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Chapter 1

Abstract

Low-power devices that rely on ZigBee wireless signals, such as embedded health care

devices, face the problem of being drowned out by higher-power signals like WiFi.

When that happens, those devices must spend time and battery power retransmitting

those signals. In order to reduce collisions with WiFi signals and increase through-

put, we investigate using Hidden Markov Models (HMMs) with discrete timeslots to

predict when interference would occur, and when it would not (a white space). We

found that, when we used short timeslots, the HMMs made slower and less accu-

rate predictions than existing schemes. However when we looked at longer timeslots,

HMM predictions made better use of the available white space.
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Chapter 2

Introduction

Health care is coming to peoples’ homes. Embedded health care devices are seeing an

increase in usage and it is predicted that their use and adoption will increase in the

coming years. Embedded health care devices, such as pacemakers, hearing aids, and

home sensors are a new, pervasive, and better way to monitor patients health. Their

use can both reduce trips to the hospital and enable health care providers to monitor

patients remotely. However, unlike similar technologies such as smartwatches and

other smarthealth devices, these sensors use the ZigBee (IEEE 802.15.4) protocol

for communication. Moreover, the low-power sensor can last for months or years

on a single charge. These sensors communicate to a base station connected to the

Internet.

ZigBee is typically used for low-power, short-range communication. ZigBee uses

signals resembling Bluetooth and WiFi (802.11), and operates on the same frequency

(2.4GHz). However, the fact that ZigBee is low-power means that other wireless

signals such as WiFi and microwave oven drown out ZigBee signals. In order to

communicate in the presence of WiFi signals, ZigBee devices have to avoid signal
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interference by either moving to a different frequency, or transmitting at a different

time. These times or locations where there are no signals are called “white spaces”.

An interference for a ZigBee sensor means loss of energy in sending data as all the

data sent from the sensor are not received by the base station.

Our goal is thus to create an algorithm that allows a ZigBee device to predict

whether a white space will occur next so that it can power up its antenna and start

sending data. The algorithm has to run continuously because as soon as it predicts

that a white space will not occur, that is, that interference will happen, the device

has to stop sending data and wait for the next white space prediction. As more

healthcare devices will be used in the homes and in public places, battery usage and

wireless interference will become an issue. The motivation to develop this algorithm

is to avoid wireless interference and conserve battery usage.

We propose an algorithm using a Hidden Markov Model (HMM) to predict white

spaces based on recently seen data. The HMM algorithm relies on training data to

predict when the next white space will occur. We vary the number of observations

for the training data and the number of states in the HMM to obtain the accuracy of

the prediction. To predict when the next white space will occur, the algorithm looks

at a small “window” size and attempts to match that window to the past data. Once

a match is found, whatever happened next in that past data is used as prediction

The rest of the document is organized as follows. In chapter 3, we review wireless

sensor networks, Hidden Markov Models, and related work. In chapter 4 we detail

our algorithm’s design and implementation, as well as our experimental setup. In

chapter 5, we review the results. We present our conclusions and discuss future work

3



in chapter 6.
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Chapter 3

Background

3.1 Wireless Sensor Protocols

There are many protocols for wireless sensor networks such as B-MAC [1], S-MAC [2],

and WISEMAC [3]. The current wireless protocol used by ZigBee sensors is B-MAC.

B-MAC is a lightweight, energy efficient, scalable, simple, and easily configurable

Medium Access Control protocol. B-MACs advantages over other wireless sensor

network protocols are its small code footprint and easy configuration. B-MAC is

energy-efficient as it uses low-power listening (LPL) to check for wireless activity. B-

MAC also does not implement features to handle hidden terminals or fragmentation

of data. B-MAC uses CSMA/CA.

3.2 Hidden Markov Models (HMM)

A Markov chain is a model for a system made up of internal states that can each

produce all possible observations, usually with a different probability distribution for
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Figure 3.1: Periods and sliding windows used for training and prediction

each state, and all the states are observable. When training a Markov chain with a

set of observations, the Markov chain computes a pair of probability matrices: the

transition and emission probability matrices, which together form the Markov model.

The transition matrix contains the probability of switching from one state to another,

and the emission matrix contains the probability of producing a given observation

from a given state. By combining the transition and emission matrices with a new

sequence of observations, we can compute the probability of a particular output

sequence, or the most likely next state and observation, as shown in Figure 3.1.

In a HMM, the internal states and their transitions are not directly observable

(hence, “hidden”) but their observations, whose probabilities are assumed to depend

on the states, can be observed. Thus, a sequence of observations gives information

about the sequence of the hidden internal states, and can be used to train a HMM.

We show an example HMM in Figure 3.2.
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Figure 3.2: An example HMM with 4 states, 7 possible observations, a transition

matrix A, and an emission matrix B.
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3.3 Related Work

In the past, algorithms have been developed to detect interference and respond ap-

propriately to combat negative affects. Yi et al. [4] detect interference and switch

to clear channels. Hsu et al. [5] proposed a scheme that tries to optimize MAC

layer packet length dynamically by adjusting the fragmentation level based on the

packet error rate. Guo et al. [6] propose a real-time adaptive transmission (RAT)

scheme to estimate Zigbee packet corruption to support the selection of appropri-

ate error-correction coding to maximize throughput. The results of their extensive

tests indicate that RAT significantly improves ZigBee throughput in the presence of

relatively high WiFi throughput. Our work differs from these techniques as we use

traffic observations to predict when the channel will be clear (a white space) before

sending transmissions.

Other recent techniques use predictive methods to attempt to avoid experiencing

interference. Frequency hopping communications limit continued interference for

channels, and enhancements have been made to frequency hopping algorithms to

improve performance under different types of interference [7, 8]. Hasan et al. [9]

improved on previous work with a frequency hopping algorithm with a Gaussian

distribution for choosing transmission frequencies. Srinivasan et al. [10] measured

ZigBee reception and found that most intermediate links are bursty, that burstiness

affects protocol performance, and that they could predict the effects. Dubay and

Patel [11] sought a method to improve the performance of WiFi in presence of radio

interference. Their work proposed a method to protect WiFi performance through

8



the HMM-driven White Space for WiFi protocol based on their characterization of

the dynamic distribution of white space durations in the time domain using a Hidden

Markov Model, and note its applicability to Zigbee, Bluetooth, and Wi-Max as well.

Further, Huang et al. [12] introduced a Pareto model that characterizes the white

space of WiFi traffic and introduced a frame control protocol called WISE (White

Space-aware Frame Adaptation) for ZigBee networks. WISE predicts the length of

white space in WiFi traffic based on the Pareto model, and intelligently adapts frame

size to maximize the throughput efficiency and provide assured levels of performance.

Similarly, Ananthanarayanan and Stoica [13] presented a system that predicts the

availability of the WiFi connectivity by using a combination of Bluetooth contact-

patterns and cell-tower information. This allows a device to intelligently switch the

WiFi interface online only when there is WiFi connectivity available, thus avoiding

the long periods in idle state and significantly reducing the number of scans for

discovery. We also use a Hidden Markov Model, but show through real dataset

experiments that our algorithms had lower overhead with acceptable accuracy.

Yuan et al. [14] suggested that a Hidden Markov Model (HMM) accounts for white

spaces better than a Pareto model, and that an algorithm incorporating this model

can provide better throughput for ZigBee packets than existing protocols. They pro-

posed the HMM-driven Smart White-space-aware Frame Control Protocol based on

their HMM model of white spaces, and showed some experimental results support-

ing the effectiveness of the protocol in protecting communication performance. Our

work significantly improves on their work as we show extensive experimental results

based on real datasets.

9



Finally, in [15], we initially experimented with HMMs to predict and avoid WiFi

white space. We found our model produced lower overhead than earlier models in a

simulated environment. However, our results were limited to a single dataset, and

didn’t directly compare battery usage with and without the models. Therefore in

this paper we perform experiments on a new dataset and simulate battery usage by

calculating the genuine match rate (GMR) for white space in our models’ predic-

tions.
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Chapter 4

Experimental Setup

In all our experiments, we used Matlab to store data about our models and make

predictions. We chose Matlab because it was an easy interface with which to create

simulations, especially because it contained built-in functions to create HMMs.

4.1 Datasets

For our experiments, we used wireless data from the crawdad web site [16]. Craw-

dad provided pcap files containing the frame length, channel frequency, RSSI, and

microsecond capture time for wireless packets. We chose two datasets from the site:

the first was the same dataset we used in [15] from OSDI [17] (initial version), and

the second was from SIGCOMM [18].

For the OSDI dataset, the authors “gathered traces of wireless traffic at several

monitoring nodes distributed across the conference floor and breakout areas [at OSDI

2006]. In addition, we gathered traces on the wired switch to which the wireless access

points connect.” [17]
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For the SIGCOMM dataset, the authors “collected a trace of wireless network

activity at SIGCOMM 2008. The subjects of the traced network chose to participate

by joining the traced SSID.” [18]

For our experiments, we converted the data in the pcap files of each dataset into

discrete, 1-millisecond timeslots (or windows). Then for each window, we stored the

start time of the window and the number of frames observed during that window. In

the rest of this paper, we will refer to frames as interference, and to windows without

any frames as white spaces. We chose 1 ms windows because that was the smallest

time period that was large enough for a sensor to turn its antenna online for sensing

or sending data. Finally, we stored the converted data — hereafter referred to as

“window data” — in Matlab (.mat) files, with one Matlab file to one pcap file.

When making predictions in our experiments, we iterated through the windows in

the window data and used the window data as the ground truth for our observations.

This allowed us to abstract out the time required to sense for transmissions and

simply measure the time required to compute a prediction with one of our models.

4.2 Frequency Tables

To perform an initial measurement of our data and provide a basis for training our

prediction models, we created 3x3 frequency tables for our datasets. To do this, for

each dataset, we scanned all the windows in each file in the dataset and compiled

the data in a single table. Tables 4.1 and 4.2 show the frequency tables (with row

and column headers) for the two datasets.

12



white space interference %

white space 9,390,000,000 7,007,200 71.16

interference 7,007,181 3,800,862,000 28.84

% 71.16 28.84

Table 4.1: The frequency table for the OSDI data.

white space interference %

white space 315,050,000 6,114,100 50.21

interference 6,114,146 312,386,300 49.79

% 50.21 49.79

Table 4.2: The frequency table for the SIGCOMM data.

In each table, the first row after the headers shows the number of white space

windows, and the second row shows the number of windows with interference. The

first column after the headers shows the number of white space windows that followed

a window from the given row, and the second column shows the number of windows

with interference that followed a window from the given row. For example, in the

OSDI dataset, there were 9,390,000,000 windows that were white space and were

followed by a white space, whereas there were 7,007,200 windows that were white

space but followed by interference. The last row and column in show the percentage

of windows in that row or column, respectively, of the total.

In addition to providing a base to build our models, these tables showed us two

things. First, we saw the distribution of white space to interference in our datasets:
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Testing dataset
Total Accuracy (%) White-space GMR (%)

mean median std. dev. mean median std. dev.

OSDI 99.99 99.99 0.00 99.91 99.91 0.03

SIGCOMM 98.99 99.27 0.60 97.99 98.00 1.09

Table 4.3: Accuracy and timing results for the sense-and-send model.

71:29 for the OSDI dataset, and 50:50 for the SIGCOMM dataset. Second, we

saw that the datasets were extremely bursty when we used 1-ms windows: in both

datasets, white space almost always preceded another white space, and interference

almost always preceded more interference.

4.3 Creating a Baseline for Comparison

As a comparison for our model, we wanted to get an idea of the accuracy for a device

that sent data without any prediction model, but which followed the CSMA-CA

algorithm. In other words, a “sense-and-send” device that simply sensed the line

and sent its data when it detected a white space. We simulated such a device with

a program that scanned the window data and always “predicted” the next window

would match the current one. In a sense, we were testing the sparsity of white

spaces in the datasets. The timing and accuracy results for this model are shown in

Table 4.3.

We found that the sense-and-send model was both fast and accurate. It required

on average less than 0.0001 ms per prediction for the OSDI dataset, and less than

14



0.003 ms per prediction for the SIGCOMM dataset. The table shows that the model

produced a white-space genuine match rate (GMR) of 99% and 97%, respectively,

for the OSDI and SIGCOMM datasets, with nearly 100% and 98% total accuracy.

We calculated white-space GMR as 1 − # predicted collisions
# predicted white space

, i.e. 1− the false match

rate.

These were the results we expected. Since we chose windows that only lasted 1

ms, the OSDI dataset had on approximately 100% consecutive white space, and the

SIGCOMM dataset had approximately 98% consecutive white space — the same as

their white-space GMR. We discuss experiments with larger windows in chapter 4.7.2.

We knew that because the sense-and-send model only changed its predictions

when it first sensed white space or interference, it would always make the wrong

prediction for that window. Our goal then was to produce a model with fewer

collisions or greater white-space usage than the sense-and-send model. We calculated

white-space usage as # correctly-predicted white space
# predicted white space

4.4 Prediction With Direct Probability

The simplest model we considered was one that would make predictions based solely

on the data in the frequency tables. Our underlying assumption for this model was

that although the frequency tables were created from a single dataset, they would

still apply to to other datasets.

Therefore, we created a model that simply checked the chance of white space in

the frequency table and then randomly predicted white space with that probability

15



for each window. The pseudocode for these predictions is shown in Algorithm 1.

Note that the direct-probability model differs from sense-and-send model in 2

important respects:

I. The sense-and-send model senses for interference, whereas the direct-probability

model does not.

II. The direct-probability model makes probabilistic predictions based on the fre-

quency table, whereas the sense-and-send model deterministically predicts that

the next window will be the same as the current one.

Algorithm 1 Making predictions with the direct-probability model

Get P(white space) from the frequency table

Choose a random number between 0 and 1

if the number was less than P(white space) then

Predict white space for the next window

else

Predict interference for the next window

end if

4.5 Prediction with Bayesian Probability

For a slightly-more-complex model, we used Bayesian probability to predict whether

a window would be white space or not. Bayesian probability follows the equation:

16



P (a|b) =
P (b|a) · P (a)

P (b)

Therefore, we created a model that checked whether the current window was

busy or not, then checked the frequency table to obtain the parameters:

• a = an observation of white space

• b = the observation for the current window (whether it was white space or

interference)

The pseudocode for these predictions is shown in Algorithm 2.

Algorithm 2 Making predictions with the Bayesian probability model

Get the observation for the current window

Use the frequency table to calculate P(b | a) = (the count of the current observation

following a white space) / (total # of observations)

Use the frequency table to calculate P(a) = the probability of a white space

Use the frequency table to calculate P(b) = the probability of the current obser-

vation following any other observation

Calculate P(a | b) = P(b | a) * P(a) / P(b)

Choose a random number between 0 and 1

if the number was less than P(a | b) then

Predict white space for the next window

else

Predict interference for the next window

end if

17



4.6 Prediction with HMMs

We used a different method than [15] in an attempt to create a HMM that achieved

better results:

I. We used the frequency tables for our dataset to create initial estimates for our

transition and emission matrices, as shown in Figure 4.4.

II. We selected the first 1000 observations from the first file in our dataset to use

for training.1

III. We used those estimates with Matlab’s hmmtrain function [19] to get the

trained transition and emission matrices.

Transition estimate

P(white space) 1 - P(white space)

1 - P(white space) P(white space)

Emission estimate

P(consecutive white space) 1 - P(consecutive white space)

1 - P(consecutive interference) P(consecutive interference)

Table 4.4: The initial estimates for the transition (above) and emission (below)

estimates. Note the probabilities above come from the frequency table we created

before.

1We tested 100, 1000, 10000, and 100000 observations, and found that the algorithm converged

to the same result when using 1000 or more.
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0.99961 0.00039297

0.0014683 0.99853

1 1.2815E-17

7.9241E-14 1

Table 4.5: The transition (left) and emission (right) matrices for the HMM trained

on the OSDI dataset.

At the end of these steps, the hmmtrain function converged. We performed these

steps multiple times (more information below), and achieved roughly the same models

each time. An example of our transition and emission matrices for each dataset is

shown in Tables 4.5 and 4.6. The tables for each are close to the identity matrix,

implying that our HMM would almost always predict the same state it started with.

When making predictions, for each window, we used Matlab’s hmmdecode func-

tion [20] to first compute the the most-likely state for the window based on our

observation for that window. Then we computed the most-likely state for the next

window, and its observation. We used that observation as our next prediction. The

pseudocode for these predictions is shown in Algorithm 3.

Algorithm 3 Making predictions with the HMM

Get the observation for the current window

Use hmmdecode with our HMM to get the most recent posterior state

Multiply the posterior state matrix by the transition matrix

Multiply the new matrix by the emission matrix

Choose as our next prediction the most likely emission from the new matrix

19



0.9847 0.015298

0.018629 0.98137

1 3.3993E-12

3.0646E-11 1

Table 4.6: The transition (left) and emission (right) matrices for the HMM trained

on the SIGCOMM dataset.

4.7 Experiments

4.7.1 1-ms Windows

For each algorithm, we conducted 4 experiments:

I. We trained the model on the OSDI dataset and tested it on the OSDI dataset.

II. We trained the model on the OSDI dataset and tested it on the SIGCOMM

dataset.

III. We trained the model on the SIGCOMM dataset and tested it on the OSDI

dataset.

IV. We trained the model on the SIGCOMM dataset and tested it on the SIG-

COMM dataset.

In each experiment, we measured the total accuracy of the algorithm and the time

taken per prediction, then calculated the mean, median, and standard deviation of

those values across all window data files.

We began by running 10 trials of each experiment. For HMMs, this included

re-creating the transition and emission matrices in each trial.

20



4.7.2 Larger Windows

We saw that with 1 ms windows, we had hundreds and thousands of consecutive

white space (and interference) windows, which not only resulted in artificially-high

accuracy for the sense-and-send model, but also resulted in very simple HMMs.

Although we had chosen the smallest possible window size to achieve the greatest

accuracy with our models, we wanted to investigate the accuracy of our model with

larger windows. We reasoned that if our models proved to be accurate on larger

windows, we should use them with larger windows. That would increase efficiency

by reducing the number of predictions needed to send ZigBee data.

We created 4 variations of our SIGCOMM dataset with larger windows:

• 5 ms

• 10 ms

• 50 ms

• 100 ms

Then we repeated the previous experiments, but used only the models trained on

the OSDI dataset. We chose these models for two reasons:

I. We wanted to test our established models on a “new” dataset.

II. We saw in our initial results that training on the SIGCOMM dataset had only

a small effect on the HMM compared to the OSDI dataset.
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Chapter 5

Evaluation

5.1 Results With 1-ms Windows

We present the mean accuracy results for our experiments in Figure 5.1 and Ta-

bles 5.7, 5.8, and 5.9. In the plots, ‘Accuracy’ means the total accuracy measured as

the number of correct predictions over the total (regardless of whether they were

white space or interference), ‘GMR’ means the white-space GMR, calculated as

above, and ‘Usage’ means the white-space usage, also calculated as above.

We found that the results were almost identical across trials, with less than 0.01%

or less difference in numbers between each trial. Therefore, each number on the table

is the average of that measurement across all 10 trials.

We found that both the direct- and Bayesian-probability models performed sig-

nificantly worse than the baseline sense-and-send model, with accuracy as low as

65%. On the other hand, the HMM produced approximately the same accuracy as

the sense-and-send model, regardless of which dataset it was trained on, just as we

expected.
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In fact, the HMM predicted the same number of white spaces and collisions (i.e.

when we predicted a white space and found a busy window), and achieved the same

white-space GMR as the sense-and-send model.

However, the HMM took between 10-1000x longer to make predictions than the

sense-and-send model. The sense-and-send model took approximately 0.00002 ms

per prediction for the OSDI dataset and 0.003 ms for the SIGCOMM dataset, as did

the direct- and Bayesian-probability models, while the HMM took 0.03 ms for the

OSDI dataset and 0.06 ms for the SIGCOMM dataset.

By comparison, the direct probability model, while less accurate, was very fast.

Since it doesn’t rely on sensing the channel before making a prediction, it might be

possible to save battery power with the direct model depending on how long it takes

to sense the channel.

Having said that, HMM had higher white-space GMR and total accuracy than

either the direct- or Bayesian-probability models, with as much as a 30% increase

in accuracy on the SIGCOMM dataset. However, the direct-probability model ran

almost as quickly as the sense-and-send model, and the Bayesian-probability model

ran 10x faster than the HMM.

5.2 Results With Larger Windows

We show the results of our experiments with larger windows in Figure 5.2.

As window size grows, the sense-and-send model tends to continue to have the
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Figure 5.1: Accuracy results.
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Training dataset Testing dataset Model
Total Accuracy (%)

mean median std. dev.

OSDI

OSDI

Direct 98.15 98.22 0.68

Bayes 97.09 97.16 0.01

HMM 99.99 99.99 0.00

SIGCOMM

Direct 71.73 80.14 13.96

Bayes 64.43 72.95 23.97

HMM 98.99 99.27 0.60

SIGCOMM

OSDI

Direct 97.88 97.96 0.67

Bayes 97.17 97.24 00.78

HMM 99.99 99.99 0.00

SIGCOMM

Direct 69.97 75.05 15.12

Bayes 65.58 75.65 23.48

HMM 98.99 99.27 0.60

Table 5.7: Accuracy results for the prediction models. The first column is the

database used to train the models, and the second column is the database the models

were tested on.
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Training dataset Testing dataset Model
White-space GMR (%)

mean median std. dev.

OSDI

OSDI

Direct 67.59 69.16 8.07

Bayes 99.82 99.83 0.07

HMM 99.91 99.91 0.03

SIGCOMM

Direct 53.82 49.89 18.80

Bayes 97.82 97.83 1.21

HMM 97.99 98.00 1.09

SIGCOMM

OSDI

Direct 67.59 69.16 8.07

Bayes 98.94 99.04 0.41

HMM 99.91 99.91 0.03

SIGCOMM

Direct 53.89 49.84 18.80

Bayes 96.03 96.01 2.35

HMM 97.99 98.00 1.09

Table 5.8: White-space GMR for the prediction models.
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Training dataset Testing dataset Model
White-space Usage (%)

mean median std. dev.

OSDI

OSDI

Direct 69.95 69.95 0.00

Bayes 69.83 69.83 0.02

HMM 99.91 99.91 0.03

SIGCOMM

Direct 71.14 71.16 0.43

Bayes 69.76 69.62 1.01

HMM 97.99 74.23 16.38

SIGCOMM

OSDI

Direct 50.21 50.21 0.00

Bayes 49.21 49.21 0.02

HMM 99.91 99.91 0.03

SIGCOMM

Direct 50.25 50.20 0.61

Bayes 48.26 48.21 0.70

HMM 97.99 74.23 16.38

Table 5.9: White-space usage for the prediction models.
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best total accuracy and white-space GMR. At 100-ms windows, it is overshadowed

in white-space usage by our HMM, but in that scenario the HMM also has low

white-space GMR — in other words, a high number of collisions.
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Figure 5.2: Results for the experiments with larger window sizes.
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Chapter 6

Conclusion and Future Work

We investigated the use of HMMs in predicting white spaces in wireless traffic. We

implemented a sense-and-send model to simulate CSMA-CA, and 3 predictive mod-

els: a direct-probability model, a Bayesian-probability model, and a HMM. We com-

pared the models by total accuracy, white-space GMR, white-space usage, and time

per prediction. We showed that our HMM produced better accuracy and white-space

GMR than either the direct-probability or Bayesian-probability model, but no more

so than sense-and-send. And the HMM required more time than any of the other

models. On the other hand, direct-probability requiring the least of the predictive

models, making it possibly faster than sense-and-send while still having significant

accuracy.

As we scaled the size of the windows, sense-and-send continued to have the best

performance, with the 3 predictive models producing mixed results.

In the future, we would like to build a continuous HMM using the original data

from the pcap files in our datasets to predict when the next transmission will occur,

rather than whether the next 1-millisecond window will contain a transmission or
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not. We believe the bursty nature of network traffic that we observed would lend

itself well to this type of model.
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