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Abstract 

The construction industry has unique supply chain relationships given the fact it is 

project based. As a result, the collaboration in supply chain relationships face a variety of 

problems that affect one or more of the project objectives: time, cost, quality, scope, or 

safety.  Many uncertainties exist in the prefabrication supply chain as a result of which 

the on-site activities have to stop and wait. These uncertainties are the basis for many 

failures and misunderstandings that occur during construction, resulting in high failure 

costs due to rework and time delay. It is a challenge for the risk managers to ascertain the 

potential uncertainties and manage the operational disruption risk in the prefabrication 

supply chain of a construction project. Therefore, risk managers may employ 

countermeasures that leave their project or company exposed to significant risks. The 

goal of this research study is to examine the resiliency of hybrid projects against supply 

chain disruption by investigating the disruption risk exposure inherited from uncertainties 

in the prefabrication supply chain. A model capable of evaluating and measuring the 

impact of a disruption originating anywhere in the supply chain was developed and 

implemented to test its usability in front-end planning of hybrid construction projects. 

The test demonstrated that the application of this model exposed significant uncertainties 

found in the prefabrication process, and that the model provided valuable information to 

risk managers on the operational disruption risk allowing them to make informed 

decisions and allocate resources more judiciously. 
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Chapter 1: Introduction 

With recent business trends towards globalization, competition is getting fierce 

especially with continuous advances in information technology. These trends urged 

companies to better their business schemes and processes, distinguishing themselves from 

competitors and responding to new market challenges. Supply chain management is one 

aspect of advanced business schemes (Hamzeh, Tommelein, Ballard, & Kaminsky, 

2007). Currently, the situation in the construction industry regarding the collaboration in 

the supply chain is troubling, and a change is required (Van Vught, & Van Weele, 2015).  

Off-site construction, in other words prefabrication, has been a topic of research 

in the construction industry over the last decade (Pan, Gibb, & Dainty, 2012). The use of 

prefabrication with on-site construction activities concurrently results in hybrid projects. 

Numerous benefits have been associated with the use of prefabrication; these benefits 

include reductions in cost, time, defect, waste, non-value-added activities, environmental 

impact, health, and safety risks. These benefits extend to improve the life cycle cost and 

whole life performance of the built facilities thus increasing profitability (Zhai, Zhong, 

& Huang, 2015). However, these benefits come at a price; utilizing prefabrication 

introduces risks and uncertainties that cause complexity in the management of projects 

and their respective supply chains (Arashpour & Wakefield, 2015). 

The construction industry has unique supply chain relationships given the fact it 

is project based. As a result, a variety of problems face collaboration in supply chain 

relationships. These problems affect more than their respective domain as they are the 

basis for many failures and misunderstandings that occur during construction, resulting 

in high failure costs due to rework and time delays (Van Vught, & Van Weele, 2015). 
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The construction industry is witnessing problems in managing the supply chain and 

pinpointing the required integration in construction processes (Bankvall, Bygballe, 

Dubois, & Jahre, 2010). 

Many uncertainties exist in the prefabrication supply chain as a result of which 

the on-site assembly process has to stop and wait. It is a challenge for the risk managers 

to ascertain the potential uncertainties in the supply chain while finding corresponding 

methods to cope with them not to affect one or more of the project objectives: time, cost, 

quality, scope, or safety (Arashpour, Wakefield, Lee, Chan, & Hosseini, 2016). Although 

evidence of hybrid project benefits are well documented, the interaction of uncertainties 

from off-site construction and on-site construction in hybrid projects remains a less 

researched area in the construction literature (Arashpour et al., 2016). There is a need for 

a holistic analysis of uncertainty and an integrated risk management approach to increase 

the success of prefabrication projects.    

This project aims to bridge the gap of knowledge in managing operational 

disruption risk in the prefabrication supply chain of a construction project. This practical 

need is addressed with a model that evaluates the impact of a disruption originating 

anywhere in the supply chain. This approach allows for the opportunity to know the effect 

of a disruption on the project progress before estimating the probability associated with 

that disruption helping risk managers in making informed decisions about where to focus 

their limited resources.  

Research goal 
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Examine the resiliency of hybrid projects against supply chain disruption by 

investigating the disruption risk exposure inherited from uncertainties in the 

prefabrication supply chain. 

Research questions 

RQ 1 – What are the uncertainties that face a hybrid project? 

RQ 2 – How do these uncertainties affect a hybrid project? 

RQ3 – How to identify risk exposure from uncertainties in a hybrid project? 

Research objectives 

Obj. #1: Identify the uncertainties that face a hybrid construction project. 

• Systematic literature review  

• Interview industry professionals  

Obj. #2:  Develop a model of a production system of a hybrid construction project. 

• Conduct a pilot case study  

Obj. #3:  Apply the developed model to a hybrid construction project 

• Conduct a case study  

Research methods 

The technique used for conducting the literature review consisted of a model of 

five steps: (i) online database searching and information clustering, (ii) citation and 

sample refinement, (iii) abstract review refinement, (iv) full-text review refinement, and 

(v) final sort around core ideas. The interviews were conducted on a one-to-one basis 

with five construction industry professionals from two general contracting firms and one 

specialty trade contractor who are involved in hybrid construction projects. 
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Developing the model involved two types of data; qualitative and quantitative. 

Data collection was done in three stages. Each stage consisted of an interview, 

documenting the project progress, and developing the results. The first stage consisted of 

developing a supply chain network. The second stage consisted of developing the model. 

In the third stage, a pilot case study was used to test the model.  

Applying the developed model to a hybrid construction project involved 

collecting quantitative and qualitative data. Data collection consisted of interviews and 

project progress documentation. Qualitative data analysis was used to test the model. 

Research outcome 

The model offers a better opportunity for industry professionals to identify 

activity risks and expose uncertainties that may affect the project objectives or 

construction schedule. The model identifies potential disruption risks that are of 

significant impact on project performance and assesses the impact of a disruption 

originating anywhere in the supply chain. Also, the model uncovers two significant 

uncertainties. The first is when to start the prefabrication processes, and the second is the 

required production rate to meet the schedule. 

The implication of the outcome of the study can be measured on two levels. At 

the theoretical level, the study will explore the utilization of a novel disruption risk 

exposure model that has not been utilized in the construction environment. At the 

operational level, the model will be able to identify the potential disruption risks that are 

of high impact to the project performance, which will aid the risk managers to allocate 

resources more judiciously. Also, the model will be able to compute the time off-site 

construction activities need to meet with on-site construction activities. 
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After the introduction, the document presents an extensive literature review on 

the topic and identifies a gap of knowledge in the problem statement. Afterward, the 

document introduces the research questions and objectives set to explore this knowledge 

gap. Then the methodology section provides detailed description of the steps taken to 

achieve the study objectives followed by a discussion of the study finding. Finally, the 

conclusions are summarized, limitations are highlighted, the significance of the study and 

future research are identified.  
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 Chapter 2: Literature review 

In recent years, construction companies are utilizing both off-site and on-site 

activities concurrently in their projects, which is referred to as ‘hybrid’ projects’ in this 

document. In a typical hybrid construction project, some structural elements are 

constructed on-site while the remaining building components are built off-site and 

shipped to the construction site for installation (Arashpour, Wakefield, Blismas, & Minas, 

2015). Figure 1 depicts a simplified schematic of the off-site chain of activities 

converging with the on-site activities to accomplish the project objectives. 

 

 

 

 

 

 

This chapter presents background information on hybrid projects, on-site 

construction, and off-site construction followed by a review of existing literature on 

supply chain management and supply chain network. This chapter also presents a 

discussion on the disruption risk in hybrid construction supply chain.     

 

 

Figure 1 Off-site construction activities converging with on-site construction 

activities 
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Hybrid projects 

Despite the growing popularity of coupling off-site construction with on-site 

construction, it is not a new concept. Yet the industry lacks a definitive definition of what 

constitutes as a hybrid construction project (Tennant, McCarney, & Tong, 2012). Hybrid 

construction project is an elusive term much like green building; there is no consensus on 

one specific definition. Off-site construction is classified into five categories; volumetric, 

panelized, sub-assemblies, components, and non-off-site manufactured (Gibb & 

Pendiebury, 2005; Ross, Cartwright, & Novakovic, 2006). Hybrid construction is any 

construction project that prefabricates more than the typical prefabricated components 

such as pipes, outlets, tiles, etc.  Hybrid construction integrates sub-assembly systems 

with any other system. Examples will be mechanical, electrical, and plumbing systems, 

exterior walls, or superstructure that can be constructed as volumetric units, meanwhile 

the rest of the project can be constructed with a different system (Tennant et al., 2012). 

The term ‘hybrid’ is used in this document for projects that prefabricate more than the 

typical prefabricated components. Figure 2 shows the level of utilization of prefabrication 

in the different categories of construction projects.  

 

 

 

 

 

 

 Figure 2- Prefabrication utilization level 
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On-site construction 

Definition 

In a construction project, the placement of facilities, equipment, and material 

within its space is known as site layout planning. The site layout includes the footprint of 

the building, access roads, temporary facility locations, parking, and storage areas 

(Zolfagharian & Irizarry, 2014).  Construction logistics and site layout planning are 

considered to be decisions taken by the project participants to support the construction 

production (Skjelbred, Fossheim, & Drevland, 2015). These components must be 

appropriately managed to ensure the success of a project (Almohsen & Ruwanpura, 

2011).  

Construction logistics defined by Almohsen and Ruwanpura (2011) as the 

management of the flow of materials, tools, and equipment from the point of extraction 

to the point of final use.  Mossman (2007) defined it as all the processes needed to deliver 

a structure, except for the assembling activity. Construction logistics include the planning 

and execution, the steering, documentation, and monitoring of project flow in regard to 

material, personnel, and information (Lange & Schilling, 2015).   

During construction, a variety of processes take place such as material ordering, 

transportation, delivery, moving around, and storage. Steps such as temporarily storing 

material and moving it around are waste and ideally should be eliminated from the 

construction process (Skjelbred et al., 2015). The construction process is dynamic; 

expectations of having day to day changes in the processes are vital (Zolfagharian & 

Irizarry, 2014). Ineffective management of these challenges will result in unnecessary 

costs, time waste and an increase in work errors (Sundquist, Gadde, & Hulthén, 2017). 



9 

 

Uncertainties of onsite construction logistics 

Lange and Schilling (2015) mention a universal basic problem of logistics which 

is the variability in production and supply systems. In a production system, the supply 

chain demonstrates variances from provisions as well as requirements. Problems in the 

construction industry include missing or delayed deliveries, inefficient storage space 

management, installation of wrong or damaged material, and insufficient separation of 

waste. Table 1 presents current uncertainties of on-site construction logistics.  

Table 1- On-site construction logistics uncertainties 

 

 

These problems negatively affect the productivity of a construction site as they show 

problems of insufficient production planning. However, these uncertainties can be 

eliminated or reduced by focusing on site logistics planning at an early stage.  

Off-site construction 

Off-site construction involves all the activities carried off-site in support of the 

construction project. For this document, off-site construction includes all the different 

construction elements prefabricated in manufacturing facilities and their supply chain. 

These facilities are part of an extended supply chain. The downstream of that supply chain 

are the activities that are executed at the construction job site. This arrangement results 

in multiple supply chain members to have uncertainties that need managing. Ekeskär and 

Rudberg (2016) mentioned that supply chains exist whether they are managed or not. 

Uncertainty category Type Author 

Space allocation • Site layout  

• Construction activities 

• Storage 

(Zolfagharian & Irizarry, 2014)   

(Zolfagharian & Irizarry, 2014)   

 (Sundquist et al.,2017). 

Material  

 
• Storage condition  

• Specification 

• Order time 

• Quantity 

• Condition  

(Sundquist et al.,2017). 

(Zolfagharian & Irizarry, 2014)   

(Said, & El-Rayes, 2010). 

(Seppänen & Peltokorpi, 2016).   

(Sundquist et al., 2017). 
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Thus, there is a distinction between supply chains as a procedure of business and the 

management of the said supply chains.  Supply Chain Management (SCM) is typically 

interrelated with off-site construction. 

Supply Chain Management (SCM) 

On-site logistics deals with the physical flow planning and handling the material, 

while SCM relates to the requirement, acquirement, transportation, and delivery of 

material to the construction job site (Sundquist et al., 2017). The effectiveness of a 

construction project depends highly on the integration of on-site logistics and SCM. 

Construction logistics enhances with improving the connection between activities at the 

construction site with the logistics and manufacturing operations within the supply chain 

(Sundquist et al., 2017). 

The concept of SCM originated in the manufacturing industry; the Toyota 

Production System introduced SCM as part of the Just-In-Time (JIT) system (Vrijhoef & 

Koskela, 2000). The SCM profession continued to evolve based on changing needs of the 

global supply chain. Due to this growth, SCM can get confused with the term logistics 

management.  

The Council of Supply Chain Management Professionals (CSCMP) (2013) defined SCM 

as  the planning and management of all activities involved in logistics. Additionally, SCM 

includes the coordination and collaboration between members, which can be suppliers, 

manufacturers, transportation providers, and end customers. 

Mossman (2007) defines SCM as an alignment of social and commercial goals by 

a constructor to create a network of suppliers. The constructor can depend on these 

suppliers as specialists that understand the constructors’ way of doing business and are 
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available to perform work on current and future projects. In this definition, SCM a 

development process that can occur within and between projects. Another definition from 

Vrijhoef and Koskela (2000) view SCM as a network of organizations that are interrelated 

and linked through the upstream and downstream of different processes and activities that 

produce value to the final customer either by product or services.  

Ekeskär and Rudberg (2016) believe that SCM at its core is the coordination of 

supply chain entities and orientation towards stronger relationships between supply chain 

members. SCM is a holistic view of the entire supply chain, the primary goal of SCM is 

to recognize the interdependency in supply chain activities rather than just paying 

attention to the next process or activity. Thus, increasing transparency, alignment of the 

supply chain’s coordination, and improving its configuration and controls based on 

factors such as the integration of business processes regardless of functional or corporate 

boundaries (Vrijhoef & Koskela, 2000). 

SCM resilience 

Disruptive events degrade the performance of the supply chain; this degradation 

is not immediate, most supply chains suffer a more gradual decrease of performance over 

time (Hosseini, Barker, & Ramirez-Marquez, 2016). Resilience is a widely used concept 

in many fields including engineering, industrial, environmental science, and 

organizational research (Elleuch, Dafaoui, Elmhamedi, Chabchoub, 2016). Resiliency 

reduces risks associated with systems disruption. However, there is no consensus on the 

definition of resilience. Elleuch et al. (2016) define resiliency as a system’s ability to keep 

functioning regardless of a significant disruption. Hosseini et al., (2016) considers 

resiliency as the ability to recover and return to a stable state after a major disturbance.  
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Resilience definitions revolve around three system characteristics; the ability to 

absorb, adapt and recover (Hosseini et al., 2016). Vugrin, Warren, and Ehlen (2011) 

identified resilience being comprised of absorptive, adaptive, and restorative capacity. 

The absorptive capacity refers to the amount in which a system can absorb disruptions. 

Adaptive capacity refers to the degree in which a system can temporarily adapt to the new 

disrupted conditions. Restorative capacity is the degree to which a system can recover its 

functions when adaptive capacity is not sufficient (Hosseini et al., 2016). Supply chain 

resilience is the ability of a supply chain to return to its original state or move towards a 

new, more desirable state after disruption (Cordoso, Paula, Barbosa-Povoa, Relvas, and 

Novais, 2014). 

SCM roles 

Vrijhoef and Koskela (2000) suggest that SCM has four major roles in 

construction depending on whether the focus is on the supply chain, the site, or both. 

These four roles and their focus area are shown in Figure 3. These roles are not performed 

exclusively of each other; they are used jointly. 

 

 

Figure 3- The four roles of SCM in construction (Virjhoef & Koskela, 2000) 
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 The first role is concerned with supply chain impact on construction activities. 

The purpose of this role is to lower costs and durations of site activities by ensuring 

reliable flow of material and labor to the construction site, preventing disruption to the 

workflow. This role emphasizes on construction site cooperation with direct suppliers. 

This role is best for a contractor with interest in onsite activities. The second role focuses 

on the supply chain itself, such as the supply chain for prefabricated elements like stairs. 

The goal is to reduce costs, lead time, and inventory that relate to logistics. This role 

needs in-depth cost and time analysis for identifying improvement areas. Material 

suppliers benefit from this role. The third role addresses moving activities from the 

construction site to the supply chain. This aims to transfer on-site activities off-site, such 

as prefabrication of elements. This helps in avoiding site conditions and increases the 

overlapping between activities, the goal of this focus is to reduce costs and durations of 

activities. Contractor and suppliers benefit from this role. The fourth role aims to integrate 

the management of the construction site and the supply chain. Contractors, suppliers, or 

clients might adopt this role.  Suggested initiatives for the integrated management include 

open building and sequential procedure. The open building offers the benefit of 

postponing decisions on the interior of the building, achieved by splitting the interior 

work from the structure. This gives the spaces adaptability to be reconfigured. As for 

sequential procedure, successive autonomous sequences represent the construction site. 

The goal of these two alternatives is to change the temporary construction supply chains 

with permanent ones.  



14 

 

Supply Chain Network (SCN) 

A supply chain is comprised of a network of organizations, companies, and 

facilities, referred to as the Supply Chain Network (SCN) (Govindan, Fattahi, & 

Keyvanshokooh, 2017). A SCN consists of nodes and arcs; nodes represent suppliers, 

facilities, plants, distribution centers, and customers. Arcs are the connections between 

those nodes, and they represent the direction of flow; flow includes material, production, 

and information (Sanei, Mahmoodirad, & Niroomand, 2016). The SCN might be spread 

over a vast geographical area or even a global area and is expected to provide the right 

products and services on time, with the correct specifications to the right customer. This 

is done by synchronizing the interrelated activities throughout the SCN (Carvalho, 

Barroso, Machado, Azevedo, & Cruz-Machado, 2012). Supply Chain Network Design 

(SCND) has a major impact on the performance of the SCN, as network design decisions 

determine the supply chain configuration and set the constraints that govern the 

relationship between supply chain components (Chopra & Meindl, 2007).  

SCN configuration 

SCM is a significant factor for success with the competitive increase in doing 

business. However, how much of the supply chain needs managing depends on several 

factors including complexity of the product, available suppliers, and availability of raw 

material (Lambert & Cooper, 2000). Other factors include the length of the supply chain, 

the total suppliers, and customers at each level. The supply chain is not a one-to-one 

relationship as it will be unlikely to find a company participating in only one supply chain. 

Most supply chain graphs look like an uprooted tree where the branches and roots 

represent the extensive network of suppliers and customers (Lambert & Cooper, 2000). 
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Not all connections in the supply chain need integration and coordination. 

Deciding what part of the supply chain needs management’s attention follows the 

capabilities, goals, and importance to the organization. It is of utmost importance to have 

knowledge and understanding of the structural configuration of the supply chain network. 

Lambert and Cooper (2000) identified three key components for a supply chain network, 

the members of the supply chain, the structural dimension of the network, and the type of 

process links between the members.  

The first step in determining the supply chain network configuration is to Identify 

the supply chain members. Managing all process links between all members deemed 

counterproductive. Members of the supply chain are companies and organizations that 

interact with the focal company directly/indirectly.  

The structural dimensions of the supply chain network represented by the 

horizontal and vertical structure, and the positioning of the focal company within the 

endpoints of the supply chain. The horizontal structure represents the number of tiers in 

a supply chain. A supply chain will stretch if it has many tiers. Meanwhile, supply chains 

with limited tiers will be short.  The vertical dimensions represent the total of suppliers 

or consumers within each tier. The last structural dimension is the horizontal positioning 

of the focal company; a company can be anywhere between the endpoints of the supply 

chain. The number of suppliers or customers affects the supply chain structure, companies 

with single source suppliers have a narrow supply chain while companies with multiple 

source supplier have wider spread supply chain.  

Allocating resources to manage process links across the supply chain is crucial. 

As mentioned before, not all supply chain process links need integration and 
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management; integration drivers are different from process link to another as some links 

are more critical than others.  

Lambert and Cooper (2000) categorized process links between supply chain 

members into four types of business process links, managed process links, monitored 

process links, not managed process links, and non-member process links. Managed 

process links are links important to the focal company to be managed and integrated, the 

focal company actively manages these links. These links can extend beyond the first tier 

of suppliers/customers to any tier the focal company sees fit. Monitored process links are 

less critical to the focal company. However, it is important to the focal company that these 

process links are integrated and managed between other members of the supply chain. 

The focal company simply monitors how the process links are integrated and managed. 

Not managed process links are links that are not critical to the focal company and do not 

require allocating resources to monitor them, other members of the supply chain are 

responsible for managing them appropriately. Non-member process links are not links to 

the focal company supply chain structure, but they affect the structure of the supply chain. 

These links are connecting different supply chains together (Lambert & Cooper, 2000).  

Uncertainties in SCM 

SCM relationships 

SCM characteristics dictate the type of relationship between key stakeholders in 

the SC and construction site. Existing research identified numerous characteristics for 

SCM relationships shown in Table 2 (Behera, Mohanty, & Prakash, 2015). SCM 

characteristics affect the supply chain and cause disruptions in flow processes. 
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Table 2- SCM characteristics 

Characteristic Reason 

 

Clients influence 

Clients are the basic source of changes in a construction project; they 

control the final product regarding physical aspects and logistics 

parameters.  

Number of stakeholders The main stakeholders are owners, designers, contractors, and 

suppliers. Any typical network includes multiple organizations and 

actors. As the number of stakeholders increases the flow of 

information, material, services, products, and funds hinder. 

Fragmentation The complexity of the construction industry is seen in the various 

subcontractors and vendors that are involved in a group of institutions 

operating to achieve different business goals. 

Temporary organizations The project-based relationship focuses on short-term thinking, 

production at a temporary site leads actors to attempt leveraging what 

they can from the contract, thus creating an opportunism environment. 

   

 

SCM disruptions 

Problems in the supply chain can arise from various sources, some of these 

sources are labor disputes, supplier bankruptcy, natural disasters, and acts of war. These 

problems can disrupt or delay material, information, and cash flows affecting the project 

objectives. Supply chain risks are categorized into delays, disruptions, inaccurate 

forecast, system breakdown, procurement failure, inventory problems, and capacity 

issues. With each category having its drivers and mitigation strategies (Chopra & Sodhi, 

2004).   

Disruption risks can either be frequent or infrequent, short or long term and will 

cause problems in the supply chain, ranging from minor to severe (Chopra & Sodhi, 

2004). For instance, a transportation delay along the supply chain may create a temporary 

risk, while a sole supplier holding up material to force a price increase represents a long-

term risk. A machine breakdown is not serious when there is excess inventory, but a war 

that disrupts transportation will have significant effects on a project. 
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Traditional methods for managing supply chain risks depends on knowing the 

likelihood of occurrence and the magnitude of impact for all scenarios that can materially 

disrupt the flow of operations (Simchi-Levi, Schmidt & Wei, 2014). Chopra and Sodhi 

(2004) mentioned that a company manages risks depending on the type of disruption and 

the level of preparedness. Probability-impact models are based on project size and the 

ability of the organization to react to the risk, and typically assign resources to high 

probability, high impact risks. The identified project risks are prioritized and rated for 

further analysis. Current off-site disruption uncertainties are shown in Table 3. 

Table 3- Off-site uncertainties 

 

 

Risk exposure model approach 

Project risk management is a methodical approach to identify, analyze, respond, 

and control risks, aiming to increase the likelihood and impact of positive results, and 

reduce those of negative results (Arashpour et al., 2016). Project risk identification uses 

various tools and techniques such as checklist analysis, documentation reviews, 

assumption analysis, diagraming techniques, and expert judgment (Arashpour, Abbasi, 

Arashpour, Hosseini, & Yang, 2017). Risks are rated and prioritized based on their 

occurrence probability and impact on project objective(s). Probability-impact models are 

designed based on project size and the ability of the organization to react to the risk, and 

Uncertainty category Type Author 

Coordination 

between on-site and 

off-site 

• Forecast 

• Start date 

• On-site requirements 

• Transportation  

(Chopra & Sodhi ,2004) 

(Arashpour et al., 2016) 

(Arashpour et al., 2016) 

(Chopra & Sodhi ,2004) 

Off-site 

 
• Delays 

• Procurement  

• Capacity  

• Available resources 

•  Equipment failure 

(Chopra & Sodhi ,2004) 

(Chopra & Sodhi ,2004) 

(Chopra & Sodhi ,2004) 

(Arashpour et al., 2016) 

(Arashpour et al., 2016) 
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typically assign resources to high probability, high impact risks. In terms of tools and 

techniques, more dimensions have been added to the conventional probability–impact 

model. These dimensions include the risk exposure extent (Jannadi & Almishari, 2003), 

risk manageability level (Aven, Vinnem, & Wiencke, 2007; Chan, Yuen, Lee, & 

Arashpour, 2015), surrounding environment influence and interdependencies between 

risks (Zeng, An, & Smith, 2007), and risk significance (Han, Kim, Kim, & Jang, 2008). 

These dimensions help improve the traditional probability-impact model to analyze the 

interacting risks in hybrid projects better. 

A disruption risk model evaluates the impact of a disruption originating anywhere 

in the supply chain, allowing the opportunity to know the effect of a disruption on the 

project progress before estimating the probability associated with that disruption. The 

approach helps risk managers in making an informed decision about where to focus their 

limited resources by emphasizing on the impact of a disruption. This is because the impact 

of a disruption depends on its duration rather than the cause. Also, the potential mitigation 

actions in response to a supply chain disruption are often the same regardless of the exact 

cause (Simchi-Levi, William, Wei, Zhang, Combs, Ge, Gusikhin, Sander, and Zhang, 

2015). 

Risk exposure analysis in supply chain nodes allows for prioritizing resource 

allocation; the analysis can be combined with the total spending at different nodes. This 

combination allows for developing different mitigation strategies for different nodes 

(Simchi-Levi et al., 2015).  
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Disruption Risk  

The disruption risk model is a novel risk exposure model that assesses the impact 

of a disruption originating anywhere in the supply chain on the prefabrication process. 

This model is unique to the construction industry as supply chains are temporary and have 

limited demand. In a typical construction project, the primary concern is to meet the final 

product demand with no regard to the time it takes to build-up inventory levels to reach 

that final demand. The disruption risk model acts as tracking method of the time-period 

and product inventory accumulated to reach the final demand. The disruption risk is a 

percentage value that represents the impact of a disruption originating anywhere in the 

supply chain on the prefabrication operations. Therefore, we can analyze the impact of a 

disruption on the project objectives at any time yielding significant information for risk 

managers. Nodes with a low disruption risk value indicate that in case of a disruption 

minimal impact on performance will occur. Therefore, that node is not exposed to a risk 

that needs to be addressed. In the same way, nodes with a high disruption risk value 

indicate that in case of a disruption significant impact on performance will occur. 

Therefore, that node is a risk and needs to be addressed. The disruption risk value can 

help recognize potential waste and excessive protection within the supply chain. 

Therefore, some of the common risk-mitigation strategies may lead to unnecessary 

resource allocation at low-exposure nodes and inadequate protection at high-exposure 

nodes. 

Summary 

Existing literature in project management show examples of time overruns, cost 

overruns, safety issues, and quality problems due to underestimating the extent of risks 
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in various project dimensions (Arashpour et al., 2017). Delays in both on-site and off-site 

activities cause risks of deviating from project plans and late completion. Three hybrid 

project dimensions have noteworthy risks, these dimensions are on-site, off-site, and the 

coordination (Arashpour et al., 2016). The coordination dimension has the ability to affect 

both the upstream off-site activities and the downstream on-site operations. Therefore, 

the most significant risks are the ones associated with the coordination between off-site 

and on-site dimensions 

A significant risk in the coordination dimension is to identify the correct time for 

the upstream activities to start so they can converge with on-site operations in time. If the 

prefabricated elements are delayed later than the due date, the on-site operations will stop 

and wait, incurring a penalty for loss of working hours (Zhai et al., 2015). This factor is 

the root of time and cost overruns in hybrid projects. Thus, it is understandable to spend 

more time on planning the reliability of the coordination process.  

In addition to the coordination dimension, the off-site dimension identifies risks 

related to disruptions in the supply chain. Each disruption scenario is unique due to the 

nature of the prefabrication supply chain which once scheduled is relatively fixed and 

unchangeable (Zhai et al., 2015). Disruption outcomes depend on the time and location 

of the disruption. The impact of a disruption on project objectives changes with time 

(Simchi-Levi et al., 2015). Thus, it is of utmost importance to know the impact of a 

disruption risk at different stages and time periods of the project to allocate resources 

better. 
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The interaction of uncertainties in hybrid projects and its consequence on the 

project planning remains an overlooked area of research in the construction literature 

(Arashpour et al., 2016).  
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Chapter 3: Research goal and objectives 

Problem statement 

The integrated uncertainty present in hybrid construction projects results in risks 

that potentially affect one or more of the project objectives (Arashpour et al., 2017). 

However, the risk probability within off-site and on-site dimensions of the project are not 

the same (Arashpour et al., 2016). The occurrence probability of off-site project risks is 

lower than on-site project risks due to the minimal involvement of the human element in 

the automated processes and limited exposure to workflow variability (Arashpour et al., 

2017). Off-site construction uncertainties include when to start activities, the availability/ 

constraints of resources, equipment failure, and lack of compliance of the manufactured 

elements to the on-site requirements (Arashpour et al., 2016). Meanwhile, on-site 

construction uncertainties include bad weather conditions, rework and quality problems, 

and worksite accidents (Arashpour et al., 2017). The mentioned uncertainties of off-site 

and on-site construction interact and result in risks of delay and longer project durations. 

Existing studies show that off-site project related risks have a greater impact on 

project objectives than that of on-site project risks (Construction, 2011). Risks associated 

with the upstream activities in the supply chain of hybrid projects can have a significant 

impact on the downstream activities and can cause deviations from project objectives 

(Arashpour et al., 2016). Hybrid construction projects face considerable operational and 

supply chain risks that can have a significant impact on project performance. Scholars 

and researchers agree that operational disruptions have the most significant impact on 

performance. Most projects do not prepare for low-probability, high-impact disruptive 

risks (Simchi-Levi et al., 2015).  
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Simchi-Levi et al. (2015) stated that any supply chain is exposed to a range of 

low-probability, high-impact risks that can disrupt their flow. This type of risks is difficult 

to manage as it is hard to predict and calculate (Cardoso, Barbosa-Póvoas, Relvas, & 

Novais, 2014). As a result, risk managers may employ countermeasures that leave their 

project or company exposed to significant risks while wasting resources to address other 

risks that cause minimal damage and disruption in the supply chain. In the event of a 

disruption, the construction production system might not immediately stop and display 

negative impact on the project outcome(s). 

The interaction of uncertainties in hybrid projects and its consequence on the 

project planning remains an overlooked area of research in the construction literature 

(Arashpour et al., 2016). Therefore, a holistic analysis of uncertainty and an integrated 

risk management approach is required to increase project plan reliability in hybrid 

projects.  

Research goal 

The broad goal of this project is to examine the disruption risk exposure of hybrid 

projects related to the interactions of uncertainties from the prefabrication supply chain 

and the on-site construction activities.   The specific goal of the study is to examine the 

resiliency of hybrid projects against supply chain disruption by investigating the 

disruption risk exposure inherited from uncertainties in the prefabrication supply chain. 

Research questions 

Supply chain uncertainties play a critical role in achieving the objectives of a 

hybrid project, the broad research question ‘how to eliminate the uncertainties in hybrid 

construction projects?’ is broken down into the following specific questions: 
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RQ 1 – What are the uncertainties that face a hybrid project? 

RQ 2 – How do these uncertainties affect a hybrid project? 

RQ3 – How to identify risk exposure from uncertainties in a hybrid project? 

The next section discusses a set of objectives that are developed to answer these 

questions. 

Research objectives 

Specific objectives of the document are as follows: 

Obj. #1: Identify the uncertainties that face a hybrid construction project. 

• Systematic literature review  

• Interview industry professionals  

Obj. #2:  Develop a model of a production system of a hybrid construction project. 

• Conduct a pilot case study  

Obj. #3:  Apply the developed model to a hybrid construction project 

• Conduct a case study  

  



26 

 

Chapter 4: Research methodology 

This chapter describes the methods employed for data collection at each stage of 

the study and the procedures for data analysis. The research is divided into three sections. 

The first section is a literature review on the uncertainties that face a hybrid project. The 

second section is developing a model of a production system for a hybrid construction 

project.  The third section, applying the model to a hybrid construction project. 

Section 1 Literature Review  

In this section, two methods were applied to collect data. The first method 

consisted of a systematic literature review to identify the uncertainties faced in a hybrid 

construction project. The second method consisted of interviews with construction 

industry professionals at different stages of the research. 

The literature review aims to provide a broad perspective on the performance and 

setting of hybrid projects in the construction industry. The work was developed in a 

systematical order consisting of an extensive literature review involving fields of 

construction site logistics, SCM, SC networking, SC resilience, construction risk 

management, prefabrication, and hybrid construction. The technique used for conducting 

the literature search consisted of a model of five steps: (i) online database searching and 

information clustering, (ii) citation and sample refinement, (iii) abstract review 

refinement, (iv) full-text review refinement, and (v) final sort. The search for information 

was done in databases containing a large body of literature including peer-reviewed full-

text articles, such as Science Direct, Engineering Village, ASCE Library, and Emerald. 

The search focused on well-cited literature reviews to get a comprehensive perspective 

on the topics. Research criteria was established for keywords, as articles considered for 



27 

 

reviewing featured the word/phrase “construction logistics”, “construction site logistics”, 

“off-site construction logistics”, “logistics management”, “material logistics”, “site 

organization”, “production management”, “supply chain management”, “supply chain 

resilience”, “logistics center”, “prefabrication”, “modular construction”, 

“standardization”, and “hybrid construction”. A timeframe constraint was applied to 

consider research conducted after the year 2000. Reviewing the gathered articles was 

done in a systematic approach reducing them to the ones that are highly relevant. Then, 

the final selection was organized around core ideas, articles that summarize other 

researcher’s work were excluded from the literature due to the repetition of ideas.  

The interviews were conducted with five construction industry professionals from 

two general contracting firms and one specialty trade contractor who are involved in 

hybrid construction projects. The participants held different positions within the 

construction industry and had varying level of experience in hybrid projects. The 

positions included project manager, superintendent, and project engineer. The 

participants were engaged based on the level of authority and the current state of their 

hybrid projects. The interviews were conducted one-to-one, the remarks from these 

professionals assisted in understanding how hybrid projects process information.  
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Section 2 Developing the model 

The development of the model involved two types of data; qualitative and 

quantitative. The two types allowed the analysis of different project aspects including 

current practices and processes performed in the construction industry. This section 

utilized two methods for data collection. The first was interviews used to gather 

qualitative data, and the second was documenting project progress to collect quantitative 

data. Data collection was done in three stages. Each stage consisted of an interview, 

documenting the project progress, and developing the results to generate a supply chain, 

model, and verify the model respectively. Figure 4 illustrates the steps taken for data 

collection in this section. 

 

 

 

 

First interview

(Qualitative data)

Documenting 
project progress

(Quantitative data)

Data development Supply chain

Second Interview

(Qualitative data)

Documenting 
project progress

(Quantitative data)

Data development Model

Third Interview
(Qualitative data)

Documenting 
project progress

(Quantitative data)

Data development Verify model

Figure 4- Data collection steps for developing the model 
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The first stage 

The first interview was conducted with a general contractor in a job site trailer. 

The participants were provided with a description of the subject of study to understand 

the context better. After the introduction, the participants were asked a series of questions 

-shown in Appendix A- developed from the literature review to acquire accurate 

information about the prefabrication supply chain setting given the knowledge and 

experience they have in the industry.  

The first documentation of project progress consisted of reviewing the project's 

options for prefabrication, the members involved and their roles in the process. Another 

aspect of the documentation process was the review of project documents, drawings, and 

schedule to provide a holistic overview of the scope of work involved in the prefabrication 

process. The project team used a prefabrication plan to determine the feasibility of each 

prefabrication option, this was not part of the study but was essential to understand the 

sequence of information processing in the industry.  

The identified prefabrication options varied in their supply chain members, 

complexity, and information exchange. The project team decided the feasible 

prefabrication option was to prefabricate the patient headwalls. The next step was to 

develop a supply chain network of the prefabrication process in aims to provide an 

understanding of the hierarchical and organizational positioning of the supply chain 

members involved. This document did not consider the whole supply chain in the study; 

a portion that well represents the overall network was selected. 
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From the project scope of work, it was found that the subcontractors are the 

responsible members for delivering the finished headwall to the job site. The headwall 

supply chain reflects the uniqueness of construction supply chains. Figure 5 represents 

the headwall supply chain in its purest form, from the origin point to finish point. More 

members between these two are required to produce and assemble the headwall. 

Developing an accurate supply chain that represents the process of producing the 

headwalls was carried out in the three steps as described by Lambert and Cooper (2000).  

 

 

 

 

 

 

 

First, members of the supply chain were identified. The subcontractors are the 

supplier's node responsible for the headwall material. The prefabrication shop is the 

manufacturing facility node which is also used to store the finished product, so there is 

no need for a warehouse node. The transportation node, and job site node. 

Second, the structural dimension of the network is identified. The horizontal 

dimension refers to the number of tiers in the network. The supply chain has four tiers 

consisting of the job site, transportation, manufacturing facility, and the suppliers. The 

Figure 5- Pure supply chain for headwall construction 
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vertical dimensions represent the number of members within each tier. The last structural 

dimension is the horizontal positioning of the focal company which is at the end of the 

SCN.  

Third, types of process links between the members are identified. Two types of 

process links were found, managed and monitored process links. Managed process links 

are essential to the project and are actively managed. Monitored process links are less 

critical to the project and are managed by other members of the supply chain. Figure 6 

represents the developed SCN.  

 

 

 

  

Figure 6-Headwall prefabrication SCN 
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The second stage 

The second interviews started with presenting the developed SCN to the 

participants and making sure it accurately reflected the construction industry setting. The 

participants were asked questions -shown in Appendix B- about each stage of the 

prefabrication process to determine the accurate sequence of activities, processes, and 

flow of information required to prefabricate the headwalls. Also, participants were asked 

about lead time and constraints between the different stages. An important outcome of 

these interviews was to identify what the industry lacks in planning for prefabrication; 

the participants agreed that the uncertainty of when to start the prefabrication process 

dominates the construction industry. The information obtained from the interviews 

combined with the data collected from the first stage were used to develop a model that 

represents the flow of information and processes required in the prefabrication of the 

headwalls.   

The model reflected the SCN in the sequence of activities required for the 

prefabrication process which consisted of three phases. The first phase is contacting the 

material suppliers and delivering the material to the prefabrication plant, the second phase 

is prefabricating and assembling the headwall, and the third phase is transporting the 

finished product to the job site. Each phase consists of inputs, processes, outputs and time 

constraints. The primary challenge faced in developing the model was to account for the 

time constraints between processes and phases. This challenge was addressed by 

establishing a time unit of one week and adding a time loop for each phase to capture the 

passed time accurately.  
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For the first phase, three inputs are required for the model, material lead time, material 

quantity takeoff,  and the delivery quantity each time.  As for the processes, two processes 

take place. The first is a count for the delivered material each time unit, as shown in Eq. 

(1). The second process calculates the material disruption risk value each time, as shown 

in Eq. (2). 

∑  𝐷𝑒𝑙𝑖𝑣𝑒𝑟𝑒𝑑 𝑞𝑢𝑎𝑛𝑡𝑖𝑡𝑦 = 𝑖 ∑ 𝐷𝑒𝑙𝑖𝑣𝑒𝑟𝑒𝑑 𝑞𝑢𝑎𝑛𝑡𝑖𝑡𝑦 + 𝐷𝑒𝑙𝑖𝑣𝑒𝑟𝑦 𝑞𝑢𝑎𝑛𝑡𝑖𝑡𝑦𝑖  𝑖  (1) 

𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙 𝑑𝑖𝑠𝑟𝑢𝑝𝑡𝑖𝑜𝑛 𝑟𝑖𝑠𝑘 𝑓𝑎𝑐𝑡𝑜𝑟 =
(𝑄𝑢𝑎𝑛𝑡𝑖𝑡𝑦 𝑡𝑎𝑘𝑒𝑜𝑓𝑓𝑖−∑ 𝐷𝑒𝑙𝑖𝑣𝑒𝑟𝑒𝑑 𝑞𝑢𝑎𝑛𝑡𝑖𝑡𝑦)𝑖

𝑄𝑢𝑎𝑛𝑡𝑖𝑡𝑦 𝑡𝑎𝑘𝑒𝑜𝑓𝑓𝑖
%   (2) 

A decision variable shown in Eq (3) controls the time loop for the first phase. If 

the decision variable is not met, the time loop is activated and another time unit is added 

to the time count. If the decision variable is met, then the model continues to the second 

phase.  

∑  𝐷𝑒𝑙𝑖𝑣𝑒𝑟𝑒𝑑 𝑞𝑢𝑎𝑛𝑡𝑖𝑡𝑦 ≥  𝑄𝑢𝑎𝑛𝑡𝑖𝑡𝑦 𝑡𝑎𝑘𝑒𝑜𝑓𝑓𝑖  𝑖    (3) 

The outputs of the first phase are the material disruption risk value each time and 

the total time required to reach the material takeoff.  It is important to note that phase two 

does not require the decision variable in phase one to be satisfied before starting the 

activities in phase two. The decision variable is set to ensure that material quantity takeoff 

is met and the time to reach the takeoff is accounted for. 

As for the second phase, two inputs are required for the model, the number of 

finished products required by the project and the desired production rate. The production 

rate is assumed to be constant throughout the prefabrication process. Prefabrication 

processes are assumed to begin after the first delivery of material. Two processes are 
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included in this phase. The first process calculates the number of finished products at a 

specific time according to Eq. (4). The second process calculates the production 

disruption risk each time, as shown inEq. (5). 

𝐹𝑖𝑛𝑖𝑠ℎ𝑒𝑑 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 = 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 × 𝑡𝑖𝑚𝑒 𝑢𝑛𝑖𝑡𝑠   (4) 

𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑑𝑖𝑠𝑟𝑢𝑝𝑡𝑖𝑜𝑛 𝑟𝑖𝑠𝑘 𝑓𝑎𝑐𝑡𝑜𝑟 =
(𝑄𝑢𝑎𝑛𝑡𝑖𝑡𝑦 𝑜𝑓 𝑓𝑖𝑛𝑖𝑠ℎ𝑒𝑑 𝑝𝑟𝑜𝑑𝑢𝑐𝑡−𝐹𝑖𝑛𝑖𝑠ℎ𝑒𝑑 𝑝𝑟𝑜𝑑𝑢𝑐𝑡)

𝑄𝑢𝑎𝑛𝑡𝑖𝑡𝑦 𝑜𝑓 𝑓𝑖𝑛𝑖𝑠ℎ𝑒𝑑 𝑝𝑟𝑜𝑑𝑢𝑐𝑡
% (5) 

A decision variable shown in Eq (6) controls the time loop for the second phase. 

If the decision variable is not met, the time loop is activated and another time unit is added 

to the time count. If the decision variable is met, then the model continues to the third 

phase.  

𝐹𝑖𝑛𝑖𝑠ℎ𝑒𝑑 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 ≥ 𝑄𝑢𝑎𝑛𝑡𝑖𝑡𝑦 𝑜𝑓 𝑓𝑖𝑛𝑖𝑠ℎ𝑒𝑑 𝑝𝑟𝑜𝑑𝑢𝑐𝑡  (6) 

The outputs of the second phase are the production disruption risk value each time 

and the total time required to reach the number of finished products.  It is important to 

note that the production rate is a variable that can be manipulated to adjust the time 

required for the production. Also, phase three requires the decision variable in phase two 

to be satisfied before starting the activities in phase three. The decision variable is set to 

ensure that quantity of finished product is satisfied, and the time it took to reach that 

quantity is accounted for. 

As for the third phase, the total quantity is taken from the quantity of finished 

product in phase two. One input is required for the model which is the transportation 

quantity each time. The transportation is done according to the installation rate assumed 

by the project team. As for the processes, two processes are considered. The first is a 
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count for the delivered products each time, as shown in Eq. (7). The second process 

computes the transportation disruption risk value each time, as shown in Eq. (8).  

∑  𝐷𝑒𝑙𝑖𝑣𝑒𝑟𝑒𝑑 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 = 𝑘 ∑ 𝐷𝑒𝑙𝑖𝑣𝑒𝑟𝑒𝑑 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 + 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡𝑎𝑡𝑖𝑜𝑛 𝑞𝑢𝑎𝑛𝑡𝑖𝑡𝑦𝑘  𝑘 (7) 

𝑇𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡𝑎𝑡𝑖𝑜𝑛 𝑑𝑖𝑠𝑟𝑢𝑝𝑡𝑖𝑜𝑛 𝑟𝑖𝑠𝑘 𝑓𝑎𝑐𝑡𝑜𝑟 =
(𝑄𝑢𝑎𝑛𝑡𝑖𝑡𝑦 𝑜𝑓 𝑓𝑖𝑛𝑖𝑠ℎ𝑒𝑑 𝑝𝑟𝑜𝑑𝑢𝑐𝑡−∑ 𝐷𝑒𝑙𝑖𝑣𝑒𝑟𝑒𝑑 𝑝𝑟𝑜𝑑𝑢𝑐𝑡)𝑘

𝑄𝑢𝑎𝑛𝑡𝑖𝑡𝑦 𝑜𝑓 𝑓𝑖𝑛𝑖𝑠ℎ𝑒𝑑 𝑝𝑟𝑜𝑑𝑢𝑐𝑡
%   (8) 

A decision variable shown in Eq (9) controls the time loop for the third phase. If 

the decision variable is not met, the time loop is activated and another time unit is added 

to the time count. If the decision variable is met, the model ends. 

∑ 𝐷𝑒𝑙𝑖𝑣𝑒𝑟𝑒𝑑 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑘 = 𝑄𝑢𝑎𝑛𝑡𝑖𝑡𝑦 𝑜𝑓 𝑓𝑖𝑛𝑖𝑠ℎ𝑒𝑑 𝑝𝑟𝑜𝑑𝑢𝑐𝑡  (9) 

The outputs of the third phase are the transportation disruption risk value each 

time and the total time required to transport the number of finished products. An output 

of the whole model is a graph of the project disruption risk value, and the total time 

required from the start of the model to the end, this is calculated by Eq. (10). Figure 7 

illustrates the developed model.  

𝑇𝑜𝑡𝑎𝑙 𝑡𝑖𝑚𝑒 = 𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙 𝑙𝑒𝑎𝑑 𝑡𝑖𝑚𝑒 + 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 + 𝑇𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡𝑎𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒  (10) 
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Figure 7 Model process flow chart 
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The third stage 

Pilot case study background 

A healthcare facility located in one of the Mountain States of the United States is 

expanding their existing facility. The new addition will be a five-story building, totaling 

168,000 square-feet with an estimated cost of $71 million and an estimated finish date of 

20 months. The project structure consisted of a precast first-floor structure, and rest of 

the structure built of structural steel. The construction was carried out by floor from north 

to south.  

 The construction team utilized the opportunity to prefabricate patient headwall 

elements in a controlled environment. The patient headwall has all the equipment and gas 

hookups required for the hospital equipment. The headwall construction took three 

months of mockups that involved the coordination of multiple subcontractors including 

the carpenter, framing, mechanical, and electrical contractor.  

The electrical subcontractor facility was used for the assembling processes as well 

as storing the finished headwalls. The shop floor is located 10 miles from the job site with 

an approximate floor area of 1000 SF. There were four types of headwalls illustrated in 

Figure 8 with a total count of 85 units. The headwall scope of work consisted of pre-cut 

metal stud framing, medical gas piping and connections, electrical and low voltage piping 

and connections, and wood blocking. All the required material was delivered to the 

facility at once. Each of the subcontractors had a crew assigned to the assembling facility; 

crew sizes were two framers, two mechanics, four electricians, and one carpenter. The 

headwall production rate was 4 completed units/week. 
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Applying the model to the pilot case study 

The pilot case study was of a forward supply chain with limited demand from the 

hybrid project. The supply chain was comprised of four echelons: 1) raw-material 

suppliers, 2) manufacturer where production, assembling and storing take place, 3) 

transportation, and 4) the job site.  

The quantitative data inputs required for the model were acquired from the project 

team. The inputs consisted of 1) material lead time, 2) material quantity takeoff, 3) 

material delivery quantity, 4) headwall takeoff, 5) production rate, 6) transportation 

quantity. The next section shows the screens in which these inputs are used to run the 

model.  

 

Figure 8- The 4 types of headwalls 
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1.Material supply screen 

The first screen in the model is the material supply screen. In this screen, the user 

is required to input the material lead time, material quantity takeoff, and material order 

quantity. Once the required fields are populated, the model calculates the material 

disruption risk value associated with each period. Figure 9 depicts an example of material 

supply screen for metal studs. From the figure we see that the material lead time is two 

weeks, material quantity takeoff is 6000 LF of metal studs, and the first order quantity is 

going to be for the whole takeoff quantity of 6000 LF. In this example, the material is 

going to be delivered at once, the disruption risk value is zero indicating there is no 

disruption risk. 

 

 

 

 

2.Production screen 

The second screen in the model is the production screen. In this screen, the user 

is required to input the production quantity takeoff and the production rate. Once the 

required fields are populated, the model calculates the production disruption risk value 

associated with each period. Figure 10 depicts the production screen. From the figure, it 

is apparent that 85  headwalls are required with a production rate of 4 finished units per 

Figure 9- Material supply screen example 
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week. In this case, there are 22 time periods for the entire production process. The 

disruption risk value decreases each time unit until it reaches a value of zero.  

 

 

 

 

 

 

 

 

3.Transportation screen 

The third screen in the model is the transportation screen. In this screen, the user 

is required to input the transportation quantity each time. Once the required fields are 

populated, the model calculates the transportation disruption risk  value associated with 

each period. Figure 11 depicts the transportation screen. From the figure, the total quantity 

of transportation is 85 units to be delivered over five weeks. The disruption risk value 

decreases each time unit until it reaches a value of zero.  

Figure 10- Production screen 
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After all the input fields are populated, the model presents a graph of the project 

disruption risk illustrated in Figure 12. Additionally, the model computes the total time 

required for the entire prefabrication process from material ordering to receiving all the 

finished headwall at the job site. Figure 13 illustrates the total time calculated by the 

model for this case.  

From the graph, the disruption risk value starts at week one with a value of 100%  

then decreases to 50% at week two. From week two to four, the disruption risk value 

increases from 50 % to 95%. After that, week four to week twenty-three the disruption 

risk value decreases from 95% to 1%. Then, increases again from week twenty-three to 

twenty-five as the disruption risk value reaches 80%. Finally, the disruption risk value 

decreases from week twenty-five to twenty-nine reaching zero. The fluctuation in 

disruption risk value is a result of risk transfer between activities. The first increase is at 

week two where the material supply activity is finished making the disruption risk value 

zero. Meanwhile, the production activity starts at week two with a disruption risk value 

of 95% resulting in week two to have a disruption risk value of 50%. At week three the 

only disruption risk is from the production activity with a value of 91%. The same goes 

Figure 11-Transportation screen 



42 

 

for the time period from week twenty-three to twenty-six, where the production activity 

finishes and the transportation activity sarts. 

 

 

 

 

 

 

 

 

 

 

 

The project team allocated 37 weeks for the entire process broken out to; 2 weeks 

for material lead time, 30 weeks for the prefabrication processes, and five weeks for the 

transportation. Resulting in the finished headwalls to be stored for an extra eight weeks 

before they could be installed at the job site. By using the model, the project team could 

have saved the extra cost of storing the headwalls and used that time for modifications or 

mockups.  A complete screen of the model can be found in Appendix C.  

  

Figure 12- Disruption risk value 

Figure 13- Total time 
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Section 3 Case study 

The case study chosen is similar to the pilot case study in the choice of 

prefabricating patient headwalls. However, at the time of conducting this study, the pilot 

case study had already prefabricated the headwalls while this project was still in the 

prefabrication planning phase. The data collection involved interviews with project 

personnel and documenting project progress. The interviews started with presenting the 

SCN developed in the pilot case study and adjusting it to reflect the new case study 

configuration accurately. After configuring the SCN, the participants were asked a series 

of question -shown in appendix D-  to collect quantitative data to run the model. The 

results from the model were used to help in the prefabrication planning efforts.  

Project background 

A healthcare facility located in one of the Midwest States of the United States is 

expanding their existing facility. The new addition will be a six-story building/tower, 

totaling 228,000 square-feet with an estimated cost of $150 million and an estimated 

finish date of 30 months. The new addition will include: 

• Space for up to 72 patient beds 

• Space for an intensive care unit 

• Surgery and endoscopy (internal imaging camera) suites 

• Outpatient imaging for X-rays, radiography, computed CT scans and MRI   

• Cancer and infusion services 

• An inpatient pharmacy 

• Chapel 



44 

 

• Shell space for additional growth 

• Helipad 

• Surface parking  

• Two level, 180 spaces parking garage  

• Connecting structures to the existing facility  

The construction will utilize advanced technologies, including BIM, real-time 

estimating, and virtual planning, to ensure optimal quality and efficiency. The 

construction team will also utilize the opportunity to prefabricate elements in a controlled 

environment. The construction will be carried out in phases due to demands of not 

disturbing the ongoing operations in and around the hospital, and to ensure the safety of 

patients, staff, and visitors.  Figure 14 illustrates the layout of the new expansion with the 

existing structure. 

 

 Figure 14- case study layout 
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The construction will be carried out in four phases as depicted in Figure 15: 

1. Tower structure and fit out from north to south 

2. Plant structure and fit out from north to south 

3. Parking garage structure and finished from south to north 

4. Connecting structure and fit out from west to east 

The 6-story tower structure will consist of structural steel and concrete 

superstructure. The tower structure is split into two sections, A being the north part and 

B being the south part of the tower.  

 

 

 

 

 

 

 As mentioned before, the construction team will utilize the opportunity to 

prefabricate elements in a controlled environment. The team developed a prefabrication 

plan for proposed prefabrication opportunities, which includes MEP racks, panelized 

building exterior, patient room headwalls, and patient room bathroom pods. The plan 

includes the prefabrication scope and evaluates savings to the overall project regarding 

time, quality, performance, and cost. After finishing the prefabrication plans, the 

construction team decided that prefabricating the patient headwalls is the most feasible 

Figure 15- Case study phases of construction 
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option of the proposed opportunities.  The patient headwall will have all the equipment 

and gas hookups required for the hospital. Figure 16 illustrates the configuration of a 

patient headwall.  

 

 

 

 

 

 

 

 

Case study analysis 

The document examined the SCN responsible for the headwall prefabrication. The 

subcontractors involved are the mechanical, electrical, carpentry and framing contractors. 

The assembling process will take place in a prefabrication shop located 6 miles away 

from the job site with an approximate floor area of 800 SF. The shop will accommodate 

crew members of all involved trade contractors to encourage communication and 

collaboration.  The necessary material will be delivered directly to the shop floor that 

serves as the warehouse for storing the material and the finished headwalls. Once all 

headwalls are prefabricated, they will be transported to the job site for JIT installation.  

Figure 16- Headwall illustration 
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The headwall is approximately 76 SF in size (9.5 feet by 8 feet), the new addition will 

require 52 headwalls to be constructed on two separate floors. It will consist of framing, 

blocking, medical gas piping and connections, electrical piping and connections. Figure 

17 depicts the prefabrication SCN broken out by material supply. The sequence of 

assembling the headwall is illustrated in Figure 18. Material quantities for producing one 

headwall are as follows: 

• Metal studs 70 feet  

• Medical gas piping for five connections 25 feet 

• Electrical piping for 13 connections 92 feet 

• Wood blocking 40 feet 

 

 

 

 

 

 

 

 

 

Figure 17-Case study headwall prefabrication SCN 
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Figure 18- Case study headwall assembling sequence  
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The schedule 

A construction schedule lists out the project’s milestones, activities, and 

deliverables. The schedule estimates a start and finish date for each identifiable scope of 

work. In hybrid construction projects, the schedule is critical in avoiding uncertainties 

from off-site activities converging with on-site activities and making sure that on-site 

activities do not stop and wait for off-site activities. Multiple types of schedules show a 

different level of information depending on the time unit used. Our case study has a 

schedule of 30 months from start to completion. For this document, the concern from the 

schedule is the meeting time of on-site and off-site activities. Figure 19 shows the project 

milestones schedule with an approximate time for needing the off-site activities being 

finished with the end of the framing/rough-in period. Figure 20 lists out all the activities 

that are required in the framing/rough-ins period.   

 

 

 

 

 

Earthwork/Utilities 5 Mo 
                         

    
Foundation/Structure 7 Mo 

                   

          
Framing/Rough-in 11 Mo 

         

           
Building Enclosure 11 Mo 

        

                 
Finishes 13 Mo 

Figure 19- Milestone schedule 
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However, not all these activities are required to be done before the installation of 

the headwall. Only the predecessors of the headwall need to be finished before installation 

procedure. Figure 21 illustrates the required tasks before installing the headwall.  From 

Figure 21 it is apparent that we need the headwalls to be ready for installation after the 

framing of secondary walls. From here the project team can estimate a time frame as to 

when the prefabrication processes need to finish to meet with the on-site activity schedule. 

  

Figure 20- List of activities in the framing/rough-ins period 

Figure 21- Converging of on-site and off-site construction activities 
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Applying the model 

The first step in applying the model was to consult the project team on the required 

inputs. Table 3 presents the inputs that were used to run the model. After deciding the 

inputs, they were inserted in their respective model. The next section shows the screens 

in which these inputs are used to run the model.  

Table 4- Case study inputs 

Material supply 

Material Takeoff Delivery Lead time 

Metal Studs 3640 LF 2 Batches 2 Weeks 

Medical gas pipes 1300 LF 1 Batch 1 week 

Medical gas connections 260 EA 1 Batch 3 Weeks 

Electrical pipes 4790 LF 1 Batch 1 Week 

Electrical connections 676 EA 1 Batch 1 Week 

Wood blocking 2080 LF 1 Batch 1 Week 

Production 

Takeoff  52 units 

Production rate  3 units per week 

Transportation 

Transportation quantity 20 units per week 

 

1.Material supply screen 

The first screen is the material supply screen shown in Figure 22. After populating 

this screen, the model computed the disruption risk value for each material. From Figure 

22 it is evident that only one material has a disruption risk value more than zero. The 

metal studs have the most significant material disruption risk exposure since they are 

going to be delivered in 2 batches.  
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2.Production screen 

The second screen is the production screen shown in Figure 23. After populating 

this screen, the model computed 18-time units for the production processes and computed 

the disruption risk value for each time unit. From Figure 23 it is clear the disruption risk 

Figure 22- Case study material supply screen 
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value decreases each time unit indicating the risk exposure is higher at the start of 

production and decreases gradually over time. 

 

 

 

 

 

 

 

3.Transportation screen 

The third screen is the transportation screen shown in Figure 24. After populating 

this screen, the model computed 3-time units for the transportation processes and 

computed the disruption risk value for each time unit. From Figure 24 it is noticeable the 

disruption risk value decreases each time unit indicating the risk exposure is higher at the 

start of transportation and decreases gradually over time. 

 

 

 

 

Figure 23- Case study production screen 

Figure 24- Case study transportation screen   
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After all the input fields are populated, the model presents a graph of the project 

disruption risk value shown in Figure 25. Also, the model calculates the total time 

required for the entire prefabrication process from material ordering to receiving all the 

finished headwall at the job site. Figure 26 illustrates the total time calculated by the 

model for this case. The model calculated a 24-week time frame for the entire 

prefabrication process. The time frame is broken out to a 3-week period for the material 

lead time, 18-week period for the prefabrication and assembling processes, and a 3-week 

period for transporting the finished headwalls to the job site. A complete screen of the 

model can be found in Appendix D.  

From the graph, the disruption risk value starts at week one with a value of 100%  

then decreases to 50% at week three. From week three to five, the disruption risk value 

increases from 50 % to 88%. After that, week five to week twenty the disruption risk 

value decreases from 88% to 2%. Then, another increases is witnessed from week twenty 

to twenty-two as the disruption risk value reaches 60%. Finally, the disruption risk value 

decreases from week twenty-two to twenty-four reaching zero. The fluctuation in 

disruption risk value is a result of risk transfer between activities. At the start of an 

activity, the disruption  risk value at its peak and starts to gradually decrease with time 

until it reaches zero at the end of that activity. The seen increase in the disruption risk 

value is a result of finishing an activity and starting another activity with a high disruption 

risk value. From the graph, the first increase takes place from week three to week five. 

The material supply activity is finished at week three making the disruption risk value 

zero. Meanwhile, the production activity starts at week three with a disruption risk value 

of 100% resulting week three to have a disruption risk value of 50%. As for week five, 
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the only disruption risk value existing is from the production activity. The same goes for 

the increase between week twenty and twenty-two, where the production activity finishes 

with a zero disruption risk value, and the transportation activity starts with a 100% 

disruption risk value.  

 

 

 

 

 

 

 

 

 The next section will discuss the findings of the model application on a hybrid 

construction prefabrication project followed by findings from sharing the model with 

construction industry professionals for consideration and observations in planning for the 

prefabrication processes.   

Figure 26- case study total time 

Figure 25- Case study disruption risk value 
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Chapter 5: Findings 

This chapter analyzes the outcome of the research in two stages. The first stage 

consisted of analyzing the results from applying the model to the case study and validate 

the findings with the project team. The second stage involved sharing the model with 

construction industry professionals and documenting their observations on the 

applicability of the model in planning for prefabrication in the current industry setting.  

Case study  

As mentioned in chapter 5, the case study started with developing the SCN 

responsible for prefabricating the headwalls. Developing the SCN provided important 

information on the characteristics of construction supply chains, key members of supply 

chain, type of relationship between key members, and the sequence of activities required 

in the prefabrication process. The SCN was a temporary supply chain that involved 4 

material suppliers, 1 prefabrication facility that also stored the finished headwalls, and a 

transportation provider to deliver the headwalls to the construction job site. The 

construction project involvement in the supply chain stopped with the first tier of 

suppliers indicating the limited engagement in the supply chain activities.  

The model computes the disruption risk value for all prefabrication processes. 

From analyzing the disruption risk value of individual processes, it is apparent there is a 

direct linear relationship between the value of the disruption risk and the time required 

for that process. The disruption risk value is at its highest at the beginning of an activity 

then steadily decreases reaching a value of zero at the end of that activity. This correlation 

reflects the temporality of the construction supply chain. Thus, it is concluded that the 
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production process has the highest disruption risk exposure amongst all the processes as 

it takes the longest time for completion amongst the prefabrication processes.  

Meanwhile, analyzing Figure 25 that shows the disruption risk value for the entire 

prefabrication processes as one entity did not result in the same direct linear relationship. 

The disruption risk value is highest at the beginning of the prefabrication process and 

decreases steadily when a sudden increase in the value is observed. Then the disruption 

risk value decreases and encounters another sudden increase in the value. These sudden 

increases are a result of risk transfer from one activity to another; the sudden increase 

represents the end of an activity where the disruption risk value is at its lowest and the 

start of an activity where the disruption risk value is at its highest. 

From the computed total time for the prefabrication processes, it is evident that 

the production process has the most significant time impact on the prefabrication 

processes. At the start of the model, the project team is required to make some 

assumptions to run the model, one of these assumptions is the production rate. The 

production rate controls the required time for the production process, by increasing the 

production rate, the project team has the chance to reduce the production process time 

reducing the overall time.  

Industry professionals 

The model was shared with the participants to have the opportunity to test the 

model and comment their observations. The participants provided important insights 

when describing the applicability and usability of the model in the construction industry. 

The participants agreed that the model is a useful tool in front-end planning as it allows 
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the project team to think through and explore the entire prefabrication process and 

associated risks.  

As for the disruption risk value, the participants perceived it as an informative 

analysis tool for various risk scenarios including what-if scenarios. Moreover, they 

believed the disruption risk value is a practical tool in identifying the source of risks with 

project progress, especially when risks are transferred between supply chain members.  

The participants view on the design of the model was positive; they explained that 

it allows the user to quickly understand how to use the model and analyze the displayed 

information. Additionally, the design allows the user to understand the general sequence 

of activities involved in the prefabrication process as the design reflects the actual activity 

progress in the construction industry. The participant's observations on navigating and 

interpreting the information shown in the model demonstrated they were able to analyze 

the information quickly with little indication of content. The fast comprehension of 

information confirmed that the model is easy to use, understand, and analyze.  

A significant contribution of the model is the ability to identify the hidden 

uncertainties underlying the prefabrication process and allowing the project team to 

address them well before they become a severe problem. The participants described the 

model as being a backward calculation process seeing that it exposes significant 

uncertainties. The participants highlighted two significant uncertainties the model 

addresses. The first being when to start the prefabrication processes. If the project team 

starts the prefabrication too far in advance, they are limited in making changes or 

adjustments, and they will face several challenges such as where to store the finished 

product, the cost of storage, and protecting the products from damage.    
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The second uncertainty is the required production rate to meet the schedule. 

Addressing this uncertainty allows the project team to allocate resources and crew 

members to the prefabrication processes accurately. The model allows the user to easily 

manipulate the production rate and see the effect it has on the process duration. If the 

project team excessively assigns resources and crews to the prefabrication process, they 

are faced with the same problems as to starting the prefabrication processes too far in 

advance. In the same way, if the project team does not assign enough resources and crews 

to the prefabrication process, they face the possibility of not meeting the schedule and 

causing time overrun.  

Because of the fast comprehension, the participants identified the opportunity of 

sharing the information and improving communications within the project team and other 

project stakeholders. The participants saw the opportunity of communicating the 

information to the project owner to help convey the risks associated with prefabrication 

and current project status. Also, a participant commented that the model might be utilized 

as a selling tool on justifying the use of prefabrication as it indicates the involved 

members and the time required for the entire prefabrication processes. 

In addition to providing sufficient information of usability, the participants 

identified the model’s capability of producing even more useful information. Collecting 

and storing activity data allows for developing historical activity information that can be 

used as a comparison tool for production rates at different time periods and projects as 

well. Also, historical activity information can be combined with various data groups to 

create different analysis scenarios and explore data relationships. 
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Chapter 6: Conclusion 

The research started with the goal of measuring the resiliency of hybrid projects 

against supply chain disruption by investigating the disruption risk exposure inherited 

from uncertainties in the prefabrication supply chain.  The uncertainties were identified 

through an extensive literature review. The research adopted a pilot case study to explore 

the disruption risk exposure from supply chain uncertainties on hybrid projects. The pilot 

case study resulted in developing a model that identifies potential disruption risks that are 

of significant impact on project performance and assesses the impact of a disruption 

originating anywhere in the supply chain. The research applied the model on a hybrid 

construction case study to verify the results. 

Temporary supply chains dominate the construction industry seeing that each 

construction project has unique supply chain. It is of utmost important to identify the key 

members of a construction supply chain as well as the type of relationship between those 

members to understand the responsibilities of key members and the configuration of the 

SCN.  

A linear relationship is found between the disruption risk value of a process and 

the time to finish that process, verifying the temporality of the construction supply chains. 

On the other hand, the disruption risk value of the whole project acts differently. The 

disruption risk value decreases as an activity gets closer to finish. However, at the same 

time an activity ends a new activity starts with a high disruption risk value resulting in a 

sudden increase in the disruption risk of the project, the increase is a result of risk transfer 

between activities.  
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The projects’ team best chance to modify the total time for the prefabrication 

processes is by controlling the production rate in the production process. The production 

process time can be shortened by increasing the production rate. 

Based on the research findings, the model offers a better opportunity for industry 

professionals to identify activity risks and expose uncertainties that may affect the project 

objectives or construction schedule. The model uncovers two significant uncertainties. 

The first is when to start the prefabrication processes, and the second is the required 

production rate to meet the schedule.  Moreover, the model supports the tracking of 

project activity progress by comparing the planned period to the actual time spent on that 

activity or by comparing planned production rate to the actual production rate. 

Additionally, the model facilitates information coordination across disciplines more 

effectively aiding in decision making and problem-solving processes. Also, the results of 

the model can be used as historical data for future comparison or for analysis with 

different data sets.  

Limitations 

There were a few limitations during the execution of this study. The supply chain 

study was limited to the headwall prefabrication supply chain. Limitations of headwall 

prefabrication supply chain consisted of it being a short supply chain with a small number 

of tiers and key members, and the supply chain products were general commodities that 

can be found from multiple sources. The supply chain influenced the results of the study 

as different supply chains have different practices, configuration, and products.  Another 

limitation was the absence of historical data on this kind of investigation. However, it 

was still possible to collect information to test and validate the model.  
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Significance of study 

The study introduces a novel risk exposure model that has not been utilized in the 

construction industry. The model contributes to current construction practices by 

accurately capturing the prefabrication supply chain including its members, structural 

configuration, and process links between members. The model assesses the impact of a 

disruption originating anywhere in the supply chain. The model also identifies potential 

disruption risks that are of significant impact on project performance, helping risk 

managers to allocate resources more judiciously. Based on the research findings, the 

model provides information on supply chain disruptions by computing the disruption risk 

value for all activities involved in the prefabrication process throughout the duration of 

the prefabrication process. This information identifies a project’s exposure to a disruption 

risk at any given time.  

Additionally, the model addresses the significant uncertainty of when to start the 

prefabrication process. The model identifies the optimal time for starting the 

prefabrication process through identifying the time required for each activity in the entire 

prefabrication process. Recognizing the time required for each activity helps in 

controlling the duration of the prefabrication process. Since the production process has 

the longest duration, the model allows the planned production rate to be adjusted in order 

to control the duration of the prefabrication process. 

The study provides information on current prefabrication practices in the 

construction industry. Based on the findings of this study, it is of value to the construction 

industry to consider the model as a source of information that can support project 

decisions of prefabrication. The current prefabrication practices justify the need for an 
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effective model that exposes significant uncertainties about the prefabrication processes. 

Accordingly, construction industry professionals who participated in this study were able 

to recognize the benefits of having such model for analysis.   

Future research 

Future research may use the information provided in this document to continue 

the investigation throughout the execution phase and track the actual progress of 

production and duration of the prefabrication process to compare it to the planned 

production and duration to explore new data combinations. Also, the model can be further 

developed to include new dimensions such as material procurement cost. Another topic 

would be to develop other construction prefabrication supply chains and explore the 

applicability of the model to improve construction project planning, analysis, and 

execution.  

Another research opportunity is to explore the SCM of a lean construction supply 

chain or a sustainable construction supply chain and compare it a hybrid construction 

SCM and test the applicability of the model on such supply chains. Another interesting 

research topic would be to develop a supply chain of a trade contractor or specialty 

contractor whose supply chain relationships are permanent rather than temporary and 

explore the different SCM strategies employed and test the applicability of the model on 

such supply chain.  
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Appendix A: Interview questions 1 

1. How do you decide on using prefabrication? 

2. What specific information do you look for? 

3. What is the most common element to prefabricate in a health care facility? 

4. What is impact of prefabrication on project’s schedule, time, cost, and 

rework? 

5. Describe the prefabrication process for that element. 

6. How long does the process described in question #3 usually take to 

complete? 

7. What is the project’s point of contact with the prefabrication supply chain? 

8. How is the information exchanged? 

9. What are the challenges and concerns you face in prefabrication? 
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Appendix B: Interview questions 2 

1. How many material suppliers are involved?  

2. How many shipments for each material? 

3. What is the lead time for material shipping? 

4.  Is all the material stored at the manufacturer? 

5. Who is the manufacturer?  

6. where is the manufacturing facility located? 

7. What is the production rate? 

8.  How many crew members each trade has? 

9. Where do you store the finished products? 

10. When are the finished products needed on site? 

11. When did the prefabrication process start? 

12. How often do you ship finished products to the job site? 

13. What is the quantity of product you ship to the job site? 

14. How many units are installed per week? 
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Appendix C: Pilot case study model 
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Appendix D: Interview questions 3 

1. What are the benefits of this model to you? 

2. Will you use this model to plan your future prefabrication process? 

3. What are your recommendations for improvements? 

4. What do you think of the design usability of the model? 
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Appendix E: Case study model 
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