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CHAPTER 1

Background and Introductions

“It always seems impossible until it’s done. ”

— Robert H. Goddard

1.1 Motivations

There are two major challenges that are associated with the fossil fuel energy. On the

one hand, energy is essential to human civilization and the world energy consumption

is increasing every year. According to a survey conducted by BP Inc. (BritishPetrol

2017), in the year 2015, the total energy consumption was 13147.3 (million ton oil

equivalent), whereas the number in 2005 was around 11000 (million ton oil equivalent).

The increase is about 19.5% over the past 10 years. Fossil fuel is our major source

of energy (In the U.S., it made up to 81.5% of total energy consumption in 2015

(EnergyIntelligenceAgency 2015)). Its storage is fixed in the earth, and the shortage

of fossil fuel energy poses a severe challenge. On the other hand, burning fossil fuel

leads to serious environmental problems. The mass production of CO2 is the major

cause of the greenhouse effect. Other harmful gases generated in this process, such

as SO2, can lead to acid-rain.

The photovoltaic effect, first discovered by the French scientist Becquerel in 1839,

is designed to be used as the mechanism to harvest solar energy in solar cells, which

has had a huge development in the energy market in recent years. According to

Solar Energy Industries Association (SEIA) (SolarEnergyIndustriesAssociation 2016),

there was a 95% growth in the solar energy market in 2016, which now makes solar

energy first place in new capacity additions among all kinds of sustainable energies.

However, most of the growth is from silicon based solar cells. Researchers have already

developed the next generation solar cells which are based on organic materials.

Organic photovoltaic (OPV) has been proven to have a faster development in

that its power conversion efficiency (PCE) doubled in the last 10 years, whereas it
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took silicon cells 40 years to achieve the same progress. Because of that, it will be

more promising once it comes on in the market. In the following sections, we will

first discuss structures of an OPV cell following a historical order, and then we will

concentrate on screening better donor materials based on the general PCE formula

and the Scharber model.

1.2 Designing OPV cell’s structures according to its operation principle

Since the discovery of the photovoltaic effect, there were many investigations done

to various materials, including both inorganic and organic materials to maximize the

PCE. However, because they didn’t find the right structure for organic material, the

development of OPV cells is delayed.

1.2.1 Simple structure

At the early years, most of the material developed are inorganic material and this is

due to the fact that the device made from inorganic material doesn’t require com-

plicated structures to have a high PCE. The simple structure of the device is a

sandwich-like structure with certain testing material in between the two electrodes.

However, organic materials still attracted more attention because they are cheap-

er and more flexible than traditional materials. The first organic molecule investi-

gated was anthracene by Pochettino (1906) and by Volmer (1913). The device made

in 1959 (Kallmann and Pope 1959) has a very small PCE (0.001%). In addition to

the anthracene, other organic materials were examined as well, including most of the

dye molecules, like porphyrin, methylene blue and biomolecules, like chlorophyll-a,

carotene etc. The more molecules people tested, the more results of tiny PCE were

reported. Overall, by the 1970s, 0.1% was the PCE limit that organic photovoltaic

structure could not go beyond (Spanggaard and Krebs 2004).

1.2.2 Heterojunction structure

A new structure, rather than the same structure inherited from the inorganic solar

cell was needed to reflect the uniqueness of organic material in order to have a high

PCE. In 1979, a breakthrough was achieved by Tang (Tang 1979) (Tang 1986) who

showed the PCE could go beyond 1% by designing a bilayer structure of two different

kinds of molecules together between two electrodes. From the physics picture, after

2



the absorption of a photon, an electron will be promoted from the Highest Occupied

Molecular Orbital (HOMO) to the Lowest Unoccupied Molecular Orbital (LUMO)

and leave behind it a hole in the HOMO. Then the electron and the hole form a quasi

particle called exciton. Lacking of an efficient way to split excitons into free charge

carriers is the main reason OPV devices in early days usually had a low PCE. This

is because, compared to the inorganic system, the excitons in organic system have a

stronger interaction, or binding energy, due to their low dielectric constant (Scholes

and Rumbles 2006). Therefore, it is more difficult for excitons in organic material

to dissociate by themselves. The mechanism Tang proposed was that the local field

near the interface of two molecules would aid the dissociation of local excitons, and

therefore, improve the performance.

According to current results, although some details are still under debate, some

of the major physics processes involved in the photoinduced charge generation are

(Hedley, Ruseckas, and Samuel 2016) (Lu et al. 2015) (Dou et al. 2013) (Derouiche

and Djara 2007):

• Exciton formation in the bulk;

• Exciton diffusion;

• Exciton dissociation and Charge-transfer complex formation;

• Formation and collection of free charge carriers;

The first bottleneck of improving PCE lies in the dissociation of excitons. Be-

cause of the low dielectric constant, the excitons formed in organic system have a

binding energy (∼ 0.3 eV) much larger than those formed in inorganic system (∼ 10

meV); therefore, it is difficult to dissociate by thermal excitations (Dou et al. 2013).

However, once an exciton is formed, it is energetically favorable for the electron to

further relax into a lower LUMO. So if another kind of molecule (called acceptor)

with a lower LUMO was introduced, then an electron from the donor molecule could

delocalize into a spatially different location, weakening the coulomb interaction in

the exciton, therefore achieving a dissociation. The same would be true for a hole,

but this time it would require a suitable energy difference between HOMOs from the

donor molecule and the acceptor molecule. Although the details of the above process

are still under debate, the exciton dissociation is more efficient when a donor and an

acceptor have a suitable HOMOs and LUMOs.
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Based on this operation principle, structures could be further optimized into a

so-called ”bulk heterojunction” structure (shown in Figure 1.1), first proposed by

Heeger’s group (Yu et al. 1995), to increase the area of the interface between two

molecules for excitons to split, leading to a higher PCE. In this new structure, donor

molecules and acceptor molecules are randomly mixed together, or interpenetrated

into each other’s layer. Compared to the bilayer structure, where only excitons near

the interface of the two layers would have chance to dissociate, bulk heterojunctions

have different phases everywhere. So excitons in the bulk heterojunction, once gen-

erated and randomly diffused to any directions, have a better chance to be split into

free charges and therefore, the OPV cell would have a high PCE.

Figure 1.1: Illustration of the bilayer structure (top) and the bulk hetero-

junction structure (bottom).

1.3 Improving PCE by investigating the donor materials

Once structure is decided (bulk heterojunction), it is important to select a good pair

of donor and acceptor material that collaborate well to lead to a high PCE. In re-

cent years, different acceptor and donor materials have been investigated to further

improve the PCE. Among different acceptor materials, fullerene and its derivative

(PC61BM and PC71BM) have a very high electron affinity. According to Yu et
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al.(1994) and Lee et al.(1993), if fullerene and its derivative (PC61BM and PC71BM)

are used as the acceptor material, the photoconductivity increases by an order of mag-

nitude than pure MEH-PPV (poly((2-methoxy-5-(2’-ethylhexoxy)-p-phenylene) viny-

lene)). Also, with fullerene the charge separation time is measured to be less than

100 fs (Zerza et al. 2001). So, fullerene and its derivative (PC61BM and PC71BM)

are well recognized to be used as the acceptor material. The structure of bulk hetero-

junction and acceptor material of fullerene are currently used to ensure an efficient

exciton dissociation.

Assuming the exciton dissociation is not the bottleneck, from the general defini-

tion of the efficiency and the electricity power (Nelson 2003) :

η =
JSCVOCF

Pin

(1.1)

where JSC is the short-circuit current, VOC is the open-circuit voltage, F is the

filling factor and its typical value to be used is 0.65, Pin is the input power to a solar

cell, which under the standard AM 1.5 solar radiation spectra would take the value

of 1000 W/m2.

From the formula, there are some ways to improve the PCE:

• Control of morphology through varying the side chain or solvent to achieve an

ideal deposition (Rumer and McCulloch 2015) (Kim et al. 2016);

• Narrow the bandgap to increase JSC ;

• Increase the ionization potential of donor materials to deepen VOC ;

Here we concentrate on the later two points, namely JSC and VOC .

1.3.1 Short-circuit current

The JSC is directly connected to the optical bandgap through:

JSC =

∫
EQE(ω)× FAM1.5(ω)dω (1.2)

where the EQE(Ω) is external quantum efficiency, FAM1.5 is the photon flux

under the standard AM 1.5 solar radiation spectra.

From the definition, the optical bandgap is Eg = ELUMO−EHOMO, which means

the optical bandgap is decided by both HOMO and LUMO. Since HOMO is related
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to VOC , it is more desirable if we could adjust the molecule’s LUMO only or adjust

the molecule’s HOMO only. One way of doing this is using the push-pull design.

In a push-pull design, electron donating groups (EDGs) and electron withdrawing

groups (EWGs) are used to modify the molecule, and there is a good chance that

only HOMO or LUMO would be adjusted (Selvaraju et al. 2016a). The set of EDG

and EWG groups are growing. Aside from their effects on HOMOs and LUMOs,

some EDG or EWG also have certain steric effects that could be used to control

the morphology. Also, substituent groups like fluorine could effect solubility of the

molecule, although it is a strong EWG. This means, choosing a suitable EDG or EWG

for a target molecule often needs extensive experiments or theoretical investigations

to find out its consequences.

Since the photovoltaic is essentially an energy conversion process, using thermo-

dynamic principles, Shockley and Queisser (Shockley and Queisser 1961a) derived the

famous Shockley-Queisser limit for a single junction solar cell under standard AM 1.5

solar radiation spectra to be 33.7%. And to reach this limit, optical bandgap should

be around 1.4 eV. This is a value that some of the donors used already reached (Bris-

set et al. 1994) (You et al. 2013) (Liu et al. 2014). Overall, when employing push-pull

design, molecules could be constructed with a satisfying optical bandgap.

1.3.2 Open-circuit Voltage and the tandem structure

To have a higher PCE, on one hand, donor’s and acceptor’s LUMO should match

each other to minimize the energy loss in the hopping process. On the other hand, al-

though a larger VOC is preferred, VOC can not be arbitrarily deep. Otherwise it would

affect the narrow bandgap. Thus, once the cell’s structure and the acceptor materi-

al are decided (bulk heterojunction and PC61BM , respectively), the VOC cannot be

arbitrarily larger. To explore the interplay between those factors in bulk heterojunc-

tion, Scharber et al.(2006) investigated many cells with high PCEs and summarized

a semi-empirical model, or the Scharber model, to guide choices of donors. This

model maps a pair of donor’s bandgap and HOMOs with the corresponding PCE

performance of cells.

Yet another way to have a higher PCE is to adopt a new structure, which is called

tandem structure. It could be used to yield a higher PCE even beyond the Shockley-

Queisser limit. The idea of the tandem structure is to select different donor molecules

according to their absorption spectra such that the combination of them has the
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potential to achieve a full absorption of the solar spectrum. By arranging one donor

into one layer forming a junction, this multi-layer structure (multi-junctions), or the

so-called “tandem structure”, could raise the total VOC . This is essentially equivalent

to the case where multiple “batteries” connected in serial; therefore, it should have

a higher open-circuit voltage than individual junction, despite the voltage loss at the

interface. Some authors estimated the efficiency of such a device and concluded that,

if fabricated properly, it could yield a high PCE (Dennler et al. 2008) and even with

currently available material, the PCE could exceed 14% (Li et al. 2013).

1.3.3 The Scharber model

The origin of the open-circuit voltage in the organic material was not clear in early

years; therefore, it hindered further development of organic solar cells. To understand

the open-circuit voltage better, several models have been put forward and the most

informative model, which provides researchers with design rules that makes PCE

increase from 5% to 11%, was the Scharber model.

Background

Before diving into the Scharber model, an overview of previous models is beneficial.

The first model for the organic bulk heterojunction was Metal-Insulator-Metal Model

(MIM), which was a successful model for thin film cells. However, some predictions

from MIM model were not supported by experimental results. For example, the

VOC was predicted to be independent of the intensity of incident photon flux, but

experiments showed the opposite (Blakesley and Neher 2011). So this model is not

quite successful for organic bulk heterojunction.

As a first step toward the physics picture inside organic solar cells, we need to

be aware of two fundamental driving forces (Nelson 2003): the concentration gradient

of charge carriers and the electric fields built up inside. Thus, for the bulk hetero-

junction, which is thick enough to maintain an effective screening of the electrical

field and could re-generate enough excitons to maintain a concentration gradient, the

first factor dominates; whereas, for a thin film device (< 100 nm), which is like the

case in inorganic solar cells, the second force dominates. Therefore, if we assume

the incoming photon flux is constant, the VOC in organic material should rely on the

concentration gradient, which is partly decided by the bandgap of molecules inside

the bulk heterojunction, if we consider the external quantum efficiency is 100%.
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In 2004, Gadisa et al.(2004) undertook a control study, in which they constructed

six OPV devices with different donor molecules. But all devices were fabricated

under the same conditions and other factors, such as the anode material and cathode

material are also the same. In their results, six different OPV devices had six different

VOC and they attributed this variation to the different oxidation potentials of six donor

molecules.

Coakley and McGehee (2004) analyzed the performance of the bulk heterojunc-

tion, assuming an external quantum efficiency of 100%. Since charge carriers gener-

ated are from harvested photons, their energy should be equal to the bandgap energy.

However, in order to split organic excitons, there must be an energy offset between

donor’s LUMO and acceptor’s LUMO, which results in an energy loss when charge

carriers are hopping from donor to acceptor. And this energy loss should be subtract-

ed when we calculate the final energy converted to the electrical energy. Figure 1.2

illustrated this idea. Assuming this energy loss is 1eV (from hopping of both electrons

and holes), they found out the maximum PCE that a bulk heterojunction solar cell

can have is 15% and this is achieved when bandgap is 1.75 eV.

Figure 1.2: Illustration of energy levels of a donor-acceptor system.

The Scharber model

From previous studies, the VOC , donor’s LUMO and acceptor’s LUMO show corre-

lations but it is not clear how they are correlated in organic material. In order to

explore the relations, Scharber et al.(2006) conducted a survey study based on a col-

lection of PCE data from 26 different donor molecules (They all used PC61BM as the

acceptor, so the following discussions apply to OPV devices that use PC61BM as their

acceptor). He put together the open-circuit voltage and the onset of oxidation data

and he found the linear regression curves passed through -140 mV on the oxidation
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axis, which corresponds to an energy level of 4.6 eV. Knowing the LUMO of PC61BM

is -4.3eV, we could deduce the following empirical formula for the VOC :

VOC =
1

e
(|EHOMO

DONOR| − |ELUMO
PC61BM |)− 0.3V (1.3)

where e is the elementary charge, E is the HOMO or LUMO energy level and is

in the unit of eV and 0.3 is a parameter.

If we neglected the absorption from the acceptor molecule, PC61BM, then the JSC

of a given OPV device would be decided by the donor’s bandgap only. Then according

to Equation 1.1, the PCE of a given OPV device could be calculated if we knew

the VOC and the JSC (assuming PC61BM is the acceptor). Based on this principle,

Scharber et al.(2006) further plot a PCE contour map with different combinations of

donor’s bandgap and LUMO, which shows the maximum PCE we could have under

model assumptions is 11%. Later, in 2013, Scharber et al.(2013) used the same model

trying to predict the maximum PCE under the current fabrication limit, whose filling

factor is 75% and external quantum efficiency is 80%. Their new result was 15%.

Nevertheless, the two maximum PCE values correspond to the same bandgap of 1.45

eV.

One of the design rules from the the Scharber Model is that the PCE value de-

pends on the donor’s LUMO level more than the donor’s bandgap. This conclusion

can be drawn by noticing the fact that PCE of a given donor’s LUMO varied more

than the PCE of a given donor’s bandgap. Another design rule is from ”0.3” param-

eter in the formula, which shows the difference between the donor’s HOMO and the

acceptor’s LUMO should be at least 0.3 eV apart to have a non-zero value of VOC .

A clue from the Scharber Model for how to construct a high PCE donor is the

following. Once the acceptor, PC61BM, is decided, we should engineer the donor to

let it fulfill requirements from the Scharber model to have the maximum PCE. The

maximum PCE is reached when bandgap is 1.45 eV, although there are two way to

achieve it: one is to raise the HOMO and the other is to lower the LUMO; So a better

strategy is to first lower the donor’s LUMO to around 0.3 eV above the acceptor’s

LUMO, which is just enough to split an exciton (since exciton binding energy is 0.1 to

0.2 eV) and then adjust the donor’s HOMO to make the bandgap closer to 1.45 eV.

Then the energy loss from the two sources will be minimum, hence the PCE would

be maximum (shown in Figure 1.2).
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1.4 Outline of the dissertation

This dissertation aims at designing donors used for the small molecule organic pho-

tovoltaics. One way we used was bio-inspired design based on melanin by performing

Density Functional Theory (DFT) and Time-Dependent DFT (TD-DFT) calculation-

s (chapter 3) and the other way we used was high throughput screening (HTS) on

donors for the tandem structure from a database of virtual molecules (chapter 4).

However, to validate the functional to be used in the DFT calculations, a bench-

mark study on functionals was conducted and presented in chpater2. Please refer to

Appendix A for a short introduction on DFT/TD-DFT.

Chapter 2 benchmarks the DFT/TD-DFT functionals to select the best per-

formed functional that could predict OPV properties on molecules from melanin

family better;

Chapter 3 investigates OPV donor molecules consisting of a series of organic

molecules inspired by melanin structure using push-pull design principle;

Chapter 4 combines DFT/TD-DFT and high throughput virtual screening method

to select better donor molecules for the tandem solar cell structure;

Chapter 5 presents the conclusions and outlook;

Appendix A gives a short introduction on DFT/TD-DFT and material informat-

ics;

Appendix B lists the complete fitting parameters from benchmarking study in

chapter 2.
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CHAPTER 2

Benchmarking DFT/TD-DFT Functionals for Frontier Orbital Energies

Predictions on Organic Photovoltaic Molecules

“There are two possible outcomes: if the result

confirms the hypothesis, then you have made a

measurement. If the result is contrary to the

hypothesis, then you have made a discovery”

— Enrico Fermi

2.1 Introduction

Efforts made toward finding high-performance organic materials with exceptional

electronic and optical properties have shown promising results. In just the last few

years the performance of organic light-emitting devices (Tsai et al. 2015) (Pan et al.

2016) (Zhao et al. 2017a), organic field effect transistors (Yuan et al. 2014) (Lim et

al. 2017) (Luo et al. 2014) (Xiang et al. 2016), and organic photovoltaic cells (Zhao

et al. 2017b) (Zhang et al. 2017) (Li et al. 2017) have advanced tremendously. As

reviewed by Liu et al.(Liu et al. 2016), some design rules, including alternating Donor-

Acceptor units and fused heterocycles (Elsherbini, Hamama, and Zoorob 2017), were

summarized. Given the vast ocean of possible organic compounds (Reymond 2015),

the computational search for materials with optimal properties capable of filling the

appropriate semiconductor niches is ongoing (Curtarolo et al. 2012) (Kanal et al.

2013a) (Hachmann et al. 2014) (Bachman, Curtiss, and Assary 2014) (Phillips et al.

2014) (Er et al. 2015) (Qu et al. 2015) and important. These computational efforts

towards the search and design of organic electronics rely on the use of electronic

structure calculations that can efficiently compute molecular structure, molecular

arrangements, charge transport, photoexcitations, and electron-phonon interactions.
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A. Why do we need frontier orbital energies in designing new organic

semiconductors

One important metric of the organic photovoltaic (OPV) performance is the power

conversion efficiency (PCE) that describes the ability of converting solar energy into

electrical energy. This factor is calculated using the short-circuit current (JSC) and

the open-circuit voltage (VOC) (Nelson 2003). Theoretically, the (VOC) can be calcu-

lated using the Highest Occupied Molecular Orbital (HOMO) (Scharber et al. 2006)

and JSC can be calculated from the optical bandgap and solar spectrum. Then the

photovoltaic performance of a molecule can be predicted after acquiring the informa-

tion of its frontier orbital energies.

B. HOMO/LUMO values calculated from DFT/TD-DFT calculations

However, the size of the studied system is limited by the method chosen for quan-

tum chemistry calculation, where a balanced consideration of both calculation speed

and accuracy is usually important. Density functional theory (DFT) (Kohn and

Sham 1965b) has been extensively used by quantum chemists for its controllable

computational accuracy and low computational cost in obtaining electronic struc-

tures and electronic properties (Parr 1982). Yet, when calculating the energy levels of

the frontier orbitals, there is a need not only for economical results but also precision

in predicting the properties of the organic systems in question. However, designed

molecules in the optoelectronic field often have an extended conjugation structure and

intramolecular charge-transfer excitations, both of which, as we know, cannot be ade-

quately modeled by conventional exchange-correlation functionals and are challenging

problems in the DFT (Dev, Agrawal, and English 2012a) (Cohen, Mori-Sánchez, and

Yang 2011) (Körzdörfer and Bredas 2014) (Jain, Shin, and Persson 2016) as well as in

Time dependent DFT (TD-DFT) (Dreuw, Weisman, and Head-Gordon 2003) (Cai,

Sendt, and Reimers 2002) (Grimme and Parac 2003). So it is better to first perform

a benchmark study of functionals before diving into the study of molecule systems.

C. Previous work on benchmarking HOMO predictions from DFT

Zhang et al.(Zhang and Musgrave 2007) investigated the accuracy of predicted or-

bital eigenvalues by using 13 functionals with a set of 27 molecules. Since HOMO and

LUMO have correspondence with the ionization potential and the electron affinity, re-

spectively (Perdew et al. 1982) (Stowasser and Hoffmann 1999), Zhang and co-authors
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compared the experimental values with calculated results from DFT/ TD-DFT. Also,

after applying a simple linear correction to the calculated results, predicting errors

are systematically reduced. They also concluded that a certain portion of the HF

energy was critical to the accuracy of the HOMO prediction (KMLYP with 55.7%

HF and BH&HLYP with 50% HF had the best accuracy) using DFT. McCormick

and co-authors (McCormick et al. 2013) examined the accuracy of orbital energy

predictions of polymers with different lengths. They found the error of the HOMO

energy predictions from B3LYP grew larger when the length of the molecule exceeded

certain length.

In a recent benchmark paper by Szczepanik et al.(2017), who used a set of small

molecules having different conjugation lengths, Szczepanik et al.(2017) found the

HOMO predictions by conventional hybrid functionals were less accurate than long-

range corrected functionals. They attributed this discrepancy to the wrong long range

behavior of the conventional functionals. Of all the functionals they tested, one of

the range separated functionals, wB97xD, gave the best performance.

D. previous work on benchmarking Gaps from TD-DFT

One of the schemes to predict the optical bandgap is from the first excitation energy

given by TD-DFT. In the benchmark work led by Zhang et al.(Zhang and Musgrave

2007), they were able to calculate ten gap results from both DFT and TD-DFT

and compared them with their experimental counterparts. They found TD-DFT

gave better accuracy in general. For optical bandgap modeling, excitation energies

obtained from TD-DFT have been proven to be more accurate than the difference

of frontier orbital energies from DFT, as concluded by Zhang et al.as well as other

authors (Leang, Zahariev, and Gordon 2012) (McCormick et al. 2013).

For valence state predictions, TD-DFT with global hybrid functionals is capable

of producing a small error ( < 0.26eV ∼ 0.28eV) as examined by Peach et al.(Peach

et al. 2008) (Mean Absolute Error (MAE): B3LYP=0.22eV), Adamo et al.(Adamo, S-

cuseria, and Barone 1999) (MAE for PBE0 is 0.26eV). Leang et al.(Leang, Zahariev,

and Gordon 2012) found MAE: B3LYP=0.26eV, X3LYP=0.26eV, PBE0=0.30eV,

M06=0.25eV. However, for charge-transfer excitations that can be depicted qualita-

tively by the overlap quantity Gamma (Peach et al. 2008), Peach et al.found that er-

rors arising from B3LYP and PBE predictions increase when Gamma decrease (Peach

et al. 2008).
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Range separated hybrid (RSH) functionals treat short-range and long-range in-

teractions differently and in general should be able to improve the prediction accuracy

for charge transfer excitations. So as a general solution to model molecules with long

conjugation lengths and charge transfers, RSH is favored by several benchmarking

works (Jacquemin et al. 2007) (Lange, Rohrdanz, and Herbert 2008) (Jacquemin et

al. 2008). However, studies also found that the accuracy of RSH varied greatly be-

tween different molecules. The factor responsible may be the charge transfer distance

(Nguyen, Day, and Pachter 2011a) or the number of cyclic structures (Szczepanik

et al. 2017) or molecule families (Jacquemin et al. 2011). And there are also studies

pointing out that benchmarking results from model compounds may not be accurate

enough. Therefore, some authors begin to tune the ω parameter themselves to give

better results for their molecule system.

Research Goal

In this article, we applied DFT and TD-DFT to a set of twenty-nine molecules in

the organic semiconductor field and report the accuracy and performance of sever-

al exchange-correlation functionals (LDA, hybrid-LDA, GGA, hybrid-GGA, mGGA,

hybrid-mGGA and RSH, as listed in Table 2.2) for calculations of frontier orbital

energies. After validation studies from k-fold cross validation, we also applied correc-

tions from the linear regression to the DFT/TD-DFT results. Prediction errors from

with and without linear correction were compared.

2.2 Computational method

DFT can be used to obtain, within a reasonably correct range, the energy levels for

occupied states (Kang and Musgrave 2001a), and is what we used to obtain the value

of the highest occupied molecular orbital (HOMO). We obtained the values of the first

excitation energy from TD-DFT and we considered it to be the bandgap (Runge and

Gross 1984a) (Marques and Gross 2004). The lowest unoccupied molecular orbital

(LUMO) is then determined from the addition of HOMO and the first excitation en-

ergy. To benchmark our results, we carried out a linear correlation study between the

calculated values (Kang and Musgrave 2001a) of the EHOMO/ Egap/ ELUMO energies

and their counterparts found experimentally from cyclic voltammetry measurements.

We carried out DFT calculations with the Gaussian 09 software package (Gaus-

sian09 Revision C.01 ). Our exhaustive study examines the performance of the func-
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tionals listed in Table 2.2. We found the optimal geometry of each molecule using

each of the exchange correlation functionals mentioned above, and with the the 6-

311+G(d,p) level basis set. We calculated the energy of the molecular orbitals using

again the appropriate exchange correlation functional and also at the 6-311+G(d,p)

level basis set which is sufficient for our calculations. Based on the optimized ground

state geometry, Time-dependent DFT (TD-DFT) calculations for singlet electronic

configuration were then applied to find the first excitation energies. The first twenty

states were used to acquire an accurate result for energy.

Figure 2.2 shows the distribution of the molecule set that we used in this study.

Some of them have a relatively narrow bandgap and a deep HOMO, which favors their

photovoltaic application. Also, some of these molecules contain Silicon and Selenium

atoms, which could improve their performance. In addition, some of them have

extended cyclic structures that are also favored by organic electronic applications.

To conclude, molecules in this set represent the novel synthesized molecules in the

organic semiconductors field.

Additionally, since one of our purposes is to make better predictions on HOMO,

bandgap and LUMO values, we further constructed linear regression models based

on the results from the functionals. Generally, linear regression is one of the simple

models, which is used by many authors: e.g. Zhang and Musgrave in molecular orbital

energy prediction (Zhang and Musgrave 2007), Sharma et al.in NMR chemical shifts

(Sharma, Zhang, and Ohlin 2016), and XM Duan et al.in the heat of formation (Duan

et al. 2004). Along with a linear regression model, the k-fold cross validation method

(k=8) was used, which is often used to evaluate and compare the performance of

predictive models in machine learning field (Cawley and Talbot 2010), and is also

used to validate the parameters we summarized for the linear model.

In a k-fold cross validation (k=8 in our study), the molecule set was randomly

divided into eight groups and each contained a similar number of molecules. Of

the eight groups, one group served as a validation set while the remaining seven

were used as the training set. The regression formula from the seven groups was

validated on the validation set by calculating mean square error (MSE, as shown in

Equation (2.1)). Then, this process would repeat again except this time, another

group would be picked up as the validation set, while the remaining seven groups

were used as the training set. Because we had eight groups, eight different MSEs

would be averaged to have one final MSE. Although molecules were randomly put

into 8 groups, to avoid accidental bias in the group division scheme and therefore to
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have a more accurate estimation on the MSEs and regression parameters, we surveyed

75,000 different random divisions. An average MSE of 75,000 MSEs raised from those

divisions was calculated to represent the linear model performance on the results from

that functional, and it was also a measure of validity of applying a linear model to

the results.

MSE =
1

n

n∑
i=1

(yexperiment
i − ypredictioni )2 (2.1)
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Figure 2.1: Structures of the molecules used in this study. ”X”, ”Y”,

”Ar” and ”R” were explained in Table 2.1. The molecules were randomly

divided into the training set and the validation set was used in k-fold cross

validation process.
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Figure 2.2: LUMO-Gap distributions of molecules in the training and

validation set. Molecules are identified in the graph by their label. Red:

hexagon that contains one molecule; Deep red: hexagon that contains two

molecules; Blue: hexagon that contains more than two molecules.

Table 2.1: The chemical formula, SMILES and references for molecules

set.

ID Variations
Chemical

Formula
SMILES Reference

M1a X = S

Ar = C6H4

C32H20O2N4S2 OC(=O)\C(=C\C1=CC=C(
S1)C2=CC=C(C3=CC=C(C

=C3)N(C4=CC=CC=C4)C5

=CC=CC=C5)C6=NSN=C26

)C#N

(Velusamy et al.

2005)

M1b X = Se

Ar = C6H4

C32H20O2N4SSe OC(=O)\C(=C\C1=CC=C(
S1)C2=CC=C(C3=CC=C(C

=C3)N(C4=CC=CC=C4)C5

=CC=CC=C5)C6=N[Se]N=

C26)C#N

Continued on the next page
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Table 2.1 – Continued from the previous page

ID Variations
Chemical

Formula
SMILES Reference

M1c X = S

Ar = C4H2S

C30H18O2N4S3 OC(=O)\C(=C\C1=CC=C(
S1)C2=CC=C(C3=CC=C(S

3)N(C4=CC=CC=C4)C5=C

C=CC=C5)C6=NSN=C26)C

#N

M1d X = Se

Ar = C4H2S

C30H18O2N4S2Se OC(=O)\C(=C\C1=CC=C(
S1)C2=CC=C(C3=CC=C(S

3)N(C4=CC=CC=C4)C5=C

C=CC=C5)C6=N[Se]N=C2

6)C#N

M2a X = CN C37H23O3N2SBr OC(=O)C1=CC=C(C=C1)N

2C(=O)\C(=C\C3=CC=C(
S3)C4=CC=C(C=C4)N(C5

=CC=CC=C5)C6=CC=CC=C

6)C7=CC(=CC=C27)Br

(Tingare et al.

2013)

M2b X = N C36H22O3N3SBr OC(=O)C1=NC=C(C=C1)N

2C(=O)\C(=C\C3=CC=C(
S3)C4=CC=C(C=C4)N(C5

=CC=CC=C5)C6=CC=CC=C

6)C7=C2C=CC(=C7)Br

M3 C62H74O2N2S3 OC(=O)\C(=C\C1=CC=C(
S1)\C=C\C2=CC=C(S2)\
C=eC\C3=CC=C(S3)C4=C
C=C(C=C4)N(C5=CC=CC=

C5)C6=CC=CC=C6)C#N

(Aljarilla et al.

2012)

M4a Ar = CH C32H23ON3S COC(=O)C(C#N)C1=NC(=

C(CC2=CC=C(C=C2)N(C3

=CC=CC=C3)C4=CC=CC=C

4)S1)C5=CC=CC=C5

(Esteban et al.

2011)

Continued on the next page
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Table 2.1 – Continued from the previous page

ID Variations
Chemical

Formula
SMILES Reference

M4b Ar = C4H2S C36H25ON3S2 COC(=O)C(C#N)C1=NC(=

C(CC2=CC=C(S2)C3=CC=

C(C=C3)N(C4=CC=CC=C4

)C5=eCC=CC=C5)S1)C6=

CC= CC=C6

M5a X = S C10H6S2 S1C=CC2=CC3=C(C=CS3)

C=C12

(Hideaki Ebata

et al. 2007)

M5b X = Se C10H6Se2 [Se]1C=CC2=CC3=C(C=C

[Se]3)C=C12

M6a R = H C26H10O2N2S5F6 CCC1=C(SC(=C1CC)C2=C

C=C(C3=C(CC)C(=C(S3)

C4=CC=C(S4)C(=O)C(F)

(F)F)CC)C5=NSN=C25)C

6=CC=C(S6)C(=O)C(F)(

F)F

(Steinberger

et al. 2011)

M6b R = C2H5 C34H26O2N2S5F6 FC(F)(F)C(=O)C1=CC=C

(S1)C2=CC=C(S2)C3=CC

=C(C4=CC=C(S4)C5=CC=

C(S5)C(=O)C(F)(F)F)C

6=NSN=C36

M7a C22H18N4S2 CC1=NC2=C(N=C1C)C(=C

3N=C(C)C(=NC3=C2C4=C

C=CS4)C)C5=CC=CS5

(Li et al. 2011)

M7b C18H12N4S3 CC1=NC2=C(C3=CC=CS3)

C4=NSN=C4C(=C2N=C1C)

C5=CC=CS5

M8a R = t− butyl C37H39O4N COC(=O)C1=CC2=C(C#C

C3=CC=C(C=C3)C(C)(C)

C)C(=C(OC)C(=C2[N]1C

)C#CC4=CC=C(C=C4)C(C

)(C)C)OC

(Selvaraju et al.

2016b)

Continued on the next page
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Table 2.1 – Continued from the previous page

ID Variations
Chemical

Formula
SMILES Reference

M8b R = N(CH3)2 C37H33O4N3 COC(=O)C1=CC2=C([N]1

C)C(=C(OC)C(=C2C#CC3

=CC=C(C=C3)N(C)C)OC)

C#CC4=CC=C(C=C4)N(C)

C

M8c R = F C29H21O4F2 COC(=O)C1=CC2=C(C#CC

3=CC=C(F)C=C3)C(=C(O

C)C(=C2[N]1C)C#CC4=C

C=C(F)C=C4)OC

M8d R = CN C31H21O4N3 COC(=O)C1=CC2=C(C#CC

3=CC=C(C=C3)C#N)C(=C

(OC)C(=C2[N]1C)C#CC4

=CC=C(C=C4)C#N)OC

M8e R = NO2 C29H23O8N3 COC(=O)C1=CC2=C(N]1C

)C(=C(OC)C(=C2C#CC3=

CC=C(C=C3)[N](=O)=O)

OC)C#CC4=CC=C(C=C4)[

N](=O)=O

M8f R = H C29H23O4N COC(=O)C1=CC2=C(C#CC

3=CC=CC=C3)C(=C(OC)C

(=C2[N]1C)C#CC4=CC=C

C=C4)OC

M8g R = OCH3 C31H27O6N COC1=CC=C(C=C1)C#CC2

=C3C=C([N](C)C3=C(C#

CC4=CC=C(OC)C=C4)C(=

C2OC)OC)C(=O)OC

M9 C26H38O3S CCCCC(CC)COC1=C2C=CS

C2=C(OCC(CC)CCCC)C3=

C1OC=C3

(Aeschi et al.

2013)

Continued on the next page
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Table 2.1 – Continued from the previous page

ID Variations
Chemical

Formula
SMILES Reference

M10a X = O

Y = S

C32H82OSSi2 CC(C)[Si](C#CC1=C2C=

CSC2=C(C#C[Si](C(C)C

)(C(C)C)C(C)C)C3=C1O

C=C3)(C(C)C)C(C)C

(Aeschi et al.

2013)

M10bX = O

Y = O

C32H82O2Si2 CC(C)[Si](C#CC1=C2C=

COC2=C(C#C[Si](C(C)C

)(C(C)C)C(C)C)C3=C1O

C=C3)(C(C)C)C(C)C

M10c X = S

Y = S

C32H82S2Si2 CC(C)[Si](C#CC1=C2C=

CSC2=C(C#C[Si](C(C)C

)(C(C)C)C(C)C)C3=C1S

C=C3)(C(C)C)C(C)C

M11a X = S C18H10S2 S1C2=CC=CC=C2C3=CC4=

C(C=C13)C5=C(S4)C=CC

=C5

(Hideaki Ebata

et al. 2007)

M11bX = Se C18H10Se2 [Se]1C2=CC=CC=C2C3=

CC4=C(C=C13)C5=C([Se

]4)C=CC=C5

M12 C13H13O4NBr2 COC(=O)C1=CC2=C(Br)C

(=C(OC)C(=C2[N]1C)Br

)OC

(Selvaraju et al.

2016b)
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Table 2.2: Functionals examined in this study. If two HF percentiles are

presented, the first one is for the short range and the second one is for the

long range.

Categories Names HF percentage References

LDA SVWN 0.0% (Slater 1963) (Vosko, Wilk, and

Nusair 1980)

Hybrid-LDA KMLYP 55.7% (Kang and Musgrave 2001b)

Pure GGA PW91 0.0% (Perdew et al. 1992) (Perdew and

Wang 1992) (Perdew, Burke, and

Wang 1996)

Pure GGA BLYP 0.0% (Becke 1988) (Lee, Yang, and

Parr 1988) (Miehlich et al. 1989)

hybrid GGA B3LYP 20.0% (Becke 1993) (Lee, Yang, and

Parr 1988) (Miehlich et al. 1989)

(Stephens et al. 1994)

hybrid GGA PBE0 25.0% (Adamo and Barone 1999)

pure mGGA TPSS 25.0% (Tao et al. 2003)

hybrid mGGA M06-2x 54.0% (Zhao and Truhlar 2008b)

Range-separated ω B97XD 22.2%; 100% (Chai and Head-Gordon 2008)

Range-separated cam-B3LYP 19.0%; 65.0% (Yanai, Tew, and Handy 2004)

Range-separated HSE06 25%; 0.0% (Heyd, Scuseria, and Ernzer-

hof 2003a) (Heyd, Scuseria, and

Ernzerhof 2006)

Range-separated LC-ωPBE 0.0%; 100.0% (Vydrov and Scuseria 2006) (Vy-

drov, Scuseria, and Perdew 2007)

(Vydrov et al. 2006)

2.3 Results and Analysis

In the first part of this section, we will look into the HOMO, Gap and LUMO calcula-

tions directly from DFT/TD-DFT functionals that are coming from three categories,

namely pure functionals, global hybrid functionals, and range separated functionals

(RSHs), respectively. Then, in the second part, we will investigate improving the

accuracy by applying additional linear corrections to the results. This was done by
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first justifying the linear correction by performing k-fold cross validations and second

comparing the percentage errors of both before and after applying linear corrections.

2.3.1 Calculations from DFT/TD-DFT functionals

Calculations on HOMOs from DFT

The Pure Functionals Figure 2.3 shows the predictions on the set of molecules

from four pure functionals, including SVWN, BLYP, PBE and TPSS. Data points

from SVWN, an LDA level functional, rest mostly on the diagonal line. Calculated

values in the graph have nearly no shift when compared to experimental values in both

of the horizontal and vertical directions. The results from GGA functionals (BLYP,

PBE), however, are located mostly below the diagonal line, showing a horizontal shift

compared to the experiments. This shift indicates the calculated HOMOs from GGA

level are larger than experimental values. TPSS is in the mGGA (meta-GGA) level

and most of its results are still below the diagonal line. The horizontal offset from

TPSS still shows that calculated results are larger than experiments. Overall, pure

LDA shows a better correlation between calculated results and experimental values,

while predictions from pure GGA and pure mGGA show deeper HOMO values.

Among the calculated results from four functionals, pure LDA has the best corre-

lations with the experiments. This accuracy outperformed other levels of functionals

and is mostly due to the error cancellation from the underestimation of correlation

energy and overestimation of exchange energy. GGA predictions are all deeper than

experimental results. Comparing PBE and BLYP, results from PBE are closer to

the diagonal line, meaning a better correlation with the experimental results. In the

cases of GGA functionals, parameters in PBE were designed to satisfy exact condi-

tions (Perdew, Burke, and Ernzerhof 1996), while the single parameter in exchange

part of BLYP was designed to minimize the error of the exchange energies from rare-

gas atom (Becke 1988). Although they have different assumption, the errors of their

predictions are close (please refer to Figure 2.13). For the results of mGGA, the

data span further along the diagonal line than GGA’s results. Mostly, improvements

on GGA/mGGA over LDA are the activation energy and transition state structure

through correction on the correlation energy, so their prediction is less accurate than

LDA in HOMO, which is also observed by other authors (Zhang and Musgrave 2007)

(Szczepanik et al. 2017) (McCormick et al. 2013).
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Figure 2.3: Calculations from pure functionals compared with experimen-

tal values. The dashed line indicates 100% correlation between calculated

and experimental values.
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Figure 2.4: Calculations from global hybrid functionals compared to ex-

perimental values. The dashed line indicates 100% correlation between

calculated and experimental values.

The Global Hybrid Functionals To study the global hybrid model, we

chose the functionals of KMLYP, B3LYP, M06-2x and PBE0. Among the four func-

tionals, results from B3LYP and PBE0 are located almost on the diagonal line before

any corrections are applied. According to Figure 2.4, for the molecule set we used, it

seems there is a small horizontal offset in PBE0, which means the HOMO energies

from PBE0 are shallower than experimental values. However, the other two global

hybrids, KMLYP and M06-2x, have their calculations above the diagonal line before

a linear correction is applied, which means their predictions are deeper than the ex-

perimental values. It was observed that, compared to other functionals, data points

from the M06-2x are more concentrated.

In the previous study, (Zhang and Musgrave 2007) KMLYP showed smaller error

than B3LYP before a linear correction was applied and still performed better after a

linear correction was applied. However, in our molecule set, before correction, only

B3LYP and PBE0 showed up on the diagonal line. This difference may be attributed
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to the different molecule set we used. In their work, the molecule set contained smaller

molecules than our molecule set: their molecule set included two-atom or four-atom

molecules. The construction of hybrid functionals includes a certain percentage of HF

component to compensate for the correction in the correlation part that GGA/mGGA

functionals usually have. So results from hybrid GGA/mGGA, compared to pure

GGA/mGGA, would shift horizontally to the left, making them sit on the diagonal

line. For LDA functionals, adding more HF would shift to the same direction but

will move them off-diagonal, since pure LDA’s results were already on the diagonal

line. We see from Figure 2.4, in the case of GGA/mGGA, 20% of additional HF

component would be enough to improve the correlation between BLYP’s off-diagonal

to B3LYP’s on-diagonal.

RSH In addition to the pure functionals and global hybrid functionals, a se-

ries of RSH functionals, including cam-B3LYP, HSE06, LC-ω and ωB97X have been

examined and the results are shown in Figure 2.5. Except HSE06, the predictions

from other three functionals were all shifted off-diagonal to the left direction, show-

ing underestimated predictions when compared to the experimental results without

a correction. Compared to the LC-ωPBE functional, ωB97X shifted to the left more.

This is due to the difference in short-range HF percentage they have, considering

they have the same amount of long range HF component. In addition to the effect of

short-range HF, the comparisons from B3LYP in Figure 2.4 and from cam-B3LYP in

Figure 2.5 show an offset toward left region to the diagonal due to different long-range

HF contributions.
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Figure 2.5: Calculations from RSH functionals compared to experimental

values. The dashed line indicates 100% correlation between calculated and

experimental values.
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2.3.2 Results on Gap benchmark (Pure, Global Hybrid and RSH func-

tionals)
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Figure 2.6: Calculations from pure functionals compared to experimental

values. The dashed line indicates 100% correlation between calculated and

experimental values.

Pure Predictions from pure functionals of band gaps are generally higher than

experimental values (as shown in Figure 2.6). Some of the molecules in the set are

consistently shifted to the left. Data points from SVWN, PW91, BLYP and TPSS

are all further along the diagonal line than data points from the same functional

in HOMO predictions, with TPSS(mGGA) the most distributed one. For all pure

functionals here, except for a few points, the gap predictions are all smaller than

experimental values. Compared to the results from global hybrids (Figure 2.7), those

results are larger than experimental values, owing to the HF components contained

in hybrid functionals.
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Figure 2.7: Calculations from global hybrid functionals compared to ex-

perimental values. The dashed line indicates 100% correlation between

calculated and experimental values.

Global Hybrid and RSH functionals Contrary to the predictions from

pure functionals, predictions from hybrid functionals are generally higher than ex-

perimental values (as shown in Figure 2.7). Although the deviation of predictions

from the diagonal line varies, it mostly depends on the HF percentage contained in

the hybrid functionals. For example, B3LYP and PBE0(PBE1PBE) have 20% of HF

exhange, and their separation from the diagonal line is smaller compared to M06-2x,

which has 54% of HF exchange and is therefore shifted more from the diagonal line.

In contrast to the case of GGA and mGGA, although KMLYP(hybrid LDA) has 20%

of the HF exchange component, it is shifted more than GGA/mGGA functionals with

the same amount of HF exchange.
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Figure 2.8: Calculations from RSH functionals compared to experimental

values. The dashed line indicates 100% correlation between calculated and

experimental values.

The predictions from LC-wPBE and wB97XD were distributed mostly along a

line that lies in parallel to the diagonal line. The additional long range HF component

helps to adjust the correlation by shifting the results the same distance away from the

diagonal line. However, HSE06 (HSEH1PBE) is the only RSH where its results mostly

rest on the diagonal line, which indicates a good correlation between theoretical and

experimental values.

2.3.3 Results on LUMO benchmark (Pure, Global Hybrid and RSH func-

tionals)

Rational predictions of LUMO rely on accurate calculations of ground state and on

accurate calculations of bandgap. In the following study, LUMO value is acquired

from HOMO and gap calculated from the same functionals. Generally speaking, the

data points in the LUMO prediction graph are less diverse than gap predictions.
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Figure 2.9: Calculations from pure functionals compared to experimental

values. The dashed line indicates 100% correlation between calculated and

experimental values.

SVWN (LDA) predicts shallower LUMO values nearly exactly but deeper LUMO

values were off the diagonal line, as Figure 2.9 shows. On the contrary, pure GGA

and mGGA (BLYP, PBE, TPSS) all predict the deeper LUMO nearly exactly but

the shallower LUMOs were off the diagonal line. In the case of hybrid functionals,

shown in Figure 2.10, B3LYP and PBE0 (having HF component of 20% and 25%

respectively) have predictions very close to the experimental values. Among LUMO

predictions from RSH, as shown in Figure 2.11, most of the HSE06 results were

accurate while other functionals, ωB97X, LC-ωPBE and cam-B3LYP, were off the

diagonal line. However, results from these three functionals in gap predictions are

nearly distributed on a line that is parallel to the diagonal direction.
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Figure 2.10: Calculations from global hybric functionals compared to ex-

perimental values. The dashed line indicates 100% correlation between

calculated and experimental values.

33



)
 )	 )� )� )� )�
�� �& �%������������

)


)	

)�

)�

)�

)�

�
(#

�$
�!

�"
%�

 ��
�

�
�

���
�

� '����

)
 )	 )� )� )� )�
�� �& �%������������

)


)	

)�

)�

)�

)�

�
(#

�$
�!

�"
%�

 ��
�

�
�

���
�

� ��!�����

)
 )	 )� )� )� )�
�� �& �%������������

)


)	

)�

)�

)�

)�

�
(#

�$
�!

�"
%�

 ��
�

�
�

���
�

� ����


)
 )	 )� )� )� )�
�� �& �%������������

)


)	

)�

)�

)�

)�

�
(#

�$
�!

�"
%�

 ��
�

�
�

���
�

� ���'��

Figure 2.11: Calculations from RSH functionals compared to experimental

values. The dashed line indicates 100% correlation between calculated and

experimental values.

2.3.4 Predictions and corrections from linear regression models

In the last section, we analyzed the performance of functionals from different cate-

gories. In this section, we turn our discussion to the possibilities of applying additional

linear corrections to the calculated results. First, k-fold cross validation was applied

to evaluate the validity of applying a linear model. From the principle of k-fold cross

validation, the MSE obtained from this method reflects the linearity of the outputs

from DFT/TD-DFT functionals. If the linearity of a certain functional was among

the top compared to other functionals, then the errors from this functional could be

better corrected by a linear correction. In addition, we will discuss the mean absolute

error (MAE) both from before and after the linear correction. We are not aiming

at benchmarking how accurate those functionals are based on the their raw results;

rather we are interested in acquiring better predictions after a linear correction. So

the ideal functional must have linearly consistent predictions on all of the data. It is
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therefore not important how close each individual prediction is.

HOMOs

Figure 2.12 show the MSEs from k-fold cross validation on HOMO values (refer to

the method section for the procedures of k-fold cross validation). As shown in Figure

2.12, the MSE from LC-ωPBE was the smallest. From the principle of k-fold cross

validation, this means a linear regression applied to LC-ωPBE functional shows the

most predicting power. From the figure, there are two jumps in the MSE values,

which essentially divided the functionals into 3 groups. Functionals that fall into

those three groups have different features.

The first group is led by LC-ωPBE and contains cam-B3LYP, M06-2x and

ωB97XD. This group mostly consists of RSHs, and M06-2x that is from the so-

called Minnesota functional series. From Table 2.2, those functionals all have a large

percentage ( > 50%) of HF. The second group consists of PBE0, HSE06, KMLYP

and B3LYP. Those are mostly global hybrid functionals with a certain percentage of

Hatree-Fock (HF) exchange component. However, the percentage of HF contained

in those functionals is less than 50% for GGA based functionals (PBE0, B3LYP and

HSE06). KMLYP, the only exception, has 55.7% of HF component. The third group,

having even larger MSE, are from pure functionals: TPSS, PBE, SVWN and BLYP.

TPSS is a meta-GGA functional that has the least MSE of the group, while PBE,

a GGA functional, follows it. The performance of SVWN and BLYP are nearly the

same.
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Figure 2.12: Average MSEs (Mean Square Errors) of predictions for HO-

MO values on validation set using 8-fold cross validation.
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Figure 2.13: Percentage of MAEs (Mean Absolute Errors) on HOMO

before (light blue) and after (dark blue) a linear correction. The 0.1 in

x-axis represents 10%.

Figure 2.13 shows the mean absolute errors (MAEs) between experimental values

and predictions before (light blue bars) and after (dark blue bars) applying a linear

correction. Some of the functionals show a big difference in the two cases, while others
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stay nearly the same. The functionals in the figure are ordered by the MAEs after

applying a linear correction (dark blue). From the figure, linear corrections applied

to those results greatly improve the predictions.

The MAEs before applying the linear correction still fall into three groups. Func-

tionals having a heavy percentage of HF exchange (> 50%): cam-B3LYP, LC-ωPBE,

M06-2x, ωB97XD and KMLYP show a bigger MAEs among the values in the graph.

Other functionals, like TPSS, PBE and BLYP, show medium errors. They are all

pure functionals. The rest of the functionals (PBE0, HSE06, B3LYP, SVWN) behave

the best, having a deviation less than 0.27eV.

The variation in performance that functionals have tends to be alleviated after a

linear correction. The smallest value shown in the figure is 0.12eV from cam-B3LYP

and LC-ωPBE. Then, M06-2x, ωB97XD, PBE0 and HSE06 all have a 0.13eV of MAE.

The corrected values not only have a high correlation, but they are also more precise.

Some of them, like cam-B3LYP, LC-ωPBE have greater MAEs before the correction,

but they are all scaled to the top accuracy with a linear correction. There is no

surprise in the results in Figure 2.12 which shows the results from RSH fit to the

linear model are the best among the functionals. This means we can always use a

linear correction to systematically improve the performance of these functionals.

For HOMO calculation, we have two choices. The first option is using HSE06

without linear correction, since this is the one that has the least error. The second

option is choosing RSH or functionals with a heavy HF exchange and after the calcu-

lation a linear scaling is needed. Those functionals can be cam-B3LYP and LC-ωPBE

which, according to Figure 2.13, show the least error after scaling.
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Bandgaps
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Figure 2.14: Average MSEs (Mean Square Errors) of predictions for

bandgap values on validation set using 8-fold cross validation.
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Figure 2.15: Percentage of MAEs (Mean Absolute Errors) on bandgap

before (light blue) and after (dark blue) a linear correction. The 0.1 in

x-axis represents 10%.

Generally, MSEs for the functionals in Figure 2.14 are all larger than those in Figure

2.12. This fact represents that HOMO results from DFT follow a linear trend better

than the bandgap results from TD-DFT. In the graph, all of the pure functionals
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(BLYP, PBE, TPSS and SVWN) have similar MSEs and are all smaller than other

functionals. This shows that the pure functionals, although having different degrees

of approximation, still follow linear trends to a similar degree. In the group of HSE06,

B3LYP and PBE0, their MSEs begin to increase but there is hardly any difference.

Then the group of RSH and KMLYP form a separate group having the largest MSEs.

Similar to Figure 2.12, M06-2x gives a mediocre behavior and its MSE lies between

the two groups. This result shows that the validity of a linear model for the data

points decreases from the group of pure functionals, to the group of functionals with

small HF exchanges, to the group of functionals with heavy HF exchanges and to the

group of RSHs. So, as the percentage of HF exchange increases, the linearity of the

resulting data points decreases.

The predicting accuracy on bandgap described by the MAEs is shown in Figure

2.15, where the dark blue bars show the errors after scaling with a linear correction

and the light blue bars represent the errors before. The functionals are ordered by

the MAEs after applying linear corrections. From the figure we see linear corrections

applied to the data greatly improve the predictions no matter how much the original

deviations from the predictions were. And the light blue bars show, the resulting

deviation from PBE, TPSS, HSE06, BLYP, SVWN, B3LYP and PBE0 are either

smaller than or close to 0.5eV, with B3LYP, HSE06 and PBE0 being the top. Another

group contains M062x, KMLYP, ωB97XD, cam-B3LYP and LC-ωPBE, which show

relative larger deviations with LC-ω being the highest.

For the bandgap calculation, the top three functional choices suggested by the

benchmarking results are PBE, TPSS and HSE06 with linear corrections. However, if

we planned to perform TD-DFT calculations without linear correction, then HSE06,

B3LYP and PBE0 could be the available choices.
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LUMOs
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Figure 2.16: Average MSEs (Mean Square Errors) of predictions for LU-

MO values on validation set using 8-fold cross validation.

As stated, LUMO energies were obtained from the sum of HOMOs (DFT) and the

bandgap (TD-DFT). Since the variance in HOMO predictions is relatively small,

the variance in LUMO as Figure 2.16 shows, is mostly decided by the variance in

bandgaps. So, pure functionals still fit the best into a linear model while RSH or

global hybrid with a heavy HF exchange percentage show higher MSEs in the figure.

From the average MSE results in Figure 2.16, the linear correction again shows

great potential for scale predictions to a better accuracy. Before the model correc-

tion, predictions are diverse in the figure. However, after the correction, the MAEs

are all smaller than 0.25eV. The accuracy of scaled results is both decided by the

linearity of the prediction results and the performance of the functionals. Because

of this, B3LYP performed the best while SVWN, PBE, TPSS, BLYP, HSE06, PBE0

performed almost identically.
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Figure 2.17: Percentage of MAEs (Mean Absolute Errors) on LUMO be-

fore (light blue) and after (dark blue) a linear correction. The 0.1 in x-axis

represents 10%.
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2.4 Conclusion

To select the best functional in predicting HOMO, gap and LUMO energies, we

performed a benchmark study on a molecule set containing 29 molecules from the

organic electronic field. Various DFT/TD-DFT functionals from nearly all levels were

examined. We analyzed the data points both with and without linear corrections and

reported corresponding performance of predictions. The k-fold cross validation was

used to decide the validity of applying a linear model to the results from different

functionals. It was found that in HOMO results from DFT, RSH and M06-2x are more

linear than other functionals. And results from GGA and mGGA (BLYP, PBE,TPSS)

were shown to be more linear in TD-DFT calculation.

Excited state TD-DFT calculations are based on ground state DFT calculation-

s. According to the results and analysis above, the performance of HSE06 is the

top choice for HOMO and is also decent for bandgap predictions. Therefore it is

recommended for both HOMO and bandgap calculations if a linear scaling will not

be performed. However, if linear corrections will be added, then PBE and TPSS

are recommended for the bandgap calculation while cam-B3LYP and LC-ωPBE are

recommended for HOMO calculation.
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CHAPTER 3

DFT/TD-DFT Investigations on Bio-inspired Melanin Molecules for

Organic Photovoltaic Applications

“I do not think that there is any other quality

so essential to success of any kind as the

quality of perseverance. It overcomes almost

everything, even nature.”

— John D. Rockefeller

3.1 Introduction

As we are stretching natural resources to their limits by depleting fossil fuel energies

to support our civilization, solar energy harvested by organic photovoltaic (OPV)

materials is one of the promising candidates in the concept of renewable energies.

Although only in recent years is power conversion efficiency (PCE) for OPV several

times higher than it used to be, we have learned a lot in material design rules and

fabrication techniques, as reviewed by Nelson (2003), Li et al.(2012), Facchetti et

al.(2013) and Liu et al.(2016). These efforts helped achieve new records in PCE

exceeding 11% (Baran et al. 2017) (Gasparini et al. 2017) (Zhao et al. 2016a) (Deng

et al. 2016). Needless to say, better materials still could be discovered if we finished the

desperate job of searching over the chemical space, part of which has been estimated to

contain ”drug-like” molecules in the order of 1060 (Reymond 2015). However, because

harvesting solar energy is the first topic for various life forms on earth, evolution over

billions of years may have already fostered their reinforced materials to tackle this

difficult problem. Adopting a bio-inspired analog into OPV material could potentially

boost PCE to even higher values.

Although new types of solar cells have been suggested in the last few decades, in

this article we concentrated on the solution-processed OPV with bulk heterojunction

(BHJ). BHJ cells utilize two different kinds of molecules, a donor and an acceptor,

to form a heterojunction. Once excited by photons, excitons will be generated and
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diffuse randomly, and split into electrons and holes at the interface of donors and ac-

ceptors (Nelson 2003). Currently, acceptors built from fullerenes and their derivatives

are prevailing but non-fullerene acceptors are also under active development (Zhao

et al. 2016b). However, in this article, we still assume the acceptor is a fullerene

derivative (PC61BM) and will focus on the design of the donor. In addition to hav-

ing the same advantages as the polymer OPV, like being light-weight, flexible, and

cheaper, the small molecule OPV has better defined structures and better controlled

molecular weight, and less batch to batch variation compared to their polymer coun-

terpart (Roncali, Leriche, and Blanchard 2014) (Collins et al. 2017) . In the past

few years of development, PCE of solution-processed OPV utilizing small molecule

donors achieved 11% (Zhao et al. 2016a) (Deng et al. 2016).

To build bio-inspired small molecule donors, we still followed the design technique

in organic electronic material called push-pull design(also called donor-acceptor de-

sign, or D-A), which refers to introducing moieties of electron donating and electron

withdrawing groups into one molecule core (Jemison and McCullough 2014) (Bureš

2014) (Duan, Huang, and Cao 2012). It has already been proved effective in material

design (Bureš 2014) (Jemison and McCullough 2014) (Guo, Baumgarten, and Müllen

2013). Molecules having such a structure usually pose intramolecular charge trans-

fer (ICT) because of the interaction between the electron donating (donor) and the

electron withdrawing (acceptor) moieties. Utilizing this interaction, some important

properties of the core, such as the highest occupied molecular orbital (HOMO), low-

est unoccupied molecular orbital (LUMO), HOMO-LUMO gap and optical properties

can be tuned rationally.

People have explored and discovered many excellent molecules used as the core for

small molecule OPV applications. For example, using Benzodithiophene (BDT) as the

core moiety to build donors (Yao et al. 2016) (Collins et al. 2017) for small molecule

OPV have achieved PCEs around 9% (Kan et al. 2014) (Cui et al. 2015). Another

example is diketopyrrolopyrrole (DPP). Unlike BDT, DPP is a widely used electron

withdrawing unit that is mostly used to build non-fullerene acceptor. However, it can

also be used as the acceptor moiety in the donor (Le Borgne et al. 2016) (Cortizo-

Lacalle et al. 2014). From those core moieties, we can conclude that the common

design elements for choosing a good core are fused heteroatom ring, quinoid structure,

etc (Liu et al. 2016).

Interestingly, melanin, as used by many creatures to protect themselves from

sunlight, satisfies several design elements, like quinoid structure as shown in Fig-
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ure 3.1 (d’Ischia, Napolitano, and Pezzella 2011). In addition to preferred structure,

melanin also has several unique properties, like a broad absorption in UV and visible

range (Kollias and Baqer 1987) (Meng and Kaxiras 2008), viable conductivity with

different hydration level (Wünsche et al. 2013). All those properties are favored by

some opto-electronic and biomedical applications and attract intensive studies from

both experimental and theoretical points of view (Manini et al. 2015) (d’Ischia et al.

2009). However, one of the drawbacks of natural melanin lies in its very low solubility.

To better serve our purpose of using melanin as the solution-processed small molecule

donor, we therefore have to modify its structure to tune its property toward our re-

quirement. More specifically, donor and acceptor moieties in a push-pull molecules

can be arranged differently to form many structures fundamental property tuning

(Bureš 2014).

Figure 3.1: Structures of tautomer forms of eumelanin building blocks. D-

HI is for Dihydroxyl indole and DHICA is for Dihydroxyl indole carboxylic

acid. DHI and DHICA are both monomers for eumelanin.

In this study, we investigated several eumelanin based novel donor molecules

with different combinations of electron donating/ electron withdrawing end-capping

moieties. Using DFT/TD-DFT calculations, we characterized the related properties

for their potential OPV applications. After finding the related rules, we also provide

virtual molecules for further experimental work.

3.1.1 Computational methods

Generally, one of parameters to characterize photovoltaic property is power conversion

efficiency (PCE), which is defined as (Nelson 2003):

η =
JSCVOCF

Pin

(3.1)

where JSC is the short-circuit current, VOC is the open-circuit voltage, F is the

filling factor and its typical value to be used is 0.65, Pin is the input power to a solar
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cell, which under the standard AM 1.5 solar radiation spectra would take the value

of 1000 W/m2.

To theoretically predict PCE for new molecules, we need to have JSC , VOC and

FF for corresponding molecules. JSC can be calculated from integration of covered

solar spectra that determined by optical bandgap and follows the formula(Nelson

2003) (Bérubé et al. 2013):

JSC = Qexternal

∫
F (ωabs)dωabs (3.2)

where F (ωabs) is the photon flux in the solar spectrum absorbed by certain

molecule, Qexternal is the external quantum efficiency and the typical value to be

used is 0.65.

Second, VOC can be calculated according to the Scharber Model (Scharber et al.

2006):

VOC =
1

e
(|EHOMO

DONOR| − |ELUMO
PC61BM |)− 0.3V (3.3)

where e is the elementary charge, EHOMO
DONOR is the HOMO energy level of donors,

ELUMO
PC61BM is the LUMO energy level of PC61BM that was assumed to be the acceptor,

From the theoretical point of view, not is only a narrow bandgap required for

a good JSC , but also energies of frontier orbitals of the donor molecule have to be

aligned well, as what the Scharber Model concluded, with PC61BM , in order to have

a good VOC . Aside from the effect of FF and quantum efficiency, the performance of

solar cells was decided by energy levels of frontier orbitals of donor:acceptor blends.

So accurate calculations on HOMOs and LUMOs combined with Equations 3.2, 3.3

and 3.1 will give good predictions on PCE of OPV materials.

To calculate the HOMOs and LUMOs accurately, we carried out a series of DFT/

TD-DFT calculations using the Gaussian09 software package (Gaussian09 Revision

C.01 ) with B3LYP and HSE06 ( according to the benchmarking result from chp2)

functional at 6-311+G(2d,p) level. For PCE prediction, HSE 06 were applied to first

acquire the primary energies of frontier orbitals and then applying the scaling for-

mula concluded from the previous protocol from chapter 2. To be specific, HOMO

energies were calculated from optimized ground state geometry which is also used as

a starting input structures for TD-DFT calculations. After performing excited state

geometry optimizations, bandgap energies were acquired from TD-DFT. Finally, LU-

MO energies were calculated from HOMO and bandgap results. For general geometry
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investigation, specifically the dihedral angle comparison, B3LYP was used. This is

because it has a better accuracy in describing geometry.

The virtual molecule set was constructed based on a 5,6-dihydroxyindole-2-

carboxylic acid molecule (DHICA) that is represented by ”M” in this study. Figure

3.2 showed the basic structure of molecules we constructed and side group variations

were shown in Figure 3.3. According to the list, we applied groups with different elec-

tronic properties (either electron donating or electron withdrawing). This push-pull

design or D-A design would give us the ability to better control molecule’s energy

level and had been widely used in organic solar cell material design (Esteban et al.

2011) (Duan, Huang, and Cao 2012).

3.1.2 Results and discussions

We will first look into the geometry structural results of the designed molecules and

explore how those results varied with different combinations of side groups. Then we

will discuss the metrics of photovoltaic property which is PCE. After locating the best

performed molecules in the combination and the corresponding rule, our focus will

shift to the electronic structures leading to these results. From the structure-property

relationship, we will then try to summarize the structure basis for a high PCE and

further suggest several new virtual molecules that may have a better PCE.

Ground state geometry and electronic structure

X

Y

Z
M

Figure 3.2: Left: The structure of the molecules designed; Right: The 3D

model of the molecule with ”H” as the side group and showing the label

of each atom.
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Figure 3.3: Donor and acceptor moieties used in this study. Values of the

Hammett constant σp are from (Hansch, Leo, and Taft 1991) ; and values

of Pytela σi constant are from (Pytela 1996).

The molecules designed in this series have three ring structures: a heteroatom ring

(DHICA) and two benzene rings. The overall planar structure is determined by the

two dihedral angles formed between each benzene ring and the DHICA ring, or the

two dihedral angles that formed between the red ring and the yellow ring, and the red

ring and the blue ring (as shown in Figure 3.4), so the values of the dihedral angles

are important geometry parameters. If the absolute values of the two dihedral angles

are small, then it will lead to a better planar configuration. From Table 3.5, dihedral

angles vary with different side groups. In Table 3.5, the values for two dihedral

angle were shown for different side group combinations: groups in pink are electron

withdrawing groups (EWG or A) and groups in blue are electron donating groups

(EDG or D). From the table, all of the molecules in the collection were having nearly

planar structures allowing for certain fluctuation. However, the dihedral angle on the

right are generally larger than the dihedral angle on the left. The steric hindrance

from a methyl group at 1-position of DHICA ring contributes to this value shift.

A planar structure has the advantage of having a good exciton diffusion and

hence a better PCE (Liu et al. 2016). If bonds are in similar symmetry, for example,

neighboring atom formed a planar structure and are in a similar symmetry, the bond
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length alternation (BLA) are expected to decrease since all of the bond are simi-

lar. Generally speaking, this decrease would narrow the bandgap, which is another

advantage for better PCE (Liu et al. 2016).

N

RXRY

H3CO OCH3

COOCH3

CH3

Figure 3.4: Illustration of the 3 rings in the designed molecule. The two

dihedral angles are the angle between the yellow ring and the red ring,

and the angle between the red ring and the blue ring.

Figure 3.5: Dihedral angles of the molecules. Top: The dihedral angle

between the yellow ring and the red ring, measured following the atom

label: 4-3-46-45 ; Bottom: The dihedral angle between the red ring and

the blue ring, measured following the atom label: 6-5-34-35.
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PCE prediction

From the Scharber model and scaling formula summarized in chapter 2, PCE values

were calculated and shown in the heatmap as Figure 3.6, assuming that PC61BM

is the acceptor molecule used in the bulk heterojunction. In the figure, PCE values

varied with different side group combinations, which are represented by different

colors. Please refer to the Figure 3.2 for the position of RX and RY .
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Figure 3.6: The heatmap of PCE values, which are varied with different

side group combinations. Refer to Figure 3.2 for the position of RX and

RY .

Figure 3.6 can be divided into 4 regions where the configuration of the molecules

takes A-Pi-M-Pi-A (top left region), A-Pi-M-Pi-D (top right region), D-Pi-M-Pi-A

(bottom left region) and D-Pi-M-Pi-D (bottom right region). The results showed the

configuration of A-Pi-M-Pi-A has the best PCE value among all of the combinations

and D-Pi-M-Pi-D would be the worst. Since eumelanin core M is rich in electrons, this

result essentially means A-Pi-D-Pi-A configuration would be the best one to harvest

photon energy. It is interesting to notice that PCE values decrease according to the

decrease in electron withdrawing ability of the side group and further decrease ac-
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cording to the increase in electron donating ability of the side group. In the following

section, we will further look into the electronic structure behind this configuration.

Isosurface graph of frontier orbitals

To gain more insight into the electronic structures of the molecules, frontier molecular

surface of HOMO and LUMO of several typical molecules in the set was calculated

and the isosurface graph (isovalue=0.02) is shown in Figure 3.7.

Figure 3.7: HOMO and LUMO isosurface graphs (isovalue=0.02) for sev-

eral typical molecules. HOMO energy values are labeled.

From Figure 3.7, the molecule with NO2 (the strongest EWG in the list) at both

sides has the deepest HOMO, while the molecule with NMe2 at the both sides has

the shallowest HOMO. The rest have their HOMOs lying in between. The trend

in the graph is, for the molecules in this set, more electron withdrawing group will

bring deeper HOMO, and more electron donating groups will raise the HOMO to a

shallower level. Comparing HOMO structures among the four molecules, electrons

in the molecule with NO2 at the both sides span more than in molecules having

less NO2. Although electrons in the Me2N M NMe2 also span nearly the same
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length horizontally as in the O2N M NO2, the HOMO isosurface (isovalue=0.02)

in O2N M NO2 is more inflated, meaning electrons in the O2N M NO2 occupied a

larger space volume. This difference renders O2N M NO2 the deepest HOMO.

The gap values in molecules in Figure 3.7 also followed a certain pattern. The

narrowest gap in the graph is from O2N M NMe2, the molecule that has two different

(EDG and EWG) side groups at the two ends. Molecules having the same end-capping

groups don’t show narrower gaps than others. So the rule here is, to have a relatively

narrow gap, two different side groups should be used. Then if we looked into the

isosurface structure of those molecules, we would see the HOMO electrons are mostly

abundant at the right side of O2N M NMe2, which is due to the EDG property of

NMe2, while in the LUMO structure, electrons are abundant at the other side. So

this excitation is a typical intra-molecular charge transfer type. Although excitations

from other molecules also have different degrees of charger transfer, theirs are much

less in the distance and electron density difference. Attaching two different side groups

would induce more charge transfer upon excitation, and therefore would result in a

narrower gap.

Among the molecules in Figure 3.7, the HOMO to LUMO transition is responsible

for more than 99% excitations in the first excitation. For the bottom three molecules,

the HOMO electron density in the two oxygen atoms in hydroxyl groups in DHICA has

certain electron density from the lone pair electrons, but when those three molecules

were promoted to the excited state, the two oxygen atoms in the LUMO surface

don’t show electron density. The LUMO surface of the bottom three molecules show

a typical π* character. This evidence proves the first transition is n → π∗ type.

For the Me2N M NMe2 molecule, the transition is π → π∗ type, and the transition

electrons are from the NMe2 instead of oxygen atoms in DHICA, which can be seen

by comparing the corresponding atoms in HOMO and LUMO surface.

So one feature of D-A design is inducing different degrees of intra-molecular

charge transfer that lead to a narrower band gap. Combining with the knowledge

on controlling HOMO with EWG group, molecules constructed under this molecule

framework (DHICA as the backbone), could fit to different acceptor molecules. The

strategies for designing photovoltaic material using this framework (DHICA as the

backbone) can be either two suitable EWG groups at both ends, or a suitable EWG

group and an EDG group at the ends. Which strategy to use would depend on the

acceptor molecule used in the bulk heterojunction, because the energy levels here

also have to match the acceptor molecules’s energy levels according to the Scharber
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Model.

New virtual molecule design

From the strategies discovered, we further suggest putting more EWG groups at both

sides to induce even deeper HOMO, or EWG and EDG at different sides for an even

narrower gap. The isosurface of HOMO and LUMO for new virtual molecules was

shown in Figure 3.8. A further idea is to remove the hydroxyl groups at the DHICA

to eliminate n → π∗ transition, therefore enabling absorptions in longer wavelength.

Figure 3.8: Scaled HOMO energies and gap from DFT predictions of t-

wo virtual molecules. The HOMO and LUMO isosurface graphs are of

isovalue=0.02.

3.2 Conclusion

In this study, different side groups with a DHICA core were investigated. Based on the

benchmarking study before (chapter2), we scaled predictions from DFT calculations

to calculate PCE using the Scharber Model. The best predicted value appeared in

A-Pi-M-Pi-A configuration and its value was around 9%. In addition, several design

principles for this molecule framework were summarized. it was found that, by chang-

ing the side groups into different EWG groups, the designed molecules could show a
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systematical change in HOMO energy, which could fit the energy level alignment re-

quirement of different acceptors (Fullerene and beyond) in bulk heterojunction. The

gap could be controlled by using different EWG and EDG groups at different ends.

Finally, new virtual molecules constructed based on these principles were calculated

and properties predicted.
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CHAPTER 4

High Throughput Screening Using Correlation Ratio for Tandem Solar

Cells Design

“We choose to go to the moon in this decade

and do the other things, not because they are

easy, but because they are hard, because that

goal will serve to organize and measure the

best of our energies and skills, because that

challenge is one that we are willing to accept,

one we are unwilling to postpone, and one

which we intend to win, and the others, too.”

— John F. Kennedy

4.1 Introduction

To conquer both the storage and pollution problems from fossil fuel while still provid-

ing enough support to the development of human civilization, solar energy is one of

the best candidates to replace the fossil fuel energy. Therefore, more researchers de-

vote their efforts to this field (Chu, Cui, and Liu 2017) (Louwen et al. 2016). Bearing

the properties of being flexible, lightweight, low in cost and easy to manufacture (Dou

et al. 2013) (Dennler, Scharber, and Brabec 2009) (Heeger 2014), organic photovoltaic

(OPV) is advantageous over conventional inorganic photovoltaic and is under rapid

development in the past few years. Particularly, because of the simple and defined

product in the reaction they evolved, the beauty of small organic molecules can grad-

ually be recognized (Chen, Wan, and Long 2013) (Roncali, Leriche, and Blanchard

2014) (Collins et al. 2017).

Despite the recent exciting race in the single junction small molecule OPV that

already exceeds 11% (Baran et al. 2017) (Gasparini et al. 2017) (Zhao et al. 2016a)

(Deng et al. 2016), detailed analysis pointed out two limiting factors for improving

PCE. On one hand, PCE of single junction cells was limited by their thermodynamic
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limit or the so-called Shockley-Queisser limit (S-Q limit) (Shockley and Queisser

1961b); on the other hand, PCE of the current OPV cells suffered from thermalization

of hot charge carriers that led to a low open-circuit voltage (Scharber 2016). To

conquer these two limiting factors, a tandem structure solar cell was first put forward

and made by Hiramoto et al.(1990). An illustration of a tandem structure solar cell is

shown in Figure 4.1. By using more than one junction, S-Q limit is no longer applied

to tandem solar cells. In addition, single junction OPV cells usually have one kind

of acceptor molecule and, therefore, a donor molecule has to choose between having

a narrow bandgap or a deep HOMO, because the two choices can’t be both satisfied

in certain acceptor molecules (Scharber et al. 2006). However, if tandem structure

is used, more kinds of acceptor molecules could be used in different layers (Li et al.

2013).

Experimentally, among the tandem devices that have shown up so far, a device

from You et al.(2013) in 2013 is the first one to reach 10%. The double-junction cell

they constructed used P3HT:ICBA as the bottom layer and PDTP-DFBT:PCBM as

the top layer and the spectra of two layers, split apart around 630nm, have a little

overlap. In 2014, another device from Chen et al.(Chen et al. 2014) gave a PCE of

11.55% using a triple-junction structure and a PCE of 10.70% using a double-junction

structure. The absorption spectra in the triple-junction cell split around 600nm

and 730nm; whereas the spectra in the double-junction cell split around 700nm. In

the tandem device constructed by Zheng et al.(2016), a double-junction structure

delivered a PCE of 11.32 ± 0.26. The spectra of the two molecules split around

690nm. Theoretically, from the model given by Dennler et al.(2008), 15% PCE could

be expected but there are only a couple of double-junction and triple-junction tandem

solar cells that could go beyond 11% (Zhou et al. 2015) (Zhang et al. 2016) (Zheng et

al. 2016) (Chen et al. 2014). In the work from Li et al.(Li et al. 2013), they built several

different single junction and multi-junction OPV cells and compared the trends from

experimental results with the prediction by Dennler et al.(2008). Their conclusion

was that a PCE beyond 14% was practical. So PCE of tandem device could still

march forward if proper molecules could be found.

One of the most efficient ways of finding molecules with certain constrains, proved

by drug design in the last decade (Macarron et al. 2011) (Bajorath 2002), is the high

throughput screening (HTS) (Curtarolo et al. 2013a). Combining with virtual design

and electronic structure calculation, HTS continues to serve in the material informa-

tion field and is adopted by many modern material projects. Harvard Clean Ener-
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gy project (Hachmann et al. 2011) (Hachmann et al. 2014) constructed a database

(CEPDB) of 2.3 million virtual molecules that are built from 26 building blocks sum-

marized from experimental work. After performing a large scale of DFT calculations

with the help of the IBM World Community Grid, they calculated HOMOs and LU-

MOs as well as PCEs of those molecules and ranked all of virtual molecules according

to their PCE. This result predicts many top performing virtual molecules to guide

the experimental synthesis in the future. Another example is a survey study given

by Ørnsø et al.(Ørnsø, Garcia-Lastra, and Thygesen 2013), which focused on the dye

selections and screened out 50 candidates from 1029 porphyrin derivatives. DFT cal-

culations with PBE functional are used to predict the HOMO and LUMO orbital

energy. Their results are online and open to public. Kanal et al.(Kanal et al. 2013b)

adopted a slightly different way for the results analysis. Their aims were not only

to find out the candidates but also the trend and the design rules underlying their

results. Unlike the combination of Donor-Acceptor pattern, they proposed a new type

of Donor-Donor motif pattern which is concluded from their findings.

The goal of this study is to efficiently find out new donor molecules satisfying

spectrum requirements for tandem solar cells through a large scale computational

screening. Therefore, we applied Time-Dependent Density Functional Theory (TD-

DFT) and HTS to calculate the spectra of the top 1000 OPV molecules in CEPDB

and used a designed descriptor, correlation ratio (CR), to describe and compare their

spectra coverage. Molecules with complementary spectra could be selected out, and

those molecules would be potentially used in a tandem device. Further more, this

descriptor is not confined to be used in OPV field but any requirements posed to

the molecule’s spectrum can take advantage of it, for example, sunlight screening

products.

4.2 Computational Method

The flowchart of screening is shown in the Figure 4.2. Starting from the top, we used

the molecules from CEPDB as the diverse library and the first step was calculating

their spectrum by performing a ground state geometry optimization (DFT in G09)

and excited state absorption spectrum calculation (TDDFT in Octopus). After di-

viding the whole spectrum into 26 regions, we calculated the correlation ratio in each

region. The purpose of 26 region division is to setup a set of ”resolution grids” for the

spectrum. Then, based on certain score function, screening process were performed.
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Figure 4.1: Illustration of a tandem solar cell with a 2-layer structure.

4.2.1 The ground state geometry calculations using Gaussian09.

The molecules were retrieved from the SMILES codes given in the website of the

CEPDB database and the pybel library provided by the Open Babel software (Boyle

et al. 2011) was used to convert the SMILES codes to the corresponding molecules.

Ground state geometries of all the compounds were fully optimized under B3LYP

functionals with 6-31G++(d,p) level basis set using Gaussian 09 software (Gaussian09

Revision C.01 ). The optimal geometry was also verified by performing vibration

analysis.

4.2.2 The excited state calculation using octopus.

The optical absorption was calculated from the Time Dependent Density Functional

Theory (TDDFT) as implemented in the octopus software (Marques 2003)(Castro

et al. 2006), which uses real time TDDFT (RT-TDDFT). For each of the molecules,

octopus calculation applied a disturbance to its electronic ground state structure ac-

quired from the Gaussian calculation and the system described by the LDA functional

then evolved for a total time of 25 fs. The molecule was placed in the real space grid

with a universal 0.20 Å interval and a simulation box of typical value in Octopus was

used around each atom. To allow a stable prorogation, a 0.0025 fs time step was used.

Disturbance in three orthogonal directions was applied in the Cartesian coordi-

nates independently and then the response (variation of the multipole strength, S(t)

) of the molecular system from the three directions was collected. From the Fourier

60



Figure 4.2: The basic process of calculating the spectrum correlation ratio.

The largest value (scale molecule) of spectrum correlation is used to nor-

malize the data in each region so that spectrum correlation ratios in that

region are acquired for every other molecule. For future extension or any

changes, we only need to recalculate the scale molecules and the recasts

would become comparable with the previous molecules in the database.
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Transform theory, the response in frequency domain, which results in an optical ab-

sorption spectrum in one direction of the Cartesian coordinate, would then be given

by the following:

A(ω) =

∫ +∞

−∞
e−iωt S(t)dt (4.1)

The total optical absorption is calculated as the average of the three individual

absorptions from the different directions in the Cartesian coordinate.

4.2.3 The spectrum calculation using compressed sensing technique.

To mathematically find out the corresponding spectrum from the calculation data,

we used compressed sensing technique. Compressed Sensing (CS) is a mathematical

technique used as a data analysis tool in many fields (Davenport et al. 2012). The

major advantage is that it usually needs far less number of samples than what is nor-

mally required by traditional Fourier Transform method. Octopus also implemented

the Compressed Sensing technique in one of its post calculation processing tools (An-

drade, Sanders, and Aspuru-Guzik 2012). It has been shown (Andrade, Sanders, and

Aspuru-Guzik 2012) for a spectrum having similar resolution, CS requires far less

data points from the time dependent calculations, meaning far less simulation time,

which is a big saving of the computer CPU time in high throughput investigations.

4.2.4 The spectra correlation ratio.

To quantify the coverage of the solar spectra from a given molecule, we designed

the parameter – spectra correlation ratio. Because the higher absorption from the

molecule in the given region, the higher spectrum coverage the molecule will have in

that region. Therefore the parameter is calculated by taking the correlation of the

absorption spectrum from the molecule and the solar spectrum in that region. Then,

a higher correlation value would lead to a better coverage of the spectrum in that

region. The defined regions and ranges in the paper are shown in Figure 4.3 and

Table 4.1.

Considering the future extension of the database, we select the top molecules

(scaling molecules) in each spectrum regions and use their values to normalize the

spectrum correlation, such that in each regions the top molecule would have a spec-

trum correlation ratio of “1” whereas the value of the rest of the molecules would be

given by the ratio with the top molecule. Any systematic changes in the methods or
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Figure 4.3: AM 1.5 solar spectrum. The 4 colors represents the 4 ranges

that will used to benchmark the spectrum performance of the molecules.

Table 4.1: The division scheme of the 26 regions of solar spectrum. The

values of correlation ratio were first calculated in each of these regions.

Depending on the different ranking tasks as discussed in the “Results”

section, the correlation ratio could be summed up to represent certain

performances in the different spectrum ranges as labeled in Figure 4.3.
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Figure 4.4: The distributions of the first peaks of all of the molecules. The

order of the molecules was represented by their IDs in CEPDB.

any extensions from the researchers elsewhere can be accounted for by recalculating

only the scale molecules in each regions and then the new values would be comparable

with the rest of data.

4.3 Results and Discussions

The results listed in the Figure 4.4 is the correlation ratio of the top 1000 molecules

in the CEPDB and they are expanded along the horizontal axis. The different colors

in the graph represent the values of the correlation ratio in different regions. As

shown from the figure, one molecule usually has quite different correlation ratios in

the different regions. This is mainly due to their different optical activities. The

molecules having the correlation ratio of 1.00 in certain region are the ones in the

CEPDB that are the best correlated with solar spectrum in that region.

In this section, we are going to discuss some of results from our screening with

different criteria.

4.3.1 The performance of the top ones in one region

Because the threshold of CR is set to 0.7 for top candidates, some regions have more

molecules than other regions. This can be vividly seen from the length of the deep red

color. For example, region 14 has an extraordinarily longer red column than region 1

or 2. This shows there are more molecules in region 14 that have good performance

than those in region 1 or 2.4

There is a cross-over point in region 20 and region 21. Then the data points

separate symmetrically to each ends forming an ”X” shape. This shows the molecules
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Table 4.2: Top performance molecules ID (from the CEPDB database) in

each regions. The red character means the molecule shown up in more

than one region. And the blue bars in the cell show their values of the

spectrum correlation ratio.

that have the top performance in region 15 20, also tend to have a good performance

in region 21-25.

Using the spectrum correlation ratio, we could easily check the alignment with

the solar spectrum. From the definition, a larger value in a region would represent

a better resemblance with the solar spectrum in that specific region. We therefore

could rank the alignment with the solar spectrum in different regions, as listed in

Table 4.2.

4.3.2 Aiming at a better alignment with the solar spectrum (across the

regions)

We also mined the data with CRs to select the molecular building blocks that have a

good absorption in a specific region. We first divided the 26 spectrum regions into 4

parts, each representing a absorption color range. The scheme is shown in the Figure
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Figure 4.5: The molecules that have a correlation ratio higher than the

threshold (which is 0.7). Ranked with the number of regions where it

satisfies the criteria.

4.5. From the definition of spectrum correlation ratio, we know the molecule having

a better absorption in a given region should have a higher correlation ratio in that

region. Balancing between the variety of the building blocks and the specificity, we

set the threshold for the correlation ratio to be 0.7 and the results are shown in Figure

4.5.

In reality, molecules often absorb light in a certain range containing many regions.

Using our method, this is a straightforward way to check by comparing the summation

of the correlation ratio in different regions, which in turn quantify the performance

of the molecule in certain range. In this paper, we presented the results for 4 ranges:

Ultraviolet, Visable I ,Visable II and Infrared range, which are shown in Figure 4.7,

Figure 4.8, Figure 4.9 and Figure 4.10.

Figure 4.6: 26 small Divisions then combined to 4 ranges of solar spec-

trum(mainly IR, red, purple, UV) for later screening to work in.
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Figure 4.7: Screening result for range I.

Figure 4.8: Screening result for range II.
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Figure 4.9: Screening result for range III.

Figure 4.10: Screening result for range IV.
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Figure 4.11: Screening result across regions.

From the results in Figure 4.11, we could identify the good building block that

could help the system to absorb more in the target regions. Also the results show

there are more molecules in the UV and purple range that have good performance

than that in red and orange regions.

4.3.3 Aiming at screening a molecule with special requirement on its

spectrum range.

The growing interest in developing power-producing surface (Chen et al. 2012), e.g.

special screen cover for mobile devices that could combine energy production and

protection together to further slim the device, requires novel materials that are trans-

parent in visible range (Range II and III in our scheme) but absorb photon energy

in UV and IR range. This is also useful material for sunglasses, etc. The idea could

also applied to a “layered setup” (Betancur et al. 2013).

We can therefore translate the requirement into the screening logic posed on

the value of the CR to find out suitable molecules from the spectrum point of view.

Here we use a threshold of 0.2 for the correlation ratio of visible range and rank the

molecules according to their combined performance in UV and IR range. The selected

molecule and its spectrum is shown in Figure 4.12.

4.4 Conclusion

In conclusion, we have constructed a descriptor, the spectrum correlation ratio, as a

quantitative method to describe the alignment of a molecule’s absorption spectrum

with the solar spectrum. By using this quantitative parameter, it is then possible for

automated sorting of available material in a large scale to take place. It is designed

to handle big data from spectral perspective in available databases, for example,

tandem solar cell design. Consequently, we tested the candidates in the CEPDB
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Figure 4.12: The screening result of the molecule that is transparent in

visible range (from 1.65 eV to 3.26 eV) but absorbs energy in UV and IR

range.

database and identified the molecules that have a broader spectral coverage or have

a better performance in a certain spectral range. The results provided a theoretical

screening for the potential OPV materials for tandem solar cells.

In addition, we also gave some examples of translating the demand on the ma-

terial spectrum property to the screening logic on the spectrum CR. From ranking of

the results, we can find out the desired candidate molecule. And a molecule that can

be used as a transparent OPV material is screened as an example.
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CHAPTER 5

Conclusions and Outlook

“...all I know is what the Terminator taught

me; never stop fighting. And I never will. The

battle has just begun.”

— John Connor, Terminator 3

5.1 Summary of current research

To conquer both the energy problem and pollution problem while still providing e-

nough support to the development of human civilization, solar energy is one of the

best candidates to replace conventional energy and therefore more researchers are de-

voting their efforts to this field (Chu, Cui, and Liu 2017) (Louwen et al. 2016). Bearing

the properties of being flexible, lightweight, having low cost and an easy manufactur-

ing process (Dou et al. 2013) (Dennler, Scharber, and Brabec 2009) (Heeger 2014),

organic photovoltaic (OPV) is advantageous over conventional inorganic counterparts

and is under rapid development in the past few years. Particularly because of the

simple and defined product in the reaction they evolved, the advantages of employ-

ing small organic molecules has gradually been recognized (Chen, Wan, and Long

2013). The aim of this thesis has been to apply density functional theory (DFT),

Time-Dependent DFT (TD-DFT) and High- throughput screening (HTS) method to

design new donor material for small molecule organic photovoltaic and molecules for

tandem solar cells.

In chapter 2, we first validated the method as doing a functional benchmarking

study. We calculated 29 molecules in the organic photovoltaic field using a group

of 12 functionals from LDA, GGA, meta-GGA, global hybrid and range separated

hybrid functionals. By comparing the predictions from theory and values from exper-

imental measurements, we summarized different linear correction formula for different

functionals. And the linear correction model was justified by a k-fold cross validation

method. The benchmarking results were used in later chapters.
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In chapter 3, we investigated a group of small molecule organic photovoltaic

based on a DHICA core with various side groups. Using the functionals summarized

from chapter 2, we calculated their HOMO, gap and LUMO. By using the Scharber

model, we then predicted their power conversion efficiency (PCE). Since our aim in

this chapter was to find the design rule for a high PCE small organic molecule, we

further studied their electronic property and suggested new molecules.

In chapter 4, we applied HTS and time dependent density functional theory (TD-

DFT) to search for material for tandem solar cells based on a diverse library from

the Harvard Clean Energy Project Database (CEPDB). In this study, we designed

a new descriptor, correlation ratio (CR), to efficiently screen the molecule based on

their spectra property.

5.2 Prospective for future research

To continue the study in chapter 2, we would design more molecules based on a

melanin core. We would further investigate the electronic structure of melanin and

structure control by using side chain groups (end capping groups). Also, the effect

of different heteroaromatic rings other than the benzene ring should be explored.

Finally, to go to the microscopic scale, we would study the excited state property,

e.g. singlet fission, to further boost the quantum efficiency.

Bearing the results from chapter 2 and 3, we would perform an HTS study to

discover more useful materials. More design rules are expected to be summarized in

the continued chapter 2 study and would be applied to HTS. Also, optical materials

not only confined to organic solar cells would be screened out in an HTS study, e.g.

material for sunglasses.
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APPENDIX A

A Short Introduction to DFT/TD-DFT and Material Informatics

A.0.1 Molecular modeling using DFT

The research method we applied combines computational modeling methods of den-

sity functional theory (DFT) and time dependent DFT (TD-DFT) together with

a large scale data analysis method (virtual design and screening) (Curtarolo et al.

2013b). To model phenomena at the molecular level, quantum mechanics should be

applied. We therefore chose DFT, which is usually employed to solve for ground

state electronic structures and properties since it would have the exact solution for

the ground state. Due to its good balance between accuracy and efficiency, there is

a growing popularity in applying DFT in scientific research which involves studies in

electronic structures and properties, including physics (Kohn, Becke, and Parr 1996)

(Peverati and Truhlar 2014), chemistry (Bickelhaupt and Baerends 2007) (Zhao and

Truhlar 2008a), material science (Neugebauer and Hickel 2013) (Salzner et al. 1998)

(Mattsson et al. 2005) etc.

The Time-dependent DFT (Runge and Gross 1984b) (Parr and Yang 1989) is

mostly used to study the excited state properties of molecules. In this study, it is used

to calculate the vertical singlet/triplet excitation from the ground state geometry

acquired from DFT. The first excitation energy should correspond to the energy

bandgap in molecules. It is more accurate than DFT when dealing with excited state

phenomena.

Molecular modeling using DFT

From the time-independent Schrödinger equation (Equation (A.1)) we can safely de-

scribe the states of the system using the wave function Ψ . This is accurate enough

for hydrogen and light element atoms (who lay before the transition metal elements

in periodic table). Although the physical meaning of Ψ is not known at first and still

many people provide different opinions on it now, the most accepted explanation is

from M. Born, which is called the statistical explanation. He related the square of
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the wave function to the probability of finding a particle in certain region. And this

equation reads like:

(
~2

2m
∇2 + V (r))Ψ = −i~

∂Ψ

∂t
(A.1)

One particle Schrödinger equation can be solved exactly. However, when we try

to apply the same equation to solve the atomic or molecular system, which has more

than one electron and nuclues, we met difficulties. The manybody Schrödinger is

not solvable, because it would require too many degrees of freedom to describe the

system, which is numerically impossible. In general, if a system contains M nuclei (of

the same kind) and N electrons, then it has the Hamiltonian:

H = HZ +He +HZ−e (A.2)

H = − ~
2mZ

M∑
i=1

∇2
i +

1

2

M∑
i,j=1
i ̸=j

ZZ

|Ri −Rj |
(A.3)

− ~
2me

N∑
i=1

∇2
i +

1

2

N∑
i,j=1
i̸=j

e

|ri − rj |
(A.4)

−
M∑
i=1

N∑
j=1

Ze

|Ri − rj |
(A.5)

where:

Ri is the position vector of the i th nucleus;

rj is the position vector of the j th electron;

e is the fundamental charge for electron;

Z is the atomic number of the nuclei;

mZ is the mass of a nucleus;

me is the mass of an electron.

To solve this equation, we need to make approximations. The first one is called

Born-Oppenheimer approximation, which separates the nuclei and electrons into two

different parts because they response rates to the disturbance are much different. In

this approximation, we could consider the kinetic energy of nuclei to be more or less

zero and the potential energy of them to be a constant, so we would ignore them

at this moment. After making this approximation, the problem now is how to solve
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a system consists of many interacting electrons moving in a background of nuclei

potential. So the Hamiltonian now becomes:

H = He +HZ−e (A.6)

H = − ~
2me

N∑
i=1

∇2
i +

1

2

N∑
i,j=1
i̸=j

(Ze)2

|ri − rj |
(A.7)

−
M∑
i=1

N∑
j=1

Ze2

|Ri − rj |
(A.8)

The theory side of DFT

After making Born-Oppenheimer approximation, we have a manybody Schrödinger

equation left to solve. People developed some ways to directly attack this equa-

tion, e.g. diagrammatic perturbation theory based on green’s function (from physics

community) and configuration interaction (CI) method based on systematic expan-

sion in Slater determinate (from chemistry community). However, there is another

formulism that is equivalent to many body Schrodinger equation but is significant-

ly less demanding in calculation time. That is DFT theory. Table A.1 compare

the time complexity of calculations from those theories. The time cost is usual-

ly measured using the concept of time complexity in computer science field (“http-

s://en.wikipedia.org/wiki/Time complexity”). However, it is not a direct link between

the size of the current system and its computation cost but rather it is how time cost

would increase if the system changed to n times as big as before. From the Table

A.1, we choose the theory of DFT since it scales better in time cost. In the following

equations, we take e = me = ~ = 1.

Thomas-Fermi Model and the local exchange

The first DFT theory is started by E.Fermi who together with L.H.Thomas con-

structed the Thomas-Fermi model in 1927 (Fermi 1927) (Thomas 1927). The theory

gives the energy functional of electron density as in

90



ETF [n(r)] =CF

∫
n

5
3d3(r)− Z

∫
n(r)

r
d3r

+
1

2

∫ ∫
n(r)n(r′)

|r − r′ |
drdr′

+ CLE

∫
n(r)

4
3d3r

Where the first part is for kinetic energy, the second part is for electron-nucleus

interaction and the last part is electron-electron interaction. The coefficient CF =
3
10
(3Π2)

2
3 is a constant and CLE = −3

4
( 3
Π
)
1
3 is a constant for the local exchange

introduced later by P.A.M. Dirac (1930). This equation can be solved using lagrange

multiplier method (the physical meaning of the parameter is the chemical potential)

under the constrain:

N =

∫
n(r)d3r

The Thomas-Fermi model didn’t include the exchange energy, which is later

introduced by P.A.M. Dirac and the model becomes Thomas-Fermi-Dirac model.

However, because it neglects the electron correlation energy, there is no chemical

bonding predicted in this model (Teller 1962) (Lieb 2000). But it initiated the idea

to use the density n as the fundamental variable instead of the wave function and

introduced variational method. In modern DFT (e.g. Kohn-Sham DFT or KS-DFT),

where we could only solve the equation with certain assumption, we still take the local

exchange term in Thomas-Fermi model as the expression for exchange-correlation

term and it is therefore called local density approximation (LDA) (Kohn and Sham

1965a). Also, we would still solve the equation through variational method.

Table A.1: The time complexity of general DFT, MP2 and CCSD codes.

Theory Time complexity

DFT O(n3)

MP2 O(n5)

CCSD O(n6 )

KS-DFT The theory of KS-DFT is built on Hohenber-Kohn (HK) theorem

and Kohn-Sham equation. The first HK theorem assures us that we could use electron

density as the variable because there is a unique correspondent between electron

density and external potential. And the second HK theorem asserts the existent
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of a functional of density which would lead the energy of the system to minimum.

Until this step, all treatments done are accurate. However, in order to solve for the

solution, we would use the Kohn-Sham equation (Kohn and Sham 1965a) and SCF

(self-consistent field) procedure to find out the approximate solution.

From the 1st HK theorem:

E[n] = T [n] + Vinteraction[n] +

∫
Vext(r)n(r)d

3r (A.9)

where Te is the kinetic energy of interacting electrons, Vinteraction is the interac-

tion energy of electrons , Vext is the potential energy of the electrons due to nuclei

background. And from the 2nd HK theorem, ground state electron density n0 is when

E[n] takes the global minimum (As shown in Figure A.1 ). So

E0 = min
∀n∈{n}

E[n] (A.10)

Figure A.1: Illustration of global minimum of energy functional E[n].

Although HK theorem proves that there exists a solution satisfying the problem,

it provides no clue to how to proceed. To actually find out the solution, Kohn &

Sham made a progress (Kohn and Sham 1965a) by constructing a reference system

(KS system) of non-interacting electrons with the same density n as the original

system. From the physics point of view, compared to the correlated electrons (original

system), the KS system has single particle kinetic energy, coulomb repulsion and

potential energy from external nuclei, so we would expect an energy difference which

arise from quantum effects of exchange and correlation and denote this part as EXC .

Then under the assumption that the energy could be written separately into different

parts, the two systems should have the same energy by adding EXC to the KS system

as in Equation (A.0.1). In the following equations, we use indices ”s” to represent
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the quantities in single particle system (independent particle system). And Vsext is

for single particle system which is different from Vext for the original system.

ECorrelatedElectrons[n] =EKS

= Ts +
1

2

∫ ∫
n(r)n(r′)

|r − r′ |
drdr′ +

∫
Vsext(r)n(r)d

3r + EXC [n]

The KS system is easier to solve following the 2nd HK theorem in which we set
δEKS

δn
= 0 to find out n that gives minimum E. And if we use µ to denote the lagrange

multiplier and the constraint is
∫
nd3r = 0, then we have:

δ[Ts(n) +
1

2

∫ ∫
n(r)n(r′)

|r − r′ |
drdr′ +

∫
Vsext(r)n(r)d

3r + EXC − µ(

∫
n(r)dr −N)] = 0

However, this equation will lead to a schrödinger-like equation, assuming we

knew the analytical form of EXC . To see this, we define VKS(r) as:

VKS(r) = δ(
1

2

∫
n(r)n(r′)

|r − r′ |
drdr′ +

∫
Vsext(r)n(r)d

3r + EXC)/δn(r)

And notice Ts(n) is (Ψi is the single particle wavefunction : n(r) =
∑N

i=1Ψ
∗
i (r)Ψi(r)

):

Ts(n) = −1

2

N∑
i=1

∫
Ψ∗

i (r)∇2Ψi(r)dr

Then we would arrive at:

(−1

2
∇2 + VKS(r))Ψi(r) = εiΨi(r)

with εi being the eigenvalue of the corresponding wave function.

We could then take advantage of the so-called Self Consistent Field (SCF) proce-

dure to solve this single particle schrödinger equation numerically, assuming we know

the EXC . So the EXC or the exchange-correlation functional is all we need. How-

ever, the exact form of the exchange-correlation functional is still unknown so far.

In Kohn & Sham ’s paper (Kohn and Sham 1965a), they used LDA approximation

coming from P.A.M. Dirac Dirac 1930. But we could also make other approximations

to make the problem solvable. Other commonly used approximations include: gen-

eral gradient approximation (GGA), meta-GGA. Here we list the approximations we

made in order to solve the KS-DFT equations:
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1. Born-Oppenheimer approximation ;

2. Energy functional can be separated into parts (EXC can be explicitly separated);

3. Exchange-correlation functional takes LDA, GGA, meta-GGA or hybrid ap-

proximation

The calculation side of DFT

Functionals

The core parts of DFT calculation lies on the exchange-correlation functionals.

However, since we haven’t found out the exact form of exchange-correlation function-

al, we have to make approximations if we used KS-DFT. There are different types

of approximate exchange-correlation functionals with growing accuracy, which are

shown in Figure A.2 (Mardirossian and Head-Gordon 2014)

Figure A.2: Levels of accuracy of different DFT functionals (From refer-

ence (Mardirossian and Head-Gordon 2014)).

LDA approximation assumes the exchange-correlation is a functional of only local

density, which is inherited from uniform gas model. The exchange part of LDA is
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shown in Equation (A.11). The correlation part could be acquired through quantum

monte carlo simulation.

ELDA
XC [n] ∝

∫
n

3
4 (r)dr (A.11)

GGA approximation takes the non-uniform density into account so the GGA

exchange-correlation is a function of local density and density gradient. In practical,

one could use either fitting or physics model to find out the parameters. Examples

include PBE, BLYP etc.

The third level, meta-GGA would include the Laplacian and kinetic of the elec-

tron density. Example includes TPSS.

On the fourth level lays the hybrid functionals. The Hatree-Fock theory contains

the exchange part which arise from pure local exchange (we name it exact exchange),

so we would expect the accuracy to improve if we put in the exact exchange account-

ing for local interaction and leave the difference with real system to be decided by

parameters. This idea could be shown in Equation (A.12). In the B3LYP (Stephens

et al. 1994) functional, we take the parameters as (A.13) shows.

EHybrid
XC [n] = aEHF

X + (1− a)EGGA
XC (A.12)

EB3LY P
XC [n] = ELDA

X + n0(E
HF
X − ELDA

X ) + nx(E
B88
X ) + EVWN3

C + nc(E
LY P
C − EVWN3

C )

n0 = 0.2;nx = 0.72;nc = 0.81

(A.13)

If we consider the coulomb screening effect in the condensed matter system, we

would separate the interaction into a short range part and a long range part, which

would have different forms (range separation). The length that separate the short

and the long is tuned by a parameter (ω). Functionals reconstructed in the way have

a ω symbol in their names, e.g. ωPBE, ωB97, ωB97XD etc.

The last level is for double hybrid functionals, which have the form as shown in

Equation (A.14) (Grimme and Neese 2007)

EDH
XC [n] = ELDA

X + a(EHF
X − ELDA

X ) + bEGGA
X + c(EPT2

C − ELDA
C ) + dEGGA

C (A.14)

In practice, the calculation time of double hybrid functionals can be very long,

sometimes even longer than MP2 level calculation time.
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All of the functionals that used in chapter 2 for benchmarking purpose are listed

in Figure A.3

Categories Functional HF used Identifier(s) in bibtex file (p comment

LDA SVWN 0.0% S64 ; VWN

hybrid-LDA KMLYP 55.7% KMLYP mixture of slater and hf exchange

pure GGA BP86 0.0% Becke88 ; P86

PW91 0.0% Perdew92a ; Perdew92b ; Perdew96

BPW91 0.0% Becke88 ; Perdew92a ; Perdew92b ; Perdew96

BLYP 0.0% Becke88 ; Lee88 ; Miehlich89

PBE (PBEPBE) 0.0% PBE

hybrid GGA B3LYP 20.0% Becke93 ; Lee88 ; Miehlich89 ; B3LYP

B3PW91 20.0% Becke93 ; Perdew92a ; Perdew92b ; Perdew96

O3LYP 11.6% O3LYP

BHandHLYP 50.0% BHandHLYP

PBE0 (PBE1PBE) 25.0% PBE0

PBEh1PBE 25.0% PBEh1PBE the same as PBE0 except using 1998 replace 1996 version

B3P86 20.0% Becke93 ; P86

pure meta-GGA TPSS 0.0% TPSS

revTPSS 0.0% Perdew09

hybrid meta-GGA B1B95 28.0% Becke96

M06 27.0% M06

M06L 0.0% M06L

M06-HF 100.0% M06HF

M06-2X 54.0% M06

TPSSh 10.0% TPSSh

range-seperated wB97XD 22.2%; 100% wB97XD the first number is short range; the second number is long range

wB97X 15.7%; 100% wB97X

Cam-B3LYP 19%; 65% camB3LYP

HSE06 25%; 0% HSE061 ; HSE062

Figure A.3: Functionals used in Chapter 2 for benchmarking purpose.

Basis set To actually solve the equation numerically, the Ψ is expended in a finite

set of basis functions. There are many choices on how to choose the basis function-

s. Common choices include: Gaussian functions, plane wave functions, augmented

wave functions etc. In most quantum chemistry software, especially the Guassian09

software (Gaussian09 Revision C.01 ) , gaussian functions are used. But in periodic

system calculations with software like quantum espresso, the plane wave functions

are used.

In the Cartesian coordinates, the Ψ is usually expanded using Gaussian functions

in the following format:

Ψν [r] =
∑
i=1

ciνx
lxylyzlzeζiν(r−R)2

(A.15)

Different expansion series, of course, would give different energy results. However,

we would expect the energy to converge to a certain value as the size of basis sets grow

larger. This is exactly the case we observed with DFT calculations in the following

Table A.4:
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Figure A.4: Basis sets effect in DFT calculations (from Plumley and Dan-

nenberg 2011). Under a given functional, the result of energy calculation

converged to a certain value as basis sets grow larger.

The application of DFT

DFT succeeds in many ways, but it also has some intrinsic defects that should be

aware of when we apply them to the real world tasks. The weaknesses include (Cohen,

Mori-Sánchez, and Yang 2008) (Jacquemin et al. 2008) (Sousa, Fernandes, and Ramos

2007) :

1. Dispersive interactions (e.g. Van der Waals force) ;

2. Rydberg excitations ;

3. Charge-transfer (CT) state ;

4. Nonlinear optical properties of long conjugated polymers ;

5. Strongly correlated systems .

The origins of those difficulties lie in the approximations that were made in

the exchange-correlation functionals, since the exact form is unknown. However, as

new concepts emerge, these weaknesses are slowly being overcome: new functionals
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are constructed to reflect effort from the functional development community (Cohen,

Mori-Sánchez, and Yang 2008).

The molecules being investigated in this research would include long conjugat-

ed molecules, where electron delocalization error would be invoked. After previous

benchmark studies, people found that tuning of the percentage of the Hatree-Fock

exchange and the use of range-separated functionals could improve the results (Co-

hen, Mori-Sánchez, and Yang 2008) (Körzdörfer and Bredas 2014). In order to choose

the best functional for our compounds, we performed a benchmark study with the

functionals listed in Figure A.3.

In organic chemistry, the eigenvalues of the highest occupied molecular orbital

(HOMO) and the lowest unoccupied molecular orbital (LUMO) are the two most im-

portant molecular orbitals, because they determine the bandgap that directly related

to the optical property of molecules. Gang Zhao and Charles B. Musgrave (2007)

calculated the HOMO and LUMO energies from different DFT functionals and did

a comparison study with the corresponding experimental values (Zhang and Mus-

grave 2007). The functionals they chose include SVWN, BLYP, BP86,BPW91, PBE,

B3LYP,KMLYP, BH&HLYP, O3LYP and B1B95. Those functionals ranges from L-

DA to hybrid meta-GGA level A.3. The calculations include a series of 27 small

molecules. As expected, HOMO energies from DFT generally have a better correla-

tion (linear relation) with the experiment than LUMO energies as shown in Figure

A.5 . Among functionals used, KMLYP (hybrid-LDA level), having an average error

of 0.24 eV, behaved the best in HOMO energies predictions. However, in LUMO

comparison, they show hardly any correlations. They also used TD-DFT to calculate

the HOMO-LUMO gap, which has a better correlation than LUMO energies from

DFT. So a better strategy to acquire LUMO energies will be adding HOMO energies

and HOMO-LUMO gaps together instead of calculating LUMO energies from DFT.

Zhao et al.(2003) performed similar calculations on 52 molecules and their focus

is on B3LYP with 6-31 pVTZ+1 basis set for properties calculation and 6-31+G* for

geometry determination. In this study, they were able to perform a linear regression

on the calculation results and found a linear relationship between theory and experi-

mental results on the HOMO energy, LUMO energy and other molecular properties’

results. This is to show a general and excellent linear correlation between theoretical

and experimental results (refer to Figure A.6 ).
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Figure A.5: HOMO energies from calculations and experimental ionization

potential (IPs) (Zhang and Musgrave 2007). The 100% correlation line is

indicated by the dashed line.
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Figure A.6: Experimental values compared to theoretical values shows

a linear dependence: a. Calculations with a larger basis set; b and c.

Calculations with 6-31+G* basis set (Zhan, Nichols, and Dixon 2003).
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Tortorella et al.(2016) and their collaborators Martinelli et al.(2014) synthesized

a new family of OPV molecules based on benzofulvene. In order to perform the

theoretical study on those new molecules, they first performed a benchmark study

on DFT and semi-empirical methods and tried to find out which method was better

in predicting properties that could match the experimental results. Their candidates

in DFT functionals included: B3LYP, cam-B3LYP, HF, PBE0, MPW1K, ΩB97XD,

M06, M06-2x, M06-HF as well as other ab initio methods like MP2. They found

geometry predictions from B3LYP matched x-ray data the best. And concerning

predictions on optical bandgaps, MPW1K delivered the most accurate results.

With range-separated functionals (LRC-PBE, LRC-PBE0 and LRC-BLYP), Mary

A. Rohrdanz and John M. Herbert (Rohrdanz and Herbert 2008) did a survey study

on 109 molecules from the Minnesota Thermochemistry and Thermochemical Kinet-

ics Database. For the ionization energies, three functionals could give a better results

than B3LYP’s when we properly set the range-separation parameter µ to a smaller

value (as shown in Figure A.7).

Figure A.7: Curve of RMSE values variation with different value of range-

separated parameters (Rohrdanz and Herbert 2008).

A.0.2 Molecular modeling using TD-DFT

DFT is accurate for ground state energy or the HOMO energy in this research. It

could provide excited state information, but it is not accurate. A better method for
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excited state calculation is Time-dependent DFT or TD-DFT.

The fundamental of TD-DFT lies in the Runge-Gross Theorem (RG theorem)

(Runge and Gross 1984b). Like HK theorem in DFT, where we set up the relation

between single electron density and the energy of the system, the RG theorem sets

up the 1-to-1 mapping between the time evolution of the single electron density and

the action of the system:

A[ρ] =

∫ t1

t0

⟨Ψ(t)|i∂t−H(t)|Ψ(t)⟩ dt (A.16)

and the stationary point of the action would give the real density of the system.

TD-DFT method gives better results for optical spectra. In this research work,

we use TD-DFT method implemented in the octopus code (Andrade et al. 2015). The

procedure of calculating spectra is illustrated in the Figure A.8.

Figure A.8: Spectra calculation procedures of TD-DFT implemented in

the octopus code.

The application of Time-dependent DFT (TD-DFT)

Time-dependent DFT or TD-DFT is now the most widely used tool for modeling

electronic spectra (Jacquemin et al. 2009) (Laurent and Jacquemin 2013) (Barone

and Polimeno 2007). As we know, DFT has limits in treating delocalization but the

molecular excitations could be of any type. Specifically, n → π is local excitation while

π → π∗ is of delocalization nature. So when we deal with excited state problem, it

is also important to identify the nature of transitions and then choose the functional

correspondingly.

In a study by Sarom and co-workers (Leang, Zahariev, and Gordon 2012) , they

tested the performance of 24 density functionals on predicting the excited state energy
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from 110 transitions by using a test set of 14 compounds. Those 24 functionals

included LDA, GGA, hybrid GGA, meta GGA (mGGA) and hybrid mGGA. In terms

of mean absolute error (MAE), M06-2x ranked first with 0.22 eV but it suffers from

convergence problems sometimes. The next best is PBE0 functional with the MAE

being 0.28 eV. X3LYP and B3LYP are the third and fourth respectively (For their

complete list of functionals see Figure A.9). There is a high error from cam-B3LYP.

There is a report saying cam-B3LYP couldn’t deal with triplet excitation properly

(Peach et al. 2008) and there are quite a number of triplet excitation in this test set.

Figure A.9: Mean absolute errors for π → π∗ and n → π∗ predictions

(Leang, Zahariev, and Gordon 2012).

Since singlet excitation is the one seen most, Denis and co-workers (Jacquemin et

al. 2009) did an extensive TD-DFT benchmarking using only singlet state excitations.

They performed TD-DFT on 500 compounds and more than 700 singlet transitions

with 29 functionals including LDA, GGA, hybrid GGA, meta GGA, hybrid meta GGA

and range-separated functionals. They used both experimental values (VE set) and

theoretical values from CAS-PT2/TZVP (VT set) as the reference. The statistical

analysis for both sets are shown in Figure A.10 and Figure A.11. From there, we can

see the 4 global hybrid functionals have less than 0.25 eV in MAE in both tests in the

VE and VT set. And B3LYP is just a little higher than these 4 functionals, so it is

still worth using considering its convergence speed. As one of their conclusions, they

think with current TD-DFT functionals, calculation error should be within 0.22 eV

and this could be achieved with the 4 global hybrid functionals (X3LYP, B98, PBE0,
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mPW91PW91) or the ”LC-” hybrid functional with ω = 20.

Figure A.10: Statistical analysis of the results using VT set as the refer-

ence. MSE is Mean Signed Error. MAE is Mean Average Error. RMS is

Root Mean Square (Jacquemin et al. 2009).

While those benchmark tests seemed to recognize the importance of global hy-

brid functionals (i.e. PBE0), range-separated functionals (i.e. LC-, cam-B3LYP) are

not outperformed often. However, because our study objects, organic photovoltaic

molecules, usually have a special phenomenon called ”charge-transfer (CT)” state,

range-separated functionals are the one people think could describe this phenomenon

properly (Laurent and Jacquemin 2013) (Dreuw, Weisman, and Head-Gordon 2003).

Unlike traditional hybrid functionals, range-separated functionals usually have differ-

ent exchange percentages for local and long range. For example, the Heyd-Scuseria-

Ernzerhof (HSE) functional (Heyd, Scuseria, and Ernzerhof 2003b) (Paier et al. 2006)

has 25% of Hatree-Fock exchange for short range and for its long range, it contains

0% of Hatree-Fock exchange.

Even for the range-separated functionals, describing CT properly proved to be

a difficult task. In a study on donor-acceptor complexes by Nguyen and coworkers

(Nguyen, Day, and Pachter 2011b) , they tested several range-separated function-

als (LC-PBE, LC-ΩPBE, cam-B3LYP, ca-B3LYP, LRC-ΩPBEh, CA-PBE, ΩB97,
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Figure A.11: Statistical analysis of the results using VE set as the reference

(Jacquemin et al. 2009).

ΩB97X, HSE, CA0-PBE and CA0-B3LYP) and concluded mean average errors of

predictions from ΩB97X and LC-PBE are below 0.2 eV. In another study by Dev

and others (2012), they chose PBE, M06L, B3LYP, M06, cam-B3LYP and ΩB97 to

perform calculations on 16 push-pull dyes used in solar cells. This time cam-B3LYP

was the best one with a MAE of 0.23 eV as shown in Figure A.12.

There are many different types of excitations and it is difficult to find a universal

functional that could predict values matching the experiment well. So an alternative

way would be tuning a set of parameters for a certain molecule family. In the future,

we would choose to tune the parameters of HSE functionals to predict values for the

melanin family.
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Figure A.12: Statistical analysis of the difference between the values from

different functionals and the reference values (Dev, Agrawal, and English

2012b).

A.0.3 Virtual molecule screening and material informatics

Empowered by the growing technology in computer hardware development, people

were able to do high throughput screening (HTS) first in drug design field in the last

century and it proved to be an effective method (Young et al. 1998) (Hamasaki and

Rando 1998). People in the material design field borrowed the idea and started many

new projects utilizing this method.

The Harvard Clean Energy Project(Hachmann et al. 2014), uses chemoinfor-

matics as well as DFT calculations, to investigate a database built from 2.3 million

molecular motifs in order to explore their organic electronic properties. After per-

forming large scale DFT calculations using the IBM World Community Grid, they

were able to rank the candidates according to the predicted power conversion effi-

ciency (PCE) that was calculated from the Scharber model (Scharber et al. 2006).

Their results are online and open to the public. Another survey study by Ørnsø et

al.(2013) focused on dye selections, screening out 50 candidates out of 1029 molecules

that were built from porphyrin derivatives. DFT calculations with PBE functionals

were used to predict the HOMO and LUMO energy. Their results are online and

open to public. Kanal et al (Kanal et al. 2013b) adopted a slightly different way to

analyze their results. Their aims were not only to find out the candidates but also

to discover the trend and the design rules underlying their results. Instead of the

Donor-Acceptor pattern, they proposed a new type of Donor-Donor pattern which is

concluded from their findings. Bérubé et al used DFT as the primary tool to perform
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quantum chemistry computations on OPV (Bérubé et al. 2013). By using the Schar-

ber model (Scharber et al. 2006), they set up a prediction protocol and discussed the

prediction results of PCE of the material. Overall, the quantum chemistry start to

show the possibility of being a versatile yet relatively independent study method.

The last 3 years witnessed an emergence of a new field called material informatic-

s. The current leading projects include: the material genome project and the material

project. They usually use combined methods from several disciplines including quan-

tum chemistry, drug design and chemoinformatics to provide guidance in designing

and discovering new material for certain purposes.
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APPENDIX B

Parameters from Linear Regressions in the Chapter 2

This appendix lists the linear regress equation from chapter 2. After performing

DFT/TD-DFT calculations, we applied these correction formula to the results to

improve the accuracy of the prediction. The correction formula:

HOMOexp = HOMODFT ∗ slope+ interception

Gapexp = GapTD−DFT ∗ slope+ interception
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Table B.1: Linear regression formula for DFT functionals on HOMO and

on Gap.

Parameters HOMO Gap

slope interception slope interception

B3LYP 0.698196693 -1.482445666 0.847553522 0.153889895

HSE06 0.654625822 -1.940596143 0.793098208 0.426161495

PBE 0.660285439 -2.194546975 0.836565766 0.71375629

PBE0 0.680488568044 -1.56432027356 0.829372219306 0.242813994713

BHandHLYP 0.642863289391 -1.31685693837 0.859148916136 -0.310281077773

BLYP 0.68485221044 -2.17601557297 0.820743018835 0.753916335271

KMLYP 0.640248194409 -0.92925053598 0.772131100492 -0.0416018769641

M06 0.668199588454 -1.55863605803 0.876368923513 0.118870582769

M06HF 0.594032137495 -0.528713904122 1.10588106819 -1.60154081271

M06L 0.68547196989 -2.05060424355 0.7979641837 0.632691698669

M062x 0.70641093563 -0.729482631055 0.935951772063 -0.497475930265

O3LYP 0.669431711131 -1.95956466635 0.820492991905 0.476345493934

PW91 0.659997100364 -2.16274552067 0.834275128588 0.719654786427

TPSS 0.672825250192 -2.15642802156 0.792983948119 0.746669318164

RevTPSS 0.675290133666 -2.1450240197 0.791625091404 0.73720741968

SVWN 0.64908365031 -1.8336367923 0.832516308403 0.733279874945

cam-B3LYP 0.647689550556 -1.05392432642 0.90511560809 -0.431626015365

wB97XD 0.648538339186 -0.705319438125 1.00099575609 -0.809206435982

wB97X 0.652626950936 -0.450975629674 1.05687304596 -1.23303351773

LC-wPBE 0.664835817468 -0.157590475097 1.11199228869 -1.61222766889
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