First, construct a signal µvt[k], where µvt[k] is the mean of xvt[k] over

the time window [k − kw, k]. We choose the window size kw = 4 sec., which is

the average duration of a single breath (one inhalation and exhalation).

• Generate a signal yvs[·] as,

yvs[k] = f(xvt[k])

= yvs[k − 1] + (µvt[k]− c) ts,
(5.14)

where k ≥ 1, c is a threshold, ts is the sampling time interval, and the initial

value yvs[0] = 0.

• We then scale and shift the above signal yvs[·] to produce the VSO2 state,

xvs[k] = a yvs[k] + b, k ≥ 0, (5.15)

where a is the scaling parameter and b is the shift parameter (bias).

Based on our empirical study, we use the following parameter values to generate

reasonable oxygen saturation state values under both normal and apnea conditions:

• Normal: a = 2, b = 94, c = 0.16.

• OSA: a = 2, b = 86, c = 0.16.
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The generated VSO2 state sequences from tidal volume state under both normal and

OSA conditions are shown in Figure 5.8. Note that the actual SpO2 state will be a

delayed version of this new VSO2 state, SpO2(t) = VSO2(t − d), where d > 0 is the

time delay.
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Figure 5.8: Tidal volume (Vt) and generated virtual oxygen saturation (VSO2) state

signals under normal and OSA conditions.
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5.3.2 Gaussian process state-space model

We represent the cardiorespiratory system model as a discrete-time nonlinear state-

space model,

xt+1 = f(xt) + εt, t ≥ 0, (5.16)

where xt ∈ RD are the states in the model at time t, D is the total number of states

in the model, εt ∼ N (0,Σ) is the independent and identically distributed (i.i.d.)

process noise following Gaussian distribution with zero mean and diagonal covariance

matrix Σ ∈ RD×D with noise variances {σ2
1, σ

2
2, ..., σ

2
D} on its main diagonal, and f(·)

represents the cardiorespiratory system state functions.

For the set of system state functions, {f1(x), f2(x), ..., fD(x)}, where x ∈ RD, a

Gaussian process (GP) prior is applied,

f(·) ∼ GP (µ(x),K(x,x′)) , (5.17)

where µ(x) ∈ RD is the GP mean function and K(x,x′) ∈ RD×D is the GP covari-

ance matrix. Note that the GP prior tries to model the variations of system states

among different individuals. The GP mean function values may come from the car-

diorespiratory system model in [11]. This way the existing system model information

is incorporated into our model through the GP mean function. For any x,x′ ∈ RD,

K(x,x′) is defined using the sum of separable kernels (SoS kernels) structure [104]

as,

K(x,x′) =

Q∑
q=1

kq(x,x
′) Bq, (5.18)

where kq(·, ·) is a scalar kernel function and Bq ∈ RD×D are symmetric positive semi-

definite matrices. The following widely used Gaussian kernel is adopted as the scalar

kernel function,

kq(x,x
′) = exp

(
−‖x− x′‖2

2δ2q

)
. (5.19)
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Let yt = xt+1. The state-space model is rewritten as

yt = f(xt) + εt. (5.20)

Let θ denote the set of all hyperparameters. Note that the hyperparameters include

process noise variances {σ2
1, σ

2
2, ..., σ

2
D}, parameters of the Gaussian kernel function

{δ2q}, and the elements of all Bq matrices. The state-space models under the normal

condition and the OSA condition are different in both the upper airway sensitivity

parameter and the hyperparameters. For OSA detection, we first need to estimate

θ using the training data X = {x1,x2, ...,xN} and Y = {y1,y2, ...,yN} obtained by

simulating the cardiorespiratory system model in [11] under both conditions. Then

OSA detection is performed using both the measurements and the GP state-space

model. The main steps are shown in the flowchart in Figure 5.9.

Simulate the system 

model and generate 

state sequences

(under both normal 

and OSA cases)

Generate VSO2 state 

from tidal volume state

Estimate the GP 

hyperparameters 

OSA detection
Measurement signals 

(Heart Rate, SpO2)

Cardiorespiratory 

System Model 

Figure 5.9: Flowchart of model-based and data-driven framework for OSA detection.
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5.4 Model Hyperparameters Estimation

Let f =
[
f(x1)

T , f(x2)
T , ..., f(xN)T

]T
. The prior distribution over f is given by f ∼

N (µ,KND). Note that the mean vector µ ∈ RND can be computed using the training

data generated by running the cardiorespiratory system model. The ND × ND

covariance matrix KND is constructed using the D × D GP covariance matrix as

follows,

KND =



K(x1,x1) K(x1,x2) . . . K(x1,xN)

K(x2,x1) K(x2,x2) . . . K(x2,xN)

...
...

. . .
...

K(xN ,x1) K(xN ,x2) . . . K(xN ,xN)


. (5.21)

We first subtract the mean from f to construct a set of zero-mean function values,

g = f − µ. So the prior distribution over g is given by g ∼ N (0,KND). Let the

corresponding state-space model be,

vt = g(xt) + εt. (5.22)

Let {x1,x2, ...,xN} and {v1,v2, ...,vN} be the corresponding training data, where

vi = yi − µ(xi).

The conditional likelihood of v given X is given by

p(v|X,θ) = N (v|0,KND + Σ), (5.23)

where v =
[
vT1 ,v

T
2 , ...,v

T
N

]T
, Σ = IN ⊗ Σ, ⊗ represents tensor product, IN is an

identity matrix of size N . Taking logarithm on both sides of (5.23), we have

log p(v|X,θ) =− 1

2
vT (KND + Σ)−1v − 1

2
log |KND + Σ|

− ND

2
log 2π.

(5.24)

Generally,

θ̂MLE = arg max
θ

log p(v|X,θ). (5.25)
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Note that to compute the log-likelihood function in (5.24), we need to invert the

ND ×ND matrix, KND + Σ, the complexity of which is O(N3D3).

To reduce the computational complexity, we construct an approximated likeli-

hood function using a small set of pseudo-input points. This is an extension of the

pseudo-inputs approach in [105] to our vector-valued Gaussian process model. Let

X̄ = {x̄1, x̄2, ..., x̄M} be the pseudo-input points and let ḡ = {ḡ1, ḡ2, ..., ḡM} be their

corresponding function values, where M can be much smaller than N , and each

x̄i, ḡi ∈ RD. Let the prior distribution over the pseudo-input function values be

ḡ ∼ N (0,KMD), where KMD ∈ RMD×MD is the covariance matrix of ḡ with entries

Kd,d′(x̄i, x̄j), where d, d′ = 1, 2, ..., D and i, j = 1, 2, ...,M .

The single data point likelihood conditioned on the pseudo-input points is given

by

p(vi|xi, X̄, ḡ,θ)

= N
(
vi|KT

xi
K−1MD ḡ,K(xi,xi)−KT

xi
K−1MD Kxi

+ Σ
)
,

(5.26)

where

Kxi
=



K(x̄1,xi)

K(x̄2,xi)

...

K(x̄M ,xi)


MD×D

.

The above likelihood is the GP predictive distribution with {X̄, ḡ} as the training

data, xi as the test input, and vi as the test output [106]. Given the pseudo-input

data X̄ and ḡ, we assume the set of data points {v1,v2, ...,vN} are independent.

94



Hence, we can approximate the likelihood function p(v|X, X̄, ḡ,θ) as follows,

p(v|X, X̄, ḡ,θ)

=
N∏
i=1

p(vi|xi, X̄, ḡ,θ)

=
N∏
i=1

N
(
vi|KT

xi
K−1MD ḡ,K(xi,xi)−KT

xi
K−1MD Kxi

+ Σ
)

= N
(
v|KNM K−1MD ḡ,Λ + Σ

)
,

(5.27)

where Λ ∈ RND×ND is a block diagonal matrix with the matrices {λ1,λ2, ...,λN},

λi = K(xi,xi)−KT
xi

K−1MD Kxi
∈ RD×D,

KNM =



KT
x1

KT
x2

...

KT
xN


ND×MD

.

The approximated marginal likelihood is given by

p(v|X, X̄,θ)

=

∫
p(v|X, X̄, ḡ,θ) p(ḡ|X̄,θ) dḡ

=

∫
N
(
v|KNM K−1MD ḡ,Λ + Σ

)
N (ḡ|0,KMD) dḡ

= N
(
v|0,KNM K−1MD KT

NM + Λ + Σ
)
.

(5.28)

Taking logarithm on both sides of (5.28), we have

log p(v|X, X̄,θ) = −1

2
vT Q−1 v − 1

2
log |Q| − ND

2
log 2π, (5.29)

where Q = KNM K−1MD KT
NM + Λ + Σ. In general, the assumption in (5.27) is not

true. We need to find X̄ so that the product of marginals is as close to the joint

distribution as possible. Therefore, both the hyperparameters θ and pseudo-input

points X̄ need to be optimized by maximizing (5.29). Let α = {θ, X̄} be all the
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parameters we need to estimate. Genetic algorithms [107] are adopted to find the

global optimum (α?) of the above log-likelihood function.

Note that to compute (5.29), Q−1 is required. Using the Woodbury matrix inver-

sion lemma [108], we have

Q−1 =
(
Λ + Σ + KNM K−1MD KT

NM

)−1
= (Λ + Σ)−1 − (Λ + Σ)−1 KNM R−1 KT

NM (Λ + Σ)−1,

(5.30)

where R = KMD+KT
NM (Λ+Σ)−1 KNM . Since Σ is diagonal and Λ is block diagonal,

the complexity of computing (Λ+Σ)−1 is O(ND3). Here, the computationally inten-

sive step is the inversion of the MD×MD matrix R, whose complexity is O(M3D3).

So by using pseudo-input points and the approximate marginal likelihood, we have

reduced the complexity from inverting a matrix of dimension ND with complexity

O(N3D3) to inverting a matrix of dimension MD with complexity O(M3D3).

By tuning the upper airway sensitivity parameter value, the cardiorespiratory sys-

tem model can generate the state sequences of both normal sleep and OSA conditions.

Using the generated state sequences as training data, the corresponding optimal GP

hyperparameters (α?) under both conditions can be estimated. Let α̂1 and α̂0 be

the sets of estimated hyperparameters corresponding to the OSA and normal sleep

conditions, respectively.

5.5 Sleep Apnea Detection

We propose to detect sleep apnea using the heart rate and peripheral oxygen satura-

tion (SpO2) measurement signals. The heart rate measurement signal can be modeled

as a measurement of the heart rate state, and the SpO2 measurement signal can be

modeled as a delayed measurement of the VSO2 state. We model the sensor measure-

ment noise as additive white Gaussian noise (AWGN). Accordingly, the measurement

model is given by,

zt+1 = H xt+1 + n, t ≥ 0, (5.31)
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where xt ∈ RD is the state vector at time t, H =

1 0 · · · 0

0 1 · · · 0

 is a 2×D matrix,

and n ∼ N (0,Σn) is the independent and identically distributed (i.i.d.) measurement

noise vector following Gaussian distribution with zero mean and covariance matrix

Σn.

We first divide the entire measurement signal vector into a set of non-overlapping

windows of fixed duration. Then, each window is classified into two classes: apneic

and non-apneic (normal).

From the state-space model in (5.16), we have

p(xt+1|xt, θ̂) = N (xt+1|µ(xt),K(xt,xt) + Σ)

= N (xt+1|µ(xt),KD + Σ),

(5.32)

where θ̂ are the estimated hyperparameters. From the measurement model in (5.31),

we have

p(zt+1|xt+1) = N (zt+1|H xt+1,Σn). (5.33)

Given a test window of length L, {z1, z2, ..., zL}, we perform the detection using the

likelihood ratio test as follows.

Let p(x0) be the initial state distribution and t ∈ {1, 2, ..., L − 1} be the time

index. At time t, assume the updated state distribution under hypothesis H ∈ {0, 1}

is given by p(xt|Zt, θ̂), where Zt = {z1, z2, ..., zt} is the set of measurements till time

t. The predicted state distribution for time t+ 1 is given by

p(xt+1|Zt, θ̂) =

∫
p(xt+1|xt, θ̂) p(xt|Zt, θ̂) dxt

≈ 1

S

S∑
i=1

p(xt+1|xit, θ̂)

=
1

S

S∑
i=1

N (xt+1|µ(xit),KD + Σ),

(5.34)

where samples {x1
t ,x

2
t , ...,x

S
t } drawn from the distribution p(xt|Zt, θ̂) are used to

simplify the integration. The predicted measurement distribution for time t + 1 is
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given by

p(zt+1|Zt, θ̂)

=

∫
p(zt+1|xt+1) p(xt+1|Zt, θ̂) dxt+1

=
1

S

S∑
i=1

∫
p(zt+1|xt+1) p(xt+1|xit, θ̂) dxt+1

=
1

S

S∑
i=1

∫
N (zt+1|H xt+1,Σn)N (xt+1|µ(xit),KD + Σ) dxt+1

=
1

S

S∑
i=1

N
(
zt+1|Hµ(xit),H (KD + Σ) HT + Σn

)
.

(5.35)

When the measurement zt+1 at time t+1 becomes available, from the Bayes’ theorem,

the state distribution can be updated,

p(xt+1|Zt+1, θ̂)

∝ p(zt+1|xt+1) · p(xt+1|Zt, θ̂)

∝ 1

S

S∑
i=1

p(zt+1|xt+1) · p(xt+1|xit, θ̂)

∝ 1

S

S∑
i=1

N (zt+1|H xt+1,Σn) · N (xt+1|µ(xit),KD + Σ)

∝ 1

S

S∑
i=1

N
(
xt+1|µi

t+1,Σt+1

)
,

(5.36)

where

µi
t+1 = µ(xit) + R (zt+1 −Hµ(xit)),

Σt+1 = KD + Σ−R H (KD + Σ)T ,

R = (KD + Σ) HT
(
H (KD + Σ) HT + Σn

)−1
.

Finally, the test window, {z1, z2, ..., zL}, is classified as apneic using the likelihood

ratio test,
L−1∑
t=1

log
p(zt+1|Zt, θ̂1)

p(zt+1|Zt, θ̂0)
> γ, (5.37)

where γ is a threshold. The threshold γ is set based on the validation performance.

Based on the classification result of the current window, the initial state distribution
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for the next window is chosen. That is, if the current window is classified as apneic,

then for the next window we set p(x0) = p(xL|ZL, θ̂1). If the current window is

classified as normal, then we set p(x0) = p(xL|ZL, θ̂0) for the next window. For the

first window, we assume the initial state distribution, p(x0) = N (x0|µ0,Σ0), where

µ0 is set using the state values from the system model under normal condition and

Σ0 is set as an identity matrix.

5.6 Experimental Results

We choose the five states (D = 5) in the state-space model: PaCO2, SaO2, ABP,

HR, and VSO2. We simulate the cardiorespiratory system model in [11] in Simulink

and generate the state sequences under both normal sleep and OSA conditions at a

sampling rate of 1 Hz. Since we use only five states in our work, we cannot directly

use the cardiorespiratory system model equations to compute the GP mean functions

as the system model equations depend on other states. Hence, we use artificial neural

networks to approximate the GP mean functions (µ(·)) of these five states under both

normal sleep and OSA conditions. We use the standard feedforward neural network

with one hidden layer of twenty neurons and hyperbolic tangent sigmoid transfer

function. The Levenberg-Marquardt backpropagation algorithm is used for training.

Since the state values have different ranges, we normalize each state data to [−1, 1].

Next, we estimate the GP covariance hyperparameters by maximizing the ap-

proximated marginal log-likelihood function in (5.29). Note that the total number of

hyperparameters depends on the number of kernels in the GP covariance matrix (Q)

and the number of pseudo-input points (M). We try different sets of Q and M values

and pick the best set based on the validation performance. Specifically, Q = {2, 3, 4}

and M = {60, 120, 180} are experimented.
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5.6.1 Synthetic data

One hour of both normal and apnea data for training and one hour of both normal

and apnea data for testing are generated by simulating the cardiorespiratory system

model. To test the robustness of the proposed OSA detection method, we add Gaus-

sian noise with zero mean and variance σ2
n to the heart rate and SpO2 data. Note that

here in the synthetic datasets, the generated SpO2 signal is already synchronized.

We also compare the performance of our proposed OSA detection method with

other data-driven OSA detection methods in [97] and [98]. In [97], recurrence quantifi-

cation analysis (RQA) is performed for every one-minute heart rate variability (HRV)

data window, and the corresponding RQA statistics such as recurrence rate, deter-

minism, maximum diagonal line length, maximum vertical line length, entropy of the

distribution of diagonal lines, laminarity, mean diagonal line length, etc. are used

for OSA/normal classification. A fifteen-neuron hidden layer neural network is used

for classification. In [98], time domain features such as mean, variance, maximum,

minimum, deviations of mean and median values from the maximum and minimum

values, etc. are extracted for each one-minute window of the SpO2 signal. Support

vector machine with the Gaussian kernel function is used for classification. The de-

tection performances of the proposed and the data-driven methods are presented in

Table 5.3 and Table 5.4. From the results, we can see that the proposed OSA de-

tection method outperforms the data-driven methods for various noise levels. This

demonstrates the advantage of combining the cardiorespiratory system model infor-

mation with the sensor measurement data. Note that the detection performance of

data-driven methods greatly depends on the quality of the training data.
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Table 5.3: Comparison of detection performances on simulated data using heart rate

measurement signal only

Sensitivity Specificity Accuracy

(True Positive

Rate)

(True Negative

Rate)

σn = 0.8
Fusion of model

and measurements

93.33 % 95 % 94.17 %

Measurements only

[97]

88.33 % 90 % 89.17 %

σn = 0.9
Fusion of model

and measurements

93.33 % 88.33 % 90.83 %

Measurements only

[97]

80 % 88.33 % 84.17 %

σn = 1
Fusion of model

and measurements

86.67 % 83.33 % 85 %

Measurements only

[97]

76.67 % 80 % 78.33 %
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Table 5.4: Comparison of detection performances on simulated data using SpO2 mea-

surement signal only

Sensitivity Specificity Accuracy

(True Positive

Rate)

(True Negative

Rate)

σn = 0.8
Fusion of model

and measurements

96.67 % 93.33 % 95 %

Measurements only

[98]

95 % 86.67 % 90.83 %

σn = 0.9
Fusion of model

and measurements

95 % 88.33 % 91.67 %

Measurements only

[98]

88.33 % 85 % 86.67 %

σn = 1
Fusion of model

and measurements

88.33 % 83.33 % 85.83 %

Measurements only

[98]

81.67 % 78.33 % 80 %

The detection performance of the proposed method using both heart rate and

SpO2 measurement signals is shown in Table 5.5. From the results, we can notice

the improvement in detection performance of the proposed method when using both

heart rate and SpO2 measurement signals. Since the simulated data do not have the

ECG signal, we do not have comparison results with the data-driven method in this

case.
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Table 5.5: Detection performance of the proposed method on simulated data using

both heart rate and SpO2 measurement signals

Sensitivity Specificity Accuracy

(True Positive

Rate)

(True Negative

Rate)

σn = 0.8 Fusion of model

and measurements

98.33 % 95 % 96.67 %

σn = 0.9 Fusion of model

and measurements

95 % 91.67 % 93.33 %

σn = 1 Fusion of model

and measurements

90 % 88.33 % 89.17 %

5.6.2 Real data

We also test the performance of the proposed method using the real data from the

Apnea-ECG database in PhysioNet [13]. The database contains digitized ECG sig-

nals of 32 subjects with OSA. For eight subjects, four additional signals are available:

SpO2, oronasal airflow signal, chest and abdominal respiratory inductance plethys-

mography signals. For each subject, normal/apnea labels are provided at 60-second

intervals by sleep experts. Each label indicates whether an apnea episode is in progress

or not at the beginning of the corresponding minute. In our experiments, we consider

the first four subjects (a01-a04) out of the eight subjects as they have both normal

and apnea data.

First, we compute the heart rate signal from the available ECG signal as follows.

From the R peaks of the ECG signal, we get the RR interval time series signal. From

the RR interval signal, we calculate the corresponding heart rate signal as,

HR(t) =
60

RR(t)
, (5.38)
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where HR(t) is the heart rate (in beats per minute) at time t and RR(t) is the RR

interval duration (in seconds) at time t. We then resample the heart rate signal at

a sampling rate of 1 Hz using linear interpolation. In practice, the measured SpO2

signal has a certain time delay. To estimate the time delay for each subject, we fit

the proposed SpO2-respiration model with different delay values and then choose the

time delay with the minimum mean squared error. We then time shift the SpO2

measurement signal according to the corresponding time delay.

Since the given labels in the database indicate the presence or absence of an apnea

episode at a particular time instant instead of in a window, we perform OSA detection

every one second, i.e., we set L = 1. To test the performance of OSA detection meth-

ods under situations with limited availability of labeled data, we consider different

scenarios as follows:

• Scenario A: For each subject, we use one hour of data (around 12% of data) for

training and three hours of data for testing.

• Scenario B: For each subject, we use three hours of data (around 35% of data)

for training and three hours of data for testing.

The detection performances of the proposed method and the data-driven methods

are presented in Tables 5.6 to 5.8. Note that the proposed method does not require

large amount of training data. In our experiments, we use a small portion of the data

(around 30-35 minutes per subject) to set the threshold γ and estimate the SpO2

time delay for each subject. In general, the proposed method can be directly used in

situations with no training data available.

From the results, we can see that the proposed method outperforms the data-

driven methods, especially in situations of limited availability of labeled data for

training. This is usually the case in practice due to the limited number of sleep

medicine specialists and sleep labs. Data-driven methods often assume the availability
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of a lot of labeled data for training, and they do not perform well when the amount

of labeled data available is low. Since we combine the sensor measurement signals

with the cardiorespiratory system model information, the proposed method does not

require large amount of labeled training data.

Table 5.6: Comparison of detection performances on real data using ECG measure-

ment signal only

Sensitivity Specificity Accuracy

(True Positive

Rate)

(True Negative

Rate)

Fusion of model

and measurements

85.38 % 70.41 % 82.44 %

Measurements only

[97] (Scenario A)

46.56 % 34.64 % 44.03 %

Measurements only

[97] (Scenario B)

86.42 % 77.10 % 84.72 %
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Table 5.7: Comparison of detection performances on real data using SpO2 measure-

ment signal only

Sensitivity Specificity Accuracy

(True Positive

Rate)

(True Negative

Rate)

Fusion of model

and measurements

87.82 % 72.82 % 84.86 %

Measurements only

[98] (Scenario A)

62.43 % 50.33 % 59.86 %

Measurements only

[98] (Scenario B)

73.34 % 71.76 % 73.06 %

Table 5.8: Comparison of detection performances on real data using both ECG and

SpO2 measurement signals

Sensitivity Specificity Accuracy

(True Positive

Rate)

(True Negative

Rate)

Fusion of model

and measurements

90.46 % 76.71 % 87.76 %

Measurements only

[96] (Scenario A)

65.08 % 53.59 % 62.64 %

Measurements only

[96] (Scenario B)

77.59 % 73.28 % 76.81 %

From the results, we can also see that the proposed method has better detection

performance when using both heart rate (from ECG) and SpO2 measurement signals.

106



This is due to the fact that sometimes when one measurement signal is more noisy,

the other measurement signal with less noise can help in increasing the detection

accuracy. For example, some apnea segments of the data that are detected only with

both heart rate and SpO2 signals are shown in Figure 5.10. These segments are not

detected using the heart rate signal alone. From the figure, we can see that the heart

rate signal is more noisy and hence it is difficult to detect these apnea segments using

the heart rate signal only.
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Figure 5.10: Apnea segments of the real data.

5.7 Summary

In this chapter, a new framework for OSA detection is proposed, in which the car-

diorespiratory system model information is combined with the sensor measurement

data. A GP-based state-space model is proposed using the existing mathematical
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models of the cardiorespiratory system. A mathematical model relating the SpO2

signal to respiration signal is developed. A likelihood ratio test is developed to detect

OSA on a window-by-window basis using both heart rate and SpO2 measurement

signals. Experimental results on both synthetic and real data demonstrate the effec-

tiveness of the proposed OSA detection framework over existing purely data-driven

detection methods. Comparisons with the purely data-driven methods, especially in

situations of limited training data, show the advantage of combining the cardiorespi-

ratory system model information with the sensor measurement data in the proposed

framework.
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CHAPTER 6

CONCLUSIONS

Development of a noninvasive smart health monitoring system capable of providing

accurate diagnostic information is a critical problem. In this research, different im-

portant aspects of the monitoring system are considered such as physiological signal

processing, control mechanism modeling, and disease detection. We mainly focused

on the detection of sleep apnea, a serious chronic sleep disorder affecting the car-

diorespiratory system.

In Chapter 2, we focused on the design of a biometric recognition system using the

ECG signal. A new joint feature extraction and classifier design method is proposed

for the biometric recognition problem. Non-fiducial features are extracted from the

ECG signal. The biometric classification problem is converted into a set of binary

classification problems. A multitask learning framework in which feature extraction

and classifier design for all the binary classification tasks are conducted simultane-

ously. For each binary classification task, probabilistic nonlinear kernel classifiers are

used in which the features are weighted according to their relevance. The matrix

consisting of the feature weights for all the tasks is decomposed into a sparse compo-

nent and a low-rank component. The sparse component gives the features relevant

to each classification task, and the low-rank component gives the common feature

subspace relevant to all the classification tasks. Experimental results on the real data

demonstrate the effectiveness of the proposed biometric recognition system.

In Chapter 4, modeling the local control mechanism of the cardiorespiratory sys-

tem transiting from awake state to stage 4 non-REM sleep state is considered. A 13-
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state discrete-time cardiorespiratory system model with transport delays is adopted.

The system model is nonlinear and described by a set of higher order difference equa-

tions. We converted the system into a set of first-order difference equations and

proposed an iterative algorithm to find the optimal control inputs that drive the car-

diorespiratory system from awake state to sleep state. In each iteration, the system is

linearized using the state and input sequences from the previous iteration. Simulation

results show the effectiveness of the proposed control mechanism model. We validate

the simulation results using real data collected from a healthy subject.

The focus of Chapter 5 is the detection of sleep apnea. Sleep apnea is a serious

sleep disorder affecting millions of people worldwide. We proposed a new frame-

work for sleep apnea detection in which we combine the multiple sensor data with

the physiological signal information from the cardiorespiratory system models. Since

the cardiorespiratory models represent the physiological dynamics in general, Gaus-

sian processes (GPs) are used to capture the physiological variations among differ-

ent individuals. We adopt the sum of separable kernel functions form to define the

vector-valued GP covariance function and estimate the hyperparameters by maximiz-

ing the GP marginal likelihood function. To reduce the computational complexity,

we construct an approximated GP marginal likelihood function using a small set

of pseudo-input points and then estimate the hyperparameters by maximizing the

approximated marginal likelihood function. Sleep apnea detection using the heart

rate and peripheral oxygen saturation (SpO2) measurement signals is performed on a

window-by-window basis using a likelihood ratio test. Experimental results on both

synthetic and real data show the effectiveness of the proposed detection framework.

Comparisons with other data-driven sleep apnea detection methods demonstrate the

advantage of combining the sensor measurement data and the cardiorespiratory model

information in the proposed framework.

110



6.1 Future Work

Here, we provide some suggestions for future work:

• In Chapter 2, we developed a biometric recognition system based on the ECG

signal. For more security, the ECG-based biometric recognition system can be

extended to include other biometric traits such as iris, retina, etc.

• In Chapters 4 and 5, we considered general cardiorespiratory system models.

In the future, we will investigate the effect of tuning the system models to a

particular person using sensitivity analysis and simulation experiments.

• In the future, we will work on developing real-time sleep apnea prediction meth-

ods by fusing the measurements and cardiorespiratory system model informa-

tion. By predicting the occurrence of sleep apnea episodes in real time, we

can intervene and avoid apnea episodes using positive airway pressure (PAP)

ventilator masks.
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APPENDIX A

GAUSSIAN PROCESS

A Gaussian process (GP) is a generalization of the Gaussian probability distribution

to functions. In other words, a GP is an infinite collection of random variables,

where any finite number of them have a joint Gaussian distribution [106]. A GP

on a function f : Rd 7−→ R is completely specified by its mean function m(x) and

covariance function k(x,x′),

f(x) ∼ GP (m(x), k(x,x′)) , (A.1)

where

m(x) = E[f(x)],

k(x,x′) = E[(f(x)−m(x)) (f(x′)−m(x′))].

(A.2)

Note that here the function values f(·) are the random variables, not the input x.

Given a finite set of inputs, {x1,x2, ...,xN}, the corresponding set of outputs have a

joint Gaussian distribution,

f(x1)

f(x2)

...

f(xN)


∼ N





m(x1)

m(x2)

...

m(xN)


,



k(x1,x1) k(x1,x2) . . . k(x1,xN)

k(x2,x1) k(x2,x2) . . . k(x2,xN)

...
...

. . .
...

k(xN ,x1) k(xN ,x2) . . . k(xN ,xN)




. (A.3)

Using the compact notation, we can rewrite (A.3) as,

f(X) ∼ N (m(X),K(X,X)) . (A.4)

In practice, we often do not know the actual function f(·) of some real system

or process. However, we have a set of observations, {(xi, yi)}Ni=1, available to us.
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Generally, we assume the observed data is generated according to some model such

as,

yi = f(xi) + ε, (A.5)

where ε is the independent and identically distributed (i.i.d.) Gaussian noise with

zero mean and variance σ2
n. Now, our inference problem is to estimate the function

f(·). In GP-based inference, we assume the function f(·) follows a GP with mean

function m(·) and covariance function k(·, ·). Let X∗ = {x∗1,x∗2, ...,x∗M} be the new

input points (test inputs). Since any finite number of random variables of a GP are

jointly Gaussian, we have f(X)

f(X∗)

 ∼ N

m(X)

m(X∗)

 ,
K(X,X) K(X,X∗)

K(X∗,X) K(X∗,X∗)


 . (A.6)

Using the conditional Gaussian identities, the GP predictive distribution is given by

f(X∗)|X∗,X, f(X) ∼ N (m(X∗) + K(X∗,X) K(X,X)−1 (f(X)−m(X)),

K(X∗,X∗)−K(X∗,X) K(X,X)−1 K(X,X∗)).

(A.7)

Note that this is for the noise-free case. Similarly, for the noisy case, we have y

y∗

 ∼ N

m(X)

m(X∗)

 ,
K(X,X) + σ2

n IN K(X,X∗)

K(X∗,X) K(X∗,X∗) + σ2
n IM


 , (A.8)

where y = [y1, y2, ..., yN ]T , y∗ = [y∗1, y
∗
2, ..., y

∗
M ]T , and IN is an N ×N identity matrix.

And the corresponding GP predictive distribution is given by

y∗|X∗,X,y ∼ N (mean(y∗), cov(y∗)) , (A.9)

where

mean(y∗) = m(X∗) + K(X∗,X) K−1y (y −m(X)),

cov(y∗) = K(X∗,X∗)−K(X∗,X) K−1y K(X,X∗) + σ2
n IM ,

Ky = K(X,X) + σ2
n IN .

(A.10)

113



Covariance function

Generally in practice, the mean function m(·) is assumed to be a known determin-

istic function. Then, the GP is the completely specified by its covariance function

k(·, ·). A function k(·, ·), mapping two input points to R, is also referred to as kernel

function. For a function k(·, ·) to be a valid kernel function (or covariance function),

the following properties need to be satisfied:

• k(·, ·) is symmetric, i.e., k(x,x′) = k(x′,x).

• Mercer’s condition [109]: k(·, ·) should be positive semidefinite. That is, given

a set of input points {x1,x2, ...,xn}, the function k(·, ·) must satisfy

n∑
i=1

n∑
j=1

cicjk(xi,xj) ≥ 0,

for all real numbers {c1, c2, ..., cn}. In other words, the n× n Gram matrix K,

with elements Kij = k(xi,xj), should be positive semidefinite.

Some types of covariance functions (kernel functions):

• Stationary: A covariance function is stationary if it is a function of x−x′. Note

that the stationary kernel functions are invariant to translations in input space.

• Isotropic (or homogeneous): A covariance function is isotropic if it is a function

of |x− x′|.

Some example covariance functions are as follows:

• Constant: k(x,x′) = σ2
c .

• Dot product: k(x,x′) = σ2
d + x · x′.

• Polynomial: (σ2
b + x · x′)p.
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• Exponential:

k(x,x′) = exp

(
−‖x− x′‖

l

)
.

• Squared exponential (Gaussian function or radial basis function):

k(x,x′) = exp

(
−‖x− x′‖2

2 l2

)
.

• Rational quadratic:

k(x,x′) =

(
1 +
‖x− x′‖2

2αl2

)−α
.

We can build new covariance functions from existing covariance functions using

some properties. For example, given two covariance functions k1(x,x
′) and k2(x,x

′),

the following will be valid covariance functions [50]:

• c k1(x,x′), where c > 0.

• k1(x,x′) + k2(x,x
′).

• k1(x,x′) k2(x,x′).

• exp (k1(x,x
′)).

• f(x) k1(x,x
′) f(x′), where f(·) is any function.

• g (k1(x,x
′)), where g(·) is a polynomial with nonnegative coefficients.

Hyperparameter estimation

Note that the GP covariance function contains some free parameters (hyperparam-

eters). These hyperparameters (θ) can be estimated by maximizing the marginal

likelihood function p(y|X). The marginal likelihood is of the data {X,y} is given by

p(y|X) =

∫
p(y|f) p(f |X) df , (A.11)
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where f = f(X). Note that both the likelihood p(y|f) and prior p(f |X) are Gaussian,

f |X ∼ N (m(X),K(X,X)),

y|f ∼ N (f , σ2
n IN).

(A.12)

Hence, the marginal likelihood p(y|X) is also a Gaussian,

y|X ∼ N (m(X),K(X,X) + σ2
n IN). (A.13)

Note that the GP can be extended to more general vector-valued functions (f :

Rd 7−→ Rb) as well.
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