
STUDIES ON THE ANAEROBIC FUNGUS PECORAMYCES RUMINANTIUM SP.  
 

C1A: SPORE COLLECTION AND GENETIC MANIPULATION APPROACHES 
 
 
 
 

By 
 

SHELBY SAMANTHA CALKINS 
 

Bachelor of Science in Biology 
Oklahoma State University  

Stillwater, Oklahoma 
2011 

 
 
 
 

Submitted to the Faculty of the  
Graduate College of the 

Oklahoma State University 
in partial fulfillment of  

the requirements for 
the Degree of 

DOCTOR OF PHILOSOPHY 
December, 2017 

 



	  
	  

ii	  

STUDIES ON THE ANAEROBIC FUNGUS PECORAMYCES RUMINANTIUM SP.  
 

C1A: SPORE COLLECTION AND GENETIC MANIPULATION APPROACHES 
 
 

 
 
 
Dissertation Approved: 
 
 

Dr. Noha Youssef 
 

Dissertation Adviser 
 

Dr. Mostafa ElShahed 
 
 
 

Dr. Stephen Marek 
 
 

Dr. Edward Shaw 
 

 
 

Dr. Rolf Prade 
 



	  
Acknowledgements reflect the views of the author and are not endorsed by committee 
members or Oklahoma State University. 

iii	  

ACKNOWLEDGEMENTS 
 
 
 I would like to acknowledge my immense appreciation and gratitude to my 

advisor Dr. Noha Youssef for accepting me into her lab, and for being such a positive 

influence in my life. I cannot express enough how much I have appreciated her 

willingness to be available for guidance every time I have been in need, both 

professionally and personally. I aspire to emulate her dedicated mentorship approach, as 

it has been invaluable moving forward in my journey as a scientist. I would also like to 

thank my committee member Dr. Mostafa ElShahed, who was also another vital source 

of encouragement and guidance. They both made me feel accepted and valuable, and I'm 

honored have been a part of their lab family. Many thanks as well to my remaining 

committee members, Dr. Edward Shaw, Dr. Rolf Prade, and Dr. Stephen Marek for 

generously offering their time and expertise. They provided valuable advice that has 

made me think more critically and openly, helping me tremendously as a researcher.  

 Last but not least, I would like to express my infinite appreciation for my family, 

most of all, my husband Jacob Calkins. I’m truly blessed to have such an incredible 

support system to help keep me emotionally grounded and focused. Individually, they 

have each made sacrifices in order to ensure that I had the necessary emotional and 

physical tools I needed to accomplish my goals, and for that I’m eternally grateful. 



	  
 

iv	  

Name: SHELBY SAMANTHA CALKINS 
 
Date of Degree: DECEMBER, 2017 
 
Title of Study: STUDIES ON THE ANAEROBIC FUNGUS PECORAMYCES   
  RUMINANTIUM SP. C1A: SPORE COLLECTION AND GENETIC  
  MANIPULATION APPROACHES 
 
Major Field: MICROBIOLOGY 
 
Abstract: The overall aim of this dissertation is to develop means for spore collection and 
growth synchronization, long-term storage, and gene knockdown protocols in the 
anaerobic gut fungal isolate Pecoramyces ruminantium strain C1A (C1A). A novel 
technique for the growth of strain C1A on agar medium in serum bottles and 
subsequently flooding the observed aerial growth to promote spore release from 
sporangia into the flooding suspension was developed. This surface growth-aerial 
flooding approach was to achieve three different goals hitherto unfeasible in strain C1A 
liquid cultures. First, surface growth was shown to be an excellent cryopreservative- and 
freezing temperatures-free approach for AGF long-term storage, and the utility of the 
approach was verified in multiple strains in addition to strain C1A. Second, the 
developmentally synchronized C1A spores collected allowed for real time PCR (RT-
PCR) transcriptional analysis of focal adhesion (FA) genes at various stages of 
development. This study showed for the first time that FA scaffolding proteins are indeed 
transcribed during growth in the absence of an extracellular matrix anchor, suggesting an 
alternative function for such proteins in the anaerobic gut fungi and hence highlighting 
the diverse functionalities of FA scaffolding proteins in basal fungi. Finally, the collected 
spores were shown to be naturally competent, and such ability was exploited to develop 
and optimize an RNA interference (RNAi)-based protocol for targeted gene silencing in 
C1A. Germinating C1A spores readily uptook chemically-synthesized small interfering 
RNA (siRNA) oligonucelotides coding for the D-lactate dehydrogenase (ldhD) gene 
resulting in marked target gene silencing; as evident by significantly lower ldhD 
transcriptional levels, a marked reduction in the D-LDH specific enzymatic activity in 
intracellular protein extracts, and a reduction in D-lactate levels accumulating in the 
culture supernatant. Collectively, results from these studies have opened the door not 
only for developmental biology studies, but also for targeted gene manipulations in this 
understudied fungal clade.  



	  
 

v	  

TABLE OF CONTENTS 
 

Acknowledgements............................................................................................................iii 
Abstract...............................................................................................................................iv 
Table of contents..................................................................................................................v 
List of tables......................................................................................................................vii 
List of Figures...................................................................................................................viii 
Preface..................................................................................................................................x 
 
Chapter              Page 
 
I. INTRODUCTION............................................................................................................1 
 
         Abstract.......................................................................................................................1 

      Anaerobic gut fungi (AGF).........................................................................................2 
      Challenges associated with AGF maintenance, storage, and genetic  
      manipulation...............................................................................................................4 
      Spore collection as a starting point for maintenance, developmental studies, and  
      genetic manipulation in AGF......................................................................................4 
      Pecoramyces ruminantium strain C1A (C1A): History and biotechnological  
      potential.......................................................................................................................5 
      Storage, synchronized growth, and genetic manipulations of strain C1A..................7 
      References...................................................................................................................9 

 
 
II. A FAST AND RELIABLE PROCEDURE FOR SPORE COLLECTION FROM   

       ANAEROBIC FUNGI: APPLICATION FOR RNA UPTAKE AND LONG-    
       TERM STORAGE OF ISOLATES.........................................................................18  
 
       Abstract....................................................................................................................18 
       Introduction..............................................................................................................20 
       Materials and Methods.............................................................................................23  
       Results......................................................................................................................29 
       Discussion................................................................................................................45 
       References................................................................................................................48 

 
 
III. INSIGHTS INTO THE UTILITY OF THE FOCAL ADHESION SCAFFOLDING   

       PROTEINS IN THE ANAEROBIC FUNGUS ORPINOMYCES SP. C1A............56 
 
       Abstract....................................................................................................................56



	  
 

vi	  

       Introduction..............................................................................................................58 
       Materials and Methods.............................................................................................61  
       Results......................................................................................................................67 
       Discussion................................................................................................................91 
       References................................................................................................................96
 

IV. DEVELOPMENT OF AN RNA INTERFERENCE (RNAI) GENE  
      KNOCKDOWN PROTOCOL IN THE ANAEROBIC GUT FUNGUS    
      PECORAMYCES RUMINANTIUM STRAIN C1A................................................103 
 
      Abstract...................................................................................................................103 
      Introduction.............................................................................................................105 
      Materials and Methods............................................................................................108  
      Results.....................................................................................................................115 
      Discussion...............................................................................................................134 
      References...............................................................................................................137 

 
 
CONCLUSIONS.............................................................................................................149



	  
 

vii	  

LIST OF TABLES 
 
 
 
Table               Page 

2-1. Flooding optimization for strain C1A.....................................................................35 

2-2. Application of Growth on solid media for AGF long-term storage........................41 

2-3. Prior methods for long-term storage of the anaerobic gut fungi.............................42 

2-4. Prior methods for spore collection and germination induction for the anaerobic gut    
        fungi........................................................................................................................43 
 
3-1. Microscopy results when C1A was grown in cellobiose (or MCC) media over a  
        period of 19 days....................................................................................................78 
 
3-2. Quantitative PCR primers used for cDNA amplification.......................................79 
 
3-3. Blastp results in other Neocallimastigomycota transcriptomes...............................82 
 
3-4. Results of C1A scaffolding proteins comparison to the Pfam database, as well as  
        secondary and tertiary structure predictions...........................................................83 
 
4-1. Effect of the uptake of exogenous ldhD-siRNA by C1A germinating spores on the   
        transcriptional level of ldhD relative to the housekeeping gene gapdh................123 
 
4-2. Effect of the uptake of ldhD-siRNA by C1A germinating spores on the D-LDH  
        specific activity.....................................................................................................124 
 
4-3. Transcripts with a significant (False Discovery Rate (FDR) < 0.1) fold change in  
        the ldhD siRNA-treated cultures...........................................................................128 
 
 
 
 
 



	  
 

viii	  

LIST OF FIGURES 
 
 
 
Figure               Page 
 

1-1. Asexual life cycle of anaerobic fungi........................................................................3 
 
2-1. (A) Cartoon depicting the flooding technique utilized for AGF spore collection.  
        (B) A serum bottle with RFC-agar media inoculated with Orpinomyces C1A while  
        the agar was partially solidified and incubated at 39ºC for 1 week........................34 
 
2-2. Examples of the viability scores in the footnotes of Tables 2-1 and 2-2.................36   
 
2-3. Inoculation procedures of C1A in solid agar media................................................37 
 
2-4. Results of flooding optimization showing the number of spores released per ml of  
        the flooding suspension as agar concentration (A), culture age (B), light intensity  
        (C), temperature (D), the nature of the flooding solution used (E), and the duration  
        of flooding (F) were changed..................................................................................38 
 
2-5. Phase contrast (A-C) and negative stain TEM (D-F) pictures of C1A spores  
        obtained during flooding.........................................................................................39 
 
2-6. Germinating spores uptake of si-RNA....................................................................40 
 
3-1. Genomic evidence for focal adhesion complex components in metazoan and non- 
        metazoan Unikonts..................................................................................................75 
 
3-2. A simplified schematic of the focal adhesion machinery in Metazoa.....................76 
 
3-3. Schematic of the protocol used to collect the different developmental stages of  
        C1A employed for the transcriptional study...........................................................77 
 
3-4. Maximum likelihood phylogenetic analysis of C1A predicted scaffolding  
        proteins....................................................................................................................80 
 
3-5. C1A predicted scaffolding proteins functional domain structure and organization,  
        and predicted protein structure modeling...............................................................84 
 



	  
 

ix	  

Figure           Page 
   

3-6. C1A predicted paxillin Pfam domain organization (A), and pairwise sequence  
           alignment of to paxillin from Gallus gallus (NP_990315)..................................86 
 

3-7. Transcriptional levels of genes encoding RS3 and centrin in C1A......................87 
 
3-8. Transcriptional levels of genes encoding scaffolding proteins in the presence and  
        absence of an extracellular matrix polysaccharide..............................................88 
 
3-9. Transcriptional levels of genes encoding scaffolding proteins in various life cycle  
        stages of C1A.......................................................................................................89 
 
4-1. A cartoon depicting the RNAi gene knockdown protocol used in this study.....118 
 
4-2. Neighbor joining phylogenetic tree depicting the phylogenetic relationship  
        between Pecoramyces ruminantium strain C1A predicted Dicer (A), Argonaute  
        (B), QDE-3 helicase (C), and QIP exonuclease (D) sequences and those from  
        other fungal and eukaryotic species...................................................................119 
 
4-3. Uptake of fluorescently (Cy3) tagged siRNA by C1A spores............................122 
 
4-4. (A) Pattern of D-lactate production in C1A culture supernatant as a factor of  
        fungal biomass. (B) A bar-chart depicting average ±standard deviation (from at  
        least two replicates) of D-lactate levels in C1A culture supernatant during early  
        log (6-13 mg biomass), mid-log (14-17 mg biomass), and late log/early  
        stationary (18-23 mg) phases.............................................................................125 
 
4-5. Volcano plot of the distribution of gene expression for C1A cultures when  
        treated with ldhD-specific siRNA (50 nM) versus untreated cultures...............127 
 
 
 
 
 
 
 
 
 
 



	  
 

x	  

Preface 
 
 

 The anaerobic gut fungi (AGF) belong to the phylum Neocallimastigomycota, 

which constitute an asexual basal fungal lineage that resides in the rumen and alimentary 

tract of herbivores. AGF have been of particular interest recently, as they could have a 

potential application in biofuel production due to their lignocellulolytic and fermentative 

capabilities.  

 Before I began my graduate studies, other laboratory members successfully 

isolated a pure culture of the AGF, Pecoramyces ruminantium strain C1A (C1A), 

sequenced its genome and transcriptome, and successfully identified and quantified the 

fermentation pathways and acid products of C1A when grown on various substrates. 

Oxygen tolerance studies were also conducted in order to assess the extent of the strict 

anaerobic nature of C1A.  

 The anaerobic nature of AGF isolates, the lack of reliable long-term storage 

procedures, and the tendency for senescence upon long-term continuous culturing make 

these organisms difficult to maintain in a laboratory setting. Consequently, research on 

AGF has lagged dramatically behind their aerobic fungal counterparts. There is currently 

no genetic system available for AGF. This dissertation focuses on (1) developing a means 

for spore collection and long term storage of AGF, and (2) utilization of collected spores 

for transcriptional studies and genetic manipulations of the anaerobic rumen fungus 
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Pecoramyces ruminantium strain C1A (C1A), with the ultimate goal of its potential use 

as a genetic system for AGF.  

 Chapter I serves as a general introduction for AGF, with a focus on what’s 

currently known about C1A. I will discuss the reasons behind the challenging aspects of 

working with AGF in a laboratory setting that has resulted in the lag in AGF research. 

Chapter I will also introduce the importance of the following chapter projects in order to 

provide a means to remedy some of the challenging aspects that will be addressed. 

  Chapter II addresses a reliable long-term storage and zoospore collection method 

for AGF (similar to that of aerobic fungal counterparts) and how it was critical for 

developmental and molecular biological studies to move forward for AGF. Thus, Chapter 

II presents the novel anaerobic flooding technique that I developed and optimized, which 

functions not only as a means of long-term culture storage, but also allows for collection 

of viable, competent, and developmentally synchronized C1A spores. This work is 

published in the Journal of Microbiological Methods.  

 Chapter III reports on how the developed anaerobic flooding technique, described 

in Chapter II, was utilized to conduct a transcriptional study on focal adhesion (FA) 

genes from samples of C1A collected at various lifecycle stages when grown with or 

without a solid substrate as a carbon source. This in-depth developmentally timed 

transcriptional study was possible because of the newfound ability to collect 

developmentally synchronized C1A spores. For the first time, results from this study 

revealed that FA components are in fact transcribed during growth in the absence of an 

extracellular matrix anchor, and proposed alternative functions for FA scaffolding 
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proteins in AGF, highlighting their diverse functionalities in basal fungi. This work is 

published in PLoS ONE. 

 Chapter IV addresses the lack of an established genetic system in AGF, 

subsequently hindering in-depth functional gene investigations. Chapter IV reports the 

development of an RNAi-based protocol for targeted gene knockdown in the AGF isolate 

C1A. This study highlights even further the breadth and significance of the anaerobic 

flooding technique for spore collection, as the collected germinating spores were 

demonstrated to uptake chemically synthesized short double stranded siRNA, resulting in 

successful targeted gene silencing of the D-lactate dehydrogenase (ldhD) gene. This work 

has been submitted for review in PeerJ. 
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CHAPTER I 
 
 
 

INTRODUCTION 
 
 
 

Abstract 
 
Anaerobic gut fungi (AGF) comprise a distinct phylum (Neocallimastigomycota) that 

possesses the unique ability to survive in the rumen and alimentary tract of mammalian 

herbivores. AGF have been shown to play an important role in the degradation of plant 

materials ingested into the herbivorous gut. AGF have sparked particular interest recently 

due to the potential of exploiting such capabilities for the production of biofuels and bio-

based chemicals. However, the inherent fastidious and strict anaerobic nature of AGF has 

complicated the study of AGF, resulting in a dramatic research lag compared to their 

aerobic counterparts. This dissertation aims to provide a means to remedy some of the 

challenging aspects in working with AGF.  
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Anaerobic gut fungi (AGF). The Anaerobic gut fungi (AGF) are the sole fungal 

representatives that exist in the rumen and alimentary tract of mammalian, and some 

reptilian, herbivores and represent the unique fungal phylum Neocallimastigomycota [1, 

2]. AGF constitute a basal fungal lineage that reproduces asexually by the production and 

release of flagellated zoospores from sporangia [1]. These flagellated zoospores are 

motile until they come in contact with a carbon source or solid substrate where they will 

attach, encyst and germinate, leading to the development of extensive rhizomycelia that 

function as an anchor for the production of zoospore-laden sporangia to repeat the 

lifecycle [1]. AGF are strictly anaerobic, and possess a complete arsenal of 

lignocellulosic enzymes, which, once attached to plant material, enable saccharification 

and fermentation resulting in the degradation of a wide range of plant polysaccharides [1, 

3]. Thus, not only do AGF play an important role in enhancing plant biomass metabolism 

by the host animals [4], but they also have multiple potential biotechnological 

applications; as a source of lignocellulolytic enzymes [5-11], direct utilization of AGF 

strains for sugar extraction from plant biomass in enzyme-free biofuel production 

schemes [12], as additives to biogas production reactors [13, 14], and feed additives for 

livestock [15-21].  
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Figure 1-1. Asexual life cycle of anaerobic fungi (from Gruninger et al., 2014) [1]. 
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Challenges associated with AGF maintenance, storage, and genetic manipulation. 

Even though the ecological importance and biotechnological potential of AGF is 

undisputed [4-21]; overall progress in various aspects of AGF biology has been relatively 

slow. Indeed, progress towards understanding the various aspects of AGF molecular 

biological and developmental biological research is in stark contrast to the rich body of 

knowledge available for their aerobic counterparts [22-36]. This is due to the strict 

anaerobic nature, the lack of reliable storage procedure, and the lack of genetic tools for 

the manipulation of AGF. The eukaryotic and strict anaerobic nature of AGF makes it 

difficult to maintain these organisms in a laboratory setting. As a result there is a lack of 

reliable long-term storage and maintenance procedures [37], and therefore cultures must 

be continuously subcultured. Unfortunately, there is a propensity of many strains for 

senescence upon continuous subculture [38]. Thus, development of a reliable storage 

procedure for AGF is necessary for moving research forward in this understudied field. 

Moreover, there are currently no established protocols for transformation, gene insertion, 

gene deletion, or sequence-specific homologous recombination-based genetic 

manipulations in AGF, as procedures involving plating and colony selection are 

unfeasible under strict anaerobic conditions. Additionally, with the exception of 

microscopic-based observations [37-47], studies seeking to understand the physiological, 

structural, regulatory, and gene expression patterns associated with various 

developmental stages of the AGF life cycle have been exceptionally sparse.  

 

Spore collection as a starting point for maintenance, developmental studies, and 

genetic manipulation in AGF. Methods for the collection of viable, developmentally 
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synchronized spores has been established in aerobic fungi, where spore release is induced 

upon exposing aerial sporangia that has been grown on a solid substrate, to flooding 

solution [48-51]. These methods have proven useful towards the advancement of 

molecular biological protocols in aerobic fungi using an Agrobacterium-mediated 

transformation (AMT) [23, 25, 26], and RNA interference (RNAi) approaches [22, 24, 

27], as spores are amenable to nucleic acids uptake. For example, germinating spores 

from Aspergillus species could uptake synthetic small interfering RNAs (siRNA) for 

targeted gene silencing using an RNAi approach, thereby eliminating the need for 

transformation and subsequent transformation [24].  

 The ability to collect intact, viable, developmentally synchronized AGF spores 

would allow for synchronized growth experiments enabling detailed physiological 

investigation of spores at various lifecycle stages, transcriptional studies evaluating gene 

expression levels during spore encystment and germination [30, 48], as well as open the 

door for potential genetic manipulations [22-27]. Unfortunately, the strict anaerobic 

nature of AGF hinders the use of the established aerobic method for spore collection. 

Therefore, development of a similar procedure with extensive adaptations and safeguards 

to allow for aerial sporangial growth and the collection of structurally intact viable 

spores, under anaerobic conditions, is a critical step towards achieving progress on the 

molecular biological and developmental biological fronts in AGF. 

 

Pecoramyces ruminantium strain C1A (C1A): History and biotechnological 

potential. Pecoramyces ruminantium strain C1A (C1A) was isolated from fecal samples 

of an Angus steer [52], and has been maintained in anaerobic rumen fluid media by 
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continuous subculturing since 2009 [37, 52-55]. C1A genomic analysis depicted a unique 

evolutionary history for AGF based on the discovery of the presence of multiple genes 

involved in pathways that are only present in early branching fungal lineages and non-

fungal Opisthokonta that are completely absent in Dikarya genomes [52]. Furthermore, 

genomic, transcriptomic, and experimental analyses were conducted on C1A in order to 

assess the biotechnological potential of AGF members. Results of these studies revealed 

that C1A has an extensive repertoire of lignocellulolytic machinery capable of 

simultaneous saccharification and fermentation, resulting in a remarkable ability to 

degrade the cellulosic and hemicellulosic fraction of plant biomass [12, 52, 53]. 

Subsequent studies towards uncovering the potential of C1A for use in biofuel production 

demonstrated that C1A could efficiently metabolize both untreated and 

hydrothermolysis-treated switchgrass and corn stover, resulting in the production of 

lactate, formate, acetate, and ethanol. This study also demonstrated that degradation of 

pretreated plant material by C1A resulted in an increase in the amount of ethanol and 

lactate products, and a decrease in acetate and formate production [54]. Further 

examination of the transcriptional response of C1A grown on a variety of 

lignocellulolytic substrates led to the identification of transcripts belonging to glycoside 

hydrolase (GH) families that are known to play a critical role in mediating cellulose and 

xylan degradation [53]. Identification of these highly expressed GH family members led 

to the development of a defined lignocellulolytic enzyme cocktail of selected C1A genes, 

that were cloned and overexpressed in E. coli, that were capable of producing hydrolysis 

yields comparable, and in some cases superior, to those of commercially available 

cocktails [8]. 
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Storage, synchronized growth, and genetic manipulations of strain C1A. Each of the 

studies that constitute the remaining chapters of this dissertation were conducted with the 

overall aim to develop a means for spore collection (Chapter II), and utilize that method 

for transcriptional studies (Chapter III) and genetic manipulations (Chapter IV) of the 

anaerobic rumen fungus Pecoramyces ruminantium strain C1A (C1A). My efforts 

towards the quest for AGF spore collection resulted in the development and optimization 

of a novel anaerobic flooding technique [56]. This multifaceted anaerobic flooding 

technique has proved to be invaluable for each study project moving forward in the 

following ways: (1) it provided a means for culture storage and regeneration to avoid 

senescence that occurs from continuous culturing; (2) allowed for the separation of spores 

from other lifecycle stages (i.e. hyphae, sporangia, etc.), for collection of samples that 

only consist of spores; (3) allowed for collection of viable, competent, and 

developmentally synchronized C1A spores (i.e. flagellated zoospores, encysted spores, 

germinating spores) [56].  

 The second project, comprising Chapter III, was a transcriptional study aimed to 

examine the expression patterns of focal adhesion (FA) associated genes in C1A at 

different developmental stages when grown under conditions that provided a solid 

substrate versus soluble substrate conditions. The presence of genes in C1A genome 

coding for a nearly complete focal adhesion (FA) machinery is interesting, as the integrin 

adhesome and its function in focal adhesion was originally believed to be metazoan 

specific [38]. This study evaluated the evolutionary significance related to the presence of 

FA genes in the C1A genome [57]. I utilized the developed anaerobic flooding technique 

to synchronize growth of C1A cultures [56, 57], in order to collect separate samples of 
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various spore stages. Results from qRT-PCR analysis of FA-associated genes revealed 

for the first time that FA components are indeed transcribed during growth in the absence 

of an extracellular matrix anchor. Alternative non-adhesion functions for FA scaffolding 

proteins in C1A include involvement in hyphal tip growth during germination and 

flagellar assembly during zoosporogenesis, highlighting the possible functional diversity 

for FA scaffolding proteins in basal fungi.  

 Chapter IV aimed to evaluate the potential of targeted gene silencing in AGF 

using an RNAi approach. This study resulted in the development of an anaerobic RNAi-

based protocol for targeted gene silencing in C1A, demonstrating the feasibility of RNAi 

in anaerobic fungi for gene silencing-based studies [58]. This work has been submitted 

for review in PeerJ [58]. Collectively, the projects within this dissertation have yielded 

promising techniques, which have opened the door for future developmental biology 

studies, as well as targeted gene manipulation studies in this understudied fungal clade.  
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CHAPTER II 
 
 
 

A FAST AND RELIABLE PROCEDURE FOR SPORE COLLECTION FROM  
 

ANAEROBIC FUNGI: APPLICATION FOR RNA UPTAKE AND LONG-TERM  
 

STORAGE OF ISOLATES 
 
 
 
 

Abstract 

Anaerobic gut fungi (AGF) represent a basal fungal lineage (Phylum 

Neocallimastigomycota) that resides in the rumen and alimentary tracts of herbivores. 

The AGF reproduce asexually, with a life cycle that involves flagellated zoospores 

released from zoosporangia followed by encystment, germination, and the subsequent 

development of rhizomycelia. A fast and reliable approach for AGF spores collection is 

critical not only for developmental biology studies, but also for molecular biological (e.g. 

AMT-transformation, RNAi) approaches. Here, I developed and optimized a simple and 

reliable procedure for the collection of viable, competent, and developmentally 

synchronized AGF spores under strict anaerobic conditions. The approach involves 

growing AGF on agar medium in serum bottles under anaerobic conditions, and flooding 

the observed aerial growth to promote spore release from sporangia into the flooding 

suspension. The released spores are gently collected using a wide bore sterile needle. 
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Process optimization resulted in the recovery of up to 7X109 spores per serum bottle.  

Further, the released spores exhibited synchronized development from flagellated spores 

to encysted spores and finally to germinating spores within 90 minutes from the onset of 

flooding. At the germinating spore stage, the obtained spores were competent, and readily 

uptook small interfering RNA (siRNA) oligonucelotides. Finally, using multiple 

monocentric and polycentric AGF isolates, I demonstrate that AGF grown on agar 

surface could retain viability for up to 16 weeks at 39ºC, and hence this solid surface 

growth procedure represents a simple, cryopreservative- and freezing temperatures-free 

approach for AGF storage. 
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Introduction 

The anaerobic gut fungi (AGF) constitute a basal fungal lineage (phylum 

Neocallimastigomycota) that is encountered in the rumen and alimentary tract of 

herbivores. The anaerobic gut fungi play an important role in breaking down ingested 

plant materials in the herbivorous gut by possessing a complete arsenal of lignocellulosic 

enzymes that enable the degradation of a wide range of plant polysaccharides. The AGF 

has a life cycle that involves the asexual production and release of flagellated zoospores 

from sporangia. These zoospores attach and encyst on solid surfaces, leading to the 

development of extensive rhizomycelia that function as an anchor for the production of 

zoospore-laden sporangia [1].  

Due to their strict anaerobic nature [2], the propensity of many strains for 

senescence upon continuous subculture [3], and the lack of reliable long-term storage and 

maintenance procedures [4], progress on various aspects of AGF research has lagged 

behind their aerobic counterparts. For example, development of molecular biological 

approaches for genetic manipulations in the AGF (e.g. gene silencing, insertion, deletion, 

and mutation) is missing. Currently, there are no established procedures for genetic 

manipulations of AGF using any of the routinely utilized approaches in their aerobic 

counterparts (e.g. AMT transformation, RNAi). Similarly, apart from microscopic-based 

observations [5-12], developmental biology studies seeking to understand the 

physiological, structural, regulatory, and gene expression patterns associated with various 

stages of development within the AGF complex life cycle have been extremely sparse. 

The paucity in molecular biological and developmental biological studies is in stark 

contrast to the rich body of knowledge available on genetic manipulations [13-18] and 
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developmental biological [19-27] aspects of various aerobic fungal lineages. 

Central to achieving progress on the molecular biological and developmental 

biological fronts in AGF is the ability to collect intact, viable developmentally 

synchronized spores (i.e. all spores at the same stage of development). Such collection is 

crucial, since molecular biological protocols e.g. RNAi approaches ([13, 15, 18], and 

AMT transformation [14, 16, 17] are conducted on spores due to their amenability to 

nucleic acids uptake. Similarly, the ability to collect viable developmentally synchronized 

spores will allow for synchronized growth experiments enabling detailed structural, 

behavioral, and physiological investigation of spores at various stages of development, as 

well as studies on gene expression during spore encystment and germination e.g. RT-

PCR and transcriptomics studies [21, 28]. 

In aerobic fungi, harvesting viable, developmentally synchronized spores is 

straightforward, and involves flooding aerial sporangia grown on solid surface to induce 

spore release [28-31]. However, given their strict anaerobic nature, the process is 

challenging in AGF and requires extensive adaptations and safeguards to allow for aerial 

sporangial development under anaerobic conditions, as well as spore retrieval from 

anaerobic containers without transient oxygen exposure, or compromising spores’ 

structural integrity via syringe-based manipulations. 

Here, I present a simple and reliable approach for collection of viable 

developmentally synchronized spores from the AGF isolate Orpinomyces sp. strain C1A 

(henceforth referred to as C1A). The approach is based on multiple modifications of 

earlier procedures utilized for spore collection from the aerobic basal fungus Phytopthora 

megasperma [31]. I show that this protocol recovers almost exclusively (>90%) spores 
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compared to other life forms (e.g. sporangia, hyphal mats), that the obtained spores are 

viable, synchronized with respect to their development stage (swimming, encysted, or 

germinating), and are capable of uptaking small interfering RNA (si-RNA) 

oligonucleotides. Moreover, using multiple AGF monocentric and polycentric strains, I 

demonstrate the value of the developed solid surface growth procedure as a method for 

storage of AGF without the need for cryopreservative addition or subjecting cultures to 

sub-freezing temperatures.  
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Materials and Methods 

Microorganisms and culture maintenance. Strain C1A was isolated from the feces of an 

Angus steer [32] and maintained by routine subculturing in an anaerobic, rumen-fluid-

cellobiose medium (RFC) that was reduced by L-cysteine hydrochloride and dispensed 

under a stream of 100% CO2. Media composition was as follows (per liter): 150 ml of 

minerals solution I (K2HPO4 3 g.l-1), 150 ml of mineral solution II (g.l-1: KH2PO4, 3; 

(NH4)2SO4, 6; NaCl, 6; MgSO4.7H2O, 0.6, and CaCl2.2H2O, 0.6), 1 ml Balch vitamins 

solution, 0.1 ml of Wolin’s metal solution, cellobiose 3.75 g, sodium bicarbonate 6 g, and 

150 ml of clarified sterile rumen fluid. Medium pH was adjusted to 6.6. Following 

autoclaving, the medium was amended with kanamycin, penicillin, streptomycin, and 

chloramphenicol from an anaerobic stock solution in order to provide final concentrations 

of 50 µg/ml, 50 µg/ml, 20 µg/ml, and 50 µg/ml, respectively. Strain C1A was used for the 

development and optimization of the approach described below for spore collection. In 

addition to C1A, five additional strains were used to examine the utility of the developed 

approach in long term storage of AGF isolates. These isolates are: strains G3, a 

monocentric species putatively identified as Neocallimastix and isolated from goat feces; 

G3G, C3G and C3J, polycentric species isolated from goat (G3G) and cow (C3G, C3J) 

feces and putatively identified as Anaeromyces; and S4B, a monocentric strain isolated 

from sheep feces and putatively identified as belonging to a novel genus that is 

phylogenetically most closely related to Orpinomyces.  
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A procedure for the recovery of viable, development-synchronized AGF spores. 

i. Growth on agar media. C1A was grown in 160-ml serum bottles containing 45 mL of 

RFC medium supplemented with 2% agar (RFC-A) by transferring a 10% inoculum of an 

actively growing liquid culture. Three inoculation strategies were assessed, with the goal 

of identifying the strategy that yields the highest number of aerial colonies: 1. Seed 

inoculum i.e. inoculating C1A while the RFC-A medium was still in a liquid state 

allowing C1A to grow throughout the agar, 2. Inoculating C1A while the agar was 

partially solidified in a ‘jelly-like’ state allowing for growth throughout the top to middle 

layers of the agar, and 3. Surface inoculation of C1A after the agar completely solidified 

where the inoculum created a culture overlay on the agar surface. In all cases, following 

inoculation, the agar cultures in the serum bottles were placed on ice laying flat on their 

side until the agar was completely solidified (Figure 2-1).  

ii. Flooding procedure for spore release and collection. Following growth of C1A on 

RFC-A with visible numerable colonies on the agar surface, 10 ml of a solution of sterile 

anoxic water with L-cysteine hydrochloride (0.05 g/l final concentration) as a reductant, 

and resazurin (0.0001% final concentration) as a redox indicator (SAW solution) was 

introduced to the surface of the agar culture by slow injection through the butyl rubber 

stopper while keeping the serum bottle on its side. The flooded serum bottle was then 

incubated statically on its side, and special care was taken in order not to disturb the 

culture so that no other life cycle stages will be dislodged from the agar surface into the 

flooding solution. I reasoned that such exposure to SAW will induce spore release from 

aerial sporangia, and hence only viable, newly released spores that are at the same 

development stage will be obtained, as previously suggested for Phytophthora, 
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Blastocladiella, and Allomyces strains [28-31].  Following incubation, the flooding 

solution (SAW plus the released spores) was gently collected anaerobically using a sterile 

syringe and a wide-bore needle into a pre-sterilized serum bottle with 100% CO2 

headspace. The procedure is outlined in Figure 2-1. 

iii. Process optimization. Various operational parameters were evaluated to determine 

the optimal conditions that produce (i) the highest number of spores/ml, (ii) the highest 

percentage of spores as opposed to other life cycle stages, and (iii) viable spores capable 

of starting new cultures when inoculated in fresh media tubes. The numbers of obtained 

spores were counted using a hemocytometer counting chamber and a phase contrast 

Olympus BX51 microscope (Olympus, Center Valley, PA). Microscopic examinations 

were also utilized to visually determine whether other life cycle stages, e.g. sporangia, 

hyphal mats, were co-released with spores into the flooding solution. The spore: other life 

cycle stages ratio was determined empirically after examining multiple (at least 10) fields 

of vision. The viability of obtained spores was assessed by inoculating 9 mL of anaerobic 

RFC medium with 1 mL of the flooding suspension. Tubes were incubated at 39ºC, and 

growth was scored every day (see the footnote to Table 2-1, Figure 2-2) for a week and 

compared to the growth of an active subculture of strain C1A.  

The following parameters were evaluated in a single factorial design from a 

starting empirical condition of 7-day old culture of C1A on RFC-A media with 2% agar 

flooded with 10 ml SAW and incubated at 39ºC for 60 minutes in the dark: (1) 

Concentration of agar in the serum bottles (1%, 1.5%, 2%, 2.5%), (2) culture age at the 

onset of flooding (5-9 days of growth on solid agar media), (3) Flooding solution 

composition (SAW versus a previously suggested sporulation solution of 1mM CaCl2, 
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1mM Tris-Maleate with pH adjusted to 6.7 [33]), (4) incubation temperatures (i.e. 

temperature of incubation between flooding and recovery of spores into a sterile bottle 

(i.e. between steps 2 and 3 in Figure 2-1). The following temperatures were tested: 4°C, 

22°C, and 39°C. (5) light vs. dark incubation between flooding and recovery, and (6) 

duration of incubation between flooding and recovery. Incubation times of 2.5, 5, 10, 20, 

30, 40, 50, 60, 70, 80, 90, 100 minutes were tested. 

RNA oligomers uptake by collected spores. Dikarya spores in the germinating stage 

were shown to be amenable for RNAi and AMT-based transformation approaches 

involving nucleic acids uptake. Prior studies have clearly shown that viable spores of 

aerobic fungi are amenable for nucleic acids scavenging in a development-dependent 

manner, where germinating spores were found to accumulate the highest amount of 

exogenously added nucleic acids [34]. I hypothesized that the AGF spores released by 

flooding would be amenable to nucleic acids uptake at the germinating spore stage. To 

this end, I monitored the progress of C1A spore development during incubation with 

SAW solution on the agar surface. I observed that as the incubation time with SAW 

increases, the spores developed from swimming (<30 minutes), to encysted (50-60 

minutes), to swollen elongated germinating spores (90-100 minutes).  

 Guided by C1A transcriptomic data [35], I designed a Cy3-labeled 21-nucleotide 

si-RNA (Sense: 5’ UCGUUGGCGUGAGCUUCCAUU 3’, and antisense 5’ 

UGGAAGCUCACGCCAACGAUU 3’. The overhangs on each sequence are underlined) 

that theoretically does not anneal to any of the mRNA transcripts in C1A. The sense si-

RNA was labeled with Cy3 at the 5’ end to facilitate tracking of the si-RNA uptake by 

the germinating spores. The annealed (double stranded) si-RNA was purchased from 
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Dharmacon (Lafayette, CO). I added the annealed siRNA to the flooding solution after 75 

minutes of the onset of flooding (where spores were observed to be at the onset of 

germinating), and allowed it to incubate at 39ºC for an additional 15 minutes. The spores 

were recovered as described above, and transferred to tubes containing fresh RFC 

medium such that the final concentration of the annealed siRNA in the culture media was 

20 nM. Tubes were incubated at 39ºC, and at intervals samples were obtained, stained 

with DAPI, and examined for the uptake of the fluorescent si-RNA using an Olympus 

BX51 microscope (Olympus, Center Valley, PA), equipped with Brightline fluorescein 

isothiocyanate (FITC) filter set for Cy3, as well as a Brightline DAPI high-contrast filter 

set for DAPI fluorescence. Photomicrographs were taken with a DP71 digital camera 

(Olympus). The ratio of Cy3-labeled spores to the total number of spores (DAPI-labeled) 

was evaluated. The goal here was not only to study the ability of C1A germinating spores 

to uptake exogenously added si-RNA, but also to examine the effect of the uptake on the 

normal development of C1A when inoculated in fresh media. 

Viability of anaerobic fungal cultures grown on agar surfaces. The spore recovery 

protocol described above starts with growth of C1A in serum bottles on agar media (step 

1 in Figure 2-1). Fungal growth on solid media has been known to maintain a state of low 

metabolic activity for prolonged periods of time [36, 37]. As such, I reasoned that this 

growth procedure could lead to longer viability of AGF cultures compared to liquid 

media and could be used as a simple freezing- and cryopreservative-free approach for 

storing AGF. To this end, I inoculated C1A in agar-serum bottles with RFC-A media as 

described above, and incubated these cultures at 39ºC in the dark for extended periods of 

time (ranging from 2-16 weeks). Serum bottles were flooded at various time intervals 
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(weeks 2, 4, 6, 8, 10, 12, and 16) and the released spores were collected as described 

above and used to inoculate fresh liquid RFC medium.  Growth was monitored and 

scored in comparison to actively growing, routinely subcultured C1A cultures. The 

procedure was also tested on other anaerobic fungal isolates (strains G3, G3G, C3G, C3J, 

and S4B) described above to assess its suitability for long-term storage of a wide range of 

AGF isolates. 
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Results 

Growth of AGF on agar surface in serum bottle. Strain C1A readily grew on agar 

media using the setting described above (Figure 2-1). Preliminary experiments 

demonstrated that the inoculation strategy employed greatly influences the number of 

colonies formed on the agar surface. Surface inoculation of agar resulted in patchy, 

uneven, growth that was loosely attached to the surface (Figure 2-3A). Seed inoculation 

of agar prior to solidification resulted in the majority of colonies residing deep within the 

agar block and hence inaccessible through the surface (Figure 2-3B). However, 

inoculation of agar during solidification, i.e. while it is still in a “jelly-like” state, yielded 

the largest number of colonies on the agar surface (similar to the one shown in Figure 2-

1B-C), and hence was utilized in all subsequent experiments.  

Flooding Process Optimization.  

Effect of flooding conditions on the number of spores released. All of the six parameters 

examined, were shown to have a significant effect on spore recovery numbers, 1. Agar 

concentration: cultures grown on 2% agar produced 8 to 16-fold more spores compared 

to cultures grown on lower (1-1.5%) and higher (2.5%) agar concentrations (Figure 2-4A, 

p-value=0.00015). 2. Culture age: 7 day-old culture produced 10 to 16-fold more spores 

compared to younger cultures (5-day (p-value=0.00012), 6-day old (p-value=0.00014)), 

and 43-fold more spores compared to older cultures (9-day old (p-value=0.0001)) (Figure 

2-4B). 3. Dark versus light incubation: Dark incubations during flooding produced 57-

fold more spores compared to flooding in the ambient light (Figure 2-4C, p-

value=0.0001). 4. Incubation temperature: Incubation during flooding at temperatures 

lower than 39ºC resulted in 94- to 117-fold decrease in the number of spores released 
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(Figure 2-4D, p-value=0.0001) compared to cultures incubated at 39ºC during flooding, 

5. Flooding solution composition: SAW released 12.4-fold more spores than did the 

sporulation solution (Figure 2-4E, p-value=0.0002) previously used for maintaining 

Blastocladiella spores in the swimming stage [33], and 6. Duration of incubation: 60-

minute incubation resulted in the largest number of spores obtained (Figure 2-4F, p-

value=0.0001-0.0016 for number of spores obtained with 60 minutes flooding versus 

shorter and longer incubation times). 

• Effect of flooding conditions on the ratio of spores released to other life cycle stages: 

Table 2-1 shows the effect of changing flooding conditions on the percentage of spores 

obtained in the flooding suspension in relation to other life cycle stages including 

sporangia and hyphal mats. In the majority of conditions tested, the flooding procedure 

yielded >90% spores compared to other life forms. However, under few conditions, the 

flooding process yielded a relatively lower proportion (<90%) of spores. These include 

flooding 5-day old culture, and flooding for very short (2.5 minutes) or very long times 

(>90 minutes). 

• Effect of flooding conditions on viability of spores. To test the viability of spores 

released, I used the obtained flooding suspension as an inoculum in fresh RFC media and 

evaluated the growth compared to a regular subculture of actively growing C1A. All 

conditions tested resulted in the release of viable spores capable of germinating and 

development into active C1A cultures. When spores obtained from flooding under the 

optimal conditions detailed above were used to inoculate fresh CBM media tubes, fungal 

biomass was similar to routine sub-cultures. On the other hand, specific sub-optimal 
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flooding condition, while they produced viable spores, resulted in lower fungal biomass 

(Table 2-1).  

  Collectively, these results suggest that the optimal conditions for obtaining the 

highest number and percentage of viable spores involve flooding 7-day old C1A cultures 

grown on 2% RFC-agar with 10 ml of SAW followed by incubation for 1h at 39ºC in the 

dark. 

C1A spores are capable of RNA oligonucleotide uptake. Interestingly, the duration of 

the flooding procedure (duration of incubation with SAW on the agar surface) not only 

impacted the number of recovered spores as shown above, but also their developmental 

stage. Microscopic examination revealed the exclusive release of very active swimming 

spores in incubations shorter than 30 minutes. As the incubation time increases, the 

proportion of resting (encysted) to motile spores steadily increase. In incubations longer 

than 80 minutes, the absolute majority of collected spores were in the resting stage, with 

few spores becoming elongated and some spores showing germ tube emergence. The 90 

and 100 minutes incubation flooding produced exclusively germinating spores (Figure 2-

5). 

 Prior research has demonstrated that germinating spores of Aspergillus were 

capable of uptaking oligonucleotides, and more specifically si-RNA molecules, and 

hence could be utilized for RNAi-based studies [13-15, 18]. In an attempt to test the 

feasibility of using the described flooding procedure with longer incubation time (90 

minutes to obtain exclusively germinating spores) for future RNAi-based studies in 

anaerobic fungi, I added a Cy3-labeled double stranded siRNA (20 nM) that bears no 

sequence similarity to any of mRNA transcripts identified in C1A [35], while utilizing 
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75-minutes through a 90-minute incubation flooding of C1A cultures. At the end of the 

flooding duration, the solution containing the released spores and the Cy3-labeled siRNA 

was used to inoculate fresh RFC tubes. Cy3-labeled spores were observed starting 5 

minutes following transfer to fresh media. The ratio of Cy3-labeled spores to the total 

number of spores reached its maximum (>90%) at 2 hours following transfer (Figure 2-

6). These results clearly demonstrate the ability of germinating C1A spores to uptake si-

RNA, and that the exogenous addition of si-RNA to the spores had no effect on their 

development. RFC tubes inoculated with released spores in presence of the Cy3-labeled 

siRNA showed normal growth (data not shown). 

Suitability of AGF solid surface growth as a long-term storage mechanism. Prior 

research has suggested that AGF colonies maintained on roll tubes could remain viable 

for extended periods of time [6, 38], although the process was often dependent on 

addition of plant biomass (sisal), and recovery required the addition of a carbon source 

and further incubation. I sought to determine whether the solid surface growth procedure 

utilized here could provide a long-term storage that is independent of sub-freezing 

temperatures, and the addition of cryopreservatives. To this end, I incubated strain C1A 

cultures on agar surface for various periods of time (2-16 weeks), as described above. At 

the end of these periods, I used the optimized flooding procedure to recover spores and 

used the obtained flooding suspension (water + spores) to inoculate fresh RFC tubes 

(Table 2-2). C1A cultures 2-16 weeks old were revived from the agar surface by flooding 

with water. Cultures older than 4 weeks did not produce enough zoospores in the 

flooding suspension to start a new culture. However, when the flooding solution was 

vigorously shaken, pieces of the mycelial mats dislodged from the agar surface and 
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released in the suspension were sufficient to start a new culture upon inoculating fresh 

RFC tubes.  

To demonstrate the putative broad applicability of this storage process, I applied 

the same technique to five anaerobic fungal isolates (monocentric strains G3 and S4B 

putatively identified as Neocallimastix and a novel genus most closely related to 

Orpinomyces, and polycentric strains G3G, C3G, and C3J putatively identified as 

Anaeromyces). All cultures were successfully recovered after 4-16 weeks incubations on 

solid surface by flooding and inoculation into RFC media. The ease of the described 

technique plus the fact that it does not involve exposure to air or a change in temperature, 

both of which have proven detrimental for some isolates before (Table 2-3), makes it 

ideal for long-term storage of anaerobic fungal isolates. 
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Figure 2-1. (A) Cartoon depicting the flooding technique utilized for AGF spore 

collection. (B) A serum bottle with RFC-agar media inoculated with Orpinomyces C1A 

while the agar was partially solidified and incubated at 39ºC for 1 week. Note that the 

colonies developed on the agar surface (arrows) as well as throughout the top to middle 

agar layers. A bottom view of a serum bottle with RFC-agar showing the plentiful 

colonies on the surface (arrows) is shown in C.  
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Table 2-1. Flooding optimization for strain C1A. 

Condition % Spores in the flooding 
suspensiona 

Viability
b 

Temperature  4°C > 95%  ++ 
22°C > 95%  + 
39°C > 95%  +++ 

Dark vs. Light  Dark  > 95%  +++ 
Light > 95%  +++ 

Age of culture 
(days)  

5 > 80%  ++ 
6 > 90%  ++ 
7 > 95%  +++ 
9 > 95%  +++ 

Agar conc (% 
w/v) 

1% > 95%  + 
1.5% > 95%  ++ 
2% > 95%  +++ 

2.5% > 90%  +++ 
Length of 
incubation with 
SAW at 39ºC 
(min) 

2.5 > 85%  ++ 
5 > 95%  ++ 
10 > 90%  ++ 
20 > 90%  ++ 
30 > 95%  ++ 
40 > 90%  ++ 
50 > 90%  ++ 
60 > 95%  +++ 
70 > 90%  ++ 
80 > 95% c ++ 
90 > 90% c ++ 
100 > 80% c ++ 

Flooding solution Water  > 95%  +++ 
SSd > 90%  ++ 

a: % of spores was determined during counting by recording the number of other life 
cycle stages (e.g. early sporangia, late sporangia, hyphal mats) per examined field of 
vision. 
b: Viability scores: (-) no visible growth; (+) little growth; (++) moderate growth; (+++) 
excellent growth (examples shown in Figure S2).  
c: spores were all resting with no flagella. Some have started producing a germ tube. 
d: SS, sporulation solution (1mM CaCl2, 1mM Tris-Maleate, pH 6.7).  
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Figure 2-2. Examples of the viability scores in the footnotes of Tables 2-1 and 2-2. (-) 

No growth was detected, growth score (+) where little growth is observed and small 

colonies are starting to form, growth score (++) where moderate growth is observed and 

small mats are starting to form, and growth score (+++) where excellent growth is 

observed with apparent biofilm and bigger mats are formed. 
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Figure 2-3. Inoculation procedures of C1A in solid agar media. (A) A picture depicting 

the surface inoculation of agar. Arrows pointing to the surface colonies. On the right is a 

light microscopy picture of the flooding solution following a 60 minute incubation on the 

surface of agar surface-inoculated with C1A. Note the presence and abundance of other 

life cycle stages (sporangia and hyphae in the sample). (B): A picture depicting the seed 

inoculation of the agar. Very few colonies are present on the surface (arrows).  
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Figure 2-4. Results of flooding optimization showing the number of spores released per 

ml of the flooding suspension as agar concentration (A), culture age (B), light intensity 

(C), temperature (D), the nature of the flooding solution used (E), and the duration of 

flooding (F) were changed. The Y-axis is shown in a logarithmic scale and depicts 107 

times the number of spores obtained per ml of the flooding solution. Error bars represent 

standard deviation from two counts. 
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Figure 2-5. Phase contrast (A-C) and negative stain TEM (D-F) pictures of C1A spores 

obtained during flooding. (A, D) spores obtained by flooding agar surface with SAW 

followed by a 5-minute incubation at 39ºC, arrows in A depict swimming spores, the 

flagella of which are shown in D (bar=100 nm). Longer incubation times (e.g. > 60 

minutes) produced resting spores (B, E) that have started swelling (arrows pointing to 

swollen spores). Note the different sizes of spores and the absence of flagella in E 

(bar=500 nm). Incubation times longer than 90 minutes resulted in the production of 

swollen germinating spores (C, F) that have considerably increased in size compared to 

A. Arrows in F point to the germ tube starting to form on some of the spores (bar=500 

nm). 
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Figure 2-6. Germinating spores uptake of si-RNA. A 21-nucleotide double stranded si-

RNA was added to the flooding solution 75 minutes after the onset of flooding followed 

by incubation for 15 more minutes at 39ºC. The flooding solution was then used to 

inoculate 45 mls of fresh RFC medium and a sample was taken at regular intervals for 

visualization. The same field is shown for DAPI (A), and Cy3 (B)-labeled germinating 

spores 2 hours post inoculation (arrows point to the spores concurrently stained with 

DAPI and fluorescing green indicating the uptake of the Cy3-labeled siRNA) (bar=20 

µm).  
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Table 2-2. Application of Growth on solid media for AGF long-term storage. 

Isolate Culture age 
(weeks)a 

Viability post flooding 
and inoculationb 

C1A 2 +++ (2) 
4 +++ (2) 
6 +++ (1) 
8 +++ (1) 
10 ++ (1) 
12 ++ (1) 
16 +++ (1) 

Anaeromyces-like 
(3) 

4 +++ (1) 
8 +++ (1) 
16 +++ (1) 

Neocallimastix (1) 4 +++ (1) 
8 +++ (1) 
16 +++ (1) 

Novel genus (1) 4 +++ (1) 
8 +++ (1) 
16 +++ (1) 

a: cultures were grown on solid RFC media for the indicated periods of time (under 

culture age). For culture revival of 2-4 week-old cultures, SAW was anoxically added to 

the surface followed by incubation for 60 min at 39ºC. The flooding suspension was then 

used to inoculate fresh RFC media (10% v/v). Post 6 weeks, the serum bottles were 

flooded with SAW and incubated undisturbed at 39ºC for 60 minutes then were shaken 

vigorously to dislodge pieces of the mycelial mats before transfer of the flooding 

suspension to fresh RFC media (30% v/v) and recording growth. 

b: growth was scored after inoculating the flooding suspension into tubes with fresh 

media. Viability scores: (-) no visible growth; (+) little growth; (++) moderate growth; 

(+++) excellent growth. The number in parenthesis refers to the number of days 

following inoculation until visible growth was seen in the tubes. Upon subculturing, 

growth was observed in all tubes and was comparable to the routine subculture. 
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Table 2-3. Prior methods for long-term storage of the anaerobic gut fungi. 

Method of preservation Fungal species Survival 
Adding DMSO to the growth media 
followed by gradual decrease in 
temperature and storage in liquid N2 
[50]. 

Neocallimastix 
patricarium 

Several months 
to 1 year 

Cryopreservation in presence of 
ethylene glycol, cell-free rumen fluid, 
and a zoospore density of at least 5 x 
l04 zoospores/ml, followed by gradual 
decrease in temperature [45]. 

Piromyces communis 
strain OTS1 

More than 80% 
recovery was 
observed after 
10 weeks of 
storage.  

Cryopreservation with glycerol at -
70ºC [51]. 

Several Ceacomyces 
species 

More than 90 
days 

Cryopreservation with glycerol at -
80ºC [49] 

Anaeromyces robustus, 
Neocallimastix 
californiae, and 
Piromyces finnis 

Up to 23 
months with the 
exception of the 
Piromyces 

Cryopreservation with 5% DMSO 
followed by centrifugation and 
freezing the pellet at -80ºC [52]. 

Neocallimastix strains 
TU1 and TU2, 
Piromyces strain TU3, 
an unidentified 
polycentric fungus 
strain TU4, and 
Ceacomyces sp. TU5. 

All strains 
remained viable 
after storage at -
80ºC for at least 
4 months. 

Storage on sisal agar roll tubes 
followed by incubation at 39ºC. 
Revival by addition of glucose, 
vigorous shaking and incubation for 2-
3 days [6].  

Three unidentified 
anaerobic fungal 
isolates strains K1, K2, 
and K3. 

Up to 7 months 
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Table 2-4. Prior methods for spore collection and germination induction for the 

anaerobic gut fungi.  

 

Method  Fungal species Reference Notes 
A. Methods for spore collection or release from active sporangia 
Filtering using nylon 
cloth followed by 
high speed 
centrifugation a  

Neocallimastix frontalis 
EB188 

[46] Viability of spores 
questionable, 
suitable only for 
nucleic acids 
extraction 

Collection of 
hyphal-free culture 
supernatant (spores 
of monocentric 
species are abundant 
in the culture 
supernatant)a. 

Neocallimastix sp. R1 
 
Neocallimastix sp. MC-2 
Neocallimastix sp. MC-2,  
N. frontalis sp. PN1 and 
PN2, and N. patriciarum 
 
Neocallimastix sp. N1, 
and Piromyces sp. R1 

[7, 8] 
 
[11, 12] 
 
 
 
 
[10] 

Number of spores 
released is heavily 
dependent on the 
growth phase in 
monocentric 
species  

Low speed 
centrifugation 
(1000-1500 xg) of 
actively growing 
culture to pellet the 
zoospore present in 
the culture 
supernatant a. 

Piromyces communis 
strain OTS1 
 
Neocallimastix frontalis 
MCH3 

[45] 
 
[47] 

Difficulty of 
maintaining anoxic 
conditions 
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a: These methods cannot be applied for spore collection from polycentric species due to 

the scarcity or outright absence of sporangia that has been observed with these species 

[5]. 

Transferring pieces 
of mycelial mats 
with abundant 
sporangia into fresh 
liquid medium to 
induce 
zoosporogenesis and 
zoospore liberation. 

Three polycentric species; 
Anaeromyces elegens, and 
Orpinomyces sp. LL and 
LC2 

[5] While this method 
allowed collection 
of spores from 
polycentric species, 
the method depends 
on the stage of 
sporangial 
development where 
only newly 
developed 
sporangia 
differentiated and 
released spores as 
opposed to older 
sporangia. 

B. Methods for induction of spore germination 
Incubating spores in 
the presence of agar 
cellobiose blocks 
followed by washing 
to remove non-
adhering spores. 

Neocallimastix frontalis 
MCH3 

[47] The encysted or 
germinating spores 
will adhere to the 
agar blocks and 
will be difficult to 
remove. 

Addition of glucose 
to stimulate 
encystment and 
germination (within 
30 min to 6h of C 
source introduction). 

Neocallimastix frontalis [9] The process of 
germination was 
not synchronized 
and so it would be 
difficult to obtain a 
germinating spores-
only sample. 
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Discussion 

Here, I report on the feasibility of using surface agar cultures for spore collection within 

the AGF. I show the feasibility of recovery of up to 109 spores/50 ml culture under 

optimal conditions and that the obtained spores are viable and develop in a synchronized 

fashion from swimming spores to encysted spores to germinating spores within a 

reasonable timespan. Obtaining viable synchronized spores is a prerequisite for 

conducting developmental biology and genetic manipulations in fungi. Similar efforts in 

basal fungal aerobic counterparts have enabled studies on physiology [26, 27, 39], 

pathogenicity [19, 40], global gene expression patterns during sporulation and 

germination [21, 28], immunolocalization of proteins [41], as well as Agrobacterium-

mediated transformations [42, 43]. I hope that this approach opens the door for similar 

advances in AGF developmental biology and molecular biology research. 

Prior Studies on AGF spore collection and cultural synchronization have been 

relatively sparse (summarized in Table 2-4). Approaches for inducing sporogenesis and 

spore release have been reported for Neocallimastix by adding hemin to the culture media 

[44]. Most studies that reported spore collection from anaerobic fungi mainly utilized low 

speed centrifugation or filtration [45, 46]. While straightforward, these approaches would 

not be suitable for separation of the different developmental stages of spores (i.e. 

swimming spores, encysted spores, and germinating spores). In addition, most previous 

reports did not conduct any viability measurements on the released spores. More 

importantly, the above approaches depend on the presence of free spores in the culture 

supernatant [7, 8, 10-12, 47]. Such dependency on the presence of free spores could be 

problematic in monocentric species (e.g. genera Piromyces, Neocallimastix) where the 
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number of spores in the culture supernatant greatly depends on the culture age, as well as 

in polycentric species (e.g. genera Anaeromyces and Orpinomyces), where the paucity or 

complete absence of sporangial development and zoosporogenesis with repeated 

subculturing has been noted [5]. My approach enabled the release and collection of a 

large number of viable spores under optimal conditions. 

I show that the released spores are developmentally synchronized, and, when at 

the germinating stage, could readily uptake small-interfering RNAs. This is significant, 

because it opens the door for genetic manipulations in AGF using RNAi approaches, 

similar to what have previously been reported in Aspergillus [13, 15, 18], including 

Agrobacterium-mediated transformation similar to what was reported before for the basal 

fungal genera Blastocladiella and Batrachochytrium [42, 43], as well as Aspergillus [14]. 

To my knowledge, apart from a single attempt of biolistic transformation in 

Neocallimastix [48], genetic manipulations of AGF have not been actively pursued so far. 

Finally, the proposed protocol builds on the observation that AGF can readily be 

cultured on solid agar surface under strict anaerobic conditions to allow for aerial 

sporangial development. My preliminary observation was that AGF isolates could be 

revived, even after prolonged incubations under anaerobic conditions. Long-term storage 

of aerobic fungi on solid media at ambient temperatures has long been applied, albeit 

with the addition of mineral oil or water to prevent culture dryness [36, 37]. This storage 

technique keeps fungi in a low metabolic state until revived [36]. Addition of mineral oil 

or other liquids to prevent dryness would be dispensable for AGF since they are cultured 

in tightly sealed serum bottles. One previous study suggested that AGF cultures on roll 

tubes in presence of sisal fibers could survive for up to 7 months [6]. I set to examine and 
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quantify the feasibility of growth of AGF on a solid surface as a method of long-term 

storage that does not require subjecting cultures to ultra low temperatures. I show that 

this approach represents an excellent method for storing cultures up to 16 weeks, with 

easy routine sub-culturing by flooding and re-inoculating fresh media tubes. The 

simplicity and ease of this growth pattern renders it an interesting alternative and valued 

addition to prior reported methods for AGF long-term storage that required 

cryopreservative addition, multiple transfers and manipulations which result in transient 

air-exposure risks, or the exposure to ultra-low (-80ºC) temperatures (Table 2-3).  

In conclusion, I show that: 1) under the most optimal conditions, more than 109 

spores are released from anaerobic fungal colonies growing on a solid agar surface, 2) 

variation in the incubation time with the flooding solution can be adapted to obtain either 

swimming or germinating spores, both of which were shown to be viable and resulted in 

growth when inoculated in fresh media, 3) the released germinating spores can uptake 21-

nucleotide small-interfering RNA molecules, and 4) the growth on solid surface can be 

easily adapted for long-term storage of both polycentric and monocentric anaerobic 

fungal isolates with no incidental O2 exposure or a decrease in temperature to the ultra-

low values shown before to be detrimental for some isolates [49]. 
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CHAPTER III 

 

INSIGHTS INTO THE UTILITY OF THE FOCAL ADHESION SCAFFOLDING 
 

PROTEINS IN THE ANAEROBIC FUNGUS ORPINOMYCES SP. C1A 
 

 

Abstract 

Focal adhesions (FAs) are large eukaryotic multiprotein complexes that are present in all 

metazoan cells and function as stable sites of tight adhesion between the extracellular 

matrix and the cell’s cytoskeleton. FAs consist of an anchor membrane protein (integrin), 

scaffolding proteins (α-actinin, talin, paxillin, and vinculin), signaling proteins of the IPP 

complex (integrin-linked kinase, α-parvin, and PINCH), and two signaling kinases (focal 

adhesion kinase (FAK) and Src kinase). While genes encoding complete focal adhesion 

machineries are present in genomes of all multicellular Metazoa; incomplete machineries 

were identified in the genomes of multiple non-metazoan unicellular Holozoa, basal 

fungal lineages, and amoebozoan representatives. Since a complete FA machinery is 

required for functioning, the putative role, if any, of these incomplete FA machineries are 

currently unclear. I sought to examine the expression patterns of FA-associated genes in 

the anaerobic basal fungal isolate Orpinomyces sp. strain C1A under different growth 

conditions and at different developmental stages. Strain C1A lacks clear homologues of 

integrin, and the two signaling kinases FAK and Src, but encodes for all scaffolding 
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proteins, and the IPP complex proteins. I developed a protocol for synchronizing growth 

of C1A cultures, allowing for the collection and mRNA extraction from flagellated 

spores, encysted germinating spores, active zoosporangia, and late inactive sporangia of 

strain C1A. I demonstrate that the FA scaffolding proteins α-actinin, talin, paxillin, and 

vinculin are indeed transcribed under all growth conditions, and at all developmental 

stages of growth. Further, analysis of the observed transcriptional patterns suggests the 

putative involvement of these components in alternative non-adhesion-specific functions, 

such as hyphal tip growth during germination, and flagellar assembly during 

zoosporogenesis. As opposed to previous studies that only documented the genomic 

presence of components of an incomplete FA machinery in non-metazoan eukaryotes, I 

show here, for the first time, that these components are indeed transcribed during growth 

in the absence of an ECM anchor, and propose alternative functions for such proteins in 

the anaerobic gut fungi. Results highlight the diverse functionalities of FA scaffolding 

proteins in basal fungi. 
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Introduction 

In eukaryotes, focal adhesions are sites of stable contacts with the extracellular matrix 

(ECM) and subsequent polymerization of the cell’s cytoskeleton. They mediate 

interaction between the ECM and the cell interior by promoting cell anchorage and 

mechanical adhesion to the ECM, as well as act as signaling milieu where signaling 

proteins are concentrated at sites of integrin binding and connect the cell’s cytoskeleton 

to the ECM. FAs are comprised of large multiprotein complexes that are mediated by 

integrin, a heterodimeric membrane protein that acts as the point of matrix-cytoskeleton 

connection [1]. The process is initiated in the presence of an extracellular matrix (ECM) 

protein ligand, e.g. fibronectin that binds to the ECM receptor integrin. This integrin-

ECM bond recruits the scaffolding protein talin to the focal adhesion site, which in turn 

binds actin microfilaments and functions to strengthen the integrin-ECM bond. Integrin-

talin-actin complexes recruit additional components such as focal adhesion kinase (FAK), 

paxillin, and Src-family kinases (SFKs) to integrin tails thereby revealing binding sites 

for other proteins, such as vinculin. The integrin-cytoskeleton link is further stabilized by 

the recruitment of the IPP complex, comprising integrin-linked kinase (ILK), parvin, and 

PINCH, to promote cytoskeleton linkage and integrin signaling. Actin crosslinking 

occurs via α-actinin, which orchestrates the elongation and growth of focal adhesions. 

The structure of the integrin adhesome and the mechanism of the focal adhesion process 

have been extensively studied in metazoan cell culture lines [1, 2, 3].  

Focal adhesion is essential for multicellularity since it enables cells to attach to 

components of the ECM [4]. Accordingly, it was thought until recently, that the integrin 

adhesome and its function in focal adhesion was metazoan specific [5]. However, this 
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view was challenged when homologues of FA proteins were identified in the genomes of 

several unicellular non-metazoan Holozoa; such as the Choanoflagellates Proterospongia 

sp., and Monosiga brevicollis, the Filasterea Capsaspora owczarzaki, and the 

Ichthyosporea Sphaeroforma, the genome of the Apusozoa (the Opisthokonta sister 

group) Amastigomonas sp., and genomes of several representatives of the Amoebozoa, 

with (Figure 3-1) [6, 7]. Further, in Fungi, the Holozoa sister group within the 

Opisthokonta, homologues of FA proteins were also identified in the genomes of various 

basal fungal phyla, but not the Dikarya (Ascomycota and Basidiomycota). Interestingly, 

within all basal fungal lineages studied, while the pattern of occurrence of FA 

components is distinctive (Figure 3-1), all of them invariably lack homologues for 

integrin and the signaling kinases FAK and Src, but encode for scaffolding proteins. In 

the absence of integrin and the signaling kinases, the connection between the 

cytoskeleton and the ECM is lost; hence the known function of focal adhesions might not 

be realized (Figure 3-2). Therefore, it is currently unclear whether the focal adhesion 

components in basal fungi are nonfunctional and only represent a remnant of a once 

complete FA machinery, mediate adhesion with the help of a yet-unidentified integrin 

functional homologue, or are involved in some hitherto unrecognized function as part of a 

non-adhesion related machinery.   

 The anaerobic gut fungal isolate Orpinomyces sp. strain C1A encodes a partial FA 

machinery [8]. The genome contains homologues of the IPP complex and the four 

scaffolding proteins talin, vinculin, paxillin, and α-actinin, but lacks homologues for 

integrin, FAK, and Src. Here, I reasoned that transcriptional patterns of genes encoding 

this partial FA machinery in strain C1A under various growth conditions and 
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developmental stages could provide preliminary insights into the functionality and 

putative biological role(s) of these proteins. I show for the first time in basal fungi that 

the genes encoding scaffolding proteins are indeed transcribed during growth in the 

absence of the upstream integrin and the signaling kinases. Phylogenetic analyses, 

conservation of functional domains, and comparative modeling all suggest that the 

predicted proteins would be functional. Based on transcriptional levels at different stages 

of the life cycle of this fungus, I discuss the possible cellular roles of scaffolding proteins 

in C1A. 
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Materials and Methods 

2.1. Organism and culture media. Strain C1A was originally isolated from an Angus 

steer [8]. Cultures of C1A were regularly transferred twice a week for maintenance in 

rumen fluid media with cellobiose as the carbon source [9]. Where indicated, cellobiose 

was replaced with microcrystalline cellulose as the C source. Prior to inoculation, the 

media were amended with an anaerobic antibiotic mixture of kanamycin, penicillin, 

streptomycin, and chloramphenicol with final concentrations of 50 µg/mL, 50 µg/mL, 20 

µg/mL, and 50 µg/mL, respectively.  

2.2. FA components in C1A genomes, phylogenetic analysis, and functional domain 

prediction. I queried the genome of strain C1A [8, 10] to identify FA-related 

genes/transcripts. Phylogenetic analysis of the predicted scaffolding proteins was 

conducted to identify their closest relative and examine whether their topologies are in 

agreement with the organismal phylogeny. Individual multiple sequence alignments 

(MSA) were constructed for each of the predicted proteins in Mega [11].  When possible, 

beside metazoan homologues, predicted proteins from non-metazoan eukaryotic 

representatives (including basal fungi) were added to the alignment. The resulting MSA 

was utilized to construct maximum likelihood trees using the best substitution model 

identified using the calculated values for the Akaike information criterion (AIC), 

Bayesian information criterion (BIC), and likelihood ratio as tested in Mega [11]. 

All predicted proteins were checked for functional domain structure and 

organization by querying against the Pfam database [12]. I used Phyre2 [13] homology 

modeling to construct pairwise sequence alignments with secondary and tertiary structure 

predictions for α-actinin, talin, and vinculin. The predicted tertiary structure models were 
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visualized in PyMol [14], and each of the predicted models were superimposed to the 

corresponding template structure used for structure predictions. The protein data bank 

[15] (PDB) ID’s for the templates utilized were as follows: α-actinin (PDB ID: 1SJJ), 

talin (PDB ID’s: 1SJ7, 2L10, 2JSW, 2KVP, 2QDQ), and vinculin (PDB ID: 1TR2). 

When the predicted paxillin sequence was searched against the PDB database, no hits 

with structural data were identified. Accordingly, for paxillin a secondary and tertiary 

structure prediction was not possible.  

2.3. Transcriptional studies of genes encoding scaffolding proteins in C1A. In addition 

to the mere documentation of transcription of genes encoding scaffolding proteins, I 

sought to use real time PCR to examine and analyze the transcriptional levels of such 

genes under various growth conditions and various developmental stages. My aim was to 

examine whether the transcriptional patterns observed support a putative role for FA 

scaffolding proteins in an adhesion-related processes, or whether they would be involved 

in developmental-stage specific function other than adhesion, e.g. in flagellar assembly, 

as previously suggested for the ciliated cells of Xenopus tropicalis [16], or hyphal tip 

growth as previously speculated in the basal fungus Allomyces arbuscula [17]. 

2.3.1. Transcriptional patterns in presence and absence of an ECM ligand. To examine 

the putative involvement of the scaffolding proteins in adhesion-related processes, I 

compared the transcription levels of their genes in presence and absence of an 

extracellular matrix trigger for FA. Fungi differ from animal cells in that they lack a well-

defined protein-rich extracellular matrix but possess a polysaccharide-rich cell wall [18]. 

However, in zoosporic fungi (e.g. members of Chytridiomycota, Neocallimastigomycota, 

Blastocladiomycota, and Monoblepharidomycota), the zoospore stage was shown to have 
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some type of polysaccharide-rich [19] extracellular matrix in the form of a cell coat 

covering the zoospore body and excluding the flagellar axoneme [20]. Therefore, in 

contrast to in-vitro studies of focal adhesions in Metazoa that used a protein, usually 

fibronectin, as the extracellular trigger for focal adhesion [21], I opted for using a 

polysaccharide (microcrystalline cellulose; MCC) as the extracellular trigger for FA in 

C1A. The hypothesis here is that if the scaffolding proteins are indeed recruited as part of 

the FA machinery, then their genes are expected to be differentially up-regulated when 

C1A is grown in the presence of the extracellular polysaccharide MCC as opposed to a 

soluble substrate such as cellobiose. To this end, C1A cultures were grown in rumen fluid 

media with cellobiose, as opposed to the insoluble MCC as the carbon source. Cultures of 

C1A on cellobiose and MCC were sacrificed at mid log phase (51 hours post inoculation, 

based on biomass determination in preliminary experiments), and the biomass was used 

for total RNA extraction and for studying the transcriptional levels of the FA scaffolding 

genes as detailed below. 

2.3.2. Transcriptional patterns of scaffolding genes at various developmental stages. As 

described above, an alternative hypothesis posits that scaffolding proteins might be 

involved in a non-adhesion-specific process during the life cycle of strain C1A, as shown 

before in ciliated cells of the metazoan Xenopus tropicalis [16], or as previously 

suggested for the basal fungus Allomyces arbuscula [17]. To examine this hypothesis, I 

quantified the transcriptional levels of talin, α-actinin, vinculin, and paxillin, at four 

distinct developmental stages in C1A: flagellated spores, encysted non-flagellated 

germinating spores, active sporangia during zoosporogenesis, and late inactive sporangia 

samples.  
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While separation and collection of life cycle stages is a routine practice in aerobic 

zoosporic fungi, and involves zoospore collection and growth synchronization [22,23], I 

had repeated difficulties replicating such synchronization starting from flagellated 

zoospores in the anaerobic fungal representative strain C1A due to the observed wide 

range of zoospores encystment and germination time following introduction to fresh 

media. Therefore, I developed alternative approaches for collection of various 

developmental stages in strain C1A. The procedure (Figure 3-3) was partly described in 

[9], and involves growing C1A cultures on cellobiose rumen fluid media in presence of 

2% agar followed by flooding the agar surface with sterile anoxic water (SAW) to 

promote spore release from the sporangia. Variation in time between culture flooding and 

collection of the released spores was used to obtain either 100% swimming spores-only 

sample (flooding incubation time of 30 minutes), or a >90% non-flagellated germinating 

spore sample (flooding incubation time of 90 minutes). 

To obtain samples representative of active and late sporangia, I started from the 

swimming spores collected as described above (flooding agar surface followed by 30 

minutes incubation). The obtained spores were used to inoculate fresh rumen fluid 

cellobiose media, and growth was monitored microscopically (using the phase contrast 

lens of an Olympus BX51 microscope after staining with lactophenol-cotton blue stain 

solution) on a daily basis for 19 days. Judging by cues from the microscopic examination 

I sacrificed samples on days 1, 2, 5, 15, and 19 following inoculation as those days 

coincided with various stages of development as shown in Table 3-1. It has been shown 

before [24] that the whole basal body carrying the flagella is shed along with the 

axoneme during encystment of flagellated spores. The basal body and the axoneme are 
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then re-built during zoosporogenesis in active sporangia. Accordingly, I hypothesized 

that the transcriptional levels of genes encoding axoneme-specific, as well as basal body-

specific proteins should correspond to the level of zoosporogenesis. Therefore, in 

conjunction with the microscopic examination, I followed the transcriptional levels of 

RS3 (encoding an axoneme-specific protein) [25], and centrin (encoding basal body and 

nuclear cap-specific protein) [26] in the samples collected above (days 1-2-5-15-19). 

Samples with the highest transcriptional levels of RS3 and centrin genes, and 

microscopic evidence of active zoosporogenesis, were used as representatives of active 

sporangia; while late samples that showed no microscopic evidence of zoosporogenesis, 

as well as very low to no transcription of RS3 and centrin, were used as representatives of 

late sporangia samples.  

2.4.  RNA extraction, cDNA synthesis, and quantitative RT-PCR. Collected samples 

were vacuum filtered using sterile 3 µm (for biomass and sporangia samples) or 0.45 µm 

(for spore-only samples) filters, and the obtained biomass was lysed by crushing with a 

sterile mortar and pestle upon submersion in liquid nitrogen. Crushed cells were used for 

total RNA extraction using MasterPureTM Yeast RNA Purification Kit (Epicentre®, 

Madison, WI) according to manufacturer’s instructions. Total RNA reverse transcription 

(cDNA synthesis) was performed using the Superscript III First-Strand Synthesis System 

for RT-PCR (InvitrogenTM, Carlsbad, CA) with Oligo(dT)20 according to manufacturer’s 

instructions. Genes’ transcriptional levels were investigated using quantitative RT-PCR 

using a MyIQ thermocycler (Bio-Rad Laboratories, Hercules, CA) and SybrGreenER® 

qPCR mix (InvitrogenTM, Carlsbad, CA). Primers targeting α-actinin, talin, vinculin, 

paxillin, RS3, and centrin cDNA were designed using the OligoPerfectTM Designer tool 
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(InvitrogenTM, Carlsbad, CA) and their specificity was tested in-silico using the 

standalone NCBI Blastn [27] against all coding sequences of C1A. Primer sequences, 

their target accession number, as well as amplified regions are shown in Table 3-2. The 

reactions contained 1µl of C1A cDNA, and 0.5 µM each of the forward and reverse 

primers. Reactions were heated at 50°C for 2 min, followed by heating at 95°C for 8.5 

min. This was followed by 70 cycles, with one cycle consisting of 15 s at 95°C, 60 s at 

50°C, and 30 s at 72°C. Using the ΔCt method, the number of copies of each gene is 

reported relative to the number of copies of the housekeeping gene glyceraldehyde-3-

phosphate dehydrogenase (GAPDH) used as the normalizing control. 
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Results 

3.1. Phylogeny, Pfam domain analysis, and structure modeling of FA proteins in C1A. 

All four predicted scaffolding proteins from C1A (α-actinin, talin, vinculin, and paxillin), 

showed a topology consistent with C1A organismal phylogeny. In all maximum 

likelihood trees, C1A proteins formed a well-supported cluster with proteins from other 

basal fungi (and Dikarya fungi in case of α-actinin) (Figure 3-4). Likewise, all Metazoan 

proteins clustered together with strong bootstrap support, with the Choanoflagellates 

(Monosiga and Proterospongia) and the Filasterea (Capsaspora) proteins forming sister 

groups. However, the position of proteins from Amoebozoan origin was not consistent 

across trees (Figure 3-4). When other Neocallimastigomycota genomes/transcriptomes 

[28] were queried for FA components homologues, a pattern similar to that of C1A was 

detected, where genes encoding the IPP complex components as well as the scaffolding 

proteins were identified (Table 3-3) with no homologues for integrin, FAK, or Src. 

The results of Pfam domain analysis are shown in Table 3-4 and Figure 3-5. 

Analysis identified domain organizations that are consistent with functional proteins from 

Metazoan origin. This includes 2 Calponin homology (CH) (Pfam 00307) domains, one 

spectrin repeat (Pfam 00435), and one Ca2+ insensitive EF hand (EF) domain 

(Pfam08726) for C1A predicted α-actinin [29]; a talin middle domain (Pfam 09141), 2 

vinculin binding site domains (Pfam 08913), and an I/LWEQ domain (Pfam 01608) for 

C1A predicted talin; and vinculin family domain (Pfam 01044) for C1A predicted 

vinculin (Figure 3-5). C1A predicted paxillin available sequence was 5’ partial and did 

not span the paxillin domain itself, but comparison against the Pfam database identified 4 

LIM domains (Pfam 00412) consistent with Metazoan paxillin C-terminal region [30] 
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(Figure 3-6). Within the recognized domains, several characteristic residues that were 

shown before to be conserved and essential for activity [30, 31, 32] were identified 

(Table 3-4).  

Detailed analysis of C1A predicted scaffolding proteins. 

1. Alpha-actinin: Comparison against the Pfam database showed that C1A predicted 

alpha-actinin harbored one actin binding domain comprised of 2 Calponin homology 

(CH) (Pfam 00307) domains, one spectrin repeat (Pfam 00435), and one Ca2+ insensitive 

EF hand (EF) domain (Pfam08726), a domain organization consistent with alpha-actinin 

from metazoan origin [29] (Figure 3-5A-I). Due to the partial coverage of C1A genome, 

the first of the two CH domains was only partial while the second spanned residues 66-

169. The presence of two CH domains within the actin-binding domain was shown before 

to be essential for binding actin [33]. Downstream of the actin-binding domain, the 

spectrin repeat domain spanned residues 316-408. A closer look at the primary sequence 

of C1A spectrin repeat in comparison to Pfam00435 HMM profile identified the presence 

of the aromatic residues Y317 and Y397 and the residue L428, all of which are 

characteristic of the spectrin repeat. Finally, the Ca2+ insensitive EF hand (EF) domain 

identified downstream of the spectrin repeat spanned residues 505-564. Secondary 

structure alignments and predicted 3D structure models for each of the alpha-actinin 

domains are shown in Figure 3-5A. Due to the partial nature of the first CH domain in 

C1A alpha-actinin, only the second CH domain could be modeled with confidence. I 

utilized Phyre2 to predict the secondary structure as well as the 3D model of C1A alpha-

actinin in comparison to the chicken gizzard smooth muscle alpha-actinin (PDB ID: 

1SJJ).  C1A CH domain was 60% similar to the corresponding 1SJJ domain and was 
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modeled with 100% confidence.  The predicted model of C1A CH domain displayed the 

typical structural motif of 4 alpha helices [34], and when superimposed with 1SJJ, it 

aligned with an RMS value of 0.941 (Figure 3-5A-II). C1A spectrin repeat was 27% 

similar to the corresponding 1SJJ domain and was modeled with 98.93% confidence. The 

proposed model of C1A spectrin domain maintained the typical triple-helical coiled-coil 

motif [35], and superposition with 1SJJ gave an RMS of 0.956 (Figure 3-5A-III). Finally, 

C1A EF domain was 32% similar to the corresponding 1SJJ domain and was modeled 

with 99.60% confidence. The predicted model of C1A’s alpha-actinin Ca2+ insensitive EF 

hand domain maintained the helix-loop-helix motif typical of EF hands [36]. 

Superposition of C1A’s alpha-actinin EF domain with 1SJJ yields a RMS value of 1.119 

(Figure 3-5A-IV). 

2. Talin: The Pfam analysis revealed that C1A talin contained 4 domains: a middle 

domain (Pfam 09141), 2 vinculin binding site domains (VBS1 and VBS2) (Pfam 08913), 

and an I/LWEQ domain (Pfam 01608) (Figure 2B-I). Talin middle domain spanned 

residues 100-262. C1A middle domain of talin was modeled with 100% confidence and 

30% sequence identity to 1SJ7 (Figure 3-5B-II). The predicted model showed the 

characteristic bundle comprised of 5 alpha helices [37], and the superimposed structures 

of the middle domain and 1SJ7 (residues 491-652) yielded an RMS of 0.116 (Figure 3-

5B-II). Vinculin binding site domain 1 (VBS1) spanned residues 838-961 and was 

modeled with 100% confidence and 30% sequence identity to 2L10 (Figure 3-5B-III), 

while vinculin binding site 2 (VBS2) spanned residues 1455-1578 and was modeled with 

97% confidence and 21% sequence identity to 2KVP (Figure 3-5B-IV). Both VBS 

domain predictions yielded models that were composed of 4 alpha helices characteristic 
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of vinculin binding sites [38]. Superimposing C1A vinculin binding sites with their 

templates tertiary structures gave an RMS of 0.902 (VBS1), and 0.653 (VBS2). A closer 

look at the primary sequence of C1A talin I/LWEQ domain spanning residues 1991-2139 

revealed the highly conserved 4-block structure characteristic of this domain [31]. Block 

1 (residues 1952-1977) showed several conserved branched chain residues and Q1975, 

block 2 (residues 1996-2018) showed the conserved W1996 and several non-polar 

residues, block 3 (residues 2029-2053) showed the conserved E2029, Q2044, and K2052, 

and block 4 (residues 2109-2128) showed the conserved residues Q2112, R2126, and 

Y2126. Blocks1-3 of C1A I/LWEQ domain of talin were modeled with 100% confidence 

and 53% sequence identity to 2JSW (Figure 3-5B-V), while block 4 was modeled with 

96.6% confidence and 45% identity to the dimerization domain 2QDQ. The predicted 

model showed the characteristic 5-helix bundle [39]. Superimposing C1A I/LWEQ 

domain on 2JSW, and 2QDQ gave an RMS value of 0.127, and 0.220, respectively 

(Figure 3-5B-V). 

3. Vinculin: Pfam search revealed that C1A vinculin only had 1 domain, the vinculin 

family domain (Pfam 01044) (Figure 3-5C-I). The available C1A vinculin sequence only 

spans the C-terminal region of the protein, where it aligned with residues 804-1061 of the 

human full-length vinculin (PDB: 1TR2) (Figure 3-5C-II). C1A vinculin domain was 

modeled with x% confidence and 32% sequence identity to 1TR2 (Figure 3-5C-II). The 

predicted model showed 5 amphipathic helices characteristic of the vinculin tail [40]. 

C1A vinculin superimposed with 1TR2 tail with an RMS value of 1.224 (Figure 3-5C-II). 

4. Paxillin: The C1A predicted paxillin protein was only a partial sequence. Blastp 

comparison against the nr database identified the paxillin from Gallus gallus (Genbank 
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accession number NP_990315.1) as its first hit with 57% sequence similarity (alignment 

to NP_990315.1 is shown in Figure 3-6). Comparison against the Pfam database 

identified 4 LIM domain (Pfam 00412) spanning residues (98-153), (157-213), (217-

272), (276-335). A closer look at the primary sequence of each LIM domain and its 

comparison to the Pfam HMM profile identified several conserved histidine and cysteine 

residues that are potentially implicated in binding Zn (Figure 3-7). Since the C1A 

predicted paxillin available sequence did not span the paxillin domain itself, it was not 

possible to perform any secondary or tertiary structure predictions using the available 

paxillin proteins in the PDB database. 

In summary, predicted 3D model of C1A scaffolding proteins are shown in Figure 

3-5. In all cases, typical characteristic structural motifs were predicted for C1A proteins 

(Table 3-4 and Figure 3-5) [30, 34, 35, 36, 37, 38, 39, 40, 51]. Superimposing the 

predicted model on template proteins yielded very low RMSD values (Table 3-4), 

indicative of a high similarity between the superimposed atomic coordinates in C1A 

versus the template proteins [41]. These results above clearly demonstrate that C1A 

scaffolding proteins are predicted to be structurally similar to their functional metazoan 

counterparts.  

3.2. Genes encoding scaffolding proteins are transcribed during C1A growth even in 

the absence of an ECM ligand. I investigated the transcription of genes encoding the 4 

scaffolding proteins in C1A cultures grown on cellobiose. C1A total mRNA contained 

transcripts of genes encoding all 4 scaffolding proteins in levels ranging from 0.6-73 

times the level of transcription of the housekeeping gene GAPDH (Figure 3-8). To test 

the hypothesis that the scaffolding proteins are employed for adhesion in C1A as part of a 
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FA machinery, I compared the transcriptional levels of genes encoding scaffolding 

proteins in the presence and absence of an insoluble extracellular polysaccharide matrix 

(microcrystalline cellulose). The transcriptional levels of genes encoding for all four 

scaffolding proteins (α-actinin, talin, paxillin, and vinculin) were significantly lower 

when grown on MCC, as opposed to cellobiose-grown culture (Figure 3-8). These results 

strongly suggest that adhesion to extracellular matrix components might not be a major 

physiological function of the scaffolding proteins in C1A. 

3.3. Transcripts of scaffolding proteins are up-regulated during zoosporogenesis. Next, 

I investigated whether the transcriptional patterns of genes encoding scaffolding proteins 

are dependent on C1A developmental stages. I first quantified transcription levels during 

active versus inactive sporogenesis to examine the hypothesis that, similar to ciliated 

cells [16], one of the cellular functions of scaffolding proteins in C1A in absence of 

integrin or another ECM connection would be association with the basal body during 

flagellar assembly. Based on microscopic examination (Table 3-1), and the 

transcriptional levels of centrin and RS3 (Figure 3-6) we chose day 5 as an active 

zoosporogenesis sample, and day 19 as an inactive late sporangia sample. I studied the 

transcriptional levels of α-actinin, talin, vinculin, and paxillin in such samples. Results 

(Figure 3-9) show a significantly higher transcription level in active sporangia for α-

actinin, talin, vinculin, and paxillin. I speculate that such significant increase in the 

transcription levels of genes encoding scaffolding proteins during active zoosporogenesis 

might be related to their association with basal body during flagellar assembly, as shown 

before during ciliogenesis [16].  
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3.4. Flagellated zoospores carry scaffolding proteins mRNAs. I showed above that the 

genes encoding all 4 scaffolding proteins were highly expressed in the active sporangia 

sample. Following zoosporogenesis, zoospores are released from the active sporangia, 

and are motile by means of their posterior flagella. To demonstrate whether the 

scaffolding genes transcripts are stored with the active zoospores, I collected a swimming 

spores only sample [9] and used it to study the transcriptional level of α-actinin, talin, 

vinculin, and paxillin. I show that the zoospores total mRNA contained scaffolding 

proteins transcripts, albeit with significantly lower transcription levels than what was 

observed in the active sporangia sample (Figure 3-9A-B) for α-actinin (29,119-fold 

decrease, Student t-test P-value=0.007), talin (346-fold decrease, Student t-test P-

value=1E-09), vinculin (123-fold decrease, Student t-test P-value=0.027), and paxillin 

(9,734-fold decrease, Student t-test P-value=0.048). Similar results were shown before 

for Batrachochytrium dendrobatidis, where vinculin was found to be differentially 

expressed in the sporangia as opposed to the zoospore sample [23].  

3.5. Scaffolding proteins transcripts are differentially up-regulated in germinating 

spores as opposed to swimming spores. The presence of scaffolding proteins transcripts 

as part of C1A swimming spores total mRNA might suggest the utility of these proteins 

during encystment and germination. To test this hypothesis, I collected a germinating 

spores-only sample [9] and used it to examine the transcriptional level of α-actinin, talin, 

vinculin, and paxillin. I show that the transcription level of genes encoding all 4 

scaffolding proteins was highest in germinating spores. Levels were significantly higher 

than in active sporangia undergoing zoosporogenesis, and were also significantly higher 

than in swimming zoospores for all 4 genes (Figure 3-9). These results suggest that one 
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of the major cellular functions of scaffolding proteins might be occurring during and 

post-germination. 
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Figure 3-1. Genomic evidence for focal adhesion complex components in metazoan and 

non-metazoan Unikonts. Results shown are from [6, 7, 8, 28], and are based on the 

genomic analysis of several Metazoa representatives, the Choanoflagellates 

representatives Monosiga brevicollis and Proterospongia sp., the Filasterea 

representative Capsaspora owczarzaki, the Ichthyosporea representative Sphaeroforma, 

several representatives of the Dikarya fungi, the basal fungi representatives Allomyces 

macrogynus (Blastocladiomycota), Spizellomyces punctatus, and Batrachochytrium 

dendrobatidis (Chytridiomycota), Orpinomyces sp. C1A, Anaeromyces robustus, 

Neocallimastix californiae, and Piromyces finnis (Neocallimastigomycota), the Apusozoa 

representative Amastigomonas sp., and several representatives of the Ameobozoa. The 

dendogram is not drawn to scale and only serves to show the relationships between the 

different groups. Cells shaded in black denote clear homologues were identified in all 

representative genomes, cells shaded in grey denote clear homologues were identified in 

some but not all representative genomes, and cells shaded in white denote no homologues 

were identified in any of the representative genomes. 
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Figure 3-2. A simplified schematic of the focal adhesion machinery in Metazoa. Focal 

adhesion proteins are color coded as follows: Integrins (ECM receptors) are brown, 

Scaffolding proteins are green, proteins of the IPP complex are blue, signaling kinases 

are yellow. F-actin polymers are shown in red and proteins of the extracellular matrix are 

shown in pink.  
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Figure 3-3. Schematic of the protocol used to collect the different developmental stages 

of C1A employed for the transcriptional study. 
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Table 3-1. Microscopy results when C1A was grown in cellobiose (or MCC) media over 

a period of 19 days.  

 Spores  Sporangia 
 

Sample 
Swimming 
(flagellated) 

Resting (not 
flagellated) 

Swimming 
spores inside 

Without swimming 
spores inside 

Day 1 ++ +++ - + 
Day 5 +++ ++ +++ +++ 
Day 15 + ++ ++ ++ 
Day 19 + ++ + +++ 

Scale: (-) none observed, (+) very few observed, (++) some observed, (+++) many 

observed. 
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Table 3-2. Quantitative PCR primers used for cDNA amplification. 
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Figure 3-4. Maximum likelihood phylogenetic analysis of C1A predicted scaffolding 

proteins. All evolutionary analyses and model selections were conducted in MEGA7 

[11]. Trees are drawn to scale, with branch lengths measured in the number of 

substitutions per site. Bootstrap values, in percent, are based on 100 replicates and are 

shown for branches with >50% bootstrap support. Trees are shown for: (A) α-actinin 

based on the JTT model with a discrete Gamma distribution (variable site γ shape 

parameter = 2.0327). Analysis involved 21 amino acid sequences, with a total of 535 

positions in the final dataset. (B) Paxillin based on the Dayhoff model with a discrete 

Gamma distribution (variable site γ shape parameter = 1.7755). Analysis involved 12 

amino acid sequences, with a total of 535 positions in the final dataset. (C) Talin based on 

the Le_Gascuel_2008 model with a discrete Gamma distribution (variable site γ shape 

parameter = 3.0802). Analysis involved 13 amino acid sequences, with a total of 441 

positions in the final dataset. (D) Vinculin based on the Le_Gascuel_2008 model with a 

discrete Gamma distribution (variable site γ shape parameter = 3.4035). Analysis 

involved 14 amino acid sequences, with a total of 145 positions in the final dataset. 
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Table 3-3. Blastp results in other Neocallimastigomycota transcriptomes (from (Solomon 

et al., 2016)).  

FA component Hits ina 
Anaeromyces Piromyces Neocallimastix 

Anchor Integrin N N N 
Signaling 
kinases 

FAK N N N 
Src N N N 

Scaffolding 
proteins 

Talin Y (g.6332) Y (g.13026) Y (g.12367) 
Vinculin Y (g.7072) Y (g.15720) Y (g.8754) 
Paxillin Y (g.3771) Y (g.3279) Y (g.6669) 
α-actinin Y (g.3928) Y (g.3512) Y (g.2424) 

IPP 
complex 

PINCH Y (g.5606) Y (g.16322) Y (g.13985) 
Parvin Y (g.11341) Y (g.1163) Y (g.12919) 
ILK Y (g.9193) Y (g.2454) Y (g.9692) 

a: Criteria used for Blastp were a minimum of 50% alignment length and > 30% 

similarity. N: no homologues identified, Y: a homologue was identified. 
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Table 3-4. Results of C1A scaffolding proteins comparison to the Pfam database, as well 

as secondary and tertiary structure predictions.  
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Figure 3-5. C1A predicted scaffolding proteins functional domain structure and 

organization, and predicted protein structure modeling. Results are shown for (A) α-

actinin, (B) talin, and (C) vinculin. For each predicted protein, the first row (I) 

corresponds to the predicted Pfam domain organization. This is followed by 1–5 rows (II-

VI) each corresponding to a functional domain. On the left of each of these rows, 

secondary structure alignments of C1A predicted domain compared to a template’s 

known and predicted secondary structure are shown. On the right of each row, predicted 

tertiary structures of C1A domains are shown in pink, compared to the template’s known 

tertiary structure in cyan. Superimposed structures are also shown. Row (A-II): predicted 

C1A α-actinin CH domain structure compared to PDB: 1SJJ from Gallus gallus. Row (A-

III): predicted C1A α-actinin spectrin domain structure compared to PDB: 1SJJ from 

Gallus gallus. Row (A-IV): predicted C1A α-actinin Ca2+ insensitive EF hand domain 

structure compared to PDB: 1SJJ from Gallus gallus. Row (B-II): predicted C1A talin 

middle domain structure compared to PDB: 1SJ7 from Mus musculus. Row (B-III): 

predicted C1A talin VBS1 domain structure compared to PDB: 2L10 from Mus 

musculus. Row (B-IV): predicted C1A talin VBS2 domain structure compared to PDB: 

2KVP from Mus musculus. Row (B-V): predicted C1A talin I/LWEQ domain (Blocks 1–

3) structure compared to PDB: 2JSW from Mus musculus. Row (B-VI): predicted C1A 

talin I/LWEQ domain (Block 4 comprizing the dimerization domain) structure compared 

to PDB: 2QDQ from Mus musculus. Row (C-II): predicted C1A vinculin domain 

structure compared to PDB: 1TR2 from Homo sapiens. 
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Figure 3-6. C1A predicted paxillin Pfam domain organization (A), and pairwise 

sequence alignment of to paxillin from Gallus gallus (NP_990315). 
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Figure 3-7. Transcriptional levels of genes encoding RS3 and centrin in C1A. The 

number of transcript copies of RS3 (☐) and centrin (n) relative to the number of transcript 

copies of the housekeeping gene glyceraldehyde-3-phosphate dehydrogenase (GAPDH) 

were followed over a period of 19 days. Error bars are standard deviations from at least 

two replicates. 
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Figure 3-8. Transcriptional levels of genes encoding scaffolding proteins in the presence 

and absence of an extracellular matrix polysaccharide. The number of transcript copies of 

talin, paxillin, vinculin, and α- actinin relative to the number of transcript copies of the 

housekeeping gene glyceraldehyde-3-phosphate dehydrogenase (GAPDH) are shown 

when C1A was grown on soluble cellobiose media (☐) (i.e. in absence of an ECM) versus 

when grown on a MCC media (&) (i.e. in presence of an ECM). Error bars are standard 

deviations from two experiments (each with 2 replicates) for paxillin, vinculin, and α-

actinin, and four experiments (each with two replicates) for talin. Values were 

significantly higher in absence of ECM for talin (5.7-fold increase, Student t-test P-value 

= 0.001), α-actinin (13.1-fold increase, Student t-test P-value = 0.009), vinculin (8.7-fold 

increase, Student t-test P-value = 0.008), and paxillin (5.7-fold increase, Student t-test P-

value = 0.07). 
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Figure 3-9. Transcriptional levels of genes encoding scaffolding proteins in various life 

cycle stages of C1A. The number of transcript copies of talin, paxillin, vinculin, and α-

actinin relative to the number of transcript copies of the housekeeping gene 

glyceraldehyde-3-phosphate dehydrogenase (GAPDH) are shown for the active sporangia 

(☐) versus the late sporangia (&) samples (A), as well as for the flagellated spores (☐) 

versus germinating spores (&) samples (B). Error bars are standard deviations from two 

experiments (each with 2 replicates) for paxillin, vinculin, and α-actinin, and four 

experiments (each with two replicates) for talin. Transcriptional levels were significantly 

higher in active sporangia compared to late sporangia [for talin (773-fold increase, 

Student t-test P-value = 0.005), vinculin (807-fold increase, Student t-test P-value = 

0.03), paxillin (17,463-fold increase, Student t-test P-value = 0.049), and α-actinin (33-

fold increase, Student t-test P-value = 0.007)]. Likewise, transcriptional levels were 

significantly higher in germinating spores compared to flagellated spores [for talin (730-

fold increase, Student T t-test P-value = 0.002), vinculin (19,589-fold increase, Student t-

test P-value = 0.022), paxillin (6,300,742-fold increase, Student T-test p-value = 0.018), 

and alpha- actinin (43,513,108-fold increase, Student t-test P-value = 0.048)]. Comparing 

active sporangia to germinating spores, transcriptional levels were also significantly 

higher in germinating spores [for talin (7.8-fold increase, Student t-test P-value = 0.005), 

vinculin (160-fold increase, Student t-test P-value = 0.027), paxillin (647-fold increase, 

Student t-test P-value = 0.048), and alpha-actinin (1,494-fold increase, Student t-test P-

value = 0.007)]. 
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Discussion 

In this study, I investigated the transcriptional levels and the possible cellular functions of 

α-actinin, paxillin, vinculin, and talin in the anaerobic fungus strain C1A in the absence 

of homologues for extracellular matrix anchors (e.g. integrin). I show that α-actinin, talin, 

vinculin, and paxillin are actively transcribed, and their proteins are predicted to be 

structurally similar to their functional metazoan counterparts. Analysis of their 

transcriptional patterns at different stages of fungal development further demonstrated 

that the scaffolding proteins transcripts were detectable in mRNA from swimming 

zoospores, that their transcriptional levels were higher during active zoosporogenesis and 

highest in germinating spores.  

Based on these results, I speculate on the putative functions of scaffolding FA 

proteins in the anaerobic gut fungi. As explained above, the absence of integrin and the 

presence of scaffolding proteins in basal fungal lineages (Figure 3-1) is notable, since 

integrin represents the anchor for stable contact between the extracellular matrix and the 

cell’s cytoskeleton. Since the scaffolding proteins are interacting with integrin (directly or 

indirectly) in metazoan FA systems, it is unclear what the cellular functions of the 

scaffolding proteins would be in basal fungi. It is possible that other proteins (non-

homologous to integrin) could replace the cellular functions of the missing ECM anchor. 

This has been shown before in the non-metazoan Dictyostelium discoideum whose 

genome lacks clear homologues of integrin. However, cell substratum adhesion during 

early development was found to occur via the membrane proteins SibA and SadA [42], 

both of which were shown to interact with the FA scaffolding protein talin [43]. 

However, when C1A was grown in the presence of an extracellular polysaccharide (the 
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insoluble microcrystalline cellulose), which theoretically would provide the ECM trigger 

needed for FA induction and attachment, genes for scaffolding proteins were not 

differentially up-regulated (Figure 3-8).  

Therefore, I reason that scaffolding proteins transcription in C1A reflects their 

involvement in non-adhesion associated functions. One possible function could be 

postulated based on the observed structural similarities between the ciliates basal bodies 

and the fungal spores flagella. In ciliated eukaryotes, the scaffolding proteins paxillin and 

vinculin were shown to localize to ciliary adhesion complexes during ciliogenesis, 

linking the basal bodies to the actin cytoskeleton [16]. This cellular function of 

scaffolding proteins did not require the presence of integrin. Interestingly, all basal fungi 

with sequenced genomes with clear homologues for FA scaffolding proteins have a 

flagellated zoospore stage. Flagella and cilia are similar in that they are both attached to a 

basal body [44]. It is therefore plausible that the scaffolding proteins in basal fungi could 

have a function in basal body formation during zoosporogenesis, and that they interact 

with actin similarly to what was shown in ciliated cells during ciliogenesis. Indeed, my 

transcriptional study showed that the genes encoding all 4 scaffolding proteins in C1A 

were differentially up-regulated during active zoosporogenesis compared to late 

sporangia. The function of scaffolding proteins during ciliogenesis [16] is similar to their 

function in FA [1, 7]; being interaction with the actin cytoskeleton. Based on the results 

shown here, I hypothesize that one of the cellular functions of scaffolding proteins in 

C1A could potentially be interaction with the microfilaments during flagellar assembly 

on the basal body.  
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Previous research in the chytrid fungi Blastocladiella emersonii and 

Batrachochytrium dendrobatidis argue that zoospores stored transcripts for proteins that 

are possibly required upon encystment and germination [22, 23, 45]. For example, 

zoospores of Batrachochytrium dendrobatidis contained transcripts of several chitin 

synthases and chitin binding genes that would be required during encystment for cell wall 

synthesis [23]. I showed here that C1A zoospores carry scaffolding protein transcripts 

during swimming, which would suggest a cellular function for scaffolding proteins 

during and/or post encystment and germination. One possible function is the involvement 

of FA scaffolding proteins in C1A hyphal tip growth. Currently, there is much debate on 

the driving force behind hyphal tip growth, with studies suggesting that turgor pressure 

might not be the only driver for hyphal expansion [46, 47]. Mechanistic similarity 

between hyphal tip growth and animal cell amoeboid movement via focal adhesion to 

solid surfaces has been suggested [47, 48]. Microfilaments were shown to be essential for 

hyphal tip growth [47], where they were found to be axially oriented in the apical regions 

of fungal hyphae [17]. Scaffolding proteins might be functional in the hyphal tip for 

linking the microfilaments to the plasma membrane. Evidence to support this speculation 

comes from research on the chytrid fungus Allomyces arbuscula, where a focal adhesion-

specific protease (similar to calpains in animal cells) was co-localized with 

microfilaments to the hyphal apical tip [49]. The preferred substrates for calpains in 

animal cells are focal adhesion scaffolding proteins [50]. The presence of such calpain in 

the fungal apical tip suggests that its substrates, the scaffolding proteins, might also be 

co-localized to perform a specific function during hyphal tip elongation. Here, I provide 

further evidence that one of the major cellular functions for the scaffolding proteins in 
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basal filamentous fungi could potentially be post-germination during hyphal tip growth, 

where they would act as the point of attachment of the microfilament and the cell 

membrane providing a driving force for the hyphal tip growth. 

Results shown here are essential from an evolutionary standpoint. As shown 

before [7, 16], homologues for all focal adhesion components were identified in the 

genomes of representatives of Apusozoa, the Opisthokonta sister group, suggesting an 

ancient origin of focal adhesion that seems to predate the divergence of Opisthokonta. 

Components of the FA machinery were independently lost during evolution [7], but the 

presence of scaffolding proteins homologs among all unikonts (Opisthokonts and 

Amoebozoa) examined (Figure 3-1) [7], prompted [16] to suggest that the scaffolding 

proteins might have evolved first to perform a non-adhesion-related function (e.g. 

flagella- or cilia-related, or hyphal tip growth in filamentous fungi) and then were later 

co-opted for FA. Regardless of whether scaffolding proteins assumed a non-adhesion 

related function following an integrin loss event [7], or were originally performing a non-

adhesion-related function then were coopted for FA following an integrin gain event [16], 

the current study suggests that scaffolding proteins could have more diverse 

functionalities than originally understood.  
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CHAPTER IV 

 

 

DEVELOPMENT OF AN RNA INTERFERENCE (RNAI) GENE KNOCKDOWN 
 

PROTOCOL IN THE ANAEROBIC GUT FUNGUS PECORAMYCES 
 

RUMINANTIUM STRAIN C1A 

 

 

Abstract 

Members of the anaerobic gut fungi (AGF) reside in rumen, hindgut, and feces of 

ruminant and non-ruminant herbivorous mammals and reptilian herbivores. No protocols 

for gene insertion, deletion, silencing, or mutation are currently available for the AGF, 

rendering gene-targeted molecular biological manipulations unfeasible. Here, I developed 

and optimized an RNA interference (RNAi)-based protocol for targeted gene silencing in 

the anaerobic gut fungus Pecoramyces ruminantium strain C1A. Analysis of the C1A 

genome identified genes encoding enzymes required for RNA silencing in fungi (Dicer, 

Argonaute, Neurospora crassa QDE-3 homolog DNA helicase, Argonaute-interacting 

protein, and Neurospora crassa QIP homolog exonuclease); and the competency of C1A 

germinating spores for RNA uptake was confirmed using fluorescently labeled small 

interfering RNAs (siRNA). Addition of chemically-synthesized siRNAs targeting D-

lactate dehydrogenase (ldhD) gene to C1A germinating spores resulted in marked
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target gene silencing; as evident by significantly lower ldhD transcriptional levels, a 

marked reduction in the D-LDH specific enzymatic activity in intracellular protein 

extracts, and a reduction in D-lactate levels accumulating in the culture supernatant. 

Comparative transcriptomic analysis of untreated versus siRNA-treated cultures 

identified a few off-target siRNA-mediated gene silencing effects. As well, significant 

differential up-regulation of the gene encoding NAD-dependent 2-hydroxyacid 

dehydrogenase (Pfam00389) in siRNA-treated C1A cultures was observed, which could 

possibly compensate for loss of D-LDH as an electron sink mechanism in C1A. The 

results demonstrate the feasibility of RNAi in anaerobic fungi, and opens the door for 

gene silencing-based studies in this fungal clade. 
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Introduction 

The role played by non-coding RNA (ncRNA) molecules in epigenetic modulation of 

gene expression at the transcriptional and post-transcriptional levels is now well 

recognized (1). Small interfering RNAs (siRNA) are short (20-24 nt) double stranded 

RNA molecules that mediate post-transcriptional regulation of gene expression and gene 

silencing by binding to mRNA in a sequence-specific manner (2). The process of RNA 

interference (RNAi) has been independently documented in fungi (3-5), animals and 

human cell lines (6, 7), as well as plants (8). The fungal RNAi machinery has been 

investigated in several model fungi, e.g. Neurospora crassa (5), Mucor circinelloides (9), 

and Magnaporthe oryzae (10), and encompasses: 1. Dicer (Dic) enzyme(s): RNaseIII 

dsRNA-specific ribonucleases that cleave double stranded RNA (dsRNA) to short (20-25 

bp) double stranded siRNA entities, 2. Argonaute (Ago) protein(s), the core component 

of the RNA-induced silencing complex (RISC) which binds to the dicer-generated 

siRNAs and other proteins and cleaves the target mRNA, 3. RNA-dependent RNA 

polymerase (RdRP) enzyme (present in the majority, but not all fungi) that aids in 

amplifying the silencing signal through the production of secondary double stranded 

siRNA molecules from single stranded mRNAs generated by the RISC complex, 4. DNA 

helicase, Neurospora crassa QDE-3 homolog (11), that aids in the production of the 

aberrant RNA to be targeted by RdRP, and 5. Argonaute-interacting protein, Neurospora 

crassa QIP homolog (12), an exonuclease that cleaves and removes the passenger strand 

from the siRNA duplex.  

The phenomenon of RNA interference could induce gene silencing due to the 

action of endogenously produced microRNA (miRNA), or could be triggered due to the 
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introduction of foreign siRNA (e.g. due to viral infection or genetic manipulation). Under 

normal physiological conditions, RNAi is thought to play a role in endogenous regulation 

of gene expression (13), development of resistance to viruses (14-17), and silencing the 

expression of transposons (18, 19). On the other hand, the introduction of foreign siRNA 

could be utilized for targeted, sequence-specific, gene knockdown in fungi (2, 3, 5). 

Indeed, demonstration of the feasibility of RNAi approaches for targeted gene silencing 

has been shown in Ascomycota (5, 20-30), Basidiomycota (31-35), and Mucoromycota 

(36, 37); and RNAi-based protocols were used to infer the putative roles of several genes 

or simply as a proof of principle.  

The anaerobic gut fungi (AGF) represent a basal fungal phylum 

(Neocallimastigomycota) that resides in the herbivorous gut and plays an important role 

in enhancing plant biomass metabolism by the host animals (38). The AGF have multiple 

potential biotechnological applications such as a source of lignocellulolytic enzymes (39-

45), direct utilization of AGF strains for sugar extraction from plant biomass in enzyme-

free biofuel production schemes (46), additives to biogas production reactors (47, 48), 

and feed additives for livestock (49-55). However, the strict anaerobic nature of AGF 

renders genetic manipulation procedures involving plating and colony selection 

extremely cumbersome. Consequently, there are currently no protocols for 

transformation, gene insertion, gene deletion, or sequence-specific homologous 

recombination-based genetic manipulation in AGF, hindering in-depth investigation of 

their biotechnological potential. 

I here report on the development of an RNAi-based protocol for targeted gene 

knockdown in the anaerobic gut fungal isolate Pecoramyces ruminantium strain C1A. 
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The protocol does not involve transformation, and does not require homologous 

recombination, or colony selection. I demonstrate the uptake of chemically synthesized 

short double stranded siRNA by germinating spores of P. ruminantium strain C1A, and 

subsequently demonstrate the feasibility of using this approach for silencing D-lactate 

dehydrogenase (ldhD) gene. I finally examine the off-target effects of ldhD gene 

knockdown, as well as the impact of inhibiting D-lactate production on the glycolytic and 

fermentation pathways in C1A. 
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Materials and Methods 

Microorganism and culture maintenance. Pecoramyces ruminantium strain C1A was 

isolated previously in our laboratory (56) and maintained by biweekly transfers into an 

antibiotic-supplemented rumen-fluid-cellobiose medium (RFC) as described previously 

(57).  

 

Identification and phylogeny of RNAi complex in anaerobic fungi. The occurrence of 

genes encoding Dic, Ago, RdRP, QIP, and QDE3 proteins was examined in the genome 

of P. ruminantium C1A (58) (Genbank accession number ASRE00000000.1), as well as 

in three additional publicly available Neocallimastigomycota genomes (59) (Genbank 

accession numbers: MCOG00000000.1, MCFG00000000.1, MCFH00000000.1). The 

phylogeny of the translated amino acid sequences of identified homologues was 

compared to fungal and eukaryotic homologues in MEGA7. Representative sequences 

were aligned using ClustalW and the aligned sequences were manually refined and used 

to construct Neighbor Joining trees in Mega7 (60) with bootstrap values calculated based 

on 100 replicates.  

 

RNAi experimental design. 

Choice of delivery procedure. Delivery of the inhibitory RNA molecules to fungal 

cultures is commonly achieved using appropriate vectors that either express short hairpin 

RNA (61-63), or individual sense and antisense RNA strands that will subsequently be 

annealed into dsRNA (64, 65). The process involves transformation (PEG-CaCl2-

mediated into protoplasts, Li acetate-mediated, Agrobacterium-mediated, or via 
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electroporation) and necessitates transformants’ selection on marker (usually 

hygromycin) plates. Alternatively, direct delivery of exogenous, chemically synthesized 

short double stranded RNA (siRNA) has also been utilized for targeted gene silencing in 

fungi (22-24, 28, 66). This approach exploits the machinery for nucleic acids uptake, and 

the natural competence of the germinating spore stage observed in the filamentous fungus 

Aspergillus (23). Due to the strict anaerobic nature of AGF which would hinder the 

process of transformation and selection on plates, we opted for direct addition of 

chemically synthesized siRNA to C1A germinating spores, in spite of its reported lower 

efficacy (24). 

 

dsRNA synthesis. I targeted D-lactate dehydrogenase (ldhD) gene encoding D-LDH 

enzyme (EC 1.1.1.28). D-LDH is an NAD-dependent oxidoreductase that reduces 

pyruvate to D-lactate, a major fermentation end product in C1A (46). Only a single copy 

of ldhD (996 bp in length) was identified in C1A genome (IMG accession number: 

2511055262). A 21-mer siRNA targeting positions 279-298 in the ldhD gene transcript 

(henceforth ldhD-siRNA) was designed using Dharmacon® siDesign center 

(http://dharmacon.gelifesciences.com/design-center/) with the sense strand being 5'-

CGUUAGAGUUCCAGCCUAUUU-3', and the antisense strand being 5'-

AUAGGCUGGAACUCUAACGUU-3'. Included within the designed siRNAs were 3' 

overhanging UU dinucleotides to increase the efficiency of target RNA degradation as 

suggested before (67). The siRNA was ordered from Dharmacon® (LaFayette, CO) as 

21-mer duplex (double stranded) with a central 19-bp duplex region and symmetric UU 

dinucleotide 3’ overhangs on each end. The 5’ end of the antisense strand was modified 
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with a phosphate group required for siRNA activity (68), while the 5’ end of the sense 

strand was modified with a Cy-3 fluorescent dye to facilitate visualization of the siRNA 

uptake by C1A germinating spores. In addition, a 21-mer duplex that should not anneal to 

any of C1A’s mRNA transcripts (henceforth unrelated-siRNA) was also designed and 

used as a negative control with the sense strand being 5'-

UCGUUGGCGUGAGCUUCCAUU-3', and the antisense strand being 5'-

UGGAAGCUCACGCCAACGAUU-3'. The unrelated-siRNA was modified in the same 

way as the ldhD siRNA. 

 

RNAi protocol. The basic protocol employed is shown in Figure 4-1. Strain C1A was 

grown on RFC-agar medium in serum bottles at 390C in the dark as described previously 

(57) until visible surface colonies are observed (usually 4-7 days). Surface growth was 

then flooded by adding 10 ml sterile anoxic water followed by incubation at 390C (57). 

During this incubation period, spores are released from surface sporangia into the anoxic 

water. Previous work has shown that the duration of incubation with the flooding solution 

has a major impact on the spore developmental stage, where exclusively active 

flagellated spores were observed in incubations shorter than 30 minutes, while 90-100-

minute incubation exclusively produced germinating spores. The onset of spore 

germination was observed at 75-80 minutes during incubation with the flooding solution 

(57). Germinating spores were previously shown to be most amenable for accumulating 

the highest amount of exogenously added nucleic acids (23). I, therefore, reasoned that 

addition of chemically synthesized siRNA to the sterile anoxic flooding water at the onset 

of spore germination (at around 75 minutes from the onset of flooding) followed by re-
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incubation at 39ºC for 15 additional minutes (for a total of 90-minute incubation period) 

would allow for uptake of the siRNA by the germinating spores. Chemically synthesized 

siRNA was added from a stock solution constituted in a sterile anoxic RNase-free siRNA 

buffer (60 mM KCl, 6 mM HEPES-pH 7.5, and 0.2 mM MgCl2) to the desired final 

concentration. Initial experiments were conducted using Cy3-labeled ldhD-siRNA 

molecules to test the uptake of siRNA by the germinating spores. Subsequent 

experiments were conducted using unlabeled siRNA. Following siRNA addition and 

incubation, spores were gently recovered from the serum bottle using a 16G needle and 

used to inoculate fresh RFC media bottles (57), and the impact of silencing ldhD gene on 

gene expression, enzyme activities, and D-lactate concentrations was assessed in these 

cultures. Controls included treatments with unrelated-siRNA, as well as cultures with no 

siRNA addition. 

 

Impact of ldhD gene knockdown on transcriptional levels, D- LDH enzyme activity, 

and D-lactate production in strain C1A. The supernatant of both siRNA-treated and 

control C1A cultures was periodically sampled (0.5 ml) and used for D-lactate 

quantification. The fungal biomass was vacuum filtered on 0.45 µm filters, and 

immediately crushed in a bath of liquid nitrogen using a mortar and pestle as described 

previously (69).  The crushed cells were then poured into 2 separate 15-mL plastic falcon 

tubes, and stored at -80°C for subsequent RNA, and protein extraction, respectively.   

D-Lactate quantification. D-lactate was determined in the culture supernatant using the 

D-Lactate Assay Kit (BioAssay Systems, Hayward, CA) following the manufacturer’s 

instructions.  
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RNA extraction, qRT-PCR, and RNA-seq. RNA was extracted following the protocol in 

Epicentre® MasterPureTM Yeast RNA Purification Kit, with few modifications as detailed 

previously (69). RNA concentrations were measured using the Qubit® RNA HS Assay 

Kit (Life Technologies®). Total RNA was utilized for both transcriptional studies using 

qRT-PCR, as well as for transcriptomic analysis using RNA-seq.  

For transcriptional studies, replicate samples were chosen to cover a range of 

fungal biomass ranging from 6-22 mgs corresponding to various growth stages. Reverse 

transcription (cDNA synthesis) was performed using the Superscript IV First-Strand 

Synthesis System kit for RT-PCR (Life Technologies®), following the manufacturer’s 

protocols. Quantitative reverse transcription PCR (qRT-PCR) was conducted on a MyIQ 

thermocycler (Bio-Rad Laboratories, Hercules, CA). ldhD, as well as the housekeeping 

gene glyceraldehyde 3-phosphate dehydrogenase (GAPDH), were amplified using 

primers designed by the OligoPerfectTM Designer tool (Life Technologies, Carlsbad, CA) 

(ldhD-forward primer: AGACCATGGGTGTCATTGGT, ldhD-reverse primer 

TTCATCGGTTAATGGGCAGT; GAPDH-forward primer: 

ATTCCACTCACGGACGTTTC, GAPDH-reverse primer: 

CTTCTTGGCACCACCCTTTA). The reactions contained 1µl of C1A cDNA, and 0.5 

µM each of the forward and reverse primers. Reactions were heated at 50°C for 2 min, 

followed by heating at 95°C for 8.5 min. This was followed by 50 cycles, with one cycle 

consisting of 15 s at 95°C, 60 s at 50°C, and 30 s at 72°C. Using the ΔCt method, the 

number of copies of ldhD is reported relative to the number of copies of GAPDH used as 

the normalizing control.  
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Transcriptomic analysis was used both to evaluate off-target effects of the 

chemically synthesized ldhD siRNA (transcripts that will be down-regulated in siRNA-

treated versus untreated cultures), and to examine the effect of ldhD knockdown on other 

NADH-oxidizing mechanisms to compensate for loss of D-LDH as an electron sink in 

C1A (transcripts that will be up-regulated in siRNA-treated versus untreated cultures). 

For transcriptomic analysis, RNA from untreated (2 biological replicates) as well as 

siRNA-treated (2 biological replicates) cultures was sequenced using Illumina-HiSeq. 

RNA sequencing as well as sequence processing were as described previously (70). 

Briefly, de novo assembly of the generated RNA-Seq reads was accomplished using 

Trinity (71), and quantitative levels of assembled transcripts were obtained using 

Bowtie2 (72). Quantitative values in Fragments Per Kilobase of transcripts per Million 

mapped reads (FPKM) were calculated in RSEM. edgeR (73) was used to determine the 

transcripts that were significantly up- or down-regulated based on the Benjamini-

Hochberg adjusted p-value (False discovery rate, FDR). I used a threshold of 10% FDR 

as the cutoff for determining significantly differentially expressed transcripts.  

 

Total protein extraction and D-Lactate dehydrogenase enzyme assay. For total protein 

extraction, replicate samples were chosen to cover a range of fungal biomass ranging 

from 6-22 mgs corresponding to various growth stages. C1A cells crushed in liquid 

nitrogen were suspended in 0.5mL of Tris-Gly buffer (3g Tris base, 14.4g Glycine, H2O 

up to 1L, pH 8.3), and mixed briefly. Cell debris were pelleted by centrifugation (12,500x 

g for 2 min at 4°C) and the sample supernatant containing the total protein extract was 

carefully transferred into a sterile microfuge tube. Protein concentrations were quantified 
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in cellular extracts using QubitTM Protein assay kit (Life Technologies). D-LDH enzyme 

activity was quantified in the cell extracts using the AmpliteTM Colorimetric D-Lactate 

Dehydrogenase Assay Kit (ATT Bioquest®, Sunnyvale, CA), following the 

manufacturer’s protocols.  

 

Nucleotide Accession. This Transcriptome Shotgun Assembly project has been deposited 

at DDBJ/EMBL/GenBank under the accession GFSU00000000. The version described in 

this paper is the first version, GFSU01000000. 
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Results 

RNAi machinery in the Neocallimastigomycota. The four examined 

Neocallimastigomycota genomes harbored most of the genes constituting the backbone of 

the RNAi machinery: ribonuclease III dicer, argonaute, QDE3-homolog DNA helicase, 

and QIP-homolog exonuclease. Phylogenetically, these genes were closely related to 

representatives from basal fungal lineages (Figure 4-2). Gene copies in various genomes 

ranged between 1 to 4 (Figure 4-2). However, it is notable that all four examined 

genomes lacked a clear homolog of RNA-dependent RNA polymerase (RdRP) gene. 

RdRP has been identified in the genomes of diverse organisms including Caenorhabditis 

elegans (74), plants, and the majority of examined fungi (75) but is absent in the genomes 

of vertebrates and flies; in spite of their possession of a robust RNAi machinery that 

mediates sequence-specific gene silencing in response to exogenously added dsRNAs.  

 

Uptake of synthetic siRNA by C1A germinating spores and effect on growth. The 

addition of fluorescently labeled siRNA targeting ldhD transcript to C1A spores at the 

onset of germination followed by a 15-minute incubation at 39ºC resulted in the uptake of 

the siRNA by the germinating spores as evident by their fluorescence (Figure 4-3). Under 

the examined conditions, the majority of the germinating spores picked up the siRNA 

since 80-90% of spores stained with the nuclear stain DAPI also exhibited Cy3-

fluoresence. ldhD-siRNA-treated spores were collected and used to inoculate fresh RFC 

liquid media, and the growth rate of these cultures were compared to siRNA-untreated 

controls. As shown in Figure 4-3, ldhD-siRNA treatment had no significant effect on 

either the rate of fungal growth or the final fungal biomass yield.  
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3.3 Knockdown of ldhD-gene by exogenously added ldhD-siRNA.  

Inhibition at the mRNA level. Table 4-1 shows the effect of adding exogenous ldhD-

siRNA on ldhD transcriptional level relative to the housekeeping gene glyceraldehyde-3-

phosphate dehydrogenase. Results from qRT-PCR revealed that there was an observable 

decrease in ldhD transcription levels in samples treated with ldhD-specific siRNA 

compared to siRNA-untreated samples or unrelated siRNA-treated samples. The 

inhibitory effect increased with the concentration of ldhD-specific siRNA added. At 100 

nM, a four-fold decrease in transcription was observed. 

Inhibition at the protein level. Similar to the effect of treatment on the mRNA level, 

ldhD-siRNA-treated samples exhibited a marked decrease in the specific D-LDH activity 

(Table 4-2). This decrease was dependent on the concentration of siRNA added and 

ranged from 70-93% reduction compared to siRNA-untreated samples. 

Effect of ldhD gene knockdown on the extracellular levels of D-lactate in culture 

supernatants.  D-lactate production in C1A culture supernatant is non-linear, with higher 

amounts of D-lactate produced at later stages of growth (Figure 4-4A). D-lactate 

production in ldhD-siRNA-treated cultures was invariably lower when compared to 

controls, with the difference especially pronounced at later stages of growth. The level of 

reduction was dependent on the siRNA concentration added and ranged from 42-86% in 

the early log phase, 49-67% in the mid log phase, and 57-86% in the late log-early 

stationary growth phase (Figure 4-4B). 

3.4 Transcriptomic analysis.  Differential gene expression patterns between ldhD-

siRNA-treated and siRNA-untreated samples were analyzed to identify possible off-

target effects of siRNA treatment, i.e. transcripts that were significantly down-regulated 
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in the siRNA-treated cultures. Only 29 transcripts were significantly (FDR < 0.1) down-

regulated (Figure 4-5). Predicted functions of these transcripts are shown in Table 4-3 

and included hypothetical proteins (n=11), several glycosyl hydrolases (n=5), and other 

non-fermentation related functions. Comparison of the siRNA sequence to these 29 

transcripts revealed matches to the first 7 bases of the ldhD-siRNA sequence to only 3 of 

the down-regulated transcripts indicating that the off-target effect was mainly not 

sequence-specific.  

In an attempt to decipher the impact of inhibiting the D-lactate dehydrogenase 

enzyme (one of the major electron sinks in C1A) on the glycolytic and fermentation 

pathways in C1A, I investigated the significantly up-regulated transcripts in the siRNA-

treated cultures. A total of 53 transcripts were significantly upregulated in the siRNA-

treated cultures (FDR < 0.1) (Figure 4-5). Predicted functions of these transcripts are 

shown in Table 4-3. One transcript encoding NAD-dependent 2-hydroxyacid 

dehydrogenase (Pfam 00389) was significantly upregulated (1542-fold) in the siRNA-

treated cultures (P-value = 0.02). Enzymes belonging to this family act specifically on the 

D-isomer of their substrates (76). In case of D-LDH inhibition in the siRNA-treated 

cultures, the Pfam 00389 enzyme might act to compensate for the loss of NADH 

oxidation by acting on an alternate substrate (e.g. hydroxypyruvate, 2-oxoisocaproate, or 

other 2-oxo carboxylic acids) and reducing it as a sink of electrons to regenerate NAD. 

However, it is difficult to know the actual substrate based on sequence data alone. 

Transcripts of other glycolytic and fermentative enzymes of C1A were not differentially 

expressed in siRNA-treated cultures (Table 4-3).   
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Figure 4-1. A cartoon depicting the RNAi gene knockdown protocol used in this study.  



	  
 

119	  

Figure 4-2. Neighbor joining phylogenetic tree depicting the phylogenetic relationship 

between Pecoramyces ruminantium strain C1A predicted Dicer (A), Argonaute (B), 

QDE-3 helicase (C), and QIP exonuclease (D) sequences and those from other fungal and 

eukaryotic species. Trees were constructed in Mega7 with bootstrap support based on 100 

replicates. Bootstrap values are shown for branches with >50 bootstrap support.  
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Figure 4-3. Uptake of fluorescently (Cy3) tagged siRNA by C1A spores. (A) The ldhD-

specific siRNA was added to the flooding solution 75 minutes after the onset of flooding 

followed by incubation for 15 more minutes at 39ºC. Samples (a few microliters) were 

taken at regular intervals for visualization. The same field is shown for DAPI-, and Cy3-

labeled germinating spores (Note that the spores were concurrently stained with DAPI 

and fluorescing green indicating the uptake of the Cy3-labeled siRNA) (bar=20 µm). (B) 

Effect of the siRNA treatment on fungal growth rate. siRNA-treated spores were 

collected and used to inoculate fresh RFC medium. Control cultures were started at the 

same time using siRNA-untreated spores. Headspace pressure was measured daily and 

used to calculate fungal biomass as described previously (1). Error bars are standard 

deviations from at least three replicate cultures for each condition. 

0

5

10

15

20

25

0 50 100 150

Fu
ng

al
 B

io
m

as
s (

m
g)

Time since inoculation (h)

Untreated siRNA-treated

A 

B 



	  
 

123	  

Table 4-1. Effect of the uptake of exogenous ldhD-siRNA by C1A germinating spores on 

the transcriptional level of ldhD relative to the housekeeping gene gapdh.  

 
Treatment Final 

siRNA 
concentrati

on (nM) 

Copies of ldhD 
relative to 

gapdh1 

Fold change in 
transcription 
level (ΔΔCt) 
compared to 

untreated 
samples 

Number 
of 

biologic
al 

replicate
s 

Fungal 
biomass 

yield (mg) at 
the time of 
sacrificing1  

ldhD-siRNA 20 4.2E-03±3E-03 0.02 4 12.3±5 
50 4.4E-03±2E-03 0.02 5 9.3±5.2 
75 3.6E-04±1.8E-

04 
0.0017 4  15.4±3.7 

100 6.1E-05±2.4E-
05 

0.0003 4  15.9±6 

150 7.3E-04±3.6E-
04 

0.003 2 7.2±0.7 

Untreated NA 0.21±0.04  5  9.6±2 
unrelated-
siRNA 

50 0.26±0.07 1.29 2  13.5±3.8 

1. Values are average±standard deviation 
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Table 4-2. Effect of the uptake of ldhD-siRNA by C1A germinating spores on the D-

LDH specific activity.  

1. Values shown are average±SD.  
 

 

 

Treatment siRNA 
concentrati

on (nM) 

D-LDH 
specific 

activity (U/ mg 
protein)1  

Fold change in 
D-LDH specific 

activity 
compared to 

untreated 
samples 

Total 
number 

of 
biologic

al 
replicate

s 

Fungal 
biomass 

yield (mg) at 
the time of 
sacrificing1  

ldhD-siRNA 20 332.2±90 0.29 6  16.5±5.8 
50 331.9±144.5 0.29 17  10±4.3 
75 194.2±79 0.17 6  12.8±5.3 
100 180.6±131 0.16 6  12.7±7.4 
150 85.4±32 0.07 2  7.2±0.7 

Untreated NA 1157.6±308.6  13  10.9±2.9  
unrelated-
siRNA 

50 926.4±69 0.8 2  13.5±3.8 
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Figure 4-4.  (A) Pattern of D-lactate production in C1A culture supernatant as a factor of 

fungal biomass. The majority of the D-lactate production occurs at the late log-early 

stationary phase. Data is shown for both siRNA-untreated cultures (green), as well as 

ldhD-specific siRNA-treated cultures with final concentration 20 nM (dark blue), 50 nM 

(orange), 75 nM (grey), 100 nM (yellow), and 150 nM (light blue). (B) A bar-chart 

depicting average ±standard deviation (from at least two replicates) of D-lactate levels in 

C1A culture supernatant during early log (6-13 mg biomass), mid-log (14-17 mg 

biomass), and late log/early stationary (18-23 mg) phases. Data is shown for both siRNA-

untreated cultures (green), as well as ldhD-specific siRNA-treated cultures with final 

concentration 20 nM (dark blue), 50 nM (orange), 75 nM (grey), 100 nM (yellow), and 

150 nM (light blue).  
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Figure 4-5. Volcano plot of the distribution of gene expression for C1A cultures when 

treated with ldhD-specific siRNA (50 nM) versus untreated cultures. The fold change 

[log2 (average FPKM in siRNA-treated cultures/ average FPKM in control cultures)] is 

shown on the X-axis, while the significance of the change [-log10 (false discovery rate)] is 

shown on the Y-axis. Red data points are those transcripts that were significantly down-

regulated (n=29), while green data points are those transcripts that were significantly up-

regulated (n=53). The corresponding IMG gene accession numbers and the predicted 

functions for these genes are shown in Table 4-3. The orange data point corresponds to 

the D-lactate dehydrogenase transcript (targeted in the RNAi experiment) with 2.5-fold 

decrease in FPKM compared to the untreated control, while the purple data point 

corresponds to the NAD-dependent 2-hydroxyacid dehydrogenase (Pfam 00389) 

transcript (possibly acting to compensate for the loss of NADH oxidation that occurred as 

a result of ldhD knockdown) with 1542-fold increase in FPKM compared to the untreated 

control. 
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Table 4-3. Transcripts with a significant (False Discovery Rate (FDR) < 0.1) fold change 

in the ldhD siRNA-treated cultures. 

Transcript 
ID 

IMG Gene 
accession 
number  

Predicted function Log2 fold change 
[TPM in siRNA-
treated cultures/ 
TPM in untreated 
cultures] 

-log10 
FDR 

Significantly down-regulated transcripts 
TRINITY_
DN25404_
c0_g1_i1 

251105687
4 

Actin and related 
proteins; ACTR8, 
ARP8, INO80N actin-
related protein 8 

-9.89 3.03 

TRINITY_
DN27647_
c0_g2_i1 

251105213
0 

Ankyrin repeat -8.89 1.22 

TRINITY_
DN26914_
c3_g1_i10 

251105235
9 

Aspartyl 
aminopeptidase 

-11.31 1.04 

TRINITY_
DN27318_
c0_g1_i15 

251105468
9 

Beta-1,4-xylanase -10.27 3.79 

TRINITY_
DN27318_
c0_g1_i3 

251105468
9 

Beta-1,4-xylanase -9.47 2.21 

TRINITY_
DN26767_
c0_g1_i2 

251873183
1 

chloride channel 3/4/5 -8.94 1.37 

TRINITY_
DN27688_
c5_g4_i3 

251105319
3 

DNA methylase -9.97 3.24 

TRINITY_
DN26958_
c2_g1_i9 

251105739
3 

DnaJ family protein C 
member 3 

-8.83 1.22 

TRINITY_
DN27149_
c6_g1_i13 

251105202
3 

Endoglucanase -11.50 1.13 

TRINITY_
DN26597_
c3_g6_i4 

251105961
2 

Endoglucanase -9.65 2.58 

TRINITY_
DN24006_
c1_g2_i3 

251105300
4 

Fumarase -9.13 1.34 

TRINITY_
DN27371_

251106120
3 

Glycosyl hydrolase 
family 9 

-9.31 1.47 
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c7_g1_i12 
TRINITY_
DN23827_
c0_g1_i1 

251106177
9 

Hypothetical protein -11.23 1.03 

TRINITY_
DN22650_
c0_g1_i1 

251105766
1 

Hypothetical protein -11.21 1.08 

TRINITY_
DN26878_
c4_g5_i1 

251872290
8 

Hypothetical protein -10.19 3.71 

TRINITY_
DN72241_
c0_g1_i1 

251105591
1 

Hypothetical protein -9.79 2.88 

TRINITY_
DN25954_
c3_g3_i7 

251105269
3 

Hypothetical protein -9.34 1.39 

TRINITY_
DN27282_
c5_g1_i4 

251105495
2 

Hypothetical protein -9.32 1.70 

TRINITY_
DN20666_
c0_g1_i2 

251105531
5 

Hypothetical protein -9.24 1.71 

TRINITY_
DN24836_
c0_g1_i3 

251105535
2 

Hypothetical protein -9.10 1.57 

TRINITY_
DN27173_
c0_g2_i1 

251105283
2 

Hypothetical protein -8.95 1.37 

TRINITY_
DN26709_
c2_g3_i8 

251105392
5 

Hypothetical protein -8.83 1.18 

TRINITY_
DN22602_
c0_g1_i7 

251105833
9 

Hypothetical protein -8.23 1.10 

TRINITY_
DN61803_
c0_g1_i2 

251105298
0 

Permeases of the 
drug/metabolite 
transporter (DMT) 

-10.17 3.71 

TRINITY_
DN25216_
c1_g1_i1 

251106148
1 

Serine/threonine 
protein kinase 

-8.74 1.10 

TRINITY_
DN26990_
c2_g2_i2 

251104921
7 

Uncharacterized 
conserved protein  

-8.76 1.08 

TRINITY_
DN23344_
c0_g2_i1 

251104841
0 

V8-like Glu-specific 
endopeptidase 

-9.42 1.67 
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TRINITY_
DN26795_
c1_g3_i15 

251106253
7 

Vacuolar sorting 
protein 9 

-9.72 2.64 

TRINITY_
DN27051_
c5_g9_i6 

251105907
0 

WD40-repeat-
containing domain 

-9.17 1.55 

TRINITY_
DN27737_
c3_g9_i1 

251105526
2 

d-Lactate 
dehydrogenase 

-1.31 1.02 

 
Significantly up-regulated transcripts 
TRINITY_
DN23455_
c1_g3_i1 

251105344
2 

NAD-dependent 2-
hydroxyacid 
dehydrogenase 
(Pfam00389) 

10.59 1.67 

TRINITY_
DN26116_
c0_g1_i2 

251873220
4 

ABC-type multidrug 
transport system, 
ATPase component 

9.03 1.08 

TRINITY_
DN27116_
c8_g3_i1 

251872044
3 

ABC-type multidrug 
transport system, 
ATPase component 

9.04 1.22 

TRINITY_
DN25404_
c0_g1_i6 

251871633
3 

Actin and related 
proteins; ACTR8, 
ARP8, INO80N actin-
related protein 8 

9.23 1.67 

TRINITY_
DN25945_
c5_g1_i1 

251872411
3 

Ankyrin repeat 11.62 1.55 

TRINITY_
DN27367_
c4_g7_i1 

251871784
0 

Beta-ketoacyl 
synthase, N-terminal 
domain/AMP-binding 

9.08 1.53 

TRINITY_
DN26659_
c2_g1_i6 

251872469
3 

Calponin 10.43 2.98 

TRINITY_
DN27260_
c3_g1_i2 

251871720
4 

Cell division protein 9.28 1.85 

TRINITY_
DN25040_
c0_g1_i2 

251872384
7 

Aminopeptidase 10.37 3.88 

TRINITY_
DN84844_
c0_g1_i1 

251872416
5 

Cyclin 9.38 2.05 

TRINITY_
DN27688_
c5_g4_i4 

251873184
3 

Zinc finger, PHD-type 8.13 3.79 
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TRINITY_
DN27658_
c7_g1_i9 

251872741
4 

Enterochelin esterase 
and related enzymes 

9.41 1.38 

TRINITY_
DN27456_
c0_g1_i1 

251873221
3 

Transposase 8.89 1.30 

TRINITY_
DN27284_
c8_g3_i8 

251872284
5 

Galactose binding 
lectin domain 

9.56 1.53 

TRINITY_
DN27371_
c7_g1_i8 

251105091
9 

Glycosyl hydrolase 
family 9 

8.94 1.26 

TRINITY_
DN27514_
c12_g7_i3 

251105831
4 

Glycosyl hydrolase 
family 9 

9.10 1.50 

TRINITY_
DN26559_
c2_g2_i3 

251106159
1 

Hypothetical protein 4.35 1.04 

TRINITY_
DN26871_
c0_g1_i6 

251104872
6 

Hypothetical protein 5.66 1.08 

TRINITY_
DN26577_
c7_g3_i6 

251106002
9 

Hypothetical protein 7.06 3.71 

TRINITY_
DN27338_
c2_g6_i9 

251105027
9 

Hypothetical protein 7.91 3.71 

TRINITY_
DN20198_
c0_g1_i1 

251105406
3 

Hypothetical protein 8.64 1.04 

TRINITY_
DN59842_
c0_g2_i1 

251105300
0 

Hypothetical protein 8.67 1.08 

TRINITY_
DN26705_
c9_g11_i5 

251106142
9 

Hypothetical protein 8.79 1.10 

TRINITY_
DN24643_
c0_g3_i3 

251106191
1 

Hypothetical protein 9.24 1.78 

TRINITY_
DN26861_
c6_g1_i1 

251872296
6 

Hypothetical protein 9.36 1.68 

TRINITY_
DN26789_
c7_g2_i2 

251106035
3 

Hypothetical protein 9.63 2.59 

TRINITY_ 251871670 CAP-Gly domain  9.74 2.81 
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DN25732_
c3_g1_i2 

4 

TRINITY_
DN20193_
c0_g1_i1 

251104909
7 

Hypothetical protein 9.74 2.27 

TRINITY_
DN27291_
c5_g1_i27 

251106270
6 

Hypothetical protein 9.92 1.34 

TRINITY_
DN26268_
c0_g6_i2 

251105656
2 

Hypothetical protein 9.94 3.10 

TRINITY_
DN72241_
c0_g4_i1 

251105591
1 

Hypothetical protein 9.99 3.10 

TRINITY_
DN23108_
c0_g1_i1 

251105589
7 

Leucine-rich repeat 
(LRR) protein 

8.67 1.04 

TRINITY_
DN26891_
c1_g2_i3 

251872392
4 

Long-chain acyl-CoA 
synthetases (AMP-
forming) 

9.22 1.59 

TRINITY_
DN27245_
c11_g4_i1 

251105578
5 

Metal-dependent 
hydrolase  

11.86 1.14 

TRINITY_
DN26212_
c0_g1_i6 

251105181
7 

Mismatch repair 
ATPase (MutS family) 

9.29 1.68 

TRINITY_
DN26388_
c1_g1_i3 

251105170
0 

Nucleosome-binding 
factor SPN, POB3 
subunit  

8.96 1.26 

TRINITY_
DN25459_
c0_g1_i3 

251872304
4 

Nucleotide-sugar 
transporter. 

8.72 1.08 

TRINITY_
DN26193_
c4_g1_i3 

251872943
2 

Phosphatidylinositol-
4-phosphate 5-Kinase 

9.92 3.10 

TRINITY_
DN18878_
c0_g1_i3 

251106114
2 

Predicted Rossmann 
fold nucleotide-
binding protein 

12.17 9.52 

TRINITY_
DN27738_
c2_g1_i2 

251873202
6 

Reverse transcriptase 
(RNA-dependent 
DNA 
polymerase)/Integrase 

9.48 1.71 

TRINITY_
DN26725_
c0_g1_i2 

251105263
7 

RhoGEF domain. 9.24 1.78 

TRINITY_ 251105618 Ribosomal protein 9.49 1.90 
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DN25303_
c1_g1_i1 

7 L11 methylase 

TRINITY_
DN26960_
c5_g2_i8 

251872584
9 

Superfamily II 
DNA/RNA helicases, 
SNF2 family 

9.01 1.35 

TRINITY_
DN11227_
c0_g2_i1 

251105597
8 

Trehalose-6-phosphate 
synthase  

12.34 1.26 

TRINITY_
DN27057_
c7_g3_i8 

251106187
9 

WD40-repeat-
containing domain 

9.13 1.62 

TRINITY_
DN24706_
c0_g1_i2 

251872504
2 

WD40-repeat-
containing domain 

9.31 1.55 

TRINITY_
DN22853_
c0_g1_i4 

251872007
0 

WD40-repeat-
containing domain 

9.32 1.56 

TRINITY_
DN27087_
c6_g1_i1 

251105132
9 

WD40-repeat-
containing domain 

9.36 1.84 

TRINITY_
DN17665_
c0_g1_i1 

251873167
2 

Zinc metalloprotease 
(elastase)  

9.56 2.22 

TRINITY_
DN26802_
c4_g9_i1 

NAa 1,4-alpha-glucan 
branching enzyme 

9.21 1.55 

TRINITY_
DN27699_
c2_g2_i5 

NA Hypothetical protein 9.65 2.62 

TRINITY_
DN27163_
c4_g2_i1 

NA Hypothetical protein 11.75 1.13 

TRINITY_
DN19604_
c0_g3_i1 

NA SH3 domain 8.89 1.26 

a: NA Blastx comparison of the transcript sequence against C1A proteins showed no hits.
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Discussion 

Here, I explored the feasibility of RNA interference for targeted gene silencing in the 

anaerobic gut fungi (phylum Neocallimastigomycota) via the exogenous addition of 

synthetic double stranded siRNAs targeting the ldhD gene to Pecoramyces ruminantium 

strain C1A germinating spores. I show that ds-siRNA was uptaken by germinating 

spores, and, as a consequence, the transcription of the target gene (ldhD) was down-

regulated (Table 4-1), leading to lower D-LDH enzymatic activity (Table 4-2) and lower 

D-lactate concentration in the culture supernatant (Figure 4-4).  

In general, the fungal RNAi machinery encompasses Dicer (Dic) enzyme(s), 

Argonaute (Ago) protein(s), RNA-dependent RNA polymerase (RdRP) enzyme, QDE3-

like DNA helicase, and Argonaute-interacting exonuclease (QIP-like). Genomes of 

Neocallimastigomycota representatives belonging to four genera (Pecoramyces, 

Neocallimastix, Piromyces, and Anaeromyces) encode at least one copy of Dic, Ago, 

QDE3-like helicase, and QIP exonuclease. However, all genomes lacked a clear homolog 

of RdRP. The absence of an RdRP homolog is not uncommon. While present in almost 

all studied fungi, RdRP seems to be missing from the genomes of other basal fungal 

phyla (Chytridiomycota and Blastocladiomycota) representatives (77, 78). The absence 

of clear RdRP homologues in the Neocallimastigomycota and related basal fungal phyla 

despite their presence in other fungi could suggest that either an RdRP is not involved in 

dsRNA-mediated mRNA silencing as shown before in mammals (79). Alternatively, 

RNA-dependent RNA polymerase activity could be mediated through a non-canonical 

RdRP in basal fungi, e.g. the RNA polymerase II core elongator complex subunit Elp1 



	  
 

135	  

shown to have RdRP activity in Drosophila, as well as Caenorhabditis elegans, 

Schizosaccharomyces pombe, and human (80, 81). 

I chose as a gene knockdown target the D-Lactate dehydrogenase gene (ldhD) that 

mediates NADH-dependent pyruvate reduction to D-lactate, for several reasons. First, the 

gene is present as a single copy in the genome. Second, quantification of the impact of 

ldhD gene knockdown is readily achievable in liquid media at the RNA (using RT-PCR 

and transcriptomics), and protein (using specific enzyme activity assays) levels, as well 

as phenotypically (by measuring D-lactate accumulation in the culture media); providing 

multiple lines of evidence for the efficacy of the process. Finally, D-lactate 

dehydrogenase is part of the complex mixed acid fermentation pathway in P. 

ruminantium (46, 58) and other anaerobic gut fungi, and I sought to determine how 

blocking one route of electron disposal could lead to changes in C1A fermentation end 

products.  

ldhD-siRNA-treated cultures showed a significant reduction in ldhD gene 

transcription and D-LDH enzyme activity. Both of these effects were dependent on the 

concentration of siRNA added (Tables 4-1 and 4-2) similar to previous reports in 

filamentous fungi (22-24, 28). I show that the addition of 100 nM of ldhD-siRNA 

resulted in a four-fold reduction in ldhD transcription, 84% reduction in D-LDH specific 

activity, and 86% reduction in D-lactate concentration in culture supernatant. The fact 

that targeted gene silencing using exogenously added gene-specific siRNA results in 

reducing rather than completely abolishing gene function is an important advantage of 

RNAi approaches allowing functional studies of housekeeping or survival-essential 

genes. 
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While initial studies of gene silencing using exogenously added siRNAs 

suggested that the process was highly sequence-specific (67, 82), subsequent studies 

showed silencing of off-target genes based on less than perfect complementarity between 

the siRNA and the off-target gene (83). Here, I used RNA-seq to quantify the off-target 

effects of ldhD-siRNA. In contrast to previous studies that used similar approaches to 

quantify RNAi off-targets (84), I show here that the off-target effects of ldhD silencing 

were minimal (only 29 transcripts out of 55,167 total transcripts were differentially 

down-regulated as a result of siRNA treatment) and appeared to be not sequence-specific.  

Currently, and due to their strict anaerobic nature, there are no established 

procedures for genetic manipulations (e.g. gene silencing, insertion, deletion, and 

mutation) of AGF leading to a paucity of molecular biological studies of the phylum. 

This is in stark contrast to the rich body of knowledge available on genetic manipulations 

of various aerobic fungal lineages (22, 24, 28, 66, 85, 86). My work here represents a 

proof of principal of the feasibility of the RNAi approach in AGF, and opens the door for 

genetic manipulation and gene function studies in this important group of fungi. 

 

Acknowledgements. This work was supported by the National Science Foundation Grant 

award number 1557102.  

 



	  
 

137	  

References 

1. Catalanotto C, Cogoni C, Zardo G. 2016. MicroRNA in Control of Gene 

Expression: An Overview of Nuclear Functions. Int J Mol Sci 17: E1712. 

2. Quoc NB, Nakayashiki H. 2015. RNA silencing in filamentous fungi: from 

basics to applications, p 107-124. In van den Berg MA, Maruthachalam K (ed), 

Genetic transformation systems in fungi, vol 2. Springer International Publishing, 

Gewerbestrasse, Switzerland. 

3. Chang SS, Zhang Z, Liu Y. 2012. RNA interference pathways in fungi: 

mechanisms and functions. Annu Rev Microbiol 66:305-323. 

4. Cogoni C, Macino G. 1997. Isolation of quelling-defective (qde) mutants 

impaired in posttranscriptional transgene-induced gene silencing in Neurospora 

crassa. Proc Natl Acad Sci USA 94:10233-10238. 

5. Romano N, Macino G. 1992. Quelling: transient inactivation of gene expression 

in Neurospora crassa by transformation with homologous sequences. Mol 

Microbiol 6:3343-3353. 

6. Atayde VD, Tschudi C, Ullu E. 2011. The emerging world of small silencing 

RNAs in protozoan parasites. Trends Parasitol 27:321-327. 

7. Chiu Y-L, Rana TM. 2002. RNAi in Human Cells. Mol Cell 10:549-561. 

8. Fang X, Qi Y. 2016. RNAi in plants: An argonaute-centered view. Plant Cell 

28:272-285. 

9. Nicolás FE, Torres-Martínez S, Ruiz-Vázquez RM. 2003. Two classes of small 

antisense RNAs in fungal RNA silencing triggered by non-integrative transgenes. 

EMBO J 22:3983-3991. 



	  
 

138	  

10. Kadotani N, Nakayashiki H, Tosa Y, Mayama S. 2004. One of the two Dicer-

like proteins in the filamentous fungi Magnaporthe oryzae genome is responsible 

for hairpin RNA-triggered RNA silencing and related small interfering RNA 

accumulation. J Biol Chem 279:44467-44474. 

11. Pickford AS, Catalanotto C, Cogoni C, Macino G. 2002. Quelling in 

Neurospora crassa. Adv Genet 46:277-303. 

12. Maiti M, Lee HC, Liu Y. 2007. QIP, a putative exonuclease, interacts with the 

Neurospora Argonaute protein and facilitates conversion of duplex siRNA into 

single strands. Genes Dev 21:590-600. 

13. Bartel DP. 2004. MicroRNAs: genomics, biogenesis, mechanism, and function. 

Cell 116:281-297. 

14. Hammond TM, Andrewski MD, Roossinck MJ, Keller NP. 2008. Aspergillus 

mycoviruses are targets and suppressors of RNA silencing. Eukaryot Cell 7:350-

357. 

15. Segers GC, Zhang X, Deng F, Sun Q, Nuss DL. 2007. Evidence that RNA 

silencing functions as an antiviral defense mechanism in fungi. Proc Natl Acad 

Sci USA 104:12902-12906. 

16. Sun Q, Choi GH, Nuss DL. 2009. A single Argonaute gene is required for 

induction of RNA silencing antiviral defense and promotes viral RNA 

recombination. Proc Natl Acad Sci USA 106:17927-17932. 

17. Zhang X, Segers GC, Sun Q, Deng F, Nuss DL. 2008. Characterization of 

Hypovirus-derived small RNAs generated in the chestnut blight fungus by an 

inducible DCL-2-dependent pathway. J Virol 82:2613-2619. 



	  
 

139	  

18. Murata T, Kadotani N, Yamaguchi M, Tosa Y, Mayama S, Nakayashiki H. 

2007. siRNA-dependent and -independent post-transcriptional cosuppression of 

the LTR-retrotransposon MAGGY in the phytopathogenic fungus Magnaporthe 

oryzae. Nucl Acids Res 35:5987-5994. 

19. Nolan T, Braccini L, Azzalin G, De Toni A, Macino G, Cogoni C. 2005. The 

post-transcriptional gene silencing machinery functions independently of DNA 

methylation to repress a LINE1-like retrotransposon in Neurospora crassa. Nucl 

Acids Res 33:1564-1573. 

20. Abdel-Hadi AM, Caley DP, Carter DR, Magan N. 2011. Control of aflatoxin 

production of Aspergillus flavus and Aspergillus parasiticus using RNA silencing 

technology by targeting aflD (nor-1) gene. Toxins (Basel) 3:647-659. 

21. Barnes SE, Alcocer MJC, Archer DB. 2008. siRNA as a molecular tool for use 

in Aspergillus niger. Biotechnol Letters 30:885-890. 

22. Eslami H, Khorramizadeh MR, Pourmand MR, Moazeni M, Rezaie S. 2014. 

Down-regulation of sidB gene by use of RNA interference in Aspergillus 

nidulans. Iran Biomed J 18:55-59. 

23. Jöchl C, Loh E, Ploner A, Haas H, Hüttenhofer A. 2009. Development-

dependent scavenging of nucleic acids in the filamentous fungus Aspergillus 

fumigatus. RNA Biol 6:179-186. 

24. Kalleda N, Naorem A, Manchikatla RV. 2013. Targeting fungal genes by diced 

siRNAs: a rapid tool to decipher gene function in Aspergillus nidulans. PLoS One 

8:e75443. 



	  
 

140	  

25. Li ZZ, Tao LL, Zhang J, Zhang HJ, Qu JM. 2012. Role of NOD2 in regulating 

the immune response to Aspergillus fumigatus. Inflamm Res 61:643-648. 

26. Moazeni M, Khoramizadeh MR, Kordbacheh P, Sepehrizadeh Z, Zeraati H, 

Noorbakhsh F, Teimoori-Toolabi L, Rezaie S. 2012. RNA-mediated gene 

silencing in Candida albicans: inhibition of hyphae formation by use of RNAi 

technology. Mycopathologia 174:177-185. 

27. Moazeni M, Khoramizadeh MR, Teimoori-Toolabi L, Noorbakhsh F, Rezaie 

S. 2014. The effect of EFG1 gene silencing on down-regulation of SAP5 gene, by 

use of RNAi technology. Acta Med Iran 52:9-14. 

28. Mousavi B, Hedayati MT, Teimoori-Toolabi L, Guillot J, Alizadeh A, Badali 

H. 2015. cyp51A gene silencing using RNA interference in azole-resistant 

Aspergillus fumigatus. Mycoses 58:699-706. 

29. Penn TJ, Wood ME, Soanes DM, Csukai M, Corran AJ, Talbot NJ. 2015. 

Protein kinase C is essential for viability of the rice blast fungus Magnaporthe 

oryzae. Mol Microbiol 98:403-419. 

30. Prakash C, Manjrekar J, Chattoo BB. 2016. Skp1, a component of E3 

ubiquitin ligase, is necessary for growth, sporulation, development and 

pathogenicity in rice blast fungus (Magnaporthe oryzae). Mol Plant Pathol 

17:903-919. 

31. Caribé dos Santos AC, Sena JAL, Santos SC, Dias CV, Pirovani CP, 

Pungartnik C, Valle RR, Cascardo JCM, Vincentz M. 2009. dsRNA-induced 

gene silencing in Moniliophthora perniciosa, the causal agent of witches’ broom 

disease of cacao. Fung Genet Biol 46:825-836. 



	  
 

141	  

32. Matityahu A, Hadar Y, Dosoretz CG, Belinky PA. 2008. Gene silencing by 

RNA Interference in the white rot fungus Phanerochaete chrysosporium. Appl 

Environ Microbiol 74:5359-5365. 

33. Nakade K, Watanabe H, Sakamoto Y, Sato T. 2011. Gene silencing of the 

Lentinula edodes lcc1 gene by expression of a homologous inverted repeat 

sequence. Microbiol Res 166:484-493. 

34. Namekawa SH, Iwabata K, Sugawara H, Hamada FN, Koshiyama A, Chiku 

H, Kamada T, Sakaguchi K. 2005. Knockdown of LIM15/DMC1 in the 

mushroom Coprinus cinereus by double-stranded RNA-mediated gene silencing. 

Microbiology 151:3669-3678. 

35. Skowyra ML, Doering TL. 2012. RNA interference in Cryptococcus 

neoformans. Meth Mol Biol 845:165-186. 

36. Gheinani AH, Jahromi NH, Feuk-Lagerstedt E, Taherzadeh MJ. 2011. RNA 

silencing of lactate dehydrogenase gene in Rhizopus oryzae. J RNAi Gene 

Silencing 7:443-448. 

37. Nicolas FE, Calo S, Murcia-Flores L, Garre V, Ruiz-Vazquez RM, Torres-

Martinez S. 2008. A RING-finger photocarotenogenic repressor involved in 

asexual sporulation in Mucor circinelloides. FEMS Microbiol Lett 280:81-88. 

38. Gruninger RJ, Puniya AK, Callaghan TM, Edwards JE, Youssef N, Dagar 

SS, Fliegerova K, Griffith GW, Forster R, Tsang A, McAllister T, Elshahed 

MS. 2014. Anaerobic fungi (phylum Neocallimastigomycota): advances in 

understanding their taxonomy, life cycle, ecology, role and biotechnological 

potential. FEMS Microbiol Ecol 90:1-17. 



	  
 

142	  

39. Cheng YS, Chen CC, Huang CH, Ko TP, Luo W, Huang JW, Liu JR, Guo 

RT. 2014. Structural analysis of a glycoside hydrolase family 11 xylanase from 

Neocallimastix patriciarum: insights into the molecular basis of a thermophilic 

enzyme. J Biol Chem 289:11020-11028. 

40. Kwon M, Song J, Park HS, Park H, Chang J. 2016. Characterization of 

heterologously expressed acetyl xylan esterase1 isolated from the anaerobic 

rumen fungus Neocallimastix frontalis PMA02. Asian-Australas J Anim Sci 

29:1576-1584. 

41. Lee SM, Guan LL, Eun JS, Kim CH, Lee SJ, Kim ET, Lee SS. 2015. The 

effect of anaerobic fungal inoculation on the fermentation characteristics of rice 

straw silages. J Appl Microbiol 118:565-573. 

42. Morrison JM, Elshahed MS, Youssef NH. 2016. Defined enzyme cocktail from 

the anaerobic fungus Orpinomyces sp. strain C1A effectively releases sugars from 

pretreated corn stover and switchgrass. Sci Rep 6:29217. 

43. Wang HC, Chen YC, Hseu RS. 2014. Purification and characterization of a 

cellulolytic multienzyme complex produced by Neocallimastix patriciarum J11. 

Biochem Biophys Res Commun 451:190-195. 

44. Wei YQ, Long RJ, Yang H, Yang HJ, Shen XH, Shi RF, Wang ZY, Du JG, 

Qi XJ, Ye QH. 2016. Fiber degradation potential of natural co-cultures of 

Neocallimastix frontalis and Methanobrevibacter ruminantium isolated from yaks 

(Bos grunniens) grazing on the Qinghai Tibetan Plateau. Anaerobe 39:158-164. 

45. Wei YQ, Yang HJ, Luan Y, Long RJ, Wu YJ, Wang ZY. 2016. Isolation, 

identification and fibrolytic characteristics of rumen fungi grown with indigenous 



	  
 

143	  

methanogen from yaks (Bos grunniens) grazing on the Qinghai-Tibetan Plateau. J 

Appl Microbiol 120:571-587. 

46. Ranganathan A, Smith OP, Youssef NH, Struchtemeyer CG, Atiyeh HK, 

Elshahed MS. 2017. Utilizing anaerobic fungi for two-stage sugar extraction and 

biofuel production from lignocellulosic biomass. Front Microbiol 8:635. 

47. Nkemka VN, Gilroyed B, Yanke J, Gruninger R, Vedres D, McAllister T, 

Hao X. 2015. Bioaugmentation with an anaerobic fungus in a two-stage process 

for biohydrogen and biogas production using corn silage and cattail. Bioresour 

Technol 185:79-88. 

48. Procházka J, Mrázek J, Štrosová L, Fliegerová K, Zábranská J, Dohányos 

M. 2012. Enhanced biogas yield from energy crops with rumen anaerobic fungi. 

Eng Life Sci 12:343-351. 

49. Dey A, Sehgal JP, Puniya AK, Singh K. 2004. Influence of an anaerobic fungal 

culture (Orpinomyces sp.) administration on growth rate, ruminal fermentation 

and nutrient digestion in calves. Asian-Australas J Anim Sci 17:820-824. 

50. Lee SS, Ha JK, Cheng KJ. 2000. Influence of an anaerobic fungal culture 

administration on in vivo ruminal fermentation and nutrient digestion. Anim Feed 

Sci Technol 88:201-217. 

51. Paul SS, Deb SM, Punia BS, Das KS, Singh G, Ashar MN, Kumar R. 2011. 

Effect of feeding isolates of anaerobic fungus Neocallimastix sp. CF 17 on growth 

rate and fibre digestion in buffalo calves. Arch Anim Nutr 65:215-228. 

52. Paul SS, Kamra DN, Sastry VRB, Sahu NP, Agarwal N. 2004. Effect of 

administration of an anaerobic gut fungus isolated from wild blue bull 



	  
 

144	  

(Boselaphus tragocamelus) to buffaloes (Bubalus bubalis) on in vivo ruminal 

fermentation and digestion of nutrients. Anim Feed Sci Technol 115:143-157. 

53. Saxena S, Sehgal J, Puniya A, Singh K. 2010. Effect of administration of rumen 

fungi on production performance of lactating buffaloes. Benef Microbes 1:183-

188. 

54. Sehgal JP, Jit D, Puniya AK, Singh K. 2008. Influence of anaerobic fungal 

administration on growth, rumen fermentation and nutrient digestion in female 

buffalo calves. J Anim Feed Sci 17:510-518. 

55. Tripathi VK, Sehgal JP, Puniya AK, Singh K. 2007. Effect of administration of 

anaerobic fungi isolated from cattle and wild blue bull (Boselaphus tragocamelus) 

on growth rate and fibre utilization in buffalo calves. Arch Anim Nutr 61:416-

423. 

56. Hanafy RA, Elshahed MS, Liggenstoffer AS, Griffith GW, Youssef NH. 

2017. Pecoramyces ruminantium, gen. nov., sp. nov., an anaerobic gut fungus 

from the feces of cattle and sheep. Mycologia 109:231-243. 

57. Calkins S, Elledge NC, Hanafy RA, Elshahed MS, Youssef N. 2016. A fast and 

reliable procedure for spore collection from anaerobic fungi: Application for RNA 

uptake and long-term storage of isolates. J Microbiol Methods 127:206-213. 

58. Youssef NH, Couger MB, Struchtemeyer CG, Liggenstoffer AS, Prade RA, 

Najar FZ, Atiyeh HK, Wilkins MR, Elshahed MS. 2013. The genome of the 

anaerobic fungus Orpinomyces sp. strain C1A reveals the unique evolutionary 

history of a remarkable plant biomass degrader. Appl Environ Microbiol 79:4620-

4634. 



	  
 

145	  

59. Solomon KV, Haitjema CH, Henske JK, Gilmore SP, Borges-Rivera D, 

Lipzen A, Brewer HM, Purvine SO, Wright AT, Theodorou MK, Grigoriev 

IV, Regev A, Thompson DA, O'Malley MA. 2016. Early-branching gut fungi 

possess a large, comprehensive array of biomass-degrading enzymes. Science 

351:1192-1195. 

60. Kumar S, Stecher G, Tamura K. 2016. MEGA7: Molecular Evolutionary 

Genetics Analysis Version 7.0 for Bigger Datasets. Mol Biol Evol 33:1870-1874. 

61. Hammond TM, Bok JW, Andrewski MD, Reyes-Dominguez Y, Scazzocchio 

C, Keller NP. 2008. RNA silencing gene truncation in the filamentous fungus 

Aspergillus nidulans. Eukaryot Cell 7:339-349. 

62. Hammond TM, Keller NP. 2005. RNA silencing in Aspergillus nidulans is 

independent of RNA-dependent RNA polymerases. Genetics 169:607-617. 

63. Nakayashiki H, Hanada S, Quoc NB, Kadotani N, Tosa Y, Mayama S. 2005. 

RNA silencing as a tool for exploring gene function in ascomycete fungi. Fung 

Genet Biol 42:275-283. 

64. Kadotani N, Nakayashiki H, Tosa Y, Mayama S. 2003. RNA silencing in the 

phytopathogenic fungus Magnaporthe oryzae. Mol Plant Microbe Interact 

16:769-776. 

65. Patel RM, van Kan JA, Bailey AM, Foster GD. 2008. RNA-mediated gene 

silencing of superoxide dismutase (bcsod1) in Botrytis cinerea. Phytopathology 

98:1334-1339. 

66. Khatri M, Rajam MV. 2007. Targeting polyamines of Aspergillus nidulans by 

siRNA specific to fungal ornithine decarboxylase gene. Med Mycol 45:211-220. 



	  
 

146	  

67. Elbashir SM, Martinez J, Patkaniowska A, Lendeckel W, Tuschl T. 2001. 

Functional anatomy of siRNAs for mediating efficient RNAi in Drosophila 

melanogaster embryo lysate. EMBO J 20:6877-6888. 

68. Chiu YL, Rana TM. 2003. siRNA function in RNAi: a chemical modification 

analysis. RNA 9:1034-1048. 

69. Calkins S, Youssef NH. 2016. Insights into the utility of the focal adhesion 

scaffolding proteins in the anaerobic fungus Orpinomyces sp. C1A. PLoS One 

11:e0163553. 

70. Couger MB, Youssef NH, Struchtemeyer CG, Liggenstoffer AS, Elshahed 

MS. 2015. Transcriptomic analysis of lignocellulosic biomass degradation by the 

anaerobic fungal isolate Orpinomyces sp. strain C1A. Biotechnol Biofuels 8:208. 

71. Haas BJ, Papanicolaou A, Yassour M, Grabherr M, Blood PD, Bowden J, 

Couger MB, Eccles D, Li B, Lieber M, MacManes MD, Ott M, Orvis J, 

Pochet N, Strozzi F, Weeks N, Westerman R, William T, Dewey CN, 

Henschel R, LeDuc RD, Friedman N, Regev A. 2013. De novo transcript 

sequence reconstruction from RNA-seq using the Trinity platform for reference 

generation and analysis. Nat Protocols 8:1494-1512. 

72. Langmead B, Salzberg SL. 2012. Fast gapped-read alignment with Bowtie 2. 

Nature methods 9:357-359. 

73. Robinson MD, McCarthy DJ, Smyth GK. 2010. edgeR: a Bioconductor 

package for differential expression analysis of digital gene expression data. 

Bioinformatics 26:139-140. 



	  
 

147	  

74. Smardon A, Spoerke JM, Stacey SC, Klein ME, Mackin N, Maine EM. 2000. 

EGO-1 is related to RNA-directed RNA polymerase and functions in germ-line 

development and RNA interference in C. elegans. Curr Biol 10:169-178. 

75. Cogoni C, Macino G. 1997. Conservation of transgene-induced post-

transcriptional gene silencing in plants and fungi. Trends Plant Sci 2:438-443. 

76. Dengler U, Niefind K, Kieβ M, Schomburg D. 1997. Crystal structure of a 

ternary complex of d-2-hydroxyisocaproate dehydrogenase from Lactobacillus 

casei, NAD+ and 2-oxoisocaproate at 1.9 Å resolution. J Mol Biol 267:640-660. 

77. Choi J, Kim K-T, Jeon J, Wu J, Song H, Asiegbu FO, Lee Y-H. 2014. 

funRNA: a fungi-centered genomics platform for genes encoding key components 

of RNAi. BMC Genomics 15:S14. 

78. Farrer RA, Martel A, Verbrugghe E, Abouelleil A, Ducatelle R, Longcore 

JE, James TY, Pasmans F, Fisher MC, Cuomo CA. 2017. Genomic 

innovations linked to infection strategies across emerging pathogenic chytrid 

fungi. Nat Commun 8:14742. 

79. Stein P, Svoboda P, Anger M, Schultz RM. 2003. RNAi: Mammalian oocytes 

do it without RNA-dependent RNA polymerase. RNA 9:187-192. 

80. Birchler JA. 2009. Ubiquitous RNA-dependent RNA polymerase and gene 

silencing. Genome Biol 10:243-243. 

81. Lipardi C, Paterson BM. 2009. Identification of an RNA-dependent RNA 

polymerase in Drosophila involved in RNAi and transposon suppression. Proc 

Natl Acad Sci USA 106:15645-15650. 



	  
 

148	  

82. Tuschl T, Zamore PD, Lehmann R, Bartel DP, Sharp PA. 1999. Targeted 

mRNA degradation by double-stranded RNA in vitro. Genes Dev 13:3191-3197. 

83. Jackson AL, Bartz SR, Schelter J, Kobayashi SV, Burchard J, Mao M, Li B, 

Cavet G, Linsley PS. 2003. Expression profiling reveals off-target gene 

regulation by RNAi. Nat Biotechnol 21:635-637. 

84. Li-Byarlay H, Li Y, Stroud H, Feng S, Newman TC, Kaneda M, Hou KK, 

Worley KC, Elsik CG, Wickline SA, Jacobsen SE, Ma J, Robinson GE. 2013. 

RNA interference knockdown of DNA methyl-transferase 3 affects gene 

alternative splicing in the honey bee. Proc Natl Acad Sci USA 110:12750-12755. 

85. Michielse CB, J Hooykaas PJ, J J van den Hondel CAM, J Ram AF. 2008. 

Agrobacterium-mediated transformation of the filamentous fungus Aspergillus 

awamori. Nat Protocols 3:1671-1678. 

86. Minz A, Sharon A. 2010. Electroporation and Agrobacterium-mediated spore 

transformation, p 21-32. In Sharon A (ed), Molecular and cell biology methods 

for fungi. Humana Press, Totowa, NJ. 

 



	  
 

149	  

CONCLUSIONS 

 

The studies I have conducted for this dissertation resulted in the development and 

optimization of a novel anaerobic flooding technique for collection of spores from 

anaerobic gut fungi, such as Pecoramyces ruminantium sp. C1A. The ability to collect 

spores from C1A using anaerobic flooding has proven to be invaluable in the following 

ways: allowed for reliable long-term culture storage for AGF isolates for evasion of 

senescence; provided a means of spore separation from other life cycle stages for 

collection of spore-only samples; and allowed for collection of viable, developmentally 

synchronized spores.  

 Therefore, the ability of AGF spore collection that this multifaceted technique has 

provided is a promising piece of the puzzle that had been missing, which was necessary 

to further broaden the scope of knowledge in this understudied fungal phylum. Moving 

forward, further transcriptional studies similar to that of the focal adhesion study 

conducted here, can be conducted on other evolutionarily unique pathways using C1A or 

other AGF members. Moreover, the ability of C1A’s germinating spores to readily uptake 

synthetic siRNAs for successful RNAi-based gene silencing will be one avenue to 

explore in future studies. Alternatively, spores collected using the anaerobic flooding 

technique could also be used as a starting material for use in Agrobacterium-mediated 

transformation type studies for gene function analysis. These approaches could be  
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utilized on other genes involved in ethanol production in C1A, which could potentially be 

significant from a biofuels perspective.  
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