# NATURAL VARIATION IN SENSITIVITY TO A LOSS OF CHLOROPLAST TRANSLATION IN 

 ARABIDOPSISBy<br>NICOLE BRYANT PARKER<br>Bachelor of Science in Botany<br>Oklahoma State University<br>Stillwater, OK 2011<br>Bachelor of Science in Microbiology and<br>Molecular Genetics<br>Oklahoma State University<br>Stillwater, OK<br>2011<br>Submitted to the Faculty of the<br>Graduate College of the<br>Oklahoma State University<br>in partial fulfillment of the requirements for the Degree of<br>\section*{DOCTOR OF PHILOSOPHY}<br>December, 2017

# NATURAL VARIATION IN SENSITIVITY TO A LOSS OF CHLOROPLAST TRANSLATION IN ARABIDOPSIS 

Dissertation Approved:

Dr. David Meinke
Dissertation Adviser

Dr. Andrew Doust

Dr. Mark Fishbein
$\qquad$

Dr. Gerald Schoenknecht

Dr. Robert Burnap

# Name: NICOLE BRYANT PARKER 

Date of Degree: DECEMBER, 2017

# of Study: NATURAL VARIATION IN SENSITIVITY TO A LOSS OF CHLOROPLAST TRANSLATION IN ARABIDOPSIS 

Major Field: PLANT SCIENCE


#### Abstract

: This dissertation describes my role in an NSF-funded research project in the Meinke laboratory that began as a natural variation study and genetic analysis to uncover the nuclear genes involved in the differing responses of plant species to a loss of chloroplast translation. To identify these nuclear genes, we analyzed 152 natural accessions of Arabidopsis (Arabidopsis thaliana) on spectinomycin, an inhibitor of chloroplast translation, and crossed wild-type plants of the tolerant Tsu-0 accession with plants segregating for an embryo-defective (emb) mutation that eliminated chloroplast translation in the sensitive "Nossen" accession. Through this study, we found a single suppressor locus (ACC2), an enhancer of the suppressor, and additional modifiers that further increase embryo development. After determining that ACC2 suppresses the loss of chloroplast translation in emb mutants, we expanded our project to include a detailed analysis of defects in $A C C 2$ and the consequences of various mutations on a class of proteins essential for growth and development in plants. Remarkably, some of the most sensitive accessions contain null alleles of $A C C 2$, including "Nossen". For the final part of my role in this project, I focused on using a candidate gene approach to identify additional genetic modifiers of this system. Overall, the project described throughout this dissertation utilized natural variation in Arabidopsis accessions to study the effects of mutations, especially deleterious mutations, on a protein (ACCase) that is essential for fatty acid biosynthesis in eukaryotes. We also developed an understanding of some of the mechanisms behind the diverse phenotypic responses plant species have when translation of the chloroplast genome is blocked. Furthermore, our identification of accessions hypersensitive to spectinomycin has led to a more efficient method for plastid transformation in Arabidopsis (Yu et al., 2017).


## TABLE OF CONTENTS

Chapter ..... Page
I. INTRODUCTION ..... 1
Arabidopsis thaliana is a Model System for Plant Biology ..... 1
Embryo-Defective Mutants of Arabidopsis have been Characterized in Detail ..... 4
The Chloroplast Genome in Arabidopsis Contains Essential Genes ..... 5
Plant Species Differ in Response to a Loss of Chloroplast Translation ..... 8
Outline and Scope of Dissertation ..... 11
II. REVIEW OF LITERATURE ..... 13
Chloroplast Genome Content Across Plant Species ..... 13
Spectinomycin and Other Inhibitors of Chloroplast Translation ..... 15
Structure and Function of Acetyl-CoA Carboxylases (ACCases) ..... 15
Chloroplast Protein Import via the TIC/TOC Import System ..... 22
III. NATURAL VARIATION IN SEEDLING RESPONSES TO A LOSS OF CHLOROPLAST TRANSLATION IN ARABIDOPSIS ..... 28
Introduction ..... 28
Materials and Methods ..... 29
Plant Material and Growth Conditions ..... 29
Seedling Responses on Spectinomycin and Lincomycin ..... 30
Seedling and Whole Plate Imaging ..... 31
Crosses Between Different Wild-Type Accessions ..... 32
Results ..... 33
Arabidopsis Accessions Differ in Seedling Sensitivity to Spectinomycin ..... 33
Evaluating Additional Lines Increases the Number of Sensitive Accessions . ..... 44
Discussion ..... 47
Chapter Page
IV. FACTORS THAT ENHANCE THE EXTENT OF EMBRYO DEVELOPMENT IN THE ABSENCE OF CHLOROPLAST TRANSLATION. ..... 52
Introduction ..... 52
Materials and Methods ..... 54
Plant Material ..... 54
Crosses with emb Mutants and Embryo Phenotyping ..... 55
Embryo Imaging ..... 56
Results ..... 56
A Single, Dominant Suppressor of Preglobular Arrest Increases Seed and Embryo Development ..... 56
The Suppressor Locus Maps to the ACC2 Region of Chromosome 1 ..... 58
A Semidominant Enhancer Promotes Further Embryo Development in the Absence of Chloroplast Translation. ..... 64
Additional Modifiers Increase the Frequency of Advanced Embryo Development ..... 69
Discussion ..... 74
V. A VARIETY OF ACC2 MUTATIONS ARE FOUND IN NATURAL ACCESSIONS OF ARABIDOPSIS ..... 80
Introduction ..... 80
Materials and Methods ..... 82
ACC2 Variation in Arabidopsis Accessions ..... 82
Brassicaceae ACCase Sequence Analyses ..... 83
Eukaryotic, Homomeric ACCase Sequence Alignments ..... 83
Results ..... 84
Null Mutations in $A C C 2$ Are Found Among Natural Accessions ..... 84
The Structure of $A C C 2$ Sequences Varies Within the Brassicaceae. ..... 87
Conservation Found in Alignments of Eukaryotic, Homomeric ACCase Sequences ..... 90
Sensitive Accessions Highlight Conserved Residues Likely to be Essential ..... 91
Additional Accessions Chosen for Missense Mutations Affecting Conserved Residues ..... 95
Crossing Sensitive Accessions with the Tolerant Tsu-0 Accession to Determine if $A C C 2$ is the Locus Responsible for Sensitivity ..... 99
Crossing Sensitive Accessions with Informative Knockout Mutants Assesses the Impact of ACC2 Variants on Protein Function. ..... 103
Tolerated Missense Mutations in $A C C 1$ and $A C C 2$. ..... 112
Discussion ..... 116
Chapter Page
VI. CANDIDATE GENE APPROACH TO IDENTIFY OTHER FACTORS THAT INCREASE TOLERANCE TO A LOSS OF CHLOROPLAST TRANSLATION ..... 121
Introduction ..... 121
Materials and Methods ..... 122
Plant Materials and Growth Conditions ..... 122
PCR Genotyping of Plants ..... 123
Loci Chosen as Modifier Candidates ..... 123
Arabidopsis Progeny Lines Chosen for Analysis ..... 127
Results ..... 132
Discussion ..... 135
Future Directions ..... 142
REFERENCES ..... 148
APPENDIX A: Arabidopsis Natural Accessions Analyzed ..... 172
APPENDIX B: Detailed Spectinomycin Responses of Natural Accessions and Knockout Lines Analyzed. ..... 180
APPENDIX C: Details on Enhancer Phenotype Classes of TT Plants from a Tsu-0 Cross with emb3126-1 ..... 188
APPENDIX D: Details on Modifier Phenotype Classes of TT Plants from a Tsu-0 Cross with emb3126-1 ..... 193
APPENDIX E: 855 Sequenced Accessions from the 1001 Genomes Project ..... 196
APPENDIX F: Brassicaceae Sequences Used for ACC1/ACC2 Alignments and Determination of $\mathrm{Ka} / \mathrm{Ks}$ Ratios ..... 200
APPENDIX G: Eukaryotic ACCase Sequences Used for the Original Multi- Kingdom Alignment of 20 Sequences ..... 202
APPENDIX H: UniProt and NCBI Reference IDs for Eukaryotic Sequences Used in Multi-Kingdom and Plant Alignments ..... 204
APPENDIX I: Accession Consensus ACC2 Protein Sequence Reflecting Genetic Variation and Level of Conservation ..... 222
Chapter ..... Page
APPENDIX J: ACC2 Consensus Protein Sequence with Conserved Residues and Genetic Variants Highlighted ..... 281
APPENDIX K: Informative Variants that Alter Conserved Residues in Eukaryotic, Homomeric Acetyl-CoA Carboxylases ..... 288
APPENDIX L: ACC2 Variants that Alter Conserved Residues in Sequenced Arabidopsis Accessions ..... 295

## LIST OF TABLES

Table ..... Page

1. Lineages Missing Essential Genes from the Chloroplast Genome ..... 16
2. Seedling Responses of 52 Arabidopsis Natural Accessions Germinated on Spectinomycin. ..... 35
3. Seedling Responses on Spectinomycin of Parental Accessions and F2 Progeny from Crosses Between "Nossen" and Tolerant Accessions ..... 42
4. Seedling Responses of 152 Arabidopsis Natural Accessions Germinated on Spectinomycin ..... 48
5. Chloroplast Translation Mutants Differ in Stage of Embryo Arrest ..... 53
6. Mutant Alleles Chosen for Initial Crosses with Spectinomycin-Tolerant Accessions ..... 57
7. Partial Embryo Rescue in F1 Siliques from Crosses between Natural Accessions and Embryo-Defective Mutants ..... 59
8. Classes of F2 Plants Identified from Tsu-0 Crosses with Mutants in a Sensitive "Nossen" Background ..... 60
9. Reduced Embryo Development in F1 Siliques from acc2 (Col-0) Crossed with emb3137-2 (Col-0) ..... 63
10. Enhancer Phenotype Classes of TT Plants from a Tsu-0 Cross with emb3126-1 ..... 65
11. Differences in the Extent of Embryo Rescue in TT Plants from Tsu-0 Crosses with emb3137-1 and emb3126-1 ..... 67
12. Partial Embryo Rescue in F1 Siliques from a Tsu-0 Cross with emb1473 (Col-0) ..... 70
Table Page
13. Limited Embryo Rescue in F1 Siliques from a Tsu-0 Cross with emb3136 ("Nossen") ..... 71
14. Modifier Phenotype Classes of Late TT Plants from a Tsu-0 Cross with emb3216-1 ..... 72
15. ACC2 Null Mutations Identified in Sequenced Accessions of Arabidopsis ..... 85
16. Variation in Brassicaceae $A C C 1$ and $A C C 2$ Sequences ..... 88
17. Seedling Responses of 20 Accessions with the ACC2 Variants I404K and T1902K ..... 94
18. ACC2 Variants in Sav-0 that Differ from the Consensus Among Sequenced Accessions ..... 96
19. Accessions with Missense Mutations in the Transit Peptide of ACC2 ..... 98
20. Accessions with Strong Missense Mutations Affecting Conserved ACC2 Residues ..... 100
21. Seedling Responses on Spectinomycin of Parental Accessions and F2 Progeny from Crosses between Accessions ..... 101
22. Spectinomycin Responses of F1 Seedlings from Crosses between Sensitive Accessions and Informative Knockout Mutants ..... 107
23. Spectinomycin Responses of F2 Seedlings from Crosses between Sensitive Accessions and Informative Knockout Mutants ..... 108
24. ACC2 Variants Found in the Most Tolerant Natural Accessions ..... 114
25. Accessions with Evidence of Residual ACC2 Function Despite Substitutions in Highly-Conserved Residues ..... 115
26. PCR Primer Sequences Used for Plant Genotyping ..... 124
27. Embryo Rescue in Progeny Plants Screened for Candidate Modifiers ..... 128
28. Genotypes of Candidate Modifier Loci for Each Descendent Line Tested ..... 134
29. Models for Enhancer Function in the Absence of Chloroplast Translation ..... 138
30. Enhancer Candidates Identified in the Region Flanking EMB3137 ..... 139

## LIST OF FIGURES

Figure ..... Page

1. Distribution of Genes in the Chloroplast Genome of Arabidopsis ..... 6
2. Nuclear Compensation for Loss of Heteromeric ACCase in Brassicaceae ..... 10
3. Biochemical Conversion of Acetyl-CoA to Malonyl-CoA Driven by an ACCase Enzyme ..... 21
4. Crystal Structure of a Yeast ACCase Dimer ..... 23
5. Seedling Phenotypes Reflecting Classification System. ..... 34
6. Spectinomycin Seedling Responses of 52 Arabidopsis Natural Accessions ..... 36
7. Consistent Seedling Responses of Arabidopsis Accessions on Spectinomycin ..... 37
8. Seedling Responses of Three Arabidopsis Accessions on Spectinomycin and Lincomycin ..... 39
9. Consistent Seedling Responses of Arabidopsis Accessions on Lincomycin ..... 40
10. Segregating Seedling Responses in the F2 Generation from Crosses Between "Nossen" and Tolerant Accessions ..... 41
11. Comparison of Spectinomycin Seedling Responses of Parental Accessions and F2 Progeny from Crosses Between "Nossen" and Tolerant Accessions... ..... 43
12. Global Distribution of 152 Natural Accessions Analyzed ..... 45
13. Seedling Responses of Selected Arabidopsis Accessions on Spectinomycin ..... 46
14. Spectinomycin Seedling Responses of 152 Arabidopsis Natural Accessions ..... 49
15. Spectinomycin Responses of an acc 2 Knockout Mutant Compared to the Background Accession (Col-0) ..... 61
16. Enhancer Phenotype Classes of TT Plants from a Tsu-0 Cross with emb3126-1 ..... 66
17. Differences in the Extent of Embryo Rescue in TT Plants from Tsu-0 Crosses with emb3137-1 and emb3126-1 ..... 68
18. Modifier Phenotype Classes of Late TT Plants from a Tsu-0 Cross with emb3126-1 ..... 73
19. Combined Effects of the Tsu-0 Suppressor, Enhancer, and Modifier(s) on Seed and Embryo Rescue in emb3126-1 ..... 66
20. Examples of Embryos in Siliques of Plants Homozygous for the Tsu-0 Suppressor ..... 67
21. Brassicaceae Phylogeny ..... 89
22. Mutational Landscape of Homomeric ACCase in Arabidopsis ..... 92
23. Comparison of Spectinomycin Seedling Responses of Parental Accessions and F2 Progeny from Crosses Between Tsu-0 and Sensitive Accessions ..... 102
24. Spectinomycin Responses of Knockout Mutants of Known Components of the Chloroplast Protein Import System ..... 105
25. Comparison of Spectinomycin Seedling Responses of F2 Seedlings from Crosses between Sensitive Accessions and Informative Knockout Mutants ..... 109
26. Chromosome Locations of Arabidopsis Genes Encoding Known Components of the Chloroplast Protein Import System ..... 126
27. Boxplot Comparison of Mutant Embryo Length in Progeny Plants Screened for Candidate Modifiers and Their Parental Lines ..... 129
28. Comparison of Mutant Embryo Growth Stages in Progeny Plants Screened for Candidate Modifiers and Their Parental Lines ..... 130
29. Chromosome Locations of Arabidopsis Genes Encoding Untested Modifier Candidates ..... 141

## CHAPTER I

## INTRODUCTION

## Arabidopsis thaliana is a Model System for Plant Biology

The use of Arabidopsis (Arabidopsis thaliana) as a model system for plant biology began in the 1940s with Friedrich Laibach, who noted that in contrast to many agricultural plants, Arabidopsis grows rapidly in small spaces, produces a large number of offspring, and contains a small number of chromosomes (Laibach, 1943; Sommerville and Koornneef, 2002). Shortly after Laibach's publication, a small but active Arabidopsis research community was built, which continued through the 1960s. Early research included the analysis of induced mutations generated through X-irradiation, natural variation studies of seed dormancy and flowering time, and chemical mutagenesis studies looking at embryo-lethal mutants (Rédei, 1970). One important advance was the formation of the Arabidopsis Information Service (AIS) newsletter and seed stock center in Germany (Meyerowitz, 2001). The early 1970s brought a decline of research in Arabidopsis and an increased interest in other systems, including petunia and tobacco, where plants could be regenerated more readily from cells in culture (Meinke et al., 1998; Koornneef and Meinke, 2010).

Interest in Arabidopsis research was revitalized in the late 1970s and early 1980s, when plant biologists were seeking a model organism for molecular genetics. George Rédei at the University of Missouri published an important review on Arabidopsis (Rédei, 1975) that soon increased research in the field (Sommerville and Koornneef, 2002; Koornneef and Meinke, 2010). Subsequent publications included the work of Meinke and Sussex (1979a,b) on the use of Arabidopsis embryo-lethal mutants to study plant embryo development, Sommerville and Ogren (1980) on mutants altered in photorespiration, and Koorneef et al. (1983) establishing the first comprehensive genetic map. Several publications in the mid-1980s described the advantage of Arabidopsis' small genome in the field of molecular genetics (Leutwiler et al., 1984; Meyerowitz and Pruitt, 1985). The advantages of Arabidopsis as a model genetic organism attracted the interest of relatively young plant biologists, and brought scientists working on other model systems to the field of Arabidopsis research.

The 1980s and 1990s saw the Arabidopsis community continue to flourish, and the establishment of many useful research tools. One of the most important tools was effective transformation procedures, which allowed Arabidopsis researchers to analyze gene expression patterns and develop large collections of transfer-DNA (T-DNA) insertion mutants (Feldmann and Marks, 1987; Bechtold et al., 1993; Clough and Bent, 1998; Alonso et al., 2003). The development of a genetic model for floral morphogenesis (Weigel and Meyerowitz, 1994) expanded the Arabidopsis field by illustrating how genetic approaches could be applied to complex biological processes (Sommerville and Koornneef, 2002; Koornneef and Meinke, 2010). The genetic map was soon expanded using molecular markers such as restriction fragment length polymorphisms (RFLPs; Chang et al., 1988), simple sequence length polymorphisms (SSLPs; Bell and Ecker, 1994), cleaved amplified polymorphic sequences (CAPSs; Konieczny and Ausubel, 1993), and amplified fragment length polymorphisms (AFLPs; Alonso-Blanco et al., 1998). An updated classical map, published in 1998, contained 462 genes dispersed across all five chromosomes (Meinke et al., 1998; Koornneef and Meinke, 2010). Once the sequence of the Arabidopsis genome was published, efforts were made
to integrate the classical genetic map with the sequence-based physical map using genes with known mutant phenotypes (Meinke et al., 2003; Meinke et al., 2009). The most current map of genes with mutant phenotypes contains 2,400 loci, about 9\% of the total number of genes in the Arabidopsis genome (Lloyd and Meinke, 2012).

Over the past 20 years, three large collaborative projects have significantly advanced the field of Arabidopsis research. The first project, the completion of the Arabidopsis genome sequence (AGI, 2000), paved the way for Arabidopsis research to expand into the age of genomics (Sommerville and Koornneef, 2002; Koornneef and Meinke, 2010). The Arabidopsis 2010 project soon followed, with a focus on understanding the functions of all 25,000 protein-coding genes (Chory et al., 2000; Sommerville and Koornneef, 2002; Koornneef and Meinke, 2010). The 1001 Genomes Project, begun in 2008 and still ongoing, involves whole-genome sequencing of Arabidopsis accessions, with the goal of enhancing research linking phenotypes to genotypes (http://1001genomes.org/). To date, 1,135 different accessions have been sequenced (The 1001 Genomes Consortium, 2016).

To further collaboration, the Arabidopsis community has developed numerous shared resources. These include two centralized databases of genetic and molecular data: The Arabidopsis Information Resource (TAIR) at www.arabidopsis.org (Rhee et al., 2003), and the Arabidopsis Information Portal (ARAPORT) at www.araport.org (Cheng et al., 2017). Seed stock centers are another example of shared resources. Thirty years ago, the AIS newsletter published a list of around 1,000 available stocks, mainly natural accessions and a limited number of mutant lines (Provart et al, 2015). Two major stock centers were founded in the early 1990s: the Nottingham Arabidopsis Stock Centre (NASC) and the Arabidopsis Biological Resource Center (ABRC). These centers now contain more than 900,000 stocks (Koornneef and Meinke, 2010; Provart et al, 2015).

## Embryo-Defective Mutants of Arabidopsis Have Been Characterized in Detail

Over the past 35 years, the Meinke laboratory at Oklahoma State University has isolated and characterized several thousand embryo-defective (emb) mutants of Arabidopsis and catalogued large numbers of essential genes required for seed and embryo development. The methods used to identify these mutants were first described by Müller (1963). Later, Meinke and Sussex (1979a,b) discussed the benefits of using emb mutants in research on plant embryo development. Before the era of sequencing, emb mutants were identified through forward genetic screens of mutant plants produced using chemical mutagens such as ethyl-methanesulfonate (EMS). After treatment, plants were screened for embryo lethality ( $25 \%$ aborted seeds), and mutants segregating as Mendelian recessives were isolated and characterized (Meinke and Sussex, 1979a,b). The development of T-DNA insertional mutagenesis enabled large-scale screens of mutants that allowed for quicker identification of the disrupted gene through amplification of sequences flanking the T-DNA insertion site (McElver et al., 2001; Meinke, 2008; Meinke, 2013). T- DNA insertion mutants were also used in a reverse genetic approach to characterize emb mutants disrupted in known genes believed to be essential (Meinke, 2013).

Of the estimated 750-1,000 EMB genes in the Arabidopsis genome, over 400 have been cloned and sequenced to date (Muralla et al., 2011). The SeedGenes project (http://seedgenes.org) was established in 2002 to create a centralized database containing information on loss-of-function mutant alleles that give rise to a seed or embryo phenotype (Tzafrir et al., 2003). The current database, updated in December 2010, contains 888 mutant alleles and 481 genes (Meinke et al., 2013). The emb mutant alleles in SeedGenes have been placed into six categories based on their terminal embryo phenotype: preglobular, preglobular/globular, globular, transition, cotyledon, or unresolved. The essential genes listed in the database have been divided into three classes (Muralla et al., 2011): (1) embryo defective, characterized by defects in seed development; (2) seed pigment, characterized by defects in seed pigmentation; and (3) $50 \%$ defective seeds, characterized by
approximately $50 \%$ mutant seeds in selfed heterozygotes. The phenotypes of mutant alleles have been examined in considerable detail (Meinke et al., 2008; Muralla et al., 2011).

Of the 400 identified $E M B$ genes, 119 are predicted to encode chloroplast-localized proteins. These genes can be divided further into three groups based on protein function: (1) proteins involved in the biosynthesis of metabolites such as amino acids and vitamins; (2) proteins associated with import, modification, and localization of proteins within the chloroplast; and (3) proteins required for translation of RNAs encoded by the chloroplast genome (Bryant et al., 2011). This third category is most relevant to the project described in this dissertation. Around 23\% of chloroplast-localized EMB proteins are involved in chloroplast translation, including plastid ribosomal proteins (PRPs), chloroplast-localized aminoacyl-tRNA synthetases (AARSs), and chloroplast-localized pentatricopeptide repeat (PPR) proteins, which function in RNA binding and modification (Berg et al., 2005; Schmitz-Linneweber and Small, 2008; Bryant et al., 2011, Romani et al., 2012; Tiller and Bock, 2014). Chloroplast translation is therefore required for embryo development in Arabidopsis. Mutations in genes that encode proteins of the photosynthetic machinery lead to reduced pigmentation in the embryo rather than lethality (Bryant et al., 2011). These observations raise an important question related to this project: What specific protein(s) encoded by the chloroplast genome are required (must be translated from chloroplast-encoded mRNAs) for embryo development in Arabidopsis?

## The Chloroplast Genome in Arabidopsis Contains Essential Genes

The complete nucleotide sequence of the chloroplast genome in Arabidopsis was published in 1999 (Sato et al., 1999). The chloroplast genome contains 128 genes: four encoding ribosomal RNAs (rRNAs), 37 encoding transfer RNAs (tRNAs), and 87 encoding proteins (Figure 1). The proteincoding genes can be divided into five categories based on protein function: transcription, translation,

# Chloroplast Genes <br> (128) 



## Protein-Coding Genes <br> (79)



Figure 1. Distribution of Genes in the Chloroplast Genome of Arabidopsis. (A) The chloroplast genome of Arabidopsis contains 128 genes, which can be divided into three classes: protein-coding genes, rRNA genes, and tRNA genes. (B) The protein-coding genes on can be further divided into five categories based on protein function. The information shown in this figure was taken from Sato et al. (1999).
photosynthetic machinery, photosynthetic metabolism, and other/unknown function (Figure 1; Sato et al., 1999). In addition to genes encoding proteins involved in gene expression and photosynthesis, 11 genes encode proteins with other functions. Four of these, hypothetical chloroplast open reading frame 3 ( $y c f 3$ ), $y c f 4, y c f 5$ and $y c f 6$, are involved in protein assembly and stability of the photosynthetic machinery (Hager et al., 1999; Naver et al., 2001; Goddard et al., 2010; Krech et al., 2012). A fifth gene, $y c f 9$, encodes PsbZ, a subunit of the Photosystem II complex (Swiatek et al., 2001; Tang et al., 2016). Ycf10 is believed to function in efficient transport of inorganic carbon across the chloroplast membrane (Rolland et al., 1997). MatK encodes a maturase protein involved in RNA splicing of type II introns within the chloroplast (Vogel et al., 1997; Uchoi et al., 2016).

Four chloroplast genes have been identified as essential by targeted gene disruptions in tobacco (Nicotiana tabacum). Acetyl-coenzyme A carboxylase D (accD) was shown to be required for leaf development, caseinolytic protease P1 (clpP1) essential for shoot development, and ycf1 and ycf2 required for cell survival (Drescher et al., 2000; Kuroda and Maliga, 2003; Kode et al., 2005). The $c l p P 1$ gene encodes a subunit of a chloroplast-localized protease complex known to be required for chloroplast function in Arabidopsis (Ramos-Vega et al., 2015). Kikuchi et al. (2013) discovered that $y c f 1$ encodes a component (Translocon at Inner envelope membrane of the Chloroplast; Tic214) of the TIC chloroplast protein import system located at the inner envelope membrane of chloroplasts. Ycf2 is believed to also function in chloroplast protein import (Parker et al., 2016; Masato Nakai, personal communication).

The $\operatorname{acc} D$ gene encodes the $\beta$-carboxyl transferase subunit of the heteromeric acetylcoenzyme A carboxylase (ACCase), which is localized to the chloroplast. The other subunits of this enzyme are nuclear-encoded proteins, of which one (Chloroplastic Acetyl-Coenzyme A Carboxylase; CAC1A) is known to be required for embryo development (Li et al., 2011). This protein functions during the early stages of fatty acid biosynthesis within the chloroplast to catalyze the conversion of acetyl-CoA to malonyl-CoA (Ohlrogge and Browse, 1995; Li et al., 2011). The project described here
focused on $a c c D$ as the essential chloroplast gene most important (rate limiting) for seedling and embryo development in Arabidopsis.

## Plant Species Differ in Response to a Loss of Chloroplast Translation

Not all plant species are equally sensitive to a loss of chloroplast translation. Zubko and Day (1998) exposed seedlings to spectinomycin, an inhibitor of chloroplast translation, and found that Brassica (Brassica napus) was more tolerant than tobacco, which was more sensitive than Arabidopsis. The reason for these differences remained unknown. The response of grass species to the loss of chloroplast translation is more complicated. In the late 1970s and early 1980s, albino leaf regions in mutants of maize (Zea mays) and barley (Hordeum vulgare) were shown to lack chloroplast ribosomes (Walbot and Coe, 1979; Siemenroth et al., 1981). Around 25 years later, Asakura and Barkan's (2006) work on splicing mutant homologs further showed that maize plants could tolerate a loss of chloroplast translation through the loss of a single chloroplast-localized splicing factor, caf2. They also showed that a null allele of an orthologous protein in Arabidopsis, Atcaf2, was embryo-lethal (Asakura and Barkan, 2006).

In contrast to these discoveries, multiple maize mutants disrupted in chloroplast translation have been shown to exhibit embryo lethality. Unlike the aborted seeds in Arabidopsis emb mutants, the seeds of these maize mutants have normal development of the endosperm tissue (Ma and Dooner, 2004; Magnard et al., 2004; Sosso et al., 2012; Zhang et al., 2013; Shen et al., 2013; Li et al., 2015). Zhang et al. (2013) have shown that the effects of disrupting a gene essential for chloroplast translation in maize is dependent on the genetic background. Using mutations in the maize Whyl gene, which is believed to be involved in stability of the chloroplast genome and the formation of chloroplast ribosomes, they showed that mutants in the W22 background were embryo defective while mutants in the $B 73$ and Mol7 backgrounds grew as albino seedlings (Zhang et al., 2013). The
current hypothesis for the background effect in maize is the differing activity of retrograde signaling pathways between the chloroplast and nuclear genomes. When translation of the chloroplast genome is disrupted in backgrounds like $W 22$, a signal is thought to be sent out to terminate cell activity within the embryo, which eventually leads to embryo lethality (Terry and Smith, 2013; Zhang et al., 2013; Li et al., 2015).

During the evolution of the Poaceae family, $\operatorname{acc} D$ was lost from the chloroplast genome along with $y c f 1$ and $y c f 2$. Loss of $a c c D$ means the absence of the heteromeric ACCase protein, which catalyzes a crucial step in fatty acid biosynthesis. Grasses have compensated for this loss with a nuclear-encoded, homomeric ACCase that is targeted to the chloroplast (Maier et al., 1995; Jansen et al., 2007; Guisinger et al., 2010). Members of the Brassicaceae also have a nuclear-encoded, homomeric ACCase that is targeted to the chloroplast (Schulte et al., 1997; Babiychuk et al., 2011). This novel gene, $A C C 2$, arose during the evolution of the Brassicaceae family from a duplication of ACC1, a homomeric, cytosolic ACCase that is involved in later stages of fatty acid biosynthesis. In Brassica and Arabidopsis, $A C C 2$ is targeted to the chloroplast, where it can partially compensate for the loss of the heteromeric ACCase when chloroplast translation is blocked. However, ACC2 is poorly expressed in the Columbia accession of Arabidopsis. A model of this mechanism of partial nuclear compensation for a loss of heteromeric, chloroplast-encoded ACCase in Brassicaceae is shown in Figure 2. The project described in this dissertation used natural variation in Arabidopsis accessions to study this nuclear compensation pathway and the effects of $a c c 2$ mutations on plant growth and development in the absence of chloroplast translation.


Figure 2. Nuclear Compensation for Loss of Heteromeric ACCase in Brassicaceae. In Brassica, $A C C 2$, a duplicated ACCase gene in the nuclear genome, is transcribed and localized to the chloroplast where it can compensate for the loss of $a c c D$ when chloroplast translation is blocked. In the Arabidopsis Columbia accession, $A C C 2$ is poorly expressed, and there is more limited compensation for the loss of $a c c D$. Adapted from a drawing by Rosanna Muralla.

## Outline and Scope of Dissertation

This dissertation describes my role in an NSF-funded research project in the Meinke laboratory that utilized natural variation in Arabidopsis to study why plant species differ in their ability to tolerate a loss of chloroplast translation. I began working in the Meinke laboratory as an undergraduate researcher, assisting with the characterization of $E M B$ genes predicted to encode chloroplast-localized proteins. The work from that project, which was published in 2011, led us to the question: What protein(s) encoded by the chloroplast genome are required for embryo development in Arabidopsis? (Bryant et al., 2011). The project described here began as a natural variation study and genetic analysis to uncover the nuclear genes involved in the differing responses of plant species to a loss of chloroplast translation. This was later expanded to include a detailed analysis of defects in $A C C 2$ and the consequences of various mutations on a class of proteins essential for growth and development in plants. Two articles have been published in Plant Physiology describing the results of this project (Parker et al., 2014; 2016). The work published in Parker et al. (2014) is described in Chapters 3 and 4 of this dissertation, and that published in Parker et al. (2016) is described in Chapters 3 and 5.

The work on this project was divided between three people: Dr. David Meinke (DM), Dr. Yixing Wang (YW), and myself (NP). DM conceived and managed this project, performed some of the crosses, helped substantially with the embryo phenotyping, and wrote the two articles in Plant Physiology, with input from YW and NP. YW designed and completed all of the molecular biology experiments for this project, with the exception of the candidate gene approach described in Chapter 6. NP screened the phenotypes of all seedlings grown on spectinomycin and lincomycin, completed a significant amount of the embryo phenotyping with a focus on lines with the most advanced embryos, performed many of the crosses, handled all of the ACCase sequence alignments, maintained plants and seed stocks, and carried out the candidate gene approach discussed in Chapter 6.

Looking ahead in this dissertation, the second chapter is a literature review of selected topics related to this project. The third chapter describes a detailed study of the natural variation observed among Arabidopsis accessions in response to a loss of chloroplast translation. This work utilized spectinomycin, an antibiotic known to inhibit translation of the chloroplast genome. The fourth chapter focuses on the use of $e m b$ mutants to identify factors that enhance tolerance to a loss of chloroplast translation, including a suppressor of early embryo arrest, an enhancer of the suppressor, and additional modifiers to the system. The fifth chapter describes the analysis of missense mutations in $A C C 1$ and $A C C 2$ found in natural accessions of Arabidopsis. The sixth and final chapter describes a candidate gene approach that was used in an attempt to identify other factors that increase tolerance to a loss of chloroplast translation.

## CHAPTER II

## REVIEW OF LITERATURE

## Chloroplast Genome Content Across Plant Species

Chloroplast genomes of higher plants are comprised of circular, double-stranded DNA that is highly conserved in size, structure, and gene content. Since the first fully-sequenced chloroplast genome from tobacco was published in 1986 (Shinozaki et al., 1986), the number of sequenced chloroplast genomes has grown exponentially (Curci et al., 2016; Daniell et al., 2016). Currently, over 1,500 chloroplast sequences are available in the National Center for Biotechnology Information (NCBI) Genome Database
(https://www.ncbi.nlm.nih.gov/genome/browse/). In higher plants and algae, the chloroplast genome, on average, is around 120-160 kb in length, contains roughly 130 genes, and is composed of four distinct regions: two inverted repeats (IR), a large single-copy region (LSC), and a small single-copy region (SSC) (Olmstead and Palmer, 1994; Jansen et al., 2005; Odintsova and Yurina, 2005; Curci et al., 2016). Most genes are found within the LSC and SSC regions, with the exception of a handful of rRNA and tRNA genes that are located in the IR regions (Odintsova and Yurina, 2005; Chumley et al., 2006).

Comparisons of sequenced chloroplast genomes have been used to study the evolution of higher plants through the rates of nucleotide substitutions, gene insertion/deletions, and genomic rearrangements (Jansen et al., 2007). Rates of synonymous nucleotide substitutions, also known as silent mutations, in chloroplast genomes have been shown to be around half of those found in plant nuclear genomes, with even lower rates in IR regions (Wolfe et al., 1987; Odintsova and Yurina, 2005; Daniell et al., 2016). Large deletions and inversions of the chloroplast genome have been documented in a number of species, and used to resolve phylogenetic relationships (Olmstead and Palmer, 1994; Jansen et al., 2008). For example, all members of the IR lacking clade (IRLC) of legumes have completely lost one copy of the IR region (Palmer and Thompson, 1982; Jansen et al., 2008), and conifers have seen widespread reduction or deletion of their IR regions (Raubeson and Jansen, 1992; Lin et al., 2010). Not surprisingly, most photosynthetic genes have been lost from non-photosynthetic, parasitic plants (dePamphilis and Palmer, 1990).

Along with gene losses, a number of plant species contain a non-functional copy of one or more genes in the chloroplast genome. These pseudogenes can be identified using bioinformatics tools to scan the chloroplast genome for regions that are similar to known chloroplast genes but lack an entire open reading frame (Logacheva et al., 2011). The plastid genes most often retained ( $a c c D, y c f 1, y c f 2, c l p P 1$ ) are those shown experimentally to be essential in tobacco. While still rare, individual gene losses in the chloroplast genome are more common than large deletions and inversions. These gene losses have been studied extensively throughout higher plants, especially in the context of phylogenetic analyses (Jansen et al., 2007). In some cases, chloroplast gene loss is accompanied by the appearance of a compensatory gene in the nuclear genome (Li et al., 2016; Liu et al., 2016). In plant species where accD is nonfunctional or has been lost from the chloroplast genome, there is likely either a duplication of the homomeric ACCase in the nucleus, which occurs in maize (Jansen et al., 2007; Guisinger et al., 2010), or $a c c D$ itself has incorporated into the nuclear genome and is targeted back to the
chloroplast, which occurs in Trachelium caeruleum (Harberle et al., 2008; Rousseau-Gueutin et al., 2013). Table 1 lists several losses and pseudogenization of genes related to this project: accD, $y c f 1, y c f 2, c l p P 1$.

## Spectinomycin and Other Inhibitors of Chloroplast Translation

Antibiotics are used in plant biology research to block translation of the chloroplast genome through a variety of different mechanisms. Several antibiotics and their modes of action are described in this section, including spectinomycin, which was the main antibiotic used in this project, and lincomycin, which was used to confirm results from the spectinomycin studies (Parker et al., 2014, 2016). Other antibiotics with different modes of action noted here include streptomycin, tetracycline, and pactamycin.

Spectinomycin inhibits translation by binding to the 30S ribosomal subunit and interfering with peptidyl-tRNA translocation from the A-site to the P-site in the ribosome (Carter et al., 2000). Specifically, spectinomycin binds within the minor groove of helix 34 of the 16 S rRNA in the head of the 30S ribosomal subunit, where it stabilizes the helix during the elongation cycle in translation (Johanson and Hughes, 1995; Carter et al., 2000). Mutagenesis studies on plants resistant to spectinomycin have been used to identify specific nucleotides in the 16 S rRNA that interact with the antibiotic. These studies have shown that spectinomycin binding is sequence specific within helix 34 (Carter et al., 2000; Wirmer and Westhof, 2006; Dudas et al., 2012). Resistance to spectinomycin can also be found in plants that have mutations in the S 5 ribosomal protein, which is located next to helix 34 and believed to stabilize this region of the 30 S ribosomal subunit (Carter et al., 2000; Wirmer and Westhof, 2006).

Lincomycin is a member of the lincosamide class of antibiotics. Members within this

Table 1. Lineages Missing Essential Genes from the Chloroplast Genome.

| Organism | Lineages Missing Essential Genes ${ }^{\text {a }}$ |  |  |  | Reference |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | $a c c D$ | $y c f 1$ | $y c f 2$ | clpP1 |  |
| Acorus | X | Present | Present | Present | Jansen et al., 2007 |
| Aristolochia | Present | PS | Present | Present | Zhou et al., 2017 |
| Asclepias | PS | PS | Present | PS | Straub et al., 2011 |
| Campanula | PS | Present | Present | Present | Rousseau-Gueutin et al., 2013 |
| Cynodon | X | PS | PS | Present ${ }^{\text {b }}$ | Huang et al., 2017 |
| Epimedium | Present | Present | Present | PS | Sun et al., 2016 |
| Gentiana | Present | X | Present | Present | Fu et al., 2016 |
| $\begin{gathered} \text { Grasses (Six } \\ \text { crops) } \end{gathered}$ | X | X | X | Present | Jansen et al., 2007; <br> Guisinger et al., 2010 |
| Jasminum | X | Present | Present | Present | Jansen et al., 2007 |
| Pelargonium | X | Present | Present | Present | Jansen et al., 2007 |
| Passiflora | X | X | Present | X | Jansen et al., 2007 |
| Primula | PS | Present | Present | Present | Liu et al., 2016 |
| Scaevola | Present | Present | Present | X | Jansen et al., 2007 |
| Sciadopitys | X | Present | Present | Present | Li et al., 2016 |
| Trachelium | PS | X | X | X | Jansen et al., 2007; <br> Harberle et al., 2008 |
| Trifolium | X | PS | Present | Present | Cai et al., 2008 |

${ }^{\text {a }} \mathrm{X}$, gene seems to be absent from the chloroplast genome; PS, a pseudogene is present in the chloroplast genome; Present, a fully functional gene is found in the chloroplast genome.
${ }^{\text {b }}$ clpP1 in Cynodon is reported to include all of the coding region, but is missing both introns.
class inhibit translation of the chloroplast genome by preventing peptide bond formation (Douthwaite, 1992). Lincosamides function by binding to the 23 S rRNA in the 50 S ribosomal subunit, and disassociating peptidyl-tRNAs from the ribosome (Menninger and Coleman, 1993; Tenson et al., 2003). Resistance to lincomycin has been found by mutating a specific adenine in the 23S rRNA (Douthwaite, 1992; Tenson et al., 2003). Streptomycin inhibits translation of the chloroplast genome by interfering with the initial selection and proof-reading of the aminoacyltRNA in the A-site of the ribosome (Carter et al., 2000; Wirmer and Westhof, 2006).

Streptomycin binds to the sugar-phosphate backbone of the 16S rRNA in four locations, helices 1, 18, 27 and 44, and the S12 ribosomal protein (Wirmer and Westhof, 2006), and functions by stabilizing the A-site in the 30 S subunit in a conformation that increases the affinity of binding of any aminoacyl-tRNA (Carter et al., 2000; Peske et al., 2004). Resistance has been found through mutations at multiple positions on the 16 S rRNA including the 530 loop in helix 18 , and the region around nucleotide 912 (Wirmer and Westhof, 2006). Mutations in the S12 ribosomal protein have also shown resistance, including a lysine residue that interacts with helix 44, and multiple amino acids within the loops that interact with regions on the 16 S rRNA (Carter et al., 2000).

Tetracyclines are a group of antibiotics that inhibit chloroplast translation by blocking the binding of aminoacyl-tRNAs to the A-site of the ribosome (Brodersen et al., 2000; Wirmer and Westhof, 2006). Similar to spectinomycin, tetracycline binds to the minor groove of helix 34 of the 16 S rRNA in the 30 S ribosomal subunit along with helix 31 (Wirmer and Westhof, 2006). Rather than interfering with translocation like spectinomycin, the binding of tetracycline inhibits interaction of aminoacyl-tRNAs with the A-site (Brodersen et al., 2000; Wirmer and Westhof, 2006).

Pactamycin inhibits chloroplast translation by preventing the formation of the initiation complex in translation (Brodersen et al., 2000; Dinos et al., 2004; Wirmer and Westhof, 2006).

Specifically, pactamycin binds to the 16 S rRNA at helices 23 and 24, and the S 7 ribosomal protein, which causes the two helices to lock together and the mRNA in the E-site of the ribosome to be moved by $12 \AA$. This displacement of the mRNA is believed to block translocation of peptidyl-tRNAs into the E-site (Brodersen et al., 2000; Dinos et al., 2004; Wirmer and Westhof, 2006). Resistance to pactamycin has been found in mutations at positions A694, C795, and C796 in the 16S rRNA of Halobacterium halobium (Mankin, 1997; Wirmer and Westhof, 2006).

For this project, we chose spectinomycin to use in most of the experiments because it is the most widely used agent to inhibit chloroplast translation, especially in relation to chloroplast transformation. Lincomycin was chosen to confirm the results because it disrupts chloroplast translation by binding to the 23 S rRNA rather than the 16 S rRNA.

## Structure and Function of Acetyl-CoA Carboxylases (ACCases)

Biotin-dependent carboxylases are a large class of enzymes that utilize a molecule of biotin to catalyze the transfer of $\mathrm{CO}_{2}$ between substrates. Among this class of enzymes are ACCases, which function to convert acetyl-CoA to malonyl-CoA during fatty acid biosynthesis (Tong, 2013). Most plant species contain two different versions of ACCases that function in different steps in fatty acid biosynthesis. The first version, known as ACC1 in Arabidopsis, is a large, homomeric protein localized to the cytosol that functions in the formation of very longchain fatty acids (VLCFA), which are used in the formation of cuticular waxes, seed storage compounds such as triacylglycerides, suberin and sphingolipids, flavonoids (Amid et al., 2012), and other secondary metabolic compounds (Baud et al., 2004; Lü et al., 2011; Amid et al., 2012; Shang et al., 2016). VLCFAs and their derivatives have also been found to play a role in signaling within plants to regulate programmed cell death (Raffaele et al., 2008), activate ethylene
biosynthesis to promote cell elongation (Qin et al., 2007), suppress cell proliferation in the epidermis (Nobusawa et al., 2013), and regulate callus formation in culture (Shang et al., 2016). Null mutations in ACCl in Arabidopsis result in embryo lethality with the embryos arresting as "green blimps" without a defined hypocotyl or cotyledons (Meinke, 1985; Baud et al., 2003). Weak mutations result in decreased cuticular wax, reduced fertility, glossy inflorescence stems, and cold sensitivity (Lü et al., 2011; Amid et al., 2012).

The second type of ACCase found in most plant species is a heteromeric protein, similar to ACCases in bacteria, which is localized to chloroplasts and functions in a critical, early step of de novo fatty acid biosynthesis (Tong, 2013; Salie and Thelen, 2016). In vascular plants, excluding grasses that utilize a homomeric, chloroplast-localized ACCase, the four functional domains of the heteromeric ACCase are encoded by individual genes. The biotin carboxylase (BC) domain, biotin carboxyl carrier protein (BCCP domain), and carboxyltransferase (CT) $\alpha$ domain are encoded by the nuclear genome, while the CT- $\beta$ domain is encoded by the $\operatorname{acc} D$ gene within the chloroplast genome (Gu et al., 2011; Li et al., 2011). Null mutations in the CAC1A gene in Arabidopsis, which encodes one isoform of BCCP, result in embryo lethality with the embryos arresting at early stages of development. This phenotype is not seen with null mutants of CAC1B, a paralog to CAC1A (Li et al., 2011).

Some species of higher plants contain a homomeric version of ACCase that is localized to the chloroplast. Grasses have lost the heteromeric ACCase during the evolution of the Poaceae family, and contain only a chloroplast-localized, homomeric ACCase encoded by the nuclear genome (Jansen et al., 2007; Chalupska et al., 2008). This homomeric protein is the target for three classes of herbicides: aryloxyphenoxypropionates (FOPs), cyclohexanediones (DIMs), and phenylpyrazolins (DENs) (Kaundun, 2014). All three herbicide classes bind to the dimer interface within the CT domains of the protein and interfere with binding of acetyl-CoA (Zhang et al., 2004; Tong, 2013; Kaundun, 2014). Resistance to these herbicides has been found in plants
containing mutations in the two CT domains; specifically positions 1781, 2027, 2041, 2078, and 2096 (Liu et al., 2007). Most members of the Brassicaceae family have a duplicated copy of the homomeric, cytosolic ACCase that is targeted to chloroplasts. This means that Brassicaceae species contain three functional ACCases: one homomeric, cytosolic protein; one homomeric, chloroplast-localized protein; and one heteromeric, chloroplast-localized protein (Babiychuk et al., 2011; Bryant et al., 2011; Parker et al., 2014). Chloroplast-localized, homomeric ACCases can also be found in some algal species in the Prasinophyceae group that is thought to have been acquired through horizontal gene transfer rather than gene duplication (Huerlimann et al., 2015).

As noted above, ACCase proteins are composed of four main domains: BC, BCCP, CT- $\alpha$, and CT- $\beta$ (Tong, 2013). The BC domain catalyzes the first step in the conversion of acetyl-CoA to malonyl-CoA through ATP-dependent carboxylation of a biotin molecule, which is covalently bound to a specific lysine residue in the BCCP domain (Ohlrogge and Browse, 1995; Tong, 2013; Zu et al., 2013). This is shown at the top of Figure 3, where biotin is bonded to the BCCP domain, and is shown in the active site of the BC domain receiving a carboxyl group. There are three sub-domains within the BC domain ( $\mathrm{A}, \mathrm{B}$, and C ). The active site for the carboxylation step is located in the A and C sub-domains while the B sub-domain acts as a lid, and folds over the active site during the carboxylation (Tong, 2013; Zu et al., 2013). The function of BCCP region is to covalently bind the biotin molecule through biotinylation, and allow for translocation of this molecule between the BC and CT domains (Tong, 2013; Zu et al., 2013). The two CT domains work together to catalyze the second step in the carboxylation of acetyl-CoA to form malonylCoA through the transfer of the activated carboxyl group from the carboxybiotin molecule to a molecule of acetyl-CoA resulting in the production of malonyl-CoA (Ohlrogge and Browse, 1995; Tong, 2013; Zu et al., 2013; Wei and Tong, 2015). This step is shown at the bottom of Figure 3. The biotin molecule with its added carboxyl group is translocated to the active site within the pocket created by the CT domains, and the carboxyl group is transferred from biotin to


Figure 3. Biochemical Conversion of Acetyl-CoA to Malonyl-CoA Driven by an ACCase Enzyme. This image shows the cyclical process of forming malonyl-CoA from an activated carboxyl group attached to a biotin molecule and a free acetyl-CoA molecule. Adapted from the Acetyl-CoA Carboxylase webpage at The Arabidopsis Acyl-Lipid Metabolism Website (http://aralip.plantbiology.msu.edu/hehos/2).
an acetyl-CoA molecule, which becomes malonyl-CoA. The active site for this transfer of the activated carboxyl group is located inside an opening created through dimerization of the CT domains (Tong, 2013; Zu et al., 2013).

Homomeric ACCase proteins function as a dimer, which is essential for the catalytic reactions of the BC and CT domains (Figure 4). Monomers of the eukaryotic BC domain, tested in vitro, showed zero catalytic activity even though the monomers still had a high affinity for binding soraphen, a molecule that inhibits function of the BC domain (Weatherly et la., 2004; Wei and Tong, 2015). Large conformational changes have been found between the structures of the BC domain in the monomer and the BC domains in the dimer. This difference is believed to explain the inactivity of the monomer (Weatherly et la., 2004; Tong, 2013; Wei and Tong, 2015). The active site of the CT domain is formed by dimerization, which creates an opening surrounded by two CT- $\alpha$ and two CT- $\beta$ domains (Bilder et al., 2006; Tong, 2013; Zu et al., 2013).

## Chloroplast Protein Import via the TIC/TOC Import System

Thousands of proteins encoded by the nuclear genome function in the chloroplast. These proteins are imported into the chloroplast through the TIC/TOC (Translocon at Outer envelope membrane of the Chloroplast) protein import system (Shi and Theg, 2013). The TIC and TOC complexes are composed of numerous membrane-bound proteins, and chaperone proteins that work with them (Jarvis, 2008; Kessler and Schnell, 2009; Li and Teng, 2013; Shi and Theg, 2013). Both complexes exist in at least two different forms, with some redundancy between them: one that imports primarily housekeeping proteins into the chloroplast and one that imports photosynthetic proteins (Constan et al., 2004; Inoue et al., 2010; Hirabayashi et al., 2011; Kasmati et al., 2011). Housekeeping proteins appear to be imported mainly through complexes that include Toc34, Toc132/Toc120, and Tic20-IV whereas photosynthetic protein import


Figure 4. Crystal Structure of a Yeast ACCase Dimer. This image shows the crystal structure of a Yeast ACCase holoenzyme dimer. The two monomers are shown separately; one as a ribbon structure and one as a surface structure. The colors within the image correspond to the different domains: Red, BC; Blue, BCCP; Turquoise, $\beta$-CT; Yellow, $\alpha-\mathrm{CT}$; and Greens/PinkPurple, central domain. Adapted from Wei and Tong (2015).
involves Toc33, Toc159, and Tic20-I (Hirabayashi et al., 2011; Kasmati et al., 2011). Understanding this system is important for this project since the import of ACC2 into the chloroplast is needed to compensate for a loss of chloroplast translation. Components of the TIC/TOC protein import system are also potential modifiers that enhance tolerance of a loss of chloroplast translation. As the ACC2 precursor protein flows through the TOC and TIC import complexes of the chloroplast, there are a number of different proteins, detailed below, that likely interact with ACC2. These interactions can affect how the protein is folded, the stability of the precursor protein as it passes through the chloroplast membranes, and how the protein is recognized for translocation into the chloroplast.

The TOC protein complexes are composed of a protein conducting channel (Toc75), and two receptor GTPases (Li and Teng, 2013; Shi and Theg, 2013). Toc75 seems to function in both versions of the TOC protein complex as a guide for proteins going through the outer membrane of the chloroplast (Huang et al., 2011). Two isoforms of Toc75 are found in the Arabidopsis genome. The main isoform, encoded by AtTOC75-III, functions as the protein conducting channel, Toc75, while the second version, Outer Envelope Protein 80 kDa (OEP80) encoded by AtOEP80/AtTOC75-V, and has an unknown function (Huang et al., 2011; Shi and Theg, 2013). Null mutations in AtTOC75-III and AtOEP80 result in embryo lethality at early stages of development, meaning that both proteins are required for embryo development in Arabidopsis (Baldwin et al., 2005; Patel et al., 2008; Meinke et al., 2009).

Toc159 and Toc33 are two GTPases found in the TOC protein complex typically associated with the import of photosynthetic proteins. Their counterparts associated with the import of housekeeping proteins are Toc132/ Toc120 and Toc34, respectively (Hirabayashi et al., 2011; Shi and Theg, 2013). Toc159 and Toc 132/ Toc 120 are composed of three domains: (1) the M domain, the C-terminus that anchors the protein to the outer membrane; (2) the G domain, the GTP-binding location; and (3) the A domain, the N-terminus (Kubis et al., 2004). Inoue et al.
(2010) have shown that the A domain on Toc 159 and Toc132 heavily influences the selectivity of the TOC protein complexes for either photosynthetic or housekeeping proteins. A fourth member of the Toc159-type GTPases, Toc90, lacks an A domain and has been shown to function similarly to Toc159 at low levels (Hiltbrunner et al., 2004; Infanger et al., 2011). Overexpression of Toc90 can partially rescue ppi2, a knockout of Toc159 (Infanger et al., 2011). Similar to Toc159 and Toc132/Toc120, Toc34 and Toc33 primarily function as receptors for precursor proteins (Kubis et al., 2003; Constan et al., 2004; Shi and Theg, 2013). Members of the TOC import complex are some of the first proteins to interact with ACC 2 as it is being translocated into the chloroplast. Recognition of ACC2 by these proteins is crucial for the translocation to occur (Kubis et al., 2004; Inoue et al., 2010).

The TIC protein complexes are composed of several proteins that work together to form the protein conducting channel across the inner chloroplast membrane (Hirabayashi et al., 2011; Kikuchi et al., 2013; Li and Teng, 2013; Shi and Theg, 2013). Tic20 is believed to be one of the channel proteins for translocation across the inner membrane, and has been shown to form a 1megadalton (MDa) complex with Tic56, Tic100, Tic214, and potentially Tic21 (Kasmati et al., 2011; Kikuchi et al., 2013).

Four genes encoding different isoforms of Tic20 can be found in Arabidopsis. Little is known about the function of the proteins encoded by of two of these genes, AtTIC20-II and AtTIC20-V, which are expressed at high levels throughout plant development (Kasmati et al., 2011; Shi and Theg, 2013). The other two genes, AtTIC20-I and AtTIC2O-IV, are thought to play crucial roles as channels for the import of photosynthetic and housekeeping proteins, respectively (Hirabayashi et al., 2011; Kasmati et al., 2011; Kikuchi et al., 2013). Not much is known about Tic21, but there is evidence it plays a role in the assembly of the 1-MDa complex (Teng et al., 2006; Shi and Theg, 2013). There is a debate over a second function of Tic21 in iron transport across the chloroplast membrane (Shi and Theg, 2013). This hypothesis was introduced by Duy et
al. (2007) when they showed that iron homeostasis-related proteins are upregulated in Arabidopsis tic21 mutants. On the other hand, Kikuchi et al. (2009) maintain that Tic21 functions solely in the TIC protein import complex since the upregulation is also found in tic20 and albino3 mutants.

Tic110, Tic40, and the stromal chaperone protein Hsp93 are thought to function together as the translocation motor in the stroma (Kovacheva et al., 2005; Shi and Theg, 2013). Null mutations in AtTIC110 result in embryo lethality at an early stage of development, which is consistent with the function of Tic110 as a recruiter for stromal chaperone proteins (Kovacheva et al., 2005). Tic40 is believed to be a chaperone to Tic110 where it binds to the protein in order to encourage the release of the transit peptide from the precursor protein being imported (Chou et al., 2006; Shi and Theg, 2013). The transit peptide is then cleaved by the stromal processing peptidase (SPP) before the final folding of the protein (Trösch and Jarvis, 2011; Shi and Theg, 2013). Stengel et al. (2009) showed that further regulation of the protein import complexes is provided by Tic62, Tic55, and Tic32 through redox signaling derived from photosynthesis. Members of the TIC import complex are needed to finish translocating the ACC2 precursor protein into the stroma of the chloroplast so that it can be folded into the final ACC2 protein, and function in fatty acid biosynthesis.

There is evidence of numerous chaperone proteins that function throughout the TIC/TOC protein import system. Cytosolic chaperones, such as Heat-shock protein 70 kDa (Hsp70), are thought to assist with the movement of precursor proteins from the ribosome to the TOC import complex on the surface of the chloroplast (Flores-Pérez and Jarvis, 2013). Hsp70 has also been shown to be involved in degradation of targeted precursor proteins (Lee et al., 2009; Flores-Pérez and Jarvis, 2013). Cytosolic chaperone protein 14-3-3 seems to complex with Hsp70 to help guide some types of precursor proteins to Toc34, which increases the efficiency of protein import for these proteins (May and Soll, 2000; Flores-Pérez and Jarvis, 2013). Hsp90 and AnKyrin

Repeat-containing protein 2 (AKR2) are additional cytosolic chaperones that are believed to function in guiding precursor proteins to the TOC import complexes (Flores-Pérez and Jarvis, 2013). Tic22 is thought to chaperone precursor proteins across the intermembrane space (IMS) between the TOC and TIC import complexes; although not much is known about the mechanism of this translocation (Kouranov et al., 1998; Shi and Theg, 2013). Stromal chaperones Hsp93, cpHsp70, and Hsp90C have been shown to operate alongside Tic110 and Tic40, and provide the driving force to translocate precursor proteins into the stroma (Kovacheva et al., 2007; Inoue et al., 2013; Shi and Theg, 2013). Translocation of ACC2 into the chloroplast cannot happen without chaperone proteins. These proteins are there to fold, stabilize, and guide ACC2 as it moves across the chloroplast membranes.

## CHAPTER III

# NATURAL VARIATION IN SEEDLING RESPONSES TO A LOSS OF CHLOROPLAST TRANSLATION IN ARABIDOPSIS 

## INTRODUCTION

Since the mid-1990s, natural variation among Arabidopsis accessions has been used to study a variety of fundamental questions in plant biology (Alonso-Blanco et al., 2009; Weigel, 2012). Various tools and resources are available for natural variation studies in Arabidopsis, including more than 7000 accessions available through seed stock centers, and whole-genome sequences for over 850 accessions (http://signal.salk.edu/atg1001/3.0/gebrowser.php; Weigel, 2012). In order to understand why plant species differ in their responses to a loss of chloroplast translation, we first looked to see if the phenotypic variation seen between Arabidopsis, Brassica, and tobacco could be found among natural accessions of Arabidopsis. We conducted two forward genetic screens analyzing seedling responses on spectinomycin, an inhibitor of chloroplast translation. Our original analysis of 52 accessions (Parker et al., 2014) was later expanded to include an additional 100 accessions chosen from the 1001 Genomes Project (Parker et al., 2016).

Selected accessions were also tested on lincomycin, a second antibiotic that inhibits chloroplast translation with a different mode of action, to confirm that the phenotypes seen on spectinomycin were caused by a loss of chloroplast translation. To further study the nuclear genes underlying tolerance of a loss of chloroplast translation, crosses were performed between three accessions tolerant of spectinomycin and one sensitive accession. Most of the data presented in this chapter have been published (Parker et al., 2014; 2016), except for the spectinomycin details listed in Appendices A and B.

## MATERIALS AND METHODS

## Plant Material and Growth Conditions

Seeds for wild-type accessions of Arabidopsis analyzed on spectinomycin were obtained from the Arabidopsis Biological Resource Center (ABRC; https://abrc.osu.edu/) at Ohio State University (Parker et al., 2014; 2016). Names and stock numbers for the accessions are listed in Appendix A. Seeds for the "Nossen" accession were obtained from wild-type plants that segregated in mutant populations (emb3126-1 and emb3137-1) grown in our laboratory (Parker et al., 2014).

Mature seeds were germinated on plates containing a nutrient-agar medium following the protocol described by Meinke et al. (2009). The basal germination medium used was composed of Murashige and Skoog salts, $3 \%(\mathrm{w} / \mathrm{v})$ glucose, and $0.8 \%(\mathrm{w} / \mathrm{v})$ agar. For growth on spectinomycin and lincomycin plates, $50 \mathrm{mg} \mathrm{L}^{-1}$ spectinomycin or $200 \mathrm{mg} \mathrm{L}^{-1}$ lincomycin was added to the autoclaved basal medium through sterile filtration immediately before pouring the plates (Parker et al., 2014). Prior to plating on the nutrient-agar plates, seeds were surface sterilized in $95 \%$ ethanol for 30 seconds followed by a treatment of $50 \%$ non-concentrated Clorox bleach (including 1 drop of Tween 20 detergent per 10 mL of bleach) for 6 minutes (Meinke et
al., 2009). Seeds were then washed several times with sterile water, and plated on round petri dishes ( 100 mm in diameter). For basal plates, 50 seeds were evenly spread across the plate, and for spectinomycin or lincomycin plates 20-30 seeds were evenly spread. Laminated templates were used to ensure seeds were in the same positions on each plate. After plating the seeds, the plates were stored at $4^{\circ} \mathrm{C}$ in a refrigerator for 2-3 days. For accessions that needed an extended germination period, the plates were stored in a refrigerator for 7 days. Once removed from the refrigerator, the plates were placed under fluorescent lights for 14-21 days at room temperature. Seedlings were then transplanted to pots containing a mixture of 12-parts vermiculite, 3-parts soil, and 1-part sand. Pots were placed under fluorescent lights set to 16 h -light/8h-dark cycles in a growth room maintained at $23^{\circ} \mathrm{C} \pm 1^{\circ} \mathrm{C}$. Daily watering of the pots was done using a nutrient solution ( $0.35 \mathrm{~g} \mathrm{~L}^{-1}$ ) of Excel 15-5-15 fertilizer (Scotts Miracle-Gro, Port Washington, NY, USA; Berg et al., 2005). Pots were partially submerged (to a depth of 0.5 to 1 inches) in nutrient solution and soaked for several minutes before draining. After 2-3 weeks in the growth room, plants requiring vernalization were transferred to a cold room for $5-6$ weeks at $5^{\circ} \mathrm{C}$ under fluorescent lights set to 8 h -light/16h-dark cycles. These plants were then returned to the growth room for flowering. For seed collection, dried siliques were typically harvested from individual plants. In some cases, bulk dry seeds were also harvested from groups of sibling plants. Seed stocks were stored in capped vials ( 2 mL Fisherbrand ${ }^{\mathrm{TM}}$ Free-Standing Microcentrifuge Tubes) in the refrigerator at $4^{\circ} \mathrm{C}$.

## Seedling Responses on Spectinomycin and Lincomycin

Responses of seedlings grown on antibiotics were evaluated 5 weeks after plating, with accommodation for plates refrigerated longer. Measurements were performed under a Wild (M7) dissecting microscope equipped with an ocular micrometer. Using a ranking system, the extent of
leaf development for each seedling was determined by the size and number of leaves produced. Six ranks were used to classify the seedlings: A, cotyledons only (no visible leaf initials); B, first pair of leaf initials ( $\leq 1.5 \mathrm{~mm}$ combined leaf span); C, multiple leaf initials ( $\leq 2.5 \mathrm{~mm}$ combined for the two largest initials including any callus growth); D , one pair of leaves (> 1.5 mm combined); E, multiple leaves ( $>2.5 \mathrm{~mm}$ and $\leq 6 \mathrm{~mm}$ combined for the two largest); and F , multiple leaves (> 6 mm combined for the two largest). Leaf development was also measured by length (mm) and width (mm) of the largest developed leaf, and the number of leaves found in each category based on leaf length: A, $<1.5 \mathrm{~mm} ; \mathrm{B}, \geq 1.5 \mathrm{~mm}$ and $<3 \mathrm{~mm} ; \mathrm{C}, \geq 3 \mathrm{~mm}$ and $<4.5$ $\mathrm{mm} ; \mathrm{D}, \geq 4.5 \mathrm{~mm}$ and $<6 \mathrm{~mm}$; and $\mathrm{E}, \geq 6 \mathrm{~mm}$. The leaf count was removed from later seedling screens because it was redundant information for the extent of seedling growth. Root development was measured by approximating the root length using 5 categories: $\mathrm{A},<2 \mathrm{~mm} ; \mathrm{B}, \geq$ 2 mm and $<4 \mathrm{~mm} ; \mathrm{C}, \geq 4 \mathrm{~mm}$ and $<6 \mathrm{~mm} ; \mathrm{D}, \geq 6 \mathrm{~mm}$ and $<9 \mathrm{~mm}$; and $\mathrm{E}, \geq 9 \mathrm{~mm}$. Observations were made for each seedling on the pigmentation of cotyledons and leaves, and the location of the root in the medium. On occasion, seedlings with evidence of slight greening were found, often caused by limited root contact with the medium. These seedlings were excluded from evaluation.

## Seedling and Whole Plate Imaging

Seedling images were captured with a Nikon DXM1200 digital camera attached to a Wild M-8 dissecting microscope, using the Nikon ACT-1 version 2.51 software. Plates with lids removed were placed under the dissecting scope with a black background, and centered on the seedling imaged. Most images were captured at 12x magnification; 6 x magnification was also used to capture the full extent of growth for larger seedlings. Whole plate images were taken with a Canon PowerShot SX30 IS digital camera attached to a copy stand equipped with tungsten
lights. Lids were removed, and the plates were placed on a black background. The background of published images was uniformly darkened to highlight the seedling using the GNU Image Manipulation Program (GIMP) version 2.8.2.

## Crosses Between Different Wild-Type Accessions

Crosses between wild-type accessions were performed using a tolerant accession (Jl-3, Be-1, or Tsu-0) as the female, and a sensitive accession ("Nossen") as the male. Successful crosses were confirmed by PCR genotyping (Parker et al., 2014). Crosses were accomplished following the protocol described by Meinke et al. (2009). Late floral buds, with a developed ovary and non-dehiscent anthers on the female parent were carefully emasculated by removing the 6 anthers with fine-tipped (Inox No. 4) forceps under a Wild (M7) dissecting microscope. Pollen from the male parent was brushed across the stigma surface of the emasculated bud until the surface was covered. In order to identify the crossed silique after it matured, and to prevent pollen contamination, 1-4 open flowers immediately below the cross were removed from the stem. Lateral branches not containing a cross were removed from the female plant to direct nutrients to the branches containing crosses. Typically, 1-4 crosses were performed on a single plant, and there were 4-10 crosses within one pot of plants. After crossing, these pots were placed under fluorescent lights (16h-light/8h-dark cycle) in a Percival (Perry, IA USA) plant growth chamber (AR-36L) maintained at $22^{\circ} \mathrm{C} \pm 1^{\circ} \mathrm{C}$, and watered with the same nutrient solution used in the growth room. After 4-5 weeks in the growth chamber, dry siliques from the female plant, comprising the expected cross and the surrounding selfed siliques, were harvested and stored in the refrigerator at $4^{\circ} \mathrm{C}$.

## RESULTS

## Arabidopsis Accessions Differ in Seedling Sensitivity to Spectinomycin

We chose the 52 Arabidopsis accessions for our original analysis based on several criteria: (1) short flowering time to simplify the analysis of genetic crosses; (2) broad geographic locations; (3) background accessions of mutants defective in chloroplast translation (Bryant et al., 2011); and (4) high genetic diversity based on previous studies of natural variation (McKhann et al., 2004; Nordborg et al., 2005; Clark et al., 2007). One of the accessions, derived from segregating populations of RIKEN insertion mutants, was designated "Nossen" because it differed from the sequenced Nossen accession, No-0 (Parker et al., 2014). Tolerance of accessions to spectinomycin was analyzed using a ranking system (A-F) to characterize the development of seedlings grown for five weeks on $50 \mathrm{mg} / \mathrm{L}$ spectinomycin and $30 \mathrm{~g} / \mathrm{L}$ glucose (Figure 5).

Consistent with our expectation that natural accessions might differ in their ability to tolerate a loss of chloroplast translation, we found that these 52 accessions had a broad range of seedling phenotypes on spectinomycin (Table 2; Figure 6). Seedlings from the most tolerant accessions grew into albino rosettes containing multiple large leaves. At the other end of the spectrum, seedlings from the most sensitive accessions developed only rudimentary leaf initials or lacked such initials altogether. Between these two extremes, seedlings from intermediate accessions showed moderate leaf development. Examples of sensitive, intermediate, and tolerant seedlings can be seen in Figure 3. Even though we classified each accession as sensitive, intermediate or tolerant, the range of accessions was continuous from the most tolerant to the most sensitive. Within each accession, the seedling phenotypes were mostly consistent, except for some intermediate accessions that showed a broad range from sensitive to tolerant seedlings. This consistency within an accession is shown in Figure 7. Occasional seedlings with greening on


Figure 5. Seedling Phenotypes Reflecting Classification System. A and B, Sensitive accessions (categories A and B respectively). C and D, Intermediate accession (categories C and D respectively). E and F, Tolerant accessions (categories E and F respectively). Bar $=1 \mathrm{~mm}$. Adapted from Parker et al. (2014; 2016).

Table 2. Seedling Responses of 52 Arabidopsis Natural Accessions Germinated on Spectinomycin. Additional details for all 52 accessions are presented in Appendix B. Adapted from Parker et al. (2014).

| Accession <br> Response <br> Category | Total <br> Accessions Classified | Total Seedlings Classified | Distribution of Seedling Phenotypes on Spectinomycin (\%) ${ }^{\text {a }}$ |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Sensitive |  | Intermediate |  | Tolerant |  |
|  |  |  | A | B | C | D | E | F |
| Tolerant | 20 | 613 | 1.3 | 1.6 | 3.8 | 2.0 | 65.4 | 25.9 |
| Intermediate | 15 | 409 | 5.4 | 13.2 | 37.4 | 15.2 | 26.4 | 2.4 |
| Sensitive | 17 | 526 | 30.0 | 40.1 | 12.5 | 15.0 | 2.3 |  |

${ }^{\text {a }}$ Letters define classes from expanded cotyledons without leaves (A) to extensive rosettes with sizeable leaves ( F ) as defined in the text. Refer to Figure 3.1 for examples of seedling phenotypes for each class. Bold font, most common phenotypes ( $>20 \%$ ).


Figure 6. Spectinomycin Seedling Responses of 52 Arabidopsis Natural Accessions. Percent of seedlings in each class (Green, Sensitive; Orange, Intermediate; and Blue Tolerant) assigned to the six phenotypic categories (A-F) that are described in the Methods section of this Chapter. Additional data for these accessions can be found in Table 2 and Appendix B.


Figure 7. Consistent Seedling Responses of Arabidopsis Accessions on Spectinomycin. Clockwise from lower left: tolerant, Jl-3, Be-1, and Tsu-0; and sensitive, "Nossen". Plate diameter $=9 \mathrm{~cm}$. Adapted from Parker et al. (2014).
cotyledons and leaves usually had poor root contact with the growth medium, which limited uptake of spectinomycin. With fewer than 20 seedlings tested for each accession in this original screen, minor growth differences between accessions were not significant. For further analyses, we concentrated on several of the most tolerant (Jl-3, Be-1, and Tsu-0) and sensitive ("Nossen", Oy-0, and Nie1-2) accessions identified. We initially excluded Sav-0 (the most sensitive accession) because genome sequence information was not available at that time. We also used Columbia (Col-0) because it is the most well-studied Arabidopsis accession, and it consistently shows an intermediate response. In order to confirm the range of tolerance found in accessions grown on spectinomycin, we tested these seven accessions on lincomycin, a second antibiotic with an entirely different mechanism to inhibit translation of the chloroplast genome. The extent of seedling growth for each accession on lincomycin mirrored the extent of growth on spectinomycin (Figures 8, 9). This supports our conclusion that differences in spectinomycin tolerance among natural accessions reflect fundamental differences in response to the inhibition of chloroplast translation.

To further study the nuclear genes underlying tolerance of a loss of chloroplast translation, we crossed wild-type plants from three tolerant accessions (Jl-3, Be-1, and Tsu-0) with the sensitive accession "Nossen". Progeny (F1) plants were allowed to self-pollinate, and the subsequent F2 seeds were plated on spectinomycin. Variation in the F2 seedling responses was observed for all three crosses examined (Figure 10). In all crosses, we could consistently identify sensitive seedlings that look like the "Nossen" parental, and tolerant seedlings similar to the tolerant parental. There was also a broad range of intermediate seedlings between the two phenotypes. This range in phenotypes was evidence of an underlying genetic basis for the phenotypic differences observed. Later, we focused solely on the cross between Tsu-0 and "Nossen" because these results were most similar to the 1:2:1 ratio expected for a single, semidominant genetic locus (Table 3; Figure 11).


Figure 8. Seedling Responses of Three Arabidopsis Accessions on Spectinomycin and Lincomycin. A and B, sensitive accession, "Nossen", on spectinomycin (A) and lincomycin (B). C and D, intermediate accession, Col-0, on spectinomycin (C) and lincomycin (D). E and F, tolerant accession, Tsu-0, on spectinomycin (E) and lincomycin (F). Bar $=1 \mathrm{~mm}$.


Figure 9. Consistent Seedling Responses of Arabidopsis Accessions on Lincomycin. Clockwise from lower left: tolerant, Jl-3, Be-1, and Tsu-0; and sensitive, "Nossen". Plate diameter $=9 \mathrm{~cm}$. The consistency of response seen here is similar to that observed on spectinomycin (Figure 5). Adapted from Parker et al. (2014).


Figure 10. Segregating Seedling Responses in the F2 Generation from Crosses Between "Nossen" and Tolerant Accessions. A, "Nossen" crossed with Tsu-0. B, "Nossen" crossed with Be-1. C, "Nossen" crossed with Jl-3. Plate diameter $=9 \mathrm{~cm}$. Adapted from Parker et al. (2014).

Table 3. Seedling Responses on Spectinomycin of Parental Accessions and F2 Progeny from Crosses Between "Nossen" and Tolerant Accessions. Adapted from Parker et al. (2014).

| Genotype <br> Examined | Total Seedlings Classified | Distribution of Seedling Phenotypes on Spectinomycin (\%) ${ }^{\text {a }}$ |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Sensitive |  | Intermediate |  | Tolerant |  |
|  |  | A | B | C | D | E | F |
| "Nossen" | 178 | 41.0 | 24.1 | 33.2 | 1.7 |  |  |
| Tsu-0 | 133 |  |  |  |  | 80.4 | 19.6 |
| Tsu-0 x "Nossen" | 233 | 23.2 | 0.9 | 21.5 | 3.4 | 42.0 | 9.0 |
| Be-1 | 131 |  |  |  |  | 47.3 | 52.7 |
| Be-1 x "Nossen" | 140 | 15.0 | 12.9 | 23.6 | 2.8 | 37.9 | 7.8 |
| Jl-3 | 135 |  |  |  | 0.7 | 31.9 | 67.4 |
| Jl-3 x "Nossen" | 198 | 23.7 | 8.6 | 15.7 | 11.6 | 28.3 | 12.1 |

${ }^{\text {a }}$ Letters define classes from expanded cotyledons without leaves (A) to extensive rosettes with sizeable leaves $(\mathrm{F})$ as defined in the text.


Figure 11. Comparison of Spectinomycin Seedling Responses of Parental Accessions and F2 Progeny from Crosses Between "Nossen" and Tolerant Accessions. Percent of seedlings in each accession or F2 line assigned to the six phenotypic categories (A-F) that are described in the Methods section of this chapter. A, Tsu-0 x "Nossen"; B, Be-1 x "Nossen"; and C, Jl-3 x "Nossen". The data for these crosses can be found in Table 3.

## Evaluating Additional Lines Increases the Number of Sensitive Accessions

In order to learn more about what causes sensitivity of some accessions to a loss of chloroplast translation, we increased the total number of accessions tested on spectinomycin to identify additional sensitive accessions to study. For this second analysis, we chose 100 new accessions based on the following criteria: (1) availability of a sequenced genome from the 1001 Genomes Project; and (2) broad geographic locations (Figure 12). Seed stocks for these 100 accessions were derived from siblings of the plants sequenced in the 1001 Genomes Project.

The ranking system used to characterize the development of seedlings after five weeks of growth on spectinomycin was expanded from six categories to nine in order to create a quick method to calculate a phenotype score for each accession. Sensitive seedlings were classified as (1) cotyledons only (no visible leaf initials), (2) first pair of leaf initials ( $\leq 1.5 \mathrm{~mm}$ combined leaf span), or (3) multiple leaf initials ( $\leq 1.5 \mathrm{~mm}$ combined for the two largest initials including any callus growth). Intermediate seedlings were classified as (5) multiple leaves ( $>1.5 \mathrm{~mm}$ and $\leq 2.5$ mm combined for the two largest), (6) one pair of leaves (> 1.5 mm combined), or (7) multiple leaves ( $>2.5 \mathrm{~mm}$ and $\leq 4 \mathrm{~mm}$ combined for the two largest). Tolerant seedlings, which all had multiple leaves, were classified as $(9)>4 \mathrm{~mm}$ and $\leq 6 \mathrm{~mm},(10)>6 \mathrm{~mm}$ and $\leq 9 \mathrm{~mm}$, or $(11)>9$ mm combined for the two largest. Examples of each seedling category can be seen in Figure 13. We calculated a phenotype score for each accession using the average rank of all individual seedlings measured. Utilizing the percentage of seedlings within each category, accessions were classified as hypersensitive ( $95 \%$ or more seedlings in categories 1 and 2 and $50 \%$ or more seedlings in category 1); sensitive ( $70 \%$ or more seedlings within a sensitive category); low intermediate (50\% or more seedlings within a sensitive category); high intermediate (50\% or more seedlings within a tolerant category); tolerant ( $70 \%$ or more seedlings within a tolerant category); or intermediate (everything that failed to meet any of the above criteria).


Figure 12. Global Distribution of 152 Natural Accessions Analyzed. White, no accessions used. Light Green, 1 or 2 accessions used. Darker green, 10-28 accessions used. Constructed using eSpatial Mapping Software (https://www.espatial.com/).


Figure 13. Seedling Responses of Selected Arabidopsis Accessions on Spectinomycin. A to F, Sensitive seedlings, categories 1 (A and B), 2 (C and D), and 3 (E and F). G to L, Intermediate seedlings, categories $5(\mathrm{G}$ and H$), 6(\mathrm{I}$ and J$)$, and $7(\mathrm{~K}$ and L$)$. M to P , Tolerant seedlings, categories $9(\mathrm{M}$ and N$), 10(\mathrm{O})$, and $11(\mathrm{P}) . \mathrm{Bar}=1 \mathrm{~mm}$. Adapted from Parker et al. (2016).

The 100 accessions from this second spectinomycin analysis showed the same broad range of seedling phenotypes as the first 52 accessions. Combining the results from both analyses, more the 8,000 seedlings from the 152 accessions were evaluated on spectinomycin (Table 4; Figure 14; Appendix B). Of these accessions, three were classified as hypersensitive, 22 as sensitive, 13 as low intermediate, 83 as intermediate, 11 as high intermediate, and 20 as tolerant. Again, consistency of seedling phenotypes was found within most accessions, except for some intermediate accessions that showed a broad range of seedling responses, for unknown reasons. Occasionally, a seedling from a tolerant accession grew poorly on spectinomycin showing a sensitive phenotype, possibly caused by poor nutrient uptake from the growth medium. On the other hand, hypersensitive accessions did not have any high intermediate or tolerant seedlings outside of those with greening and root problems, and sensitive accessions did not have any highly tolerant seedlings. Additional analyses, described later, focused on hypersensitive and sensitive accessions with the lowest phenotype scores recovered from a combination of forward and reverse genetic screens.

## DISCUSSION

In this study, we used 152 natural accessions of Arabidopsis to explore the genetics underlying phenotypic differences found among plant species when translation of the chloroplast genome is blocked. Our results from spectinomycin studies of these 152 accessions show that differences originally reported by Zubko and Day (1998) between Arabidopsis, Brassica and tobacco, can also be found within Arabidopsis accessions. While a broad range of variation was found among the accessions, seedling phenotypes within an accession were mostly consistent, with the exception of some intermediate accessions that had a wide range. A number of these intermediate accessions possibly lack consistency due to the small number of seedlings analyzed

Table 4. Seedling Responses of 152 Arabidopsis Natural Accessions Germinated on Spectinomycin. Additional details for all 152 accessions are presented in Appendix B. Adapted from Parker et al. (2016).

| Accession <br> Response <br> Category | Total <br> Accessions Classified | Total Seedlings Classified | Accession Phenotype Scores | Distribution of Seedling Phenotypes on Spectinomycin (\%) ${ }^{\text {a }}$ |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Sensitive |  |  | Intermediate |  |  | Tolerant |  |  |
|  |  |  |  | 1 | 2 | 3 | 5 | 6 | 7 | 9 | 10 | 11 |
| Tolerant | 20 | 1,861 | 8.1-9.7 | 0.5 | 0.8 | 0.5 | 1.2 | 0.6 | 9.3 | 52.0 | 30.0 | 5.1 |
| High <br> Intermediate | 11 | 477 | 6.4-8.3 | 2.5 | 1.0 | 0.4 | 4.6 | 1.7 | 32.5 | 49.1 | 8.0 | 0.2 |
| Intermediate | 83 | 2,824 | 3.9-7.8 | 5.2 | 8.0 | 6.4 | 23.7 | 9.8 | 35.2 | 10.4 | 1.3 |  |
| Low <br> Intermediate | 13 | 427 | 3.2-4.5 | 12.9 | 33.7 | 12.2 | 15.2 | 15.9 | 6.6 | 3.5 |  |  |
| Sensitive | 22 | 1,872 | 1.3-3.2 | 34.1 | 39.6 | 19.0 | 3.5 | 2.4 | 1.0 | 0.4 |  |  |
| Hypersensitive | 3 | 546 | 1.1-1.2 | 86.8 | 10.6 | 2.2 |  | 0.4 |  |  |  |  |

${ }^{\text {a }}$ Numbers define classes from expanded cotyledons without leaves (1) to extensive rosettes with sizeable leaves (11) as defined in the text. Refer to Figure 3.7 for examples of seedling phenotypes for each class. Bold font, most common phenotypes ( > $10 \%$ ).


Figure 14. Spectinomycin Seedling Responses of 152 Arabidopsis Natural Accessions. Percent of seedlings in each class assigned to the nine phenotypic categories (1-3; 5-7; 9-11) that are described in "Evaluating Additional Lines Increases the Number of Sensitive Accessions" in this Chapter. Additional data for these accessions can be found in Table 4 and Appendix B.
per accession. Because this project focused on the most tolerant and sensitive accessions, many of the intermediates were not re-tested after the initial spectinomycin screen. For accessions that were evaluated more than once, there is the possibility that poor contact between the roots of the seedling and the spectinomycin media allowed for more extensive growth than was seen on other plates. Although, poor contact with the media typically resulted in greening of the seedling due to a decrease in spectinomycin uptake. Additional spectinomycin screenings and analyses of these intermediate accessions will be needed to determine if the lack of consistency in seedling phenotypes is due to plating inconsisitencies or something else.

The striking phenotypic differences observed here between the most tolerant and sensitive accessions provide a unique system to analyze the nuclear genes and cellular processes involved. We started to explore the genetic basis of these differences by crossing tolerant and sensitive accessions. The variation seen in the F2 seedling responses to spectinomycin from crosses between tolerant accessions (Jl-3, Be-1, and Tsu-0) and the sensitive "Nossen" accession suggests that there is a genetic component underlying the phenotype differences observed. While the crosses with Jl-3 and Be-1 were difficult to interpret, and seemed to indicate the involvement of multiple genes underlying the phenotype differences, the F 2 responses from the cross between Tsu-0 and "Nossen" showed approximately a 1:2:1 ratio of tolerant to intermediate to sensitive seedlings, which would be expected if a single, semi-dominant genetic locus was underlying the phenotype differences between the parental accessions. However, there were limitations to using these crosses to identify the underlying gene(s). Since the F2 seedlings were analyzed on spectinomycin, we were not able to grow them in soil to harvest progeny (F3) seed. Seedlings at the borderlines between the sensitive, intermediate, and tolerant categories were hard to classify, which made it difficult to distinguish heterozygous seedlings, which should be intermediate, from those homozygous for either "Nossen" (sensitive seedlings) or Tsu-0 (tolerant seedlings). Since we could not readily use this system to identify specific genes, we turned to a different approach
that involved crossing the tolerant Tsu-0 accession with emb mutants (in the sensitive "Nossen" background) that were disrupted in chloroplast translation. This approach allowed us to harvest progeny of the same plants we were analyzing, and differences between plants were more distinct. The results of that approach are reported in Chapter 4.

Arabidopsis accessions hypersensitive to a loss of chloroplast translation clearly show that one or more genes in the chloroplast genome are essential for seedling development in Arabidopsis. We believe the most critical gene is $a c c D$, based on targeted gene disruptions in tobacco, and the retention of $a c c D$ in the chloroplast genomes of parasitic plants. We later give further evidence that $a c c D$ is the most critical gene in the chloroplast genome. Comparing the extent of development between tolerant accessions on spectinomycin and Arabidopsis mutants defective in photosynthesis (Bryant et al., 2011), the albino seedlings from tolerant accessions were not as extensively developed. This means that the loss of chloroplast translation in tolerant accessions is not fully rescued by $A C C 2$. One possible explanation is that there are additional chloroplast gene(s) that become essential at later stages in seedling development. Among these candidate genes are $y c f 1$ and $y c f 2$, which function in chloroplast protein import (Kikuchi et al., 2013; Parker et al., 2016). These genes might play a role in importing housekeeping proteins essential for later stages of plant development. Another candidate is $c l p P 1$, which is a subunit of a chloroplast-localized protease complex known to be required for chloroplast function (RamosVega et al., 2015). All three of these genes, along with accD, were identified as essential chloroplast genes in tobacco (Drescher et al., 2000; Kuroda and Maliga, 2003; Kode et al., 2005).

## CHAPTER IV

## FACTORS THAT ENHANCE THE EXTENT OF EMBRYO DEVELOPMENT IN THE ABSENCE OF CHLOROPLAST TRANSLATION

## INTRODUCTION

Following crosses between tolerant and sensitive wild-type accessions, we found that our procedure for screening F2 seedlings lacked the accuracy needed to identify the gene(s) responsible for phenotypic differences seen when chloroplast translation is blocked. Looking at 33 insertion mutants defective in both embryo development and chloroplast translation, we found a correlation between the stage of embryo arrest and the sensitivity of the parental accession when grown on spectinomycin (Table 5). Mutant embryos of RIKEN insertion mutants in a "Nossen" background arrest at a preglobular stage of embryo development, and wild-type "Nossen" seedlings are sensitive to a loss of chloroplast translation. On the other hand, mutant embryos of SALK or Syngenta insertion mutants in a Col-0 background arrest at a large globular stage of development, while wild-type Col-0 seedlings show an intermediate phenotype on spectinomycin. In between these two accessions, mutant embryos in CSHL or JIC insertion lines in a Ler-1 background arrest at a small globular stage of development, and wild-type Ler-1

Table 5. Chloroplast Translation Mutants Differ in Stage of Embryo Arrest. Adapted from Parker et al. (2014).

| Accession | Insertion Line | Knockout Alleles | Embryo <br> Phenotype | Embryo Mutants Used in Crosses | Size of Arrested Embryo | Ribosomal Protein |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| "Nossen" | Riken | 6 | Preglobular | $\begin{aligned} & \text { emb3126-1 } \\ & \text { emb3137-1 } \end{aligned}$ | $25 \mu \mathrm{~m}$ | $\begin{gathered} \text { L1 } \\ \text { S13 } \end{gathered}$ |
| Columbia | Salk/GABI | 8 | Large Globular | emb3137-2 | $90 \mu \mathrm{~m}$ | S13 |
| Columbia | Syngenta | 9 | Large Globular | - | - | - |
| Ler | CSHL/JIC | 2 | Small Globular | emb3126-3 | $60 \mu \mathrm{~m}$ | L1 |

seedlings show a phenotype on spectinomycin that is in between sensitive "Nossen" seedlings and intermediate Col-0 seedlings. The correlation observed between the embryo and seedlings phenotypes when translation of the chloroplast genome is blocked is important because it suggests a common mechanism involved in both phenotypes.

Using this information, we were able to design a more accurate procedure to identify the gene(s) responsible for phenotypic differences seen when chloroplast translation is blocked. We performed crosses between wild-type plants of the tolerant Tsu-0 accession and plants segregating for an $e m b$ mutation that eliminated chloroplast translation in the sensitive "Nossen" accession. We focused on RIKEN insertion mutants in two EMB genes that encode chloroplastlocalized ribosomal proteins, EMB3126 and EMB3137, where the embryos arrest at a preglobular stage of development. Using these crosses, we screened for dominant suppressors of this preglobular arrest. Through this study, we found a single suppressor locus (ACC2), an enhancer of the suppressor, and additional modifiers that further increase embryo development. Most of the data presented in this chapter have been published (Parker et al., 2014). Two notable exceptions are the analysis of F5 embryos from crosses between Tsu-0 and emb3126-1, and details of the plants screened for mapping the enhancer locus and identifying additional modifiers (Appendices C, D).

## MATERIALS AND METHODS

## Plant Material

Details on the $e m b$ mutants used for this part of the project have been described in previous publications (Bryant et al., 2011; Muralla et al., 2011) and are presented in the SeedGenes database (http://www.seedgenes.org). Seeds for emb3126-1 (RATM-53-3245-1), emb3126-3 (GT-5-101962), emb3137-1 (RATM-15-0663-1), and emb3136 (RATM-51-2522-3)
were obtained from Kazuo Shinozaki at the RIKEN Plant Science Center. Seeds for emb3137-2 (Salk-133412), acc2-1 (Salk-148966c), and acc2-2 (Salk-110264) were obtained from the ABRC (https://abrc.osu.edu/) at Ohio State University. Internal seed stocks were used for emb1473 (Syngenta 24154) in the Columbia background; duplicates are available through the ABRC.

## Crosses with emb Mutants and Embryo Phenotyping

Most of the crosses between wild-type accessions and plants heterozygous for an emb mutation (emb/EMB) were performed in both directions using the heterozygous emb plant as either the male or female. We identified heterozygous emb plants by screening mature siliques for the presence of $25 \%$ mutant seeds. When the heterozygous emb plant was used as the female parent, successful crosses were confirmed by the harvested silique lacking aborted seeds, which was different from the adjacent siliques produced from selfing. When the heterozygous emb plant was used as the male parent, successful crosses were determined by segregation of mutant F2 seeds in siliques of F1 plants. Seed and embryo measurements were taken under a Wild (M7) dissecting microscope using a stage micrometer and two fine-tipped (Dumont no. 4) forceps. The smallest embryos that we could measure this way were $50 \mu \mathrm{~m}$ globular embryos. Smaller embryos could be seen as bumps in the seed coat, but we were not able to dissect them out of the seed coat to measure. Mutant embryos were classified into four categories: (1) globular: rounded embryos; (2) triangular: embryos with a visible point at the basal region; (3) linear: embryos with elongation of the basal region without cotyledon formation; and (4) cotyledon: embryos with one or more cotyledons. In order to be sure that the embryos measured were at a terminal stage of development, we mostly dissected aborted seeds that had begun to deflate and turn brown.

## Embryo Imaging

Embryo images were captured with a Nikon DXM1200 digital camera attached to a Wild M-8 dissecting microscope, using the Nikon ACT-1 version 2.51 software. Embryos were first extracted under a Wild (M7) dissecting microscope using two fine-tipped (Dumont no. 4) forceps, and placed on an open plate of medium to ensure the embryos did not dry out before imaging. Images were captured at 50x magnification. The background of published images was uniformly darkened to highlight the embryo using the GNU Image Manipulation Program (GIMP) version 2.8.2.

## RESULTS

## A Single, Dominant Suppressor of Preglobular Arrest Increases Seed and Embryo Development

In order to identify the nuclear genes that influence tolerance or sensitivity to loss of chloroplast translation, we focused on knockout mutants disrupted in two $E M B$ genes required for chloroplast translation, EMB3126 and EMB3137. These genes encode chloroplast-localized ribosomal proteins, L1 and S13 respectively, and both genes have mutant alleles defective in different genetic backgrounds with different embryo phenotypes (Table 6). We later discontinued the work on emb3126-3, which is in the Ler-1 background, due to the variable seed size in Ler-1. We crossed heterozygous (emb/EMB) plants from the RIKEN mutants, emb3126-1 and emb31371 , with the tolerant Tsu-0 accession, and screened for dominant suppressors of the preglobular arrest found in these mutants. A single dominant Tsu-0 suppressor should cause $75 \%$ of the mutant seeds in F1 siliques to reach a later stage of development. We expected to see three classes of segregating F2 plants: (1) those with an early seed phenotype similar to the emb parent; (2) those with a late seed phenotype; (3) and those with a mixture of both. If other modifiers were

Table 6. Mutant Alleles Chosen for Initial Crosses with Spectinomycin-Tolerant Accessions. Adapted from Parker et al. (2014).

| Allele <br> Symbol | Ribosomal <br> Protein | Insertion <br> Line | Background <br> Accession | Embryo <br> Phenotype | Embryo <br> Size $(\mu \mathrm{m})$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $e m b 3126-1$ | L1 | Riken | "Nossen" | Preglobular | 25 |
| $e m b 3126-3$ | L1 | JIC | Ler | Small globular | 60 |
| $e m b 3137-1$ | S13 | Riken | "Nossen" | Preglobular | 25 |
| $e m b 3137-2$ | S13 | Salk | Columbia | Large globular | 90 |

involved, we expected to find F3 plants with more advanced embryos.

The crosses between Tsu-0 and emb mutants defective in chloroplast translation showed evidence of a single dominant suppressor that significantly increased the size of mutant seeds and supported embryo development to a late globular stage. The first two rows in Table 7 show the results of screening mutant seeds from F1 siliques. Around 75\% of the mutant seeds screened from these crosses contained an embryo rescued to a large globular stage of development, while the other $25 \%$ were similar to the preglobular phenotype found in the parental emb mutant. When the next generation of plants was grown, three distinct classes of F2 plants were found: SS plants with a preglobular mutant seed phenotype similar to the emb parent; TT plants with a rescued (large globular or later development stage) seed phenotype; and ST plants with a mixture of rescued and parental seed phenotypes in a 3:1 ratio (Table 8). These F2 classes were found in a 1:2:1 ratio of SS:ST:TT plants. Because some embryo rescue was found in both the emb3126-1 and emb3137- 1 crosses, the response is not limited to a specific ribosomal protein. As a control, we crossed emb3126-1 and emb3137-1 with two other tolerant accessions, J1-3 and Be-1, and with two sensitive accessions, Oy-0 and Nie1-2. The crosses with other tolerant accessions showed that the rescue of mutant embryos defective in chloroplast translation is not limited to the Tsu-0 accession. These crosses were not examined in detail. Only a slight rescue (small globular stage) of the mutant phenotype was seen in crosses with the two sensitive accessions (Table 7, rows 3-6). Later, we found evidence of partial ACC2 function in $\mathrm{Oy}-0$, and full ACC 2 function in Nie1-2, which likely factors in to the slight rescue seen in these crosses.

## The Suppressor Locus Maps to the ACC2 Region of Chromosome 1

Because we believed that $A C C 2$ might compensate for the loss of $\operatorname{acc} D$ function when chloroplast translation is blocked, we focused on $A C C 2$ as the possible suppressor of preglobular

Table 7. Partial Embryo Rescue in F1 Siliques from Crosses between Natural Accessions and Embryo-Defective Mutants. Adapted from Parker et al. (2014).

| Mutant Allele ${ }^{\text {a }}$ | Wild-type <br> Accession | Siliques <br> Screened | Seeds <br> Screened | Percent <br> Mutant <br> Seeds | Percent Mutant Seeds Exhibiting Embryo Rescue | Phenotype of Rescued Embryo ${ }^{\text {b }}$ | Average Size of Rescued Embryo $(\mu \mathrm{m})^{\mathrm{c}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| emb3126-1 | Tsu-0 | 40 | 1842 | 24.1 | 71.4 | Most large globular; some later stages | $84 \pm 5.8$ |
| emb3137-1 | Tsu-0 | 40 | 1939 | 24.3 | 75.4 | Large globular | $78 \pm 4.0$ |
| emb3126-1 | Oy-0 | 11 | 474 | 24.5 | 72.4 | Small globular | $55 \pm 0.6$ |
| emb3137-1 | Oy-0 | 20 | 965 | 26.5 | 75.6 | Small globular | $55 \pm 0.4$ |
| emb3126-1 | Nie1-2 | 11 | 550 | 24.2 | Not determined ${ }^{\text {d }}$ | Tiny globular | $49 \pm 1.5$ |
| emb3137-1 | Nie1-2 | 10 | 491 | 27.1 | Not determined ${ }^{\text {d }}$ | Tiny globular | $50 \pm 1.1$ |

${ }^{\text {a }}$ Embryo arrest in parental lines occurs at the preglobular stage.
${ }^{\mathrm{b}}$ Embryo rescue was more pronounced in crosses with a spectinomycin-tolerant accession (Tsu-0) than in crosses with spectinomycin-sensitive accessions (Oy-0; Nie1-2).
${ }^{\text {c }}$ Mean Length $\pm$ Standard Error.
${ }^{d}$ Rescued mutant seeds did not differ sufficiently in size from parental mutant seeds.

Table 8. Classes of F2 Plants Identified from Tsu-0 Crosses with Mutants in a Sensitive "Nossen" Background. Adapted from Parker et al. (2014).

| Parental <br> Mutant | $\mathrm{F}_{2}$ <br> Class <br> Symbol | Description of $\mathrm{F}_{2}$ Plant Phenotype | Total <br> Plants Identified | Total <br> Seeds Screened | Percent <br> Mutant <br> Seeds | Percent <br> Embryo <br> Visible |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| emb3126-1 | SS | No evidence of embryo rescue | 21 | 3199 | 27.0 | 0.8 |
|  | ST | Partial rescue segregating | 49 | 6103 | 26.3 | 76.7 |
|  | TT | Partial rescue consistent | 31 | 7862 | 25.3 | 99.4 |
|  | WT | Wild-type plants | 45 | 1549 | 0.2 | - |
| $e m b 3137-1$ | SS | No evidence of embryo rescue | 9 | 1491 | 24.5 | 0.5 |
|  | ST | Partial rescue segegating | 30 | 5259 | 24.7 | 72.8 |
|  | TT | Partial rescue consistent | 19 | 3144 | 26.6 | 99.4 |
|  | WT | Wild-type plants | 37 | 3993 | 0.9 | - |

arrest. Dr. Yixing Wang, a research associate in the Meinke lab, tested this hypothesis using a candidate gene approach with accession-specific PCR primers that focused initially on the ACC2 region of chromosome 1. This approach utilized three distinct categories of F2 plants from crosses between Tsu-0 and the emb mutants. Yixing Wang PCR genotyped representative plants from each category for the Tsu-0 and "Nossen" alleles of ACC2, and showed perfect linkage between $A C C 2$ and the suppressor. In order to show that the Tsu-0 suppressor impacts both embryo development in the absence of chloroplast translation and seedling responses to spectinomycin, Yixing Wang PCR genotyped sensitive and tolerant F2 seedlings from the crosses between wild-type Tsu-0 and "Nossen" plants. The results showed sensitive seedlings were homozygous for the "Nossen" allele of $A C C 2$ while tolerant seedlings were either homozygous or heterozygous for the Tsu-0 allele, which is consistent with a dominant pattern of inheritance for the suppressor. Because these approaches are not associated with my role in this project, the details of them can be found in Parker et al. (2014).

To provide further evidence that ACC2 is the suppressor, we measured the extent of seedling growth on spectinomycin of two knockout mutants disrupted in $A C C 2$ in a Col-0 background. Under standard growth conditions, acc2 mutant plants appear normal. However, mutant seedlings consistently exhibited a higher level of sensitivity to spectinomycin than wildtype (Col-0) seedlings (Figure 15). Mutant embryos homozygous for a second mutant allele of EMB3137 (emb3137-2) in the Col-0 background arrest at a large globular stage of development. In order to determine if we could further impair embryo development in this mutant, we crossed emb3137-2 with one of the $a c c 2$ mutant lines (SALK-148966c). The results of these crosses showed $25 \%$ of mutant embryos in the F1 siliques arrested at an earlier (preglobular) stage of development (Table 9). The results from all four approaches mentioned here support the conclusion that the Tsu-0 suppressor of preglobular arrest is an allele of $A C C 2$.


Figure 15. Spectinomycin Responses of an acc 2 Knockout Mutant Compared to the Background Accession (Col-0). A, Parental Col-0 accession. B, acc2-1 (Salk_148966c). Bar = 1 mm . Adapted from Parker et al. (2014).

Table 9. Reduced Embryo Development in F1 Siliques from acc2 (Col-0) Crossed with emb3137-2 (Col-0). Adapted from Parker et al. (2014).

| Cross | $\mathrm{F}_{2}$ <br> Seeds Screened |  | Mutant <br> Seeds <br> Screened | Percent <br> Preglobular Embryos ${ }^{\text {a }}$ | Average Seed Size $(\mu \mathrm{m})^{\mathrm{b}}$ |  | ParentalEmbryoLengths $(\mu \mathrm{m})^{\text {b }}$Average | Parental Embryo <br> Stages (\%) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | Preglobular | Parental |  | Globular | Triangular |
| 1 | 466 | 27.7 | 129 | 22.5 | $400 \pm 7.2$ | $564 \pm 3.8$ | $89 \pm 2.6$ | 90.3 | 9.7 |
| 2 | 173 | 32.9 | 57 | 33.3 | $418 \pm 4.1$ | $605 \pm 4.4$ | $92 \pm 2.3$ | 97.1 | 2.9 |
| Total | 639 | 29.1 | 186 | 25.8 | $407 \pm 4.5$ | $575 \pm 4.2$ | $90 \pm 1.8$ | 92.2 | 7.8 |
| WT | 1321 | 0.2 | - | - | - | - | - | - | - |

${ }^{\text {a }}$ Two classes of mutant seeds are found in F1 siliques: preglobular seeds presumed to be acc 2 homozygotes, and large seeds with globular embryos (acc2/ACC2; ACC2/ACC2) characteristic of parental emb3137-2 lines.
${ }^{\text {b }}$ Mean Length $\pm$ Standard Error.

## A Semidominant Enhancer Promotes Further Embryo Development in the Absence of Chloroplast Translation

Screening siliques of F2 plants from the crosses between Tsu-0 and emb3126-1 revealed three distinct subclasses of TT plants: (1) early TT plants whose rescued mutant embryos arrested at a large globular stage of development, with very few exceeding $100 \mu \mathrm{~m}$ in diameter; (2) late TT plants whose rescued mutant embryos frequently developed beyond $100 \mu \mathrm{~m}$, and often reached an elongated or cotyledon stage of development; and (3) intermediate TT plants whose rescued mutant embryos were a mixture of the other two classes (Table 10; Figure 16). The differences between the three enhancer classes are supported by an analysis of variance (ANOVA) on the embryo length measurements ( $F=302.9 ; p<0.001$ ). These TT classes were found in a 1:2:1 ratio of early:intermediate:late plants, which is consistent with a second locus, an enhancer, that further increases the extent of embryo development in the presence of the Tsu-0 suppressor.

Curiously, TT F2 plants from crosses between Tsu-0 and emb3137-1 could not be divided into distinct subclasses; all of these F2 plants were similar to the early TT plants of the emb31261 crosses. Table 11 and Figure 17 show the differences between emb3137-1 and emb3126-1. This difference is supported by a T-test on the embryo length measurments $(t=9.8 ; p<0.001)$. The two mutant lines, emb3137-1 and emb3126-1, are defective in two different chloroplast ribosomal proteins in the "Nossen" background. Because the extent of embryo development in the SALK emb3137-2 allele was similar to other Col-0 mutants defective in chloroplast translation, we reasoned that the phenotype difference in TT plants from the emb3126-1 and emb3137-1 crosses was due to linkage between EMB3137 and the enhancer locus. Yixing Wang PCR genotyped early and late TT plants from the F2 generation of the crosses between Tsu-0 and emb3126-1 crosses for three candidate genes: EMB3137; OEP80, which is located 10 cM below EMB3137; and TOC34, which is located 10 cM above EMB3137. The genotyping results confirmed tight

Table 10. Enhancer Phenotype Classes of TT Plants from a Tsu-0 Cross with emb3126-1. Adapted from Parker et al. (2014).

| Plants Analyzed ${ }^{\text {a }}$ | Mutant Embryos <br> Analyzed |  | Embryo <br> Lengths (\%) |  | Embryo Phenotypes (\%) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

${ }^{\text {a }}$ Limited to F2 plants and F3 plants derived from F2 plants assigned to the intermediate enhancer class.
${ }^{\text {b }}$ Mean Length $\pm$ Standard Error.


Figure 16. Enhancer Phenotype Classes of TT Plants from a Tsu-0 Cross with emb3126-1. A, Boxplot representing the median, 25th and 75th percentiles (interquartile range) of mutant embryo lengths. Whiskers extend to the minimum and maximum lengths (excluding outliers). Mean is denoted by the X . One extreme outlier $(500 \mu \mathrm{~m})$ for the Late enhancer class is not shown on the graph. B, Percentage of embryos in each enhancer class assigned to four phenotypic categories based on shape of the embryo: Globular, Triangluar, Linear, and Cotyledon.

Table 11. Differences in the Extent of Embryo Rescue in TT Plants from Tsu-0 Crosses with emb3137-1 and emb3126-1. Adapted from Parker et al. (2014).

| Mutant <br> Allele | $\mathrm{F}_{2}$ Plants Screened | Mutant <br> Seeds <br> Screened | Average <br> Embryo <br> Lengths $(\mu \mathrm{m})^{\mathrm{a}}$ | Embryos Measured (\%) |  | Embryo Phenotypes (\%) |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | $\begin{gathered} <100 \\ \mu \mathrm{~m} \end{gathered}$ | $\begin{gathered} >200 \\ \mu \mathrm{~m} \end{gathered}$ | Globular | Triangular | Linear | Cotyledon |
| emb3137-1 | 20 | 531 | $77 \pm 1.2$ | 82.7 | 6.4 | 96.2 | 3.8 | 0.0 | 0.0 |
| emb3126-1 | 31 | 965 | $99 \pm 1.9$ | 60.9 | 31.6 | 68.2 | 17.5 | 11.1 | 3.2 |

${ }^{\text {a }}$ Mean Length $\pm$ Standard Error.


Figure 17. Differences in the Extent of Embryo Rescue in TT Plants from Tsu-0 Crosses with emb3137-1 and emb3126-1. A, Boxplot representing the median, 25th and 75th percentiles (interquartile range) of mutant embryo lengths. Whiskers extend to the minimum and maximum lengths (excluding outliers). Mean is denoted by the X. B, Percentage of embryos from each cross assigned to four phenotypic categories based on shape of the embryo: Globular, Triangluar, Linear, and Cotyledon.
linkage between EMB3137 and the enhancer, indicating that the enhancer is located near the top of chromosome 5 .

We also confirmed linkage between EMB3137 and the enhancer through crosses between Tsu-0 and two additional emb mutants defective in chloroplast translation: emb1473 (Col-0), which is unlinked to EMB3137, and emb3136 ("Nossen"), which is linked to EMB3137. Consistent with what we expected, F1 siliques of the emb1473 crosses were similar to those seen with the emb3126-1 crosses, with over a third of the rescued embryos developing beyond $100 \mu \mathrm{~m}$ and some embryos reaching an elongated or cotyledon stage of development (Table 12). Also as expected, F1 siliques from the crosses with emb3136 were similar to the emb3137-1 crosses, with rescued embryos not growing larger than $110 \mu \mathrm{~m}$ (Table 13). These results combined with Yixing Wang's PCR genotyping of the three linked loci, confirmed that the enhancer in Tsu-0 is linked to EMB3137 and EMB3136 near the top of chromosome 5. Further work to identify the enhancer locus has been done by Kayla Cook in our lab, and will be discussed in Chapter 6.

## Additional Modifiers Increase the Frequency of Advanced Embryo Development

Analyzing the F3 siliques of progeny from late TT plants of crosses between Tsu-0 and emb3126-1 revealed evidence of multiple modifiers that increased the frequency of advanced embryo development. These F3 plants were divided into three phenotypic categories: (1) lateadvanced, where approximately $30 \%$ of the rescued embryos grew larger than $300 \mu \mathrm{~m}$ in length; (2) late-moderate, where approximately $30 \%$ of the rescued embryos grew larger than $200 \mu \mathrm{~m}$ in length but less than $300 \mu \mathrm{~m}$; and (3) late-reduced, where approximately $85 \%$ of the rescued embryos were smaller than $100 \mu \mathrm{~m}$ when fully developed (Table 14, rows 1-3; Figure 18). The differences between the three modifier classes are supported by an analysis of variance (ANOVA) on the embryo length measurements ( $F=26.5 ; p<0.001$ ). In order to determine if we could further advance embryo development from these crosses, we screened the siliques of F4

Table 12. Partial Embryo Rescue in F1 Siliques from a Tsu-0 Cross with emb1473 (Col-0). Adapted from Parker et al. (2014).

| Cross | $\mathrm{F}_{2}$ <br> Seeds Screened | Percent <br> Mutant Seeds | Mutant <br> Seeds Screened | Embryos Measured (\%) |  | Embryo Lengths ( $\mu \mathrm{m}$ ) |  |  | Embryo Stages (\%) |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | $\begin{gathered} >100 \\ \mu \mathrm{~m} \end{gathered}$ | $\begin{gathered} >150 \\ \mu \mathrm{~m} \end{gathered}$ | Average ${ }^{\text {a }}$ | Min. | Max. | Globular | Triangular | Linear | Cotyledon |
| 1 | 440 | 24.1 | 106 | 36.8 | 23.6 | $128 \pm 3.6$ | 60 | 470 | 62.2 | 14.2 | 11.3 | 12.3 |
| 2 | 711 | 21.7 | 154 | 37.0 | 21.4 | $117 \pm 4.9$ | 60 | 400 | 63.0 | 16.2 | 14.3 | 6.5 |
| Total | 1151 | 22.6 | 260 | 36.9 | 22.3 | $122 \pm 3.0$ | 60 | 470 | 62.7 | 15.4 | 13.1 | 8.8 |

${ }^{\text {a }}$ Mean Length $\pm$ Standard Error.
${ }^{\mathrm{b}}$ Results are similar to emb3126 (both genes are unlinked to the enhancer) as shown by the presence of large embryos beyond a triangular stage of development.

Table 13. Limited Embryo Rescue in F1 Siliques from a Tsu-0 Cross with emb3136 ("Nossen"). Adapted from Parker et al. (2014).

| Cross | $\mathrm{F}_{2}$ <br> Seeds <br> Screened |  | Mutant <br> Seeds Screened | Percent <br> Preglobular Embryos | Average Seed Size $(\mu \mathrm{m})^{\text {a }}$ |  | Rescued Embryo Lengths ( $\mu \mathrm{m}$ ) |  |  | Rescued Embryo Stages (\%) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | Preglobular | Rescued | Average ${ }^{\text {a }}$ | Min. | Max. | Globular | Triangular |
| 1 | 988 | 25.8 | 255 | 20.0 | $370 \pm 8.7$ | $522 \pm 4.2$ | $65 \pm 1.7$ | 50 | 110 | 98.5 | 1.5 |
| 2 | 562 | 22.2 | 125 | 20.0 | $382 \pm 9.7$ | $521 \pm 4.2$ | $69 \pm 1.9$ | 50 | 110 | 99.0 | 1.0 |
| Total | 1550 | 24.5 | 380 | 20.0 | $374 \pm 6.6$ | $521 \pm 3.0$ | $66 \pm 1.3$ | 50 | 110 | 98.7 | 1.3 |

${ }^{\text {a }}$ Mean Length $\pm$ Standard Error.
${ }^{\text {b }}$ Results are similar to emb3137 (both genes are linked to the enhancer) as shown by the absence of large embryos beyond a triangular stage of development.

Table 14. Modifier Phenotype Classes of Late TT Plants from a Tsu-0 Cross with emb3216-1. Adapted from Parker et al. (2014).

| Plants Analyzed |  |  | Mutant Embryos Analyzed |  | Embryo Lengths (\%) |  |  | Embryo Phenotypes (\%) |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Modifier Class | Plant Generation | Number <br> Screened | Number <br> Measured | Avg. <br> Length $(\mu \mathrm{m})^{\mathrm{a}}$ | $\begin{gathered} <100 \\ \mu \mathrm{~m} \end{gathered}$ | $\begin{gathered} >200 \\ \mu \mathrm{~m} \end{gathered}$ | $\begin{gathered} >300 \\ \mu \mathrm{~m} \end{gathered}$ | Globular | Triangular | Linear | Cotyledon |
| Late; <br> Advanced ${ }^{\text {a }}$ | $\mathrm{F}_{3}$ | 4 | 245 | $256 \pm 12.1$ | 0.0 | 61.5 | 30.1 | 0.0 | 10.5 | 45.8 | 43.9 |
| Late; Moderate ${ }^{\text {a }}$ | $\mathrm{F}_{3}$ | 12 | 474 | $184 \pm 11.1$ | 0.6 | 25.9 | 6.1 | 5.4 | 20.2 | 55.2 | 19.2 |
| Late; <br> Reduced ${ }^{\text {a }}$ | $\mathrm{F}_{3}$ | 8 | 435 | $146 \pm 6.7$ | 3.4 | 6.6 | 1.0 | 14.7 | 38.8 | 41.0 | 5.5 |
| Late; Advanced; Late ${ }^{\text {b }}$ | F4 | 3 | 134 | $345 \pm 10.7$ | 0.0 | 94.5 | 60.9 | 0.0 | 0.0 | 29.3 | 70.7 |
| Late; <br> Advanced; Moderate ${ }^{\text {b }}$ | $\mathrm{F}_{4}$ | 11 | 569 | $254 \pm 12.6$ | 0.0 | 64.7 | 28.3 | 0.0 | 4.3 | 52.9 | 42.8 |

${ }^{\text {a }}$ Mean Length $\pm$ Standard Error.
${ }^{\text {b }}$ Progeny plants from the "late" class of F2 plants homozygous Tsu-0 for the suppressor and enhancer.
${ }^{c}$ Progeny plants from the "late; advanced" class of F3 plants homozygous Tsu-0 for the suppressor and enhancer.


Figure 18. Modifier Phenotype Classes of Late TT Plants from a Tsu-0 Cross with emb31261. A, Boxplot representing the median, 25 th and 75 th percentiles (interquartile range) of mutant embryo lengths. Whiskers extend to the minimum and maximum lengths (excluding outliers). Mean is denoted by the X. B, Percentage of embryos from each modifier class assigned to four phenotypic categories based on shape of the embryo: Globular, Triangluar, Linear, and Cotyledon.
progeny from late-advanced plants. A few plants, classified as late-advanced-late, contained more than $60 \%$ of the rescued embryos larger than $300 \mu \mathrm{~m}$, and all of the rescued embryos reached the elongated or cotyledon stages of development (Table 14, row 4). The remaining F4 plants were classified as late-advanced-moderate, and resembled the late-advanced F3 plants (Table 14, row 5). T-tests showed that the difference between the late-advanced-late and late-advanced-moderate modifier classes is statistically significant $(t=5.5 ; p<0.001)$, whereas there is no significant difference between the late-advanced-moderate F4 plants and the late-advanced F3 plants ( $t=-$ $0.1 ; p=0.4$ ). Analysis of siliques from F5 progeny from the late-advanced-late plants revealed no detectable difference in the extent of embryo rescue from the F4 generation. No fully developed, albino embryos were found among the advanced embryos screened. Details of the entire collection of plants screened for mapping the enhancer locus and identifying additional modifiers are presented in Appendices C and D respectively.

## DISCUSSION

In order to identify the genes impacting phenotype differences between accessions when chloroplast translation is blocked, we utilized crosses between the tolerant Tsu-0 accession and $e m b$ mutants defective in chloroplast translation in the sensitive "Nossen" accession. Screening the extent of embryo rescue in these crosses gave us a more accurate system for gene identification than the seedling crosses discussed in Chapter 3, where it was difficult to classify borderline seedlings. With this approach, we identified $A C C 2$ as a single, dominant suppressor of the preglobular phenotype of the RIKEN $e m b$ mutants. This suppressor is able to rescue embryo development to a late globular stage. We also found evidence of an unlinked enhancer of the suppressor that allows embryos to develop beyond the globular stage, and additional modifiers that increase the frequency of embryos at the most advanced stages of development. These additional modifiers can also advance slightly the development of embryos when the enhancer is
not present. The effects of the Tsu-0 suppressor, enhancer, and modifier alleles are summarized in Figure 19, and examples of arrested embryo phenotypes are shown in Figure 20.

Even in the most advanced progeny examined from the crosses between Tsu-0 and emb3126-1, we never found a fully rescued, albino embryo. This was not surprising given that tolerant accessions grown on spectinomycin were not as fully developed as most albino mutants defective in photosynthesis alone. This is further evidence that $\operatorname{acc} D$ is not the only gene in the chloroplast genome required for proper plant development. As discussed in Chapter 3, $y c f 1, y c f 2$, and $c l p P 1$ potentially play important roles in later stages of seedling and embryo development in Arabidopsis.

Through PCR genotyping and analysis of crosses, we have identified the Tsu-0 suppressor as $A C C 2$ and have mapped the enhancer close to the top of chromosome 5 (linked to EMB3137). However, we have not identified specific genes that encode the enhancer and additional modifier proteins. One potential role for the enhancer is as a critical component of the TIC/TOC chloroplast protein import system, specifically involved in the import of ACC2 into the stroma of the chloroplast. However, disruption of this protein must not affect the import of other chloroplast-localized proteins. In this scenario, the additional Tsu-0 modifiers could encode other components of the TIC/TOC protein import system. Candidate genes for the additional modifiers include Toc132/Toc 120, which are thought to be involved in recognizing and guiding housekeeping proteins through the outer membrane (Kubis et al., 2004; Inoue et al., 2010); and Tic20-IV, which is believed to be the main channel protein for some of the housekeeping proteins through the inner membrane (Hirabayashi et al., 2011). However, there are no promising candidate loci with such functions in the enhancer region on chromosome 5.

Because ACC2 is a large protein that must be imported into the chloroplast, a second possible role for the Tsu-0 enhancer is as a chaperone protein involved in the folding, guiding, or


Figure 19. Combined Effects of the Tsu-0 Suppressor, Enhancer, and Modifier(s) on Seed and Embryo Rescue in emb3126-1. Ellipses represent mutant seeds, filled images depict mutant embryos, and bars define the stage of arrest. Adapted from Parker et al. (2014).


Figure 20. Examples of Embryos in Siliques of Plants Homozygous for the Tsu-0
Suppressor. A, Late globular embryo. B, Triangular embryo. C and D, Elongated linear embryos. E to I, Cotyledon stage embryos with one or two cotyledons present. J, Sibling wild-type embryo. Bar $=100 \mu \mathrm{~m}$. Adapted from Parker et al. (2014).
stabilization of ACC2. In this scenario, the additional Tsu-0 modifier proteins could either be components of the TIC/TOC protein import system, or additional chaperone proteins. Candidate genes for the additional modifiers include Hsp70 and members of the 14-3-3 protein family, which are thought to work together in the cytosol to guide precursor proteins to the chloroplast (May and Soll, 2000; Flores-Pérez and Jarvis, 2013); Hsp93, cpHsp70 and Hsp90C, which are thought to function in the stroma of the chloroplast to stabilize and guide proteins through the inner membrane (Kovacheva et al., 2007; Inoue et al., 2013; Shi and Theg, 2013); and Tic22, which is believed to guide precursor proteins across the intermembrane space (IMS) between the TOC and TIC import complexes (Kouranov et al., 1998; Shi and Theg, 2013). However, once again: no promising chaperone genes can be found in the enhancer region.

We have shown here that the additional Tsu-0 modifiers can function to advance somewhat the development of embryos independent from the enhancer, which means these additional modifiers could have a separate function. Some modifiers could potentially function in partial compensation for the loss of $y c f 1, y c f 2$, and $c l p P 1$ in early stages of embryo development. A candidate gene approach to look at potential modifiers is described in Chapter 6.

After determining that $A C C 2$ impacts the phenotypic differences between Arabidopsis accessions when chloroplast translation is blocked, we decided to look at how changes in ACC2 increased the tolerance of some accessions to spectinomycin. We first thought that ACC2 might be overexpressed in tolerant accessions, which would increase the amount of $A C C 2$ transcript and possibly the amount of ACC2 protein present in the chloroplast. However, RT-qPCR experiments by Yixing Wang showed no significant difference in the amount of $A C C 2$ transcript found in tolerant and sensitive accessions (Parker et al., 2014). We then focused on the protein sequence of ACC2 thinking that a change in the transit peptide could increase the localization or amount of protein taken into the chloroplast, or a mutation in the protein sequence could increase the activity of ACC2 or increase the interactions of ACC2 with chaperone proteins. Around the time we
began to look at the sequenced genomes available through the 1001 Genomes Project (The 1001 Genomes Consortium, 2016), Yixing Wang sequenced the $A C C 2$ gene from the sensitive "Nossen" accession and found a nonsense mutation in the middle of the gene. We then changed our approach from looking at what causes tolerance to a loss of chloroplast translation to looking at what can cause sensitivity. Chapter 5 in this dissertation discusses the diversity of $A C C 1$ and ACC2 mutations found in natural Arabidopsis accessions.

## CHAPTER V

# A VARIETY OF ACC2 MUTATIONS ARE FOUND IN NATURAL ACCESSIONS OF ARABIDOPSIS 

## INTRODUCTION

Sequencing the $A C C 2$ gene from the "Nossen" accession by Yixing Wang changed our perspective on the phenotypic differences found between accessions when chloroplast translation is blocked. Previously, we looked for mutations in ACC2 that increased the tolerance of an accession to spectinomycin. After analyzing the $A C C 2$ sequence from the sensitive "Nossen" accession, we began to look for other changes in ACC2 that caused sensitivity to a loss of chloroplast translation. We combined our experimental system to evaluate the level of ACC2 function using sensitivity to spectinomycin with the genome sequence data from the 1001 Genomes Project (http://signal.salk.edu/atg1001; The 1001 Genomes Consortium, 2016) to analyze the relationship between genotype and phenotype within the ACCase class of proteins, which are essential for eukaryotic fatty acid biosynthesis. The $A C C 2$ experimental system in Arabidopsis provides a unique opportunity to look at the deleterious effects of different types of mutations on an essential class of proteins with implications for agriculture and human health.

This chapter describes various $A C C 2$ mutations found in sensitive accessions of Arabidopsis. Utilizing the 1001 Genomes Project sequences, we used two methods to look at what determines sensitivity in Arabidopsis accessions. We first used the forward genetic approach described in Chapter 3 to expand our list of sensitive accessions by testing 100 random accessions from the 1001 Genomes Project. The second method, a reverse genetic approach, focused on known variation in $A C C 2$ sequence among 855 sequenced accessions. Rather than testing all of the variants found, we utilized sequence conservation from an alignment of 667 eukaryotic ACCases to identify conserved regions where variation in the protein sequence would most likely lead to sensitivity. We also tested accessions with variants in the transit peptide at the N -terminus of ACC2. Among the sensitive accessions discovered through both of these approaches, we found that sensitivity could be caused by nonsense mutations, frameshifts, defects in RNA splicing recognition sites, large deletions or sequence rearrangements, small deletions, and missense mutations in residues that are likely essential for ACC2 function. Confirmation that the mutations found in $A C C 2$ cause sensitivity through reduced or eliminated protein function was done using two approaches: (1) crossing sensitive accessions with the tolerant Tsu-0 accession in order to show linkage between the sensitive phenotype and the $A C C 2$ genotype; and (2) genetic complementation tests between each sensitive accession of interest and informative acc2 and tic20-iv knockout mutants.

Through the analysis of all natural variation of ACC1 and ACC2 protein sequences among 855 sequenced accessions, we identified 339 variant residues ( $15 \%$ of all residues in ACCase). Of these variants, five significantly reduce or eliminate protein function, 18 partially reduce function, and 316 have no significant effect on ACCase function. Most of the data presented in this chapter have been published (Parker et al., 2014; 2016). Exceptions include results from the Qar-8a, Ts-1, and Etna-2 crosses with the knockout mutants, which were obtained after publication.

## MATERIALS AND METHODS

## ACC2 Variation in Arabidopsis Accessions

ACC2 protein sequences from 855 natural accessions of Arabidopsis were obtained from the Salk Institute 1001 Genomes Project website (http://signal.salk.edu/atg1001; Appendix E). These sequences were entered into an Excel spreadsheet to track variation in the amino acid residues. The spreadsheet was organized so that each row consisted of the full ACC2 protein sequence from one accession while each column displayed the amino acid at a specific residue in the sequence. In addition, the ACC2 sequences of "Nossen" and Sav-0 were added to the spreadsheet for a total of 857 sequences. A list of the formulas used with this spreadsheet is found below. Variation was tracked using formula A , which counts the number of lines (accessions) that contain the same amino acid as the Col-0 sequence, which is used as a template. For residues where variation is found, formula B was used to identify the most common amino acid at that residue, and formula C to count the number of accessions with that amino acid. Similarly, formula D was used to identify the least common amino acid at a residue, and formula E to count the number of accessions with that amino acid. If additional amino acid variation was present at a residue, then the different amino acids were identified visually, and formula F was used to count the number of accessions with that amino acid.
A. =COUNTIF(B2:B858,CONCATENATE("=",B862))
B. =INDEX(E2:E858,MATCH(MAX(COUNTIF(E2:E858,E2:E858)),COUNTIF(E2:E858,E2:E858)
,0))
C. =COUNTIF(E2:E858,E866)
D. =INDEX(E2:E858,MATCH(MIN(COUNTIF(E2:E858,E2:E858)),COUNTIF(E2:E858,E2:E858),
0))
E. =COUNTIF(E2:E858,E868)
F. =COUNTIF(E2:E858,E870)

## Brassicaceae ACCase Sequence Analyses

For the comparison of ACC1 and ACC2 sequences, determination of $\mathrm{K}_{\mathrm{a}}$ (nonsynonymous nucleotide substitutions) to $\mathrm{K}_{\mathrm{s}}$ (synonymous substitutions) ratios, which is used to analyze the selection pressure on a gene, and analysis of $A C C 2$ Intron 6 , genomic sequences for six members of the Brassicaceae were downloaded from the Phytozome (www.phytozome.net; Goodstein et al., 2012) and CoGe (www.genomevolution.org/CoGe/; Lyons et al., 2008) websites: Arabidopsis, Arabidopsis lyrata (Hu et al., 2011), Brassica rapa (Cheng et al., 2011), Capsella rubella (Slotte et al., 2013), Leavenworthia alabamica, and Sisymbrium irio along with Theobroma cacao (Motamayor et al., 2013). Appendix F lists details of the sequences used for these comparisons. $\mathrm{K}_{\mathrm{a}} / \mathrm{K}_{\mathrm{s}}$ ratios were calculated with the coding sequences using MEGA version 6 (Tamura et al., 2013). These genomic sequences were aligned using ClustalW2 (Larkin et al., 2007).

## Eukaryotic, Homomeric ACCase Sequence Alignments

In order to identify conserved amino acid residues potentially important for function of ACCase proteins, we created three alignments of protein sequences. The first utilized 20 ACC1 and ACC2 sequences from model organisms: Arabidopsis (2), B. rapa (2), Medicago truncatula (1), Triticum aestivum (2), Zea mays (2), Homo sapiens (2), Mus musculus (2), Danio rerio (2), Drosophila melanogaster (1), Saccharomyces cerevisiae (2), Schizosaccharomyces pombe (1), and Neurospora crassa (1). Appendix G lists details of the sequences used for this alignment. These protein sequences were aligned using ClustalW2 (Larkin et al., 2007). In several of these protein sequences, we found small gaps that we believed to be annotation errors when translating the genomic data. In order to fill in the amino acids from these gaps, we utilized the original genomic data.

In order to increase the number of eukaryotic homomeric ACCase sequences in the multi-
kingdom alignment, 744 protein sequences were selected from the Pfam database based on the presence of a large central domain, which is unique to eukaryotic homomeric ACCases (http://pfam.xfam.org/family/PF08326). From this group, four sequences from Caenorhabditis elegans lacked the lysine residue that is required for biotin to bind to the protein and were subsequently removed from the list. Five more sequences were also removed because they were fragmented, and 104 bacterial sequences were removed because the large central domain is unique to eukaryotes. In order to increase the number of plant sequences present, 36 plant sequences were identified through BLAST searches using both ACC1 and ACC2 Arabidopsis sequences. The final list of sequences in this expanded multi-kingdom alignment totaled 667: 198 animal, 139 plant, 276 fungal, and 54 others such as algae and protozoa (Appendix H). The actual percentage of conservation for some residues may be slightly higher than calculated due to the presence of small gaps in some sequences that are likely annotation errors. All 667 sequences were aligned using the MUSCLE program (Edgar, 2004) through Jalview 2.8.2 analysis workbench (Waterhouse et al., 2009). The 139 plant sequences were also aligned separately using the same MUSCLE program.

## RESULTS

## Null Mutations in $\boldsymbol{A C C} 2$ Are Found Among Natural Accessions

Following the discovery by Yixing Wang of the nonsense mutation in $A C C 2$ from the sensitive "Nossen" accession, we wondered whether the mutation in "Nossen" was unique or if there were other natural accessions that contained null mutations in $A C C 2$. To determine this, we examined $A C C 2$ sequences from 855 accessions available through the 1001 Genomes Project for additional examples of nonsense mutations and other types of null mutations. Table 15 lists the accessions we identified with various null mutations in $A C C 2$. All of the variants listed were

Table 15. ACC2 Null Mutations Identified in Sequenced Accessions of Arabidopsis. Adapted from Parker et al. (2016).

| Mutation Class | Accession | Reported Country of Origin | Mutation ${ }^{\text {a }}$ | Mutation <br> Location | Spectinomycin Response |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | Category | Score ${ }^{\text {b }}$ | Seedlings |
| Nonsense | Kb-0 | Germany | Y753X | Exon 17 | Sensitive | 1.4 | 73 |
|  | K1-5 | Germany | Y753X | Exon 17 | Hypersensitive | 1.1 | 76 |
|  | "Nossen" | Uncertain | R865X | Exon 19 | Sensitive | 2.3 | 571 |
|  | Blh-1 | Czech <br> Republic | K1225X | Exon 26 | Sensitive | 1.3 | 71 |
| Frameshift | Ip-Alo-0 | Portugal | 1171fs | Exon 25 | Hypersensitive | 1.1 | 51 |
|  | Ip-Vin-0 | Spain | 1171fs | Exon 25 | Hypersensitive | 1.2 | 33 |
|  | Lu3-30 | Germany | 2020fs | Exon 31 | Hypersensitive | 1.1 | 54 |
|  | Lu4-2 | Germany | 2020fs | Exon 31 | Hypersensitive | 1.3 | 55 |
| Splicing | Gn-1 | Germany | GT...TG | Intron 10 | Hypersensitive | 1.1 | 83 |
|  | "Gn2-3" | Germany | GT...TG | Intron 10 | Hypersensitive | 1.1 | 191 |
|  | Wl-0 | Germany | GT...GG | Intron 19 | Sensitive | 1.4 | 79 |
|  | Spro-2 | Sweden | TT...AG | Intron 29 | Sensitive | 1.3 | 80 |
|  | Ste-2 | Sweden | TT...AG | Intron 29 | Hypersensitive | 1.1 | 83 |
|  | Ste-3 | Sweden | TT...AG | Intron 29 | Hypersensitive | 1.0 | 82 |
|  | Vimmerby | Sweden | TT...AG | Intron 29 | Hypersensitive | 1.0 | 67 |
| Rearrangement | Ob-0 | Germany | Unresolved | Exon 32 | Hypersensitive | 1.2 | 74 |
|  | Old-0 | Germany | Unresolved | Exon 32 | Hypersensitive | 1.2 | 75 |
| Small Deletion | Ip-Ber-0 | Spain | Deletion (23 bp) | Intron 17; <br> Exon 18 | Sensitive | 1.3 | 49 |

${ }^{\text {a }}$ All variants except details of $\mathrm{Ob}-0$ and Old-0 rearrangements were confirmed by Sanger sequencing.
${ }^{\mathrm{b}}$ Higher scores reflect increasing levels of tolerance; these scores were among the lowest of all accessions evaluated.
confirmed by Yixing Wang using Sanger sequencing except for the large deletions or chromosomal rearrangements found in $\mathrm{Ob}-0$ and $\mathrm{Old}-1$. I screened seedlings from each of these accessions on spectinomycin, and found most of them to be highly sensitive. Including the mutation in "Nossen", we identified four different nonsense mutations: Y753X (Kb-0 and Kl-5), R865X ("Nossen"), K1225X (Blh1-1), and Q2325X (Hod). Three of these mutations result in truncated ACC2 proteins that are missing over 1,000 amino acids from the C-terminus. The fourth mutation (Q2325X) results in a truncated protein that is missing only 30 amino acids from the C-terminus. The seedling phenotypes of these five accessions on spectinomycin are consistent with the severity of the protein truncation. Seedlings from $\mathrm{Kb}-0, \mathrm{Kl}-5$, "Nossen", and Blh1-1 are sensitive to a loss of chloroplast translation while seedlings from Hod are phenotypically intermediate.

We identified two different frameshift mutations caused by single nucleotide deletions. One of these ( 1171 fs 1190 X ) was found in the central domain of the IP-Alo-0 and IP-Vin-0 accessions, and resulted in a downstream nonsense mutation and removal of 1,165 amino acids from the C-terminus. The other frameshift mutation (2020fs2021X) was found in the carboxyltransferase $\alpha$-subunit of the Lu3-30 and Lu4-2 accessions, and resulted in an immediate nonsense mutation and a truncated ACC2 protein missing 334 C-terminal amino acids. By comparing RNA splicing recognition sites for the introns in $A C C 2$, we identified two mutations in splice acceptor sites (intron 10 and intron 19) and one in a splice donor site (intron 29). Both of the altered splice acceptor sites result in a 10 -nucleotide deletion and a frameshift mutation. In the Gn-1 accession, there is an $\mathrm{AG} \rightarrow \mathrm{TG}$ substitution in the acceptor site of intron 10 . The Wl-0 accession contains an $\mathrm{AG} \rightarrow \mathrm{GG}$ substitution in the acceptor site of intron 19. Four accessions (Spro-2, Ste-2, Ste-3, and Vimmerby) contain the same GT $\rightarrow$ TT substitution in the donor site of intron 29. Using Spro-2 to represent the group, Yixing Wang showed that this mutation results in a mixture of defective ACC2 transcripts that include all or some of intron 29.

Large deletions, or possibly chromosomal rearrangements, were identified at the Cterminal end of the $A C C 2$ sequences for $\mathrm{Ob}-0$ and Old-1. Yixing Wang confirmed that both accessions are missing exon 31 , but she was unable to resolve the exact nature of the defect. A small deletion of 23-nucleotides was identified in IP-Ber-0. This deletion removes the end of intron 17 and the beginning of exon 18. Using RT-PCR, Yixing Wang showed that this deletion results in a mixture of $A C C 2$ transcripts that encode a variety of defective and truncated proteins.

## The Structure of $\boldsymbol{A C C}$ 2 Sequences Varies Within the Brassicaceae

In order to get a broader perspective on natural variation in the structure and function of $A C C 2$, we compared $A C C 1$ and $A C C 2$ sequences from members of the Brassicaceae whose genomes have been sequenced (Table 16; Figure 21). Similar to Arabidopsis, tandem gene duplications of ACC1 and ACC2 are present in Arabidopsis lyrata, Capsella rubella, and Eutrema parvulum, while unlinked copies are found in Brassica rapa. ACC1 and ACC2 are also found in the genomes of Sisymbrium irio and Leavenworthia alabamica, but it is unclear whether they are linked or unlinked. In the $A C C 2$ sequence of $L$. alabamica, a nonsense mutation is found in the third exon. We found no evidence of $A C C 2$ in the sequenced genomes of Aethionema arabicum and Boechera stricta. Sequence comparison between ACC1 and ACC2 of six Brassicaceae members revealed more sequence variation in $A C C 2$ than in $A C C 1$. Only two amino acid residues differed in ACC1 among the six Brassicaceae members while 17 residues differed in ACC2. Comparing the frequencies of synonymous $\left(\mathrm{K}_{\mathrm{s}}\right)$ to nonsynonymous $\left(\mathrm{K}_{\mathrm{a}}\right)$ substitutions using these sequences showed a slight relaxation of purifying selection in $A C C 2$ when compared to $A C C 1$ $\left(\mathrm{K}_{\mathrm{a}} / \mathrm{K}_{\mathrm{s}}\right.$ ratios: $\left.A C C 1,0.08 ; A C C 2,0.20\right)$.

In addition to increased variation in $A C C 2$ sequence when compared to $A C C 1$, the $A C C 2$ gene in Arabidopsis contains a large intron ( 2.5 kb ) that interrupts the biotin carboxylase domain, which could diminish production of ACC2 by reducing the levels of the full-length $A C C 2 \mathrm{mRNA}$

Table 16. Variation in Brassicaceae $A C C 1$ and $A C C 2$ Sequences.

| Distribution of <br> $A C C 1$ and $A C C 2$ | Example Species |
| :---: | :---: |
| Tandem Duplication | Arabidopsis thaliana <br> Arabidopsis lyrata <br> Capsella rubella <br> Eutrema parvulum |
| Non-Tandem Duplication | Brassica rapa |
| ACC2 Present; | Sisymbrium irio <br> Linkage Unknown <br> Leavenworthia alabamica |
| ACC2 Nonsense Mutation | Leavenworthia alabamica |
| ACC2 Absent | Aethionema arabicum <br> Boechera stricta |



Figure 21. Brassicaceae Phylogeny. Yellow, $A C C 2$ is missing from the nuclear genome; Orange, $A C C 2$ is present as a tandem duplication; Green, $A C C 2$ is present as a non-tandem duplication or the location of the duplication is unknown; Red Arrow, location of Boechera stricta in the phylogeny, which is missing ACC2. Adapted from Kagale et al. (2014).
transcribed. Variation in the length of this intron (\#6) can be seen among the 855 sequenced accessions. Within other members of the Brassicaceae, this intron is not as large as in Arabidopsis. A sizeable intron ( 810 to 1573 bp ) can be found in ACC2 sequences of A. lyrata, C. rubella, S. irio, and Camelina sativa. Intron 6 in B. rapa and L. alabamica is similar in length (72 to 217 bp ) to the intron found in ACCl of Arabidopsis. Another gene in Arabidopsis, At3g52700, which encodes a protein of unknown function, contains an intron that matches 1 kb from the middle of the $A C C 2$ intron. The intron in $A C C 2$ seems to contain a degenerate helitron transposon that is nested within a MULE (Mutator-Like) element (Thomas Bureau, personal communication). The matching region in At3g52700 appears to be a related helitron transposon. These results provide evidence of multiple gene insertions that targeted $A C C 2$ following the initial duplication of $A C C 1$.

According to the locus page for ACC2 at TAIR (http://www.arabidopsis.org/), a second gene model predicts a small transcript that terminates at Intron 6, which would encode a truncated ACC2 protein missing part of the biotin carboxylase domain along with all other domains. Yixing Wang confirmed the presence of this shorter transcript in Col-0. Believing that the large size of Intron 6 might decrease the amount of full-length $A C C 2$ transcript produced, which could affect the tolerance of an accession to a loss of chloroplast translation, Yixing Wang compared levels of the short transcript between tolerant and sensitive accessions. No evidence was found that increased levels of the short transcript affected the tolerance or sensitivity of an accession.

## Conservation Found in Alignments of Eukaryotic, Homomeric ACCase Sequences

After identifying a number of null mutations that eliminate ACC2 protein function, we began to look for conserved regions in the $A C C 2$ sequence that when altered might affect protein function. We first approached this using an alignment of 20 homomeric, eukaryotic ACC1 and

ACC2 protein sequences from model organisms, including nine plant sequences. Using this alignment, we identified 416 amino acid residues (out of 2,355 total) that were perfectly conserved across all 20 sequences. In order to narrow down this list of conserved residues to those most likely to be essential for ACC2 function, we expanded our multi-kingdom alignment to include 667 homomeric, eukaryotic ACCase protein sequences, including 139 plant sequences. Using this new alignment, we identified 526 amino acid residues that are more than $90 \%$ conserved across all sequences, and 222 residues that are at least $99 \%$ conserved. In addition to the 667 -sequence multi-kingdom alignment, we aligned 139 homomeric, plant ACCase sequences. In this plant alignment, we identified 1196 amino acid residues that are more than $90 \%$ conserved and 698 residues that are at least $99 \%$ conserved. These alignments, especially the 667-sequence multi-kingdom alignment, were used in both the forward and reverse genetic approaches to identify ACC 2 amino acid residues that are likely essential for protein function. The percent conservation for all amino acid residues in ACC2 is shown in Appendix I, along with variation in ACC 1 and ACC 2 protein sequences for the 855 Arabidopsis accessions.

Figure 22 and Appendix J show the mutational landscape of homomeric ACCases in Arabidopsis. Represented in these images are locations for mutations in Arabidopsis ACC1 and $A C C 2$ sequences that have been either induced or found in natural accessions, highly conserved residues (>95\%) from the 667 -sequence multi-kingdom alignment of ACCases, and all of the natural variation found in both $A C C 1$ and $A C C 2$ of sequenced Arabidopsis accessions. Appendix K provides details on informative variants and residues in $A C C 2$, including the mutations shown in the mutational landscape, and mutations in other model organisms.

## Sensitive Accessions Highlight Conserved Residues Likely to be Essential

Utilizing data from the forward genetic screens of Arabidopsis accessions on spectinomycin described in Chapter 3, we identified three hypersensitive and 22 sensitive


B Other Confirmed Mutations (*Nonsense; I Splicing; $\Delta$ Deletion; Frameshift; $\boldsymbol{v}$ Insertion)


C All Highly-Conserved Residues (Tall Line, 99\% Conserved; Short, 95\%)


D All Natural Variants: ACC2 / ACC1 (Tall Line, Residue 90\% Conserved; Medium, 80\%; Short, Not Conserved)


Figure 22. Mutational Landscape of Homomeric ACCase in Arabidopsis. Conservation percentages are based on the multi-kingdom alignment of 667 ACCase protein sequences. A, Induced and natural variants in ACC1 and ACC2. Red bars, deleterious or likely deleterious variants; purple bars, possibly deleterious; green bars, not deleterious or likely not deleterious; gray bars, variants of unknown significance. TP, transit peptide domain; BC, biotin carboxylase; BCCP, biotin carboxyl carrier protein; CT, carboxyltransferase. B, Induced and natural variants combined. Red symbols, strong alleles; blue symbols, weak or intermediate alleles. C, Highly conserved residues based on the multi-kingdom alignment of 667 sequences. $D, A C C 2$ variants are above the horizontal bar, and ACC1 variants are below. Red bars, one accession with the predicted variant; purple bars, two to three accessions; blue bars, four to 10 accessions; green bars, more than 10 accessions; gray bars, variants were not confirmed in the only accession where it was predicted. Adapted from Parker et al. (2016).
accessions. The phenotype details of hypersensitive and sensitive accessions are defined in Chapter 3. In order to identify residues likely to be essential for protein function, we focused on ten of the most sensitive accessions from this list whose $A C C 2$ sequence did not contain an obvious null mutation: Sav-0, Knox-18, RRS-10, Gifu-2, Pna-10, Tul-0, Tol-0, Aitba-1, La-0, and Gn2-3. ACC2 sequences for most of these accessions were obtained from the 1001 Genomes Project. The one exception was Sav-0, which was sequenced by Yixing Wang. Using our list of conserved residues from the 667 -sequence multi-kingdom alignment, we looked for variation within these ten accessions. One group of accessions, consisting of Knox-18, RRS-10 Tul-0, and Tol-0, was predicted to contain two potential variants of interest (I404K and T1902K). Gifu-2 was predicted to have only one of those variants (T1902K). Three other sensitive accessions were predicted to have mutations affecting different conserved residues: Sav-0 (G135E), Aitba-1 (F1206L), and Pna-10 (S1883T). Neither Gn2-3 nor La-0 appeared to contain any variants in conserved amino acid residues.

Yixing Wang used Sanger sequencing to confirm these predicted variants. She found that Gifu-2 contained both I 404 K and T 1902 K variants rather than only the one predicted. Pna-10 was also found to contain the I 404 K and T 1902 K variants, and lacked the predicted S1883T mutation. Sixteen additional accessions predicted to contain these variants were tested on spectinomycin (Table 17). All of these accessions were shown to be highly sensitive to a loss of chloroplast translation, with the exception of SLSP-35 and UKSW06-333, which exhibited an intermediate phenotype. While they were predicted to have the I 404 K and T1902K variants, Yixing Wang confirmed that SLSP-35 and UKSW06-333 lacked both variants. The members of this group of sensitive accessions also contain another mutation affecting a conserved amino acid residue, E1355G, which can be found in a number of other accession not sensitive to spectinomycin. Results from this group of sensitive accessions provide evidence that the I 404 K and T 1902 K variants likely cause a loss of ACC2 function. Aitba-1 was confirmed to have the F1206L variant,

Table 17. Seedling Responses of 20 Accessions with the ACC2 Variants I404K and T1902K. Adapted from Parker et al. (2016).

| Accession | ABRC <br> Seed Stock | Genetic Screen | Variant <br> Confirmation ${ }^{\text {a }}$ | Spectinomycin Response |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Category | Score | Seedlings |
| Knox-18 | CS76530 | Forward | A | Hypersensitive | 1.1 | 80 |
| RRS-10 | CS76592 | Forward | A | Sensitive | 1.3 | 81 |
| Gifu-2 | CS76494 | Forward | B | Sensitive | 1.3 | 78 |
| Tul-0 | CS76618 | Forward | A | Sensitive | 1.7 | 81 |
| Tol-0 | CS76614 | Forward | A | Sensitive | 2.0 | 73 |
| Pna-10 | CS76574 | Forward | C | Sensitive | 1.4 | 112 |
| Buckhorn Pass | CS76733 | Reverse | D | Sensitive | 1.7 | 29 |
| Dem-4 | CS76794 | Reverse | D | Sensitive | 1.7 | 28 |
| Gre-0 | CS76497 | Reverse | D | Sensitive | 1.4 | 48 |
| MIC-31 | CS77082 | Reverse | D | Sensitive | 2.1 | 49 |
| MNF-Jac-12 | CS77097 | Reverse | D | Sensitive | 2.5 | 33 |
| MNF-Pot-21 | CS77099 | Reverse | D | Hypersensitive | 1.4 | 50 |
| MNF-Pot-75 | CS77100 | Reverse | D | Sensitive | 2.2 | 32 |
| Mdn-1 | CS77077 | Reverse | E | Sensitive | 2.9 | 43 |
| Mv-0 | CS76556 | Reverse | D | Hypersensitive | 1.1 | 56 |
| NC-6 | CS77124 | Reverse | D | Sensitive | 1.6 | 54 |
| PT2.21 | CS77191 | Reverse | D | Sensitive | 1.5 | 55 |
| Rmx-A02 | CS76589 | Reverse | D | Sensitive | 2.1 | 36 |
| Rmx-A180 | CS77218 | Reverse | D | Sensitive | 1.8 | 42 |
| SLSP-31 | CS77254 | Reverse | D | Sensitive | 1.4 | 53 |

[^0]which is located in the middle of the central domain of ACC2.

Confirmation of the predicted amino acid variation in Sav-0 was not necessary because our lab sequenced the $A C C 2$ gene. Nine variable residues were found in Sav-0 compared to the consensus sequence from all Arabidopsis accessions (Table 18). Seven of these variants were in residues with low conservation in the 667 -sequence multi-kingdom alignment, and were found in multiple high-intermediate or tolerant accessions. This means that these mutations are likely to have little effect on the function of ACC2 in Sav-0. One other variant (V472I) is located in a more conserved residue, but can also be found in multiple high-intermediate or tolerant accessions. On the other hand, variant G135E is located in a highly-conserved residue (95.7\%), and is found only in Sav-0 and not in any other natural accession. This variant in Sav-0 is likely responsible for the hypersensitivity of the accession on spectinomycin.

Since neither Gn2-3 nor La-0 were predicted to have mutations in conserved amino acid residues, Yixing Wang sequenced the $A C C 2$ cDNA from both accessions to determine whether the reported sequences were correct. The La-0 sequence was identical to that reported from the 1001 Genomes Project, suggesting that the sensitivity of La-0 to a loss of chloroplast translation is caused by a defect other than a missense mutation in $A C C 2$. Unlike La- 0 , the cDNA sequence of Gn2-3 obtained in our lab clearly differed from the 1001 Genomes sequence. However, it was identical to the sequence of Gn-1, which contains a defect in the splice acceptor site of Intron 10 . Thus, the sensitivity of Gn2-3 is likely caused by this same splicing defect. From this forward genetic screen, we identified four potentially essential amino acid residues in ACC2 where missense mutations likely reduce function of the protein: G135E, I404K, F1206L, and T1902K.

## Additional Accessions Chosen for Missense Mutations Affecting Conserved Residues

Using a reverse genetic approach, we identified accessions containing either single amino

Table 18. ACC2 Variants in Sav-0 that Differ from the Consensus Among Sequenced Accessions. Adapted from Parker et al. (2016).

| Variant ${ }^{\text {a }}$ | Conserv.$(\%)^{\mathrm{b}}$ | Protein <br> Domain ${ }^{\text {c }}$ | 1001 Genomes <br> Accessions with Predicted Variant | Accessions Evaluated on Spectinomycin ${ }^{\text {d }}$ | Variant <br> Confirmed | Seedlings Classified | Spectinomycin Response |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  | Category | Score |
| A18T | Low | TP | 39 | Multiple ${ }^{\text {e }}$ | Assumed | 231 | Intermediate | 5.0 |
| S66F | Low | TP | 57 | Giffo-1 | Not | 25 | High Int. | 8.0 |
|  |  |  |  | Fell1-10; Jl-3 | Needed | 379 | Tolerant | 9.3 |
| G135E | 95.7 | (BC) | 0 | Sav-0 ${ }^{\text {f }}$ | Yes | 275 | Hypersensitive | 1.2 |
| M445T | Low | BC | 189 | Multiple ${ }^{\text {g }}$ | Assumed | 1063 | Tolerant | 9.0 |
| V472I | 83.7 | BC | 51 | Nz-1; Uk-1 |  | 47 | High Int. | 7.5 |
|  |  |  |  | Mt-0; Mz-0 |  | 40 | Tolerant | 8.8 |
| D521N | Low | BC | 51 | Nz-1; Uk-1 | Not | 47 | High Int. | 7.5 |
|  |  |  |  | Mt-0; Mz-0 | Needed | 40 | Tolerant | 8.8 |
| S1758L | Low | CT | 192 | Multiple ${ }^{\text {g }}$ | Assumed | 1063 | Tolerant | 9.0 |
| S2230L | Low |  | 48 | Nz-1; Uk-1 | Not | 47 | High Int. | 7.5 |
|  |  |  |  | Mt-0 | Needed | 20 | Tolerant | 8.4 |
| T2284R | Low |  | 60 | Nz-1; Uk-1 | Not | 47 | High Int. | 7.5 |
|  |  |  |  | $\begin{gathered} \text { Lm-2; Mt-0; } \\ \text { Mz-0 } \end{gathered}$ | Needed | 110 | Tolerant | 8.5 |

${ }^{\text {a }}$ The first residue (e.g. "G" in G135E) is found in the consensus sequence; the second in Sav-0.
${ }^{\text {b }}$ Conservation percentage of 667 aligned homomeric ACCase sequences with the accession consensus residue.
${ }^{\text {c }}$ TP, Transit Peptide; BC, Biotin carboxylase; BCCP, Biotin carboxyl carrier protein; CT, carboxyltransferase.
${ }^{d}$ Accessions with the same variant but a more sensitive or problematic seedling response are excluded to highlight the most tolerant responses observed with the variant present.
${ }^{\mathrm{e}}$ Intermediate responses: Durh-1; Hn-0; Hovdala-2; Ler-1; Litva; Nw-0; RRS-7; Star-8.
${ }^{\mathrm{f}}$ The Sav-0 variant was uncovered by sequencing the ACC2 cDNA; whole genome sequence for this accessions was not available.
${ }^{\mathrm{g}}$ Tolerant responses: Fell1-10; Jl-3; Lm-2; Mt-0; Mz-0; Tsu-0; Tu-0.acid deletions, missense
mutations in the transit peptide, or missense mutations affecting conserved amino acid residues to test for sensitivity to spectinomycin. In the accession Qar-8a, there is an amino acid substitution (K1376R) immediately followed by an amino acid deletion ( $\Delta 1377$ ). When examined on spectinomycin, the seedlings of Qar-8a were consistently sensitive, but not as highly sensitive as other accessions with null alleles of $A C C 2$. This could mean that this substitution and deletion reduce but do not completely eliminate the function of ACC2. A second example of a single amino acid deletion ( 41479 ) is found in the central domain of IP-Ren-6 and IP-Voz-0, but it seems to have little to no effect on the function of ACC2 since IP-Voz-0 exhibits an intermediate phenotype on spectinomycin.

Across all 855 accessions from the 1001 Genomes Project, eight variants were found in the transit peptide region of ACC2 (Table 19). We were unable to evaluate one of these (L6S) because relevant seed stocks were unavailable. Only one accession (Chi-0) contained the variant S91C. However, this variant likely has little effect on the function of ACC2 because Chi-0 has an intermediate phenotype on spectinomycin. Multiple candidate accessions were tested on spectinomycin for the other six variants. Five of these (G7V, A18T, V59L, S66F, and D87E) are found in multiple intermediate or tolerant accessions, leading us to conclude that they do not alter essential residues. Variant R4T was a promising candidate at first, based on the sensitivity of the IP-Cum-1 accession, but that variant was also confirmed in IP-Gua-1, which is an intermediate accession.

Searching the 526 conserved amino acid residues (> 95\%) found in the 667-sequence multi-kingdom alignment of ACCases, we identified 44 residues where at least one Arabidopsis accession contains a missense mutation. This list of residues was evaluated further to identify essential residues where missense mutations likely reduce ACC2 protein function. Six residues were removed from the list because the accession could not be tested on spectinomycin due to lack of seeds or a known null mutation that already causes sensitivity. Four other residues were

Table 19. Accessions with Missense Mutations in the Transit Peptide of ACC2. Adapted from Parker et al. (2016).

| Accession | ABRC <br> Stock | ACC2 Mutation | Spectinomycin Response |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  | Category | Score |
| Bd-0 | CS76445 | A-18-T \& S-66-F | Low Intermediate | 2.2 |
| Bsch-0 | CS76457 | S-66-F | High Intermediate | 7.2 |
| Chi-0 | CS76464 | S-91-C | Mid Intermediate | 5.1 |
| Di-G | CS76472 | A-18-T \& S-66-F | Low Intermediate | 2.5 |
| Dog-4 | CS76386 | V-59-L | Sensitive | 3.7 |
| Fell 1-10 | CS76855 | S-66-F | Tolerant | 8.6 |
| Hn-0 | CS76513 | A-18-T \& S-66-F | Mid Intermediate | 5.7 |
| IP-Cum-1 | CS76787 | R-4-T | Sensitive | 2.3 |
| Is-0 | CS76517 | S-66-F | High Intermediate | 7.2 |
| Nemrut-1 | CS76398 | V-59-L | Low Intermediate | 4.2 |
| Nw-0 | CS76564 | A-18-T \& S-66-F | Mid Intermediate | 7.0 |
| RRS-7 | CS76593 | A-18-T \& S-66-F | Mid Intermediate | 4.7 |
| Star-8 | CS76400 | A-18-T \& S-66-F | Mid Intermediate | 4.7 |

removed because they were not confirmed through Sanger sequencing. Appendix L lists the remaining 34 variants that alter conserved residues. From this set, 28 residues were removed from further consideration because the same variant was confirmed in at least one intermediate or tolerant accession. All six of the remaining residues are likely essential. Three of these (G135, I404, and F1206) were already identified through our forward genetic approach. One residue (E1689), with a variant found in the accession Ts-1, was already thought to be essential because it is the location of a strong mutation (pasticcino 3-1) in ACC1. The last two residues are the sites of novel missense mutations in two sensitive accessions: Y443C in Etna-2, and A2059V in Grivo-1. Through both genetic approaches to identify essential residues in ACC2, we found eight residues where a mutation likely reduces protein function of ACC2 (Table 20).

## Crossing Sensitive Accessions with the Tolerant Tsu-0 Accession to Determine if ACC2 is the Locus Responsible for Sensitivity

We took two approaches to determine whether the sensitivity of an accession with a mutation of interest was linked to the $A C C 2$ locus. The first approach was similar to that used to link the sensitivity of "Nossen" to $A C C 2$. We crossed sensitive accessions with Tsu-0, a tolerant accession, and compared seedling phenotypes of the F2 generation to their genotypes at the $A C C 2$ locus. If a defect in $A C C 2$ was responsible for the sensitivity observed, then sensitive F2 seedlings should be homozygous for the $A C C 2$ allele found in the sensitive accession, whereas tolerant F2 seedlings should be homozygous or heterozygous for the Tsu-0 allele of $A C C 2$. We used this method for one hypersensitive accession (Sav-0), which contains a variant (G135E) in a conserved amino acid residue, and two sensitive accessions (Nie1-2 and Oy-0), which lack an obvious defect in ACC2.

The results of Nie1-2 and Oy-0 crosses with Tsu-0 were at first difficult to interpret (Table 21; Figure 23). After multiple rounds of phenotyping and genotyping the $A C C 2$ and

Table 20. Accessions with Strong Missense Mutations Affecting Conserved ACC2 Residues. Adapted from Parker et al. (2016).

| Genetic <br> Screen | Accessions <br> Analyzed | Variant <br> Analyzed ${ }^{\text {a }}$ | Protein <br> Domain ${ }^{\text {b }}$ | Conservation (\%) ${ }^{\text {c }}$ | Sequenced <br> Accessions with Predicted Variant | Tolerant or Intermediate Accessions | Variant Impact ${ }^{\text {d }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Forward | Sav-0 | G135E | (BC) | 95.7 | $0^{\text {e }}$ | 0 | LD |
|  |  | V472I | BC | 83.7 | 51 | 13 | VUS |
| Forward | Knox-18; <br> RRS-10; | I404K | BC | 94.8 | 18 | 0 | LD |
|  | $\begin{gathered} \text { Gifu-2; } \\ \text { Tul-0; } \end{gathered}$ | T1902K | CT-Alpha | 87.6 | 18 | 0 | LD |
|  | $\begin{gathered} \text { Tol-0; } \\ \text { Pna-10 } \end{gathered}$ | E1355G | Central | 98.7 | 116 | 18 | VUS |
| Reverse | Etna-2 | Y443C | BC | 94.0 | 1 | 0 | LD |
| Reverse | Ts-1 | E1689G | CT-Beta | 97.0 | 1 | 0 | D |

${ }^{\text {a }}$ The first residue (e.g. "G" in G135E) is found in the consensus sequence; the second in Sav-0.
${ }^{\mathrm{b}}$ BC, Biotin carboxylase; (BC), Immediately preceding the BC domain; CT, Carboxyltransferase.
${ }^{\text {c }}$ Conservation percentages are based on the multi-kingdom alignment of 667 ACCase protein sequences.
${ }^{d}$ D, Deleterious to protein function; LD, Likely deleterious; VUS, Variant of unknown significance.
${ }^{\mathrm{e}}$ Sav-0 was not included in the 1001 Genomes sequence dataset.

Table 21. Seedling Responses on Spectinomycin of Parental Accessions and F2 Progeny from Crosses between Accessions.

| Genotype <br> Examined | Total <br> Seedlings Classified | Distribution of Seedling Phenotypes on Spectinomycin (\%) ${ }^{\text {a }}$ |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Sensitive |  |  | Intermediate |  |  | Tolerant |  |  |
|  |  | 1 | 2 | 3 | 5 | 6 | 7 | 9 | 10 | 11 |
| Tsu-0 | 490 |  | 0.4 | 0.4 | 1.4 | 1.0 | 13.5 | 63.9 | 18.8 | 0.6 |
| Sav-0 | 275 | 84.0 | 13.1 | 2.2 |  | 0.7 |  |  |  |  |
| Tsu-0 x Sav-0 | 428 | 28.5 | 3.0 | 5.9 | 11.9 | 0.7 | 31.1 | 18.0 | 0.9 |  |
| Oy-0 | 229 | 9.6 | 74.7 | 13.5 | 0.9 | 0.9 | 0.4 |  |  |  |
| Tsu-0 x Oy-0 | 288 | 0.3 | 7.7 | 14.9 | 30.2 | 2.4 | 27.1 | 14.3 | 3.1 |  |
| Nie1-2 | 235 | 5.5 | 16.6 | 6.0 | 17.9 | 22.5 | 28.1 | 3.4 |  |  |
| Tsu-0 x Nie1-2 | 397 | 0.3 | 0.3 | 0.3 | 5.0 | 1.7 | 23.2 | 48.8 | 17.9 | 2.5 |

${ }^{\text {a }}$ Numbers define classes from expanded cotyledons without leaves (1) to extensive rosettes with sizeable leaves (11) as defined in the text. Refer to Figure 3.7 for examples of seedling phenotypes for each class. Gray font, least common phenotypes ( $<10 \%$ ).


Figure 23. Comparison of Spectinomycin Seedling Responses of Parental Accessions and F2 Progeny from Crosses Between Tsu-0 and Sensitive Accessions. Percent of seedlings in each accession or F2 line assigned to the nine phenotypic categories (1-3; 5-7; 9-11) that are described in "Evaluating Additional Lines Increases the Number of Sensitive Accessions" in this Chapter. A, Tsu-0 x Sav-0; B, Tsu-0 x Oy-0; and C, Tsu-0 x Nie1-2. The data for these crosses can be found in Table 21.
enhancer loci from tolerant and sensitive F2 seedlings, we concluded that ACC2 is fully functional in Nie 1-2, and that the sensitivity of this accession is due to a defect in the enhancer locus. Additional screening of Nie1-2 seedlings on spectinomycin revealed a more intermediate phenotype, which likely confirms that ACC2 is fully functional. Our current model for sensitivity in $\mathrm{Oy}-0$ is a partial loss of ACC2 function, as indicated by the absences of tolerant F 2 seedlings homozygous for the Oy-0 allele of $A C C 2$ combined with a defect in the enhancer locus. Both of these accessions show that functional ACC2 protein allows for a partial rescue of spectinomycin sensitivity, and a functional enhancer is required to increase the tolerance of an accession.

The analysis of crosses between Sav-0 and Tsu-0 revealed possible linkage between the sensitivity of Sav-0 and the genotype at the $A C C 2$ locus, with some inconsistent results (Table 21). While the genotype and phenotype results from the most tolerant F2 seedlings were consistent with $A C C 2$ as the locus responsible for Sav-0 sensitivity, results from the most sensitive F2 seedlings raised the possibility that a second locus linked to $A C C 2$ was responsible. However, a second round of genotyping and phenotyping of tolerant and sensitive F2 seedlings revealed perfect linkage between the sensitivity of Sav-0 and ACC2. These results highlighted the limitations of this approach to link sensitivity of an accession to a defect in ACC2. Overall, this approach proved to be a rather tedious process with results that were in some cases difficult to interpret.

## Crossing Sensitive Accessions with Informative Knockout Mutants Assesses the Impact of ACC2 Variants on Protein Function

We had first assumed that our two approaches to associate sensitivity of an accession with a mutation of interest in ACC2 would be equally informative. However, our results from crossing sensitive accessions with Tsu-0 revealed the shortcomings of that approach. Instead of continuing with those crosses, we utilized our second approach for the other sensitive accessions.

For this approach, we performed a series of genetic complementation tests using informative knockout lines of acc2 (Salk_148966c) and tic20-iv (SAIL_97_F10), which are both in the Col-0 background. Both knockout lines exhibit a normal phenotype when grown in soil. However, when their seedlings are grown on spectinomycin media, they have a hypersensitive phenotype similar to accessions with null mutations in ACC2 (Figure 24). TIC20-IV encodes a channel protein on the inner membrane of the chloroplast that is likely the primary channel through which ACC2, and other housekeeping proteins, pass to enter the stroma. A similar channel protein, TOC34, is found on the outer member of the chloroplast, and is thought to be the primary channel for movement of housekeeping proteins through the outer membrane. A toc 34 knockout mutant (ppi3-2) in the Col-0 background shows an intermediate phenotype on spectinomycin (Figure 24), which indicates that the Toc34 protein is not the sole channel protein for ACC2 transport through the outer membrane, whereas Tic20-IV is likely the sole channel protein through the inner membrane.

In order to analyze these genetic complementation tests, we looked at the spectinomycin phenotypes of F1 and F2 seedlings from crosses between sensitive accessions and the two knockout mutants. If a defect in $A C C 2$ is responsible for the sensitivity of an accession, as in the accessions with null mutations, then we expected to find $100 \%$ sensitive seedlings in both the F1 and F2 generations of the crosses with acc2, where the defective allele in the sensitive accession fails to complement the null allele in the knockout mutant in compound heterozygotes. For the crosses with $t i c 20-i v$, we also expected to see $100 \%$ intermediate seedlings in the F1 generation, where the defective alleles are complemented, and a 9:7 ratio of intermediate to sensitive seedlings in the F2 generation. The opposite is expected ( $100 \%$ intermediate F1 seedlings in acc2 crosses and $100 \%$ sensitive seedlings in tic20-iv crosses) if the defect causing sensitivity in an accession is linked to TIC20-IV. If the cause of sensitivity is a defect in a gene other than ACC2 or TIC20-IV, then we expected to see $100 \%$ intermediate F1 seedlings, and the 9:7 ratio of


Figure 24. Spectinomycin Responses of Knockout Mutants of Known Components of the Chloroplast Protein Import System. A, Parental Col-0 accession. B, toc34-1 (ppi3-2). C, tic20$i v-1$ (SAIL_97_F10). D, tic20-iv-2 (Koncz 11324). E, acc2-1 (Salk_148966c). F, Sav-0 (the most sensitive accession). Bar $=1 \mathrm{~mm}$. Adapted from Parker et al. (2014).
intermediate to sensitive F2 seedlings.

This approach was used for a total of 17 sensitive accessions: Gn2-3 as a control; Sav-0; Knox-18, Gifu-2, Pna-10, RRS-10, and Tul-0 as representatives of the large group with two missense mutations (I404K and T1902K); five additional accessions with different missense mutations thought to reduce the function of ACC2 (Aitba-1, F1206L; Etna-2, Y443C; Grivo-1, A2059V; Ts-1, E1689G; and Qar-8a, K1376R and $\Delta 1377$ ); two accessions where there is no obvious defect in ACC2 (IP-Cum-1 and La-0); and three accessions with missense mutations of unknown significance in TIC20-IV (IP-Deh-1, IP-Tdc-0, and Kru-3). The results of these crosses are shown in Tables 22 and 23 along with Figure 25.

Previously, we found that Gn2-3 has a splicing defect in the acceptor site of Intron 10, which causes a frameshift and a truncated ACC2 protein. We used Gn2-3 as a control to see if our predictions were correct for accessions whose sensitivity is caused by a defect in ACC2. The results of these crosses showed exactly what we expected. For the crosses with $\operatorname{acc} 2$, all of the seedlings from the F1 and F2 generations were sensitive to spectinomycin, with a sensitive phenotype similar to both parent lines. The F1 seedlings from the tic20-iv crosses were all less sensitive than the parent lines, and a majority of them had an intermediate phenotype. In the F2 generation, $56 \%$ of the seedlings showed an intermediate phenotype while $44 \%$ were sensitive, which almost perfectly matches our expected 9:7 ratio. The results of the Sav-0 crosses followed the same pattern. All of the seedlings in the F1 and F2 generation of the acc2 crosses were sensitive to spectinomycin while the F1 seedlings from the tic20-iv crosses were all intermediate and the F2 seedlings were $61 \%$ intermediate to $39 \%$ sensitive, which is still close to the expected 9:7 ratio. This provides substantially more evidence that the sensitivity of Sav-0 is connected to the G135E substitution in ACC2. Due to the hypersensitivity of Sav-0 seedlings, this missense mutation likely eliminates ACC2 protein function.

All five accessions (Knox-18, Gifu-2, Pna-10, RRS-10, and Tul-0) used to represent the

Table 22. Spectinomycin Responses of F1 Seedlings from Crosses between Sensitive Accessions and Informative Knockout Mutants. Adapted from Parker et al. (2016).

| Accession <br> Parent | F1 Progeny from $a c c 2$ Cross |  | F1 Progeny from tic20-iv Cross |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Category | Score | Seedlings | Category | Score | Seedlings |
| "Gn2-3" | Hypersensitive | 1.1 | 106 | Intermediate | 4.9 | 98 |
| Sav-0 | Hypersensitive | 1.0 | 71 | Intermediate | 4.4 | 45 |
| Knox-18 | Sensitive | 1.3 | 78 | Intermediate | 7.2 | 83 |
| Gifu-2a | Sensitive | 1.2 | 82 | Intermediate | 5.9 | 72 |
| Pna-10 | Hypersensitive | 1.0 | 74 | Intermediate | 5.0 | 64 |
| RRS-10a | Sensitive | 1.2 | 80 | Intermediate | 5.8 | 81 |
| Tul-0a | Hypersensitive | 1.1 | 83 | Intermediate | 5.8 | 81 |
| Aitba-1 | Sensitive | 2.1 | 149 | Intermediate | 5.4 | 148 |
| Etna-2 | Intermediate | 5.8 | 89 | Intermediate | 5.6 | 100 |
| Grivo-1 | Intermediate | 7.3 | 74 | Intermediate | 6.6 | 52 |
| Ts-1 | Sensitive | 1.7 | 106 | Intermediate | 5.6 | 81 |
| Qar-8a | Low Intermediate | 3.6 | 96 | Intermediate | 4.9 | 107 |
| IP-Cum-1 | Intermediate | 4.9 | 83 | Intermediate | 4.4 | 62 |
| La-0 | Intermediate | 4.6 | 61 | Intermediate | 4.6 | 67 |
| IP-Deh-1 ${ }^{\text {b }}$ | Intermediate | 6.9 | 56 | Intermediate | 3.9 | 81 |
| IP-Tdc-0 | Intermediate | 7.1 | 86 | Intermediate | 6.7 | 87 |
| Kru-3 ${ }^{\text {b }}$ | Intermediate | 7.1 | 80 | Intermediate | 5.7 | 87 |

${ }^{\text {a }}$ Part of the Knox-18 group of sensitive accessions with shared variants of interest.
${ }^{\mathrm{b}}$ Contains a missense mutation of unknown significance in TIC2O-IV.

Table 23. Spectinomycin Responses of F2 Seedlings from Crosses between Sensitive Accessions and Informative Knockout Mutants. Adapted from Parker et al. (2016).

| Accession Parent | Knockout Parent | Seedlings Classified | Phenotype <br> Score | Distribution of F2 Seedling Phenotypes (\%) |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Sensitive |  |  | Intermediate |  |  | Tolerant |  |
|  |  |  |  | 1 | 2 | 3 | 5 | 6 | 7 | 9 | 10 |
| "Gn2-3" | $a c c 2$ | 82 | 1.0 | 97.6 | 2.4 |  |  |  |  |  |  |
| Sav-0 | acc2 | 163 | 1.0 | 99.4 | 0.6 |  |  |  |  |  |  |
| Sav-0 | "Nossen" | 184 | 1.2 | 87.5 | 4.9 | 7.1 |  | 0.5 |  |  |  |
| Knox-18 | acc2 | 127 | 1.0 | 96.1 | 3.9 |  |  |  |  |  |  |
| Tul-0 | acc2 | 135 | 1.1 | 90.4 | 8.9 | 0.7 |  |  |  |  |  |
| Aitba-1 | acc2 | 325 | 2.2 | 42.5 | 28.6 | 17.2 | 5.5 | 3.1 | 3.1 |  |  |
| "Gn2-3" | tic20-iv | 156 | 3.6 | 39.1 | 5.1 | 5.1 | 30.8 | 1.9 | 16.7 | 1.3 |  |
| Sav-0 | tic20-iv | 152 | 3.2 | 31.6 | 7.9 | 25.7 | 26.3 | 0.7 | 7.8 |  |  |
| Knox-18 | tic20-iv | 124 | 4.0 | 46.0 | 4.8 |  | 12.1 | 4.0 | 21.8 | 10.5 | 0.8 |
| Tul-0 | tic20-iv | 138 | 3.8 | 38.4 | 10.9 |  | 15.2 | 10.1 | 21.0 | 4.4 |  |
| Aitba-1 | tic20-iv | 124 | 3.6 | 29.9 | 11.3 | 15.3 | 21.0 | 4.8 | 13.7 | 4.0 |  |
| La-0 | $a c c 2$ | 152 | 2.6 | 23.7 | 27.6 | 35.5 | 5.9 | 6.6 | 0.7 |  |  |
| La-0 | tic20-iv | 154 | 2.5 | 25.3 | 29.2 | 35.1 | 5.9 | 4.5 |  |  |  |
| Ip-Cum-1 | $a c c 2$ | 112 | 4.4 | 16.1 | 9.8 | 11.6 | 31.3 | 8.9 | 22.3 |  |  |
| Ip-Cum-1 | Sav-0 | 199 | 3.1 | 30.7 | 9.0 | 27.1 | 26.1 | 1.1 | 6.0 |  |  |
| Ip-Cum-1 | tic20-iv | 229 | 3.5 | 22.3 | 10.0 | 24.0 | 35.8 | 1.8 | 6.1 |  |  |

${ }^{\text {a }}$ Numbers define classes from expanded cotyledons without leaves (1) to extensive rosettes with sizeable leaves (11) as defined in the text. Refer to Figure 3.7 for examples of seedling phenotypes for each class. Red font, most common phenotypes ( > 10\%). Gray font, least common phenotypes ( $<5 \%$ ).


Figure 22. Comparison of Spectinomycin Seedling Responses of F2 Seedlings from Crosses between Sensitive Accessions and Informative Knockout Mutants. Percent of F2 seedlings in each cross assigned to the nine phenotypic categories (1-3; 5-7; 9-10) that are described in "Evaluating Additional Lines Increases the Number of Sensitive Accessions" in this Chapter. No seedlings were found in category 11 . A, Gn2-3 crossed with acc2 and tic20-iv; B, Sav-0 crossed with acc2, "Nossen" and tic20-iv; C, Knox-18 crossed with acc2 and tic20-iv (Tul-0 crosses showed a similar graph); D, Aitba-1 crossed with acc2 and tic20-iv; E, La-0 crossed with acc2 and tic20-iv; and F, IP-Cum-1 crossed with acc2, Sav-0 and tic20-iv. The data for these crosses can be found in Table 23.
group of 20 accessions with the 1404 K and T 1902 K variants, showed results similar to the Sav-0 and Gn2-3 crosses. Knox-18 and Tul-0 were taken to the F2 generation, whereas Gifu-2, Pna-10, and RRS-10 were only analyzed at the F1 generation. In all five cases, all of the seedlings from the crosses with $a c c 2$ were sensitive to spectinomycin, with the exception of two seedlings from the Knox-18 cross that were intermediate. The majority of the F1 seedlings from all five tic20-iv crosses had an intermediate phenotype, and the F2 seedlings from the Knox-18 and Tul-0 crosses showed about a 1:1 ratio of intermediate to sensitive seedlings, which could resolve into a 9:7 ratio if more seedlings were screened. These results indicate that the two $A C C 2$ missense mutations in this group of accessions are responsible for the sensitive phenotype of all 20 members of the group. In order to be sure that some other null mutation is not present in these accessions, Yixing Wang sequenced the $A C C 2$ cDNA from Knox-18, and confirmed that a full length transcript is produced.

Of the crosses with the other five accessions that contain missense mutations that we originally thought affected the function of ACC 2 , only the crosses with $\mathrm{Ts}-1$ showed $A C C 2$ as the locus responsible for sensitivity of the accession. The F1 seedlings from the Ts-1 crosses with $a c c 2$ were sensitive to spectinomycin while the F 1 seedlings from the crosses with $t i c 20-i v$ were intermediate. This result is not surprising since the position of the missense mutation in $\mathrm{Ts}-1$ (1689) is the same as a strong mutation (pasticcino 3-1) in ACC1. In Ts-1, the missense mutation, E1689G, likely reduces ACC2 function significantly. The results of the Aitba-1 crosses may indicate that the missense mutation (F1206L) in ACC2 is responsible for sensitivity, but they are harder to interpret than the other crosses. This is likely due to Aitba-1 seedlings having a less sensitive phenotype than accessions with null mutations in $A C C 2$. In the crosses with acc2, the F1 seedlings were all sensitive to spectinomycin, similar to the parent lines. A majority of the F2 seedlings were sensitive, but around $11 \%$ of the seedlings were intermediate. About $75 \%$ of the F1 seedlings from the Aitba-1 crosses with tic20-iv were intermediate while the rest were
sensitive. The results of the F2 generation are harder to interpret because it is difficult to distinguish the phenotypes of high sensitive and low intermediate seedlings. The F1206L missense mutation in Aitba-1 likely reduces the function of ACC2, but not as severely as a null mutation.

Results from the Grivo-1 crosses clearly showed that the sensitivity of Grivo-1 is not associated with either ACC2 or TIC20-IV. The F 1 seedlings from both crosses were all intermediate when compared to the phenotypes of the parent lines. The F2 generation was not studied since harvesting F2 seeds would have required a vernalization treatment of 5-6 weeks. Results from the Etna-2 and Qar-8a crosses showed that the sensitivity of these accessions is also likely caused by a defect in a gene other than ACC2 or TIC20-IV, though the results are less definitive than Grivo-1. In both cases, F1 seedlings from the tic20-iv crosses were almost all intermediate, whereas around $20 \%$ of the F 1 seedlings from the $\operatorname{acc} 2$ crosses were sensitive. Again, the F2 generation was not analyzed due to the requirements of harvesting F2 seed. Overall, the missense mutations in Grivo-1 (A2059V), Etna-2 (Y443C), and Qar-8a (K1376R and $\Delta 1377$ ) are examples of substitutions in highly conserved residues that do not appear to reduce the function of ACC 2 .

Results from crosses with two accessions (IP-Cum-1 and La-0) that lack obvious defects in either ACC2 or TIC2O-IV, and three accessions (IP-Deh-1, IP-Tdc-0, and Kru-3) with missense mutations in TIC2O-IV, showed that the cause of sensitivity in these accessions was not associated with either locus. The F1 seedlings produced when these accessions were crossed with acc2 and tic20-iv all showed an intermediate phenotype more tolerant than any of the parent lines on spectinomycin. The F2 generation of the IP-Cum-1 and La-0 crosses were also analyzed, and the results did not appear to show the 9:7 ratio we expected to see if a single locus was responsible for the sensitivity of the accessions.

Through all of these crosses, we have shown that a single missense mutation can cause a
partial or full loss of ACC2 function in Sav-0 (G135E), the group of 20 accessions (I404K and T1902K), Aitba-1 (F1206L), and Ts-1 (E1689G). We have also shown that sensitivity of some accessions can be linked to the enhancer locus on chromosome 5, as in Oy-0 and Nie1-2, and we have eight sensitive accessions where the defect responsible for sensitivity is not located in ACC2 or TIC20-IV.

## Tolerated Missense Mutations in $A C C 1$ and $A C C 2$

So far, we have been using accessions sensitive to spectinomycin to look for informative missense mutations in ACC2 that severely reduce or eliminate function of the protein. However, this represents a small fraction of the total variation found in ACCase protein sequences among natural accessions. In order to look at natural variation in the paralogous ACC1 protein sequences, we utilized an Excel spreadsheet similar to the one described for comparing ACC2 sequences. Any missense mutations found in ACC1 must be tolerated as it is an essential protein, and the loss of ACC1 function results in seedling lethality. We identified 132 variable residues in ACC1 across all sequenced accessions. Nineteen residues were removed from this list because their variation was likely due to errors in sequencing rather than a true substitution as indicated by the presence of an unknown amino acid ("Z") in the protein sequence and unresolved nucleotides in the genomic sequence. Appendix I lists the 113 variable residues in the ACC1 protein sequence found among 855 natural Arabidopsis accessions. These 113 residues are spread throughout the protein sequence, with the highest concentration (33\%) located in the central domain of the protein, where the most variation was also seen among the ACC2 protein sequences. Seven of these predicted variable residues are highly conserved throughout our multi-kingdom alignment of 667 sequences. Using Sanger sequencing, Yixing Wang confirmed two of the variants in conserved residues, A 193 V and V 809 A , and did not confirm the presence of three other variants
(A271D, Q272R and L742S) in the only accession where they were predicted. In total, we found 110 variable residues in the ACC1 protein sequence among 855 natural Arabidopsis accessions, which is only $5 \%$ of the entire $\mathrm{ACC1}$ sequence.

In addition to the natural variation found in ACC1 protein sequences, we identified tolerated missense mutations using the ACC2 protein sequences from tolerant accessions, which likely have a fully functional ACC2 protein. We aligned the protein sequences from eight of the most tolerant accessions: Chat-1, Ema-1, Ha-HBT1-2, Lm-2, Pog-0, Tsu-0, Tu-0, and Uod-1. Using this alignment, we found 24 total residues where substitutions are tolerated. None of these variants were found in all tolerant accessions, indicating that a single missense mutation is likely not responsible for spectinomycin tolerance and the consensus sequence from all 857 accessions encodes a fully functional ACCase protein. Similar to the variation found among the ACC1 and ACC2 protein sequences for all accessions, most (42\%) of the variation found in the ACC2 sequences of tolerant accessions is within the central domain of the protein. Information about these variable residues in tolerant accessions is listed in Table 24. Remarkably, six of the 24 variants (P475L, Q478K, N725S, R762C, E1355G, and G1766D) are in highly conserved residues found through our multi-kingdom alignment of 667 sequences. In addition, from our crosses with $a c c 2$ and $t i c 20-i v$ knockout mutants, we have confirmed three missense mutations that likely do not reduce ACC 2 protein function.

We also found variation in 18 other highly conserved residues where the accessions associated with the variant showed an intermediate phenotype on spectinomycin, indicating that these missense mutations may slightly reduce ACC2 protein function. Table 25 lists the 24 variants found in highly conserved residues where there is evidence of at least partial ACC2 protein function. Overall, we found 137 residues ( $6 \%$ of the total residues) in ACCase protein sequences that can tolerate missense mutations without affecting protein function, 13 of which are located in residues highly conserved among 667 eukaryotic ACCase sequences. Additionally, we

Table 24. ACC2 Variants Found in the Most Tolerant Natural Accessions. Adapted from Parker et al. (2016).

| Variant <br> Analyzed ${ }^{\text {a }}$ | Protein <br> Domain $^{\text {b }}$ | Conservation <br> $(\%)^{\text {c }}$ | Sequenced <br> Accessions with <br> Predicted Variant | Tolerant <br> Accessions |
| :---: | :---: | :---: | :---: | :---: |
| G7V | TP | Low | 175 | Ema-1; Ha-HBT1-2 |
| D87E | TP | Low | 333 | Chat-1; Ema-1; Pog-0 |
| D101G | - | Low | 82 | Ema-1 |
| A132S | - | 27.9 | 82 | Ema-1 |
| G355V | BC | 30.1 | 130 | Ha-HBT1-2; Uod-1 |
| M445T | BC | Low | 190 | Lm-2; Tsu-0; Tu-0 |
| P475L | BC | 99.7 | 1 | Lm-2 |
| Q478K | BC | 97.6 | 28 | Uod-1 |
| N725S | - | 96.9 | 44 | Chat-1; Pog-0 |
| R762C | - | 96.6 | 6 | Tsu-0; Tu-0 |
| Q903H | Central | 29.5 | 78 | Ema-1 |
| S949F | Central | Low | 109 | Ema-1 |
| E975K | Central | Low | 192 | Ha-HBT1-2; Uod-1 |
| E1103K | Central | Low | 210 | Ha-HBT1-2; Uod-1 |
| T1238I | Central | Low | 10 | Ha-HBT1-2 |
| E1312D | Central | Low | 116 | Ema-1 |
| E1355G | Central | 98.7 | 116 | Ema-1 |
| T1384S | Central | Low | 34 | Chat-1; Pog-0 |
| I1403N | Central | Low | 79 | Ema-1 |
| G1420A | Central | 12.3 | 7 | Tsu-0; Tu-0 |
| S1758L | CT- $\beta$ | Low | 193 | Lm-2; Tsu-0; Tu-0 |
| G1766D | CT- $\beta$ | 97.6 | 34 | Chat-1; Pog-0 |
| N1961D | CT- $\alpha$ | Low | 7 | Uod-1 |
| T2284R | - | Low | 61 | Lm-2 |

${ }^{\text {a }}$ The first residue (e.g. " G " in G 7 V ) is found in the consensus sequence; the second in Ema-1.
${ }^{\text {b }}$ TP, Transit peptide; BC, Biotin carboxylase; CT, Carboxyltransferase.
${ }^{c}$ Conservation percentages are based on the multi-kingdom alignment of 667 ACCase protein sequences.

Table 25. Accessions with Evidence of Residual ACC2 Function Despite Substitutions in Highly-Conserved Residues. Adapted from Parker et al. (2016).

| Variant <br> Analyzed $^{\text {a }}$ | Protein <br> Domain $^{\text {b }}$ | Conservation <br> $(\%)^{\text {c }}$ | Sequenced <br> Accessions with <br> Predicted Variant | Intermediate; <br> Low-Intermediate <br> Accessions $^{\text {a }}$ | Tolerant; <br> High- <br> Intermediate <br> Accessions $^{\text {e }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| F363L | BC | 99.3 | 5 | Sei-0 |  |
| V376A | BC | 100.0 | 12 | Col-0 |  |
| L474F | BC | 94.5 | 1 | Chi-0 |  |
| P475L | BC | 99.7 | 1 |  | Lm-2 |
| Q478K | BC | 97.6 | 28 | Multiple | Uod-1 |
| R494G | BC | 99.9 | 1 | Ip-Pal-0 |  |
| T538A | BC | 99.9 | 1 | IP-Tor-1 |  |
| N725S | - | 96.9 | 44 | Multiple | Pog-0 |
| G739E | - | 95.2 | 1 | Wa-1 |  |
| R762C | - | 96.6 | 6 | Mh-0 | Tsu-0; Tu-0 |
| G833R | BCCP | 99.3 | 3 | Dja-1 |  |
| L847P | - | 96.0 | 1 | WAR |  |
| E1355G | Central | 98.7 | 116 | Multiple | Si-0; Ema-1 |
| R1405Q | - | 96.1 | 1 | Db-1 |  |
| G1766D | CT-Beta | 97.6 | 39 | Multiple | Pog-0 |
| I1821V | CT-Beta | 98.2 | 1 | MNF-Che-2 |  |
| T1834S | CT-Beta | 99.4 | 2 | Nemrut-1 |  |
| S1883T | CT-Beta | 97.0 | 8 | Multiple |  |
| G1897S | CT-Alpha | 99.4 | 2 | Sch1-7; |  |
| P2013L | CT-Alpha | 98.5 | 3 | WalHaesB4 |  |
| A2014E | CT-Alpha | 99.0 | Balan-1 |  |  |
| I2115R | CT-Alpha | 98.2 | 1 | App1-16 |  |
| H2207Q | CT-Alpha | 98.1 | 1 | Iasi-1 |  |
|  |  |  | 1 | Ip-Lso-0 |  |
|  |  |  |  |  |  |

${ }^{\text {a }}$ The first residue (e.g. " F " in F363L) is found in the consensus sequence; the second in Sei-0.
${ }^{\text {b }}$ BC, Biotin carboxylase; BCCP, Biotin Carboxyl Carrier Protein; CT, Carboxyltransferase.
${ }^{\text {c }}$ Conservation percentages are based on the multi-kingdom alignment of 667 ACCase protein sequences.
${ }^{\mathrm{d}}$ May contain partial loss-of-function alleles of $A C C 2$.
${ }^{\mathrm{e}}$ Likely contain fully-functional alleles of $A C C 2$.
found 18 highly conserved residues in ACC2 where it seems that missense mutations lead to a partial loss of protein function.

## DISCUSSION

This chapter describes the use of forward and reverse genetic approaches to identify residues in $A C C 2$ that are likely essential for full protein function. This experimental system using spectinomycin to evaluate the level of function of ACC2 in natural accessions of Arabidopsis is a unique way to analyze the effects of mutations on a highly-conserved, essential gene in fatty acid biosynthesis. Two advantages of this system are: (1) while ACC1 plays a key role in Arabidopsis growth and development, ACC2 is essential only when chloroplast translation, and consequently the production of the heteromeric ACCase, is blocked; and (2) utilizing spectinomycin to inhibit chloroplast translation provides a method to analyze the effects of mutations on ACC2 at the seedling level. Null mutations in other ACCase proteins lead to lethality, but null mutations in $A C C 2$ result in an easy-to-identify hypersensitive phenotype on spectinomycin. Prior to this study, relatively few studies had been published on missense mutations in ACCase proteins. Arabidopsis was a key player in these studies because the mutations can be maintained as heterozygotes and the effects studied in segregating seeds and embryos (Meinke et al., 2008). Both strong and weak mutant alleles of $A C C 1$ have been used to understand the function of ACCases in Arabidopsis (Meinke, 1985; Baud et al., 2004; Kajiwara et al., 2004; Lu et al., 2011; Amid et al., 2012). While other ACCase mutations are found in Caenorhabditis elegans (Rappleye et al., 2003), Drosophila melanogaster (Sasmura et al., 2013), and Saccharomyces cerevisiae (Schneiter et al., 1996, 2000), most of these mutations offer little evidence on ACCase protein function. Several of the missense mutations in S. cerevisiae provide some information on key regions in the dimer interface (Wei and Tong, 2015). More recently, the focus of ACCase research has been on identifying herbicide resistant mutations in grasses
(Kaundun, 2014) and using ACCases as targets for drugs such as antibiotics, antifungals, and those for obesity and type-2 diabetes (Campbell and Cronan, 2001; Lenhard, 2011; Tong, 2013). Prior to our work, fewer than 20 amino acid residues in ACCase proteins had been associated with mutations affecting protein function. We have expanded this list of residues using the mutations found in natural accessions of Arabidopsis. The mutations from these previous studies, along with those found in this study, are listed in Appendix K.

The $\mathrm{K}_{\mathrm{a}} / \mathrm{K}_{\mathrm{s}}$ analysis of the Brassicaceae ACCase sequences raises a question about the function of $A C C 2$ in natural accessions of Arabidopsis: Why is there evidence of purifying selection on $A C C 2$ when the gene is not essential for survival? One possible answer is that ACC2 has a function outside of its known involvement in the conversion of malonyl-CoA to acetyl-CoA in the chloroplast. Potentially, ACC2 could function in a metabolic pathway within the mitochondria. This would be similar to the duplicated ACCase found in mammals and $S$. cerevisiae, which has been shown to function in the oxidation of fatty acids (Hoja et al., 2004; Abu-Elheiga et al., 2005). If ACC2 functions in a mitochondrial metabolic pathway, the loss of ACC2 function in some natural Arabidopsis accessions might indicate that the pathway is either not crucial for the plant's survival or the loss of ACC2's function in the pathway can be compensated by another protein. A second possible reason that $A C C 2$ has remained functional in most accessions is that ACC2 converts acetyl-CoA to malonyl-CoA in the chloroplast when the heteromeric ACCase protein is post-translationally down-regulated by the buildup of fatty acids in the endoplasmic reticulum (ER; Bates et al., 2014). In this case, there may be some advantages for Arabidopsis plants in selected environments to continue synthesizing fatty acids even if they accumulate in the cell. However, it is unlikely that continued synthesis of fatty acids is required for plant growth and development, which would explain why some natural accessions lack ACC2 function. Expanding the $\mathrm{K}_{\mathrm{a}} / \mathrm{K}_{\mathrm{s}}$ analysis using additional ACCase sequences from other members of the Brassicaceae might help to resolve these questions.

In our study of ACC2 protein sequences from the 1001 Genomes Project, we identified four nonsense mutations, two single-nucleotide deletions that caused frameshifts, three defects in RNA splicing, two large deletions or chromosomal rearrangements, one small deletion that caused a frameshift, and five essential amino acid residues where missense mutations or singleamino acid deletions are found in natural Arabidopsis accessions. All of these mutations likely have effects on the structure and function of ACC2. Other potential defects in $A C C 2$ affecting protein function that we have not identified include mutations in the promoter region, which are difficult to evaluate based on sequence variation alone, changes in the $5^{\prime}$ or $3^{\prime}$ untranslated region of the mRNA, which could affect the initiation or termination of translation, or mutations that reduce translation efficiency. Yixing Wang tested for promoter defects that reduce the amount of ACC2 transcript in a small number of sensitive accessions, including "Nossen", Nie1-2, and Oy0 , using qRT-PCR experiments, which showed no difference between the amount of $A C C 2$ transcript produced from these sensitive accessions and multiple tolerant accessions. However, this does not rule out the possibility of a promoter defect in other sensitive accessions.

Similar to the approach used in human genetics to describe missense mutations that cause a phenotype, we divided the variants found in our study into six categories based on the effects of the variant on ACCase protein function: deleterious, likely deleterious, potentially deleterious, variant of unknown significances, likely not deleterious, and not deleterious (Parker et al., 2016). Through our genetic complementation tests, we confirmed five variants that significantly reduced or completely eliminated ACC2 protein function: G135E, I404K, F1206L, E1689G, and T1902K. The reduction of ACC2 function caused by F1206L is likely not as severe as the other four missense mutations, because Aitba-1 is one of the less sensitive accessions. Four of the five missense mutations (G135E, I404K, F1206L, and T1902K) shown through genetic complementation tests to impact the structure and function of ACC2 are categorized as likely deleterious while the fifth mutation (E1689G) was labeled as deleterious. These genetic
complementation tests also revealed three missense mutations in highly conserved residues (Y443C, K1376R, and A2059V) that seem to have no effect on ACC2 function. These substitutions are categorized as likely not deleterious.

The 110 variants found in the comparison of ACC 1 protein sequences among natural Arabidopsis accessions were labeled as likely not deleterious substitutions when the variant is predicted in a single accession, or not deleterious substitutions when the variant is predicted in more than one accession. Of the 24 missense mutations found in the ACC2 protein sequences of tolerant accessions, 18 are categorized as variants of unknown significance because they are found in at least one tolerant accession, but no other information is known about those residues. Five of the other missense mutations are categorized as likely not deleterious because they are found in tolerant accessions and are located in highly conserved amino acid residues. The last missense mutation, found in Tsu- 0 and $\mathrm{Tu}-0$, is categorized as not deleterious since it is located in a highly conserved residue, and we have substantial evidence that the Tsu-0 allele of ACC2 is fully functional. Additionally, there are 179 variants categorized as likely not deleterious because the consensus sequences of ACC1 and ACC2 from the natural accessions differ, and both consensus sequences encode functional ACCase proteins. Any variation found in the ACC1 protein sequences of natural accessions cannot be considered deleterious because $A C C 1$ is an essential gene.

Through this study, we have identified 18 missense mutations that slightly reduce the function of ACC2. These 18 mutations are located in highly conserved residues. The furthest the seedlings from any accession with one of these residues develop is to an intermediate stage. Of these 18 variants, V376A is the most interesting. This mutation is located in an amino acid residue that is perfectly conserved in our multi-kingdom alignment of 667 sequences, and among all natural accessions of Arabidopsis, with the exception of the Col-0 protein sequence, which is
the reference Arabidopsis accession. The conservation of this residue, and the mutation only found in Col- 0 , raises the possibility that the $\mathrm{Col}-0 \mathrm{ACC} 2$ protein has reduced function.

With our combined approaches, we analyzed the effects of 339 different missense mutations on ACCase function. However, this represents only $15 \%$ of the total residues found in an ACCase protein, which leaves around $85 \%$ of the residues to be analyzed in order to fully understand the effects of missense mutations on ACCase function. This highlights the limitations of utilizing natural variation to study the effects of mutations on protein structure and function. In order to learn more about missense mutations in ACCase proteins, this project would need to be expanded using recent advances in gene editing technologies to induce missense mutations in residues of interest. For example, the A 376 V mutation found in Col-0 could be induced in the ACC2 sequence of Tsu-0, or another tolerant accession, which can then be analyzed on spectinomycin to look for a reduction of ACC2 function indicated by increased sensitivity. In order to evaluate some of the more subtle changes in ACCase protein function, missense mutations could be induced in candidate residues within ACC1, where the Meinke lab has shown, using emb22, pas3-1, and pas3-2 mutants, that the strength of the mutation affects the terminal embryo phenotype (Parker et al., 2016).

## CHAPTER VI

## CANDIDATE GENE APPROACH TO IDENTIFY OTHER FACTORS THAT INCREASE TOLERANCE TO A LOSS OF CHLOROPLAST TRANSLATION

## INTRODUCTION

As described in Chapter 4, we used crosses between emb mutants defective in chloroplast translation and the tolerant Tsu-0 accession to identify a single, dominant suppressor that increases tolerance of a loss of chloroplast translation. We also found evidence for a second, unlinked locus that enhances the effect of the suppressor, and additional genetic modifiers that further increase tolerance. Through our analysis of these crosses, we identified the suppressor locus as $A C C 2$ and mapped the enhancer near the top of chromosome 5 based on tight linkage with EMB3137. Further work on identifying the enhancer was performed by Kayla Cook, an undergraduate researcher in our lab (Cook and Meinke, 2017). Kayla manually curated the region of chromosome 5 surrounding EMB3137 to identify potential candidates for the enhancer locus. Through this curation, she found seven candidate genes that encode proteins with functions consistent with one of our models for the enhancer.

For this final part of my project, I focused on a method to identify additional genetic
modifiers of this system. Unlike the evidence we have for a single suppressor locus and enhancer, there seem to be at least two modifier loci that have some effect even without a functional enhancer. However, the modifiers appear to require the presence of the enhancer to have a significant impact on tolerance. In order to narrow the search for these modifiers, I used a candidate gene approach focused on five components of the TIC/TOC chloroplast protein import system that are found in different regions of the Arabidopsis genome, which allowed us to examine the regions surrounding these loci for linkage between a candidate gene and a potential modifier. Five descendent lines were used to compare the genotype of each potential modifier to the differences in embryo rescue. Two groups of lines were used: those likely to be homozygous Tsu-0 for each of the modifiers, and those likely to be homozygous "Nossen". Unfortunately, no association was found between the genotype of each candidate gene and the amount of embryo rescue observed in the descendent lines. Candidate modifiers that have not been tested yet include four additional members of the TIC/TOC system and ten gene products that likely interact with one or more of the potential enhancers identified through Kayla's curation. In contrast to previous sections of this dissertation, none of the work described in this chapter has been published.

## MATERIALS AND METHODS

## Plant Material and Growth Conditions

Mature seeds from the F4 and F5 generations of a cross between the tolerant Tsu-0 accession and emb3126-1, a mutant defective in chloroplast translation in the sensitive "Nossen" background, were harvested in our laboratory. These seeds were then germinated on plates containing a basal nutrient medium as described in Chapter 3. After plating the seeds, the plates were stored at $4^{\circ} \mathrm{C}$ in a refrigerator for three days, and then placed under fluorescent lights for 14 days at room temperature. Seedlings were then divided into two groups: some were used for DNA
extractions (described later), and others were transplanted to pots and grown in a growth room as described in Chapter 3. After four weeks, seed and embryo measurements were taken using the method described in Chapter 4.

## PCR Genotyping of Plants

For each descendent line used in this analysis, genomic DNA was extracted from six seedlings for PCR genotyping. Additional seedlings were frozen as backups if more DNA was needed. Genomic DNA extraction was performed using a modified cetyltrimethylammonium bromide protocol (Lukowitz et al., 2000). Following the DNA extraction, specific loci (described later) were amplified through PCR using the Qiagen PCR Master Mix and a Biometra Uno II thermocycler. The PCR primers used for each locus were designed by Yixing Wang based on polymorphic differences between the Tsu-0 and "Nossen" genomic sequences (Table 26). Tsu-0 sequences were obtained through the 1001 Genomes Project database, whereas "Nossen" sequences were obtained from the laboratory of Dr. Masatomo Kobayashi at the RIKEN BioResource Center. All primers were purchased from Integrated DNA Technologies. PCR products were separated in $1 \%$ agarose gels containing GelRed Nucleic Acid Stain (Phenix), and bands were visualized using the AlphaImager HP system (Proteinsimple). These products were then purified using the QIAquick PCR purification kit (Qiagen), and sent for sequencing at the Oklahoma State University Recombinant DNA/Protein Resource Facility. Sequencing results were visualized for analysis using FinchTV version 1.4.0 (Geospiza Inc.).

## Loci Chosen as Modifier Candidates

For this candidate gene approach to identify potential modifiers, we chose five loci, each

Table 26. PCR Primer Sequences Used for Plant Genotyping.

| Name | Primer Sequence | Primer Location |
| :---: | :---: | :---: |
| 1-2-F 205 | CCTGCATCAATGAAGGGATTTG | Intron 2 of TIC110 |
| 1-2-R 206 | CGAGAGGCTGAAGCTATTAGTG | Exon 5 of TIC110 |
| 2-2-F 201 | TTACCCTGATCAACTGGAGCTT | Exon 1 of TOC132 |
| 2-2-R 202 | ACGGACAGAAGAAGAGGTTGTAG | Exon 1 of TOC132 |
| 3-1-F 195 | ACCTTAGAATCCAGAGTTGGTG | Intron 7 of Hsp93-III |
| 3-1-R 196 | GCTTGGTCGATAGCTCTTCTTA | Intron 9 of Hsp93-III |
| 4-2-F 193 | GTCGCATCGGTTGATTCTTACT | Intron 1 of TIC20-IV |
| 4-2-R 194 | GTGCACCATATGACCTGAAGAG | Exon 3 of TIC20-IV |
| 5-1-F 187 | GTTGTGACCTGAGTCTGAACTG | Intron 5 of Hsp93-V |
| 5-1-R 188 | CAGCTCGAGTCCTTGAGAATTTAG | Exon 8 of Hsp93-V |

on a different chromosome, from promising members of the TIC/TOC chloroplast import system: (1) Tic110; (2) Toc132; (3) Hsp93-III; (4) Tic20-IV; and (5) Hsp93-V. Each of these loci was chosen based on location in the Arabidopsis genome and potential interactions with ACC2. The different chromosomal locations of these loci allowed us to test both the gene itself as a potential modifier, and the region around that gene for linkage to a potential modifier (Figure 26). We initially focused on members of the TIC/TOC system because transport of ACC2 into the chloroplast is required in order to compensate for loss of the heteromeric ACCase protein. As described in Chapter 2, TIC110 along with the two chaperone proteins, Hsp93-III and Hsp93-V, function in the translocation motor that guides proteins such as ACC2 into the chloroplast stroma (Kovacheva et al., 2005; Shi and Theg, 2013). cpHsc70-2, another chaperone of the translocation motor, was not tested due to its close proximity to Hsp93-V on chromosome 5. If TIC110 is a modifier, a change in the protein might have a downstream effect on the import of ACC2 into the chloroplast through its function as a recruiter of stromal chaperone proteins such as Hsp93-III and Hsp93-V (Kovacheva et al., 2005). Loss of one of these chaperone proteins, either through failed recruitment by TIC110 or a mutation in the protein itself, would likely affect the folding and stability of the precursor protein as it is moved into the stroma.

TOC132, along with its partner TOC120, functions similarly to move ACC2 and other housekeeping proteins across the outer membrane (Hirabayashi et al., 2011; Shi and Theg, 2013). TOC132 is a more likely modifier candidate than TOC120 due to the A-domain within TOC132, which functions in the initial recognition of the transit peptide sequences of chloroplast-localized housekeeping proteins (Inoue et al., 2010). A change in the A-domain of TOC132 would likely affect the recruitment of ACC2 to the TOC import system. Within the region surrounding Toc132 on chromosome 2 is Tic21, whose protein product likely helps to assemble the 1-MDa import complex on the inner membrane (Teng et al., 2006; Shi and Theg, 2013). TIC20-IV is thought to


Figure 26. Chromosome Locations of Arabidopsis Genes Encoding Known Components of the Chloroplast Protein Import System. The highlight genes are the five loci genotyped in our candidate gene approach. $A C C 1$ and $A C C 2$ are located near the centromere on chromosome 1, EMB3126 is located near the bottom of chromosome 3, and EMB3137 is located near the top of chromosome 5. Adapted from Parker et al. (2014).
play a crucial role as the main channel protein through which housekeeping proteins are moved across the inner membrane (Hirabayashi et al., 2011; Kasmati et al., 2011; Kikuchi et al., 2013). The tic20-iv knockout mutant (SAIL_97_F10) grows normally on basal medium and soil, which means that there is redundancy in the TIC import system where loss of one channel protein is compensated by another. In this case, the redundant protein is likely TIC20-I, the main channel for import of photosynthetic proteins (Kikuchi et al., 2013), or one of the two TIC20 proteins whose functions are not known: TIC20-II and TIC20-V (Kasmati et al., 2011; Shi and Theg, 2013). Whereas there is redundancy in the transport of housekeeping proteins across the inner membrane, TIC20-IV seems to be the only channel protein for the movement of ACC2 into the stroma. This can be seen in the hypersensitive response of tic20-iv seedlings on spectinomycin, which is similar to that of a null mutant of ACC2. Under this model, a tolerant allele of Tic20-IV may increase the efficiency of ACC2 transport. All of these candidate loci were chosen prior to Kayla's work on the enhancer region.

## Arabidopsis Progeny Lines Chosen for Analysis

Five descendent lines were chosen for this analysis from a cross between the tolerant Tsu-0 accession and emb3126-1 mutant in the "Nossen" background (Table 27; Figures 27 and 28). All of these lines are homozygous for the Tsu-0 allele of $A C C 2$, which means they contain a fully functional suppressor. They are also homozygous for the Tsu-0 allele of the enhancer on chromosome 5, as shown by the genotype of EMB3137 and two surrounding genes: Toc34 and Oep80. The descendent lines were divided into two groups based solely on the predicted genotypes of potential modifier loci. The first group (1B-3B-1A, 1B-3B-2E, and 20D-3A-2A) showed the highest level of rescue among all lines screened. These lines are therefore most likely to be homozygous Tsu-0 for any modifiers that increase embryo rescue. The second group

Table 27. Embryo Rescue in Progeny Plants Screened for Candidate Modifiers

| Plant Name ${ }^{\text {a }}$ | Mutant <br> Seeds <br> Screened | Embryo Lengths ( $\mu \mathrm{m}$ ) |  | Embryos Measured (\%) |  |  | Embryos Stages (\%) |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Average ${ }^{\text {b }}$ | $t$-value ${ }^{\text {c }}$ | < 100 mm | $>100 \mu \mathrm{~m}$ | > $200 \mu \mathrm{~m}$ | Globular | Triangular | Linear | Cotyledon |
| 1B-3B-1A | 55 | $328 \pm 11.2$ | - | 100.0 | 94.5 | 54.5 | 0.0 | 0.0 | 29.1 | 70.9 |
| 1B-3B-1A-2C | 33 | $319 \pm 17.2$ | 0.4 | 0.0 | 100.0 | 78.8 | 0.0 | 0.0 | 45.5 | 54.5 |
| 1B-3B-1A-2D | 32 | $270 \pm 13.5$ | 3.0 ** | 0.0 | 100.0 | 75.0 | 0.0 | 0.0 | 53.1 | 46.9 |
| 1B-3B-2E | 52 | $350 \pm 13.2$ | - | 100.0 | 100.0 | 61.5 | 0.0 | 0.0 | 36.5 | 63.5 |
| 1B-3B-2E-2B | 46 | $273 \pm 14.0$ | 4.0 *** | 0.0 | 100.0 | 67.4 | 0.0 | 0.0 | 65.2 | 34.8 |
| 1B-3B-2E-2E | 28 | $286 \pm 19.3$ | 2.7 ** | 0.0 | 100.0 | 78.6 | 0.0 | 0.0 | 53.6 | 46.4 |
| 20D-3A-2A | 38 | $274 \pm 16.2$ | - | 100.0 | 78.9 | 34.2 | 0.0 | 5.3 | 36.8 | 57.9 |
| 20D-3A-2A-2A | 32 | $307 \pm 13.0$ | -0.1 | 0.0 | 100.0 | 87.5 | 0.0 | 0.0 | 28.1 | 71.9 |
| 20D-3A-2A-2D | 30 | $276 \pm 20.4$ | -0.1 | 0.0 | 100.0 | 70.0 | 3.3 | 3.3 | 53.4 | 40.0 |
| 20D-3A-2A-2E | 26 | $304 \pm 20.0$ | -1.2 | 0.0 | 100.0 | 80.8 | 0.0 | 0.0 | 34.6 | 65.4 |
| S2-10D-2B | 51 | $106 \pm 4.2$ | - | 37.3 | 56.9 | 0.0 | 41.2 | 52.9 | 5.9 | 0.0 |
| S2-10D-2B-2B | 32 | $96 \pm 2.1$ | 2.1 * | 43.8 | 25.0 | 0.0 | 96.9 | 3.1 | 0.0 | 0.0 |
| S2-10D-2B-2D | 37 | $112 \pm 4.7$ | -1.0 | 21.6 | 54.1 | 2.7 | 64.9 | 29.7 | 5.4 | 0.0 |
| S2-10D-2B-2E | 29 | $118 \pm 4.4$ | -2.0* | 13.8 | 65.5 | 0.0 | 48.3 | 44.8 | 6.9 | 0.0 |
| S2-3B-2D | 66 | $95 \pm 5.1$ | - | 54.5 | 19.7 | 1.5 | 83.3 | 9.1 | 6.1 | 1.5 |
| S2-3B-2D-1A | 30 | $121 \pm 4.0$ | -4.0 *** | 6.7 | 73.3 | 0.0 | 36.7 | 60.0 | 3.3 | 0.0 |
| S2-3B-2D-1B | 29 | $126 \pm 4.9$ | -4.3 *** | 10.3 | 72.4 | 0.0 | 27.6 | 55.2 | 13.8 | 3.4 |
| S2-3B-2D-1E | 21 | $130 \pm 5.9$ | -4.4*** | 4.8 | 76.2 | 0.0 | 23.8 | 57.2 | 19.0 | 0.0 |

${ }^{a}$ Gray font, parental lines chosen for this analysis. Black font, progeny plants screened from each parental line.
${ }^{\mathrm{b}}$ Mean Length $\pm$ Standard Error.
${ }^{\text {c }}$ This column gives the T-test results of each progeny line compared to the parent line it was harvested from. Asteriks denote the significance level: *p $<0.05 ; * * \mathrm{p}<0.01 ; * * * \mathrm{p}<0.001$.


Figure 27. Boxplot Comparison of Mutant Embryo Length in Progeny Plants Screened for Candidate Modifiers and Their Parental Lines. Boxplots representing the median, 25th and 75th percentiles (interquartile range) of mutant embryo lengths. Whiskers extend to the minimum and maximum lengths (excluding outliers). Mean is denoted by the X. A, progeny of 1B-3B-1A; B. progeny of 1B-3B-2E; C, progeny of 20D-3A-2A; D, progeny of S2-10D-2B; and E, progeny of S2-3B-2D.


Figure 28. Comparison of Mutant Embryo Growth Stages in Progeny Plants Screened for Candidate Modifiers and Their Parental Lines. Percentage of embryos from each cross assigned to four phenotypic categories based on shape of the embryo: Globular, Triangluar, Linear, and Cotyledon. A, progeny of 1B-3B-1A; B. progeny of 1B-3B-2E; C, progeny of 20D-3A-2A; D, progeny of S2-10D-2B; and E, progeny of S2-3B-2D.
(S2-10D-2B and S2-3B-2D) exhibited the lowest level of embryo rescue while still having the Tsu-0 alleles of ACC2 and the enhancer. This means that these two lines most likely have the "Nossen" allele of any modifiers affecting the amount of embryo rescue.

In order to keep track of the descendent lines used in this study, the name of each line consists of the plant identification number that dry seed was harvested from in each generation. For example, descendent line 1A-1B-1C derived from plant 1A in the F2 generation, 1B in the F3 generation, and 1C in the F4 generation. After plating progeny seed from a single F1 plant, F2 plants were screened for the amount of embryo rescue and genotyped for $A C C 2$ and the enhancer. From the F2 generation, plants 1B and 20D exhibited the most rescue, and were genotyped to have a Tsu-0 allele for $A C C 2$ and the enhancer. Even more advanced rescue was seen in the F3 generation, where plants 1B-3B and 20D-3A showed the most rescue. These plants still maintained the Tsu-0 genotype of $A C C 2$ and the enhancer. In the F4 generation, plant 20D-3A2A exhibited the same amount of rescue as its parental F3, whereas plants 1B-3B-2E and 1B-3B1A showed further increase in the average embryo rescue. All three of these F4 plants should be homozygous Tsu-0 for any potential modifiers tested in this analysis. During a second round of screening of F2 plants (labeled as S2), plants S2-10D and S2-3B showed limited embryo rescue, have a Tsu-0 allele of $A C C 2$, and are heterozygous at the enhancer loci. In the F3 generation, plants S2-10D-2B and S2-3B-2D continued to show low amount of embryo rescue, but they were genotyped as Tsu-0 for both ACC2 and the enhancer locus. Both of these F3 plants should be homozygous "Nossen" for any potential modifiers. Genomic DNA was extracted from progeny seedlings of all five descendent lines. Sibling seedlings grown at the same time, were transplanted to soil, grown to maturity, and were screened to confirm the amount of embryo rescue for each descendent line.

## RESULTS

Table 27 shows the embryo phenotypes of progeny plants compared to the parental lines chosen for this analysis. Over half of the progeny screened were significantly different from their parental lines. No significance was found in the progeny plants of 20D-3A-2A (Figures 24 and 25 , part C). This is possibly due to the wider spread in the mutant embryo lengths measured. In 1B-3B-1A and S2-10D-2B, there was a mixture of plants that were significantly different from their parent line and plants that were not. These slight differences in the progeny plants can be seen in in Figures 27 and 28 parts A and D. The progeny plants of 1B-3B-2E and S2-3B-2D all showed a significant difference from their parental lines. In 1B-3B-2E there is a decrease in the size of the embryos measured, and an increase in the number of embryos arresting at a lower (linear) stage of development rather than the cotyledon stage (Figures 27 and 28, part B). The opposite is happening with the progeny plants of S2-3B-2D: there is an increase in the embryo size and an increase in the number of embryos arresting at higher stages of development rather than the globular stage (Figures 27 and 28, part E). The differences found between the progeny plants and their parental lines could indicate heterozygosity of one or more modifier loci in the parental lines.

For each descendent line, three individual seedlings were PCR genotyped at each of the five loci, which gave a total of 15 progeny tested. Additional seedlings were available for analysis if a promising candidate was found. However, none of the results were consistent with the expected outcome if a modifier locus was linked to one of the candidates (Table 28). For complete linkage, we expected to see the group with the highest level of embryo rescue (1B-3B1A, 1B-3B-2E, and 20D-2A-3A) homozygous for the Tsu-0 allele of the candidate modifier whereas the group with the lowest rescue (S2-10D-2B and S2-3B-2D) homozygous for the "Nossen" allele. In order to detect a locus linked to one of the candidates, we would expect that a low number, around one to three, of the 15 progeny seedlings tested would differ from the
predicted genotype. More than three or so differences would be unreliable for determining linkage using the small number of seedlings examined. If any loci had shown potential linkage, additional seedlings for each descendent line would have been tested to provide more accurate results. The expected results if none of the modifiers are linked to a candidate locus are harder to predict due to the locations of crossovers within each descendent line and the low possibility of heterozygosity at the locus.

Table 28 shows the genotype of each candidate locus for all 15 seedlings analyzed. The results of all loci for 1B-3B-1A and 1B-3B-2E were exactly the same. This is likely due to how closely related the two descendent lines are as they were both harvested from the same F3 plant. It is also likely that all five loci genotyped here were homozygous in the F3 plant (1B-3B). Heterozygous regions, as seen with four out of five loci (indicated in Table 28 by one to four "Het" seedlings), are expected for a minor percentage of the genome. This is due to the genome of each subsequent generation from a cross becoming more isogenic. For example, the use of seedlings from generations F8 and F9 would have led to results with significantly less heterozygosity than the F4 and F5 seedlings analyzed here. This effect can be seen in Table 28, where there is one example of a heterozygous region in the F5 progeny (1B-3B-1A, 1B-3B-2E, and 20D-2A-3A) and five examples in the F4 progeny (S2-10D-2B and S2-3B-2D). Toc132 produced the most interesting results because the genotypes were the exact opposite of what we expected. All plants tested from the highest group were homozygous "Nossen" for Toc132, and all plants tested from the lowest group were homozygous Tsu-0. A possible explanation for this result is that TOC132 in "Nossen" is fully functional in recruiting and translocating ACC2 across the outer membrane of the chloroplast, whereas TOC132 in Tsu-0 has reduced function. However, it is most likely that this locus would show results similar to the other loci if additional descendent lines were tested.

Table 28. Genotypes of Candidate Modifier Loci for Each Descendent Line Tested

| Parental Line | Embryo <br> Phenotype | TIC110a <br> (Chromosome 1) | TOC132 <br> (Chromosome 2) | Hsp93-III <br> (Chromosome 3) | TIC20-IV <br> (Chromosome 4) | Hsp93-V <br> (Chromosome 5) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1B-3B-1A | Late | $\mathrm{N}, \mathrm{N}, \mathrm{N}$ | $\mathrm{N}, \mathrm{N}, \mathrm{N}$ | $\mathrm{T}, \mathrm{T}, \mathrm{T}$ | $\mathrm{T},--, \mathrm{T}$ | $\mathrm{N}, \mathrm{N}, \mathrm{N}$ |
| 1B-3B-2E | Late | $\mathrm{N}, \mathrm{N}, \mathrm{N}$ | $\mathrm{N}, \mathrm{N}, \mathrm{N}$ | $--, \mathrm{T}, \mathrm{T}$ | $\mathrm{T}, \mathrm{T}, \mathrm{T}$ | $\mathrm{N}, \mathrm{N}, \mathrm{N}$ |
| 20D-3A-2A | Late | $\mathrm{N}, \mathrm{N}, \mathrm{N}$ | $\mathrm{N}, \mathrm{N}, \mathrm{N}$ | $\mathrm{N}, \mathrm{N}, \mathrm{N}$ | $\mathrm{H}, \mathrm{H}, \mathrm{N}$ | $\mathrm{T}, \mathrm{T}, \mathrm{T}$ |
| S2-10D-2B | Early | $\mathrm{H}, \mathrm{H}, \mathrm{N}$ | $\mathrm{T}, \mathrm{T}, \mathrm{T}$ | $\mathrm{T}, \mathrm{T}, \mathrm{T}$ | $\mathrm{T}, \mathrm{T}, \mathrm{T}$ | $\mathrm{N}, \mathrm{T}, \mathrm{H}$ |
| S2-3B-2D | Early | $\mathrm{T}, \mathrm{T}, \mathrm{T}$ | $\mathrm{T}, \mathrm{T}, \mathrm{T}$ | $\mathrm{T}, \mathrm{T}, \mathrm{H}$ | $\mathrm{H}, \mathrm{H}, \mathrm{N}$ | $\mathrm{H}, \mathrm{N}, \mathrm{N}$ |

${ }^{\text {a }}$ Letters represent the genotype of three progeny seedlings tested for each parental line. N , homozygous "Nossen". T, homozygous Tsu-0. H, heterozygous. Red dashes, seedlings whose sequences could not be analyzed.

## DISCUSSION

This chapter describes a candidate gene approach to test five members of the TIC/TOC chloroplast import system (Tic110, Toc132, Hsp93-III, Tic20-IV, and Hsp93-V) as potential modifiers that increase embryo rescue in the presence of a functional suppressor (ACC2) and tolerant enhancer. No correlation was found between the amount of embryo rescue and the genotype at these five loci. With the number of seedlings examined for each locus, only close linkage with the candidate gene can be detected. After that, the results are unreliable. This leaves large portions of the genome not examined in this analysis. Each chromosome in Arabidopsis is $76-122 \mathrm{cM}$ in length (Meinke et al., 2009). This means that at most we are able to detect linkage across half of each chromosome. Another issue is the possibility that two or more modifiers interact, with each one partially contributing to the extent of embryo development seen in the group with the most rescue (1B-3B-1A, 1B-3B-2E, and 20D-2A-3A). In this case, the modifiers are acting similar to quantitative trait loci, which would make it difficult to identify an individual locus through a candidate gene approach. This also raises the question: Does the enhancer have a stronger effect on embryo rescue than a single genetic modifier? In other words, if we had used a different emb mutant in our initial crosses that was linked to one of the modifier loci, would we have considered that locus to be the enhancer? To answer these questions, we can compare the amount of embryo rescue between two groups of descendent lines: (1) those that are likely homozygous "Nossen" for the enhancer and homozygous Tsu-0 for the modifiers; and (2) those that are likely homozygous Tsu-0 for the enhancer and homozygous "Nossen" for the modifiers. If the enhancer alone has a stronger influence on embryo rescue than the modifiers, we would expect to see a higher level of rescue in Group 2 than in Group 1. This is exactly what we observed. The embryos rescued in Group 2 averaged around $104 \mu \mathrm{~m}( \pm 2.4, \mathrm{SE})$ in length whereas the embryos in Group 1 averaged around $84 \mu \mathrm{~m}( \pm 3.0, \mathrm{SE})$. This more substantial effect of the enhancer on embryo development is consistent with the requirement of a tolerant enhancer
for the modifiers to significantly extend embryo development to later stages. Because we still do not know which gene is the enhancer, it is difficult to build a model for the function of the modifiers. It might therefore be more beneficial to narrow down the enhancer locus before further attempts to identify the modifiers.

Prior to Kayla's work on the enhancer, we focused on members of the TIC/TOC system as potential modifiers because we suspected that many of these proteins interact with ACC2 to facilitate import into the chloroplast. Through our candidate gene approach, we were not able to show that a modifier locus is linked to any of our five candidates. The translocation motor, including TIC110, functions to transport all housekeeping and photosynthetic proteins into the chloroplast. Therefore, it is not surprising that Ticl10 is not a modifier because a change in the protein that affects import of ACC2 into the chloroplast would also likely affect other chloroplastlocalized proteins. The chaperone proteins, Hsp93-III and Hsp93-V, are likely just as important in the translocation of housekeeping and photosynthetic proteins across the inner membrane, so a change that affects ACC2 import would also affect others. Similar to the translocation motor, the recognition by the A-domain of TOC132 is likely important for the import of many proteins into the chloroplast, not just ACC2. A change within this domain is likely to also affect the import of other housekeeping proteins. TIC20-IV seemed to be the most likely candidate due to the redundancy in the import of housekeeping proteins found through the normal growth of tic20-iv knockout mutants. The hypersensitivity of tic20-iv to spectinomycin also indicates that TIC20-IV is required for import of ACC 2 into the chloroplast. However, the genotype results showed no linkage between Tic20-IV and the level of embryo rescue in the descendent lines. This does not rule out the possibility that a defect in tic20-iv is at least partially responsible for a decrease in tolerance to spectinomycin of another accession.

Several other candidate modifiers from the TIC/TOC system that are located in untested regions of the genome have not been evaluated (Figure 26): (1) Toc120, whose protein product
complexes with TOC132 to function as the main GTPase in transport of housekeeping genes across the outer membrane (Hirabayashi et al., 2011; Shi and Theg, 2013); (2) Hsp90C, which encodes another chaperone protein associated with the TIC110 translocation motor (Kovacheva et al., 2007; Inoue et al., 2013; Shi and Theg, 2013); (3) cpHsc70-1, a TIC110 translocation chaperone protein (Kovacheva et al., 2007; Inoue et al., 2013; Shi and Theg, 2013); and (4) TIC22-IV, which encodes a chaperone protein thought to guide precursor proteins between the TIC and TOC complexes within the intermembrane space (Kouranov et al., 1998; Shi and Theg, 2013).

In her work to identify candidates for the enhancer, Kayla manually curated 104 and 101 loci upstream and downstream, respectively, of EMB3137, which is closely linked to the enhancer (Cook and Meinke, 2017). She also did a quick scan of an additional 100 genes above and below this region for any obvious candidates. While trying to identify enhancer candidates, Kayla looked for proteins whose function would fall into one of our models for function of the enhancer, including potential interactions between the enhancer and ACC2 (Table 29). My work on identifying potential modifier loci focused on proteins that fell into Model 1c: the improvement of ACC2 import through chloroplast membrane. The two chaperone proteins I tested, Hsp93-III and Hsp93-V, might also function in stabilization, folding and dimerization of ACC2 once it has moved into the stroma (Model 1d).

Kayla identified seven candidate genes as potential enhancers, and ranked these genes based on how well they fit a model for the function of the enhancer. All seven candidates are described in Table 30. Of the three most promising candidates, two (GUN5 and NACA3) function in protein complexes, and interact with other proteins that could be potential modifiers. GUN5 encodes a subunit (CHLH) of the magnesium-protoporphyrin IX (Mg-ProtoIX) chelatase that functions in bacteriochlorophyll and chlorophyll biosynthesis and ABA signaling (Walker and Willows, 1997; Du et al., 2012). CHLH also has a second function in retrograde signaling

Table 29. Models for Enhancer Function in the Absence of Chloroplast Translation. Adapted from Cook and Meinke (2017).

1. Enhances Function, Abundance or Localization of ACC2
a. Improves translational efficiency of $A C C 2 \mathrm{mRNA}$
b. Improves targeting of ACC2 to plastid via chaperone molecule
c. Improves import of ACC2 through plastid membrane
d. Improves ACC2 folding and dimerization inside plastid
2. Improves Fatty Acid Biosynthesis in Plastid
a. Increases efficiency of upstream/downstream reactions
b. Improves export of ACC2-synthesized fatty acids

Compensates for Loss of Ycf1, Ycf2, ClpP1 Functions in Plastid
Impacts Chloroplast-Nucleus Retrograde Signaling Pathways
Improves Other Rate-Limiting Metabolic Pathways in Plastid

Table 30. Enhancer Candidates Identified in the Region Flanking EMB3137. Adapted from Cook and Meinke (2017).

| Rank ${ }^{\text {a }}$ | Locus Number | Gene Symbol | Edited Function ${ }^{\text {b }}$ | Edited Function Details ${ }^{\text {b }}$ |
| :---: | :---: | :---: | :---: | :---: |
| A | At5g13390 | NEF 1 | Plastid Integral Membrane Protein | Required for pollen exine formation; Proposed roles in plastid membrane integrity and fatty acid export |
| A | At5g13630 | $\begin{aligned} & \text { ABAR; CCH; } \\ & \text { CHLH; GUN5 } \end{aligned}$ | Magnesium Chelatase | Plastid to nucleus retrograde signal transduction |
| A | At5g13850 | NACA3 | Nascent Polypeptide Associated Complex Subunit Alpha-Like Protein 3 | Potential role in translocation of nascent polypeptides into chloroplasts |
| A/B | At5g13410 |  | Plastid-Localized FKBP-Like Protein; Immunophilin | Potential role in protein folding |
| A/B | At5g 13640 | PDAT1 | Phospholipid: <br> Diacylglycerol Acyltransferase | TAG biosynthesis; <br> Fatty acid and membrane lipid homeostasis |
| A/B | At5g15450 | CLPB3; | Plastid-Localized ClpB Homologue; Chaperone | Remodeling of protein aggregates |
| B | At5g 12860 | DIT1; OMT1 | Plastid Dicarboxylate Transporter | Integration of carbon, nitrogen metabolism |

${ }^{\text {a }}$ System used to subjectively rank each enhancer candidate locus. A, most likely; A/B, promising; B, possible.
${ }^{\mathrm{b}}$ Based on information from TAIR (http://www.arabidopsis.org/) and relevant publications.
between the chloroplast and nuclear genomes (Mochizuki et al., 2001; Du et al., 2012). Kayla's model for GUN5 as the enhancer is based on its secondary function in retrograde signaling where a tolerant (Tsu-0) version of the enhancer would limit the passage of a signal from the chloroplast genome when it is inhibited to the nuclear genome, which would allow the nuclear genes normally affected by the signal to continue to be expressed. If GUN5 is the enhancer locus, potential modifiers in this system include GUN4 (At3g59400), CHLII (At4g18480), and CHLD (At1g08520), which all encode subunits of the Mg-ProtoIX chelatase (Figure 29; Du et al., 2012). As modifiers, these loci would function alongside GUN5 in retrograde signaling. However, this does not explain the low levels of embryo rescue seen when tolerant alleles of the modifiers are present, but the enhancer is sensitive. As modifiers, these three proteins would require functional GUN5 to be present. The Arabidopsis Interactions Viewer, which shows protein-protein interactions, indicates that GUN5 also interacts with SYP23 (At4g17730), which is involved in vesicle-mediated transport, and CKA4 (At2g23070), a chloroplast-localized subunit of casein kinase 4 (http://bar.utoronto.ca/interactions/cgi-bin/arabidopsis_interactions_viewer.cgi). CKA4 is thought to be involved in the same retrograde signaling pathway as the Mg-ProtoIX chelatase complex containing GUN5 (Wang et al., 2014). In other words, as a modifier CKA4 would function similar to the other members of the complex. SYP23 as a modifier could possibly be involved in transport of signaling molecules within the retrograde signaling pathway involving Mg-ProtoIX Chelatase and CKA4 along with other molecules in the cell, which could explain the slight increase in embryo rescue when the enhancer (GUN5) is not present.

The other promising candidate for the enhancer locus (NACA3), studied most extensively in yeast, is thought to encode the alpha subunit of the Nascent Polypeptide Associated Complex (NAC; Ponce-Rojas et al., 2017). This complex functions as a chaperone for newly synthesized polypeptide chains including the translocation of these precursor proteins to both the mitochondria and the chloroplast (Yang et al., 2007). There is also evidence for independent


Figure 29. Chromosome Locations of Arabidopsis Genes Encoding Untested Modifier Candidates. If GUN5 is the enhancer, potential modifiers are CHLD, CKA4, GUN4, SYP23, and CHLII. If NACA3 is the enhancer, potential modifiers are BTF3, CXIP4, TBP1, TPR8, and SnRK1-3. CHLD is highlighted to show that it is unlikely to be a potential modifier, because it is closely linked to Tic 110, which has been tested.
function of NACA3 as a transcription factor (Moreau et al., 1998; Yang et al., 2007). Kayla's model for NACA3 as the enhancer is that the NAC functions in translocation of ACC2 to the chloroplast membrane. A tolerant version of NACA3 might increase the efficiency of ACC2 targeting to the membrane. According to this model, potential modifiers would include the beta subunit of NAC, BTF3 (At1g17880; Figure 29), which would function alongside NACA3 in translocation of ACC2 precursor proteins to the chloroplast membrane. As for the slight increase in embryo rescue in the absence of the enhancer (NACA3), BTF3 has also been shown in humans and C. elegans to function as a transcription factor and a suppressor of apoptosis independently of NAC (Yang et al., 2007). Additional proteins that interact with NACA3 include CXIP4 (At2g28910), which regulates calcium transport, TBP1 (At3g13445), a transcription factor that binds to the TATA box promoter region, TPR8 (At4g08320), a tetratricopeptide repeat protein with unknown function, and SnRK1-3 (At5g39440), a phosphorylase (http://bar.utoronto.ca/interactions/cgi-bin/arabidopsis_interactions_viewer.cgi). These proteins likely interact with NACA3 in its role as an activator of C-Jun-dependent transcription, where it interacts with a TATA box binding protein, which is likely TBP1, and a phosphorylase, which is likely SnRK1-3 (Moreau et al., 1998). CXIP4 could possibly function in activation of NACA3 through a calcium signaling pathway. The slight embryo rescue seen when the modifiers are present and the enhancer is not could be explained through transcription regulation activities of these proteins that do not involve NACA3.

## FUTURE DIRECTIONS

Much has been accomplished with this project towards understanding why plant species differ in their ability to tolerate a loss of chloroplast translation. Through studies at both the embryo and seedling stages, we found that functional alleles of $A C C 2$ can suppress the
preglobular phenotype of emb mutants defective in chloroplast translation and the sensitive phenotype of seedlings grown on spectinomycin. We also identified a locus on chromosome 5 that enhances the suppressor effect of $A C C 2$, and uncovered evidence for additional modifiers that further rescue the embryo and seedling phenotypes. Additional studies using the natural variation found in Arabidopsis accessions looked at the effects of mutations on the structure and function of ACCase proteins. Through this work, we have identified a number of null mutations that eliminate ACC2 function, and some missense mutations whose effects range from partial to severe loss of ACC2 function. However, there are still areas within this project where additional work can be done to help further our understanding of this system.

One future area to address would be to search for additional natural variation in ACCl and $A C C 2$ sequences. In the time since we obtained the sequences from 855 accessions through the 1001 Genomes Project, the genome sequences of 280 more accessions have been published (The 1001 Genomes Consortium, 2016). Even though these newer sequences are not available through the Salk Genome Browser (http://signal.salk.edu/atg1001), there are new sequence viewers on the 1001 Genomes Project website that incorporate all 1,135 sequences. The 1001 Proteomes viewer (http://1001proteomes.masc-proteomics.org/) shows all non-synonymous single nucleotide polymorphisms (nsSNPs) at any locus of interest, whereas the Polymorph 1001 viewer (http://tools.1001genomes.org/polymorph/) shows all SNPs, insertions and deletions at any locus. The most important variation to identify for this project would be additional examples of the three missense mutations that significantly reduce or eliminate ACC 2 function and are limited to a single accession: G135E in Sav-0, F1206L in Aitba-1, and E1689G in Ts-1. Additional sensitive accessions with one of these variants would provide further evidence of their deleterious effect on ACC2 protein function. Another variant of interest is A 376 V , found only in the Col-0 accession, where it likely reduces ACC2 function to some extent. We could also look for new missense mutations affecting residues that were not analyzed through our previous
studies ( $85 \%$ of the total residues), especially in highly conserved residues (>95\%) found through our multi-kingdom alignment of 667 ACCase sequences.

In addition to the expanded natural variation that can be analyzed, artificial variation can be introduced using recent advances in gene editing technologies to produce missense mutations that alter residues of interest. Focusing on the mutations that most likely reduce or eliminate ACC2 function (G135E, A376V, F1206L, and E1689G along with I404K and T1902K in the Knox-18 group of accessions), we could introduce these mutations individually into the $A C C 2$ sequence of a tolerant accession like Tsu-0, and measure the effects on ACC2 function by looking for increased sensitivity on spectinomycin. More subtle changes in ACCase function could be measured by introducing each missense mutation into the $A C C 1$ sequence of Col- 0 , and comparing the embryo phenotypes with known accl mutants (emb22, pas3-1, and pas3-2) whose terminal phenotype is determined by the strength of the mutation (Parker et al., 2016). Additional regions of interest for gene editing include the 17 other ACC 2 variants found in natural accessions that seem to slightly reduce the function of ACC2. We could also use gene editing to analyze the effects of modifying the most conserved residues (>99\%) from our multi-kingdom alignment where there is no natural variation to be evaluated. Gene editing technologies could also be used to analyze the effects of these missense mutations on plants that have non-functional copies of the enhancer and modifiers. In order to evaluate this further, we could utilize the many descendent lines from our cross between Tsu-0 and emb3126-1, and compare the change in spectinomycin sensitivity when the mutation is introduced. Descendent lines 1B-3B-1A and 20D-3A-2A, which contain Tsu-0 alleles of $A C C 2$, the enhancer, and modifiers, could be compared to lines 3B-1A-1A and S2-3B-6B, which contain a Tsu-0 allele of $A C C 2$, a "Nossen" allele of the enhancer, and likely "Nossen" alleles for the modifiers. Other comparisons could be made singling out just the enhancer, and just the modifiers.

Through our crosses between sensitive accessions and knockout mutants of acc2 and
tic20-iv, we identified four accessions (La-0, Etna-2, Grivo-1, and Qar-8a) whose sensitivity seems to be caused by an unknown locus. This likely answers our question of whether there are other genes that give rise to a sensitive phenotype when disrupted. La-0 and Etna-2 are the most logical accessions to study first. In La-0, there is no obvious mutation in the ACC2 or Tic20-IV sequences that would likely lead to sensitivity, as shown by Yixing Wang when she sequenced the full-length cDNA of $A C C 2$. Results of La-0 crosses with knockout mutants clearly showed that neither gene led to the sensitivity of the accession. Results from Etna-2 crossed with the acc 2 knockout mutant were less definitive, but Etna-2 is the most sensitive of the four accessions.

One potential method to identify the locus responsible for sensitivity in La-0 and Etna-2 is to cross these accessions with a descendent line from our Tsu-0 x emb3126-1 population that contains a functional (Tsu-0) allele of $A C C 2$ along with non-functional ("Nossen") alleles of the enhancer and modifiers, and use a mapping approach with markers spread throughout the genome. Using descendent lines that have sensitive alleles of the enhancer and modifiers (3B-1A1A and S2-3B-6B) eliminates the effects those loci might have on the sensitivity of La-0 and Etna-2. This mapping approach would consist of PCR genotyping 50 tolerant F2 seedlings from these crosses for 15-20 markers equally spread across the genome. The focus here is on tolerant seedlings because Yixing Wang previously showed that it is difficult to isolate enough DNA from sensitive seedlings for multiple rounds of PCR genotyping, and tolerant F2 seedlings would not be homozygous La-0 or Etna-2 for the locus causing sensitivity. Individual or pooled sensitive F2 seedlings, which would be homozygous La-0 or Etna-2, could be used to confirm any candidate regions found.

A second approach for identifying the locus causing sensitivity would be to use the next generation mapping method developed by Austin et al. (2011). The same crosses between sensitive accessions (La-0 and Etna-2) and descendent lines lacking a functional enhancer and modifiers (3B-1A-1A and S2-3B-6B) could be used. For this approach, extracted DNA from 80-

100 sensitive F2 seedlings would be pooled and subjected to next-generation sequencing. The SNP frequencies across each chromosome would then be analyzed to find a non-recombinant region with low frequencies of polymorphism. Within this region should lie the locus (and mutation) responsible for the sensitivity of La-0 and Etna-2. Austin et al. (2011) have developed a method using a discordant chastity (ChD) statistic to further narrow the location of the responsible mutation by differentiating between causative mutations and SNPs that are likely due to natural variation. After next-generation sequencing of pooled DNA from F2 sensitive seedlings, the data can be uploaded and analyzed through the Next-Generation EMS Mutation Mapping website (http://bar.utoronto.ca/NGM/).

In addition to further understanding the function of ACCases, and looking at other genes that cause sensitivity in natural accessions, there is still more work to be done to identify the enhancer locus and potential modifiers. Kayla's work on identifying enhancer candidates could be expanded by PCR genotyping existing recombinant lines between EMB3137, Toc34 (upstream) and Oep80 (downstream) with additional markers within both of these regions. This would allow us to localize the enhancer to either upstream or downstream of EMB3137. Once this region is better defined, additional manual curation could be used to identify other potential candidates not found through Kayla's study. The "Nossen" genomic sequence for this smaller region of interest could also be obtained from Dr. Masatomo Kobayashi's lab at the RIKEN Plant Science Center, and then be used in sequence comparisons of candidate genes between Tsu-0, which has a functional enhancer, and "Nossen", which has a non-functional enhancer, to look for potential deleterious mutations. As more information is gained about the enhancer, additional candidate genes will arise as potential modifiers.

Because the original candidate gene approach to identify potential modifiers showed no linkage to the five genes chosen, either the candidate gene approach could be expanded with different genes located elsewhere in the genome, as discussed previously, or whole genome
sequences could be compared between descendent lines of Tsu-0 x emb3126-1 that either have Tsu-0 (functional) or "Nossen" (non-functional) alleles for any potential modifiers. Similar to the previous candidate gene approach, we would be looking for regions of the genome where the lines with the least amount of embryo rescue (S2-10D-2B and S2-3B-2D) are homozygous "Nossen" whereas the lines with the most rescue (1B-3B-1A and 20D-3A-2A) are homozygous or heterozygous Tsu-0. Comparisons between other descendent lines that differ in only the functionality of the modifiers would help identify regions of interest.

Overall, the project described throughout this dissertation utilized natural variation in Arabidopsis accessions to study the effects of mutations, especially deleterious mutations, on a protein (ACCase) that is essential for fatty acid biosynthesis in eukaryotes. We also developed an understanding of some of the mechanisms behind the diverse phenotypic responses plant species have when translation of the chloroplast genome is blocked. Furthermore, our identification of accessions hypersensitive to spectinomycin has led to a more efficient method for plastid transformation in Arabidopsis (Yu et al., 2017).

## REFERENCES

Abu-Elheiga L, Matzuk MM, Kordari P, Oh W, Shaikenov T, Gu Z, Wakil SJ (2005) Mutant mice lacking acetyl-CoA carboxylase 1 are embryonically lethal. Proc Natl Acad Sci USA 102: 12011-12016

AGI (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408: 796-815

Alonso JM, Stepanova AN, Leisse TJ, Kim CJ, Chen H, Shinn P, Stevenson DK, Zimmerman J, Barajas P, Cheuk R, et al (2003) Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science 301: 653-657

## Alonso-Blanco C, Peeters AJ, Koorneef M, Lister C, Dean C, van den Bosch N, Pot J, Kuiper

 MT (1998) Development of an AFLP based linkage map of Ler, Col and Cvi Arabidopsis thaliana ecotypes and construction of a Ler/Cvi recombinant inbred line population. Plant J 14: 259-271
## Alonso-Blanco C, Aarts MG, Bentsink L, Keurentjes JJB, Reymond M, Vreugdenhil D,

 Koorneef M (2009) What has natural variation taught us about plant development, physiology, and adaptation? Plant Cell 21: 1877-1896Amid A, Lytovchenko A, Fernie AR, Warren G, Thorlby GJ (2012) The sensitive to freezing3 mutation of Arabidopsis thaliana is a cold-sensitive allele of homomeric acetyl-CoA carboxylase that results in cold-induced cuticle deficiencies. J Exp Bot 63: 5289-5299

Asakura Y, Barkan A (2006) Arabidopsis orthologs of maize chloroplast splicing factors promote splicing of orthologous and species-specific group II introns. Plant Physiol 142: 1656-1663

Austin RS, Vidaurre D, Stamatiou G, Breit R, Provart NJ, Bonetta D, Zhang J, Fung P, Gong Y, Wang PW, et al. (2011) Next-generation mapping of Arabidopsis genes. Plant J 67: 715725

Babiychuk E, Vandepoele K, Wissing J, Garcia-Diaz M, De Rycke R, Akbari H, Joubès J, Beeckman T, Jänsch L, Frentzen M, et al (2011) Plastid gene expression and plant development require a plastidic protein of the mitochondrial transcription termination factor family. Proc Nat Acad Sci USA 108: 6674-6679

Baldwin A, Wardle A, Patel R, Dudley P, Park SK, Twell D, Inoue K, Jarvis P (2005) A molecular-genetic study of the Arabidopsis Toc75 gene family. Plant Physiol 138: 715-733

Bates PD, Johnson SR, Cao X, Li J, Nam JW, Jaworski JG, Ohlrogge JB, Browse J (2014) Fatty acid synthesis is inhibited by inefficient utilization of unusual fatty acids for glycerolipid assembly. Proc Natl Acad Sci USA 111: 1204-1209

Baud S, Guyon V, Kronenberger J, Wuillème S, Miquel M, Caboche M, Lepiniec L, Rochat C (2003) Multifunctional acetyl-CoA carboxylase 1 is essential for very long chain fatty acid elongation and embryo development in Arabidopsis. Plant J 33: 75-86

Baud S, Bellec Y, Miquel M, Bellini C, Caboche M, Lepiniec L, Faure JD, Rochat C (2004) gurke and pasticcino3 mutants affected in embryo development are impaired in acetyl-CoA carboxylase. EMBO Rep 5: 515-520

Bechtold N, Ellis J, Pelletier, G (1993) In-planta Agrobacterium-mediated gene-transfer by infiltration of adult Arabidopsis thaliana plants. C. R. Acad. Sci. III 316: 1194-1199

Bell CJ, Ecker JR (1994) Assignment of 30 microsatellite loci to the linkage map of Arabidopsis.
Genomics 19: 137-144

Berg M, Rogers R, Muralla R, Meinke D (2005) Requirement of aminoacyl-tRNA synthetases for gametogenesis and embryo development in Arabidopsis. Plant J 44: 866-878

Bilder P, Lightle S, Bainbridge G, Ohren J, Finzel B, Sun F, Holley S, Al-Kassim L, Spessard C, Melnick M, et al. (2006) The structure of the carboxyltransferase component of acetylCoA carboxylase reveals a zinc-binding motif unique to the bacterial enzyme. Biochemistry 45: 1712-1722

Bowman JL, Smyth DR, Meyerowitz EM (1991) Genetic interactions among floral homeotic genes of Arabidopsis. Development 112: 1-20

Brodersen DE, Clemons WM, Carter AP, Morgan-Warren RJ, Wimberly BT, Ramakrishnan $\mathbf{V}$ (2000) The structural basis for the action of the antibiotics tetracycline, pactamycin, and hygromycin $B$ on the 30 S ribosomal subunit. Cell 103: 1143-1154

Bryant N, Lloyd J, Sweeney C, Myouga F, Meinke D (2011) Identification of nuclear genes encoding chloroplast-localized proteins required for embryo development in Arabidopsis. Plant Physiol 155: 1678-1689

Cai Z, Guisinger M, Kim HG, Ruck E, Blazier JC, McMurtry V, Kuehl JV, Boore J, Jansen RK (2008) Extensive reorganization of the plastid genome of Trifolium subterraneum (Fabaceae) is associated with numerous repeated sequences and novel DNA insertions. J Mol Evol 67: 696-704.

Campbell JW, Cronan JE (2001) Bacterial fatty acid biosynthesis: targets for antibacterial drug discovery. Ann Rev Microbiol 55: 205-332.

# Carter AP, Clemons WM, Brodersen DE, Morgan-Warren RJ, Wimberly BT, 

 Ramakrishnan V (2000) Functional insights from the structure of the 30S ribosomal subunit and its interactions with antibiotics. Nature 407: 340-348Chalupska D, Lee HY, Faris JD, Evrard A, Chalhoub B, Haselkorn R, Gornicki P (2008) Acc homoeoloci and the evolution of wheat genomes. Proc Natl Acad Sci USA 105: 9691-9696

Chang C, Bowman JL, Dejohn AW, Lander ES, Meyerowitz EM (1988) Restriction Fragment Length Polymorphism linkage map for Arabidopsis thaliana. Proc Natl Acad Sci USA 85: 6856-6860

Cheng CY, Krishnakumar V, Chan AP, Thibaud-Nissen F, Schobel S, Town CD (2017) Araport11: a complete reannotation of the Arabidopsis thaliana reference genome. Plant J 89: 789-804

Cheng F, Liu S, Wu J, Fang L, Sun S, Lie B, Li P, Hua W, Wang X (2011) BRAD, the genetics and genomics database for Brassica plants. BMC Plant Biol 11: 136

Chory J, Ecker JR, Briggs S, Caboche M, Coruzzi GM, Cook D, Dangl J, Grant S, Guerinot ML, Henikoff S, et al (2000) National Science Foundation-sponsored workshop report: "The 2010 Project" - Functional genomics and the virtual plant. A blueprint for understanding how plants are built and how to improve them. Plant Physiol 123: 423-426

Chou ML, Chu CC, Chen LJ, Akita M, Li HM (2006) Stimulation of transit-peptide release and ATP hydrolysis by a cochaperone during protein import into chloroplasts. J Cell Biol 175: 893-900

Chumley TW, Palmer JD, Mower JP, Fourcade HM, Calie PJ, Boore JL, Jansen RK (2006) The complete chloroplast genome sequence of Pelargonium $x$ hortorum: Organization and evolution of the largest and most highly rearranged chloroplast genome of land plants. Mol

Biol Evol 23: 2175-2190

Clark R M, Schweikert G, Toomajian C, Ossowski S, Zeller G, Shinn P, Warthmann N, Hu TT, Fu G, Hinds DA, et al. (2007) Common sequence polymorphisms shaping genetic diversity in Arabidopsis thaliana. Science 317: 338-342

Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16: 735-743

Cook K, Meinke D (2017) A Curation-Based Search for the Enhancer Locus that Increases Tolerance of a Loss of Chloroplast Translation in Arabidopsis thaliana. Senior Honors Thesis, Oklahoma State University.

Constan D, Patel R, Keegstra K, Jarvis P (2004) An outer envelope membrane component of the plastid protein import apparatus plays an essential role in Arabidopsis. Plant J 38: 93-106

Curci PL, Sonnante G (2016) The complete chloroplast genome of Cynara humilis. Mitochondrial DNA Part A 27: 2345-2346

Daniell H, Lin CS, Yu M, Chang WJ (2016) Chloroplast genomes: diversity, evolution, and applications in genetic engineering. Genome Biol 17: 134
dePamphilis CW, Palmer JD (1990) Loss of photosynthetic and chlororespiratory genes from the plastid genome of a parasitic flowering plant. Nature 348: 337-339

Dinos G, Wilson DN, Teraoka Y, Szaflarski W, Fucini P, Kalpaxis D, Nierhaus KH (2004) Dissecting the ribosomal inhibition mechanisms of edeine and pactamycin: the universally conserved residues G693 and C795 regulate P-Site RNA binding. Molecular Cell 13: 113-124

Douthwaite S (1992) Interaction of the antibiotics clindamycin and lincomycin with Escherichia coli 23S ribosomal RNA. Nucleic Acids Res 20: 4717-4720

Drescher A, Ruf S, Calsa T Jr, Carrer H, Bock R (2000) The two largest chloroplast genomeencoded open reading frames of higher plants are essential genes. Plant J 22: 97-104

Du S, Zhang X, Lu Z, Xin Q, Wu Z, Jiang T, Lu Y, Wang X, Zhang D (2012) Roles of the different components of magnesium chelatase in abscisic acid signal transduction. Plant Mol Biol 80: 519-537

Dudas B, Jenes B, Kiss GB, Maliga P (2012) Spectinomycin resistance mutations in the rrn16 gene are new plastid markers in Medicago sativa. Theor Appl Genet 125: 1517-1523

Duy D, Wanner G, Meda AR, Wirén NV, Soll J, Philippar K (2007) PIC1, an ancient permease in Arabidopsis chloroplasts, mediates iron transport. Plant Cell 19: 986-1006

Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32: 1792-1797

Feldmann KA, Marks MD (1987) Agrobacterium-mediated transformation of germinating seeds of Arabidopsis thaliana: a non-tissue culture approach. Mol Gen Genet 208: 1-9

Flores-Pérez Ú, Jarvis P (2013) Molecular chaperone involvement in chloroplast protein import. Biochim Biophys Acta 1833: 332-340

Fu PC, Zhang YZ, Geng HM, Chen SL (2016) The complete chloroplast genome sequence of Gentiana lawrencei var. farreri (Gentianaceae) and comparative analysis with its congeneric species. PeerJ 4: e2540

Goddard AD, Stevens JM, Rondelet A, Nomerotskaia E, Allen JW, Ferguson SJ (2010) Comparing the substrate specificities of cytochrome c biogenesis Systems I and II: bioenergetics. FEBS J 277: 726-737

Goodstein DM, Shu S, Howson R, Neupane R, Hayes RD, Fazo J, Mitros T, Dirks W, Hellsten U, Putnam N, et al (2012) Phytozome: a comparative platform for green plant genomics. Nucleic Acids Res 40: D1178-D1186

Gu K, Chiam H, Tian D, Yin Z (2011) Molecular cloning and expression of heteromeric ACCase subunit genes from Jatropha curcas. Plant Sci 180: 642-649

Guisinger MM, Chumley TW, Kuehl JV, Boore JL, Jansen RK (2010) Implications of the plastid genome sequence of Typha (Typhaceae, Poales) for understanding genome evolution in Poaceae. J Mol Evol 70: 149-166

Hager M, Biehler K, Illerhaus J, Ruf S, Bock R (1999) Targeted inactivation of the smallest plastid genome-encoded open reading frame reveals a novel and essential subunit of the cytochrome b(6)f complex. EMBO J 18: 5834-5842

Haberle RC, Fourcade HM, Boore JL, Jansen RK (2008) Extensive rearrangements in the chloroplast genome of Trachelium caeruleum are associated with repeats and tRNA genes. J Mol Evol 66: 350-361

Hiltbrunner A, Grünig K, Alvarez-Huerta M, Infanger S, Bauer J, Kessler F (2004) AtToc90, a new GTP-binding component of the Arabidopsis chloroplast protein import machinery. Plant Mol Biol 54: 427-440

Hirabayashi Y, Kikuchi S, Oishi M, Nakai M (2011) In vivo studies on the roles of two closely related Arabidopsis Tic20 proteins, AtTic20-I and AtTic20-IV. Plant Cell Physiol 52: 469-478

Hoja U, Marthol S, Hofmann J, Stegner S, Schulz R, Meier S, Greiner E, Schweizer E (2004) HFA1 encoding an organelle-specific acetyl-CoA carboxylase controls mitochondrial fatty acid synthesis in Saccharomyces cerevisiae. J Biol Chem 279: 21779-21786

Hu TT, Pattyn P, Bakker EG, Cao J, Cheng JF, Clark RM, Fahlgren N, Fawcett JA, Grimwood J, Gundlach H, et al (2011) The Arabidopsis lyrata genome sequence and the basis of rapid genome size change. Nat Genet 43: 476-481

Huang W, Ling Q, Bédard J, Lilley K, Jarvis P (2011) In vivo analyses of the roles of essential Omp85-related proteins in the chloroplast outer envelope membrane. Plant Physiol 157: 147159

Huang Y, Cho ST, Haryono M, Kuo CH (2017) Complete chloroplast genome sequence of common bermudagrass (Cynodon dactylon (L.) Pers.) and comparative analysis within the family Poaceae. PLoS One 12: e0179055

Huerlimann R, Zenger KR, Jerry DR, Heimann K (2015) Phylogenetic analysis of nucleusencoded acetyl-CoA carboxylases targeted at the cytosol and plastid of algae. PLoS One 10: e0131099

Infanger S, Bischof S, Hiltbrunner A, Agne B, Baginsky S, Kessler F (2011) The chloroplast import receptor Toc 90 partially restores the accumulation of Toc159 client proteins in the Arabidopsis thaliana ppi2 mutant. Mol Plant 4: 252-263

Inoue H, Rounds C, Schnell DJ (2010) The molecular basis for distinct pathways for protein import into Arabidopsis chloroplasts. Plant Cell 22: 1947-1960

Inoue H, Li M, Schnell DJ (2013) An essential role for chloroplast heat shock protein 90 (Hsp90C) in protein import into chloroplasts. Proc Natl Acad Sci USA 110: 3173-3178

Jansen RK, Raubeson LA, Boore JL, dePhamphilis CW, Chumley TW, Haberle RC, Wyman SK, Alverson AJ, Peery R, Herman SJ, et al (2005) Methods for obtaining and analyzing whole chloroplast genome sequences. Methods Enzymol 395: 348-384

Jansen RK, Cai Z, Raubeson LA, Daniell H, dePamphilis CW, Leebens-Mack J, Müller KF, Guisinger-Bellian M, Haberle RC, Hansen AK, et al (2007) Analysis of 81 genes from 64 plastid genomes resolves relationships in angiosperms and identifies genome-scale evolutionary patterns. Proc Natl Acad Sci USA 104: 19369-19374

Jansen RK, Wojciechowski MF, Sanniyasi E, Lee SB, Daniell H (2008) Complete plastid genome sequence of the chickpea (Cicer arietinum) and the phylogenetic distribution of rps12 and $c l p P$ intron losses among legumes (Leguminosae). Mol Phylogenet Evol 48: 1204-1217

Jarvis $\mathbf{P}$ (2008) Targeting of nucleus-encoded proteins to chloroplasts in plants. New Phytol 179: 257-285

Johanson U, Hughes D (1995) A new mutation in 16S rRNA of Escherichia coli conferring spectinomycin resistance. Nucleic Acids Res 23: 464-466

Kagale S, Robinson SJ, Nixon J, Xiao R, Huebert T, Condie J, Kessler D, Clarke WE, Edger PP, Links MG, et al. (2014) Polyploid Evolution of the Brassicaceae during the Cenozoic Era. Plant Cell 26: 2777-2791

Kajiwara T, Furutani M, Hibara K, Tasaka M (2004) The GURKE gene encoding an acetylCoA carboxylase is required for partitioning the embryo apex into three subregions in Arabidopsis. Plant Cell Physiol 45: 1122-1128

Kasmati AR, Töpel M, Patel R, Murtaza G, Jarvis P (2011) Molecular and genetic analyses of Tic20 homologues in Arabidopsis thaliana chloroplasts. Plant J 66: 877-889

Kaundun SS (2014) Resistance to acetyl-CoA carboxylase inhibiting herbicides. Pest Manag Sci 70: 1405-1417

Kessler F, Schnell D (2009) Chloroplast biogenesis: diversity and regulation of the protein import apparatus. Curr Opin Cell Biol 21: 494-500

Kikuchi S, Oishi M, Hirabayashi Y, Lee DW, Hwang I, Nakai M (2009) A 1-megadalton translocation complex containing Tic20 and Tic21 mediates chloroplast protein import at the inner envelope membrane. Plant Cell 21: 1781-1797

## Kikuchi S, Bédard J, Hirano M, Hirabayashi Y, Oishi M, Imai M, Takase M, Ide T, Nakai M

 (2013) Uncovering the protein translocon at the chloroplast inner envelope membrane. Science 339: 571-574Kode V, Mudd EA, Iamtham S, Day A (2005) The tobacco plastid accD gene is essential and is required for leaf development. Plant J 44: 237-244

Konieczny A, Ausubel FM (1993) A procedure for mapping Arabidopsis mutations using codominant ecotype-specific PCR-based markers. Plant J 4: 403-410

Koornneef M, Meinke D (2010) The development of Arabidopsis as a model plant. Plant J 61: 909-921

Koornneef M, van Eden J, Hanhart CJ, Stam P, Braaksma FJ, Feenstra WJ (1983) Linkage map of Arabidopsis thaliana. J Hered 74: 265-272

Kouranov A, Chen X, Fuks B, Schnell DJ (1998) Tic20 and Tic22 are new components of the protein import apparatus at the chloroplast inner envelope membrane. J Cell Biol 143: 9911002

Kovacheva S, Bédard J, Patel R, Dudley P, Twell D, Ríos G, Koncz C, Jarvis P (2005) In vivo studies on the roles of Tic110, Tic40 and Hsp93 during chloroplast protein import. Plant J 41: 412-429

Kovacheva S, Bédard J, Wardle A, Patel R, Jarvis P (2007) Further in vivo studies on the role of the molecular chaperone, Hsp93, in plastid protein import. Plant J 50: 364-379

Krech K, Ruf S, Masduki FF, Thiele W, Bednarczyk D, Albus CA, Tiller N, Hasse C, Schöttler MA, Bock R (2012) The plastid genome-encoded Ycf4 protein functions as a nonessential assembly factor for photosystem I in higher plants. Plant Physiol 159: 579-591

Kubis S, Baldwin A, Patel R, Razzaq A, Dupree P, Lilley K, Kurth J, Leister D, Jarvis P (2003) The Arabidopsis ppil mutant is specifically defective in the expression, chloroplast import, and accumulation of photosynthetic proteins. Plant Cell 15: 1859-1871

Kubis S, Patel R, Combe J, Bédard J, Kovacheva S, Lilley K, Biehl A, Leister D, Ríos G, Koncz C, et al (2004) Functional specialization amongst the Arabidopsis Toc159 family of chloroplast protein import receptors. Plant Cell 16: 2059-2077

Kuroda H, Maliga P (2003) The plastid $c l p P 1$ protease gene is essential for plant development. Nature 425: 86-89

Laibach F (1943) Arabidopsis thaliana (L.) Heynh. Als Objekt für genetische und entwicklungsphysiologische Untersuchungen. Bot Arch 44: 439-455

Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, et al (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23: 2947-2948

Lee S, Lee DW, Lee Y, Mayer U, Stierhof YD, Lee S, Jürgens G, Hwang I (2009) Heat shock protein cognate 70-4 and an E3 ubiquitin ligase, CHIP, mediate plastid-destined precursor degradation through the ubiquitin-26S proteasome system in Arabidopsis. Plant Cell 21: 39844001

Lenhard JM (2011) Lipogenic enzymes as therapeutic targets for obesity and diabetes. Curr Pharm Des 17: 325-331

Leutwiler LS, Houghevans BR, Meyerowitz EM (1984) The DNA of Arabidopsis thaliana. Mol Gen Genet 194: 15-23

Li C, Shen Y, Meeley R, McCarty DR, Tan BC (2015) Embryo defective 14 encodes a plastidtargeted cGTPase essential for embryogenesis in maize. Plant J 84: 785-799

Li C, Qian W, Maclean CJ, Zhang J (2016) The fitness landscape of a tRNA gene. Science 352: 837-840

Li HM, Teng YS (2013) Transit peptide design and plastid import regulation. Trends Plant Sci 18: 360-366

Li X, Ilarslan H, Brachova L, Qian HR, Li L, Che P, Wurtele ES, Nikolau BJ (2011) Reversegenetic analysis of the two biotin-containing subunit genes of the heteromeric acetyl-coenzyme A carboxylase in Arabidopsis indicates a unidirectional functional redundancy. Plant Physiol 155: 293-314

Liu TJ, Zhang CY, Yan HF, Zhang L, Ge XJ, Hao G (2016) Complete plastid genome sequence of Primula sinensis (Primulaceae): structure comparison, sequence variation and evidence for accD transfer to nucleus. PeerJ 4: e2101

Liu W, Harrison DK, Chalupska D, Gornicki P, O'Donnell CC, Adkins SW, Haselkorn R, Williams RR (2007) Single-site mutations in the carboxyltransferase domain of plastid acetylCoA carboxylase confer resistance to grass-specific herbicides. Proc Natl Acad Sci USA 104: 3627-3632

Lloyd J, Meinke D (2012) A comprehensive dataset of genes with a loss-of-function mutant phenotype in Arabidopsis thaliana. Plant Physiol 158: 1115-1129

Lü S, Zhao H, Parsons EP, Xu C, Kosma DK, Xu X, Chao D, Lohrey G, Bangarusamy DK, Wang G, et al (2011) The glossyheadl allele of ACC1 reveals a principal role for multidomain acetyl-coenzyme A carboxylase in the biosynthesis of cuticular waxes by Arabidopsis. Plant Physiol 157: 1079-1092

Lukowitz W, Gillmor CS, Sheible WR (2000) Positional cloning in Arabidopsis: why it feels good to have a genome initiative working for you. Plant Physiol 123: 795-805

Lyons E, Pedersen B, Kane J, Alam M, Ming R, Tang H, Wang X, Bowers J, Paterson A, Lisch D, et al (2008) Finding and comparing syntenic regions among Arabidopsis and the outgroups papaya, poplar, and grape: CoGe with rosids. Plant Physiol 148: 1772-1781

Ma Z, Dooner HK (2004) A mutation in the nuclear-encoded plastid ribosomal protein S9 leads to early embryo lethality in maize. Plant J 37: 92-103

Magnard JL, Heckel T, Massonneau A, Wisniewski JP, Cordelier S, Lassagne H, Perez P, Dumas C, Rogowsky PM (2004) Morphogenesis of maize embryos requires ZmPRPL35-1 encoding a plastid ribosomal protein. Plant Physiol 134: 649-663

Maier RM, Neckermann K, Igloi GL, Kossel H (1995) Complete sequence of the maize chloroplast genome: gene content, hotspots of divergence and fine tuning of genetic information by transcript editing. J Mol Biol 251: 614-628

Mankin AS (1997) Pactamycin resistance mutations in functional sites of 16 S rRNA. J Mol Biol 274: 8-15

May T, Soll J (2000) 14-3-3 proteins form a guidance complex with chloroplast precursor proteins in plants. Plant Cell 12: 53-63

McElver J, Tzafrir I, Aux G, Rogers R, Ashby C, Smith K, Thomas C, Schetter A, Zhou Q, Cushman MA, et al (2001) Insertional mutagenesis of genes required for seed development in Arabidopsis thaliana. Genetics 159: 1751-1763

McKhann HI, Camilleri C, Bérard A, Bataillon T, David JL, Reboud X, Le Corre V, Caloustian C, Gut IG, Brunel D (2004) Nested core collections maximizing genetic diversity in Arabidopsis thaliana. Plant J 38: 193-202

Meinke DW, Sussex IM (1979a) Embryo-lethal mutants of Arabidopsis thaliana: a model system for genetic analysis of plant embryo development. Devel Biol 72: 50-61

Meinke DW, Sussex IM (1979b) Isolation and characterization of six embryo-lethal mutants of Arabidopsis thaliana. Devel Biol 72: 62-72

Meinke DW (1985) Embryo-lethal mutants of Arabidopsis thaliana: Analysis of mutants with a wide range of lethal phases. Theor Appl Genet 69: 543-552

Meinke D, Cherry JM, Dean C, Rounsley SD, Koornneef M (1998) Arabidopsis thaliana: a model plant for genome analysis. Science 282: 662-682

Meinke DW, Meinke LK, Showalter TC, Schissel AM, Mueller LA, Tzafrir I (2003) A sequence-based map of Arabidopsis genes with mutant phenotypes. Plant Physiol 131: 409418

Meinke D, Muralla R, Sweeney C, Dickerman A (2008) Identifying essential genes in Arabidopsis thaliana. Trends Plant Sci 13: 483-491

Meinke D, Sweeney C, Muralla R (2009) Integrating the genetic and physical maps of Arabidopsis thaliana: Identification of mapped alleles of cloned essential (EMB) genes. PLoS One 4: e7386

Meinke D (2013) Large-scale mutant analysis of seed development in Arabidopsis thaliana. In: Becraft PW (ed) Seed Genomics, pp 5-20. Wiley-Blackwell, Ames, Iowa

Menninger JR, Coleman RA (1993) Lincosamide antibiotics stimulate dissociation of peptidyltRNA from ribosomes. Antimicrob Agents Chemother 37: 2027-2029

Meyerowitz EM, Pruitt RE (1985) Arabidopsis thaliana and plant molecular genetics. Science 229: 1214-1218

Mochizuki N, Brusslan JA, Larkin R, Nagatani A, Chory J (2001) Arabidopsis genomes uncoupled 5 (GUN5) mutant reveals the involvement of Mg-chelatase H subunit in plastid-tonucleus signal transduction. Proc Natl Acad Sci USA 98: 2053-2058

Moreau A, Yotov WV, Glorieux FH, St-Arnaud R (1998) Bone-specific expression of the alpha chain of the nascent polypeptide-associated complex, a coactivator potentiating c-Jun-mediated transcription. Mol Cell Biol 18: 1312-1321

Motamayor JC, Mockaitis K, Schmutz J, Haiminen N, Livingstone D III, Cornejo O, Findley SD, Zheng P, Utro F, Royaert S, et al (2013) The genome sequence of the most widely cultivated cacao type and its use to identify candidate genes regulating pod color. Genome Biol 14: r53

Muralla R, Lloyd J, Meinke D (2011) Molecular foundations of reproductive lethality in Arabidopsis thaliana. PLoS One 6: 28398

Naver H, Boudreau E, Rochaix JD (2001) Functional studies of Ycf3: its roles in assembly of photosystem I and interactions with some of its subunits. Plant Cell 13: 2731-2745

Nobusawa T, Okushima Y, Nagata N, Kojima M, Sakakibara H, Umeda M (1995) Synthesis of very-long-chain fatty acids in the epidermis controls plant organ growth by restricting cell proliferation. PLoS One 11: e1001531

Nordberg M, Hu TT, Ishino Y, Jhaveri J, Toomajian C, Zheng H, Bakker E, Calabrese P, Gladstone J, Goyal R, et al. (2005) The pattern of polymorphism in Arabidopsis thaliana. PLoS Biol 3: e196

Odintsova MS, Yurina NP (2005) Genomics and evolution of cellular organelles. Genetika 41: 957-967

Ohlrogge J, Browse J (1995) Lipid biosynthesis. Plant Cell 7: 957-970

Olmstead RG, Palmer JD (1994) Chloroplast DNA systematics: a review of methods and data analysis. Am J Bot 81: 1205-1224

Palmer JD, Thompson WF (1982) Chloroplast DNA rearrangements are more frequent when a large inverted repeat sequence is lost. Cell 29: 537-550

Parker N, Wang Y, Meinke D (2014) Natural variation in sensitivity to a loss of chloroplast translation in Arabidopsis. Plant Physiol 166: 2013-2027

Parker N, Wang Y, Meinke D (2016) Analysis of Arabidopsis accessions hypersensitive to a loss of chloroplast translation. Plant Physiol 172: 1862-1875

Patel R, Hsu SC, Bédard J, Inoue K, Jarvis P (2008) The Omp85-related chloroplast outer envelope protein OEP80 is essential for viability in Arabidopsis. Plant Physiol 148: 235-245

Peske F, Savelsbergh A, Katunin VI, Rodnina MV, Wintermeyer W (2004) Conformational changes of the small ribosomal subunit during elongation factor G-dependent tRNA-mRNA translocation. J Mol Biol 343: 1183-1194

Ponce-Rojas J, Avendaño-Monsalve M, Yañez-Falcón A, Jaimes-Miranda F, Garay E, Torres-Quiroz F, DeLuna A, Funes S (2017) $\alpha \beta^{\prime}$-NAC cooperates with Sam37 to mediate early stages of mitochondrial protein import. FEBS J 284: 814-830

Provart NJ, Alonso J, Assmann SM, Bergmann D, Brady SM, Brkljacic J, Browse J, Chapple C, Colot V, Cutler S, et al (2015) 50 years of Arabidopsis research: highlights and future directions. New Phytol 209: 921-944

Qin YM, Hu CY, Pang Y, Kastaniotis AJ, Hiltunen JK, Zhu YX (2007) Saturated very-longchain fatty acids promote cotton fiber and Arabidopsis cell elongation by activating ethylene biosynthesis. Plant Cell 19: 3692-3704

Raffaele S, Vailleau F, Léger A, Joubès J, Miersch O, Huard C, Blée E, Mongrand S, Domergue F, Roby D (2008) A MYB transcription factor regulates very-long-chain fatty acid biosynthesis for activation of the hypersensitive cell death response in Arabidopsis. Plant Cell 20: 752-767

Ramos-Vega M, Guevara-García A, Llamas E, Sánchez-León N, Olmedo-Monfil V, VielleCalzada JP, León P (2015) Functional analysis of the Arabidopsis thaliana CHLOROPLAST BIOGENESIS 19 pentatricopeptide repeat editing protein. New Phytol 208: 430-441

Rappleye CA, Tagawa A, Le Bot N, Ahringer J, Aroian RV (2003) Involvement of fatty acid pathways and cortical interaction of the pronuclear complex in Caenorhabditis elegans embryonic polarity. BMC Dev Biol 3: 8

Raubeson LA, Jansen RK (1992) Chloroplast DNA evidence on the ancient evolutionary split in vascular land plants. Science 255: 1697-1699

Rédei GP (1975) Arabidopsis as a genetic tool. Annu Rev Genet 9: 111-127

Rhee SY, Beavis W, Berardini TZ, Chen G, Dixon D, Doyle A, Garcia-Hernandez M, Huala E, Lander G, Montoya M, et al. (2003) The Arabidopsis Information Resource (TAIR): a model organism database providing a centralized, curated gateway to Arabidopsis biology, research materials and community. Nucleic Acids Res 31: 224-228

## Romani I, Tadini L, Rossi F, Masiero S, Pribil M, Jahns P, Kater M, Leister D, Pesaresi P

 (2012) Versatile roles of Arabidopsis plastid ribosomal proteins in plant growth and development. Plant J 72: 922-934Rousseau-Gueutin M, Huang X, Higginson E, Ayliffe M, Day A, Timmis JN (2013) Potential Functional Replacement of the Plastidic Acetyl-CoA Carboxylase Subunit (accD) Gene by Recent Transfers to the Nucleus in Some Angiosperm Lineages. Plant Physiol 161: 1918-1929

Salie MJ, Thelen JJ (2016) Regulation and structure of the heteromeric acetyl-CoA carboxylase. Biochim Biophys Acta 1861: 1207-1213

Sasamura T, Matsuno K, Fortini ME (2013) Disruption of Drosophila melanogaster lipid metabolism genes causes tissue overgrowth associated with altered developmental signaling. PLoS Genet 9: e1003917

Sato S, Nakamura Y, Kaneko T, Asamizu E, Tabata S (1999) Complete structure of the chloroplast genome of Arabidopsis thaliana. DNA Res 6: 283-290

Schmitz-Linneweber C, Small I (2008) Pentatricopeptide repeat proteins: a socket set for organelle gene expression. Trends Plant Sci 13: 663-670

Schneiter R, Guerra CE, Lampl M, Tatzer V, Zellnig G, Klein HL, Kohlwein SD (2000) A novel cold-sensitive allele of the rate-limiting enzyme of fatty acid synthesis, acetyl coenzyme A carboxylase, affects the morphology of the yeast vacuole through acylation of Vac8p. Mol Cell Biol 20: 2984-2995

Schneiter R, Hitomi M, Ivessa AS, Fasch EV, Kohlwein SD, Tartakoff AM (1996) A yeast acetyl coenzyme A carboxylase mutant links very-long-chain fatty acid synthesis to the structure and function of the nuclear membrane-pore complex. Mol Cell Biol 16: 7161-7172

Schulte W, Töpfer R, Stracke R, Schell J, Martini N (1997) Multi-functional acetyl-CoA carboxylase from Brassica napus is encoded by a multi-gene family: Indication for plastidic localization of at least one isoform. Proc Natl Acad Sci USA 94: 3465-3470

Shang B, Xu C, Zhang X, Cao H, Xin W, Hu Y (2016) Very-long-chain fatty acids restrict regeneration capacity by confining pericycle competence for callus formation in Arabidopsis. Proc Natl Acad Sci USA 113: 5101-5106

Shen Y, Li C, McCarty DR, Meeley R, Tan BC (2013) Embryo defective12 encodes the plastid initiation factor 3 and is essential for embryogenesis in maize. Plant J 74: 792-804

Shi LX, Theg SM (2013) The chloroplast protein import system: from algae to trees. Biochim Biophys Acta 1833: 314-331

Shinozaki K, Ohme M, Tanaka M, Wakasugi T, Hayashida N, Matsubayashi T, Zaita N, Chunwongse J, Obokata J, Yamaguchi-Shinozaki K, et al. (1986) The complete nucleotide sequence of the tobacco chloroplast genome: its gene organization and expression. EMBO J 5: 2043-2049

Siemenroth A, Wollgiehn R, Neumann D, Börner T (1981) Synthesis of ribosomal RNA in ribosome-deficient plastids of the mutant "albostrians" of Hordeum vulgare L. Planta 153:

Slotte T, Hazzouri KM, Ågren JA, Koenig D, Maumus F, Guo YL Steige K, Platts AE, Escobar JS, Newman LK, et al (2013) The Capsella rubella genome and the genomic consequences of rapid mating system evolution. Nat Genet 45: 831-835

Sommerville C, Koornneef M (2002) A fortunate choice: the history of Arabidopsis as a model plant. Nat Rev Genet 3: 883-889

Sosso D, Canut M, Gendrot G, Dedieu A, Chambrier P, Barkan A, Consonni G, Rogowsky PM (2012) PPR8522 encodes a chloroplast-targeted pentatricopeptide repeat protein necessary for maize embryogenesis and vegetative development. J Exp Bot 63: 5843-5857

Stengel A, Benz JP, Buchanan BB, Soll J, Bölter B (2009) Preprotein import into chloroplasts via the Toc and Tic complexes is regulated by redox signals in Pisum sativum. Mol Plant 2: 1181-1197

Straub SCK, Fishbein M, Livshultx T, Foster Z, Parks M, Weitemier K, Cronn RC, Liston A (2011) Building a model: developing genomic resources for common milkweed (Asclepias syriaca) with low coverage genome sequencing. BMC Genomic 12: 211

Sun Y, Moore MJ, Zhang S, Soltis PS, Soltis DE, Zhao T, Meng A, Li X, Li J, Wang H (2016) Phylogenomic and structural analyses of 18 complete plastomes across nearly all families of early-diverging eudicots, including an angiosperm-wide analysis of IR gene content evolution. Mol Phylogenet Evol 96: 93-101

Swiatek M, Kuras R, Sokolenko A, Higgs D, Olive J, Cinque G, Müller B, Eichacker LA, Stern DB, Bassi R (2001) The chloroplast gene ycf9 encodes a photosystem II (PSII) core subunit, PsbZ, that participates in PSII supramolecular architecture. Plant Cell 13: 1347-1367

Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol Biol Evol 30: 2725-2729

Tang L, Yao A, Yuan M, Tang Y, Liu J, Liu X, Qiu R (2016) Transcriptional up-regulation of genes involved in photosynthesis of the $\mathrm{Zn} / \mathrm{Cd}$ hyperaccumulator Sedum alfredii in response to zinc and cadmium. Chemosphere 164: 190-200

Teng YS, Su YS, Chen LJ, Lee YJ, Hwang I, Li HM (2006) Tic21 is an essential translocon component for protein translocation across the chloroplast inner envelope membrane. Plant Cell 18: 2247-2257

Tenson T, Lovmar M, Ehrenberg M (2003) The mechanism of action of macrolides, lincosamides and streptogramin B reveals the nascent peptide exit path in the ribosome. J Mol Biol 330: 1005-1014

Terry MJ, Smith AG (2013) A model for tetrapyrrole synthesis as the primary mechanism for plastid-to-nucleus signaling during chloroplast biogenesis. Front Plant Sci 4: 14

The 1001 Genomes Consortium (2016) 1,135 genomes reveal the global pattern of polymorphism in Arabidopsis thaliana. Cell 166: 481-491

Tiller N, Bock R (2014) The translational apparatus of plastids and its role in plant development. Mol Plant 7: 1105-1120

Tong L (2013) Structure and function of biotin-dependent carboxylases. Cell Mol Life Sci 70: 863-891

Trösch R, Jarvis P (2011) The stromal processing peptidase of chloroplasts is essential in Arabidopsis, with knockout mutations causing embryo arrest after the 16-cell stage. PLoS One 6: e23039

Uchoi A, Malik SK, Choudhary R, Kumar S, Rohini MR, Pal D, Ercisli S, Chaudhury R (2016) Inferring Phylogenetic Relationships of Indian Citron (Citrus medica L.) based on rbcL and matK Sequences of Chloroplast DNA. Biochem Genet 54: 249-269

Vogel J, Hübschmann T, Börner T, Hess WR (1997) Splicing and intron-internal RNA editing of trnK-matK transcripts in Barley plastids: support for MatK as an essential splice factor. J Mol Biol 270: 179-187

Walbot V, Coe EH (1979) Nuclear gene iojap conditions a programmed change to ribosome-less plastids in Zea mays. Proc Natl Acad Sci USA 76: 2760-2764

Walker CJ, Willows RD (1997) Mechanism and regulation of Mg-chelatase. Biochem J 327: 321-333

Wang Y, Chang H, Hu S, Lu X, Yuan C, Zhang C, Wang P, Xiao L, Xue GP, Guo X (2014) Plastid casein kinase 2 knockout reduces abscisic acid (ABA) sensitivity, thermotolerance, and expression of ABA- and heat-stress-responsive nuclear genes. J Exp Bot 65: 4159-4175

Waterhouse AM, Procter JB, Martin DM, Clamp M, Barton GJ (2009) Jalview version 2: a multiple sequence alignment editor and analysis workbench. Bioinformatics 25: 1189-1191

Weatherly SC, Volrath SL, Elich TD (2004) Expression and characterization of recombinant fungal acetyl-CoA carboxylase and isolation of a soraphen-binding domain. Biochem 380: 105-110

Wei J, Tong L (2015) Crystal structure of the 500-kDa yeast acetyl-CoA carboxylase holoenzyme dimer. Nature 526: 723-727

Weigel D, Meyerowitz EM (1994) The ABCs of floral homeotic genes. Cell 78: 203-209

Weigel D (2012) Natural variation in Arabidopsis: from molecular genetics to ecological genomics. Plant Physiol 158: 2-22

Wirmer J, Westhof E (2006) Molecular contacts between antibiotics and the 30S ribosomal particle. Methods Enzymol 415: 180-202

Wolfe KH, Li WH, Sharp PM (1987) Rates of nucleotide substitution vary greatly among plant mitochondrial, chloroplast, and nuclear DNAs. Proc Natl Acad Sci USA 84: 9054-9058

Yang KS, Kim HS, Jin UH, Lee SS, Park JA, Lim YP, Pai HS (2007) Silencing of NbBTF3 results in developmental defects and disturbed gene expression in chloroplasts and mitochondria of higher plants. Planta 225: 1459-1469

Yu Q, Lutz KA, Maliga P (2017) Efficient Plastid Transformation in Arabidopsis. Plant Physiol 175: 186-193

Zhang H, Tweel B, Tong L (2004) Molecular basis for the inhibition of the carboxyltransferase domain of acetyl-coenzyme-A carboxylase by haloxyfop and diclofop. Proc Natl Acad Sci USA 101: 5910-5915

Zhang YF, Hou MM, Tan BC (2013) The requirement of WHIRLY1 for embryogenesis is dependent on genetic background in maize. PLoS One 8: e67369

Zhou J, Chen X, Cui Y, Sun W, Li Y, Wang Y, Song J, Yao H (2017) Molecular Structure and Phylogenetic Analyses of Complete Chloroplast Genomes of Two Aristolochia Medicinal Species. Int J Mol Sci 18: 1839

Zu X, Zhong J, Luo D, Tan J, Zhang Q, Wu Y, Liu J, Cao R, Wen G, Cao D (2013) Chemical genetics of acetyl-CoA carboxylases. Molecules 18: 1704-1719

Zubko MK, Day A (1998) Stable albinism induced without mutagenesis: A model for ribosomefree plastid inheritance. Plant J 15: 265-271

APPENDIX A: Arabidopsis Natural Accessions Analyzed

This appendix lists all 252 natural accessions of Arabidopsis that have been used for spectinomycin analyses in this project. Included data are accession names, seed stock numbers from the Arabidopsis Biological Resource Center (ABRC), whether the seed stock is progeny from a sibling plant to the one sequenced for the 1001 Genomes Project, information on stratification, vernalization and germination problems, reported country of origin, the purpose of the accession for this project, and whether progeny seed stocks were harvested in our lab. Adapted from Parker et al. (2016).

Footnotes for the title row of the following table are described below:
${ }^{\text {a }} \quad$ Stratification (S), extended treatment at $4^{\circ} \mathrm{C}$ used for germination of seeds on plates. Vernalization (V), treatment at $4^{\circ} \mathrm{C}$ for 5-6 weeks of plants at the rosette stage. Seeds repeated had problems germinating (G).
b DEL, Predicted small deletion or frameshift; FS, First forward genetic screen; LUS, Like Unknown Sensitive; NON, Predicted nonsense mutation; RAR, Predicted rearrangement or major deletion; REV-1, Reverse genetic screen - ACC1 conserved; REV-2, Reverse genetic screen - ACC2 conserved; SPL, Predicted splicing defect; SS, Second forward genetic screen; TIC, Reverse genetic screen - TIC20-IV conserved; TRP, Predicted transit peptide variant.

| Accession | ABRC <br> Stock <br> Number | 1001 <br> Genome Sibling Seed | Growth Information ${ }^{\text {a }}$ | Reported Country of Origin | $\begin{gathered} \text { Initial } \\ \text { Purpose }^{\text {b }} \end{gathered}$ | Secondary <br> Purpose ${ }^{\text {b }}$ | Progeny Seed Harvested |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| "Nossen" | Lab |  |  |  | FS | NON | Yes |
| Aa-0 | CS76428 | Yes | S | Germany | SS | REV-2 |  |
| Ag-0 | CS76430 | Yes | S | France | SS |  |  |
| Aitba-1 | CS76649 | Yes | S / G | Morocco | SS | REV-2 | Yes |
| An-1 | CS28015 |  |  | Belgium | FS |  |  |
| Ang-0 | CS76436 | Yes |  | Belgium | SS |  |  |
| App 1-14 | CS76668 | Yes |  | Sweden | REV-1 | REV-2 |  |
| App1-16 | CS76669 | Yes | V | Sweden | REV-2 |  |  |
| ARGE-1-15 | CS76672 | Yes |  | France | SS |  |  |
| Ba-1 | CS76441 | Yes | V | United Kingdom | LUS |  |  |
| Baa-1 | CS76442 | Yes | S | Netherlands | SS | REV-2 |  |
| Balan-1 | CS76687 | Yes | V | Russia | REV-2 |  |  |
| Bay-0 | CS28056 |  |  | Germany | FS | REV-2 |  |
| Bch-4 | CS28060 |  |  | Germany | FS |  |  |
| Bd-0 | CS76445 | Yes | S | Germany | TRP |  | Yes |
| Be-1 | CS28063 |  |  | Germany | FS |  | Yes |
| Ber | CS76448 | Yes |  | Denmark | SS | REV-2 |  |
| Berkeley | CS28067 |  |  | USA (CA) | FS |  |  |
| Bik-1 | CS76449 | Yes | S | Lebanon | SS |  |  |
| Bil-5 | CS76709 | Yes | V | Sweden | RAR |  |  |
| B1-1 | CS76450 | Yes |  | Italy | SS | REV-2 |  |
| Bla-1/12 | CS28086 |  |  | Spain | FS |  |  |
| Blh-1 | CS28089 |  |  | Czech Republic | NON | REV-2 |  |
| Blh-1(2) | CS76098 |  |  | Czech Republic | NON | REV-2 |  |
| Boot-1 | CS76452 | Yes | S | United Kingdom | SS | REV-2 |  |
| Bor-4 | CS76454 | Yes | S | Czech Republic | SS |  |  |
| Borky1 | CS76453 | Yes |  | Czech Republic | REV-2 |  |  |
| BRI-2 | CS76725 | Yes |  | France | REV-2 |  |  |
| Bs-1 | CS76456 | Yes |  | Switzerland | SS |  |  |
| Bsch-0 | CS76457 | Yes |  | Germany | TRP |  |  |
| Buckhorn Pass | CS76733 | Yes | V | USA (CA) | LUS | REV-2 |  |
| Bur-0 | CS76734 | Yes |  | Ireland | SS |  |  |
| C24 | CS28127 |  |  |  | FS | REV-2 |  |
| Cal-0 | CS76460 | Yes |  | United Kingdom | TIC |  |  |
| Can-0 | CS76740 | Yes |  | Spain | SS | REV-2 |  |
| CATS-6 | CS76760 | Yes | S / G | France | SPL | REV-2 |  |
| Chat-1 | CS76463 | Yes | S / G | France | SS | REV-2 |  |
| Chi-0 | CS76464 | Yes |  | Russia | TRP | REV-2 |  |


| CIBC-5 | CS76465 | Yes |  | United Kingdom | SS |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Co-1 | CS76468 | Yes |  | Portugal | SS |  |  |
| Col-0 | Lab |  |  |  | FS | REV-2 | Yes |
| Com-1 | CS76469 | Yes |  | France | SS |  | Yes |
| CON-7 | CS76781 | Yes |  | France | SS | REV-2 |  |
| Cvi-0 | CS28197 |  |  | Cape Verde Islands | FS |  |  |
| CYR | CS76790 | Yes |  | France | SS | REV-2 |  |
| $\mathrm{Da}(1)-12$ | CS76470 | Yes |  | Czech Republic | SS |  |  |
| Db-1 | CS28203 |  |  | Germany | FS | REV-2 |  |
| Del-10 | CS76397 | Yes | S | Yugoslavia | SS |  |  |
| Dem-4 | CS76794 | Yes | V | USA | LUS | REV-2 |  |
| Di-G | CS76472 | Yes |  | France | TRP |  | Yes |
| Dja-1 | CS76473 | Yes | S | Kyrgyzstan | SS | REV-2 |  |
| Dog-4 | CS76386 | Yes | V | Turkey | TRP | REV-2 |  |
| Dra3-1 | CS76811 | Yes | V | Sweden | LUS | REV-2 |  |
| Draha2 | CS76812 | Yes |  | Czech Republic | SS |  |  |
| DraIV-6-22 | CS76823 | Yes |  | Czech Republic | TIC |  |  |
| Durh-1 | CS76477 | Yes |  | United Kingdom | SS |  |  |
| Ema-1 | CS76480 | Yes | S | United Kingdom | SS | REV-2 |  |
| En-1 | CS28233 |  |  | Germany | FS |  |  |
| En-D | CS28230 |  |  | Ukraine | FS |  |  |
| Erg2-6 | CS76845 | Yes |  | Germany | SS |  |  |
| Eri-1 | CS28240 |  |  | Sweden | FS |  |  |
| Est | CS76485 | Yes |  | Germany | SS | REV-2 |  |
| Est-0/1 | CS28243 |  |  | Russia | FS |  |  |
| Etna-2 | CS76487 | Yes | S / V | Italy | SS | REV-2 | Yes |
| Faneromnemi3 | CS76853 | Yes |  | Greece | SS |  |  |
| Fei-0 | CS28250 |  |  | Portugal | FS | REV-2 |  |
| Fell1-10 | CS76855 | Yes |  | Germany | TRP |  |  |
| Filet-1 | CS76858 | Yes |  | Italy | SS |  |  |
| Ga-0 | CS76490 | Yes |  | Germany | SS | REV-2 |  |
| Gd-1 | CS28275 |  |  | Germany | FS |  |  |
| Geg-14 | CS76876 | Yes |  | Armenia | SS |  |  |
| Gel-1 | CS76492 | Yes |  | Netherlands | SS |  |  |
| Giffo-1 | CS76878 | Yes |  | Italy | REV-2 |  |  |
| Gifu-2 | CS76494 | Yes |  | Japan | SS | REV-2 |  |
| Gn-1 | CS76880 | Yes |  | Germany | SPL | REV-2 | Yes |
| Gn2-3 | CS76881 | Yes |  | Germany | SS |  | Yes |
| Go-0 | CS28282 |  |  | Germany | FS |  | Yes |
| Gr-1 (Graz) | CS76496 | Yes |  | Austria | SS |  |  |
| Gradi-1 | CS76887 | Yes |  | Croatia | NON |  |  |


| Gre-0 | CS76497 | Yes |  | USA (MI) | LUS | REV-2 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Grivo-1 | CS76888 | Yes | S / V | Bulgaria | REV-2 |  | Yes |
| Gu-0 | CS28331 |  |  | Germany | FS |  |  |
| Gy-0 | CS76499 | Yes |  | France | SS | REV-2 |  |
| Hag-2 | CS76907 | Yes | V | Sweden | TIC |  |  |
| Ha-HBT1-2 | CS76898 | Yes |  | Germany | SS |  | Yes |
| Ha-HBT2-10 | CS76899 | Yes |  | Germany | SS |  |  |
| На-S-B | CS76903 | Yes |  | Germany | SS |  |  |
| Hi-0 | CS28346 |  |  | Netherlands | FS | REV-2 |  |
| Hn-0 | CS76513 | Yes |  | Germany | TRP |  |  |
| Hod | CS76924 | Yes |  | Czech Republic | NON | REV-2 | Yes |
| Hof-1 | CS76925 | Yes | S | Germany | SPL |  |  |
| Hovdala-2 | CS76937 | Yes | V | Sweden | RAR |  |  |
| HR-10 | CS28355 |  |  | United Kingdom | FS |  |  |
| Hs-0 | CS76515 | Yes |  | Germany | SS |  |  |
| Hsm | CS76941 | Yes |  | Czech Republic | SS | REV-2 |  |
| Iasi-1 | CS76944 | Yes |  | Romania | REV-2 |  |  |
| In-0 | CS76516 | Yes |  | Austria | SS |  |  |
| IP-Alo-0 | CS76662 | Yes | S | Portugal | DEL |  |  |
| IP-Ber-0 | CS78887 | Yes | S | Spain | SPL |  |  |
| IP-Cor-0 | CS76782 | Yes | S / V | Spain | LUS |  |  |
| IP-Cum-1 | CS76787 | Yes | S / (V) | Spain | TRP |  | Yes |
| IP-Deh-1 | CS76793 | Yes | S / V | Spain | TIC |  | Yes |
| IP-Gua-1 | CS76894 | Yes | S | Spain | LUS |  |  |
| IP-Hom-4 | CS76929 | Yes | S / V | Spain | LUS |  |  |
| IP-Lso-0 | CS77055 | Yes | S | Spain | REV-2 |  |  |
| IP-Mar-1 | CS77068 | Yes | S | Spain | TIC |  |  |
| IP-Pal-0 | CS77159 | Yes | S | Spain | REV-2 |  |  |
| IP-Ren-6 | CS77212 | Yes | S | Spain | DEL |  |  |
| IP-Tdc-0 | CS77344 | Yes | S | Spain | TIC |  | Yes |
| IP-Tor-1 | CS77378 | Yes | S | Spain | REV-2 |  |  |
| IP-Vin-0 | CS78846 | Yes | S | Spain | DEL |  |  |
| IP-Vis-0 | CS78848 | Yes | S | Spain | LUS |  |  |
| IP-Voz-0 | CS78849 | Yes | S | Spain | DEL |  |  |
| Is-0 | CS76517 | Yes |  | Germany | TRP |  |  |
| Jl-3 | CS28369 |  |  | Czech Republic | FS |  | Yes |
| Jm-0 | CS76520 | Yes |  | Czech Republic | SS |  |  |
| Kar-1 | CS76522 | Yes | S | Kyrgyzstan | SS |  |  |
| Karag-2 | CS76961 | Yes |  | Russia | SS |  |  |
| Kas-2 | CS76523 | Yes | S | India | SS |  |  |
| Kb-0 | CS76524 | Yes |  | Germany | NON |  | Yes |


| Kil-0 | CS76526 | Yes |  | United Kingdom | SS | REV-2 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Kin-0 | CS76527 | Yes |  | USA (MI) | SS | REV-2 |  |
| Kl-1 | CS28390 |  |  | Germany | FS |  |  |
| Kl-5 | CS76528 | Yes |  | Germany | NON |  | Yes |
| Kn-0 | CS28395 |  |  | Lithuania | FS | REV-2 |  |
| Kni-1 | CS76970 | Yes | V | Sweden | LUS | REV-2 |  |
| Knjas-1 | CS76971 | Yes |  | Serbia | SS |  |  |
| Knox-18 | CS76530 | Yes |  | USA (IN) | SS | REV-2 | Yes |
| Koch-1 | CS76396 | Yes |  | Ukraine | SS | REV-2 |  |
| Kolar-1 | CS76974 | Yes |  | Bulgaria | SS |  |  |
| Koln | CS76976 | Yes |  | Germany | SS |  |  |
| Kolyv-6 | CS76980 | Yes |  | Russia | SS |  |  |
| Kondara | CS76532 | Yes | S | Tajikistan | SS |  |  |
| K-oze-1 | CS76957 | Yes |  | Russia | SS |  |  |
| Kru-3 | CS76986 | Yes | V | Sweden | TIC |  | Yes |
| Kyoto | CS76535 | Yes |  | Japan | SS | REV-2 |  |
| Kz-1 | CS28427 |  |  | Kazakhstan | FS |  |  |
| La-0 | CS76538 | Yes |  | Germany | SS |  | Yes |
| LDV-18 | CS77013 | Yes |  | France | SS | REV-2 |  |
| Ler-1 | CS28449 |  |  | Germany | FS | REV-2 | Yes |
| Leska-1-44 | CS77030 | Yes | V | Bulgaria | REV-2 |  |  |
| Lip-0 | CS76542 | Yes |  | Poland | SS | REV-2 |  |
| Litva | CS76543 | Yes |  | Lithuania | SS |  |  |
| Lm-2 | CS28473 |  |  | France | FS | REV-2 |  |
| Lo-1 | CS28474 |  |  | Germany | FS |  |  |
| Lu3-30 | CS77057 | Yes |  | Germany | DEL |  |  |
| Lu4-2 | CS77058 | Yes |  | Germany | DEL |  |  |
| Mdn-1 | CS77077 | Yes |  | USA | LUS | REV-2 |  |
| Mer-6 | CS76414 | Yes | S | Spain | SS |  |  |
| Mh-0 | CS76550 | Yes |  | Poland | SS | REV-2 |  |
| Mh-1 | CS28493 |  |  | Poland | FS |  | Yes |
| MIC-31 | CS77082 | Yes |  | USA (MI) | LUS | REV-2 |  |
| MNF-Che-2 | CS77096 | Yes |  | USA | REV-2 |  |  |
| MNF-Jac-12 | CS77097 | Yes |  | USA (MI) | LUS | REV-2 |  |
| MNF-Pot-21 | CS77099 | Yes |  | USA | LUS | REV-2 |  |
| MNF-Pot-75 | CS77100 | Yes |  | USA | LUS | REV-2 |  |
| Mt-0 | CS28502 |  |  | Libya | FS |  | Yes |
| Mv-0 | CS76556 | Yes |  | USA (MA) | LUS | REV-2 |  |
| Mz-0 | CS28506 |  |  | Germany | FS |  | Yes |
| Nc-1 | CS76559 | Yes |  | France | SS |  |  |
| NC-6 | CS77124 | Yes |  | USA (NC) | LUS | REV-2 |  |


| Nd-0/1 | CS28528 |  |  | Germany | FS |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Nemrut-1 | CS76398 | Yes | V | Turkey | TRP | REV-2 |  |
| Neo-6 | CS76560 | Yes |  | Tajikistan | SS |  |  |
| Nfa-8 | CS28532 |  |  | United Kingdom | FS | REV-2 |  |
| Nie1-2 | CS76402 |  |  | Germany | FS | REV-2 | Yes |
| Nok-3 | CS76562 | Yes |  | Netherlands | SS |  |  |
| Np-0 | CS76563 | Yes |  | Germany | SS |  |  |
| Nw-0 | CS76564 | Yes |  | Germany | TRP |  |  |
| Nz-1 | CS28578 |  |  | New Zealand | FS |  |  |
| Ob-0 | CS76566 | Yes |  | Germany | RAR |  | Yes |
| Old-1 | CS76567 | Yes |  | Germany | RAR |  | Yes |
| Olympia-2 | CS77144 | Yes |  | Greece | DEL |  |  |
| Oy-0 | CS28591 |  |  | Norway | FS | REV-2 | Yes |
| $\mathrm{Pa}-2$ | CS28595 |  |  | Italy | FS |  |  |
| Ped-0 | CS76415 | Yes | V | Spain | LUS |  |  |
| Per-1 | CS76571 | Yes |  | Russia | SS |  |  |
| Pi-0 | CS76572 | Yes |  | Austria | SS | REV-2 |  |
| Pi-2 | CS28639 |  |  | Austria | FS |  | Yes |
| Pla-0 | CS76573 | Yes |  | Spain | SS | REV-2 |  |
| Pna-10 | CS76574 | Yes |  | USA (MI) | SS | REV-2 | Yes |
| Pna-17 | CS76575 | Yes | V | USA (MI) | LUS | REV-2 |  |
| Pog-0 | CS76576 | Yes | S | Canada | SS | REV-2 |  |
| Pro-0 | CS76577 | Yes | S | Spain | SS |  |  |
| PT2. 21 | CS77191 | Yes |  | USA (PT) | LUS | REV-2 |  |
| Pu2-23 | CS76579 | Yes | S | Czech Republic | SS |  |  |
| Qar-8a | CS76581 | Yes | V | Lebanon | DEL |  | Yes |
| Qui-0 | CS76417 |  |  | North Africa/Spain | FS | REV-2 |  |
| $\mathrm{Ra}-0$ | CS28665 |  |  | France | FS |  |  |
| Ragl-1 | CS76583 | Yes |  | United Kingdom | SS | REV-2 |  |
| Rennes-1 | CS76586 | Yes |  | France | SS | REV-2 |  |
| Rev-2 | CS77215 | Yes | V | Sweden | RAR |  |  |
| RLD-2 | CS28688 |  |  | Russia | FS |  |  |
| Rmx-A01 | CS76589 | Yes |  | USA (MI) | LUS | REV-2 |  |
| Rmx-A180 | CS77218 | Yes |  | USA (MI) | LUS | REV-2 |  |
| RRS-10 | CS76592 | Yes |  | USA (IN) | SS | REV-2 | Yes |
| RRS-7 | CS76593 | Yes |  | USA (IN) | TRP |  |  |
| Rubexhnoe-1 | CS76594 | Yes | S | Ukraine | SS |  |  |
| Sapporo-0 | CS28724 |  |  | Japan | FS |  |  |
| Sav-0 | CS28725 |  |  | Czech Republic | FS |  | Yes |
| Schl-7 | CS77240 | Yes |  | Germany | REV-2 |  |  |
| $\mathrm{Se}-0$ | CS76597 | Yes | S | Spain | SS |  |  |


| Seattle-0 | CS76598 | Yes |  | USA (WA) | SS | REV-2 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Sei-0 | CS76599 | Yes |  | Italy | SS | REV-2 |  |
| Sha | CS28736 |  |  | Tajikistan | FS | REV-2 | Yes |
| Sha(2) | CS76382 |  |  | Tajikistan | FS | REV-2 |  |
| Si-0 | CS76601 | Yes |  | Germany | SS | REV-2 |  |
| Slavi-1 | CS76419 | Yes | S | Bulgaria | SS |  |  |
| SLSP-31 | CS77254 | Yes |  | USA (MI) | LUS | REV-2 |  |
| SLSP-35 | CS77255 | Yes |  | USA (MI) | LUS | REV-2 |  |
| Smolj-1 | CS77256 | Yes | S | Bulgaria | REV-2 |  |  |
| Sorbo | CS76602 | Yes |  | Tajikistan | SS |  |  |
| Spr1-2 | CS77261 | Yes | V | Sweden | LUS | REV-2 |  |
| Spro-1 | CS77263 | Yes | V | Sweden | RAR |  |  |
| Spro-2 | CS77264 | Yes | S / V | Sweden | SPL |  |  |
| Sq-8 | CS76604 | Yes |  | United Kingdom | SS | REV-2 |  |
| Star-8 | CS76400 | Yes |  | Germany | TRP |  |  |
| Ste-2 | CS77274 | Yes | S / V | Sweden | SPL |  |  |
| Ste-3 | CS77275 | Yes | S / V | Sweden | SPL |  |  |
| Stw-0 | CS76605 | Yes |  | Russia | SS |  |  |
| T1020 | CS77289 | Yes | V | Sweden | RAR |  |  |
| Ta-0 | CS76608 | Yes |  | Czech Republic | SS |  |  |
| TAMM-2 | CS76610 | Yes | V | Finland | RAR |  |  |
| Tha-1 | CS76611 | Yes |  | Netherlands | SS |  |  |
| Tol-0 | CS76614 | Yes |  | USA (OH) | SS | REV-2 |  |
| Ts-1 | CS76615 | Yes |  | Spain | REV-1 | REV-2 | Yes |
| Tscha-1 | CS76616 | Yes |  | Austria | SS | REV-2 |  |
| Tsu-0 | CS28780 |  |  | Japan | FS | REV-2 | Yes |
| Tu-0 | CS76617 | Yes |  | Italy | SS | REV-2 | Yes |
| Tul-0 | CS76618 | Yes |  | USA (MI) | SS | REV-2 | Yes |
| Ty-0 | CS76619 | Yes |  | United Kingdom | SS |  |  |
| Uk-1 | CS76620 | Yes | S | Germany | SS |  |  |
| UKSW06-333 | CS78813 | Yes |  | United Kingdom | LUS | REV-2 |  |
| Ulies-1 | CS78815 | Yes |  | Romania | TIC | REV-2 |  |
| Ullapool-8 | CS78821 | Yes | S | United Kingdom | SPL |  |  |
| Uod-1 | CS76621 | Yes |  | Austria | SS | REV-2 |  |
| Utrecht | CS76622 | Yes |  | Netherlands | SS |  |  |
| Vaar2-6 | CS78831 | Yes | V | Sweden | RAR |  |  |
| Van-0 | CS28796 |  |  | Canada | FS | REV-2 |  |
| Vimmerby | CS78845 | Yes | S / V | Sweden | SPL |  |  |
| Wa-1 | CS76626 | Yes |  | Poland | REV-1 | REV-2 | Yes |
| WalhaesB4 | CS76408 | Yes | S | Germany | REV-2 |  |  |
| WAR | CS78853 | Yes |  | USA (RI) | REV-2 |  |  |


| Wei-0 | CS28816 |  |  | Switzerland | FS |  | Yes |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Wil-1 | CS28819 |  |  | Russia | FS |  |  |
| Wl-0 | CS76630 | Yes | S | Germany | SPL |  | Yes |
| Ws-2 | CS28828 |  |  | Russia | FS | REV-2 |  |
| Yeg-1 | CS76394 | Yes |  | Armenia | FS |  |  |
| Yo-0 | CS76633 | Yes | V | USA (CA) | LUS | REV-2 |  |
| Zal-1 | CS76634 | Yes | S | Kyrgyzstan | SS |  |  |
| Zdr-1 | CS76635 | Yes |  | Czech Republic | SS | REV-2 |  |
| Zu-1 | CS28847 |  |  | Switzerland | FS |  |  |

## APPENDIX B: Detailed Spectinomycin Responses of Natural Accessions and Knockout Lines Analyzed

This appendix lists the spectinomycin responses of all 252 natural accessions of Arabidopsis, and four relevant knockout lines that have been analyzed this project. Included data are accession names, number of seedlings analyzed, the assigned spectinomycin response category, the response score, and the distribution of seedling phenotypes on spectinomycin. Adapted from Parker et al. (2016).

Footnotes for the title row of the following table are described below:
${ }^{\text {a }}$ Higher scores reflect increasing levels of tolerance.
b Numbers define classes from expanded cotyledons without leaves (1) to extensive rosettes with sizeable leaves (11) as defined in the text. Refer to Figure 3.7 for examples of seedling phenotypes for each class. Green to red color gradiant based on percentage of seedlings within each phenotypic class; Green is $0 \%$ and Red is $100 \%$.

| Accession | Seedlings Analyzed | Response Category | Response Score ${ }^{\text {a }}$ | Percentage of Seedlings Analyzed ${ }^{\text {b }}$ |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | 1 | 2 | 3 | 5 | 6 | 7 | 9 | 10 | 11 |
| Chat-1 | 23 | Tolerant | 9.7 | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 8.7\% | 0.0\% | 17.4\% | 56.5\% | 17.4\% |
| Be-1 | 341 | Tolerant | 9.5 | 0.3\% | 0.0\% | 0.3\% | 0.3\% | 0.0\% | 2.3\% | 37.8\% | 55.4\% | 3.6\% |
| Jl-3 | 352 | Tolerant | 9.4 | 0.8\% | 2.0\% | 0.6\% | 1.7\% | 0.8\% | 7.4\% | 21.0\% | 44.9\% | 20.8\% |
| Tu-0 | 84 | Tolerant | 9.4 | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 2.4\% | 57.1\% | 39.3\% | 1.2\% |
| Mh-1 | 20 | Tolerant | 9.3 | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 70.0\% | 30.0\% | 0.0\% |
| На-HBT1-2 | 28 | Tolerant | 9.1 | 0.0\% | 0.0\% | 0.0\% | 3.6\% | 0.0\% | 3.6\% | 60.7\% | 32.1\% | 0.0\% |
| Mz-0 | 20 | Tolerant | 9.1 | 5.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 45.0\% | 50.0\% | 0.0\% |
| Pi-2 | 40 | Tolerant | 9.0 | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 5.0\% | 82.5\% | 12.5\% | 0.0\% |
| Kl-1 | 20 | Tolerant | 9.0 | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | \#\#\#\#\# | 0.0\% | 0.0\% |
| Wei-0 | 79 | Tolerant | 9.0 | 1.3\% | 1.3\% | 0.0\% | 0.0\% | 1.3\% | 2.5\% | 67.1\% | 26.5\% | 0.0\% |
| Tsu-0 | 490 | Tolerant | 8.8 | 0.0\% | 0.4\% | 0.4\% | 1.4\% | 1.0\% | 13.5\% | 63.9\% | 18.8\% | 0.6\% |
| Pog-0 | 60 | Tolerant | 8.6 | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 23.3\% | 68.3\% | 8.4\% | 0.0\% |
| Fell1-10 | 27 | Tolerant | 8.6 | 0.0\% | 0.0\% | 0.0\% | 3.7\% | 0.0\% | 14.8\% | 77.8\% | 3.7\% | 0.0\% |
| Uod-1 | 78 | Tolerant | 8.5 | 0.0\% | 2.6\% | 0.0\% | 0.0\% | 1.3\% | 14.1\% | 78.2\% | 3.8\% | 0.0\% |
| En-D | 20 | Tolerant | 8.5 | 0.0\% | 0.0\% | 0.0\% | 5.0\% | 0.0\% | 20.0\% | 65.0\% | 10.0\% | 0.0\% |
| An-1 | 20 | Tolerant | 8.4 | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 30.0\% | 70.0\% | 0.0\% | 0.0\% |
| Mt-0 | 20 | Tolerant | 8.4 | 0.0\% | 0.0\% | 5.0\% | 5.0\% | 0.0\% | 5.0\% | 85.0\% | 0.0\% | 0.0\% |
| Lm-2 | 70 | Tolerant | 8.3 | 1.4\% | 1.4\% | 0.0\% | 2.8\% | 0.0\% | 22.9\% | 62.9\% | 8.6\% | 0.0\% |
| Erg2-6 | 27 | Tolerant | 8.3 | 3.7\% | 0.0\% | 3.7\% | 0.0\% | 0.0\% | 11.1\% | 81.5\% | 0.0\% | 0.0\% |
| Ema-1 | 41 | Tolerant | 8.2 | 0.0\% | 2.5\% | 4.9\% | 7.3\% | 0.0\% | 14.6\% | 51.2\% | 17.1\% | 2.4\% |
| Sorbo | 28 | Tolerant | 8.1 | 3.6\% | 0.0\% | 3.6\% | 0.0\% | 0.0\% | 21.4\% | 71.4\% | 0.0\% | 0.0\% |
| Uk-1 | 27 | High Intermediate | 8.3 | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 33.3\% | 66.7\% | 0.0\% | 0.0\% |
| En-1 | 20 | High Intermediate | 8.3 | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 35.0\% | 65.0\% | 0.0\% | 0.0\% |
| Si-0 | 83 | High Intermediate | 8.2 | 2.4\% | 0.0\% | 0.0\% | 0.0\% | 1.2\% | 33.7\% | 51.8\% | 9.7\% | 1.2\% |
| Sha | 74 | High Intermediate | 8.1 | 0.0\% | 0.0\% | 0.0\% | 5.4\% | 0.0\% | 37.8\% | 50.0\% | 6.8\% | 0.0\% |
| Ang-0 | 28 | High Intermediate | 8.1 | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 46.4\% | 53.6\% | 0.0\% | 0.0\% |
| Giffo-1 | 25 | High Intermediate | 8.0 | 0.0\% | 0.0\% | 0.0\% | 8.0\% | 12.0\% | 24.0\% | 36.0\% | 20.0\% | 0.0\% |
| C24 | 73 | High Intermediate | 7.9 | 0.0\% | 2.8\% | 0.0\% | 6.8\% | 2.8\% | 34.2\% | 43.8\% | 9.6\% | 0.0\% |
| Baa-1 | 28 | High Intermediate | 7.8 | 3.6\% | 0.0\% | 0.0\% | 7.1\% | 0.0\% | 35.7\% | 46.5\% | 7.1\% | 0.0\% |
| CYR | 76 | High Intermediate | 7.8 | 0.0\% | 2.6\% | 0.0\% | 13.2\% | 2.6\% | 26.3\% | 47.4\% | 7.9\% | 0.0\% |
| Ag-0 | 28 | High Intermediate | 7.6 | 7.1\% | 0.0\% | 7.1\% | 0.0\% | 0.0\% | 25.0\% | 46.5\% | 14.3\% | 0.0\% |
| Blh-1(2) | 20 | High Intermediate | 7.5 | 10.0\% | 0.0\% | 0.0\% | 10.0\% | 0.0\% | 25.0\% | 40.0\% | 15.0\% | 0.0\% |
| Nc-1 | 20 | High Intermediate | 7.3 | 10.0\% | 0.0\% | 0.0\% | 0.0\% | 10.0\% | 30.0\% | 50.0\% | 0.0\% | 0.0\% |
| Nz-1 | 20 | High Intermediate | 6.4 | 25.0\% | 5.0\% | 0.0\% | 5.0\% | 5.0\% | 10.0\% | 20.0\% | 30.0\% | 0.0\% |
| Yeg-1 | 20 | Intermediate | 7.8 | 5.0\% | 0.0\% | 5.0\% | 0.0\% | 0.0\% | 45.0\% | 10.0\% | 35.0\% | 0.0\% |
| Filet-1 | 27 | Intermediate | 7.6 | 0.0\% | 0.0\% | 0.0\% | 3.7\% | 0.0\% | 63.0\% | 29.6\% | 3.7\% | 0.0\% |
| Slavi-1 | 27 | Intermediate | 7.6 | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 3.7\% | 66.7\% | 29.6\% | 0.0\% | 0.0\% |
| Gd-1 | 20 | Intermediate | 7.6 | 0.0\% | 0.0\% | 0.0\% | 5.0\% | 20.0\% | 35.0\% | 35.0\% | 5.0\% | 0.0\% |
| Sha(2) | 20 | Intermediate | 7.6 | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 75.0\% | 20.0\% | 5.0\% | 0.0\% |


| IP-Lso-0 | 55 | Intermediate | 7.5 | 0.0\% | 0.0\% | 7.3\% | 21.8\% | 1.8\% | 20.0\% | 21.8\% | 27.3\% | 0.0\% |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Lo-1 | 20 | Intermediate | 7.5 | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 5.0\% | 70.0\% | 20.0\% | 5.0\% | 0.0\% |
| Bor-4 | 26 | Intermediate | 7.4 | 3.8\% | 3.8\% | 0.0\% | 11.5\% | 0.0\% | 34.7\% | 34.7\% | 11.5\% | 0.0\% |
| Aa-0 | 27 | Intermediate | 7.3 | 0.0\% | 3.7\% | 3.7\% | 3.7\% | 0.0\% | 55.6\% | 25.9\% | 7.4\% | 0.0\% |
| Co-1 | 28 | Intermediate | 7.3 | 0.0\% | 0.0\% | 0.0\% | 10.7\% | 3.6\% | 57.1\% | 28.6\% | 0.0\% | 0.0\% |
| Se-0 | 28 | Intermediate | 7.3 | 0.0\% | 3.6\% | 7.1\% | 0.0\% | 7.1\% | 42.9\% | 35.7\% | 3.6\% | 0.0\% |
| ARGE-1-15 | 28 | Intermediate | 7.2 | 0.0\% | 3.6\% | 0.0\% | 3.6\% | 0.0\% | 67.8\% | 25.0\% | 0.0\% | 0.0\% |
| Kni-1 | 56 | Intermediate | 7.2 | 1.8\% | 5.4\% | 3.6\% | 10.7\% | 5.4\% | 28.5\% | 32.1\% | 12.5\% | 0.0\% |
| Stw-0 | 28 | Intermediate | 7.2 | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 89.3\% | 10.7\% | 0.0\% | 0.0\% |
| Is-0 | 28 | Intermediate | 7.2 | 0.0\% | 0.0\% | 0.0\% | 14.3\% | 17.9\% | 35.7\% | 32.1\% | 0.0\% | 0.0\% |
| Bsch-0 | 24 | Intermediate | 7.2 | 0.0\% | 4.2\% | 4.2\% | 4.2\% | 0.0\% | 62.4\% | 12.5\% | 12.5\% | 0.0\% |
| Db-1 | 75 | Intermediate | 7.2 | 0.0\% | 8.0\% | 2.7\% | 8.0\% | 5.3\% | 32.0\% | 44.0\% | 0.0\% | 0.0\% |
| Karag-2 | 28 | Intermediate | 7.1 | 3.6\% | 0.0\% | 0.0\% | 10.7\% | 7.1\% | 46.5\% | 32.1\% | 0.0\% | 0.0\% |
| Nfa-8 | 20 | Intermediate | 7.1 | 5.0\% | 0.0\% | 0.0\% | 0.0\% | 35.0\% | 30.0\% | 20.0\% | 10.0\% | 0.0\% |
| Nw-0 | 28 | Intermediate | 7.0 | 0.0\% | 0.0\% | 0.0\% | 3.6\% | 0.0\% | 92.8\% | 3.6\% | 0.0\% | 0.0\% |
| Ga-0 | 28 | Intermediate | 7.0 | 3.6\% | 0.0\% | 0.0\% | 14.3\% | 0.0\% | 57.1\% | 25.0\% | 0.0\% | 0.0\% |
| Ta-0 | 28 | Intermediate | 7.0 | 0.0\% | 0.0\% | 0.0\% | 3.6\% | 17.8\% | 67.9\% | 10.7\% | 0.0\% | 0.0\% |
| Pi-0 | 28 | Intermediate | 6.9 | 3.6\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 89.3\% | 7.1\% | 0.0\% | 0.0\% |
| Sei-0 | 56 | Intermediate | 6.9 | 0.0\% | 1.8\% | 0.0\% | 21.4\% | 1.8\% | 55.4\% | 19.6\% | 0.0\% | 0.0\% |
| CON-7 | 28 | Intermediate | 6.8 | 0.0\% | 7.1\% | 0.0\% | 3.6\% | 0.0\% | 78.6\% | 7.1\% | 3.6\% | 0.0\% |
| Borky1 | 53 | Intermediate | 6.8 | 0.0\% | 0.0\% | 1.9\% | 30.2\% | 0.0\% | 43.4\% | 24.5\% | 0.0\% | 0.0\% |
| Draha2 | 27 | Intermediate | 6.7 | 3.7\% | 3.7\% | 0.0\% | 7.4\% | 0.0\% | 70.4\% | 14.8\% | 0.0\% | 0.0\% |
| Kyoto | 28 | Intermediate | 6.7 | 0.0\% | 0.0\% | 0.0\% | 17.8\% | 0.0\% | 78.6\% | 3.6\% | 0.0\% | 0.0\% |
| Kondara | 28 | Intermediate | 6.7 | 0.0\% | 7.1\% | 0.0\% | 10.7\% | 10.7\% | 53.6\% | 17.9\% | 0.0\% | 0.0\% |
| Vaar2-6 | 54 | Intermediate | 6.7 | 5.5\% | 3.7\% | 3.7\% | 11.1\% | 16.7\% | 27.8\% | 24.1\% | 5.5\% | 1.9\% |
| Sq-8 | 26 | Intermediate | 6.7 | 7.7\% | 0.0\% | 0.0\% | 15.4\% | 7.7\% | 50.0\% | 7.7\% | 11.5\% | 0.0\% |
| Rev-2 | 53 | Intermediate | 6.6 | 0.0\% | 0.0\% | 0.0\% | 24.5\% | 1.9\% | 66.1\% | 7.5\% | 0.0\% | 0.0\% |
| $\mathrm{Zu}-1$ | 20 | Intermediate | 6.6 | 0.0\% | 0.0\% | 0.0\% | 15.0\% | 10.0\% | 75.0\% | 0.0\% | 0.0\% | 0.0\% |
| Koln | 28 | Intermediate | 6.6 | 0.0\% | 0.0\% | 3.6\% | 14.3\% | 0.0\% | 82.1\% | 0.0\% | 0.0\% | 0.0\% |
| Zal-1 | 28 | Intermediate | 6.5 | 0.0\% | 0.0\% | 0.0\% | 32.1\% | 0.0\% | 60.8\% | 7.1\% | 0.0\% | 0.0\% |
| CATS-6 | 47 | Intermediate | 6.4 | 12.8\% | 4.3\% | 2.1\% | 6.4\% | 0.0\% | 46.8\% | 25.5\% | 2.1\% | 0.0\% |
| T1020 | 49 | Intermediate | 6.4 | 0.0\% | 8.2\% | 0.0\% | 28.6\% | 2.0\% | 44.9\% | 12.2\% | 4.1\% | 0.0\% |
| Pna-17 | 52 | Intermediate | 6.4 | 0.0\% | 7.7\% | 9.6\% | 19.3\% | 1.9\% | 34.6\% | 26.9\% | 0.0\% | 0.0\% |
| Bs-1 | 28 | Intermediate | 6.4 | 0.0\% | 0.0\% | 0.0\% | 46.4\% | 0.0\% | 39.3\% | 14.3\% | 0.0\% | 0.0\% |
| Ullapool-8 | 51 | Intermediate | 6.3 | 0.0\% | 1.9\% | 0.0\% | 41.2\% | 5.9\% | 35.3\% | 15.7\% | 0.0\% | 0.0\% |
| IP-Gua-1 | 81 | Intermediate | 6.3 | 9.9\% | 9.9\% | 0.0\% | 7.4\% | 13.6\% | 28.4\% | 29.6\% | 1.2\% | 0.0\% |
| Balan-1 | 52 | Intermediate | 6.2 | 3.9\% | 0.0\% | 1.9\% | 34.6\% | 0.0\% | 48.1\% | 11.5\% | 0.0\% | 0.0\% |
| Mh-0 | 28 | Intermediate | 6.2 | 3.6\% | 0.0\% | 0.0\% | 28.6\% | 0.0\% | 67.8\% | 0.0\% | 0.0\% | 0.0\% |
| Lip-0 | 53 | Intermediate | 6.2 | 0.0\% | 5.7\% | 0.0\% | 24.5\% | 9.4\% | 56.6\% | 3.8\% | 0.0\% | 0.0\% |
| SLSP-35 | 50 | Intermediate | 6.2 | 2.0\% | 4.0\% | 8.0\% | 18.0\% | 4.0\% | 54.0\% | 10.0\% | 0.0\% | 0.0\% |
| IP-Pal-0 | 51 | Intermediate | 6.1 | 2.0\% | 7.8\% | 3.9\% | 9.8\% | 21.6\% | 45.1\% | 7.8\% | 2.0\% | 0.0\% |


| Koch-1 | 25 | Intermediate | 6.1 | 4.0\% | 0.0\% | 0.0\% | 32.0\% | 16.0\% | 40.0\% | 8.0\% | 0.0\% | 0.0\% |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Hsm | 24 | Intermediate | 6.1 | 0.0\% | 0.0\% | 0.0\% | 45.8\% | 0.0\% | 54.2\% | 0.0\% | 0.0\% | 0.0\% |
| Kas-2 | 26 | Intermediate | 6.1 | 7.7\% | 3.8\% | 3.8\% | 23.1\% | 3.8\% | 38.5\% | 19.3\% | 0.0\% | 0.0\% |
| Seattle-0 | 28 | Intermediate | 6.1 | 3.6\% | 10.7\% | 7.1\% | 3.6\% | 3.6\% | 60.7\% | 10.7\% | 0.0\% | 0.0\% |
| Pro-0 | 28 | Intermediate | 6.0 | 14.3\% | 7.1\% | 7.1\% | 7.1\% | 3.6\% | 25.0\% | 35.8\% | 0.0\% | 0.0\% |
| Spr1-2 | 47 | Intermediate | 6.0 | 0.0\% | 6.4\% | 12.8\% | 25.5\% | 6.4\% | 27.7\% | 19.1\% | 2.1\% | 0.0\% |
| $\mathrm{Da}(1)-12$ | 24 | Intermediate | 6.0 | 4.2\% | 0.0\% | 4.2\% | 20.8\% | 25.0\% | 41.6\% | 4.2\% | 0.0\% | 0.0\% |
| Bil-5 | 46 | Intermediate | 6.0 | 6.5\% | 2.2\% | 8.7\% | 15.2\% | 4.4\% | 54.3\% | 8.7\% | 0.0\% | 0.0\% |
| Rubexhnoe-1 | 27 | Intermediate | 6.0 | 3.7\% | 3.7\% | 0.0\% | 37.0\% | 3.7\% | 44.4\% | 7.5\% | 0.0\% | 0.0\% |
| Kin-0 | 23 | Intermediate | 6.0 | 8.7\% | 13.0\% | 0.0\% | 4.4\% | 4.4\% | 56.5\% | 13.0\% | 0.0\% | 0.0\% |
| Eri-1 | 20 | Intermediate | 6.0 | 5.0\% | 0.0\% | 5.0\% | 20.0\% | 35.0\% | 25.0\% | 10.0\% | 0.0\% | 0.0\% |
| Kn-0 | 19 | Intermediate | 5.9 | 0.0\% | 5.3\% | 0.0\% | 26.3\% | 26.3\% | 42.1\% | 0.0\% | 0.0\% | 0.0\% |
| Hof-1 | 56 | Intermediate | 5.9 | 0.0\% | 0.0\% | 3.6\% | 48.2\% | 10.7\% | 33.9\% | 3.6\% | 0.0\% | 0.0\% |
| Zdr-1 | 28 | Intermediate | 5.8 | 0.0\% | 0.0\% | 0.0\% | 60.7\% | 7.1\% | 28.6\% | 3.6\% | 0.0\% | 0.0\% |
| Ha-HBT2-10 | 27 | Intermediate | 5.8 | 0.0\% | 14.8\% | 7.4\% | 3.7\% | 25.9\% | 40.8\% | 7.4\% | 0.0\% | 0.0\% |
| $\begin{gathered} \text { toc34 } \\ (\text { ppi3-2) } \end{gathered}$ | 18 | Intermediate | 5.8 | 0.0\% | 0.0\% | 27.8\% | 27.8\% | 0.0\% | 22.2\% | 22.2\% | 0.0\% | 0.0\% |
| Hn-0 | 28 | Intermediate | 5.7 | 0.0\% | 3.6\% | 0.0\% | 53.6\% | 0.0\% | 42.8\% | 0.0\% | 0.0\% | 0.0\% |
| $\mathrm{Hi}-0$ | 20 | Intermediate | 5.7 | 0.0\% | 0.0\% | 5.0\% | 30.0\% | 55.0\% | 10.0\% | 0.0\% | 0.0\% | 0.0\% |
| App1-16 | 54 | Intermediate | 5.6 | 0.0\% | 0.0\% | 0.0\% | 66.7\% | 1.8\% | 31.5\% | 0.0\% | 0.0\% | 0.0\% |
| Col-0 | 287 | Intermediate | 5.6 | 1.8\% | 8.7\% | 9.1\% | 38.3\% | 1.8\% | 25.4\% | 12.5\% | 2.4\% | 0.0\% |
| WalhaesB4 | 39 | Intermediate | 5.6 | 15.4\% | 5.1\% | 2.6\% | 23.1\% | 0.0\% | 35.9\% | 17.9\% | 0.0\% | 0.0\% |
| Geg-14 | 28 | Intermediate | 5.5 | 3.6\% | 7.1\% | 0.0\% | 10.7\% | 67.9\% | 10.7\% | 0.0\% | 0.0\% | 0.0\% |
| IP-Voz-0 | 72 | Intermediate | 5.5 | 1.4\% | 0.0\% | 4.2\% | 62.5\% | 1.4\% | 29.1\% | 1.4\% | 0.0\% | 0.0\% |
| Pu2-23 | 23 | Intermediate | 5.4 | 4.4\% | 4.4\% | 13.0\% | 21.7\% | 39.1\% | 4.4\% | 13.0\% | 0.0\% | 0.0\% |
| Leska-1-44 | 52 | Intermediate | 5.4 | 0.0\% | 7.7\% | 7.7\% | 50.0\% | 1.9\% | 26.9\% | 5.8\% | 0.0\% | 0.0\% |
| Tscha-1 | 28 | Intermediate | 5.4 | 10.7\% | 0.0\% | 0.0\% | 50.0\% | 7.1\% | 28.6\% | 0.0\% | 3.6\% | 0.0\% |
| Van-0 | 20 | Intermediate | 5.4 | 0.0\% | 10.0\% | 15.0\% | 45.0\% | 5.0\% | 5.0\% | 20.0\% | 0.0\% | 0.0\% |
| Hod | 72 | Intermediate | 5.3 | 1.4\% | 1.4\% | 4.1\% | 66.7\% | 0.0\% | 26.4\% | 0.0\% | 0.0\% | 0.0\% |
| Com-1 | 32 | Intermediate | 5.3 | 6.3\% | 21.9\% | 15.5\% | 6.3\% | 0.0\% | 25.0\% | 21.9\% | 3.1\% | 0.0\% |
| Cvi-0 | 20 | Intermediate | 5.3 | 5.0\% | 20.0\% | 0.0\% | 0.0\% | 40.0\% | 35.0\% | 0.0\% | 0.0\% | 0.0\% |
| Dra3-1 | 56 | Intermediate | 5.3 | 1.8\% | 10.7\% | 17.9\% | 23.2\% | 10.7\% | 25.0\% | 10.7\% | 0.0\% | 0.0\% |
| Wa-1 | 40 | Intermediate | 5.3 | 7.5\% | 10.0\% | 2.5\% | 40.0\% | 0.0\% | 35.0\% | 5.0\% | 0.0\% | 0.0\% |
| Ws-2 | 20 | Intermediate | 5.3 | 0.0\% | 0.0\% | 15.0\% | 55.0\% | 5.0\% | 25.0\% | 0.0\% | 0.0\% | 0.0\% |
| Hs-0 | 25 | Intermediate | 5.2 | 0.0\% | 0.0\% | 20.0\% | 60.0\% | 0.0\% | 8.0\% | 12.0\% | 0.0\% | 0.0\% |
| Boot-1 | 26 | Intermediate | 5.2 | 3.8\% | 3.8\% | 11.5\% | 42.4\% | 3.8\% | 34.7\% | 0.0\% | 0.0\% | 0.0\% |
| Kar-1 | 28 | Intermediate | 5.2 | 32.1\% | 7.1\% | 0.0\% | 10.7\% | 0.0\% | 14.3\% | 35.8\% | 0.0\% | 0.0\% |
| Chi-0 | 75 | Intermediate | 5.1 | 0.0\% | 1.3\% | 9.4\% | 73.3\% | 0.0\% | 16.0\% | 0.0\% | 0.0\% | 0.0\% |
| Nie1-2 | 235 | Intermediate | 5.1 | 5.5\% | 16.6\% | 6.0\% | 17.9\% | 22.5\% | 28.1\% | 3.4\% | 0.0\% | 0.0\% |
| UKSW06-333 | 15 | Intermediate | 5.1 | 13.3\% | 13.3\% | 6.7\% | 26.7\% | 6.7\% | 13.3\% | 20.0\% | 0.0\% | 0.0\% |
| BRI-2 | 31 | Intermediate | 5.1 | 0.0\% | 3.2\% | 9.7\% | 64.5\% | 9.7\% | 12.9\% | 0.0\% | 0.0\% | 0.0\% |
| Est | 27 | Intermediate | 5.0 | 0.0\% | 18.5\% | 7.4\% | 0.0\% | 74.1\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% |


| Iasi-1 | 44 | Intermediate | 5.0 | 2.3\% | 15.9\% | 11.3\% | 20.5\% | 31.8\% | 13.6\% | 2.3\% | 2.3\% | 0.0\% |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Jm-0 | 27 | Intermediate | 5.0 | 11.1\% | 3.7\% | 0.0\% | 55.6\% | 3.7\% | 25.9\% | 0.0\% | 0.0\% | 0.0\% |
| Fei-0 | 20 | Intermediate | 4.9 | 25.0\% | 15.0\% | 0.0\% | 5.0\% | 25.0\% | 10.0\% | 10.0\% | 10.0\% | 0.0\% |
| Kz-1 | 20 | Intermediate | 4.9 | 10.0\% | 5.0\% | 15.0\% | 25.0\% | 15.0\% | 30.0\% | 0.0\% | 0.0\% | 0.0\% |
| Np-0 | 28 | Intermediate | 4.8 | 3.6\% | 7.1\% | 10.7\% | 57.2\% | 10.7\% | 7.1\% | 3.6\% | 0.0\% | 0.0\% |
| Gel-1 | 28 | Intermediate | 4.8 | 10.7\% | 0.0\% | 3.6\% | 67.8\% | 3.6\% | 14.3\% | 0.0\% | 0.0\% | 0.0\% |
| Schl-7 | 70 | Intermediate | 4.8 | 1.4\% | 15.7\% | 11.4\% | 37.2\% | 11.4\% | 22.9\% | 0.0\% | 0.0\% | 0.0\% |
| Gr-1 (Graz) | 26 | Intermediate | 4.8 | 0.0\% | 11.5\% | 11.5\% | 57.7\% | 0.0\% | 19.3\% | 0.0\% | 0.0\% | 0.0\% |
| Ba-1 | 22 | Intermediate | 4.8 | 4.5\% | 18.3\% | 18.3\% | 22.7\% | 4.5\% | 22.7\% | 4.5\% | 4.5\% | 0.0\% |
| K-oze-1 | 28 | Intermediate | 4.8 | 7.1\% | 17.9\% | 7.1\% | 28.6\% | 3.6\% | 35.7\% | 0.0\% | 0.0\% | 0.0\% |
| In-0 | 84 | Intermediate | 4.8 | 13.1\% | 8.3\% | 10.6\% | 31.0\% | 4.8\% | 28.6\% | 3.6\% | 0.0\% | 0.0\% |
| Can-0 | 96 | Intermediate | 4.7 | 1.0\% | 5.2\% | 30.2\% | 38.6\% | 1.0\% | 21.9\% | 2.1\% | 0.0\% | 0.0\% |
| RRS-7 | 28 | Intermediate | 4.7 | 7.1\% | 25.0\% | 3.6\% | 21.4\% | 3.6\% | 39.3\% | 0.0\% | 0.0\% | 0.0\% |
| Durh-1 | 17 | Intermediate | 4.7 | 35.3\% | 11.8\% | 0.0\% | 0.0\% | 5.9\% | 23.5\% | 23.5\% | 0.0\% | 0.0\% |
| Star-8 | 27 | Intermediate | 4.7 | 7.4\% | 29.7\% | 11.1\% | 14.8\% | 0.0\% | 18.5\% | 18.5\% | 0.0\% | 0.0\% |
| Gy-0 | 26 | Intermediate | 4.6 | 15.4\% | 19.3\% | 0.0\% | 19.3\% | 15.4\% | 26.8\% | 3.8\% | 0.0\% | 0.0\% |
| Ha-S-B | 28 | Intermediate | 4.6 | 3.6\% | 14.3\% | 17.9\% | 35.7\% | 0.0\% | 28.5\% | 0.0\% | 0.0\% | 0.0\% |
| Dja-1 | 52 | Intermediate | 4.6 | 3.8\% | 23.1\% | 3.8\% | 40.4\% | 11.6\% | 15.4\% | 1.9\% | 0.0\% | 0.0\% |
| Nd-0/1 | 19 | Intermediate | 4.6 | 15.8\% | 21.1\% | 5.2\% | 0.0\% | 21.1\% | 36.8\% | 0.0\% | 0.0\% | 0.0\% |
| Gu-0 | 20 | Intermediate | 4.6 | 0.0\% | 5.0\% | 25.0\% | 60.0\% | 0.0\% | 10.0\% | 0.0\% | 0.0\% | 0.0\% |
| Hovdala-2 | 56 | Intermediate | 4.5 | 0.0\% | 0.0\% | 30.4\% | 62.5\% | 0.0\% | 7.1\% | 0.0\% | 0.0\% | 0.0\% |
| IP-Hom-4 | 94 | Intermediate | 4.5 | 6.4\% | 22.3\% | 17.0\% | 16.0\% | 13.8\% | 17.0\% | 5.4\% | 2.1\% | 0.0\% |
| Smolj-1 | 51 | Intermediate | 4.5 | 17.6\% | 25.5\% | 0.0\% | 7.8\% | 21.6\% | 15.7\% | 11.8\% | 0.0\% | 0.0\% |
| Kolar-1 | 27 | Intermediate | 4.5 | 29.7\% | 11.1\% | 3.7\% | 11.1\% | 0.0\% | 33.3\% | 11.1\% | 0.0\% | 0.0\% |
| Ler-1 | 20 | Intermediate | 4.5 | 10.0\% | 25.0\% | 0.0\% | 0.0\% | 65.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% |
| Nok-3 | 26 | Intermediate | 4.5 | 30.8\% | 15.4\% | 0.0\% | 3.8\% | 3.8\% | 34.7\% | 11.5\% | 0.0\% | 0.0\% |
| Neo-6 | 27 | Intermediate | 4.5 | 18.6\% | 25.9\% | 3.7\% | 11.1\% | 3.7\% | 25.9\% | 3.7\% | 7.4\% | 0.0\% |
| Ber | 25 | Intermediate | 4.4 | 0.0\% | 4.0\% | 32.0\% | 52.0\% | 4.0\% | 8.0\% | 0.0\% | 0.0\% | 0.0\% |
| CIBC-5 | 27 | Intermediate | 4.4 | 14.9\% | 7.4\% | 22.2\% | 22.2\% | 7.4\% | 22.2\% | 3.7\% | 0.0\% | 0.0\% |
| Ragl-1 | 27 | Intermediate | 4.3 | 14.8\% | 14.8\% | 7.4\% | 29.7\% | 14.8\% | 18.5\% | 0.0\% | 0.0\% | 0.0\% |
| MNF-Che-2 | 53 | Intermediate | 4.3 | 0.0\% | 5.7\% | 39.6\% | 41.5\% | 1.9\% | 11.3\% | 0.0\% | 0.0\% | 0.0\% |
| Pla-0 | 27 | Intermediate | 4.3 | 11.1\% | 26.0\% | 3.7\% | 22.2\% | 18.5\% | 18.5\% | 0.0\% | 0.0\% | 0.0\% |
| Del-10 | 24 | Intermediate | 4.2 | 12.5\% | 8.3\% | 16.7\% | 50.0\% | 0.0\% | 12.5\% | 0.0\% | 0.0\% | 0.0\% |
| Nemrut-1 | 75 | Intermediate | 4.2 | 5.3\% | 38.7\% | 0.0\% | 2.7\% | 53.3\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% |
| RLD-2 | 19 | Intermediate | 4.1 | 5.3\% | 36.8\% | 0.0\% | 15.8\% | 42.1\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% |
| Kolyv-6 | 27 | Intermediate | 4.0 | 18.5\% | 18.5\% | 11.1\% | 29.7\% | 11.1\% | 3.7\% | 7.4\% | 0.0\% | 0.0\% |
| Litva | 27 | Intermediate | 3.9 | 7.4\% | 3.7\% | 37.0\% | 48.2\% | 0.0\% | 3.7\% | 0.0\% | 0.0\% | 0.0\% |
| Spro-1 | 52 | Low Intermediate | 5.1 | 3.8\% | 17.3\% | 36.6\% | 7.7\% | 0.0\% | 3.8\% | 13.5\% | 13.5\% | 3.8\% |
| Mer-6 | 28 | Low Intermediate | 4.5 | 0.0\% | 42.9\% | 14.3\% | 7.1\% | 10.7\% | 3.6\% | 21.4\% | 0.0\% | 0.0\% |
| Yo-0 | 51 | Low Intermediate | 4.5 | 2.0\% | 35.3\% | 17.6\% | 9.8\% | 0.0\% | 23.5\% | 11.8\% | 0.0\% | 0.0\% |
| IP-Tor-1 | 46 | Low Intermediate | 4.1 | 4.3\% | 30.4\% | 19.6\% | 17.4\% | 10.9\% | 13.1\% | 4.3\% | 0.0\% | 0.0\% |


| Kil-0 | 28 | Low Intermediate | 4.0 | 0.0\% | 3.6\% | 46.4\% | 42.9\% | 7.1\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Gradi-1 | 8 | Low Intermediate | 4.0 | 37.5\% | 12.5\% | 0.0\% | 0.0\% | 12.5\% | 37.5\% | 0.0\% | 0.0\% | 0.0\% |
| Ulies-1 | 109 | Low Intermediate | 3.9 | 7.3\% | 27.5\% | 23.0\% | 12.8\% | 20.2\% | 2.8\% | 6.4\% | 0.0\% | 0.0\% |
| Rennes-1 | 44 | Low Intermediate | 3.9 | 13.6\% | 27.3\% | 18.2\% | 15.9\% | 2.3\% | 15.9\% | 6.8\% | 0.0\% | 0.0\% |
| Bla-1/12 | 20 | Low Intermediate | 3.9 | 20.0\% | 30.0\% | 5.0\% | 0.0\% | 35.0\% | 5.0\% | 5.0\% | 0.0\% | 0.0\% |
| Bik-1 | 28 | Low Intermediate | 3.8 | 0.0\% | 39.3\% | 17.8\% | 28.6\% | 0.0\% | 10.7\% | 3.6\% | 0.0\% | 0.0\% |
| LDV-18 | 21 | Low Intermediate | 3.7 | 9.5\% | 33.4\% | 19.0\% | 9.5\% | 19.0\% | 4.8\% | 4.8\% | 0.0\% | 0.0\% |
| App1-14 | 38 | Low Intermediate | 3.7 | 7.9\% | 31.6\% | 13.1\% | 31.6\% | 7.9\% | 7.9\% | 0.0\% | 0.0\% | 0.0\% |
| Berkeley | 20 | Low Intermediate | 3.7 | 10.0\% | 30.0\% | 10.0\% | 35.0\% | 10.0\% | 5.0\% | 0.0\% | 0.0\% | 0.0\% |
| Dog-4 | 53 | Low Intermediate | 3.7 | 26.4\% | 32.1\% | 5.7\% | 1.9\% | 11.3\% | 9.4\% | 13.2\% | 0.0\% | 0.0\% |
| WAR | 39 | Low Intermediate | 3.7 | 5.2\% | 20.5\% | 33.3\% | 25.6\% | 12.8\% | 2.6\% | 0.0\% | 0.0\% | 0.0\% |
| Utrecht | 28 | Low Intermediate | 3.6 | 0.0\% | 39.3\% | 21.4\% | 17.9\% | 21.4\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% |
| Hag-2 | 73 | Low Intermediate | 3.6 | 6.9\% | 37.0\% | 13.7\% | 19.2\% | 20.5\% | 2.7\% | 0.0\% | 0.0\% | 0.0\% |
| Bay-0 | 68 | Low Intermediate | 3.6 | 13.2\% | 42.7\% | 1.5\% | 8.8\% | 25.0\% | 8.8\% | 0.0\% | 0.0\% | 0.0\% |
| DraIV-6-22 | 79 | Low Intermediate | 3.5 | 7.6\% | 30.4\% | 29.1\% | 16.5\% | 5.1\% | 8.9\% | 2.4\% | 0.0\% | 0.0\% |
| Tha-1 | 84 | Low Intermediate | 3.4 | 17.9\% | 39.3\% | 7.1\% | 6.0\% | 21.4\% | 7.1\% | 1.2\% | 0.0\% | 0.0\% |
| Knjas-1 | 22 | Low Intermediate | 3.4 | 27.3\% | 31.8\% | 9.1\% | 9.1\% | 4.5\% | 9.1\% | 9.1\% | 0.0\% | 0.0\% |
| IP-Vis-0 | 47 | Low Intermediate | 3.3 | 31.9\% | 19.1\% | 12.8\% | 14.9\% | 6.4\% | 14.9\% | 0.0\% | 0.0\% | 0.0\% |
| Sapporo-0 | 16 | Low Intermediate | 3.2 | 18.8\% | 37.5\% | 0.0\% | 31.2\% | 12.5\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% |
| Ra-0 | 20 | Low Intermediate | 3.2 | 40.0\% | 15.0\% | 0.0\% | 20.0\% | 25.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% |
| Kru-3 | 173 | Sensitive | 4.1 | 7.0\% | 30.6\% | 21.4\% | 10.4\% | 15.0\% | 5.8\% | 5.8\% | 4.0\% | 0.0\% |
| IP-Tdc-0 | 130 | Sensitive | 3.8 | 9.2\% | 23.8\% | 28.5\% | 18.5\% | 4.6\% | 9.2\% | 5.4\% | 0.8\% | 0.0\% |
| IP-Deh-1 | 94 | Sensitive | 3.6 | 3.2\% | 24.5\% | 44.7\% | 12.8\% | 1.0\% | 10.6\% | 3.2\% | 0.0\% | 0.0\% |
| IP-Mar-1 | 51 | Sensitive | 3.4 | 11.8\% | 17.6\% | 51.0\% | 3.9\% | 0.0\% | 9.8\% | 5.9\% | 0.0\% | 0.0\% |
| Ty-0 | 28 | Sensitive | 3.2 | 0.0\% | 57.1\% | 17.9\% | 0.0\% | 25.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% |
| Bch-4 | 20 | Sensitive | 3.2 | 10.0\% | 45.0\% | 15.0\% | 10.0\% | 20.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% |
| Ped-0 | 56 | Sensitive | 3.1 | 26.8\% | 17.9\% | 28.6\% | 19.6\% | 0.0\% | 0.0\% | 7.1\% | 0.0\% | 0.0\% |
| Go-0 | 58 | Sensitive | 3.1 | 17.2\% | 32.8\% | 20.7\% | 15.5\% | 12.1\% | 1.7\% | 0.0\% | 0.0\% | 0.0\% |
| Mdn-1 | 43 | Sensitive | 2.9 | 37.2\% | 16.3\% | 20.9\% | 7.0\% | 4.6\% | 14.0\% | 0.0\% | 0.0\% | 0.0\% |
| IP-Ren-6 | 42 | Sensitive | 2.8 | 2.4\% | 57.1\% | 23.8\% | 9.5\% | 4.8\% | 2.4\% | 0.0\% | 0.0\% | 0.0\% |
| Aitba-1 | 53 | Sensitive | 2.8 | 39.6\% | 30.2\% | 5.7\% | 7.5\% | 3.8\% | 9.4\% | 1.9\% | 1.9\% | 0.0\% |
| TAMM-2 | 54 | Sensitive | 2.8 | 0.0\% | 55.6\% | 33.3\% | 5.5\% | 1.9\% | 3.7\% | 0.0\% | 0.0\% | 0.0\% |
| IP-Cor-0 | 8 | Sensitive | 2.6 | 25.0\% | 50.0\% | 0.0\% | 12.5\% | 12.5\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% |
| Qui-0 | 18 | Sensitive | 2.5 | 44.4\% | 33.3\% | 0.0\% | 0.0\% | 16.7\% | 5.6\% | 0.0\% | 0.0\% | 0.0\% |
| MNF-Jac-12 | 33 | Sensitive | 2.5 | 42.5\% | 12.1\% | 30.3\% | 3.0\% | 9.1\% | 3.0\% | 0.0\% | 0.0\% | 0.0\% |
| Di-G | 82 | Sensitive | 2.5 | 12.2\% | 61.0\% | 14.6\% | 3.7\% | 8.5\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% |
| $\mathrm{Pa}-2$ | 20 | Sensitive | 2.5 | 10.0\% | 75.0\% | 0.0\% | 5.0\% | 10.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% |
| Ts-1 | 76 | Sensitive | 2.4 | 21.1\% | 61.8\% | 3.9\% | 2.6\% | 5.3\% | 4.0\% | 1.3\% | 0.0\% | 0.0\% |
| $\begin{gathered} \text { Faneromnemi- } \\ 3 \\ \hline \end{gathered}$ | 27 | Sensitive | 2.4 | 29.6\% | 29.6\% | 26.0\% | 14.8\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% |
| Wil-1 | 20 | Sensitive | 2.4 | 0.0\% | 90.0\% | 0.0\% | 0.0\% | 10.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% |
| B1-1 | 49 | Sensitive | 2.4 | 6.1\% | 59.3\% | 30.6\% | 2.0\% | 2.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% |


| Per-1 | 27 | Sensitive | 2.4 | 18.5\% | 59.3\% | 7.4\% | 11.1\% | 3.7\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Est-0/1 | 20 | Sensitive | 2.4 | 5.0\% | 85.0\% | 0.0\% | 0.0\% | 10.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% |
| HR-10 | 20 | Sensitive | 2.4 | 50.0\% | 25.0\% | 5.0\% | 0.0\% | 20.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% |
| Cal-0 | 112 | Sensitive | 2.3 | 8.0\% | 59.8\% | 29.5\% | 0.9\% | 1.8\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% |
| IP-Cum-1 | 129 | Sensitive | 2.3 | 34.9\% | 20.1\% | 35.7\% | 9.3\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% |
| "Nossen" | 571 | Sensitive | 2.3 | 35.0\% | 23.5\% | 33.5\% | 5.4\% | 0.7\% | 1.4\% | 0.5\% | 0.0\% | 0.0\% |
| Bur-0 | 70 | Sensitive | 2.3 | 1.4\% | 75.7\% | 21.5\% | 0.0\% | 1.4\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% |
| Qar-8a | 175 | Sensitive | 2.2 | 19.4\% | 53.2\% | 21.7\% | 5.7\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% |
| MNF-Pot-75 | 32 | Sensitive | 2.2 | 31.3\% | 25.0\% | 40.6\% | $3.1 \%$ | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% |
| Bd-0 | 79 | Sensitive | 2.2 | 7.6\% | 72.1\% | 19.0\% | 0.0\% | 1.3\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% |
| MIC-31 | 49 | Sensitive | 2.1 | 32.7\% | 20.4\% | 46.9\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% |
| Oy-0 | 229 | Sensitive | 2.1 | 9.6\% | 74.7\% | 13.5\% | 0.9\% | 0.9\% | 0.4\% | 0.0\% | 0.0\% | 0.0\% |
| Rmx-A01 | 36 | Sensitive | 2.1 | 27.8\% | 36.1\% | 36.1\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% |
| Grivo-1 | 73 | Sensitive | 2.0 | 24.7\% | 53.4\% | 20.5\% | 0.0\% | 1.4\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% |
| Tol-0 | 73 | Sensitive | 2.0 | 50.8\% | 21.9\% | 21.9\% | 2.7\% | 0.0\% | 0.0\% | 2.7\% | 0.0\% | 0.0\% |
| La-0 | 106 | Sensitive | 2.0 | 16.0\% | 74.5\% | 8.5\% | 0.0\% | 1.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% |
| Olympia-2 | 33 | Sensitive | 1.9 | 30.3\% | 45.5\% | 24.2\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% |
| Etna-2 | 111 | Sensitive | 1.9 | 26.1\% | 64.9\% | 7.2\% | 0.9\% | 0.0\% | 0.9\% | 0.0\% | 0.0\% | 0.0\% |
| Rmx-A180 | 42 | Sensitive | 1.8 | 42.9\% | 35.7\% | 19.0\% | 2.4\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% |
| Dem-4 | 28 | Sensitive | 1.7 | 57.1\% | 17.9\% | 25.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% |
| Tul-0 | 81 | Sensitive | 1.7 | 66.7\% | 11.1\% | 18.6\% | 1.2\% | 1.2\% | 1.2\% | 0.0\% | 0.0\% | 0.0\% |
| $\begin{gathered} \text { Buckhorn } \\ \text { Pass } \\ \hline \end{gathered}$ | 29 | Sensitive | 1.7 | 58.6\% | 17.3\% | 24.1\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% |
| NC-6 | 54 | Sensitive | 1.6 | 50.0\% | 35.2\% | 14.8\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% |
| $\begin{gathered} \text { tic20-IV-2 } \\ \text { Koncz } 11324 \end{gathered}$ | 9 | Sensitive | 1.6 | 88.9\% | 0.0\% | 0.0\% | 0.0\% | 11.1\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% |
| PT2. 21 | 55 | Sensitive | 1.5 | 56.4\% | 36.4\% | 7.2\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% |
| Pna-10 | 112 | Sensitive | 1.4 | 71.4\% | 15.2\% | 12.5\% | 0.9\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% |
| Wl-0 | 79 | Sensitive | 1.4 | 74.6\% | 12.7\% | 12.7\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% |
| SLSP-31 | 53 | Sensitive | 1.4 | 86.8\% | 5.7\% | 1.9\% | 3.7\% | 0.0\% | 1.9\% | 0.0\% | 0.0\% | 0.0\% |
| Kb-0 | 73 | Sensitive | 1.4 | 74.0\% | 16.4\% | 9.6\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% |
| Gre-0 | 48 | Sensitive | 1.4 | 79.2\% | 6.2\% | 14.6\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% |
| Gifu-2 | 78 | Sensitive | 1.3 | 78.2\% | 14.1\% | 5.1\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% |
| RRS-10 | 81 | Sensitive | 1.3 | 85.2\% | 6.2\% | 6.2\% | 1.2\% | 0.0\% | 0.0\% | 1.2\% | 0.0\% | 0.0\% |
| Spro-2 | 80 | Sensitive | 1.3 | 85.0\% | 3.8\% | 10.0\% | 1.2\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% |
| IP-Ber-0 | 49 | Sensitive | 1.3 | 81.6\% | 10.2\% | 8.2\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% |
| Blh-1 | 71 | Sensitive | 1.3 | 80.3\% | 14.1\% | 5.6\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% |
| MNF-Pot-21 | 50 | Hypersensitive | 1.4 | 66.0\% | 32.0\% | 2.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% |
| Lu4-2 | 55 | Hypersensitive | 1.3 | 80.0\% | 14.5\% | 5.5\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% |
| Sav-0 | 275 | Hypersensitive | 1.2 | 84.0\% | 13.1\% | 2.2\% | 0.0\% | 0.7\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% |
| Ob-0 | 74 | Hypersensitive | 1.2 | 86.5\% | 8.1\% | 5.4\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% |
| Old-1 | 75 | Hypersensitive | 1.2 | 84.0\% | 14.7\% | 1.3\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% |


| IP-Vin-0 | 33 | Hypersensitive | 1.2 | 84.8\% | 15.2\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Gn2-3 | 191 | Hypersensitive | 1.1 | 89.0\% | 8.4\% | 2.6\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% |
| Gn-1 | 83 | Hypersensitive | 1.1 | 91.6\% | 3.6\% | 4.8\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% |
| Mv-0 | 56 | Hypersensitive | 1.1 | 91.1\% | 5.3\% | 3.6\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% |
| Knox-18 | 80 | Hypersensitive | 1.1 | 91.2\% | 7.5\% | 1.3\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% |
| Kl-5 | 76 | Hypersensitive | 1.1 | 94.7\% | 1.3\% | 4.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% |
| Ste-2 | 83 | Hypersensitive | 1.1 | 92.8\% | 6.0\% | 1.2\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% |
| Lu3-30 | 54 | Hypersensitive | 1.1 | 92.6\% | 7.4\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% |
| IP-Alo-0 | 51 | Hypersensitive | 1.1 | 96.0\% | 2.0\% | 2.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% |
| $\begin{gathered} \text { tic20-IV-1 } \\ \text { Sail-97-F10 } \end{gathered}$ | 877 | Hypersensitive | 1.0 | 97.6\% | 1.1\% | 1.3\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% |
| $\begin{gathered} \text { acc2 } \\ \text { Salk_148966C } \end{gathered}$ | 1218 | Hypersensitive | 1.0 | 97.2\% | 2.1\% | 0.7\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% |
| Ste-3 | 82 | Hypersensitive | 1.0 | 97.6\% | 2.4\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% |
| Vimmerby | 67 | Hypersensitive | 1.0 | 98.5\% | 1.5\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% | 0.0\% |

# APPENDIX C: Details on Enhancer Phenotype Classes of TT Plants from a Tsu-0 Cross with emb3126-1 

This appendix lists the details of the progeny plants screened from a single cross (Tsu-0 x emb3126-1). All plants listed are homozygous Tsu-0 for the suppressor (ACC2). Included data are the phenotype class, identification numbers of the plants screened, who each plant was screened by, plant generation, proposed genotype of the enhancer, genotype of three loci linked to the enhancer (TOC34, EMB3137, and OEP80), whether the plant is a proposed recombinant line, number of embryos measured, the average and range of embryos length in $\mu \mathrm{m}$, percent of embryos < $100 \mu \mathrm{~m}$, > $100 \mu \mathrm{~m}$ and $>200 \mu \mathrm{~m}$, and percent of embryo phenotypes globular, triangular, linear and cotyledon.

Footnotes for the title row of the following table are described below:
${ }^{\text {a }}$ Late, plants homozygous Tsu-0 for the enhancer. Interm, plants heterozygous for the enhancer. Early, plants homozygous "Nossen" for the enhancer. Parentheses, borderline plants.
b DM, David Meinke. NP, Nicole Parker.
c T, homozygous Tsu-0. H, heterozygous. N, homozygous "Nossen".
d TOCx3137, crossover between TOC34 and EMB3137. 3137xOEP, crossover between $E M B 3137$ and $O E P 80$. NA, recombinant line identified in previous generation.

| Phenotype Class ${ }^{\text {a }}$ | Plants Screened | $\begin{gathered} \text { Screened } \\ B^{\text {b }} \end{gathered}$ | Plant Generation | Proposed Enhancer Genotype ${ }^{\text {c }}$ | $\begin{gathered} \text { TOC34 } \\ \text { EMB3137 } \\ \text { OEP80 } \\ \text { Genotype }^{\text {c }} \end{gathered}$ | Proposed Recombinant ${ }^{\text {d }}$ | Embryos Measured | Embryo Lengths ( $\mu \mathrm{m}$ ) |  | Percent Embryos by Length |  |  | Percent Embryos by Stage |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  | Avg. | Range | $\begin{gathered} <100 \\ \mu \mathrm{~m} \end{gathered}$ | $\begin{gathered} >100 \\ \mu \mathrm{~m} \end{gathered}$ | $\begin{gathered} >200 \\ \mu \mathrm{~m} \end{gathered}$ | Glob. | Triang. | Linear | Cotyl. |
| Late | 1B | DM | F2 | T | T-T-T | No | 64 | 194 | 100-400 | 0.0 | 98.4 | 35.9 | 0.0 | 25.0 | 60.9 | 14.1 |
| Late | 4D-2B | DM | F3 | T | T-T-T | No | 94 | 182 | 80-450 | 2.1 | 94.7 | 25.5 | 1.1 | 33.0 | 42.5 | 23.4 |
| Late | 7D-3B | DM | F3 | T | T-T-T | No | 17 | 178 | 100-270 | 0.0 | 100.0 | 29.4 | 0.0 | 47.1 | 23.5 | 29.4 |
| Late | S2-10D-2D | DM | F3 | T | T-T-T | No | 44 | 171 | 90-320 | 2.3 | 93.2 | 22.7 | 6.8 | 13.6 | 68.2 | 11.4 |
| Late | 19E-2E | NP | F3 | T | T-T-T | No | 58 | 171 | 110-310 | 0.0 | 100.0 | 20.7 | 0.0 | 24.1 | 67.3 | 8.6 |
| Late | 20D | DM | F2 | T | T-T-T | No | 41 | 169 | 90-500 | 2.4 | 90.2 | 19.5 | 2.4 | 34.2 | 43.9 | 19.5 |
| Late | 4D-1A | DM | F3 | T | T-T-T | No | 37 | 169 | 110-430 | 0.0 | 100.0 | 8.1 | 0.0 | 35.1 | 56.8 | 8.1 |
| Late | 7D-2B | DM | F3 | T | T-T-T | No | 17 | 166 | 100-300 | 0.0 | 82.4 | 23.5 | 17.6 | 47.1 | 5.9 | 29.4 |
| Late | 4D-2A | DM | F3 | T | T-T-T | No | 36 | 164 | 100-320 | 0.0 | 88.9 | 13.9 | 8.3 | 25.0 | 58.4 | 8.3 |
| Late | 4D-2E | DM | F3 | T | T-T-T | No | 50 | 163 | 100-250 | 0.0 | 98.0 | 6.0 | 0.0 | 18.0 | 82.0 | 0.0 |
| Late | 19E-3D | NP | F3 | T | T-T-T | No | 49 | 152 | 110-210 | 0.0 | 100.0 | 2.0 | 0.0 | 36.7 | 63.3 | 0.0 |
| Late | 7D-3A | DM | F3 | T | T-T-T | No | 21 | 148 | 110-360 | 0.0 | 100.0 | 9.5 | 0.0 | 66.7 | 23.8 | 9.5 |
| Late | 4D-4E | DM | F3 | T | H-T-T | TOCx3137 | 75 | 146 | 80-240 | 2.7 | 96.0 | 2.7 | 2.7 | 50.7 | 45.3 | 1.3 |
| Late | 4D-4B | DM | F3 | T | T-T-H | 3137 xOEP | 40 | 145 | 80-260 | 5.0 | 92.5 | 7.5 | 5.0 | 47.5 | 40.0 | 7.5 |
| Late | S2-10D-1E | DM | F3 | T | T-T-H | 3137xOEP | 49 | 145 | 90-300 | 4.1 | 81.6 | 8.2 | 6.1 | 49.0 | 38.8 | 6.1 |
| Late | 16E | DM+NP | F2 | T | H-T-T | TOCx 3137 | 50 | 142 | 100-290 | 0.0 | 90.0 | 14.0 | 0.0 | 84.0 | 2.0 | 14.0 |
| Late | 3B-2B | DM | F3 | T | T-T-T | No | 46 | 142 | 80-260 | 10.9 | 82.6 | 6.5 | 17.4 | 67.4 | 8.7 | 6.5 |
| Late | 3B-2D | DM | F3 | T | H-T-T | TOCx3137 | 39 | 140 | 100-270 | 0.0 | 87.2 | 12.8 | 12.8 | 71.8 | 2.6 | 12.8 |
| Late | 10A | DM | F2 | T | T-T-T | No | 20 | 138 | 100-190 | 0.0 | 95.0 | 0.0 | 0.0 | 75.0 | 25.0 | 0.0 |
| Late | 19E-4E | NP | F3 | T | T-T-T | No | 49 | 137 | 90-240 | 6.1 | 79.6 | 4.1 | 22.4 | 42.9 | 32.6 | 2.1 |
| Late | 19E-4A | NP | F3 | T | T-T-T | No | 44 | 136 | 90-220 | 4.5 | 79.5 | 6.8 | 22.7 | 45.5 | 31.8 | 0.0 |
| Late | 7D-6A | DM | F3 | T | T-T-T | No | 29 | 133 | 100-270 | 0.0 | 86.2 | 6.9 | 13.8 | 75.9 | 3.4 | 6.9 |
| Late | 17B | DM+NP | F2 | T | T-T-H | 3137xOEP | 40 | 129 | 100-220 | 0.0 | 82.5 | 2.5 | 7.5 | 77.5 | 7.5 | 7.5 |
| Late | 19E-1B | NP | F3 | T | H-T-T | TOCx3137 | 96 | 126 | 70-200 | 9.4 | 74.0 | 1.0 | 32.3 | 41.7 | 26.0 | 0.0 |
| Late | S2-10D-3E | DM | F3 | T | T-T-H | 3137xOEP | 64 | 123 | 80-230 | 7.8 | 71.9 | 3.1 | 28.1 | 54.7 | 15.6 | 1.6 |
| Late | 3B-1A-5D | DM | F4 | T | N-T-T | NA | 54 | 119 | 80-250 | 5.6 | 77.8 | 1.9 | 22.2 | 75.9 | 1.9 | 0.0 |
| Late | 7D-4B-2E | DM | F4 | T | N-T-T | NA | 96 | 117 | 80-360 | 11.5 | 64.6 | 1.0 | 17.7 | 72.9 | 8.3 | 1.1 |
| Late | 3B-1A-1D | DM | F4 | T | $\mathrm{N}-\mathrm{T}-\mathrm{T}$ | NA | 51 | 115 | 80-150 | 7.8 | 78.4 | 0.0 | 9.8 | 88.2 | 2.0 | 0.0 |
| (Late) | S2-3B-4A | NP | F3 | T | T-T-T | NA | 94 | 114 | 70-210 | 31.9 | 57.4 | 1.1 | 42.6 | 42.6 | 14.8 | 0.0 |
| (Late) | S2-10D-2B | DM | F3 | T | T-T-T | No | 51 | 106 | 50-170 | 37.3 | 56.9 | 0.0 | 41.2 | 52.9 | 5.9 | 0.0 |


| (Late) | 3B-1A-3A | DM | F4 | T | N-T-T | NA | 68 | 99 | 70-130 | 33.8 | 30.9 | 0.0 | 70.6 | 29.4 | 0.0 | 0.0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| (Late) | S2-3B-2D | DM | F3 | T | T-T-T | NA | 66 | 95 | 60-230 | 54.5 | 19.7 | 1.5 | 83.3 | 9.1 | 6.1 | 1.5 |
| (Interm) | S2-8D | NP | F2 | H | H-H-H | No | 30 | 143 | 90-300 | 6.7 | 80.0 | 20.0 | 30.0 | 33.3 | 33.3 | 3.4 |
| (Interm) | S2-8D-5A | DM | F3 | H | H-H-H | No | 56 | 136 | 70-400 | 28.6 | 66.1 | 14.3 | 32.2 | 37.5 | 23.2 | 7.1 |
| Interm | 7D | DM | F2 | H | H-H-H | No | 34 | 125 | 60-500 | 47.1 | 41.2 | 5.9 | 58.8 | 20.6 | 20.6 | 0.0 |
| Interm | S2-8D-5B | DM | F3 | H | H-H-H | No | 44 | 120 | 70-400 | 40.9 | 31.8 | 11.4 | 56.8 | 25.0 | 4.5 | 13.7 |
| Interm | S2-8D-1D | DM | F3 | H | H-H-H | No | 44 | 120 | 50-370 | 34.1 | 47.7 | 6.8 | 45.5 | 38.6 | 9.1 | 6.8 |
| Interm | S2-4A | NP | F2 | H | H-H-H | No | 16 | 114 | 80-180 | 43.8 | 50.0 | 0.0 | 81.2 | 12.5 | 6.3 | 0.0 |
| Interm | 4D-5D | DM+NP | F3 | H | H-H-H | No Prog.Seed | 75 | 113 | 50-280 | 53.3 | 38.7 | 10.7 | 60.0 | 14.7 | 24.0 | 1.3 |
| Interm | S2-8D-2D | DM | F3 | H | $\mathrm{N}-\mathrm{H}-\mathrm{H}$ | TOCx3137 | 48 | 111 | 60-280 | 45.8 | 41.7 | 8.3 | 58.4 | 22.9 | 10.4 | 8.3 |
| Interm | S2-10E | NP | F2 | H | H-H-H | No | 22 | 110 | 70-230 | 54.5 | 27.3 | 9.1 | 68.2 | 9.1 | 22.7 | 0.0 |
| Interm | S2-8D-5E | DM | F3 | H | H-H-H | No | 76 | 107 | 60-320 | 65.8 | 31.6 | 9.2 | 65.8 | 19.7 | 6.6 | 7.9 |
| Interm | 4D-5E | NP | F3 | H | H-H-H | No | 48 | 107 | 60-310 | 60.4 | 29.2 | 8.3 | 70.8 | 10.4 | 18.8 | 0.0 |
| Interm | S2-5B | NP | F2 | H | H-H-H | No | 22 | 107 | 60-230 | 68.2 | 27.3 | 9.1 | 77.3 | 0.0 | 22.7 | 0.0 |
| Interm | 3B-2A | DM | F3 | H | H-H-T | 3137xOEP | 26 | 105 | 70-140 | 23.1 | 46.2 | 0.0 | 69.2 | 30.8 | 0.0 | 0.0 |
| Interm | 20B | NP | F2 | H | H-H-H | No | 17 | 104 | 50-350 | 64.7 | 29.4 | 5.9 | 70.5 | 11.8 | 11.8 | 5.9 |
| Interm | 7D-4B | DM | F3 | H | $\mathrm{N}-\mathrm{H}-\mathrm{H}$ | TOCx3137 | 22 | 104 | 70-170 | 54.5 | 36.4 | 0.0 | 63.6 | 31.8 | 4.6 | 0.0 |
| Interm | 3B-1D | DM | F3 | H | H-H-H | No | 29 | 102 | 60-240 | 48.3 | 31.0 | 3.5 | 69.0 | 27.6 | 0.0 | 3.4 |
| Interm | 3B-3A | DM | F3 | H | H-H-H | No | 26 | 100 | 60-250 | 38.5 | 46.2 | 3.9 | 69.2 | 26.9 | 0.0 | 3.9 |
| Interm | 4D-2D | DM | F3 | H | H-H-H | No | 61 | 99 | 50-270 | 55.7 | 31.1 | 4.9 | 72.1 | 11.5 | 16.4 | 0.0 |
| Interm | S2-10D-2A | DM | F3 | H | H-H-H | No | 52 | 99 | 50-270 | 59.6 | 36.5 | 1.9 | 63.5 | 19.2 | 15.4 | 1.9 |
| Interm | 4D-4A | DM | F3 | H | H-H-H | No | 56 | 98 | 50-170 | 57.1 | 33.9 | 0.0 | 69.6 | 17.9 | 12.5 | 0.0 |
| Interm | 7D-3E | DM | F3 | H | H-H-N | 3137xOEP | 18 | 97 | 60-210 | 77.8 | 16.6 | 5.6 | 83.2 | 5.6 | 5.6 | 5.6 |
| Interm | 3B | DM | F2 | H | H-H-H | No | 36 | 96 | 50-260 | 61.1 | 27.8 | 5.6 | 72.2 | 22.2 | 0.0 | 5.6 |
| Interm | S2-10D-3D | DM | F3 | H | H-H-H | No | 21 | 95 | 60-180 | 61.9 | 33.3 | 0.0 | 66.7 | 23.8 | 9.5 | 0.0 |
| Interm | 7D-2D | DM | F3 | H | H-H-H | No | 48 | 94 | 60-250 | 64.6 | 20.8 | 4.2 | 79.2 | 14.6 | 2.1 | 4.1 |
| Interm | S2-4B | NP | F2 | H | H-H-H | No | 53 | 92 | 50-220 | 71.7 | 20.8 | 1.9 | 84.9 | 3.8 | 11.3 | 0.0 |
| Interm | 4D-6E | NP | F3 | H | H-H-N | 3137xOEP | 43 | 91 | 50-190 | 72.1 | 18.6 | 0.0 | 81.4 | 9.3 | 9.3 | 0.0 |
| Interm | 3B-3D | DM | F3 | H | H-H-H | No | 45 | 91 | 50-240 | 71.1 | 22.2 | 2.2 | 77.8 | 20.0 | 0.0 | 2.2 |
| Interm | 19E-4D | NP | F3 | H | H-H-H | No | 56 | 90 | 50-230 | 69.6 | 28.6 | 1.8 | 71.4 | 12.5 | 14.3 | 1.8 |
| Interm | 4D-6B | NP | F3 | H | H-H-H | No Prog.Seed | 48 | 87 | 50-210 | 72.9 | 16.7 | 2.1 | 83.3 | 6.3 | 10.4 | 0.0 |
| Interm | 19E-3E | NP | F3 | H | H-H-H | No | 49 | 87 | 60-190 | 69.4 | 12.2 | 0.0 | 91.8 | 4.1 | 4.1 | 0.0 |
| Interm | 17A | DM+NP | F2 | H | H-H-T | 3137xOEP | 27 | 87 | 50-180 | 66.7 | 22.2 | 0.0 | 70.4 | 14.8 | 14.8 | 0.0 |
| Interm | 3B-1A-4B | DM | F4 | H | $\mathrm{N}-\mathrm{H}-\mathrm{H}$ | NA | 68 | 87 | 50-320 | 72.1 | 26.5 | 1.5 | 70.6 | 22.1 | 7.3 | 0.0 |
| Interm | 7D-4B-3A | DM | F4 | H | $\mathrm{N}-\mathrm{H}-\mathrm{H}$ | NA | 47 | 86 | 50-170 | 78.7 | 19.1 | 0.0 | 80.8 | 12.8 | 6.4 | 0.0 |

190

| Interm | 7D-4B-1D | DM | F4 | H | N-H-T | $\begin{gathered} \hline \text { (Yes) } \\ 3137 \mathrm{xOEP} \\ \hline \end{gathered}$ | 42 | 86 | 50-140 | 71.4 | 21.4 | 0.0 | 73.8 | 26.2 | 0.0 | 0.0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Interm | 7D-4B-3D | DM | F4 | H | $\mathrm{N}-\mathrm{H}-\mathrm{H}$ | NA | 50 | 85 | 60-250 | 78.0 | 14.0 | 2.0 | 84.0 | 14.0 | 0.0 | 2.0 |
| Interm | S2-10D-3B | DM | F3 | H | H-H-H | No | 62 | 85 | 50-160 | 67.7 | 19.4 | 0.0 | 80.6 | 11.3 | 8.1 | 0.0 |
| Interm | 7D-4B-3E | DM | F4 | H | N-H-H | NA | 45 | 83 | 60-140 | 73.3 | 8.9 | 0.0 | 86.7 | 13.3 | 0.0 | 0.0 |
| Interm | 3B-1A-4D | DM | F4 | H | N-H-T | $\begin{gathered} \text { (Yes) } \\ 3137 \mathrm{xOEP} \end{gathered}$ | 47 | 83 | 60-150 | 78.7 | 19.1 | 0.0 | 80.9 | 17.0 | 2.1 | 0.0 |
| Interm | 3B-1A-3E | DM | F4 | H | $\mathrm{N}-\mathrm{H}-\mathrm{H}$ | NA | 54 | 83 | 60-140 | 70.4 | 18.5 | 0.0 | 79.6 | 20.4 | 0.0 | 0.0 |
| Interm | 4D-1D | DM | F3 | H | H-H-H | No | 61 | 82 | 50-250 | 82.0 | 6.6 | 1.6 | 93.4 | 3.3 | 3.3 | 0.0 |
| Interm | 19E-1D | NP | F3 | H | H-H-H | No | 74 | 82 | 50-180 | 78.4 | 14.9 | 0.0 | 87.8 | 4.1 | 8.1 | 0.0 |
| Interm | 19E-4B | NP | F3 | H | H-H-H | No | 50 | 82 | 50-210 | 80.0 | 14.0 | 2.0 | 84.0 | 8.0 | 8.0 | 0.0 |
| Interm | 19E-2A | NP | F3 | H | H-H-H | No | 54 | 82 | 50-190 | 74.1 | 16.7 | 0.0 | 83.3 | 9.3 | 7.4 | 0.0 |
| Interm | 7D-4A | DM | F3 | H | H-H-H | No | 51 | 82 | 60-200 | 80.4 | 13.7 | 0.0 | 86.2 | 9.8 | 2.0 | 2.0 |
| Interm | S2-10D-3A | DM | F3 | H | H-H-H | No | 75 | 81 | 50-170 | 85.3 | 10.7 | 0.0 | 89.4 | 5.3 | 5.3 | 0.0 |
| Interm | $19 \mathrm{E}-2 \mathrm{~B}$ | NP | F3 | H | H-H-H | No | 41 | 81 | 50-180 | 73.2 | 14.6 | 0.0 | 68.3 | 17.1 | 14.6 | 0.0 |
| Interm | S2-3B | NP | F2 | H | H-H-H | No | 27 | 81 | 50-130 | 77.8 | 11.1 | 0.0 | 96.3 | 3.7 | 0.0 | 0.0 |
| Interm | S2-10D | NP | F2 | H | H-H-H | No | 20 | 81 | 60-110 | 75.0 | 10.0 | 0.0 | 95.0 | 5.0 | 0.0 | 0.0 |
| Interm | 3B-1A-5E | DM | F4 | H | $\mathrm{N}-\mathrm{H}-\mathrm{N}$ | $\begin{gathered} \text { (Yes) } \\ 3137 \mathrm{xOEP} \end{gathered}$ | 47 | 81 | 50-140 | 70.2 | 17.0 | 0.0 | 78.7 | 21.3 | 0.0 | 0.0 |
| Interm | 3B-1A-2B | DM | F4 | H | $\mathrm{N}-\mathrm{H}-\mathrm{H}$ | NA | 50 | 80 | 50-140 | 72.0 | 18.0 | 0.0 | 80.0 | 20.0 | 0.0 | 0.0 |
| Interm | S2-10D-2E | DM | F3 | H | $\mathrm{N}-\mathrm{H}-\mathrm{H}$ | TOCx3137 | 52 | 80 | 60-140 | 75.0 | 11.5 | 0.0 | 88.5 | 11.5 | 0.0 | 0.0 |
| Interm | 19E | DM | F2 | H | H-H-H | No | 24 | 80 | 50-140 | 75.0 | 16.7 | 0.0 | 83.3 | 16.7 | 0.0 | 0.0 |
| Interm | 3B-1A-1B | DM | F4 | H | $\mathrm{N}-\mathrm{H}-\mathrm{H}$ | NA | 54 | 79 | 50-150 | 83.3 | 9.3 | 0.0 | 90.7 | 7.4 | 1.9 | 0.0 |
| Interm | 3B-1A-2D | DM | F4 | H | $\mathrm{N}-\mathrm{H}-\mathrm{H}$ | NA | 53 | 79 | 50-140 | 75.5 | 17.0 | 0.0 | 79.2 | 20.8 | 0.0 | 0.0 |
| Interm | 7D-4B-2B | DM | F4 | H | $\mathrm{N}-\mathrm{H}-\mathrm{T}$ | $\begin{gathered} \text { (Yes) } \\ 3137 \mathrm{xOEP} \end{gathered}$ | 40 | 79 | 50-170 | 82.5 | 15.0 | 0.0 | 85.0 | 7.5 | 7.5 | 0.0 |
| Interm | 4D | DM | F2 | H | H-H-H | No | 39 | 77 | 50-130 | 82.1 | 7.7 | 0.0 | 89.7 | 10.3 | 0.0 | 0.0 |
| Interm | 11D | DM | F2 | H | H-H-H | No | 32 | 75 | 50-120 | 81.3 | 6.3 | 0.0 | 87.5 | 12.5 | 0.0 | 0.0 |
| Interm | 3B-1A | DM | F3 | H | $\mathrm{N}-\mathrm{H}-\mathrm{H}$ | TOCx3137 | 18 | 75 | 60-100 | 88.9 | 0.0 | 0.0 | 100.0 | 0.0 | 0.0 | 0.0 |
| ? | 3B-1A-3D | DM | F4 | ? | $\mathrm{N}-\mathrm{H}-\mathrm{H}$ | Intriguing | 41 | 66 | 50-120 | 95.1 | 2.4 | 0.0 | 97.6 | 2.4 | 0.0 | 0.0 |
| Early | S2-6E | NP | F2 | N | $\mathrm{N}-\mathrm{N}-\mathrm{N}$ | No | 43 | 85 | 60-210 | 83.7 | 4.7 | 2.3 | 97.7 | 0.0 | 2.3 | 0.0 |
| Early | S2-8D-4A | DM | F3 | N | $\mathrm{N}-\mathrm{N}-\mathrm{N}$ | No | 49 | 83 | 60-110 | 81.6 | 6.1 | 0.0 | 93.9 | 6.1 | 0.0 | 0.0 |
| Early | S2-8D-5D | DM | F3 | N | $\mathrm{N}-\mathrm{N}-\mathrm{N}$ | No | 52 | 82 | 70-120 | 78.8 | 5.8 | 0.0 | 94.2 | 5.8 | 0.0 | 0.0 |
| Early | 14D | NP | F2 | N | $\mathrm{N}-\mathrm{N}-\mathrm{N}$ | No | 15 | 82 | 50-110 | 66.7 | 6.7 | 0.0 | 100.0 | 0.0 | 0.0 | 0.0 |
| Early | S2-6B | NP | F2 | N | $\mathrm{N}-\mathrm{N}-\mathrm{N}$ | No | 19 | 82 | 60-110 | 78.9 | 5.3 | 0.0 | 100.0 | 0.0 | 0.0 | 0.0 |
| Early | S2-8D-3B | DM | F3 | N | $\mathrm{N}-\mathrm{N}-\mathrm{H}$ | 3137xOEP | 63 | 77 | 50-110 | 92.1 | 1.6 | 0.0 | 98.4 | 1.6 | 0.0 | 0.0 |
| Early | 3B-3B | DM | F3 | N | $\mathrm{N}-\mathrm{N}-\mathrm{N}$ | No | 23 | 77 | 60-90 | 100.0 | 0.0 | 0.0 | 100.0 | 0.0 | 0.0 | 0.0 |


| Early | S2-8D-4E | DM | F3 | N | $\mathrm{H}-\mathrm{N}-\mathrm{N}$ | TOCx3137 | 54 | 74 | 60-100 | 96.3 | 0.0 | 0.0 | 100.0 | 0.0 | 0.0 | 0.0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Early | 3B-3E | DM | F3 | N | $\mathrm{N}-\mathrm{N}-\mathrm{H}$ | 3137 xOEP | 18 | 71 | 50-80 | 100.0 | 0.0 | 0.0 | 100.0 | 0.0 | 0.0 | 0.0 |
| Early | 3B-1B | DM | F3 | N | $\mathrm{H}-\mathrm{N}-\mathrm{N}$ | TOCx3137 | 29 | 70 | 50-100 | 96.6 | 0.0 | 0.0 | 100.0 | 0.0 | 0.0 | 0.0 |
| Early | 4D-5A | NP | F3 | N | $\mathrm{N}-\mathrm{N}-\mathrm{N}$ | No Prog.Seed | 47 | 70 | 50-100 | 97.9 | 0.0 | 0.0 | 100.0 | 0.0 | 0.0 | 0.0 |
| Early | S2-8D-6E | DM | F3 | N | $\mathrm{H}-\mathrm{N}-\mathrm{N}$ | TOCx3137 | 54 | 69 | 60-100 | 98.1 | 0.0 | 0.0 | 100.0 | 0.0 | 0.0 | 0.0 |
| Early | S2-7B | NP | F2 | N | $\mathrm{N}-\mathrm{N}-\mathrm{N}$ | No | 20 | 69 | 50-80 | 100.0 | 0.0 | 0.0 | 100.0 | 0.0 | 0.0 | 0.0 |
| Early | S2-3D | NP | F2 | N | $\mathrm{N}-\mathrm{N}-\mathrm{N}$ | No | 24 | 67 | 50-90 | 100.0 | 0.0 | 0.0 | 100.0 | 0.0 | 0.0 | 0.0 |
| Early | 4D-3D | DM | F3 | N | $\mathrm{N}-\mathrm{N}-\mathrm{N}$ | No | 29 | 67 | 50-90 | 100.0 | 0.0 | 0.0 | 100.0 | 0.0 | 0.0 | 0.0 |
| Early | 19E-1A | NP | F3 | N | $\mathrm{N}-\mathrm{N}-\mathrm{N}$ | No | 48 | 67 | 50-100 | 97.9 | 0.0 | 0.0 | 100.0 | 0.0 | 0.0 | 0.0 |
| Early | 1A | DM | F2 | N | $\mathrm{N}-\mathrm{N}-\mathrm{H}$ | 3137xOEP | 42 | 66 | 50-100 | 97.6 | 0.0 | 0.0 | 100.0 | 0.0 | 0.0 | 0.0 |
| Early | 8B | DM+NP | F2 | N | $\mathrm{N}-\mathrm{N}-\mathrm{N}$ | No | 39 | 66 | 50-90 | 100.0 | 0.0 | 0.0 | 100.0 | 0.0 | 0.0 | 0.0 |
| Early | 20A | DM + NP | F2 | N | $\mathrm{N}-\mathrm{N}-\mathrm{N}$ | No | 25 | 65 | 50-80 | 100.0 | 0.0 | 0.0 | 100.0 | 0.0 | 0.0 | 0.0 |
| Early | 8D | DM + NP | F2 | N | $\mathrm{N}-\mathrm{N}-\mathrm{N}$ | No | 28 | 64 | 50-80 | 100.0 | 0.0 | 0.0 | 100.0 | 0.0 | 0.0 | 0.0 |
| Early | 7D-4B-4A | DM | F4 | N | $\mathrm{N}-\mathrm{N}-\mathrm{N}$ | NA | 40 | 64 | 50-80 | 100.0 | 0.0 | 0.0 | 100.0 | 0.0 | 0.0 | 0.0 |
| Early | S2-3B-6E | NP | F3 | N | $\mathrm{N}-\mathrm{N}-\mathrm{N}$ | NA | 57 | 63 | 50-90 | 100.0 | 0.0 | 0.0 | 100.0 | 0.0 | 0.0 | 0.0 |
| Early | 3B-1A-4A | DM | F4 | N | $\mathrm{N}-\mathrm{N}-\mathrm{N}$ | NA | 67 | 62 | 50-80 | 100.0 | 0.0 | 0.0 | 100.0 | 0.0 | 0.0 | 0.0 |
| Early | 7D-6D | DM | F3 | N | $\mathrm{N}-\mathrm{N}-\mathrm{N}$ | No | 35 | 62 | 50-70 | 100.0 | 0.0 | 0.0 | 100.0 | 0.0 | 0.0 | 0.0 |
| Early | 7E | NP | F2 | N | $\mathrm{N}-\mathrm{N}-\mathrm{N}$ | No / Transform | 38 | 61 | 50-100 | 97.4 | 0.0 | 0.0 | 100.0 | 0.0 | 0.0 | 0.0 |
| Early | S2-10D-4B | DM | F3 | N | $\mathrm{N}-\mathrm{N}-\mathrm{N}$ | No | 59 | 61 | 50-80 | 100.0 | 0.0 | 0.0 | 100.0 | 0.0 | 0.0 | 0.0 |
| Early | S2-10D-4D | DM | F3 | N | $\mathrm{N}-\mathrm{N}-\mathrm{N}$ | No | 54 | 60 | 50-80 | 100.0 | 0.0 | 0.0 | 100.0 | 0.0 | 0.0 | 0.0 |
| Early | 12E | DM | F2 | N | $\mathrm{N}-\mathrm{N}-\mathrm{N}$ | No | 29 | 58 | 50-70 | 100.0 | 0.0 | 0.0 | 100.0 | 0.0 | 0.0 | 0.0 |
| Early | 3B-1A-1A | DM | F4 | N | $\mathrm{N}-\mathrm{N}-\mathrm{N}$ | NA | 46 | 58 | 50-70 | 100.0 | 0.0 | 0.0 | 100.0 | 0.0 | 0.0 | 0.0 |
| Early | 13 A | NP | F2 | N | $\mathrm{N}-\mathrm{N}-\mathrm{N}$ | No / Transform | 29 | 56 | 50-70 | 100.0 | 0.0 | 0.0 | 100.0 | 0.0 | 0.0 | 0.0 |
| Early | S2-3B-6B | DM + NP | F3 | N | $\mathrm{N}-\mathrm{N}-\mathrm{N}$ | NA | 82 | 56 | 50-70 | 100.0 | 0.0 | 0.0 | 100.0 | 0.0 | 0.0 | 0.0 |

# APPENDIX D: Details on Modifier Phenotype Classes of TT Plants from a Tsu-0 Cross with emb3126-1 

This appendix lists the details of the progeny plants screened from a single cross (Tsu-0 x emb3126-1). All plants listed are homozygous Tsu-0 for the suppressor (ACC2) and the enhancer. Included data are the phenotype class, identification numbers of the plants screened, who each plant was screened by, plant generation, number of embryos measured, the average and range of embryos length in $\mu \mathrm{m}$, percent of embryos $>100 \mu \mathrm{~m}$, $>200 \mu \mathrm{~m}$ and > $300 \mu \mathrm{~m}$, and percent of embryo phenotypes globular, triangular, linear and cotyledon.

Footnotes for the title row of the following table are described below:
a Late-Adv, progeny plants from the "Late" class of F2 plants with the highest level of embryo rescue. Late-Mod, progeny plants from the "Late" class of F2 plants with a moderate level of embryo rescue. Late-Red, progeny plants from the "Late" class of F2 plants with the lowest level of embryo rescue. L-A-Late, progeny plants from the "Late-Adv" class of F3 plants with the highest level of embryo rescue. L-A-Mod, progeny plants from the "Late-Adv" class of F3 plants with a moderate level of embryo rescue. Borderline, progeny plants from the "Late-Red" class of F3 plants with a moderate level of embryo rescue. L-R-Red, progeny plants from the "LateRed" class of F3 plants with the lowest level of embryo rescue.
b NP, Nicole Parker.

| Phenotype Class ${ }^{\text {a }}$ | Plants <br> Screened | $\begin{gathered} \text { Screened } \\ \text { By }^{\text {b }} \end{gathered}$ | Plant Generation | Embryos <br> Measured | Embryo Lengths ( $\mu \mathrm{m}$ ) |  | Percent Embryos by Length |  |  | Percent Embryos by Stage |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | Average | Range | $>100 \mu \mathrm{~m}$ | >200 $\mu \mathrm{m}$ | >300 $\mu \mathrm{m}$ | Globular | Triangular | Linear | Cotyledon |
| Late-Adv | 1B-3B | NP | F3 | 44 | 288 | 100-510 | 97.7 | 68.2 | 43.2 | 0.0 | 11.3 | 36.4 | 52.3 |
| Late-Adv | 20D-S2-1D | NP | F3 | 86 | 259 | 110-510 | 100.0 | 57.0 | 39.5 | 0.0 | 15.1 | 38.4 | 46.5 |
| Late-Adv | 20D-3A | NP | F3 | 39 | 243 | 130-480 | 100.0 | 59.0 | 17.9 | 0.0 | 5.1 | 53.8 | 41.1 |
| Late-Adv | 20D-1E | NP | F3 | 76 | 234 | 100-430 | 98.7 | 61.8 | 19.7 | 0.0 | 10.5 | 54.0 | 35.5 |
| Late-Mod | 1B-6B | NP | F3 | 31 | 219 | 120-490 | 100.0 | 41.9 | 16.1 | 0.0 | 16.1 | 71.0 | 12.9 |
| Late-Mod | 20D-3B | NP | F3 | 36 | 197 | 100-400 | 94.4 | 36.1 | 13.9 | 11.1 | 19.4 | 22.2 | 47.3 |
| Late-Mod | 1B-6A | NP | F3 | 31 | 193 | 100-580 | 93.5 | 25.8 | 6.5 | 6.4 | 22.6 | 58.1 | 12.9 |
| Late-Mod | 20D-2B | NP | F3 | 33 | 192 | 90-350 | 93.9 | 42.4 | 6.1 | 3.0 | 18.2 | 24.2 | 54.6 |
| Late-Mod | 20D-2D | NP | F3 | 37 | 182 | 110-340 | 100.0 | 24.3 | 2.7 | 2.7 | 5.4 | 81.1 | 10.8 |
| Late-Mod | 1B-2E | NP | F3 | 34 | 180 | 120-350 | 100.0 | 20.6 | 2.9 | 0.0 | 14.7 | 79.4 | 5.9 |
| Late-Mod | 20D-S2-1B | NP | F3 | 80 | 180 | 90-390 | 97.5 | 23.8 | 7.5 | 2.5 | 35.0 | 48.8 | 13.8 |
| Late-Mod | 20D-S2-2D | NP | F3 | 77 | 178 | 110-470 | 100.0 | 16.9 | 3.9 | 0.0 | 16.9 | 75.3 | 7.8 |
| Late-Mod | 20D-2A | NP | F3 | 31 | 175 | 90-360 | 93.5 | 25.8 | 6.5 | 12.9 | 38.7 | 12.9 | 35.5 |
| Late-Mod | 1B-1D | NP | F3 | 29 | 173 | 110-510 | 100.0 | 13.8 | 6.9 | 3.4 | 27.6 | 55.2 | 13.8 |
| Late-Mod | 1B-6D | NP | F3 | 33 | 171 | 100-270 | 97.0 | 21.2 | 0.0 | 9.1 | 18.2 | 57.6 | 15.1 |
| Late-Mod | 1B-1E | NP | F3 | 22 | 170 | 110-300 | 100.0 | 27.3 | 0.0 | 13.6 | 9.1 | 77.3 | 0.0 |
| Late-Red | 1B-1B | NP | F3 | 26 | 157 | 100-400 | 96.2 | 7.7 | 3.8 | 3.8 | 7.7 | 80.8 | 7.7 |
| Late-Red | 1B-3D | NP | F3 | 37 | 157 | 110-230 | 100.0 | 5.4 | 0.0 | 5.4 | 27.0 | 67.6 | 0.0 |
| Late-Red | 20D-1B | NP | F3 | 77 | 152 | 100-330 | 98.7 | 6.5 | 1.3 | 7.8 | 40.2 | 44.2 | 7.8 |
| Late-Red | 20D-1D | NP | F3 | 32 | 152 | 110-230 | 100.0 | 9.4 | 0.0 | 12.5 | 40.6 | 40.6 | 6.3 |
| Late-Red | 20D-3E | NP | F3 | 41 | 145 | 100-230 | 97.6 | 4.9 | 0.0 | 12.2 | 43.9 | 34.1 | 9.8 |
| Late-Red | 20D-S2-1E | NP | F3 | 74 | 144 | 90-380 | 73.0 | 16.2 | 1.4 | 31.1 | 37.8 | 20.3 | 10.8 |
| Late-Red | 20D-S2-2A | NP | F3 | 76 | 136 | 90-330 | 78.9 | 2.6 | 1.3 | 15.8 | 59.2 | 23.7 | 1.3 |
| Late-Red | 20D-S2-2E | NP | F3 | 72 | 125 | 80-190 | 83.3 | 0.0 | 0.0 | 29.1 | 54.2 | 16.7 | 0.0 |
| L-A-Late | 1B-3B-2B | NP | F4 | 27 | 358 | 170-540 | 100.0 | 88.9 | 66.7 | 0.0 | 0.0 | 22.2 | 77.8 |


| L-A-Late | 1B-3B-2E | NP | F4 | 52 | 350 | 220-590 | 100.0 | 100.0 | 61.5 | 0.0 | 0.0 | 36.5 | 63.5 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| L-A-Late | 1B-3B-1A | NP | F4 | 55 | 328 | 200-540 | 100.0 | 94.5 | 54.5 | 0.0 | 0.0 | 29.1 | 70.9 |
| L-A-Mod | 1B-3B-1B | NP | F4 | 50 | 289 | 170-530 | 100.0 | 82.0 | 40.0 | 0.0 | 0.0 | 38.0 | 62.0 |
| L-A-Mod | 1B-3B-2D | NP | F4 | 31 | 285 | 170-410 | 100.0 | 90.3 | 38.7 | 0.0 | 0.0 | 38.7 | 61.3 |
| L-A-Mod | 20D-3A-2A | NP | F4 | 38 | 274 | 120-450 | 100.0 | 78.9 | 34.2 | 0.0 | 5.3 | 36.8 | 57.9 |
| L-A-Mod | 1B-3B-2A | NP | F4 | 27 | 269 | 160-380 | 100.0 | 77.8 | 37.0 | 0.0 | 0.0 | 51.9 | 48.1 |
| L-A-Mod | 20D-3A-2E | NP | F4 | 100 | 261 | 120-570 | 100.0 | 62.0 | 33.0 | 0.0 | 12.0 | 39.0 | 49.0 |
| L-A-Mod | 1B-3B-1E | NP | F4 | 50 | 254 | 160-560 | 100.0 | 68.0 | 24.0 | 0.0 | 0.0 | 72.0 | 28.0 |
| L-A-Mod | 20D-3A-2D | NP | F4 | 39 | 251 | 120-460 | 100.0 | 51.3 | 30.8 | 0.0 | 7.6 | 46.2 | 46.2 |
| L-A-Mod | 1B-3B-1D | NP | F4 | 59 | 240 | 160-390 | 100.0 | 67.8 | 16.9 | 0.0 | 0.0 | 69.5 | 30.5 |
| L-A-Mod | 20D-3A-1D | NP | F4 | 38 | 234 | 130-430 | 100.0 | 50.0 | 23.7 | 0.0 | 5.3 | 55.3 | 39.4 |
| L-A-Mod | 20D-3A-1E | NP | F4 | 36 | 231 | 120-410 | 100.0 | 47.2 | 22.2 | 0.0 | 5.6 | 58.3 | 36.1 |
| L-A-Mod | 20D-3A-1B | NP | F4 | 101 | 207 | 110-470 | 100.0 | 36.6 | 10.9 | 0.0 | 11.9 | 76.2 | 11.9 |
| Borderline | 20D-3E-1A | NP | F4 | 62 | 174 | 80-380 | 87.1 | 22.6 | 3.2 | 14.5 | 22.6 | 45.2 | 17.7 |
| Borderline | 20D-1D-1A | NP | F4 | 45 | 165 | 90-390 | 84.4 | 20.0 | 8.9 | 20.0 | 35.5 | 26.7 | 17.8 |
| Borderline | 20D-1D-2B | NP | F4 | 47 | 162 | 90-340 | 87.2 | 17.0 | 6.4 | 12.8 | 42.6 | 25.5 | 19.1 |
| L-R-Red | 20D-1D-1E | NP | F4 | 41 | 158 | 100-260 | 92.7 | 7.3 | 0.0 | 12.2 | 24.4 | 56.1 | 7.3 |
| L-R-Red | 20D-1D-2D | NP | F4 | 56 | 154 | 110-200 | 100.0 | 0.0 | 0.0 | 0.0 | 41.1 | 58.9 | 0.0 |
| L-R-Red | 20D-3E-1B | NP | F4 | 54 | 149 | 80-290 | 85.2 | 14.8 | 0.0 | 14.8 | 50.0 | 20.4 | 14.8 |
| L-R-Red | 20D-3E-3E | NP | F4 | 55 | 146 | 80-300 | 83.6 | 12.7 | 0.0 | 20.0 | 41.8 | 23.6 | 14.6 |
| L-R-Red | 20D-1D-1D | NP | F4 | 54 | 142 | 90-280 | 87.0 | 7.4 | 0.0 | 16.7 | 46.3 | 33.3 | 3.7 |
| L-R-Red | 20D-1D-2E | NP | F4 | 50 | 136 | 80-250 | 86.0 | 6.0 | 0.0 | 20.0 | 56.0 | 16.0 | 8.0 |
| L-R-Red | 20D-3E-1D | NP | F4 | 67 | 135 | 80-310 | 73.1 | 6.0 | 1.5 | 29.8 | 44.8 | 19.4 | 6.0 |
| L-R-Red | 20D-3E-2D | NP | F4 | 70 | 134 | 80-290 | 75.7 | 7.1 | 0.0 | 27.1 | 48.6 | 20.0 | 4.3 |
| L-R-Red | 20D-1D-2A | NP | F4 | 42 | 133 | 80-310 | 83.3 | 7.2 | 2.4 | 21.4 | 57.1 | 14.3 | 7.2 |
| L-R-Red | 20D-3E-3A | NP | F4 | 49 | 131 | 80-390 | 69.4 | 6.1 | 2.0 | 34.7 | 42.9 | 22.4 | 0.0 |

## APPENDIX E: 855 Sequenced Accessions from the 1001 Genomes Project

This appendix lists the names for all 855 Arabidopsis accessions used in the $A C C 1$ and $A C C 2$ sequence alignments. All sequence data for these accessions was accessed through the Salk 1001 Genomes Browser (http://signal.salk.edu/atg1001/3.0/gebrowser.php).

11C1; ARGE-1-15; ARR-17; Aa-0; Abd-0; Adam-1; Aedal-1; Aedal-3; Ag-0; Agu-1; Aiell-1; Aitba-1; Ak-1; Alc-0; Ale-Stenar-44-4; Ale-Stenar-56-14; Ale-Stenar-64-24; Algustrum; Alst-1; Alt-1; Altai-5; Amel-1; An-1; Ang-0; Anholt-1; Ann-1; Anz-0; App1-12; App1-14; App1-16; Appt-1; BEZ-9; BI-4; BRE-14; BRI-2; Ba-1; Baa1-2; Baa4-1; Baa5-1; Baa-1; Bach-7; Bach2-1; Bai-10; Bak-2; Bak-7; Balan-1; Basta-1; Basta-2; Bay-0; Bch-1; Bd-0; Bela-1; Bela-2; Benk-1; Ber; Berg-1; Bg-2; Bijisk-4; Bik-1; Bil-5; Bil-7; Bivio-1; Bl-1; Bla-1.7015.MPI; Bla-1.SALK; Blh-1; Boo2-1; Boot-1; Bor-1; Bor-4; Borky1; Br-0; Broesarp-34-145; Broet1-6; Bs-1; Bsch-0; Bu-0; Buckhorn-Pass; Bur-0.MPI; Bur-0.WTC; C24; CATS-6; CHA-41; CIBC-17; CIBC-5; CON-7; CSHL-5; CYR; Ca-0; Cal-0; Can-0; Castelfed-1-197; Castelfed-4-211; Castelfed-4-214; Cdm-0; Cerv-1; Chaba-2; Chat-1; Chi-0; Cimin-1; Cnt-1.5726.MPI; Cnt-1.SALK; Co; Co-1; Col-0; Com-1; Corig-1; Ct-1; Cvi-0.SALK; Cvi-0.SALK; DIR-9; Da1-12; Db-1; Del-10; Dem-4; Di-G; Dja-1; Do-0; Doer-10; Dog-4; Dolen-1; Dolna-1; Don-0; Dospa-1; Doubravnik7; Dr-0; Dra2-1; Dra3-1; DraII-6; DraIII-1; DraII-1; DraIV.5893; DraIV.5907; DraIV.5950; DraIV.5984; DraIV-6-22.5993; Dra-0; Draha2; Duk; Durh-1; ENC-2-1; ESP-1-11; Eden-1; Eden-2; Eden-7; Eden-9; Edi-0; Eds-1; Eds-9; Ei-2; El-0; Ema-1; En-1; En-2; En-D; Epidauros-1; Er-0; Erg2-6; Es-0; Est-1; Est; Et-0; Etna-2; Ey15-2; Faeb-2; Faeb-4; Fael-1; Faneronemi-3; Fei-0; Fell1-10; Fell2-4; Fell3-7; Fi-0; Filet-1; Fjae1-1; Fjae1-2; Fjae1-5; Fjae2-4; Fly2-1; Fly2-2; Fondi-1; Fr-2; Fri-2; Furni-1; GEN-8; Ga-0; Ge-0; Geg-14; Gel-1; Gie-0; Giffo-1; Gifu-2; Gn-1; Gn2-3; Goced-1; Gol-2; Got-22; Got-7; Gr-5; Gr-1; Gradi-1; Gre-0; Grivo-1; Gro-3; Groen-12; Groen-14; Groen-5; Gu-0; Gy-0; HE-1; HKT2; HR-10; HR-5; HSm; Ha-HBT1-2; Ha-HBT2-10; На-HBT3-1; На-P-13; Ha-P2-1; На-S-B; Ha-SP-2; Ha-0; Had-1; Had-2; Haes-1; Hag-2; Hal-1; Ham-1; Hart-2; Hau-0; Hel-3; Hey-1; Hh-0; Hi-0; Hn-0; Hod; Hof-1; Hola-1-1; Hola-2-2; Hola-1-2; Hov1-10; Hov1-7; Hov3-2; Hov3-5; Hov4-1; Hovdala-2; Hs-0; ICE1; ICE102; ICE104; ICE106; ICE107; ICE111; ICE112; ICE119; ICE120; ICE127; ICE130; ICE134; ICE138; ICE150; ICE152; ICE153; ICE163; ICE169; ICE173; ICE181; ICE21; ICE212; ICE213; ICE216; ICE226; ICE228; ICE29; ICE33; ICE36; ICE49; ICE50; ICE60; ICE61; ICE63; ICE7; ICE70; ICE71; ICE72; ICE73; ICE75; ICE79; ICE91; ICE92; ICE93; ICE97; ICE98; IP-Adm-0; IP-Ala-0; IP-All-0; IP-Alm-0; IP-Alo-0; IP-Ang-0; IP-Ara-4; IP-Bar-1; IP-Bea-0; IP-Ben-0; IP-Ber-0; IP-Bis-0; IP-Cab-3; IP-Cad-0; IP-Cal-0; IP-Cap-1; IP-Car-1; IP-Cdc-3;

IP-Cdo-0; IP-Cem-0; IP-Cmo-3; IP-Coa-0; IP-Coc-1; IP-Cor-0; IP-Cum-1; IP-Cur-4; IP-Deh-1; IP-Elb-0; IP-Fue-2; IP-Fun-0; IP-Gra-0; IP-Gua-1; IP-Her-12; IP-Hom-4; IP-Hor-0; IP-Hum-2; IP-Iso-4; IP-Jim-1; IP-Lab-7; IP-Ldd-0; IP-Lso-0; IP-Mar-1; IP-Men-2; IP-Moa-0; IP-Moc-11; IP-Mon-5; IP-Mos-1; IP-Mot-0; IP-Mun-0; IP-Mur-0; IP-Nav-0; IP-Nog-17; IP-Orb-10; IP-Oso-0; IP-Pal-0; IP-Pan-0; IP-Pds-1; IP-Pob-0; IP-Pro-0; IP-Pue-0; IP-Rds-0; IP-Rei-0.9510; IP-Rei-0.9574; IP-Ren-6; IP-Rev-0; IP-Ria-0; IP-Sac-0; IP-San-10; IP-Scm-0; IP-Sdv-3; IP-Ses-0; IP-Sne-0; IP-Stp-0; IP-Svi-0; IP-Tam-0; IP-Tdc-0; IP-Tol-7; IP-Tor-1; IP-Trs-0; IP-Vad-0; IP-Vae-2; IP-Vav-0; IP-Vaz-0; IP-Vdm-0; IP-Vdt-0; IP-Ver-5; IP-Vid-1; IP-Vig-1; IP-Vim-0; IP-Vin-0; IP-Vis-0; IP-Voz-0; IP-Vpa-1; ISS-20; IST-29; Iasi-1; In-0; Is-0; Istisu-1; Je-0; Jea; Jl-3; Jm-0; K-oze-1; K-oze-3; KBG1-14; KBG2-13; KYC-33; Kaevlinge-1; Kal-2; Kar-1; Karag-1; Karag-2; Kas-1; Kas-2; Kastel-1; Kb-0; Kelsterbach-4; Kent; Kia-1; Kil-0; Kin-0; Kl-5; Kn-0; Kni-1; Knjas-1; Knox-18; Ko-2; Koch-1; Kolar-1; Kolar-2; Koln; Kolyv-2; Kolyv-3; Kolyv-5; Kolyv-6; Kondara; Kor-3; Koren-1; Kro-0.MPI; Kro-0.SALK; Krot-0; Kru-3; Kulturen-1; Kus2-2; Kyoto; Kz-9; LDV-18; LDV-46; LEC-25; LI-OF-065; LL-0; LP3413.41; La-0; Lag1-2; Lag1-4; Lag1-6; Lag2; Lan-1; Lan-0; Le-0; Lebja-2; Lebja-4; Leo-1; Ler-0; Ler-1.MPI; Ler-1.SALK; Lerik1-3; Leska-1; Lesno-1; Lesno-2; Lesno-4; Li-7; Li-2; Liarum; Lilloe-1; Lip-0; Liri-1; Lis-2; Lis-3; Lisse; Litva; Lm-2; Lom1-1; Lp2-2; Lp2-6; Lu-1; Lu3-30; Lu4-2; Lund; MAR-4-16; MAR2-3; MIC-31; MIL-2; MNF-Che-2; MNF-Jac-12; MNF-Pin-39; MNF-Pot-21; MNF-Pot-75; MNF-Riv-21; MOL-1; MOU2-25; Malii-1; Marce-1; Masl-1; Mc-0; Mdn-1; Melic-1; Melni-2; Mer-6; Mh-0; Mir-0; Mitterberg-1-180; Mitterberg-1-182; Mitterberg-1-183; Mitterberg-2-184; Mitterberg-2-185;

Mitterberg-3-187; Mnz-0; Ms-0; Mt-0; Muh-2; Mv-0; Mz-0; N13; NC-6; NFA-10; NFA-8; NOZ-6; Naes-2; Nc-1; Nd-1; Nemrut-1; Neo-6; Nicas-1; Nie1-2; No-0; Nok-3; Nosov-1; Noveg-1; Noveg-2; Noveg-3; Np-0; Nw-0; Nyl-13; Nyl-2; Nyl-7; Nz-1; Ob-0; Obe1-15; Obh-13; Oede-2; Oemoe1-7; Oemoe2-1; Oer-1; Old-1; Olympia-2; Omn-1; Omn-5; Or-0; Orast-1; Ove-0; Oy-0.JGI; Oy-0.WTC; PHW-2; PHW-34; PLO-1; PLY-2-; PNA3; PT2.21; PYL-6; Panik-1; Panke-1; Parti-1; Paw-26; Ped-0; Per-1; Petergof; Pfn-10; Pfn-N2.2-6; Pi-0; Pigna-1; Pla-0; Pna-10; Pna-17; Po-0; Pog-0; Pra-6; Pro-0; Pt-0; Pu2-23; Pu2-7; Pu2-8; Puk-2; QUI-8; Qar-8a; Qui-0; RAD-21; RMX3.22; RRS-7; RRS-10; RUM-20; Ra-0; Ragl-1; Rak-2; Rakit-1; Rakit-3; Rd-0.MPI; Rd-0.SALK; Ren-1;

Ren-11; Rennes-1; Rev-1; Rev-2; Rhen-1; Ri-0; Rld-1; Rmx-A02; Rmx-A180; Roed-17-319; Rome-1; Rou-0; Rsch-4; Ru-2; Ru-N2; Ru4-16; Rubeznhoe-1; Rue3-1-31; SAUL-24; SLSP-31; SLSP-35; Sakata; San-2; Sanna-2; Sap-0; Sarno-1; Schip-1; Schl-7; Se-0; Seattle-0; Sei-0; Set-1; Sever-1; Sf-2; Sf-1; Sg-1; Sha.JGI; Sha.MPI; Si-0; Sim-1; Slavi-2; Smolj-1; Sorbo; Sp-0; Sparta-1; Spr1-2; Spr1-6; Spro-1; Spro-2; Spro-3; Sq-1; Sq-8; Sr3; Sr5; St-0; Star-8; Stara-1; Staro-1; Ste-0; Ste-2; Ste-3; Ste-4; Stiav-1; Stilo-1; Stu1-1; Stw-0; Su-0; Sus-1; T1000; T1020; T1070; T1080; T1090; T1110; T1130; T1160; T460; T470; T480; T530; T540; T550; T570; T710; T720; T740; T780; T790; T800; T840; T850; T860; T880; T900; T930; T960; T980; T990; TAA-04; TAA-14; TAA-18; TAAD-01; TAAD-03; TAAD-04; TAAD-05; TAAD-06; TAAL-03; TAAL-07; TBO-01; TDr-1; TDr-13; TDr-16; TDr-17; TDr-2; TDr-7; TDr-8; TDr-9; TEDEN-02; TEDEN-03; TFAE-06; TFAE-07; TFAE-08; TOM-04; TOM-06; TOM-07; TOU-A1-88; TOU-A1-89; TRAE-01; TRE-1; TV-10; TV-22; TV-30; TV-38; TV-7; Ta-0; Tamm-2.GMI; Tamm-2.SALK; Tamm-27; Teano-1; Teiu-2; Tgr-01; Tha-1; Ting-1; Tny-04; Toc-1; Tol-0; Tomegap-2; Tottarp-2; Ts-1; Ts-5; Tscha-1; Tsu-0; Tsu-1; Tu-B1-2; Tu-B2-3; Tu-KB-6; Tu-KS-7; Tu-NK-12; Tu-PK-7; Tu-WH; Tu-0; TueSB30-3; TueV13; TueWa1-2; Tuescha9; Tul-0; Tur-4; Ty-1; Ty-0; UKID107; UKID114; UKID63; UKID74; UKID96; UKNW06-003; UKNW06-403; UKNW06-481; UKSE06-118; UKSE06-252; UKSE06-325; UKSE06-362; UKSE06-432; UKSE06-470; UKSE06-500; UKSE06-533; UKSW06-179; UKSW06-207; UKSW06-226; UKSW06-285; UKSW06-302; UKSW06-333; UKSW06-360; UduI.6296; UduI.6390; UduI.6396; Uk-1; Klies-1; Ull-A-1; Ull2-3; Ull2-5; Ullapool8; Uod-2; Uod-1; Uod-7; Utrecht; VED-10; Vaar-1; Vaar2-1; Vaestervik; Van-0; Vash-1; Ven-1; Vie-0; Vimmerby; Vind-1; Vinsloev; WAR; WAV-8; Wa-1; WalhaesB4; Wc-1; Wei-0; Westkar-4; Wil-2; Wil-1; Wl-0; Ws-0; Wt-5; Wu-0; Xan-1; Yeg-1; Yeg-2; Yeg-4; Yeg-5; Yeg-7; Yeg-8; Yo-0; Yst-1; Zagub-1; Zal-1; Zdarec3; ZdrI.6424; ZdrI.6434; ZdrI.6445; Zdr-1; Zu-0; Zu-1; Zupan-1; love-1; love-5;

# APPENDIX F: Brassicaceae Sequences Used for ACC1/ACC2 Alignments and Determination of $\mathrm{K}_{\mathrm{a}} / \mathrm{K}_{\mathrm{s}}$ Ratios 

This appendix lists the details of the genome sequences from members of the Brassicaceae members used for alignments and the determination of $\mathrm{K}_{\mathrm{a}} / \mathrm{K}_{\mathrm{s}}$ ratios, and the ACC sequence for an outgroup, Theobroma cacao. Only Brassicaceae species whose genomes were fully sequenced were used for these analyses. Included data are species name, name of the $A C C 1$ and $A C C 2$ sequences, the website the sequences were obtained from, and relevant publications. Adapted from Parker et al. (2014).

| Species | Sequences Analyzed | Relevant Website/Citations |
| :---: | :---: | :---: |
| Arabidopsis thaliana | ACC1 (NP_174849; <br> At1g36160) <br> ACC2 (NP_174850; <br> At1g36180) | NCBI (www.ncbi.nlm.nih.gov/); |
| Brassica rapa Chiifu-401 | ACC1 (Bra036771) <br> ACC2 (Bra018702) | TAIR 10 (www.arabidopsis.org) |

# APPENDIX G: Eukaryotic ACCase Sequences Used for the Original Multi-Kingdom Alignment of 20 sequences 

This appendix lists the details of the eukaryotic protein sequences used for the original multi-kingdom alignment. Included data are species name, name of the ACC1 and ACC2 sequences, the website the sequences were obtained from, and relevant publications. Adapted from Parker et al. (2014).

Footnotes for the following table are described below:
a The genomic sequence for $A C C 1$, obtained from Phytozome v9, was used to add conserved amino acids missing from the predicted protein sequence.
b The genomic sequence for cytosolic ACC, obtained from NCBI, was used to add conserved amino acids missing from the predicted protein sequence.
c Isoform A was chosen because all of the other isoforms are contained within.
d The genomic sequence for HFA1, obtained from Saccharomyces Genome Database, was used to add conserved, N -terminal amino acids missing from the predicted protein sequence.

| Species | Sequences Analyzed | Relevant Website/Citations |
| :---: | :---: | :---: |
| Arabidopsis thaliana | ACC1 (NP_174849; At1g36160) | NCBI (www.ncbi.nlm.nih.gov/); |
|  | ACC2 (NP_174850; At1g36180) | TAIR 10 (www.arabidopsis.org) |
| Brassica rapa Chiifu-401 | ACC1 (Bra036771) ${ }^{\text {a }}$ | Phytozome v9 (www.phytozome.net/); |
|  | ACC2 (Bra018702) | Brassica Database (http://brassicadb.org/brad/index.php); Cheng et al. (2011) |
| Medicago truncatula | ACC (XP_03638794.1) | NCBI (www.ncbi.nlm.nih.gov/) |
| Triticum aestivum | Cytosolic ACC (ACD46686.1) | NCBI (www.ncbi.nlm.nih.gov/) |
|  | Plastid ACC (ACD46683.1) |  |
| Zea mays | Cytosolic ACC; hypothetical (AFW68888.1) ${ }^{\text {b }}$ | NCBI (www.ncbi.nlm.nih.gov/) |
|  | Plastid ACC (AAA80214.1) |  |
| Homo sapiens | ACC1 (Isoform 1) (NP_942131.1) | NCBI (www.ncbi.nlm.nih.gov/) |
|  | ACC2 (Precursor) (NP_001084.3) |  |
| Mus musculus | ACC1 (NP_579938.2) | NCBI (www.ncbi.nlm.nih.gov/) |
|  | ACC Beta Precursor (NP_598665.2) |  |
| Danio rerio | ACC Alpha (NP_001258237.1) | NCBI (www.ncbi.nlm.nih.gov/) |
|  | ACC2 Isoform X1 (XP_005165251.1) |  |
| Drosophila melanogaster | ACC Isoform A (AAF59155.2) ${ }^{\text {c }}$ | NCBI (www.ncbi.nlm.nih.gov/) |
| Saccharomyces cerevisiae | ACC1 (NP_014413.1) | NCBI (www.ncbi.nlm.nih.gov/) |
|  | ACC HFA1 (NP_013934.1) ${ }^{\text {d }}$ |  |
| Schizosaccharomyces pombe | Acetyl CoA/Biotin Carboxylase (NP_593271.1) | NCBI (www.ncbi.nlm.nih.gov/) |
| Neurospora crassa | ACC (XP_963017.1) | NCBI (www.ncbi.nlm.nih.gov/) |

APPENDIX H: UniProt and NCBI Reference IDs for Eukaryotic Sequences used in Multi-Kingdom and Plant Alignments

This appendix lists the details of the eukaryotic ACCase protein sequences obtained from the Pfam database (http://pfam.xfam.org/family/PF08326) based the presence of the central domain, and BLAST searches (https://blast.ncbi.nlm.nih.gov/Blast.cgi) with both ACC1 and ACC2 Arabidopsis protein sequences. Included data are the UniProt identification numbers, the name of the NCBI reference sequence, and the species name.
$\left.\begin{array}{|c|c|c|}\hline \text { UniProt ID } & \text { NCBI Reference } & \text { Sequence }\end{array}\right]$ Acromyrmex echinatior

| ACC2_ARATH | NP_174850.4 | Arabidopsis thaliana |
| :---: | :---: | :---: |
| E6Y6S2_ARAHY | ACO53624.1 | Arachis hypogaea |
| E6Y6S3_ARAHY | ACO53625.1 | Arachis hypogaea |
| E6Y6S4_ARAHY | ACO53626.1 | Arachis hypogaea |
| E6Y6S5_ARAHY | ACO53627.1 | Arachis hypogaea |
| H6QXH0_ARAHY | ACZ50637.1 | Arachis hypogaea |
| G1X4I9_ARTOA | XP_011119401 | Arhtrobotrys oligospora |
| E4UQ09_ARTGP | XP_003174626 | Arthroderma gypseum |
| C5FPQ6_ARTOC | XP_002846743 | Arthroderma otae |
| R9X868_ASHAC | AGO10061.1 | Ashbya aceri |
| Q75EK8_ASHGO | NP_982612 | Ashbya gossypii |
| M9MV47_ASHG1 | AEY94722.1 | Ashbya gossypii |
| A1CST3_ASPCL | XP_001267796 | Aspergillus clavatus |
| B8NBR1_ASPFN | XP_002378098 | Aspergillus flavus |
| G7XHM5_ASPKW | GAA86434.1 | Aspergillus kawachii |
| Q1JTV6_ASPNG | CAG38356.1 | Aspergillus niger |
| G3XVD5_ASPNA | EHA25188.1 | Aspergillus niger |
| A2QZ87_ASPNC | XP_001395476 | Aspergillus niger |
| I8TWU2_ASPO3 | EIT78693.1 | Aspergillus oryzae |
| Q2TZI7_ASPOR | XP_001826411 | Aspergillus oryzae |
| A0A017S3W0_9EURO | EYE91708.1 | Aspergillus ruber |
| Q0C9D2_ASPTN | XP_001218324 | Aspergillus terreus |
| W5KIQ3_ASTMX | XP_015460289 | Astyanax mexicanus |
| W5KIQ5_ASTMX |  | Astyanax mexicanus |
| W4WKL3_ATTCE |  | Atta cephalotes |
| F0YE78_AURAN | XP_009038793 | Aureococcus anophagefferns |
| F0YJA4-AURAN | XP_009040492 | Aureococcus anophagefferns |
| J0CWF4_AURDE | XP_007356999 | Auricularia delicata |
| A0A034V3P1_BACDO | JAC37911.1 | Bactrocera dorsalis |
| A0A034V5X5_BACDO | JAC37909.1 | Bactrocera dorsalis |
| A0A034V813_BACDO | JAC37910.1 | Bactrocera dorsalis |
| K8EIK1_9CHLO | XP_007511713 | Bathycoccus prasinos |
| F4NUF3_BATDJ | XP_006675199 | Batrachochytrium dendrobatidis |
| M2MQH6_BAUCO | XP_007678580 | Baudoinia compniacensis |
| J4KLB2_BEAB2 | XP_008602470 | Beauveria bassiana |
| T1SHS3_9POAL | AGT45917.1 | Beckmannia syzigachne |
| T1SHX0_9POAL | AGT45916.1 | Beckmannia syzigachne |
| T1SIA4_9POAL | AGT45914.1 | Beckmannia syzigachne |
| T1SJX0_9POAL | AGT45915.1 | Beckmannia syzigachne |
|  | XP_010683396 | Beta vulgaris subsp. vulgaris |
| W6Z4P0_COCMI | XP_007690903 | Bipolaris oryzae |


| W7EJM1_COCVI | XP_014556586 | Bipolaris victoriae |
| :---: | :---: | :---: |
| W6XYP0_COCCA | XP_007713091 | Bipolaris zericola |
| N1JEK1_BLUG1 | CCU81673.1 | Blumeria graminis f. sp. hordei |
| ACACA _BOVIN | NP_776649 | Bos taurus |
| E1BGH6_BOVIN | XP_005220033 | Bos taurus |
| F1MSC3_BOVIN |  | Bos taurus |
| R1GBU5_BOTPV | XP_007589193 | Botryosphaeria parva |
| M7TMZ7_BOTF1 | EMR82519.1 | Botryotinia fuckeliana |
| G2YUC1_BOTF4 | CCD55219.1 | Botryotinia fuckeliana |
| I1I3Q4_BRADI |  | Brachypodium distachyon |
| I1IWF2_BRADI | XP_003581375 | Brachypodium distachyon |
| Q42617_BRANA | CAA54683.1 | Brassica napus |
| Q9FEH8_BRANA | CAC19876.1 | Brassica napus |
| Q9FNT7_BRANA | CAC19875.1 | Brassica napus |
|  | XP_013592802 | Brassica oleracea var. oleracea |
|  | XP_013603687 | Brassica oleracea var. oleracea |
| M4DQA9_BRARP |  | Brassica rapa subsp. pekinensis |
| M4F6R1_BRARP |  | Brassica rapa subsp. pekinensis |
| V5FTR8_BYSSN | GAD93096.1 | Byssochlamys spectabilis |
| G0MAW6_CAEBE | EGT40685.1 | Caenorhabditis brenneri |
| A8X496_CAEBR | CAP27456.2 | Caenorhabditis briggsae |
| H2L0M0_CAEEL | NP_001254027 | Caenorhabditis elegans |
| Q9GZI3_CAEEL | NP_001022400 | Caenorhabditis elegans |
| E3MCE8_CAERE | XP_003106220 | Caenorhabditis remanei |
| F6WTV0_CALJA |  | Callithrix jacchus |
| F6XFU0_CALJA | JAB25616.1 | Callithrix jacchus |
| U3DZ12_CALJA | JAB37452.1 | Callithrix jacchus |
|  | XP_010500069 | Camelina sativa |
|  | XP_010500071 | Camelina sativa |
| E2AJI5_CAMFO | XP_011259212 | Camponotus floridanus |
| Q5AAM4_CANAL | XP_718624 | Candida albicans |
| C4YNG3_CANAW | EEQ43196.1 | Candida albicans |
| B9WKR0_CANDC | XP_002421671 | Candida dubliniensis |
| Q6FKK8_CANGA | XP_449236 | Candida glabrata |
| M3IQY9_CANMX | EMG48936.1 | Candida maltose |
| H8WWH3_CANO9 | XP_003866237 | Candida orthopsilosis |
| G8BCJ0_CANPC | CCE41856.1 | Candida parapsilosis |
| G3BBN5_CANTC | XP_006688363 | Candida tenuis |
| C5M4L7_CANTT | XP_002546225 | Candida tropicalis |
| E2RL01_CANLF | XP_005624835 | Canis lupus familiaris |
| F1PZY2_CANLF | XP_005636385 | Canis lupus familiaris |


| R7UHT9_CAPTE | ELU03368.1 | Capitella teleta |
| :---: | :---: | :---: |
| Q2HXS0_CAPHI | ABC96905.1 | Capra hircus |
| W9YRL0_9EURO | XP_007719432 | Capronia coronate |
| W9Y8N9_9EURO | XP_007730619 | Capronia epimyces |
| E9CF10_CAPO3 | XP_004344271 | Capsaspora owczarzaki |
| R0GKZ5_9BRAS | XP_006303734 | Capsella rubella |
| R0IAN7_9BRAS | XP_006306571 | Capsella rubella |
| R0IQG7_9BRAS | XP_006306570 | Capsella rubella |
| H0V3L2_CAVPO | XP_003477800 | Cavia porcellus |
| H0V6W7_CAVPO | XP_013007591 | Cavia porcellus |
| A0A026WBM2_CERBI | EZA53363.1 | Cerapachys biroi |
| W8AF13_CERCA | JAB86820.1 | Ceratitis capitate |
| W8B0Q2_CERCA | JAB86821.1 | Ceratitis capitate |
| M2QP27_CERS8 | EMD38813.1 | Ceriporiopsis subvermispora |
| G0S3L5_CHATD | XP_006692638 | Chaetomium thermophilum |
| M7BGW5_CHEMY | EMP37161.1 | Chelonian mydas |
|  | XP_004500605 | Cicer arietinum |
| F6SZW6_CIOIN |  | Ciona intestinalis |
| F6T0F1_CIOIN |  | Ciona intestinalis |
| H2YM65_CIOSA |  | Ciona savignyi |
| H2YM68_CIOSA |  | Ciona savignyi |
| H2YM69_CIOSA |  | Ciona savignyi |
| H2YM70_CIOSA |  | Ciona savignyi |
| H2YM71_CIOSA |  | Ciona savignyi |
| H2YM72_CIOSA |  | Ciona savignyi |
| V4TCA6_9ROSI | XP_006434031 | Citrus clementina |
|  | XP_006472643 | Citrus sinensis |
| V9DN70_9EURO | XP_008721837 | Cladophialophora carrionii |
| W9X7H4_9EURO | XP_007742793 | Cladophialophora psammophila |
| W9WH07_9EURO | XP_007752433 | Cladophialophora yegresii |
| M1VXF1_CLAP2 | CCE32912.1 | Claviceps purpurea |
| C4Y676_CLAL4 | XP_002616419 | Clavispora lusitaniae |
| J3KHY4_COCIM | XP_001247056 | Coccidioides immitis |
| C5PHV9_COCP7 | XP_003066257 | Coccidioides posadasii |
| E9DD80_COCPS | EFW15605.1 | Coccidioides posadasii |
| I0YI54_ COCSC | XP_005642617 | Coccomyxa subellipsoidea |
| N4X1Q9_COCH4 | XP_014074435 | Cochliobolus heterostrophus |
| M2TD32_COCH5 | EMD95380.1 | Cochliobolus heterostrophus |
| M2SHU2_COCSN | XP_007698182 | Cochliobolus sativus |
| A0A068TY93_COFCA | CDP01191.1 | Coffea canephora |
| A0A010R0B5_9PEZI | XP_007590342 | Colletotrichum fioriniae |


| T0LNU3_COLGC | EQB49900.1 | Colletotrichum gloeosporioides |
| :---: | :---: | :---: |
| L2GBP1_COLGN | XP_007275252 | Colletotrichum gloeosporioides |
| E3QPV0_COLGM | XP_008096897 | Colletotrichum graminicola |
| N4VTH9_COLOR | ENH87237.1 | Colletotrichum orbiculare |
| R7YUQ2_CONA1 | XP_007780952 | Coniosporium apollinis |
| D6RNI5_COPC7 | XP_002910856 | Coprinopsis cinerea |
| G3JUL1_CORMM | XP_006674566 | Cordyceps militaris |
| W4VRL7_9DIPT | JAB58048.1 | Corethrella appendiculata |
| M5AJ86_CRIGR | NP_001278985 | Cricetulus griseus |
| E6R880_CRYGW | XP_003194770 | Cryptococcus gattii |
| J9VTZ1_CRYNH | XP_012050363 | Cryptococcus neoformans var. grubii |
| Q55QT6_CRYNB | XP_774823 | Cryptococcus neoformans var. neoformans |
| Q5KFC9_CRYNJ | XP_571316 | Cryptococcus neoformans var. neoformans |
| E7CCB2_CTEID | ADT82650.1 | Ctenopharyngodon idella |
| E7CCB3_CTEID | ADT82651.1 | Ctenopharyngodon idella |
| F2YFF6_CTEID | ADX43925.1 | Ctenopharyngodon idella |
| B0WE67_CULQU | XP_001847001 | Culex quinquefasciatus |
| Q39478_9STRA | AAA81471.1 | Cyclotella cryptica |
| W2RRS8_9EURO | XP_008718016 | Cyphellophora europaea |
| M5FZR3_DACSP | EJU03511.1 | Dacryopinax sp. |
| S8ABK3_DACHA | XP_011111700 | Dactylellina haptotyla |
| F1QH12_DANRE | NP_001258237 | Danio rerio |
| F1QM37_DANRE | XP_009299650 | Danio rerio |
| F1QX79_DANRE |  | Danio rerio |
| F6P055_DANRE | XP_017211600 | Danio rerio |
| E9G1C9_DAPPU | EFX86656.1 | Daphnia pulex |
| Q6BX58_DEBHA | XP_457211 | Debaryomyces hansenii |
| I2JTC0_DEKBR | EIF46222.1 | Dekkera bruxellensis |
| N6U7G4_DENPD | ENN77580.1 | Dendroctnus ponderosae |
| U4UM60_DENPD | ERL95164.1 | Dendroctnus ponderosae |
| K9IW06_DESRO | JAA53347.1 | Desmodus rotundus |
| ACAC_DICDI | XP_636722 | Dictyostelium discoideum |
| F1A0W2_DICPU | XP_003293306 | Dictyostelium purpureum |
| W7IDB6_9PEZI | EWC46965.1 | Drechslerella stenobrocha |
| B3MGC4_DROAN | XP_001961005 | Drosophila ananassase |
| B3N9A9_DROER | XP_001970537 | Drosophila erects |
| A1Z784_DROME | NP_610342 | Drosophila melanogaster |
| A8DY67_DROME | NP_001097227 | Drosophila melanogaster |
| Q7JV23_DROME | NP_001097226 | Drosophila melanogaster |
| B4KQ74_DROMO | XP_002005267 | Drosophila mojavensis |
| B4GB22_DROPE | XP_002016234 | Drosophila persimilis |


| Q290Y2_DROPS | XP_001360655 | Drosophila pseudoobscura |
| :---: | :---: | :---: |
| B4HRH5_DROSE | XP_002032844 | Drosophila sechellia |
| B4LJK2_DROVI | XP_002050377 | Drosophila virilis |
| B4MPP4_DROWI | XP_002063097 | Drosophila willistoni |
| B4P271_DROYA | XP_002089560 | Drosophila yakuba |
| E5LBD4_ECHCG | ADR32358.1 | Echinochloa crus-galli |
| E5LBD5_ECHCG | ADR32359.1 | Echinochloa crus-galli |
| U6LW93_9EIME | CDJ53523.1 | Eimeria brunetti |
| U6JZ14_9EIME | XP_013351861 | Eimeria mitis |
| U6N237_9EIME | XP_013437840 | Eimeria necatrix |
| U6L2T2_EIMTE | XP_013233659 | Eimeria tenella |
|  | XP_010916914 | Elaeis guineensis |
| A0A023JGI2_ELEIN | AHI94840.1 | Eleusine indica |
| A0A023JH13_ELEIN | AHI94839.1 | Eleusine indica |
| V9SC70_ELEIN | AHC53985.1 | Eleusine indica |
| V9SF96_ELEIN | AHC53984.1 | Eleusine indica |
| O60033_EMEND | CAA75926.1 | Emericella nidulans |
| G5EAT9_EMENI | XP_663730 | Emericella nidulans |
| U1G9D6_ENDPU | XP_007805723 | Endocarpon pusillum |
| F6RIW1_HORSE |  | Equus caballus |
| F6WNE8_HORSE |  | Equus caballus |
| F6WVE9_HORSE |  | Equus caballus |
| F6Z6T7_HORSE |  | Equus caballus |
| F7AZ64_HORSE |  | Equus caballus |
| G8JPL1_ERECY | XP_003644677 | Eremothecium cymbalariae |
|  | XP_012829819 | Erythranthe guttatus |
| A0A059BL04_EUCGR | XP_010060156 | Eucalyptus grandis |
| M7SLD9_EUTLA | XP_007793722 | Eutypa lata |
| H6C3D3_EXODN | XP_009158609 | Exophiala dermatitidis |
| M3WDI5_FELCA |  | Felis catus |
| M3W9F4_FELCA | XP_003994907 | Felis catus |
| J4G2Q4_FIBRA | XP_012180021 | Fibroporia radiculosa |
| U3K2H1_FICAL |  | Ficedula albicollis |
| U3JRR0_FICAL | XP_016158464 | Ficedula albicollis |
| S8ECV4_FOMPI | EPT01079.1 | Fomitopsis pinicola |
|  | XP_011464572 | Fragaria vesca subsp. vesca |
|  | XP_004299600 | Fragaria vesca subsp. vesca |
| W9KLY9_FUSOX | EWZ43759.1 | Fusarium oxysporum |
| W9ISM2_FUSOX | EWY97682.1 | Fusarium oxysporum |
| F9FWX4_FUSOF | EGU78586.1 | Fusarium oxysporum |
| X0I2S5_FUSOX | EXL83138.1 | Fusarium oxysporum f. sp. conglutinans |


| N4UIT4_FUSC1 | ENH69935.1 | Fusarium oxysporumf. sp. cubense |
| :---: | :---: | :---: |
| X0JR10_FUSOX | EXM03719.1 | Fusarium oxysporum f. sp. cubense |
| W9NCN1_FUSOX | EWZ99371.1 | Fusarium oxysporum f. sp. lycopersici |
| J9MHL6_FUSO4 |  | Fusarium oxysporum f. sp. lycopersici |
| X0AJT4_FUSOX | EXK41112.1 | Fusarium oxysporum f. sp. melonis |
| W9Q3A7_FUSOX | EXA49032.1 | Fusarium oxysporum f. sp. pisi |
| X0GBR9_FUSOX | EXL61087.1 | Fusarium oxysporum f. sp. radicislycopersici |
| X0D1I0_FUSOX | EXK88537.1 | Fusarium oxysporum f. sp. raphani |
| X0LU03_FUSOX | EXM24551.1 | Fusarium oxysporum f. sp. vasinfectum |
| K3VV59_FUSPC | XP_009253069 | Fusarium pseudograminearum |
| J3PKA7_GAGT3 | XP_009230146 | Gaeumannomyces graminis var. tritici |
| M2X7M8_GALSU | XP_005709050 | Galdieria sulphuraria |
| ACAC_CHICK | NP_990836 | Gallus gallus |
| F1NWT0_CHICK |  | Gallus gallus |
| F1P1B5_CHICK |  | Gallus gallus |
| G3P3N9_GASAC |  | Gasterosteus aculeatus |
| G3QAB5_GASAC |  | Gasterosteus aculeatus |
| A0A024JJW1_GEOCN | CDO56660.1 | Geotrichum candidum |
| A0A024JKG0_GEOCN | CDO56882.1 | Geotrichum candidum |
| S0E131_GIBF5 | CCT66398.1 | Gibberella fujikuroi |
| W7MAM1_GIBM7 | EWG44524.1 | Gibberella moniliformis |
| A0A016PFV3_GIBZA | EYB24697.1 | Gibberella zeae |
| I1RR68_GIBZE | XP_011326196 | Gibberella zeae |
| S3DLR5_GLAL2 | XP_008079618 | Glarea lozoyensis |
| H0ENM5_GLAL7 | EHK99907.1 | Glarea lozoyensis |
| S7QBB3_GLOTA | XP_007865325 | Gloeophyllum trabeum |
| Q39849_SOYBN | AAA81578.1 | Glycine max |
| Q42793_SOYBN | AAA75528.1 | Glycine max |
| I1JVH6_SOYBN |  | Glycine max |
| I1KA18_SOYBN | XP_003526593.1 | Glycine max |
| A0A0B2SKF5_GLYSO | KHN45348 | Glycine soja |
| G3RLM1_GORGO |  | Gorilla gorilla gorilla |
| G3S1F5_GORGO |  | Gorilla gorilla gorilla |
| G3SJ10_GORGO |  | Gorilla gorilla gorilla |
| A0A0B0MG53_GOSAR | KHF99346 | Gossypium arboreum |
| A0A0B0PDU5_GOSAR | KHG23110 | Gossypium arboreum |
|  | XP_012467895 | Gossypium raimondii |
|  | XP_012446737 | Gossypium raimondii |
| F0XNS8_GROCL | XP_014170191 | Grosmannia clavigera |
| L1J8C0_GUITH | XP_005831577 | Guillardia theta |
| L1JJM5_GUITH | XP_005835324 | Guillardia theta |


| E2B9B3_HARSA | EFN87719.1 | Harpegnathos saltator |
| :---: | :---: | :---: |
| W4JZY5_9HOMO | XP_009549397 | Heterobasidion ittegulare |
| ACACA_HUMAN | NP_942131 | Homo sapiens |
| ACACB_HUMAN | NP_001084 | Homo sapiens |
| A2NX49_HUMAN | CAA48770.1 | Homo sapiens |
| A0A024R0Y2_HUMAN | XP_005257324 | Homo sapiens |
| B2ZZ90_HUMAN | XP_011523005 | Homo sapiens |
| F2EIZ4_HORVD | BAK07316.1 | Hordeum vulgare var. distichum |
| M0VU12_HORVD |  | Hordeum vulgare var. distichum |
| M0VU16_HORVD |  | Hordeum vulgare var. distichum |
| M0WLS8_HORVD |  | Hordeum vulgare var. distichum |
| M0WX42_HORVD |  | Hordeum vulgare var. distichum |
| M4BF67_HYAAE |  | Hyaloperonospora arabidopsidis |
| G9P7N2_HYPAI | XP_013939921 | Hypocrea atroviridis |
| G0RT06_HYPJQ | XP_006968328 | Hypocrea jecorina |
| G9MWJ5_HYPVG | XP_013955356 | Hypocrea virens |
| V5HPY4_IXORI | JAB77822.1 | Ixodes ricinus |
| D2CFN2_JATCU | NP_001295714 | Jatripha curcas |
| H2B108_KAZAF | XP_003959443 | Kazachstania africana |
| J7S2I0_KAZNA | CCK72032.1 | Kazachstania naganishii |
| Q6CL34_KLULA | XP_455355 | Kluyveromyces lactis |
| W0TEH6_KLUMA | BAO41760.1 | Kluyveromyces marxianus |
| F2QLC7_KOMPC | CCA37159.1 | Komagataella phaffii |
| C4QXW1_KOMPG | XP_002490365 | Komagataella phaffii |
| W6MK75_9ASCO | CDK26741.1 | Kuraishia capsulata |
| B0CUD8_LACBS | XP_001875210 | Laccaria bicolor |
| C5DBX3_LACTC | XP_002551722 | Lachancea thermotolerans |
| H3AU80_LATCH |  | Latimeria chalumnae |
| A4HJT6_LEIBR | XP_001567323 | Leishmania braziliensis |
| E9BN78_LEIDB | XP_003863393 | Leishmania donovani |
| A4I7A2_LEIIN | XP_001467621 | Leishmania infantum |
| Q4Q5W1_LEIMA | XP_001685287 | Leishmania major |
| E9B297_LEIMU | XP_003877816 | Leishmania mexicana |
| W5MAD1_LEPOC |  | Lepisosteus oculatus |
| W5MCD6_LEPOC | XP_015222854 | Lepisosteus oculatus |
| E5ACZ0_LEPMJ | XP_003845821 | Leptosphaeria maculans |
| A5DT41_LODEL | XP_001528007 | Lodderomyces elongisporus |
| V4AGG4_LOTGI | XP_009046184 | Lottia gigantean |
| G3TBG5_LOXAF |  | Loxodonta africana |
| G3U853_LOXAF |  | Loxodonta africana |
| G3SQU6_LOXAF |  | Loxodonta africana |


| G3UB16_LOXAF |  | Loxodonta africana |
| :---: | :---: | :---: |
| G7PUJ1_MACFA | XP_005583989 | Macaca fascicularis |
| H9F7K7_MACMU | AFE70616.1 | Macaca mulatta |
| F7H9G5_MACMU |  | Macaca mulatta |
| F7H9H5_MACMU | NP_001253707 | Macaca mulatta |
| F7H9H7_MACMU | XP_014974908 | Macaca mulatta |
| F7HHF6_MACMU |  | Macaca mulatta |
| K2SEA6_MACPH | EKG15200.1 | Macrophomina phaseolina |
| G4N2L8_MAGO7 | XP_003711534 | Magnaporthe oryzae |
| L7J9G6_MAGOP | ELQ64871.1 | Magnaporthe oryzae |
| L7HYC3_MAGOY | ELQ35277.1 | Magnaporthe oryzae |
| M4G989_MAGP6 |  | Magnaporthe poae |
| M5EBG9_MALS4 | CCV00237.1 | Malassezia sympodialis |
|  | XP_008374995 | Malus domestica |
| K1Y7U5_MARBU | XP_007288156 | Marssonina brunnea f. sp. multigermtubi |
| Q40326_MEDSA | AAB42144.1 | Medicago sativa |
| G8A392_MEDTR | AES85930.1 | Medicago truncatula |
| G8A394_MEDTR | XP_013460845 | Medicago truncatula |
| T1GP39_MEGSC |  | Megaselia scalaris |
| F4RPF1_MELLP | XP_007411003 | Melampsora larici-populina |
| G1N324_MELGA |  | Meleagris gallopavo |
| G1N7J4_MELGA |  | Meleagris gallopavo |
| G3US43_MELGA |  | Meleagris gallopavo |
| E9DRS1_METAQ | XP_007806780 | Metarhizium acridum |
| E9F1D9_METRA | XP_007822277 | Metarhizium anisopliae |
| A5DC00_PICGU | XP_001487428 | Meyerozyma guilliermondii |
| U5H9T3_USTV1 | KDE05599.1 | Microbotryum violaceum |
| C1FD95_MICCC | XP_002507094 | Micromonas commoda |
| C1ML75_MICPC | XP_003056126 | Micromonas pusilla |
| A0A022RSR6_MIMGU | XP_012829819 | Mimulus guttatus |
| G7E646_MIXOS | GAA98306.1 | Mixia osmundae |
| V2XQN0_MONRO | XP_007845839 | Moniliophthora roreri |
| F6T1L2_MONDO |  | Monodelphis domestica |
| W9RSS8_9ROSA | XP_010105882 | Morus notabilis |
| S2J3C8_MUCC1 | EPB82652.1 | Mucor circinelloides f. circinelloides |
| S2K7G3_MUCC1 | EPB91338.1 | Mucor circinelloides f. circinelloides |
| ACACA_MOUSE | XP_006532016 | Mus musculus |
| Q6JIZ0_MOUSE | XP_006530176 | Mus musculus |
| E9Q4Z2_MOUSE | XP_006530176 | Mus musculus |
| M0RJH5_MUSAM |  | Musa acuminate subsp. malaccensis |
| T1PCN5_MUSDO | XP_011291857 | Musca domestica |


| M3XWR5_MUSPF | XP_004779160 | Mustela putorius |
| :---: | :---: | :---: |
| M3YUC2_MUSPF | XP_004747231 | Mustela putorius |
| M2Z3W2_MYCFI | XP_007925129 | Mycosphaerella fijiensis |
| F9X7Y0_MYCGM | XP_003853979 | Mycosphaerella graminicola |
| N1PTV3_MYCP1 | EME45844.1 | Mycosphaerella pini |
| S7MFR6_MYOBR | EPQ02904.1 | Myotis brandtii |
| L5MBZ6_MYODS | ELK35901.1 | Myotis davidii |
| G1P779_MYOLU |  | Myotis lucifugus |
| G1PQT0_MYOLU |  | Myotis lucifugus |
| D2W323_NAEGR | EFC36537.1 | Naegleria gruberi |
| I2CQP5_ NANGC | AFJ69228.1 | Nannochloropsis gaditana |
| K7IMF1_NASVI |  | Nasonia vitripennis |
| G0VEM8_NAUCC | XP_003676380 | Naumovozyma castellii |
| G0WFR5_NAUDC | XP_003671869 | Naumovozyma dairenensis |
| C7Z7U6_NECH7 | XP_003045600 | Nectria haematococca |
|  | XP_010261220 | Nelumbo nucifera |
|  | XP_010269187 | Nelumbo nucifera |
| A1DGG9_NEOFI | XP_001260373 | Neosartorya fischeri |
| Q4X1V2_ASPFU | XP_755201 | Neosartorya fumigata |
| B0XRR7_ASPFC | EDP54403.1 | Neosartorya fumigata |
| F0V8G9_NEOCL | XP_003880045 | Neospora caninum |
| Q7SBL5_NEUCR | XP_963017 | Neurospora crassa |
| F8MLL9_NEUT8 | XP_009851467 | Neurospora tetrasperma |
| G4UQT6_NEUT9 | EGZ71228.1 | Neurospora tetrasperma |
|  | XP_009758450 | Nicotiana sylvestris |
|  | XP_009799608 | Nicotiana sylvestris |
|  | XP_009592508 | Nicotiana tomentosiformis |
|  | XP_009629534 | Nicotiana tomentosiformis |
| G1QQC3_NOMLE |  | Nomascus leucogenys |
| G1QLR1_NOMLE |  | Nomascus leucogenys |
| W1QF46_OGAPD | XP_013935288 | Ogataea parapolymorpha |
| S3BXE1_OPHP1 | EPE05929.1 | Ophiostoma piceae |
| I3K792_ORENI |  | Oreochromis niloticus |
| I3J0L9_ORENI |  | Oreochromis niloticus |
| I3J0M0_ORENI |  | Oreochromis niloticus |
| I3K791_ORENI |  | Oreochromis niloticus |
| F7G2P5_ORNAN |  | Ornithorhynchus anatinus |
| G1ST24_RABIT |  | Oryctolagus cuniculus |
| G1T7I3_RABIT |  | Oryctolagus cuniculus |
| J3M5P3_ORYBR | XP_006654231 | Oryza brachyantha |
| J3N219_ORYBR | XP_015697314 | Oryza brachyantha |


| I1PU52_ORYGL |  | Oryza glaberrima |
| :---: | :---: | :---: |
| I1QTS0_ORYGL |  | Oryza glaberrima |
| A2Y2U1_OYRSI | EAY97401.1 | Oryza sativa subsp. indica |
| ACC1_ORYSJ | XP_015614129 | Oryza sativa subsp. japonica |
| ACC2_ORYSJ | XP_015639213 | Oryza sativa subsp. japonica |
| H2LUD9_ORYLA |  | Oryzias latipes |
| H2M2B0_ORYLA |  | Oryzias latipes |
| A4RRC3_OSTLU | XP_001415874 | Ostreococcus lucimarinus |
| Q01GA9_OSTTA | XP_003074384 | Ostreococcus tauri |
| H0WWB9_OTOGA |  | Otolemur garnettii |
| H0X9V4_OTOGA |  | Otolemur garnettii |
| W5NRT6_SHEEP |  | Ovis aries |
| ACACA_SHEEP | NP_001009256 | Ovis aries |
| W5Q4L4_SHEEP |  | Ovis aries |
| W5Q4L5_SHEEP |  | Ovis aries |
| K6ZH78_PANTR | JAA04111.1 | Pan troglodytes |
| K7C855_PANTR | XP_511428 | Pan troglodytes |
| H2R9M5_PANTR |  | Pan troglodytes |
| H2Q6U2_PANTR | XP_003313981 | Pan troglodytes |
| C0SAJ7_PARBP | EEH22491.1 | Paracoccidioides brasiliensis |
| C1GDJ1_PARBD | XP_010760691 | Paracoccidioides brasiliensis |
| C1HD90_PARBA | XP_015701399 | Paracoccidioides lutzii |
| E0VSX2_PEDHC | XP_002429216 | Pediculus humanus |
| K7FB52_PELSI |  | Pelodiscus sinensis |
| K7FXF6_PELSI | XP_014436839 | Pelodiscus sinensis |
| B6H276_PENCW | XP_002558828 | Penicillium chrysogenum |
| K9F6Y2_PEND1 | XP_014532605 | Penicillium digitatum |
| K9FYG5_PEND2 | EKV13602.1 | Penicillium digitatum |
| B6Q960_PENMQ | XP_002146561 | Penicillium marneffei |
| S7ZLA5_PENO1 | EPS29466.1 | Penicillium oxalicum |
| W6PT53_PENRF | CDM27060.1 | Penicillium roqueforti |
| W3WUX9_9PEZI | XP_007838820 | Pestalotiopsis fici |
| S4R8H8_PETMA |  | Petromyzon marinus |
| B7G7S4_PHATC | XP_002183067 | Phaeodactylum tricornutum |
| B7GEB5_PHATC | XP_002185458 | Phaeodactylum tricornutum |
| K5WIW4_PHACS | XP_007401381 | Phanerochaete carnosa |
| V7ARE3_PHAVU | XP_007136223 | Phaseolus vulgaris |
|  | XP_008803739 | Phoenix dactylifera |
| A9RJQ8_PHYPA | XP_001754424 | Physcomitrella patens subsp. patens |
| A9T358_PHYPA | XP_001773073 | Physcomitrella patens subsp. patens |
| D0NZ18_PHYIT | XP_002997355 | Phytophthora infestans |


| W2XGI5_PHYPR | ETP21089.1 | Phytophthora parasitica |
| :---: | :---: | :---: |
| W2ZPS7_PHYPR | ETP49030.1 | Phytophthora parasitica |
| W2QH02_PHYPN | XP_008902712 | Phytophthora parasitica |
| W2H9P1_PHYPR | ETK91206.1 | Phytophthora parasitica |
| H3GWA7_PHYRM |  | Phytophthora ramorum |
| G5A3T5_PHYSP | XP_009534296 | Phytophthora sojae |
| G8Y1P2_PICSO | XP_004194741 | Pichia sorbitophila |
| G8Y4L9_PICSO | XP_004195832 | Pichia sorbitophila |
| L0PGI2_PNEJ8 | CCJ31347.1 | Pneumocystis jiroveci |
| M7NNH4_PNEMU | XP_007874997 | Pneumocystis murina |
| B2AV83_PODAN | XP_001907634 | Podospora anserina |
| D3BI99_POLPA | EFA78999.1 | Polysphondylium pallidum |
|  | XP_011006151 | Populous euphratica |
|  | XP_011027682 | Populous euphratica |
| B9GUK0_POPTR | XP_002302277 | Populous trichocarpa |
| B9H763_POPTR | XP_002306591 | Populous trichocarpa |
| U5GG96_POPTR | XP_006383487 | Populous trichocarpa |
| U5GP90_POPTR | XP_006386394 | Populous trichocarpa |
| H3E7I6_PRIPA |  | Pristionchus pacificus |
|  | XP_008234004 | Prunus mume |
| M5XVG9_PRUPE | XP_007221936 | Prunus persica |
| L8FT33_PSED2 | XP_012744795 | Pseudogymnoascus destructans |
| M9MH78_PSEA3 | GAC77683.1 | Pseudozyma antarctica |
| W3VHK3_PSEA5 | ETS60252.1 | Pseudozyma aphidis |
| V5EU37_PSEBG | XP_016293854 | Pseudozyma brasiliensis |
| R9P0W6_PSEHS | XP_012188366 | Pseudozyma hubeiensis |
| L5JSN8_PTEAL | ELK01766.1 | Pteropus alecto |
| E3KVF5_PUCGT | XP_003332669 | Puccinia graminis f. sp. tritici |
| J3Q6D5_PUCT1 |  | Puccinia triticina |
| E3RX86_PYRTT | XP_003302241 | Pyrenophora teres f. teres |
| B2VTF1_PYRTR | XP_001932248 | Pyrenophora tritici-repentis |
| U4L404_PYROM | CCX10916.1 | Pyronema omphalodes |
| D3ZBE2_RAT |  | Rattus norvegicus |
| ACACA_RAT | NP_071529 | Rattus norvegicus |
| Q1HEC0_RAT | ABF48724.1 | Rattus norvegicus |
| O70151_RAT | NP_446374 | Rattus norvegicus |
| E9PSQ0_RAT |  | Rattus norvegicus |
| L7MI62_9ACAR | JAA63507.1 | Rhipicephalus pulchellus |
| U9T243_RHIID | ESA02254.1 | Rhizophagus irregularis |
| I1BVP2_RHIO9 | EIE80272.1 | Rhizopus delemar |
| T1ICG7_RHOPR |  | Rhodnius prolixus |


| M7XLR4_RHOT1 | XP_016272252 | Rhodosporidium toruloides |
| :---: | :---: | :---: |
| B9RJG2_RICCO | XP_002513881 | Ricinus communis |
| J8PX05_SACAR | EJS41898.1 | Saccharomyces arboricola |
| W7RER6_YEASX | EWH16255.1 | Saccharomyces cerevisiae |
| A0A024XHX2_YEASX | EWG88892.1 | Saccharomyces cerevisiae |
| W7PYC7_YEASX | EWG84123.1 | Saccharomyces cerevisiae |
| A0A024XX80_YEASX | EWG93628.1 | Saccharomyces cerevisiae |
| A0A024Y0W9_YEASX | EWG94141.1 | Saccharomyces cerevisiae |
| ACAC_YEAST | NP_014413 | Saccharomyces cerevisiae |
| HFA1_YEAST | NP_013934 | Saccharomyces cerevisiae |
| B5VPX5_YEAS6 | EDZ70018.1 | Saccharomyces cerevisiae |
| B5VR47_YEAS6 | EDZ69596.1 | Saccharomyces cerevisiae |
| E7KHI7_YEASA | EGA73179.1 | Saccharomyces cerevisiae |
| N1P4Q3_YEASC | EIW08105.1 | Saccharomyces cerevisiae |
| N1NXK1_YEASC | EIW08474.1 | Saccharomyces cerevisiae |
| C7GLN9_YEAS2 | EEU08272.1 | Saccharomyces cerevisiae |
| HFA1_YEAS2 | EEU06674.1 | Saccharomyces cerevisiae |
| G2WL73_YEASK | GAA26109.1 | Saccharomyces cerevisiae |
| G2WKR3_YEASK | GAA25656.1 | Saccharomyces cerevisiae |
| C8ZFP3_YEAS8 | CAY82209.1 | Saccharomyces cerevisiae |
| HFA1_YEAS8 | CAY82038.1 | Saccharomyces cerevisiae |
| HFA1_YEAS1 | EDV11698.1 | Saccharomyces cerevisiae |
| B3LPM6_YEAS1 | EDV12250.1 | Saccharomyces cerevisiae |
| A6ZS90_YEAS7 | EDN62822.1 | Saccharomyces cerevisiae |
| HFA1_YEAS7 | EDN64143.1 | Saccharomyces cerevisiae |
| E7QK49_YEASZ | EGA84966.1 | Saccharomyces cerevisiae |
| A0A023ZGW9_YEASX | AHY77104.1 | Saccharomyces cerevisiae |
| A0A023ZF06_YEASX | AHY76661.1 | Saccharomyces cerevisiae |
| H0H0H7_SACCK | EHN00464.1 | Saccharomyces cerevisiae x S. kudriavzevii |
| H0GLB5_SACCK | EHN05444.1 | Saccharomyces cerevisiae x S. kudriavzevii |
| F2U425_SALR5 | XP_004996552 | Salpingoeca rosetta |
| G3W9V7_SARHA |  | Sarcophilus harrisii |
| A3GH39_PICST | XP_001386775 | Scheffersomyces stipitis |
| G4VJ84_SCHMA | CCD79485.1 | Schistosoma mansoni |
| D8Q0Q3_SCHCM | XP_003032695 | Schizophyllum commune |
| S9XAW9_SCHCR | XP_013024217 | Schizosaccharomyces cryophilus |
| B6K3W9_SCHJY | XP_002174469 | Schizosaccharomyces japonicus |
| S9R9B4_SCHOY | XP_013016185 | Schizosaccharomyces octosporus |
| ACAC_SCHPO | NP_593271 | Schizosaccharomyces pombe |
| W9C0L4_9HELO | ESZ90327.1 | Sclerotinia borealis |
| A7EM01_SCLS1 | XP_001592109 | Sclerotinia sclerotiorum |


| D8SW33_SELML | XP_002987586 | Selaginella moellendorffii |
| :---: | :---: | :---: |
| D8SWL6_SELML | XP_002987673 | Selaginella moellendorffii |
| F8Q8W1_SERL3 | EGN95016.1 | Serpula lacrymans var. lacrymans |
| F8P7V4_SERL9 | XP_007322478 | Serpula lacrymans var. lacrymans |
|  | XP_011083399 | Sesamum indicum |
| Q84TQ5_SETIT | AAO62903.1 | Setaria italica |
| Q84TQ6_SETIT | NP_001267734 | Setaria italica |
| Q947M6_SETIT | AAL02056.1 | Setaria italica |
| K3Y4M1_SETIT | XP_012702632 | Setaria italica |
| K4A4N3_SETIT | XP_004983244 | Setaria italica |
| B5QSJ9_SETVI | CAL63609.1. | Setaria viridis |
| R0IHL8_SETT2 | XP_008027230 | Setosphaeria turcica |
|  | XP_004252541 | Solanum lycopersicum |
| M1AG30_SOLTU | XP_006360278 | Solanum tuberosum |
| F7WC81_SORMK | XP_003344021 | Sordaria macrospora |
| C5YD68_SORBI | XP_002446178 | Sorghum bicolor |
| C5YP96_SORBI | XP_002442242 | Sorghum bicolor |
| G3AJ35_SPAPN | XP_007374131 | Spathaspora passalidarum |
| I3M0I9_SPETR |  | Spermophilus tridecemlineatus |
| I3M5C3_SPETR |  | Spermophilus tridecemlineatus |
| M3D4W7_SPHMS | XP_016761371 | Sphaerulina musiva |
| E6ZP99_SPORE | CBQ69056.1 | Sporisorium reilianum |
| U7PZF9_SPOS1 | ERT01014.1 | Sporothrix schenckii |
| A5Z221_PIG | ABQ85554.1 | Sus scrofa |
| B0LJD0_PIG | NP_001107741 | Sus scrofa |
| D2D0D8_PIG | ACM42414.1 | Sus scrofa |
| C9W109_PIG | ACL80208.1 | Sus scrofa |
| F1RGB5_PIG | NP_001193328 | Sus scrofa |
| F1S1B5_PIG |  | Sus scrofa |
| H0ZA42_TAEGU |  | Taeniopygia guttata |
| H0ZD19_TAEGU |  | Taeniopygia guttata |
| H2TKQ8_TAKRU |  | Takifugu runripes |
| H2TKQ9_TAKRU |  | Takifugu runripes |
| H2TKR0_TAKRU |  | Takifugu runripes |
| H2URL5_TAKRU |  | Takifugu runripes |
| H2URL6_TAKRU |  | Takifugu runripes |
| H2URL7_TAKRU |  | Takifugu runripes |
| H2URL8_TAKRU |  | Takifugu runripes |
| B8M2J0_TALSN | XP_002478864 | Talaromyces stipitatus |
| R4XAK5_TAPDE | CCG82864.2 | Taphrina deformans |
|  | XP_010538957 | Tarenaya hassleriana |


| M9QTR5_TETUR | AGI59311.1 | Tetranychus urticae |
| :---: | :---: | :---: |
| M9QV47_TETUR | NP_001310078 | Tetranychus urticae |
| V9LL82_TETUR | AFQ61042.1 | Tetranychus urticae |
| T1KU54_TETUR | NP_001310078 | Tetranychus urticae |
| Q4RSU6_TETNG | CAG08536.1 | Tetraodon nigroviridis |
| H3C3C2_TETNG |  | Tetraodon nigroviridis |
| H3C4M0_TETNG |  | Tetraodon nigroviridis |
| H3CZJ8_TETNG |  | Tetraodon nigroviridis |
| H3DEN7_TETNG |  | Tetraodon nigroviridis |
| H3CZJ9_TETNG |  | Tetraodon nigroviridis |
| I2H6X2_TETBL | XP_004181643 | Tetrapisispora blattae |
| G8BT37_TETPH | XP_003685442 | Tetrapisispora phaffii |
| G8BWH2_TETPH | XP_003686857 | Tetrapisispora phaffii |
| B5YMF5_THAPS | XP_002296083 | Thalassiosira pseudonana |
| B8BVD1_THAPS | XP_002287470 | Thalassiosira pseudonana |
| L8X4Y8_THACA | ELU43694.1 | Thanatephorus cucumeris |
| M5BQ58_THACB | CCO29256.1 | Thanatephorus cucumeris |
| A0A061FFG4_THECC | EOY16075.1 | Theobroma cacao |
| G2Q771_THIHA | XP_003660894 | Thielavia heterothallica |
| G2R9M8_THITE | XP_003655052 | Thielavia terrestris |
| R8BR19_TOGMI | XP_007913516 | Togninia minima |
| G8ZN64_TORDC | XP_003679269 | Torulaspora delbrueckii |
| D2A5X8_TRICA | XP_008194742 | Tribolium castaneum |
| E5SWR6_TRISP | XP_003369594 | Trichinella spiralis |
| A0A024S9D4_HYPJR | ETS01919.1 | Trichoderma reesei |
| F2PM07_TRIEC | EGE02925.1 | Trichophyton equinum |
| A0A022USC1_9EURO | EZF36413.1 | Trichophyton interdigitale |
| A0A059J926_9EURO | KDB23987.1 | Trichophyton interdigitale |
| A0A022V308_TRIRU | EZF40380.1 | Trichophyton rubrum |
| A0A023AA68_TRIRU | EZG15189.1 | Trichophyton rubrum |
| A0A022VX96_TRIRU | EZF50887.1 | Trichophyton rubrum |
| A0A022WU48_TRIRU | EZF61603.1 | Trichophyton rubrum |
| A0A028JIW5_TRIRU | EZG04649.1 | Trichophyton rubrum |
| A0A059JWR6_TRIRU | KDB32108.1 | Trichophyton rubrum |
| A0A022YJK6_TRIRU | EZF83025.1 | Trichophyton rubrum |
| A0A022ZFA7_TRIRU | EZF93571.1 | Trichophyton rubrum |
| A0A022THY9_TRIRU | EZF16244.1 | Trichophyton rubrum |
| F2SK61_TRIRC | XP_003236369 | Trichophyton rubrum |
| A0A022XNS8_TRISD | EZF72144.1 | Trichophyton soudanense |
| F2RQG9_TRIT1 | EGD93568.1 | Trichophyton tonsurans |
| J6EMY4_TRIAS | XP_014176517 | Trichosporon asahii var. asahii |


| B2ZGJ6_WHEAT | ACD46667.1 | Triticum aestivum |
| :---: | :---: | :---: |
| B2ZGK3_WHEAT | ACD46674.1 | Triticum aestivum |
| B2ZGL2_WHEAT | ACD46683.1 | Triticum aestivum |
| B2ZGL3_WHEAT | ACD46684.1 | Triticum aestivum |
| B2ZGL4_WHEAT | ACD46685.1 | Triticum aestivum |
| B2ZGL5_WHEAT | ACD46686.1 | Triticum aestivum |
| Q41511_WHEAT | AAA19970.1 | Triticum aestivum |
| Q41525_WHEAT | AAC49275.1 | Triticum aestivum |
| O48959_WHEAT | AAC39330.1 | Triticum aestivum |
| B2ZGK1_TRITD | ACD46672.1 | Triticum turgidum subsp. durum |
| B2ZGL0_TRITD | ACD46681.1 | Triticum turgidum subsp. durum |
| B2ZGL1_TRITD | ACD46682.1 | Triticum turgidum subsp. durum |
| B2ZGJ9_TRIUA | ACD46670.1 | Triticum urartu |
| B2ZGK6_TRIUA | ACD46677.1 | Triticum urartu |
| M7ZJ50_TRIUA | EMS59656.1 | Triticum urartu |
| Q57YR7_TRYB2 | XP_847540 | Trypanosoma brucei |
| C9ZWK0_TRYB9 | XP_011776065 | Trypanosoma brucei |
| F9WIJ0_TRYCI | CCD17138.1 | Trypanosoma congolense |
| G0USX5_TRYCI | CCC92488.1 | Trypanosoma congolense |
| V5BGP0_TRYCR | ESS63598.1 | Trypanosoma cruzi |
| K2NT98_TRYCR | EKF38261.1 | Trypanosoma cruzi |
| K4E6Y9_TRYCR | EKG06140.1 | Trypanosoma cruzi |
| G0TZM7_TRYVY | CCC50055.1 | Trypanosoma vivax |
| C4JEF0_UNCRE | XP_002541275 | Uncinocarpus reesii |
| I2FMZ2_USTH4 | CCF48285.1 | Ustilago hordei |
| Q12721_USTMD | CAA86983.1 | Ustilago maydis |
| Q4P5I4_USTMA | XP_760776 | Ustilago maydis |
| A7TDL1_VANPO | XP_001647339 | Vanderwaltozyma polyspora |
| G2X095_VERDV | XP_009652053 | Verticillium dahliae |
| A0A0L9UFI5_PHAAN | KOM41670.1 | Vigna angularis |
| A5AIC1_VITVI | CAN64563.1 | Vitis vinifera |
| F6H0V3_VITVI | CCB45550.1 | Vitis vinifera |
| R9AGJ6_WALI9 | XP_009268046 | Wallemia ichthyophaga |
| I4YJ49_WALSC | XP_006955825 | Wallemia sebi |
| K0KVW0_WICCF | CCH45634.1 | Wickerhamomyces ciferrii |
| B5DEA0_XENTR | NP_001131086 | Xenopus tropicalis |
| F6URD7_XENTR |  | Xenopus tropicalis |
| F6URI4_XENTR |  | Xenopus tropicalis |
| F6URY7_XENTR |  | Xenopus tropicalis |
| M3ZEB6_XIPMA |  | Xiphophorus maculatus |
| M4A0A1_XIPMA |  | Xiphophorus maculatus |


| Q6CC91_YARLI | XP_501721 | Yarrowia lipolytica |
| :---: | :---: | :---: |
| K7TS88_MAIZE | XP_008663055 | Zea mays |
| Q41743_MAIZE | NP_001105373 | Zea mays |
| Q7XYR3_MAIZE | AAP78897.1 | Zea mays |
| Q7XYR4_MAIZE | AAP78896.1 | Zea mays |
| A0A0K9PL54_ZOSMR | KMZ68975.1 | Zostera marina |
| W0VNJ2_ZYGBA | CDH11002.1 | Zygosaccharomyces bailii |
| W0W6G6_ZYGBA | CDH17251.1 | Zygosaccharomyces bailii |
| S6EL55_ZYGB2 | CDF91322.1 | Zygosaccharomyces bailii |
| B2G4R2_ZYGRO | CAQ43571.1 | Zygosaccharomyces rouxii |
| C5DVR9_ZYGRC | XP_002496821 | Zygosaccharomyces rouxii |

# APPENDIX I: Accession Consensus ACC2 Protein Sequence Reflecting Genetic Variation and Level of Conservation 

This appendix shows the accession consensus protein sequences for ACC1 and ACC2 along with the variation found among all 857 accessions, conservation of each residue, and the current classification of each variant. Included data are the position number of amino acid consensus sequence for ACC2 and ACC1; variants found in ACC2 and ACC 1 ; the number of accessions where each variant is found; the percent conservation for each ACC2 residue based on three alignments: (1) the original multi-kingdom alignment of 20 eukaryotic sequences, (2) the alignment of 139 plant sequences, and (3) the multi-kingdom alignment of 667 eukaryotic sequences; the protein domains, and the classification of each variant based on known information about it.

Footnotes for the title row of the following table are described below:
${ }^{\text {a }}$ Letter at a number indicates that a different amino acid than the accession consensus is the most common among the alignment. For example, "G at 10.8 " means " $G$ " (glycine) is the most common amino acid in the plant alignment with $10.8 \%$ conservation. Red numbers, $\geq 99 \%$ conserved; Purple numbers, $\geq 95 \%$ and $<99 \%$; Blue numbers, $\geq 90 \%$ and $<95 \%$; Green numbers, $\geq 80 \%$ and $<90 \%$; Black numbers, < $80 \%$.
${ }^{\text {b }}$ TP, transit peptide domain; BC, biotin carboxylase; BCCP, biotin carboxyl carrier protein; CEN, central domain; CT- $\beta$, carboxyltransferase-beta subunit; CT- $\alpha$, carboxyltransferase-alpha subunit.
${ }^{\text {c }} \mathrm{D}$, deleterious to protein function; LD , likely deleterious; PD, possibly deleterious; VUS, variant of unknown significance; LND, likely not deleterious; ND, not deleterious.

| ACC2 Protein Sequence |  |  |  | ACC1 Protein Sequence |  |  |  | \% Conservation (based on ACC2) ${ }^{\text {a }}$ |  |  | Domain ${ }^{\text {b }}$ | Variant Classification ${ }^{\text {c }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Position | Accession Consensus | Substitution | Num. of Accessions | Position | Accession Consensus | Substitution | Num. of Accessions | Original (20) | $\begin{aligned} & \text { Plant } \\ & (139) \end{aligned}$ | $\underset{(667)}{\text { MUSCLE }}$ |  |  |
| 1 | M |  |  | - | - | - | - | 10 | G at 10.8 | D at 10.6 | TP | - |
| 2 | E |  |  | - | - | - | - | 10 | V at 25.2 | L at 13.9 | TP | - |
| 3 | M |  |  | - | - | - | - | 15 | S at 20.1 | L at 8.4 | TP | - |
| 4 | R | T | 2 | - | - | - | - | 10 | D at 26.6 | E at 14.2 | TP | VUS |
| 5 | A |  |  | - | - | - | - | 10 | 15.1 | E at 11.1 | TP | - |
| 6 | L | S | 2 | - | - | - | - | 10 | K at 10.8 | < 5 | TP | VUS |
| 7 | G | V | 175 | - | - | - | - | 5 | K at 12.2 | < 5 | TP | VUS |
| 8 | S |  |  | - | - | - | - | 10 | H at 17.3 | R at 15.7 | TP | - |
| 9 | S |  |  | - | - | - | - | 5 | N at 9.4 | 17.5 | TP | - |
| 10 | C |  |  | - | - | - | - | 10 | Q at 21.6 | L at 13.9 | TP | - |
| 11 | S |  |  | - | - | - | - | 5 | 29.5 | < 5 | TP | - |
| 12 | T |  |  | - | - | - | - | 5 | I at 16.6 | < 5 | TP | - |
| 13 | G |  |  | - | - | - | - | 10 | R at 26.6 | 9.6 | TP | - |
| 14 | N |  |  | - | - | - | - | 10 | Q at 24.5 | 11.2 | TP | - |
| 15 | G |  |  | - | - | - | - | 10 | 33.8 | 14.7 | TP | - |
| 16 | G |  |  | - | - | - | - | 10 | < 5 | < 5 | TP | - |
| 17 | S |  |  | - | - | - | - | 15 | 6.5 | < 5 | TP | - |
| 18 | A | T | 40 | - | - | - | - | 5 | D at 5.8 | < 5 | TP | VUS |
| 19 | P |  |  | - | - | - | - | 5 | < 5 | < 5 | TP | - |
| 20 | I |  |  | - | - | - | - | 5 | < 5 | < 5 | TP | - |
| 21 | T |  |  | - | - | - | - | 10 | < 5 | < 5 | TP | - |
| 22 | L |  |  | - | - | - | - | 10 | 5.8 | < 5 | TP | - |
| 23 | T |  |  | - | - | - | - | 15 | < 5 | < 5 | TP | - |
| 24 | N |  |  | - | - | - | - | 20 | 5.8 | < 5 | TP | - |
| 25 | I |  |  | - | - | - | - | 5 | < 5 | < 5 | TP | - |
| 26 | S |  |  | - | - | - | - | 10 | 7.9 | < 5 | TP | - |
| 27 | P |  |  | - | - | - | - | 10 | 6.5 | < 5 | TP | - |
| 28 | W |  |  | - | - | - | - | 10 | 6.5 | < 5 | TP | - |
| 29 | I |  |  | - | - | - | - | 15 | 6.5 | < 5 | TP | - |
| 30 | T |  |  | - | - | - | - | 15 | 7.2 | < 5 | TP | - |
| 31 | T |  |  | - | - | - | - | 5 | < 5 | < 5 | TP | - |
| 32 | V |  |  | - | - | - | - | 10 | < 5 | < 5 | TP | - |
| 33 | F |  |  | - | - | - | - | 5 | L at 26.6 | < 5 | TP | - |
| 34 | P |  |  | - | - | - | - | 10 | A at 27.3 | < 5 | TP | - |
| 35 | S |  |  | - | - | - | - | 5 | G at 27.3 | < 5 | TP | - |


| 36 | T |  |  | - | - | - | - | 10 | I at 28.1 | < 5 | TP | - |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 37 | V |  |  | - | - | - | - | 10 | I at 27.3 | < 5 | TP | - |
| 38 | K |  |  | - | - | - | - | 15 | D at 27.3 | < 5 | TP | - |
| 39 | L |  |  | - | - | - | - | 15 | 33.1 | < 5 | TP | - |
| 40 | R |  |  | - | - | - | - | 5 | P at 24.5 | < 5 | TP | - |
| 41 | S |  |  | - | - | - | - | 15 | E at 21.6 | < 5 | TP | - |
| 42 | S |  |  | - | - | - | - | 20 | A at 16.6 | < 5 | TP | - |
| 43 | L |  |  | - | - | - | - | 15 | R at 15.8 | < 5 | TP | - |
| 44 | R |  |  | - | - | - | - | 20 | A at 19.4 | < 5 | TP | - |
| 45 | T |  |  | - | - | - | - | 10 | P at 19.4 | < 5 | TP | - |
| 46 | F |  |  | - | - | - | - | 10 | M at 28.1 | < 5 | TP | - |
| 47 | K |  |  | - | - | - | - | 20 | V at 30.2 | < 5 | TP | - |
| 48 | G |  |  | - | - | - | - | 10 | D at 33.1 | < 5 | TP | - |
| 49 | V |  |  | - | - | - | - | 10 | I at 36.0 | < 5 | TP | - |
| 50 | S |  |  | - | - | - | - | 15 | 34.5 | < 5 | TP | - |
| 51 | S |  |  | - | - | - | - | 10 | H at 27.3 | < 5 | TP | - |
| 52 | R |  |  | - | - | - | - | 10 | G at 43.9 | < 5 | TP | - |
| 53 | V |  |  | - | - | - | - | 10 | N at 25.9 | < 5 | TP | - |
| 54 | R |  |  | - | - | - | - | 10 | E at 26.6 | < 5 | TP | - |
| 55 | T |  |  | - | - | - | - | 5 | D at 21.6 | < 5 | TP | - |
| 56 | F |  |  | - | - | - | - | 5 | P at 20.1 | < 5 | TP | - |
| 57 | K |  |  | - | - | - | - | 10 | R at 25.2 | < 5 | TP | - |
| 58 | G |  |  | - | - | - | - | 5 | 20.1 | < 5 | TP | - |
| 59 | V | L | 2 | - | - | - | - | 5 | P at 13.0 | < 5 | TP | VUS |
| 60 | S |  |  | - | - | - | - | 25 | < 5 | < 5 | TP | - |
| 61 | S |  |  | - | - | - | - | 10 | < 5 | < 5 | TP | - |
| 62 | T |  |  | - | - | - | - | 5 | < 5 | < 5 | TP | - |
| 63 | R |  |  | - | - | - | - | 5 | < 5 | < 5 | TP | - |
| 64 | V |  |  | - | - | - | - | 20 | < 5 | < 5 | TP | - |
| 65 | L |  |  | - | - | - | - | 10 | < 5 | < 5 | TP | - |
| 66 | S | F | 58 | - | - | - | - | 10 | < 5 | < 5 | TP | VUS |
| 67 | R |  |  | - | - | - | - | 5 | 6.5 | < 5 | TP | - |
| 68 | T |  |  | - | - | - | - | 5 | < 5 | S at 16.3 | TP | - |
| 69 | K |  |  | - | - | - | - | 10 | 6.5 | P at 11.1 | TP | - |
| 70 | Q |  |  | - | - | - | - | 15 | 6.5 | A at 17.2 | TP | - |
| 71 | Q |  |  | - | - | - | - | 10 | < 5 | S at 15.9 | TP | - |
| 72 | F |  |  | - | - | - | - | 10 | < 5 | V at 9.0 | TP | - |
| 73 | P |  |  | - | - | - | - | 5 | 6.5 | < 5 | TP | - |
| 74 | L |  |  | - | - | - | - | 5 | < 5 | < 5 | TP | - |
| 75 | F |  |  | - | - | - | - | 5 | < 5 | L at 8.7 | TP | - |
| 76 | C |  |  | - | - | - | - | 5 | < 5 | S at 9.8 | TP | - |


| 77 | F |  |  | - | - | - | - | 5 | < 5 | S at 13.6 | TP | - |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 78 | L |  |  | - | - | - | - | 20 | < 5 | D at 11.8 | TP | - |
| 79 | N |  |  | - | - | - | - | 10 | < 5 | G at 12.4 | TP | - |
| 80 | P |  |  | - | - | - | - | 10 | < 5 | < 5 | TP | - |
| 81 | D |  |  | - | - | - | - | 35 | 6.5 | N at 13.2 | TP | - |
| 82 | P |  |  | - | - | - | - | 15 | 6.5 | G at 14.1 | TP | - |
| 83 | I |  |  | - | - | - | - | 5 | < 5 | L at 8.6 | TP | - |
| 84 | S |  |  | - | - | - | - | 30 | 5 | Q at 8.9 | TP | - |
| 85 | F |  |  | - | - | - | - | 10 | 6.5 | G at 12.6 | TP | - |
| 86 | L |  |  | - | - | - | - | 15 | < 5 | S at 9.3 | TP | - |
| 87 | D | E | 333 | - | - | - | - | 5 | < 5 | S at 14.2 | TP | VUS |
| 88 | N |  |  | - | - | - | - | 10 | 6.5 | D at 18.1 | TP | - |
| 89 | D |  |  | - | - | - | - | 25 | 6.5 | Y at 22.8 | TP | - |
| 90 | V |  |  | - | - | - | - | 5 | < 5 | A at 18.9 | TP | - |
| 91 | S | C | 1 | - | - | - | - | 20 | 6.5 | A at 24.3 | TP | VUS |
| 92 | E |  |  | - | - | - | - | 10 | 6.5 | K at 22.3 | - | - |
| 93 | A |  |  | - | - | - | - | 5 | < 5 | H at 38.1 | - | - |
| 94 | E |  |  | - | - | - | - | 5 | < 5 | M at 10.0 | - | - |
| 95 | R |  |  | - | - | - | - | 5 | < 5 | 26.4 | - | - |
| 96 | T |  |  | - | - | - | - | 15 | < 5 | L at 24.7 | - | - |
| 97 | V |  |  | - | - | - | - | 5 | < 5 | S at 30.3 | - | - |
| 98 | V |  |  | - | - | - | - | 5 | < 5 | M at 29.5 | - | - |
| 99 | L |  |  | - | - | - | - | 15 | < 5 | S at 27.1 | - | - |
| 100 | P |  |  | - | - | - | - | 10 | < 5 | G at 25.2 | - | - |
| 101 | D | G | 82 | - | - | - | - | 5 | < 5 | L at 18.3 | - | VUS |
| 102 | G |  |  | - | - | - | - | 5 | < 5 | H at 52.9 | - | - |
| 103 | S |  |  | - | - | - | - | 20 | < 5 | F at 38.7 | - | - |
| 104 | V | A | 2 | - | - | - | - | 5 | < 5 | I at 39.3 | - | VUS |
| 105 | N |  |  | - | - | - | - | 5 | < 5 | K at 19.3 | - | - |
| 106 | G |  |  | 1 | M |  |  | 10 | < 5 | Q at 13.0 | - | LND |
| 107 | A |  |  | 2 | A |  |  | 20 | < 5 | G at 31.2 | - | - |
| 108 | G |  |  | 3 | G |  |  | 45 | < 5 | < 5 | - | - |
| 109 | S |  |  | 4 | S |  |  | 25 | < 5 | < 5 | - | - |
| 110 | V |  |  | 5 | V |  |  | 15 | < 5 | R at 20.5 | - | - |
| 111 | N |  |  | 6 | N |  |  | 45 | S at 38.9 | D at 14.7 | - | - |
| 112 | G | V | 46 | 7 | G | R | 2 | 60 | 49.6 | R at 16.6 | - | ND |
| 113 | Y | C | 3 | 8 | N |  |  | 15 | Q at 42.5 | K at 13.5 | - | LND |
| 114 | H |  |  | 9 | H |  |  | 35 | M at 31.7 | < 5 | - | - |
| 115 | S |  |  | 10 | S |  |  | 10 | N at 80.6 | < 5 | - | - |
| 116 | D |  |  | 11 | A |  |  | 5 | G at 75.5 | < 5 | - | LND |
| 117 | V |  |  | 12 | V |  |  | 15 | 26.6 | G at 40.2 | - | - |


| 118 | V |  |  | 13 | G | R | 1 | 5 | H at 25.9 | G at 30.4 | - | LND |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 119 | P |  |  | 14 | P |  |  | 20 | N at 36.0 | N at 39.3 | - | - |
| 120 | G |  |  | 15 | G | D | 1 | 15 | 35.3 | S at 20.2 | - | LND |
| 121 | R |  |  | 16 | I |  |  | 15 | 77.7 | L at 27.1 | - | LND |
| 122 | N |  |  | 17 | N |  |  | 15 | H at 43.9 | R at 29.4 | - | - |
| - | - | - | - | 18 | Y |  |  | - | - | - | - | LND |
| - | - | - | - | 19 | E |  |  | - | - | - | - | LND |
| - | - | - | - | 20 | T |  |  | - | - | - | - | LND |
| 123 | V |  |  | 21 | V |  |  | 55 | 26.6 | 28.3 | - | - |
| 124 | A |  |  | 22 | S |  |  | 40 | S at 86.3 | S at 47.1 | - | LND |
| 125 | E |  |  | 23 | Q |  |  | 20 | 39.6 | S at 28.5 | - | LND |
| 126 | V |  |  | 24 | V |  |  | 50 | 93.5 | 52.8 | - | - |
| 127 | N |  |  | 25 | D |  |  | 5 | D at 57.6 | K at 27.7 | - | LND |
| 128 | E |  |  | 26 | E |  |  | 80 | 83.5 | 52.8 | - | - |
| 129 | F | L | 1 | 27 | F |  |  | 90 | 89.9 | 84.9 | - | VUS |
| 130 | C |  |  | 28 | C |  |  | 45 | 99.3 | V at 70.6 | - | - |
| 131 | K |  |  | 29 | K |  |  | 35 | 27.3 | 22.9 | - | - |
| 132 | A | V (S) | 83 (82) | 30 | A |  |  | 45 | 85.6 | 27.9 | - | VUS |
| 133 | L |  |  | 31 | L |  |  | 40 | 96.4 | F at 27.3 | - | - |
| 134 | G |  |  | 32 | R | G | 261 | 85 | 95.7 | 66.1 | - | ND |
| 135 | G | E | 1 | 33 | G |  |  | 95 | 100 | 95.7 | - | LD |
| 136 | K |  |  | 34 | K |  |  | 30 | 64.8 | H at 40.3 | - | - |
| 137 | R |  |  | 35 | R |  |  | 40 | 31.6 | T at 34.9 | - | - |
| 138 | P |  |  | 36 | P |  |  | 45 | 96.4 | V at 67.2 | BC | - |
| 139 | I |  |  | 37 | I |  |  | 100 | 100 | 96.6 | BC | - |
| 140 | H |  |  | 38 | H |  |  | 45 | 92.1 | T at 29.2 | BC | - |
| 141 | S |  |  | 39 | S |  |  | 45 | 97.8 | K at 44.4 | BC | - |
| 142 | I |  |  | 40 | I |  |  | 45 | 65.5 | V at 69.3 | BC | - |
| 143 | L |  |  | 41 | L |  |  | 100 | 100 | 97.9 | BC | - |
| 144 | V |  |  | 42 | I |  |  | 30 | 51.8 | I at 83.7 | BC | LND |
| 145 | A |  |  | 43 | A |  |  | 100 | 97.8 | 95.8 | BC | - |
| 146 | T |  |  | 44 | N |  |  | 10 | N at 93.5 | N at 95.5 | BC | LND |
| 147 | N |  |  | 45 | N |  |  | 100 | 100 | 97.8 | BC | - |
| 148 | G |  |  | 46 | G |  |  | 100 | 100 | 97.6 | BC | - |
| 149 | M |  |  | 47 | M |  |  | 45 | 98.6 | I at 71.4 | BC | - |
| 150 | A |  |  | 48 | A |  |  | 100 | 100 | 95.8 | BC | - |
| 151 | A |  |  | 49 | A |  |  | 100 | 99.3 | 97.6 | BC | - |
| 152 | V |  |  | 50 | V |  |  | 90 | 71.9 | 88.8 | BC | - |
| 153 | K |  |  | 51 | K |  |  | 100 | 100 | 96.9 | BC | - |
| 154 | F |  |  | 52 | F |  |  | 45 | 97.8 | E at 39.0 | BC | - |
| 155 | I |  |  | 53 | I |  |  | 40 | M at 52.5 | 55.5 | BC | - |


| 156 | R |  |  | 54 | R |  |  | 100 | 99.3 | 93.6 | BC | - |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 157 | S |  |  | 55 | S |  |  | 100 | 100 | 97.3 | BC | - |
| 158 | V |  |  | 56 | V |  |  | 45 | 63.3 | 48.4 | BC | - |
| 159 | R |  |  | 57 | R |  |  | 100 | 100 | 98.5 | BC | - |
| 160 | T | A | 2 | 58 | T |  |  | 30 | 78.4 | K at 39.4 | BC | VUS |
| 161 | W |  |  | 59 | W |  |  | 100 | 97.1 | 97.8 | BC | - |
| 162 | A |  |  | 60 | A |  |  | 80 | 95.7 | 71.5 | BC | - |
| 163 | Y |  |  | 61 | Y |  |  | 80 | 54 | 87.7 | BC | - |
| 164 | E |  |  | 62 | E |  |  | 90 | 72.7 | 86.4 | BC | - |
| 165 | T |  |  | 63 | T |  |  | 65 | 97.1 | 60.7 | BC | - |
| 166 | F |  |  | 64 | F |  |  | 100 | 98.6 | 95.2 | BC | - |
| 167 | G | D | 32 | 65 | G |  |  | 55 | 100 | 64 | BC | VUS |
| 168 | S |  |  | 66 | T |  |  | 20 | T at 48.2 | N at 41.1 | BC | LND |
| 169 | E |  |  | 67 | E |  |  | 95 | 95 | 87.7 | BC | - |
| 170 | K |  |  | 68 | K |  |  | 45 | 91.4 | R at 65.5 | BC | - |
| 171 | A |  |  | 69 | A |  |  | 80 | 97.1 | 83.4 | BC | - |
| 172 | V | I | 2 | 70 | I |  |  | 10 | I at 89.9 | I at 80.4 | BC | LND |
| 173 | K |  |  | 71 | L |  |  | 15 | L at 62.6 | Q at 34.2 | BC | LND |
| 174 | L |  |  | 72 | L |  |  | 45 | 99.3 | F at 78.1 | BC | - |
| 175 | V |  |  | 73 | V |  |  | 80 | 71.2 | 60.6 | BC | - |
| 176 | A |  |  | 74 | G |  |  | 40 | 93.5 | V at 68.2 | BC | LND |
| 177 | M |  |  | 75 | M |  |  | 100 | 100 | 99.4 | BC | - |
| 178 | A |  |  | 76 | A | T | 25 | 65 | 100 | 69.6 | BC | ND |
| 179 | T |  |  | 77 | T |  |  | 100 | 100 | 98.4 | BC | - |
| 180 | P |  |  | 78 | P |  |  | 100 | 98.6 | 97.9 | BC | - |
| 181 | E |  |  | 79 | E |  |  | 90 | 99.3 | 95.7 | BC | - |
| 182 | D |  |  | 80 | D |  |  | 100 | 100 | 98.7 | BC | - |
| 183 | M |  |  | 81 | M |  |  | 35 | 77.7 | L at 79.8 | BC | - |
| 184 | R |  |  | 82 | R |  |  | 45 | 92.1 | K at 39.1 | BC | - |
| 185 | I |  |  | 83 | I |  |  | 45 | 98.6 | A at 70.3 | BC | - |
| 186 | N | I | 1 | 84 | N |  |  | 100 | 99.3 | 98.7 | BC | VUS |
| 187 | A |  |  | 85 | A |  |  | 95 | 99.3 | 95.2 | BC | - |
| 188 | E | D | 1 | 86 | E |  |  | 90 | 99.3 | 78 | BC | D |
| 189 | H |  |  | 87 | H |  |  | 45 | 98.6 | Y at 73.6 | BC | - |
| 190 | I |  |  | 88 | I |  |  | 100 | 98.6 | 96.4 | BC | - |
| 191 | R |  |  | 89 | R |  |  | 65 | 99.3 | 67.5 | BC | - |
| 192 | I |  |  | 90 | I |  |  | 45 | 92.1 | M at 73.9 | BC | - |
| 193 | A |  |  | 91 | A | V | 1 | 100 | 99.3 | 98.4 | BC | LND |
| 194 | D |  |  | 92 | D |  |  | 100 | 98.6 | 95.7 | BC | - |
| 195 | Q |  |  | 93 | Q |  |  | 65 | 98.6 | 55.5 | BC | - |
| 196 | F | L | 1 | 94 | F |  |  | 45 | 97.1 | Y at 66.7 | BC | VUS |



| 238 | E |  |  | 136 | E |  |  | 45 | 96.4 | K at 48.4 | BC | - |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 239 | L |  |  | 137 | L |  |  | 100 | 99.3 | 99.6 | BC | - |
| 240 | P |  |  | 138 | P |  |  | 100 | 99.3 | 98.8 | BC | - |
| 241 | D |  |  | 139 | D |  |  | 45 | 95.7 | E at 70.0 | BC | - |
| 242 | A |  |  | 140 | A |  |  | 45 | 94.2 | L at 29.7 | BC | - |
| 243 | L |  |  | 141 | L |  |  | 100 | 99.3 | 97.6 | BC | - |
| 244 | K |  |  | 142 | D |  |  | 20 | T at 24.5 | A at 41.2 | BC | LND |
| 245 | E |  |  | 143 | A |  |  | 15 | A at 78.4 | A at 48.9 | BC | LND |
| 246 | K |  |  | 144 | K |  |  | 40 | 85.6 | 39.1 | BC | - |
| 247 | G |  |  | 145 | G |  |  | 75 | 97.1 | 43 | BC | - |
| 248 | I |  |  | 146 | I |  |  | 80 | 95.7 | 85.5 | BC | - |
| 249 | I |  |  | 147 | I |  |  | 35 | V at 55.4 | V at 36.6 | BC | - |
| 250 | F |  |  | 148 | F |  |  | 100 | 100 | 99.4 | BC | - |
| 251 | L |  |  | 149 | L |  |  | 65 | 99.3 | I at 49.5 | BC | - |
| 252 | G |  |  | 150 | G |  |  | 100 | 100 | 99.7 | BC | - |
| 253 | P |  |  | 151 | P |  |  | 100 | 97.1 | 98.7 | BC | - |
| 254 | P |  |  | 152 | P |  |  | 90 | 95.7 | 87.6 | BC | - |
| 255 | A |  |  | 153 | A |  |  | 30 | 71.2 | G at 39.0 | BC | - |
| 256 | D | A | 71 | 154 | S |  |  | 5 | A at 36.0 | S at 38.5 | BC | LND |
| 257 | S |  |  | 155 | S |  |  | 40 | 77 | A at 76.2 | BC | - |
| 258 | M |  |  | 156 | M |  |  | 100 | 100 | 99.1 | BC | - |
| 259 | I |  |  | 157 | A |  |  | 25 | A at 52.5 | R at 43.2 | BC | LND |
| 260 | A |  |  | 158 | A |  |  | 80 | 99.3 | 54.3 | BC | - |
| 261 | L |  |  | 159 | L |  |  | 100 | 100 | 99.3 | BC | - |
| 262 | G |  |  | 160 | G |  |  | 100 | 100 | 99.6 | BC | - |
| 263 | D |  |  | 161 | D |  |  | 100 | 100 | 99.3 | BC | - |
| 264 | K |  |  | 162 | K |  |  | 100 | 100 | 99.3 | BC | - |
| 265 | I |  |  | 163 | I |  |  | 80 | 71.2 | 85.9 | BC | - |
| 266 | G |  |  | 164 | G |  |  | 45 | 98.6 | S at 42.1 | BC | - |
| 267 | S |  |  | 165 | S |  |  | 100 | 99.3 | 96.6 | BC | - |
| 268 | S |  |  | 166 | S |  |  | 60 | 70.5 | T at 53.5 | BC | - |
| 269 | L |  |  | 167 | L |  |  | 45 | 99.3 | I at 78.1 | BC | - |
| 270 | I |  |  | 168 | I | R | 1 | 45 | 98.6 | V at 72.3 | BC | LND |
| 271 | A |  |  | 169 | A | D | 1 | 100 | 99.3 | 99.3 | BC | VUS |
| 272 | Q |  |  | 170 | Q | R | 1 | 100 | 100 | 99.3 | BC | VUS |
| 273 | A |  |  | 171 | A |  |  | 45 | 97.1 | H at 30.9 | BC | - |
| 274 | A |  |  | 172 | A |  |  | 90 | 99.3 | 89.7 | BC | - |
| 275 | D | V | 1 | 173 | D |  |  | 25 | G at 48.9 | G at 37.8 | BC | VUS |
| 276 | V | G (I) | 1 (1) | 174 | V |  |  | 65 | 99.3 | 73.3 | BC | VUS |
| 277 | P |  |  | 175 | P |  |  | 100 | 97.1 | 98.2 | BC | - |
| 278 | T |  |  | 176 | T |  |  | 80 | 99.3 | 58.8 | BC | - |



| 320 | V |  |  | 218 | V | 55 | 80.6 | I at 69.7 | BC | - |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 321 | G |  |  | 219 | G | 100 | 100 | 99.9 | BC | - |
| 322 | Y |  |  | 220 | Y | 60 | 98.6 | F at 53.5 | BC | - |
| 323 | P |  |  | 221 | P | 100 | 97.1 | 99 | BC | - |
| 324 | A |  |  | 222 | A | 45 | 99.3 | V at 66.4 | BC | - |
| 325 | M |  |  | 223 | M | 95 | 100 | 96.7 | BC | - |
| 326 | I |  |  | 224 | I | 95 | 100 | 79.8 | BC | - |
| 327 | K |  |  | 225 | K | 100 | 100 | 100 | BC | - |
| 328 | A |  |  | 226 | A | 100 | 100 | 100 | BC | - |
| 329 | S |  |  | 227 | S | 100 | 100 | 99.1 | BC | - |
| 330 | W |  |  | 228 | W | 45 | 99.3 | E at 77.7 | BC | - |
| 331 | G |  |  | 229 | G | 100 | 96.4 | 99.3 | BC | - |
| 332 | G |  |  | 230 | G | 100 | 97.1 | 99.3 | BC | - |
| 333 | G |  |  | 231 | G | 100 | 97.1 | 99.4 | BC | D |
| 334 | G |  |  | 232 | G | 100 | 100 | 100 | BC | - |
| 335 | K |  |  | 233 | K | 100 | 100 | 99.7 | BC | - |
| 336 | G |  |  | 234 | G | 100 | 100 | 100 | BC | - |
| 337 | I |  |  | 235 | I | 100 | 100 | 100 | BC | - |
| 338 | R |  |  | 236 | R | 100 | 100 | 100 | BC | - |
| 339 | K |  |  | 237 | K | 80 | 98.6 | 80.2 | BC | - |
| 340 | V |  |  | 238 | V | 90 | 100 | 77.7 | BC | - |
| 341 | H |  |  | 239 | H | 40 | 82.7 | E at 31.3 | BC | - |
| 342 | N |  |  | 240 | N | 60 | 95 | 41.4 | BC | - |
| 343 | D | G | 30 | 241 | D | 40 | 92.8 | E at 34.5 | BC | VUS |
| 344 | D |  |  | 242 | D | 65 | 95 | E at 48.7 | BC | - |
| 345 | E |  |  | 243 | E | 45 | 92.1 | D at 45.1 | BC | - |
| 346 | V |  |  | 244 | V | 45 | 99.3 | F at 68.8 | BC | - |
| 347 | R |  |  | 245 | R | 45 | 84.2 | P at 27.7 | BC | - |
| 348 | A | G | 1 | 246 | A | 55 | 92.8 | 40.6 | BC | VUS |
| 349 | L |  |  | 247 | L | 95 | 99.3 | 78 | BC | - |
| 350 | F |  |  | 248 | F | 80 | 97.1 | 58.8 | BC | - |
| 351 | K |  |  | 249 | K | 45 | 99.3 | 33.7 | BC | - |
| 352 | Q | K | 1 | 250 | Q | 95 | 98.6 | 67.5 | BC | VUS |
| 353 | V |  |  | 251 | V | 85 | 100 | 67.8 | BC | - |
| 354 | Q |  |  | 252 | Q | 80 | 99.3 | 52.9 | BC | - |
| 355 | G | V | 130 | 253 | G | 45 | 96.4 | 30.1 | BC | VUS |
| 356 | E |  |  | 254 | E | 100 | 100 | 100 | BC | - |
| 357 | V |  |  | 255 | V | 70 | 100 | 53.2 | BC | - |
| 358 | P |  |  | 256 | P | 100 | 100 | 96.1 | BC | - |
| 359 | G |  |  | 257 | G | 100 | 100 | 99.4 | BC | - |
| 360 | S |  |  | 258 | S | 100 | 100 | 98.1 | BC | - |


| 361 | P |  |  | 259 | P | 100 | 97.1 | 97.5 | BC | - |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 362 | I | T | 115 | 260 | I | 90 | 100 | 89.1 | BC | VUS |
| 363 | F | L | 5 | 261 | F | 100 | 97.1 | 99.3 | BC | PD |
| 364 | I |  |  | 262 | I | 55 | 95.7 | 63.3 | BC | - |
| 365 | M |  |  | 263 | M | 100 | 100 | 100 | BC | - |
| 366 | K |  |  | 264 | K | 70 | 72.7 | 74.2 | BC | - |
| 367 | V |  |  | 265 | V | 40 | 69.8 | L at 79.8 | BC | - |
| 368 | A |  |  | 266 | A | 95 | 100 | 91.3 | BC | - |
| 369 | S |  |  | 267 | S | 45 | 94.2 | G at 37.0 | BC | - |
| 370 | Q |  |  | 268 | Q | 60 | 97.1 | 35.1 | BC | - |
| 371 | S | I | 1 | 269 | S | 55 | 97.8 | A at 64.9 | BC | VUS |
| 372 | R |  |  | 270 | R | 100 | 100 | 99.4 | BC | - |
| 373 | H |  |  | 271 | H | 100 | 100 | 99.9 | BC | - |
| 374 | L |  |  | 272 | L | 100 | 100 | 97.6 | BC | - |
| 375 | E |  |  | 273 | E | 100 | 100 | 100 | BC | - |
| 376 | V | A (I) | 12 (1) | 274 | V | 100 | 100 | 100 | BC | PD |
| 377 | Q |  |  | 275 | Q | 100 | 100 | 100 | BC | - |
| 378 | L |  |  | 276 | L | 65 | 100 | 72.1 | BC | - |
| 379 | L |  |  | 277 | L | 95 | 96.4 | 93.7 | BC | - |
| 380 | C |  |  | 278 | C | 45 | 99.3 | A at 75.6 | BC | - |
| 381 | D |  |  | 279 | D | 100 | 100 | 100 | BC | - |
| 382 | Q |  |  | 280 | K | 85 | 69.8 | 78.4 | BC | LND |
| 383 | Y |  |  | 281 | H | 80 | 71.9 | 90.6 | BC | LND |
| 384 | G |  |  | 282 | G | 100 | 95.7 | 98.2 | BC | - |
| 385 | N |  |  | 283 | N | 90 | 100 | 85.2 | BC | - |
| 386 | V |  |  | 284 | V | 45 | 98.6 | A at 41.5 | BC | - |
| 387 | A |  |  | 285 | S | 30 | 88.5 | I at 69.6 | BC | LND |
| 388 | A |  |  | 286 | A | 45 | 99.3 | S at 69.7 | BC | - |
| 389 | L |  |  | 287 | L | 100 | 100 | 94 | BC | - |
| 390 | H |  |  | 288 | H | 45 | 99.3 | F at 71.2 | BC | - |
| 391 | S |  |  | 289 | S | 45 | 99.3 | G at 75.6 | BC | - |
| 392 | R |  |  | 290 | R | 100 | 97.1 | 99.4 | BC | - |
| 393 | D |  |  | 291 | D | 100 | 100 | 100 | BC | - |
| 394 | C |  |  | 292 | C | 100 | 100 | 99.9 | BC | - |
| 395 | S |  |  | 293 | S | 100 | 100 | 99.7 | BC | - |
| 396 | V | L | 1 | 294 | V | 75 | 88.5 | 74.4 | BC | VUS |
| 397 | Q |  |  | 295 | Q | 100 | 96.4 | 99.3 | BC | - |
| 398 | R |  |  | 296 | R | 100 | 99.3 | 99.9 | BC | - |
| 399 | R |  |  | 297 | R | 100 | 99.3 | 99.9 | BC | - |
| 400 | H |  |  | 298 | H | 100 | 95.7 | 95.7 | BC | - |
| 401 | Q |  |  | 299 | Q | 100 | 100 | 100 | BC | - |



| 443 | Y | C | 1 | 341 | Y | 95 | 92.8 | 94 | BC | PD |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 444 | S |  |  | 342 | S | 90 | 97.8 | 82 | BC | - |
| 445 | M | T | 190 | 343 | M | 45 | 99.3 | H at 35.1 | BC | VUS |
| 446 | D |  |  | 344 | D | 25 | E at 69.8 | E at 28.8 | BC | - |
| 447 | T |  |  | 345 | T | 45 | 98.6 | D at 55.3 | BC | - |
| 448 | G |  |  | 346 | G | 80 | 99.3 | 52.3 | BC | - |
| 449 | E | D | 3 | 347 | E | 35 | 93.5 | K at 38.5 | BC | VUS |
| 450 | Y |  |  | 348 | Y | 50 | 95.7 | F at 68.5 | BC | - |
| 451 | Y |  |  | 349 | Y | 75 | 95.7 | 76.8 | BC | - |
| 452 | F |  |  | 350 | F | 100 | 100 | 99.4 | BC | - |
| 453 | L |  |  | 351 | L | 100 | 100 | 99.9 | BC | - |
| 454 | E |  |  | 352 | E | 100 | 100 | 99.9 | BC | - |
| 455 | L |  |  | 353 | L | 100 | 100 | 99.9 | BC | - |
| 456 | N |  |  | 354 | N | 100 | 100 | 100 | BC | - |
| 457 | P |  |  | 355 | P | 100 | 100 | 100 | BC | - |
| 458 | R |  |  | 356 | R | 100 | 100 | 100 | BC | - |
| 459 | L |  |  | 357 | L | 100 | 100 | 97.9 | BC | - |
| 460 | Q |  |  | 358 | Q | 100 | 100 | 99.9 | BC | - |
| 461 | V |  |  | 359 | V | 100 | 99.3 | 99.7 | BC | - |
| 462 | E |  |  | 360 | E | 100 | 99.3 | 99.7 | BC | - |
| 463 | H |  |  | 361 | H | 100 | 99.3 | 99.7 | BC | - |
| 464 | P |  |  | 362 | P | 100 | 99.3 | 99.6 | BC | - |
| 465 | V |  |  | 363 | V | 45 | 98.6 | T at 41.4 | BC | - |
| 466 | T |  |  | 364 | T | 100 | 99.3 | 96.9 | BC | - |
| 467 | E |  |  | 365 | E | 100 | 99.3 | 99.7 | BC | - |
| 468 | W | S | 12 | 366 | W | 40 | 92.1 | M at 73.3 | BC | VUS |
| 469 | I |  |  | 367 | I | 65 | 98.6 | V at 60.1 | BC | - |
| 470 | A | T | 12 | 368 | A | 80 | 98.6 | 46.2 | BC | VUS |
| 471 | E |  |  | 369 | E | 40 | 93.5 | G at 46.2 | BC | - |
| 472 | V | I | 52 | 370 | I | 70 | I at 56.1 | 83.7 | BC | LND |
| 473 | N |  |  | 371 | N | 100 | 98.6 | 98.5 | BC | - |
| 474 | L | F | 1 | 372 | L | 100 | 97.8 | 94.5 | BC | PD |
| 475 | P | L | 1 | 373 | P | 100 | 99.3 | 99.7 | BC | LND |
| 476 | A |  |  | 374 | A | 100 | 98.6 | 97.8 | BC | - |
| 477 | A |  |  | 375 | A | 90 | 89.9 | 85.9 | BC | - |
| 478 | Q | K | 28 | 376 | Q | 100 | 99.3 | 97.6 | BC | LND |
| 479 | V |  |  | 377 | V | 45 | 95.7 | L at 78.4 | BC | - |
| 480 | A |  |  | 378 | A | 45 | 85.6 | Q at 75.3 | BC | - |
| 481 | V |  |  | 379 | V | 55 | 90.7 | I at 66.4 | BC | - |
| 482 | G |  |  | 380 | G | 50 | 97.1 | A at 72.6 | BC | - |
| 483 | M |  |  | 381 | M | 100 | 99.3 | 99.7 | BC | - |



| 525 | S |  |  | 423 | S |  |  | 45 | 97.1 | R at 40.0 | BC | - |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 526 | L |  |  | 424 | I |  |  | 5 | T at 30.9 | R at 33.1 | BC | LND |
| 527 | R |  |  | 425 | R |  |  | 30 | 48.2 | P at 73.0 | BC | - |
| 528 | P |  |  | 426 | P | S (A) | 32 (1) | 90 | 99.3 | 90.1 | BC | ND |
| 529 | K |  |  | 427 | K |  |  | 65 | 95.7 | 61.5 | BC | - |
| 530 | G |  |  | 428 | G |  |  | 100 | 99.3 | 95.4 | BC | - |
| 531 | H |  |  | 429 | H |  |  | 100 | 99.3 | 99.4 | BC | - |
| 532 | C |  |  | 430 | C |  |  | 60 | 94.2 | V at 41.7 | BC | - |
| 533 | V |  |  | 431 | V |  |  | 50 | 96.4 | I at 42.6 | BC | - |
| 534 | A |  |  | 432 | A |  |  | 95 | 99.3 | 97.8 | BC | - |
| 535 | V |  |  | 433 | V |  |  | 45 | 98.6 | C at 37.2 | BC | - |
| 536 | R |  |  | 434 | R |  |  | 100 | 99.3 | 99.9 | BC | - |
| 537 | V |  |  | 435 | V |  |  | 35 | 71.9 | I at 81.3 | BC | - |
| 538 | T | A | 1 | 436 | T |  |  | 100 | 99.3 | 99.9 | BC | PD |
| 539 | S |  |  | 437 | S |  |  | 100 | 98.6 | 84.6 | BC | - |
| 540 | E |  |  | 438 | E |  |  | 100 | 99.3 | 99.9 | BC | - |
| 541 | D |  |  | 439 | D |  |  | 65 | 91.4 | 57.7 | BC | - |
| 542 | P |  |  | 440 | P |  |  | 100 | 98.6 | 96.7 | BC | - |
| 543 | D |  |  | 441 | D |  |  | 80 | 99.3 | 62.1 | BC | - |
| 544 | D |  |  | 442 | D |  |  | 50 | 98.6 | E at 65.1 | BC | - |
| 545 | G |  |  | 443 | G |  |  | 100 | 99.3 | 98.1 | BC | - |
| 546 | F |  |  | 444 | F |  |  | 100 | 99.3 | 99.4 | BC | - |
| 547 | K |  |  | 445 | K |  |  | 100 | 97.8 | 93.1 | BC | - |
| 548 | P |  |  | 446 | P |  |  | 100 | 99.3 | 99.7 | BC | - |
| 549 | T |  |  | 447 | T |  |  | 45 | 98.6 | S at 69.6 | BC | - |
| 550 | S |  |  | 448 | S |  |  | 65 | 65.5 | 67.8 | BC | - |
| 551 | G |  |  | 449 | G |  |  | 100 | 99.3 | 99.3 | BC | - |
| 552 | E |  |  | 450 | R |  |  | 5 | K at 74.1 | T at 47.7 | BC | LND |
| 553 | I |  |  | 451 | V |  |  | 15 | 95 | V at 53.2 | BC | LND |
| 554 | Q | H | 1 | 452 | Q |  |  | 60 | 55.4 | 46.5 | BC | VUS |
| 555 | E |  |  | 453 | E |  |  | 90 | 98.6 | 89.2 | BC | - |
| 556 | L |  |  | 454 | L |  |  | 90 | 69.8 | 89.4 | BC | - |
| 557 | S |  |  | 455 | S |  |  | 35 | 79.1 | N at 76.3 | BC | - |
| 558 | F |  |  | 456 | F |  |  | 100 | 98.6 | 99.3 | BC | - |
| 559 | K |  |  | 457 | K |  |  | 45 | 95 | R at 74.7 | BC | - |
| 560 | S |  |  | 458 | S |  |  | 100 | 97.1 | 95.5 | BC | - |
| 561 | K | Q (N) | 36 (2) | 459 | K |  |  | 40 | 93.5 | S at 57.1 | BC | VUS |
| 562 | P |  |  | 460 | P |  |  | 45 | 95 | S at 34.9 | BC | - |
| 563 | N |  |  | 461 | N |  |  | 100 | 97.1 | 90.3 | BC | - |
| 564 | M |  |  | 462 | V |  |  | 5 | V at 93.5 | V at 93.3 | BC | LND |
| 565 | W |  |  | 463 | W |  |  | 100 | 97.1 | 99.3 | BC | - |



| 607 | E |  |  | 505 | E | 95 | 100 | 93.7 | BC | - |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 608 | I |  |  | 506 | I | 45 | 92.8 | L at 73.6 | BC | - |
| 609 | Q |  |  | 507 | Q | 45 | 96.4 | S at 72.6 | BC | - |
| 610 | I |  |  | 508 | I | 100 | 100 | 96.7 | BC | - |
| 611 | R |  |  | 509 | R | 100 | 100 | 98.5 | BC | - |
| 612 | G |  |  | 510 | G | 100 | 100 | 98.1 | BC | - |
| 613 | D |  |  | 511 | E | 55 | E at 97.8 | 70.9 | BC | LND |
| 614 | I |  |  | 512 | I | 40 | 95.7 | F at 71.2 | BC | - |
| 615 | R |  |  | 513 | R | 85 | 66.2 | 85.2 | BC | - |
| 616 | T |  |  | 514 | T | 90 | 77.7 | 93 | BC | - |
| 617 | N |  |  | 515 | N | 45 | 99.3 | T at 71.8 | BC | - |
| 618 | V | I | 9 | 516 | V | 95 | 100 | 90.9 | BC | VUS |
| 619 | D |  |  | 517 | D | 45 | 99.3 | E at 74.2 | BC | - |
| 620 | Y |  |  | 518 | Y | 100 | 99.3 | 98.8 | BC | - |
| 621 | T |  |  | 519 | T | 45 | 94.2 | L at 73.6 | BC | - |
| 622 | I |  |  | 520 | I | 70 | 52.5 | 77.4 | BC | - |
| 623 | D |  |  | 521 | D | 45 | 97.1 | K at 54.9 | BC | - |
| 624 | L |  |  | 522 | L | 100 | 98.6 | 97 | BC | - |
| 625 | L |  |  | 523 | L | 100 | 100 | 96.3 | BC | - |
| 626 | H |  |  | 524 | H | 20 | N at 55.4 | E at 75.9 | BC | - |
| 627 | A |  |  | 525 | A | 45 | 98.6 | T at 67.9 | BC | - |
| 628 | S |  |  | 526 | S | 30 | 66.2 | E at 41.2 | BC | - |
| 629 | D |  |  | 527 | D | 45 | 74.8 | 33.1 | BC | - |
| 630 | Y |  |  | 528 | Y | 35 | 71.9 | F at 83.7 | BC | - |
| 631 | R | W (Q) | 2 (1) | 529 | R | 45 | 86.3 | E at 37.8 | BC | VUS |
| 632 | E |  |  | 530 | D | 45 | 75.5 | D at 32.5 | BC | LND |
| 633 | N |  |  | 531 | N | 100 | 100 | 96.9 | BC | - |
| 634 | K |  |  | 532 | K | 40 | 83.5 | T at 41.8 | BC | - |
| 635 | I |  |  | 533 | I | 95 | 98.6 | 92.4 | BC | - |
| 636 | H |  |  | 534 | H | 45 | 99.3 | T at 34.9 | BC | - |
| 637 | T |  |  | 535 | T | 100 | 100 | 99.7 | BC | - |
| 638 | G |  |  | 536 | G | 95 | 99.3 | 80.7 | BC | - |
| 639 | W |  |  | 537 | W | 100 | 100 | 99.6 | BC | - |
| 640 | L |  |  | 538 | L | 100 | 100 | 99.7 | BC | - |
| 641 | D |  |  | 539 | D | 100 | 100 | 99.6 | BC | - |
| 642 | S |  |  | 540 | S | 35 | 69.8 | E at 22.0 | BC | - |
| 643 | R |  |  | 541 | R | 45 | 99.3 | L at 73.0 | BC | - |
| 644 | I |  |  | 542 | I | 100 | 100 | 99.3 | BC | - |
| 645 | A |  |  | 543 | A | 80 | 100 | 50.2 | BC | - |
| 646 | M |  |  | 544 | M | 45 | 99.3 | E at 28.0 | - | - |
| 647 | R |  |  | 545 | R | 55 | 97.8 | K at 55.3 | - | - |


| 648 | V |  |  | 546 | V | 80 | 97.8 | 47.2 | - | - |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 649 | R |  |  | 547 | R | 35 | 71.2 | T at 38.7 | - | - |
| 650 | A |  |  | 548 | A | 85 | 97.1 | 79 | - | - |
| 651 | E |  |  | 549 | E | 90 | 98.6 | 84.6 | - | - |
| 652 | R |  |  | 550 | R | 75 | 99.3 | 69.9 | - | - |
| 653 | P |  |  | 551 | P | 95 | 97.8 | 92.4 | - | - |
| 654 | P |  |  | 552 | P | 45 | 95.7 | D at 65.8 | - | - |
| 655 | W |  |  | 553 | W | 45 | 99.3 | T at 27.0 | - | - |
| 656 | Y |  |  | 554 | Y | 45 | 94.2 | M at 38.7 | - | - |
| 657 | L | I | 1 | 555 | L | 90 | 69.1 | 70.3 | - | VUS |
| 658 | S |  |  | 556 | S | 45 | 99.3 | A at 45.6 | - | - |
| 659 | V |  |  | 557 | V | 95 | 100 | 85.3 | - | - |
| 660 | V |  |  | 558 | V | 85 | 96.4 | 59.1 | - | - |
| 661 | G |  |  | 559 | G | 45 | 91.4 | C at 65.5 | - | - |
| 662 | G |  |  | 560 | G | 100 | 99.3 | 92.1 | - | - |
| 663 | A |  |  | 561 | A | 95 | 93.5 | 92.1 | - | - |
| 664 | L |  |  | 562 | L | 85 | 97.8 | 50.7 | - | - |
| 665 | Y |  |  | 563 | Y | 45 | 92.8 | T at 33.6 | - | - |
| 666 | K |  |  | 564 | K | 50 | 82.7 | 55.8 | - | - |
| 667 | A |  |  | 565 | A | 90 | 70.5 | 89.4 | - | - |
| 668 | S |  |  | 566 | S | 35 | 68.4 | H at 33.0 | - | - |
| 669 | T |  |  | 567 | A | 15 | A at 41.7 | A at 18.6 | - | LND |
| 670 | T |  |  | 568 | T | 25 | S at 47.5 | A at 36.9 | - | - |
| 671 | S |  |  | 569 | S | 40 | 61.9 | 48 | - | - |
| 672 | S |  |  | 570 | A | 15 | A at 72.7 | E at 36.9 | - | LND |
| 673 | A |  |  | 571 | A | 30 | 69.1 | 40.6 | - | - |
| 674 | V |  |  | 572 | V | 35 | 32.4 | C at 28.8 | - | - |
| 675 | V | G | 1 | 573 | V | 50 | 98.6 | 31.2 | - | VUS |
| 676 | S |  |  | 574 | S | 60 | 82 | 40.2 | - | - |
| 677 | D |  |  | 575 | D | 45 | 71.2 | E at 42.1 | - | - |
| 678 | Y |  |  | 576 | Y | 60 | 100 | 66.4 | - | - |
| 679 | V |  |  | 577 | V | 40 | 77.7 | L at 23.1 | - | - |
| 680 | G |  |  | 578 | G | 30 | 71.2 | H at 19.9 | - | - |
| 681 | Y |  |  | 579 | Y | 50 | 99.3 | S at 40.6 | - | - |
| 682 | L |  |  | 580 | L | 100 | 100 | 90.1 | - | - |
| 683 | E |  |  | 581 | E | 65 | 51.1 | 67.9 | - | - |
| 684 | K |  |  | 582 | K | 60 | 100 | 61.6 | - | - |
| 685 | G |  |  | 583 | G | 100 | 100 | 99.4 | - | - |
| 686 | Q |  |  | 584 | Q | 95 | 99.3 | 96.7 | - | - |
| 687 | I |  |  | 585 | I | 50 | 98.6 | V at 65.1 | - | - |
| 688 | P |  |  | 586 | P | 60 | 100 | 64 | - | - |


| 689 | P |  |  | 587 | P |  |  | 80 | 98.6 | 46.8 | - | - |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 690 | K |  |  | 588 | K |  |  | 60 | 99.3 | 55.6 | - | - |
| 691 | H | Q | 1 | 589 | H |  |  | 60 | 95 | D at 35.4 | - | VUS |
| 692 | I |  |  | 590 | I |  |  | 50 | 98.6 | 30.7 | - | - |
| 693 | S |  |  | 591 | S |  |  | 45 | 99.3 | L at 73.6 | - | - |
| 694 | L |  |  | 592 | L |  |  | 70 | 97.1 | 40 | - | - |
| 695 | V |  |  | 593 | V |  |  | 45 | 97.8 | T at 42.3 | - | - |
| 696 | H |  |  | 594 | H |  |  | 30 | N at 45.3 | V at 31.6 | - | - |
| 697 | S |  |  | 595 | S |  |  | 35 | 76.3 | F at 41.1 | - | - |
| 698 | Q |  |  | 596 | Q |  |  | 25 | 48.2 | P at 28.5 | - | - |
| 699 | V |  |  | 597 | V | M | 1 | 95 | 89.2 | 68.5 | - | LND |
| 700 | S |  |  | 598 | S |  |  | 30 | 69.1 | E at 40.9 | - | - |
| 701 | L | M | 1 | 599 | L |  |  | 80 | 99.3 | 53.4 | - | VUS |
| 702 | N |  |  | 600 | N |  |  | 40 | 97.1 | I at 71.7 | - | - |
| 703 | I |  |  | 601 | I |  |  | 45 | 99.3 | Y at 58.6 | - | - |
| 704 | E |  |  | 602 | E |  |  | 65 | 85.6 | 70.2 | - | - |
| 705 | G | E (R) | 2 (1) | 603 | G |  |  | 85 | 84.9 | 77.8 | - | VUS |
| 706 | S |  |  | 604 | S | N | 1 | 45 | 89.9 | 22.3 | - | LND |
| 707 | K |  |  | 605 | K |  |  | 75 | 99.3 | 58 | - | - |
| 708 | Y |  |  | 606 | Y |  |  | 100 | 100 | 96 | - | - |
| 709 | T |  |  | 607 | T |  |  | 45 | 92.1 | K at 38.4 | - | - |
| 710 | I |  |  | 608 | I |  |  | 45 | 87.8 | F at 43.2 | - | - |
| 711 | D |  |  | 609 | D |  |  | 25 | E at 48.9 | T at 39.9 | - | - |
| 712 | V |  |  | 610 | V |  |  | 65 | M at 39.6 | 41.8 | - | - |
| 713 | V |  |  | 611 | V |  |  | 35 | 74.8 | T at 45.1 | - | - |
| 714 | R |  |  | 612 | R |  |  | 85 | 89.9 | 73.3 | - | - |
| 715 | G |  |  | 613 | G |  |  | 30 | 58.3 | S at 44.1 | - | - |
| 716 | G |  |  | 614 | G |  |  | 55 | 96.4 | S at 55.2 | - | - |
| 717 | S |  |  | 615 | S |  |  | 20 | P at 47.5 | P at 36.7 | - | - |
| 718 | G |  |  | 616 | G |  |  | 40 | 83.5 | D at 33.0 | - | - |
| 719 | T |  |  | 617 | T |  |  | 10 | S at 86.3 | S at 58.2 | - | - |
| 720 | Y |  |  | 618 | Y |  |  | 85 | 97.1 | 78 | - | - |
| 721 | R |  |  | 619 | R |  |  | 25 | 70.5 | V at 22.3 | - | - |
| 722 | L |  |  | 620 | L |  |  | 80 | 97.8 | 75.4 | - | - |
| 723 | R |  |  | 621 | R |  |  | 40 | 85.6 | F at 32.4 | - | - |
| 724 | M |  |  | 622 | M |  |  | 70 | 80.6 | 46.2 | - | - |
| 725 | N | S | 44 | 623 | N |  |  | 100 | 95.7 | 96.9 | - | LND |
| 726 | N |  |  | 624 | K | N | 3 | 15 | E at 25.9 | G at 66.3 | - | ND |
| 727 | S |  |  | 625 | S |  |  | 90 | 97.1 | 79 | - | - |
| 728 | E |  |  | 626 | E |  |  | 35 | 67.6 | K at 28.3 | - | - |
| 729 | V |  |  | 627 | V |  |  | 45 | I at 56.1 | C at 31.6 | - | - |


| 730 | V |  |  | 628 | V |  |  | 15 | E at 81.3 | E at 53.1 | - | - |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 731 | A |  |  | 629 | A |  |  | 45 | 91.4 | V at 57.9 | - | - |
| 732 | E |  |  | 630 | E |  |  | 40 | 69.8 | G at 31.8 | - | - |
| 733 | I |  |  | 631 | I |  |  | 35 | 65.5 | V at 54.7 | - | - |
| 734 | H |  |  | 632 | H |  |  | 70 | 69.8 | R at 44.2 | - | - |
| 735 | T |  |  | 633 | T |  |  | 30 | 71.9 | R at 28.0 | - | - |
| 736 | L |  |  | 634 | L |  |  | 100 | 97.1 | 94.2 | - | - |
| 737 | R | G | 12 | 635 | R |  |  | 35 | 69.1 | S at 48.1 | - | VUS |
| 738 | D |  |  | 636 | D |  |  | 95 | 97.8 | 94.3 | - | - |
| 739 | G | E | 1 | 637 | G |  |  | 95 | 97.8 | 95.2 | - | PD |
| 740 | G |  |  | 638 | G |  |  | 95 | 92.1 | 90 | - | - |
| 741 | L |  |  | 639 | L |  |  | 95 | 89.2 | 91.3 | - | - |
| 742 | L |  |  | 640 | L | S | 1 | 100 | 91.4 | 95.1 | - | VUS |
| 743 | M | I | 5 | 641 | M |  |  | 45 | 85.6 | L at 28.3 | - | VUS |
| 744 | Q |  |  | 642 | Q |  |  | 45 | 89.9 | S at 32.8 | - | - |
| 745 | L |  |  | 643 | L |  |  | 60 | 95.7 | 58 | - | - |
| 746 | D |  |  | 644 | D |  |  | 65 | 93.5 | 58.5 | - | - |
| 747 | G |  |  | 645 | G |  |  | 100 | 95 | 95.5 | - | - |
| 748 | K |  |  | 646 | K |  |  | 30 | 83.5 | 25 | - | - |
| 749 | S |  |  | 647 | S |  |  | 95 | 95.7 | 91.6 | - | - |
| 750 | H |  |  | 648 | H |  |  | 60 | 95.7 | 66.9 | - | - |
| 751 | V |  |  | 649 | V |  |  | 45 | 88.5 | T at 39.3 | - | - |
| 752 | I |  |  | 650 | I |  |  | 50 | 87.8 | V at 34.0 | - | - |
| 753 | Y |  |  | 651 | Y |  |  | 100 | 95.7 | 95.5 | - | - |
| 754 | A |  |  | 652 | A |  |  | 45 | 93.5 | W at 37.6 | - | - |
| 755 | K |  |  | 653 | E |  |  | 55 | E at 94.2 | 60 | - | LND |
| 756 | E |  |  | 654 | E |  |  | 80 | 83.5 | 86.2 | - | - |
| 757 | E |  |  | 655 | E |  |  | 95 | 99.3 | 94.3 | - | - |
| 758 | A |  |  | 656 | A |  |  | 40 | 94.2 | V at 52.8 | - | - |
| 759 | T |  |  | 657 | A |  |  | 10 | A at 67.6 | A at 29.1 | - | LND |
| 760 | G |  |  | 658 | G |  |  | 55 | 98.6 | A at 35.8 | - | - |
| 761 | T |  |  | 659 | T |  |  | 65 | 98.6 | 55.3 | - | - |
| 762 | R | C | 6 | 660 | R |  |  | 100 | 97.1 | 96.6 | - | ND |
| 763 | L |  |  | 661 | L |  |  | 55 | 98.6 | 60.6 | - | - |
| 764 | L |  |  | 662 | L |  |  | 40 | 95 | S at 37.0 | - | - |
| 765 | I |  |  | 663 | I |  |  | 85 | 98.6 | 57.7 | - | - |
| 766 | D |  |  | 664 | D | G | 1 | 55 | 82.7 | 62.1 | - | LND |
| 767 | G | R | 1 | 665 | G |  |  | 45 | 98.6 | 43.2 | - | VUS |
| 768 | R | S | 1 | 666 | R |  |  | 30 | 67.6 | 62.2 | - | VUS |
| 769 | T |  |  | 667 | T |  |  | 95 | 99.3 | 94.6 | - | - |
| 770 | C | F | 1 | 668 | C |  |  | 90 | 99.3 | 83.7 | - | VUS |


| 771 | L |  |  | 669 | L |  |  | 55 | 95 | 59.1 | - | - |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 772 | L |  |  | 670 | L |  |  | 65 | 98.6 | 56.7 | - | - |
| 773 | Q |  |  | 671 | Q |  |  | 45 | 98.6 | E at 69.1 | - | - |
| 774 | N | S | 1 | 672 | N |  |  | 40 | 82.7 | K at 35.7 | - | VUS |
| 775 | D | V | 1 | 673 | D |  |  | 30 | 81.3 | E at 75.0 | - | VUS |
| 776 | H | D (N) | 3 (1) | 674 | H |  |  | 45 | 98.6 | N at 61.6 | - | VUS |
| 777 | D | N | 4 | 675 | D |  |  | 95 | 100 | 97.2 | - | PD |
| 778 | P |  |  | 676 | P |  |  | 100 | 100 | 99 | BCCP | - |
| 779 | S |  |  | 677 | S |  |  | 65 | 99.3 | T at 55.3 | BCCP | - |
| 780 | K |  |  | 678 | K |  |  | 35 | 73.4 | Q at 40.9 | BCCP | - |
| 781 | L |  |  | 679 | L |  |  | 85 | 100 | 88.9 | BCCP | - |
| 782 | M |  |  | 680 | M |  |  | 20 | L at 41.0 | R at 72.0 | BCCP | - |
| 783 | A | V | 1 | 681 | A |  |  | 40 | 97.1 | S at 43.2 | BCCP | VUS |
| 784 | E |  |  | 682 | E |  |  | 35 | 83.5 | P at 70.2 | BCCP | - |
| 785 | T |  |  | 683 | T |  |  | 50 | 99.3 | S at 68.7 | BCCP | - |
| 786 | P |  |  | 684 | P |  |  | 65 | 100 | 65.2 | BCCP | - |
| 787 | C |  |  | 685 | C |  |  | 45 | 97.1 | G at 79.0 | BCCP | - |
| 788 | K | M | 1 | 686 | K |  |  | 100 | 99.3 | 97.2 | BCCP | VUS |
| 789 | L |  |  | 687 | L |  |  | 100 | 100 | 96.3 | BCCP | - |
| 790 | L |  |  | 688 | M |  |  | 45 | 89.2 | V at 45.7 | BCCP | LND |
| 791 | R |  |  | 689 | R |  |  | 50 | 100 | 36.9 | BCCP | - |
| 792 | Y |  |  | 690 | Y |  |  | 65 | F at 56.8 | 55.5 | BCCP | - |
| 793 | L |  |  | 691 | L |  |  | 60 | 99.3 | 54.9 | BCCP | - |
| 794 | V |  |  | 692 | V | I | 37 | 95 | 84.9 | 85.6 | BCCP | ND |
| 795 | S |  |  | 693 | S | F | 1 | 20 | A at 54.7 | E at 60.4 | BCCP | LND |
| 796 | D |  |  | 694 | D | H | 1 | 80 | 99.3 | 56.5 | BCCP | LND |
| 797 | N |  |  | 695 | N |  |  | 15 | G at 71.9 | G at 91.2 | BCCP | - |
| 798 | S |  |  | 696 | S |  |  | 40 | 68.4 | G at 21.7 | BCCP | - |
| 799 | S |  |  | 697 | N |  |  | 15 | H at 84.9 | H at 90.0 | BCCP | LND |
| 800 | I | M | 1 | 698 | I |  |  | 35 | V at 70.5 | V at 72.7 | BCCP | VUS |
| 801 | D |  |  | 699 | D |  |  | 35 | 77.7 | 20.5 | BCCP | - |
| 802 | T |  |  | 700 | A |  |  | 5 | 92.1 | A at 71.4 | BCCP | LND |
| 803 | D |  |  | 701 | D |  |  | 45 | 98.6 | G at 76.9 | BCCP | - |
| 804 | T |  |  | 702 | T | M | 2 | 30 | 61.2 | Q at 51.7 | BCCP | ND |
| 805 | P | R | 2 | 703 | P |  |  | 55 | 98.6 | 43 | BCCP | VUS |
| 806 | Y |  |  | 704 | Y |  |  | 95 | 100 | 69.1 | BCCP | - |
| 807 | A |  |  | 705 | A |  |  | 100 | 97.8 | 98.4 | BCCP | - |
| 808 | E |  |  | 706 | E |  |  | 100 | 100 | 97.8 | BCCP | - |
| 809 | V |  |  | 707 | V | A | 1 | 55 | 98.6 | 52.3 | BCCP | LND |
| 810 | E |  |  | 708 | E |  |  | 100 | 100 | 99.9 | BCCP | - |
| 811 | V |  |  | 709 | V |  |  | 95 | 100 | 94.5 | BCCP | - |



| 853 | V |  |  | 751 | V |  |  | 90 | 100 | 93.6 | CEN | - |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 854 | R |  |  | 752 | R |  |  | 35 | 69.1 | K at 46.6 | CEN | - |
| 855 | K |  |  | 753 | K |  |  | 30 | 53.2 | H at 25.0 | CEN | - |
| 856 | A |  |  | 754 | A |  |  | 90 | 97.1 | 86.4 | CEN | - |
| 857 | K | E | 1 | 755 | E |  |  | 10 | E at 95.0 | E at 39.1 | CEN | LND |
| 858 | P | A | 9 | 756 | P | L | 3 | 80 | 97.8 | 64.8 | CEN | ND |
| 859 | F | L | 1 | 757 | F |  |  | 75 | 100 | 74.2 | CEN | VUS |
| 860 | R | H | 6 | 758 | H |  |  | 10 | H at 49.6 | T at 31.9 | CEN | LND |
| 861 | G |  |  | 759 | G |  |  | 95 | 95 | 84.4 | CEN | - |
| 862 | S |  |  | 760 | S |  |  | 35 | 55.4 | Q at 25.3 | CEN | - |
| 863 | F |  |  | 761 | F |  |  | 50 | 99.3 | L at 64.6 | CEN | - |
| 864 | P |  |  | 762 | P |  |  | 95 | 100 | 91.3 | CEN | - |
| 865 | R |  |  | 763 | R |  |  | 25 | V at 23.7 | E at 16.0 | CEN | - |
| 866 | L | F | 1 | 764 | L |  |  | 40 | 71.9 | 32.7 | CEN | VUS |
| 867 | G | E | 1 | 765 | G |  |  | 55 | 74.8 | 56.8 | CEN | VUS |
| 868 | L |  |  | 766 | L |  |  | 30 | P at 55.4 | P at 29.5 | CEN | - |
| 869 | P |  |  | 767 | P |  |  | 65 | 98.6 | 62.4 | CEN | - |
| 870 | T | R (P) | 2 (2) | 768 | T |  |  | 35 | 69.8 | 17.1 | CEN | VUS |
| 871 | A |  |  | 769 | A |  |  | 40 | 93.5 | I at 24.4 | CEN | - |
| 872 | I |  |  | 770 | I |  |  | 35 | 54 | V at 24.7 | CEN | - |
| 873 | S |  |  | 771 | S |  |  | 45 | 94.2 | G at 63.7 | CEN | - |
| 874 | G |  |  | 772 | G |  |  | 35 | 77 | E at 28.2 | CEN | - |
| 875 | K | E | 1 | 773 | R | K | 259 | 75 | 71.9 | 84 | CEN | ND |
| 876 | V | I | 1 | 774 | V |  |  | 45 | 98.6 | P at 41.2 | CEN | VUS |
| 877 | H |  |  | 775 | H |  |  | 75 | 100 | 50.2 | CEN | - |
| 878 | Q |  |  | 776 | Q |  |  | 60 | 69.8 | 56.1 | CEN | - |
| 879 | R |  |  | 777 | R |  |  | 40 | 69.1 | 44.8 | CEN | - |
| 880 | C |  |  | 778 | C |  |  | 30 | 74.1 | F at 58.2 | CEN | - |
| 881 | A |  |  | 779 | A |  |  | 45 | 97.8 | 26.4 | CEN | - |
| 882 | A |  |  | 780 | A |  |  | 45 | 88.5 | 22.5 | CEN | - |
| 883 | T |  |  | 781 | T |  |  | 25 | S at 84.9 | L at 33.6 | CEN | - |
| 884 | L |  |  | 782 | L |  |  | 70 | 76.3 | 46.8 | CEN | - |
| 885 | N |  |  | 783 | N |  |  | 45 | 91.4 | 32.5 | CEN | - |
| 886 | A |  |  | 784 | A |  |  | 40 | 81.3 | I at 26.4 | CEN | - |
| 887 | A |  |  | 785 | A |  |  | 40 | 92.1 | L at 71.4 | CEN | - |
| 888 | R |  |  | 786 | R | C | 1 | 35 | 73.4 | E at 19.0 | CEN | LND |
| 889 | M | L | 21 | 787 | M |  |  | 45 | 97.8 | N at 53.7 | CEN | VUS |
| 890 | I |  |  | 788 | I |  |  | 60 | 71.9 | 61.8 | CEN | - |
| 891 | L |  |  | 789 | L |  |  | 70 | 100 | 72.6 | CEN | - |
| 892 | A |  |  | 790 | A |  |  | 50 | 97.8 | 31.5 | CEN | - |
| 893 | G |  |  | 791 | G |  |  | 100 | 99.3 | 97.8 | CEN | - |


| 894 | Y |  |  | 792 | Y | 95 | 99.3 | 79.3 | CEN | - |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 895 | D |  |  | 793 | E | 25 | E at 71.9 | 45.7 | CEN | LND |
| 896 | H | D (N) | 12 (1) | 794 | H | 45 | 97.8 | L at 28.0 | CEN | VUS |
| 897 | K | R | 2 | 795 | K | 40 | N at 68.4 | 19.6 | CEN | VUS |
| 898 | V |  |  | 796 | V | 30 | I at 69.8 | M at 37.8 | CEN | - |
| 899 | D |  |  | 797 | D | 25 | 53.2 | K at 23.8 | CEN | - |
| 900 | E |  |  | 798 | E | 45 | 64.8 | 28.2 | CEN | - |
| 901 | V |  |  | 799 | V | 45 | 97.1 | T at 30.1 | CEN | - |
| 902 | L |  |  | 800 | V | 20 | V at 93.5 | V at 44.7 | CEN | LND |
| 903 | Q | H | 78 | 801 | Q | 60 | 82 | 29.5 | CEN | VUS |
| 904 | D |  |  | 802 | D | 45 | 55.4 | E at 25.2 | CEN | - |
| 905 | L |  |  | 803 | L | 90 | 97.8 | 84.4 | CEN | - |
| 906 | L |  |  | 804 | L | 30 | 67.6 | M at 28.2 | CEN | - |
| 907 | N | H | 1 | 805 | N | 30 | 48.2 | E at 26.5 | CEN | VUS |
| 908 | C |  |  | 806 | C | 45 | 97.8 | V at 36.6 | CEN | - |
| 909 | L |  |  | 807 | L | 100 | 98.6 | 93.4 | CEN | - |
| 910 | D |  |  | 808 | D | 45 | 97.1 | R at 60.9 | CEN | - |
| 911 | S | T | 8 | 809 | S | 30 | 67.8 | D at 51.1 | CEN | VUS |
| 912 | P |  |  | 810 | P | 90 | 99.3 | 85.5 | CEN | - |
| 913 | E |  |  | 811 | E | 50 | 90.7 | 46.2 | CEN | - |
| 914 | L |  |  | 812 | L | 100 | 99.3 | 95.8 | CEN | - |
| 915 | P |  |  | 813 | P | 100 | 98.6 | 95.4 | CEN | - |
| 916 | F |  |  | 814 | F | 45 | 95 | Y at 37.9 | CEN | - |
| 917 | L |  |  | 815 | L | 80 | 97.8 | 50.5 | CEN | - |
| 918 | Q | L | 1 | 816 | Q | 45 | 97.8 | E at 68.5 | CEN | VUS |
| 919 | W |  |  | 817 | W | 60 | 98.6 | 53.1 | CEN | - |
| 920 | Q |  |  | 818 | Q | 70 | 71.2 | 45.7 | CEN | - |
| 921 | E |  |  | 819 | E | 65 | 98.6 | 39.3 | CEN | - |
| 922 | C |  |  | 820 | C | 25 | 51.8 | I at 25.5 | CEN | - |
| 923 | F |  |  | 821 | F | 30 | M at 53.2 | M at 35.2 | CEN | - |
| 924 | A |  |  | 822 | A | 30 | S at 56.1 | S at 54.3 | CEN | - |
| 925 | V |  |  | 823 | V | 45 | 97.8 | A at 34.3 | CEN | - |
| 926 | L |  |  | 824 | L | 60 | 99.3 | 63.1 | CEN | - |
| 927 | A |  |  | 825 | A | 60 | 97.1 | H at 31.2 | CEN | - |
| 928 | T |  |  | 826 | T | 45 | 87.1 | G at 37.3 | CEN | - |
| 929 | R |  |  | 827 | R | 100 | 100 | 93.1 | CEN | - |
| 930 | L |  |  | 828 | L | 55 | 95.7 | I at 36.1 | CEN | - |
| 931 | P |  |  | 829 | P | 95 | 100 | 94.5 | CEN | - |
| 932 | K |  |  | 830 | K | 35 | 68.4 | Q at 22.9 | CEN | - |
| 933 | D |  |  | 831 | N | 30 | 61.2 | K at 33.4 | CEN | LND |
| 934 | L |  |  | 832 | L | 65 | 100 | 63.4 | CEN | - |


| 935 | R | K | 2 | 833 | R |  |  | 35 | 50.4 | E at 37.6 | CEN | VUS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 936 | N |  |  | 834 | N |  |  | 25 | 52.5 | K at 28.2 | CEN | - |
| 937 | M |  |  | 835 | M | I | 6 | 20 | E at 79.1 | Q at 21.7 | CEN | ND |
| 938 | L |  |  | 836 | L |  |  | 55 | 97.8 | 41.4 | CEN | - |
| 939 | E |  |  | 837 | E |  |  | 40 | 76.3 | R at 24.9 | CEN | - |
| 940 | L |  |  | 838 | S |  |  | 5 | S at 33.8 | K at 22.0 | CEN | LND |
| 941 | K | I | 1 | 839 | K |  |  | 70 | 86.3 | L at 19.9 | CEN | VUS |
| 942 | Y |  |  | 840 | Y |  |  | 45 | 84.2 | M at 30.4 | CEN | - |
| 943 | K |  |  | 841 | R |  |  | 25 | 57.6 | A at 24.6 | CEN | LND |
| 944 | E |  |  | 842 | E |  |  | 55 | 59.2 | R at 26.5 | CEN | - |
| 945 | F |  |  | 843 | F |  |  | 20 | Y at 58.3 | Y at 42.6 | CEN | - |
| 946 | E |  |  | 844 | E |  |  | 35 | 70.5 | A at 24.6 | CEN | - |
| 947 | I |  |  | 845 | S |  |  | 10 | L at 42.5 | S at 40.6 | CEN | LND |
| 948 | I |  |  | 846 | I |  |  | 25 | 46 | N at 36.7 | CEN | - |
| 949 | S | F | 109 | 847 | S |  |  | 25 | 49.6 | I at 28.5 | CEN | VUS |
| 950 | K |  |  | 848 | R |  |  | 10 | S at 30.9 | T at 28.9 | CEN | LND |
| 951 | T |  |  | 849 | N |  |  | 40 | H at 22.3 | S at 38.1 | CEN | LND |
| 952 | S |  |  | 850 | S |  |  | 60 | 35.3 | V at 27.7 | CEN | - |
| 953 | L |  |  | 851 | L | M | 1 | 20 | K at 42.5 | K at 8.9 | CEN | LND |
| 954 | T |  |  | 852 | T |  |  | 25 | N at 39.6 | L at 29.4 | CEN | - |
| 955 | P |  |  | 853 | T |  |  | 5 | K at 36.7 | C at 21.3 | CEN | LND |
| 956 | D |  |  | 854 | D |  |  | 45 | 89.2 | E at 29.8 | CEN | - |
| 957 | F |  |  | 855 | F |  |  | 100 | 100 | 94.8 | CEN | - |
| 958 | P |  |  | 856 | P |  |  | 100 | 100 | 91.9 | CEN | - |
| 959 | A |  |  | 857 | A |  |  | 55 | 75.5 | 53.4 | CEN | - |
| 960 | K |  |  | 858 | K |  |  | 50 | 82.7 | 38.4 | CEN | - |
| 961 | L | V | 1 | 859 | L |  |  | 40 | 68.4 | Q at 46.0 | CEN | VUS |
| 962 | L |  |  | 860 | L |  |  | 65 | 97.8 | 55.8 | CEN | - |
| 963 | K |  |  | 861 | K |  |  | 25 | R at 62.6 | A at 30.3 | CEN | - |
| 964 | G | R | 9 | 862 | G |  |  | 30 | 62.6 | K at 37.8 | CEN | VUS |
| 965 | I |  |  | 863 | I |  |  | 65 | 51.1 | 33.6 | CEN | - |
| 966 | L |  |  | 864 | L |  |  | 50 | 51.1 | 43.8 | CEN | - |
| 967 | E |  |  | 865 | E |  |  | 45 | 94.2 | D at 38.7 | CEN | - |
| 968 | A |  |  | 866 | A |  |  | 35 | 67.6 | S at 22.2 | CEN | - |
| 969 | H |  |  | 867 | H |  |  | 60 | 52.5 | 40 | CEN | - |
| 970 | L |  |  | 868 | L |  |  | 55 | 93.5 | 35.4 | CEN | - |
| 971 | S |  |  | 869 | S |  |  | 20 | A at 43.9 | A at 40.6 | CEN | - |
| 972 | S |  |  | 870 | S |  |  | 25 | 48.9 | T at 29.5 | CEN | - |
| 973 | C |  |  | 871 | C |  |  | 35 | 66.2 | L at 31.6 | CEN | - |
| 974 | D |  |  | 872 | D |  |  | 20 | S at 48.9 | V at 22.2 | CEN | - |
| 975 | E | K | 192 | 873 | E |  |  | 45 | 74.1 | R at 19.0 | CEN | VUS |


| 976 | K |  |  | 874 | K |  |  | 35 | 93.5 | 40.9 | CEN | - |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 977 | E |  |  | 875 | E |  |  | 45 | 79.1 | 30.9 | CEN | - |
| 978 | R |  |  | 876 | R |  |  | 65 | K at 43.2 | 38.8 | CEN | - |
| 979 | G |  |  | 877 | G |  |  | 25 | 48.2 | E at 22.6 | CEN | - |
| 980 | S | A | 9 | 878 | A |  |  | 5 | T at 48.9 | V at 26.1 | CEN | LND |
| 981 | L |  |  | 879 | L |  |  | 40 | Q at 33.1 | F at 36.3 | CEN | - |
| 982 | E |  |  | 880 | E |  |  | 45 | 95 | F at 28.9 | CEN | - |
| 983 | R | S | 13 | 881 | R |  |  | 45 | 99.3 | M at 21.4 | CEN | VUS |
| 984 | L |  |  | 882 | L |  |  | 45 | 97.8 | T at 26.2 | CEN | - |
| 985 | I |  |  | 883 | I |  |  | 25 | V at 72.7 | T at 28.9 | CEN | - |
| 986 | E |  |  | 884 | E |  |  | 50 | 90.7 | Q at 31.8 | CEN | - |
| 987 | P |  |  | 885 | P |  |  | 65 | 100 | 62.1 | CEN | - |
| 988 | L |  |  | 886 | L |  |  | 65 | 100 | 64 | CEN | - |
| 989 | M |  |  | 887 | M |  |  | 40 | 78.4 | V at 34.2 | CEN | - |
| 990 | S |  |  | 888 | S | N | 7 | 40 | 89.2 | Q at 37.2 | CEN | ND |
| 991 | L |  |  | 889 | L |  |  | 80 | 95.7 | 52 | CEN | - |
| 992 | V |  |  | 890 | A |  |  | 55 | 59 | 41.1 | CEN | LND |
| 993 | K |  |  | 891 | K |  |  | 45 | 96.4 | Q at 28.9 | CEN | - |
| 994 | S |  |  | 892 | S |  |  | 45 | 98.6 | R at 43.6 | CEN | - |
| 995 | Y | F | 1 | 893 | Y |  |  | 100 | 99.3 | 89.1 | CEN | VUS |
| 996 | E |  |  | 894 | E |  |  | 45 | 100 | R at 30.6 | CEN | - |
| 997 | G |  |  | 895 | G |  |  | 45 | 97.8 | 25.2 | CEN | - |
| 998 | G | S | 1 | 896 | G |  |  | 100 | 100 | 95.4 | CEN | VUS |
| 999 | R |  |  | 897 | R |  |  | 45 | 98.6 | L at 32.1 | CEN | - |
| 1000 | E |  |  | 898 | E |  |  | 50 | 97.8 | R at 31.2 | CEN | - |
| 1001 | S |  |  | 899 | S |  |  | 45 | 89.9 | G at 33.4 | CEN | - |
| 1002 | H |  |  | 900 | H |  |  | 80 | 100 | 66.4 | CEN | - |
| 1003 | A | T | 1 | 901 | A |  |  | 45 | 97.8 | E at 40.8 | CEN | VUS |
| 1004 | R | H | 1 | 902 | R |  |  | 25 | 56.8 | K at 27.7 | CEN | VUS |
| 1005 | L |  |  | 903 | V |  |  | 5 | V at 36.7 | A at 23.4 | CEN | LND |
| 1006 | I |  |  | 904 | I |  |  | 40 | 71.2 | V at 57.1 | CEN | - |
| 1007 | V |  |  | 905 | V |  |  | 80 | 98.6 | 51.7 | CEN | - |
| 1008 | H |  |  | 906 | H |  |  | 20 | K at 43.9 | K at 13.2 | CEN | - |
| 1009 | S |  |  | 907 | S |  |  | 45 | 94.2 | 30.6 | CEN | - |
| 1010 | L |  |  | 908 | L |  |  | 95 | 100 | 85.3 | CEN | - |
| 1011 | F |  |  | 909 | F |  |  | 45 | 98.6 | L at 65.4 | CEN | - |
| 1012 | E |  |  | 910 | E |  |  | 55 | 90.7 | 42.6 | CEN | - |
| 1013 | E |  |  | 911 | E |  |  | 50 | 89.9 | Q at 33.9 | CEN | - |
| 1014 | Y |  |  | 912 | Y |  |  | 100 | 100 | 96 | CEN | - |
| 1015 | L |  |  | 913 | L |  |  | 75 | 99.3 | 45.3 | CEN | - |
| 1016 | S |  |  | 914 | S |  |  | 40 | 80.6 | 22.2 | CEN | - |


| 1017 | V |  |  | 915 | V | 95 | 95 | 87.1 | CEN | - |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1018 | E |  |  | 916 | E | 100 | 100 | 99.3 | CEN | - |
| 1019 | E |  |  | 917 | E | 45 | 98.6 | 22.6 | CEN | - |
| 1020 | L |  |  | 918 | L | 60 | 95.7 | 55.2 | CEN | - |
| 1021 | F |  |  | 919 | F | 100 | 100 | 97.2 | CEN | - |
| 1022 | N |  |  | 920 | N | 30 | S at 79.9 | S at 32.5 | CEN | - |
| 1023 | D |  |  | 921 | D | 45 | 94.2 | G at 25.6 | CEN | - |
| 1024 | N |  |  | 922 | N | 30 | 55.4 | H at 28.6 | CEN | - |
| 1025 | M |  |  | 923 | M | 20 | I at 82.0 | Y at 28.3 | CEN | - |
| 1026 | L |  |  | 924 | L | 20 | Q at 86.3 | D at 28.2 | CEN | - |
| 1027 | A |  |  | 925 | A | 20 | 55.4 | K at 27.3 | CEN | - |
| 1028 | D |  |  | 926 | D | 50 | 97.1 | 38.2 | CEN | - |
| 1029 | V |  |  | 927 | V | 55 | 99.3 | 54.1 | CEN | - |
| 1030 | I | T | 2 | 928 | I | 60 | 99.3 | 54.1 | CEN | VUS |
| 1031 | E |  |  | 929 | E | 45 | 99.3 | L at 41.1 | CEN | - |
| 1032 | R |  |  | 930 | R | 45 | 84.2 | K at 25.9 | CEN | - |
| 1033 | M |  |  | 931 | M | 20 | L at 88.5 | L at 88.5 | CEN | - |
| 1034 | R |  |  | 932 | R | 100 | 99.3 | 93.4 | CEN | - |
| 1035 | Q |  |  | 933 | Q | 20 | L at 66.2 | E at 37.3 | CEN | - |
| 1036 | Q |  |  | 934 | L | 50 | 91.4 | 39.6 | CEN | LND |
| 1037 | Y |  |  | 935 | Y | 25 | 55.4 | N at 42.1 | CEN | - |
| 1038 | K |  |  | 936 | K | 65 | 51.2 | 69.6 | CEN | - |
| 1039 | K |  |  | 937 | K | 50 | 99.3 | D at 35.5 | CEN | - |
| 1040 | D |  |  | 938 | D | 95 | 100 | 80.7 | CEN | - |
| 1041 | R | Q | 13 | 939 | L | 10 | L at 95.7 | L at 44.4 | CEN | LND |
| 1042 | L |  |  | 940 | L | 20 | 49.6 | D at 14.4 | CEN | - |
| 1043 | K |  |  | 941 | K | 65 | 97.1 | 51.6 | CEN | - |
| 1044 | I |  |  | 942 | I | 30 | V at 69.1 | V at 85.8 | CEN | - |
| 1045 | V |  |  | 943 | V | 50 | 96.4 | 49.8 | CEN | - |
| 1046 | D | Y | 1 | 944 | D | 45 | 82.7 | 26.1 | CEN | VUS |
| 1047 | I |  |  | 945 | I | 50 | 97.1 | 35.5 | CEN | - |
| 1048 | V |  |  | 946 | V | 55 | 99.3 | 54.3 | CEN | - |
| 1049 | L |  |  | 947 | L | 55 | 84.9 | 59.2 | CEN | - |
| 1050 | S |  |  | 948 | S | 100 | 100 | 93.9 | CEN | - |
| 1051 | H |  |  | 949 | H | 100 | 98.6 | 97.3 | CEN | - |
| 1052 | Q |  |  | 950 | Q | 45 | 99.3 | S at 33.7 | CEN | - |
| 1053 | G |  |  | 951 | G | 45 | 96.4 | Q at 29.2 | CEN | - |
| 1054 | I |  |  | 952 | I | 20 | V at 74.8 | V at 70.9 | CEN | - |
| 1055 | I |  |  | 953 | K | 5 | K at 49.6 | S at 17.4 | CEN | LND |
| 1056 | H |  |  | 954 | N | 5 | N at 43.2 | K at 28.2 | CEN | LND |
| 1057 | K |  |  | 955 | K | 100 | 100 | 93.9 | CEN | - |


| 1058 | N |  |  | 956 | N |  |  | 95 | 72.7 | 79.5 | CEN | - |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1059 | K |  |  | 957 | K |  |  | 45 | 95.7 | 27.9 | CEN | - |
| 1060 | L |  |  | 958 | L |  |  | 100 | 100 | 93.6 | CEN | - |
| 1061 | V |  |  | 959 | V | I | 1 | 65 | I at 77.0 | 45.3 | CEN | LND |
| 1062 | L |  |  | 960 | L |  |  | 50 | 87.1 | 53.1 | CEN | - |
| 1063 | R | Q | 5 | 961 | R |  |  | 30 | 56.1 | A at 41.8 | CEN | VUS |
| 1064 | L |  |  | 962 | L |  |  | 80 | 99.3 | 59.7 | CEN | - |
| 1065 | M |  |  | 963 | M |  |  | 45 | 91.4 | L at 48.7 | CEN | - |
| 1066 | E |  |  | 964 | E |  |  | 40 | 85.6 | D at 51.3 | CEN | - |
| 1067 | Q |  |  | 965 | Q |  |  | 35 | K at 36.0 | 25.6 | CEN | - |
| 1068 | L |  |  | 966 | L |  |  | 75 | 95 | 51.9 | CEN | - |
| 1069 | V |  |  | 967 | V |  |  | 45 | 99.3 | R at 22.5 | CEN | - |
| 1070 | Y |  |  | 968 | Y |  |  | 40 | 97.1 | P at 33.4 | CEN | - |
| 1071 | P |  |  | 969 | P |  |  | 40 | 95.7 | 25.5 | CEN | - |
| 1072 | N |  |  | 970 | N |  |  | 45 | 93.5 | D at 20.4 | CEN | - |
| 1073 | P |  |  | 971 | P |  |  | 45 | 99.3 | 47.4 | CEN | - |
| 1074 | A |  |  | 972 | A |  |  | 35 | 76.3 | 17.2 | CEN | - |
| 1075 | A |  |  | 973 | A |  |  | 35 | 92.8 | L at 27.0 | CEN | - |
| 1076 | Y |  |  | 974 | Y |  |  | 45 | 99.3 | 20.8 | CEN | - |
| 1077 | R |  |  | 975 | R |  |  | 50 | 91.4 | T at 21.0 | CEN | - |
| 1078 | E |  |  | 976 | D |  |  | 5 | D at 92.8 | D at 43.2 | CEN | LND |
| 1079 | K | N | 1 | 977 | K |  |  | 20 | Q at 56.8 | E at 29.5 | CEN | VUS |
| 1080 | L |  |  | 978 | L |  |  | 95 | 100 | 54.3 | CEN | - |
| 1081 | I |  |  | 979 | I |  |  | 35 | 79.1 | A at 22.2 | CEN | - |
| 1082 | R |  |  | 980 | R |  |  | 45 | 100 | E at 28.5 | CEN | - |
| 1083 | F |  |  | 981 | F |  |  | 45 | 97.8 | L at 68.4 | CEN | - |
| 1084 | S |  |  | 982 | S |  |  | 40 | 93.5 | T at 42.9 | CEN | - |
| 1085 | A | E | 1 | 983 | T |  |  | 15 | 31.7 | E at 29.7 | CEN | LND |
| 1086 | L |  |  | 984 | L |  |  | 100 | 100 | 95.7 | CEN | - |
| 1087 | N |  |  | 985 | N |  |  | 50 | 95.7 | 26.7 | CEN | - |
| 1088 | H |  |  | 986 | H |  |  | 45 | 96.4 | E at 29.1 | CEN | - |
| 1089 | T |  |  | 987 | T |  |  | 45 | 66.2 | S at 42.1 | CEN | - |
| 1090 | N |  |  | 988 | N |  |  | 20 | 38.9 | R at 34.8 | CEN | - |
| 1091 | Y | S | 1 | 989 | Y |  |  | 45 | 99.3 | T at 30.0 | CEN | VUS |
| 1092 | S |  |  | 990 | S |  |  | 50 | 70.5 | 38.5 | CEN | - |
| 1093 | Q |  |  | 991 | E |  |  | 5 | E at 55.4 | K at 63.9 | CEN | LND |
| 1094 | L |  |  | 992 | L |  |  | 40 | 95.7 | V at 72.6 | CEN | - |
| 1095 | A | P | 1 | 993 | A |  |  | 85 | 95.7 | 74.4 | CEN | VUS |
| 1096 | L |  |  | 994 | L |  |  | 95 | 98.6 | 93.9 | CEN | - |
| 1097 | K |  |  | 995 | K |  |  | 60 | 97.8 | 57.7 | CEN | - |
| 1098 | A |  |  | 996 | A |  |  | 95 | 98.6 | 94.5 | CEN | - |



| 1140 | I |  |  | 1038 | I |  |  | 40 | 94.2 | C at 22.3 | CEN | - |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1141 | S | R | 1 | 1039 | N |  |  | 10 | N at 69.1 | L at 22.9 | CEN | LND |
| 1142 | E |  |  | 1040 | E |  |  | 30 | 74.1 | 59.1 | CEN | - |
| 1143 | T |  |  | 1041 | R |  |  | 5 | R at 68.4 | N at 28.2 | CEN | LND |
| 1144 | M |  |  | 1042 | I |  |  | 40 | 96.4 | L at 57.3 | CEN | LND |
| 1145 | E | K | 1 | 1043 | E |  |  | 40 | 87.1 | K at 43.2 | CEN | VUS |
| 1146 | N |  |  | 1044 | D |  |  | 10 | D at 84.9 | E at 31.9 | CEN | LND |
| 1147 | L |  |  | 1045 | L |  |  | 95 | 98.6 | 70 | CEN | - |
| 1148 | V | L | 2 | 1046 | V |  |  | 50 | 98.6 | 46.5 | CEN | VUS |
| 1149 | S |  |  | 1047 | S | C | 1 | 30 | 58.3 | D at 42.3 | CEN | LND |
| 1150 | S |  |  | 1048 | A |  |  | 60 | A at 92.1 | 71.8 | CEN | LND |
| 1151 | S |  |  | 1049 | S |  |  | 15 | P at 90.7 | E at 29.7 | CEN | - |
| 1152 | L |  |  | 1050 | L |  |  | 45 | 85.6 | Y at 34.5 | CEN | - |
| 1153 | A |  |  | 1051 | A |  |  | 35 | 70.5 | T at 36.0 | CEN | - |
| 1154 | V |  |  | 1052 | V |  |  | 55 | 100 | 60.3 | CEN | - |
| 1155 | E | D | 3 | 1053 | E |  |  | 45 | 99.3 | F at 66.3 | CEN | VUS |
| 1156 | D |  |  | 1054 | D |  |  | 95 | 100 | 94.9 | CEN | - |
| 1157 | A |  |  | 1055 | A |  |  | 45 | 99.3 | V at 63.4 | CEN | - |
| 1158 | L |  |  | 1056 | L |  |  | 100 | 100 | 96.7 | CEN | - |
| 1159 | V | M | 9 | 1057 | V |  |  | 40 | 82 | P at 41.8 | CEN | VUS |
| 1160 | G |  |  | 1058 | G |  |  | 25 | 50.4 | N at 14.8 | CEN | - |
| 1161 | L |  |  | 1059 | L |  |  | 45 | 98.6 | F at 71.4 | CEN | - |
| 1162 | F |  |  | 1060 | F |  |  | 95 | 100 | 87.9 | CEN | - |
| 1163 | D |  |  | 1061 | D |  |  | 45 | 100 | Y at 29.7 | CEN | - |
| 1164 | H |  |  | 1062 | H |  |  | 90 | 72.7 | 81.3 | CEN | - |
| 1165 | S | C | 2 | 1063 | S |  |  | 65 | 86.3 | 42.1 | CEN | VUS |
| 1166 | D |  |  | 1064 | D | E | 1 | 65 | 98.6 | 62.7 | CEN | LND |
| 1167 | H |  |  | 1065 | H |  |  | 25 | 53.2 | P at 31.8 | CEN | - |
| 1168 | T |  |  | 1066 | T |  |  | 45 | 97.8 | W at 28.3 | CEN | - |
| 1169 | L | F | 2 | 1067 | L |  |  | 45 | 86.3 | V at 71.1 | CEN | VUS |
| 1170 | Q |  |  | 1068 | Q |  |  | 45 | 97.8 | 21.9 | CEN | - |
| 1171 | R | I | 1 | 1069 | R |  |  | 35 | 71.9 | L at 27.7 | CEN | VUS |
| 1172 | R | W | 5 | 1070 | R |  |  | 40 | 85.6 | A at 70.5 | CEN | VUS |
| 1173 | V | L | 6 | 1071 | V |  |  | 45 | 98.6 | A at 66.4 | CEN | VUS |
| 1174 | V |  |  | 1072 | V |  |  | 35 | 67.6 | L at 62.2 | CEN | - |
| 1175 | E |  |  | 1073 | E |  |  | 95 | 97.1 | 90.9 | CEN | - |
| 1176 | T | I | 1 | 1074 | T |  |  | 45 | 92.8 | V at 68.2 | CEN | VUS |
| 1177 | Y |  |  | 1075 | Y |  |  | 100 | 100 | 96.9 | CEN | - |
| 1178 | I |  |  | 1076 | I |  |  | 50 | 74.1 | V at 61.2 | CEN | - |
| 1179 | H |  |  | 1077 | R |  |  | 5 | R at 69.8 | R at 87.6 | CEN | LND |
| 1180 | R |  |  | 1078 | R |  |  | 95 | 100 | 95.2 | CEN | - |


| 1181 | L | V | 1 | 1079 | L |  |  | 45 | 99.3 | A at 57.7 | CEN | VUS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1182 | Y |  |  | 1080 | Y |  |  | 100 | 100 | 98.4 | CEN | - |
| 1183 | Q |  |  | 1081 | Q |  |  | 45 | 99.3 | R at 42.3 | CEN | - |
| 1184 | P |  |  | 1082 | P |  |  | 40 | 88.5 | A at 61.0 | CEN | - |
| 1185 | Y |  |  | 1083 | Y |  |  | 90 | 71.2 | 88 | CEN | - |
| 1186 | V | G | 2 | 1084 | V |  |  | 25 | L at 87.8 | E at 28.6 | CEN | VUS |
| 1187 | V | F (I) (G) | 1 (1) (1) | 1085 | V |  |  | 50 | 97.1 | L at 55.3 | CEN | VUS |
| 1188 | K |  |  | 1086 | K |  |  | 45 | 82.7 | 37.2 | CEN | - |
| 1189 | E |  |  | 1087 | D |  |  | 20 | G at 54.7 | S at 30.4 | CEN | LND |
| 1190 | S |  |  | 1088 | S |  |  | 45 | 99.3 | I at 31.0 | CEN | - |
| 1191 | V |  |  | 1089 | V |  |  | 20 | 61.2 | Q at 32.5 | CEN | - |
| 1192 | R |  |  | 1090 | R |  |  | 35 | 71.2 | Y at 32.2 | CEN | - |
| 1193 | M |  |  | 1091 | M |  |  | 40 | 78.4 | 17.7 | CEN | - |
| 1194 | Q |  |  | 1092 | Q |  |  | 60 | 71.2 | 34.9 | CEN | - |
| 1195 | W |  |  | 1093 | W |  |  | 35 | 75.5 | L at 27.3 | CEN | - |
| 1196 | H |  |  | 1094 | H |  |  | 35 | 69.1 | 15.9 | CEN | - |
| 1197 | Q |  |  | 1095 | R |  |  | 10 | R at 66.9 | D at 37.5 | CEN | LND |
| 1198 | S |  |  | 1096 | S |  |  | 35 | 89.2 | 22.3 | CEN | - |
| 1199 | G |  |  | 1097 | G |  |  | 45 | 96.4 | P at 26.1 | CEN | - |
| 1200 | V | L | 9 | 1098 | L |  |  | 10 | L at 68.4 | C at 23.2 | CEN | LND |
| 1201 | I |  |  | 1099 | L | I | 267 | 50 | 88.5 | 34.5 | CEN | ND |
| 1202 | A |  |  | 1100 | A |  |  | 40 | 94.2 | V at 45.0 | CEN | - |
| 1203 | S |  |  | 1101 | S |  |  | 20 | 44.6 | 33.1 | CEN | - |
| 1204 | W |  |  | 1102 | W |  |  | 65 | 100 | 64.3 | CEN | - |
| 1205 | E |  |  | 1103 | D | E | 392 | 45 | 90.7 | Q at 34.5 | CEN | ND |
| 1206 | F | L | 1 | 1104 | F |  |  | 100 | 100 | 96.3 | CEN | LD |
| 1207 | L |  |  | 1105 | L |  |  | 25 | 39.6 | I at 27.7 | CEN | - |
| 1208 | E |  |  | 1106 | E |  |  | 30 | 86.3 | D at 40.3 | CEN | - |
| - | - | - | - | 1107 | E |  |  | - | - | - | - | LND |
| 1209 | H |  |  | 1108 | H |  |  | 45 | 72.7 | L at 22.3 | CEN | - |
| 1210 | F |  |  | 1109 | M |  |  | 5 | I at 37.4 | S at 30.1 | CEN | LND |
| 1211 | E |  |  | 1110 | E |  |  | 35 | 59 | Y at 36.0 | CEN | - |
| 1212 | R |  |  | 1111 | R |  |  | 25 | 47.5 | L at 20.4 | CEN | - |
| 1213 | K |  |  | 1112 | K |  |  | 25 | 46.8 | V at 14.1 | CEN | - |
| 1214 | N |  |  | 1113 | N |  |  | 35 | 69.8 | 30.3 | CEN | - |
| 1215 | T |  |  | 1114 | I |  |  | 5 | I at 7.2 | M at 15.1 | CEN | LND |
| 1216 | G |  |  | 1115 | G |  |  | 20 | 14.4 | < 5 | CEN | - |
| 1217 | P |  |  | 1116 | L |  |  | 5 | G at 22.3 | G at 17.1 | CEN | LND |
| 1218 | D |  |  | 1117 | D |  |  | 20 | G at 30.2 | S at 11.8 | CEN | - |
| 1219 | D | G (Y) | 20 (2) | 1118 | D | N | 3 | 20 | E at 25.9 | S at 13.6 | CEN | ND |
| 1220 | H |  |  | 1119 | H | P | 37 | 5 | D at 42.5 | D at 8.6 | CEN | ND |


| 1221 | E |  |  | 1120 | D |  |  | 15 | Q at 23.0 | T at 7.2 | CEN | LND |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1222 | I | M | 2 | 1121 | T |  |  | 10 | T at 23.0 | P at 33.6 | CEN | LND |
| 1223 | S |  |  | 1122 | S |  |  | 30 | 30.2 | 5.3 | CEN | - |
| 1224 | E |  |  | 1123 | E |  |  | 20 | D at 19.4 | < 5 | CEN | - |
| 1225 | K |  |  | 1124 | K |  |  | 30 | 52.5 | L at 17.8 | CEN | - |
| 1226 | G |  |  | 1125 | G |  |  | 15 | P at 26.6 | R at 53.5 | CEN | - |
| 1227 | I |  |  | 1126 | L |  |  | 5 | L at 27.3 | K at 21.3 | CEN | LND |
| 1228 | V |  |  | 1127 | V |  |  | 35 | 50.4 | 10.5 | CEN | - |
| 1229 | A | V | 1 | 1128 | E | G | 1 | 5 | E at 64.8 | E at 15.4 | CEN | LND |
| 1230 | K |  |  | 1129 | K |  |  | 30 | 52.5 | 11.2 | CEN | - |
| 1231 | S |  |  | 1130 | R | H | 263 | 20 | H at 34.5 | V at 11.1 | CEN | ND |
| 1232 | S |  |  | 1131 | S |  |  | 45 | 25.2 | 22.2 | CEN | - |
| 1233 | K |  |  | 1132 | K |  |  | 15 | E at 60.4 | E at 21.6 | CEN | - |
| 1234 | R |  |  | 1133 | R |  |  | 20 | K at 55.4 | Q at 22.8 | CEN | - |
| 1235 | K |  |  | 1134 | K |  |  | 25 | 50.4 | R at 39.0 | CEN | - |
| 1236 | R |  |  | 1135 | W |  |  | 5 | W at 76.3 | M at 20.4 | CEN | LND |
| 1237 | G |  |  | 1136 | G |  |  | 65 | 98.6 | 97.6 | CEN | - |
| 1238 | T | I | 10 | 1137 | A |  |  | 10 | A at 61.2 | A at 36.4 | CEN | LND |
| 1239 | M | I | 1 | 1138 | M |  |  | 50 | 99.3 | 52.9 | CEN | VUS |
| 1240 | V |  |  | 1139 | V |  |  | 50 | 94.2 | 61.8 | CEN | - |
| 1241 | I |  |  | 1140 | I |  |  | 25 | 64 | A at 26.1 | CEN | - |
| 1242 | I |  |  | 1141 | I |  |  | 35 | 69.1 | F at 34.9 | CEN | - |
| 1243 | K |  |  | 1142 | K |  |  | 50 | 95.7 | 30.3 | CEN | - |
| 1244 | S |  |  | 1143 | S |  |  | 45 | 99.3 | 31 | CEN | - |
| 1245 | L |  |  | 1144 | L |  |  | 60 | 95 | 55 | CEN | - |
| 1246 | Q |  |  | 1145 | Q |  |  | 30 | 59 | E at 37.0 | CEN | - |
| 1247 | F | C | 1 | 1146 | F |  |  | 55 | 51.1 | D at 42.4 | CEN | VUS |
| 1248 | L |  |  | 1147 | L |  |  | 40 | 74.1 | F at 30.7 | CEN | - |
| 1249 | P | R | 3 | 1148 | P |  |  | 25 | 53.2 | E at 27.6 | CEN | VUS |
| 1250 | S |  |  | 1149 | S |  |  | 15 | T at 41.0 | E at 24.7 | CEN | - |
| 1251 | I |  |  | 1150 | I |  |  | 30 | A at 48.9 | 20.1 | CEN | - |
| 1252 | I |  |  | 1151 | I |  |  | 45 | 84.9 | L at 35.4 | CEN | - |
| 1253 | N |  |  | 1152 | S | T | 7 | 20 | S at 33.1 | D at 27.6 | CEN | ND |
| 1254 | A |  |  | 1153 | A |  |  | 45 | 87.1 | E at 26.2 | CEN | - |
| 1255 | S |  |  | 1154 | A |  |  | 5 | A at 94.2 | A at 48.0 | CEN | LND |
| 1256 | L |  |  | 1155 | L |  |  | 50 | 98.6 | 70.6 | CEN | - |
| 1257 | R |  |  | 1156 | R |  |  | 15 | K at 54.0 | K at 15.3 | CEN | - |
| 1258 | E | K | 2 | 1157 | E |  |  | 30 | 73.4 | 21.1 | CEN | VUS |
| 1259 | T |  |  | 1158 | T | A | 1 | 30 | 59.7 | S at 24.0 | CEN | LND |
| 1260 | N |  |  | 1159 | K | M | 1 | 10 | S at 38.1 | P at 19.6 | CEN | LND |
| 1261 | H |  |  | 1160 | H |  |  | 15 | 61.2 | 13 | CEN | - |


| 1262 | S |  |  | 1161 | N |  |  | 20 | Y at 34.5 | T at 12.0 | CEN | LND |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1263 | H |  |  | 1162 | D |  |  | 5 | L at 24.5 | S at 16.9 | CEN | LND |
| 1264 | C |  |  | 1163 | Y | S (C) | 262 (1) | 5 | H at 30.2 | D at 11.4 | CEN | ND |
| 1265 | E |  |  | 1164 | E |  |  | 15 | A at 15.8 | P at 9.0 | CEN | - |
| 1266 | Y | N | 1 | 1165 | T |  |  | 5 | V at 21.6 | R at 19.6 | CEN | LND |
| 1267 | A |  |  | 1166 | A |  |  | 35 | S at 29.5 | < 5 | CEN | - |
| 1268 | R |  |  | 1167 | G |  |  | 10 | N at 35.3 | < 5 | CEN | LND |
| 1269 | A |  |  | 1168 | A |  |  | 15 | G at 48.9 | P at 9.6 | CEN | - |
| 1270 | P |  |  | 1169 | P |  |  | 30 | S at 32.4 | S at 10.6 | CEN | - |
| 1271 | L |  |  | 1170 | L | F | 3 | 35 | 18.7 | S at 10.0 | CEN | ND |
| 1272 | S |  |  | 1171 | S |  |  | 25 | E at 25.9 | L at 33.0 | CEN | - |
| 1273 | G |  |  | 1172 | G |  |  | 40 | 85.6 | S at 22.0 | CEN | - |
| 1274 | N |  |  | 1173 | N |  |  | 50 | 97.8 | 40.6 | CEN | - |
| 1275 | M |  |  | 1174 | M |  |  | 35 | 75.5 | V at 40.0 | CEN | - |
| 1276 | M |  |  | 1175 | M |  |  | 35 | 61.9 | I at 33.3 | CEN | - |
| 1277 | H |  |  | 1176 | H |  |  | 45 | 99.3 | 50.1 | CEN | - |
| 1278 | I |  |  | 1177 | I |  |  | 45 | 89.9 | 58.8 | CEN | - |
| 1279 | A |  |  | 1178 | A |  |  | 40 | 89.9 | 49 | CEN | - |
| 1280 | V |  |  | 1179 | I |  |  | 20 | L at 87.7 | L at 24.0 | CEN | LND |
| 1281 | V |  |  | 1180 | V |  |  | 30 | 67.6 | 44.2 | CEN | - |
| 1282 | G |  |  | 1181 | G |  |  | 35 | 82 | A at 27.3 | CEN | - |
| 1283 | I |  |  | 1182 | I |  |  | 30 | 64 | 43.3 | CEN | - |
| 1284 | N | H | 1 | 1183 | N |  |  | 35 | 67.6 | E at 29.5 | CEN | VUS |
| 1285 | N |  |  | 1184 | N |  |  | 50 | 86.3 | 20.2 | CEN | - |
| 1286 | Q |  |  | 1185 | Q |  |  | 35 | 75.5 | 17.1 | CEN | - |
| 1287 | M |  |  | 1186 | M |  |  | 35 | 80.6 | D at 32.8 | CEN | - |
| 1288 | S |  |  | 1187 | S |  |  | 30 | 71.2 | D at 17.5 | CEN | - |
| 1289 | L |  |  | 1188 | L |  |  | 45 | 47.5 | 16.3 | CEN | - |
| 1290 | L |  |  | 1189 | L |  |  | 30 | 66.9 | E at 16.6 | CEN | - |
| 1291 | Q |  |  | 1190 | Q |  |  | 30 | 71.9 | 16.5 | CEN | - |
| 1292 | D |  |  | 1191 | D |  |  | 35 | 84.2 | 76.5 | CEN | - |
| 1293 | S | R | 1 | 1192 | S |  |  | 40 | 87.1 | 19.6 | CEN | VUS |
| 1294 | G |  |  | 1193 | G |  |  | 35 | 84.9 | 17.7 | CEN | - |
| 1295 | D | E | 1 | 1194 | D |  |  | 40 | 87.1 | 18.1 | CEN | VUS |
| 1296 | E |  |  | 1195 | E |  |  | 45 | 71.9 | 15.1 | CEN | - |
| 1297 | D | H | 1 | 1196 | D |  |  | 55 | 93.5 | 19.6 | CEN | VUS |
| 1298 | Q |  |  | 1197 | Q |  |  | 40 | 92.8 | 19.6 | CEN | - |
| 1299 | T | I | 1 | 1198 | A |  |  | 10 | A at 90.7 | A at 19.0 | CEN | LND |
| 1300 | Q |  |  | 1199 | Q |  |  | 40 | 95 | 19.6 | CEN | - |
| 1301 | E |  |  | 1200 | E |  |  | 40 | 71.2 | 14.8 | CEN | - |
| 1302 | R |  |  | 1201 | R |  |  | 35 | 91.4 | 19.2 | CEN | - |


| 1303 | V |  |  | 1202 | V |  |  | 20 | I at 62.6 | I at 13.0 | CEN | - |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1304 | N |  |  | 1203 | N | H | 2 | 20 | 50.4 | D at 25.8 | CEN | ND |
| 1305 | K |  |  | 1204 | K |  |  | 40 | 92.1 | E at 34.3 | CEN | - |
| 1306 | L |  |  | 1205 | L |  |  | 40 | 93.5 | 52.3 | CEN | - |
| 1307 | A |  |  | 1206 | A |  |  | 25 | 53.2 | 30.6 | CEN | - |
| 1308 | K |  |  | 1207 | K |  |  | 40 | 79.9 | 24.1 | CEN | - |
| 1309 | I |  |  | 1208 | I |  |  | 40 | 83.5 | 25.9 | CEN | - |
| 1310 | L |  |  | 1209 | L |  |  | 45 | 98.6 | 40.9 | CEN | - |
| 1311 | K |  |  | 1210 | K |  |  | 40 | 82 | R at 25.8 | CEN | - |
| 1312 | E | D | 116 | 1211 | E |  |  | 25 | 46.8 | V at 26.4 | CEN | VUS |
| 1313 | E |  |  | 1212 | E |  |  | 20 | N at 24.5 | Q at 28.8 | CEN | - |
| 1314 | E |  |  | 1213 | E |  |  | 35 | 41 | 24.1 | CEN | - |
| 1315 | V | A (M) | 5 (2) | 1214 | V |  |  | 35 | 73.4 | N at 21.1 | CEN | VUS |
| 1316 | S |  |  | 1215 | S |  |  | 15 | 26.6 | K at 54.7 | CEN | - |
| 1317 | L |  |  | 1216 | S |  |  | 5 | S at 67.6 | S at 25.5 | CEN | LND |
| 1318 | T |  |  | 1217 | S |  |  | 15 | S at 32.4 | E at 33.7 | CEN | LND |
| 1319 | L |  |  | 1218 | L |  |  | 95 | 87.8 | 89.1 | CEN | - |
| 1320 | C |  |  | 1219 | C |  |  | 20 | R at 41.7 | L at 22.3 | CEN | - |
| 1321 | S |  |  | 1220 | S |  |  | 20 | A at 39.6 | A at 31.2 | CEN | - |
| 1322 | A | V | 1 | 1221 | A |  |  | 50 | 88.5 | R at 32.4 | CEN | VUS |
| 1323 | G | D | 1 | 1222 | G |  |  | 70 | 94.2 | 61 | CEN | VUS |
| 1324 | V |  |  | 1223 | V |  |  | 55 | 87.8 | 43.8 | CEN | - |
| 1325 | G |  |  | 1224 | G | C | 2 | 25 | 41 | R at 75.1 | CEN | ND |
| 1326 | V |  |  | 1225 | V |  |  | 40 | 92.1 | R at 74.8 | CEN | - |
| 1327 | I |  |  | 1226 | I |  |  | 55 | 71.2 | 47.5 | CEN | - |
| 1328 | S |  |  | 1227 | S |  |  | 45 | 97.8 | T at 68.7 | CEN | - |
| 1329 | C |  |  | 1228 | C |  |  | 45 | 94.2 | F at 69.9 | CEN | - |
| 1330 | I | K | 1 | 1229 | I |  |  | 45 | 98.6 | 43.8 | CEN | VUS |
| 1331 | I |  |  | 1230 | I |  |  | 40 | 72.7 | 28.3 | CEN | - |
| 1332 | Q |  |  | 1231 | Q |  |  | 40 | 97.1 | G at 29.7 | CEN | - |
| 1333 | R |  |  | 1232 | R |  |  | 55 | 99.3 | 29.5 | CEN | - |
| 1334 | D |  |  | 1233 | D |  |  | 45 | 96.4 | K at 24.3 | CEN | - |
| 1335 | E |  |  | 1234 | E |  |  | 40 | 82 | D at 26.2 | CEN | - |
| 1336 | G |  |  | 1235 | G |  |  | 45 | 71.2 | 52 | CEN | - |
| 1337 | R |  |  | 1236 | R |  |  | 40 | 82 | E at 22.6 | CEN | - |
| 1338 | T |  |  | 1237 | T |  |  | 20 | M at 27.3 | Y at 39.9 | CEN | - |
| 1339 | P |  |  | 1238 | P |  |  | 95 | 97.1 | 96 | CEN | - |
| 1340 | M | L | 1 | 1239 | M |  |  | 45 | 91.4 | K at 39.3 | CEN | VUS |
| 1341 | R |  |  | 1240 | R |  |  | 45 | 99.3 | Y at 42.7 | CEN | - |
| 1342 | H |  |  | 1241 | H |  |  | 45 | 88.5 | F at 47.5 | CEN | - |
| 1343 | S |  |  | 1242 | S |  |  | 35 | 69.1 | T at 80.7 | CEN | - |


| 1344 | F |  |  | 1243 | F |  |  | 85 | 95.7 | 86.2 | CEN | - |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1345 | H |  |  | 1244 | H |  |  | 25 | 54 | R at 64.3 | CEN | - |
| 1346 | W |  |  | 1245 | W |  |  | 40 | 83.5 | G at 32.4 | CEN | - |
| 1347 | L |  |  | 1246 | S |  |  | 5 | S at 95.0 | P at 30.7 | CEN | LND |
| 1348 | M |  |  | 1247 | L |  |  | 15 | D at 21.6 | D at 34.6 | CEN | LND |
| 1349 | E |  |  | 1248 | E |  |  | 50 | 74.1 | 23.8 | CEN | - |
| 1350 | K |  |  | 1249 | K |  |  | 45 | 95 | 20.2 | CEN | - |
| 1351 | Q |  |  | 1250 | Q |  |  | 15 | L at 67.6 | L at 14.5 | CEN | - |
| 1352 | Y |  |  | 1251 | Y |  |  | 30 | 68.4 | 15.1 | CEN | - |
| 1353 | Y |  |  | 1252 | Y |  |  | 60 | 95 | 58.8 | CEN | - |
| 1354 | V |  |  | 1253 | V | I | 1 | 20 | E at 64.8 | E at 39.1 | CEN | LND |
| 1355 | E | G | 116 | 1254 | E |  |  | 100 | 100 | 98.7 | CEN | LND |
| 1356 | E |  |  | 1255 | E |  |  | 35 | 80.6 | D at 67.3 | CEN | - |
| 1357 | P |  |  | 1256 | P |  |  | 40 | 87.8 | R at 28.6 | CEN | - |
| 1358 | L |  |  | 1257 | L |  |  | 20 | 54.7 | I at 36.3 | CEN | - |
| 1359 | L | Q (M) | 11 (3) | 1258 | L |  |  | 40 | 95.7 | I at 41.5 | CEN | VUS |
| 1360 | R |  |  | 1259 | R |  |  | 100 | 96.4 | 98.1 | CEN | - |
| 1361 | H |  |  | 1260 | H |  |  | 90 | 99.3 | 84.3 | CEN | - |
| 1362 | V |  |  | 1261 | L |  |  | 25 | L at 53.2 | L at 41.4 | CEN | LND |
| 1363 | E |  |  | 1262 | E |  |  | 95 | 100 | 91.9 | CEN | - |
| 1364 | P |  |  | 1263 | P |  |  | 100 | 97.8 | 96 | CEN | - |
| 1365 | P |  |  | 1264 | P |  |  | 45 | 99.3 | A at 66.6 | CEN | - |
| 1366 | L |  |  | 1265 | L |  |  | 90 | 100 | 83.8 | CEN | - |
| 1367 | S |  |  | 1266 | S |  |  | 45 | 97.8 | A at 73.3 | CEN | - |
| 1368 | V |  |  | 1267 | I |  |  | 5 | I at 48.2 | F at 62.5 | CEN | LND |
| 1369 | Y |  |  | 1268 | Y |  |  | 25 | 48.9 | Q at 66.7 | CEN | - |
| 1370 | L |  |  | 1269 | L |  |  | 100 | 98.6 | 98.5 | CEN | - |
| 1371 | E |  |  | 1270 | E |  |  | 100 | 100 | 99.4 | CEN | - |
| 1372 | L |  |  | 1271 | L |  |  | 100 | 95.7 | 94.8 | CEN | - |
| 1373 | D |  |  | 1272 | D |  |  | 35 | 82 | G at 30.0 | CEN | - |
| 1374 | K |  |  | 1273 | K |  |  | 50 | 97.8 | R at 74.7 | CEN | - |
| 1375 | L |  |  | 1274 | L |  |  | 50 | 84.2 | 61.8 | CEN | - |
| 1376 | K | N | 1 | 1275 | K |  |  | 35 | 80.6 | S at 37.0 | CEN | VUS |
| 1377 | G | V | 1 | 1276 | G |  |  | 20 | 43.9 | N at 50.1 | CEN | VUS |
| 1378 | Y |  |  | 1277 | Y |  |  | 35 | 96.4 | F at 61.6 | CEN | - |
| 1379 | S |  |  | 1278 | S |  |  | 15 | N at 40.3 | N at 8.4 | CEN | - |
| 1380 | N |  |  | 1279 | N |  |  | 25 | 48.9 | D at 31.5 | CEN | - |
| 1381 | I |  |  | 1280 | I |  |  | 25 | 49.6 | 46.6 | CEN | - |
| 1382 | Q | H | 2 | 1281 | Q |  |  | 20 | K at 51.1 | K at 42.0 | CEN | VUS |
| 1383 | Y |  |  | 1282 | Y |  |  | 45 | 97.8 | P at 40.2 | CEN | - |
| 1384 | T | S | 34 | 1283 | T |  |  | 45 | 95.7 | V at 34.6 | CEN | VUS |


| 1385 | P |  |  | 1284 | P |  |  | 85 | 92.8 | 58.9 | CEN | - |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1386 | S |  |  | 1285 | S |  |  | 40 | 97.1 | T at 47.4 | CEN | - |
| 1387 | R |  |  | 1286 | R |  |  | 45 | 98.6 | E at 31.0 | CEN | - |
| 1388 | D |  |  | 1287 | D |  |  | 50 | 97.8 | N at 68.1 | CEN | - |
| 1389 | R |  |  | 1288 | R |  |  | 50 | 99.3 | 50.1 | CEN | - |
| 1390 | Q |  |  | 1289 | Q |  |  | 45 | 100 | N at 31.8 | CEN | - |
| 1391 | W |  |  | 1290 | W |  |  | 45 | 99.3 | I at 37.6 | CEN | - |
| 1392 | H |  |  | 1291 | H |  |  | 85 | 92.1 | 92.1 | CEN | - |
| 1393 | M |  |  | 1292 | L |  |  | 10 | L at 50.4 | L at 43.5 | CEN | LND |
| 1394 | Y |  |  | 1293 | Y |  |  | 95 | 100 | 94.5 | CEN | - |
| 1395 | S |  |  | 1294 | T |  |  | 5 | T at 92.1 | E at 31.9 | CEN | LND |
| 1396 | V |  |  | 1295 | V |  |  | 60 | 54 | 27.9 | CEN | - |
| 1397 | T |  |  | 1296 | T |  |  | 20 | V at 38.1 | A at 34.2 | CEN | - |
| 1398 | D |  |  | 1297 | D |  |  | 25 | 54 | K at 66.6 | CEN | - |
| 1399 | R |  |  | 1298 | K |  |  | 5 | K at 49.6 | K at 20.1 | CEN | LND |
| 1400 | P |  |  | 1299 | P |  |  | 15 | 42.5 | G at 26.2 | CEN | - |
| 1401 | V |  |  | 1300 | V | A | 1 | 50 | 16.6 | T at 13.8 | CEN | LND |
| 1402 | P |  |  | 1301 | P |  |  | 25 | 49.6 | E at 25.2 | CEN | - |
| 1403 | I | N | 79 | 1302 | I |  |  | 20 | 41.7 | V at 29.8 | CEN | VUS |
| 1404 | K |  |  | 1303 | K |  |  | 35 | Q at 45.3 | Y at 21.7 | CEN | - |
| 1405 | R | Q | 1 | 1304 | R |  |  | 100 | 100 | 96.1 | CEN | PD |
| 1406 | M |  |  | 1305 | M |  |  | 35 | 68.4 | F at 49.5 | CEN | - |
| 1407 | F |  |  | 1306 | F |  |  | 100 | 97.8 | 97.3 | CEN | - |
| 1408 | L |  |  | 1307 | L |  |  | 35 | 71.9 | T at 27.4 | CEN | - |
| 1409 | R |  |  | 1308 | R |  |  | 100 | 100 | 98.1 | CEN | - |
| 1410 | S |  |  | 1309 | S |  |  | 25 | T at 85.6 | A at 52.6 | CEN | - |
| 1411 | L |  |  | 1310 | L |  |  | 30 | 67.6 | I at 48.3 | CEN | - |
| 1412 | V |  |  | 1311 | V |  |  | 45 | 85.6 | I at 49.3 | CEN | - |
| 1413 | R |  |  | 1312 | R |  |  | 95 | 99.3 | 91.8 | CEN | - |
| 1414 | Q | K | 5 | 1313 | Q |  |  | 45 | 94.2 | P at 31.2 | CEN | VUS |
| 1415 | T | S | 1 | 1314 | A |  |  | 5 | P at 83.5 | P at 17.4 | CEN | LND |
| 1416 | T |  |  | 1315 | T |  |  | 20 | 43.2 | 9.2 | CEN | - |
| 1417 | M |  |  | 1316 | M |  |  | 15 | A at 25.2 | < 5 | CEN | - |
| 1418 | N |  |  | 1317 | N |  |  | 25 | 37.4 | 8.6 | CEN | - |
| 1419 | D |  |  | 1318 | D |  |  | 15 | N at 44.6 | N at 9.3 | CEN | - |
| 1420 | G | A | 7 | 1319 | G |  |  | 25 | 59 | 12.3 | CEN | VUS |
| 1421 | F |  |  | 1320 | F |  |  | 35 | 77.7 | 16.3 | CEN | - |
| 1422 | L |  |  | 1321 | I | M | 262 | 10 | T at 36.7 | T at 7.7 | CEN | ND |
| 1423 | L |  |  | 1322 | L |  |  | 15 | S at 49.6 | S at 10.3 | CEN | - |
| 1424 | Q |  |  | 1323 | Q |  |  | 15 | Y at 31.7 | < 5 | CEN | - |
| 1425 | Q |  |  | 1324 | Q |  |  | 20 | 59 | 11.7 | CEN | - |


| 1426 | G |  |  | 1325 | G |  |  | 15 | I at 38.9 | 6.3 | CEN | - |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1427 | Q |  |  | 1326 | Q |  |  | 15 | L at 33.1 | G at 41.5 | CEN | - |
| 1428 | D |  |  | 1327 | D | Y | 2 | 30 | 84.2 | 52.3 | CEN | ND |
| 1429 | Y |  |  | 1328 | K |  |  | 5 | V at 22.3 | L at 58.2 | CEN | LND |
| 1430 | Q |  |  | 1329 | Q |  |  | 15 | E at 64.0 | R at 32.4 | CEN | - |
| 1431 | L |  |  | 1330 | L |  |  | 60 | V at 41.7 | T at 34.8 | CEN | - |
| 1432 | S |  |  | 1331 | S |  |  | 20 | G at 34.5 | K at 28.6 | CEN | - |
| 1433 | Q |  |  | 1332 | Q | L | 1 | 15 | R at 25.2 | I at 32.5 | CEN | LND |
| 1434 | T |  |  | 1333 | T |  |  | 25 | 30.2 | < 5 | CEN | - |
| 1435 | V |  |  | 1334 | L |  |  | 5 | Q at 41.7 | A at 29.7 | CEN | LND |
| 1436 | L |  |  | 1335 | I |  |  | 10 | E at 26.6 | S at 29.8 | CEN | LND |
| 1437 | S |  |  | 1336 | S |  |  | 70 | 48.2 | A at 31.6 | CEN | - |
| 1438 | M | I | 1 | 1337 | M | I | 1 | 20 | L at 40.3 | E at 64.9 | CEN | LND |
| 1439 | A | V | 1 | 1338 | A |  |  | 10 | S at 80.6 | Y at 67.2 | CEN | VUS |
| 1440 | F |  |  | 1339 | F |  |  | 35 | 82.7 | L at 70.0 | CEN | - |
| 1441 | T |  |  | 1340 | T | M | 1 | 40 | 91.4 | I at 30.1 | CEN | LND |
| 1442 | S | P | 1 | 1341 | S |  |  | 45 | 88.5 | 56.8 | CEN | VUS |
| 1443 | K | Q | 1 | 1342 | K |  |  | 10 | R at 33.8 | E at 71.1 | CEN | VUS |
| 1444 | C | Y | 1 | 1343 | C |  |  | 15 | S at 84.9 | A at 30.4 | CEN | VUS |
| 1445 | I |  |  | 1344 | V |  |  | 35 | 84.2 | 17.5 | CEN | LND |
| 1446 | L |  |  | 1345 | L |  |  | 35 | 80.6 | E at 33.6 | CEN | - |
| 1447 | R |  |  | 1346 | R |  |  | 95 | 91.4 | 86.4 | CEN | - |
| 1448 | S |  |  | 1347 | S |  |  | 45 | 94.2 | L at 53.4 | CEN | - |
| 1449 | L |  |  | 1348 | L |  |  | 80 | 97.8 | 57.4 | CEN | - |
| 1450 | M |  |  | 1349 | M |  |  | 45 | 75.5 | L at 30.0 | CEN | - |
| 1451 | N |  |  | 1350 | D |  |  | 5 | A at 35.3 | D at 39.6 | CEN | LND |
| 1452 | A |  |  | 1351 | A |  |  | 80 | 99.3 | 52.6 | CEN | - |
| 1453 | M |  |  | 1352 | M |  |  | 60 | 41 | L at 45.4 | CEN | - |
| 1454 | E |  |  | 1353 | E |  |  | 50 | 97.1 | D at 69.0 | CEN | - |
| 1455 | E |  |  | 1354 | E |  |  | 80 | 99.3 | 50.1 | CEN | - |
| 1456 | L |  |  | 1355 | L |  |  | 90 | 84.2 | 92.4 | CEN | - |
| 1457 | E |  |  | 1356 | E |  |  | 95 | 100 | 93.6 | CEN | - |
| 1458 | L |  |  | 1357 | L |  |  | 45 | 95 | V at 43.9 | CEN | - |
| 1459 | N |  |  | 1358 | N |  |  | 25 | 46 | A at 36.0 | CEN | - |
| 1460 | A |  |  | 1359 | A |  |  | 40 | 68.4 | F at 29.2 | CEN | - |
| 1461 | H |  |  | 1360 | H |  |  | 40 | 70.5 | N at 18.6 | CEN | - |
| 1462 | N | H | 2 | 1361 | N |  |  | 55 | 53.2 | 33.7 | CEN | VUS |
| 1463 | A |  |  | 1362 | A |  |  | 15 | 33.1 | T at 34.9 | CEN | - |
| 1464 | A |  |  | 1363 | A |  |  | 20 | T at 43.2 | N at 30.3 | CEN | - |
| 1465 | M |  |  | 1364 | M |  |  | 25 | I at 41.7 | V at 27.1 | CEN | - |
| 1466 | K | N | 9 | 1365 | K |  |  | 25 | 48.2 | R at 36.0 | CEN | VUS |


| 1467 | P |  |  | 1366 | P |  |  | 20 | S at 43.9 | S at 40.3 | CEN | - |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1468 | D |  |  | 1367 | D |  |  | 75 | 43.9 | 79.2 | CEN | - |
| 1469 | H |  |  | 1368 | H |  |  | 45 | 93.5 | C at 33.1 | CEN | - |
| 1470 | A |  |  | 1369 | A |  |  | 25 | 45.3 | N at 74.2 | CEN | - |
| 1471 | H |  |  | 1370 | H |  |  | 100 | 95 | 92.1 | CEN | - |
| 1472 | M |  |  | 1371 | M |  |  | 50 | 96.4 | I at 63.9 | CEN | - |
| 1473 | F |  |  | 1372 | F |  |  | 80 | Y at 79.9 | 76.9 | CEN | - |
| 1474 | L |  |  | 1373 | L |  |  | 90 | 97.1 | 57.4 | CEN | - |
| 1475 | C |  |  | 1374 | C |  |  | 40 | 70.5 | 14.8 | CEN | - |
| 1476 | I |  |  | 1375 | I |  |  | 35 | 84.9 | 18 | CEN | - |
| 1477 | L |  |  | 1376 | L |  |  | 35 | 75.5 | 15.9 | CEN | - |
| 1478 | R | H | 1 | 1377 | R |  |  | 30 | 63.3 | 13.3 | CEN | VUS |
| 1479 | E |  |  | 1378 | E |  |  | 45 | 92.1 | 19.3 | CEN | - |
| 1480 | Q |  |  | 1379 | Q |  |  | 45 | 98.6 | 20.7 | CEN | - |
| 1481 | Q |  |  | 1380 | Q | L | 1 | 35 | 46.8 | 9.9 | CEN | LND |
| 1482 | I |  |  | 1381 | I |  |  | 35 | 46.8 | 9.9 | CEN | - |
| 1483 | D |  |  | 1382 | D |  |  | 55 | 31.7 | 6.8 | CEN | - |
| 1484 | D |  |  | 1383 | D | A | 1 | 40 | 95.7 | N at 70.3 | CEN | LND |
| 1485 | L |  |  | 1384 | L |  |  | 45 | 95.7 | F at 70.2 | CEN | - |
| 1486 | V |  |  | 1385 | V |  |  | 30 | 53.2 | 44.4 | CEN | - |
| 1487 | P |  |  | 1386 | P | L | 82 | 45 | 95 | 73.6 | CEN | ND |
| 1488 | Y |  |  | 1387 | F |  |  | 20 | 46.8 | V at 35.5 | CEN | LND |
| 1489 | P |  |  | 1388 | P |  |  | 20 | S at 47.5 | F at 33.6 | CEN | - |
| 1490 | R |  |  | 1389 | R |  |  | 20 | K at 34.5 | K at 7.2 | CEN | - |
| 1491 | R |  |  | 1390 | R |  |  | 25 | 53.2 | T at 28.2 | CEN | - |
| 1492 | F |  |  | 1391 | V |  |  | 5 | V at 36.0 | V at 47.5 | CEN | LND |
| 1493 | E |  |  | 1392 | E |  |  | 20 | D at 27.3 | I at 28.9 | CEN | - |
| 1494 | V |  |  | 1393 | V | G | 1 | 30 | 46 | M at 26.8 | CEN | LND |
| 1495 | N |  |  | 1394 | N |  |  | 20 | D at 51.8 | D at 39.9 | CEN | - |
| 1496 | A |  |  | 1395 | A |  |  | 20 | 40.3 | 8.7 | CEN | - |
| 1497 | E |  |  | 1396 | E |  |  | 20 | G at 65.5 | G at 13.6 | CEN | - |
| 1498 | D |  |  | 1397 | D |  |  | 15 | Q at 69.1 | Q at 14.5 | CEN | - |
| 1499 | E |  |  | 1398 | E |  |  | 25 | 51.1 | 10.8 | CEN | - |
| 1500 | E | K | 1 | 1399 | E |  |  | 45 | 95.7 | 20.1 | CEN | VUS |
| 1501 | T |  |  | 1400 | T |  |  | 25 | A at 44.6 | A at 9.5 | CEN | - |
| 1502 | T |  |  | 1401 | T |  |  | 45 | 68.4 | 14.7 | CEN | - |
| 1503 | V |  |  | 1402 | V |  |  | 20 | 44.6 | Q at 15.9 | CEN | - |
| 1504 | E |  |  | 1403 | E |  |  | 25 | 42.5 | P at 62.8 | CEN | - |
| 1505 | T |  |  | 1404 | M | R | 6 | 15 | S at 27.3 | S at 26.5 | CEN | ND |
| 1506 | I |  |  | 1405 | I |  |  | 25 | L at 45.3 | K at 27.0 | CEN | - |
| 1507 | L |  |  | 1406 | L |  |  | 50 | 99.3 | V at 39.1 | CEN | - |


| 1508 | E |  |  | 1407 | E |  |  | 80 | 51.8 | 75.4 | CEN | - |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1509 | E |  |  | 1408 | E |  |  | 70 | 63.3 | 55.9 | CEN | - |
| 1510 | A |  |  | 1409 | A |  |  | 25 | M at 46.0 | 34.3 | CEN | - |
| 1511 | T |  |  | 1410 | A |  |  | 5 | A at 78.4 | V at 34.3 | CEN | LND |
| 1512 | Q |  |  | 1411 | R |  |  | 15 | L at 30.9 | R at 30.9 | CEN | LND |
| 1513 | E |  |  | 1412 | E |  |  | 25 | 49.6 | G at 35.7 | CEN | - |
| 1514 | I |  |  | 1413 | I |  |  | 45 | 94.2 | F at 40.0 | CEN | - |
| 1515 | H |  |  | 1414 | H |  |  | 35 | 76.3 | L at 35.7 | CEN | - |
| 1516 | R |  |  | 1415 | R |  |  | 15 | E at 44.6 | E at 35.7 | CEN | - |
| 1517 | S |  |  | 1416 | S |  |  | 25 | 39.6 | R at 71.4 | CEN | - |
| 1518 | V |  |  | 1417 | V |  |  | 40 | 85.6 | Y at 33.3 | CEN | - |
| 1519 | G |  |  | 1418 | G |  |  | 95 | 98.6 | 88.9 | CEN | - |
| 1520 | V |  |  | 1419 | V |  |  | 35 | 67.6 | S at 23.5 | CEN | - |
| 1521 | R |  |  | 1420 | R |  |  | 100 | 87.8 | 94 | CEN | - |
| 1522 | M |  |  | 1421 | M |  |  | 45 | 98.6 | L at 64.5 | CEN | - |
| 1523 | H | Y | 6 | 1422 | H |  |  | 45 | 95 | W at 60.3 | CEN | VUS |
| 1524 | A |  |  | 1423 | R |  |  | 5 | R at 64.0 | R at 53.4 | CEN | LND |
| 1525 | L |  |  | 1424 | L |  |  | 95 | 100 | 95.5 | CEN | - |
| 1526 | G |  |  | 1425 | G |  |  | 25 | 46.8 | R at 69.4 | CEN | - |
| 1527 | V |  |  | 1426 | V |  |  | 95 | 96.4 | 89.5 | CEN | - |
| 1528 | C |  |  | 1427 | C |  |  | 40 | 83.5 | T at 28.0 | CEN | - |
| 1529 | E | K | 1 | 1428 | E | K | 2 | 20 | Q at 45.3 | Q at 47.4 | CEN | ND |
| 1530 | W |  |  | 1429 | W |  |  | 45 | 99.3 | A at 57.0 | CEN | - |
| 1531 | E |  |  | 1430 | E |  |  | 100 | 100 | 99.4 | CEN | - |
| 1532 | V | A | 1 | 1431 | V |  |  | 50 | 91.4 | I at 45.7 | CEN | VUS |
| 1533 | R |  |  | 1432 | R |  |  | 35 | K at 84.2 | K at 49.0 | CEN | - |
| 1534 | L |  |  | 1433 | L |  |  | 45 | 95.7 | I at 58.8 | CEN | - |
| 1535 | W |  |  | 1434 | W |  |  | 30 | 64 | N at 23.4 | CEN | - |
| 1536 | L |  |  | 1435 | L |  |  | 40 | 60.4 | I at 40.9 | CEN | - |
| 1537 | V | L | 2 | 1436 | V |  |  | 20 | D at 32.4 | R at 31.8 | CEN | VUS |
| 1538 | S |  |  | 1437 | S |  |  | 25 | 56.1 | D at 30.3 | CEN | - |
| 1539 | S |  |  | 1438 | S |  |  | 25 | D at 43.2 | P at 28.6 | CEN | - |
| 1540 | G | A | 3 | 1439 | G |  |  | 45 | 94.2 | P at 22.8 | CEN | VUS |
| 1541 | L |  |  | 1440 | L |  |  | 20 | Q at 41.7 | T at 47.8 | CEN | - |
| 1542 | A | T | 10 | 1441 | A |  |  | 50 | 96.4 | G at 57.3 | CEN | VUS |
| 1543 | N | K | 2 | 1442 | C |  |  | 15 | 46.8 | 16 | CEN | LND |
| 1544 | G |  |  | 1443 | G |  |  | 45 | 93.5 | P at 30.1 | CEN | - |
| 1545 | A |  |  | 1444 | A |  |  | 40 | 65.5 | I at 21.7 | CEN | - |
| 1546 | W |  |  | 1445 | W |  |  | 45 | 99.3 | L at 34.2 | CEN | - |
| 1547 | R |  |  | 1446 | R |  |  | 100 | 100 | 99.1 | CEN | - |
| 1548 | V |  |  | 1447 | V |  |  | 55 | 79.1 | 40.8 | CEN | - |


| 1549 | V |  |  | 1448 | V |  |  | 40 | 85.6 | 34 | CEN | - |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1550 | V |  |  | 1449 | V |  |  | 35 | 69.8 | I at 51.3 | CEN | - |
| 1551 | A |  |  | 1450 | A |  |  | 20 | T at 66.2 | T at 55.5 | CEN | - |
| 1552 | N |  |  | 1451 | N |  |  | 95 | 91.4 | 89.8 | CEN | - |
| 1553 | V |  |  | 1452 | V |  |  | 55 | 95 | 35.4 | CEN | - |
| 1554 | T |  |  | 1453 | T |  |  | 45 | 97.8 | S at 67.8 | CEN | - |
| 1555 | G |  |  | 1454 | G |  |  | 95 | 80.6 | 95.1 | CEN | - |
| 1556 | R |  |  | 1455 | R |  |  | 20 | H at 82.0 | Y at 62.1 | CEN | - |
| 1557 | T |  |  | 1456 | T |  |  | 45 | 98.6 | V at 32.2 | CEN | - |
| 1558 | C |  |  | 1457 | C |  |  | 45 | 97.8 | L at 31.0 | CEN | - |
| 1559 | T |  |  | 1458 | T |  |  | 45 | 79.9 | D at 33.6 | CEN | - |
| 1560 | V |  |  | 1459 | V |  |  | 45 | 83.5 | 43.6 | CEN | - |
| 1561 | H | L | 3 | 1460 | H |  |  | 20 | 47.5 | E at 33.0 | CEN | VUS |
| 1562 | I |  |  | 1461 | I |  |  | 50 | 89.9 | L at 40.6 | CEN | - |
| 1563 | Y |  |  | 1462 | Y |  |  | 100 | 99.3 | 97.2 | CEN | - |
| 1564 | R |  |  | 1463 | R |  |  | 50 | 98.6 | 23.8 | CEN | - |
| 1565 | E |  |  | 1464 | E |  |  | 100 | 98.6 | 97.9 | CEN | - |
| 1566 | V |  |  | 1465 | V |  |  | 75 | 61.2 | 47.7 | CEN | - |
| 1567 | E | K | 27 | 1466 | E |  |  | 45 | 93.5 | K at 32.1 | CEN | VUS |
| 1568 | A |  |  | 1467 | T |  |  | 10 | D at 74.8 | D at 42.1 | CEN | LND |
| 1569 | T | I | 2 | 1468 | P |  |  | 15 | 56.8 | E at 21.3 | CEN | LND |
| 1570 | G |  |  | 1469 | G |  |  | 20 | E at 27.3 | K at 32.2 | CEN | - |
| 1571 | R |  |  | 1470 | R |  |  | 15 | S at 30.2 | T at 27.6 | CEN | - |
| 1572 | N |  |  | 1471 | N |  |  | 25 | H at 43.2 | G at 64.2 | CEN | - |
| 1573 | S |  |  | 1472 | S | T | 21 | 20 | K at 44.6 | Q at 17.1 | CEN | ND |
| 1574 | L |  |  | 1473 | L |  |  | 45 | 55.4 | I at 26.1 | CEN | - |
| 1575 | I |  |  | 1474 | I |  |  | 20 | V at 71.2 | W at 31.2 | CEN | - |
| 1576 | Y |  |  | 1475 | Y |  |  | 45 | 98.6 | F at 62.2 | CEN | - |
| 1577 | H |  |  | 1476 | H |  |  | 40 | S at 54.0 | 39.7 | CEN | - |
| 1578 | S |  |  | 1477 | S |  |  | 65 | 54 | 69.7 | CEN | - |
| 1579 | I |  |  | 1478 | I |  |  | 20 | 25.2 | 39.3 | CEN | - |
| 1580 | T |  |  | 1479 | T |  |  | 40 | S at 40.3 | G at 22.3 | CEN | - |
| 1581 | K |  |  | 1480 | K |  |  | 15 | A at 26.6 | 51 | CEN | - |
| 1582 | K |  |  | 1481 | K |  |  | 70 | G at 37.4 | Q at 28.3 | CEN | - |
| 1583 | G |  |  | 1482 | G |  |  | 95 | 51.1 | 88.3 | CEN | - |
| 1584 | P |  |  | 1483 | P |  |  | 70 | 96.4 | 52.6 | CEN | - |
| 1585 | L |  |  | 1484 | L |  |  | 75 | 97.8 | 52.6 | CEN | - |
| 1586 | H | L | 1 | 1485 | H |  |  | 95 | 95 | 85.6 | CEN | VUS |
| 1587 | G |  |  | 1486 | E |  |  | 75 | 94.2 | 49.3 | - | LND |
| 1588 | T |  |  | 1487 | T |  |  | 20 | V at 63.3 | M at 26.7 | - | - |
| 1589 | L |  |  | 1488 | P |  |  | 35 | P at 48.9 | P at 54.3 | - | LND |


| 1590 | I |  |  | 1489 | I | 65 | L at 48.9 | 40.3 | - | - |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1591 | N |  |  | 1490 | S | 70 | 71.9 | 41.4 | - | LND |
| 1592 | G |  |  | 1491 | D | 5 | A at 28.1 | T at 63.0 | - | LND |
| 1593 | Q |  |  | 1492 | Q | 20 | P at 41.0 | P at 81.6 | - | - |
| 1594 | Y | H | 6 | 1493 | Y | 100 | 98.6 | 97.9 | - | VUS |
| 1595 | K |  |  | 1494 | K | 30 | Q at 61.2 | P at 37.9 | - | - |
| 1596 | P |  |  | 1495 | P | 45 | 90.7 | T at 59.1 | - | - |
| 1597 | L |  |  | 1496 | L | 45 | 98.6 | K at 69.7 | - | - |
| 1598 | N |  |  | 1497 | G | 10 | G at 43.9 | D at 35.5 | - | LND |
| 1599 | N |  |  | 1498 | Y | 5 | V at 52.5 | W at 28.5 | - | LND |
| 1600 | L |  |  | 1499 | L | 75 | I at 61.2 | 78.7 | - | - |
| 1601 | D | N | 1 | 1500 | D | 45 | 94.2 | Q at 73.0 | - | VUS |
| 1602 | R |  |  | 1501 | R | 25 | 46 | P at 39.9 | - | - |
| 1603 | K |  |  | 1502 | Q | 80 | 88.5 | 91 | - | LND |
| 1604 | R |  |  | 1503 | R | 100 | 99.3 | 96.9 | - | - |
| 1605 | L |  |  | 1504 | L | 25 | 56.1 | Y at 40.3 | - | - |
| 1606 | A |  |  | 1505 | A | 35 | S at 41.7 | K at 36.9 | - | - |
| 1607 | A |  |  | 1506 | A | 100 | 100 | 97 | - | - |
| 1608 | R |  |  | 1507 | R | 45 | 97.8 | H at 38.7 | - | - |
| 1609 | R |  |  | 1508 | R | 20 | K at 45.3 | L at 30.0 | - | - |
| 1610 | S |  |  | 1509 | S | 20 | N at 64.0 | M at 34.9 | - | - |
| 1611 | N |  |  | 1510 | N | 20 | 30.2 | G at 72.1 | - | - |
| 1612 | T |  |  | 1511 | T | 100 | 99.3 | 96.9 | - | - |
| 1613 | T |  |  | 1512 | T | 95 | 100 | 72.1 | - | - |
| 1614 | Y |  |  | 1513 | Y | 95 | 95 | 96.3 | - | - |
| 1615 | C |  |  | 1514 | C | 45 | 99.3 | V at 64.0 | - | - |
| 1616 | Y |  |  | 1515 | Y | 100 | 100 | 96.9 | - | - |
| 1617 | D |  |  | 1516 | D | 100 | 100 | 99.6 | - | - |
| 1618 | F |  |  | 1517 | F | 85 | 100 | 81 | - | - |
| 1619 | P |  |  | 1518 | P | 100 | 100 | 93.3 | CT- $\beta$ | - |
| 1620 | L |  |  | 1519 | L | 45 | 98.6 | E at 57.3 | CT- $\beta$ | - |
| 1621 | A |  |  | 1520 | A | 45 | 89.2 | L at 46.5 | CT- $\beta$ | - |
| 1622 | F |  |  | 1521 | F | 100 | 100 | 90.7 | CT- $\beta$ | - |
| 1623 | E |  |  | 1522 | G | 35 | 87.1 | R at 61.3 | CT- $\beta$ | LND |
| 1624 | T |  |  | 1523 | T | 45 | 82.7 | Q at 65.8 | CT- $\beta$ | - |
| 1625 | A | T | 1 | 1524 | A | 80 | 89.9 | 76.9 | CT- $\beta$ | VUS |
| 1626 | L |  |  | 1525 | L | 70 | 82 | 50.1 | CT- $\beta$ | - |
| 1627 | E |  |  | 1526 | E | 30 | 42.5 | Q at 26.1 | CT- $\beta$ | - |
| 1628 | L |  |  | 1527 | L | 10 | K at 45.3 | K at 33.6 | CT- $\beta$ | - |
| 1629 | N |  |  | 1528 | L | 5 | S at 73.4 | S at 36.4 | CT- $\beta$ | LND |
| 1630 | W |  |  | 1529 | W | 100 | 98.6 | 99.3 | CT- $\beta$ | - |


| 1631 | A |  |  | 1530 | A |  |  | 15 | 42.5 | K at 18.1 | CT- $\beta$ | - |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1632 | S |  |  | 1531 | S |  |  | 45 | 62.6 | K at 30.1 | CT- $\beta$ | - |
| 1633 | Q |  |  | 1532 | Q |  |  | 25 | 41.7 | A at 23.2 | CT- $\beta$ | - |
| 1634 | H |  |  | 1533 | H |  |  | 15 | 13.7 | S at 11.2 | CT- $\beta$ | - |
| 1635 | S |  |  | 1534 | P |  |  | 15 | P at 38.1 | P at 8.3 | CT- $\beta$ | LND |
| 1636 | G |  |  | 1535 | G |  |  | 35 | S at 43.2 | 10.2 | CT- $\beta$ | - |
| 1637 | V |  |  | 1536 | V |  |  | 40 | 15.1 | H at 13.6 | CT- $\beta$ | - |
| 1638 | R |  |  | 1537 | K | E | 1 | 5 | V at 23.7 | P at 19.9 | CT- $\beta$ | LND |
| 1639 | K |  |  | 1538 | K |  |  | 30 | 36 | S at 18.9 | CT- $\beta$ | - |
| 1640 | P |  |  | 1539 | P |  |  | 40 | 37.4 | L at 35.4 | CT- $\beta$ | - |
| 1641 | C |  |  | 1540 | Y |  |  | 10 | K at 30.9 | L at 17.1 | CT- $\beta$ | LND |
| 1642 | K |  |  | 1541 | K |  |  | 20 | D at 30.9 | P at 47.4 | CT- $\beta$ | - |
| 1643 | N |  |  | 1542 | D |  |  | 20 | K at 46.0 | D at 35.8 | CT- $\beta$ | LND |
| 1644 | R |  |  | 1543 | T |  |  | 5 | C at 17.3 | C at 25.5 | CT- $\beta$ | LND |
| 1645 | L |  |  | 1544 | L |  |  | 25 | Y at 42.5 | 43.8 | CT- $\beta$ | - |
| 1646 | I |  |  | 1545 | I |  |  | 40 | V at 32.4 | E at 14.2 | CT- $\beta$ | - |
| 1647 | N |  |  | 1546 | N |  |  | 10 | K at 70.5 | T at 19.3 | CT- $\beta$ | - |
| 1648 | V |  |  | 1547 | V |  |  | 30 | 62.6 | 17.1 | CT- $\beta$ | - |
| 1649 | K |  |  | 1548 | K |  |  | 20 | T at 82.7 | T at 37.6 | CT- $\beta$ | - |
| 1650 | E |  |  | 1549 | E |  |  | 50 | 100 | 99 | CT- $\beta$ | - |
| 1651 | L |  |  | 1550 | L |  |  | 45 | 100 | 97.9 | CT- $\beta$ | - |
| 1652 | V |  |  | 1551 | V |  |  | 30 | 54 | 70.3 | CT- $\beta$ | - |
| 1653 | F |  |  | 1552 | F |  |  | 45 | 96.4 | L at 61.2 | CT- $\beta$ | - |
| 1654 | S |  |  | 1553 | S |  |  | 25 | A at 75.5 | D at 67.2 | CT- $\beta$ | - |
| 1655 | N |  |  | 1554 | K |  |  | 10 | D at 54.0 | D at 11.4 | CT- $\beta$ | LND |
| 1656 | T |  |  | 1555 | P | S | 1 | 5 | K at 48.2 | D at 32.7 | CT- $\beta$ | LND |
| 1657 | E | A | 2 | 1556 | E |  |  | 20 | 23.7 | Q at 24.9 | CT- $\beta$ | VUS |
| 1658 | G |  |  | 1557 | G |  |  | 45 | 97.1 | 60.1 | CT- $\beta$ | - |
| 1659 | S |  |  | 1558 | S | T | 1 | 30 | 73.4 | N at 21.7 | CT- $\beta$ | LND |
| 1660 | L |  |  | 1559 | S | L | 1 | 5 | W at 85.6 | 43 | CT- $\beta$ | LND |
| 1661 | G | S | 2 | 1560 | G |  |  | 35 | 88.5 | 18.7 | CT- $\beta$ | VUS |
| 1662 | T |  |  | 1561 | T | I | 1 | 40 | 90.7 | L at 28.8 | CT- $\beta$ | LND |
| 1663 | S |  |  | 1562 | S |  |  | 25 | P at 79.9 | P at 16.6 | CT- $\beta$ | - |
| 1664 | L | V (F) | 10 (1) | 1563 | L |  |  | 90 | 75.5 | 15.9 | CT- $\beta$ | VUS |
| 1665 | I |  |  | 1564 | D |  |  | 30 | V at 56.8 | V at 43.6 | CT- $\beta$ | LND |
| 1666 | P | L | 2 | 1565 | L |  |  | 35 | 64.8 | E at 51.6 | CT- $\beta$ | LND |
| 1667 | V |  |  | 1566 | V |  |  | 50 | 54 | 48.1 | CT- $\beta$ | - |
| 1668 | E | D | 2 | 1567 | E |  |  | 45 | 73.4 | N at 34.8 | CT- $\beta$ | VUS |
| 1669 | R |  |  | 1568 | R |  |  | 100 | 93.5 | 94.6 | CT- $\beta$ | - |
| 1670 | P |  |  | 1569 | P |  |  | 35 | 55.4 | E at 27.9 | CT- $\beta$ | - |
| 1671 | A |  |  | 1570 | P | L | 2 | 20 | P at 54.7 | P at 78.9 | CT- $\beta$ | ND |


| 1672 | G |  |  | 1571 | G |  |  | 100 | 92.8 | 96 | CT- $\beta$ | - |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1673 | L |  |  | 1572 | L |  |  | 40 | 73.4 | T at 22.3 | CT- $\beta$ | - |
| 1674 | N |  |  | 1573 | N |  |  | 100 | 100 | 97.6 | CT- $\beta$ | - |
| 1675 | D |  |  | 1574 | D |  |  | 35 | 85.6 | 24.4 | CT- $\beta$ | - |
| 1676 | I |  |  | 1575 | F |  |  | 45 | 42.5 | 40.9 | CT- $\beta$ | LND |
| 1677 | G | R | 1 | 1576 | G |  |  | 100 | 99.3 | 99.7 | CT- $\beta$ | VUS |
| 1678 | M |  |  | 1577 | M |  |  | 90 | 83.5 | 96 | CT- $\beta$ | - |
| 1679 | V |  |  | 1578 | V |  |  | 100 | 94.2 | 96.1 | CT- $\beta$ | - |
| 1680 | A |  |  | 1579 | A |  |  | 95 | 97.8 | 69.3 | CT- $\beta$ | - |
| 1681 | W |  |  | 1580 | W |  |  | 75 | 100 | 78.9 | CT- $\beta$ | - |
| 1682 | I |  |  | 1581 | C |  |  | 15 | 31.7 | K at 24.6 | CT- $\beta$ | LND |
| 1683 | L |  |  | 1582 | L | V | 263 | 25 | M at 58.3 | M at 36.0 | CT- $\beta$ | ND |
| 1684 | E |  |  | 1583 | D |  |  | 25 | 55.4 | T at 47.8 | CT- $\beta$ | LND |
| 1685 | M |  |  | 1584 | M |  |  | 40 | 74.8 | L at 28.9 | CT- $\beta$ | - |
| 1686 | S |  |  | 1585 | S |  |  | 40 | 77.7 | K at 42.1 | CT- $\beta$ | - |
| 1687 | T |  |  | 1586 | T |  |  | 90 | 100 | 90.9 | CT- $\beta$ | - |
| 1688 | P |  |  | 1587 | P |  |  | 95 | 100 | 95.1 | CT- $\beta$ | - |
| 1689 | E | G | 1 | 1588 | E |  |  | 100 | 99.3 | 97 | CT- $\beta$ | D |
| 1690 | F | C | 1 | 1589 | F |  |  | 40 | 91.4 | Y at 74.7 | CT- $\beta$ | VUS |
| 1691 | P |  |  | 1590 | P |  |  | 100 | 99.3 | 95.1 | CT- $\beta$ | - |
| 1692 | M | V | 1 | 1591 | M |  |  | 15 | S at 43.2 | E at 22.3 | CT- $\beta$ | VUS |
| 1693 | G |  |  | 1592 | G | R | 1 | 100 | 100 | 98.1 | CT- $\beta$ | LND |
| 1694 | R |  |  | 1593 | R |  |  | 100 | 100 | 99.1 | CT- $\beta$ | - |
| 1695 | K |  |  | 1594 | K |  |  | 30 | T at 30.9 | R at 23.4 | CT- $\beta$ | - |
| 1696 | L |  |  | 1595 | L |  |  | 15 | I at 85.6 | I at 44.8 | CT- $\beta$ | - |
| 1697 | L |  |  | 1596 | L |  |  | 20 | 45.3 | I at 64.0 | CT- $\beta$ | - |
| 1698 | I |  |  | 1597 | V |  |  | 15 | V at 79.1 | V at 66.4 | CT- $\beta$ | LND |
| 1699 | V |  |  | 1598 | I | V | 4 | 50 | 79.9 | I at 57.7 | CT- $\beta$ | ND |
| 1700 | A |  |  | 1599 | A |  |  | 60 | 84.2 | 66.9 | CT- $\beta$ | - |
| 1701 | N |  |  | 1600 | N |  |  | 100 | 100 | 99.9 | CT- $\beta$ | - |
| 1702 | D |  |  | 1601 | D |  |  | 100 | 100 | 100 | CT- $\beta$ | - |
| 1703 | V |  |  | 1602 | V |  |  | 35 | 71.2 | I at 75.0 | CT- $\beta$ | - |
| 1704 | T |  |  | 1603 | T |  |  | 100 | 100 | 99.3 | CT- $\beta$ | - |
| 1705 | F |  |  | 1604 | F |  |  | 70 | 95 | 48.9 | CT- $\beta$ | - |
| 1706 | K |  |  | 1605 | K |  |  | 45 | 62.6 | 40.6 | CT- $\beta$ | - |
| 1707 | A |  |  | 1606 | A |  |  | 45 | 90.7 | I at 66.1 | CT- $\beta$ | - |
| 1708 | G |  |  | 1607 | G |  |  | 100 | 100 | 100 | CT- $\beta$ | - |
| 1709 | S |  |  | 1608 | S |  |  | 100 | 100 | 98.5 | CT- $\beta$ | - |
| 1710 | F |  |  | 1609 | F |  |  | 100 | 100 | 99.9 | CT- $\beta$ | - |
| 1711 | G |  |  | 1610 | G |  |  | 100 | 100 | 97.5 | CT- $\beta$ | - |
| 1712 | P |  |  | 1611 | P |  |  | 90 | 93.5 | 83.1 | CT- $\beta$ | - |


| 1713 | R |  |  | 1612 | R |  |  | 50 | 92.8 | Q at 30.6 | CT- $\beta$ | - |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1714 | E |  |  | 1613 | E |  |  | 100 | 100 | 100 | CT- $\beta$ | - |
| 1715 | D | N | 1 | 1614 | D |  |  | 100 | 100 | 99.3 | CT- $\beta$ | VUS |
| 1716 | A | V (P) | 3 (2) | 1615 | A | V | 1 | 45 | 97.8 | 21.9 | CT- $\beta$ | LND |
| 1717 | F |  |  | 1616 | F |  |  | 60 | 97.8 | 57.9 | CT- $\beta$ | - |
| 1718 | F |  |  | 1617 | F |  |  | 90 | 100 | 90.9 | CT- $\beta$ | - |
| 1719 | L |  |  | 1618 | L |  |  | 40 | 27.3 | 26.2 | CT- $\beta$ | - |
| 1720 | A |  |  | 1619 | A |  |  | 35 | 87.1 | K at 37.3 | CT- $\beta$ | - |
| 1721 | V |  |  | 1620 | V |  |  | 60 | 97.8 | A at 40.6 | CT- $\beta$ | - |
| 1722 | T |  |  | 1621 | T |  |  | 65 | 100 | 56.2 | CT- $\beta$ | - |
| 1723 | E |  |  | 1622 | E |  |  | 60 | N at 48.9 | 60.9 | CT- $\beta$ | - |
| 1724 | L |  |  | 1623 | L |  |  | 75 | 90.7 | 70.2 | CT- $\beta$ | - |
| 1725 | A |  |  | 1624 | A |  |  | 100 | 97.8 | 96.1 | CT- $\beta$ | - |
| 1726 | C |  |  | 1625 | C |  |  | 45 | 99.3 | R at 76.3 | CT- $\beta$ | - |
| 1727 | T |  |  | 1626 | A |  |  | 10 | E at 45.3 | K at 34.0 | CT- $\beta$ | LND |
| 1728 | K |  |  | 1627 | K |  |  | 20 | K at 48.9 | L at 33.4 | CT- $\beta$ | - |
| 1729 | K |  |  | 1628 | K |  |  | 50 | 98.6 | G at 67.9 | CT- $\beta$ | - |
| 1730 | L |  |  | 1629 | L |  |  | 35 | 79.9 | I at 65.4 | CT- $\beta$ | - |
| 1731 | P |  |  | 1630 | P |  |  | 100 | 100 | 99.7 | CT- $\beta$ | - |
| 1732 | L |  |  | 1631 | L |  |  | 45 | 99.3 | R at 71.4 | CT- $\beta$ | - |
| 1733 | I |  |  | 1632 | I |  |  | 100 | 98.6 | 86.4 | CT- $\beta$ | - |
| 1734 | Y |  |  | 1633 | Y |  |  | 100 | 100 | 95.7 | CT- $\beta$ | - |
| 1735 | L |  |  | 1634 | L |  |  | 65 | 100 | 66.9 | CT- $\beta$ | - |
| 1736 | A |  |  | 1635 | A |  |  | 75 | 87.1 | S at 53.7 | CT- $\beta$ | - |
| 1737 | A |  |  | 1636 | A |  |  | 95 | 100 | 90.7 | CT- $\beta$ | - |
| 1738 | N |  |  | 1637 | N |  |  | 90 | 84.2 | 96.4 | CT- $\beta$ | - |
| 1739 | S | C | 12 | 1638 | S |  |  | 90 | 86.3 | 94.3 | CT- $\beta$ | PD |
| 1740 | G |  |  | 1639 | G |  |  | 100 | 100 | 99.7 | CT- $\beta$ | - |
| 1741 | A |  |  | 1640 | A |  |  | 100 | 100 | 99.7 | CT- $\beta$ | - |
| 1742 | R |  |  | 1641 | R |  |  | 95 | 100 | 96.7 | CT- $\beta$ | - |
| 1743 | L |  |  | 1642 | L |  |  | 55 | I at 59.7 | I at 76.9 | CT- $\beta$ | - |
| 1744 | G |  |  | 1643 | G |  |  | 100 | 98.6 | 99.6 | CT- $\beta$ | - |
| 1745 | V |  |  | 1644 | V |  |  | 40 | 62.6 | L at 46.5 | CT- $\beta$ | - |
| 1746 | A |  |  | 1645 | A |  |  | 100 | 100 | 93.4 | CT- $\beta$ | - |
| 1747 | E |  |  | 1646 | E |  |  | 80 | 65.5 | 68.8 | CT- $\beta$ | - |
| 1748 | E |  |  | 1647 | E |  |  | 100 | 100 | 95.5 | CT- $\beta$ | - |
| 1749 | V |  |  | 1648 | V |  |  | 35 | 81.3 | L at 35.2 | CT- $\beta$ | - |
| 1750 | K |  |  | 1649 | K |  |  | 60 | 95.7 | 42.6 | CT- $\beta$ | - |
| 1751 | A |  |  | 1650 | A |  |  | 35 | S at 51.8 | P at 29.4 | CT- $\beta$ | - |
| 1752 | C |  |  | 1651 | C |  |  | 45 | 97.1 | L at 25.0 | CT- $\beta$ | - |
| 1753 | F |  |  | 1652 | F |  |  | 100 | 100 | 91.9 | CT- $\beta$ | - |


| 1754 | K |  |  | 1653 | K |  |  | 30 | R at 41.0 | 27.6 | CT- $\beta$ | - |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1755 | V | D | 1 | 1654 | V |  |  | 90 | 95 | 86.4 | CT- $\beta$ | VUS |
| 1756 | G |  |  | 1655 | G |  |  | 45 | 98.6 | A at 69.3 | CT- $\beta$ | - |
| 1757 | W |  |  | 1656 | W |  |  | 100 | 99.3 | 94.8 | CT- $\beta$ | - |
| 1758 | S | L | 193 | 1657 | S | A | 1 | 45 | 85.6 | N at 33.7 | CT- $\beta$ | LND |
| 1759 | D |  |  | 1658 | D |  |  | 95 | 85.6 | 78.3 | CT- $\beta$ | - |
| 1760 | E |  |  | 1659 | E |  |  | 30 | 64 | P at 49.3 | CT- $\beta$ | - |
| 1761 | V |  |  | 1660 | I |  |  | 20 | S at 40.3 | E at 28.3 | CT- $\beta$ | LND |
| 1762 | S |  |  | 1661 | S |  |  | 45 | 71.9 | D at 31.0 | CT- $\beta$ | - |
| 1763 | P |  |  | 1662 | P |  |  | 100 | 100 | 88.2 | CT- $\beta$ | - |
| 1764 | G |  |  | 1663 | E |  |  | 5 | E at 92.1 | E at 43.3 | CT- $\beta$ | LND |
| 1765 | N |  |  | 1664 | N |  |  | 20 | R at 71.9 | K at 51.7 | CT- $\beta$ | - |
| 1766 | G | D (S) (C) | 34 (5) (2) | 1665 | G |  |  | 100 | 99.3 | 97.6 | CT- $\beta$ | LND |
| 1767 | F |  |  | 1666 | F |  |  | 90 | 99.3 | 82.9 | CT- $\beta$ | - |
| 1768 | Q |  |  | 1667 | Q |  |  | 50 | 69.8 | K at 47.8 | CT- $\beta$ | - |
| 1769 | Y |  |  | 1668 | Y |  |  | 100 | 100 | 97.3 | CT- $\beta$ | - |
| 1770 | I |  |  | 1669 | I |  |  | 40 | 59 | L at 73.8 | CT- $\beta$ | - |
| 1771 | Y |  |  | 1670 | Y |  |  | 100 | 100 | 99.3 | CT- $\beta$ | - |
| 1772 | L |  |  | 1671 | L |  |  | 100 | 97.1 | 95.4 | CT- $\beta$ | - |
| 1773 | S |  |  | 1672 | S | T | 1 | 25 | T at 69.8 | T at 71.1 | CT- $\beta$ | LND |
| 1774 | S |  |  | 1673 | P |  |  | 10 | P at 46.8 | P at 58.2 | CT- $\beta$ | LND |
| 1775 | E |  |  | 1674 | E |  |  | 50 | 82 | 55.9 | CT- $\beta$ | - |
| 1776 | D |  |  | 1675 | D |  |  | 85 | 98.6 | 59.7 | CT- $\beta$ | - |
| 1777 | Y |  |  | 1676 | H |  |  | 65 | 64 | 53.1 | CT- $\beta$ | LND |
| 1778 | A | T | 3 | 1677 | E | K | 2 | 30 | 54 | K at 29.7 | CT- $\beta$ | ND |
| 1779 | R |  |  | 1678 | R |  |  | 70 | 90.7 | 48.1 | CT- $\beta$ | - |
| 1780 | I |  |  | 1679 | I |  |  | 50 | 79.1 | L at 32.8 | CT- $\beta$ | - |
| 1781 | G |  |  | 1680 | G |  |  | 25 | 48.9 | S at 30.9 | CT- $\beta$ | - |
| 1782 | S |  |  | 1681 | S |  |  | 55 | 81.3 | 39.4 | CT- $\beta$ | - |
| 1783 | S |  |  | 1682 | S |  |  | 50 | 97.8 | 21.3 | CT- $\beta$ | - |
| 1784 | V |  |  | 1683 | V |  |  | 45 | 100 | N at 26.5 | CT- $\beta$ | - |
| 1785 | I |  |  | 1684 | I |  |  | 40 | 90.7 | S at 27.0 | CT- $\beta$ | - |
| 1786 | A |  |  | 1685 | A |  |  | 45 | 98.6 | V at 67.8 | CT- $\beta$ | - |
| 1787 | H |  |  | 1686 | H |  |  | 75 | 99.3 | 40.8 | CT- $\beta$ | - |
| 1788 | E | K | 1 | 1687 | E |  |  | 40 | 69.1 | T at 34.2 | CT- $\beta$ | VUS |
| 1789 | V |  |  | 1688 | V |  |  | 10 | L at 59.7 | E at 55.0 | CT- $\beta$ | - |
| 1790 | K |  |  | 1689 | K |  |  | 30 | 63.3 | H at 23.4 | CT- $\beta$ | - |
| 1791 | L |  |  | 1690 | L |  |  | 40 | 85.6 | V at 35.2 | CT- $\beta$ | - |
| 1792 | P |  |  | 1691 | P | S (L) | 386 (1) | 20 | E at 38.9 | E at 43.8 | CT- $\beta$ | ND |
| 1793 | S |  |  | 1692 | S |  |  | 35 | 66.9 | E at 26.5 | CT- $\beta$ | - |
| 1794 | G |  |  | 1693 | G | A (T) | 80 (1) | 95 | 100 | 94.8 | CT- $\beta$ | ND |



| 1836 | T |  |  | 1735 | T | 65 | 99.3 | 65.1 | CT- $\beta$ | - |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1837 | F |  |  | 1736 | F | 40 | 56.1 | L at 56.4 | CT- $\beta$ | - |
| 1838 | V |  |  | 1737 | V | 100 | 100 | 97 | CT- $\beta$ | - |
| 1839 | S |  |  | 1738 | S | 20 | T at 83.5 | T at 87.6 | CT- $\beta$ | - |
| 1840 | G |  |  | 1739 | G | 45 | 98.6 | C at 63.7 | CT- $\beta$ | - |
| 1841 | R |  |  | 1740 | R | 100 | 97.1 | 98.7 | CT- $\beta$ | - |
| 1842 | S | A | 2 | 1741 | T | 20 | T at 80.6 | 49.9 | CT- $\beta$ | LND |
| 1843 | V |  |  | 1742 | V | 60 | 92.1 | 71.1 | CT- $\beta$ | - |
| 1844 | G |  |  | 1743 | G | 100 | 100 | 99.7 | CT- $\beta$ | - |
| 1845 | I |  |  | 1744 | I | 100 | 100 | 99.6 | CT- $\beta$ | - |
| 1846 | G |  |  | 1745 | G | 100 | 100 | 99.6 | CT- $\beta$ | - |
| 1847 | A |  |  | 1746 | A | 90 | 100 | 92.4 | CT- $\beta$ | - |
| 1848 | Y |  |  | 1747 | Y | 100 | 100 | 99.6 | CT- $\beta$ | - |
| 1849 | L |  |  | 1748 | L | 95 | 100 | 94.9 | CT- $\beta$ | - |
| 1850 | A |  |  | 1749 | A | 45 | 93.5 | V at 71.4 | CT- $\beta$ | - |
| 1851 | R |  |  | 1750 | R | 100 | 100 | 99.7 | CT- $\beta$ | - |
| 1852 | L |  |  | 1751 | L | 100 | 99.3 | 98.5 | CT- $\beta$ | - |
| 1853 | G |  |  | 1752 | G | 100 | 100 | 97.3 | CT- $\beta$ | - |
| 1854 | M |  |  | 1753 | M | 35 | 71.2 | Q at 67.9 | CT- $\beta$ | - |
| 1855 | R |  |  | 1754 | R | 100 | 100 | 99.7 | CT- $\beta$ | - |
| 1856 | C |  |  | 1755 | C | 45 | 99.3 | A at 35.5 | CT- $\beta$ | - |
| 1857 | I |  |  | 1756 | I | 90 | 98.6 | 82.3 | CT- $\beta$ | - |
| 1858 | Q | K | 1 | 1757 | Q | 100 | 100 | 99.6 | CT- $\beta$ | VUS |
| 1859 | R |  |  | 1758 | R | 45 | 99.3 | V at 46.2 | CT- $\beta$ | - |
| 1860 | L |  |  | 1759 | L | 40 | 80.6 | E at 63.7 | CT- $\beta$ | - |
| 1861 | D |  |  | 1760 | D | 50 | 99.3 | G at 39.0 | CT- $\beta$ | - |
| 1862 | Q |  |  | 1761 | Q | 60 | 100 | 58.3 | CT- $\beta$ | - |
| 1863 | P |  |  | 1762 | P | 65 | 100 | 69.7 | CT- $\beta$ | - |
| 1864 | I |  |  | 1763 | I | 90 | 99.3 | 86.1 | CT- $\beta$ | - |
| 1865 | I |  |  | 1764 | I | 100 | 100 | 97.8 | CT- $\beta$ | - |
| 1866 | L |  |  | 1765 | L | 100 | 100 | 99.4 | CT- $\beta$ | - |
| 1867 | T |  |  | 1766 | T | 100 | 100 | 99.6 | CT- $\beta$ | - |
| 1868 | G |  |  | 1767 | G | 100 | 100 | 99.6 | CT- $\beta$ | - |
| 1869 | F |  |  | 1768 | F | 40 | 80.6 | A at 60.0 | CT- $\beta$ | - |
| 1870 | S |  |  | 1769 | S | 55 | 98.6 | P at 32.4 | CT- $\beta$ | - |
| 1871 | T |  |  | 1770 | T | 20 | A at 84.2 | A at 94.9 | CT- $\beta$ | - |
| 1872 | L |  |  | 1771 | L | 90 | 100 | 73.8 | CT- $\beta$ | - |
| 1873 | N |  |  | 1772 | N | 100 | 100 | 99.4 | CT- $\beta$ | - |
| 1874 | K |  |  | 1773 | K | 95 | 100 | 87.1 | CT- $\beta$ | - |
| 1875 | L |  |  | 1774 | L | 50 | 99.3 | 58.6 | CT- $\beta$ | - |
| 1876 | L |  |  | 1775 | L | 100 | 100 | 96.1 | CT- $\beta$ | - |


| 1877 | G |  |  | 1776 | G |  |  | 100 | 99.3 | 99.3 | CT- $\beta$ | - |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1878 | R |  |  | 1777 | R |  |  | 95 | 100 | 87.3 | CT- $\beta$ | - |
| 1879 | E |  |  | 1778 | E |  |  | 85 | 100 | 88.7 | CT- $\beta$ | - |
| 1880 | V |  |  | 1779 | V |  |  | 95 | 100 | 96.7 | CT- $\beta$ | - |
| 1881 | Y |  |  | 1780 | Y |  |  | 100 | 100 | 99.4 | CT- $\beta$ | - |
| 1882 | S |  |  | 1781 | S |  |  | 45 | 98.6 | T at 58.6 | CT- $\beta$ | - |
| 1883 | S | T | 8 | 1782 | S |  |  | 100 | 100 | 97 | CT- $\beta$ | PD |
| 1884 | H |  |  | 1783 | H |  |  | 40 | 88.5 | N at 75.7 | CT- $\beta$ | - |
| 1885 | M |  |  | 1784 | M |  |  | 45 | 97.1 | L at 41.1 | CT- $\beta$ | - |
| 1886 | Q |  |  | 1785 | Q |  |  | 100 | 100 | 99.4 | CT- $\beta$ | - |
| 1887 | L |  |  | 1786 | L |  |  | 95 | 100 | 97.5 | CT- $\beta$ | - |
| 1888 | G |  |  | 1787 | G |  |  | 100 | 100 | 99.4 | CT- $\beta$ | D |
| 1889 | G |  |  | 1788 | G |  |  | 100 | 100 | 99.4 | CT- $\beta$ | - |
| 1890 | P |  |  | 1789 | P |  |  | 45 | 97.1 | T at 42.1 | CT- $\beta$ | - |
| 1891 | K |  |  | 1790 | K |  |  | 45 | 99.3 | Q at 73.6 | CT- $\beta$ | - |
| 1892 | I |  |  | 1791 | I |  |  | 95 | 95.7 | 92.7 | CT- $\beta$ | - |
| 1893 | M |  |  | 1792 | M |  |  | 100 | 100 | 99.4 | CT- $\beta$ | - |
| 1894 | G |  |  | 1793 | G |  |  | 20 | A at 82.0 | Y at 41.5 | CT- $\beta$ | - |
| 1895 | T |  |  | 1794 | T |  |  | 45 | 93.5 | N at 29.1 | CT- $\beta$ | - |
| 1896 | N |  |  | 1795 | N |  |  | 100 | 100 | 99.4 | CT- $\beta$ | - |
| 1897 | G | S | 2 | 1796 | G |  |  | 100 | 100 | 99.4 | CT- $\alpha$ | PD |
| 1898 | V |  |  | 1797 | V |  |  | 90 | 100 | 92.8 | CT- $\alpha$ | - |
| 1899 | V |  |  | 1798 | V |  |  | 45 | 95.7 | S at 54.4 | CT- $\alpha$ | - |
| 1900 | H |  |  | 1799 | H |  |  | 100 | 100 | 99 | CT- $\alpha$ | - |
| 1901 | L |  |  | 1800 | L |  |  | 60 | 94.2 | 44.1 | CT- $\alpha$ | - |
| 1902 | T | K | 21 | 1801 | T | A | 1 | 95 | 100 | 87.6 | CT- $\alpha$ | LD |
| 1903 | V |  |  | 1802 | V |  |  | 75 | 99.3 | 47.1 | CT- $\alpha$ | - |
| 1904 | S |  |  | 1803 | S |  |  | 45 | 83.5 | 25.9 | CT- $\alpha$ | - |
| 1905 | D |  |  | 1804 | D |  |  | 90 | 99.3 | 77.1 | CT- $\alpha$ | - |
| 1906 | D |  |  | 1805 | D |  |  | 95 | 99.3 | 95.1 | CT- $\alpha$ | - |
| 1907 | L |  |  | 1806 | L |  |  | 55 | 99.3 | 46.9 | CT- $\alpha$ | - |
| 1908 | E |  |  | 1807 | E | A | 1 | 75 | 96.4 | 61.3 | CT- $\alpha$ | LND |
| 1909 | G |  |  | 1808 | G |  |  | 95 | 99.3 | 90.7 | CT- $\alpha$ | - |
| 1910 | V |  |  | 1809 | V |  |  | 90 | 80.6 | 71.7 | CT- $\alpha$ | - |
| 1911 | S |  |  | 1810 | S |  |  | 55 | 93.5 | 33 | CT- $\alpha$ | - |
| 1912 | A |  |  | 1811 | A |  |  | 30 | 59.7 | K at 32.5 | CT- $\alpha$ | - |
| 1913 | I |  |  | 1812 | I |  |  | 85 | 98.6 | 80.5 | CT- $\alpha$ | - |
| 1914 | L |  |  | 1813 | L |  |  | 80 | 95 | 59.1 | CT- $\alpha$ | - |
| 1915 | N |  |  | 1814 | N |  |  | 20 | K at 51.8 | E at 29.7 | CT- $\alpha$ | - |
| 1916 | W |  |  | 1815 | W |  |  | 100 | 99.3 | 98.4 | CT- $\alpha$ | - |
| 1917 | L |  |  | 1816 | L |  |  | 85 | 99.3 | 74.5 | CT- $\alpha$ | - |


| 1918 | S |  |  | 1817 | S |  |  | 100 | 99.3 | 91.8 | CT- $\alpha$ | - |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1919 | Y |  |  | 1818 | Y |  |  | 90 | 81.3 | 69.9 | CT- $\alpha$ | - |
| 1920 | I |  |  | 1819 | I |  |  | 30 | V at 71.2 | V at 53.7 | CT- $\alpha$ | - |
| 1921 | P |  |  | 1820 | P |  |  | 100 | 99.3 | 99.1 | CT- $\alpha$ | - |
| 1922 | A |  |  | 1821 | A |  |  | 45 | 42.5 | 28.6 | CT- $\alpha$ | - |
| 1923 | Y |  |  | 1822 | Y |  |  | 30 | 38.1 | K at 31.6 | CT- $\alpha$ | - |
| 1924 | V |  |  | 1823 | V | A (L) | 4 (1) | 40 | 41.7 | R at 33.0 | CT- $\alpha$ | ND |
| 1925 | G | S | 2 | 1824 | G |  |  | 50 | 99.3 | 47.4 | CT- $\alpha$ | VUS |
| 1926 | G |  |  | 1825 | G |  |  | 45 | 98.6 | S at 30.6 | CT- $\alpha$ | - |
| 1927 | P |  |  | 1826 | P |  |  | 75 | 74.8 | 73.3 | CT- $\alpha$ | - |
| 1928 | L |  |  | 1827 | L |  |  | 50 | 97.1 | V at 43.9 | CT- $\alpha$ | - |
| 1929 | P |  |  | 1828 | P |  |  | 100 | 99.3 | 94.9 | CT- $\alpha$ | - |
| 1930 | V |  |  | 1829 | V |  |  | 15 | I at 77.0 | I at 65.1 | CT- $\alpha$ | - |
| 1931 | L |  |  | 1830 | L |  |  | 45 | 33.1 | 34.5 | CT- $\alpha$ | - |
| 1932 | A | V | 1 | 1831 | A |  |  | 15 | K at 50.4 | S at 16.8 | CT- $\alpha$ | VUS |
| 1933 | P |  |  | 1832 | P |  |  | 50 | 70.5 | 50.4 | CT- $\alpha$ | - |
| 1934 | L |  |  | 1833 | L |  |  | 45 | 80.6 | 18 | CT- $\alpha$ | - |
| 1935 | D |  |  | 1834 | D |  |  | 100 | 99.3 | 98.8 | CT- $\alpha$ | - |
| 1936 | P |  |  | 1835 | P |  |  | 75 | 92.1 | 55 | CT- $\alpha$ | - |
| 1937 | P |  |  | 1836 | P |  |  | 45 | 88.5 | W at 40.3 | CT- $\alpha$ | - |
| 1938 | E |  |  | 1837 | E |  |  | 35 | 59 | D at 71.1 | CT- $\alpha$ | - |
| 1939 | R |  |  | 1838 | R |  |  | 100 | 99.3 | 99.1 | CT- $\alpha$ | - |
| 1940 | T | S | 1 | 1839 | I | T | 153 | 15 | P at 68.4 | D at 36.4 | CT- $\alpha$ | ND |
| 1941 | V |  |  | 1840 | V |  |  | 70 | 97.1 | 53.7 | CT- $\alpha$ | - |
| 1942 | E |  |  | 1841 | E |  |  | 55 | 52.5 | 36.9 | CT- $\alpha$ | - |
| 1943 | Y |  |  | 1842 | Y | D | 2 | 50 | 99.3 | 56.1 | CT- $\alpha$ | ND |
| 1944 | I |  |  | 1843 | V | I | 15 | 15 | F at 37.4 | V at 19.9 | CT- $\alpha$ | - |
| 1945 | P |  |  | 1844 | P |  |  | 100 | 98.6 | 96 | CT- $\alpha$ | - |
| 1946 | E |  |  | 1845 | E | K | 1 | 45 | 95.7 | P at 30.3 | CT- $\alpha$ | LND |
| 1947 | N |  |  | 1846 | N |  |  | 50 | 88.5 | K at 46.2 | CT- $\alpha$ | - |
| 1948 | S |  |  | 1847 | S |  |  | 35 | 66.9 | 21.1 | CT- $\alpha$ | - |
| 1949 | C |  |  | 1848 | C |  |  | 45 | 98.6 | Y at 74.4 | CT- $\alpha$ | - |
| 1950 | D |  |  | 1849 | D |  |  | 95 | 99.3 | 95.8 | CT- $\alpha$ | - |
| 1951 | P |  |  | 1850 | P |  |  | 75 | 84.2 | 62.5 | CT- $\alpha$ | - |
| 1952 | R |  |  | 1851 | R |  |  | 95 | 98.6 | 98.7 | CT- $\alpha$ | - |
| 1953 | A |  |  | 1852 | A |  |  | 45 | 97.8 | W at 62.2 | CT- $\alpha$ | - |
| 1954 | A |  |  | 1853 | A |  |  | 45 | 98.6 | M at 41.4 | CT- $\alpha$ | - |
| 1955 | I |  |  | 1854 | I | V | 1 | 65 | 97.8 | 60.6 | CT- $\alpha$ | LND |
| 1956 | A |  |  | 1855 | A |  |  | 50 | S at 36.7 | 44.4 | CT- $\alpha$ | - |
| 1957 | G |  |  | 1856 | G |  |  | 100 | 99.3 | 97.9 | CT- $\alpha$ | - |
| 1958 | I |  |  | 1857 | V | I | 1 | 20 | 38.9 | R at 39.3 | CT- $\alpha$ | LND |


| 1959 | N |  |  | 1858 | K | N | 2 | 15 | D at 28.1 | E at 24.7 | CT- $\alpha$ | ND |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1960 | D |  |  | 1859 | D |  |  | 60 | 87.8 | 40.6 | CT- $\alpha$ | - |
| 1961 | N | D | 7 | 1860 | N |  |  | 20 | S at 37.4 | P at 28.5 | CT- $\alpha$ | VUS |
| 1962 | T |  |  | 1861 | T |  |  | 40 | Q at 40.3 | 19 | CT- $\alpha$ | - |
| 1963 | G |  |  | 1862 | G |  |  | 55 | 98.6 | 44.9 | CT- $\alpha$ | - |
| 1964 | K |  |  | 1863 | K |  |  | 40 | 76.3 | G at 33.9 | CT- $\alpha$ | - |
| 1965 | W |  |  | 1864 | W |  |  | 80 | 99.3 | 57.1 | CT- $\alpha$ | - |
| 1966 | L |  |  | 1865 | L |  |  | 60 | 85.6 | 41.7 | CT- $\alpha$ | - |
| 1967 | G |  |  | 1866 | G |  |  | 40 | 89.9 | S at 48.9 | CT- $\alpha$ | - |
| 1968 | G |  |  | 1867 | G |  |  | 100 | 99.3 | 99 | CT- $\alpha$ | D |
| 1969 | I |  |  | 1868 | I |  |  | 25 | 51.1 | L at 37.6 | CT- $\alpha$ | - |
| 1970 | F |  |  | 1869 | F |  |  | 100 | 99.3 | 95.1 | CT- $\alpha$ | - |
| 1971 | D |  |  | 1870 | D |  |  | 100 | 99.3 | 99 | CT- $\alpha$ | - |
| 1972 | K |  |  | 1871 | K |  |  | 55 | 73.4 | 50.8 | CT- $\alpha$ | - |
| 1973 | N |  |  | 1872 | N |  |  | 20 | D at 66.9 | G at 48.9 | CT- $\alpha$ | - |
| 1974 | S |  |  | 1873 | S |  |  | 100 | 97.8 | 97 | CT- $\alpha$ | - |
| 1975 | F |  |  | 1874 | F |  |  | 95 | 99.3 | 90.1 | CT- $\alpha$ | - |
| 1976 | V |  |  | 1875 | I | V | 194 | 35 | 77.7 | 28 | CT- $\alpha$ | ND |
| 1977 | E |  |  | 1876 | E |  |  | 100 | 99.3 | 99 | CT- $\alpha$ | - |
| 1978 | T |  |  | 1877 | T |  |  | 65 | 98.6 | 53.1 | CT- $\alpha$ | - |
| 1979 | L |  |  | 1878 | L |  |  | 55 | 71.9 | 64.3 | CT- $\alpha$ | - |
| 1980 | E |  |  | 1879 | E |  |  | 45 | 95.7 | G at 26.4 | CT- $\alpha$ | - |
| 1981 | G |  |  | 1880 | G |  |  | 65 | 98.6 | 70.2 | CT- $\alpha$ | - |
| 1982 | W |  |  | 1881 | W |  |  | 100 | 99.3 | 99 | CT- $\alpha$ | - |
| 1983 | A |  |  | 1882 | A |  |  | 100 | 99.3 | 96.1 | CT- $\alpha$ | - |
| 1984 | R |  |  | 1883 | R |  |  | 25 | 51.1 | K at 36.3 | CT- $\alpha$ | - |
| 1985 | T |  |  | 1884 | T |  |  | 80 | 92.8 | 76.5 | CT- $\alpha$ | - |
| 1986 | V |  |  | 1885 | V |  |  | 100 | 98.6 | 97 | CT- $\alpha$ | - |
| 1987 | V |  |  | 1886 | V |  |  | 85 | 85.6 | 90.6 | CT- $\alpha$ | - |
| 1988 | T |  |  | 1887 | T |  |  | 60 | 97.8 | V at 57.3 | CT- $\alpha$ | - |
| 1989 | G |  |  | 1888 | G |  |  | 100 | 98.6 | 99 | CT- $\alpha$ | - |
| 1990 | R |  |  | 1889 | R |  |  | 100 | 98.6 | 99.1 | CT- $\alpha$ | - |
| 1991 | A |  |  | 1890 | A |  |  | 100 | 98.6 | 96.1 | CT- $\alpha$ | - |
| 1992 | K |  |  | 1891 | K |  |  | 45 | 91.4 | R at 76.5 | CT- $\alpha$ | - |
| 1993 | L |  |  | 1892 | L |  |  | 95 | 99.3 | 97.3 | CT- $\alpha$ | - |
| 1994 | G |  |  | 1893 | G |  |  | 100 | 97.8 | 96.6 | CT- $\alpha$ | - |
| 1995 | G |  |  | 1894 | G |  |  | 100 | 97.8 | 99 | CT- $\alpha$ | - |
| 1996 | I |  |  | 1895 | I |  |  | 90 | 95 | 92.1 | CT- $\alpha$ | - |
| 1997 | P |  |  | 1896 | P |  |  | 100 | 99.3 | 99.1 | CT- $\alpha$ | - |
| 1998 | I |  |  | 1897 | V |  |  | 5 | 97.1 | V at 78.7 | CT- $\alpha$ | LND |
| 1999 | G |  |  | 1898 | G |  |  | 100 | 98.6 | 97.9 | CT- $\alpha$ | - |



| 2041 | T |  |  | 1940 | T | 100 | 98.6 | 99 | CT- $\alpha$ | - |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2042 | A |  |  | 1941 | A | 90 | 93.5 | 88.9 | CT- $\alpha$ | - |
| 2043 | Q |  |  | 1942 | Q | 100 | 98.6 | 91.9 | CT- $\alpha$ | - |
| 2044 | A |  |  | 1943 | A | 90 | 98.6 | 94.3 | CT- $\alpha$ | - |
| 2045 | L | F | 8 | 1944 | L | 35 | 61.9 | I at 70.0 | CT- $\alpha$ | VUS |
| 2046 | M |  |  | 1945 | M | 20 | L at 60.4 | K at 28.3 | CT- $\alpha$ | - |
| 2047 | D |  |  | 1946 | D | 100 | 98.6 | 98.8 | CT- $\alpha$ | - |
| 2048 | F |  |  | 1947 | F | 100 | 97.1 | 94.5 | CT- $\alpha$ | - |
| 2049 | N |  |  | 1948 | N | 95 | 98.6 | 84.9 | CT- $\alpha$ | - |
| 2050 | R |  |  | 1949 | R | 70 | 89.2 | 49.9 | CT- $\alpha$ | - |
| 2051 | E |  |  | 1950 | E | 100 | 97.8 | 98.8 | CT- $\alpha$ | - |
| 2052 | Q |  |  | 1951 | E | 25 | E at 56.1 | 36 | CT- $\alpha$ | LND |
| 2053 | L |  |  | 1952 | L | 100 | 98.6 | 98.7 | CT- $\alpha$ | - |
| 2054 | P |  |  | 1953 | P | 100 | 98.6 | 98.7 | CT- $\alpha$ | - |
| 2055 | L |  |  | 1954 | L | 95 | 98.6 | 84.6 | CT- $\alpha$ | - |
| 2056 | F |  |  | 1955 | F | 50 | 97.8 | M at 50.5 | CT- $\alpha$ | - |
| 2057 | I |  |  | 1956 | I | 75 | 98.6 | 80.5 | CT- $\alpha$ | - |
| 2058 | I |  |  | 1957 | L | 5 | L at 95.7 | L at 59.1 | CT- $\alpha$ | LND |
| 2059 | A | V | 1 | 1958 | A | 100 | 98.6 | 98.2 | CT- $\alpha$ | VUS |
| 2060 | N |  |  | 1959 | N | 100 | 97.8 | 97.9 | CT- $\alpha$ | - |
| 2061 | W |  |  | 1960 | W | 100 | 98.6 | 97.3 | CT- $\alpha$ | - |
| 2062 | R |  |  | 1961 | R | 100 | 98.6 | 99 | CT- $\alpha$ | - |
| 2063 | G |  |  | 1962 | G | 100 | 98.6 | 99 | CT- $\alpha$ | - |
| 2064 | F |  |  | 1963 | F | 100 | 98.6 | 99 | CT- $\alpha$ | - |
| 2065 | S |  |  | 1964 | S | 100 | 98.6 | 99 | CT- $\alpha$ | - |
| 2066 | G |  |  | 1965 | G | 100 | 98.6 | 98.2 | CT- $\alpha$ | - |
| 2067 | G |  |  | 1966 | G | 100 | 98.6 | 99 | CT- $\alpha$ | - |
| 2068 | Q | R | 1 | 1967 | Q | 65 | 98.6 | 64.9 | CT- $\alpha$ | VUS |
| 2069 | R |  |  | 1968 | R | 65 | 96.4 | 62.5 | CT- $\alpha$ | - |
| 2070 | D |  |  | 1969 | D | 100 | 98.6 | 99 | CT- $\alpha$ | - |
| 2071 | L |  |  | 1970 | L | 45 | 97.8 | M at 78.3 | CT- $\alpha$ | - |
| 2072 | F |  |  | 1971 | F | 55 | 97.8 | Y at 64.8 | CT- $\alpha$ | - |
| 2073 | E |  |  | 1972 | E | 55 | 97.8 | N at 34.9 | CT- $\alpha$ | - |
| 2074 | G |  |  | 1973 | G | 45 | 97.8 | E at 49.6 | CT- $\alpha$ | - |
| 2075 | I |  |  | 1974 | I | 50 | 93.5 | V at 61.8 | CT- $\alpha$ | - |
| 2076 | L |  |  | 1975 | L | 95 | 97.8 | 92.8 | CT- $\alpha$ | - |
| 2077 | Q | L | 9 | 1976 | Q | 45 | 97.1 | K at 78.3 | CT- $\alpha$ | VUS |
| 2078 | A |  |  | 1977 | A | 45 | 97.8 | F at 37.0 | CT- $\alpha$ | - |
| 2079 | G |  |  | 1978 | G | 100 | 98.6 | 99 | CT- $\alpha$ | - |
| 2080 | S |  |  | 1979 | S | 70 | 93.5 | 62.8 | CT- $\alpha$ | - |
| 2081 | A |  |  | 1980 | T | 10 | T at 79.9 | Y at 44.5 | CT- $\alpha$ | LND |


| 2082 | I | M | 1 | 1981 | 1 | 95 | 97.1 | 98.7 | CT- $\alpha$ | VUS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2083 | V | G | 1 | 1982 | V | 100 | 98.6 | 98.8 | CT- $\alpha$ | VUS |
| 2084 | E |  |  | 1983 | E | 45 | 97.8 | D at 78.1 | CT- $\alpha$ | - |
| 2085 | N |  |  | 1984 | N | 45 | 93.5 | A at 40.9 | CT- $\alpha$ | - |
| 2086 | L |  |  | 1985 | L | 100 | 98.6 | 97.8 | CT- $\alpha$ | - |
| 2087 | R |  |  | 1986 | R | 80 | 97.1 | 53.1 | CT- $\alpha$ | - |
| 2088 | T |  |  | 1987 | T | 45 | 94.2 | K at 25.2 | CT- $\alpha$ | - |
| 2089 | Y |  |  | 1988 | Y | 80 | 97.8 | 82.9 | CT- $\alpha$ | - |
| 2090 | R |  |  | 1989 | R | 20 | K at 43.9 | K at 40.0 | CT- $\alpha$ | - |
| 2091 | Q |  |  | 1990 | Q | 95 | 98.6 | 88.2 | CT- $\alpha$ | - |
| 2092 | P |  |  | 1991 | P | 100 | 98.6 | 99 | CT- $\alpha$ | - |
| 2093 | V |  |  | 1992 | V | 55 | 43.2 | 52.3 | CT- $\alpha$ | - |
| 2094 | F |  |  | 1993 | F | 55 | 98.6 | 61.5 | CT- $\alpha$ | - |
| 2095 | V | L | 1 | 1994 | V | 70 | 95.7 | 67.9 | CT- $\alpha$ | VUS |
| 2096 | Y |  |  | 1995 | Y | 100 | 92.8 | 96.1 | CT- $\alpha$ | - |
| 2097 | I |  |  | 1996 | I | 95 | 97.1 | 92.1 | CT- $\alpha$ | - |
| 2098 | P | S | 2 | 1997 | P | 100 | 97.8 | 93 | CT- $\alpha$ | VUS |
| 2099 | M |  |  | 1998 | M | 25 | 64.8 | P at 77.4 | CT- $\alpha$ | - |
| 2100 | M | I | 2 | 1999 | M | 25 | 48.9 | F at 21.3 | CT- $\alpha$ | VUS |
| 2101 | G |  |  | 2000 | G | 55 | 79.9 | 65.4 | CT- $\alpha$ | - |
| 2102 | E |  |  | 2001 | E | 100 | 98.6 | 98.8 | CT- $\alpha$ | - |
| 2103 | L |  |  | 2002 | L | 100 | 98.6 | 98.2 | CT- $\alpha$ | - |
| 2104 | R |  |  | 2003 | R | 100 | 98.6 | 99 | CT- $\alpha$ | - |
| 2105 | G |  |  | 2004 | G | 100 | 98.6 | 99 | CT- $\alpha$ | - |
| 2106 | G |  |  | 2005 | G | 100 | 98.6 | 99 | CT- $\alpha$ | - |
| 2107 | A |  |  | 2006 | A | 50 | 98.6 | S at 56.2 | CT- $\alpha$ | - |
| 2108 | W |  |  | 2007 | W | 100 | 98.6 | 99 | CT- $\alpha$ | - |
| 2109 | V |  |  | 2008 | V | 95 | 94.2 | 87.7 | CT- $\alpha$ | - |
| 2110 | V |  |  | 2009 | V | 100 | 98.6 | 98.8 | CT- $\alpha$ | - |
| 2111 | V |  |  | 2010 | V | 60 | 76.3 | 54.9 | CT- $\alpha$ | - |
| 2112 | D |  |  | 2011 | D | 100 | 97.8 | 98.5 | CT- $\alpha$ | - |
| 2113 | S | T | 11 | 2012 | S | 60 | 97.8 | P at 62.2 | CT- $\alpha$ | VUS |
| 2114 | Q |  |  | 2013 | Q | 20 | K at 60.4 | T at 59.1 | CT- $\alpha$ | - |
| 2115 | I | R | 1 | 2014 | I | 100 | 97.8 | 98.2 | CT- $\alpha$ | PD |
| 2116 | N |  |  | 2015 | N | 100 | 98.6 | 98.1 | CT- $\alpha$ | - |
| 2117 | S | L | 1 | 2016 | S | 25 | P at 57.6 | P at 62.1 | CT- $\alpha$ | VUS |
| 2118 | D | E | 2 | 2017 | D | 50 | 83.5 | 35.8 | CT- $\alpha$ | VUS |
| 2119 | Y |  |  | 2018 | Y | 25 | H at 53.2 | H at 27.0 | CT- $\alpha$ | - |
| 2120 | I |  |  | 2019 | V | 40 | 80.6 | M at 67.9 | CT- $\alpha$ | LND |
| 2121 | E |  |  | 2020 | E | 100 | 98.6 | 96.7 | CT- $\alpha$ | - |
| 2122 | M | I | 4 | 2021 | M | 80 | 70.5 | 81.9 | CT- $\alpha$ | VUS |


| 2123 | Y |  |  | 2022 | Y |  |  | 100 | 98.6 | 93.1 | CT- $\alpha$ | - |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2124 | A |  |  | 2023 | A |  |  | 100 | 97.8 | 94.3 | CT- $\alpha$ | - |
| 2125 | D |  |  | 2024 | D |  |  | 75 | E at 64.8 | 84.1 | CT- $\alpha$ | - |
| 2126 | E | K | 51 | 2025 | E |  |  | 25 | R at 75.6 | R at 26.5 | CT- $\alpha$ | VUS |
| 2127 | T | A | 1 | 2026 | T |  |  | 45 | 96.4 | E at 45.1 | CT- $\alpha$ | VUS |
| 2128 | A |  |  | 2027 | A |  |  | 55 | 95 | S at 24.9 | CT- $\alpha$ | - |
| 2129 | R |  |  | 2028 | R | L (H) | 5 (1) | 80 | K at 67.6 | 84 | CT- $\alpha$ | ND |
| 2130 | G |  |  | 2029 | G |  |  | 90 | 96.4 | 80.1 | CT- $\alpha$ | - |
| 2131 | N |  |  | 2030 | N |  |  | 45 | 95 | G at 70.6 | CT- $\alpha$ | - |
| 2132 | V |  |  | 2031 | V |  |  | 100 | 97.1 | 86.5 | CT- $\alpha$ | - |
| 2133 | L |  |  | 2032 | L |  |  | 100 | 98.6 | 97.6 | CT- $\alpha$ | - |
| 2134 | E |  |  | 2033 | E |  |  | 100 | 98.6 | 98.5 | CT- $\alpha$ | - |
| 2135 | P |  |  | 2034 | P |  |  | 90 | 87.1 | 89.8 | CT- $\alpha$ | - |
| 2136 | E |  |  | 2035 | E |  |  | 75 | 60.4 | 71.8 | CT- $\alpha$ | - |
| 2137 | G |  |  | 2036 | G |  |  | 100 | 97.8 | 95.8 | CT- $\alpha$ | - |
| 2138 | M |  |  | 2037 | T |  |  | 25 | L at 46.0 | I at 34.3 | CT- $\alpha$ | LND |
| 2139 | I |  |  | 2038 | I |  |  | 45 | 59.9 | V at 65.1 | CT- $\alpha$ | - |
| 2140 | E |  |  | 2039 | E |  |  | 80 | 98.6 | 63.1 | CT- $\alpha$ | - |
| 2141 | I |  |  | 2040 | I |  |  | 100 | 98.6 | 93.6 | CT- $\alpha$ | - |
| 2142 | K |  |  | 2041 | K |  |  | 100 | 97.1 | 96.7 | CT- $\alpha$ | - |
| 2143 | F |  |  | 2042 | F |  |  | 85 | 97.1 | 53.2 | CT- $\alpha$ | - |
| 2144 | R |  |  | 2043 | R |  |  | 90 | 88.5 | 90.9 | CT- $\alpha$ | - |
| 2145 | R |  |  | 2044 | T |  |  | 20 | T at 38.1 | 33.3 | CT- $\alpha$ | LND |
| 2146 | K | Q | 15 | 2045 | K |  |  | 55 | 41 | 39 | CT- $\alpha$ | VUS |
| 2147 | E |  |  | 2046 | E |  |  | 45 | 89.2 | K at 36.3 | CT- $\alpha$ | - |
| 2148 | L |  |  | 2047 | L |  |  | 80 | 88.5 | 59.5 | CT- $\alpha$ | - |
| 2149 | L |  |  | 2048 | L |  |  | 45 | 49.6 | 51.4 | CT- $\alpha$ | - |
| 2150 | E |  |  | 2049 | E |  |  | 45 | 79.1 | K at 31.2 | CT- $\alpha$ | - |
| 2151 | C |  |  | 2050 | C |  |  | 40 | 80.6 | T at 62.5 | CT- $\alpha$ | - |
| 2152 | M | L | 1 | 2051 | M |  |  | 90 | 98.6 | 89.2 | CT- $\alpha$ | VUS |
| 2153 | G |  |  | 2052 | G |  |  | 30 | 74.8 | A at 24.1 | CT- $\alpha$ | - |
| 2154 | R |  |  | 2053 | R |  |  | 100 | 97.8 | 97.6 | CT- $\alpha$ | - |
| 2155 | L |  |  | 2054 | L |  |  | 65 | 95.7 | 65.8 | CT- $\alpha$ | - |
| 2156 | D |  |  | 2055 | D |  |  | 100 | 98.6 | 96.9 | CT- $\alpha$ | - |
| 2157 | Q |  |  | 2056 | Q |  |  | 20 | P at 50.4 | P at 55.0 | CT- $\alpha$ | - |
| 2158 | T |  |  | 2057 | K |  |  | 15 | E at 43.2 | V at 23.7 | CT- $\alpha$ | LND |
| 2159 | L |  |  | 2058 | L |  |  | 45 | 96.4 | Y at 60.0 | CT- $\alpha$ | - |
| 2160 | I |  |  | 2059 | I | V | 1 | 60 | 90.7 | 29.7 | CT- $\alpha$ | LND |
| 2161 | N |  |  | 2060 | S |  |  | 15 | 38.9 | E at 17.7 | CT- $\alpha$ | LND |
| 2162 | L |  |  | 2061 | L |  |  | 100 | 94.2 | 92.5 | CT- $\alpha$ | - |
| 2163 | K |  |  | 2062 | K |  |  | 45 | 76.3 | 44.1 | CT- $\alpha$ | - |


| 2164 | A |  |  | 2063 | A |  |  | 35 | 71.9 | E at 26.4 | CT- $\alpha$ | - |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2165 | N |  |  | 2064 | K |  |  | 5 | K at 70.5 | K at 26.1 | CT- $\alpha$ | LND |
| 2166 | I |  |  | 2065 | L |  |  | 5 | L at 93.5 | L at 76.9 | CT- $\alpha$ | LND |
| 2167 | Q | E | 3 | 2066 | Q | R | 2 | 20 | 65.5 | D at 27.1 | CT- $\alpha$ | ND |
| 2168 | D |  |  | 2067 | D |  |  | 30 | E at 43.2 | E at 12.1 | CT- $\alpha$ | - |
| 2169 | A |  |  | 2068 | A |  |  | 45 | 67.6 | A at 21.6 | CT- $\alpha$ | - |
| 2170 | K |  |  | 2069 | K |  |  | 40 | 58.3 | G at 18 | CT- $\alpha$ | - |
| 2171 | R | Q (G) | 2 (1) | 2070 | Q |  |  | 5 | S at 30.2 | T at 15.1 | CT- $\alpha$ | LND |
| 2172 | N |  |  | 2071 | S |  |  | 10 | S at 21.6 | S at 30.4 | CT- $\alpha$ | LND |
| 2173 | K |  |  | 2072 | E | V | 1 | 15 | N at 23.7 | L at 47.8 | CT- $\alpha$ | LND |
| 2174 | A | S | 18 | 2073 | A |  |  | 25 | G at 25.9 | S at 50.1 | CT- $\alpha$ | VUS |
| 2175 | Y |  |  | 2074 | Y |  |  | 15 | S at 36.7 | P at 16.2 | CT- $\alpha$ | - |
| 2176 | A |  |  | 2075 | A |  |  | 20 | 31.7 | E at 35.1 | CT- $\alpha$ | - |
| 2177 | N |  |  | 2076 | N |  |  | 15 | D at 23.0 | E at 37.5 | CT- $\alpha$ | - |
| 2178 | I |  |  | 2077 | I |  |  | 20 | V at 20.1 | R at 21.9 | CT- $\alpha$ | - |
| 2179 | E |  |  | 2078 | E |  |  | 40 | 69.8 | K at 23.1 | CT- $\alpha$ | - |
| 2180 | L |  |  | 2079 | L |  |  | 20 | S at 51.1 | E at 36.1 | CT- $\alpha$ | - |
| 2181 | L |  |  | 2080 | L |  |  | 60 | 69.1 | 45 | CT- $\alpha$ | - |
| 2182 | Q |  |  | 2081 | Q |  |  | 25 | 72.7 | K at 27.6 | CT- $\alpha$ | - |
| 2183 | K |  |  | 2082 | Q |  |  | 25 | Q at 41.0 | 23.5 | CT- $\alpha$ | LND |
| 2184 | Q | H | 1 | 2083 | Q |  |  | 35 | 48.2 | K at 40.5 | CT- $\alpha$ | VUS |
| 2185 | I |  |  | 2084 | I | V | 262 | 40 | 82.7 | L at 42.9 | CT- $\alpha$ | ND |
| 2186 | K |  |  | 2085 | K |  |  | 60 | 39.6 | 37.3 | CT- $\alpha$ | - |
| 2187 | T | I | 1 | 2086 | A |  |  | 5 | A at 56.1 | A at 36.6 | CT- $\alpha$ | LND |
| 2188 | R |  |  | 2087 | R |  |  | 100 | 98.6 | 96.4 | CT- $\alpha$ | - |
| 2189 | E |  |  | 2088 | E |  |  | 70 | 51.8 | 82.8 | CT- $\alpha$ | - |
| 2190 | K |  |  | 2089 | K |  |  | 45 | 89.9 | 37 | CT- $\alpha$ | - |
| 2191 | Q |  |  | 2090 | Q |  |  | 50 | 86.3 | 39.1 | CT- $\alpha$ | - |
| 2192 | L |  |  | 2091 | L |  |  | 100 | 97.8 | 96.4 | CT- $\alpha$ | - |
| 2193 | L |  |  | 2092 | L |  |  | 65 | 75.5 | 64.6 | CT- $\alpha$ | - |
| 2194 | P |  |  | 2093 | P |  |  | 95 | 98.6 | 92.2 | CT- $\alpha$ | - |
| 2195 | V | I | 1 | 2094 | V |  |  | 25 | 40.3 | I at 42.3 | CT- $\alpha$ | VUS |
| 2196 | Y |  |  | 2095 | Y |  |  | 100 | 98.6 | 96 | CT- $\alpha$ | - |
| 2197 | T |  |  | 2096 | I |  |  | 30 | 83.5 | H at 27.7 | CT- $\alpha$ | LND |
| 2198 | Q |  |  | 2097 | Q |  |  | 95 | 98.6 | 87.1 | CT- $\alpha$ | - |
| 2199 | I |  |  | 2098 | I |  |  | 55 | 79.1 | 54.3 | CT- $\alpha$ | - |
| 2200 | A |  |  | 2099 | A |  |  | 80 | 98.6 | 80.2 | CT- $\alpha$ | - |
| 2201 | T |  |  | 2100 | T |  |  | 35 | 66.2 | V at 39.6 | CT- $\alpha$ | - |
| 2202 | K | T | 1 | 2101 | K |  |  | 25 | R at 52.5 | Q at 52.9 | CT- $\alpha$ | VUS |
| 2203 | F |  |  | 2102 | F |  |  | 100 | 97.8 | 91.5 | CT- $\alpha$ | - |
| 2204 | A |  |  | 2103 | A |  |  | 95 | 94.2 | 92.5 | CT- $\alpha$ | - |


| 2205 | E |  |  | 2104 | E |  |  | 40 | 92.1 | D at 76.0 | CT- $\alpha$ | - |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2206 | L |  |  | 2105 | L |  |  | 95 | 97.1 | 93.9 | CT- $\alpha$ | - |
| 2207 | H | Q | 1 | 2106 | H |  |  | 100 | 98.6 | 98.1 | CT- $\alpha$ | PD |
| 2208 | D |  |  | 2107 | D |  |  | 100 | 98.6 | 98.4 | CT- $\alpha$ | - |
| 2209 | T |  |  | 2108 | T |  |  | 80 | 92.1 | 50.7 | CT- $\alpha$ | - |
| 2210 | S |  |  | 2109 | S |  |  | 55 | 93.5 | P at 32.2 | CT- $\alpha$ | - |
| 2211 | M |  |  | 2110 | M |  |  | 20 | L at 62.6 | G at 59.4 | CT- $\alpha$ | - |
| 2212 | R |  |  | 2111 | R |  |  | 95 | 97.1 | 94.2 | - | - |
| 2213 | M |  |  | 2112 | M |  |  | 100 | 97.1 | 97.2 | - | - |
| 2214 | A |  |  | 2113 | A | E | 4 | 40 | 89.2 | L at 20.5 | - | ND |
| 2215 | A |  |  | 2114 | A |  |  | 60 | 95 | 65.5 | - | - |
| 2216 | K |  |  | 2115 | K |  |  | 100 | 96.4 | 90.1 | - | - |
| 2217 | G |  |  | 2116 | G |  |  | 90 | 97.8 | 85.8 | - | - |
| 2218 | V |  |  | 2117 | V |  |  | 90 | 95.7 | 65.2 | - | - |
| 2219 | I |  |  | 2118 | I |  |  | 95 | 89.9 | 84.7 | - | - |
| 2220 | K |  |  | 2119 | K |  |  | 30 | 44.6 | R at 46.5 | - | - |
| 2221 | S | R | 22 | 2120 | S |  |  | 20 | K at 48.2 | D at 29.5 | - | VUS |
| 2222 | V |  |  | 2121 | V |  |  | 55 | 95.7 | 33.7 | - | - |
| 2223 | V |  |  | 2122 | V |  |  | 45 | 80.6 | L at 56.4 | - | - |
| 2224 | E |  |  | 2123 | E |  |  | 50 | D at 79.1 | 31.3 | - | - |
| 2225 | W |  |  | 2124 | W |  |  | 100 | 97.8 | 96.3 | - | - |
| 2226 | S | R | 1 | 2125 | S |  |  | 25 | E at 49.6 | K at 36.0 | - | VUS |
| 2227 | G |  |  | 2126 | G | S | 46 | 20 | E at 31.7 | N at 33.6 | - | ND |
| 2228 | S | L | 1 | 2127 | S |  |  | 70 | 97.1 | 53.5 | - | VUS |
| 2229 | R |  |  | 2128 | R |  |  | 100 | 98.6 | 97.3 | - | - |
| 2230 | S | L | 49 | 2129 | S | A | 1 | 40 | 65.5 | R at 45.7 | - | LND |
| 2231 | F |  |  | 2130 | F |  |  | 90 | 85.6 | 73 | - | - |
| 2232 | F |  |  | 2131 | F |  |  | 85 | 98.6 | 82.2 | - | - |
| 2233 | Y |  |  | 2132 | Y | H | 230 | 95 | 91.4 | 82.6 | - | ND |
| 2234 | K |  |  | 2133 | K |  |  | 30 | 46 | W at 71.1 | - | - |
| 2235 | K |  |  | 2134 | K |  |  | 20 | R at 87.1 | R at 87.9 | - | - |
| 2236 | L |  |  | 2135 | L |  |  | 95 | 98.6 | 85.8 | - | - |
| 2237 | Y |  |  | 2136 | N |  |  | 5 | R at 48.9 | R at 79.2 | - | LND |
| 2238 | R |  |  | 2137 | R |  |  | 100 | 98.6 | 93.3 | - | - |
| 2239 | R |  |  | 2138 | R |  |  | 65 | 97.8 | 64.9 | - | - |
| 2240 | I |  |  | 2139 | I |  |  | 35 | 60.4 | L at 73.0 | - | - |
| 2241 | A |  |  | 2140 | A |  |  | 35 | 44.6 | L at 27.6 | - | - |
| 2242 | E |  |  | 2141 | E |  |  | 100 | 95.7 | 88.8 | - | - |
| 2243 | S |  |  | 2142 | S |  |  | 20 | D at 46.0 | E at 42.0 | - | - |
| 2244 | S |  |  | 2143 | S |  |  | 30 | 56.1 | Y at 23.2 | - | - |
| 2245 | L |  |  | 2144 | L |  |  | 50 | 94.2 | 35.2 | - | - |


| 2246 | V |  |  | 2145 | V |  |  | 20 | A at 43.2 | L at 25.3 | - | - |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2247 | R |  |  | 2146 | K | R | 13 | 15 | K at 77.0 | K at 54.1 | - | ND |
| 2248 | N |  |  | 2147 | N |  |  | 20 | E at 33.1 | R at 27.7 | - | - |
| 2249 | I | T | 1 | 2148 | V | I | 6 | 60 | V at 56.8 | 40.5 | - | ND |
| 2250 | R |  |  | 2149 | R |  |  | 35 | 79.1 | 17.5 | - | - |
| 2251 | K |  |  | 2150 | E |  |  | 10 | D at 30.9 | E at 18.1 | - | LND |
| 2252 | A |  |  | 2151 | A |  |  | 75 | 70.5 | 43 | - | - |
| 2253 | S |  |  | 2152 | S |  |  | 35 | A at 66.9 | A at 16.6 | - | - |
| 2254 | G |  |  | 2153 | G |  |  | 55 | 97.8 | 23.5 | - | - |
| 2255 | D |  |  | 2154 | D |  |  | 30 | 44.6 | 9.8 | - | - |
| 2256 | I |  |  | 2155 | N | S | 247 | 5 | Q at 54.0 | Q at 11.4 | - | ND |
| 2257 | L |  |  | 2156 | L |  |  | 25 | 54 | 12 | - | - |
| 2258 | S |  |  | 2157 | A | T | 238 | 35 | 61.2 | 35.7 | - | ND |
| 2259 | Y |  |  | 2158 | Y |  |  | 25 | H at 69.8 | R at 27.1 | - | - |
| 2260 | K |  |  | 2159 | K |  |  | 20 | 46 | G at 17.8 | - | - |
| 2261 | S |  |  | 2160 | S |  |  | 45 | 85.6 | Q at 20.2 | - | - |
| 2262 | A |  |  | 2161 | S | A | 184 | 40 | 97.1 | 28.2 | - | ND |
| 2263 | M |  |  | 2162 | M |  |  | 25 | 43.2 | L at 28.5 | - | - |
| 2264 | G | V | 6 | 2163 | R | G | 190 | 15 | E at 46.0 | A at 25.8 | - | ND |
| 2265 | L |  |  | 2164 | L |  |  | 35 | 67.6 | M at 30.6 | - | - |
| 2266 | I |  |  | 2165 | I |  |  | 40 | 78.4 | L at 64.8 | - | - |
| 2267 | Q |  |  | 2166 | Q |  |  | 20 | K at 77.7 | R at 37.2 | - | - |
| 2268 | D |  |  | 2167 | D |  |  | 25 | K at 43.2 | R at 26.8 | - | - |
| 2269 | W |  |  | 2168 | W |  |  | 45 | 95.7 | 84.1 | - | - |
| 2270 | F |  |  | 2169 | F |  |  | 20 | Y at 53.2 | 37.3 | - | - |
| 2271 | R | C | 1 | 2170 | C | S | 1 | 10 | L at 74.1 | V at 22.2 | - | LND |
| 2272 | K |  |  | 2171 | N |  |  | 15 | A at 42.5 | A at 8.3 | - | LND |
| 2273 | S |  |  | 2172 | S |  |  | 45 | 49.6 | 19.5 | - | - |
| 2274 | E |  |  | 2173 | D | V | 220 | 10 | S at 47.5 | 29.8 | - | ND |
| 2275 | I |  |  | 2174 | I |  |  | 20 | 30.9 | V at 9.9 | - | - |
| 2276 | A |  |  | 2175 | A | T | 2 | 25 | 54 | E at 19.6 | - | ND |
| 2277 | K |  |  | 2176 | K |  |  | 30 | 28.1 | G at 27.3 | - | - |
| 2278 | G |  |  | 2177 | G |  |  | 40 | 46 | A at 15.9 | - | - |
| 2279 | K |  |  | 2178 | K |  |  | 35 | 26.6 | 23.5 | - | - |
| 2280 | E |  |  | 2179 | E |  |  | 30 | 36 | A at 21.9 | - | - |
| 2281 | E |  |  | 2180 | E |  |  | 30 | D at 32.4 | Y at 25.2 | - | - |
| 2282 | A |  |  | 2181 | A |  |  | 30 | 43.9 | L at 20.4 | - | - |
| 2283 | W |  |  | 2182 | W |  |  | 45 | 97.8 | 57.1 | - | - |
| 2284 | T | R | 61 | 2183 | T |  |  | 20 | D at 28.8 | D at 35.5 | - | VUS |
| 2285 | D |  |  | 2184 | D |  |  | 65 | 90.7 | 42.7 | - | - |
| 2286 | D |  |  | 2185 | D |  |  | 45 | 97.8 | 66 | - | - |


| 2287 | Q |  |  | 2186 | Q |  |  | 35 | E at 47.5 | R at 22.6 | - | - |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2288 | L |  |  | 2187 | V |  |  | 5 | A at 72.7 | A at 34.0 | - | LND |
| 2289 | F |  |  | 2188 | F |  |  | 45 | 96.4 | V at 53.1 | - | - |
| 2290 | F |  |  | 2189 | F |  |  | 35 | 66.9 | A at 32.5 | - | - |
| 2291 | T |  |  | 2190 | T |  |  | 25 | A at 49.6 | E at 27.0 | - | - |
| 2292 | W |  |  | 2191 | W |  |  | 45 | 98.6 | 85 | - | - |
| 2293 | K |  |  | 2192 | K |  |  | 35 | 73.4 | E at 65.1 | - | - |
| 2294 | D |  |  | 2193 | D |  |  | 35 | 58.3 | E at 32.4 | - | - |
| 2295 | N |  |  | 2194 | N |  |  | 40 | D at 45.3 | 35.5 | - | - |
| 2296 | V |  |  | 2195 | V | A | 6 | 20 | P at 63.3 | L at 16.0 | - | ND |
| 2297 | S |  |  | 2196 | S |  |  | 55 | E at 27.3 | K at 25.5 | - | - |
| 2298 | N |  |  | 2197 | N |  |  | 35 | 84.9 | 22.6 | - | - |
| 2299 | Y |  |  | 2198 | Y |  |  | 45 | 92.1 | I at 36.7 | - | - |
| 2300 | E |  |  | 2199 | E |  |  | 40 | 56.8 | 38.5 | - | - |
| 2301 | Q |  |  | 2200 | L |  |  | 5 | E at 29.5 | E at 26.4 | - | LND |
| 2302 | K |  |  | 2201 | K |  |  | 25 | Y at 39.6 | N at 26.1 | - | - |
| 2303 | L | V | 1 | 2202 | L |  |  | 40 | 68.4 | I at 27.7 | - | VUS |
| 2304 | S |  |  | 2203 | S |  |  | 20 | K at 34.5 | K at 25.0 | - | - |
| 2305 | E |  |  | 2204 | E |  |  | 50 | 88.5 | 27.9 | - | - |
| 2306 | L |  |  | 2205 | L |  |  | 70 | 98.6 | 63 | - | - |
| 2307 | R |  |  | 2206 | R |  |  | 45 | 74.8 | K at 48.6 | - | - |
| 2308 | T |  |  | 2207 | A |  |  | 5 | A at 61.9 | R at 23.5 | - | LND |
| 2309 | Q |  |  | 2208 | Q |  |  | 35 | 77.7 | D at 36.6 | - | - |
| 2310 | K |  |  | 2209 | K |  |  | 25 | 61.2 | 14.4 | - | - |
| 2311 | L |  |  | 2210 | L |  |  | 30 | V at 70.5 | V at 37.3 | - | - |
| 2312 | L |  |  | 2211 | L |  |  | 55 | 50.4 | 31.5 | - | - |
| 2313 | N |  |  | 2212 | N |  |  | 20 | L at 32.4 | K at 22.0 | - | - |
| 2314 | Q |  |  | 2213 | Q |  |  | 40 | 49.6 | 29.8 | - | - |
| 2315 | L |  |  | 2214 | L |  |  | 55 | 90.7 | I at 34.9 | - | - |
| 2316 | A |  |  | 2215 | A |  |  | 25 | S at 56.1 | 28.6 | - | - |
| 2317 | E |  |  | 2216 | E |  |  | 20 | N at 25.2 | S at 25.8 | - | - |
| 2318 | I |  |  | 2217 | I |  |  | 25 | 42.5 | L at 52.9 | - | - |
| 2319 | G |  |  | 2218 | G |  |  | 25 | 54 | V at 26.1 | - | - |
| 2320 | N |  |  | 2219 | N |  |  | 20 | D at 41.7 | Q at 21.4 | - | - |
| 2321 | S | T | 1 | 2220 | S |  |  | 50 | 80.6 | G at 34.3 | - | VUS |
| 2322 | S |  |  | 2221 | S |  |  | 40 | 64 | V at 21.1 | - | - |
| 2323 | D |  |  | 2222 | D |  |  | 45 | 96.4 | E at 34.8 | - | - |
| 2324 | L |  |  | 2223 | L |  |  | 35 | 79.1 | V at 45.3 | - | - |
| 2325 | Q | K | 1 | 2224 | Q |  |  | 25 | 51.8 | 10.9 | - | VUS |
| 2326 | A |  |  | 2225 | A |  |  | 50 | 92.1 | 41.2 | - | - |
| 2327 | L |  |  | 2226 | L |  |  | 40 | 87.1 | 24.4 | - | - |


| 2328 | P |  |  | 2227 | P |  |  | 40 | 86.3 | D at 24.6 | - | - |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2329 | Q |  |  | 2228 | Q |  |  | 35 | 78.4 | 16.6 | - | - |
| 2330 | G |  |  | 2229 | G |  |  | 55 | 93.5 | 19.5 | - | - |
| 2331 | L |  |  | 2230 | L |  |  | 55 | 94.2 | 21.9 | - | - |
| 2332 | A |  |  | 2231 | A |  |  | 35 | 48.2 | V at 15.0 | - | - |
| 2333 | N |  |  | 2232 | N |  |  | 20 | A at 36.0 | H at 13.9 | - | - |
| 2334 | L |  |  | 2233 | L |  |  | 55 | 90.7 | 56.8 | - | - |
| 2335 | L |  |  | 2234 | L |  |  | 60 | 95.7 | 21.6 | - | - |
| 2336 | N |  |  | 2235 | N |  |  | 20 | S at 34.5 | Q at 25.8 | - | - |
| 2337 | K |  |  | 2236 | K | M | 32 | 45 | 94.2 | 22 | - | ND |
| 2338 | V |  |  | 2237 | V |  |  | 20 | M at 49.6 | L at 42.4 | - | - |
| 2339 | D |  |  | 2238 | E |  |  | 25 | 45.3 | S at 31.5 | - | LND |
| 2340 | L |  |  | 2239 | P | R | 1 | 5 | P at 77.0 | P at 44.7 | - | LND |
| 2341 | S |  |  | 2240 | S |  |  | 40 | 68.4 | E at 25.2 | - | - |
| 2342 | R |  |  | 2241 | K |  |  | 15 | K at 26.6 | E at 34.2 | - | LND |
| 2343 | R |  |  | 2242 | R |  |  | 90 | 96.4 | 64.6 | - | - |
| 2344 | E |  |  | 2243 | E |  |  | 40 | 34.5 | A at 34.3 | - | - |
| 2345 | E |  |  | 2244 | E |  |  | 35 | Q at 54.7 | Q at 24.7 | - | - |
| 2346 | L |  |  | 2245 | L |  |  | 35 | 52.5 | V at 37.2 | - | - |
| 2347 | V |  |  | 2246 | V |  |  | 55 | 41 | L at 33.1 | - | - |
| 2348 | D | N | 1 | 2247 | A |  |  | 20 | 37.4 | K at 28.5 | - | LND |
| 2349 | A |  |  | 2248 | A |  |  | 20 | E at 61.9 | Y at 15.6 | - | - |
| 2350 | I |  |  | 2249 | I |  |  | 10 | L at 58.3 | L at 78.3 | - | - |
| 2351 | R |  |  | 2250 | R |  |  | 35 | 61.9 | S at 24.7 | - | - |
| 2352 | K |  |  | 2251 | K |  |  | 35 | 71.2 | T at 21.0 | - | - |
| 2353 | V |  |  | 2252 | V |  |  | 40 | 75.5 | 18.3 | - | - |
| 2354 | L |  |  | 2253 | L |  |  | 45 | 92.8 | 22.3 | - | - |
| 2355 | G | S | 1 | 2254 | G |  |  | 30 | 54 | S at 16.3 | - | VUS |
| 2356 | X |  |  | 2255 | X |  |  | - | - | - | - | - |

# APPENDIX J: ACC2 Consensus Protein Sequence with Conserved Residues and Genetic Variants Highlighted 

This appendix shows the consensus ACC2 protein sequence among 857 Arabidopsis accessions. Also shown in this appendix is the conservation percentage of each amino acid based on our multi-kingdom alignment of 667 eukaryotic ACCase sequences, accession variation for ACC1 and ACC2, and the current classification of each variant based upon its likely impact on ACCase function. Adapted from Parker et al. (2016).

Footnotes for each row are described below:

First row: Red, $\geq 99 \%$ conserved in the multi-kingdom alignment of 667 eukaryotic ACCase sequences; Purple, $95-98 \%$; Blue, $90-94 \%$; Green, $80-89 \%$; Black < $80 \%$.

Second row: Residues (consensus from homomeric ACCase alignment) that differ from the ACC2 consensus among sequenced accessions. Capital letters, amino acid indicated is $\geq 50 \%$ conserved in the multi-kingdom alignment of 667 eukaryotic ACCase sequences; Lower case letters, < $50 \%$; Gray letters, < $25 \%$. Residues preceding the start of ACC 1 are excluded.

Third row: Most common ACC2 variant identified among sequenced accessions; Red, 1 accession with variant indicated; Purple, 2-3; Blue, 4-10; Green, >10; Gray, variant not found in the single accession predicted; Underlined, variant confirmed by Sanger sequencing.

Fourth row: Most common ACC1 variant identified; colors and underlining same as for ACC2 above. Lower case letters, consensus ACC1 residue differs from that found in ACC2.

Fifth row: Variant classification. Red square, deleterious to protein function; Red triangle, deleterious based on phenotype of induced acc 1 missense mutation; Purple square, likely deleterious; Blue square, possibly deleterious; Open diamond, variant of unknown significance; Exclamation point, Likely not deleterious (ACC1 consensus differs from ACC2 consensus, and the consensus ACC2 protein is likely functional based on sequence information from multiple tolerant accessions); Green diamond, likely not deleterious (ACC2 variant found in tolerant or high intermediate accession; or ACC1 variant found in single accession not tested for sequence confirmation); Black dot, not deleterious ( ACC 1 variant found in natural accessions).

Sixth row: Protein domains; 1, Transit peptide; 2, Biotin carboxylase; 3, Biotin carboxyl carrier protein; 4, Central domain; 5, Carboxyltransferase, beta subunit; 6 , Carboxyltransferase, alpha subunit; *, Biotin binding site within the BCCP domain.




| GGTNNNNYANVQLIVEMAEVTRVDA VWPGWGHASENPELPDALKEKGIIF LGPPADSMIALGDKIGSSLIAQAAD VPTLPWSGSHVKIPPGRSLVTVPEE 300 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| E | DI R g h | A k | El aa | v | I | gsA | r |  | s | TIV h | h 9 |  |  | GI | Vdwveci | d | AcCase |
|  |  |  |  |  |  | A |  |  |  |  | V | G |  | N |  | I | ACC2 |
|  |  |  | da |  |  | s | a |  |  | RDR |  |  |  |  | Ssn | i | ACC1 |
|  |  |  | ! ! |  |  | ! | ! |  |  | - 0$\rangle$ | $\checkmark$ | $\checkmark$ | $\bigcirc$ | $\checkmark$ | -! | ! | Effect |



| QKIIEEG |  |  |  |  | R |  |  |  |  |  | YFLELNPRLQVEHPV |  | WIAEV | JLP | AAQVAVGM | , | IRRFY | GME | 500 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| A | V I |  | FeeM | V | 1 G | S G |  |  | heD | kF |  | $t \mathrm{M}$ | MV g |  | LQIA | HR r | 1L | vs | Accase |
| $\underline{K}$ | N |  |  | T |  |  |  | C T |  | D |  |  | S T I |  | K |  | G | A | ACC2 |
|  |  | S | v |  |  |  |  |  |  |  |  |  | i |  |  |  | L | i | ACC1 |
| - $\triangle$ | $\checkmark$ | - | . | $\checkmark$ |  |  |  | $\bigcirc$ |  | $\checkmark$ |  |  | $\checkmark \diamond$ ! | ■ | - |  | - | $\checkmark$ ! | Effect |
| 22222222 | 2222 | 222 | 22222 | 22 | 22222222 | 22222 | 22222 | 22 | 222 | 222 | 22222222222222 | 2222 | 22222 | 222 | 222222222 | 22222222 | 22222 | 222 | Domain |





LNIEGSKYTIDVVRGGSGTYRLRMN NSEVVAEIHTLRDGGLLMQLDGKSH VIYAKEEATGTRLLIDGRTCLLQND HDPSKLMAETPCKLLRYLVSDNSSI 800



VLQDLLNCLDSPELPFLQWQECFAV LATRLPKDLRNMLELKYKEFEIISK TSLTPDFPAKLLKGILEAHLSSCDE KERGSLERLIEPLMSLVKSYEGGRE 1000 tv e mev RD y E imSa hg i qk ekq rklmaryasnit svklce q ak ds atlvr evffmttq vq qr $r$ lr ACCase



[^1]


IASWEFLE-HFERKNTGPDDHEISEK GIVAKSSKRKRGTMVIIKSLQFLPS IINASLRETNHSHCEYARAPLSGNM MHIAVVGINNQMSLLQDSGDEDQTQ 1300 v q id lsylv m gssdtp l Rk e v eqrm a af edfee ldea k sp tsdpr pssls vi la a dde accase


|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

$44444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444 \quad$ Domain


VPIKRMFLRSLVRQTTMNDGFLLQQ GQDYQLSQTVLSMAFTSKCILRSLM NAMEELELNAHNAAMKPDHAHMFLC ILREQQIDDLVPYPRRFEVNAEDEE 1500 tevy $F$ t Aii pp ts g Lrtki asaEYLi Ea e L l d ld vafn tnvrs cN I- NF vfktvimd gq ACCase




| NDVTFKAGSF | FGPREDAFFLAVTELA | CTKKLPLI | YLAAN | SGAR | RLGV | AEEVK | ACFK | KVG | GWSD | DEVS | PGNG | GQYI | YLSSE | DYARIGS | SSVIAH | HEV | VKLPS | GETRWVI | 1800 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| I I | q ka | RklGI R | S |  | I 1 | 1 | pl | A | n | ped | eK | k L | TP | k ls | nsV | tE | Ehvee | s yk | ACCase |
|  | NV |  |  | C |  |  |  | D | L |  | D |  |  | T |  | K |  |  | ACC2 |
|  | V | a |  |  |  |  |  |  | A | i | e |  | Tp | hK |  |  | S | A | ACC1 |
|  | $\checkmark$ | ! |  | $\square$ |  |  |  | $\checkmark$ |  |  |  |  | *! | ! |  | $\bigcirc$ | - |  | Effect |




VAVETQTVMHVIPADPGQLDSHERV VPQAGQVWFPDSAAKTAQALMDFNR EQLPLFIIANWRGFSGGQRDLFEGI LQAGSAIVENLRTYRQPVFVYIPMM 2100

| I | R | En |  | AN | e | k | iq | F | Ik |  |  | L |  | MYnEV | Kf | y Da | k |  |  | £ | Accase |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | LE |  | E |  | R |  | F |  |  | V | R |  | L | MG |  | L | S | I | ACC2 |
|  |  | qi |  |  |  |  |  |  |  | e |  | 1 |  |  |  | t |  |  |  |  | ACC1 |
|  |  |  | - |  | $\checkmark$ |  | $\checkmark$ |  | $\checkmark$ | ! |  | ! 0 | $\checkmark$ |  | $\checkmark$ | 100 |  | $\checkmark$ | $\checkmark$ | $\checkmark$ | Effect |

66666666666666666666666666666666666666666666666666666666666666666666666 6666666666666666666666666 $\quad$ Domain



| QKLSELRTQKLLNQLAEIGNSSDLQ |  |  |  |  | ALPQGLANL <br> d vh |  | LNKVDLSR |  |  |  | EELVDAI | RKVLG |  | 2355 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | enik | krd | g |  |  |  |  | lsp | pee |  | aqvlkyL | st | s | ACCase |
|  | V |  | T | K |  |  |  |  |  |  | N |  | S | ACC2 |
| 1 |  | a |  |  |  |  |  | eR | R |  | a |  |  | ACC1 |
|  | ! $\diamond$ | ! | $\diamond$ | $\diamond$ |  |  |  | ! | - |  | ! |  | $\checkmark$ | Effect |

# APPENDIX K: Informative Variants that Alter Conserved Residues in Eukaryotic, Homomeric Acetyl-CoA Carboxylases 

This appendix lists the details of informative variants and residues in the ACC2 protein sequence. Included data are the position in the ACC 2 protein sequence; the variant at that position; the variant type; the organism the variant is found in; the current classification of the variant based on all information known; the allele strength; the locus and domain where the residue is found; the percent conservation of the consensus amino acid at each residue for three alignments: (1) the original multi-kingdom alignment of 20 eukaryotic sequences, (2) the alignment of 139 plant sequences, and (3) the multi-kingdom alignment of 667 eukaryotic sequences; the genotype each variant is found in; the residue location in the source organism; relevant references, and additional notes. Adapted from Parker et al. (2016).

Footnotes for the title row of the following table are described below:
${ }^{\text {a }}$ The first residue (e.g. "G" in G135E) is found in the consensus sequence among the 857 accessions; the second is the variant.
b D, deleterious to protein function; LD, likely deleterious; PD, possibly deleterious; VUS, variant of unknown significance; LND, likely not deleterious; ND, not deleterious.
c BC, biotin carboxylase; BCCP, biotin carboxyl carrier protein; CT-Beta, carboxyltransferase-beta subunit; CT-Alpha, carboxyltransferase-alpha subunit.

| Residue (ACC2) | $\begin{aligned} & \text { Variant } \\ & \text { (ACC2) }^{\mathrm{a}} \end{aligned}$ | Variant Type | Organism | Variant Impact ${ }^{\text {b }}$ | Allele Strength | Locus | Domain ${ }^{\text {c }}$ | Conservation (\%) |  |  | Genotype | Source AA Residue | Reference | Additional Notes |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  | Original (20) | $\begin{gathered} \hline \text { Plant } \\ (139) \end{gathered}$ | $\underset{(667)}{\text { MUSCLE }}$ |  |  |  |  |
| 135 | G135E | Missense | Arabidopsis | LD | Strong | ACC2 | (BC) | 95 | 100.0 | 95.7 | Sav-0 | Same | Parker et al. (2016) | Unique to Sav-0 Accession |
| 153 | K153E | Site Directed | Yeast | D | Strong | ACCl | Dimer Interface | 100 | 100.0 | 96.9 | K73E | 73 | Wei and Tong (2015) | Loss of Enzyme Activity in vitro |
| 156 | R156E | Site Directed | Yeast | D | Strong | ACCI | Dimer Interface | 100 | 99.3 | 93.6 | R76E | 76 | $\begin{aligned} & \text { Wei and Tong } \\ & \text { (2015) } \end{aligned}$ | Loss of Enzyme Activity in vitro; Soraphen A Interaction Site |
| 188 | E188K | Missense | Arabidopsis | D | Weak | ACCI | BC | 90 | 99.3 | 78.0 | $g s d 1$ | 86 | Lü et al. (2011) | Vegetative Phenotype |
| 193 | A193V | Missense | Arabidopsis | ND | Normal | ACC1 | BC | 100 | 99.3 | 98.4 | Melni-2 | 91 | Parker et al. (2016) | Maintained in Natural Populations |
| 219 | 219 | Splicing | Arabidopsis | D | Strong | ACC1 | BC | NA | NA | NA | $\begin{gathered} g k-U 413 ; \\ g k-s c \end{gathered}$ | 114 | Kajiwara et al. (2004) | Embryo Defective; Updated Location |
| 333 | G333D | Missense | Arabidopsis | D | Strong | ACCl | BC | 100 | 97.1 | 99.4 | accl-3 | 231 | $\begin{aligned} & \hline \text { Kajiwara et al. } \\ & \text { (2004) } \end{aligned}$ | Embryo Defective; Seeds Unavailable |
| 363 | F363L | Missense | Arabidopsis | PD | Some Function | ACC2 | BC | 100 | 97.1 | 99.3 | Sei-0 | Same | Parker et al. (2016) |  |
| 376 | V376A | Missense | Arabidopsis | PD | Some Function | ACC2 | BC | 100 | 100.0 | 100.0 | Col-0 | Same | Parker et al. (2016) |  |
| 383 | Y383H | Missense | Arabidopsis | ND | Normal | ACCl | BC | 80 | 71.9 | 90.6 | Consensus |  | Parker et al. (2016) | ACC1 Consensus Differs from ACC2 |
| 397 | Q397X | Nonsense | Drosophila | D | Strong | ACC | BC | NA | NA | NA | $A c c^{l}$ | 359 | $\begin{gathered} \text { Sasamura et al. } \\ (2013) \end{gathered}$ | Lethal |
| 402.3 | x | x | Arabidopsis | x | x | $x$ | Large Intron | x | x | x | x | x | x | Large Intron |
| 404 | I404K | Missense | Arabidopsis | LD | Strong | ACC2 | BC | 95 | 100.0 | 94.8 | Knox-18 Group | Same | Parker et al. (2016) | See Others in Group |
| 406 | E406K | Missense | Arabidopsis | D | Weak | ACCI | BC | 100 | 100.0 | 100.0 | sfr 1 | 304 | Amid et al. (2012) | Vegetative Phenotype |
| 443 | Y443C | Missense | Arabidopsis | vUS | Uncertain | ACC2 | BC | 95 | 92.8 | 94.0 | Etna-2 | Same | This dissertation |  |
| 456 | N456I | Missense | Drosophila | D | Strong | ACC | BC | 100 | 100.0 | 100.0 | $A c c^{2}$ | 417 | Sasamura et al. (2013) | Lethal |
| 474 | L474F | Missense | Arabidopsis | PD | Some Function | ACC2 | BC | 100 | 97.8 | 94.5 | Chi-0 | Same | Parker et al. (2016) |  |


| 475 | P475L | Missense | Arabidopsis | LND | Normal | ACC2 | BC | 100 | 99.3 | 99.7 | Lm-2 | Same | Parker et al. (2016) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 478 | Q478K | Missense | Arabidopsis | LND | Normal | ACC2 | BC | 100 | 99.3 | 97.6 | Uod-1 | Same | Parker et al. (2016) |  |
| 493 | I493L | Missense | Arabidopsis | ND | Normal | ACC1 | BC | 100 | 99.3 | 94.6 | Multiple | 391 | Parker et al. (2016) | Maintained in Natural Populations |
| 494 | R494G | Missense | Arabidopsis | PD | Some <br> Function | ACC2 | BC | 100 | 99.3 | 99.9 | Ip-Pal-0 | Same | Parker et al. (2016) |  |
| 520 | F520L | Missense | Arabidopsis | PD | Some Function | ACC2 | BC | 40 | 82.7 | 94.0 | In-0 | Same | Parker et al. (2016) |  |
| 528 | P528S | Missense | Arabidopsis | ND | Normal | ACC1 | BC | 90 | 99.3 | 90.1 | Multiple | 426 | Parker et al. (2016) | Maintained in Natural Populations |
| 538 | T538A | Missense | Arabidopsis | PD | Some <br> Function | ACC2 | BC | 100 | 99.3 | 99.9 | Ip-Tor-1 | Same | Parker et al. (2016) |  |
| 564 | M564V | Missense | C. elegans | (D) | Weak |  | BC | 95 (V) | 93.5 (V) | 93.3 (V) | ye60 ( A 471 V ) | 471 | Rapppleye et al. (2003) | Temperature Sensitive |
| 565 | W565A | Site Directed | Yeast | D | Strong | ACC1 | Dimer Interface | 100 | 97.1 | 99.3 | W487A | 487 | Wei and Tong (2015) | Loss of Enzyme Activity in vitro |
| 565 | W565X | Nonsense | Arabidopsis | D | Strong | ACC1 | BC | NA | NA | NA | emb22 | 463 | Kajiwara et al. (2004) | Embryo Defective |
| 572 | See Text | Splicing | Arabidopsis | D | Strong | ACC2 | Intron 10 | NA | NA | NA | Gn-1; "Gn2-3" | Same | Parker et al. (2016) | Results in Frameshift |
| 668 | S668S | Missense | Yeast | (D) | Weak | ACC1 |  | 35 (S) | 68.4 (S) | 33.0 (H) | accl ${ }^{\text {ts }}(\mathrm{F}>\mathrm{S})$ |  | Schneiter et al. (2000) |  |
| 686 | Q686R | Site <br> Directed | Yeast | LND | Normal | ACC1 |  | 95 | 99.3 | 96.7 | Q608R | 608 | Wei and Tong (2015) | Functional Enzyme in vitro |
| 725 | N725S | Missense | Arabidopsis | LND | Normal | ACC2 |  | 100 | 95.7 | 96.9 | Pog-0 | Same | Parker et al. (2016) |  |
| 734 | H734E | Site <br> Directed | Yeast | LND | Normal | ACC1 |  | 70 (H) | 69.8 (H) | 44.2 (R) | R656E | 656 | Wei and Tong (2015) | Functional Enzyme in vitro |
| 739 | G739E | Missense | Arabidopsis | PD | Some Function | ACC2 |  | 95 | 97.8 | 95.2 | Wa-1 | Same | Parker et al. (2016) |  |
| 753 | Y753X | Nonsense | Arabidopsis | D | Strong | ACC2 |  | NA | NA | NA | Kb-0; Kl-5 | Same | Parker et al. (2016) |  |
| 762 | R762C | Missense | Arabidopsis | ND | Normal | ACC2 |  | 100 | 97.1 | 96.6 | Tsu-0; Tu-0 | Same | Parker et al. (2016) |  |
| 774 | See Fig. S2 | Deletion | Arabidopsis | D | Strong | ACC2 | Intron 17; <br> Exon 18 | NA | NA | NA | Ip-Ber-0 | Same | Parker et al. (2016) | 23 bp Deletion; Defective Transcripts |


| 777 | D777N | Missense | Arabidopsis | PD | $\begin{gathered} \text { (Some } \\ \text { Function) } \end{gathered}$ | ACC2 | (BCCP) | 95 | 100.0 | 97.2 | $\begin{gathered} \hline \text { Leska-1-44; } \\ \text { Sei-0 } \end{gathered}$ | Same | Parker et al. (2016) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 794 | V794I | Missense | Arabidopsis | ND | Normal | ACCI | BCCP | 95 | 84.9 | 85.6 | Multiple | 692 | Parker et al. (2016) | Maintained in Natural Populations |
| 813 | K813R | Site Directed | Yeast | D | Strong | ACC1 | Biotin Binding | 100 | 100.0 | 100.0 | Biotin Binding | 735 | Schneiter et al. (1996) | Site-Directed Mutagenesis |
| 833 | G833R | Missense | Arabidopsis | PD | Some Function | ACC2 | BCCP | 100 | 98.6 | 99.3 | Dja-1 | Same | Parker et al. (2016) |  |
| 847 | L847P | Missense | Arabidopsis | PD | Some Function | ACC2 | Central | 100 | 100.0 | 96.0 | WAR | Same | Parker et al. (2016) |  |
| 865 | R865X | Nonsense | Arabidopsis | D | Strong | ACC2 | Central | NA | NA | NA | "Nossen" | Same | Parker et al. (2014) |  |
| 901 | See Text | Splicing | Arabidopsis | D | Strong | ACC2 | Intron 19 | NA | NA | NA | Wl-0 | Same | Parker et al. (2016) | Results in Frameshift |
| 955 | [955] | Insertion | Arabidopsis | D | Strong | ACC2 | Exon 21 | NA | NA | NA | acc2-2 | Same | Salk Insertion | T-DNA Insertion Mutant |
| 1171 | 1171fs | Frameshift | Arabidopsis | D | Strong | ACC2 | Central | NA | NA | NA | Ip-Alo-0; <br> Ip-Vin-0 | Same | Parker et al. (2016) |  |
| 1206 | F1206L | Missense | Arabidopsis | LD | Moderate | ACC2 | Central | 85 | 100 | 96.3 | Aitba-1 | Same | Parker et al. (2016) |  |
| 1225 | K1225X | Nonsense | Arabidopsis | D | Strong | ACC2 | Central | NA | NA | NA | Blh1-1 | Same | Parker et al. (2016) |  |
| 1229 | [1229] | Insertion | Arabidopsis | D | Strong | ACC2 | Exon 27 | NA | NA | NA | acc2-1 | Same | Salk Insertion | T-DNA Insertion Mutant |
| 1355 | E1355G | Missense | Arabidopsis | VUS; <br> LND | Uncertain; (Normal) | ACC2 | Central | 100 | 100.0 | 98.7 | Knox-18 Group; (Si-0; Ema-1) | Same | Parker et al. (2016) |  |
| $\begin{aligned} & 1376 ; \\ & 1377 \end{aligned}$ | $\begin{gathered} \text { K1376R; } \\ \Delta 1377 \end{gathered}$ | Deletion | Arabidopsis | vUS | Uncertain | ACC2 | Central | $\begin{aligned} & 35 \\ & 20 \end{aligned}$ | $\begin{aligned} & 80.6 \\ & 43.9 \end{aligned}$ | $\begin{aligned} & \text { Low } \\ & \text { Low } \\ & \hline \end{aligned}$ | Qar-8a | Same | This dissertation |  |
| 1405 | R1405Q | Missense | Arabidopsis | PD | Some Function | ACC2 | Central | 100 | 100.0 | 96.1 | Db-1 | Same | Parker et al. (2016) |  |
| 1479 | $\Delta 1479$ | Deletion | Arabidopsis | PD | Some Function | ACC2 | Central | 45 (E) | 92.1 (E) | 19.3 (E) | Ip-Voz-0 | Same | Parker et al. (2016) | Arabidopsis ACC2: Glu |
| 1562 | See Fig. <br> S1 | Splicing | Arabidopsis | D | Strong | ACC2 | Intron 29 | NA | NA | NA | $\begin{gathered} \text { Spro-2; Ste-2; } \\ \text { Ste-3; } \\ \text { Vimmerby } \end{gathered}$ | Same | Parker et al. (2016) | Variety of Defective Transcripts |
| 1603 | K1603Q | Missense | Arabidopsis | ND | Normal | ACCI |  | 80 | 88.5 | 91.0 | Consensus |  | Parker et al. (2016) | ACC1 Consensus Differs from ACC2 |


| 1621 | x | x | Arabidopsis | x | x | $x$ | Start of <br> Large <br> Exon | x | x | x | x | x | TAIR | Start of Large Exon (\# 31 of 32) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1623 | E1623E | Missense | C. elegans |  | Weak |  | CT-Beta | 35 (E) | 87.1 (E) | 61.3 (R) | $\begin{gathered} y e 162 \\ (\mathrm{G} 1351 \mathrm{E}) \end{gathered}$ | 1351 | Rapppleye et al. (2003) |  |
| 1689 | E1689K;G | Missense | Arabidopsis | D | Strong | $\begin{gathered} A C C 1 ; \\ A C C 2 \end{gathered}$ | CT-Beta | 100 | 99.3 | 97.0 | $\begin{gathered} \text { pas3-1 }(\mathrm{E}>\mathrm{K}) ; \\ \mathrm{Ts}-1(\mathrm{E}>\mathrm{G}) \end{gathered}$ | $\begin{aligned} & 1588 ; \\ & \text { Same } \end{aligned}$ | Baud et al. <br> (2004); <br> Parker et al. (2016) | Embryo Defective (accl); <br> Spectinomycin Sensitive (acc2) |
| 1739 | S1739C | Missense | Arabidopsis | PD | Some <br> Function | ACC2 | CT-Beta | 90 | 86.3 | 94.3 | CYR | Same | Parker et al. (2016) | Conserved Residue in CoA Binding Pocket |
| 1766 | G1766D | Missense | Arabidopsis | LND | Normal | ACC2 | CT-Beta | 100 | 99.3 | 100 | Pog-0 | Same | Parker et al. (2016) |  |
| 1794 | G1794A | Missense | Arabidopsis | ND | Normal | ACC1 | CT-Beta | 95 | 100.0 | 94.8 | Multiple | 1693 | Parker et al. (2016) | Maintained in Natural Populations |
| 1815 | $\begin{gathered} \mathrm{I}> \\ \mathrm{L}, \mathrm{~V}, \mathrm{~A}, \mathrm{~T} \end{gathered}$ | Missense | Resistant Grasses | ND | Normal | ACC2 | CT-Beta | 90 (L) | 74.8 (L) | 94.3 (L) | Plastid ACCase | 1781 | Kaundun <br> (2014) <br> GenBank: <br> AJ310767 | Herbicide Resistant Grasses; <br> Arabidopsis ACC2: Leu |
| 1821 | I1821V | Missense | Arabidopsis | PD | Some <br> Function | ACC2 | CT-Beta | 100 | 100.0 | 98.2 | MNF-Che-2 | Same | Parker et al. (2016) |  |
| 1834 | T1834S | Missense | Arabidopsis | PD | Some Function | ACC2 | CT-Beta | 100 | 100.0 | 99.4 | Nemrut-1 | Same | Parker et al. (2016) |  |
| 1854 | [1854] | Insertion | Arabidopsis | D | Strong | ACC1 | CT-Beta | NA | NA | NA | accl-1 | 1753 | Baud et al. (2004) |  |
| 1878 | R1878X | Nonsense | Yeast | D |  | ACC1 | CT-Beta | NA | NA | NA | Acc1 ${ }^{\text {C-term }}$ |  | Schneiter et al. (2000) |  |
| 1883 | S1883T | Missense | Arabidopsis | PD | Some <br> Function | ACC2 | CT-Beta | 100 | 100.0 | 97.0 | Several | Same | Parker et al. (2016) |  |
| 1888 | G1888S | Missense | Arabidopsis | D | Strong | ACC1 | CT-Beta | 100 | 100 | 99.4 | pas3-2 | 1787 | Baud et al. (2004) | Embryo Defective |
| 1889 | G1889A | Missense | Yeast | (D) | Weak | ACC1 | CT-Beta | 100 | 100 | 99.4 | Accl ${ }^{\text {cs }}$ |  | Schneiter et al. (2000) |  |
| 1890 | P1890C | Missense | C. elegans | (D) | Weak |  | CT-Beta | 45 (P) | 97.1 (P) | 42.1 (T) | ye180 |  | Rappleye et al. (2003) |  |
| 1897 | G1897S | Missense | Arabidopsis | PD | Some <br> Function | ACC2 | CT-Alpha | 100 | 100.0 | 99.4 | Sch1-7; <br> WalHaesB4 | Same | Parker et al. (2016) |  |


| 1902 | T1902K | Missense | Arabidopsis | LD | Strong | ACC2 | CT-Alpha | 95 | 100.0 | 87.6 | Knox-18 Group | Same | Parker et al. (2016) | See Others in Group |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1968 | G1968E | Missense | Arabidopsis | D | Moderate | ACC1 | CT-Alpha | 100 | 99.3 | 100 | gk-101 | 1867 | Kajiwara et al. (2004) | Embryo Defective; Seeds Unavailable |
| 2013 | P2013L | Missense | Arabidopsis | PD | Some Function | ACC2 | CT-Alpha | 95 | 97.1 | 98.5 | Balan-1 | Same | Parker et al. (2016) |  |
| 2014 | A2014E | Missense | Arabidopsis | PD | Some Function | ACC2 | CT-Alpha | 100 | 97.8 | 99.0 | App1-16 | Same | Parker et al. (2016) |  |
| 2020 | 2020fs | Frameshift | Arabidopsis | D | Strong | ACC2 | CT-Alpha | NA | NA | NA | Lu4-2; Lu3-30 | Same | Parker et al. (2016) |  |
| 2033 | $\begin{gathered} \mathrm{W}> \\ \mathrm{C}, \mathrm{~L}, \mathrm{~S} \end{gathered}$ | Missense | Resistant Grasses | ND | Normal | ACC2 | CT-Alpha | 100 | 98.6 | 98.5 | Plastid ACCase | 1999 | Kaundun (2014) GenBank: AJ310767 | Herbicide Resistant Grasses; Arabidopsis ACC2: Trp |
| 2059 | A2059V | Missense | Arabidopsis | vUS | Uncertain | ACC2 | CT-Alpha | 100 | 98.6 | 98.2 | Grivo-1 | Same | This dissertation |  |
| 2061 | W > C | Missense | Resistant Grasses | ND | Normal | ACC2 | CT-Alpha | 100 | 98.6 | 97.3 | Plastid ACCase | 2027 | Kaundun <br> (2014) <br> GenBank: <br> AJ310767 | Herbicide Resistant Grasses; Arabidopsis ACC2: Trp |
| 2098 | P2098S | Missense | Arabidopsis | vUS | Some Function | ACC2 | CT-Alpha | 100 | 97.8 | 93.0 | Hod | Same | $\begin{gathered} \text { Parker et al. } \\ (2016) \\ \hline \end{gathered}$ | Nonsense Mutation Also Present |
| 2112 | D > G | Missense | Resistant Grasses | ND | Normal | ACC2 | CT-Alpha | 100 | 97.8 | 98.5 | Plastid ACCase | 2078 | Kaundun (2014) GenBank: AJ310767 | Herbicide Resistant Grasses; <br> Arabidopsis ACC2: <br> Asp |
| 2115 | I2115R | Missense | Arabidopsis | PD | Some <br> Function | ACC2 | CT-Alpha | 100 | 97.8 | 98.2 | Iasi-1 | Same | Parker et al. (2016) |  |
| 2122 | $\mathrm{C}>\mathrm{R}$ | Missense | Resistant Grasses | ND | Normal | ACC2 | CT-Alpha | 80 (M) | 70.5 (M) | 81.9 (M) | Plastid ACCase | 2088 | Kaundun (2014) GenBank: AJ310767 | Herbicide Resistant Grasses; <br> Arabidopsis ACC2: <br> Met |
| 2130 | $\mathrm{G}>\mathrm{A}, \mathrm{S}$ | Missense | Resistant Grasses | ND | Normal | ACC2 | CT-Alpha | 90 | 96.4 | 80.1 | Plastid ACCase | 2096 | Kaundun (2014) GenBank: AJ310767 | Herbicide Resistant Grasses; <br> Arabidopsis ACC2: <br> Gly |
| 2207 | H2207Q | Missense | Arabidopsis | PD | Some Function | ACC2 | CT-Alpha | 100 | 98.6 | 98.1 | Ip-Lso-0 | Same | Parker et al. (2016) |  |


| 2208 | [2208] | Insertion | Arabidopsis | D | Strong | ACC1 | CT-Alpha | NA | NA | NA | accl-2 | 2107 | Baud et al. (2004) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2325 | Q2325X | Nonsense | Arabidopsis | LD | Some Function | ACC2 |  | NA | NA | NA | Hod | Same | Parker et al. (2016) |  |
| 2337 | x | x | Arabidopsis | x | x | $x$ | End of Large Exon | x | x | x | x | x | TAIR | End of Large Exon (\# 31 of 32 ) |
| 2355 | x | x | Arabidopsis | x | x | $x$ | End of Protein | x | x | x | x | x | TAIR | End of ACC2 Protein |

## APPENDIX L: ACC2 Variants that Alter Conserved Residues in Sequenced Arabidopsis <br> Accessions

This appendix lists the details of all variants among Arabidopsis accessions that differ than the ACC2 consensus protein sequence. Included data are the position number and amino acid substitution for each variant, the percent conservation of the consensus amino acid based on our multi-kingdom alignment of 667 eukaryotic ACCase sequences, the number of accessions with each variant, and data on the accessions containing the variant that have been analyzed on spectinomycin: (1) name of the accessions; (2) whether the variant was confirmed in the accession or not; (3) the number of seedlings screened on spectinomycin; and (3) the category and score of the spectinomycin response. Adapted from Parker et al. (2016).

Footnotes for the following table are described below:
${ }^{\text {a }}$ The first residue (e.g. " $G$ " in G135E) is found in the consensus sequence among the accessions; the second is the variant.
b Percentage of 667 aligned homomeric ACCase sequences with the accession consensus residue. Red, $\geq 99 \%$ conserved.
c BC, Biotin carboxylase; BCCP, Biotin carboxyl carrier protein; CT, carboxyltransferase.
${ }^{\text {d }}$ Accessions with the same variant but a more sensitive or problematic seedling response are excluded to highlight the most tolerant responses observed with the variant present.
e The Sav-0 variant was uncovered by sequencing the $A C C 2$ cDNA.
f Intermediate responses: Aa-0; Hsm; Kyoto; Rag1-1; Ws-2.
g Intermediate responses: Boot-1; Col-0; Ga-0; Hi-0; Kn-0; Ler-1; NFA-8; Pi-0; Tscha1; Van-0.
${ }^{\text {h }}$ Intermediate responses: Ber; CON-7; Dja-1; Est; Gy-0; Nie1-2; Pla-0; Sch1-7; Wa-1; WalHaesB4.
${ }^{i}$ Intermediate responses: Fei-0; Kin-0; Seattle-0; Sq-8.
${ }^{j}$ Intermediate responses: Boot-1; Col-0; Kn-0; Pi-0; Van-0.
${ }^{k}$ Intermediate responses: Dra3-1; Kni-1; Pna-17; Spr1-2.

| Variant ${ }^{\text {a }}$ | Conservation$(\%)^{b}$ | Protein <br> Domain ${ }^{c}$ | 1001 Genomes Accessions with Predicted Variant | Accessions Evaluated on Spectinomycin ${ }^{\text {d }}$ | Variant Confirmed | Seedlings Classified | Spectinomycin Response |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  | Category | Score |
| G135E | 95.7 | (BC) | 0 | Sav-0 ${ }^{\text {e }}$ | Yes | 275 | Hypersensitive | 1.2 |
| F363L | 99.3 | BC | 5 | Sei-0 | Yes | 56 | Intermediate | 6.9 |
| V376A | 100.0 | BC | 12 | Col-0 | Yes | 287 | Intermediate | 5.6 |
| I404K | 94.8 | BC | 20 | Knox-18 Group | Yes | - | Hypersensitive; Sensitive | - |
| Y443C | 94.0 | BC | 1 | Etna-2 | Yes | 111 | Sensitive | 1.9 |
| L474F | 94.5 | BC | 1 | Chi-0 | Yes | 75 | Intermediate | 5.1 |
| P475L | 99.7 | BC | 1 | Lm-2 | Yes | 70 | Tolerant | 8.3 |
| Q478K | 97.6 | BC | 28 | Multiple ${ }^{\text {d,f }}$ | Assumed | 126 | Intermediate | 6.0 |
|  |  |  |  | Uod-1 | Yes | 78 | Tolerant | 8.5 |
| R494G | 99.9 | BC | 1 | Ip-Pal-0 | Yes | 51 | Intermediate | 6.1 |
| F520L | 94.0 | BC | 2 | In-0 | Yes | 84 | Intermediate | 4.8 |
| T538A | 99.9 | BC | 1 | Ip-Tor-1 | Yes | 46 | Low <br> Intermediate | 4.1 |
| V618I | 90.9 | BC | 9 | $\begin{aligned} & \text { Ip-Cum-1 } \\ & \text { Ped-0 } \end{aligned}$ | Yes | $\begin{gathered} 129 \\ 56 \end{gathered}$ | Sensitive | $\begin{aligned} & 2.3 \\ & 3.1 \end{aligned}$ |
|  |  |  |  | $\begin{aligned} & \text { Ip-Gua-1 } \\ & \text { Ip-Hom-4 } \end{aligned}$ | Yes | $\begin{aligned} & 81 \\ & 94 \end{aligned}$ | Intermediate | $\begin{aligned} & 6.3 \\ & 4.5 \end{aligned}$ |
| N725S | 96.9 |  | 44 | Multiple ${ }^{\text {d,g }}$ | Assumed | 496 | Intermediate | 5.8 |
|  |  |  |  | Pog-0 | Yes | 60 | Tolerant | 8.6 |
| G739E | 95.2 |  | 1 | Wa-1 | Yes | 40 | Intermediate | 5.3 |
| R762C | 96.6 |  | 6 | Mh-0 | Not Tested | 28 | Intermediate | 6.2 |
|  |  |  |  | $\begin{aligned} & \text { Tsu-0 } \\ & \text { Tu-0 } \end{aligned}$ | Yes | $\begin{gathered} 490 \\ 84 \end{gathered}$ | Tolerant | $\begin{aligned} & 8.8 \\ & 9.4 \end{aligned}$ |
| D777N | 97.2 |  | 4 | Can-0 | NO | 96 | Intermediate | 4.7 |
| G833R | 99.3 | BCCP | 3 | Dja-1 | Yes | 52 | Intermediate | 4.6 |
| L847P | 96.0 |  | 1 | WAR | Yes | 39 | Low <br> Intermediate | 3.7 |
| F1206L | 96.3 |  | 1 | Aitba-1 | Yes | 53 | Sensitive | 2.8 |
| E1355G | 98.7 |  | 116 | Multiple ${ }^{\text {d,h }}$ | Assumed | 625 | Intermediate | 5.1 |
|  |  |  |  | Ema-1; Si-0 | Yes | 124 | High Intermediate | 8.2 |
| R1405Q | 96.1 |  | 1 | Db-1 | Yes | 75 | Intermediate | 7.2 |
| Y1594H | 97.9 |  | 6 | None | Not Tested | None | Not Tested |  |
| E1689G | 97.0 | CT- $\beta$ | 1 | Ts-1 | Yes | 70 | Sensitive | 2.5 |


| S1739C | 94.3 | CT- $\beta$ | 12 | Multiple ${ }^{\text {d,i }}$ | Assumed | 97 | Intermediate | 5.6 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | CYR | Yes | 76 | High Intermediate | 7.8 |
| G1766D | 97.6 | CT- $\beta$ | 39 | Multiple ${ }^{\text {d.j }}$ | Assumed | 380 | Intermediate | 5.7 |
|  |  |  |  | Pog-0 | Yes | 60 | Tolerant | 8.6 |
| I1821V | 98.2 | CT- $\beta$ | 1 | MNF-Che-2 | Yes | 53 | Intermediate | 4.3 |
| T1834S | 99.4 | CT- $\beta$ | 2 | Nemrut-1 | Yes | 75 | Intermediate | 4.2 |
| S1883T | 97.0 | CT- $\beta$ | 8 | Multiple ${ }^{\text {d,k }}$ | Assumed | 211 | Intermediate | 6.2 |
| G1897S | 99.4 | CT- $\alpha$ | 2 | Sch1-7 <br> WalhaesB4 | Yes | $\begin{aligned} & 70 \\ & 39 \end{aligned}$ | Intermediate | $\begin{gathered} 4.8 \\ 5.6 \end{gathered}$ |
| P2013L | 98.5 | CT- $\alpha$ | 3 | Balan-1 | Yes | 52 | Intermediate | 6.2 |
| A2014E | 99.0 | CT- $\alpha$ | 1 | Appl-16 | Yes | 54 | Intermediate | 5.6 |
| A2059V | 98.2 | CT- $\alpha$ | 1 | Grivo-1 | Yes | 73 | Sensitive | 2.0 |
| P2098S | 93.0 | CT- $\alpha$ | 2 | Hod | Yes | 72 | Intermediate | 5.3 |
| I2115R | 98.2 | CT- $\alpha$ | 1 | Iasi-1 | Yes | 44 | Intermediate | 5.0 |
| H2207Q | 98.1 | CT- $\alpha$ | 1 | Ip-Lso-0 | Yes | 55 | Intermediate | 7.5 |

VITA

Type Nicole Bryant Parker
Candidate for the Degree of
Doctor of Philosophy
$\begin{array}{ll}\text { Thesis: } & \text { NATURAL VARIATION IN SENSITIVITY TO A LOSS OF } \\ & \text { CHLOROPLAST TRANSLATION IN ARABIDOPSIS }\end{array}$
Major Field: Plant Science
Biographical:
Education:

- Completed the requirements for the Doctor of Philosophy in Plant Science at Oklahoma State University, Stillwater, Oklahoma in December 2017
- Completed the requirements for the Bachelor of Science in Botany at Oklahoma State University, Stillwater, Oklahoma in May 2011.
- Completed the requirements for the Bachelor of Science in Microbiology at Oklahoma State University, Stillwater, Oklahoma in May 2011.


## Experience:

- Various Teaching Assistantships from August 2011 to May 2017 including Plant Anatomy, Plant Biology, Introductory Biology, and Genetics.
- Three publications as lead author in Plant Physiology. Six poster presentations at local and international conferences. Five oral presentations at local seminars and international conferences.
- Doctoral Research, Department of Botany, Oklahoma State University, Stillwater, Oklahoma from August 2011 to May 2017
- Undergraduate Honors Research, Department of Botany, Oklahoma State University, Stillwater, Oklahoma from August 2009 to July 2011.
- Student Lab Technician, Department of Botany, Oklahoma State University, Stillwater, Oklahoma from January 2009 to August 2010.

Professional Memberships:

- Oklahoma State University Botanical Society
- Botany Graduate Student Association
- Graduate and Professional Student Government Association
- Oklahoma Academy of Science
- Golden Key International Honour's Society
- Phi Kappa Phi Honors Society


[^0]:    ${ }^{\text {a }}$ A, Predicted sequence confirmed; B, Both variants confirmed, I404K not predicted; C, Both confirmed, neither predicted; D, Not tested; E, Both confirmed, along with E1567K (not predicted).

[^1]:    4444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444 Domain

