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Abstract:  

 

This dissertation describes my role in an NSF-funded research project in the Meinke 

laboratory that began as a natural variation study and genetic analysis to uncover the 

nuclear genes involved in the differing responses of plant species to a loss of chloroplast 

translation. To identify these nuclear genes, we analyzed 152 natural accessions of 

Arabidopsis (Arabidopsis thaliana) on spectinomycin, an inhibitor of chloroplast 

translation, and crossed wild-type plants of the tolerant Tsu-0 accession with plants 

segregating for an embryo-defective (emb) mutation that eliminated chloroplast 

translation in the sensitive “Nossen” accession. Through this study, we found a single 

suppressor locus (ACC2), an enhancer of the suppressor, and additional modifiers that 

further increase embryo development. After determining that ACC2 suppresses the loss of 

chloroplast translation in emb mutants, we expanded our project to include a detailed 

analysis of defects in ACC2 and the consequences of various mutations on a class of 

proteins essential for growth and development in plants. Remarkably, some of the most 

sensitive accessions contain null alleles of ACC2, including “Nossen”. For the final part 

of my role in this project, I focused on using a candidate gene approach to identify 

additional genetic modifiers of this system. Overall, the project described throughout this 

dissertation utilized natural variation in Arabidopsis accessions to study the effects of 

mutations, especially deleterious mutations, on a protein (ACCase) that is essential for 

fatty acid biosynthesis in eukaryotes. We also developed an understanding of some of the 

mechanisms behind the diverse phenotypic responses plant species have when translation 

of the chloroplast genome is blocked. Furthermore, our identification of accessions 

hypersensitive to spectinomycin has led to a more efficient method for plastid 

transformation in Arabidopsis (Yu et al., 2017). 
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CHAPTER I 
 

 

INTRODUCTION 

 

 

 

Arabidopsis thaliana is a Model System for Plant Biology 

 The use of Arabidopsis (Arabidopsis thaliana) as a model system for plant biology began 

in the 1940s with Friedrich Laibach, who noted that in contrast to many agricultural plants, 

Arabidopsis grows rapidly in small spaces, produces a large number of offspring, and contains a 

small number of chromosomes (Laibach, 1943; Sommerville and Koornneef, 2002). Shortly after 

Laibach’s publication, a small but active Arabidopsis research community was built, which 

continued through the 1960s. Early research included the analysis of induced mutations generated 

through X-irradiation, natural variation studies of seed dormancy and flowering time, and 

chemical mutagenesis studies looking at embryo-lethal mutants (Rédei, 1970). One important 

advance was the formation of the Arabidopsis Information Service (AIS) newsletter and seed 

stock center in Germany (Meyerowitz, 2001). The early 1970s brought a decline of research in 

Arabidopsis and an increased interest in other systems, including petunia and tobacco, where 

plants could be regenerated more readily from cells in culture (Meinke et al., 1998; Koornneef 

and Meinke, 2010). 
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  Interest in Arabidopsis research was revitalized in the late 1970s and early 1980s, when plant 

biologists were seeking a model organism for molecular genetics. George Rédei at the University of 

Missouri published an important review on Arabidopsis (Rédei, 1975) that soon increased research in 

the field (Sommerville and Koornneef, 2002; Koornneef and Meinke, 2010). Subsequent publications 

included the work of Meinke and Sussex (1979a,b) on the use of Arabidopsis embryo-lethal mutants 

to study plant embryo development, Sommerville and Ogren (1980) on mutants altered in 

photorespiration, and Koorneef et al. (1983) establishing the first comprehensive genetic map. Several 

publications in the mid-1980s described the advantage of Arabidopsis’ small genome in the field of 

molecular genetics (Leutwiler et al., 1984; Meyerowitz and Pruitt, 1985). The advantages of 

Arabidopsis as a model genetic organism attracted the interest of relatively young plant biologists, 

and brought scientists working on other model systems to the field of Arabidopsis research. 

 The 1980s and 1990s saw the Arabidopsis community continue to flourish, and the 

establishment of many useful research tools. One of the most important tools was effective 

transformation procedures, which allowed Arabidopsis researchers to analyze gene expression 

patterns and develop large collections of transfer-DNA (T-DNA) insertion mutants (Feldmann and 

Marks, 1987; Bechtold et al., 1993; Clough and Bent, 1998; Alonso et al., 2003). The development of 

a genetic model for floral morphogenesis (Weigel and Meyerowitz, 1994) expanded the Arabidopsis 

field by illustrating how genetic approaches could be applied to complex biological processes 

(Sommerville and Koornneef, 2002; Koornneef and Meinke, 2010). The genetic map was soon 

expanded using molecular markers such as restriction fragment length polymorphisms (RFLPs; 

Chang et al., 1988), simple sequence length polymorphisms (SSLPs; Bell and Ecker, 1994), cleaved 

amplified polymorphic sequences (CAPSs; Konieczny and Ausubel, 1993), and amplified fragment 

length polymorphisms (AFLPs; Alonso-Blanco et al., 1998). An updated classical map, published in 

1998, contained 462 genes dispersed across all five chromosomes (Meinke et al., 1998; Koornneef 

and Meinke, 2010). Once the sequence of the Arabidopsis genome was published, efforts were made 
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to integrate the classical genetic map with the sequence-based physical map using genes with known 

mutant phenotypes (Meinke et al., 2003; Meinke et al., 2009). The most current map of genes with 

mutant phenotypes contains 2,400 loci, about 9% of the total number of genes in the Arabidopsis 

genome (Lloyd and Meinke, 2012). 

 Over the past 20 years, three large collaborative projects have significantly advanced the field 

of Arabidopsis research. The first project, the completion of the Arabidopsis genome sequence (AGI, 

2000), paved the way for Arabidopsis research to expand into the age of genomics (Sommerville and 

Koornneef, 2002; Koornneef and Meinke, 2010). The Arabidopsis 2010 project soon followed, with a 

focus on understanding the functions of all 25,000 protein-coding genes (Chory et al., 2000; 

Sommerville and Koornneef, 2002; Koornneef and Meinke, 2010). The 1001 Genomes Project, begun 

in 2008 and still ongoing, involves whole-genome sequencing of Arabidopsis accessions, with the 

goal of enhancing research linking phenotypes to genotypes (http://1001genomes.org/). To date, 

1,135 different accessions have been sequenced (The 1001 Genomes Consortium, 2016). 

 To further collaboration, the Arabidopsis community has developed numerous shared 

resources. These include two centralized databases of genetic and molecular data: The Arabidopsis 

Information Resource (TAIR) at www.arabidopsis.org (Rhee et al., 2003), and the Arabidopsis 

Information Portal (ARAPORT) at www.araport.org (Cheng et al., 2017). Seed stock centers are 

another example of shared resources. Thirty years ago, the AIS newsletter published a list of around 

1,000 available stocks, mainly natural accessions and a limited number of mutant lines (Provart et al, 

2015). Two major stock centers were founded in the early 1990s: the Nottingham Arabidopsis Stock 

Centre (NASC) and the Arabidopsis Biological Resource Center (ABRC). These centers now contain 

more than 900,000 stocks (Koornneef and Meinke, 2010; Provart et al, 2015). 

 

 

http://1001genomes.org/
http://www.arabidopsis.org/
http://www.araport.org/
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Embryo-Defective Mutants of Arabidopsis Have Been Characterized in Detail 

 Over the past 35 years, the Meinke laboratory at Oklahoma State University has isolated and 

characterized several thousand embryo-defective (emb) mutants of Arabidopsis and catalogued large 

numbers of essential genes required for seed and embryo development. The methods used to identify 

these mutants were first described by Müller (1963). Later, Meinke and Sussex (1979a,b) discussed 

the benefits of using emb mutants in research on plant embryo development. Before the era of 

sequencing, emb mutants were identified through forward genetic screens of mutant plants produced 

using chemical mutagens such as ethyl-methanesulfonate (EMS). After treatment, plants were 

screened for embryo lethality (25% aborted seeds), and mutants segregating as Mendelian recessives 

were isolated and characterized (Meinke and Sussex, 1979a,b). The development of T-DNA 

insertional mutagenesis enabled large-scale screens of mutants that allowed for quicker identification 

of the disrupted gene through amplification of sequences flanking the T-DNA insertion site (McElver 

et al., 2001; Meinke, 2008; Meinke, 2013). T- DNA insertion mutants were also used in a reverse 

genetic approach to characterize emb mutants disrupted in known genes believed to be essential 

(Meinke, 2013). 

 Of the estimated 750-1,000 EMB genes in the Arabidopsis genome, over 400 have been 

cloned and sequenced to date (Muralla et al., 2011). The SeedGenes project (http://seedgenes.org) 

was established in 2002 to create a centralized database containing information on loss-of-function 

mutant alleles that give rise to a seed or embryo phenotype (Tzafrir et al., 2003). The current 

database, updated in December 2010, contains 888 mutant alleles and 481 genes (Meinke et al., 

2013). The emb mutant alleles in SeedGenes have been placed into six categories based on their 

terminal embryo phenotype: preglobular, preglobular/globular, globular, transition, cotyledon, or 

unresolved. The essential genes listed in the database have been divided into three classes (Muralla et 

al., 2011): (1) embryo defective, characterized by defects in seed development; (2) seed pigment, 

characterized by defects in seed pigmentation; and (3) 50% defective seeds, characterized by 

http://seedgenes.org/
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approximately 50% mutant seeds in selfed heterozygotes. The phenotypes of mutant alleles have been 

examined in considerable detail (Meinke et al., 2008; Muralla et al., 2011).  

 Of the 400 identified EMB genes, 119 are predicted to encode chloroplast-localized proteins. 

These genes can be divided further into three groups based on protein function: (1) proteins involved 

in the biosynthesis of metabolites such as amino acids and vitamins; (2) proteins associated with 

import, modification, and localization of proteins within the chloroplast; and (3) proteins required for 

translation of RNAs encoded by the chloroplast genome (Bryant et al., 2011). This third category is 

most relevant to the project described in this dissertation. Around 23% of chloroplast-localized EMB 

proteins are involved in chloroplast translation, including plastid ribosomal proteins (PRPs), 

chloroplast-localized aminoacyl-tRNA synthetases (AARSs), and chloroplast-localized 

pentatricopeptide repeat (PPR) proteins, which function in RNA binding and modification (Berg et 

al., 2005; Schmitz-Linneweber and Small, 2008; Bryant et al., 2011, Romani et al., 2012; Tiller and 

Bock, 2014). Chloroplast translation is therefore required for embryo development in Arabidopsis. 

Mutations in genes that encode proteins of the photosynthetic machinery lead to reduced 

pigmentation in the embryo rather than lethality (Bryant et al., 2011). These observations raise an 

important question related to this project: What specific protein(s) encoded by the chloroplast genome 

are required (must be translated from chloroplast-encoded mRNAs) for embryo development in 

Arabidopsis? 

 

The Chloroplast Genome in Arabidopsis Contains Essential Genes 

 The complete nucleotide sequence of the chloroplast genome in Arabidopsis was published in 

1999 (Sato et al., 1999). The chloroplast genome contains 128 genes: four encoding ribosomal RNAs 

(rRNAs), 37 encoding transfer RNAs (tRNAs), and 87 encoding proteins (Figure 1). The protein-

coding genes can be divided into five categories based on protein function: transcription, translation,  
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Figure 1. Distribution of Genes in the Chloroplast Genome of Arabidopsis. (A) The chloroplast 

genome of Arabidopsis contains 128 genes, which can be divided into three classes: protein-coding 

genes, rRNA genes, and tRNA genes. (B) The protein-coding genes on can be further divided into five 

categories based on protein function. The information shown in this figure was taken from Sato et al. 

(1999). 
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photosynthetic machinery, photosynthetic metabolism, and other/unknown function (Figure 1; Sato et 

al., 1999). In addition to genes encoding proteins involved in gene expression and photosynthesis, 11 

genes encode proteins with other functions. Four of these, hypothetical chloroplast open reading 

frame 3 (ycf3), ycf4, ycf5 and ycf6, are involved in protein assembly and stability of the 

photosynthetic machinery (Hager et al., 1999; Naver et al., 2001; Goddard et al., 2010; Krech et al., 

2012). A fifth gene, ycf9, encodes PsbZ, a subunit of the Photosystem II complex (Swiatek et al., 

2001; Tang et al., 2016). Ycf10 is believed to function in efficient transport of inorganic carbon across 

the chloroplast membrane (Rolland et al., 1997). MatK encodes a maturase protein involved in RNA 

splicing of type II introns within the chloroplast (Vogel et al., 1997; Uchoi et al., 2016).  

 Four chloroplast genes have been identified as essential by targeted gene disruptions in 

tobacco (Nicotiana tabacum). Acetyl-coenzyme A carboxylase D (accD) was shown to be required for 

leaf development, caseinolytic protease P1 (clpP1) essential for shoot development, and ycf1 and ycf2 

required for cell survival (Drescher et al., 2000; Kuroda and Maliga, 2003; Kode et al., 2005). The 

clpP1 gene encodes a subunit of a chloroplast-localized protease complex known to be required for 

chloroplast function in Arabidopsis (Ramos-Vega et al., 2015). Kikuchi et al. (2013) discovered that 

ycf1 encodes a component (Translocon at Inner envelope membrane of the Chloroplast; Tic214) of 

the TIC chloroplast protein import system located at the inner envelope membrane of chloroplasts. 

Ycf2 is believed to also function in chloroplast protein import (Parker et al., 2016; Masato Nakai, 

personal communication).  

 The accD gene encodes the β-carboxyl transferase subunit of the heteromeric acetyl-

coenzyme A carboxylase (ACCase), which is localized to the chloroplast. The other subunits of this 

enzyme are nuclear-encoded proteins, of which one (Chloroplastic Acetyl-Coenzyme A Carboxylase; 

CAC1A) is known to be required for embryo development (Li et al., 2011). This protein functions 

during the early stages of fatty acid biosynthesis within the chloroplast to catalyze the conversion of 

acetyl-CoA to malonyl-CoA (Ohlrogge and Browse, 1995; Li et al., 2011). The project described here  
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focused on accD as the essential chloroplast gene most important (rate limiting) for seedling and 

embryo development in Arabidopsis.  

 

Plant Species Differ in Response to a Loss of Chloroplast Translation 

 Not all plant species are equally sensitive to a loss of chloroplast translation. Zubko and Day 

(1998) exposed seedlings to spectinomycin, an inhibitor of chloroplast translation, and found that 

Brassica (Brassica napus) was more tolerant than tobacco, which was more sensitive than 

Arabidopsis. The reason for these differences remained unknown. The response of grass species to 

the loss of chloroplast translation is more complicated. In the late 1970s and early 1980s, albino leaf 

regions in mutants of maize (Zea mays) and barley (Hordeum vulgare) were shown to lack 

chloroplast ribosomes (Walbot and Coe, 1979;  Siemenroth et al., 1981). Around 25 years later, 

Asakura and Barkan’s (2006) work on splicing mutant homologs further showed that maize plants 

could tolerate a loss of chloroplast translation through the loss of a single chloroplast-localized 

splicing factor, caf2. They also showed that a null allele of an orthologous protein in Arabidopsis, 

Atcaf2, was embryo-lethal (Asakura and Barkan, 2006). 

 In contrast to these discoveries, multiple maize mutants disrupted in chloroplast translation 

have been shown to exhibit embryo lethality. Unlike the aborted seeds in Arabidopsis emb mutants, 

the seeds of these maize mutants have normal development of the endosperm tissue (Ma and Dooner, 

2004; Magnard et al., 2004; Sosso et al., 2012; Zhang et al., 2013; Shen et al., 2013; Li et al., 2015). 

Zhang et al. (2013) have shown that the effects of disrupting a gene essential for chloroplast 

translation in maize is dependent on the genetic background. Using mutations in the maize Why1 

gene, which is believed to be involved in stability of the chloroplast genome and the formation of 

chloroplast ribosomes, they showed that mutants in the W22 background were embryo defective 

while mutants in the B73 and Mo17 backgrounds grew as albino seedlings (Zhang et al., 2013). The 
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current hypothesis for the background effect in maize is the differing activity of retrograde signaling 

pathways between the chloroplast and nuclear genomes. When translation of the chloroplast genome 

is disrupted in backgrounds like W22, a signal is thought to be sent out to terminate cell activity 

within the embryo, which eventually leads to embryo lethality (Terry and Smith, 2013; Zhang et al., 

2013; Li et al., 2015). 

 During the evolution of the Poaceae family, accD was lost from the chloroplast genome along 

with ycf1 and ycf2. Loss of accD means the absence of the heteromeric ACCase protein, which 

catalyzes a crucial step in fatty acid biosynthesis. Grasses have compensated for this loss with a 

nuclear-encoded, homomeric ACCase that is targeted to the chloroplast (Maier et al., 1995; Jansen et 

al., 2007; Guisinger et al., 2010). Members of the Brassicaceae also have a nuclear-encoded, 

homomeric ACCase that is targeted to the chloroplast (Schulte et al., 1997; Babiychuk et al., 2011). 

This novel gene, ACC2, arose during the evolution of the Brassicaceae family from a duplication of 

ACC1, a homomeric, cytosolic ACCase that is involved in later stages of fatty acid biosynthesis. In 

Brassica and Arabidopsis, ACC2 is targeted to the chloroplast, where it can partially compensate for 

the loss of the heteromeric ACCase when chloroplast translation is blocked. However, ACC2 is 

poorly expressed in the Columbia accession of Arabidopsis. A model of this mechanism of partial 

nuclear compensation for a loss of heteromeric, chloroplast-encoded ACCase in Brassicaceae is 

shown in Figure 2. The project described in this dissertation used natural variation in Arabidopsis 

accessions to study this nuclear compensation pathway and the effects of acc2 mutations on plant 

growth and development in the absence of chloroplast translation.  
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Figure 2. Nuclear Compensation for Loss of Heteromeric ACCase in Brassicaceae. In Brassica, 

ACC2, a duplicated ACCase gene in the nuclear genome, is transcribed and localized to the chloroplast 

where it can compensate for the loss of accD when chloroplast translation is blocked. In the Arabidopsis 

Columbia accession, ACC2 is poorly expressed, and there is more limited compensation for the loss of 

accD. Adapted from a drawing by Rosanna Muralla. 
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Outline and Scope of Dissertation 

 This dissertation describes my role in an NSF-funded research project in the Meinke 

laboratory that utilized natural variation in Arabidopsis to study why plant species differ in their 

ability to tolerate a loss of chloroplast translation. I began working in the Meinke laboratory as an 

undergraduate researcher, assisting with the characterization of EMB genes predicted to encode 

chloroplast-localized proteins. The work from that project, which was published in 2011, led us to the 

question: What protein(s) encoded by the chloroplast genome are required for embryo development in 

Arabidopsis? (Bryant et al., 2011). The project described here began as a natural variation study and 

genetic analysis to uncover the nuclear genes involved in the differing responses of plant species to a 

loss of chloroplast translation. This was later expanded to include a detailed analysis of defects in 

ACC2 and the consequences of various mutations on a class of proteins essential for growth and 

development in plants. Two articles have been published in Plant Physiology describing the results of 

this project (Parker et al., 2014; 2016). The work published in Parker et al. (2014) is described in 

Chapters 3 and 4 of this dissertation, and that published in Parker et al. (2016) is described in 

Chapters 3 and 5. 

 The work on this project was divided between three people: Dr. David Meinke (DM), Dr. 

Yixing Wang (YW), and myself (NP). DM conceived and managed this project, performed some of 

the crosses, helped substantially with the embryo phenotyping, and wrote the two articles in Plant 

Physiology, with input from YW and NP. YW designed and completed all of the molecular biology 

experiments for this project, with the exception of the candidate gene approach described in Chapter 

6. NP screened the phenotypes of all seedlings grown on spectinomycin and lincomycin, completed a 

significant amount of the embryo phenotyping with a focus on lines with the most advanced embryos, 

performed many of the crosses, handled all of the ACCase sequence alignments, maintained plants 

and seed stocks, and carried out the candidate gene approach discussed in Chapter 6. 
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 Looking ahead in this dissertation, the second chapter is a literature review of selected topics 

related to this project. The third chapter describes a detailed study of the natural variation observed 

among Arabidopsis accessions in response to a loss of chloroplast translation. This work utilized 

spectinomycin, an antibiotic known to inhibit translation of the chloroplast genome. The fourth 

chapter focuses on the use of emb mutants to identify factors that enhance tolerance to a loss of 

chloroplast translation, including a suppressor of early embryo arrest, an enhancer of the suppressor, 

and additional modifiers to the system. The fifth chapter describes the analysis of missense mutations 

in ACC1 and ACC2 found in natural accessions of Arabidopsis. The sixth and final chapter describes 

a candidate gene approach that was used in an attempt to identify other factors that increase tolerance 

to a loss of chloroplast translation. 
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CHAPTER II 
 

 

REVIEW OF LITERATURE 

 

 

 

Chloroplast Genome Content Across Plant Species 

 Chloroplast genomes of higher plants are comprised of circular, double-stranded DNA 

that is highly conserved in size, structure, and gene content. Since the first fully-sequenced 

chloroplast genome from tobacco was published in 1986 (Shinozaki et al., 1986), the number of 

sequenced chloroplast genomes has grown exponentially (Curci et al., 2016; Daniell et al., 2016). 

Currently, over 1,500 chloroplast sequences are available in the National Center for 

Biotechnology Information (NCBI) Genome Database 

(https://www.ncbi.nlm.nih.gov/genome/browse/). In higher plants and algae, the chloroplast 

genome, on average, is around 120-160 kb in length, contains roughly 130 genes, and is 

composed of four distinct regions: two inverted repeats (IR), a large single-copy region (LSC), 

and a small single-copy region (SSC) (Olmstead and Palmer, 1994; Jansen et al., 2005; Odintsova 

and Yurina, 2005; Curci et al., 2016). Most genes are found within the LSC and SSC regions, 

with the exception of a handful of rRNA and tRNA genes that are located in the IR regions 

(Odintsova and Yurina, 2005; Chumley et al., 2006). 
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Comparisons of sequenced chloroplast genomes have been used to study the evolution of 

higher plants through the rates of nucleotide substitutions, gene insertion/deletions, and genomic 

rearrangements (Jansen et al., 2007). Rates of synonymous nucleotide substitutions, also known 

as silent mutations, in chloroplast genomes have been shown to be around half of those found in 

plant nuclear genomes, with even lower rates in IR regions (Wolfe et al., 1987; Odintsova and 

Yurina, 2005; Daniell et al., 2016). Large deletions and inversions of the chloroplast genome 

have been documented in a number of species, and used to resolve phylogenetic relationships 

(Olmstead and Palmer, 1994; Jansen et al., 2008). For example, all members of the IR lacking 

clade (IRLC) of legumes have completely lost one copy of the IR region (Palmer and Thompson, 

1982; Jansen et al., 2008), and conifers have seen widespread reduction or deletion of their IR 

regions (Raubeson and Jansen, 1992; Lin et al., 2010). Not surprisingly, most photosynthetic 

genes have been lost from non-photosynthetic, parasitic plants (dePamphilis and Palmer, 1990).  

Along with gene losses, a number of plant species contain a non-functional copy of one 

or more genes in the chloroplast genome. These pseudogenes can be identified using 

bioinformatics tools to scan the chloroplast genome for regions that are similar to known 

chloroplast genes but lack an entire open reading frame (Logacheva et al., 2011). The plastid 

genes most often retained (accD, ycf1, ycf2, clpP1) are those shown experimentally to be 

essential in tobacco. While still rare, individual gene losses in the chloroplast genome are more 

common than large deletions and inversions. These gene losses have been studied extensively 

throughout higher plants, especially in the context of phylogenetic analyses (Jansen et al., 2007). 

In some cases, chloroplast gene loss is accompanied by the appearance of a compensatory gene in 

the nuclear genome (Li et al., 2016; Liu et al., 2016). In plant species where accD is non-

functional or has been lost from the chloroplast genome, there is likely either a duplication of the 

homomeric ACCase in the nucleus, which occurs in maize (Jansen et al., 2007; Guisinger et al., 

2010), or accD itself has incorporated into the nuclear genome and is targeted back to the 
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chloroplast, which occurs in Trachelium caeruleum (Harberle et al., 2008; Rousseau-Gueutin et 

al., 2013). Table 1 lists several losses and pseudogenization of genes related to this project: accD, 

ycf1, ycf2, clpP1. 

 

Spectinomycin and Other Inhibitors of Chloroplast Translation 

Antibiotics are used in plant biology research to block translation of the chloroplast genome 

through a variety of different mechanisms. Several antibiotics and their modes of action are 

described in this section, including spectinomycin, which was the main antibiotic used in this 

project, and lincomycin, which was used to confirm results from the spectinomycin studies 

(Parker et al., 2014, 2016). Other antibiotics with different modes of action noted here include 

streptomycin, tetracycline, and pactamycin.  

Spectinomycin inhibits translation by binding to the 30S ribosomal subunit and 

interfering with peptidyl-tRNA translocation from the A-site to the P-site in the ribosome (Carter 

et al., 2000). Specifically, spectinomycin binds within the minor groove of helix 34 of the 16S 

rRNA in the head of the 30S ribosomal subunit, where it stabilizes the helix during the elongation 

cycle in translation (Johanson and Hughes, 1995; Carter et al., 2000). Mutagenesis studies on 

plants resistant to spectinomycin have been used to identify specific nucleotides in the 16S rRNA 

that interact with the antibiotic. These studies have shown that spectinomycin binding is sequence 

specific within helix 34 (Carter et al., 2000; Wirmer and Westhof, 2006; Dudas et al., 2012). 

Resistance to spectinomycin can also be found in plants that have mutations in the S5 ribosomal 

protein, which is located next to helix 34 and believed to stabilize this region of the 30S 

ribosomal subunit (Carter et al., 2000; Wirmer and Westhof, 2006).  

Lincomycin is a member of the lincosamide class of antibiotics. Members within this 
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Table 1. Lineages Missing Essential Genes from the Chloroplast Genome.  

 

Organism 
Lineages Missing Essential Genes a 

Reference 
accD ycf1 ycf2 clpP1 

Acorus X Present Present Present Jansen et al., 2007 

Aristolochia Present PS Present Present Zhou et al., 2017 

Asclepias PS PS Present PS Straub et al., 2011 

Campanula PS Present Present Present 
Rousseau-Gueutin       

et al., 2013 

Cynodon X PS PS Present b Huang et al., 2017 

Epimedium Present Present Present PS Sun et al., 2016 

Gentiana Present X Present Present Fu et al., 2016 

Grasses (Six 

crops) 
X X X Present 

Jansen et al., 2007;  

Guisinger et al., 2010 

Jasminum X Present Present Present Jansen et al., 2007 

Pelargonium X Present Present Present Jansen et al., 2007 

Passiflora X X Present X Jansen et al., 2007 

Primula PS Present Present Present Liu et al., 2016 

Scaevola Present Present Present X Jansen et al., 2007 

Sciadopitys X Present Present Present Li et al., 2016 

Trachelium PS X X X 
Jansen et al., 2007;  

Harberle et al., 2008 

Trifolium X PS Present Present Cai et al., 2008 

 

a  X, gene seems to be absent from the chloroplast genome; PS, a pseudogene is present in the 

chloroplast genome; Present, a fully functional gene is found in the chloroplast genome.  

b  clpP1 in Cynodon is reported to include all of the coding region, but is missing both introns.  
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class inhibit translation of the chloroplast genome by preventing peptide bond formation 

(Douthwaite, 1992). Lincosamides function by binding to the 23S rRNA in the 50S ribosomal 

subunit, and disassociating peptidyl-tRNAs from the ribosome (Menninger and Coleman, 1993; 

Tenson et al., 2003). Resistance to lincomycin has been found by mutating a specific adenine in 

the 23S rRNA (Douthwaite, 1992; Tenson et al., 2003). Streptomycin inhibits translation of the 

chloroplast genome by interfering with the initial selection and proof-reading of the aminoacyl-

tRNA in the A-site of the ribosome (Carter et al., 2000; Wirmer and Westhof, 2006). 

Streptomycin binds to the sugar-phosphate backbone of the 16S rRNA in four locations, helices 

1, 18, 27 and 44, and the S12 ribosomal protein (Wirmer and Westhof, 2006), and functions by 

stabilizing the A-site in the 30S subunit in a conformation that increases the affinity of binding of 

any aminoacyl-tRNA (Carter et al., 2000; Peske et al., 2004). Resistance has been found through 

mutations at multiple positions on the 16S rRNA including the 530 loop in helix 18, and the 

region around nucleotide 912 (Wirmer and Westhof, 2006). Mutations in the S12 ribosomal 

protein have also shown resistance, including a lysine residue that interacts with helix 44, and 

multiple amino acids within the loops that interact with regions on the 16S rRNA (Carter et al., 

2000). 

Tetracyclines are a group of antibiotics that inhibit chloroplast translation by blocking the 

binding of aminoacyl-tRNAs to the A-site of the ribosome (Brodersen et al., 2000; Wirmer and 

Westhof, 2006). Similar to spectinomycin, tetracycline binds to the minor groove of helix 34 of 

the 16S rRNA in the 30S ribosomal subunit along with helix 31 (Wirmer and Westhof, 2006). 

Rather than interfering with translocation like spectinomycin, the binding of tetracycline inhibits 

interaction of aminoacyl-tRNAs with the A-site (Brodersen et al., 2000; Wirmer and Westhof, 

2006).  

Pactamycin inhibits chloroplast translation by preventing the formation of the initiation 

complex in translation (Brodersen et al., 2000; Dinos et al., 2004; Wirmer and Westhof, 2006). 
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Specifically, pactamycin binds to the 16S rRNA at helices 23 and 24, and the S7 ribosomal 

protein, which causes the two helices to lock together and the mRNA in the E-site of the 

ribosome to be moved by 12 Å. This displacement of the mRNA is believed to block 

translocation of peptidyl-tRNAs into the E-site (Brodersen et al., 2000; Dinos et al., 2004; 

Wirmer and Westhof, 2006). Resistance to pactamycin has been found in mutations at positions 

A694, C795, and C796 in the 16S rRNA of Halobacterium halobium (Mankin, 1997; Wirmer and 

Westhof, 2006).  

For this project, we chose spectinomycin to use in most of the experiments because it is 

the most widely used agent to inhibit chloroplast translation, especially in relation to chloroplast 

transformation. Lincomycin was chosen to confirm the results because it disrupts chloroplast 

translation by binding to the 23S rRNA rather than the 16S rRNA.   

 

Structure and Function of Acetyl-CoA Carboxylases (ACCases) 

Biotin-dependent carboxylases are a large class of enzymes that utilize a molecule of 

biotin to catalyze the transfer of CO2 between substrates. Among this class of enzymes are 

ACCases, which function to convert acetyl-CoA to malonyl-CoA during fatty acid biosynthesis 

(Tong, 2013). Most plant species contain two different versions of ACCases that function in 

different steps in fatty acid biosynthesis. The first version, known as ACC1 in Arabidopsis, is a 

large, homomeric protein localized to the cytosol that functions in the formation of very long-

chain fatty acids (VLCFA), which are used in the formation of cuticular waxes, seed storage 

compounds such as triacylglycerides, suberin and sphingolipids, flavonoids (Amid et al., 2012), 

and other secondary metabolic compounds (Baud et al., 2004; Lü et al., 2011; Amid et al., 2012; 

Shang et al., 2016). VLCFAs and their derivatives have also been found to play a role in signaling 

within plants to regulate programmed cell death (Raffaele et al., 2008), activate ethylene 
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biosynthesis to promote cell elongation (Qin et al., 2007), suppress cell proliferation in the 

epidermis (Nobusawa et al., 2013), and regulate callus formation in culture (Shang et al., 2016). 

Null mutations in ACC1 in Arabidopsis result in embryo lethality with the embryos arresting as 

“green blimps” without a defined hypocotyl or cotyledons (Meinke, 1985; Baud et al., 2003). 

Weak mutations result in decreased cuticular wax, reduced fertility, glossy inflorescence stems, 

and cold sensitivity (Lü et al., 2011; Amid et al., 2012).  

The second type of ACCase found in most plant species is a heteromeric protein, similar 

to ACCases in bacteria, which is localized to chloroplasts and functions in a critical, early step of 

de novo fatty acid biosynthesis (Tong, 2013; Salie and Thelen, 2016). In vascular plants, 

excluding grasses that utilize a homomeric, chloroplast-localized ACCase, the four functional 

domains of the heteromeric ACCase are encoded by individual genes. The biotin carboxylase 

(BC) domain, biotin carboxyl carrier protein (BCCP domain), and carboxyltransferase (CT) α 

domain are encoded by the nuclear genome, while the CT-β domain is encoded by the accD gene 

within the chloroplast genome (Gu et al., 2011; Li et al., 2011). Null mutations in the CAC1A 

gene in Arabidopsis, which encodes one isoform of BCCP, result in embryo lethality with the 

embryos arresting at early stages of development. This phenotype is not seen with null mutants of 

CAC1B, a paralog to CAC1A (Li et al., 2011). 

Some species of higher plants contain a homomeric version of ACCase that is localized 

to the chloroplast. Grasses have lost the heteromeric ACCase during the evolution of the Poaceae 

family, and contain only a chloroplast-localized, homomeric ACCase encoded by the nuclear 

genome (Jansen et al., 2007; Chalupska et al., 2008). This homomeric protein is the target for 

three classes of herbicides: aryloxyphenoxypropionates (FOPs), cyclohexanediones (DIMs), and 

phenylpyrazolins (DENs) (Kaundun, 2014). All three herbicide classes bind to the dimer interface 

within the CT domains of the protein and interfere with binding of acetyl-CoA (Zhang et al., 

2004; Tong, 2013; Kaundun, 2014). Resistance to these herbicides has been found in plants 
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containing mutations in the two CT domains; specifically positions 1781, 2027, 2041, 2078, and 

2096 (Liu et al., 2007). Most members of the Brassicaceae family have a duplicated copy of the 

homomeric, cytosolic ACCase that is targeted to chloroplasts. This means that Brassicaceae 

species contain three functional ACCases: one homomeric, cytosolic protein; one homomeric, 

chloroplast-localized protein; and one heteromeric, chloroplast-localized protein (Babiychuk et 

al., 2011; Bryant et al., 2011; Parker et al., 2014). Chloroplast-localized, homomeric ACCases 

can also be found in some algal species in the Prasinophyceae group that is thought to have been 

acquired through horizontal gene transfer rather than gene duplication (Huerlimann et al., 2015).  

As noted above, ACCase proteins are composed of four main domains: BC, BCCP, CT-α, 

and CT-β (Tong, 2013). The BC domain catalyzes the first step in the conversion of acetyl-CoA 

to malonyl-CoA through ATP-dependent carboxylation of a biotin molecule, which is covalently 

bound to a specific lysine residue in the BCCP domain (Ohlrogge and Browse, 1995; Tong, 2013; 

Zu et al., 2013). This is shown at the top of Figure 3, where biotin is bonded to the BCCP 

domain, and is shown in the active site of the BC domain receiving a carboxyl group. There are 

three sub-domains within the BC domain (A, B, and C). The active site for the carboxylation step 

is located in the A and C sub-domains while the B sub-domain acts as a lid, and folds over the 

active site during the carboxylation (Tong, 2013; Zu et al., 2013). The function of BCCP region is 

to covalently bind the biotin molecule through biotinylation, and allow for translocation of this 

molecule between the BC and CT domains (Tong, 2013; Zu et al., 2013). The two CT domains 

work together to catalyze the second step in the carboxylation of acetyl-CoA to form malonyl-

CoA through the transfer of the activated carboxyl group from the carboxybiotin molecule to a 

molecule of acetyl-CoA resulting in the production of malonyl-CoA (Ohlrogge and Browse, 

1995; Tong, 2013; Zu et al., 2013; Wei and Tong, 2015). This step is shown at the bottom of 

Figure 3. The biotin molecule with its added carboxyl group is translocated to the active site 

within the pocket created by the CT domains, and the carboxyl group is transferred from biotin to  
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Figure 3. Biochemical Conversion of Acetyl-CoA to Malonyl-CoA Driven by an ACCase 

Enzyme. This image shows the cyclical process of forming malonyl-CoA from an activated 

carboxyl group attached to a biotin molecule and a free acetyl-CoA molecule. Adapted from the 

Acetyl-CoA Carboxylase webpage at The Arabidopsis Acyl-Lipid Metabolism Website 

(http://aralip.plantbiology.msu.edu/hehos/2).   

http://aralip.plantbiology.msu.edu/hehos/2
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an acetyl-CoA molecule, which becomes malonyl-CoA. The active site for this transfer of the 

activated carboxyl group is located inside an opening created through dimerization of the CT 

domains (Tong, 2013; Zu et al., 2013).  

Homomeric ACCase proteins function as a dimer, which is essential for the catalytic 

reactions of the BC and CT domains (Figure 4). Monomers of the eukaryotic BC domain, tested 

in vitro, showed zero catalytic activity even though the monomers still had a high affinity for 

binding soraphen, a molecule that inhibits function of the BC domain (Weatherly et la., 2004; 

Wei and Tong, 2015). Large conformational changes have been found between the structures of 

the BC domain in the monomer and the BC domains in the dimer. This difference is believed to 

explain the inactivity of the monomer (Weatherly et la., 2004; Tong, 2013; Wei and Tong, 2015). 

The active site of the CT domain is formed by dimerization, which creates an opening surrounded 

by two CT-α and two CT-β domains (Bilder et al., 2006; Tong, 2013; Zu et al., 2013).  

 

Chloroplast Protein Import via the TIC/TOC Import System 

Thousands of proteins encoded by the nuclear genome function in the chloroplast. These 

proteins are imported into the chloroplast through the TIC/TOC (Translocon at Outer envelope 

membrane of the Chloroplast) protein import system (Shi and Theg, 2013). The TIC and TOC 

complexes are composed of numerous membrane-bound proteins, and chaperone proteins that 

work with them (Jarvis, 2008; Kessler and Schnell, 2009; Li and Teng, 2013; Shi and Theg, 

2013). Both complexes exist in at least two different forms, with some redundancy between them: 

one that imports primarily housekeeping proteins into the chloroplast and one that imports 

photosynthetic proteins (Constan et al., 2004; Inoue et al., 2010; Hirabayashi et al., 2011; 

Kasmati et al., 2011). Housekeeping proteins appear to be imported mainly through complexes 

that include Toc34, Toc132/ Toc120, and Tic20-IV whereas photosynthetic protein import   
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Figure 4. Crystal Structure of a Yeast ACCase Dimer. This image shows the crystal structure 

of a Yeast ACCase holoenzyme dimer. The two monomers are shown separately; one as a ribbon 

structure and one as a surface structure. The colors within the image correspond to the different 

domains: Red, BC; Blue, BCCP; Turquoise, β-CT; Yellow, α-CT; and Greens/PinkPurple, central 

domain. Adapted from Wei and Tong (2015).  
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involves Toc33, Toc159, and Tic20-I (Hirabayashi et al., 2011; Kasmati et al., 2011). 

Understanding this system is important for this project since the import of ACC2 into the 

chloroplast is needed to compensate for a loss of chloroplast translation. Components of the 

TIC/TOC protein import system are also potential modifiers that enhance tolerance of a loss of 

chloroplast translation. As the ACC2 precursor protein flows through the TOC and TIC import 

complexes of the chloroplast, there are a number of different proteins, detailed below, that likely 

interact with ACC2. These interactions can affect how the protein is folded, the stability of the 

precursor protein as it passes through the chloroplast membranes, and how the protein is 

recognized for translocation into the chloroplast. 

The TOC protein complexes are composed of a protein conducting channel (Toc75), and 

two receptor GTPases (Li and Teng, 2013; Shi and Theg, 2013). Toc75 seems to function in both 

versions of the TOC protein complex as a guide for proteins going through the outer membrane of 

the chloroplast (Huang et al., 2011). Two isoforms of Toc75 are found in the Arabidopsis 

genome. The main isoform, encoded by AtTOC75-III, functions as the protein conducting 

channel, Toc75, while the second version, Outer Envelope Protein 80 kDa (OEP80) encoded by 

AtOEP80/AtTOC75-V, and has an unknown function (Huang et al., 2011; Shi and Theg, 2013). 

Null mutations in AtTOC75-III and AtOEP80 result in embryo lethality at early stages of 

development, meaning that both proteins are required for embryo development in Arabidopsis 

(Baldwin et al., 2005; Patel et al., 2008; Meinke et al., 2009).  

Toc159 and Toc33 are two GTPases found in the TOC protein complex typically 

associated with the import of photosynthetic proteins. Their counterparts associated with the 

import of housekeeping proteins are Toc132/ Toc120 and Toc34, respectively (Hirabayashi et al., 

2011; Shi and Theg, 2013). Toc159 and Toc132/ Toc120 are composed of three domains: (1) the 

M domain, the C-terminus that anchors the protein to the outer membrane; (2) the G domain, the 

GTP-binding location; and (3) the A domain, the N-terminus (Kubis et al., 2004). Inoue et al. 
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(2010) have shown that the A domain on Toc159 and Toc132 heavily influences the selectivity of 

the TOC protein complexes for either photosynthetic or housekeeping proteins. A fourth member 

of the Toc159-type GTPases, Toc90, lacks an A domain and has been shown to function similarly 

to Toc159 at low levels (Hiltbrunner et al., 2004; Infanger et al., 2011). Overexpression of Toc90 

can partially rescue ppi2, a knockout of Toc159 (Infanger et al., 2011). Similar to Toc159 and 

Toc132/Toc120, Toc34 and Toc33 primarily function as receptors for precursor proteins (Kubis 

et al., 2003; Constan et al., 2004; Shi and Theg, 2013). Members of the TOC import complex are 

some of the first proteins to interact with ACC2 as it is being translocated into the chloroplast. 

Recognition of ACC2 by these proteins is crucial for the translocation to occur (Kubis et al., 

2004; Inoue et al., 2010). 

The TIC protein complexes are composed of several proteins that work together to form 

the protein conducting channel across the inner chloroplast membrane (Hirabayashi et al., 2011; 

Kikuchi et al., 2013; Li and Teng, 2013; Shi and Theg, 2013). Tic20 is believed to be one of the 

channel proteins for translocation across the inner membrane, and has been shown to form a 1-

megadalton (MDa) complex with Tic56, Tic100, Tic214, and potentially Tic21 (Kasmati et al., 

2011; Kikuchi et al., 2013). 

Four genes encoding different isoforms of Tic20 can be found in Arabidopsis. Little is 

known about the function of the proteins encoded by of two of these genes, AtTIC20-II and 

AtTIC20-V, which are expressed at high levels throughout plant development (Kasmati et al., 

2011; Shi and Theg, 2013). The other two genes, AtTIC20-I and AtTIC20-IV, are thought to play 

crucial roles as channels for the import of photosynthetic and housekeeping proteins, respectively 

(Hirabayashi et al., 2011; Kasmati et al., 2011; Kikuchi et al., 2013). Not much is known about 

Tic21, but there is evidence it plays a role in the assembly of the 1-MDa complex (Teng et al., 

2006; Shi and Theg, 2013). There is a debate over a second function of Tic21 in iron transport 

across the chloroplast membrane (Shi and Theg, 2013). This hypothesis was introduced by Duy et 
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al. (2007) when they showed that iron homeostasis-related proteins are upregulated in 

Arabidopsis tic21 mutants. On the other hand, Kikuchi et al. (2009) maintain that Tic21 functions 

solely in the TIC protein import complex since the upregulation is also found in tic20 and albino3 

mutants.  

Tic110, Tic40, and the stromal chaperone protein Hsp93 are thought to function together 

as the translocation motor in the stroma (Kovacheva et al., 2005; Shi and Theg, 2013). Null 

mutations in AtTIC110 result in embryo lethality at an early stage of development, which is 

consistent with the function of Tic110 as a recruiter for stromal chaperone proteins (Kovacheva et 

al., 2005). Tic40 is believed to be a chaperone to Tic110 where it binds to the protein in order to 

encourage the release of the transit peptide from the precursor protein being imported (Chou et 

al., 2006; Shi and Theg, 2013). The transit peptide is then cleaved by the stromal processing 

peptidase (SPP) before the final folding of the protein (Trösch and Jarvis, 2011; Shi and Theg, 

2013). Stengel et al. (2009) showed that further regulation of the protein import complexes is 

provided by Tic62, Tic55, and Tic32 through redox signaling derived from photosynthesis. 

Members of the TIC import complex are needed to finish translocating the ACC2 precursor 

protein into the stroma of the chloroplast so that it can be folded into the final ACC2 protein, and 

function in fatty acid biosynthesis. 

There is evidence of numerous chaperone proteins that function throughout the TIC/TOC 

protein import system. Cytosolic chaperones, such as Heat-shock protein 70 kDa (Hsp70), are 

thought to assist with the movement of precursor proteins from the ribosome to the TOC import 

complex on the surface of the chloroplast (Flores-Pérez and Jarvis, 2013). Hsp70 has also been 

shown to be involved in degradation of targeted precursor proteins (Lee et al., 2009; Flores-Pérez 

and Jarvis, 2013). Cytosolic chaperone protein 14-3-3 seems to complex with Hsp70 to help 

guide some types of precursor proteins to Toc34, which increases the efficiency of protein import 

for these proteins (May and Soll, 2000; Flores-Pérez and Jarvis, 2013). Hsp90 and AnKyrin 



27 
 

Repeat-containing protein 2 (AKR2) are additional cytosolic chaperones that are believed to 

function in guiding precursor proteins to the TOC import complexes (Flores-Pérez and Jarvis, 

2013). Tic22 is thought to chaperone precursor proteins across the intermembrane space (IMS) 

between the TOC and TIC import complexes; although not much is known about the mechanism 

of this translocation (Kouranov et al., 1998; Shi and Theg, 2013). Stromal chaperones Hsp93, 

cpHsp70, and Hsp90C have been shown to operate alongside Tic110 and Tic40, and provide the 

driving force to translocate precursor proteins into the stroma (Kovacheva et al., 2007; Inoue et 

al., 2013; Shi and Theg, 2013). Translocation of ACC2 into the chloroplast cannot happen 

without chaperone proteins. These proteins are there to fold, stabilize, and guide ACC2 as it 

moves across the chloroplast membranes. 
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CHAPTER III 
 

 

NATURAL VARIATION IN SEEDLING RESPONSES TO A LOSS OF CHLOROPLAST 

TRANSLATION IN ARABIDOPSIS 

 

 

 

INTRODUCTION 

 Since the mid-1990s, natural variation among Arabidopsis accessions has been used to 

study a variety of fundamental questions in plant biology (Alonso-Blanco et al., 2009; Weigel, 

2012). Various tools and resources are available for natural variation studies in Arabidopsis, 

including more than 7000 accessions available through seed stock centers, and whole-genome 

sequences for over 850 accessions (http://signal.salk.edu/atg1001/3.0/gebrowser.php; Weigel, 

2012). In order to understand why plant species differ in their responses to a loss of chloroplast 

translation, we first looked to see if the phenotypic variation seen between Arabidopsis, Brassica, 

and tobacco could be found among natural accessions of Arabidopsis. We conducted two forward 

genetic screens analyzing seedling responses on spectinomycin, an inhibitor of chloroplast 

translation. Our original analysis of 52 accessions (Parker et al., 2014) was later expanded to 

include an additional 100 accessions chosen from the 1001 Genomes Project (Parker et al., 2016).  

http://signal.salk.edu/atg1001/3.0/gebrowser.php
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Selected accessions were also tested on lincomycin, a second antibiotic that inhibits chloroplast 

translation with a different mode of action, to confirm that the phenotypes seen on spectinomycin 

were caused by a loss of chloroplast translation. To further study the nuclear genes underlying 

tolerance of a loss of chloroplast translation, crosses were performed between three accessions 

tolerant of spectinomycin and one sensitive accession. Most of the data presented in this chapter 

have been published (Parker et al., 2014; 2016), except for the spectinomycin details listed in 

Appendices A and B.  

 

MATERIALS AND METHODS 

Plant Material and Growth Conditions 

Seeds for wild-type accessions of Arabidopsis analyzed on spectinomycin were obtained 

from the Arabidopsis Biological Resource Center (ABRC; https://abrc.osu.edu/) at Ohio State 

University (Parker et al., 2014; 2016). Names and stock numbers for the accessions are listed in 

Appendix A. Seeds for the “Nossen” accession were obtained from wild-type plants that 

segregated in mutant populations (emb3126-1 and emb3137-1) grown in our laboratory (Parker et 

al., 2014).  

Mature seeds were germinated on plates containing a nutrient-agar medium following the 

protocol described by Meinke et al. (2009). The basal germination medium used was composed 

of Murashige and Skoog salts, 3% (w/v) glucose, and 0.8% (w/v) agar. For growth on 

spectinomycin and lincomycin plates, 50 mg L-1 spectinomycin or 200 mg L-1 lincomycin was 

added to the autoclaved basal medium through sterile filtration immediately before pouring the 

plates (Parker et al., 2014). Prior to plating on the nutrient-agar plates, seeds were surface 

sterilized in 95% ethanol for 30 seconds followed by a treatment of 50% non-concentrated Clorox 

bleach (including 1 drop of Tween 20 detergent per 10 mL of bleach) for 6 minutes (Meinke et 

https://abrc.osu.edu/
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al., 2009). Seeds were then washed several times with sterile water, and plated on round petri 

dishes (100 mm in diameter). For basal plates, 50 seeds were evenly spread across the plate, and 

for spectinomycin or lincomycin plates 20-30 seeds were evenly spread. Laminated templates 

were used to ensure seeds were in the same positions on each plate. After plating the seeds, the 

plates were stored at 4° C in a refrigerator for 2-3 days. For accessions that needed an extended 

germination period, the plates were stored in a refrigerator for 7 days. Once removed from the 

refrigerator, the plates were placed under fluorescent lights for 14-21 days at room temperature. 

Seedlings were then transplanted to pots containing a mixture of 12-parts vermiculite, 3-parts 

soil, and 1-part sand. Pots were placed under fluorescent lights set to 16h-light/8h-dark cycles in a 

growth room maintained at 23°C ± 1°C. Daily watering of the pots was done using a nutrient 

solution (0.35 g L−1) of Excel 15-5-15 fertilizer (Scotts Miracle-Gro, Port Washington, NY, USA; 

Berg et al., 2005). Pots were partially submerged (to a depth of 0.5 to 1 inches) in nutrient 

solution and soaked for several minutes before draining. After 2-3 weeks in the growth room, 

plants requiring vernalization were transferred to a cold room for 5-6 weeks at 5°C under 

fluorescent lights set to 8h-light/16h-dark cycles. These plants were then returned to the growth 

room for flowering. For seed collection, dried siliques were typically harvested from individual 

plants. In some cases, bulk dry seeds were also harvested from groups of sibling plants. Seed 

stocks were stored in capped vials (2 mL Fisherbrand™ Free-Standing Microcentrifuge Tubes) in 

the refrigerator at 4°C. 

 

Seedling Responses on Spectinomycin and Lincomycin 

Responses of seedlings grown on antibiotics were evaluated 5 weeks after plating, with 

accommodation for plates refrigerated longer. Measurements were performed under a Wild (M7) 

dissecting microscope equipped with an ocular micrometer. Using a ranking system, the extent of 
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leaf development for each seedling was determined by the size and number of leaves produced. 

Six ranks were used to classify the seedlings: A, cotyledons only (no visible leaf initials); B, first 

pair of leaf initials (≤ 1.5 mm combined leaf span); C, multiple leaf initials (≤ 2.5 mm combined 

for the two largest initials including any callus growth); D, one pair of leaves (> 1.5 mm 

combined); E, multiple leaves (> 2.5 mm and ≤ 6 mm combined for the two largest); and F, 

multiple leaves (> 6 mm combined for the two largest). Leaf development was also measured by 

length (mm) and width (mm) of the largest developed leaf, and the number of leaves found in 

each category based on leaf length: A, < 1.5 mm; B,  1.5 mm and < 3 mm; C,  3 mm and < 4.5 

mm; D,  4.5 mm and < 6 mm; and E,  6 mm. The leaf count was removed from later seedling 

screens because it was redundant information for the extent of seedling growth. Root 

development was measured by approximating the root length using 5 categories: A, < 2 mm; B,  

2 mm and < 4 mm; C,  4 mm and < 6 mm; D,  6 mm and < 9 mm; and E,  9 mm. 

Observations were made for each seedling on the pigmentation of cotyledons and leaves, and the 

location of the root in the medium. On occasion, seedlings with evidence of slight greening were 

found, often caused by limited root contact with the medium. These seedlings were excluded 

from evaluation. 

 

Seedling and Whole Plate Imaging 

Seedling images were captured with a Nikon DXM1200 digital camera attached to a 

Wild M-8 dissecting microscope, using the Nikon ACT-1 version 2.51 software. Plates with lids 

removed were placed under the dissecting scope with a black background, and centered on the 

seedling imaged. Most images were captured at 12x magnification; 6x magnification was also 

used to capture the full extent of growth for larger seedlings. Whole plate images were taken with 

a Canon PowerShot SX30 IS digital camera attached to a copy stand equipped with tungsten 
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lights. Lids were removed, and the plates were placed on a black background. The background of 

published images was uniformly darkened to highlight the seedling using the GNU Image 

Manipulation Program (GIMP) version 2.8.2.  

 

Crosses Between Different Wild-Type Accessions 

Crosses between wild-type accessions were performed using a tolerant accession (Jl-3, 

Be-1, or Tsu-0) as the female, and a sensitive accession (“Nossen”) as the male. Successful 

crosses were confirmed by PCR genotyping (Parker et al., 2014). Crosses were accomplished 

following the protocol described by Meinke et al. (2009). Late floral buds, with a developed 

ovary and non-dehiscent anthers on the female parent were carefully emasculated by removing 

the 6 anthers with fine-tipped (Inox No. 4) forceps under a Wild (M7) dissecting microscope. 

Pollen from the male parent was brushed across the stigma surface of the emasculated bud until 

the surface was covered. In order to identify the crossed silique after it matured, and to prevent 

pollen contamination, 1-4 open flowers immediately below the cross were removed from the 

stem. Lateral branches not containing a cross were removed from the female plant to direct 

nutrients to the branches containing crosses. Typically, 1-4 crosses were performed on a single 

plant, and there were 4-10 crosses within one pot of plants. After crossing, these pots were placed 

under fluorescent lights (16h-light/8h-dark cycle) in a Percival (Perry, IA USA) plant growth 

chamber (AR-36L) maintained at 22°C ± 1°C, and watered with the same nutrient solution used 

in the growth room. After 4-5 weeks in the growth chamber, dry siliques from the female plant, 

comprising the expected cross and the surrounding selfed siliques, were harvested and stored in 

the refrigerator at 4°C.  
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RESULTS  

Arabidopsis Accessions Differ in Seedling Sensitivity to Spectinomycin 

We chose the 52 Arabidopsis accessions for our original analysis based on several 

criteria: (1) short flowering time to simplify the analysis of genetic crosses; (2) broad geographic 

locations; (3) background accessions of mutants defective in chloroplast translation (Bryant et al., 

2011); and (4) high genetic diversity based on previous studies of natural variation (McKhann et 

al., 2004; Nordborg et al., 2005; Clark et al., 2007). One of the accessions, derived from 

segregating populations of RIKEN insertion mutants, was designated “Nossen” because it 

differed from the sequenced Nossen accession, No-0 (Parker et al., 2014). Tolerance of 

accessions to spectinomycin was analyzed using a ranking system (A-F) to characterize the 

development of seedlings grown for five weeks on 50 mg/L spectinomycin and 30 g/L glucose 

(Figure 5).  

Consistent with our expectation that natural accessions might differ in their ability to 

tolerate a loss of chloroplast translation, we found that these 52 accessions had a broad range of 

seedling phenotypes on spectinomycin (Table 2; Figure 6). Seedlings from the most tolerant 

accessions grew into albino rosettes containing multiple large leaves. At the other end of the 

spectrum, seedlings from the most sensitive accessions developed only rudimentary leaf initials 

or lacked such initials altogether. Between these two extremes, seedlings from intermediate 

accessions showed moderate leaf development. Examples of sensitive, intermediate, and tolerant 

seedlings can be seen in Figure 3. Even though we classified each accession as sensitive, 

intermediate or tolerant, the range of accessions was continuous from the most tolerant to the 

most sensitive. Within each accession, the seedling phenotypes were mostly consistent, except for 

some intermediate accessions that showed a broad range from sensitive to tolerant seedlings. This 

consistency within an accession is shown in Figure 7. Occasional seedlings with greening on  
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Figure 5. Seedling Phenotypes Reflecting Classification System. A and B, Sensitive accessions 

(categories A and B respectively). C and D, Intermediate accession (categories C and D 

respectively). E and F, Tolerant accessions (categories E and F respectively). Bar = 1 mm. Adapted 

from Parker et al. (2014; 2016). 
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Table 2. Seedling Responses of 52 Arabidopsis Natural Accessions Germinated on 

Spectinomycin. Additional details for all 52 accessions are presented in Appendix B. Adapted 

from Parker et al. (2014). 

 

Accession  

Response  

Category 

Total 

Accessions 

Classified 

Total 

Seedlings 

Classified 

Distribution of Seedling Phenotypes on 

Spectinomycin (%)a 

Sensitive  Intermediate Tolerant 

A B C D E F 

Tolerant 20 613 1.3 1.6 3.8 2.0 65.4 25.9 

Intermediate 15 409 5.4 13.2 37.4 15.2 26.4 2.4 

Sensitive 17 526 30.0 40.1 12.5 15.0 2.3   

  

a Letters define classes from expanded cotyledons without leaves (A) to extensive rosettes with 

sizeable leaves (F) as defined in the text. Refer to Figure 3.1 for examples of seedling phenotypes 

for each class.  Bold font, most common phenotypes ( > 20%).  
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Figure 6. Spectinomycin Seedling Responses of 52 Arabidopsis Natural Accessions. Percent of 

seedlings in each class (Green, Sensitive; Orange, Intermediate; and Blue Tolerant) assigned to the 

six phenotypic categories (A-F) that are described in the Methods section of this Chapter. 

Additional data for these accessions can be found in Table 2 and Appendix B. 
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Figure 7. Consistent Seedling Responses of Arabidopsis Accessions on Spectinomycin. 

Clockwise from lower left: tolerant, Jl-3, Be-1, and Tsu-0; and sensitive, “Nossen”. Plate diameter 

= 9 cm. Adapted from Parker et al. (2014). 
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cotyledons and leaves usually had poor root contact with the growth medium, which limited 

uptake of spectinomycin. With fewer than 20 seedlings tested for each accession in this original 

screen, minor growth differences between accessions were not significant. For further analyses, 

we concentrated on several of the most tolerant (Jl-3, Be-1, and Tsu-0) and sensitive (“Nossen”, 

Oy-0, and Nie1-2) accessions identified. We initially excluded Sav-0 (the most sensitive 

accession) because genome sequence information was not available at that time. We also used 

Columbia (Col-0) because it is the most well-studied Arabidopsis accession, and it consistently 

shows an intermediate response. In order to confirm the range of tolerance found in accessions 

grown on spectinomycin, we tested these seven accessions on lincomycin, a second antibiotic 

with an entirely different mechanism to inhibit translation of the chloroplast genome. The extent 

of seedling growth for each accession on lincomycin mirrored the extent of growth on 

spectinomycin (Figures 8, 9). This supports our conclusion that differences in spectinomycin 

tolerance among natural accessions reflect fundamental differences in response to the inhibition 

of chloroplast translation. 

To further study the nuclear genes underlying tolerance of a loss of chloroplast 

translation, we crossed wild-type plants from three tolerant accessions (Jl-3, Be-1, and Tsu-0) 

with the sensitive accession “Nossen”. Progeny (F1) plants were allowed to self-pollinate, and the 

subsequent F2 seeds were plated on spectinomycin. Variation in the F2 seedling responses was 

observed for all three crosses examined (Figure 10). In all crosses, we could consistently identify 

sensitive seedlings that look like the “Nossen” parental, and tolerant seedlings similar to the 

tolerant parental. There was also a broad range of intermediate seedlings between the two 

phenotypes. This range in phenotypes was evidence of an underlying genetic basis for the 

phenotypic differences observed. Later, we focused solely on the cross between Tsu-0 and 

“Nossen” because these results were most similar to the 1:2:1 ratio expected for a single, 

semidominant genetic locus (Table 3; Figure 11). 
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Figure 8. Seedling Responses of Three Arabidopsis Accessions on Spectinomycin and 

Lincomycin. A and B, sensitive accession, “Nossen”, on spectinomycin (A) and lincomycin (B). 

C and D, intermediate accession, Col-0, on spectinomycin (C) and lincomycin (D). E and F, tolerant 

accession, Tsu-0, on spectinomycin (E) and lincomycin (F). Bar = 1 mm. 

 

  



40 
 

 

 

Figure 9. Consistent Seedling Responses of Arabidopsis Accessions on Lincomycin. Clockwise 

from lower left: tolerant, Jl-3, Be-1, and Tsu-0; and sensitive, “Nossen”. Plate diameter = 9 cm. 

The consistency of response seen here is similar to that observed on spectinomycin (Figure 5). 

Adapted from Parker et al. (2014). 
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Figure 10. Segregating Seedling Responses in the F2 Generation from Crosses Between 

"Nossen" and Tolerant Accessions. A, “Nossen” crossed with Tsu-0. B, “Nossen” crossed with 

Be-1. C, “Nossen” crossed with Jl-3. Plate diameter = 9 cm. Adapted from Parker et al. (2014). 
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Table 3. Seedling Responses on Spectinomycin of Parental Accessions and F2 Progeny from 

Crosses Between "Nossen" and Tolerant Accessions. Adapted from Parker et al. (2014). 

 

Genotype 

Examined  

Total 

Seedlings 

Classified 

Distribution of Seedling Phenotypes on Spectinomycin (%)a 

Sensitive  Intermediate Tolerant 

A B C D E F 

"Nossen" 178 41.0 24.1 33.2 1.7     

Tsu-0 133     80.4 19.6 

Tsu-0 x "Nossen" 233 23.2 0.9 21.5 3.4 42.0 9.0 

Be-1 131     47.3 52.7 

Be-1 x "Nossen" 140 15.0 12.9 23.6 2.8 37.9 7.8 

Jl-3 135    0.7 31.9 67.4 

Jl-3 x "Nossen" 198 23.7 8.6 15.7 11.6 28.3 12.1 

 

a Letters define classes from expanded cotyledons without leaves (A) to extensive rosettes with 

sizeable leaves (F) as defined in the text.  
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Figure 11. Comparison of Spectinomycin Seedling Responses of Parental Accessions and F2 

Progeny from Crosses Between "Nossen" and Tolerant Accessions. Percent of seedlings in each 

accession or F2 line assigned to the six phenotypic categories (A-F) that are described in the 

Methods section of this chapter. A, Tsu-0 x “Nossen”; B, Be-1 x “Nossen”; and C, Jl-3 x “Nossen”. 

The data for these crosses can be found in Table 3.  

A 

B 

C 
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Evaluating Additional Lines Increases the Number of Sensitive Accessions 

In order to learn more about what causes sensitivity of some accessions to a loss of 

chloroplast translation, we increased the total number of accessions tested on spectinomycin to 

identify additional sensitive accessions to study. For this second analysis, we chose 100 new 

accessions based on the following criteria: (1) availability of a sequenced genome from the 1001 

Genomes Project; and (2) broad geographic locations (Figure 12). Seed stocks for these 100 

accessions were derived from siblings of the plants sequenced in the 1001 Genomes Project.  

 The ranking system used to characterize the development of seedlings after five weeks of 

growth on spectinomycin was expanded from six categories to nine in order to create a quick 

method to calculate a phenotype score for each accession. Sensitive seedlings were classified as 

(1) cotyledons only (no visible leaf initials), (2) first pair of leaf initials (≤ 1.5 mm combined leaf 

span), or (3) multiple leaf initials (≤ 1.5 mm combined for the two largest initials including any 

callus growth). Intermediate seedlings were classified as (5) multiple leaves (> 1.5 mm and ≤ 2.5 

mm combined for the two largest), (6) one pair of leaves (> 1.5 mm combined), or (7) multiple 

leaves (> 2.5 mm and ≤ 4 mm combined for the two largest). Tolerant seedlings, which all had 

multiple leaves, were classified as (9) > 4 mm and ≤ 6 mm, (10) > 6 mm and ≤ 9 mm, or (11) > 9 

mm combined for the two largest. Examples of each seedling category can be seen in Figure 13. 

We calculated a phenotype score for each accession using the average rank of all individual 

seedlings measured. Utilizing the percentage of seedlings within each category, accessions were 

classified as hypersensitive (95% or more seedlings in categories 1 and 2 and 50% or more 

seedlings in category 1); sensitive (70% or more seedlings within a sensitive category); low 

intermediate (50% or more seedlings within a sensitive category); high intermediate (50% or 

more seedlings within a tolerant category); tolerant (70% or more seedlings within a tolerant 

category); or intermediate (everything that failed to meet any of the above criteria).  
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Figure 12. Global Distribution of 152 Natural Accessions Analyzed. White, no accessions used. 

Light Green, 1 or 2 accessions used. Darker green, 10-28 accessions used. Constructed using 

eSpatial Mapping Software (https://www.espatial.com/).  

  

  

https://www.espatial.com/
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Figure 13. Seedling Responses of Selected Arabidopsis Accessions on Spectinomycin. A to F, 

Sensitive seedlings, categories 1 (A and B), 2 (C and D), and 3 (E and F). G to L, Intermediate 

seedlings, categories 5 (G and H), 6 (I and J), and 7 (K and L). M to P, Tolerant seedlings, 

categories 9 (M and N), 10 (O), and 11 (P). Bar = 1 mm. Adapted from Parker et al. (2016).  
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The 100 accessions from this second spectinomycin analysis showed the same broad 

range of seedling phenotypes as the first 52 accessions. Combining the results from both analyses, 

more the 8,000 seedlings from the 152 accessions were evaluated on spectinomycin (Table 4; 

Figure 14; Appendix B). Of these accessions, three were classified as hypersensitive, 22 as 

sensitive, 13 as low intermediate, 83 as intermediate, 11 as high intermediate, and 20 as tolerant. 

Again, consistency of seedling phenotypes was found within most accessions, except for some 

intermediate accessions that showed a broad range of seedling responses, for unknown reasons. 

Occasionally, a seedling from a tolerant accession grew poorly on spectinomycin showing a 

sensitive phenotype, possibly caused by poor nutrient uptake from the growth medium. On the 

other hand, hypersensitive accessions did not have any high intermediate or tolerant seedlings 

outside of those with greening and root problems, and sensitive accessions did not have any 

highly tolerant seedlings. Additional analyses, described later, focused on hypersensitive and 

sensitive accessions with the lowest phenotype scores recovered from a combination of forward 

and reverse genetic screens.  

 

DISCUSSION  

 In this study, we used 152 natural accessions of Arabidopsis to explore the genetics 

underlying phenotypic differences found among plant species when translation of the chloroplast 

genome is blocked. Our results from spectinomycin studies of these 152 accessions show that 

differences originally reported by Zubko and Day (1998) between Arabidopsis, Brassica and 

tobacco, can also be found within Arabidopsis accessions. While a broad range of variation was 

found among the accessions, seedling phenotypes within an accession were mostly consistent, 

with the exception of some intermediate accessions that had a wide range. A number of these 

intermediate accessions possibly lack consistency due to the small number of seedlings analyzed  
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Table 4. Seedling Responses of 152 Arabidopsis Natural Accessions Germinated on Spectinomycin. Additional details for all 152 

accessions are presented in Appendix B.  Adapted from Parker et al. (2016). 

Accession  

Response  

Category 

Total 

Accessions 

Classified 

Total 

Seedlings 

Classified 

Accession 

Phenotype  

Scores 

Distribution of Seedling Phenotypes on Spectinomycin (%)a 

Sensitive  Intermediate Tolerant 

1 2 3 5 6 7 9 10 11 

Tolerant 20 1,861 8.1 - 9.7 0.5 0.8 0.5 1.2 0.6 9.3 52.0 30.0 5.1 

High 

Intermediate 
11 477 6.4 - 8.3 2.5 1.0 0.4 4.6 1.7 32.5 49.1 8.0 0.2 

Intermediate 83 2,824 3.9 - 7.8 5.2 8.0 6.4 23.7 9.8 35.2 10.4 1.3  

Low 

Intermediate 
13 427 3.2 - 4.5 12.9 33.7 12.2 15.2 15.9 6.6 3.5   

Sensitive 22 1,872 1.3 - 3.2 34.1 39.6 19.0 3.5 2.4 1.0 0.4   

Hypersensitive 3 546 1.1 - 1.2 86.8 10.6 2.2   0.4         

 

a  Numbers define classes from expanded cotyledons without leaves (1) to extensive rosettes with sizeable leaves (11) as defined               

in the text. Refer to Figure 3.7 for examples of seedling phenotypes for each class.  Bold font, most common phenotypes ( > 10%). 
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Figure 14. Spectinomycin Seedling Responses of 152 Arabidopsis Natural Accessions. Percent 

of seedlings in each class assigned to the nine phenotypic categories (1-3; 5-7; 9-11) that are 

described in “Evaluating Additional Lines Increases the Number of Sensitive Accessions” in this 

Chapter. Additional data for these accessions can be found in Table 4 and Appendix B. 
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per accession. Because this project focused on the most tolerant and sensitive accessions, many of 

the intermediates were not re-tested after the initial spectinomycin screen. For accessions that 

were evaluated more than once, there is the possibility that poor contact between the roots of the 

seedling and the spectinomycin media allowed for more extensive growth than was seen on other 

plates. Although, poor contact with the media typically resulted in greening of the seedling due to 

a decrease in spectinomycin uptake. Additional spectinomycin screenings and analyses of these 

intermediate accessions will be needed to determine if the lack of consistency in seedling 

phenotypes is due to plating inconsisitencies or something else. 

 The striking phenotypic differences observed here between the most tolerant and 

sensitive accessions provide a unique system to analyze the nuclear genes and cellular processes 

involved. We started to explore the genetic basis of these differences by crossing tolerant and 

sensitive accessions. The variation seen in the F2 seedling responses to spectinomycin from 

crosses between tolerant accessions (Jl-3, Be-1, and Tsu-0) and the sensitive “Nossen” accession 

suggests that there is a genetic component underlying the phenotype differences observed. While 

the crosses with Jl-3 and Be-1 were difficult to interpret, and seemed to indicate the involvement 

of multiple genes underlying the phenotype differences, the F2 responses from the cross between 

Tsu-0 and “Nossen” showed approximately a 1:2:1 ratio of tolerant to intermediate to sensitive 

seedlings, which would be expected if a single, semi-dominant genetic locus was underlying the 

phenotype differences between the parental accessions. However, there were limitations to using 

these crosses to identify the underlying gene(s). Since the F2 seedlings were analyzed on 

spectinomycin, we were not able to grow them in soil to harvest progeny (F3) seed. Seedlings at 

the borderlines between the sensitive, intermediate, and tolerant categories were hard to classify, 

which made it difficult to distinguish heterozygous seedlings, which should be intermediate, from 

those homozygous for either “Nossen” (sensitive seedlings) or Tsu-0 (tolerant seedlings). Since 

we could not readily use this system to identify specific genes, we turned to a different approach 
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that involved crossing the tolerant Tsu-0 accession with emb mutants (in the sensitive “Nossen” 

background) that were disrupted in chloroplast translation. This approach allowed us to harvest 

progeny of the same plants we were analyzing, and differences between plants were more 

distinct. The results of that approach are reported in Chapter 4.  

Arabidopsis accessions hypersensitive to a loss of chloroplast translation clearly show 

that one or more genes in the chloroplast genome are essential for seedling development in 

Arabidopsis. We believe the most critical gene is accD, based on targeted gene disruptions in 

tobacco, and the retention of accD in the chloroplast genomes of parasitic plants. We later give 

further evidence that accD is the most critical gene in the chloroplast genome. Comparing the 

extent of development between tolerant accessions on spectinomycin and Arabidopsis mutants 

defective in photosynthesis (Bryant et al., 2011), the albino seedlings from tolerant accessions 

were not as extensively developed. This means that the loss of chloroplast translation in tolerant 

accessions is not fully rescued by ACC2. One possible explanation is that there are additional 

chloroplast gene(s) that become essential at later stages in seedling development. Among these 

candidate genes are ycf1 and ycf2, which function in chloroplast protein import (Kikuchi et al., 

2013; Parker et al., 2016). These genes might play a role in importing housekeeping proteins 

essential for later stages of plant development. Another candidate is clpP1, which is a subunit of a 

chloroplast-localized protease complex known to be required for chloroplast function (Ramos-

Vega et al., 2015). All three of these genes, along with accD, were identified as essential 

chloroplast genes in tobacco (Drescher et al., 2000; Kuroda and Maliga, 2003; Kode et al., 2005). 
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CHAPTER IV 
 

 

FACTORS THAT ENHANCE THE EXTENT OF EMBRYO DEVELOPMENT IN THE 

ABSENCE OF CHLOROPLAST TRANSLATION 

 

 

 

INTRODUCTION 

 Following crosses between tolerant and sensitive wild-type accessions, we found that our 

procedure for screening F2 seedlings lacked the accuracy needed to identify the gene(s) 

responsible for phenotypic differences seen when chloroplast translation is blocked. Looking at 

33 insertion mutants defective in both embryo development and chloroplast translation, we found 

a correlation between the stage of embryo arrest and the sensitivity of the parental accession 

when grown on spectinomycin (Table 5). Mutant embryos of RIKEN insertion mutants in a 

“Nossen” background arrest at a preglobular stage of embryo development, and wild-type 

“Nossen” seedlings are sensitive to a loss of chloroplast translation. On the other hand, mutant 

embryos of SALK or Syngenta insertion mutants in a Col-0 background arrest at a large globular 

stage of development, while wild-type Col-0 seedlings show an intermediate phenotype on 

spectinomycin. In between these two accessions, mutant embryos in CSHL or JIC insertion lines 

in a Ler-1 background arrest at a small globular stage of development, and wild-type Ler-1  



53 
 

Table 5. Chloroplast Translation Mutants Differ in Stage of Embryo Arrest. Adapted from Parker 

et al. (2014). 

 

Accession 
Insertion 

Line  

Knockout 

Alleles 

Embryo 

Phenotype 

Embryo 

Mutants Used 

in Crosses 

Size of 

Arrested 

Embryo 

Ribosomal 

Protein 

"Nossen" Riken 6 Preglobular 
emb3126-1 

25 µm 
L1 

emb3137-1 S13 

Columbia Salk/GABI 8 
Large 

Globular 
emb3137-2 90 µm S13 

Columbia Syngenta 9 
Large 

Globular 
- - - 

Ler CSHL/JIC 2 
Small 

Globular 
emb3126-3 60 µm L1 
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seedlings show a phenotype on spectinomycin that is in between sensitive “Nossen” seedlings 

and intermediate Col-0 seedlings. The correlation observed between the embryo and seedlings 

phenotypes when translation of the chloroplast genome is blocked is important because it 

suggests a common mechanism involved in both phenotypes. 

 Using this information, we were able to design a more accurate procedure to identify the 

gene(s) responsible for phenotypic differences seen when chloroplast translation is blocked. We 

performed crosses between wild-type plants of the tolerant Tsu-0 accession and plants 

segregating for an emb mutation that eliminated chloroplast translation in the sensitive “Nossen” 

accession. We focused on RIKEN insertion mutants in two EMB genes that encode chloroplast-

localized ribosomal proteins, EMB3126 and EMB3137, where the embryos arrest at a preglobular 

stage of development. Using these crosses, we screened for dominant suppressors of this 

preglobular arrest. Through this study, we found a single suppressor locus (ACC2), an enhancer 

of the suppressor, and additional modifiers that further increase embryo development. Most of the 

data presented in this chapter have been published (Parker et al., 2014). Two notable exceptions 

are the analysis of F5 embryos from crosses between Tsu-0 and emb3126-1, and details of the 

plants screened for mapping the enhancer locus and identifying additional modifiers (Appendices 

C, D). 

 

MATERIALS AND METHODS 

Plant Material  

Details on the emb mutants used for this part of the project have been described in 

previous publications (Bryant et al., 2011; Muralla et al., 2011) and are presented in the 

SeedGenes database (http://www.seedgenes.org). Seeds for emb3126-1 (RATM-53-3245-1), 

emb3126-3 (GT-5-101962), emb3137-1 (RATM-15-0663-1), and emb3136 (RATM-51-2522-3) 

http://www.seedgenes.org/
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were obtained from Kazuo Shinozaki at the RIKEN Plant Science Center. Seeds for emb3137-2 

(Salk-133412), acc2-1 (Salk-148966c), and acc2-2 (Salk-110264) were obtained from the ABRC 

(https://abrc.osu.edu/) at Ohio State University. Internal seed stocks were used for emb1473 

(Syngenta 24154) in the Columbia background; duplicates are available through the ABRC. 

 

Crosses with emb Mutants and Embryo Phenotyping 

 Most of the crosses between wild-type accessions and plants heterozygous for an emb 

mutation (emb/EMB) were performed in both directions using the heterozygous emb plant as 

either the male or female. We identified heterozygous emb plants by screening mature siliques for 

the presence of 25% mutant seeds. When the heterozygous emb plant was used as the female 

parent, successful crosses were confirmed by the harvested silique lacking aborted seeds, which 

was different from the adjacent siliques produced from selfing. When the heterozygous emb plant 

was used as the male parent, successful crosses were determined by segregation of mutant F2 

seeds in siliques of F1 plants. Seed and embryo measurements were taken under a Wild (M7) 

dissecting microscope using a stage micrometer and two fine-tipped (Dumont no. 4) forceps. The 

smallest embryos that we could measure this way were 50 μm globular embryos. Smaller 

embryos could be seen as bumps in the seed coat, but we were not able to dissect them out of the 

seed coat to measure. Mutant embryos were classified into four categories: (1) globular: rounded 

embryos; (2) triangular: embryos with a visible point at the basal region; (3) linear: embryos with 

elongation of the basal region without cotyledon formation; and (4) cotyledon: embryos with one 

or more cotyledons. In order to be sure that the embryos measured were at a terminal stage of 

development, we mostly dissected aborted seeds that had begun to deflate and turn brown.  

 

 

https://abrc.osu.edu/
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Embryo Imaging 

 Embryo images were captured with a Nikon DXM1200 digital camera attached to a Wild 

M-8 dissecting microscope, using the Nikon ACT-1 version 2.51 software. Embryos were first 

extracted under a Wild (M7) dissecting microscope using two fine-tipped (Dumont no. 4) forceps, 

and placed on an open plate of medium to ensure the embryos did not dry out before imaging. 

Images were captured at 50x magnification. The background of published images was uniformly 

darkened to highlight the embryo using the GNU Image Manipulation Program (GIMP) version 

2.8.2. 

 

RESULTS 

A Single, Dominant Suppressor of Preglobular Arrest Increases Seed and Embryo 

Development 

 In order to identify the nuclear genes that influence tolerance or sensitivity to loss of 

chloroplast translation, we focused on knockout mutants disrupted in two EMB genes required for 

chloroplast translation, EMB3126 and EMB3137. These genes encode chloroplast-localized 

ribosomal proteins, L1 and S13 respectively, and both genes have mutant alleles defective in 

different genetic backgrounds with different embryo phenotypes (Table 6). We later discontinued 

the work on emb3126-3, which is in the Ler-1 background, due to the variable seed size in Ler-1. 

We crossed heterozygous (emb/EMB) plants from the RIKEN mutants, emb3126-1 and emb3137-

1, with the tolerant Tsu-0 accession, and screened for dominant suppressors of the preglobular 

arrest found in these mutants. A single dominant Tsu-0 suppressor should cause 75% of the 

mutant seeds in F1 siliques to reach a later stage of development. We expected to see three 

classes of segregating F2 plants: (1) those with an early seed phenotype similar to the emb parent; 

(2) those with a late seed phenotype; (3) and those with a mixture of both. If other modifiers were   
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Table 6. Mutant Alleles Chosen for Initial Crosses with Spectinomycin-Tolerant Accessions. 

Adapted from Parker et al. (2014). 

 

Allele 

Symbol 

Ribosomal 

Protein  

Insertion 

Line 

Background 

Accession 

Embryo 

Phenotype 

Embryo 

Size (μm) 

emb3126-1 L1 Riken "Nossen" Preglobular 25 

emb3126-3 L1 JIC Ler Small globular 60 

emb3137-1 S13 Riken "Nossen" Preglobular 25 

emb3137-2 S13 Salk Columbia Large globular 90 
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involved, we expected to find F3 plants with more advanced embryos. 

 The crosses between Tsu-0 and emb mutants defective in chloroplast translation showed 

evidence of a single dominant suppressor that significantly increased the size of mutant seeds and 

supported embryo development to a late globular stage. The first two rows in Table 7 show the 

results of screening mutant seeds from F1 siliques. Around 75% of the mutant seeds screened 

from these crosses contained an embryo rescued to a large globular stage of development, while 

the other 25% were similar to the preglobular phenotype found in the parental emb mutant. When 

the next generation of plants was grown, three distinct classes of F2 plants were found: SS plants 

with a preglobular mutant seed phenotype similar to the emb parent; TT plants with a rescued 

(large globular or later development stage) seed phenotype; and ST plants with a mixture of 

rescued and parental seed phenotypes in a 3:1 ratio (Table 8). These F2 classes were found in a 

1:2:1 ratio of SS:ST:TT plants. Because some embryo rescue was found in both the emb3126-1 

and emb3137-1 crosses, the response is not limited to a specific ribosomal protein. As a control, 

we crossed emb3126-1 and emb3137-1 with two other tolerant accessions, Jl-3 and Be-1, and 

with two sensitive accessions, Oy-0 and Nie1-2. The crosses with other tolerant accessions 

showed that the rescue of mutant embryos defective in chloroplast translation is not limited to the 

Tsu-0 accession. These crosses were not examined in detail. Only a slight rescue (small globular 

stage) of the mutant phenotype was seen in crosses with the two sensitive accessions (Table 7, 

rows 3-6). Later, we found evidence of partial ACC2 function in Oy-0, and full ACC2 function in 

Nie1-2, which likely factors in to the slight rescue seen in these crosses.  

 

The Suppressor Locus Maps to the ACC2 Region of Chromosome 1 

 Because we believed that ACC2 might compensate for the loss of accD function when 

chloroplast translation is blocked, we focused on ACC2 as the possible suppressor of preglobular 
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Table 7. Partial Embryo Rescue in F1 Siliques from Crosses between Natural Accessions and Embryo-Defective Mutants. Adapted      

from Parker et al. (2014). 

 

Mutant 

Allele a 

Wild-type 

Accession 

Siliques 

Screened 

Seeds 

Screened 

Percent 

Mutant 

Seeds 

Percent Mutant 

Seeds Exhibiting 

Embryo Rescue 

Phenotype of 

Rescued Embryo b  

Average Size 

of Rescued 

Embryo (μm) c 

emb3126-1 Tsu-0 40 1842 24.1 71.4 
Most large globular; 

some later stages 
84 ± 5.8 

emb3137-1 Tsu-0 40 1939 24.3 75.4 Large globular 78 ± 4.0 

emb3126-1 Oy-0 11 474 24.5 72.4 Small globular 55 ± 0.6 

emb3137-1 Oy-0 20 965 26.5 75.6 Small globular 55 ± 0.4 

emb3126-1 Nie1-2 11 550 24.2 Not determined d Tiny globular 49 ± 1.5 

emb3137-1 Nie1-2 10 491 27.1 Not determined d Tiny globular 50 ± 1.1 

 

a  Embryo arrest in parental lines occurs at the preglobular stage. 

b  Embryo rescue was more pronounced in crosses with a spectinomycin-tolerant accession (Tsu-0) than in crosses with        

spectinomycin-sensitive accessions (Oy-0; Nie1-2).  

c  Mean Length ± Standard Error.   

d  Rescued mutant seeds did not differ sufficiently in size from parental mutant seeds.  
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Table 8. Classes of F2 Plants Identified from Tsu-0 Crosses with Mutants in a Sensitive “Nossen” Background. Adapted from           

Parker et al. (2014). 

 

Parental  

Mutant 

F2  

Class  

Symbol 

Description of F2 Plant Phenotype 

Total  

Plants  

Identified 

Total  

Seeds  

Screened 

Percent  

Mutant  

Seeds 

Percent  

Embryo  

Visible 

emb3126-1 SS No evidence of embryo rescue 21 3199 27.0 0.8 

 ST Partial rescue segregating 49 6103 26.3 76.7 

 TT Partial rescue consistent 31 7862 25.3 99.4 

 WT Wild-type plants 45 1549 0.2 - 

emb3137-1 SS No evidence of embryo rescue 9 1491 24.5 0.5 

 ST Partial rescue segegating 30 5259 24.7 72.8 

 TT Partial rescue consistent 19 3144 26.6 99.4 

  WT Wild-type plants 37 3993 0.9 - 
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arrest. Dr. Yixing Wang, a research associate in the Meinke lab, tested this hypothesis using a 

candidate gene approach with accession-specific PCR primers that focused initially on the ACC2 

region of chromosome 1. This approach utilized three distinct categories of F2 plants from 

crosses between Tsu-0 and the emb mutants. Yixing Wang PCR genotyped representative plants 

from each category for the Tsu-0 and “Nossen” alleles of ACC2, and showed perfect linkage 

between ACC2 and the suppressor. In order to show that the Tsu-0 suppressor impacts both 

embryo development in the absence of chloroplast translation and seedling responses to 

spectinomycin, Yixing Wang PCR genotyped sensitive and tolerant F2 seedlings from the crosses 

between wild-type Tsu-0 and “Nossen” plants. The results showed sensitive seedlings were 

homozygous for the “Nossen” allele of ACC2 while tolerant seedlings were either homozygous or 

heterozygous for the Tsu-0 allele, which is consistent with a dominant pattern of inheritance for 

the suppressor. Because these approaches are not associated with my role in this project, the 

details of them can be found in Parker et al. (2014).  

 To provide further evidence that ACC2 is the suppressor, we measured the extent of 

seedling growth on spectinomycin of two knockout mutants disrupted in ACC2 in a Col-0 

background. Under standard growth conditions, acc2 mutant plants appear normal. However, 

mutant seedlings consistently exhibited a higher level of sensitivity to spectinomycin than wild-

type (Col-0) seedlings (Figure 15). Mutant embryos homozygous for a second mutant allele of 

EMB3137 (emb3137-2) in the Col-0 background arrest at a large globular stage of development. 

In order to determine if we could further impair embryo development in this mutant, we crossed 

emb3137-2 with one of the acc2 mutant lines (SALK-148966c). The results of these crosses 

showed 25% of mutant embryos in the F1 siliques arrested at an earlier (preglobular) stage of 

development (Table 9). The results from all four approaches mentioned here support the 

conclusion that the Tsu-0 suppressor of preglobular arrest is an allele of ACC2.  
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Figure 15. Spectinomycin Responses of an acc2 Knockout Mutant Compared to the 

Background Accession (Col-0). A, Parental Col-0 accession. B, acc2-1 (Salk_148966c). Bar = 1 

mm. Adapted from Parker et al. (2014).  
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Table 9. Reduced Embryo Development in F1 Siliques from acc2 (Col-0) Crossed with emb3137-2 (Col-0). Adapted from Parker            

et al. (2014). 

 

Cross 

F2 

Seeds 

Screened 

Percent 

Mutant 

Seeds 

Mutant 

Seeds 

Screened 

Percent 

Preglobular 

Embryos a 

Average Seed Size   

(μm) b 

Parental 

Embryo 

Lengths (μm) b 

Parental Embryo 

Stages (%) 

Preglobular Parental Average Globular Triangular 

1 466 27.7 129 22.5 400 ± 7.2 564 ± 3.8 89 ± 2.6 90.3 9.7 

2 173 32.9 57 33.3 418 ± 4.1 605 ± 4.4 92 ± 2.3 97.1 2.9 

Total 639 29.1 186 25.8 407 ± 4.5 575 ± 4.2 90 ± 1.8 92.2 7.8 

WT 1321 0.2 - - - - - - - 

 

a  Two classes of mutant seeds are found in F1 siliques: preglobular seeds presumed to be acc2 homozygotes, and large seeds                

with globular embryos (acc2/ACC2; ACC2/ACC2) characteristic of parental emb3137-2 lines.  

b  Mean Length ± Standard Error.   
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A Semidominant Enhancer Promotes Further Embryo Development in the Absence of 

Chloroplast Translation  

 Screening siliques of F2 plants from the crosses between Tsu-0 and emb3126-1 revealed 

three distinct subclasses of TT plants: (1) early TT plants whose rescued mutant embryos arrested 

at a large globular stage of development, with very few exceeding 100 μm in diameter; (2) late 

TT plants whose rescued mutant embryos frequently developed beyond 100 μm, and often 

reached an elongated or cotyledon stage of development; and (3) intermediate TT plants whose 

rescued mutant embryos were a mixture of the other two classes (Table 10; Figure 16). The 

differences between the three enhancer classes are supported by an analysis of variance 

(ANOVA) on the embryo length measurements (F = 302.9; p < 0.001). These TT classes were 

found in a 1:2:1 ratio of early:intermediate:late plants, which is consistent with a second locus, an 

enhancer, that further increases the extent of embryo development in the presence of the Tsu-0 

suppressor.  

 Curiously, TT F2 plants from crosses between Tsu-0 and emb3137-1 could not be divided 

into distinct subclasses; all of these F2 plants were similar to the early TT plants of the emb3126-

1 crosses. Table 11 and Figure 17 show the differences between emb3137-1 and emb3126-1. This 

difference is supported by a T-test on the embryo length measurments (t = 9.8; p < 0.001). The 

two mutant lines, emb3137-1 and emb3126-1, are defective in two different chloroplast ribosomal 

proteins in the “Nossen” background. Because the extent of embryo development in the SALK 

emb3137-2 allele was similar to other Col-0 mutants defective in chloroplast translation, we 

reasoned that the phenotype difference in TT plants from the emb3126-1 and emb3137-1 crosses 

was due to linkage between EMB3137 and the enhancer locus. Yixing Wang PCR genotyped 

early and late TT plants from the F2 generation of the crosses between Tsu-0 and emb3126-1 

crosses for three candidate genes: EMB3137; OEP80, which is located 10 cM below EMB3137; 

and TOC34, which is located 10 cM above EMB3137. The genotyping results confirmed tight  
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Table 10. Enhancer Phenotype Classes of TT Plants from a Tsu-0 Cross with emb3126-1. Adapted from Parker et al. (2014). 

 

Plants Analyzed a 
Mutant Embryos 

Analyzed  

Embryo    

Lengths (%) 
Embryo Phenotypes (%)  

Enhancer  

Class 

Number 

Screened 

Number 

Measured 

Avg. Length 

(µm) b 

< 100 

μm 

> 200 

μm 
Globular Triangular Linear Cotyledon 

Late 26 1220 154 ± 4.0 3.6 11.3 9.5 47.8 33.9 8.8 

Intermediate 46 1928 92 ± 3.9 62.7 3.5 74.6 14.9 8.7 1.8 

Early 26 965 66 ± 0.9 94.8 0.1 99.4 0.5 0.1 0.0 

 

a  Limited to F2 plants and F3 plants derived from F2 plants assigned to the intermediate enhancer class.  

b  Mean Length ± Standard Error.  
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Figure 16. Enhancer  Phenotype Classes of TT Plants from a Tsu-0 Cross with emb3126-1. A, 

Boxplot representing the median, 25th and 75th percentiles (interquartile range) of mutant embryo 

lengths. Whiskers extend to the minimum and maximum lengths (excluding outliers). Mean is 

denoted by the X. One extreme outlier (500 μm) for the Late enhancer class is not shown on the 

graph. B, Percentage of embryos in each enhancer class assigned to four phenotypic categories 

based on shape of the embryo: Globular, Triangluar, Linear, and Cotyledon.  

A 

B 
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Table 11. Differences in the Extent of Embryo Rescue in TT Plants from Tsu-0 Crosses with emb3137-1 and emb3126-1.               

Adapted from Parker et al. (2014). 

 

Mutant  

Allele 

F2 Plants 

Screened 

Mutant 

Seeds 

Screened 

Average 

Embryo 

Lengths  

(μm) a 

Embryos 

Measured (%)  
Embryo Phenotypes (%)  

< 100 

μm 

> 200 

μm 
Globular Triangular Linear Cotyledon 

emb3137-1 20 531 77 ± 1.2 82.7 6.4 96.2 3.8 0.0 0.0 

emb3126-1 31 965 99 ± 1.9 60.9 31.6 68.2 17.5 11.1 3.2 

 

a  Mean Length ± Standard Error. 
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Figure 17. Differences in the Extent of Embryo Rescue in TT Plants from Tsu-0 Crosses 

with emb3137-1 and emb3126-1. A, Boxplot representing the median, 25th and 75th percentiles 

(interquartile range) of mutant embryo lengths. Whiskers extend to the minimum and maximum 

lengths (excluding outliers). Mean is denoted by the X. B, Percentage of embryos from each cross 

assigned to four phenotypic categories based on shape of the embryo: Globular, Triangluar, 

Linear, and Cotyledon.  

A 

B 
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linkage between EMB3137 and the enhancer, indicating that the enhancer is located near the top 

of chromosome 5. 

 We also confirmed linkage between EMB3137 and the enhancer through crosses between 

Tsu-0 and two additional emb mutants defective in chloroplast translation: emb1473 (Col-0), 

which is unlinked to EMB3137, and emb3136 (“Nossen”), which is linked to EMB3137. 

Consistent with what we expected, F1 siliques of the emb1473 crosses were similar to those seen 

with the emb3126-1 crosses, with over a third of the rescued embryos developing beyond 100 μm 

and some embryos reaching an elongated or cotyledon stage of development (Table 12). Also as 

expected, F1 siliques from the crosses with emb3136 were similar to the emb3137-1 crosses, with 

rescued embryos not growing larger than 110 μm (Table 13). These results combined with Yixing 

Wang’s PCR genotyping of the three linked loci, confirmed that the enhancer in Tsu-0 is linked 

to EMB3137 and EMB3136 near the top of chromosome 5. Further work to identify the enhancer 

locus has been done by Kayla Cook in our lab, and will be discussed in Chapter 6.  

 

Additional Modifiers Increase the Frequency of Advanced Embryo Development 

 Analyzing the F3 siliques of progeny from late TT plants of crosses between Tsu-0 and 

emb3126-1 revealed evidence of multiple modifiers that increased the frequency of advanced 

embryo development. These F3 plants were divided into three phenotypic categories: (1) late-

advanced, where approximately 30% of the rescued embryos grew larger than 300 μm in length; 

(2) late-moderate, where approximately 30% of the rescued embryos grew larger than 200 μm in 

length but less than 300 μm; and (3) late-reduced, where approximately 85% of the rescued 

embryos were smaller than 100 μm when fully developed (Table 14, rows 1-3; Figure 18). The 

differences between the three modifier classes are supported by an analysis of variance 

(ANOVA) on the embryo length measurements (F = 26.5; p < 0.001). In order to determine if we 

could further advance embryo development from these crosses, we screened the siliques of F4  
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Table 12. Partial Embryo Rescue in F1 Siliques from a Tsu-0 Cross with emb1473 (Col-0). Adapted from Parker et al. (2014). 

 

Cross 

F2 

Seeds 

Screened 

Percent 

Mutant 

Seeds 

Mutant 

Seeds 

Screened 

Embryos 

Measured (%)  

Embryo Lengths  

(μm) 
Embryo Stages (%) 

> 100 

μm 

> 150 

μm 
Average a Min. Max. Globular Triangular Linear Cotyledon 

1 440 24.1 106 36.8 23.6 128 ± 3.6 60 470 62.2 14.2 11.3 12.3 

2 711 21.7 154 37.0 21.4 117 ± 4.9 60 400 63.0 16.2 14.3 6.5 

Total 1151 22.6 260 36.9 22.3 122 ± 3.0 60 470 62.7 15.4 13.1 8.8 

 

a  Mean Length ± Standard Error. 

b  Results are similar to emb3126 (both genes are unlinked to the enhancer) as shown by the presence of large embryos beyond a triangular 

stage of development.  
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Table 13. Limited Embryo Rescue in F1 Siliques from a Tsu-0 Cross with emb3136 (“Nossen”). Adapted from Parker et al. (2014). 

 

Cross 

F2 

Seeds 

Screened 

Percent 

Mutant 

Seeds 

Mutant 

Seeds 

Screened 

Percent 

Preglobular 

Embryos 

Average Seed            

Size (μm) a 

Rescued Embryo Lengths 

(μm) 

Rescued Embryo 

Stages (%) 

Preglobular Rescued Average a Min. Max. Globular Triangular 

1 988 25.8 255 20.0 370 ± 8.7 522 ± 4.2 65 ± 1.7 50 110 98.5 1.5 

2 562 22.2 125 20.0 382 ± 9.7 521 ± 4.2 69 ± 1.9 50 110 99.0 1.0 

Total 1550 24.5 380 20.0 374 ± 6.6 521 ± 3.0 66 ± 1.3 50 110 98.7 1.3 

 

a  Mean Length ± Standard Error. 

b  Results are similar to emb3137 (both genes are linked to the enhancer) as shown by the absence of large embryos beyond a triangular 

stage of development.  



72 
 

Table 14. Modifier Phenotype Classes of Late TT Plants from a Tsu-0 Cross with emb3216-1. Adapted from Parker et al. (2014). 

 

Plants Analyzed 
Mutant Embryos 

Analyzed 
Embryo Lengths (%) Embryo Phenotypes (%)  

Modifier  

Class 

Plant 

Generation 

Number 

Screened 

Number 

Measured 

Avg. 

Length  

(µm) a 

< 100 

μm 

> 200 

μm 

> 300 

μm 
Globular Triangular Linear Cotyledon 

Late;  

Advanceda 
F3 4 245 256 ± 12.1 0.0 61.5 30.1 0.0 10.5 45.8 43.9 

Late;  

Moderatea 
F3 12 474 184 ± 11.1 0.6 25.9 6.1 5.4 20.2 55.2 19.2 

Late;  

Reduceda 
F3 8 435 146 ± 6.7 3.4 6.6 1.0 14.7 38.8 41.0 5.5 

Late; 

Advanced; 

Lateb 

F4 3 134 345 ± 10.7 0.0 94.5 60.9 0.0 0.0 29.3 70.7 

Late; 

Advanced; 

Moderateb 

F4 11 569 254 ± 12.6 0.0 64.7 28.3 0.0 4.3 52.9 42.8 

 

a  Mean Length ± Standard Error. 

b  Progeny plants from the "late" class of F2 plants homozygous Tsu-0 for the suppressor and enhancer.  

c  Progeny plants from the "late; advanced" class of F3 plants homozygous Tsu-0 for the suppressor and enhancer.  
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Figure 18. Modifier Phenotype Classes of Late TT Plants from a Tsu-0 Cross with emb3126-

1. A, Boxplot representing the median, 25th and 75th percentiles (interquartile range) of mutant 

embryo lengths. Whiskers extend to the minimum and maximum lengths (excluding outliers). 

Mean is denoted by the X. B, Percentage of embryos from each modifier class assigned to four 

phenotypic categories based on shape of the embryo: Globular, Triangluar, Linear, and 

Cotyledon.  

A 

B 
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progeny from late-advanced plants. A few plants, classified as late-advanced-late, contained more 

than 60% of the rescued embryos larger than 300 μm, and all of the rescued embryos reached the 

elongated or cotyledon stages of development (Table 14, row 4). The remaining F4 plants were 

classified as late-advanced-moderate, and resembled the late-advanced F3 plants (Table 14, row 

5). T-tests showed that the difference between the late-advanced-late and late-advanced-moderate 

modifier classes is statistically significant (t = 5.5; p < 0.001), whereas there is no significant 

difference between the late-advanced-moderate F4 plants and the late-advanced F3 plants (t = -

0.1; p = 0.4). Analysis of siliques from F5 progeny from the late-advanced-late plants revealed no 

detectable difference in the extent of embryo rescue from the F4 generation. No fully developed, 

albino embryos were found among the advanced embryos screened. Details of the entire 

collection of plants screened for mapping the enhancer locus and identifying additional modifiers 

are presented in Appendices C and D respectively.  

 

DISCUSSION 

 In order to identify the genes impacting phenotype differences between accessions when 

chloroplast translation is blocked, we utilized crosses between the tolerant Tsu-0 accession and 

emb mutants defective in chloroplast translation in the sensitive “Nossen” accession. Screening 

the extent of embryo rescue in these crosses gave us a more accurate system for gene 

identification than the seedling crosses discussed in Chapter 3, where it was difficult to classify 

borderline seedlings. With this approach, we identified ACC2 as a single, dominant suppressor of 

the preglobular phenotype of the RIKEN emb mutants. This suppressor is able to rescue embryo 

development to a late globular stage. We also found evidence of an unlinked enhancer of the 

suppressor that allows embryos to develop beyond the globular stage, and additional modifiers 

that increase the frequency of embryos at the most advanced stages of development. These 

additional modifiers can also advance slightly the development of embryos when the enhancer is 
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not present. The effects of the Tsu-0 suppressor, enhancer, and modifier alleles are summarized in 

Figure 19, and examples of arrested embryo phenotypes are shown in Figure 20.  

 Even in the most advanced progeny examined from the crosses between Tsu-0 and 

emb3126-1, we never found a fully rescued, albino embryo. This was not surprising given that 

tolerant accessions grown on spectinomycin were not as fully developed as most albino mutants 

defective in photosynthesis alone. This is further evidence that accD is not the only gene in the 

chloroplast genome required for proper plant development. As discussed in Chapter 3, ycf1, ycf2, 

and clpP1 potentially play important roles in later stages of seedling and embryo development in 

Arabidopsis. 

 Through PCR genotyping and analysis of crosses, we have identified the Tsu-0 

suppressor as ACC2 and have mapped the enhancer close to the top of chromosome 5 (linked to 

EMB3137). However, we have not identified specific genes that encode the enhancer and 

additional modifier proteins. One potential role for the enhancer is as a critical component of the 

TIC/TOC chloroplast protein import system, specifically involved in the import of ACC2 into the 

stroma of the chloroplast. However, disruption of this protein must not affect the import of other 

chloroplast-localized proteins. In this scenario, the additional Tsu-0 modifiers could encode other 

components of the TIC/TOC protein import system. Candidate genes for the additional modifiers 

include Toc132/Toc120, which are thought to be involved in recognizing and guiding 

housekeeping proteins through the outer membrane (Kubis et al., 2004; Inoue et al., 2010); and 

Tic20-IV, which is believed to be the main channel protein for some of the housekeeping proteins 

through the inner membrane (Hirabayashi et al., 2011). However, there are no promising 

candidate loci with such functions in the enhancer region on chromosome 5.  

 Because ACC2 is a large protein that must be imported into the chloroplast, a second 

possible role for the Tsu-0 enhancer is as a chaperone protein involved in the folding, guiding, or 
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Figure 19. Combined Effects of the Tsu-0 Suppressor, Enhancer, and Modifier(s) on Seed 

and Embryo Rescue in emb3126-1. Ellipses represent mutant seeds, filled images depict mutant 

embryos, and bars define the stage of arrest. Adapted from Parker et al. (2014).  
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Figure 20. Examples of Embryos in Siliques of Plants Homozygous for the Tsu-0 

Suppressor. A, Late globular embryo. B, Triangular embryo. C and D, Elongated linear embryos. 

E to I, Cotyledon stage embryos with one or two cotyledons present. J, Sibling wild-type embryo. 

Bar = 100 µm. Adapted from Parker et al. (2014).  
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stabilization of ACC2. In this scenario, the additional Tsu-0 modifier proteins could either be 

components of the TIC/TOC protein import system, or additional chaperone proteins. Candidate 

genes for the additional modifiers include Hsp70 and members of the 14-3-3 protein family, 

which are thought to work together in the cytosol to guide precursor proteins to the chloroplast 

(May and Soll, 2000; Flores-Pérez and Jarvis, 2013); Hsp93, cpHsp70 and Hsp90C, which are 

thought to function in the stroma of the chloroplast to stabilize and guide proteins through the 

inner membrane (Kovacheva et al., 2007; Inoue et al., 2013; Shi and Theg, 2013); and Tic22, 

which is believed to guide precursor proteins across the intermembrane space (IMS) between the 

TOC and TIC import complexes (Kouranov et al., 1998; Shi and Theg, 2013). However, once 

again: no promising chaperone genes can be found in the enhancer region. 

 We have shown here that the additional Tsu-0 modifiers can function to advance 

somewhat the development of embryos independent from the enhancer, which means these 

additional modifiers could have a separate function. Some modifiers could potentially function in 

partial compensation for the loss of ycf1, ycf2, and clpP1 in early stages of embryo development. 

A candidate gene approach to look at potential modifiers is described in Chapter 6. 

 After determining that ACC2 impacts the phenotypic differences between Arabidopsis 

accessions when chloroplast translation is blocked, we decided to look at how changes in ACC2 

increased the tolerance of some accessions to spectinomycin. We first thought that ACC2 might 

be overexpressed in tolerant accessions, which would increase the amount of ACC2 transcript and 

possibly the amount of ACC2 protein present in the chloroplast. However, RT-qPCR experiments 

by Yixing Wang showed no significant difference in the amount of ACC2 transcript found in 

tolerant and sensitive accessions (Parker et al., 2014). We then focused on the protein sequence of 

ACC2 thinking that a change in the transit peptide could increase the localization or amount of 

protein taken into the chloroplast, or a mutation in the protein sequence could increase the activity 

of ACC2 or increase the interactions of ACC2 with chaperone proteins. Around the time we 
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began to look at the sequenced genomes available through the 1001 Genomes Project (The 1001 

Genomes Consortium, 2016), Yixing Wang sequenced the ACC2 gene from the sensitive 

“Nossen” accession and found a nonsense mutation in the middle of the gene. We then changed 

our approach from looking at what causes tolerance to a loss of chloroplast translation to looking 

at what can cause sensitivity. Chapter 5 in this dissertation discusses the diversity of ACC1 and 

ACC2 mutations found in natural Arabidopsis accessions.
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CHAPTER V 
 

 

A VARIETY OF ACC2 MUTATIONS ARE FOUND IN NATURAL ACCESSIONS OF 

ARABIDOPSIS 

 

 

 

INTRODUCTION 

Sequencing the ACC2 gene from the “Nossen” accession by Yixing Wang changed our 

perspective on the phenotypic differences found between accessions when chloroplast translation 

is blocked. Previously, we looked for mutations in ACC2 that increased the tolerance of an 

accession to spectinomycin. After analyzing the ACC2 sequence from the sensitive “Nossen” 

accession, we began to look for other changes in ACC2 that caused sensitivity to a loss of 

chloroplast translation. We combined our experimental system to evaluate the level of ACC2 

function using sensitivity to spectinomycin with the genome sequence data from the 1001 

Genomes Project (http://signal.salk.edu/atg1001; The 1001 Genomes Consortium, 2016) to 

analyze the relationship between genotype and phenotype within the ACCase class of proteins, 

which are essential for eukaryotic fatty acid biosynthesis. The ACC2 experimental system in 

Arabidopsis provides a unique opportunity to look at the deleterious effects of different types of 

mutations on an essential class of proteins with implications for agriculture and human health. 

http://signal.salk.edu/atg1001
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This chapter describes various ACC2 mutations found in sensitive accessions of 

Arabidopsis. Utilizing the 1001 Genomes Project sequences, we used two methods to look at 

what determines sensitivity in Arabidopsis accessions. We first used the forward genetic 

approach described in Chapter 3 to expand our list of sensitive accessions by testing 100 random 

accessions from the 1001 Genomes Project. The second method, a reverse genetic approach, 

focused on known variation in ACC2 sequence among 855 sequenced accessions. Rather than 

testing all of the variants found, we utilized sequence conservation from an alignment of 667 

eukaryotic ACCases to identify conserved regions where variation in the protein sequence would 

most likely lead to sensitivity. We also tested accessions with variants in the transit peptide at the 

N-terminus of ACC2. Among the sensitive accessions discovered through both of these 

approaches, we found that sensitivity could be caused by nonsense mutations, frameshifts, defects 

in RNA splicing recognition sites, large deletions or sequence rearrangements, small deletions, 

and missense mutations in residues that are likely essential for ACC2 function. Confirmation that 

the mutations found in ACC2 cause sensitivity through reduced or eliminated protein function 

was done using two approaches: (1) crossing sensitive accessions with the tolerant Tsu-0 

accession in order to show linkage between the sensitive phenotype and the ACC2 genotype; and 

(2) genetic complementation tests between each sensitive accession of interest and informative 

acc2 and tic20-iv knockout mutants.  

Through the analysis of all natural variation of ACC1 and ACC2 protein sequences 

among 855 sequenced accessions, we identified 339 variant residues (15% of all residues in 

ACCase). Of these variants, five significantly reduce or eliminate protein function, 18 partially 

reduce function, and 316 have no significant effect on ACCase function. Most of the data 

presented in this chapter have been published (Parker et al., 2014; 2016). Exceptions include 

results from the Qar-8a, Ts-1, and Etna-2 crosses with the knockout mutants, which were 

obtained after publication. 
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MATERIALS AND METHODS 

ACC2 Variation in Arabidopsis Accessions 

 ACC2 protein sequences from 855 natural accessions of Arabidopsis were obtained from 

the Salk Institute 1001 Genomes Project website (http://signal.salk.edu/atg1001; Appendix E). 

These sequences were entered into an Excel spreadsheet to track variation in the amino acid 

residues. The spreadsheet was organized so that each row consisted of the full ACC2 protein 

sequence from one accession while each column displayed the amino acid at a specific residue in 

the sequence. In addition, the ACC2 sequences of “Nossen” and Sav-0 were added to the 

spreadsheet for a total of 857 sequences. A list of the formulas used with this spreadsheet is found 

below. Variation was tracked using formula A, which counts the number of lines (accessions) that 

contain the same amino acid as the Col-0 sequence, which is used as a template. For residues 

where variation is found, formula B was used to identify the most common amino acid at that 

residue, and formula C to count the number of accessions with that amino acid. Similarly, 

formula D was used to identify the least common amino acid at a residue, and formula E to count 

the number of accessions with that amino acid. If additional amino acid variation was present at a 

residue, then the different amino acids were identified visually, and formula F was used to count 

the number of accessions with that amino acid. 

A. =COUNTIF(B2:B858,CONCATENATE("=",B862)) 

B. =INDEX(E2:E858,MATCH(MAX(COUNTIF(E2:E858,E2:E858)),COUNTIF(E2:E858,E2:E858)

,0)) 

C. =COUNTIF(E2:E858,E866) 

D. =INDEX(E2:E858,MATCH(MIN(COUNTIF(E2:E858,E2:E858)),COUNTIF(E2:E858,E2:E858),

0)) 

E. =COUNTIF(E2:E858,E868) 

F. =COUNTIF(E2:E858,E870) 

 

http://signal.salk.edu/atg1001
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Brassicaceae ACCase Sequence Analyses  

 For the comparison of ACC1 and ACC2 sequences, determination of Ka (nonsynonymous 

nucleotide substitutions) to Ks (synonymous substitutions) ratios, which is used to analyze the 

selection pressure on a gene, and analysis of ACC2 Intron 6, genomic sequences for six members 

of the Brassicaceae were downloaded from the Phytozome (www.phytozome.net; Goodstein et 

al., 2012) and CoGe (www.genomevolution.org/CoGe/; Lyons et al., 2008) websites: 

Arabidopsis, Arabidopsis lyrata (Hu et al., 2011), Brassica rapa (Cheng et al., 2011), Capsella 

rubella (Slotte et al., 2013), Leavenworthia alabamica, and Sisymbrium irio along with 

Theobroma cacao (Motamayor et al., 2013). Appendix F lists details of the sequences used for 

these comparisons. Ka/Ks ratios were calculated with the coding sequences using MEGA version 

6 (Tamura et al., 2013). These genomic sequences were aligned using ClustalW2 (Larkin et al., 

2007). 

   

Eukaryotic, Homomeric ACCase Sequence Alignments 

 In order to identify conserved amino acid residues potentially important for function of 

ACCase proteins, we created three alignments of protein sequences. The first utilized 20 ACC1 

and ACC2 sequences from model organisms: Arabidopsis (2), B. rapa (2), Medicago truncatula 

(1), Triticum aestivum (2), Zea mays (2), Homo sapiens (2), Mus musculus (2), Danio rerio (2), 

Drosophila melanogaster (1), Saccharomyces cerevisiae (2), Schizosaccharomyces pombe (1), 

and Neurospora crassa (1). Appendix G lists details of the sequences used for this alignment. 

These protein sequences were aligned using ClustalW2 (Larkin et al., 2007). In several of these 

protein sequences, we found small gaps that we believed to be annotation errors when translating 

the genomic data. In order to fill in the amino acids from these gaps, we utilized the original 

genomic data.  

 In order to increase the number of eukaryotic homomeric ACCase sequences in the multi-

http://www.phytozome.net/
http://www.genomevolution.org/CoGe/
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kingdom alignment, 744 protein sequences were selected from the Pfam database based on the 

presence of a large central domain, which is unique to eukaryotic homomeric ACCases 

(http://pfam.xfam.org/family/PF08326). From this group, four sequences from Caenorhabditis 

elegans lacked the lysine residue that is required for biotin to bind to the protein and were 

subsequently removed from the list. Five more sequences were also removed because they were 

fragmented, and 104 bacterial sequences were removed because the large central domain is 

unique to eukaryotes. In order to increase the number of plant sequences present, 36 plant 

sequences were identified through BLAST searches using both ACC1 and ACC2 Arabidopsis 

sequences. The final list of sequences in this expanded multi-kingdom alignment totaled 667: 198 

animal, 139 plant, 276 fungal, and 54 others such as algae and protozoa (Appendix H). The actual 

percentage of conservation for some residues may be slightly higher than calculated due to the 

presence of small gaps in some sequences that are likely annotation errors. All 667 sequences 

were aligned using the MUSCLE program (Edgar, 2004) through Jalview 2.8.2 analysis 

workbench (Waterhouse et al., 2009). The 139 plant sequences were also aligned separately using 

the same MUSCLE program.  

 

RESULTS 

Null Mutations in ACC2 Are Found Among Natural Accessions 

 Following the discovery by Yixing Wang of the nonsense mutation in ACC2 from the 

sensitive “Nossen” accession, we wondered whether the mutation in “Nossen” was unique or if 

there were other natural accessions that contained null mutations in ACC2. To determine this, we 

examined ACC2 sequences from 855 accessions available through the 1001 Genomes Project for 

additional examples of nonsense mutations and other types of null mutations. Table 15 lists the 

accessions we identified with various null mutations in ACC2. All of the variants listed were  

http://pfam.xfam.org/family/PF08326
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Table 15. ACC2 Null Mutations Identified in Sequenced Accessions of Arabidopsis. Adapted 

from Parker et al. (2016). 

 

Mutation Class Accession 

Reported  

Country 

of Origin 

Mutation a 
Mutation 

Location 

Spectinomycin Response 

Category Score b Seedlings 

Nonsense Kb-0 Germany Y753X Exon 17 Sensitive 1.4 73 

 Kl-5 Germany Y753X Exon 17 Hypersensitive 1.1 76 

 "Nossen" Uncertain R865X Exon 19 Sensitive 2.3 571 

 Blh-1 
Czech 

Republic 
K1225X Exon 26 Sensitive 1.3 71 

Frameshift Ip-Alo-0 Portugal 1171fs Exon 25 Hypersensitive 1.1 51 

 Ip-Vin-0 Spain 1171fs Exon 25 Hypersensitive 1.2 33 

 Lu3-30 Germany 2020fs Exon 31 Hypersensitive 1.1 54 

 Lu4-2 Germany 2020fs Exon 31 Hypersensitive 1.3 55 

Splicing Gn-1 Germany GT…TG Intron 10 Hypersensitive 1.1 83 

 "Gn2-3" Germany GT…TG Intron 10 Hypersensitive 1.1 191 

 Wl-0 Germany GT…GG Intron 19 Sensitive 1.4 79 

 Spro-2 Sweden TT…AG Intron 29 Sensitive 1.3 80 

 Ste-2 Sweden TT…AG Intron 29 Hypersensitive 1.1 83 

 Ste-3 Sweden TT…AG Intron 29 Hypersensitive 1.0 82 

 Vimmerby Sweden TT…AG Intron 29 Hypersensitive 1.0 67 

Rearrangement Ob-0 Germany Unresolved Exon 32 Hypersensitive 1.2 74 

 Old-0 Germany Unresolved Exon 32 Hypersensitive 1.2 75 

Small Deletion Ip-Ber-0 Spain 
Deletion 

(23 bp) 

Intron 17; 

Exon 18 
Sensitive 1.3 49 

 

a  All variants except details of Ob-0 and Old-0 rearrangements were confirmed by Sanger 

sequencing.    

b  Higher scores reflect increasing levels of tolerance; these scores were among the lowest of all 

accessions evaluated.   
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confirmed by Yixing Wang using Sanger sequencing except for the large deletions or 

chromosomal rearrangements found in Ob-0 and Old-1. I screened seedlings from each of these 

accessions on spectinomycin, and found most of them to be highly sensitive. Including the 

mutation in “Nossen”, we identified four different nonsense mutations: Y753X (Kb-0 and Kl-5), 

R865X (“Nossen”), K1225X (Blh1-1), and Q2325X (Hod). Three of these mutations result in 

truncated ACC2 proteins that are missing over 1,000 amino acids from the C-terminus. The 

fourth mutation (Q2325X) results in a truncated protein that is missing only 30 amino acids from 

the C-terminus. The seedling phenotypes of these five accessions on spectinomycin are consistent 

with the severity of the protein truncation. Seedlings from Kb-0, Kl-5, “Nossen”, and Blh1-1 are 

sensitive to a loss of chloroplast translation while seedlings from Hod are phenotypically 

intermediate.  

 We identified two different frameshift mutations caused by single nucleotide deletions. 

One of these (1171fs1190X) was found in the central domain of the IP-Alo-0 and IP-Vin-0 

accessions, and resulted in a downstream nonsense mutation and removal of 1,165 amino acids 

from the C-terminus. The other frameshift mutation (2020fs2021X) was found in the 

carboxyltransferase α-subunit of the Lu3-30 and Lu4-2 accessions, and resulted in an immediate 

nonsense mutation and a truncated ACC2 protein missing 334 C-terminal amino acids. By 

comparing RNA splicing recognition sites for the introns in ACC2, we identified two mutations in 

splice acceptor sites (intron 10 and intron 19) and one in a splice donor site (intron 29). Both of 

the altered splice acceptor sites result in a 10-nucleotide deletion and a frameshift mutation. In the 

Gn-1 accession, there is an AG → TG substitution in the acceptor site of intron 10. The Wl-0 

accession contains an AG → GG substitution in the acceptor site of intron 19. Four accessions 

(Spro-2, Ste-2, Ste-3, and Vimmerby) contain the same GT → TT substitution in the donor site of 

intron 29. Using Spro-2 to represent the group, Yixing Wang showed that this mutation results in 

a mixture of defective ACC2 transcripts that include all or some of intron 29.  
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 Large deletions, or possibly chromosomal rearrangements, were identified at the C-

terminal end of the ACC2 sequences for Ob-0 and Old-1. Yixing Wang confirmed that both 

accessions are missing exon 31, but she was unable to resolve the exact nature of the defect. A 

small deletion of 23-nucleotides was identified in IP-Ber-0. This deletion removes the end of 

intron 17 and the beginning of exon 18. Using RT-PCR, Yixing Wang showed that this deletion 

results in a mixture of ACC2 transcripts that encode a variety of defective and truncated proteins.  

 

The Structure of ACC2 Sequences Varies Within the Brassicaceae 

 In order to get a broader perspective on natural variation in the structure and function of 

ACC2, we compared ACC1 and ACC2 sequences from members of the Brassicaceae whose 

genomes have been sequenced (Table 16; Figure 21). Similar to Arabidopsis, tandem gene 

duplications of ACC1 and ACC2 are present in Arabidopsis lyrata, Capsella rubella, and Eutrema 

parvulum, while unlinked copies are found in Brassica rapa. ACC1 and ACC2 are also found in 

the genomes of Sisymbrium irio and Leavenworthia alabamica, but it is unclear whether they are 

linked or unlinked. In the ACC2 sequence of L. alabamica, a nonsense mutation is found in the 

third exon. We found no evidence of ACC2 in the sequenced genomes of Aethionema arabicum 

and Boechera stricta. Sequence comparison between ACC1 and ACC2 of six Brassicaceae 

members revealed more sequence variation in ACC2 than in ACC1. Only two amino acid residues 

differed in ACC1 among the six Brassicaceae members while 17 residues differed in ACC2. 

Comparing the frequencies of synonymous (Ks) to nonsynonymous (Ka) substitutions using these 

sequences showed a slight relaxation of purifying selection in ACC2 when compared to ACC1 

(Ka/Ks ratios: ACC1, 0.08; ACC2, 0.20). 

 In addition to increased variation in ACC2 sequence when compared to ACC1, the ACC2 

gene in Arabidopsis contains a large intron (2.5 kb) that interrupts the biotin carboxylase domain, 

which could diminish production of ACC2 by reducing the levels of the full-length ACC2 mRNA  
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Table 16. Variation in Brassicaceae ACC1 and ACC2 Sequences. 

 

Distribution of  

ACC1 and ACC2 
Example Species 

Tandem Duplication 

Arabidopsis thaliana 

Arabidopsis lyrata 

Capsella rubella 

Eutrema parvulum 

Non-Tandem Duplication Brassica rapa 

ACC2 Present;  

Linkage Unknown 

Sisymbrium irio 

Leavenworthia alabamica 

ACC2 Nonsense Mutation Leavenworthia alabamica 

ACC2 Absent 
Aethionema arabicum 

Boechera stricta 
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Figure 21. Brassicaceae Phylogeny. Yellow, ACC2 is missing from the nuclear genome; 

Orange, ACC2 is present as a tandem duplication; Green, ACC2 is present as a non-tandem 

duplication or the location of the duplication is unknown; Red Arrow, location of Boechera 

stricta in the phylogeny, which is missing ACC2. Adapted from Kagale et al. (2014).  



90 
 

transcribed. Variation in the length of this intron (#6) can be seen among the 855 sequenced 

accessions. Within other members of the Brassicaceae, this intron is not as large as in 

Arabidopsis. A sizeable intron (810 to 1573 bp) can be found in ACC2 sequences of A. lyrata, C. 

rubella, S. irio, and Camelina sativa. Intron 6 in B. rapa and L. alabamica is similar in length (72 

to 217 bp) to the intron found in ACC1 of Arabidopsis. Another gene in Arabidopsis, At3g52700, 

which encodes a protein of unknown function, contains an intron that matches 1 kb from the 

middle of the ACC2 intron. The intron in ACC2 seems to contain a degenerate helitron transposon 

that is nested within a MULE (Mutator-Like) element (Thomas Bureau, personal 

communication). The matching region in At3g52700 appears to be a related helitron transposon. 

These results provide evidence of multiple gene insertions that targeted ACC2 following the 

initial duplication of ACC1.  

 According to the locus page for ACC2 at TAIR (http://www.arabidopsis.org/), a second 

gene model predicts a small transcript that terminates at Intron 6, which would encode a truncated 

ACC2 protein missing part of the biotin carboxylase domain along with all other domains. Yixing 

Wang confirmed the presence of this shorter transcript in Col-0. Believing that the large size of 

Intron 6 might decrease the amount of full-length ACC2 transcript produced, which could affect 

the tolerance of an accession to a loss of chloroplast translation, Yixing Wang compared levels of 

the short transcript between tolerant and sensitive accessions. No evidence was found that 

increased levels of the short transcript affected the tolerance or sensitivity of an accession. 

 

 

Conservation Found in Alignments of Eukaryotic, Homomeric ACCase Sequences 

 After identifying a number of null mutations that eliminate ACC2 protein function, we 

began to look for conserved regions in the ACC2 sequence that when altered might affect protein 

function. We first approached this using an alignment of 20 homomeric, eukaryotic ACC1 and 

http://www.arabidopsis.org/
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ACC2 protein sequences from model organisms, including nine plant sequences. Using this 

alignment, we identified 416 amino acid residues (out of 2,355 total) that were perfectly 

conserved across all 20 sequences. In order to narrow down this list of conserved residues to 

those most likely to be essential for ACC2 function, we expanded our multi-kingdom alignment 

to include 667 homomeric, eukaryotic ACCase protein sequences, including 139 plant sequences. 

Using this new alignment, we identified 526 amino acid residues that are more than 90% 

conserved across all sequences, and 222 residues that are at least 99% conserved. In addition to 

the 667-sequence multi-kingdom alignment, we aligned 139 homomeric, plant ACCase 

sequences. In this plant alignment, we identified 1196 amino acid residues that are more than 

90% conserved and 698 residues that are at least 99% conserved. These alignments, especially the 

667-sequence multi-kingdom alignment, were used in both the forward and reverse genetic 

approaches to identify ACC2 amino acid residues that are likely essential for protein function. 

The percent conservation for all amino acid residues in ACC2 is shown in Appendix I, along with 

variation in ACC1 and ACC2 protein sequences for the 855 Arabidopsis accessions. 

 Figure 22 and Appendix J show the mutational landscape of homomeric ACCases in 

Arabidopsis. Represented in these images are locations for mutations in Arabidopsis ACC1 and 

ACC2 sequences that have been either induced or found in natural accessions, highly conserved 

residues (>95%) from the 667-sequence multi-kingdom alignment of ACCases, and all of the 

natural variation found in both ACC1 and ACC2 of sequenced Arabidopsis accessions. Appendix 

K provides details on informative variants and residues in ACC2, including the mutations shown 

in the mutational landscape, and mutations in other model organisms.  

 

Sensitive Accessions Highlight Conserved Residues Likely to be Essential 

 Utilizing data from the forward genetic screens of Arabidopsis accessions on 

spectinomycin described in Chapter 3, we identified three hypersensitive and 22 sensitive  
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Figure 22. Mutational Landscape of Homomeric ACCase in Arabidopsis. Conservation percentages are based on the multi-kingdom 

alignment of 667 ACCase protein sequences. A, Induced and natural variants in ACC1 and ACC2. Red bars, deleterious or likely 

deleterious variants; purple bars, possibly deleterious; green bars, not deleterious or likely not deleterious; gray bars, variants of unknown 

significance. TP, transit peptide domain; BC, biotin carboxylase; BCCP, biotin carboxyl carrier protein; CT, carboxyltransferase. B, 

Induced and natural variants combined. Red symbols, strong alleles; blue symbols, weak or intermediate alleles. C, Highly conserved 

residues based on the multi-kingdom alignment of 667 sequences. D, ACC2 variants are above the horizontal bar, and ACC1 variants are 

below. Red bars, one accession with the predicted variant; purple bars, two to three accessions; blue bars, four to 10 accessions; green 

bars, more than 10 accessions; gray bars, variants were not confirmed in the only accession where it was predicted. Adapted from Parker 

et al. (2016).  
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accessions. The phenotype details of hypersensitive and sensitive accessions are defined in Chapter 

3. In order to identify residues likely to be essential for protein function, we focused on ten of the 

most sensitive accessions from this list whose ACC2 sequence did not contain an obvious null 

mutation: Sav-0, Knox-18, RRS-10, Gifu-2, Pna-10, Tul-0, Tol-0, Aitba-1, La-0, and Gn2-3. ACC2 

sequences for most of these accessions were obtained from the 1001 Genomes Project. The one 

exception was Sav-0, which was sequenced by Yixing Wang. Using our list of conserved residues 

from the 667-sequence multi-kingdom alignment, we looked for variation within these ten 

accessions. One group of accessions, consisting of Knox-18, RRS-10 Tul-0, and Tol-0, was 

predicted to contain two potential variants of interest (I404K and T1902K). Gifu-2 was predicted to 

have only one of those variants (T1902K). Three other sensitive accessions were predicted to have 

mutations affecting different conserved residues: Sav-0 (G135E), Aitba-1 (F1206L), and Pna-10 

(S1883T). Neither Gn2-3 nor La-0 appeared to contain any variants in conserved amino acid 

residues.  

 Yixing Wang used Sanger sequencing to confirm these predicted variants. She found that 

Gifu-2 contained both I404K and T1902K variants rather than only the one predicted. Pna-10 was 

also found to contain the I404K and T1902K variants, and lacked the predicted S1883T mutation. 

Sixteen additional accessions predicted to contain these variants were tested on spectinomycin 

(Table 17). All of these accessions were shown to be highly sensitive to a loss of chloroplast 

translation, with the exception of SLSP-35 and UKSW06-333, which exhibited an intermediate 

phenotype. While they were predicted to have the I404K and T1902K variants, Yixing Wang 

confirmed that SLSP-35 and UKSW06-333 lacked both variants. The members of this group of 

sensitive accessions also contain another mutation affecting a conserved amino acid residue, 

E1355G, which can be found in a number of other accession not sensitive to spectinomycin. 

Results from this group of sensitive accessions provide evidence that the I404K and T1902K 

variants likely cause a loss of ACC2 function. Aitba-1 was confirmed to have the F1206L variant,  
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Table 17. Seedling Responses of 20 Accessions with the ACC2 Variants I404K and T1902K. 

Adapted from Parker et al. (2016). 

 

Accession 
ABRC 

Seed Stock 

Genetic 

Screen 

Variant 

Confirmationa 

Spectinomycin Response 

Category Score Seedlings 

Knox-18 CS76530 Forward A Hypersensitive 1.1 80 

RRS-10 CS76592 Forward A Sensitive 1.3 81 

Gifu-2 CS76494 Forward B Sensitive 1.3 78 

Tul-0 CS76618 Forward A Sensitive 1.7 81 

Tol-0 CS76614 Forward A Sensitive 2.0 73 

Pna-10 CS76574 Forward C Sensitive 1.4 112 

Buckhorn Pass CS76733 Reverse D Sensitive 1.7 29 

Dem-4 CS76794 Reverse D Sensitive 1.7 28 

Gre-0 CS76497 Reverse D Sensitive 1.4 48 

MIC-31 CS77082 Reverse D Sensitive 2.1 49 

MNF-Jac-12 CS77097 Reverse D Sensitive 2.5 33 

MNF-Pot-21 CS77099 Reverse D Hypersensitive 1.4 50 

MNF-Pot-75 CS77100 Reverse D Sensitive 2.2 32 

Mdn-1 CS77077 Reverse E Sensitive 2.9 43 

Mv-0 CS76556 Reverse D Hypersensitive 1.1 56 

NC-6 CS77124 Reverse D Sensitive 1.6 54 

PT2.21 CS77191 Reverse D Sensitive 1.5 55 

Rmx-A02 CS76589 Reverse D Sensitive 2.1 36 

Rmx-A180 CS77218 Reverse D Sensitive 1.8 42 

SLSP-31 CS77254 Reverse D Sensitive 1.4 53 

a  A, Predicted sequence confirmed; B, Both variants confirmed, I404K not predicted; C, Both 

confirmed, neither predicted; D, Not tested; E, Both confirmed, along with E1567K (not predicted).  
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which is located in the middle of the central domain of ACC2. 

 Confirmation of the predicted amino acid variation in Sav-0 was not necessary because 

our lab sequenced the ACC2 gene. Nine variable residues were found in Sav-0 compared to the 

consensus sequence from all Arabidopsis accessions (Table 18). Seven of these variants were in 

residues with low conservation in the 667-sequence multi-kingdom alignment, and were found in 

multiple high-intermediate or tolerant accessions. This means that these mutations are likely to 

have little effect on the function of ACC2 in Sav-0. One other variant (V472I) is located in a 

more conserved residue, but can also be found in multiple high-intermediate or tolerant 

accessions. On the other hand, variant G135E is located in a highly-conserved residue (95.7%), 

and is found only in Sav-0 and not in any other natural accession. This variant in Sav-0 is likely 

responsible for the hypersensitivity of the accession on spectinomycin.  

 Since neither Gn2-3 nor La-0 were predicted to have mutations in conserved amino acid 

residues, Yixing Wang sequenced the ACC2 cDNA from both accessions to determine whether 

the reported sequences were correct. The La-0 sequence was identical to that reported from the 

1001 Genomes Project, suggesting that the sensitivity of La-0 to a loss of chloroplast translation 

is caused by a defect other than a missense mutation in ACC2. Unlike La-0, the cDNA sequence 

of Gn2-3 obtained in our lab clearly differed from the 1001 Genomes sequence. However, it was 

identical to the sequence of Gn-1, which contains a defect in the splice acceptor site of Intron 10. 

Thus, the sensitivity of Gn2-3 is likely caused by this same splicing defect. From this forward 

genetic screen, we identified four potentially essential amino acid residues in ACC2 where 

missense mutations likely reduce function of the protein: G135E, I404K, F1206L, and T1902K.  

 

Additional Accessions Chosen for Missense Mutations Affecting Conserved Residues 

 Using a reverse genetic approach, we identified accessions containing either single amino  
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Table 18. ACC2 Variants in Sav-0 that Differ from the Consensus Among Sequenced 

Accessions. Adapted from Parker et al. (2016). 

 

Varianta 
Conserv.  

(%)b 

Protein  

Domainc 

1001 Genomes 

Accessions 

with Predicted 

Variant 

Accessions 

Evaluated on  

Spectinomycind 

Variant 

Confirmed 

Seedlings 

Classified 

Spectinomycin 

Response 

Category Score 

A18T Low TP 39 Multiplee Assumed 231 Intermediate 5.0 

S66F Low TP 57 
Giffo-1 Not 

Needed 

25 High Int. 8.0 

Fell1-10; Jl-3 379 Tolerant 9.3 

G135E 95.7 (BC) 0 Sav-0f Yes 275 Hypersensitive 1.2 

M445T Low BC 189 Multipleg Assumed 1063 Tolerant 9.0 

V472I 83.7 BC 51 
Nz-1; Uk-1 

Not Tested 
47 High Int. 7.5 

Mt-0; Mz-0 40 Tolerant 8.8 

D521N Low BC 51 
Nz-1; Uk-1 Not 

Needed 

47 High Int. 7.5 

Mt-0; Mz-0 40 Tolerant 8.8 

S1758L Low CT 192 Multipleg Assumed 1063 Tolerant 9.0 

S2230L Low  48 
Nz-1; Uk-1 Not 

Needed 

47 High Int. 7.5 

Mt-0 20 Tolerant 8.4 

T2284R Low  60 

Nz-1; Uk-1 
Not 

Needed 

47 High Int. 7.5 

Lm-2; Mt-0; 

Mz-0 
110 Tolerant 8.5 

 

a  The first residue (e.g. "G" in G135E) is found in the consensus sequence; the second in Sav-0.   

b  Conservation percentage of 667 aligned homomeric ACCase sequences with the accession 

consensus residue.   

c  TP, Transit Peptide; BC, Biotin carboxylase; BCCP, Biotin carboxyl carrier protein; CT, 

carboxyltransferase.   

d  Accessions with the same variant but a more sensitive or problematic seedling response are 

excluded to highlight the most tolerant responses observed with the variant present. 

e  Intermediate responses: Durh-1; Hn-0; Hovdala-2; Ler-1; Litva; Nw-0; RRS-7; Star-8. 

f  The Sav-0 variant was uncovered by sequencing the ACC2 cDNA; whole genome sequence for 

this accessions was not available.   

g  Tolerant responses: Fell1-10; Jl-3; Lm-2; Mt-0; Mz-0; Tsu-0; Tu-0.acid deletions, missense 
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mutations in the transit peptide, or missense mutations affecting conserved amino acid residues to 

test for sensitivity to spectinomycin. In the accession Qar-8a, there is an amino acid substitution 

(K1376R) immediately followed by an amino acid deletion (∆1377). When examined on 

spectinomycin, the seedlings of Qar-8a were consistently sensitive, but not as highly sensitive as 

other accessions with null alleles of ACC2. This could mean that this substitution and deletion 

reduce but do not completely eliminate the function of ACC2. A second example of a single 

amino acid deletion (∆1479) is found in the central domain of IP-Ren-6 and IP-Voz-0, but it 

seems to have little to no effect on the function of ACC2 since IP-Voz-0 exhibits an intermediate 

phenotype on spectinomycin. 

 Across all 855 accessions from the 1001 Genomes Project, eight variants were found in 

the transit peptide region of ACC2 (Table 19). We were unable to evaluate one of these (L6S) 

because relevant seed stocks were unavailable. Only one accession (Chi-0) contained the variant 

S91C. However, this variant likely has little effect on the function of ACC2 because Chi-0 has an 

intermediate phenotype on spectinomycin. Multiple candidate accessions were tested on 

spectinomycin for the other six variants. Five of these (G7V, A18T, V59L, S66F, and D87E) are 

found in multiple intermediate or tolerant accessions, leading us to conclude that they do not alter 

essential residues. Variant R4T was a promising candidate at first, based on the sensitivity of the 

IP-Cum-1 accession, but that variant was also confirmed in IP-Gua-1, which is an intermediate 

accession. 

 Searching the 526 conserved amino acid residues (> 95%) found in the 667-sequence 

multi-kingdom alignment of ACCases, we identified 44 residues where at least one Arabidopsis 

accession contains a missense mutation. This list of residues was evaluated further to identify 

essential residues where missense mutations likely reduce ACC2 protein function. Six residues 

were removed from the list because the accession could not be tested on spectinomycin due to 

lack of seeds or a known null mutation that already causes sensitivity. Four other residues were  
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Table 19. Accessions with Missense Mutations in the Transit Peptide of ACC2. Adapted         

from Parker et al. (2016). 

 

Accession 
ABRC 

Stock 
ACC2 Mutation 

Spectinomycin Response 

Category Score 

Bd-0 CS76445 A-18-T & S-66-F Low Intermediate 2.2 

Bsch-0 CS76457 S-66-F High Intermediate 7.2 

Chi-0 CS76464 S-91-C Mid Intermediate 5.1 

Di-G CS76472 A-18-T & S-66-F Low Intermediate 2.5 

Dog-4 CS76386 V-59-L Sensitive 3.7 

Fell 1-10 CS76855 S-66-F Tolerant 8.6 

Hn-0 CS76513 A-18-T & S-66-F Mid Intermediate 5.7 

IP-Cum-1 CS76787 R-4-T Sensitive 2.3 

Is-0 CS76517 S-66-F High Intermediate 7.2 

Nemrut-1 CS76398 V-59-L Low Intermediate 4.2 

Nw-0 CS76564 A-18-T & S-66-F Mid Intermediate 7.0 

RRS-7 CS76593 A-18-T & S-66-F Mid Intermediate 4.7 

Star-8 CS76400 A-18-T & S-66-F Mid Intermediate 4.7 
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removed because they were not confirmed through Sanger sequencing. Appendix L lists the 

remaining 34 variants that alter conserved residues. From this set, 28 residues were removed from 

further consideration because the same variant was confirmed in at least one intermediate or 

tolerant accession. All six of the remaining residues are likely essential. Three of these (G135, 

I404, and F1206) were already identified through our forward genetic approach. One residue 

(E1689), with a variant found in the accession Ts-1, was already thought to be essential because it 

is the location of a strong mutation (pasticcino 3-1) in ACC1. The last two residues are the sites 

of novel missense mutations in two sensitive accessions: Y443C in Etna-2, and A2059V in 

Grivo-1. Through both genetic approaches to identify essential residues in ACC2, we found eight 

residues where a mutation likely reduces protein function of ACC2 (Table 20).  

 

Crossing Sensitive Accessions with the Tolerant Tsu-0 Accession to Determine if ACC2 is 

the Locus Responsible for Sensitivity 

 We took two approaches to determine whether the sensitivity of an accession with a 

mutation of interest was linked to the ACC2 locus. The first approach was similar to that used to 

link the sensitivity of “Nossen” to ACC2. We crossed sensitive accessions with Tsu-0, a tolerant 

accession, and compared seedling phenotypes of the F2 generation to their genotypes at the ACC2 

locus. If a defect in ACC2 was responsible for the sensitivity observed, then sensitive F2 

seedlings should be homozygous for the ACC2 allele found in the sensitive accession, whereas 

tolerant F2 seedlings should be homozygous or heterozygous for the Tsu-0 allele of ACC2. We 

used this method for one hypersensitive accession (Sav-0), which contains a variant (G135E) in a 

conserved amino acid residue, and two sensitive accessions (Nie1-2 and Oy-0), which lack an 

obvious defect in ACC2. 

 The results of Nie1-2 and Oy-0 crosses with Tsu-0 were at first difficult to interpret 

(Table 21; Figure 23). After multiple rounds of phenotyping and genotyping the ACC2 and  
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Table 20. Accessions with Strong Missense Mutations Affecting Conserved ACC2 Residues. 

Adapted from Parker et al. (2016). 

 

Genetic 

Screen 

Accessions  

Analyzed 

Variant 

Analyzeda 

Protein  

Domainb 

Conservation 

(%)c 

Sequenced 

Accessions 

with Predicted 

Variant 

Tolerant or 

Intermediate 

Accessions 

Variant 

Impactd 

Forward Sav-0 

G135E (BC) 95.7 0e 0 LD 

V472I BC 83.7 51 13 VUS 

Forward 

Knox-18;  

RRS-10; 

Gifu-2;  

Tul-0;  

Tol-0;  

Pna-10 

I404K BC 94.8 18 0 LD 

T1902K CT-Alpha 87.6 18 0 LD 

E1355G Central 98.7 116 18 VUS 

Reverse Etna-2 Y443C BC 94.0 1 0 LD 

Reverse Ts-1 E1689G CT-Beta 97.0 1 0 D 

 

a  The first residue (e.g. "G" in G135E) is found in the consensus sequence; the second in Sav-0. 

b  BC, Biotin carboxylase; (BC), Immediately preceding the BC domain; CT, 

Carboxyltransferase.  

c  Conservation percentages are based on the multi-kingdom alignment of 667 ACCase protein 

sequences. 

d  D, Deleterious to protein function; LD, Likely deleterious; VUS, Variant of unknown 

significance. 

e  Sav-0 was not included in the 1001 Genomes sequence dataset.   
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Table 21. Seedling Responses on Spectinomycin of Parental Accessions and F2 Progeny from 

Crosses between Accessions. 

 

Genotype 

Examined  

Total 

Seedlings 

Classified 

Distribution of Seedling Phenotypes on Spectinomycin (%)a 

Sensitive  Intermediate Tolerant 

1 2 3 5 6 7 9 10 11 

Tsu-0 490   0.4 0.4 1.4 1.0 13.5 63.9 18.8 0.6 

Sav-0 275 84.0 13.1 2.2  0.7     

Tsu-0 x Sav-0 428 28.5 3.0 5.9 11.9 0.7 31.1 18.0 0.9  

Oy-0 229 9.6 74.7 13.5 0.9 0.9 0.4    

Tsu-0 x Oy-0 288 0.3 7.7 14.9 30.2 2.4 27.1 14.3 3.1  

Nie1-2 235 5.5 16.6 6.0 17.9 22.5 28.1 3.4   

Tsu-0 x Nie1-2 397 0.3 0.3 0.3 5.0 1.7 23.2 48.8 17.9 2.5 

 

a  Numbers define classes from expanded cotyledons without leaves (1) to extensive rosettes with 

sizeable leaves (11) as defined in the text. Refer to Figure 3.7 for examples of seedling 

phenotypes for each class.  Gray font, least common phenotypes ( < 10%). 
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Figure 23. Comparison of Spectinomycin Seedling Responses of Parental Accessions and F2 

Progeny from Crosses Between Tsu-0 and Sensitive Accessions. Percent of seedlings in each 

accession or F2 line assigned to the nine phenotypic categories (1-3; 5-7; 9-11) that are described 

in “Evaluating Additional Lines Increases the Number of Sensitive Accessions” in this Chapter. 

A, Tsu-0 x Sav-0; B, Tsu-0 x Oy-0; and C, Tsu-0 x Nie1-2. The data for these crosses can be 

found in Table 21.  

A 

B 

C 
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enhancer loci from tolerant and sensitive F2 seedlings, we concluded that ACC2 is fully 

functional in Nie1-2, and that the sensitivity of this accession is due to a defect in the enhancer 

locus. Additional screening of Nie1-2 seedlings on spectinomycin revealed a more intermediate 

phenotype, which likely confirms that ACC2 is fully functional. Our current model for sensitivity 

in Oy-0 is a partial loss of ACC2 function, as indicated by the absences of tolerant F2 seedlings 

homozygous for the Oy-0 allele of ACC2 combined with a defect in the enhancer locus. Both of 

these accessions show that functional ACC2 protein allows for a partial rescue of spectinomycin 

sensitivity, and a functional enhancer is required to increase the tolerance of an accession. 

 The analysis of crosses between Sav-0 and Tsu-0 revealed possible linkage between the 

sensitivity of Sav-0 and the genotype at the ACC2 locus, with some inconsistent results (Table 

21). While the genotype and phenotype results from the most tolerant F2 seedlings were 

consistent with ACC2 as the locus responsible for Sav-0 sensitivity, results from the most 

sensitive F2 seedlings raised the possibility that a second locus linked to ACC2 was responsible. 

However, a second round of genotyping and phenotyping of tolerant and sensitive F2 seedlings 

revealed perfect linkage between the sensitivity of Sav-0 and ACC2. These results highlighted the 

limitations of this approach to link sensitivity of an accession to a defect in ACC2. Overall, this 

approach proved to be a rather tedious process with results that were in some cases difficult to 

interpret.   

 

Crossing Sensitive Accessions with Informative Knockout Mutants Assesses the Impact of 

ACC2 Variants on Protein Function 

 We had first assumed that our two approaches to associate sensitivity of an accession 

with a mutation of interest in ACC2 would be equally informative. However, our results from 

crossing sensitive accessions with Tsu-0 revealed the shortcomings of that approach. Instead of 

continuing with those crosses, we utilized our second approach for the other sensitive accessions. 
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For this approach, we performed a series of genetic complementation tests using informative 

knockout lines of acc2 (Salk_148966c) and tic20-iv (SAIL_97_F10), which are both in the Col-0 

background. Both knockout lines exhibit a normal phenotype when grown in soil. However, when 

their seedlings are grown on spectinomycin media, they have a hypersensitive phenotype similar 

to accessions with null mutations in ACC2 (Figure 24). TIC20-IV encodes a channel protein on 

the inner membrane of the chloroplast that is likely the primary channel through which ACC2, 

and other housekeeping proteins, pass to enter the stroma. A similar channel protein, TOC34, is 

found on the outer member of the chloroplast, and is thought to be the primary channel for 

movement of housekeeping proteins through the outer membrane. A toc34 knockout mutant 

(ppi3-2) in the Col-0 background shows an intermediate phenotype on spectinomycin (Figure 24), 

which indicates that the Toc34 protein is not the sole channel protein for ACC2 transport through 

the outer membrane, whereas Tic20-IV is likely the sole channel protein through the inner 

membrane. 

 In order to analyze these genetic complementation tests, we looked at the spectinomycin 

phenotypes of F1 and F2 seedlings from crosses between sensitive accessions and the two 

knockout mutants. If a defect in ACC2 is responsible for the sensitivity of an accession, as in the 

accessions with null mutations, then we expected to find 100% sensitive seedlings in both the F1 

and F2 generations of the crosses with acc2, where the defective allele in the sensitive accession 

fails to complement the null allele in the knockout mutant in compound heterozygotes. For the 

crosses with tic20-iv, we also expected to see 100% intermediate seedlings in the F1 generation, 

where the defective alleles are complemented, and a 9:7 ratio of intermediate to sensitive 

seedlings in the F2 generation. The opposite is expected (100% intermediate F1 seedlings in acc2 

crosses and 100% sensitive seedlings in tic20-iv crosses) if the defect causing sensitivity in an 

accession is linked to TIC20-IV. If the cause of sensitivity is a defect in a gene other than ACC2 

or TIC20-IV, then we expected to see 100% intermediate F1 seedlings, and the 9:7 ratio of  
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Figure 24. Spectinomycin Responses of Knockout Mutants of Known Components of the 

Chloroplast Protein Import System. A, Parental Col-0 accession. B, toc34-1 (ppi3-2). C, tic20-

iv-1 (SAIL_97_F10). D, tic20-iv-2 (Koncz 11324). E, acc2-1 (Salk_148966c). F, Sav-0 (the most 

sensitive accession). Bar = 1 mm. Adapted from Parker et al. (2014).  
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intermediate to sensitive F2 seedlings. 

 This approach was used for a total of 17 sensitive accessions: Gn2-3 as a control; Sav-0; 

Knox-18, Gifu-2, Pna-10, RRS-10, and Tul-0 as representatives of the large group with two 

missense mutations (I404K and T1902K); five additional accessions with different missense 

mutations thought to reduce the function of ACC2 (Aitba-1, F1206L; Etna-2, Y443C; Grivo-1, 

A2059V; Ts-1, E1689G; and Qar-8a, K1376R and ∆1377); two accessions where there is no 

obvious defect in ACC2 (IP-Cum-1 and La-0); and three accessions with missense mutations of 

unknown significance in TIC20-IV (IP-Deh-1, IP-Tdc-0, and Kru-3). The results of these crosses 

are shown in Tables 22 and 23 along with Figure 25. 

 Previously, we found that Gn2-3 has a splicing defect in the acceptor site of Intron 10, 

which causes a frameshift and a truncated ACC2 protein. We used Gn2-3 as a control to see if our 

predictions were correct for accessions whose sensitivity is caused by a defect in ACC2. The 

results of these crosses showed exactly what we expected. For the crosses with acc2, all of the 

seedlings from the F1 and F2 generations were sensitive to spectinomycin, with a sensitive 

phenotype similar to both parent lines. The F1 seedlings from the tic20-iv crosses were all less 

sensitive than the parent lines, and a majority of them had an intermediate phenotype. In the F2 

generation, 56% of the seedlings showed an intermediate phenotype while 44% were sensitive, 

which almost perfectly matches our expected 9:7 ratio. The results of the Sav-0 crosses followed 

the same pattern. All of the seedlings in the F1 and F2 generation of the acc2 crosses were 

sensitive to spectinomycin while the F1 seedlings from the tic20-iv crosses were all intermediate 

and the F2 seedlings were 61% intermediate to 39% sensitive, which is still close to the expected 

9:7 ratio. This provides substantially more evidence that the sensitivity of Sav-0 is connected to 

the G135E substitution in ACC2. Due to the hypersensitivity of Sav-0 seedlings, this missense 

mutation likely eliminates ACC2 protein function.  

 All five accessions (Knox-18, Gifu-2, Pna-10, RRS-10, and Tul-0) used to represent the  
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Table 22. Spectinomycin Responses of F1 Seedlings from Crosses between Sensitive Accessions 

and Informative Knockout Mutants. Adapted from Parker et al. (2016). 

 

Accession  

Parent 

F1 Progeny from acc2 Cross F1 Progeny from tic20-iv Cross 

Category Score Seedlings Category Score Seedlings 

"Gn2-3" Hypersensitive 1.1 106 Intermediate 4.9 98 

Sav-0 Hypersensitive 1.0 71 Intermediate 4.4 45 

Knox-18a Sensitive 1.3 78 Intermediate 7.2 83 

Gifu-2a Sensitive 1.2 82 Intermediate 5.9 72 

Pna-10a Hypersensitive 1.0 74 Intermediate 5.0 64 

RRS-10a Sensitive 1.2 80 Intermediate 5.8 81 

Tul-0a Hypersensitive 1.1 83 Intermediate 5.8 81 

Aitba-1 Sensitive 2.1 149 Intermediate 5.4 148 

Etna-2 Intermediate 5.8 89 Intermediate 5.6 100 

Grivo-1 Intermediate 7.3 74 Intermediate 6.6 52 

Ts-1 Sensitive 1.7 106 Intermediate 5.6 81 

Qar-8a Low Intermediate 3.6 96 Intermediate 4.9 107 

IP-Cum-1 Intermediate 4.9 83 Intermediate 4.4 62 

La-0 Intermediate 4.6 61 Intermediate 4.6 67 

IP-Deh-1b Intermediate 6.9 56 Intermediate 3.9 81 

IP-Tdc-0b Intermediate 7.1 86 Intermediate 6.7 87 

Kru-3b Intermediate 7.1 80 Intermediate 5.7 87 

 

a  Part of the Knox-18 group of sensitive accessions with shared variants of interest.   

b  Contains a missense mutation of unknown significance in TIC20-IV.   
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Table 23. Spectinomycin Responses of F2 Seedlings from Crosses between Sensitive Accessions 

and Informative Knockout Mutants. Adapted from Parker et al. (2016). 

 

Accession  

Parent 

Knockout  

Parent 

Seedlings 

Classified 

Phenotype  

Score 

Distribution of F2 Seedling Phenotypes (%) 

Sensitive          Intermediate         Tolerant 

1 2 3 5 6 7 9 10 

"Gn2-3" acc2 82 1.0 97.6 2.4             

Sav-0  acc2 163 1.0 99.4 0.6       

Sav-0  "Nossen" 184 1.2 87.5 4.9 7.1  0.5    

Knox-18 acc2 127 1.0 96.1 3.9       

Tul-0 acc2 135 1.1 90.4 8.9 0.7      

Aitba-1 acc2 325 2.2 42.5 28.6 17.2 5.5 3.1 3.1     

"Gn2-3" tic20-iv 156 3.6 39.1 5.1 5.1 30.8 1.9 16.7 1.3   

Sav-0  tic20-iv 152 3.2 31.6 7.9 25.7 26.3 0.7 7.8   

Knox-18 tic20-iv 124 4.0 46.0 4.8  12.1 4.0 21.8 10.5 0.8 

Tul-0 tic20-iv 138 3.8 38.4 10.9  15.2 10.1 21.0 4.4  

Aitba-1 tic20-iv 124 3.6 29.9 11.3 15.3 21.0 4.8 13.7 4.0   

La-0 acc2 152 2.6 23.7 27.6 35.5 5.9 6.6 0.7   

La-0 tic20-iv 154 2.5 25.3 29.2 35.1 5.9 4.5    

Ip-Cum-1 acc2 112 4.4 16.1 9.8 11.6 31.3 8.9 22.3   

Ip-Cum-1 Sav-0 199 3.1 30.7 9.0 27.1 26.1 1.1 6.0   

Ip-Cum-1 tic20-iv 229 3.5 22.3 10.0 24.0 35.8 1.8 6.1     

 

a  Numbers define classes from expanded cotyledons without leaves (1) to extensive rosettes with 

sizeable leaves (11) as defined in the text. Refer to Figure 3.7 for examples of seedling 

phenotypes for each class.  Red font, most common phenotypes ( > 10%). Gray font, least 

common phenotypes ( < 5%).    
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Figure 22. Comparison of Spectinomycin Seedling Responses of F2 Seedlings from Crosses 

between Sensitive Accessions and Informative Knockout Mutants. Percent of F2 seedlings in 

each cross assigned to the nine phenotypic categories (1-3; 5-7; 9-10) that are described in 

“Evaluating Additional Lines Increases the Number of Sensitive Accessions” in this Chapter. No 

seedlings were found in category 11. A, Gn2-3 crossed with acc2 and tic20-iv; B, Sav-0 crossed 

with acc2, “Nossen” and tic20-iv; C, Knox-18 crossed with acc2 and tic20-iv (Tul-0 crosses 

showed a similar graph); D, Aitba-1 crossed with acc2 and tic20-iv; E, La-0 crossed with acc2 

and tic20-iv; and F, IP-Cum-1 crossed with acc2, Sav-0 and tic20-iv. The data for these crosses 

can be found in Table 23.

A B 

C D 

E F 
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group of 20 accessions with the I404K and T1902K variants, showed results similar to the Sav-0 

and Gn2-3 crosses. Knox-18 and Tul-0 were taken to the F2 generation, whereas Gifu-2, Pna-10, 

and RRS-10 were only analyzed at the F1 generation. In all five cases, all of the seedlings from 

the crosses with acc2 were sensitive to spectinomycin, with the exception of two seedlings from 

the Knox-18 cross that were intermediate. The majority of the F1 seedlings from all five tic20-iv 

crosses had an intermediate phenotype, and the F2 seedlings from the Knox-18 and Tul-0 crosses 

showed about a 1:1 ratio of intermediate to sensitive seedlings, which could resolve into a 9:7 

ratio if more seedlings were screened. These results indicate that the two ACC2 missense 

mutations in this group of accessions are responsible for the sensitive phenotype of all 20 

members of the group. In order to be sure that some other null mutation is not present in these 

accessions, Yixing Wang sequenced the ACC2 cDNA from Knox-18, and confirmed that a full 

length transcript is produced. 

 Of the crosses with the other five accessions that contain missense mutations that we 

originally thought affected the function of ACC2, only the crosses with Ts-1 showed ACC2 as the 

locus responsible for sensitivity of the accession. The F1 seedlings from the Ts-1 crosses with 

acc2 were sensitive to spectinomycin while the F1 seedlings from the crosses with tic20-iv were 

intermediate. This result is not surprising since the position of the missense mutation in Ts-1 

(1689) is the same as a strong mutation (pasticcino 3-1) in ACC1. In Ts-1, the missense mutation, 

E1689G, likely reduces ACC2 function significantly. The results of the Aitba-1 crosses may 

indicate that the missense mutation (F1206L) in ACC2 is responsible for sensitivity, but they are 

harder to interpret than the other crosses. This is likely due to Aitba-1 seedlings having a less 

sensitive phenotype than accessions with null mutations in ACC2. In the crosses with acc2, the F1 

seedlings were all sensitive to spectinomycin, similar to the parent lines. A majority of the F2 

seedlings were sensitive, but around 11% of the seedlings were intermediate. About 75% of the 

F1 seedlings from the Aitba-1 crosses with tic20-iv were intermediate while the rest were 
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sensitive. The results of the F2 generation are harder to interpret because it is difficult to 

distinguish the phenotypes of high sensitive and low intermediate seedlings. The F1206L 

missense mutation in Aitba-1 likely reduces the function of ACC2, but not as severely as a null 

mutation.  

 Results from the Grivo-1 crosses clearly showed that the sensitivity of Grivo-1 is not 

associated with either ACC2 or TIC20-IV. The F1 seedlings from both crosses were all 

intermediate when compared to the phenotypes of the parent lines. The F2 generation was not 

studied since harvesting F2 seeds would have required a vernalization treatment of 5-6 weeks. 

Results from the Etna-2 and Qar-8a crosses showed that the sensitivity of these accessions is also 

likely caused by a defect in a gene other than ACC2 or TIC20-IV, though the results are less 

definitive than Grivo-1. In both cases, F1 seedlings from the tic20-iv crosses were almost all 

intermediate, whereas around 20% of the F1 seedlings from the acc2 crosses were sensitive. 

Again, the F2 generation was not analyzed due to the requirements of harvesting F2 seed. 

Overall, the missense mutations in Grivo-1 (A2059V), Etna-2 (Y443C), and Qar-8a (K1376R and 

∆1377) are examples of substitutions in highly conserved residues that do not appear to reduce 

the function of ACC2. 

 Results from crosses with two accessions (IP-Cum-1 and La-0) that lack obvious defects 

in either ACC2 or TIC20-IV, and three accessions (IP-Deh-1, IP-Tdc-0, and Kru-3) with missense 

mutations in TIC20-IV, showed that the cause of sensitivity in these accessions was not associated 

with either locus. The F1 seedlings produced when these accessions were crossed with acc2 and 

tic20-iv all showed an intermediate phenotype more tolerant than any of the parent lines on 

spectinomycin. The F2 generation of the IP-Cum-1 and La-0 crosses were also analyzed, and the 

results did not appear to show the 9:7 ratio we expected to see if a single locus was responsible 

for the sensitivity of the accessions.  

 Through all of these crosses, we have shown that a single missense mutation can cause a 
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partial or full loss of ACC2 function in Sav-0 (G135E), the group of 20 accessions (I404K and 

T1902K), Aitba-1 (F1206L), and Ts-1 (E1689G). We have also shown that sensitivity of some 

accessions can be linked to the enhancer locus on chromosome 5, as in Oy-0 and Nie1-2, and we 

have eight sensitive accessions where the defect responsible for sensitivity is not located in ACC2 

or TIC20-IV.  

 

 

Tolerated Missense Mutations in ACC1 and ACC2  

 So far, we have been using accessions sensitive to spectinomycin to look for informative 

missense mutations in ACC2 that severely reduce or eliminate function of the protein. However, 

this represents a small fraction of the total variation found in ACCase protein sequences among 

natural accessions. In order to look at natural variation in the paralogous ACC1 protein 

sequences, we utilized an Excel spreadsheet similar to the one described for comparing ACC2 

sequences. Any missense mutations found in ACC1 must be tolerated as it is an essential protein, 

and the loss of ACC1 function results in seedling lethality. We identified 132 variable residues in 

ACC1 across all sequenced accessions. Nineteen residues were removed from this list because 

their variation was likely due to errors in sequencing rather than a true substitution as indicated by 

the presence of an unknown amino acid (“Z”) in the protein sequence and unresolved nucleotides 

in the genomic sequence. Appendix I lists the 113 variable residues in the ACC1 protein sequence 

found among 855 natural Arabidopsis accessions. These 113 residues are spread throughout the 

protein sequence, with the highest concentration (33%) located in the central domain of the 

protein, where the most variation was also seen among the ACC2 protein sequences. Seven of 

these predicted variable residues are highly conserved throughout our multi-kingdom alignment 

of 667 sequences. Using Sanger sequencing, Yixing Wang confirmed two of the variants in 

conserved residues, A193V and V809A, and did not confirm the presence of three other variants 
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(A271D, Q272R and L742S) in the only accession where they were predicted. In total, we found 

110 variable residues in the ACC1 protein sequence among 855 natural Arabidopsis accessions, 

which is only 5% of the entire ACC1 sequence. 

 In addition to the natural variation found in ACC1 protein sequences, we identified 

tolerated missense mutations using the ACC2 protein sequences from tolerant accessions, which 

likely have a fully functional ACC2 protein. We aligned the protein sequences from eight of the 

most tolerant accessions: Chat-1, Ema-1, Ha-HBT1-2, Lm-2, Pog-0, Tsu-0, Tu-0, and Uod-1. 

Using this alignment, we found 24 total residues where substitutions are tolerated. None of these 

variants were found in all tolerant accessions, indicating that a single missense mutation is likely 

not responsible for spectinomycin tolerance and the consensus sequence from all 857 accessions 

encodes a fully functional ACCase protein. Similar to the variation found among the ACC1 and 

ACC2 protein sequences for all accessions, most (42%) of the variation found in the ACC2 

sequences of tolerant accessions is within the central domain of the protein. Information about 

these variable residues in tolerant accessions is listed in Table 24. Remarkably, six of the 24 

variants (P475L, Q478K, N725S, R762C, E1355G, and G1766D) are in highly conserved 

residues found through our multi-kingdom alignment of 667 sequences. In addition, from our 

crosses with acc2 and tic20-iv knockout mutants, we have confirmed three missense mutations 

that likely do not reduce ACC2 protein function. 

 We also found variation in 18 other highly conserved residues where the accessions 

associated with the variant showed an intermediate phenotype on spectinomycin, indicating that 

these missense mutations may slightly reduce ACC2 protein function. Table 25 lists the 24 

variants found in highly conserved residues where there is evidence of at least partial ACC2 

protein function. Overall, we found 137 residues (6% of the total residues) in ACCase protein 

sequences that can tolerate missense mutations without affecting protein function, 13 of which are 

located in residues highly conserved among 667 eukaryotic ACCase sequences. Additionally, we  
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Table 24. ACC2 Variants Found in the Most Tolerant Natural Accessions. Adapted from Parker 

et al. (2016). 

 

Variant  

Analyzed a 

Protein  

Domain b 

Conservation 

(%) c 

Sequenced 

Accessions with 

Predicted Variant 

Tolerant 

Accessions 

G7V TP Low 175 Ema-1;  Ha-HBT1-2 

D87E TP Low 333 Chat-1;  Ema-1;  Pog-0 

D101G - Low 82 Ema-1 

A132S - 27.9 82 Ema-1 

G355V BC 30.1 130 Ha-HBT1-2;  Uod-1 

M445T BC Low 190 Lm-2;  Tsu-0;  Tu-0 

P475L BC 99.7 1 Lm-2 

Q478K BC 97.6 28 Uod-1 

N725S - 96.9 44 Chat-1;  Pog-0 

R762C - 96.6 6 Tsu-0;  Tu-0 

Q903H Central 29.5 78 Ema-1 

S949F Central Low 109 Ema-1 

E975K Central Low 192 Ha-HBT1-2;  Uod-1 

E1103K Central Low 210 Ha-HBT1-2;  Uod-1 

T1238I Central Low 10 Ha-HBT1-2 

E1312D Central Low 116 Ema-1 

E1355G Central 98.7 116 Ema-1 

T1384S Central Low 34 Chat-1;  Pog-0 

I1403N Central Low 79 Ema-1 

G1420A Central 12.3 7 Tsu-0;  Tu-0 

S1758L CT-β Low 193 Lm-2;  Tsu-0;  Tu-0 

G1766D CT-β 97.6 34 Chat-1;  Pog-0 

N1961D CT-α Low 7 Uod-1 

T2284R - Low 61 Lm-2 

 

a  The first residue (e.g. "G" in G7V) is found in the consensus sequence; the second in Ema-1. 

b  TP, Transit peptide; BC, Biotin carboxylase; CT, Carboxyltransferase.  

c  Conservation percentages are based on the multi-kingdom alignment of 667 ACCase protein 

sequences. 
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Table 25. Accessions with Evidence of Residual ACC2 Function Despite Substitutions in 

Highly-Conserved Residues. Adapted from Parker et al. (2016). 

Variant  

Analyzeda 

Protein  

Domainb 

Conservation 

(%)c 

Sequenced 

Accessions with 

Predicted Variant 

Intermediate; 

Low-Intermediate  

Accessionsd 

Tolerant; 

High-

Intermediate 

Accessionse 

F363L BC 99.3 5 Sei-0   

V376A BC 100.0 12 Col-0  

L474F BC 94.5 1 Chi-0  

P475L BC 99.7 1  Lm-2 

Q478K BC 97.6 28 Multiple Uod-1 

R494G BC 99.9 1 Ip-Pal-0  

T538A BC 99.9 1 IP-Tor-1  

N725S - 96.9 44 Multiple Pog-0 

G739E - 95.2 1 Wa-1  

R762C - 96.6 6 Mh-0 Tsu-0; Tu-0 

G833R BCCP 99.3 3 Dja-1  

L847P - 96.0 1 WAR  

E1355G Central 98.7 116 Multiple Si-0; Ema-1 

R1405Q - 96.1 1 Db-1  

G1766D CT-Beta 97.6 39 Multiple Pog-0 

I1821V CT-Beta 98.2 1 MNF-Che-2  

T1834S CT-Beta 99.4 2 Nemrut-1  

S1883T CT-Beta 97.0 8 Multiple  

G1897S CT-Alpha 99.4 2 
Sch1-7; 

WalHaesB4 
 

P2013L CT-Alpha 98.5 3 Balan-1  

A2014E CT-Alpha 99.0 1 App1-16  

I2115R CT-Alpha 98.2 1 Iasi-1  

H2207Q CT-Alpha 98.1 1 Ip-Lso-0   

 

a  The first residue (e.g. "F" in F363L) is found in the consensus sequence; the second in Sei-0. 

b  BC, Biotin carboxylase; BCCP, Biotin Carboxyl Carrier Protein; CT, Carboxyltransferase.  

c  Conservation percentages are based on the multi-kingdom alignment of 667 ACCase protein 

sequences. 

d  May contain partial loss-of-function alleles of ACC2. 

e  Likely contain fully-functional alleles of ACC2.  
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found 18 highly conserved residues in ACC2 where it seems that missense mutations lead to a 

partial loss of protein function. 

 

DISCUSSION 

 This chapter describes the use of forward and reverse genetic approaches to identify 

residues in ACC2 that are likely essential for full protein function. This experimental system 

using spectinomycin to evaluate the level of function of ACC2 in natural accessions of 

Arabidopsis is a unique way to analyze the effects of mutations on a highly-conserved, essential 

gene in fatty acid biosynthesis. Two advantages of this system are: (1) while ACC1 plays a key 

role in Arabidopsis growth and development, ACC2 is essential only when chloroplast 

translation, and consequently the production of the heteromeric ACCase, is blocked; and (2) 

utilizing spectinomycin to inhibit chloroplast translation provides a method to analyze the effects 

of mutations on ACC2 at the seedling level. Null mutations in other ACCase proteins lead to 

lethality, but null mutations in ACC2 result in an easy-to-identify hypersensitive phenotype on 

spectinomycin. Prior to this study, relatively few studies had been published on missense 

mutations in ACCase proteins. Arabidopsis was a key player in these studies because the 

mutations can be maintained as heterozygotes and the effects studied in segregating seeds and 

embryos (Meinke et al., 2008). Both strong and weak mutant alleles of ACC1 have been used to 

understand the function of ACCases in Arabidopsis (Meinke, 1985; Baud et al., 2004; Kajiwara et 

al., 2004; Lu et al., 2011; Amid et al., 2012). While other ACCase mutations are found in 

Caenorhabditis elegans (Rappleye et al., 2003), Drosophila melanogaster (Sasmura et al., 2013), 

and Saccharomyces cerevisiae (Schneiter et al., 1996, 2000), most of these mutations offer little 

evidence on ACCase protein function. Several of the missense mutations in S. cerevisiae provide 

some information on key regions in the dimer interface (Wei and Tong, 2015). More recently, the 

focus of ACCase research has been on identifying herbicide resistant mutations in grasses 
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(Kaundun, 2014) and using ACCases as targets for drugs such as antibiotics, antifungals, and 

those for obesity and type-2 diabetes (Campbell and Cronan, 2001; Lenhard, 2011; Tong, 2013). 

Prior to our work, fewer than 20 amino acid residues in ACCase proteins had been associated 

with mutations affecting protein function. We have expanded this list of residues using the 

mutations found in natural accessions of Arabidopsis. The mutations from these previous studies, 

along with those found in this study, are listed in Appendix K. 

 The Ka/Ks analysis of the Brassicaceae ACCase sequences raises a question about the 

function of ACC2 in natural accessions of Arabidopsis: Why is there evidence of purifying 

selection on ACC2 when the gene is not essential for survival? One possible answer is that ACC2 

has a function outside of its known involvement in the conversion of malonyl-CoA to acetyl-CoA 

in the chloroplast. Potentially, ACC2 could function in a metabolic pathway within the 

mitochondria. This would be similar to the duplicated ACCase found in mammals and S. 

cerevisiae, which has been shown to function in the oxidation of fatty acids (Hoja et al., 2004; 

Abu-Elheiga et al., 2005). If ACC2 functions in a mitochondrial metabolic pathway, the loss of 

ACC2 function in some natural Arabidopsis accessions might indicate that the pathway is either 

not crucial for the plant’s survival or the loss of ACC2’s function in the pathway can be 

compensated by another protein. A second possible reason that ACC2 has remained functional in 

most accessions is that ACC2 converts acetyl-CoA to malonyl-CoA in the chloroplast when the 

heteromeric ACCase protein is post-translationally down-regulated by the buildup of fatty acids 

in the endoplasmic reticulum (ER; Bates et al., 2014). In this case, there may be some advantages 

for Arabidopsis plants in selected environments to continue synthesizing fatty acids even if they 

accumulate in the cell. However, it is unlikely that continued synthesis of fatty acids is required 

for plant growth and development, which would explain why some natural accessions lack ACC2 

function. Expanding the Ka/Ks analysis using additional ACCase sequences from other members 

of the Brassicaceae might help to resolve these questions.  



118 
 

 In our study of ACC2 protein sequences from the 1001 Genomes Project, we identified 

four nonsense mutations, two single-nucleotide deletions that caused frameshifts, three defects in 

RNA splicing, two large deletions or chromosomal rearrangements, one small deletion that 

caused a frameshift, and five essential amino acid residues where missense mutations or single-

amino acid deletions are found in natural Arabidopsis accessions. All of these mutations likely 

have effects on the structure and function of ACC2. Other potential defects in ACC2 affecting 

protein function that we have not identified include mutations in the promoter region, which are 

difficult to evaluate based on sequence variation alone, changes in the 5’ or 3’ untranslated region 

of the mRNA, which could affect the initiation or termination of translation, or mutations that 

reduce translation efficiency. Yixing Wang tested for promoter defects that reduce the amount of 

ACC2 transcript in a small number of sensitive accessions, including “Nossen”, Nie1-2, and Oy-

0, using qRT-PCR experiments, which showed no difference between the amount of ACC2 

transcript produced from these sensitive accessions and multiple tolerant accessions. However, 

this does not rule out the possibility of a promoter defect in other sensitive accessions.  

Similar to the approach used in human genetics to describe missense mutations that cause 

a phenotype, we divided the variants found in our study into six categories based on the effects of 

the variant on ACCase protein function: deleterious, likely deleterious, potentially deleterious, 

variant of unknown significances, likely not deleterious, and not deleterious (Parker et al., 2016). 

Through our genetic complementation tests, we confirmed five variants that significantly reduced 

or completely eliminated ACC2 protein function: G135E, I404K, F1206L, E1689G, and T1902K. 

The reduction of ACC2 function caused by F1206L is likely not as severe as the other four 

missense mutations, because Aitba-1 is one of the less sensitive accessions. Four of the five 

missense mutations (G135E, I404K, F1206L, and T1902K) shown through genetic 

complementation tests to impact the structure and function of ACC2 are categorized as likely 

deleterious while the fifth mutation (E1689G) was labeled as deleterious. These genetic 
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complementation tests also revealed three missense mutations in highly conserved residues 

(Y443C, K1376R, and A2059V) that seem to have no effect on ACC2 function. These 

substitutions are categorized as likely not deleterious. 

The 110 variants found in the comparison of ACC1 protein sequences among natural 

Arabidopsis accessions were labeled as likely not deleterious substitutions when the variant is 

predicted in a single accession, or not deleterious substitutions when the variant is predicted in 

more than one accession. Of the 24 missense mutations found in the ACC2 protein sequences of 

tolerant accessions, 18 are categorized as variants of unknown significance because they are 

found in at least one tolerant accession, but no other information is known about those residues. 

Five of the other missense mutations are categorized as likely not deleterious because they are 

found in tolerant accessions and are located in highly conserved amino acid residues. The last 

missense mutation, found in Tsu-0 and Tu-0, is categorized as not deleterious since it is located in 

a highly conserved residue, and we have substantial evidence that the Tsu-0 allele of ACC2 is 

fully functional. Additionally, there are 179 variants categorized as likely not deleterious because 

the consensus sequences of ACC1 and ACC2 from the natural accessions differ, and both 

consensus sequences encode functional ACCase proteins. Any variation found in the ACC1 

protein sequences of natural accessions cannot be considered deleterious because ACC1 is an 

essential gene. 

Through this study, we have identified 18 missense mutations that slightly reduce the 

function of ACC2. These 18 mutations are located in highly conserved residues. The furthest the 

seedlings from any accession with one of these residues develop is to an intermediate stage. Of 

these 18 variants, V376A is the most interesting. This mutation is located in an amino acid 

residue that is perfectly conserved in our multi-kingdom alignment of 667 sequences, and among 

all natural accessions of Arabidopsis, with the exception of the Col-0 protein sequence, which is 
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the reference Arabidopsis accession. The conservation of this residue, and the mutation only 

found in Col-0, raises the possibility that the Col-0 ACC2 protein has reduced function. 

 With our combined approaches, we analyzed the effects of 339 different missense 

mutations on ACCase function. However, this represents only 15% of the total residues found in 

an ACCase protein, which leaves around 85% of the residues to be analyzed in order to fully 

understand the effects of missense mutations on ACCase function. This highlights the limitations 

of utilizing natural variation to study the effects of mutations on protein structure and function. In 

order to learn more about missense mutations in ACCase proteins, this project would need to be 

expanded using recent advances in gene editing technologies to induce missense mutations in 

residues of interest. For example, the A376V mutation found in Col-0 could be induced in the 

ACC2 sequence of Tsu-0, or another tolerant accession, which can then be analyzed on 

spectinomycin to look for a reduction of ACC2 function indicated by increased sensitivity. In 

order to evaluate some of the more subtle changes in ACCase protein function, missense 

mutations could be induced in candidate residues within ACC1, where the Meinke lab has shown, 

using emb22, pas3-1, and pas3-2 mutants, that the strength of the mutation affects the terminal 

embryo phenotype (Parker et al., 2016).
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CHAPTER VI 
 

 

CANDIDATE GENE APPROACH TO IDENTIFY OTHER FACTORS THAT INCREASE 

TOLERANCE TO A LOSS OF CHLOROPLAST TRANSLATION 

 

 

 

INTRODUCTION 

 As described in Chapter 4, we used crosses between emb mutants defective in chloroplast 

translation and the tolerant Tsu-0 accession to identify a single, dominant suppressor that 

increases tolerance of a loss of chloroplast translation. We also found evidence for a second, 

unlinked locus that enhances the effect of the suppressor, and additional genetic modifiers that 

further increase tolerance. Through our analysis of these crosses, we identified the suppressor 

locus as ACC2 and mapped the enhancer near the top of chromosome 5 based on tight linkage 

with EMB3137. Further work on identifying the enhancer was performed by Kayla Cook, an 

undergraduate researcher in our lab (Cook and Meinke, 2017). Kayla manually curated the region 

of chromosome 5 surrounding EMB3137 to identify potential candidates for the enhancer locus. 

Through this curation, she found seven candidate genes that encode proteins with functions 

consistent with one of our models for the enhancer.  

 For this final part of my project, I focused on a method to identify additional genetic 
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modifiers of this system. Unlike the evidence we have for a single suppressor locus and enhancer, 

there seem to be at least two modifier loci that have some effect even without a functional 

enhancer. However, the modifiers appear to require the presence of the enhancer to have a 

significant impact on tolerance. In order to narrow the search for these modifiers, I used a 

candidate gene approach focused on five components of the TIC/TOC chloroplast protein import 

system that are found in different regions of the Arabidopsis genome, which allowed us to 

examine the regions surrounding these loci for linkage between a candidate gene and a potential 

modifier. Five descendent lines were used to compare the genotype of each potential modifier to 

the differences in embryo rescue. Two groups of lines were used: those likely to be homozygous 

Tsu-0 for each of the modifiers, and those likely to be homozygous “Nossen”. Unfortunately, no 

association was found between the genotype of each candidate gene and the amount of embryo 

rescue observed in the descendent lines. Candidate modifiers that have not been tested yet include 

four additional members of the TIC/TOC system and ten gene products that likely interact with 

one or more of the potential enhancers identified through Kayla’s curation. In contrast to previous 

sections of this dissertation, none of the work described in this chapter has been published. 

 

MATERIALS AND METHODS 

Plant Material and Growth Conditions 

 Mature seeds from the F4 and F5 generations of a cross between the tolerant Tsu-0 

accession and emb3126-1, a mutant defective in chloroplast translation in the sensitive “Nossen” 

background, were harvested in our laboratory. These seeds were then germinated on plates 

containing a basal nutrient medium as described in Chapter 3. After plating the seeds, the plates 

were stored at 4° C in a refrigerator for three days, and then placed under fluorescent lights for 14 

days at room temperature. Seedlings were then divided into two groups: some were used for DNA 



123 
 

extractions (described later), and others were transplanted to pots and grown in a growth room as 

described in Chapter 3. After four weeks, seed and embryo measurements were taken using the 

method described in Chapter 4. 

 

PCR Genotyping of Plants 

 For each descendent line used in this analysis, genomic DNA was extracted from six 

seedlings for PCR genotyping. Additional seedlings were frozen as backups if more DNA was 

needed. Genomic DNA extraction was performed using a modified cetyltrimethylammonium 

bromide protocol (Lukowitz et al., 2000). Following the DNA extraction, specific loci (described 

later) were amplified through PCR using the Qiagen PCR Master Mix and a Biometra Uno II 

thermocycler. The PCR primers used for each locus were designed by Yixing Wang based on 

polymorphic differences between the Tsu-0 and “Nossen” genomic sequences (Table 26). Tsu-0 

sequences were obtained through the 1001 Genomes Project database, whereas “Nossen” 

sequences were obtained from the laboratory of Dr. Masatomo Kobayashi at the RIKEN 

BioResource Center. All primers were purchased from Integrated DNA Technologies. PCR 

products were separated in 1% agarose gels containing GelRed Nucleic Acid Stain (Phenix), and 

bands were visualized using the AlphaImager HP system (Proteinsimple). These products were 

then purified using the QIAquick PCR purification kit (Qiagen), and sent for sequencing at the 

Oklahoma State University Recombinant DNA/Protein Resource Facility. Sequencing results 

were visualized for analysis using FinchTV version 1.4.0 (Geospiza Inc.). 

 

Loci Chosen as Modifier Candidates 

 For this candidate gene approach to identify potential modifiers, we chose five loci, each  
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Table 26. PCR Primer Sequences Used for Plant Genotyping. 

 

Name Primer Sequence Primer Location 

1-2-F 205 CCTGCATCAATGAAGGGATTTG Intron 2 of TIC110 

1-2-R 206 CGAGAGGCTGAAGCTATTAGTG Exon 5 of TIC110 

2-2-F 201 TTACCCTGATCAACTGGAGCTT Exon 1 of TOC132 

2-2-R 202 ACGGACAGAAGAAGAGGTTGTAG Exon 1 of TOC132 

3-1-F 195 ACCTTAGAATCCAGAGTTGGTG Intron 7 of Hsp93-III 

3-1-R 196 GCTTGGTCGATAGCTCTTCTTA Intron 9 of Hsp93-III 

4-2-F 193 GTCGCATCGGTTGATTCTTACT Intron 1 of TIC20-IV 

4-2-R 194 GTGCACCATATGACCTGAAGAG Exon 3 of TIC20-IV 

5-1-F 187 GTTGTGACCTGAGTCTGAACTG Intron 5 of Hsp93-V 

5-1-R 188 CAGCTCGAGTCCTTGAGAATTTAG Exon 8 of Hsp93-V 
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on a different chromosome, from promising members of the TIC/TOC chloroplast import system: 

(1) Tic110; (2) Toc132; (3) Hsp93-III; (4) Tic20-IV; and (5) Hsp93-V. Each of these loci was 

chosen based on location in the Arabidopsis genome and potential interactions with ACC2. The 

different chromosomal locations of these loci allowed us to test both the gene itself as a potential 

modifier, and the region around that gene for linkage to a potential modifier (Figure 26). We 

initially focused on members of the TIC/TOC system because transport of ACC2 into the 

chloroplast is required in order to compensate for loss of the heteromeric ACCase protein. As 

described in Chapter 2, TIC110 along with the two chaperone proteins, Hsp93-III and Hsp93-V, 

function in the translocation motor that guides proteins such as ACC2 into the chloroplast stroma 

(Kovacheva et al., 2005; Shi and Theg, 2013). cpHsc70-2, another chaperone of the translocation 

motor, was not tested due to its close proximity to Hsp93-V on chromosome 5. If TIC110 is a 

modifier, a change in the protein might have a downstream effect on the import of ACC2 into the 

chloroplast through its function as a recruiter of stromal chaperone proteins such as Hsp93-III and 

Hsp93-V (Kovacheva et al., 2005). Loss of one of these chaperone proteins, either through failed 

recruitment by TIC110 or a mutation in the protein itself, would likely affect the folding and 

stability of the precursor protein as it is moved into the stroma.  

TOC132, along with its partner TOC120, functions similarly to move ACC2 and other 

housekeeping proteins across the outer membrane (Hirabayashi et al., 2011; Shi and Theg, 2013). 

TOC132 is a more likely modifier candidate than TOC120 due to the A-domain within TOC132, 

which functions in the initial recognition of the transit peptide sequences of chloroplast-localized 

housekeeping proteins (Inoue et al., 2010). A change in the A-domain of TOC132 would likely 

affect the recruitment of ACC2 to the TOC import system. Within the region surrounding Toc132 

on chromosome 2 is Tic21, whose protein product likely helps to assemble the 1-MDa import 

complex on the inner membrane (Teng et al., 2006; Shi and Theg, 2013). TIC20-IV is thought to  
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Figure 26. Chromosome Locations of Arabidopsis Genes Encoding Known Components of 

the Chloroplast Protein Import System. The highlight genes are the five loci genotyped in our 

candidate gene approach. ACC1 and ACC2 are located near the centromere on chromosome 1, 

EMB3126 is located near the bottom of chromosome 3, and EMB3137 is located near the top of 

chromosome 5. Adapted from Parker et al. (2014).  
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play a crucial role as the main channel protein through which housekeeping proteins are moved 

across the inner membrane (Hirabayashi et al., 2011; Kasmati et al., 2011; Kikuchi et al., 2013). 

The tic20-iv knockout mutant (SAIL_97_F10) grows normally on basal medium and soil, which 

means that there is redundancy in the TIC import system where loss of one channel protein is 

compensated by another. In this case, the redundant protein is likely TIC20-I, the main channel 

for import of photosynthetic proteins (Kikuchi et al., 2013), or one of the two TIC20 proteins 

whose functions are not known: TIC20-II and TIC20-V (Kasmati et al., 2011; Shi and Theg, 

2013). Whereas there is redundancy in the transport of housekeeping proteins across the inner 

membrane, TIC20-IV seems to be the only channel protein for the movement of ACC2 into the 

stroma. This can be seen in the hypersensitive response of tic20-iv seedlings on spectinomycin, 

which is similar to that of a null mutant of ACC2. Under this model, a tolerant allele of Tic20-IV 

may increase the efficiency of ACC2 transport. All of these candidate loci were chosen prior to 

Kayla’s work on the enhancer region. 

 

Arabidopsis Progeny Lines Chosen for Analysis 

 Five descendent lines were chosen for this analysis from a cross between the tolerant 

Tsu-0 accession and emb3126-1 mutant in the “Nossen” background (Table 27; Figures 27 and 

28). All of these lines are homozygous for the Tsu-0 allele of ACC2, which means they contain a 

fully functional suppressor. They are also homozygous for the Tsu-0 allele of the enhancer on 

chromosome 5, as shown by the genotype of EMB3137 and two surrounding genes: Toc34 and 

Oep80. The descendent lines were divided into two groups based solely on the predicted 

genotypes of potential modifier loci. The first group (1B-3B-1A, 1B-3B-2E, and 20D-3A-2A) 

showed the highest level of rescue among all lines screened. These lines are therefore most likely 

to be homozygous Tsu-0 for any modifiers that increase embryo rescue. The second group 
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Table 27. Embryo Rescue in Progeny Plants Screened for Candidate Modifiers  

Plant Name a 

Mutant 

Seeds 

Screened 

Embryo Lengths (µm) Embryos Measured (%) Embryos Stages (%) 

Average b t-value c < 100 µm > 100 µm > 200 µm Globular Triangular Linear Cotyledon 

1B-3B-1A 55 328 ± 11.2 - 100.0 94.5 54.5 0.0 0.0 29.1 70.9 

1B-3B-1A-2C 33 319 ± 17.2 0.4 0.0 100.0 78.8 0.0 0.0 45.5 54.5 

1B-3B-1A-2D 32 270 ± 13.5 3.0 ** 0.0 100.0 75.0 0.0 0.0 53.1 46.9 
           

1B-3B-2E 52 350 ± 13.2 - 100.0 100.0 61.5 0.0 0.0 36.5 63.5 

1B-3B-2E-2B 46 273 ± 14.0 4.0 *** 0.0 100.0 67.4 0.0 0.0 65.2 34.8 

1B-3B-2E-2E 28 286 ± 19.3 2.7 ** 0.0 100.0 78.6 0.0 0.0 53.6 46.4 
           

20D-3A-2A 38 274 ± 16.2 - 100.0 78.9 34.2 0.0 5.3 36.8 57.9 

20D-3A-2A-2A 32 307 ± 13.0 -0.1 0.0 100.0 87.5 0.0 0.0 28.1 71.9 

20D-3A-2A-2D 30 276 ± 20.4 -0.1 0.0 100.0 70.0 3.3 3.3 53.4 40.0 

20D-3A-2A-2E 26 304 ± 20.0 -1.2 0.0 100.0 80.8 0.0 0.0 34.6 65.4 
           

S2-10D-2B 51 106 ± 4.2 - 37.3 56.9 0.0 41.2 52.9 5.9 0.0 

S2-10D-2B-2B 32 96 ± 2.1 2.1 * 43.8 25.0 0.0 96.9 3.1 0.0 0.0 

S2-10D-2B-2D 37 112 ± 4.7 -1.0 21.6 54.1 2.7 64.9 29.7 5.4 0.0 

S2-10D-2B-2E 29 118 ± 4.4 -2.0 * 13.8 65.5 0.0 48.3 44.8 6.9 0.0 
           

S2-3B-2D 66 95 ± 5.1 - 54.5 19.7 1.5 83.3 9.1 6.1 1.5 

S2-3B-2D-1A 30 121 ± 4.0 -4.0 *** 6.7 73.3 0.0 36.7 60.0 3.3 0.0 

S2-3B-2D-1B 29 126 ± 4.9 -4.3 *** 10.3 72.4 0.0 27.6 55.2 13.8 3.4 

S2-3B-2D-1E 21 130 ± 5.9 -4.4 *** 4.8 76.2 0.0 23.8 57.2 19.0 0.0 

a  Gray font, parental lines chosen for this analysis. Black font, progeny plants screened from each parental line. 
b  Mean Length ± Standard Error.  

c  This column gives the T-test results of each progeny line compared to the parent line it was harvested from. Asteriks denote the 

significance level: * p < 0.05; ** p < 0.01; ***p < 0.001.    
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Figure 27. Boxplot Comparison of Mutant Embryo Length in Progeny Plants Screened for 

Candidate Modifiers and Their Parental Lines. Boxplots representing the median, 25th and 

75th percentiles (interquartile range) of mutant embryo lengths. Whiskers extend to the minimum 

and maximum lengths (excluding outliers). Mean is denoted by the X. A, progeny of 1B-3B-1A; 

B. progeny of 1B-3B-2E; C, progeny of 20D-3A-2A; D, progeny of S2-10D-2B; and E, progeny 

of S2-3B-2D. 
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Figure 28. Comparison of Mutant Embryo Growth Stages in Progeny Plants Screened for 

Candidate Modifiers and Their Parental Lines. Percentage of embryos from each cross 

assigned to four phenotypic categories based on shape of the embryo: Globular, Triangluar, 

Linear, and Cotyledon. A, progeny of 1B-3B-1A; B. progeny of 1B-3B-2E; C, progeny of 20D-

3A-2A; D, progeny of S2-10D-2B; and E, progeny of S2-3B-2D. 
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(S2-10D-2B and S2-3B-2D) exhibited the lowest level of embryo rescue while still having the 

Tsu-0 alleles of ACC2 and the enhancer. This means that these two lines most likely have the 

“Nossen” allele of any modifiers affecting the amount of embryo rescue. 

In order to keep track of the descendent lines used in this study, the name of each line 

consists of the plant identification number that dry seed was harvested from in each generation. 

For example, descendent line 1A-1B-1C derived from plant 1A in the F2 generation, 1B in the F3 

generation, and 1C in the F4 generation. After plating progeny seed from a single F1 plant, F2 

plants were screened for the amount of embryo rescue and genotyped for ACC2 and the enhancer. 

From the F2 generation, plants 1B and 20D exhibited the most rescue, and were genotyped to 

have a Tsu-0 allele for ACC2 and the enhancer. Even more advanced rescue was seen in the F3 

generation, where plants 1B-3B and 20D-3A showed the most rescue. These plants still 

maintained the Tsu-0 genotype of ACC2 and the enhancer. In the F4 generation, plant 20D-3A-

2A exhibited the same amount of rescue as its parental F3, whereas plants 1B-3B-2E and 1B-3B-

1A showed further increase in the average embryo rescue. All three of these F4 plants should be 

homozygous Tsu-0 for any potential modifiers tested in this analysis. During a second round of 

screening of F2 plants (labeled as S2), plants S2-10D and S2-3B showed limited embryo rescue, 

have a Tsu-0 allele of ACC2, and are heterozygous at the enhancer loci. In the F3 generation, 

plants S2-10D-2B and S2-3B-2D continued to show low amount of embryo rescue, but they were 

genotyped as Tsu-0 for both ACC2 and the enhancer locus. Both of these F3 plants should be 

homozygous “Nossen” for any potential modifiers. Genomic DNA was extracted from progeny 

seedlings of all five descendent lines. Sibling seedlings grown at the same time, were transplanted 

to soil, grown to maturity, and were screened to confirm the amount of embryo rescue for each 

descendent line. 
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RESULTS 

Table 27 shows the embryo phenotypes of progeny plants compared to the parental lines 

chosen for this analysis. Over half of the progeny screened were significantly different from their 

parental lines. No significance was found in the progeny plants of 20D-3A-2A (Figures 24 and 

25, part C). This is possibly due to the wider spread in the mutant embryo lengths measured. In 

1B-3B-1A and S2-10D-2B, there was a mixture of plants that were significantly different from 

their parent line and plants that were not. These slight differences in the progeny plants can be 

seen in in Figures 27 and 28 parts A and D. The progeny plants of 1B-3B-2E and S2-3B-2D all 

showed a significant difference from their parental lines. In 1B-3B-2E there is a decrease in the 

size of the embryos measured, and an increase in the number of embryos arresting at a lower 

(linear) stage of development rather than the cotyledon stage (Figures 27 and 28, part B). The 

opposite is happening with the progeny plants of S2-3B-2D: there is an increase in the embryo 

size and an increase in the number of embryos arresting at higher stages of development rather 

than the globular stage (Figures 27 and 28, part E). The differences found between the progeny 

plants and their parental lines could indicate heterozygosity of one or more modifier loci in the 

parental lines.  

For each descendent line, three individual seedlings were PCR genotyped at each of the 

five loci, which gave a total of 15 progeny tested. Additional seedlings were available for analysis 

if a promising candidate was found. However, none of the results were consistent with the 

expected outcome if a modifier locus was linked to one of the candidates (Table 28). For 

complete linkage, we expected to see the group with the highest level of embryo rescue (1B-3B-

1A, 1B-3B-2E, and 20D-2A-3A) homozygous for the Tsu-0 allele of the candidate modifier 

whereas the group with the lowest rescue (S2-10D-2B and S2-3B-2D) homozygous for the 

“Nossen” allele. In order to detect a locus linked to one of the candidates, we would expect that a 

low number, around one to three, of the 15 progeny seedlings tested would differ from the 
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predicted genotype. More than three or so differences would be unreliable for determining 

linkage using the small number of seedlings examined. If any loci had shown potential linkage, 

additional seedlings for each descendent line would have been tested to provide more accurate 

results. The expected results if none of the modifiers are linked to a candidate locus are harder to 

predict due to the locations of crossovers within each descendent line and the low possibility of 

heterozygosity at the locus.  

Table 28 shows the genotype of each candidate locus for all 15 seedlings analyzed. The 

results of all loci for 1B-3B-1A and 1B-3B-2E were exactly the same. This is likely due to how 

closely related the two descendent lines are as they were both harvested from the same F3 plant. 

It is also likely that all five loci genotyped here were homozygous in the F3 plant (1B-3B). 

Heterozygous regions, as seen with four out of five loci (indicated in Table 28 by one to four 

“Het” seedlings), are expected for a minor percentage of the genome. This is due to the genome 

of each subsequent generation from a cross becoming more isogenic. For example, the use of 

seedlings from generations F8 and F9 would have led to results with significantly less 

heterozygosity than the F4 and F5 seedlings analyzed here. This effect can be seen in Table 28, 

where there is one example of a heterozygous region in the F5 progeny (1B-3B-1A, 1B-3B-2E, 

and 20D-2A-3A) and five examples in the F4 progeny (S2-10D-2B and S2-3B-2D). Toc132 

produced the most interesting results because the genotypes were the exact opposite of what we 

expected. All plants tested from the highest group were homozygous “Nossen” for Toc132, and 

all plants tested from the lowest group were homozygous Tsu-0. A possible explanation for this 

result is that TOC132 in “Nossen” is fully functional in recruiting and translocating ACC2 across 

the outer membrane of the chloroplast, whereas TOC132 in Tsu-0 has reduced function. 

However, it is most likely that this locus would show results similar to the other loci if additional 

descendent lines were tested.  
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Table 28. Genotypes of Candidate Modifier Loci for Each Descendent Line Tested 

 

Parental Line 
Embryo 

Phenotype 

TIC110 a 

(Chromosome 1) 

TOC132 

(Chromosome 2) 

Hsp93-III 

(Chromosome 3) 

TIC20-IV 

(Chromosome 4) 

Hsp93-V 

(Chromosome 5) 

1B-3B-1A Late N, N, N N, N, N T, T, T T, --, T N, N, N 

1B-3B-2E Late N, N, N N, N, N  --, T, T T, T, T N, N, N 

20D-3A-2A Late N, N, N N, N, N N, N, N H, H, N T, T, T 

S2-10D-2B Early H, H, N T, T, T T, T, T T, T, T N, T, H 

S2-3B-2D Early T, T, T T, T, T T, T, H H, H, N H, N, N 

 

a  Letters represent the genotype of three progeny seedlings tested for each parental line. N, homozygous “Nossen”. T, homozygous Tsu-0. 

H, heterozygous. Red dashes, seedlings whose sequences could not be analyzed.  
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DISCUSSION 

   This chapter describes a candidate gene approach to test five members of the TIC/TOC 

chloroplast import system (Tic110, Toc132, Hsp93-III, Tic20-IV, and Hsp93-V) as potential 

modifiers that increase embryo rescue in the presence of a functional suppressor (ACC2) and 

tolerant enhancer. No correlation was found between the amount of embryo rescue and the 

genotype at these five loci. With the number of seedlings examined for each locus, only close 

linkage with the candidate gene can be detected. After that, the results are unreliable. This leaves 

large portions of the genome not examined in this analysis. Each chromosome in Arabidopsis is 

76-122 cM in length (Meinke et al., 2009). This means that at most we are able to detect linkage 

across half of each chromosome. Another issue is the possibility that two or more modifiers 

interact, with each one partially contributing to the extent of embryo development seen in the 

group with the most rescue (1B-3B-1A, 1B-3B-2E, and 20D-2A-3A). In this case, the modifiers 

are acting similar to quantitative trait loci, which would make it difficult to identify an individual 

locus through a candidate gene approach. This also raises the question: Does the enhancer have a 

stronger effect on embryo rescue than a single genetic modifier? In other words, if we had used a 

different emb mutant in our initial crosses that was linked to one of the modifier loci, would we 

have considered that locus to be the enhancer? To answer these questions, we can compare the 

amount of embryo rescue between two groups of descendent lines: (1) those that are likely 

homozygous “Nossen” for the enhancer and homozygous Tsu-0 for the modifiers; and (2) those 

that are likely homozygous Tsu-0 for the enhancer and homozygous “Nossen” for the modifiers. 

If the enhancer alone has a stronger influence on embryo rescue than the modifiers, we would 

expect to see a higher level of rescue in Group 2 than in Group 1. This is exactly what we 

observed. The embryos rescued in Group 2 averaged around 104 μm (± 2.4, SE) in length 

whereas the embryos in Group 1 averaged around 84 μm (± 3.0, SE). This more substantial effect 

of the enhancer on embryo development is consistent with the requirement of a tolerant enhancer 
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for the modifiers to significantly extend embryo development to later stages. Because we still do 

not know which gene is the enhancer, it is difficult to build a model for the function of the 

modifiers. It might therefore be more beneficial to narrow down the enhancer locus before further 

attempts to identify the modifiers.  

Prior to Kayla’s work on the enhancer, we focused on members of the TIC/TOC system 

as potential modifiers because we suspected that many of these proteins interact with ACC2 to 

facilitate import into the chloroplast. Through our candidate gene approach, we were not able to 

show that a modifier locus is linked to any of our five candidates. The translocation motor, 

including TIC110, functions to transport all housekeeping and photosynthetic proteins into the 

chloroplast. Therefore, it is not surprising that Tic110 is not a modifier because a change in the 

protein that affects import of ACC2 into the chloroplast would also likely affect other chloroplast-

localized proteins. The chaperone proteins, Hsp93-III and Hsp93-V, are likely just as important in 

the translocation of housekeeping and photosynthetic proteins across the inner membrane, so a 

change that affects ACC2 import would also affect others. Similar to the translocation motor, the 

recognition by the A-domain of TOC132 is likely important for the import of many proteins into 

the chloroplast, not just ACC2. A change within this domain is likely to also affect the import of 

other housekeeping proteins. TIC20-IV seemed to be the most likely candidate due to the 

redundancy in the import of housekeeping proteins found through the normal growth of tic20-iv 

knockout mutants. The hypersensitivity of tic20-iv to spectinomycin also indicates that TIC20-IV 

is required for import of ACC2 into the chloroplast. However, the genotype results showed no 

linkage between Tic20-IV and the level of embryo rescue in the descendent lines. This does not 

rule out the possibility that a defect in tic20-iv is at least partially responsible for a decrease in 

tolerance to spectinomycin of another accession.  

Several other candidate modifiers from the TIC/TOC system that are located in untested 

regions of the genome have not been evaluated (Figure 26): (1) Toc120, whose protein product 
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complexes with TOC132 to function as the main GTPase in transport of housekeeping genes 

across the outer membrane (Hirabayashi et al., 2011; Shi and Theg, 2013); (2) Hsp90C, which 

encodes another chaperone protein associated with the TIC110 translocation motor (Kovacheva et 

al., 2007; Inoue et al., 2013; Shi and Theg, 2013); (3) cpHsc70-1, a TIC110 translocation 

chaperone protein (Kovacheva et al., 2007; Inoue et al., 2013; Shi and Theg, 2013); and (4) 

TIC22-IV,  which encodes a chaperone protein thought to guide precursor proteins between the 

TIC and TOC complexes within the intermembrane space (Kouranov et al., 1998; Shi and Theg, 

2013).  

 In her work to identify candidates for the enhancer, Kayla manually curated 104 and 101 

loci upstream and downstream, respectively, of EMB3137, which is closely linked to the enhancer 

(Cook and Meinke, 2017). She also did a quick scan of an additional 100 genes above and below 

this region for any obvious candidates. While trying to identify enhancer candidates, Kayla 

looked for proteins whose function would fall into one of our models for function of the 

enhancer, including potential interactions between the enhancer and ACC2 (Table 29). My work 

on identifying potential modifier loci focused on proteins that fell into Model 1c: the 

improvement of ACC2 import through chloroplast membrane. The two chaperone proteins I 

tested, Hsp93-III and Hsp93-V, might also function in stabilization, folding and dimerization of 

ACC2 once it has moved into the stroma (Model 1d).  

Kayla identified seven candidate genes as potential enhancers, and ranked these genes 

based on how well they fit a model for the function of the enhancer. All seven candidates are 

described in Table 30. Of the three most promising candidates, two (GUN5 and NACA3) function 

in protein complexes, and interact with other proteins that could be potential modifiers. GUN5 

encodes a subunit (CHLH) of the magnesium-protoporphyrin IX (Mg-ProtoIX) chelatase that 

functions in bacteriochlorophyll and chlorophyll biosynthesis and ABA signaling (Walker and 

Willows, 1997; Du et al., 2012). CHLH also has a second function in retrograde signaling  
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Table 29. Models for Enhancer Function in the Absence of Chloroplast Translation. Adapted 

from Cook and Meinke (2017). 

 

1.   Enhances Function, Abundance or Localization of ACC2 

 a. Improves translational efficiency of ACC2 mRNA 

 b. Improves targeting of ACC2 to plastid via chaperone molecule 

 c. Improves import of ACC2 through plastid membrane 

 d. Improves ACC2 folding and dimerization inside plastid 

2.  
Improves Fatty Acid Biosynthesis in Plastid 

 a. Increases efficiency of upstream/downstream reactions 

 b. Improves export of ACC2-synthesized fatty acids 

3.  
Compensates for Loss of Ycf1, Ycf2, ClpP1 Functions in Plastid 

4.  
Impacts Chloroplast-Nucleus Retrograde Signaling Pathways 

5.   Improves Other Rate-Limiting Metabolic Pathways in Plastid 
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Table 30. Enhancer Candidates Identified in the Region Flanking EMB3137. Adapted from Cook and Meinke (2017). 

 

Rank a Locus Number  Gene Symbol Edited Function b Edited Function Details b 

A At5g13390 NEF1 Plastid Integral Membrane Protein 

Required for pollen exine formation;  

Proposed roles in plastid membrane 

integrity and fatty acid export 

A At5g13630 
ABAR; CCH; 

CHLH; GUN5 
Magnesium Chelatase 

Plastid to nucleus retrograde signal 

transduction 

A At5g13850 NACA3 
Nascent Polypeptide Associated 

Complex Subunit Alpha-Like Protein 3 

Potential role in translocation of nascent 

polypeptides into chloroplasts 

A/B At5g13410  Plastid-Localized FKBP-Like Protein;  

Immunophilin 
Potential role in protein folding 

A/B At5g13640 PDAT1 
Phospholipid: 

Diacylglycerol Acyltransferase 

TAG biosynthesis;  

Fatty acid and membrane lipid homeostasis 

A/B At5g15450 CLPB3; 
Plastid-Localized ClpB Homologue;  

Chaperone 
Remodeling of protein aggregates 

B At5g12860 DIT1; OMT1 Plastid Dicarboxylate Transporter Integration of carbon, nitrogen metabolism 

 

a System used to subjectively rank each enhancer candidate locus. A, most likely; A/B, promising; B, possible. 

b Based on information from TAIR (http://www.arabidopsis.org/) and relevant publications.  

http://www.arabidopsis.org/
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between the chloroplast and nuclear genomes (Mochizuki et al., 2001; Du et al., 2012). Kayla’s 

model for GUN5 as the enhancer is based on its secondary function in retrograde signaling where 

a tolerant (Tsu-0) version of the enhancer would limit the passage of a signal from the chloroplast 

genome when it is inhibited to the nuclear genome, which would allow the nuclear genes 

normally affected by the signal to continue to be expressed. If GUN5 is the enhancer locus, 

potential modifiers in this system include GUN4 (At3g59400), CHLI1 (At4g18480), and CHLD 

(At1g08520), which all encode subunits of the Mg-ProtoIX chelatase (Figure 29; Du et al., 2012). 

As modifiers, these loci would function alongside GUN5 in retrograde signaling. However, this 

does not explain the low levels of embryo rescue seen when tolerant alleles of the modifiers are 

present, but the enhancer is sensitive. As modifiers, these three proteins would require functional 

GUN5 to be present. The Arabidopsis Interactions Viewer, which shows protein-protein 

interactions, indicates that GUN5 also interacts with SYP23 (At4g17730), which is involved in 

vesicle-mediated transport, and CKA4 (At2g23070), a chloroplast-localized subunit of casein 

kinase 4 (http://bar.utoronto.ca/interactions/cgi-bin/arabidopsis_interactions_viewer.cgi). CKA4 

is thought to be involved in the same retrograde signaling pathway as the Mg-ProtoIX chelatase 

complex containing GUN5 (Wang et al., 2014). In other words, as a modifier CKA4 would 

function similar to the other members of the complex. SYP23 as a modifier could possibly be 

involved in transport of signaling molecules within the retrograde signaling pathway involving 

Mg-ProtoIX Chelatase and CKA4 along with other molecules in the cell, which could explain the 

slight increase in embryo rescue when the enhancer (GUN5) is not present.  

 The other promising candidate for the enhancer locus (NACA3), studied most extensively 

in yeast, is thought to encode the alpha subunit of the Nascent Polypeptide Associated Complex 

(NAC; Ponce-Rojas et al., 2017). This complex functions as a chaperone for newly synthesized 

polypeptide chains including the translocation of these precursor proteins to both the 

mitochondria and the chloroplast (Yang et al., 2007). There is also evidence for independent  

http://bar.utoronto.ca/interactions/cgi-bin/arabidopsis_interactions_viewer.cgi
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Figure 29. Chromosome Locations of Arabidopsis Genes Encoding Untested Modifier 

Candidates. If GUN5 is the enhancer, potential modifiers are CHLD, CKA4, GUN4, SYP23, and 

CHLI1. If NACA3 is the enhancer, potential modifiers are BTF3, CXIP4, TBP1, TPR8, and 

SnRK1-3. CHLD is highlighted to show that it is unlikely to be a potential modifier, because it is 

closely linked to Tic110, which has been tested.  
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function of NACA3 as a transcription factor (Moreau et al., 1998; Yang et al., 2007). Kayla’s 

model for NACA3 as the enhancer is that the NAC functions in translocation of ACC2 to the 

chloroplast membrane. A tolerant version of NACA3 might increase the efficiency of ACC2 

targeting to the membrane. According to this model, potential modifiers would include the beta 

subunit of NAC, BTF3 (At1g17880; Figure 29), which would function alongside NACA3 in 

translocation of ACC2 precursor proteins to the chloroplast membrane. As for the slight increase 

in embryo rescue in the absence of the enhancer (NACA3), BTF3 has also been shown in humans 

and C. elegans to function as a transcription factor and a suppressor of apoptosis independently of 

NAC (Yang et al., 2007). Additional proteins that interact with NACA3 include CXIP4 

(At2g28910), which regulates calcium transport, TBP1 (At3g13445), a transcription factor that 

binds to the TATA box promoter region, TPR8 (At4g08320), a tetratricopeptide repeat protein 

with unknown function, and SnRK1-3 (At5g39440), a phosphorylase 

(http://bar.utoronto.ca/interactions/cgi-bin/arabidopsis_interactions_viewer.cgi). These proteins 

likely interact with NACA3 in its role as an activator of C-Jun-dependent transcription, where it 

interacts with a TATA box binding protein, which is likely TBP1, and a phosphorylase, which is 

likely SnRK1-3 (Moreau et al., 1998). CXIP4 could possibly function in activation of NACA3 

through a calcium signaling pathway. The slight embryo rescue seen when the modifiers are 

present and the enhancer is not could be explained through transcription regulation activities of 

these proteins that do not involve NACA3. 

 

FUTURE DIRECTIONS 

 Much has been accomplished with this project towards understanding why plant species  

differ in their ability to tolerate a loss of chloroplast translation. Through studies at both the 

embryo and seedling stages, we found that functional alleles of ACC2 can suppress the 

http://bar.utoronto.ca/interactions/cgi-bin/arabidopsis_interactions_viewer.cgi
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preglobular phenotype of emb mutants defective in chloroplast translation and the sensitive 

phenotype of seedlings grown on spectinomycin. We also identified a locus on chromosome 5 

that enhances the suppressor effect of ACC2, and uncovered evidence for additional modifiers 

that further rescue the embryo and seedling phenotypes. Additional studies using the natural 

variation found in Arabidopsis accessions looked at the effects of mutations on the structure and 

function of ACCase proteins. Through this work, we have identified a number of null mutations 

that eliminate ACC2 function, and some missense mutations whose effects range from partial to 

severe loss of ACC2 function. However, there are still areas within this project where additional 

work can be done to help further our understanding of this system. 

 One future area to address would be to search for additional natural variation in ACC1 

and ACC2 sequences. In the time since we obtained the sequences from 855 accessions through 

the 1001 Genomes Project, the genome sequences of 280 more accessions have been published 

(The 1001 Genomes Consortium, 2016). Even though these newer sequences are not available 

through the Salk Genome Browser (http://signal.salk.edu/atg1001), there are new sequence 

viewers on the 1001 Genomes Project website that incorporate all 1,135 sequences. The 1001 

Proteomes viewer (http://1001proteomes.masc-proteomics.org/) shows all non-synonymous 

single nucleotide polymorphisms (nsSNPs) at any locus of interest, whereas the Polymorph 1001 

viewer (http://tools.1001genomes.org/polymorph/) shows all SNPs, insertions and deletions at 

any locus. The most important variation to identify for this project would be additional examples 

of the three missense mutations that significantly reduce or eliminate ACC2 function and are 

limited to a single accession: G135E in Sav-0, F1206L in Aitba-1, and E1689G in Ts-1. 

Additional sensitive accessions with one of these variants would provide further evidence of their 

deleterious effect on ACC2 protein function. Another variant of interest is A376V, found only in 

the Col-0 accession, where it likely reduces ACC2 function to some extent. We could also look 

for new missense mutations affecting residues that were not analyzed through our previous 

http://signal.salk.edu/atg1001
http://1001proteomes.masc-proteomics.org/
http://tools.1001genomes.org/polymorph/
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studies (85% of the total residues), especially in highly conserved residues (>95%) found through 

our multi-kingdom alignment of 667 ACCase sequences. 

  In addition to the expanded natural variation that can be analyzed, artificial variation can 

be introduced using recent advances in gene editing technologies to produce missense mutations 

that alter residues of interest. Focusing on the mutations that most likely reduce or eliminate 

ACC2 function (G135E, A376V, F1206L, and E1689G along with I404K and T1902K in the 

Knox-18 group of accessions), we could introduce these mutations individually into the ACC2 

sequence of a tolerant accession like Tsu-0, and measure the effects on ACC2 function by looking 

for increased sensitivity on spectinomycin. More subtle changes in ACCase function could be 

measured by introducing each missense mutation into the ACC1 sequence of Col-0, and 

comparing the embryo phenotypes with known acc1 mutants (emb22, pas3-1, and pas3-2) whose 

terminal phenotype is determined by the strength of the mutation (Parker et al., 2016). Additional 

regions of interest for gene editing include the 17 other ACC2 variants found in natural 

accessions that seem to slightly reduce the function of ACC2. We could also use gene editing to 

analyze the effects of modifying the most conserved residues (>99%) from our multi-kingdom 

alignment where there is no natural variation to be evaluated. Gene editing technologies could 

also be used to analyze the effects of these missense mutations on plants that have non-functional 

copies of the enhancer and modifiers. In order to evaluate this further, we could utilize the many 

descendent lines from our cross between Tsu-0 and emb3126-1, and compare the change in 

spectinomycin sensitivity when the mutation is introduced. Descendent lines 1B-3B-1A and 20D-

3A-2A, which contain Tsu-0 alleles of ACC2, the enhancer, and modifiers, could be compared to 

lines 3B-1A-1A and S2-3B-6B, which contain a Tsu-0 allele of ACC2, a “Nossen” allele of the 

enhancer, and likely “Nossen” alleles for the modifiers. Other comparisons could be made 

singling out just the enhancer, and just the modifiers. 

 Through our crosses between sensitive accessions and knockout mutants of acc2 and 
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tic20-iv, we identified four accessions (La-0, Etna-2, Grivo-1, and Qar-8a) whose sensitivity 

seems to be caused by an unknown locus. This likely answers our question of whether there are 

other genes that give rise to a sensitive phenotype when disrupted. La-0 and Etna-2 are the most 

logical accessions to study first. In La-0, there is no obvious mutation in the ACC2 or Tic20-IV 

sequences that would likely lead to sensitivity, as shown by Yixing Wang when she sequenced 

the full-length cDNA of ACC2. Results of La-0 crosses with knockout mutants clearly showed 

that neither gene led to the sensitivity of the accession. Results from Etna-2 crossed with the acc2 

knockout mutant were less definitive, but Etna-2 is the most sensitive of the four accessions.  

 One potential method to identify the locus responsible for sensitivity in La-0 and Etna-2 

is to cross these accessions with a descendent line from our Tsu-0 x emb3126-1 population that 

contains a functional (Tsu-0) allele of ACC2 along with non-functional (“Nossen”) alleles of the 

enhancer and modifiers, and use a mapping approach with markers spread throughout the 

genome. Using descendent lines that have sensitive alleles of the enhancer and modifiers (3B-1A-

1A and S2-3B-6B) eliminates the effects those loci might have on the sensitivity of La-0 and 

Etna-2. This mapping approach would consist of PCR genotyping 50 tolerant F2 seedlings from 

these crosses for 15-20 markers equally spread across the genome. The focus here is on tolerant 

seedlings because Yixing Wang previously showed that it is difficult to isolate enough DNA from 

sensitive seedlings for multiple rounds of PCR genotyping, and tolerant F2 seedlings would not 

be homozygous La-0 or Etna-2 for the locus causing sensitivity. Individual or pooled sensitive F2 

seedlings, which would be homozygous La-0 or Etna-2, could be used to confirm any candidate 

regions found.  

 A second approach for identifying the locus causing sensitivity would be to use the next 

generation mapping method developed by Austin et al. (2011). The same crosses between 

sensitive accessions (La-0 and Etna-2) and descendent lines lacking a functional enhancer and 

modifiers (3B-1A-1A and S2-3B-6B) could be used. For this approach, extracted DNA from 80-
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100 sensitive F2 seedlings would be pooled and subjected to next-generation sequencing. The 

SNP frequencies across each chromosome would then be analyzed to find a non-recombinant 

region with low frequencies of polymorphism. Within this region should lie the locus (and 

mutation) responsible for the sensitivity of La-0 and Etna-2. Austin et al. (2011) have developed a 

method using a discordant chastity (ChD) statistic to further narrow the location of the 

responsible mutation by differentiating between causative mutations and SNPs that are likely due 

to natural variation. After next-generation sequencing of pooled DNA from F2 sensitive 

seedlings, the data can be uploaded and analyzed through the Next-Generation EMS Mutation 

Mapping website (http://bar.utoronto.ca/NGM/).   

 In addition to further understanding the function of ACCases, and looking at other genes 

that cause sensitivity in natural accessions, there is still more work to be done to identify the 

enhancer locus and potential modifiers. Kayla’s work on identifying enhancer candidates could 

be expanded by PCR genotyping existing recombinant lines between EMB3137, Toc34 

(upstream) and Oep80 (downstream) with additional markers within both of these regions. This 

would allow us to localize the enhancer to either upstream or downstream of EMB3137. Once this 

region is better defined, additional manual curation could be used to identify other potential 

candidates not found through Kayla’s study. The “Nossen” genomic sequence for this smaller 

region of interest could also be obtained from Dr. Masatomo Kobayashi’s lab at the RIKEN Plant 

Science Center, and then be used in sequence comparisons of candidate genes between Tsu-0, 

which has a functional enhancer, and “Nossen”, which has a non-functional enhancer, to look for 

potential deleterious mutations. As more information is gained about the enhancer, additional 

candidate genes will arise as potential modifiers. 

 Because the original candidate gene approach to identify potential modifiers showed no 

linkage to the five genes chosen, either the candidate gene approach could be expanded with 

different genes located elsewhere in the genome, as discussed previously, or whole genome 

http://bar.utoronto.ca/NGM/
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sequences could be compared between descendent lines of Tsu-0 x emb3126-1 that either have 

Tsu-0 (functional) or “Nossen” (non-functional) alleles for any potential modifiers. Similar to the 

previous candidate gene approach, we would be looking for regions of the genome where the 

lines with the least amount of embryo rescue (S2-10D-2B and S2-3B-2D) are homozygous 

“Nossen” whereas the lines with the most rescue (1B-3B-1A and 20D-3A-2A) are homozygous 

or heterozygous Tsu-0. Comparisons between other descendent lines that differ in only the 

functionality of the modifiers would help identify regions of interest. 

 Overall, the project described throughout this dissertation utilized natural variation in 

Arabidopsis accessions to study the effects of mutations, especially deleterious mutations, on a 

protein (ACCase) that is essential for fatty acid biosynthesis in eukaryotes. We also developed an 

understanding of some of the mechanisms behind the diverse phenotypic responses plant species 

have when translation of the chloroplast genome is blocked. Furthermore, our identification of 

accessions hypersensitive to spectinomycin has led to a more efficient method for plastid 

transformation in Arabidopsis (Yu et al., 2017).
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APPENDIX A: Arabidopsis Natural Accessions Analyzed 
 

 

 

 

 

This appendix lists all 252 natural accessions of Arabidopsis that have been used for 

spectinomycin analyses in this project. Included data are accession names, seed stock 

numbers from the Arabidopsis Biological Resource Center (ABRC), whether the seed 

stock is progeny from a sibling plant to the one sequenced for the 1001 Genomes Project, 

information on stratification, vernalization and germination problems, reported country of 

origin, the purpose of the accession for this project, and whether progeny seed stocks 

were harvested in our lab. Adapted from Parker et al. (2016). 

Footnotes for the title row of the following table are described below: 

a     Stratification (S), extended treatment at 4 C used for germination of seeds on plates. 

Vernalization (V), treatment at 4 C for 5-6 weeks of plants at the rosette stage. Seeds 

repeated had problems germinating (G). 

b     DEL, Predicted small deletion or frameshift; FS, First forward genetic screen; LUS, 

Like Unknown Sensitive; NON, Predicted nonsense mutation; RAR, Predicted 

rearrangement or major deletion; REV-1, Reverse genetic screen – ACC1 conserved; 

REV-2, Reverse genetic screen – ACC2 conserved; SPL, Predicted splicing defect; 

SS, Second forward genetic screen; TIC, Reverse genetic screen – TIC20-IV 

conserved; TRP, Predicted transit peptide variant. 
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Accession 

ABRC 

Stock 

Number 

1001 

Genome 

Sibling 

Seed 

Growth 

Information a  

Reported 

Country of 

Origin 

Initial 

Purpose b 

Secondary 

Purpose b 

Progeny 

Seed 

Harvested 

“Nossen” Lab       FS NON Yes 

Aa-0 CS76428 Yes S Germany SS REV-2   

Ag-0 CS76430 Yes S France SS     

Aitba-1 CS76649 Yes S / G Morocco SS REV-2 Yes 

An-1 CS28015     Belgium FS     

Ang-0 CS76436 Yes   Belgium SS     

App1-14 CS76668 Yes   Sweden REV-1 REV-2   

App1-16 CS76669 Yes V Sweden REV-2     

ARGE-1-15 CS76672 Yes   France SS     

Ba-1 CS76441 Yes V United Kingdom LUS     

Baa-1 CS76442 Yes S Netherlands SS REV-2   

Balan-1 CS76687 Yes V Russia REV-2     

Bay-0 CS28056     Germany FS REV-2   

Bch-4 CS28060     Germany FS     

Bd-0 CS76445 Yes S Germany TRP   Yes 

Be-1 CS28063     Germany FS   Yes 

Ber CS76448 Yes   Denmark SS REV-2   

Berkeley CS28067     USA (CA) FS     

Bik-1 CS76449 Yes S Lebanon SS     

Bil-5 CS76709 Yes V Sweden RAR     

Bl-1 CS76450 Yes   Italy SS REV-2   

Bla-1/12 CS28086     Spain FS     

Blh-1 CS28089     Czech Republic NON REV-2   

Blh-1(2) CS76098     Czech Republic NON REV-2   

Boot-1 CS76452 Yes S United Kingdom SS REV-2   

Bor-4 CS76454 Yes S Czech Republic SS     

Borky1 CS76453 Yes   Czech Republic REV-2     

BRI-2 CS76725 Yes   France REV-2     

Bs-1 CS76456 Yes   Switzerland SS     

Bsch-0 CS76457 Yes   Germany TRP     

Buckhorn Pass CS76733 Yes V USA (CA) LUS REV-2   

Bur-0 CS76734 Yes   Ireland SS     

C24 CS28127       FS REV-2   

Cal-0 CS76460 Yes   United Kingdom TIC     

Can-0 CS76740 Yes   Spain SS REV-2   

CATS-6 CS76760 Yes S / G France SPL REV-2   

Chat-1 CS76463 Yes S / G France SS REV-2   

Chi-0 CS76464 Yes   Russia TRP REV-2   
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CIBC-5 CS76465 Yes   United Kingdom SS     

Co-1 CS76468 Yes   Portugal SS     

Col-0 Lab       FS REV-2 Yes 

Com-1 CS76469 Yes   France SS   Yes 

CON-7 CS76781 Yes   France SS REV-2   

Cvi-0 CS28197     
Cape Verde 

Islands 
FS     

CYR CS76790 Yes   France SS REV-2   

Da(1)-12 CS76470 Yes   Czech Republic SS     

Db-1 CS28203     Germany FS REV-2   

Del-10 CS76397 Yes S Yugoslavia SS     

Dem-4 CS76794 Yes V USA LUS REV-2   

Di-G CS76472 Yes   France TRP   Yes 

Dja-1 CS76473 Yes S Kyrgyzstan SS REV-2   

Dog-4 CS76386 Yes V Turkey TRP REV-2   

Dra3-1 CS76811 Yes V Sweden LUS REV-2   

Draha2 CS76812 Yes   Czech Republic SS     

DraIV-6-22 CS76823 Yes   Czech Republic TIC     

Durh-1 CS76477 Yes   United Kingdom SS     

Ema-1 CS76480 Yes S United Kingdom SS REV-2   

En-1 CS28233     Germany FS     

En-D CS28230     Ukraine FS     

Erg2-6 CS76845 Yes   Germany SS     

Eri-1 CS28240     Sweden FS     

Est CS76485 Yes   Germany SS REV-2   

Est-0/1 CS28243     Russia FS     

Etna-2 CS76487 Yes S / V Italy SS REV-2 Yes 

Faneromnemi-

3 
CS76853 Yes   Greece SS     

Fei-0 CS28250     Portugal FS REV-2   

Fell1-10 CS76855 Yes   Germany TRP     

Filet-1 CS76858 Yes   Italy SS     

Ga-0 CS76490 Yes   Germany SS REV-2   

Gd-1 CS28275     Germany FS     

Geg-14 CS76876 Yes   Armenia SS     

Gel-1 CS76492 Yes   Netherlands SS     

Giffo-1 CS76878 Yes   Italy REV-2     

Gifu-2 CS76494 Yes   Japan SS REV-2   

Gn-1 CS76880 Yes   Germany SPL REV-2 Yes 

Gn2-3 CS76881 Yes   Germany SS   Yes 

Go-0 CS28282     Germany FS   Yes 

Gr-1 (Graz) CS76496 Yes   Austria SS     

Gradi-1 CS76887 Yes   Croatia NON     
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Gre-0 CS76497 Yes   USA (MI) LUS REV-2   

Grivo-1 CS76888 Yes S / V Bulgaria REV-2   Yes 

Gu-0 CS28331     Germany FS     

Gy-0 CS76499 Yes   France SS REV-2   

Hag-2 CS76907 Yes V Sweden TIC     

Ha-HBT1-2 CS76898 Yes   Germany SS   Yes 

Ha-HBT2-10 CS76899 Yes   Germany SS     

Ha-S-B CS76903 Yes   Germany SS     

Hi-0 CS28346     Netherlands FS REV-2   

Hn-0 CS76513 Yes   Germany TRP     

Hod CS76924 Yes   Czech Republic NON REV-2 Yes 

Hof-1 CS76925 Yes S Germany SPL     

Hovdala-2 CS76937 Yes V Sweden RAR     

HR-10 CS28355     United Kingdom FS     

Hs-0 CS76515 Yes   Germany SS     

Hsm CS76941 Yes   Czech Republic SS REV-2   

Iasi-1 CS76944 Yes   Romania REV-2     

In-0 CS76516 Yes   Austria SS     

IP-Alo-0 CS76662 Yes S Portugal DEL     

IP-Ber-0 CS78887 Yes S Spain SPL     

IP-Cor-0 CS76782 Yes S / V Spain LUS     

IP-Cum-1 CS76787 Yes S / (V) Spain TRP   Yes 

IP-Deh-1 CS76793 Yes S / V Spain TIC   Yes 

IP-Gua-1 CS76894 Yes S Spain LUS     

IP-Hom-4 CS76929 Yes S / V Spain LUS     

IP-Lso-0 CS77055 Yes S Spain REV-2     

IP-Mar-1 CS77068 Yes S Spain TIC     

IP-Pal-0 CS77159 Yes S Spain REV-2     

IP-Ren-6 CS77212 Yes S Spain DEL     

IP-Tdc-0 CS77344 Yes S Spain TIC   Yes 

IP-Tor-1 CS77378 Yes S Spain REV-2     

IP-Vin-0 CS78846 Yes S Spain DEL     

IP-Vis-0 CS78848 Yes S Spain LUS     

IP-Voz-0 CS78849 Yes S Spain DEL     

Is-0 CS76517 Yes   Germany TRP     

Jl-3 CS28369     Czech Republic FS   Yes 

Jm-0 CS76520 Yes   Czech Republic SS     

Kar-1 CS76522 Yes S Kyrgyzstan SS     

Karag-2 CS76961 Yes   Russia SS     

Kas-2 CS76523 Yes S India SS     

Kb-0 CS76524 Yes   Germany NON   Yes 



176 
 

Kil-0 CS76526 Yes   United Kingdom SS REV-2   

Kin-0 CS76527 Yes   USA (MI) SS REV-2   

Kl-1 CS28390     Germany FS     

Kl-5 CS76528 Yes   Germany NON   Yes 

Kn-0 CS28395     Lithuania FS REV-2   

Kni-1 CS76970 Yes V Sweden LUS REV-2   

Knjas-1 CS76971 Yes   Serbia SS     

Knox-18 CS76530 Yes   USA (IN) SS REV-2 Yes 

Koch-1 CS76396 Yes   Ukraine SS REV-2   

Kolar-1 CS76974 Yes   Bulgaria SS     

Koln CS76976 Yes   Germany SS     

Kolyv-6 CS76980 Yes   Russia SS     

Kondara CS76532 Yes S Tajikistan SS     

K-oze-1 CS76957 Yes   Russia SS     

Kru-3 CS76986 Yes V Sweden TIC   Yes 

Kyoto CS76535 Yes   Japan SS REV-2   

Kz-1 CS28427     Kazakhstan FS     

La-0 CS76538 Yes   Germany SS   Yes 

LDV-18 CS77013 Yes   France SS REV-2   

Ler-1 CS28449     Germany FS REV-2 Yes 

Leska-1-44 CS77030 Yes V Bulgaria REV-2     

Lip-0 CS76542 Yes   Poland SS REV-2   

Litva CS76543 Yes   Lithuania SS     

Lm-2 CS28473     France FS REV-2   

Lo-1 CS28474     Germany FS     

Lu3-30 CS77057 Yes   Germany DEL     

Lu4-2 CS77058 Yes   Germany DEL     

Mdn-1 CS77077 Yes   USA LUS REV-2   

Mer-6 CS76414 Yes S Spain SS     

Mh-0 CS76550 Yes   Poland SS REV-2   

Mh-1 CS28493     Poland FS   Yes 

MIC-31 CS77082 Yes   USA (MI) LUS REV-2   

MNF-Che-2 CS77096 Yes   USA REV-2     

MNF-Jac-12 CS77097 Yes   USA (MI) LUS REV-2   

MNF-Pot-21 CS77099 Yes   USA LUS REV-2   

MNF-Pot-75 CS77100 Yes   USA LUS REV-2   

Mt-0 CS28502     Libya FS   Yes 

Mv-0 CS76556 Yes   USA (MA) LUS REV-2   

Mz-0 CS28506     Germany FS   Yes 

Nc-1 CS76559 Yes   France SS     

NC-6 CS77124 Yes   USA (NC) LUS REV-2   
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Nd-0/1 CS28528     Germany FS     

Nemrut-1 CS76398 Yes V Turkey TRP REV-2   

Neo-6 CS76560 Yes   Tajikistan SS     

Nfa-8 CS28532     United Kingdom FS REV-2   

Nie1-2 CS76402     Germany FS REV-2 Yes 

Nok-3 CS76562 Yes   Netherlands SS     

Np-0 CS76563 Yes   Germany SS     

Nw-0 CS76564 Yes   Germany TRP     

Nz-1 CS28578     New Zealand FS     

Ob-0 CS76566 Yes   Germany RAR   Yes 

Old-1 CS76567 Yes   Germany RAR   Yes 

Olympia-2 CS77144 Yes   Greece DEL     

Oy-0 CS28591     Norway FS REV-2 Yes 

Pa-2 CS28595     Italy FS     

Ped-0 CS76415 Yes V Spain LUS     

Per-1 CS76571 Yes   Russia SS     

Pi-0 CS76572 Yes   Austria SS REV-2   

Pi-2 CS28639     Austria FS   Yes 

Pla-0 CS76573 Yes   Spain SS REV-2   

Pna-10 CS76574 Yes   USA (MI) SS REV-2 Yes 

Pna-17 CS76575 Yes V USA (MI) LUS REV-2   

Pog-0 CS76576 Yes S Canada SS REV-2   

Pro-0 CS76577 Yes S Spain SS     

PT2.21 CS77191 Yes   USA (PT) LUS REV-2   

Pu2-23 CS76579 Yes S Czech Republic SS     

Qar-8a CS76581 Yes V Lebanon DEL   Yes 

Qui-0 CS76417     
North 

Africa/Spain 
FS REV-2   

Ra-0 CS28665     France FS     

Ragl-1 CS76583 Yes   United Kingdom SS REV-2   

Rennes-1 CS76586 Yes   France SS REV-2   

Rev-2 CS77215 Yes V Sweden RAR     

RLD-2 CS28688     Russia FS     

Rmx-A01 CS76589 Yes   USA (MI) LUS REV-2   

Rmx-A180 CS77218 Yes   USA (MI) LUS REV-2   

RRS-10 CS76592 Yes   USA (IN) SS REV-2 Yes 

RRS-7 CS76593 Yes   USA (IN) TRP     

Rubexhnoe-1 CS76594 Yes S Ukraine SS     

Sapporo-0 CS28724     Japan FS     

Sav-0 CS28725     Czech Republic FS   Yes 

Schl-7 CS77240 Yes   Germany REV-2     

Se-0 CS76597 Yes S Spain SS     
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Seattle-0 CS76598 Yes   USA (WA) SS REV-2   

Sei-0 CS76599 Yes   Italy SS REV-2   

Sha CS28736     Tajikistan FS REV-2 Yes 

Sha(2) CS76382     Tajikistan FS REV-2   

Si-0 CS76601 Yes   Germany SS REV-2   

Slavi-1 CS76419 Yes S Bulgaria SS     

SLSP-31 CS77254 Yes   USA (MI) LUS REV-2   

SLSP-35 CS77255 Yes   USA (MI) LUS REV-2   

Smolj-1 CS77256 Yes S Bulgaria REV-2     

Sorbo CS76602 Yes   Tajikistan SS     

Spr1-2 CS77261 Yes V Sweden LUS REV-2   

Spro-1 CS77263 Yes V Sweden RAR     

Spro-2 CS77264 Yes S / V Sweden SPL     

Sq-8 CS76604 Yes   United Kingdom SS REV-2   

Star-8 CS76400 Yes   Germany TRP     

Ste-2 CS77274 Yes S / V Sweden SPL     

Ste-3 CS77275 Yes S / V Sweden SPL     

Stw-0 CS76605 Yes   Russia SS     

T1020 CS77289 Yes V Sweden RAR     

Ta-0 CS76608 Yes   Czech Republic SS     

TAMM-2 CS76610 Yes V Finland RAR     

Tha-1 CS76611 Yes   Netherlands SS     

Tol-0 CS76614 Yes   USA (OH) SS REV-2   

Ts-1 CS76615 Yes   Spain REV-1 REV-2 Yes 

Tscha-1 CS76616 Yes   Austria SS REV-2   

Tsu-0 CS28780     Japan FS REV-2 Yes 

Tu-0 CS76617 Yes   Italy SS REV-2 Yes 

Tul-0 CS76618 Yes   USA (MI) SS REV-2 Yes 

Ty-0 CS76619 Yes   United Kingdom SS     

Uk-1 CS76620 Yes S Germany SS     

UKSW06-333 CS78813 Yes   United Kingdom LUS REV-2   

Ulies-1 CS78815 Yes   Romania TIC REV-2   

Ullapool-8 CS78821 Yes S United Kingdom SPL     

Uod-1 CS76621 Yes   Austria SS REV-2   

Utrecht CS76622 Yes   Netherlands SS     

Vaar2-6 CS78831 Yes V Sweden RAR     

Van-0 CS28796     Canada FS REV-2   

Vimmerby CS78845 Yes S / V Sweden SPL     

Wa-1 CS76626 Yes   Poland REV-1 REV-2 Yes 

WalhaesB4 CS76408 Yes S Germany REV-2     

WAR CS78853 Yes   USA (RI) REV-2     
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Wei-0 CS28816     Switzerland FS   Yes 

Wil-1 CS28819     Russia FS     

Wl-0 CS76630 Yes S Germany SPL   Yes 

Ws-2 CS28828     Russia FS REV-2   

Yeg-1 CS76394 Yes   Armenia FS     

Yo-0 CS76633 Yes V USA (CA) LUS REV-2   

Zal-1 CS76634 Yes S Kyrgyzstan SS     

Zdr-1 CS76635 Yes   Czech Republic SS REV-2   

Zu-1 CS28847     Switzerland FS     
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APPENDIX B: Detailed Spectinomycin Responses of Natural Accessions and Knockout 

Lines Analyzed 
 

 

 

 

 

This appendix lists the spectinomycin responses of all 252 natural accessions of 

Arabidopsis, and four relevant knockout lines that have been analyzed this project. 

Included data are accession names, number of seedlings analyzed, the assigned 

spectinomycin response category, the response score, and the distribution of seedling 

phenotypes on spectinomycin. Adapted from Parker et al. (2016). 

Footnotes for the title row of the following table are described below: 

a     Higher scores reflect increasing levels of tolerance. 

b     Numbers define classes from expanded cotyledons without leaves (1) to extensive 

rosettes with sizeable leaves (11) as defined in the text. Refer to Figure 3.7 for 

examples of seedling phenotypes for each class. Green to red color gradiant based on 

percentage of seedlings within each phenotypic class; Green is 0% and Red is 100%. 
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Accession 
Seedlings 

Analyzed 

Response 

Category 

Response 

Score a 

Percentage of Seedlings Analyzed b 

1 2 3 5 6 7 9 10 11 

Chat-1 23 Tolerant 9.7 0.0% 0.0% 0.0% 0.0% 8.7% 0.0% 17.4% 56.5% 17.4% 

Be-1 341 Tolerant 9.5 0.3% 0.0% 0.3% 0.3% 0.0% 2.3% 37.8% 55.4% 3.6% 

Jl-3 352 Tolerant 9.4 0.8% 2.0% 0.6% 1.7% 0.8% 7.4% 21.0% 44.9% 20.8% 

Tu-0 84 Tolerant 9.4 0.0% 0.0% 0.0% 0.0% 0.0% 2.4% 57.1% 39.3% 1.2% 

Mh-1 20 Tolerant 9.3 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 70.0% 30.0% 0.0% 

Ha-HBT1-2 28 Tolerant 9.1 0.0% 0.0% 0.0% 3.6% 0.0% 3.6% 60.7% 32.1% 0.0% 

Mz-0 20 Tolerant 9.1 5.0% 0.0% 0.0% 0.0% 0.0% 0.0% 45.0% 50.0% 0.0% 

Pi-2 40 Tolerant 9.0 0.0% 0.0% 0.0% 0.0% 0.0% 5.0% 82.5% 12.5% 0.0% 

Kl-1 20 Tolerant 9.0 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% ##### 0.0% 0.0% 

Wei-0 79 Tolerant 9.0 1.3% 1.3% 0.0% 0.0% 1.3% 2.5% 67.1% 26.5% 0.0% 

Tsu-0 490 Tolerant 8.8 0.0% 0.4% 0.4% 1.4% 1.0% 13.5% 63.9% 18.8% 0.6% 

Pog-0 60 Tolerant 8.6 0.0% 0.0% 0.0% 0.0% 0.0% 23.3% 68.3% 8.4% 0.0% 

Fell1-10 27 Tolerant 8.6 0.0% 0.0% 0.0% 3.7% 0.0% 14.8% 77.8% 3.7% 0.0% 

Uod-1 78 Tolerant 8.5 0.0% 2.6% 0.0% 0.0% 1.3% 14.1% 78.2% 3.8% 0.0% 

En-D 20 Tolerant 8.5 0.0% 0.0% 0.0% 5.0% 0.0% 20.0% 65.0% 10.0% 0.0% 

An-1 20 Tolerant 8.4 0.0% 0.0% 0.0% 0.0% 0.0% 30.0% 70.0% 0.0% 0.0% 

Mt-0 20 Tolerant 8.4 0.0% 0.0% 5.0% 5.0% 0.0% 5.0% 85.0% 0.0% 0.0% 

Lm-2 70 Tolerant 8.3 1.4% 1.4% 0.0% 2.8% 0.0% 22.9% 62.9% 8.6% 0.0% 

Erg2-6 27 Tolerant 8.3 3.7% 0.0% 3.7% 0.0% 0.0% 11.1% 81.5% 0.0% 0.0% 

Ema-1 41 Tolerant 8.2 0.0% 2.5% 4.9% 7.3% 0.0% 14.6% 51.2% 17.1% 2.4% 

Sorbo 28 Tolerant 8.1 3.6% 0.0% 3.6% 0.0% 0.0% 21.4% 71.4% 0.0% 0.0% 

Uk-1 27 High Intermediate 8.3 0.0% 0.0% 0.0% 0.0% 0.0% 33.3% 66.7% 0.0% 0.0% 

En-1 20 High Intermediate 8.3 0.0% 0.0% 0.0% 0.0% 0.0% 35.0% 65.0% 0.0% 0.0% 

Si-0 83 High Intermediate 8.2 2.4% 0.0% 0.0% 0.0% 1.2% 33.7% 51.8% 9.7% 1.2% 

Sha 74 High Intermediate 8.1 0.0% 0.0% 0.0% 5.4% 0.0% 37.8% 50.0% 6.8% 0.0% 

Ang-0 28 High Intermediate 8.1 0.0% 0.0% 0.0% 0.0% 0.0% 46.4% 53.6% 0.0% 0.0% 

Giffo-1 25 High Intermediate 8.0 0.0% 0.0% 0.0% 8.0% 12.0% 24.0% 36.0% 20.0% 0.0% 

C24 73 High Intermediate 7.9 0.0% 2.8% 0.0% 6.8% 2.8% 34.2% 43.8% 9.6% 0.0% 

Baa-1 28 High Intermediate 7.8 3.6% 0.0% 0.0% 7.1% 0.0% 35.7% 46.5% 7.1% 0.0% 

CYR 76 High Intermediate 7.8 0.0% 2.6% 0.0% 13.2% 2.6% 26.3% 47.4% 7.9% 0.0% 

Ag-0 28 High Intermediate 7.6 7.1% 0.0% 7.1% 0.0% 0.0% 25.0% 46.5% 14.3% 0.0% 

Blh-1(2) 20 High Intermediate 7.5 10.0% 0.0% 0.0% 10.0% 0.0% 25.0% 40.0% 15.0% 0.0% 

Nc-1 20 High Intermediate 7.3 10.0% 0.0% 0.0% 0.0% 10.0% 30.0% 50.0% 0.0% 0.0% 

Nz-1 20 High Intermediate 6.4 25.0% 5.0% 0.0% 5.0% 5.0% 10.0% 20.0% 30.0% 0.0% 

Yeg-1 20 Intermediate 7.8 5.0% 0.0% 5.0% 0.0% 0.0% 45.0% 10.0% 35.0% 0.0% 

Filet-1 27 Intermediate 7.6 0.0% 0.0% 0.0% 3.7% 0.0% 63.0% 29.6% 3.7% 0.0% 

Slavi-1 27 Intermediate 7.6 0.0% 0.0% 0.0% 0.0% 3.7% 66.7% 29.6% 0.0% 0.0% 

Gd-1 20 Intermediate 7.6 0.0% 0.0% 0.0% 5.0% 20.0% 35.0% 35.0% 5.0% 0.0% 

Sha(2) 20 Intermediate 7.6 0.0% 0.0% 0.0% 0.0% 0.0% 75.0% 20.0% 5.0% 0.0% 
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IP-Lso-0 55 Intermediate 7.5 0.0% 0.0% 7.3% 21.8% 1.8% 20.0% 21.8% 27.3% 0.0% 

Lo-1 20 Intermediate 7.5 0.0% 0.0% 0.0% 0.0% 5.0% 70.0% 20.0% 5.0% 0.0% 

Bor-4 26 Intermediate 7.4 3.8% 3.8% 0.0% 11.5% 0.0% 34.7% 34.7% 11.5% 0.0% 

Aa-0 27 Intermediate 7.3 0.0% 3.7% 3.7% 3.7% 0.0% 55.6% 25.9% 7.4% 0.0% 

Co-1 28 Intermediate 7.3 0.0% 0.0% 0.0% 10.7% 3.6% 57.1% 28.6% 0.0% 0.0% 

Se-0 28 Intermediate 7.3 0.0% 3.6% 7.1% 0.0% 7.1% 42.9% 35.7% 3.6% 0.0% 

ARGE-1-15 28 Intermediate 7.2 0.0% 3.6% 0.0% 3.6% 0.0% 67.8% 25.0% 0.0% 0.0% 

Kni-1 56 Intermediate 7.2 1.8% 5.4% 3.6% 10.7% 5.4% 28.5% 32.1% 12.5% 0.0% 

Stw-0 28 Intermediate 7.2 0.0% 0.0% 0.0% 0.0% 0.0% 89.3% 10.7% 0.0% 0.0% 

Is-0 28 Intermediate 7.2 0.0% 0.0% 0.0% 14.3% 17.9% 35.7% 32.1% 0.0% 0.0% 

Bsch-0 24 Intermediate 7.2 0.0% 4.2% 4.2% 4.2% 0.0% 62.4% 12.5% 12.5% 0.0% 

Db-1 75 Intermediate 7.2 0.0% 8.0% 2.7% 8.0% 5.3% 32.0% 44.0% 0.0% 0.0% 

Karag-2 28 Intermediate 7.1 3.6% 0.0% 0.0% 10.7% 7.1% 46.5% 32.1% 0.0% 0.0% 

Nfa-8 20 Intermediate 7.1 5.0% 0.0% 0.0% 0.0% 35.0% 30.0% 20.0% 10.0% 0.0% 

Nw-0 28 Intermediate 7.0 0.0% 0.0% 0.0% 3.6% 0.0% 92.8% 3.6% 0.0% 0.0% 

Ga-0 28 Intermediate 7.0 3.6% 0.0% 0.0% 14.3% 0.0% 57.1% 25.0% 0.0% 0.0% 

Ta-0 28 Intermediate 7.0 0.0% 0.0% 0.0% 3.6% 17.8% 67.9% 10.7% 0.0% 0.0% 

Pi-0 28 Intermediate 6.9 3.6% 0.0% 0.0% 0.0% 0.0% 89.3% 7.1% 0.0% 0.0% 

Sei-0 56 Intermediate 6.9 0.0% 1.8% 0.0% 21.4% 1.8% 55.4% 19.6% 0.0% 0.0% 

CON-7 28 Intermediate 6.8 0.0% 7.1% 0.0% 3.6% 0.0% 78.6% 7.1% 3.6% 0.0% 

Borky1 53 Intermediate 6.8 0.0% 0.0% 1.9% 30.2% 0.0% 43.4% 24.5% 0.0% 0.0% 

Draha2 27 Intermediate 6.7 3.7% 3.7% 0.0% 7.4% 0.0% 70.4% 14.8% 0.0% 0.0% 

Kyoto 28 Intermediate 6.7 0.0% 0.0% 0.0% 17.8% 0.0% 78.6% 3.6% 0.0% 0.0% 

Kondara 28 Intermediate 6.7 0.0% 7.1% 0.0% 10.7% 10.7% 53.6% 17.9% 0.0% 0.0% 

Vaar2-6 54 Intermediate 6.7 5.5% 3.7% 3.7% 11.1% 16.7% 27.8% 24.1% 5.5% 1.9% 

Sq-8 26 Intermediate 6.7 7.7% 0.0% 0.0% 15.4% 7.7% 50.0% 7.7% 11.5% 0.0% 

Rev-2 53 Intermediate 6.6 0.0% 0.0% 0.0% 24.5% 1.9% 66.1% 7.5% 0.0% 0.0% 

Zu-1 20 Intermediate 6.6 0.0% 0.0% 0.0% 15.0% 10.0% 75.0% 0.0% 0.0% 0.0% 

Koln 28 Intermediate 6.6 0.0% 0.0% 3.6% 14.3% 0.0% 82.1% 0.0% 0.0% 0.0% 

Zal-1 28 Intermediate 6.5 0.0% 0.0% 0.0% 32.1% 0.0% 60.8% 7.1% 0.0% 0.0% 

CATS-6 47 Intermediate 6.4 12.8% 4.3% 2.1% 6.4% 0.0% 46.8% 25.5% 2.1% 0.0% 

T1020 49 Intermediate 6.4 0.0% 8.2% 0.0% 28.6% 2.0% 44.9% 12.2% 4.1% 0.0% 

Pna-17 52 Intermediate 6.4 0.0% 7.7% 9.6% 19.3% 1.9% 34.6% 26.9% 0.0% 0.0% 

Bs-1 28 Intermediate 6.4 0.0% 0.0% 0.0% 46.4% 0.0% 39.3% 14.3% 0.0% 0.0% 

Ullapool-8 51 Intermediate 6.3 0.0% 1.9% 0.0% 41.2% 5.9% 35.3% 15.7% 0.0% 0.0% 

IP-Gua-1 81 Intermediate 6.3 9.9% 9.9% 0.0% 7.4% 13.6% 28.4% 29.6% 1.2% 0.0% 

Balan-1 52 Intermediate 6.2 3.9% 0.0% 1.9% 34.6% 0.0% 48.1% 11.5% 0.0% 0.0% 

Mh-0 28 Intermediate 6.2 3.6% 0.0% 0.0% 28.6% 0.0% 67.8% 0.0% 0.0% 0.0% 

Lip-0 53 Intermediate 6.2 0.0% 5.7% 0.0% 24.5% 9.4% 56.6% 3.8% 0.0% 0.0% 

SLSP-35 50 Intermediate 6.2 2.0% 4.0% 8.0% 18.0% 4.0% 54.0% 10.0% 0.0% 0.0% 

IP-Pal-0 51 Intermediate 6.1 2.0% 7.8% 3.9% 9.8% 21.6% 45.1% 7.8% 2.0% 0.0% 
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Koch-1 25 Intermediate 6.1 4.0% 0.0% 0.0% 32.0% 16.0% 40.0% 8.0% 0.0% 0.0% 

Hsm 24 Intermediate 6.1 0.0% 0.0% 0.0% 45.8% 0.0% 54.2% 0.0% 0.0% 0.0% 

Kas-2 26 Intermediate 6.1 7.7% 3.8% 3.8% 23.1% 3.8% 38.5% 19.3% 0.0% 0.0% 

Seattle-0 28 Intermediate 6.1 3.6% 10.7% 7.1% 3.6% 3.6% 60.7% 10.7% 0.0% 0.0% 

Pro-0 28 Intermediate 6.0 14.3% 7.1% 7.1% 7.1% 3.6% 25.0% 35.8% 0.0% 0.0% 

Spr1-2 47 Intermediate 6.0 0.0% 6.4% 12.8% 25.5% 6.4% 27.7% 19.1% 2.1% 0.0% 

Da(1)-12 24 Intermediate 6.0 4.2% 0.0% 4.2% 20.8% 25.0% 41.6% 4.2% 0.0% 0.0% 

Bil-5 46 Intermediate 6.0 6.5% 2.2% 8.7% 15.2% 4.4% 54.3% 8.7% 0.0% 0.0% 

Rubexhnoe-1 27 Intermediate 6.0 3.7% 3.7% 0.0% 37.0% 3.7% 44.4% 7.5% 0.0% 0.0% 

Kin-0 23 Intermediate 6.0 8.7% 13.0% 0.0% 4.4% 4.4% 56.5% 13.0% 0.0% 0.0% 

Eri-1 20 Intermediate 6.0 5.0% 0.0% 5.0% 20.0% 35.0% 25.0% 10.0% 0.0% 0.0% 

Kn-0 19 Intermediate 5.9 0.0% 5.3% 0.0% 26.3% 26.3% 42.1% 0.0% 0.0% 0.0% 

Hof-1 56 Intermediate 5.9 0.0% 0.0% 3.6% 48.2% 10.7% 33.9% 3.6% 0.0% 0.0% 

Zdr-1 28 Intermediate 5.8 0.0% 0.0% 0.0% 60.7% 7.1% 28.6% 3.6% 0.0% 0.0% 

Ha-HBT2-10 27 Intermediate 5.8 0.0% 14.8% 7.4% 3.7% 25.9% 40.8% 7.4% 0.0% 0.0% 

toc34 
(ppi3-2) 

18 Intermediate 5.8 0.0% 0.0% 27.8% 27.8% 0.0% 22.2% 22.2% 0.0% 0.0% 

Hn-0 28 Intermediate 5.7 0.0% 3.6% 0.0% 53.6% 0.0% 42.8% 0.0% 0.0% 0.0% 

Hi-0 20 Intermediate 5.7 0.0% 0.0% 5.0% 30.0% 55.0% 10.0% 0.0% 0.0% 0.0% 

App1-16 54 Intermediate 5.6 0.0% 0.0% 0.0% 66.7% 1.8% 31.5% 0.0% 0.0% 0.0% 

Col-0 287 Intermediate 5.6 1.8% 8.7% 9.1% 38.3% 1.8% 25.4% 12.5% 2.4% 0.0% 

WalhaesB4 39 Intermediate 5.6 15.4% 5.1% 2.6% 23.1% 0.0% 35.9% 17.9% 0.0% 0.0% 

Geg-14 28 Intermediate 5.5 3.6% 7.1% 0.0% 10.7% 67.9% 10.7% 0.0% 0.0% 0.0% 

IP-Voz-0 72 Intermediate 5.5 1.4% 0.0% 4.2% 62.5% 1.4% 29.1% 1.4% 0.0% 0.0% 

Pu2-23 23 Intermediate 5.4 4.4% 4.4% 13.0% 21.7% 39.1% 4.4% 13.0% 0.0% 0.0% 

Leska-1-44 52 Intermediate 5.4 0.0% 7.7% 7.7% 50.0% 1.9% 26.9% 5.8% 0.0% 0.0% 

Tscha-1 28 Intermediate 5.4 10.7% 0.0% 0.0% 50.0% 7.1% 28.6% 0.0% 3.6% 0.0% 

Van-0 20 Intermediate 5.4 0.0% 10.0% 15.0% 45.0% 5.0% 5.0% 20.0% 0.0% 0.0% 

Hod 72 Intermediate 5.3 1.4% 1.4% 4.1% 66.7% 0.0% 26.4% 0.0% 0.0% 0.0% 

Com-1 32 Intermediate 5.3 6.3% 21.9% 15.5% 6.3% 0.0% 25.0% 21.9% 3.1% 0.0% 

Cvi-0 20 Intermediate 5.3 5.0% 20.0% 0.0% 0.0% 40.0% 35.0% 0.0% 0.0% 0.0% 

Dra3-1 56 Intermediate 5.3 1.8% 10.7% 17.9% 23.2% 10.7% 25.0% 10.7% 0.0% 0.0% 

Wa-1 40 Intermediate 5.3 7.5% 10.0% 2.5% 40.0% 0.0% 35.0% 5.0% 0.0% 0.0% 

Ws-2 20 Intermediate 5.3 0.0% 0.0% 15.0% 55.0% 5.0% 25.0% 0.0% 0.0% 0.0% 

Hs-0 25 Intermediate 5.2 0.0% 0.0% 20.0% 60.0% 0.0% 8.0% 12.0% 0.0% 0.0% 

Boot-1 26 Intermediate 5.2 3.8% 3.8% 11.5% 42.4% 3.8% 34.7% 0.0% 0.0% 0.0% 

Kar-1 28 Intermediate 5.2 32.1% 7.1% 0.0% 10.7% 0.0% 14.3% 35.8% 0.0% 0.0% 

Chi-0 75 Intermediate 5.1 0.0% 1.3% 9.4% 73.3% 0.0% 16.0% 0.0% 0.0% 0.0% 

Nie1-2 235 Intermediate 5.1 5.5% 16.6% 6.0% 17.9% 22.5% 28.1% 3.4% 0.0% 0.0% 

UKSW06-333 15 Intermediate 5.1 13.3% 13.3% 6.7% 26.7% 6.7% 13.3% 20.0% 0.0% 0.0% 

BRI-2 31 Intermediate 5.1 0.0% 3.2% 9.7% 64.5% 9.7% 12.9% 0.0% 0.0% 0.0% 

Est 27 Intermediate 5.0 0.0% 18.5% 7.4% 0.0% 74.1% 0.0% 0.0% 0.0% 0.0% 
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Iasi-1 44 Intermediate 5.0 2.3% 15.9% 11.3% 20.5% 31.8% 13.6% 2.3% 2.3% 0.0% 

Jm-0 27 Intermediate 5.0 11.1% 3.7% 0.0% 55.6% 3.7% 25.9% 0.0% 0.0% 0.0% 

Fei-0 20 Intermediate 4.9 25.0% 15.0% 0.0% 5.0% 25.0% 10.0% 10.0% 10.0% 0.0% 

Kz-1 20 Intermediate 4.9 10.0% 5.0% 15.0% 25.0% 15.0% 30.0% 0.0% 0.0% 0.0% 

Np-0 28 Intermediate 4.8 3.6% 7.1% 10.7% 57.2% 10.7% 7.1% 3.6% 0.0% 0.0% 

Gel-1 28 Intermediate 4.8 10.7% 0.0% 3.6% 67.8% 3.6% 14.3% 0.0% 0.0% 0.0% 

Schl-7 70 Intermediate 4.8 1.4% 15.7% 11.4% 37.2% 11.4% 22.9% 0.0% 0.0% 0.0% 

Gr-1 (Graz) 26 Intermediate 4.8 0.0% 11.5% 11.5% 57.7% 0.0% 19.3% 0.0% 0.0% 0.0% 

Ba-1 22 Intermediate 4.8 4.5% 18.3% 18.3% 22.7% 4.5% 22.7% 4.5% 4.5% 0.0% 

K-oze-1 28 Intermediate 4.8 7.1% 17.9% 7.1% 28.6% 3.6% 35.7% 0.0% 0.0% 0.0% 

In-0 84 Intermediate 4.8 13.1% 8.3% 10.6% 31.0% 4.8% 28.6% 3.6% 0.0% 0.0% 

Can-0 96 Intermediate 4.7 1.0% 5.2% 30.2% 38.6% 1.0% 21.9% 2.1% 0.0% 0.0% 

RRS-7 28 Intermediate 4.7 7.1% 25.0% 3.6% 21.4% 3.6% 39.3% 0.0% 0.0% 0.0% 

Durh-1 17 Intermediate 4.7 35.3% 11.8% 0.0% 0.0% 5.9% 23.5% 23.5% 0.0% 0.0% 

Star-8 27 Intermediate 4.7 7.4% 29.7% 11.1% 14.8% 0.0% 18.5% 18.5% 0.0% 0.0% 

Gy-0 26 Intermediate 4.6 15.4% 19.3% 0.0% 19.3% 15.4% 26.8% 3.8% 0.0% 0.0% 

Ha-S-B 28 Intermediate 4.6 3.6% 14.3% 17.9% 35.7% 0.0% 28.5% 0.0% 0.0% 0.0% 

Dja-1 52 Intermediate 4.6 3.8% 23.1% 3.8% 40.4% 11.6% 15.4% 1.9% 0.0% 0.0% 

Nd-0/1 19 Intermediate 4.6 15.8% 21.1% 5.2% 0.0% 21.1% 36.8% 0.0% 0.0% 0.0% 

Gu-0 20 Intermediate 4.6 0.0% 5.0% 25.0% 60.0% 0.0% 10.0% 0.0% 0.0% 0.0% 

Hovdala-2 56 Intermediate 4.5 0.0% 0.0% 30.4% 62.5% 0.0% 7.1% 0.0% 0.0% 0.0% 

IP-Hom-4 94 Intermediate 4.5 6.4% 22.3% 17.0% 16.0% 13.8% 17.0% 5.4% 2.1% 0.0% 

Smolj-1 51 Intermediate 4.5 17.6% 25.5% 0.0% 7.8% 21.6% 15.7% 11.8% 0.0% 0.0% 

Kolar-1 27 Intermediate 4.5 29.7% 11.1% 3.7% 11.1% 0.0% 33.3% 11.1% 0.0% 0.0% 

Ler-1 20 Intermediate 4.5 10.0% 25.0% 0.0% 0.0% 65.0% 0.0% 0.0% 0.0% 0.0% 

Nok-3 26 Intermediate 4.5 30.8% 15.4% 0.0% 3.8% 3.8% 34.7% 11.5% 0.0% 0.0% 

Neo-6 27 Intermediate 4.5 18.6% 25.9% 3.7% 11.1% 3.7% 25.9% 3.7% 7.4% 0.0% 

Ber 25 Intermediate 4.4 0.0% 4.0% 32.0% 52.0% 4.0% 8.0% 0.0% 0.0% 0.0% 

CIBC-5 27 Intermediate 4.4 14.9% 7.4% 22.2% 22.2% 7.4% 22.2% 3.7% 0.0% 0.0% 

Ragl-1 27 Intermediate 4.3 14.8% 14.8% 7.4% 29.7% 14.8% 18.5% 0.0% 0.0% 0.0% 

MNF-Che-2 53 Intermediate 4.3 0.0% 5.7% 39.6% 41.5% 1.9% 11.3% 0.0% 0.0% 0.0% 

Pla-0 27 Intermediate 4.3 11.1% 26.0% 3.7% 22.2% 18.5% 18.5% 0.0% 0.0% 0.0% 

Del-10 24 Intermediate 4.2 12.5% 8.3% 16.7% 50.0% 0.0% 12.5% 0.0% 0.0% 0.0% 

Nemrut-1 75 Intermediate 4.2 5.3% 38.7% 0.0% 2.7% 53.3% 0.0% 0.0% 0.0% 0.0% 

RLD-2 19 Intermediate 4.1 5.3% 36.8% 0.0% 15.8% 42.1% 0.0% 0.0% 0.0% 0.0% 

Kolyv-6 27 Intermediate 4.0 18.5% 18.5% 11.1% 29.7% 11.1% 3.7% 7.4% 0.0% 0.0% 

Litva 27 Intermediate 3.9 7.4% 3.7% 37.0% 48.2% 0.0% 3.7% 0.0% 0.0% 0.0% 

Spro-1 52 Low Intermediate 5.1 3.8% 17.3% 36.6% 7.7% 0.0% 3.8% 13.5% 13.5% 3.8% 

Mer-6 28 Low Intermediate 4.5 0.0% 42.9% 14.3% 7.1% 10.7% 3.6% 21.4% 0.0% 0.0% 

Yo-0 51 Low Intermediate 4.5 2.0% 35.3% 17.6% 9.8% 0.0% 23.5% 11.8% 0.0% 0.0% 

IP-Tor-1 46 Low Intermediate 4.1 4.3% 30.4% 19.6% 17.4% 10.9% 13.1% 4.3% 0.0% 0.0% 



185 
 

Kil-0 28 Low Intermediate 4.0 0.0% 3.6% 46.4% 42.9% 7.1% 0.0% 0.0% 0.0% 0.0% 

Gradi-1 8 Low Intermediate 4.0 37.5% 12.5% 0.0% 0.0% 12.5% 37.5% 0.0% 0.0% 0.0% 

Ulies-1 109 Low Intermediate 3.9 7.3% 27.5% 23.0% 12.8% 20.2% 2.8% 6.4% 0.0% 0.0% 

Rennes-1 44 Low Intermediate 3.9 13.6% 27.3% 18.2% 15.9% 2.3% 15.9% 6.8% 0.0% 0.0% 

Bla-1/12 20 Low Intermediate 3.9 20.0% 30.0% 5.0% 0.0% 35.0% 5.0% 5.0% 0.0% 0.0% 

Bik-1 28 Low Intermediate 3.8 0.0% 39.3% 17.8% 28.6% 0.0% 10.7% 3.6% 0.0% 0.0% 

LDV-18 21 Low Intermediate 3.7 9.5% 33.4% 19.0% 9.5% 19.0% 4.8% 4.8% 0.0% 0.0% 

App1-14 38 Low Intermediate 3.7 7.9% 31.6% 13.1% 31.6% 7.9% 7.9% 0.0% 0.0% 0.0% 

Berkeley 20 Low Intermediate 3.7 10.0% 30.0% 10.0% 35.0% 10.0% 5.0% 0.0% 0.0% 0.0% 

Dog-4 53 Low Intermediate 3.7 26.4% 32.1% 5.7% 1.9% 11.3% 9.4% 13.2% 0.0% 0.0% 

WAR 39 Low Intermediate 3.7 5.2% 20.5% 33.3% 25.6% 12.8% 2.6% 0.0% 0.0% 0.0% 

Utrecht 28 Low Intermediate 3.6 0.0% 39.3% 21.4% 17.9% 21.4% 0.0% 0.0% 0.0% 0.0% 

Hag-2 73 Low Intermediate 3.6 6.9% 37.0% 13.7% 19.2% 20.5% 2.7% 0.0% 0.0% 0.0% 

Bay-0 68 Low Intermediate 3.6 13.2% 42.7% 1.5% 8.8% 25.0% 8.8% 0.0% 0.0% 0.0% 

DraIV-6-22 79 Low Intermediate 3.5 7.6% 30.4% 29.1% 16.5% 5.1% 8.9% 2.4% 0.0% 0.0% 

Tha-1 84 Low Intermediate 3.4 17.9% 39.3% 7.1% 6.0% 21.4% 7.1% 1.2% 0.0% 0.0% 

Knjas-1 22 Low Intermediate 3.4 27.3% 31.8% 9.1% 9.1% 4.5% 9.1% 9.1% 0.0% 0.0% 

IP-Vis-0 47 Low Intermediate 3.3 31.9% 19.1% 12.8% 14.9% 6.4% 14.9% 0.0% 0.0% 0.0% 

Sapporo-0 16 Low Intermediate 3.2 18.8% 37.5% 0.0% 31.2% 12.5% 0.0% 0.0% 0.0% 0.0% 

Ra-0 20 Low Intermediate 3.2 40.0% 15.0% 0.0% 20.0% 25.0% 0.0% 0.0% 0.0% 0.0% 

Kru-3 173 Sensitive 4.1 7.0% 30.6% 21.4% 10.4% 15.0% 5.8% 5.8% 4.0% 0.0% 

IP-Tdc-0 130 Sensitive 3.8 9.2% 23.8% 28.5% 18.5% 4.6% 9.2% 5.4% 0.8% 0.0% 

IP-Deh-1 94 Sensitive 3.6 3.2% 24.5% 44.7% 12.8% 1.0% 10.6% 3.2% 0.0% 0.0% 

IP-Mar-1 51 Sensitive 3.4 11.8% 17.6% 51.0% 3.9% 0.0% 9.8% 5.9% 0.0% 0.0% 

Ty-0 28 Sensitive 3.2 0.0% 57.1% 17.9% 0.0% 25.0% 0.0% 0.0% 0.0% 0.0% 

Bch-4 20 Sensitive 3.2 10.0% 45.0% 15.0% 10.0% 20.0% 0.0% 0.0% 0.0% 0.0% 

Ped-0 56 Sensitive 3.1 26.8% 17.9% 28.6% 19.6% 0.0% 0.0% 7.1% 0.0% 0.0% 

Go-0 58 Sensitive 3.1 17.2% 32.8% 20.7% 15.5% 12.1% 1.7% 0.0% 0.0% 0.0% 

Mdn-1 43 Sensitive 2.9 37.2% 16.3% 20.9% 7.0% 4.6% 14.0% 0.0% 0.0% 0.0% 

IP-Ren-6 42 Sensitive 2.8 2.4% 57.1% 23.8% 9.5% 4.8% 2.4% 0.0% 0.0% 0.0% 

Aitba-1 53 Sensitive 2.8 39.6% 30.2% 5.7% 7.5% 3.8% 9.4% 1.9% 1.9% 0.0% 

TAMM-2 54 Sensitive 2.8 0.0% 55.6% 33.3% 5.5% 1.9% 3.7% 0.0% 0.0% 0.0% 

IP-Cor-0 8 Sensitive 2.6 25.0% 50.0% 0.0% 12.5% 12.5% 0.0% 0.0% 0.0% 0.0% 

Qui-0 18 Sensitive 2.5 44.4% 33.3% 0.0% 0.0% 16.7% 5.6% 0.0% 0.0% 0.0% 

MNF-Jac-12 33 Sensitive 2.5 42.5% 12.1% 30.3% 3.0% 9.1% 3.0% 0.0% 0.0% 0.0% 

Di-G 82 Sensitive 2.5 12.2% 61.0% 14.6% 3.7% 8.5% 0.0% 0.0% 0.0% 0.0% 

Pa-2 20 Sensitive 2.5 10.0% 75.0% 0.0% 5.0% 10.0% 0.0% 0.0% 0.0% 0.0% 

Ts-1 76 Sensitive 2.4 21.1% 61.8% 3.9% 2.6% 5.3% 4.0% 1.3% 0.0% 0.0% 

Faneromnemi-
3 

27 Sensitive 2.4 29.6% 29.6% 26.0% 14.8% 0.0% 0.0% 0.0% 0.0% 0.0% 

Wil-1 20 Sensitive 2.4 0.0% 90.0% 0.0% 0.0% 10.0% 0.0% 0.0% 0.0% 0.0% 

Bl-1 49 Sensitive 2.4 6.1% 59.3% 30.6% 2.0% 2.0% 0.0% 0.0% 0.0% 0.0% 
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Per-1 27 Sensitive 2.4 18.5% 59.3% 7.4% 11.1% 3.7% 0.0% 0.0% 0.0% 0.0% 

Est-0/1 20 Sensitive 2.4 5.0% 85.0% 0.0% 0.0% 10.0% 0.0% 0.0% 0.0% 0.0% 

HR-10 20 Sensitive 2.4 50.0% 25.0% 5.0% 0.0% 20.0% 0.0% 0.0% 0.0% 0.0% 

Cal-0 112 Sensitive 2.3 8.0% 59.8% 29.5% 0.9% 1.8% 0.0% 0.0% 0.0% 0.0% 

IP-Cum-1 129 Sensitive 2.3 34.9% 20.1% 35.7% 9.3% 0.0% 0.0% 0.0% 0.0% 0.0% 

“Nossen” 571 Sensitive 2.3 35.0% 23.5% 33.5% 5.4% 0.7% 1.4% 0.5% 0.0% 0.0% 

Bur-0 70 Sensitive 2.3 1.4% 75.7% 21.5% 0.0% 1.4% 0.0% 0.0% 0.0% 0.0% 

Qar-8a 175 Sensitive 2.2 19.4% 53.2% 21.7% 5.7% 0.0% 0.0% 0.0% 0.0% 0.0% 

MNF-Pot-75 32 Sensitive 2.2 31.3% 25.0% 40.6% 3.1% 0.0% 0.0% 0.0% 0.0% 0.0% 

Bd-0 79 Sensitive 2.2 7.6% 72.1% 19.0% 0.0% 1.3% 0.0% 0.0% 0.0% 0.0% 

MIC-31 49 Sensitive 2.1 32.7% 20.4% 46.9% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 

Oy-0 229 Sensitive 2.1 9.6% 74.7% 13.5% 0.9% 0.9% 0.4% 0.0% 0.0% 0.0% 

Rmx-A01 36 Sensitive 2.1 27.8% 36.1% 36.1% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 

Grivo-1 73 Sensitive 2.0 24.7% 53.4% 20.5% 0.0% 1.4% 0.0% 0.0% 0.0% 0.0% 

Tol-0 73 Sensitive 2.0 50.8% 21.9% 21.9% 2.7% 0.0% 0.0% 2.7% 0.0% 0.0% 

La-0 106 Sensitive 2.0 16.0% 74.5% 8.5% 0.0% 1.0% 0.0% 0.0% 0.0% 0.0% 

Olympia-2 33 Sensitive 1.9 30.3% 45.5% 24.2% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 

Etna-2 111 Sensitive 1.9 26.1% 64.9% 7.2% 0.9% 0.0% 0.9% 0.0% 0.0% 0.0% 

Rmx-A180 42 Sensitive 1.8 42.9% 35.7% 19.0% 2.4% 0.0% 0.0% 0.0% 0.0% 0.0% 

Dem-4 28 Sensitive 1.7 57.1% 17.9% 25.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 

Tul-0 81 Sensitive 1.7 66.7% 11.1% 18.6% 1.2% 1.2% 1.2% 0.0% 0.0% 0.0% 

Buckhorn 
Pass 

29 Sensitive 1.7 58.6% 17.3% 24.1% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 

NC-6 54 Sensitive 1.6 50.0% 35.2% 14.8% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 

tic20-IV-2 

Koncz 11324 
9 Sensitive 1.6 88.9% 0.0% 0.0% 0.0% 11.1% 0.0% 0.0% 0.0% 0.0% 

PT2.21 55 Sensitive 1.5 56.4% 36.4% 7.2% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 

Pna-10 112 Sensitive 1.4 71.4% 15.2% 12.5% 0.9% 0.0% 0.0% 0.0% 0.0% 0.0% 

Wl-0 79 Sensitive 1.4 74.6% 12.7% 12.7% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 

SLSP-31 53 Sensitive 1.4 86.8% 5.7% 1.9% 3.7% 0.0% 1.9% 0.0% 0.0% 0.0% 

Kb-0 73 Sensitive 1.4 74.0% 16.4% 9.6% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 

Gre-0 48 Sensitive 1.4 79.2% 6.2% 14.6% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 

Gifu-2 78 Sensitive 1.3 78.2% 14.1% 5.1% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 

RRS-10 81 Sensitive 1.3 85.2% 6.2% 6.2% 1.2% 0.0% 0.0% 1.2% 0.0% 0.0% 

Spro-2 80 Sensitive 1.3 85.0% 3.8% 10.0% 1.2% 0.0% 0.0% 0.0% 0.0% 0.0% 

IP-Ber-0 49 Sensitive 1.3 81.6% 10.2% 8.2% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 

Blh-1 71 Sensitive 1.3 80.3% 14.1% 5.6% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 

MNF-Pot-21 50 Hypersensitive 1.4 66.0% 32.0% 2.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 

Lu4-2 55 Hypersensitive 1.3 80.0% 14.5% 5.5% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 

Sav-0 275 Hypersensitive 1.2 84.0% 13.1% 2.2% 0.0% 0.7% 0.0% 0.0% 0.0% 0.0% 

Ob-0 74 Hypersensitive 1.2 86.5% 8.1% 5.4% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 

Old-1 75 Hypersensitive 1.2 84.0% 14.7% 1.3% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 
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IP-Vin-0 33 Hypersensitive 1.2 84.8% 15.2% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 

Gn2-3 191 Hypersensitive 1.1 89.0% 8.4% 2.6% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 

Gn-1 83 Hypersensitive 1.1 91.6% 3.6% 4.8% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 

Mv-0 56 Hypersensitive 1.1 91.1% 5.3% 3.6% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 

Knox-18 80 Hypersensitive 1.1 91.2% 7.5% 1.3% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 

Kl-5 76 Hypersensitive 1.1 94.7% 1.3% 4.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 

Ste-2 83 Hypersensitive 1.1 92.8% 6.0% 1.2% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 

Lu3-30 54 Hypersensitive 1.1 92.6% 7.4% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 

IP-Alo-0 51 Hypersensitive 1.1 96.0% 2.0% 2.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 

tic20-IV-1 

Sail-97-F10 
877 Hypersensitive 1.0 97.6% 1.1% 1.3% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 

acc2 

Salk_148966C 
1218 Hypersensitive 1.0 97.2% 2.1% 0.7% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 

Ste-3 82 Hypersensitive 1.0 97.6% 2.4% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 

Vimmerby 67 Hypersensitive 1.0 98.5% 1.5% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 
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APPENDIX C: Details on Enhancer Phenotype Classes of TT Plants from a Tsu-0 Cross 

with emb3126-1 
 

 

 

 

 

This appendix lists the details of the progeny plants screened from a single cross (Tsu-0 x 

emb3126-1). All plants listed are homozygous Tsu-0 for the suppressor (ACC2). Included 

data are the phenotype class, identification numbers of the plants screened, who each 

plant was screened by, plant generation, proposed genotype of the enhancer, genotype of 

three loci linked to the enhancer (TOC34, EMB3137, and OEP80), whether the plant is a 

proposed recombinant line, number of embryos measured, the average and range of 

embryos length in µm, percent of embryos < 100 µm, > 100 µm and >200 µm, and 

percent of embryo phenotypes globular, triangular, linear and cotyledon. 

Footnotes for the title row of the following table are described below: 

a     Late, plants homozygous Tsu-0 for the enhancer. Interm, plants heterozygous for the 

enhancer. Early, plants homozygous “Nossen” for the enhancer. Parentheses, 

borderline plants. 

b     DM, David Meinke. NP, Nicole Parker. 

c     T, homozygous Tsu-0. H, heterozygous. N, homozygous “Nossen”.  

d     TOCx3137, crossover between TOC34 and EMB3137. 3137xOEP, crossover between 

EMB3137 and OEP80. NA, recombinant line identified in previous generation. 
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Phenotype 

Class a 

Plants 

Screened 

Screened 

By b 

Plant 

Generation 

Proposed 

Enhancer 

Genotype c 

TOC34  

EMB3137 

OEP80 

Genotype c 

Proposed 

Recombinant d 

Embryos 

Measured 

Embryo Lengths 

(μm) 

Percent Embryos by 

Length  
Percent Embryos by Stage 

Avg. Range 
<100 

μm 

>100 

μm 

>200 

μm 
Glob. Triang. Linear Cotyl. 

Late 1B DM F2 T T - T - T No 64 194 100 - 400 0.0 98.4 35.9 0.0 25.0 60.9 14.1 

Late 4D-2B DM F3 T T - T - T No 94 182 80 - 450 2.1 94.7 25.5 1.1 33.0 42.5 23.4 

Late 7D-3B DM F3 T T - T - T No 17 178 100 - 270 0.0 100.0 29.4 0.0 47.1 23.5 29.4 

Late S2-10D-2D DM F3 T T - T - T No 44 171 90 - 320 2.3 93.2 22.7 6.8 13.6 68.2 11.4 

Late 19E-2E NP F3 T T - T - T No 58 171 110 - 310 0.0 100.0 20.7 0.0 24.1 67.3 8.6 

Late 20D DM F2 T T - T - T No 41 169   90 - 500 2.4 90.2 19.5 2.4 34.2 43.9 19.5 

Late 4D-1A DM F3 T T - T - T No 37 169 110 - 430 0.0 100.0 8.1 0.0 35.1 56.8 8.1 

Late 7D-2B DM F3 T T - T - T No 17 166 100-300 0.0 82.4 23.5 17.6 47.1 5.9 29.4 

Late 4D-2A DM F3 T T - T - T No 36 164 100 - 320 0.0 88.9 13.9 8.3 25.0 58.4 8.3 

Late 4D-2E DM F3 T T - T - T No 50 163 100 - 250 0.0 98.0 6.0 0.0 18.0 82.0 0.0 

Late 19E-3D NP F3 T T - T - T No 49 152 110 - 210 0.0 100.0 2.0 0.0 36.7 63.3 0.0 

Late 7D-3A DM F3 T T - T - T No 21 148 110 - 360 0.0 100.0 9.5 0.0 66.7 23.8 9.5 

Late 4D-4E DM F3 T H - T - T TOCx3137 75 146 80 - 240 2.7 96.0 2.7 2.7 50.7 45.3 1.3 

Late 4D-4B DM F3 T T - T - H 3137xOEP 40 145 80 - 260 5.0 92.5 7.5 5.0 47.5 40.0 7.5 

Late S2-10D-1E DM F3 T T - T - H 3137xOEP 49 145 90 - 300 4.1 81.6 8.2 6.1 49.0 38.8 6.1 

Late 16E DM+NP F2 T H - T - T TOCx3137 50 142 100 - 290 0.0 90.0 14.0 0.0 84.0   2.0 14.0 

Late 3B-2B DM F3 T T - T - T No 46 142 80 - 260 10.9 82.6 6.5 17.4 67.4 8.7 6.5 

Late 3B-2D DM F3 T H - T - T TOCx3137 39 140 100 - 270 0.0 87.2 12.8 12.8 71.8 2.6 12.8 

Late 10A DM F2 T T - T - T No 20 138 100 - 190 0.0 95.0 0.0 0.0 75.0 25.0   0.0 

Late 19E-4E NP F3 T T - T - T No 49 137 90 - 240 6.1 79.6 4.1 22.4 42.9 32.6 2.1 

Late 19E-4A NP F3 T T - T - T No 44 136 90 - 220 4.5 79.5 6.8 22.7 45.5 31.8 0.0 

Late 7D-6A DM F3 T T - T - T No 29 133 100 - 270 0.0 86.2 6.9 13.8 75.9 3.4 6.9 

Late 17B DM+NP F2 T T - T - H 3137xOEP 40 129 100 - 220 0.0 82.5 2.5 7.5 77.5   7.5   7.5 

Late 19E-1B NP F3 T H - T - T TOCx3137 96 126 70 - 200 9.4 74.0 1.0 32.3 41.7 26.0 0.0 

Late S2-10D-3E DM F3 T T - T - H 3137xOEP 64 123 80 - 230 7.8 71.9 3.1 28.1 54.7 15.6 1.6 

Late 3B-1A-5D DM F4 T N - T - T NA 54 119 80 - 250 5.6 77.8 1.9 22.2 75.9 1.9 0.0 

Late 7D-4B-2E DM F4 T N - T - T NA 96 117 80 - 360 11.5 64.6 1.0 17.7 72.9 8.3 1.1 

Late 3B-1A-1D DM F4 T N - T - T NA 51 115 80 - 150 7.8 78.4 0.0 9.8 88.2 2.0 0.0 

(Late) S2-3B-4A NP F3 T T - T - T NA 94 114 70 - 210 31.9 57.4 1.1 42.6 42.6 14.8 0.0 

(Late) S2-10D-2B DM F3 T T - T - T No 51 106 50 - 170 37.3 56.9 0.0 41.2 52.9 5.9 0.0 
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(Late) 3B-1A-3A DM F4 T N - T - T NA 68 99 70 - 130 33.8 30.9 0.0 70.6 29.4 0.0 0.0 

(Late) S2-3B-2D DM F3 T T - T - T NA 66 95 60 - 230 54.5 19.7 1.5 83.3 9.1 6.1 1.5 

(Interm) S2-8D NP F2 H H - H - H No 30 143 90 - 300 6.7 80.0 20.0 30.0 33.3 33.3 3.4 

(Interm) S2-8D-5A DM F3 H H - H - H No 56 136 70 - 400 28.6 66.1 14.3 32.2 37.5 23.2 7.1 

Interm 7D DM F2 H H - H - H No 34 125   60 - 500 47.1 41.2 5.9 58.8 20.6 20.6 0.0 

Interm S2-8D-5B DM F3 H H - H - H No 44 120 70 - 400 40.9 31.8 11.4 56.8 25.0 4.5 13.7 

Interm S2-8D-1D DM F3 H H - H - H No 44 120 50 - 370 34.1 47.7 6.8 45.5 38.6 9.1 6.8 

Interm S2-4A NP F2 H H - H - H No 16 114 80 - 180 43.8 50.0 0.0 81.2 12.5 6.3 0.0 

Interm 4D-5D DM+NP F3 H H - H - H No Prog.Seed 75 113 50 - 280 53.3 38.7 10.7 60.0 14.7 24.0 1.3 

Interm S2-8D-2D DM F3 H N - H - H TOCx3137 48 111 60 - 280 45.8 41.7 8.3 58.4 22.9 10.4 8.3 

Interm S2-10E NP F2 H H - H - H No 22 110 70 - 230 54.5 27.3 9.1 68.2 9.1 22.7 0.0 

Interm S2-8D-5E DM F3 H H - H - H No 76 107 60 - 320 65.8 31.6 9.2 65.8 19.7 6.6 7.9 

Interm 4D-5E NP F3 H H - H - H No 48 107 60 - 310 60.4 29.2 8.3 70.8 10.4 18.8 0.0 

Interm S2-5B NP F2 H H - H - H No 22 107 60 - 230 68.2 27.3 9.1 77.3 0.0 22.7 0.0 

Interm 3B-2A DM F3 H H - H - T 3137xOEP 26 105 70 - 140 23.1 46.2 0.0 69.2 30.8 0.0 0.0 

Interm 20B NP F2 H H - H - H No 17 104   50 - 350 64.7 29.4 5.9 70.5 11.8 11.8 5.9 

Interm 7D-4B DM F3 H N - H - H TOCx3137 22 104 70 - 170 54.5 36.4 0.0 63.6 31.8 4.6 0.0 

Interm 3B-1D DM F3 H H - H - H No 29 102 60 - 240 48.3 31.0 3.5 69.0 27.6 0.0 3.4 

Interm 3B-3A DM F3 H H - H - H No 26 100 60 - 250 38.5 46.2 3.9 69.2 26.9 0.0 3.9 

Interm 4D-2D DM F3 H H - H - H No 61 99 50 - 270 55.7 31.1 4.9 72.1 11.5 16.4 0.0 

Interm S2-10D-2A DM F3 H H - H - H No 52 99 50 - 270 59.6 36.5 1.9 63.5 19.2 15.4 1.9 

Interm 4D-4A DM F3 H H - H - H No 56 98 50 - 170 57.1 33.9 0.0 69.6 17.9 12.5 0.0 

Interm 7D-3E DM F3 H H - H - N 3137xOEP 18 97 60 - 210 77.8 16.6 5.6 83.2 5.6 5.6 5.6 

Interm 3B DM F2 H H - H - H No 36 96   50 - 260 61.1 27.8 5.6 72.2 22.2 0.0 5.6 

Interm S2-10D-3D DM F3 H H - H - H No 21 95 60 - 180 61.9 33.3 0.0 66.7 23.8 9.5 0.0 

Interm 7D-2D DM F3 H H - H - H No 48 94 60 - 250 64.6 20.8 4.2 79.2 14.6 2.1 4.1 

Interm S2-4B NP F2 H H - H - H No 53 92 50 - 220 71.7 20.8 1.9 84.9 3.8 11.3 0.0 

Interm 4D-6E NP F3 H H - H - N 3137xOEP 43 91 50 - 190 72.1 18.6 0.0 81.4 9.3 9.3 0.0 

Interm 3B-3D DM F3 H H - H - H No 45 91 50 - 240 71.1 22.2 2.2 77.8 20.0 0.0 2.2 

Interm 19E-4D NP F3 H H - H - H No 56 90 50 - 230 69.6 28.6 1.8 71.4 12.5 14.3 1.8 

Interm 4D-6B NP F3 H H - H - H No Prog.Seed 48 87 50 - 210 72.9 16.7 2.1 83.3 6.3 10.4 0.0 

Interm 19E-3E NP F3 H H - H - H No 49 87 60 - 190 69.4 12.2 0.0 91.8 4.1 4.1 0.0 

Interm 17A DM+NP F2 H H - H - T 3137xOEP 27 87   50 - 180 66.7 22.2 0.0 70.4 14.8 14.8 0.0 

Interm 3B-1A-4B DM F4 H N - H - H NA 68 87 50 - 320 72.1 26.5 1.5 70.6 22.1 7.3 0.0 

Interm 7D-4B-3A DM F4 H N - H - H NA 47 86 50 - 170 78.7 19.1 0.0 80.8 12.8 6.4 0.0 



191 
 

Interm 7D-4B-1D DM F4 H N - H - T 
(Yes) 

3137xOEP 
42 86 50 - 140 71.4 21.4 0.0 73.8 26.2 0.0 0.0 

Interm 7D-4B-3D DM F4 H N - H - H NA 50 85 60 - 250 78.0 14.0 2.0 84.0 14.0 0.0 2.0 

Interm S2-10D-3B DM F3 H H - H - H No 62 85 50 - 160 67.7 19.4 0.0 80.6 11.3 8.1 0.0 

Interm 7D-4B-3E DM F4 H N - H - H NA 45 83 60 - 140 73.3 8.9 0.0 86.7 13.3 0.0 0.0 

Interm 3B-1A-4D DM F4 H N - H - T 
(Yes) 

3137xOEP 
47 83 60 - 150 78.7 19.1 0.0 80.9 17.0 2.1 0.0 

Interm 3B-1A-3E DM F4 H N - H - H NA 54 83 60 - 140 70.4 18.5 0.0 79.6 20.4 0.0 0.0 

Interm 4D-1D DM F3 H H - H - H No 61 82 50 - 250 82.0 6.6 1.6 93.4 3.3 3.3 0.0 

Interm 19E-1D NP F3 H H - H - H No 74 82 50 - 180 78.4 14.9 0.0 87.8 4.1 8.1 0.0 

Interm 19E-4B NP F3 H H - H - H No 50 82 50 - 210 80.0 14.0 2.0 84.0 8.0 8.0 0.0 

Interm 19E-2A NP F3 H H - H - H No 54 82 50 - 190 74.1 16.7 0.0 83.3 9.3 7.4 0.0 

Interm 7D-4A DM F3 H H - H - H No 51 82 60 - 200 80.4 13.7 0.0 86.2 9.8 2.0 2.0 

Interm S2-10D-3A DM F3 H H - H - H No 75 81 50 - 170 85.3 10.7 0.0 89.4 5.3 5.3 0.0 

Interm 19E-2B NP F3 H H - H - H No 41 81 50 - 180 73.2 14.6 0.0 68.3 17.1 14.6 0.0 

Interm S2-3B NP F2 H H - H - H No 27 81 50 - 130 77.8 11.1 0.0 96.3 3.7 0.0 0.0 

Interm S2-10D NP F2 H H - H - H No 20 81 60 - 110 75.0 10.0 0.0 95.0 5.0 0.0 0.0 

Interm 3B-1A-5E DM F4 H N - H - N 
(Yes) 

3137xOEP 
47 81 50 - 140 70.2 17.0 0.0 78.7 21.3 0.0 0.0 

Interm 3B-1A-2B DM F4 H N - H - H NA 50 80 50 - 140 72.0 18.0 0.0 80.0 20.0 0.0 0.0 

Interm S2-10D-2E DM F3 H N - H - H TOCx3137 52 80 60 - 140 75.0 11.5 0.0 88.5 11.5 0.0 0.0 

Interm 19E DM F2 H H - H - H No 24 80   50 - 140 75.0 16.7 0.0 83.3 16.7 0.0 0.0 

Interm 3B-1A-1B DM F4 H N - H - H NA 54 79 50 - 150 83.3 9.3 0.0 90.7 7.4 1.9 0.0 

Interm 3B-1A-2D DM F4 H N - H - H NA 53 79 50 - 140 75.5 17.0 0.0 79.2 20.8 0.0 0.0 

Interm 7D-4B-2B DM F4 H N - H - T 
(Yes) 

3137xOEP 
40 79 50 - 170 82.5 15.0 0.0 85.0 7.5 7.5 0.0 

Interm 4D DM F2 H H - H - H No 39 77   50 - 130 82.1 7.7 0.0 89.7 10.3 0.0 0.0 

Interm 11D DM F2 H H - H - H No 32 75   50 - 120 81.3 6.3 0.0 87.5 12.5 0.0 0.0 

Interm 3B-1A DM F3 H N - H - H TOCx3137 18 75 60 - 100 88.9 0.0 0.0 100.0 0.0 0.0 0.0 

? 3B-1A-3D DM F4 ? N - H - H Intriguing 41 66 50 - 120 95.1 2.4 0.0 97.6 2.4 0.0 0.0 

Early S2-6E NP F2 N N - N - N No 43 85 60 - 210 83.7 4.7 2.3 97.7 0.0 2.3 0.0 

Early S2-8D-4A DM F3 N N - N - N No 49 83 60 - 110 81.6 6.1 0.0 93.9 6.1 0.0 0.0 

Early S2-8D-5D DM F3 N N - N - N No 52 82 70 - 120 78.8 5.8 0.0 94.2 5.8 0.0 0.0 

Early 14D NP F2 N N - N - N No 15 82   50 - 110 66.7 6.7 0.0 100.0 0.0 0.0 0.0 

Early S2-6B NP F2 N N - N - N No 19 82 60 - 110 78.9 5.3 0.0 100.0 0.0 0.0 0.0 

Early S2-8D-3B DM F3 N N - N - H 3137xOEP 63 77 50 - 110 92.1 1.6 0.0 98.4 1.6 0.0 0.0 

Early 3B-3B DM F3 N N - N - N No 23 77 60 - 90 100.0 0.0 0.0 100.0 0.0 0.0 0.0 
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Early S2-8D-4E DM F3 N H - N - N TOCx3137 54 74 60 - 100 96.3 0.0 0.0 100.0 0.0 0.0 0.0 

Early 3B-3E DM F3 N N - N - H 3137xOEP 18 71 50 - 80 100.0 0.0 0.0 100.0 0.0 0.0 0.0 

Early 3B-1B DM F3 N H - N - N TOCx3137 29 70 50 - 100 96.6 0.0 0.0 100.0 0.0 0.0 0.0 

Early 4D-5A NP F3 N N - N - N No Prog.Seed 47 70 50 - 100 97.9 0.0 0.0 100.0 0.0 0.0 0.0 

Early S2-8D-6E DM F3 N H - N - N TOCx3137 54 69 60 - 100 98.1 0.0 0.0 100.0 0.0 0.0 0.0 

Early S2-7B NP F2 N N - N - N No 20 69 50 - 80 100.0 0.0 0.0 100.0 0.0 0.0 0.0 

Early S2-3D NP F2 N N - N - N No 24 67 50 - 90 100.0 0.0 0.0 100.0 0.0 0.0 0.0 

Early 4D-3D DM F3 N N - N - N No 29 67 50 - 90 100.0 0.0 0.0 100.0 0.0 0.0 0.0 

Early 19E-1A NP F3 N N - N - N No 48 67 50 - 100 97.9 0.0 0.0 100.0 0.0 0.0 0.0 

Early 1A DM F2 N N - N - H 3137xOEP 42 66   50 - 100 97.6 0.0 0.0 100.0 0.0 0.0 0.0 

Early 8B DM+NP F2 N N - N - N No 39 66   50 -  90 100.0 0.0 0.0 100.0 0.0 0.0 0.0 

Early 20A DM+NP F2 N N - N - N No 25 65   50 -  80 100.0 0.0 0.0 100.0 0.0 0.0 0.0 

Early 8D DM+NP F2 N N - N - N No 28 64   50 -  80 100.0 0.0 0.0 100.0 0.0 0.0 0.0 

Early 7D-4B-4A DM F4 N N - N - N NA 40 64 50 - 80 100.0 0.0 0.0 100.0 0.0 0.0 0.0 

Early S2-3B-6E NP F3 N N - N - N NA 57 63 50 - 90 100.0 0.0 0.0 100.0 0.0 0.0 0.0 

Early 3B-1A-4A DM F4 N N - N - N NA 67 62 50 - 80 100.0 0.0 0.0 100.0 0.0 0.0 0.0 

Early 7D-6D DM F3 N N - N - N No 35 62 50 -  70 100.0 0.0 0.0 100.0 0.0 0.0 0.0 

Early 7E NP F2 N N - N - N No / Transform 38 61   50 - 100 97.4 0.0 0.0 100.0 0.0 0.0 0.0 

Early S2-10D-4B DM F3 N N - N - N No 59 61 50 - 80 100.0 0.0 0.0 100.0 0.0 0.0 0.0 

Early S2-10D-4D DM F3 N N - N - N No 54 60 50 - 80 100.0 0.0 0.0 100.0 0.0 0.0 0.0 

Early 12E DM F2 N N - N - N No 29 58   50 -  70 100.0 0.0 0.0 100.0 0.0 0.0 0.0 

Early 3B-1A-1A DM F4 N N - N - N NA 46 58 50 - 70 100.0 0.0 0.0 100.0 0.0 0.0 0.0 

Early 13A NP F2 N N - N - N No / Transform 29 56   50 -  70 100.0 0.0 0.0 100.0 0.0 0.0 0.0 

Early S2-3B-6B DM+NP F3 N N - N - N NA 82 56 50 - 70 100.0 0.0 0.0 100.0 0.0 0.0 0.0 
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APPENDIX D: Details on Modifier Phenotype Classes of TT Plants from a Tsu-0 Cross 

with emb3126-1 
 

 

 

 

 

This appendix lists the details of the progeny plants screened from a single cross (Tsu-0 x 

emb3126-1). All plants listed are homozygous Tsu-0 for the suppressor (ACC2) and the 

enhancer. Included data are the phenotype class, identification numbers of the plants 

screened, who each plant was screened by, plant generation, number of embryos 

measured, the average and range of embryos length in µm, percent of embryos > 100 µm, 

> 200 µm and > 300 µm, and percent of embryo phenotypes globular, triangular, linear 

and cotyledon. 

Footnotes for the title row of the following table are described below: 

a     Late-Adv, progeny plants from the “Late” class of F2 plants with the highest level of 

embryo rescue. Late-Mod, progeny plants from the “Late” class of F2 plants with a 

moderate level of embryo rescue. Late-Red, progeny plants from the “Late” class of 

F2 plants with the lowest level of embryo rescue. L-A-Late, progeny plants from the 

“Late-Adv” class of F3 plants with the highest level of embryo rescue. L-A-Mod, 

progeny plants from the “Late-Adv” class of F3 plants with a moderate level of 

embryo rescue. Borderline, progeny plants from the “Late-Red” class of F3 plants 

with a moderate level of embryo rescue. L-R-Red, progeny plants from the “Late-

Red” class of F3 plants with the lowest level of embryo rescue.  

b     NP, Nicole Parker. 
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Phenotype 

Class a 

Plants 

Screened 

Screened 

By b 

Plant 

Generation 

Embryos 

Measured 

Embryo Lengths (μm) Percent Embryos by Length  Percent Embryos by Stage 

Average Range >100 μm >200 μm >300 μm Globular Triangular Linear Cotyledon 

Late-Adv 1B-3B NP F3 44 288 100 - 510 97.7 68.2 43.2 0.0 11.3 36.4 52.3 

Late-Adv 20D-S2-1D NP F3 86 259 110 - 510 100.0 57.0 39.5 0.0 15.1 38.4 46.5 

Late-Adv 20D-3A NP F3 39 243 130 - 480 100.0 59.0 17.9 0.0 5.1 53.8 41.1 

Late-Adv 20D-1E NP F3 76 234 100 - 430 98.7 61.8 19.7 0.0 10.5 54.0 35.5 

Late-Mod 1B-6B NP F3 31 219 120 - 490 100.0 41.9 16.1 0.0 16.1 71.0 12.9 

Late-Mod 20D-3B NP F3 36 197 100 - 400 94.4 36.1 13.9 11.1 19.4 22.2 47.3 

Late-Mod 1B-6A NP F3 31 193 100 - 580 93.5 25.8 6.5 6.4 22.6 58.1 12.9 

Late-Mod 20D-2B NP F3 33 192 90 - 350 93.9 42.4 6.1 3.0 18.2 24.2 54.6 

Late-Mod 20D-2D NP F3 37 182 110 - 340 100.0 24.3 2.7 2.7 5.4 81.1 10.8 

Late-Mod 1B-2E NP F3 34 180 120 - 350 100.0 20.6 2.9 0.0 14.7 79.4 5.9 

Late-Mod 20D-S2-1B NP F3 80 180 90 - 390 97.5 23.8 7.5 2.5 35.0 48.8 13.8 

Late-Mod 20D-S2-2D NP F3 77 178 110 - 470 100.0 16.9 3.9 0.0 16.9 75.3 7.8 

Late-Mod 20D-2A NP F3 31 175 90 - 360 93.5 25.8 6.5 12.9 38.7 12.9 35.5 

Late-Mod 1B-1D NP F3 29 173 110 - 510 100.0 13.8 6.9 3.4 27.6 55.2 13.8 

Late-Mod 1B-6D NP F3 33 171 100 - 270 97.0 21.2 0.0 9.1 18.2 57.6 15.1 

Late-Mod 1B-1E NP F3 22 170 110 - 300 100.0 27.3 0.0 13.6 9.1 77.3 0.0 

Late-Red 1B-1B NP F3 26 157 100 - 400 96.2 7.7 3.8 3.8 7.7 80.8 7.7 

Late-Red 1B-3D NP F3 37 157 110 - 230 100.0 5.4 0.0 5.4 27.0 67.6 0.0 

Late-Red 20D-1B NP F3 77 152 100 - 330 98.7 6.5 1.3 7.8 40.2 44.2 7.8 

Late-Red 20D-1D NP F3 32 152 110 - 230 100.0 9.4 0.0 12.5 40.6 40.6 6.3 

Late-Red 20D-3E NP F3 41 145 100 - 230 97.6 4.9 0.0 12.2 43.9 34.1 9.8 

Late-Red 20D-S2-1E NP F3 74 144 90 - 380 73.0 16.2 1.4 31.1 37.8 20.3 10.8 

Late-Red 20D-S2-2A NP F3 76 136 90 - 330 78.9 2.6 1.3 15.8 59.2 23.7 1.3 

Late-Red 20D-S2-2E NP F3 72 125 80 - 190 83.3 0.0 0.0 29.1 54.2 16.7 0.0 

L-A-Late 1B-3B-2B NP F4 27 358 170 - 540 100.0 88.9 66.7 0.0 0.0 22.2 77.8 
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L-A-Late 1B-3B-2E NP F4 52 350 220 - 590 100.0 100.0 61.5 0.0 0.0 36.5 63.5 

L-A-Late 1B-3B-1A NP F4 55 328 200 - 540 100.0 94.5 54.5 0.0 0.0 29.1 70.9 

L-A-Mod 1B-3B-1B NP F4 50 289 170 - 530 100.0 82.0 40.0 0.0 0.0 38.0 62.0 

L-A-Mod 1B-3B-2D NP F4 31 285 170 - 410 100.0 90.3 38.7 0.0 0.0 38.7 61.3 

L-A-Mod 20D-3A-2A NP F4 38 274 120 - 450 100.0 78.9 34.2 0.0 5.3 36.8 57.9 

L-A-Mod 1B-3B-2A NP F4 27 269 160 - 380 100.0 77.8 37.0 0.0 0.0 51.9 48.1 

L-A-Mod 20D-3A-2E NP F4 100 261 120 - 570 100.0 62.0 33.0 0.0 12.0 39.0 49.0 

L-A-Mod 1B-3B-1E NP F4 50 254 160 - 560 100.0 68.0 24.0 0.0 0.0 72.0 28.0 

L-A-Mod 20D-3A-2D NP F4 39 251 120 - 460 100.0 51.3 30.8 0.0 7.6 46.2 46.2 

L-A-Mod 1B-3B-1D NP F4 59 240 160 - 390 100.0 67.8 16.9 0.0 0.0 69.5 30.5 

L-A-Mod 20D-3A-1D NP F4 38 234 130 - 430 100.0 50.0 23.7 0.0 5.3 55.3 39.4 

L-A-Mod 20D-3A-1E NP F4 36 231 120 - 410 100.0 47.2 22.2 0.0 5.6 58.3 36.1 

L-A-Mod 20D-3A-1B NP F4 101 207 110 - 470 100.0 36.6 10.9 0.0 11.9 76.2 11.9 

Borderline 20D-3E-1A NP F4 62 174 80 - 380 87.1 22.6 3.2 14.5 22.6 45.2 17.7 

Borderline 20D-1D-1A NP F4 45 165 90 - 390 84.4 20.0 8.9 20.0 35.5 26.7 17.8 

Borderline 20D-1D-2B NP F4 47 162 90 - 340 87.2 17.0 6.4 12.8 42.6 25.5 19.1 

L-R-Red 20D-1D-1E NP F4 41 158 100 - 260 92.7 7.3 0.0 12.2 24.4 56.1 7.3 

L-R-Red 20D-1D-2D NP F4 56 154 110 - 200 100.0 0.0 0.0 0.0 41.1 58.9 0.0 

L-R-Red 20D-3E-1B NP F4 54 149 80 - 290 85.2 14.8 0.0 14.8 50.0 20.4 14.8 

L-R-Red 20D-3E-3E NP F4 55 146 80 - 300 83.6 12.7 0.0 20.0 41.8 23.6 14.6 

L-R-Red 20D-1D-1D NP F4 54 142 90 - 280 87.0 7.4 0.0 16.7 46.3 33.3 3.7 

L-R-Red 20D-1D-2E NP F4 50 136 80 - 250 86.0 6.0 0.0 20.0 56.0 16.0 8.0 

L-R-Red 20D-3E-1D NP F4 67 135 80 - 310 73.1 6.0 1.5 29.8 44.8 19.4 6.0 

L-R-Red 20D-3E-2D NP F4 70 134 80 - 290 75.7 7.1 0.0 27.1 48.6 20.0 4.3 

L-R-Red 20D-1D-2A NP F4 42 133 80 - 310 83.3 7.2 2.4 21.4 57.1 14.3 7.2 

L-R-Red 20D-3E-3A NP F4 49 131 80 - 390 69.4 6.1 2.0 34.7 42.9 22.4 0.0 
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APPENDIX E: 855 Sequenced Accessions from the 1001 Genomes Project 
 

 

 

 

 

This appendix lists the names for all 855 Arabidopsis accessions used in the ACC1 and 

ACC2 sequence alignments. All sequence data for these accessions was accessed through 

the Salk 1001 Genomes Browser (http://signal.salk.edu/atg1001/3.0/gebrowser.php). 

http://signal.salk.edu/atg1001/3.0/gebrowser.php
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11C1;  ARGE-1-15;  ARR-17;  Aa-0;  Abd-0;  Adam-1;  Aedal-1;  Aedal-3;  Ag-0;  Agu-1;  Aiell-1;  

Aitba-1;  Ak-1;  Alc-0;  Ale-Stenar-44-4;  Ale-Stenar-56-14;  Ale-Stenar-64-24;  Algustrum;  Alst-1;     

Alt-1;  Altai-5;  Amel-1;  An-1;  Ang-0;  Anholt-1;  Ann-1;  Anz-0;  App1-12;  App1-14;  App1-16;    

Appt-1;  BEZ-9;  BI-4;  BRE-14;  BRI-2;  Ba-1;  Baa1-2;  Baa4-1;  Baa5-1;  Baa-1;  Bach-7;  Bach2-1;  

Bai-10;  Bak-2;  Bak-7;  Balan-1;  Basta-1;  Basta-2;  Bay-0;  Bch-1;  Bd-0;  Bela-1;  Bela-2;  Benk-1;  Ber;  

Berg-1;  Bg-2;  Bijisk-4;  Bik-1;  Bil-5;  Bil-7;  Bivio-1;  Bl-1;  Bla-1.7015.MPI;  Bla-1.SALK;  Blh-1;  

Boo2-1;  Boot-1;  Bor-1;  Bor-4;  Borky1;  Br-0;  Broesarp-34-145;  Broet1-6;  Bs-1;  Bsch-0;  Bu-0;  

Buckhorn-Pass;  Bur-0.MPI;  Bur-0.WTC;  C24;  CATS-6;  CHA-41;  CIBC-17;  CIBC-5;  CON-7;  

CSHL-5;  CYR;  Ca-0;  Cal-0;  Can-0;  Castelfed-1-197;  Castelfed-4-211;  Castelfed-4-214;  Cdm-0;  

Cerv-1;  Chaba-2;  Chat-1;  Chi-0;  Cimin-1;  Cnt-1.5726.MPI;  Cnt-1.SALK;  Co;  Co-1;  Col-0;  Com-1;  

Corig-1;  Ct-1;  Cvi-0.SALK;  Cvi-0.SALK;  DIR-9;  Da1-12;  Db-1;  Del-10;  Dem-4;  Di-G;   Dja-1;   

Do-0;  Doer-10;  Dog-4;  Dolen-1;  Dolna-1;  Don-0;  Dospa-1;  Doubravnik7;  Dr-0;  Dra2-1;  Dra3-1;  

DraII-6;  DraIII-1;  DraII-1;  DraIV.5893;  DraIV.5907;  DraIV.5950;  DraIV.5984;  DraIV-6-22.5993;  

Dra-0;  Draha2;  Duk;  Durh-1;  ENC-2-1;  ESP-1-11;  Eden-1;  Eden-2;  Eden-7;  Eden-9;  Edi-0;  Eds-1;  

Eds-9;  Ei-2;   El-0;  Ema-1;  En-1;  En-2;  En-D;  Epidauros-1;  Er-0;  Erg2-6;  Es-0;  Est-1;  Est;  Et-0;  

Etna-2;  Ey15-2;  Faeb-2;  Faeb-4;  Fael-1;  Faneronemi-3;  Fei-0;  Fell1-10;  Fell2-4;  Fell3-7;  Fi-0;   

Filet-1;  Fjae1-1;  Fjae1-2;  Fjae1-5;  Fjae2-4;  Fly2-1;  Fly2-2;  Fondi-1;  Fr-2;  Fri-2;  Furni-1;  GEN-8;  

Ga-0;  Ge-0;  Geg-14;  Gel-1;  Gie-0;  Giffo-1;  Gifu-2;  Gn-1;  Gn2-3;  Goced-1;  Gol-2;  Got-22;  Got-7;  

Gr-5;  Gr-1;  Gradi-1;  Gre-0;  Grivo-1;  Gro-3;  Groen-12;  Groen-14;  Groen-5;  Gu-0;  Gy-0;  HE-1;  

HKT2;  HR-10;  HR-5;  HSm;  Ha-HBT1-2;  Ha-HBT2-10;  Ha-HBT3-1;  Ha-P-13;  Ha-P2-1;  Ha-S-B;  

Ha-SP-2;  Ha-0;  Had-1;  Had-2;  Haes-1;  Hag-2;  Hal-1;  Ham-1;  Hart-2;  Hau-0;  Hel-3;    Hey-1;  Hh-0;  

Hi-0;  Hn-0;  Hod;  Hof-1;  Hola-1-1;  Hola-2-2;  Hola-1-2;  Hov1-10;  Hov1-7;  Hov3-2;  Hov3-5;     

Hov4-1;  Hovdala-2;  Hs-0;  ICE1;  ICE102;  ICE104;  ICE106;  ICE107;  ICE111;  ICE112;  ICE119;  

ICE120;  ICE127;  ICE130;  ICE134;  ICE138;  ICE150;  ICE152;  ICE153;  ICE163;  ICE169;  ICE173;  

ICE181;  ICE21;  ICE212;  ICE213;  ICE216;  ICE226;  ICE228;  ICE29;  ICE33;  ICE36;  ICE49;  ICE50;  

ICE60;  ICE61;  ICE63;  ICE7;  ICE70;  ICE71;  ICE72;  ICE73;  ICE75;  ICE79;  ICE91;  ICE92;  ICE93;  

ICE97;  ICE98;  IP-Adm-0;  IP-Ala-0;  IP-All-0;  IP-Alm-0;  IP-Alo-0;  IP-Ang-0;  IP-Ara-4;  IP-Bar-1;  

IP-Bea-0;  IP-Ben-0;  IP-Ber-0;  IP-Bis-0;  IP-Cab-3;  IP-Cad-0;  IP-Cal-0;  IP-Cap-1;  IP-Car-1;  IP-Cdc-3;  
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IP-Cdo-0;  IP-Cem-0;  IP-Cmo-3;  IP-Coa-0;  IP-Coc-1;  IP-Cor-0;  IP-Cum-1;  IP-Cur-4;  IP-Deh-1;        

IP-Elb-0;  IP-Fue-2;  IP-Fun-0;  IP-Gra-0;  IP-Gua-1;  IP-Her-12;  IP-Hom-4;  IP-Hor-0;  IP-Hum-2;        

IP-Iso-4;  IP-Jim-1;  IP-Lab-7;  IP-Ldd-0;  IP-Lso-0;  IP-Mar-1;  IP-Men-2;  IP-Moa-0;  IP-Moc-11;         

IP-Mon-5;  IP-Mos-1;  IP-Mot-0;  IP-Mun-0;  IP-Mur-0;  IP-Nav-0;  IP-Nog-17;  IP-Orb-10;  IP-Oso-0;  

IP-Pal-0;  IP-Pan-0;  IP-Pds-1;  IP-Pob-0;  IP-Pro-0;  IP-Pue-0;  IP-Rds-0;  IP-Rei-0.9510;  IP-Rei-0.9574;  

IP-Ren-6;  IP-Rev-0;  IP-Ria-0;  IP-Sac-0;  IP-San-10;  IP-Scm-0;  IP-Sdv-3;  IP-Ses-0;  IP-Sne-0;           

IP-Stp-0;  IP-Svi-0;  IP-Tam-0;  IP-Tdc-0;  IP-Tol-7;  IP-Tor-1;  IP-Trs-0;  IP-Vad-0;  IP-Vae-2;  IP-Vav-0;  

IP-Vaz-0;  IP-Vdm-0;  IP-Vdt-0;  IP-Ver-5;  IP-Vid-1;  IP-Vig-1;  IP-Vim-0;  IP-Vin-0;  IP-Vis-0;           

IP-Voz-0;  IP-Vpa-1;  ISS-20;  IST-29;  Iasi-1;  In-0;  Is-0;  Istisu-1;  Je-0;  Jea;  Jl-3;  Jm-0;  K-oze-1;      

K-oze-3;  KBG1-14;  KBG2-13;  KYC-33;  Kaevlinge-1;  Kal-2;  Kar-1;  Karag-1;  Karag-2;  Kas-1;    

Kas-2;  Kastel-1;  Kb-0;  Kelsterbach-4;  Kent;  Kia-1;  Kil-0;  Kin-0;  Kl-5;  Kn-0;  Kni-1;  Knjas-1;     

Knox-18;  Ko-2;  Koch-1;  Kolar-1;  Kolar-2;  Koln;  Kolyv-2;  Kolyv-3;  Kolyv-5;  Kolyv-6;  Kondara;  

Kor-3;  Koren-1;  Kro-0.MPI;  Kro-0.SALK;  Krot-0;  Kru-3;  Kulturen-1;  Kus2-2;  Kyoto;  Kz-9;      

LDV-18;  LDV-46;  LEC-25;  LI-OF-065;  LL-0;  LP3413.41;  La-0;  Lag1-2;  Lag1-4;  Lag1-6;  Lag2;  

Lan-1;  Lan-0;  Le-0;  Lebja-2;  Lebja-4;  Leo-1;  Ler-0;  Ler-1.MPI;  Ler-1.SALK;  Lerik1-3;  Leska-1;  

Lesno-1;  Lesno-2;  Lesno-4;  Li-7;  Li-2;  Liarum;  Lilloe-1;  Lip-0;  Liri-1;  Lis-2;  Lis-3;  Lisse;  Litva;  

Lm-2;  Lom1-1;  Lp2-2;  Lp2-6;  Lu-1;  Lu3-30;  Lu4-2;  Lund;  MAR-4-16;  MAR2-3;  MIC-31;  MIL-2;  

MNF-Che-2;  MNF-Jac-12;  MNF-Pin-39;  MNF-Pot-21;  MNF-Pot-75;  MNF-Riv-21;  MOL-1;     

MOU2-25;  Malii-1;  Marce-1;  Masl-1;  Mc-0;  Mdn-1;  Melic-1;  Melni-2;  Mer-6;  Mh-0;  Mir-0;  

Mitterberg-1-180;  Mitterberg-1-182;  Mitterberg-1-183;  Mitterberg-2-184;  Mitterberg-2-185;  

Mitterberg-3-187;  Mnz-0;  Ms-0;  Mt-0;  Muh-2;  Mv-0;  Mz-0;  N13;  NC-6;  NFA-10;  NFA-8;  NOZ-6;  

Naes-2;  Nc-1;  Nd-1;  Nemrut-1;  Neo-6;  Nicas-1;  Nie1-2;  No-0;  Nok-3;  Nosov-1;  Noveg-1;  Noveg-2; 

Noveg-3;  Np-0;  Nw-0;  Nyl-13;  Nyl-2;  Nyl-7;  Nz-1;  Ob-0;  Obe1-15;  Obh-13;  Oede-2;  Oemoe1-7;     

Oemoe2-1;  Oer-1;  Old-1;  Olympia-2;  Omn-1;  Omn-5;  Or-0;  Orast-1;  Ove-0;  Oy-0.JGI;  Oy-0.WTC;  

PHW-2;  PHW-34;  PLO-1;  PLY-2-;  PNA3;  PT2.21;  PYL-6;  Panik-1;  Panke-1;  Parti-1;  Paw-26;    

Ped-0;  Per-1;  Petergof;  Pfn-10;  Pfn-N2.2-6;  Pi-0;  Pigna-1;  Pla-0;  Pna-10;  Pna-17;  Po-0;  Pog-0;    

Pra-6;  Pro-0;  Pt-0;  Pu2-23;  Pu2-7;  Pu2-8;  Puk-2;  QUI-8;  Qar-8a;  Qui-0;  RAD-21;  RMX3.22;    

RRS-7;  RRS-10;  RUM-20;  Ra-0;  Ragl-1;  Rak-2;  Rakit-1;  Rakit-3;  Rd-0.MPI;  Rd-0.SALK;  Ren-1;  



199 
 

Ren-11;  Rennes-1;  Rev-1;  Rev-2;  Rhen-1;  Ri-0;  Rld-1;  Rmx-A02;  Rmx-A180;  Roed-17-319;     

Rome-1;  Rou-0;  Rsch-4;  Ru-2;  Ru-N2;  Ru4-16;  Rubeznhoe-1;  Rue3-1-31;  SAUL-24;  SLSP-31;  

SLSP-35;  Sakata;  San-2;  Sanna-2;  Sap-0;  Sarno-1;  Schip-1;  Schl-7;  Se-0;  Seattle-0;  Sei-0;  Set-1;  

Sever-1;  Sf-2;  Sf-1;  Sg-1;  Sha.JGI;  Sha.MPI;  Si-0;  Sim-1;  Slavi-2;  Smolj-1;  Sorbo;  Sp-0;  Sparta-1;  

Spr1-2;  Spr1-6;  Spro-1;  Spro-2;  Spro-3;  Sq-1;  Sq-8;  Sr3; Sr5; St-0;  Star-8;  Stara-1;  Staro-1;  Ste-0;  

Ste-2;  Ste-3;  Ste-4;  Stiav-1;  Stilo-1;  Stu1-1;  Stw-0;  Su-0;  Sus-1;  T1000;  T1020;  T1070;  T1080;  

T1090;  T1110;  T1130;  T1160;  T460;  T470;  T480;  T530;  T540;  T550;  T570;  T710;  T720;  T740;  

T780;  T790;  T800;  T840;  T850;  T860;  T880;  T900;  T930;  T960;  T980;  T990;  TAA-04;  TAA-14;  

TAA-18;  TAAD-01;  TAAD-03;  TAAD-04;  TAAD-05;  TAAD-06;  TAAL-03;  TAAL-07;  TBO-01;  

TDr-1;  TDr-13;  TDr-16;  TDr-17;  TDr-2;  TDr-7;  TDr-8;  TDr-9;  TEDEN-02;  TEDEN-03;  TFAE-06;  

TFAE-07;  TFAE-08;  TOM-04;  TOM-06;  TOM-07;  TOU-A1-88;  TOU-A1-89;  TRAE-01;  TRE-1;  

TV-10;  TV-22;  TV-30;  TV-38;  TV-7;  Ta-0;  Tamm-2.GMI;  Tamm-2.SALK;  Tamm-27;  Teano-1;  

Teiu-2;  Tgr-01;  Tha-1;  Ting-1;  Tny-04;  Toc-1;  Tol-0;  Tomegap-2;  Tottarp-2;  Ts-1;  Ts-5;  Tscha-1;  

Tsu-0;  Tsu-1;  Tu-B1-2;  Tu-B2-3;  Tu-KB-6;  Tu-KS-7;  Tu-NK-12;  Tu-PK-7;  Tu-WH;  Tu-0;  

TueSB30-3;  TueV13;  TueWa1-2;  Tuescha9;  Tul-0;  Tur-4;  Ty-1;  Ty-0;  UKID107;  UKID114;  

UKID63;  UKID74;  UKID96;  UKNW06-003;  UKNW06-403;  UKNW06-481;  UKSE06-118;    

UKSE06-252;  UKSE06-325;  UKSE06-362;  UKSE06-432;  UKSE06-470;  UKSE06-500;  UKSE06-533;  

UKSW06-179;  UKSW06-207;  UKSW06-226;  UKSW06-285;  UKSW06-302;  UKSW06-333;  

UKSW06-360;  UduI.6296;  UduI.6390;  UduI.6396;  Uk-1;  Klies-1;  Ull-A-1;  Ull2-3;  Ull2-5;  Ullapool-

8;  Uod-2;  Uod-1;  Uod-7;  Utrecht;  VED-10;  Vaar-1;  Vaar2-1;  Vaestervik;  Van-0;  Vash-1;  Ven-1;  

Vie-0;  Vimmerby;  Vind-1;  Vinsloev;  WAR;  WAV-8;  Wa-1;  WalhaesB4;  Wc-1;  Wei-0;  Westkar-4;  

Wil-2;  Wil-1;  Wl-0;  Ws-0;  Wt-5;  Wu-0;  Xan-1;  Yeg-1;  Yeg-2;  Yeg-4;  Yeg-5;  Yeg-7;  Yeg-8;  Yo-0;  

Yst-1;     Zagub-1;  Zal-1;  Zdarec3;  ZdrI.6424;  ZdrI.6434;  ZdrI.6445;  Zdr-1;  Zu-0;  Zu-1;  Zupan-1;  

love-1;  love-5; 
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APPENDIX F: Brassicaceae Sequences Used for ACC1/ACC2 Alignments and 

Determination of Ka/Ks Ratios 
 

 

 

 

 

This appendix lists the details of the genome sequences from members of the 

Brassicaceae members used for alignments and the determination of Ka/Ks ratios, and the 

ACC sequence for an outgroup, Theobroma cacao. Only Brassicaceae species whose 

genomes were fully sequenced were used for these analyses. Included data are species 

name, name of the ACC1 and ACC2 sequences, the website the sequences were obtained 

from, and relevant publications. Adapted from Parker et al. (2014). 
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Species Sequences Analyzed Relevant Website/Citations 

Arabidopsis thaliana 

ACC1 (NP_174849; 

At1g36160) 
NCBI (www.ncbi.nlm.nih.gov/); 

ACC2 (NP_174850; 

At1g36180) 
TAIR 10 (www.arabidopsis.org) 

Brassica rapa Chiifu-401 
ACC1 (Bra036771) Phytozome v9 (www.phytozome.net/); 

ACC2 (Bra018702) Brassica Database (http://brassicadb.org/brad/index.php) 

Arabidopsis lyrata 
ACC1 (922767) Phytozome v10 (http://phytozome.jgi.doe.gov/pz/portal.html); 

ACC2 (473714) Hu, et al. (2011) 

Capsella rubella 
ACC1 (Carubv10011872m) Phytozome v10 (http://phytozome.jgi.doe.gov/pz/portal.html); 

ACC2 (Carubv10008063m) Slotte, et al. (2013) 

Leavenworthia 

alabamica 

Obtained from Genome 

Sequence 

CoGe (https://genomevolution.org/CoGe/); 

Lyons, et al. (2008) 

Sisymbrium irio 
Obtained from Genome 

Sequence 

CoGe (https://genomevolution.org/CoGe/); 

Lyons, et al. (2008) 

Boechera stricta ACC1 (Bostr.20910s0015.1) 
Phytozome v10 (http://phytozome.jgi.doe.gov/pz/portal.html); 

Boechera stricta v1.2, DOE-JGI 

Aethionema arabicum 
Obtained from Genome 

Sequence 

CoGe (https://genomevolution.org/CoGe/); 

Lyons, et al. (2008) 

Brassica rapa FPsc 
ACC1 (Brara.H00605.1) Phytozome v10 (http://phytozome.jgi.doe.gov/pz/portal.html); 

ACC2 (Brara.F00455.1) Brassica rapa FPsc v1.3, DOE-JGI 

Eutrema parvulum 
ACC1 (Tp1g30640) CoGe (https://genomevolution.org/CoGe/); 

ACC2 (Tp1g30680) Lyons, et al. (2008) 

Theobroma cacao ACC (Thecc1EG034957t1) 
Phytozome v10 (http://phytozome.jgi.doe.gov/pz/portal.html); 

Motamayor, et al. (2013) 
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APPENDIX G: Eukaryotic ACCase Sequences Used for the Original Multi-Kingdom 

Alignment of 20 sequences 
 

 

 

 

 

This appendix lists the details of the eukaryotic protein sequences used for the original 

multi-kingdom alignment. Included data are species name, name of the ACC1 and ACC2 

sequences, the website the sequences were obtained from, and relevant publications. 

Adapted from Parker et al. (2014). 

Footnotes for the following table are described below: 

a     The genomic sequence for ACC1, obtained from Phytozome v9, was used to add 

conserved amino acids missing from the predicted protein sequence. 

b     The genomic sequence for cytosolic ACC, obtained from NCBI, was used to add 

conserved amino acids missing from the predicted protein sequence.  

c     Isoform A was chosen because all of the other isoforms are contained within.  

d     The genomic sequence for HFA1, obtained from Saccharomyces Genome Database, 

was used to add conserved, N-terminal amino acids missing from the predicted 

protein sequence. 
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Species Sequences Analyzed Relevant Website/Citations 

Arabidopsis thaliana 
ACC1 (NP_174849; At1g36160) NCBI (www.ncbi.nlm.nih.gov/); 

ACC2 (NP_174850; At1g36180) TAIR 10 (www.arabidopsis.org) 

Brassica rapa Chiifu-401 

ACC1 (Bra036771) a Phytozome v9 (www.phytozome.net/); 

ACC2 (Bra018702) 
Brassica Database (http://brassicadb.org/brad/index.php); 

Cheng et al. (2011) 

Medicago truncatula ACC (XP_03638794.1) NCBI (www.ncbi.nlm.nih.gov/)  

Triticum aestivum 
Cytosolic ACC (ACD46686.1) 

NCBI (www.ncbi.nlm.nih.gov/)  
Plastid ACC (ACD46683.1) 

Zea mays 
Cytosolic ACC; hypothetical (AFW68888.1) b 

NCBI (www.ncbi.nlm.nih.gov/)  
Plastid ACC (AAA80214.1) 

Homo sapiens 
ACC1 (Isoform 1) (NP_942131.1) 

NCBI (www.ncbi.nlm.nih.gov/)  
ACC2 (Precursor) (NP_001084.3) 

Mus musculus 
ACC1 (NP_579938.2) 

NCBI (www.ncbi.nlm.nih.gov/)  
ACC Beta Precursor (NP_598665.2) 

Danio rerio 
ACC Alpha (NP_001258237.1) 

NCBI (www.ncbi.nlm.nih.gov/)  
ACC2 Isoform X1 (XP_005165251.1) 

Drosophila melanogaster ACC Isoform A (AAF59155.2) c NCBI (www.ncbi.nlm.nih.gov/)  

Saccharomyces cerevisiae 
ACC1 (NP_014413.1) 

NCBI (www.ncbi.nlm.nih.gov/)  
ACC HFA1 (NP_013934.1) d 

Schizosaccharomyces pombe Acetyl CoA/Biotin Carboxylase (NP_593271.1) NCBI (www.ncbi.nlm.nih.gov/)  

Neurospora crassa ACC (XP_963017.1) NCBI (www.ncbi.nlm.nih.gov/)  
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APPENDIX H: UniProt and NCBI Reference IDs for Eukaryotic Sequences used in 

Multi-Kingdom and Plant Alignments 
 

 

 

 

 

This appendix lists the details of the eukaryotic ACCase protein sequences obtained from 

the Pfam database (http://pfam.xfam.org/family/PF08326) based the presence of the central 

domain, and BLAST searches (https://blast.ncbi.nlm.nih.gov/Blast.cgi) with both ACC1 and 

ACC2 Arabidopsis protein sequences. Included data are the UniProt identification numbers, 

the name of the NCBI reference sequence, and the species name. 

http://pfam.xfam.org/family/PF08326
https://blast.ncbi.nlm.nih.gov/Blast.cgi
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UniProt ID 
NCBI Reference 

Sequence 
Species 

F4WVP2_ACREC EGI61712.1 Acromyrmex echinatior 

J9JZ55_ACYPI XP_003245354 Acyrthosiphon pisum 

B2ZGJ3_AEGTA ACD46664.1 Aegilops tauschii 

B2ZGK8_AEGTA ACD46679.1 Aegilops tauschii 

M8BWJ4_AEGTA EMT29390.1 Aegilops tauschii 

K9HK96_AGABB XP_006461998 Agaricus bisporus var. bisporus 

K5XF75_AGABU XP_007327289 Agaricus bisporus var. burnettii 

A0A0D4WUQ0_AGRST AJV90958.1 Agrostis stolonifera 

G1M4G3_AILME   Ailuropoda melanoleuca 

G1M4I7_AILME   Ailuropoda melanoleuca 

G1MDP5_AILME   Ailuropoda melanoleuca 

C0NM24_AJECG EEH07675.1 Ajellomyces capsulatus 

C6H4H2_AJECH EER45832.1 Ajellomyces capsulatus 

F0U8S6_AJEC8 EGC41773.1 Ajellomyces capsulatus 

T5C3B6_AJEDE EQL35860.1 Ajellomyces dermatitidis 

F2TFC1_AJEDA EGE81934.2 Ajellomyces dermatitidis 

C5G6W5_AJEDR EEQ83334.1 Ajellomyces dermatitidis 

C5JZT9_AJEDS XP_002621459 Ajellomyces dermatitidis 

A0A024FVX6_9STRA CCI11186.1 Albugo candida 

F0WQ05_9STRA CCA23409.1 Albugo laibachii 

H9BT72_9POAL AFD53915.1 Alopecurus japonicus 

H9BT73_9POAL AFD53916.1 Alopecurus japonicus 

B5QSK0_ALOMY CAL63610.1 Alopecurus myosuroides 

B5QSK1_ALOMY CAL63611.1 Alopecurus myosuroides 

Q8LRK2_ALOMY CAC84161.1 Alopecurus myosuroides 

W1NEP0_AMBTC ERM94222.1 Amborella trichopoda 

B6RC94_AMYRO ABQ28729.1 Amylomyces rouxii 

U3J6N8_ANAPL   Anas platyrhynchos 

U3IH42_ANAPL   Anas platyrhynchos 

G1KIU6_ANOCA   Anolis carolinensis 

W5JD41_ANODA ETN60739.1 Anopheles darlingi 

Q7PQ11_ANOGA XP_001688518 Anopheles gambiae 

W4H3Y5_9STRA XP_009824345 Aphanomyces astaci 

A0A024UP41_9STRA XP_008864013 Aphanomyces invadans 

V9IDH8_APICE XP_016913943 Apis cerana 

V9IET6_APICE XP_016913945 Apis cerana 

H9KKX0_APIME   Apis mellifera 

D7KM08_ARALL XP_002891212 Arabidopsis lyrata 

D7KM09_ARALL XP_002891213 Arabidopsis lyrata 

ACC1_ARATH NP_001185143 Arabidopsis thaliana 
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ACC2_ARATH NP_174850.4 Arabidopsis thaliana 

E6Y6S2_ARAHY ACO53624.1 Arachis hypogaea 

E6Y6S3_ARAHY ACO53625.1 Arachis hypogaea 

E6Y6S4_ARAHY ACO53626.1 Arachis hypogaea 

E6Y6S5_ARAHY ACO53627.1 Arachis hypogaea 

H6QXH0_ARAHY ACZ50637.1 Arachis hypogaea 

G1X4I9_ARTOA XP_011119401 Arhtrobotrys oligospora 

E4UQ09_ARTGP XP_003174626 Arthroderma gypseum 

C5FPQ6_ARTOC XP_002846743 Arthroderma otae 

R9X868_ASHAC AGO10061.1 Ashbya aceri 

Q75EK8_ASHGO NP_982612 Ashbya gossypii 

M9MV47_ASHG1 AEY94722.1 Ashbya gossypii 

A1CST3_ASPCL XP_001267796 Aspergillus clavatus 

B8NBR1_ASPFN XP_002378098 Aspergillus flavus 

G7XHM5_ASPKW GAA86434.1 Aspergillus kawachii 

Q1JTV6_ASPNG CAG38356.1 Aspergillus niger 

G3XVD5_ASPNA EHA25188.1 Aspergillus niger 

A2QZ87_ASPNC XP_001395476 Aspergillus niger 

I8TWU2_ASPO3 EIT78693.1 Aspergillus oryzae 

Q2TZI7_ASPOR XP_001826411 Aspergillus oryzae 

A0A017S3W0_9EURO EYE91708.1 Aspergillus ruber 

Q0C9D2_ASPTN XP_001218324 Aspergillus terreus 

W5KIQ3_ASTMX XP_015460289 Astyanax mexicanus 

W5KIQ5_ASTMX   Astyanax mexicanus 

W4WKL3_ATTCE   Atta cephalotes 

F0YE78_AURAN XP_009038793 Aureococcus anophagefferns 

F0YJA4-AURAN XP_009040492 Aureococcus anophagefferns 

J0CWF4_AURDE XP_007356999 Auricularia delicata 

A0A034V3P1_BACDO JAC37911.1 Bactrocera dorsalis 

A0A034V5X5_BACDO JAC37909.1 Bactrocera dorsalis 

A0A034V813_BACDO JAC37910.1 Bactrocera dorsalis 

K8EIK1_9CHLO XP_007511713 Bathycoccus prasinos 

F4NUF3_BATDJ XP_006675199 Batrachochytrium dendrobatidis 

M2MQH6_BAUCO XP_007678580 Baudoinia compniacensis 

J4KLB2_BEAB2 XP_008602470 Beauveria bassiana 

T1SHS3_9POAL AGT45917.1 Beckmannia syzigachne 

T1SHX0_9POAL AGT45916.1 Beckmannia syzigachne 

T1SIA4_9POAL AGT45914.1 Beckmannia syzigachne 

T1SJX0_9POAL AGT45915.1 Beckmannia syzigachne 

  XP_010683396 Beta vulgaris subsp. vulgaris 

W6Z4P0_COCMI XP_007690903 Bipolaris oryzae 
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W7EJM1_COCVI XP_014556586 Bipolaris victoriae 

W6XYP0_COCCA XP_007713091 Bipolaris zericola 

N1JEK1_BLUG1 CCU81673.1 Blumeria graminis f. sp. hordei 

ACACA _BOVIN NP_776649 Bos taurus 

E1BGH6_BOVIN XP_005220033 Bos taurus 

F1MSC3_BOVIN   Bos taurus 

R1GBU5_BOTPV XP_007589193 Botryosphaeria parva 

M7TMZ7_BOTF1 EMR82519.1 Botryotinia fuckeliana 

G2YUC1_BOTF4 CCD55219.1 Botryotinia fuckeliana 

I1I3Q4_BRADI   Brachypodium distachyon 

I1IWF2_BRADI XP_003581375 Brachypodium distachyon 

Q42617_BRANA CAA54683.1 Brassica napus 

Q9FEH8_BRANA CAC19876.1 Brassica napus 

Q9FNT7_BRANA CAC19875.1 Brassica napus 

  XP_013592802 Brassica oleracea var. oleracea 

  XP_013603687 Brassica oleracea var. oleracea 

M4DQA9_BRARP   Brassica rapa subsp. pekinensis 

M4F6R1_BRARP   Brassica rapa subsp. pekinensis 

V5FTR8_BYSSN GAD93096.1 Byssochlamys spectabilis 

G0MAW6_CAEBE EGT40685.1 Caenorhabditis brenneri 

A8X496_CAEBR CAP27456.2 Caenorhabditis briggsae 

H2L0M0_CAEEL NP_001254027 Caenorhabditis elegans 

Q9GZI3_CAEEL NP_001022400 Caenorhabditis elegans 

E3MCE8_CAERE XP_003106220 Caenorhabditis remanei 

F6WTV0_CALJA   Callithrix jacchus 

F6XFU0_CALJA JAB25616.1 Callithrix jacchus 

U3DZ12_CALJA JAB37452.1 Callithrix jacchus 

  XP_010500069 Camelina sativa 

  XP_010500071 Camelina sativa 

E2AJI5_CAMFO XP_011259212 Camponotus floridanus 

Q5AAM4_CANAL XP_718624 Candida albicans 

C4YNG3_CANAW EEQ43196.1 Candida albicans 

B9WKR0_CANDC XP_002421671 Candida dubliniensis 

Q6FKK8_CANGA XP_449236 Candida glabrata 

M3IQY9_CANMX EMG48936.1 Candida maltose 

H8WWH3_CANO9 XP_003866237 Candida orthopsilosis 

G8BCJ0_CANPC CCE41856.1 Candida parapsilosis 

G3BBN5_CANTC XP_006688363 Candida tenuis 

C5M4L7_CANTT XP_002546225 Candida tropicalis 

E2RL01_CANLF XP_005624835 Canis lupus familiaris 

F1PZY2_CANLF XP_005636385 Canis lupus familiaris 
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R7UHT9_CAPTE ELU03368.1 Capitella teleta 

Q2HXS0_CAPHI ABC96905.1 Capra hircus 

W9YRL0_9EURO XP_007719432 Capronia coronate 

W9Y8N9_9EURO XP_007730619 Capronia epimyces 

E9CF10_CAPO3 XP_004344271 Capsaspora owczarzaki 

R0GKZ5_9BRAS XP_006303734 Capsella rubella 

R0IAN7_9BRAS XP_006306571 Capsella rubella 

R0IQG7_9BRAS XP_006306570 Capsella rubella 

H0V3L2_CAVPO XP_003477800 Cavia porcellus 

H0V6W7_CAVPO XP_013007591 Cavia porcellus 

A0A026WBM2_CERBI EZA53363.1 Cerapachys biroi 

W8AF13_CERCA JAB86820.1 Ceratitis capitate 

W8B0Q2_CERCA JAB86821.1 Ceratitis capitate 

M2QP27_CERS8 EMD38813.1 Ceriporiopsis subvermispora 

G0S3L5_CHATD XP_006692638 Chaetomium thermophilum 

M7BGW5_CHEMY EMP37161.1 Chelonian mydas 

  XP_004500605 Cicer arietinum 

F6SZW6_CIOIN   Ciona intestinalis 

F6T0F1_CIOIN   Ciona intestinalis 

H2YM65_CIOSA   Ciona savignyi 

H2YM68_CIOSA   Ciona savignyi 

H2YM69_CIOSA   Ciona savignyi 

H2YM70_CIOSA   Ciona savignyi 

H2YM71_CIOSA   Ciona savignyi 

H2YM72_CIOSA   Ciona savignyi 

V4TCA6_9ROSI XP_006434031 Citrus clementina 

  XP_006472643 Citrus sinensis 

V9DN70_9EURO XP_008721837 Cladophialophora carrionii 

W9X7H4_9EURO XP_007742793 Cladophialophora psammophila 

W9WH07_9EURO XP_007752433 Cladophialophora yegresii 

M1VXF1_CLAP2 CCE32912.1 Claviceps purpurea 

C4Y676_CLAL4 XP_002616419 Clavispora lusitaniae 

J3KHY4_COCIM XP_001247056 Coccidioides immitis 

C5PHV9_COCP7 XP_003066257 Coccidioides posadasii 

E9DD80_COCPS EFW15605.1 Coccidioides posadasii 

I0YI54_ COCSC XP_005642617 Coccomyxa subellipsoidea 

N4X1Q9_COCH4 XP_014074435 Cochliobolus heterostrophus 

M2TD32_COCH5 EMD95380.1 Cochliobolus heterostrophus 

M2SHU2_COCSN XP_007698182 Cochliobolus sativus 

A0A068TY93_COFCA CDP01191.1 Coffea canephora 

A0A010R0B5_9PEZI XP_007590342 Colletotrichum fioriniae 
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T0LNU3_COLGC EQB49900.1 Colletotrichum gloeosporioides 

L2GBP1_COLGN XP_007275252 Colletotrichum gloeosporioides 

E3QPV0_COLGM XP_008096897 Colletotrichum graminicola 

N4VTH9_COLOR ENH87237.1 Colletotrichum orbiculare 

R7YUQ2_CONA1 XP_007780952 Coniosporium apollinis 

D6RNI5_COPC7 XP_002910856 Coprinopsis cinerea 

G3JUL1_CORMM XP_006674566 Cordyceps militaris 

W4VRL7_9DIPT JAB58048.1 Corethrella appendiculata 

M5AJ86_CRIGR NP_001278985 Cricetulus griseus 

E6R880_CRYGW XP_003194770 Cryptococcus gattii 

J9VTZ1_CRYNH XP_012050363 Cryptococcus neoformans var. grubii 

Q55QT6_CRYNB XP_774823 Cryptococcus neoformans var. neoformans 

Q5KFC9_CRYNJ XP_571316 Cryptococcus neoformans var. neoformans 

E7CCB2_CTEID ADT82650.1 Ctenopharyngodon idella 

E7CCB3_CTEID ADT82651.1 Ctenopharyngodon idella 

F2YFF6_CTEID ADX43925.1 Ctenopharyngodon idella 

B0WE67_CULQU XP_001847001 Culex quinquefasciatus 

Q39478_9STRA AAA81471.1 Cyclotella cryptica 

W2RRS8_9EURO XP_008718016 Cyphellophora europaea 

M5FZR3_DACSP EJU03511.1 Dacryopinax sp. 

S8ABK3_DACHA XP_011111700 Dactylellina haptotyla 

F1QH12_DANRE NP_001258237 Danio rerio 

F1QM37_DANRE XP_009299650 Danio rerio 

F1QX79_DANRE   Danio rerio 

F6P055_DANRE XP_017211600 Danio rerio 

E9G1C9_DAPPU EFX86656.1 Daphnia pulex 

Q6BX58_DEBHA XP_457211 Debaryomyces hansenii 

I2JTC0_DEKBR EIF46222.1 Dekkera bruxellensis 

N6U7G4_DENPD ENN77580.1 Dendroctnus ponderosae 

U4UM60_DENPD ERL95164.1 Dendroctnus ponderosae 

K9IW06_DESRO JAA53347.1 Desmodus rotundus 

ACAC_DICDI XP_636722 Dictyostelium discoideum 

F1A0W2_DICPU XP_003293306 Dictyostelium purpureum 

W7IDB6_9PEZI EWC46965.1 Drechslerella stenobrocha 

B3MGC4_DROAN XP_001961005 Drosophila ananassase 

B3N9A9_DROER XP_001970537 Drosophila erects 

A1Z784_DROME NP_610342 Drosophila melanogaster 

A8DY67_DROME NP_001097227 Drosophila melanogaster 

Q7JV23_DROME NP_001097226 Drosophila melanogaster 

B4KQ74_DROMO XP_002005267 Drosophila mojavensis 

B4GB22_DROPE XP_002016234 Drosophila persimilis 
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Q290Y2_DROPS XP_001360655 Drosophila pseudoobscura 

B4HRH5_DROSE XP_002032844 Drosophila sechellia 

B4LJK2_DROVI XP_002050377 Drosophila virilis 

B4MPP4_DROWI XP_002063097 Drosophila willistoni 

B4P271_DROYA XP_002089560 Drosophila yakuba 

E5LBD4_ECHCG ADR32358.1 Echinochloa crus-galli 

E5LBD5_ECHCG ADR32359.1 Echinochloa crus-galli 

U6LW93_9EIME CDJ53523.1 Eimeria brunetti 

U6JZ14_9EIME XP_013351861 Eimeria mitis 

U6N237_9EIME XP_013437840 Eimeria necatrix 

U6L2T2_EIMTE XP_013233659 Eimeria tenella 

  XP_010916914 Elaeis guineensis 

A0A023JGI2_ELEIN AHI94840.1 Eleusine indica 

A0A023JH13_ELEIN AHI94839.1 Eleusine indica 

V9SC70_ELEIN AHC53985.1 Eleusine indica 

V9SF96_ELEIN AHC53984.1 Eleusine indica 

O60033_EMEND CAA75926.1 Emericella nidulans 

G5EAT9_EMENI XP_663730 Emericella nidulans 

U1G9D6_ENDPU XP_007805723 Endocarpon pusillum 

F6RIW1_HORSE   Equus caballus 

F6WNE8_HORSE   Equus caballus 

F6WVE9_HORSE   Equus caballus 

F6Z6T7_HORSE   Equus caballus 

F7AZ64_HORSE   Equus caballus 

G8JPL1_ERECY XP_003644677 Eremothecium cymbalariae 

  XP_012829819 Erythranthe guttatus 

A0A059BL04_EUCGR XP_010060156 Eucalyptus grandis 

M7SLD9_EUTLA XP_007793722 Eutypa lata 

H6C3D3_EXODN XP_009158609 Exophiala dermatitidis 

M3WDI5_FELCA   Felis catus 

M3W9F4_FELCA XP_003994907 Felis catus 

J4G2Q4_FIBRA XP_012180021 Fibroporia radiculosa 

U3K2H1_FICAL   Ficedula albicollis 

U3JRR0_FICAL XP_016158464 Ficedula albicollis 

S8ECV4_FOMPI EPT01079.1 Fomitopsis pinicola 

  XP_011464572 Fragaria vesca subsp. vesca 

  XP_004299600 Fragaria vesca subsp. vesca 

W9KLY9_FUSOX EWZ43759.1 Fusarium oxysporum 

W9ISM2_FUSOX EWY97682.1 Fusarium oxysporum 

F9FWX4_FUSOF EGU78586.1 Fusarium oxysporum 

X0I2S5_FUSOX EXL83138.1 Fusarium oxysporum f. sp. conglutinans 
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N4UIT4_FUSC1 ENH69935.1 Fusarium oxysporum f. sp. cubense 

X0JR10_FUSOX EXM03719.1 Fusarium oxysporum f. sp. cubense 

W9NCN1_FUSOX EWZ99371.1 Fusarium oxysporum f. sp. lycopersici 

J9MHL6_FUSO4   Fusarium oxysporum f. sp. lycopersici 

X0AJT4_FUSOX EXK41112.1 Fusarium oxysporum f. sp. melonis 

W9Q3A7_FUSOX EXA49032.1 Fusarium oxysporum f. sp. pisi 

X0GBR9_FUSOX EXL61087.1 
Fusarium oxysporum f. sp. radicis-

lycopersici 

X0D1I0_FUSOX EXK88537.1 Fusarium oxysporum f. sp. raphani 

X0LU03_FUSOX EXM24551.1 Fusarium oxysporum f. sp. vasinfectum 

K3VV59_FUSPC XP_009253069 Fusarium pseudograminearum 

J3PKA7_GAGT3 XP_009230146 Gaeumannomyces graminis var. tritici 

M2X7M8_GALSU XP_005709050 Galdieria sulphuraria 

ACAC_CHICK NP_990836 Gallus gallus 

F1NWT0_CHICK   Gallus gallus 

F1P1B5_CHICK   Gallus gallus 

G3P3N9_GASAC   Gasterosteus aculeatus 

G3QAB5_GASAC   Gasterosteus aculeatus 

A0A024JJW1_GEOCN CDO56660.1 Geotrichum candidum 

A0A024JKG0_GEOCN CDO56882.1 Geotrichum candidum 

S0E131_GIBF5 CCT66398.1 Gibberella fujikuroi 

W7MAM1_GIBM7 EWG44524.1 Gibberella moniliformis 

A0A016PFV3_GIBZA EYB24697.1 Gibberella zeae 

I1RR68_GIBZE XP_011326196 Gibberella zeae 

S3DLR5_GLAL2 XP_008079618 Glarea lozoyensis 

H0ENM5_GLAL7 EHK99907.1 Glarea lozoyensis 

S7QBB3_GLOTA XP_007865325 Gloeophyllum trabeum 

Q39849_SOYBN AAA81578.1 Glycine max 

Q42793_SOYBN AAA75528.1 Glycine max 

I1JVH6_SOYBN   Glycine max 

I1KA18_SOYBN XP_003526593.1 Glycine max 

A0A0B2SKF5_GLYSO KHN45348 Glycine soja 

G3RLM1_GORGO   Gorilla gorilla gorilla 

G3S1F5_GORGO   Gorilla gorilla gorilla 

G3SJ10_GORGO   Gorilla gorilla gorilla 

A0A0B0MG53_GOSAR KHF99346 Gossypium arboreum 

A0A0B0PDU5_GOSAR KHG23110 Gossypium arboreum 

  XP_012467895 Gossypium raimondii 

  XP_012446737 Gossypium raimondii 

F0XNS8_GROCL XP_014170191 Grosmannia clavigera 

L1J8C0_GUITH XP_005831577 Guillardia theta 

L1JJM5_GUITH XP_005835324 Guillardia theta 
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E2B9B3_HARSA EFN87719.1 Harpegnathos saltator 

W4JZY5_9HOMO XP_009549397 Heterobasidion ittegulare 

ACACA_HUMAN NP_942131 Homo sapiens 

ACACB_HUMAN NP_001084 Homo sapiens 

A2NX49_HUMAN CAA48770.1 Homo sapiens 

A0A024R0Y2_HUMAN XP_005257324 Homo sapiens 

B2ZZ90_HUMAN XP_011523005 Homo sapiens 

F2EIZ4_HORVD BAK07316.1 Hordeum vulgare var. distichum 

M0VU12_HORVD   Hordeum vulgare var. distichum 

M0VU16_HORVD   Hordeum vulgare var. distichum 

M0WLS8_HORVD   Hordeum vulgare var. distichum 

M0WX42_HORVD   Hordeum vulgare var. distichum 

M4BF67_HYAAE   Hyaloperonospora arabidopsidis 

G9P7N2_HYPAI XP_013939921 Hypocrea atroviridis 

G0RT06_HYPJQ XP_006968328 Hypocrea jecorina 

G9MWJ5_HYPVG XP_013955356 Hypocrea virens 

V5HPY4_IXORI JAB77822.1 Ixodes ricinus 

D2CFN2_JATCU NP_001295714 Jatripha curcas 

H2B108_KAZAF XP_003959443 Kazachstania africana 

J7S2I0_KAZNA CCK72032.1 Kazachstania naganishii 

Q6CL34_KLULA XP_455355 Kluyveromyces lactis 

W0TEH6_KLUMA BAO41760.1 Kluyveromyces marxianus 

F2QLC7_KOMPC CCA37159.1 Komagataella phaffii 

C4QXW1_KOMPG XP_002490365 Komagataella phaffii 

W6MK75_9ASCO CDK26741.1 Kuraishia capsulata 

B0CUD8_LACBS XP_001875210 Laccaria bicolor 

C5DBX3_LACTC XP_002551722 Lachancea thermotolerans 

H3AU80_LATCH   Latimeria chalumnae 

A4HJT6_LEIBR XP_001567323 Leishmania braziliensis 

E9BN78_LEIDB XP_003863393 Leishmania donovani 

A4I7A2_LEIIN XP_001467621 Leishmania infantum 

Q4Q5W1_LEIMA XP_001685287 Leishmania major 

E9B297_LEIMU XP_003877816 Leishmania mexicana 

W5MAD1_LEPOC   Lepisosteus oculatus 

W5MCD6_LEPOC XP_015222854 Lepisosteus oculatus 

E5ACZ0_LEPMJ XP_003845821 Leptosphaeria maculans 

A5DT41_LODEL XP_001528007 Lodderomyces elongisporus 

V4AGG4_LOTGI XP_009046184 Lottia gigantean 

G3TBG5_LOXAF   Loxodonta africana 

G3U853_LOXAF   Loxodonta africana 

G3SQU6_LOXAF   Loxodonta africana 
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G3UB16_LOXAF   Loxodonta africana 

G7PUJ1_MACFA XP_005583989 Macaca fascicularis 

H9F7K7_MACMU AFE70616.1 Macaca mulatta 

F7H9G5_MACMU   Macaca mulatta 

F7H9H5_MACMU NP_001253707 Macaca mulatta 

F7H9H7_MACMU XP_014974908 Macaca mulatta 

F7HHF6_MACMU   Macaca mulatta 

K2SEA6_MACPH EKG15200.1 Macrophomina phaseolina 

G4N2L8_MAGO7 XP_003711534 Magnaporthe oryzae 

L7J9G6_MAGOP ELQ64871.1 Magnaporthe oryzae 

L7HYC3_MAGOY ELQ35277.1 Magnaporthe oryzae 

M4G989_MAGP6   Magnaporthe poae 

M5EBG9_MALS4 CCV00237.1 Malassezia sympodialis 

  XP_008374995 Malus domestica 

K1Y7U5_MARBU XP_007288156 Marssonina brunnea f. sp. multigermtubi 

Q40326_MEDSA AAB42144.1 Medicago sativa 

G8A392_MEDTR AES85930.1 Medicago truncatula 

G8A394_MEDTR XP_013460845 Medicago truncatula 

T1GP39_MEGSC   Megaselia scalaris 

F4RPF1_MELLP XP_007411003 Melampsora larici-populina 

G1N324_MELGA   Meleagris gallopavo 

G1N7J4_MELGA   Meleagris gallopavo 

G3US43_MELGA   Meleagris gallopavo 

E9DRS1_METAQ XP_007806780 Metarhizium acridum 

E9F1D9_METRA XP_007822277 Metarhizium anisopliae 

A5DC00_PICGU XP_001487428 Meyerozyma guilliermondii 

U5H9T3_USTV1 KDE05599.1 Microbotryum violaceum 

C1FD95_MICCC XP_002507094 Micromonas commoda 

C1ML75_MICPC XP_003056126 Micromonas pusilla 

A0A022RSR6_MIMGU XP_012829819 Mimulus guttatus 

G7E646_MIXOS GAA98306.1 Mixia osmundae 

V2XQN0_MONRO XP_007845839 Moniliophthora roreri 

F6T1L2_MONDO   Monodelphis domestica 

W9RSS8_9ROSA XP_010105882 Morus notabilis 

S2J3C8_MUCC1 EPB82652.1 Mucor circinelloides f. circinelloides 

S2K7G3_MUCC1 EPB91338.1 Mucor circinelloides f. circinelloides 

ACACA_MOUSE XP_006532016 Mus musculus 

Q6JIZ0_MOUSE XP_006530176 Mus musculus 

E9Q4Z2_MOUSE XP_006530176 Mus musculus 

M0RJH5_MUSAM   Musa acuminate subsp. malaccensis 

T1PCN5_MUSDO XP_011291857 Musca domestica 
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M3XWR5_MUSPF XP_004779160 Mustela putorius 

M3YUC2_MUSPF XP_004747231 Mustela putorius 

M2Z3W2_MYCFI XP_007925129 Mycosphaerella fijiensis 

F9X7Y0_MYCGM XP_003853979 Mycosphaerella graminicola 

N1PTV3_MYCP1 EME45844.1 Mycosphaerella pini 

S7MFR6_MYOBR EPQ02904.1 Myotis brandtii 

L5MBZ6_MYODS ELK35901.1 Myotis davidii 

G1P779_MYOLU   Myotis lucifugus 

G1PQT0_MYOLU   Myotis lucifugus 

D2W323_NAEGR EFC36537.1 Naegleria gruberi 

I2CQP5_ NANGC AFJ69228.1 Nannochloropsis gaditana 

K7IMF1_NASVI   Nasonia vitripennis 

G0VEM8_NAUCC XP_003676380 Naumovozyma castellii 

G0WFR5_NAUDC XP_003671869 Naumovozyma dairenensis 

C7Z7U6_NECH7 XP_003045600 Nectria haematococca 

  XP_010261220 Nelumbo nucifera 

  XP_010269187 Nelumbo nucifera 

A1DGG9_NEOFI XP_001260373 Neosartorya fischeri 

Q4X1V2_ASPFU XP_755201 Neosartorya fumigata 

B0XRR7_ASPFC EDP54403.1 Neosartorya fumigata 

F0V8G9_NEOCL XP_003880045 Neospora caninum 

Q7SBL5_NEUCR XP_963017 Neurospora crassa 

F8MLL9_NEUT8 XP_009851467 Neurospora tetrasperma 

G4UQT6_NEUT9 EGZ71228.1 Neurospora tetrasperma 

  XP_009758450 Nicotiana sylvestris 

  XP_009799608 Nicotiana sylvestris 

  XP_009592508 Nicotiana tomentosiformis 

  XP_009629534 Nicotiana tomentosiformis 

G1QQC3_NOMLE   Nomascus leucogenys 

G1QLR1_NOMLE   Nomascus leucogenys 

W1QF46_OGAPD XP_013935288 Ogataea parapolymorpha 

S3BXE1_OPHP1 EPE05929.1 Ophiostoma piceae 

I3K792_ORENI   Oreochromis niloticus 

I3J0L9_ORENI   Oreochromis niloticus 

I3J0M0_ORENI   Oreochromis niloticus 

I3K791_ORENI   Oreochromis niloticus 

F7G2P5_ORNAN   Ornithorhynchus anatinus 

G1ST24_RABIT   Oryctolagus cuniculus 

G1T7I3_RABIT   Oryctolagus cuniculus 

J3M5P3_ORYBR XP_006654231 Oryza brachyantha 

J3N219_ORYBR XP_015697314 Oryza brachyantha 
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I1PU52_ORYGL   Oryza glaberrima 

I1QTS0_ORYGL   Oryza glaberrima 

A2Y2U1_OYRSI EAY97401.1 Oryza sativa subsp. indica 

ACC1_ORYSJ XP_015614129 Oryza sativa subsp. japonica 

ACC2_ORYSJ XP_015639213 Oryza sativa subsp. japonica 

H2LUD9_ORYLA   Oryzias latipes 

H2M2B0_ORYLA   Oryzias latipes 

A4RRC3_OSTLU XP_001415874 Ostreococcus lucimarinus 

Q01GA9_OSTTA XP_003074384 Ostreococcus tauri 

H0WWB9_OTOGA   Otolemur garnettii 

H0X9V4_OTOGA   Otolemur garnettii 

W5NRT6_SHEEP   Ovis aries 

ACACA_SHEEP NP_001009256 Ovis aries 

W5Q4L4_SHEEP   Ovis aries 

W5Q4L5_SHEEP   Ovis aries 

K6ZH78_PANTR JAA04111.1 Pan troglodytes 

K7C855_PANTR XP_511428 Pan troglodytes 

H2R9M5_PANTR   Pan troglodytes 

H2Q6U2_PANTR XP_003313981 Pan troglodytes 

C0SAJ7_PARBP EEH22491.1 Paracoccidioides brasiliensis 

C1GDJ1_PARBD XP_010760691 Paracoccidioides brasiliensis 

C1HD90_PARBA XP_015701399 Paracoccidioides lutzii 

E0VSX2_PEDHC XP_002429216 Pediculus humanus 

K7FB52_PELSI   Pelodiscus sinensis 

K7FXF6_PELSI XP_014436839 Pelodiscus sinensis 

B6H276_PENCW XP_002558828 Penicillium chrysogenum 

K9F6Y2_PEND1 XP_014532605 Penicillium digitatum 

K9FYG5_PEND2 EKV13602.1 Penicillium digitatum 

B6Q960_PENMQ XP_002146561 Penicillium marneffei 

S7ZLA5_PENO1 EPS29466.1 Penicillium oxalicum 

W6PT53_PENRF CDM27060.1 Penicillium roqueforti 

W3WUX9_9PEZI XP_007838820 Pestalotiopsis fici 

S4R8H8_PETMA   Petromyzon marinus 

B7G7S4_PHATC XP_002183067 Phaeodactylum tricornutum 

B7GEB5_PHATC XP_002185458 Phaeodactylum tricornutum 

K5WIW4_PHACS XP_007401381 Phanerochaete carnosa 

V7ARE3_PHAVU XP_007136223 Phaseolus vulgaris 

  XP_008803739 Phoenix dactylifera 

A9RJQ8_PHYPA XP_001754424 Physcomitrella patens subsp. patens 

A9T358_PHYPA XP_001773073 Physcomitrella patens subsp. patens 

D0NZ18_PHYIT XP_002997355 Phytophthora infestans 
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W2XGI5_PHYPR ETP21089.1 Phytophthora parasitica 

W2ZPS7_PHYPR ETP49030.1 Phytophthora parasitica 

W2QH02_PHYPN XP_008902712 Phytophthora parasitica 

W2H9P1_PHYPR ETK91206.1 Phytophthora parasitica 

H3GWA7_PHYRM   Phytophthora ramorum 

G5A3T5_PHYSP XP_009534296 Phytophthora sojae 

G8Y1P2_PICSO XP_004194741 Pichia sorbitophila 

G8Y4L9_PICSO XP_004195832 Pichia sorbitophila 

L0PGI2_PNEJ8 CCJ31347.1 Pneumocystis jiroveci 

M7NNH4_PNEMU XP_007874997 Pneumocystis murina 

B2AV83_PODAN XP_001907634 Podospora anserina 

D3BI99_POLPA EFA78999.1 Polysphondylium pallidum 

  XP_011006151 Populous euphratica 

  XP_011027682 Populous euphratica 

B9GUK0_POPTR XP_002302277 Populous trichocarpa 

B9H763_POPTR XP_002306591 Populous trichocarpa 

U5GG96_POPTR XP_006383487 Populous trichocarpa 

U5GP90_POPTR XP_006386394 Populous trichocarpa 

H3E7I6_PRIPA   Pristionchus pacificus 

  XP_008234004 Prunus mume 

M5XVG9_PRUPE XP_007221936 Prunus persica 

L8FT33_PSED2 XP_012744795 Pseudogymnoascus destructans 

M9MH78_PSEA3 GAC77683.1 Pseudozyma antarctica 

W3VHK3_PSEA5 ETS60252.1 Pseudozyma aphidis 

V5EU37_PSEBG XP_016293854 Pseudozyma brasiliensis 

R9P0W6_PSEHS XP_012188366 Pseudozyma hubeiensis 

L5JSN8_PTEAL ELK01766.1 Pteropus alecto 

E3KVF5_PUCGT XP_003332669 Puccinia graminis f. sp. tritici 

J3Q6D5_PUCT1   Puccinia triticina 

E3RX86_PYRTT XP_003302241 Pyrenophora teres f. teres 

B2VTF1_PYRTR XP_001932248 Pyrenophora tritici-repentis 

U4L404_PYROM CCX10916.1 Pyronema omphalodes 

D3ZBE2_RAT   Rattus norvegicus 

ACACA_RAT NP_071529 Rattus norvegicus 

Q1HEC0_RAT ABF48724.1 Rattus norvegicus 

O70151_RAT NP_446374 Rattus norvegicus 

E9PSQ0_RAT   Rattus norvegicus 

L7MI62_9ACAR JAA63507.1 Rhipicephalus pulchellus 

U9T243_RHIID ESA02254.1 Rhizophagus irregularis 

I1BVP2_RHIO9 EIE80272.1 Rhizopus delemar 

T1ICG7_RHOPR   Rhodnius prolixus 
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M7XLR4_RHOT1 XP_016272252 Rhodosporidium toruloides 

B9RJG2_RICCO XP_002513881 Ricinus communis 

J8PX05_SACAR EJS41898.1 Saccharomyces arboricola 

W7RER6_YEASX EWH16255.1 Saccharomyces cerevisiae 

A0A024XHX2_YEASX EWG88892.1 Saccharomyces cerevisiae 

W7PYC7_YEASX EWG84123.1 Saccharomyces cerevisiae 

A0A024XX80_YEASX EWG93628.1 Saccharomyces cerevisiae 

A0A024Y0W9_YEASX EWG94141.1 Saccharomyces cerevisiae 

ACAC_YEAST NP_014413 Saccharomyces cerevisiae 

HFA1_YEAST NP_013934 Saccharomyces cerevisiae 

B5VPX5_YEAS6 EDZ70018.1 Saccharomyces cerevisiae 

B5VR47_YEAS6 EDZ69596.1 Saccharomyces cerevisiae 

E7KHI7_YEASA EGA73179.1 Saccharomyces cerevisiae 

N1P4Q3_YEASC EIW08105.1 Saccharomyces cerevisiae 

N1NXK1_YEASC EIW08474.1 Saccharomyces cerevisiae 

C7GLN9_YEAS2 EEU08272.1 Saccharomyces cerevisiae 

HFA1_YEAS2 EEU06674.1 Saccharomyces cerevisiae 

G2WL73_YEASK GAA26109.1 Saccharomyces cerevisiae 

G2WKR3_YEASK GAA25656.1 Saccharomyces cerevisiae 

C8ZFP3_YEAS8 CAY82209.1 Saccharomyces cerevisiae 

HFA1_YEAS8 CAY82038.1 Saccharomyces cerevisiae 

HFA1_YEAS1 EDV11698.1 Saccharomyces cerevisiae 

B3LPM6_YEAS1 EDV12250.1 Saccharomyces cerevisiae 

A6ZS90_YEAS7 EDN62822.1 Saccharomyces cerevisiae 

HFA1_YEAS7 EDN64143.1 Saccharomyces cerevisiae 

E7QK49_YEASZ EGA84966.1 Saccharomyces cerevisiae 

A0A023ZGW9_YEASX AHY77104.1 Saccharomyces cerevisiae 

A0A023ZF06_YEASX AHY76661.1 Saccharomyces cerevisiae 

H0H0H7_SACCK EHN00464.1 Saccharomyces cerevisiae x S. kudriavzevii 

H0GLB5_SACCK EHN05444.1 Saccharomyces cerevisiae x S. kudriavzevii 

F2U425_SALR5 XP_004996552 Salpingoeca rosetta 

G3W9V7_SARHA   Sarcophilus harrisii 

A3GH39_PICST XP_001386775 Scheffersomyces stipitis 

G4VJ84_SCHMA CCD79485.1 Schistosoma mansoni 

D8Q0Q3_SCHCM XP_003032695 Schizophyllum commune 

S9XAW9_SCHCR XP_013024217 Schizosaccharomyces cryophilus 

B6K3W9_SCHJY XP_002174469 Schizosaccharomyces japonicus 

S9R9B4_SCHOY XP_013016185 Schizosaccharomyces octosporus 

ACAC_SCHPO NP_593271 Schizosaccharomyces pombe 

W9C0L4_9HELO ESZ90327.1 Sclerotinia borealis 

A7EM01_SCLS1 XP_001592109 Sclerotinia sclerotiorum 
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D8SW33_SELML XP_002987586 Selaginella moellendorffii 

D8SWL6_SELML XP_002987673 Selaginella moellendorffii 

F8Q8W1_SERL3 EGN95016.1 Serpula lacrymans var. lacrymans 

F8P7V4_SERL9 XP_007322478 Serpula lacrymans var. lacrymans 

  XP_011083399 Sesamum indicum 

Q84TQ5_SETIT AAO62903.1 Setaria italica 

Q84TQ6_SETIT NP_001267734 Setaria italica 

Q947M6_SETIT AAL02056.1 Setaria italica 

K3Y4M1_SETIT XP_012702632 Setaria italica 

K4A4N3_SETIT XP_004983244 Setaria italica 

B5QSJ9_SETVI CAL63609.1. Setaria viridis 

R0IHL8_SETT2 XP_008027230 Setosphaeria turcica 

  XP_004252541 Solanum lycopersicum 

M1AG30_SOLTU XP_006360278 Solanum tuberosum 

F7WC81_SORMK XP_003344021 Sordaria macrospora 

C5YD68_SORBI XP_002446178 Sorghum bicolor 

C5YP96_SORBI XP_002442242 Sorghum bicolor 

G3AJ35_SPAPN XP_007374131 Spathaspora passalidarum 

I3M0I9_SPETR   Spermophilus tridecemlineatus 

I3M5C3_SPETR   Spermophilus tridecemlineatus 

M3D4W7_SPHMS XP_016761371 Sphaerulina musiva 

E6ZP99_SPORE CBQ69056.1 Sporisorium reilianum 

U7PZF9_SPOS1 ERT01014.1 Sporothrix schenckii 

A5Z221_PIG ABQ85554.1 Sus scrofa 

B0LJD0_PIG NP_001107741 Sus scrofa 

D2D0D8_PIG ACM42414.1 Sus scrofa 

C9W109_PIG ACL80208.1 Sus scrofa 

F1RGB5_PIG NP_001193328 Sus scrofa 

F1S1B5_PIG   Sus scrofa 

H0ZA42_TAEGU   Taeniopygia guttata 

H0ZD19_TAEGU   Taeniopygia guttata 

H2TKQ8_TAKRU   Takifugu runripes 

H2TKQ9_TAKRU   Takifugu runripes 

H2TKR0_TAKRU   Takifugu runripes 

H2URL5_TAKRU   Takifugu runripes 

H2URL6_TAKRU   Takifugu runripes 

H2URL7_TAKRU   Takifugu runripes 

H2URL8_TAKRU   Takifugu runripes 

B8M2J0_TALSN XP_002478864 Talaromyces stipitatus 

R4XAK5_TAPDE CCG82864.2 Taphrina deformans 

  XP_010538957 Tarenaya hassleriana 
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M9QTR5_TETUR AGI59311.1 Tetranychus urticae 

M9QV47_TETUR NP_001310078 Tetranychus urticae 

V9LL82_TETUR AFQ61042.1 Tetranychus urticae 

T1KU54_TETUR NP_001310078 Tetranychus urticae 

Q4RSU6_TETNG CAG08536.1 Tetraodon nigroviridis 

H3C3C2_TETNG   Tetraodon nigroviridis 

H3C4M0_TETNG   Tetraodon nigroviridis 

H3CZJ8_TETNG   Tetraodon nigroviridis 

H3DEN7_TETNG   Tetraodon nigroviridis 

H3CZJ9_TETNG   Tetraodon nigroviridis 

I2H6X2_TETBL XP_004181643 Tetrapisispora blattae 

G8BT37_TETPH XP_003685442 Tetrapisispora phaffii 

G8BWH2_TETPH XP_003686857 Tetrapisispora phaffii 

B5YMF5_THAPS XP_002296083 Thalassiosira pseudonana 

B8BVD1_THAPS XP_002287470 Thalassiosira pseudonana 

L8X4Y8_THACA ELU43694.1 Thanatephorus cucumeris 

M5BQ58_THACB CCO29256.1 Thanatephorus cucumeris 

A0A061FFG4_THECC EOY16075.1 Theobroma cacao 

G2Q771_THIHA XP_003660894 Thielavia heterothallica 

G2R9M8_THITE XP_003655052 Thielavia terrestris 

R8BR19_TOGMI XP_007913516 Togninia minima 

G8ZN64_TORDC XP_003679269 Torulaspora delbrueckii 

D2A5X8_TRICA XP_008194742 Tribolium castaneum 

E5SWR6_TRISP XP_003369594 Trichinella spiralis 

A0A024S9D4_HYPJR ETS01919.1 Trichoderma reesei 

F2PM07_TRIEC EGE02925.1 Trichophyton equinum 

A0A022USC1_9EURO EZF36413.1 Trichophyton interdigitale 

A0A059J926_9EURO KDB23987.1 Trichophyton interdigitale 

A0A022V308_TRIRU EZF40380.1 Trichophyton rubrum 

A0A023AA68_TRIRU EZG15189.1 Trichophyton rubrum 

A0A022VX96_TRIRU EZF50887.1 Trichophyton rubrum 

A0A022WU48_TRIRU EZF61603.1 Trichophyton rubrum 

A0A028JIW5_TRIRU EZG04649.1 Trichophyton rubrum 

A0A059JWR6_TRIRU KDB32108.1 Trichophyton rubrum 

A0A022YJK6_TRIRU EZF83025.1 Trichophyton rubrum 

A0A022ZFA7_TRIRU EZF93571.1 Trichophyton rubrum 

A0A022THY9_TRIRU EZF16244.1 Trichophyton rubrum 

F2SK61_TRIRC XP_003236369 Trichophyton rubrum 

A0A022XNS8_TRISD EZF72144.1 Trichophyton soudanense 

F2RQG9_TRIT1 EGD93568.1 Trichophyton tonsurans 

J6EMY4_TRIAS XP_014176517 Trichosporon asahii var. asahii 
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B2ZGJ6_WHEAT ACD46667.1 Triticum aestivum 

B2ZGK3_WHEAT ACD46674.1 Triticum aestivum 

B2ZGL2_WHEAT ACD46683.1 Triticum aestivum 

B2ZGL3_WHEAT ACD46684.1 Triticum aestivum 

B2ZGL4_WHEAT ACD46685.1 Triticum aestivum 

B2ZGL5_WHEAT ACD46686.1 Triticum aestivum 

Q41511_WHEAT AAA19970.1 Triticum aestivum 

Q41525_WHEAT AAC49275.1 Triticum aestivum 

O48959_WHEAT AAC39330.1 Triticum aestivum 

B2ZGK1_TRITD ACD46672.1 Triticum turgidum subsp. durum 

B2ZGL0_TRITD ACD46681.1 Triticum turgidum subsp. durum 

B2ZGL1_TRITD ACD46682.1 Triticum turgidum subsp. durum 

B2ZGJ9_TRIUA ACD46670.1 Triticum urartu 

B2ZGK6_TRIUA ACD46677.1 Triticum urartu 

M7ZJ50_TRIUA EMS59656.1 Triticum urartu 

Q57YR7_TRYB2 XP_847540 Trypanosoma brucei 

C9ZWK0_TRYB9 XP_011776065 Trypanosoma brucei 

F9WIJ0_TRYCI CCD17138.1 Trypanosoma congolense 

G0USX5_TRYCI CCC92488.1 Trypanosoma congolense 

V5BGP0_TRYCR ESS63598.1 Trypanosoma cruzi 

K2NT98_TRYCR EKF38261.1 Trypanosoma cruzi 

K4E6Y9_TRYCR EKG06140.1 Trypanosoma cruzi 

G0TZM7_TRYVY CCC50055.1 Trypanosoma vivax 

C4JEF0_UNCRE XP_002541275 Uncinocarpus reesii 

I2FMZ2_USTH4 CCF48285.1 Ustilago hordei 

Q12721_USTMD CAA86983.1 Ustilago maydis 

Q4P5I4_USTMA XP_760776 Ustilago maydis 

A7TDL1_VANPO XP_001647339 Vanderwaltozyma polyspora 

G2X095_VERDV XP_009652053 Verticillium dahliae 

A0A0L9UFI5_PHAAN KOM41670.1 Vigna angularis 

A5AIC1_VITVI CAN64563.1 Vitis vinifera 

F6H0V3_VITVI CCB45550.1 Vitis vinifera 

R9AGJ6_WALI9 XP_009268046 Wallemia ichthyophaga 

I4YJ49_WALSC XP_006955825 Wallemia sebi 

K0KVW0_WICCF CCH45634.1 Wickerhamomyces ciferrii 

B5DEA0_XENTR NP_001131086 Xenopus tropicalis 

F6URD7_XENTR   Xenopus tropicalis 

F6URI4_XENTR   Xenopus tropicalis 

F6URY7_XENTR   Xenopus tropicalis 

M3ZEB6_XIPMA   Xiphophorus maculatus 

M4A0A1_XIPMA   Xiphophorus maculatus 
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Q6CC91_YARLI XP_501721 Yarrowia lipolytica 

K7TS88_MAIZE XP_008663055 Zea mays 

Q41743_MAIZE NP_001105373 Zea mays 

Q7XYR3_MAIZE AAP78897.1 Zea mays 

Q7XYR4_MAIZE AAP78896.1 Zea mays 

A0A0K9PL54_ZOSMR KMZ68975.1 Zostera marina 

W0VNJ2_ZYGBA CDH11002.1 Zygosaccharomyces bailii 

W0W6G6_ZYGBA CDH17251.1 Zygosaccharomyces bailii 

S6EL55_ZYGB2 CDF91322.1 Zygosaccharomyces bailii 

B2G4R2_ZYGRO CAQ43571.1 Zygosaccharomyces rouxii 

C5DVR9_ZYGRC XP_002496821 Zygosaccharomyces rouxii 
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APPENDIX I: Accession Consensus ACC2 Protein Sequence Reflecting Genetic 

Variation and Level of Conservation 
 

 

 

 

 

This appendix shows the accession consensus protein sequences for ACC1 and ACC2 

along with the variation found among all 857 accessions, conservation of each residue, 

and the current classification of each variant. Included data are the position number of 

amino acid consensus sequence for ACC2 and ACC1; variants found in ACC2 and 

ACC1; the number of accessions where each variant is found; the percent conservation 

for each ACC2 residue based on three alignments: (1) the original multi-kingdom 

alignment of 20 eukaryotic sequences, (2) the alignment of 139 plant sequences, and (3) 

the multi-kingdom alignment of 667 eukaryotic sequences; the protein domains, and the 

classification of each variant based on known information about it. 

Footnotes for the title row of the following table are described below: 

a   Letter at a number indicates that a different amino acid than the accession consensus is 

the most common among the alignment. For example, “G at 10.8” means “G” 

(glycine) is the most common amino acid in the plant alignment with 10.8% 

conservation. Red numbers, ≥ 99% conserved; Purple numbers, ≥ 95% and < 99%; 

Blue numbers, ≥ 90% and < 95%; Green numbers, ≥ 80% and < 90%; Black numbers, 

< 80%. 

b   TP, transit peptide domain; BC, biotin carboxylase; BCCP, biotin carboxyl carrier 

protein; CEN, central domain; CT-β, carboxyltransferase-beta subunit; CT-α, 

carboxyltransferase-alpha subunit.  

c   D, deleterious to protein function; LD, likely deleterious; PD, possibly deleterious; 

VUS, variant of unknown significance; LND, likely not deleterious; ND, not 

deleterious. 
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ACC2 Protein Sequence ACC1 Protein Sequence 
% Conservation  

(based on ACC2) a 

Domain b 
Variant 

Classification c 

Position 
Accession 

Consensus 
Substitution 

Num. of 

Accessions 
Position 

Accession 

Consensus 
Substitution 

Num. of 

Accessions 

Original 

(20) 

Plant  

(139) 

MUSCLE 

(667) 

1 M     - - - - 10 G at 10.8 D at 10.6 TP - 

2 E     - - - - 10 V at 25.2 L at 13.9 TP - 

3 M     - - - - 15 S at 20.1 L at 8.4 TP - 

4 R T 2 - - - - 10 D at 26.6 E at 14.2 TP VUS 

5 A     - - - - 10 15.1 E at 11.1 TP - 

6 L S 2 - - - - 10 K at 10.8 < 5 TP VUS 

7 G V 175 - - - - 5 K at 12.2 < 5 TP VUS 

8 S     - - - - 10 H at 17.3 R at 15.7 TP - 

9 S     - - - - 5 N at 9.4 17.5 TP - 

10 C     - - - - 10 Q at 21.6 L at 13.9 TP - 

11 S     - - - - 5 29.5 < 5 TP - 

12 T     - - - - 5 I at 16.6 < 5 TP - 

13 G     - - - - 10 R at 26.6 9.6 TP - 

14 N     - - - - 10 Q at 24.5 11.2 TP - 

15 G     - - - - 10 33.8 14.7 TP - 

16 G     - - - - 10 < 5 < 5 TP - 

17 S     - - - - 15 6.5 < 5 TP - 

18 A T 40 - - - - 5 D at 5.8 < 5 TP VUS 

19 P     - - - - 5 < 5 < 5 TP - 

20 I     - - - - 5 < 5 < 5 TP - 

21 T     - - - - 10 < 5 < 5 TP - 

22 L     - - - - 10 5.8 < 5 TP - 

23 T     - - - - 15 < 5 < 5 TP - 

24 N     - - - - 20 5.8 < 5 TP - 

25 I     - - - - 5 < 5 < 5 TP - 

26 S     - - - - 10 7.9 < 5 TP - 

27 P     - - - - 10 6.5 < 5 TP - 

28 W     - - - - 10 6.5 < 5 TP - 

29 I     - - - - 15 6.5 < 5 TP - 

30 T     - - - - 15 7.2 < 5 TP - 

31 T     - - - - 5 < 5 < 5 TP - 

32 V     - - - - 10 < 5 < 5 TP - 

33 F     - - - - 5 L at 26.6 < 5 TP - 

34 P     - - - - 10 A at 27.3 < 5 TP - 

35 S     - - - - 5 G at 27.3 < 5 TP - 
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36 T     - - - - 10 I at 28.1 < 5 TP - 

37 V     - - - - 10 I at 27.3 < 5 TP - 

38 K     - - - - 15 D at 27.3 < 5 TP - 

39 L     - - - - 15 33.1 < 5 TP - 

40 R     - - - - 5 P at 24.5 < 5 TP - 

41 S     - - - - 15 E at 21.6 < 5 TP - 

42 S     - - - - 20 A at 16.6 < 5 TP - 

43 L     - - - - 15 R at 15.8 < 5 TP - 

44 R     - - - - 20 A at 19.4 < 5 TP - 

45 T     - - - - 10 P at 19.4 < 5 TP - 

46 F     - - - - 10 M at 28.1 < 5 TP - 

47 K     - - - - 20 V at 30.2 < 5 TP - 

48 G     - - - - 10 D at 33.1 < 5 TP - 

49 V     - - - - 10 I at 36.0 < 5 TP - 

50 S     - - - - 15 34.5 < 5 TP - 

51 S     - - - - 10 H at 27.3 < 5 TP - 

52 R     - - - - 10 G at 43.9 < 5 TP - 

53 V     - - - - 10 N at 25.9 < 5 TP - 

54 R     - - - - 10 E at 26.6 < 5 TP - 

55 T     - - - - 5 D at 21.6 < 5 TP - 

56 F     - - - - 5 P at 20.1 < 5 TP - 

57 K     - - - - 10 R at 25.2 < 5 TP - 

58 G     - - - - 5 20.1 < 5 TP - 

59 V L 2 - - - - 5 P at 13.0 < 5 TP VUS 

60 S     - - - - 25 < 5 < 5 TP - 

61 S     - - - - 10 < 5 < 5 TP - 

62 T     - - - - 5 < 5 < 5 TP - 

63 R     - - - - 5 < 5 < 5 TP - 

64 V     - - - - 20 < 5 < 5 TP - 

65 L     - - - - 10 < 5 < 5 TP - 

66 S F 58 - - - - 10 < 5 < 5 TP VUS 

67 R     - - - - 5 6.5 < 5 TP - 

68 T     - - - - 5 < 5 S at 16.3 TP - 

69 K     - - - - 10 6.5 P at 11.1 TP - 

70 Q     - - - - 15 6.5 A at 17.2 TP - 

71 Q     - - - - 10 < 5 S at 15.9 TP - 

72 F     - - - - 10 < 5 V at 9.0 TP - 

73 P     - - - - 5 6.5 < 5 TP - 

74 L     - - - - 5 < 5 < 5 TP - 

75 F     - - - - 5 < 5 L at 8.7 TP - 

76 C     - - - - 5 < 5 S at 9.8 TP - 
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77 F     - - - - 5 < 5 S at 13.6 TP - 

78 L     - - - - 20 < 5 D at 11.8 TP - 

79 N     - - - - 10 < 5 G at 12.4 TP - 

80 P     - - - - 10 < 5 < 5 TP - 

81 D     - - - - 35 6.5 N at 13.2 TP - 

82 P     - - - - 15 6.5 G at 14.1 TP - 

83 I     - - - - 5 < 5 L at 8.6 TP - 

84 S     - - - - 30 5 Q at 8.9 TP - 

85 F     - - - - 10 6.5 G at 12.6 TP - 

86 L     - - - - 15 < 5 S at 9.3 TP - 

87 D E 333 - - - - 5 < 5 S at 14.2 TP VUS 

88 N     - - - - 10 6.5 D at 18.1 TP - 

89 D     - - - - 25 6.5 Y at 22.8 TP - 

90 V     - - - - 5 < 5 A at 18.9 TP - 

91 S C 1 - - - - 20 6.5 A at 24.3 TP VUS 

92 E     - - - - 10 6.5 K at 22.3 - - 

93 A     - - - - 5 < 5 H at 38.1 - - 

94 E     - - - - 5 < 5 M at 10.0 - - 

95 R     - - - - 5 < 5 26.4 - - 

96 T     - - - - 15 < 5 L at 24.7 - - 

97 V     - - - - 5 < 5 S at 30.3 - - 

98 V     - - - - 5 < 5 M at 29.5 - - 

99 L     - - - - 15 < 5 S at 27.1 - - 

100 P     - - - - 10 < 5 G at 25.2 - - 

101 D G 82 - - - - 5 < 5 L at 18.3 - VUS 

102 G     - - - - 5 < 5 H at 52.9 - - 

103 S     - - - - 20 < 5 F at 38.7 - - 

104 V A 2 - - - - 5 < 5 I at 39.3 - VUS 

105 N     - - - - 5 < 5 K at 19.3 - - 

106 G     1 M     10 < 5 Q at 13.0 - LND 

107 A     2 A     20 < 5 G at 31.2 - - 

108 G     3 G     45 < 5 < 5 - - 

109 S     4 S     25 < 5 < 5 - - 

110 V     5 V     15 < 5 R at 20.5 - - 

111 N     6 N     45 S at 38.9 D at 14.7 - - 

112 G V 46 7 G R 2 60 49.6 R at 16.6 - ND 

113 Y C 3 8 N     15 Q at 42.5 K at 13.5 - LND 

114 H     9 H     35 M at 31.7 < 5 - - 

115 S     10 S     10 N at 80.6 < 5 - - 

116 D     11 A     5 G at 75.5 < 5 - LND 

117 V     12 V     15 26.6 G at 40.2 - - 
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118 V     13 G R 1 5 H at 25.9 G at 30.4 - LND 

119 P     14 P     20 N at 36.0 N at 39.3 - - 

120 G     15 G D 1 15 35.3 S at 20.2 - LND 

121 R     16 I     15 77.7 L at 27.1 - LND 

122 N     17 N     15 H at 43.9 R at 29.4 - - 

- - - - 18 Y     - - - - LND 

- - - - 19 E     - - - - LND 

- - - - 20 T     - - - - LND 

123 V     21 V     55 26.6 28.3 - - 

124 A     22 S     40 S at 86.3 S at 47.1 - LND 

125 E     23 Q     20 39.6 S at 28.5 - LND 

126 V     24 V     50 93.5 52.8 - - 

127 N     25 D     5 D at 57.6 K at 27.7 - LND 

128 E     26 E     80 83.5 52.8 - - 

129 F L 1 27 F     90 89.9 84.9 - VUS 

130 C     28 C     45 99.3 V at 70.6 - - 

131 K     29 K     35 27.3 22.9 - - 

132 A V (S) 83 (82) 30 A     45 85.6 27.9 - VUS 

133 L     31 L     40 96.4 F at 27.3 - - 

134 G     32 R G 261 85 95.7 66.1 - ND 

135 G E 1 33 G     95 100 95.7 - LD 

136 K     34 K     30 64.8 H at 40.3 - - 

137 R     35 R     40 31.6 T at 34.9 - - 

138 P     36 P     45 96.4 V at 67.2 BC - 

139 I     37 I     100 100 96.6 BC - 

140 H     38 H     45 92.1 T at 29.2 BC - 

141 S     39 S     45 97.8 K at 44.4 BC - 

142 I     40 I     45 65.5 V at 69.3 BC - 

143 L     41 L     100 100 97.9 BC - 

144 V     42 I     30 51.8 I at 83.7 BC LND 

145 A     43 A     100 97.8 95.8 BC - 

146 T     44 N     10 N at 93.5 N at 95.5 BC LND 

147 N     45 N     100 100 97.8 BC - 

148 G     46 G     100 100 97.6 BC - 

149 M     47 M     45 98.6 I at 71.4 BC - 

150 A     48 A     100 100 95.8 BC - 

151 A     49 A     100 99.3 97.6 BC - 

152 V     50 V     90 71.9 88.8 BC - 

153 K     51 K     100 100 96.9 BC - 

154 F     52 F     45 97.8 E at 39.0 BC - 

155 I     53 I     40 M at 52.5 55.5 BC - 
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156 R     54 R     100 99.3 93.6 BC - 

157 S     55 S     100 100 97.3 BC - 

158 V     56 V     45 63.3 48.4 BC - 

159 R     57 R     100 100 98.5 BC - 

160 T A 2 58 T     30 78.4 K at 39.4 BC VUS 

161 W     59 W     100 97.1 97.8 BC - 

162 A     60 A     80 95.7 71.5 BC - 

163 Y     61 Y     80 54 87.7 BC - 

164 E     62 E     90 72.7 86.4 BC - 

165 T     63 T     65 97.1 60.7 BC - 

166 F     64 F     100 98.6 95.2 BC - 

167 G D 32 65 G     55 100 64 BC VUS 

168 S     66 T     20 T at 48.2 N at 41.1 BC LND 

169 E     67 E     95 95 87.7 BC - 

170 K     68 K     45 91.4 R at 65.5 BC - 

171 A     69 A     80 97.1 83.4 BC - 

172 V I 2 70 I     10 I at 89.9 I at 80.4 BC LND 

173 K     71 L     15 L at 62.6 Q at 34.2 BC LND 

174 L     72 L     45 99.3 F at 78.1 BC - 

175 V     73 V     80 71.2 60.6 BC - 

176 A     74 G     40 93.5 V at 68.2 BC LND 

177 M     75 M     100 100 99.4 BC - 

178 A     76 A T 25 65 100 69.6 BC ND 

179 T     77 T     100 100 98.4 BC - 

180 P     78 P     100 98.6 97.9 BC - 

181 E     79 E     90 99.3 95.7 BC - 

182 D     80 D     100 100 98.7 BC - 

183 M     81 M     35 77.7 L at 79.8 BC - 

184 R     82 R     45 92.1 K at 39.1 BC - 

185 I     83 I     45 98.6 A at 70.3 BC - 

186 N I 1 84 N     100 99.3 98.7 BC VUS 

187 A     85 A     95 99.3 95.2 BC - 

188 E D 1 86 E     90 99.3 78 BC D 

189 H     87 H     45 98.6 Y at 73.6 BC - 

190 I     88 I     100 98.6 96.4 BC - 

191 R     89 R     65 99.3 67.5 BC - 

192 I     90 I     45 92.1 M at 73.9 BC - 

193 A     91 A V 1 100 99.3 98.4 BC LND 

194 D     92 D     100 98.6 95.7 BC - 

195 Q     93 Q     65 98.6 55.5 BC - 

196 F L 1 94 F     45 97.1 Y at 66.7 BC VUS 
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197 V     95 V     80 81.3 87 BC - 

198 E     96 E     55 96.4 63.3 BC - 

199 V     97 V     100 99.3 98.5 BC - 

200 P     98 P     100 99.3 99.6 BC - 

201 G     99 G     100 99.3 98.7 BC - 

202 G     100 G     100 99.3 99.6 BC - 

203 T     101 T     65 98.6 61.8 BC - 

204 N     102 N     100 99.3 98.5 BC - 

205 N     103 N     100 99.3 93.7 BC - 

206 N     104 N     95 95 88.3 BC - 

207 N     105 N     100 96.4 99.1 BC - 

208 Y     106 Y     100 99.3 98.4 BC - 

209 A     107 A     100 99.3 98.4 BC - 

210 N     108 N     100 99.3 99.6 BC - 

211 V     109 V     95 99.3 97.6 BC - 

212 Q     110 Q     40 95 E at 52.2 BC - 

213 L     111 L     95 97.1 93.6 BC - 

214 I     112 I     100 99.3 98.5 BC - 

215 V     113 V     70 88.5 74.8 BC - 

216 E     114 E     40 97.8 D at 66.9 BC - 

217 M     115 M     25 48.9 I at 58.3 BC - 

218 A     116 A     100 99.3 98.2 BC - 

219 E     117 E     55 87.1 62.2 BC - 

220 V     118 V     15 R at 44.6 R at 79.5 BC - 

221 T     119 T     50 85.6 33.9 BC - 

222 R     120 R     25 G at 33.8 G at 21.9 BC - 

223 V     121 V     100 99.3 95.2 BC - 

224 D     122 D     35 47.5 H at 32.7 BC - 

225 A     123 A     100 99.3 98.5 BC - 

226 V     124 V     100 96.4 96.9 BC - 

227 W     125 W     100 99.3 97.5 BC - 

228 P     126 P     45 98.6 A at 73.8 BC - 

229 G     127 G     100 99.3 99.4 BC - 

230 W     128 W     100 99.3 99.4 BC - 

231 G     129 G     100 99.3 99.4 BC - 

232 H     130 H     100 99.3 98.1 BC - 

233 A     131 A     100 99.3 98.5 BC - 

234 S     132 S     100 99.3 98.5 BC - 

235 E     133 E     100 99.3 99.4 BC - 

236 N     134 N     100 92.8 96.7 BC - 

237 P     135 P     100 98.6 98.8 BC - 
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238 E     136 E     45 96.4 K at 48.4 BC - 

239 L     137 L     100 99.3 99.6 BC - 

240 P     138 P     100 99.3 98.8 BC - 

241 D     139 D     45 95.7 E at 70.0 BC - 

242 A     140 A     45 94.2 L at 29.7 BC - 

243 L     141 L     100 99.3 97.6 BC - 

244 K     142 D     20 T at 24.5 A at 41.2 BC LND 

245 E     143 A     15 A at 78.4 A at 48.9 BC LND 

246 K     144 K     40 85.6 39.1 BC - 

247 G     145 G     75 97.1 43 BC - 

248 I     146 I     80 95.7 85.5 BC - 

249 I     147 I     35 V at 55.4 V at 36.6 BC - 

250 F     148 F     100 100 99.4 BC - 

251 L     149 L     65 99.3 I at 49.5 BC - 

252 G     150 G     100 100 99.7 BC - 

253 P     151 P     100 97.1 98.7 BC - 

254 P     152 P     90 95.7 87.6 BC - 

255 A     153 A     30 71.2 G at 39.0 BC - 

256 D A 71 154 S     5 A at 36.0 S at 38.5 BC LND 

257 S     155 S     40 77 A at 76.2 BC - 

258 M     156 M     100 100 99.1 BC - 

259 I     157 A     25 A at 52.5 R at 43.2 BC LND 

260 A     158 A     80 99.3 54.3 BC - 

261 L     159 L     100 100 99.3 BC - 

262 G     160 G     100 100 99.6 BC - 

263 D     161 D     100 100 99.3 BC - 

264 K     162 K     100 100 99.3 BC - 

265 I     163 I     80 71.2 85.9 BC - 

266 G     164 G     45 98.6 S at 42.1 BC - 

267 S     165 S     100 99.3 96.6 BC - 

268 S     166 S     60 70.5 T at 53.5 BC - 

269 L     167 L     45 99.3 I at 78.1 BC - 

270 I     168 I R 1 45 98.6 V at 72.3 BC LND 

271 A     169 A D 1 100 99.3 99.3 BC VUS 

272 Q     170 Q R 1 100 100 99.3 BC VUS 

273 A     171 A     45 97.1 H at 30.9 BC - 

274 A     172 A     90 99.3 89.7 BC - 

275 D V 1 173 D     25 G at 48.9 G at 37.8 BC VUS 

276 V G (I) 1 (1) 174 V     65 99.3 73.3 BC VUS 

277 P     175 P     100 97.1 98.2 BC - 

278 T     176 T     80 99.3 58.8 BC - 
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279 L     177 L     80 98.6 49.6 BC - 

280 P     178 P     90 76.3 84.3 BC - 

281 W     179 W     100 99.3 99.4 BC - 

282 S     180 S     100 100 97 BC - 

283 G     181 G     10 100 99.4 BC - 

284 S     182 S     75 99.3 54.8 BC - 

285 H N 6 183 H     45 89.2 G at 66.6 BC VUS 

286 V     184 V     55 99.3 L at 28.0 BC - 

287 K     185 K     40 63.3 19 BC - 

288 I     186 I     30 63.3 V at 57.7 BC - 

289 P     187 P     45 90.7 D at 42.1 BC - 

290 P     188 P     30 43.9 W at 19.9 BC - 

291 G     189 N S 1 10 E at 77.0 V at 33.4 BC LND 

292 R     190 S     5 S at 59.7 E at 28.0 BC LND 

293 S     191 N     15 C at 75.5 C at 15.9 BC LND 

294 L     192 L     35 79.1 I at 32.8 BC - 

295 V     193 V     20 39.6 48.9 BC - 

296 T     194 T     35 S at 42.5 38.1 BC - 

297 V I 32 195 I     55 I at 97.8 65.1 BC LND 

298 P     196 P     85 99.3 57.3 BC - 

299 E     197 E     45 52.5 D at 48.0 BC - 

300 E     198 E     65 89.9 48.1 BC - 

301 I     199 I     30 57.6 V at 33.6 BC - 

302 Y     200 Y     95 100 90.1 BC - 

303 K     201 R L 2 10 R at 69.1 E at 18.3 BC ND 

304 K     202 Q     50 42.5 50.1 BC LND 

305 A V 1 203 A     50 96.4 G at 61.5 BC VUS 

306 C     204 C     90 100 84.3 BC - 

307 V     205 V     85 100 68.5 BC - 

308 Y     206 Y     25 48.2 T at 23.2 BC - 

309 T     207 T     45 97.8 S at 37.5 BC - 

310 T     208 T     45 89.2 V at 28.8 BC - 

311 E     209 E     65 84.9 63.3 BC - 

312 E     210 E     70 99.3 67.3 BC - 

313 A V 1 211 A     50 99.3 G at 65.7 BC VUS 

314 I V 69 212 I T 1 20 V at 49.6 L at 73.8 BC LND 

315 A     213 A     60 96.4 E at 32.4 BC - 

316 S     214 S     50 97.8 K at 30.1 BC - 

317 C     215 C     45 99.3 A at 71.2 BC - 

318 Q     216 Q     45 95 E at 27.9 BC - 

319 V     217 V     40 76.3 E at 26.2 BC - 
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320 V     218 V     55 80.6 I at 69.7 BC - 

321 G     219 G     100 100 99.9 BC - 

322 Y     220 Y     60 98.6 F at 53.5 BC - 

323 P     221 P     100 97.1 99 BC - 

324 A     222 A     45 99.3 V at 66.4 BC - 

325 M     223 M     95 100 96.7 BC - 

326 I     224 I     95 100 79.8 BC - 

327 K     225 K     100 100 100 BC - 

328 A     226 A     100 100 100 BC - 

329 S     227 S     100 100 99.1 BC - 

330 W     228 W     45 99.3 E at 77.7 BC - 

331 G     229 G     100 96.4 99.3 BC - 

332 G     230 G     100 97.1 99.3 BC - 

333 G     231 G     100 97.1 99.4 BC D 

334 G     232 G     100 100 100 BC - 

335 K     233 K     100 100 99.7 BC - 

336 G     234 G     100 100 100 BC - 

337 I     235 I     100 100 100 BC - 

338 R     236 R     100 100 100 BC - 

339 K     237 K     80 98.6 80.2 BC - 

340 V     238 V     90 100 77.7 BC - 

341 H     239 H     40 82.7 E at 31.3 BC - 

342 N     240 N     60 95 41.4 BC - 

343 D G 30 241 D     40 92.8 E at 34.5 BC VUS 

344 D     242 D     65 95 E at 48.7 BC - 

345 E     243 E     45 92.1 D at 45.1 BC - 

346 V     244 V     45 99.3 F at 68.8 BC - 

347 R     245 R     45 84.2 P at 27.7 BC - 

348 A G 1 246 A     55 92.8 40.6 BC VUS 

349 L     247 L     95 99.3 78 BC - 

350 F     248 F     80 97.1 58.8 BC - 

351 K     249 K     45 99.3 33.7 BC - 

352 Q K 1 250 Q     95 98.6 67.5 BC VUS 

353 V     251 V     85 100 67.8 BC - 

354 Q     252 Q     80 99.3 52.9 BC - 

355 G V 130 253 G     45 96.4 30.1 BC VUS 

356 E     254 E     100 100 100 BC - 

357 V     255 V     70 100 53.2 BC - 

358 P     256 P     100 100 96.1 BC - 

359 G     257 G     100 100 99.4 BC - 

360 S     258 S     100 100 98.1 BC - 
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361 P     259 P     100 97.1 97.5 BC - 

362 I T 115 260 I     90 100 89.1 BC VUS 

363 F L 5 261 F     100 97.1 99.3 BC PD 

364 I     262 I     55 95.7 63.3 BC - 

365 M     263 M     100 100 100 BC - 

366 K     264 K     70 72.7 74.2 BC - 

367 V     265 V     40 69.8 L at 79.8 BC - 

368 A     266 A     95 100 91.3 BC - 

369 S     267 S     45 94.2 G at 37.0 BC - 

370 Q     268 Q     60 97.1 35.1 BC - 

371 S I 1 269 S     55 97.8 A at 64.9 BC VUS 

372 R     270 R     100 100 99.4 BC - 

373 H     271 H     100 100 99.9 BC - 

374 L     272 L     100 100 97.6 BC - 

375 E     273 E     100 100 100 BC - 

376 V A (I) 12 (1) 274 V     100 100 100 BC PD 

377 Q     275 Q     100 100 100 BC - 

378 L     276 L     65 100 72.1 BC - 

379 L     277 L     95 96.4 93.7 BC - 

380 C     278 C     45 99.3 A at 75.6 BC - 

381 D     279 D     100 100 100 BC - 

382 Q     280 K     85 69.8 78.4 BC LND 

383 Y     281 H     80 71.9 90.6 BC LND 

384 G     282 G     100 95.7 98.2 BC - 

385 N     283 N     90 100 85.2 BC - 

386 V     284 V     45 98.6 A at 41.5 BC - 

387 A     285 S     30 88.5 I at 69.6 BC LND 

388 A     286 A     45 99.3 S at 69.7 BC - 

389 L     287 L     100 100 94 BC - 

390 H     288 H     45 99.3 F at 71.2 BC - 

391 S     289 S     45 99.3 G at 75.6 BC - 

392 R     290 R     100 97.1 99.4 BC - 

393 D     291 D     100 100 100 BC - 

394 C     292 C     100 100 99.9 BC - 

395 S     293 S     100 100 99.7 BC - 

396 V L 1 294 V     75 88.5 74.4 BC VUS 

397 Q     295 Q     100 96.4 99.3 BC - 

398 R     296 R     100 99.3 99.9 BC - 

399 R     297 R     100 99.3 99.9 BC - 

400 H     298 H     100 95.7 95.7 BC - 

401 Q     299 Q     100 100 100 BC - 
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402 K     300 K     100 99.3 99.9 BC - 

403 I     301 I     100 100 99.1 BC - 

404 I K 20 302 I     95 100 94.8 BC LD 

405 E     303 E     100 100 100 BC - 

406 E     304 E     100 100 100 BC D 

407 G     305 G     45 96.4 A at 72.4 BC - 

408 P     306 P     100 100 100 BC - 

409 I     307 I     35 70.5 V at 51.3 BC - 

410 T N 1 308 T     85 100 79.2 BC VUS 

411 V     309 V     50 95 I at 60.1 BC - 

412 A     310 A     95 100 91.3 BC - 

413 P     311 P     50 94.2 K at 32.8 BC - 

414 Q     312 P S 2 5 P at 33.8 P at 51.4 BC ND 

415 E     313 E     50 83.5 41.1 BC - 

416 T     314 T     65 97.8 61.3 BC - 

417 I     315 V     15 V at 82.0 F at 67.9 BC LND 

418 K     316 K     50 94.2 E at 35.2 BC - 

419 K     317 K     20 39.6 E at 27.4 BC - 

420 L     318 L     45 99.3 M at 78.9 BC - 

421 E     319 E     100 100 96.4 BC - 

422 Q     320 Q     70 98.6 38.5 BC - 

423 A     321 A     70 95 73.6 BC - 

424 A     322 A     100 98.6 99.7 BC - 

425 R T 1 323 R     45 97.1 V at 69.9 BC VUS 

426 R     324 R     75 100 78.3 BC - 

427 L     325 L     100 100 98.7 BC - 

428 A     326 A     80 100 61.3 BC - 

429 K     327 K     85 96.4 77.8 BC - 

430 S     328 S     25 C at 38.9 L at 41.2 BC - 

431 V     329 V     100 100 97.3 BC - 

432 N     330 N     25 52.5 G at 81.4 BC - 

433 Y     331 Y     100 100 99.9 BC - 

434 V     332 V     90 84.9 89.8 BC - 

435 G     333 G     45 99.3 S at 71.4 BC - 

436 A     334 A     100 100 94.9 BC - 

437 A     335 A     45 99.3 G at 79.0 BC - 

438 T     336 T     100 100 100 BC - 

439 V     337 V     95 100 98.4 BC - 

440 E     338 E     100 100 99.9 BC - 

441 Y     339 Y     95 97.1 96.7 BC - 

442 L     340 L     100 100 97.8 BC - 
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443 Y C 1 341 Y     95 92.8 94 BC PD 

444 S     342 S     90 97.8 82 BC - 

445 M T 190 343 M     45 99.3 H at 35.1 BC VUS 

446 D     344 D     25 E at 69.8 E at 28.8 BC - 

447 T     345 T     45 98.6 D at 55.3 BC - 

448 G     346 G     80 99.3 52.3 BC - 

449 E D 3 347 E     35 93.5 K at 38.5 BC VUS 

450 Y     348 Y     50 95.7 F at 68.5 BC - 

451 Y     349 Y     75 95.7 76.8 BC - 

452 F     350 F     100 100 99.4 BC - 

453 L     351 L     100 100 99.9 BC - 

454 E     352 E     100 100 99.9 BC - 

455 L     353 L     100 100 99.9 BC - 

456 N     354 N     100 100 100 BC - 

457 P     355 P     100 100 100 BC - 

458 R     356 R     100 100 100 BC - 

459 L     357 L     100 100 97.9 BC - 

460 Q     358 Q     100 100 99.9 BC - 

461 V     359 V     100 99.3 99.7 BC - 

462 E     360 E     100 99.3 99.7 BC - 

463 H     361 H     100 99.3 99.7 BC - 

464 P     362 P     100 99.3 99.6 BC - 

465 V     363 V     45 98.6 T at 41.4 BC - 

466 T     364 T     100 99.3 96.9 BC - 

467 E     365 E     100 99.3 99.7 BC - 

468 W S 12 366 W     40 92.1 M at 73.3 BC VUS 

469 I     367 I     65 98.6 V at 60.1 BC - 

470 A T 12 368 A     80 98.6 46.2 BC VUS 

471 E     369 E     40 93.5 G at 46.2 BC - 

472 V I 52 370 I     70 I at 56.1 83.7 BC LND 

473 N     371 N     100 98.6 98.5 BC - 

474 L F 1 372 L     100 97.8 94.5 BC PD 

475 P L 1 373 P     100 99.3 99.7 BC LND 

476 A     374 A     100 98.6 97.8 BC - 

477 A     375 A     90 89.9 85.9 BC - 

478 Q K 28 376 Q     100 99.3 97.6 BC LND 

479 V     377 V     45 95.7 L at 78.4 BC - 

480 A     378 A     45 85.6 Q at 75.3 BC - 

481 V     379 V     55 90.7 I at 66.4 BC - 

482 G     380 G     50 97.1 A at 72.6 BC - 

483 M     381 M     100 99.3 99.7 BC - 
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484 G     382 G     100 99.3 99.7 BC - 

485 I     383 I     85 92.8 75.1 BC - 

486 P     384 P     100 99.3 99.3 BC - 

487 L     385 L     90 99.3 90.1 BC - 

488 W     386 W     35 83.5 H at 57.0 BC - 

489 Q     387 Q     35 79.1 R at 68.7 BC - 

490 I     388 I     80 83.5 84.6 BC - 

491 P     389 P     50 94.2 R at 33.1 BC - 

492 E     390 E     45 97.8 73 BC - 

493 I     391 I L 45 100 99.3 94.6 BC ND 

494 R G 1 392 R     100 99.3 99.9 BC PD 

495 R     393 R     45 98.6 L at 37.3 BC - 

496 F     394 F     45 97.1 L at 63.0 BC - 

497 Y     395 Y     95 97.1 97 BC - 

498 G A 1 396 G     100 98.6 95.4 BC VUS 

499 M     397 I     35 64.8 V at 36.1 BC LND 

500 E     398 E     30 60.4 S at 20.2 BC - 

501 H     399 H     30 65.5 13.8 BC - 

502 G     400 G     40 93.5 19.6 BC - 

503 G     401 G     85 87.1 D at 34.5 BC - 

504 G     402 G     40 90.7 19 BC - 

505 Y     403 Y     40 87.8 18.4 BC - 

506 D     404 D     35 83.5 17.5 BC - 

507 S     405 S     20 A at 48.9 P at 71.4 BC - 

508 W     406 W     45 96.4 48.9 BC - 

509 R     407 R     40 92 17.2 BC - 

510 K     408 K     30 74.1 15.6 BC - 

511 T     409 T     45 79.9 16.8 BC - 

512 S     410 S     45 68.4 14.4 BC - 

513 V     411 V     15 A at 47.5 A at 10.2 BC - 

514 V L 1 412 V A 84 20 L at 49.6 G at 40.0 BC ND 

515 A     413 A     45 95.7 29.8 BC - 

516 S     414 F     15 T at 82.0 T at 42.7 BC LND 

517 P     415 P L 6 35 76.3 43.8 BC ND 

518 F     416 F     45 98.6 I at 76.6 BC - 

519 D     417 D     30 69.8 82.3 BC - 

520 F L 2 418 F     40 82.7 94 BC PD 

521 D N 52 419 D     45 95.7 43.2 BC VUS 

522 E     420 K     15 K at 57.6 K at 32.1 BC LND 

523 A     421 A     45 69.8 T at 19.0 BC - 

524 E     422 Q     15 41 Q at 44.8 BC LND 
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525 S     423 S     45 97.1 R at 40.0 BC - 

526 L     424 I     5 T at 30.9 R at 33.1 BC LND 

527 R     425 R     30 48.2 P at 73.0 BC - 

528 P     426 P S (A) 32 (1) 90 99.3 90.1 BC ND 

529 K     427 K     65 95.7 61.5 BC - 

530 G     428 G     100 99.3 95.4 BC - 

531 H     429 H     100 99.3 99.4 BC - 

532 C     430 C     60 94.2 V at 41.7 BC - 

533 V     431 V     50 96.4 I at 42.6 BC - 

534 A     432 A     95 99.3 97.8 BC - 

535 V     433 V     45 98.6 C at 37.2 BC - 

536 R     434 R     100 99.3 99.9 BC - 

537 V     435 V     35 71.9 I at 81.3 BC - 

538 T A 1 436 T     100 99.3 99.9 BC PD 

539 S     437 S     100 98.6 84.6 BC - 

540 E     438 E     100 99.3 99.9 BC - 

541 D     439 D     65 91.4 57.7 BC - 

542 P     440 P     100 98.6 96.7 BC - 

543 D     441 D     80 99.3 62.1 BC - 

544 D     442 D     50 98.6 E at 65.1 BC - 

545 G     443 G     100 99.3 98.1 BC - 

546 F     444 F     100 99.3 99.4 BC - 

547 K     445 K     100 97.8 93.1 BC - 

548 P     446 P     100 99.3 99.7 BC - 

549 T     447 T     45 98.6 S at 69.6 BC - 

550 S     448 S     65 65.5 67.8 BC - 

551 G     449 G     100 99.3 99.3 BC - 

552 E     450 R     5 K at 74.1 T at 47.7 BC LND 

553 I     451 V     15 95 V at 53.2 BC LND 

554 Q H 1 452 Q     60 55.4 46.5 BC VUS 

555 E     453 E     90 98.6 89.2 BC - 

556 L     454 L     90 69.8 89.4 BC - 

557 S     455 S     35 79.1 N at 76.3 BC - 

558 F     456 F     100 98.6 99.3 BC - 

559 K     457 K     45 95 R at 74.7 BC - 

560 S     458 S     100 97.1 95.5 BC - 

561 K Q (N) 36 (2) 459 K     40 93.5 S at 57.1 BC VUS 

562 P     460 P     45 95 S at 34.9 BC - 

563 N     461 N     100 97.1 90.3 BC - 

564 M     462 V     5 V at 93.5 V at 93.3 BC LND 

565 W     463 W     100 97.1 99.3 BC - 
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566 S     464 A     5 A at 85.6 G at 80.2 BC LND 

567 Y     465 Y     100 97.1 98.9 BC - 

568 F     466 F     100 97.1 99.1 BC - 

569 S     467 S     100 97.1 98.4 BC - 

570 V     468 V     100 97.1 97.8 BC - 

571 K     469 K     45 96.4 G at 39.3 BC - 

572 S     470 S     50 97.8 35.4 BC - 

573 G     471 G     45 97.8 A at 36.9 BC - 

574 G     472 G     100 98.6 92.7 BC - 

575 G     473 G     80 84.9 78.4 BC - 

576 I     474 I     65 97.8 58.3 BC - 

577 H     475 H     100 98.6 99.3 BC - 

578 E     476 E     85 97.8 62.2 BC - 

579 F     477 F     100 97.1 91.5 BC - 

580 S     478 S     50 70.5 A at 49.9 BC - 

581 D     479 D     100 98.6 99 BC - 

582 S     480 S     100 98.6 99.1 BC - 

583 Q     481 Q     100 98.6 99.1 BC - 

584 F     482 F     100 98.6 97.5 BC - 

585 G     483 G     100 98.6 99.1 BC - 

586 H     484 H     100 100 99.4 BC - 

587 V     485 V     40 96.4 I at 45.3 BC - 

588 F     486 F     100 100 99.6 BC - 

589 A S 1 487 A     60 100 66.7 BC VUS 

590 F     488 F     45 71.9 Y at 34.2 BC - 

591 G     489 G     95 100 96.9 BC - 

592 E     490 E     85 75.5 81.3 BC - 

593 S     491 S     50 86.3 N at 58.9 BC - 

594 R     492 R     100 100 99.3 BC - 

595 S     493 A     15 A at 56.8 E at 31.6 BC LND 

596 V     494 L     5 L at 61.2 A at 37.3 BC LND 

597 A     495 A     85 99.3 63.7 BC - 

598 I     496 I     75 99.3 R at 54.1 BC - 

599 A     497 A     35 70.5 K at 43.6 BC - 

600 N     498 N     85 89.9 57.4 BC - 

601 M     499 M     95 100 88.5 BC - 

602 V     500 V     90 71.2 87 BC - 

603 L     501 L     50 99.3 V at 51.1 BC - 

604 A     502 G     75 G at 66.2 82.5 BC LND 

605 L     503 L     95 100 97.6 BC - 

606 K     504 K     100 100 96.4 BC - 
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607 E     505 E     95 100 93.7 BC - 

608 I     506 I     45 92.8 L at 73.6 BC - 

609 Q     507 Q     45 96.4 S at 72.6 BC - 

610 I     508 I     100 100 96.7 BC - 

611 R     509 R     100 100 98.5 BC - 

612 G     510 G     100 100 98.1 BC - 

613 D     511 E     55 E at 97.8 70.9 BC LND 

614 I     512 I     40 95.7 F at 71.2 BC - 

615 R     513 R     85 66.2 85.2 BC - 

616 T     514 T     90 77.7 93 BC - 

617 N     515 N     45 99.3 T at 71.8 BC - 

618 V I 9 516 V     95 100 90.9 BC VUS 

619 D     517 D     45 99.3 E at 74.2 BC - 

620 Y     518 Y     100 99.3 98.8 BC - 

621 T     519 T     45 94.2 L at 73.6 BC - 

622 I     520 I     70 52.5 77.4 BC - 

623 D     521 D     45 97.1 K at 54.9 BC - 

624 L     522 L     100 98.6 97 BC - 

625 L     523 L     100 100 96.3 BC - 

626 H     524 H     20 N at 55.4 E at 75.9 BC - 

627 A     525 A     45 98.6 T at 67.9 BC - 

628 S     526 S     30 66.2 E at 41.2 BC - 

629 D     527 D     45 74.8 33.1 BC - 

630 Y     528 Y     35 71.9 F at 83.7 BC - 

631 R W (Q) 2 (1) 529 R     45 86.3 E at 37.8 BC VUS 

632 E     530 D     45 75.5 D at 32.5 BC LND 

633 N     531 N     100 100 96.9 BC - 

634 K     532 K     40 83.5 T at 41.8 BC - 

635 I     533 I     95 98.6 92.4 BC - 

636 H     534 H     45 99.3 T at 34.9 BC - 

637 T     535 T     100 100 99.7 BC - 

638 G     536 G     95 99.3 80.7 BC - 

639 W     537 W     100 100 99.6 BC - 

640 L     538 L     100 100 99.7 BC - 

641 D     539 D     100 100 99.6 BC - 

642 S     540 S     35 69.8 E at 22.0 BC - 

643 R     541 R     45 99.3 L at 73.0 BC - 

644 I     542 I     100 100 99.3 BC - 

645 A     543 A     80 100 50.2 BC - 

646 M     544 M     45 99.3 E at 28.0 - - 

647 R     545 R     55 97.8 K at 55.3 - - 
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648 V     546 V     80 97.8 47.2 - - 

649 R     547 R     35 71.2 T at 38.7 - - 

650 A     548 A     85 97.1 79 - - 

651 E     549 E     90 98.6 84.6 - - 

652 R     550 R     75 99.3 69.9 - - 

653 P     551 P     95 97.8 92.4 - - 

654 P     552 P     45 95.7 D at 65.8 - - 

655 W     553 W     45 99.3 T at 27.0 - - 

656 Y     554 Y     45 94.2 M at 38.7 - - 

657 L I 1 555 L     90 69.1 70.3 - VUS 

658 S     556 S     45 99.3 A at 45.6 - - 

659 V     557 V     95 100 85.3 - - 

660 V     558 V     85 96.4 59.1 - - 

661 G     559 G     45 91.4 C at 65.5 - - 

662 G     560 G     100 99.3 92.1 - - 

663 A     561 A     95 93.5 92.1 - - 

664 L     562 L     85 97.8 50.7 - - 

665 Y     563 Y     45 92.8 T at 33.6 - - 

666 K     564 K     50 82.7 55.8 - - 

667 A     565 A     90 70.5 89.4 - - 

668 S     566 S     35 68.4 H at 33.0 - - 

669 T     567 A     15 A at 41.7 A at 18.6 - LND 

670 T     568 T     25 S at 47.5 A at 36.9 - - 

671 S     569 S     40 61.9 48 - - 

672 S     570 A     15 A at 72.7 E at 36.9 - LND 

673 A     571 A     30 69.1 40.6 - - 

674 V     572 V     35 32.4 C at 28.8 - - 

675 V G 1 573 V     50 98.6 31.2 - VUS 

676 S     574 S     60 82 40.2 - - 

677 D     575 D     45 71.2 E at 42.1 - - 

678 Y     576 Y     60 100 66.4 - - 

679 V     577 V     40 77.7 L at 23.1 - - 

680 G     578 G     30 71.2 H at 19.9 - - 

681 Y     579 Y     50 99.3 S at 40.6 - - 

682 L     580 L     100 100 90.1 - - 

683 E     581 E     65 51.1 67.9 - - 

684 K     582 K     60 100 61.6 - - 

685 G     583 G     100 100 99.4 - - 

686 Q     584 Q     95 99.3 96.7 - - 

687 I     585 I     50 98.6 V at 65.1 - - 

688 P     586 P     60 100 64 - - 
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689 P     587 P     80 98.6 46.8 - - 

690 K     588 K     60 99.3 55.6 - - 

691 H Q 1 589 H     60 95 D at 35.4 - VUS 

692 I     590 I     50 98.6 30.7 - - 

693 S     591 S     45 99.3 L at 73.6 - - 

694 L     592 L     70 97.1 40 - - 

695 V     593 V     45 97.8 T at 42.3 - - 

696 H     594 H     30 N at 45.3 V at 31.6 - - 

697 S     595 S     35 76.3 F at 41.1 - - 

698 Q     596 Q     25 48.2 P at 28.5 - - 

699 V     597 V M 1 95 89.2 68.5 - LND 

700 S     598 S     30 69.1 E at 40.9 - - 

701 L M 1 599 L     80 99.3 53.4 - VUS 

702 N     600 N     40 97.1 I at 71.7 - - 

703 I     601 I     45 99.3 Y at 58.6 - - 

704 E     602 E     65 85.6 70.2 - - 

705 G E (R) 2 (1) 603 G     85 84.9 77.8 - VUS 

706 S     604 S N 1 45 89.9 22.3 - LND 

707 K     605 K     75 99.3 58 - - 

708 Y     606 Y     100 100 96 - - 

709 T     607 T     45 92.1 K at 38.4 - - 

710 I     608 I     45 87.8 F at 43.2 - - 

711 D     609 D     25 E at 48.9 T at 39.9 - - 

712 V     610 V     65 M at 39.6 41.8 - - 

713 V     611 V     35 74.8 T at 45.1 - - 

714 R     612 R     85 89.9 73.3 - - 

715 G     613 G     30 58.3 S at 44.1 - - 

716 G     614 G     55 96.4 S at 55.2 - - 

717 S     615 S     20 P at 47.5 P at 36.7 - - 

718 G     616 G     40 83.5 D at 33.0 - - 

719 T     617 T     10 S at 86.3 S at 58.2 - - 

720 Y     618 Y     85 97.1 78 - - 

721 R     619 R     25 70.5 V at 22.3 - - 

722 L     620 L     80 97.8 75.4 - - 

723 R     621 R     40 85.6 F at 32.4 - - 

724 M     622 M     70 80.6 46.2 - - 

725 N S 44 623 N     100 95.7 96.9 - LND 

726 N     624 K N 3 15 E at 25.9 G at 66.3 - ND 

727 S     625 S     90 97.1 79 - - 

728 E     626 E     35 67.6 K at 28.3 - - 

729 V     627 V     45 I at 56.1 C at 31.6 - - 
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730 V     628 V     15 E at 81.3 E at 53.1 - - 

731 A     629 A     45 91.4 V at 57.9 - - 

732 E     630 E     40 69.8 G at 31.8 - - 

733 I     631 I     35 65.5 V at 54.7 - - 

734 H     632 H     70 69.8 R at 44.2 - - 

735 T     633 T     30 71.9 R at 28.0 - - 

736 L     634 L     100 97.1 94.2 - - 

737 R G 12 635 R     35 69.1 S at 48.1 - VUS 

738 D     636 D     95 97.8 94.3 - - 

739 G E 1 637 G     95 97.8 95.2 - PD 

740 G     638 G     95 92.1 90 - - 

741 L     639 L     95 89.2 91.3 - - 

742 L     640 L S 1 100 91.4 95.1 - VUS 

743 M I 5 641 M     45 85.6 L at 28.3 - VUS 

744 Q     642 Q     45 89.9 S at 32.8 - - 

745 L     643 L     60 95.7 58 - - 

746 D     644 D     65 93.5 58.5 - - 

747 G     645 G     100 95 95.5 - - 

748 K     646 K     30 83.5 25 - - 

749 S     647 S     95 95.7 91.6 - - 

750 H     648 H     60 95.7 66.9 - - 

751 V     649 V     45 88.5 T at 39.3 - - 

752 I     650 I     50 87.8 V at 34.0 - - 

753 Y     651 Y     100 95.7 95.5 - - 

754 A     652 A     45 93.5 W at 37.6 - - 

755 K     653 E     55 E at 94.2 60 - LND 

756 E     654 E     80 83.5 86.2 - - 

757 E     655 E     95 99.3 94.3 - - 

758 A     656 A     40 94.2 V at 52.8 - - 

759 T     657 A     10 A at 67.6 A at 29.1 - LND 

760 G     658 G     55 98.6 A at 35.8 - - 

761 T     659 T     65 98.6 55.3 - - 

762 R C 6 660 R     100 97.1 96.6 - ND 

763 L     661 L     55 98.6 60.6 - - 

764 L     662 L     40 95 S at 37.0 - - 

765 I     663 I     85 98.6 57.7 - - 

766 D     664 D G 1 55 82.7 62.1 - LND 

767 G R 1 665 G     45 98.6 43.2 - VUS 

768 R S 1 666 R     30 67.6 62.2 - VUS 

769 T     667 T     95 99.3 94.6 - - 

770 C F 1 668 C     90 99.3 83.7 - VUS 
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771 L     669 L     55 95 59.1 - - 

772 L     670 L     65 98.6 56.7 - - 

773 Q     671 Q     45 98.6 E at 69.1 - - 

774 N S 1 672 N     40 82.7 K at 35.7 - VUS 

775 D V 1 673 D     30 81.3 E at 75.0 - VUS 

776 H D (N) 3 (1) 674 H     45 98.6 N at 61.6 - VUS 

777 D N 4 675 D     95 100 97.2 - PD 

778 P     676 P     100 100 99 BCCP - 

779 S     677 S     65 99.3 T at 55.3 BCCP - 

780 K     678 K     35 73.4 Q at 40.9 BCCP - 

781 L     679 L     85 100 88.9 BCCP - 

782 M     680 M     20 L at 41.0 R at 72.0 BCCP - 

783 A V 1 681 A     40 97.1 S at 43.2 BCCP VUS 

784 E     682 E     35 83.5 P at 70.2 BCCP - 

785 T     683 T     50 99.3 S at 68.7 BCCP - 

786 P     684 P     65 100 65.2 BCCP - 

787 C     685 C     45 97.1 G at 79.0 BCCP - 

788 K M 1 686 K     100 99.3 97.2 BCCP VUS 

789 L     687 L     100 100 96.3 BCCP - 

790 L     688 M     45 89.2 V at 45.7 BCCP LND 

791 R     689 R     50 100 36.9 BCCP - 

792 Y     690 Y     65 F at 56.8 55.5 BCCP - 

793 L     691 L     60 99.3 54.9 BCCP - 

794 V     692 V I 37 95 84.9 85.6 BCCP ND 

795 S     693 S F 1 20 A at 54.7 E at 60.4 BCCP LND 

796 D     694 D H 1 80 99.3 56.5 BCCP LND 

797 N     695 N     15 G at 71.9 G at 91.2 BCCP - 

798 S     696 S     40 68.4 G at 21.7 BCCP - 

799 S     697 N     15 H at 84.9 H at 90.0 BCCP LND 

800 I M 1 698 I     35 V at 70.5 V at 72.7 BCCP VUS 

801 D     699 D     35 77.7 20.5 BCCP - 

802 T     700 A     5 92.1 A at 71.4 BCCP LND 

803 D     701 D     45 98.6 G at 76.9 BCCP - 

804 T     702 T M 2 30 61.2 Q at 51.7 BCCP ND 

805 P R 2 703 P     55 98.6 43 BCCP VUS 

806 Y     704 Y     95 100 69.1 BCCP - 

807 A     705 A     100 97.8 98.4 BCCP - 

808 E     706 E     100 100 97.8 BCCP - 

809 V     707 V A 1 55 98.6 52.3 BCCP LND 

810 E     708 E     100 100 99.9 BCCP - 

811 V     709 V     95 100 94.5 BCCP - 
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812 M     710 M     100 100 100 BCCP - 

813 K     711 K     100 100 100 BCCP* - 

814 M     712 M     100 100 97.9 BCCP - 

815 C     713 C     45 99.3 Y at 29.8 BCCP - 

816 M     714 M     100 99.3 93 BCCP - 

817 P     715 P     65 100 67.5 BCCP - 

818 L     716 L     100 99.3 95.4 BCCP - 

819 I     717 L     10 L at 97.8 L at 25.3 BCCP LND 

820 S     718 S     45 79.1 A at 55.8 BCCP - 

821 P     719 P     45 99.3 Q at 37.9 BCCP - 

822 A     720 A S 1 45 97.1 E at 70.3 BCCP LND 

823 S     721 S     65 84.9 45.4 BCCP - 

824 G     722 G     100 100 100 BCCP - 

825 V     723 V     55 74.1 34.3 BCCP - 

826 I     724 I     65 95.7 V at 47.5 BCCP - 

827 H     725 H     55 69.8 Q at 37.5 BCCP - 

828 F     726 F     45 69.1 33 BCCP - 

829 K     727 K     20 43.2 I at 31.8 BCCP - 

830 L     728 M     10 M at 76.3 K at 67.8 BCCP LND 

831 S     729 S     25 75.5 Q at 40.0 BCCP - 

832 E     730 E     45 97.1 P at 65.5 BCCP - 

833 G R 3 731 G     100 98.6 99.3 BCCP PD 

834 Q     732 Q     45 97.8 A at 49.9 BCCP - 

835 A     733 A     45 84.2 T at 35.8 BCCP - 

836 M     734 M     40 87.1 L at 64.9 BCCP - 

837 Q     735 Q     35 92.8 E at 44.5 BCCP - 

838 A V 1 736 A     75 93.5 68.8 BCCP VUS 

839 G     737 G     90 84.9 96.7 BCCP - 

840 E     738 E     25 D at 50.4 D at 54.9 BCCP - 

841 L     739 L     50 100 I at 42.6 BCCP - 

842 I     740 I     55 99.3 45.6 BCCP - 

843 A     741 A     80 99.3 64.5 BCCP - 

844 K     742 N     35 R at 71.2 I at 37.0 BCCP LND 

845 L     743 L     80 100 85 BCCP - 

846 D     744 D     50 96.4 A at 24.0 CEN - 

847 L P 1 745 L     100 100 96 CEN PD 

848 D     746 D     95 96.4 94.8 CEN - 

849 D     747 D     85 100 88.9 CEN - 

850 P     748 P     100 97.8 97 CEN - 

851 S     749 S     100 99.3 90.7 CEN - 

852 A     750 A     30 81.3 K at 32.4 CEN - 
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853 V     751 V     90 100 93.6 CEN - 

854 R     752 R     35 69.1 K at 46.6 CEN - 

855 K     753 K     30 53.2 H at 25.0 CEN - 

856 A     754 A     90 97.1 86.4 CEN - 

857 K E 1 755 E     10 E at 95.0 E at 39.1 CEN LND 

858 P A 9 756 P L 3 80 97.8 64.8 CEN ND 

859 F L 1 757 F     75 100 74.2 CEN VUS 

860 R H 6 758 H     10 H at 49.6 T at 31.9 CEN LND 

861 G     759 G     95 95 84.4 CEN - 

862 S     760 S     35 55.4 Q at 25.3 CEN - 

863 F     761 F     50 99.3 L at 64.6 CEN - 

864 P     762 P     95 100 91.3 CEN - 

865 R     763 R     25 V at 23.7 E at 16.0 CEN - 

866 L F 1 764 L     40 71.9 32.7 CEN VUS 

867 G E 1 765 G     55 74.8 56.8 CEN VUS 

868 L     766 L     30 P at 55.4 P at 29.5 CEN - 

869 P     767 P     65 98.6 62.4 CEN - 

870 T R (P) 2 (2) 768 T     35 69.8 17.1 CEN VUS 

871 A     769 A     40 93.5 I at 24.4 CEN - 

872 I     770 I     35 54 V at 24.7 CEN - 

873 S     771 S     45 94.2 G at 63.7 CEN - 

874 G     772 G     35 77 E at 28.2 CEN - 

875 K E 1 773 R K 259 75 71.9 84 CEN ND 

876 V I 1 774 V     45 98.6 P at 41.2 CEN VUS 

877 H     775 H     75 100 50.2 CEN - 

878 Q     776 Q     60 69.8 56.1 CEN - 

879 R     777 R     40 69.1 44.8 CEN - 

880 C     778 C     30 74.1 F at 58.2 CEN - 

881 A     779 A     45 97.8 26.4 CEN - 

882 A     780 A     45 88.5 22.5 CEN - 

883 T     781 T     25 S at 84.9 L at 33.6 CEN - 

884 L     782 L     70 76.3 46.8 CEN - 

885 N     783 N     45 91.4 32.5 CEN - 

886 A     784 A     40 81.3 I at 26.4 CEN - 

887 A     785 A     40 92.1 L at 71.4 CEN - 

888 R     786 R C 1 35 73.4 E at 19.0 CEN LND 

889 M L 21 787 M     45 97.8 N at 53.7 CEN VUS 

890 I     788 I     60 71.9 61.8 CEN - 

891 L     789 L     70 100 72.6 CEN - 

892 A     790 A     50 97.8 31.5 CEN - 

893 G     791 G     100 99.3 97.8 CEN - 
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894 Y     792 Y     95 99.3 79.3 CEN - 

895 D     793 E     25 E at 71.9 45.7 CEN LND 

896 H D (N) 12 (1) 794 H     45 97.8 L at 28.0 CEN VUS 

897 K R 2 795 K     40 N at 68.4 19.6 CEN VUS 

898 V     796 V     30 I at 69.8 M at 37.8 CEN - 

899 D     797 D     25 53.2 K at 23.8 CEN - 

900 E     798 E     45 64.8 28.2 CEN - 

901 V     799 V     45 97.1 T at 30.1 CEN - 

902 L     800 V     20 V at 93.5 V at 44.7 CEN LND 

903 Q H 78 801 Q     60 82 29.5 CEN VUS 

904 D     802 D     45 55.4 E at 25.2 CEN - 

905 L     803 L     90 97.8 84.4 CEN - 

906 L     804 L     30 67.6 M at 28.2 CEN - 

907 N H 1 805 N     30 48.2 E at 26.5 CEN VUS 

908 C     806 C     45 97.8 V at 36.6 CEN - 

909 L     807 L     100 98.6 93.4 CEN - 

910 D     808 D     45 97.1 R at 60.9 CEN - 

911 S T 8 809 S     30 67.8 D at 51.1 CEN VUS 

912 P     810 P     90 99.3 85.5 CEN - 

913 E     811 E     50 90.7 46.2 CEN - 

914 L     812 L     100 99.3 95.8 CEN - 

915 P     813 P     100 98.6 95.4 CEN - 

916 F     814 F     45 95 Y at 37.9 CEN - 

917 L     815 L     80 97.8 50.5 CEN - 

918 Q L 1 816 Q     45 97.8 E at 68.5 CEN VUS 

919 W     817 W     60 98.6 53.1 CEN - 

920 Q     818 Q     70 71.2 45.7 CEN - 

921 E     819 E     65 98.6 39.3 CEN - 

922 C     820 C     25 51.8 I at 25.5 CEN - 

923 F     821 F     30 M at 53.2 M at 35.2 CEN - 

924 A     822 A     30 S at 56.1 S at 54.3 CEN - 

925 V     823 V     45 97.8 A at 34.3 CEN - 

926 L     824 L     60 99.3 63.1 CEN - 

927 A     825 A     60 97.1 H at 31.2 CEN - 

928 T     826 T     45 87.1 G at 37.3 CEN - 

929 R     827 R     100 100 93.1 CEN - 

930 L     828 L     55 95.7 I at 36.1 CEN - 

931 P     829 P     95 100 94.5 CEN - 

932 K     830 K     35 68.4 Q at 22.9 CEN - 

933 D     831 N     30 61.2 K at 33.4 CEN LND 

934 L     832 L     65 100 63.4 CEN - 
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935 R K 2 833 R     35 50.4 E at 37.6 CEN VUS 

936 N     834 N     25 52.5 K at 28.2 CEN - 

937 M     835 M I 6 20 E at 79.1 Q at 21.7 CEN ND 

938 L     836 L     55 97.8 41.4 CEN - 

939 E     837 E     40 76.3 R at 24.9 CEN - 

940 L     838 S     5 S at 33.8 K at 22.0 CEN LND 

941 K I 1 839 K     70 86.3 L at 19.9 CEN VUS 

942 Y     840 Y     45 84.2 M at 30.4 CEN - 

943 K     841 R     25 57.6 A at 24.6 CEN LND 

944 E     842 E     55 59.2 R at 26.5 CEN - 

945 F     843 F     20 Y at 58.3 Y at 42.6 CEN - 

946 E     844 E     35 70.5 A at 24.6 CEN - 

947 I     845 S     10 L at 42.5 S at 40.6 CEN LND 

948 I     846 I     25 46 N at 36.7 CEN - 

949 S F 109 847 S     25 49.6 I at 28.5 CEN VUS 

950 K     848 R     10 S at 30.9 T at 28.9 CEN LND 

951 T     849 N     40 H at 22.3 S at 38.1 CEN LND 

952 S     850 S     60 35.3 V at 27.7 CEN - 

953 L     851 L M 1 20 K at 42.5 K at 8.9 CEN LND 

954 T     852 T     25 N at 39.6 L at 29.4 CEN - 

955 P     853 T     5 K at 36.7 C at 21.3 CEN LND 

956 D     854 D     45 89.2 E at 29.8 CEN - 

957 F     855 F     100 100 94.8 CEN - 

958 P     856 P     100 100 91.9 CEN - 

959 A     857 A     55 75.5 53.4 CEN - 

960 K     858 K     50 82.7 38.4 CEN - 

961 L V 1 859 L     40 68.4 Q at 46.0 CEN VUS 

962 L     860 L     65 97.8 55.8 CEN - 

963 K     861 K     25 R at 62.6 A at 30.3 CEN - 

964 G R 9 862 G     30 62.6 K at 37.8 CEN VUS 

965 I     863 I     65 51.1 33.6 CEN - 

966 L     864 L     50 51.1 43.8 CEN - 

967 E     865 E     45 94.2 D at 38.7 CEN - 

968 A     866 A     35 67.6 S at 22.2 CEN - 

969 H     867 H     60 52.5 40 CEN - 

970 L     868 L     55 93.5 35.4 CEN - 

971 S     869 S     20 A at 43.9 A at 40.6 CEN - 

972 S     870 S     25 48.9 T at 29.5 CEN - 

973 C     871 C     35 66.2 L at 31.6 CEN - 

974 D     872 D     20 S at 48.9 V at 22.2 CEN - 

975 E K 192 873 E     45 74.1 R at 19.0 CEN VUS 
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976 K     874 K     35 93.5 40.9 CEN - 

977 E     875 E     45 79.1 30.9 CEN - 

978 R     876 R     65 K at 43.2 38.8 CEN - 

979 G     877 G     25 48.2 E at 22.6 CEN - 

980 S A 9 878 A     5 T at 48.9 V at 26.1 CEN LND 

981 L     879 L     40 Q at 33.1 F at 36.3 CEN - 

982 E     880 E     45 95 F at 28.9 CEN - 

983 R S 13 881 R     45 99.3 M at 21.4 CEN VUS 

984 L     882 L     45 97.8 T at 26.2 CEN - 

985 I     883 I     25 V at 72.7 T at 28.9 CEN - 

986 E     884 E     50 90.7 Q at 31.8 CEN - 

987 P     885 P     65 100 62.1 CEN - 

988 L     886 L     65 100 64 CEN - 

989 M     887 M     40 78.4 V at 34.2 CEN - 

990 S     888 S N 7 40 89.2 Q at 37.2 CEN ND 

991 L     889 L     80 95.7 52 CEN - 

992 V     890 A     55 59 41.1 CEN LND 

993 K     891 K     45 96.4 Q at 28.9 CEN - 

994 S     892 S     45 98.6 R at 43.6 CEN - 

995 Y F 1 893 Y     100 99.3 89.1 CEN VUS 

996 E     894 E     45 100 R at 30.6 CEN - 

997 G     895 G     45 97.8 25.2 CEN - 

998 G S 1 896 G     100 100 95.4 CEN VUS 

999 R     897 R     45 98.6 L at 32.1 CEN - 

1000 E     898 E     50 97.8 R at 31.2 CEN - 

1001 S     899 S     45 89.9 G at 33.4 CEN - 

1002 H     900 H     80 100 66.4 CEN - 

1003 A T 1 901 A     45 97.8 E at 40.8 CEN VUS 

1004 R H 1 902 R     25 56.8 K at 27.7 CEN VUS 

1005 L     903 V     5 V at 36.7 A at 23.4 CEN LND 

1006 I     904 I     40 71.2 V at 57.1 CEN - 

1007 V     905 V     80 98.6 51.7 CEN - 

1008 H     906 H     20 K at 43.9 K at 13.2 CEN - 

1009 S     907 S     45 94.2 30.6 CEN - 

1010 L     908 L     95 100 85.3 CEN - 

1011 F     909 F     45 98.6 L at 65.4 CEN - 

1012 E     910 E     55 90.7 42.6 CEN - 

1013 E     911 E     50 89.9 Q at 33.9 CEN - 

1014 Y     912 Y     100 100 96 CEN - 

1015 L     913 L     75 99.3 45.3 CEN - 

1016 S     914 S     40 80.6 22.2 CEN - 
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1017 V     915 V     95 95 87.1 CEN - 

1018 E     916 E     100 100 99.3 CEN - 

1019 E     917 E     45 98.6 22.6 CEN - 

1020 L     918 L     60 95.7 55.2 CEN - 

1021 F     919 F     100 100 97.2 CEN - 

1022 N     920 N     30 S at 79.9 S at 32.5 CEN - 

1023 D     921 D     45 94.2 G at 25.6 CEN - 

1024 N     922 N     30 55.4 H at 28.6 CEN - 

1025 M     923 M     20 I at 82.0 Y at 28.3 CEN - 

1026 L     924 L     20 Q at 86.3 D at 28.2 CEN - 

1027 A     925 A     20 55.4 K at 27.3 CEN - 

1028 D     926 D     50 97.1 38.2 CEN - 

1029 V     927 V     55 99.3 54.1 CEN - 

1030 I T 2 928 I     60 99.3 54.1 CEN VUS 

1031 E     929 E     45 99.3 L at 41.1 CEN - 

1032 R     930 R     45 84.2 K at 25.9 CEN - 

1033 M     931 M     20 L at 88.5 L at 88.5 CEN - 

1034 R     932 R     100 99.3 93.4 CEN - 

1035 Q     933 Q     20 L at 66.2 E at 37.3 CEN - 

1036 Q     934 L     50 91.4 39.6 CEN LND 

1037 Y     935 Y     25 55.4 N at 42.1 CEN - 

1038 K     936 K     65 51.2 69.6 CEN - 

1039 K     937 K     50 99.3 D at 35.5 CEN - 

1040 D     938 D     95 100 80.7 CEN - 

1041 R Q 13 939 L     10 L at 95.7 L at 44.4 CEN LND 

1042 L     940 L     20 49.6 D at 14.4 CEN - 

1043 K     941 K     65 97.1 51.6 CEN - 

1044 I     942 I     30 V at 69.1 V at 85.8 CEN - 

1045 V     943 V     50 96.4 49.8 CEN - 

1046 D Y 1 944 D     45 82.7 26.1 CEN VUS 

1047 I     945 I     50 97.1 35.5 CEN - 

1048 V     946 V     55 99.3 54.3 CEN - 

1049 L     947 L     55 84.9 59.2 CEN - 

1050 S     948 S     100 100 93.9 CEN - 

1051 H     949 H     100 98.6 97.3 CEN - 

1052 Q     950 Q     45 99.3 S at 33.7 CEN - 

1053 G     951 G     45 96.4 Q at 29.2 CEN - 

1054 I     952 I     20 V at 74.8 V at 70.9 CEN - 

1055 I     953 K     5 K at 49.6 S at 17.4 CEN LND 

1056 H     954 N     5 N at 43.2 K at 28.2 CEN LND 

1057 K     955 K     100 100 93.9 CEN - 
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1058 N     956 N     95 72.7 79.5 CEN - 

1059 K     957 K     45 95.7 27.9 CEN - 

1060 L     958 L     100 100 93.6 CEN - 

1061 V     959 V I 1 65 I at 77.0 45.3 CEN LND 

1062 L     960 L     50 87.1 53.1 CEN - 

1063 R Q 5 961 R     30 56.1 A at 41.8 CEN VUS 

1064 L     962 L     80 99.3 59.7 CEN - 

1065 M     963 M     45 91.4 L at 48.7 CEN - 

1066 E     964 E     40 85.6 D at 51.3 CEN - 

1067 Q     965 Q     35 K at 36.0 25.6 CEN - 

1068 L     966 L     75 95 51.9 CEN - 

1069 V     967 V     45 99.3 R at 22.5 CEN - 

1070 Y     968 Y     40 97.1 P at 33.4 CEN - 

1071 P     969 P     40 95.7 25.5 CEN - 

1072 N     970 N     45 93.5 D at 20.4 CEN - 

1073 P     971 P     45 99.3 47.4 CEN - 

1074 A     972 A     35 76.3 17.2 CEN - 

1075 A     973 A     35 92.8 L at 27.0 CEN - 

1076 Y     974 Y     45 99.3 20.8 CEN - 

1077 R     975 R     50 91.4 T at 21.0 CEN - 

1078 E     976 D     5 D at 92.8 D at 43.2 CEN LND 

1079 K N 1 977 K     20 Q at 56.8 E at 29.5 CEN VUS 

1080 L     978 L     95 100 54.3 CEN - 

1081 I     979 I     35 79.1 A at 22.2 CEN - 

1082 R     980 R     45 100 E at 28.5 CEN - 

1083 F     981 F     45 97.8 L at 68.4 CEN - 

1084 S     982 S     40 93.5 T at 42.9 CEN - 

1085 A E 1 983 T     15 31.7 E at 29.7 CEN LND 

1086 L     984 L     100 100 95.7 CEN - 

1087 N     985 N     50 95.7 26.7 CEN - 

1088 H     986 H     45 96.4 E at 29.1 CEN - 

1089 T     987 T     45 66.2 S at 42.1 CEN - 

1090 N     988 N     20 38.9 R at 34.8 CEN - 

1091 Y S 1 989 Y     45 99.3 T at 30.0 CEN VUS 

1092 S     990 S     50 70.5 38.5 CEN - 

1093 Q     991 E     5 E at 55.4 K at 63.9 CEN LND 

1094 L     992 L     40 95.7 V at 72.6 CEN - 

1095 A P 1 993 A     85 95.7 74.4 CEN VUS 

1096 L     994 L     95 98.6 93.9 CEN - 

1097 K     995 K     60 97.8 57.7 CEN - 

1098 A     996 A     95 98.6 94.5 CEN - 
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1099 S G 1 997 S     45 97.1 R at 74.2 CEN VUS 

1100 Q     998 Q     70 70.5 E at 46.3 CEN - 

1101 L     999 L     50 98.6 V at 44.5 CEN - 

1102 L     1000 L     100 96.4 89.8 CEN - 

1103 E K 210 1001 E     40 97.8 I at 68.5 CEN VUS 

1104 Q     1002 Q     45 82 50.2 CEN - 

1105 T     1003 T     40 94.2 C at 29.4 CEN - 

1106 K     1004 K     45 99.3 H at 28.9 CEN - 

1107 R Q (G) 5 (1) 1005 L     5 L at 99.3 L at 75.3 CEN LND 

1108 S     1006 S     45 98.6 P at 77.7 CEN - 

1109 E D 1 1007 E     45 97.1 75.9 CEN VUS 

1110 L     1008 L     55 97.8 49.2 CEN - 

1111 R     1009 R     45 97.8 97.9 CEN - 

1112 S     1010 S     25 52.5 H at 28.0 CEN - 

1113 N     1011 N     15 S at 61.2 34.2 CEN - 

1114 I     1012 I     35 94.2 Q at 70.2 CEN - 

1115 A     1013 A     45 95.7 M at 36.4 CEN - 

1116 R     1014 R     40 96.4 E at 67.0 CEN - 

1117 S R 1 1015 S     40 84.9 47.8 CEN VUS 

1118 L     1016 L     45 100 50.5 CEN - 

1119 S     1017 S     80 99.3 83.5 CEN - 

1120 E     1018 E     40 83.5 S at 37.2 CEN - 

1121 L I 1 1019 L     65 99.3 V at 45.3 CEN VUS 

1122 E     1020 E     40 80.6 D at 28.3 CEN - 

1123 M     1021 M     45 98.6 45.7 CEN - 

1124 F     1022 F     40 87.8 Y at 26.7 CEN - 

1125 T     1023 T     30 84.9 S at 28.2 CEN - 

1126 E     1024 E     35 89.2 H at 27.6 CEN - 

1127 A     1025 D     5 E at 54.0 Y at 38.7 CEN LND 

1128 G     1026 G     35 70.5 E at 30.0 CEN - 

1129 E     1027 E     35 64 T at 19.8 CEN - 

1130 N     1028 N     20 35.3 7.8 CEN - 

1131 M     1029 M     20 37.4 8 CEN - 

1132 D     1030 D     30 48.9 G at 24.4 CEN - 

1133 T     1031 T     40 70.5 W at 21.4 CEN - 

1134 P L 1 1032 P     55 69.8 D at 18.3 CEN VUS 

1135 K     1033 K     30 49.6 13 CEN - 

1136 R     1034 R     40 79.9 H at 29.5 CEN - 

1137 K     1035 K     35 76.3 R at 30.4 CEN - 

1138 S     1036 S     30 51.1 E at 27.6 CEN - 

1139 A     1037 A     35 84.9 P at 39.9 CEN - 
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1140 I     1038 I     40 94.2 C at 22.3 CEN - 

1141 S R 1 1039 N     10 N at 69.1 L at 22.9 CEN LND 

1142 E     1040 E     30 74.1 59.1 CEN - 

1143 T     1041 R     5 R at 68.4 N at 28.2 CEN LND 

1144 M     1042 I     40 96.4 L at 57.3 CEN LND 

1145 E K 1 1043 E     40 87.1 K at 43.2 CEN VUS 

1146 N     1044 D     10 D at 84.9 E at 31.9 CEN LND 

1147 L     1045 L     95 98.6 70 CEN - 

1148 V L 2 1046 V     50 98.6 46.5 CEN VUS 

1149 S     1047 S C 1 30 58.3 D at 42.3 CEN LND 

1150 S     1048 A     60 A at 92.1 71.8 CEN LND 

1151 S     1049 S     15 P at 90.7 E at 29.7 CEN - 

1152 L     1050 L     45 85.6 Y at 34.5 CEN - 

1153 A     1051 A     35 70.5 T at 36.0 CEN - 

1154 V     1052 V     55 100 60.3 CEN - 

1155 E D 3 1053 E     45 99.3 F at 66.3 CEN VUS 

1156 D     1054 D     95 100 94.9 CEN - 

1157 A     1055 A     45 99.3 V at 63.4 CEN - 

1158 L     1056 L     100 100 96.7 CEN - 

1159 V M 9 1057 V     40 82 P at 41.8 CEN VUS 

1160 G     1058 G     25 50.4 N at 14.8 CEN - 

1161 L     1059 L     45 98.6 F at 71.4 CEN - 

1162 F     1060 F     95 100 87.9 CEN - 

1163 D     1061 D     45 100 Y at 29.7 CEN - 

1164 H     1062 H     90 72.7 81.3 CEN - 

1165 S C 2 1063 S     65 86.3 42.1 CEN VUS 

1166 D     1064 D E 1 65 98.6 62.7 CEN LND 

1167 H     1065 H     25 53.2 P at 31.8 CEN - 

1168 T     1066 T     45 97.8 W at 28.3 CEN - 

1169 L F 2 1067 L     45 86.3 V at 71.1 CEN VUS 

1170 Q     1068 Q     45 97.8 21.9 CEN - 

1171 R I 1 1069 R     35 71.9 L at 27.7 CEN VUS 

1172 R W 5 1070 R     40 85.6 A at 70.5 CEN VUS 

1173 V L 6 1071 V     45 98.6 A at 66.4 CEN VUS 

1174 V     1072 V     35 67.6 L at 62.2 CEN - 

1175 E     1073 E     95 97.1 90.9 CEN - 

1176 T I 1 1074 T     45 92.8 V at 68.2 CEN VUS 

1177 Y     1075 Y     100 100 96.9 CEN - 

1178 I     1076 I     50 74.1 V at 61.2 CEN - 

1179 H     1077 R     5 R at 69.8 R at 87.6 CEN LND 

1180 R     1078 R     95 100 95.2 CEN - 
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1181 L V 1 1079 L     45 99.3 A at 57.7 CEN VUS 

1182 Y     1080 Y     100 100 98.4 CEN - 

1183 Q     1081 Q     45 99.3 R at 42.3 CEN - 

1184 P     1082 P     40 88.5 A at 61.0 CEN - 

1185 Y     1083 Y     90 71.2 88 CEN - 

1186 V G 2 1084 V     25 L at 87.8 E at 28.6 CEN VUS 

1187 V F (I) (G) 1 (1) (1) 1085 V     50 97.1 L at 55.3 CEN VUS 

1188 K     1086 K     45 82.7 37.2 CEN - 

1189 E     1087 D     20 G at 54.7 S at 30.4 CEN LND 

1190 S     1088 S     45 99.3 I at 31.0 CEN - 

1191 V     1089 V     20 61.2 Q at 32.5 CEN - 

1192 R     1090 R     35 71.2 Y at 32.2 CEN - 

1193 M     1091 M     40 78.4 17.7 CEN - 

1194 Q     1092 Q     60 71.2 34.9 CEN - 

1195 W     1093 W     35 75.5 L at 27.3 CEN - 

1196 H     1094 H     35 69.1 15.9 CEN - 

1197 Q     1095 R     10 R at 66.9 D at 37.5 CEN LND 

1198 S     1096 S     35 89.2 22.3 CEN - 

1199 G     1097 G     45 96.4 P at 26.1 CEN - 

1200 V L 9 1098 L     10 L at 68.4 C at 23.2 CEN LND 

1201 I     1099 L I 267 50 88.5 34.5 CEN ND 

1202 A     1100 A     40 94.2 V at 45.0 CEN - 

1203 S     1101 S     20 44.6 33.1 CEN - 

1204 W     1102 W     65 100 64.3 CEN - 

1205 E     1103 D E 392 45 90.7 Q at 34.5 CEN ND 

1206 F L 1 1104 F     100 100 96.3 CEN LD 

1207 L     1105 L     25 39.6 I at 27.7 CEN - 

1208 E     1106 E     30 86.3 D at 40.3 CEN - 

- - - - 1107 E     - - - - LND 

1209 H     1108 H     45 72.7 L at 22.3 CEN - 

1210 F     1109 M     5 I at 37.4 S at 30.1 CEN LND 

1211 E     1110 E     35 59 Y at 36.0 CEN - 

1212 R     1111 R     25 47.5 L at 20.4 CEN - 

1213 K     1112 K     25 46.8 V at 14.1 CEN - 

1214 N     1113 N     35 69.8 30.3 CEN - 

1215 T     1114 I     5 I at 7.2 M at 15.1 CEN LND 

1216 G     1115 G     20 14.4 < 5 CEN - 

1217 P     1116 L     5 G at 22.3 G at 17.1 CEN LND 

1218 D     1117 D     20 G at 30.2 S at 11.8 CEN - 

1219 D G (Y) 20 (2) 1118 D N 3 20 E at 25.9 S at 13.6 CEN ND 

1220 H     1119 H P 37 5 D at 42.5 D at 8.6 CEN ND 
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1221 E     1120 D     15 Q at 23.0 T at 7.2 CEN LND 

1222 I M 2 1121 T     10 T at 23.0 P at 33.6 CEN LND 

1223 S     1122 S     30 30.2 5.3 CEN - 

1224 E     1123 E     20 D at 19.4 < 5 CEN - 

1225 K     1124 K     30 52.5 L at 17.8 CEN - 

1226 G     1125 G     15 P at 26.6 R at 53.5 CEN - 

1227 I     1126 L     5 L at 27.3 K at 21.3 CEN LND 

1228 V     1127 V     35 50.4 10.5 CEN - 

1229 A V 1 1128 E G 1 5 E at 64.8 E at 15.4 CEN LND 

1230 K     1129 K     30 52.5 11.2 CEN - 

1231 S     1130 R H 263 20 H at 34.5 V at 11.1 CEN ND 

1232 S     1131 S     45 25.2 22.2 CEN - 

1233 K     1132 K     15 E at 60.4 E at 21.6 CEN - 

1234 R     1133 R     20 K at 55.4 Q at 22.8 CEN - 

1235 K     1134 K     25 50.4 R at 39.0 CEN - 

1236 R     1135 W     5 W at 76.3 M at 20.4 CEN LND 

1237 G     1136 G     65 98.6 97.6 CEN - 

1238 T I 10 1137 A     10 A at 61.2 A at 36.4 CEN LND 

1239 M I 1 1138 M     50 99.3 52.9 CEN VUS 

1240 V     1139 V     50 94.2 61.8 CEN - 

1241 I     1140 I     25 64 A at 26.1 CEN - 

1242 I     1141 I     35 69.1 F at 34.9 CEN - 

1243 K     1142 K     50 95.7 30.3 CEN - 

1244 S     1143 S     45 99.3 31 CEN - 

1245 L     1144 L     60 95 55 CEN - 

1246 Q     1145 Q     30 59 E at 37.0 CEN - 

1247 F C 1 1146 F     55 51.1 D at 42.4 CEN VUS 

1248 L     1147 L     40 74.1 F at 30.7 CEN - 

1249 P R 3 1148 P     25 53.2 E at 27.6 CEN VUS 

1250 S     1149 S     15 T at 41.0 E at 24.7 CEN - 

1251 I     1150 I     30 A at 48.9 20.1 CEN - 

1252 I     1151 I     45 84.9 L at 35.4 CEN - 

1253 N     1152 S T 7 20 S at 33.1 D at 27.6 CEN ND 

1254 A     1153 A     45 87.1 E at 26.2 CEN - 

1255 S     1154 A     5 A at 94.2 A at 48.0 CEN LND 

1256 L     1155 L     50 98.6 70.6 CEN - 

1257 R     1156 R     15 K at 54.0 K at 15.3 CEN - 

1258 E K 2 1157 E     30 73.4 21.1 CEN VUS 

1259 T     1158 T A 1 30 59.7 S at 24.0 CEN LND 

1260 N     1159 K M 1 10 S at 38.1 P at 19.6 CEN LND 

1261 H     1160 H     15 61.2 13 CEN - 
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1262 S     1161 N     20 Y at 34.5 T at 12.0 CEN LND 

1263 H     1162 D     5 L at 24.5 S at 16.9 CEN LND 

1264 C     1163 Y S (C) 262 (1) 5 H at 30.2 D at 11.4 CEN ND 

1265 E     1164 E     15 A at 15.8 P at 9.0 CEN - 

1266 Y N 1 1165 T     5 V at 21.6 R at 19.6 CEN LND 

1267 A     1166 A     35 S at 29.5 < 5 CEN - 

1268 R     1167 G     10 N at 35.3 < 5 CEN LND 

1269 A     1168 A     15 G at 48.9 P at 9.6 CEN - 

1270 P     1169 P     30 S at 32.4 S at 10.6 CEN - 

1271 L     1170 L F 3 35 18.7 S at 10.0 CEN ND 

1272 S     1171 S     25 E at 25.9 L at 33.0 CEN - 

1273 G     1172 G     40 85.6 S at 22.0 CEN - 

1274 N     1173 N     50 97.8 40.6 CEN - 

1275 M     1174 M     35 75.5 V at 40.0 CEN - 

1276 M     1175 M     35 61.9 I at 33.3 CEN - 

1277 H     1176 H     45 99.3 50.1 CEN - 

1278 I     1177 I     45 89.9 58.8 CEN - 

1279 A     1178 A     40 89.9 49 CEN - 

1280 V     1179 I     20 L at 87.7 L at 24.0 CEN LND 

1281 V     1180 V     30 67.6 44.2 CEN - 

1282 G     1181 G     35 82 A at 27.3 CEN - 

1283 I     1182 I     30 64 43.3 CEN - 

1284 N H 1 1183 N     35 67.6 E at 29.5 CEN VUS 

1285 N     1184 N     50 86.3 20.2 CEN - 

1286 Q     1185 Q     35 75.5 17.1 CEN - 

1287 M     1186 M     35 80.6 D at 32.8 CEN - 

1288 S     1187 S     30 71.2 D at 17.5 CEN - 

1289 L     1188 L     45 47.5 16.3 CEN - 

1290 L     1189 L     30 66.9 E at 16.6 CEN - 

1291 Q     1190 Q     30 71.9 16.5 CEN - 

1292 D     1191 D     35 84.2 76.5 CEN - 

1293 S R 1 1192 S     40 87.1 19.6 CEN VUS 

1294 G     1193 G     35 84.9 17.7 CEN - 

1295 D E 1 1194 D     40 87.1 18.1 CEN VUS 

1296 E     1195 E     45 71.9 15.1 CEN - 

1297 D H 1 1196 D     55 93.5 19.6 CEN VUS 

1298 Q     1197 Q     40 92.8 19.6 CEN - 

1299 T I 1 1198 A     10 A at 90.7 A at 19.0 CEN LND 

1300 Q     1199 Q     40 95 19.6 CEN - 

1301 E     1200 E     40 71.2 14.8 CEN - 

1302 R     1201 R     35 91.4 19.2 CEN - 
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1303 V     1202 V     20 I at 62.6 I at 13.0 CEN - 

1304 N     1203 N H 2 20 50.4 D at 25.8 CEN ND 

1305 K     1204 K     40 92.1 E at 34.3 CEN - 

1306 L     1205 L     40 93.5 52.3 CEN - 

1307 A     1206 A     25 53.2 30.6 CEN - 

1308 K     1207 K     40 79.9 24.1 CEN - 

1309 I     1208 I     40 83.5 25.9 CEN - 

1310 L     1209 L     45 98.6 40.9 CEN - 

1311 K     1210 K     40 82 R at 25.8 CEN - 

1312 E D 116 1211 E     25 46.8 V at 26.4 CEN VUS 

1313 E     1212 E     20 N at 24.5 Q at 28.8 CEN - 

1314 E     1213 E     35 41 24.1 CEN - 

1315 V A (M) 5 (2) 1214 V     35 73.4 N at 21.1 CEN VUS 

1316 S     1215 S     15 26.6 K at 54.7 CEN - 

1317 L     1216 S     5 S at 67.6 S at 25.5 CEN LND 

1318 T     1217 S     15 S at 32.4 E at 33.7 CEN LND 

1319 L     1218 L     95 87.8 89.1 CEN - 

1320 C     1219 C     20 R at 41.7 L at 22.3 CEN - 

1321 S     1220 S     20 A at 39.6 A at 31.2 CEN - 

1322 A V 1 1221 A     50 88.5 R at 32.4 CEN VUS 

1323 G D 1 1222 G     70 94.2 61 CEN VUS 

1324 V     1223 V     55 87.8 43.8 CEN - 

1325 G     1224 G C 2 25 41 R at 75.1 CEN ND 

1326 V     1225 V     40 92.1 R at 74.8 CEN - 

1327 I     1226 I     55 71.2 47.5 CEN - 

1328 S     1227 S     45 97.8 T at 68.7 CEN - 

1329 C     1228 C     45 94.2 F at 69.9 CEN - 

1330 I K 1 1229 I     45 98.6 43.8 CEN VUS 

1331 I     1230 I     40 72.7 28.3 CEN - 

1332 Q     1231 Q     40 97.1 G at 29.7 CEN - 

1333 R     1232 R     55 99.3 29.5 CEN - 

1334 D     1233 D     45 96.4 K at 24.3 CEN - 

1335 E     1234 E     40 82 D at 26.2 CEN - 

1336 G     1235 G     45 71.2 52 CEN - 

1337 R     1236 R     40 82 E at 22.6 CEN - 

1338 T     1237 T     20 M at 27.3 Y at 39.9 CEN - 

1339 P     1238 P     95 97.1 96 CEN - 

1340 M L 1 1239 M     45 91.4 K at 39.3 CEN VUS 

1341 R     1240 R     45 99.3 Y at 42.7 CEN - 

1342 H     1241 H     45 88.5 F at 47.5 CEN - 

1343 S     1242 S     35 69.1 T at 80.7 CEN - 
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1344 F     1243 F     85 95.7 86.2 CEN - 

1345 H     1244 H     25 54 R at 64.3 CEN - 

1346 W     1245 W     40 83.5 G at 32.4 CEN - 

1347 L     1246 S     5 S at 95.0 P at 30.7 CEN LND 

1348 M     1247 L     15 D at 21.6 D at 34.6 CEN LND 

1349 E     1248 E     50 74.1 23.8 CEN - 

1350 K     1249 K     45 95 20.2 CEN - 

1351 Q     1250 Q     15 L at 67.6 L at 14.5 CEN - 

1352 Y     1251 Y     30 68.4 15.1 CEN - 

1353 Y     1252 Y     60 95 58.8 CEN - 

1354 V     1253 V I 1 20 E at 64.8 E at 39.1 CEN LND 

1355 E G 116 1254 E     100 100 98.7 CEN LND 

1356 E     1255 E     35 80.6 D at 67.3 CEN - 

1357 P     1256 P     40 87.8 R at 28.6 CEN - 

1358 L     1257 L     20 54.7 I at 36.3 CEN - 

1359 L Q (M) 11 (3) 1258 L     40 95.7 I at 41.5 CEN VUS 

1360 R     1259 R     100 96.4 98.1 CEN - 

1361 H     1260 H     90 99.3 84.3 CEN - 

1362 V     1261 L     25 L at 53.2 L at 41.4 CEN LND 

1363 E     1262 E     95 100 91.9 CEN - 

1364 P     1263 P     100 97.8 96 CEN - 

1365 P     1264 P     45 99.3 A at 66.6 CEN - 

1366 L     1265 L     90 100 83.8 CEN - 

1367 S     1266 S     45 97.8 A at 73.3 CEN - 

1368 V     1267 I     5 I at 48.2 F at 62.5 CEN LND 

1369 Y     1268 Y     25 48.9 Q at 66.7 CEN - 

1370 L     1269 L     100 98.6 98.5 CEN - 

1371 E     1270 E     100 100 99.4 CEN - 

1372 L     1271 L     100 95.7 94.8 CEN - 

1373 D     1272 D     35 82 G at 30.0 CEN - 

1374 K     1273 K     50 97.8 R at 74.7 CEN - 

1375 L     1274 L     50 84.2 61.8 CEN - 

1376 K N 1 1275 K     35 80.6 S at 37.0 CEN VUS 

1377 G V 1 1276 G     20 43.9 N at 50.1 CEN VUS 

1378 Y     1277 Y     35 96.4 F at 61.6 CEN - 

1379 S     1278 S     15 N at 40.3 N at 8.4 CEN - 

1380 N     1279 N     25 48.9 D at 31.5 CEN - 

1381 I     1280 I     25 49.6 46.6 CEN - 

1382 Q H 2 1281 Q     20 K at 51.1 K at 42.0 CEN VUS 

1383 Y     1282 Y     45 97.8 P at 40.2 CEN - 

1384 T S 34 1283 T     45 95.7 V at 34.6 CEN VUS 
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1385 P     1284 P     85 92.8 58.9 CEN - 

1386 S     1285 S     40 97.1 T at 47.4 CEN - 

1387 R     1286 R     45 98.6 E at 31.0 CEN - 

1388 D     1287 D     50 97.8 N at 68.1 CEN - 

1389 R     1288 R     50 99.3 50.1 CEN - 

1390 Q     1289 Q     45 100 N at 31.8 CEN - 

1391 W     1290 W     45 99.3 I at 37.6 CEN - 

1392 H     1291 H     85 92.1 92.1 CEN - 

1393 M     1292 L     10 L at 50.4 L at 43.5 CEN LND 

1394 Y     1293 Y     95 100 94.5 CEN - 

1395 S     1294 T     5 T at 92.1 E at 31.9 CEN LND 

1396 V     1295 V     60 54 27.9 CEN - 

1397 T     1296 T     20 V at 38.1 A at 34.2 CEN - 

1398 D     1297 D     25 54 K at 66.6 CEN - 

1399 R     1298 K     5 K at 49.6 K at 20.1 CEN LND 

1400 P     1299 P     15 42.5 G at 26.2 CEN - 

1401 V     1300 V A 1 50 16.6 T at 13.8 CEN LND 

1402 P     1301 P     25 49.6 E at 25.2 CEN - 

1403 I N 79 1302 I     20 41.7 V at 29.8 CEN VUS 

1404 K     1303 K     35 Q at 45.3 Y at 21.7 CEN - 

1405 R Q 1 1304 R     100 100 96.1 CEN PD 

1406 M     1305 M     35 68.4 F at 49.5 CEN - 

1407 F     1306 F     100 97.8 97.3 CEN - 

1408 L     1307 L     35 71.9 T at 27.4 CEN - 

1409 R     1308 R     100 100 98.1 CEN - 

1410 S     1309 S     25 T at 85.6 A at 52.6 CEN - 

1411 L     1310 L     30 67.6 I at 48.3 CEN - 

1412 V     1311 V     45 85.6 I at 49.3 CEN - 

1413 R     1312 R     95 99.3 91.8 CEN - 

1414 Q K 5 1313 Q     45 94.2 P at 31.2 CEN VUS 

1415 T S 1 1314 A     5 P at 83.5 P at 17.4 CEN LND 

1416 T     1315 T     20 43.2 9.2 CEN - 

1417 M     1316 M     15 A at 25.2 < 5 CEN - 

1418 N     1317 N     25 37.4 8.6 CEN - 

1419 D     1318 D     15 N at 44.6 N at 9.3 CEN - 

1420 G A 7 1319 G     25 59 12.3 CEN VUS 

1421 F     1320 F     35 77.7 16.3 CEN - 

1422 L     1321 I M 262 10 T at 36.7 T at 7.7 CEN ND 

1423 L     1322 L     15 S at 49.6 S at 10.3 CEN - 

1424 Q     1323 Q     15 Y at 31.7 < 5 CEN - 

1425 Q     1324 Q     20 59 11.7 CEN - 
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1426 G     1325 G     15 I at 38.9 6.3 CEN - 

1427 Q     1326 Q     15 L at 33.1 G at 41.5 CEN - 

1428 D     1327 D Y 2 30 84.2 52.3 CEN ND 

1429 Y     1328 K     5 V at 22.3 L at 58.2 CEN LND 

1430 Q     1329 Q     15 E at 64.0 R at 32.4 CEN - 

1431 L     1330 L     60 V at 41.7 T at 34.8 CEN - 

1432 S     1331 S     20 G at 34.5 K at 28.6 CEN - 

1433 Q     1332 Q L 1 15 R at 25.2 I at 32.5 CEN LND 

1434 T     1333 T     25 30.2 < 5 CEN - 

1435 V     1334 L     5 Q at 41.7 A at 29.7 CEN LND 

1436 L     1335 I     10 E at 26.6 S at 29.8 CEN LND 

1437 S     1336 S     70 48.2 A at 31.6 CEN - 

1438 M I 1 1337 M I 1 20 L at 40.3 E at 64.9 CEN LND 

1439 A V 1 1338 A     10 S at 80.6 Y at 67.2 CEN VUS 

1440 F     1339 F     35 82.7 L at 70.0 CEN - 

1441 T     1340 T M 1 40 91.4 I at 30.1 CEN LND 

1442 S P 1 1341 S     45 88.5 56.8 CEN VUS 

1443 K Q 1 1342 K     10 R at 33.8 E at 71.1 CEN VUS 

1444 C Y 1 1343 C     15 S at 84.9 A at 30.4 CEN VUS 

1445 I     1344 V     35 84.2 17.5 CEN LND 

1446 L     1345 L     35 80.6 E at 33.6 CEN - 

1447 R     1346 R     95 91.4 86.4 CEN - 

1448 S     1347 S     45 94.2 L at 53.4 CEN - 

1449 L     1348 L     80 97.8 57.4 CEN - 

1450 M     1349 M     45 75.5 L at 30.0 CEN - 

1451 N     1350 D     5 A at 35.3 D at 39.6 CEN LND 

1452 A     1351 A     80 99.3 52.6 CEN - 

1453 M     1352 M     60 41 L at 45.4 CEN - 

1454 E     1353 E     50 97.1 D at 69.0 CEN - 

1455 E     1354 E     80 99.3 50.1 CEN - 

1456 L     1355 L     90 84.2 92.4 CEN - 

1457 E     1356 E     95 100 93.6 CEN - 

1458 L     1357 L     45 95 V at 43.9 CEN - 

1459 N     1358 N     25 46 A at 36.0 CEN - 

1460 A     1359 A     40 68.4 F at 29.2 CEN - 

1461 H     1360 H     40 70.5 N at 18.6 CEN - 

1462 N H 2 1361 N     55 53.2 33.7 CEN VUS 

1463 A     1362 A     15 33.1 T at 34.9 CEN - 

1464 A     1363 A     20 T at 43.2 N at 30.3 CEN - 

1465 M     1364 M     25 I at 41.7 V at 27.1 CEN - 

1466 K N 9 1365 K     25 48.2 R at 36.0 CEN VUS 
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1467 P     1366 P     20 S at 43.9 S at 40.3 CEN - 

1468 D     1367 D     75 43.9 79.2 CEN - 

1469 H     1368 H     45 93.5 C at 33.1 CEN - 

1470 A     1369 A     25 45.3 N at 74.2 CEN - 

1471 H     1370 H     100 95 92.1 CEN - 

1472 M     1371 M     50 96.4 I at 63.9 CEN - 

1473 F     1372 F     80 Y at 79.9 76.9 CEN - 

1474 L     1373 L     90 97.1 57.4 CEN - 

1475 C     1374 C     40 70.5 14.8 CEN - 

1476 I     1375 I     35 84.9 18 CEN - 

1477 L     1376 L     35 75.5 15.9 CEN - 

1478 R H 1 1377 R     30 63.3 13.3 CEN VUS 

1479 E     1378 E     45 92.1 19.3 CEN - 

1480 Q     1379 Q     45 98.6 20.7 CEN - 

1481 Q     1380 Q L 1 35 46.8 9.9 CEN LND 

1482 I     1381 I     35 46.8 9.9 CEN - 

1483 D     1382 D     55 31.7 6.8 CEN - 

1484 D     1383 D A 1 40 95.7 N at 70.3 CEN LND 

1485 L     1384 L     45 95.7 F at 70.2 CEN - 

1486 V     1385 V     30 53.2 44.4 CEN - 

1487 P     1386 P L 82 45 95 73.6 CEN ND 

1488 Y     1387 F     20 46.8 V at 35.5 CEN LND 

1489 P     1388 P     20 S at 47.5 F at 33.6 CEN - 

1490 R     1389 R     20 K at 34.5 K at 7.2 CEN - 

1491 R     1390 R     25 53.2 T at 28.2 CEN - 

1492 F     1391 V     5 V at 36.0 V at 47.5 CEN LND 

1493 E     1392 E     20 D at 27.3 I at 28.9 CEN - 

1494 V     1393 V G 1 30 46 M at 26.8 CEN LND 

1495 N     1394 N     20 D at 51.8 D at 39.9 CEN - 

1496 A     1395 A     20 40.3 8.7 CEN - 

1497 E     1396 E     20 G at 65.5 G at 13.6 CEN - 

1498 D     1397 D     15 Q at 69.1 Q at 14.5 CEN - 

1499 E     1398 E     25 51.1 10.8 CEN - 

1500 E K 1 1399 E     45 95.7 20.1 CEN VUS 

1501 T     1400 T     25 A at 44.6 A at 9.5 CEN - 

1502 T     1401 T     45 68.4 14.7 CEN - 

1503 V     1402 V     20 44.6 Q at 15.9 CEN - 

1504 E     1403 E     25 42.5 P at 62.8 CEN - 

1505 T     1404 M R 6 15 S at 27.3 S at 26.5 CEN ND 

1506 I     1405 I     25 L at 45.3 K at 27.0 CEN - 

1507 L     1406 L     50 99.3 V at 39.1 CEN - 
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1508 E     1407 E     80 51.8 75.4 CEN - 

1509 E     1408 E     70 63.3 55.9 CEN - 

1510 A     1409 A     25 M at 46.0 34.3 CEN - 

1511 T     1410 A     5 A at 78.4 V at 34.3 CEN LND 

1512 Q     1411 R     15 L at 30.9 R at 30.9 CEN LND 

1513 E     1412 E     25 49.6 G at 35.7 CEN - 

1514 I     1413 I     45 94.2 F at 40.0 CEN - 

1515 H     1414 H     35 76.3 L at 35.7 CEN - 

1516 R     1415 R     15 E at 44.6 E at 35.7 CEN - 

1517 S     1416 S     25 39.6 R at 71.4 CEN - 

1518 V     1417 V     40 85.6 Y at 33.3 CEN - 

1519 G     1418 G     95 98.6 88.9 CEN - 

1520 V     1419 V     35 67.6 S at 23.5 CEN - 

1521 R     1420 R     100 87.8 94 CEN - 

1522 M     1421 M     45 98.6 L at 64.5 CEN - 

1523 H Y 6 1422 H     45 95 W at 60.3 CEN VUS 

1524 A     1423 R     5 R at 64.0 R at 53.4 CEN LND 

1525 L     1424 L     95 100 95.5 CEN - 

1526 G     1425 G     25 46.8 R at 69.4 CEN - 

1527 V     1426 V     95 96.4 89.5 CEN - 

1528 C     1427 C     40 83.5 T at 28.0 CEN - 

1529 E K 1 1428 E K 2 20 Q at 45.3 Q at 47.4 CEN ND 

1530 W     1429 W     45 99.3 A at 57.0 CEN - 

1531 E     1430 E     100 100 99.4 CEN - 

1532 V A 1 1431 V     50 91.4 I at 45.7 CEN VUS 

1533 R     1432 R     35 K at 84.2 K at 49.0 CEN - 

1534 L     1433 L     45 95.7 I at 58.8 CEN - 

1535 W     1434 W     30 64 N at 23.4 CEN - 

1536 L     1435 L     40 60.4 I at 40.9 CEN - 

1537 V L 2 1436 V     20 D at 32.4 R at 31.8 CEN VUS 

1538 S     1437 S     25 56.1 D at 30.3 CEN - 

1539 S     1438 S     25 D at 43.2 P at 28.6 CEN - 

1540 G A 3 1439 G     45 94.2 P at 22.8 CEN VUS 

1541 L     1440 L     20 Q at 41.7 T at 47.8 CEN - 

1542 A T 10 1441 A     50 96.4 G at 57.3 CEN VUS 

1543 N K 2 1442 C     15 46.8 16 CEN LND 

1544 G     1443 G     45 93.5 P at 30.1 CEN - 

1545 A     1444 A     40 65.5 I at 21.7 CEN - 

1546 W     1445 W     45 99.3 L at 34.2 CEN - 

1547 R     1446 R     100 100 99.1 CEN - 

1548 V     1447 V     55 79.1 40.8 CEN - 
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1549 V     1448 V     40 85.6 34 CEN - 

1550 V     1449 V     35 69.8 I at 51.3 CEN - 

1551 A     1450 A     20 T at 66.2 T at 55.5 CEN - 

1552 N     1451 N     95 91.4 89.8 CEN - 

1553 V     1452 V     55 95 35.4 CEN - 

1554 T     1453 T     45 97.8 S at 67.8 CEN - 

1555 G     1454 G     95 80.6 95.1 CEN - 

1556 R     1455 R     20 H at 82.0 Y at 62.1 CEN - 

1557 T     1456 T     45 98.6 V at 32.2 CEN - 

1558 C     1457 C     45 97.8 L at 31.0 CEN - 

1559 T     1458 T     45 79.9 D at 33.6 CEN - 

1560 V     1459 V     45 83.5 43.6 CEN - 

1561 H L 3 1460 H     20 47.5 E at 33.0 CEN VUS 

1562 I     1461 I     50 89.9 L at 40.6 CEN - 

1563 Y     1462 Y     100 99.3 97.2 CEN - 

1564 R     1463 R     50 98.6 23.8 CEN - 

1565 E     1464 E     100 98.6 97.9 CEN - 

1566 V     1465 V     75 61.2 47.7 CEN - 

1567 E K 27 1466 E     45 93.5 K at 32.1 CEN VUS 

1568 A     1467 T     10 D at 74.8 D at 42.1 CEN LND 

1569 T I 2 1468 P     15 56.8 E at 21.3 CEN LND 

1570 G     1469 G     20 E at 27.3 K at 32.2 CEN - 

1571 R     1470 R     15 S at 30.2 T at 27.6 CEN - 

1572 N     1471 N     25 H at 43.2 G at 64.2 CEN - 

1573 S     1472 S T 21 20 K at 44.6 Q at 17.1 CEN ND 

1574 L     1473 L     45 55.4 I at 26.1 CEN - 

1575 I     1474 I     20 V at 71.2 W at 31.2 CEN - 

1576 Y     1475 Y     45 98.6 F at 62.2 CEN - 

1577 H     1476 H     40 S at 54.0 39.7 CEN - 

1578 S     1477 S     65 54 69.7 CEN - 

1579 I     1478 I     20 25.2 39.3 CEN - 

1580 T     1479 T     40 S at 40.3 G at 22.3 CEN - 

1581 K     1480 K     15 A at 26.6 51 CEN - 

1582 K     1481 K     70 G at 37.4 Q at 28.3 CEN - 

1583 G     1482 G     95 51.1 88.3 CEN - 

1584 P     1483 P     70 96.4 52.6 CEN - 

1585 L     1484 L     75 97.8 52.6 CEN - 

1586 H L 1 1485 H     95 95 85.6 CEN VUS 

1587 G     1486 E     75 94.2 49.3 - LND 

1588 T     1487 T     20 V at 63.3 M at 26.7 - - 

1589 L     1488 P     35 P at 48.9 P at 54.3 - LND 
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1590 I     1489 I     65 L at 48.9 40.3 - - 

1591 N     1490 S     70 71.9 41.4 - LND 

1592 G     1491 D     5 A at 28.1 T at 63.0 - LND 

1593 Q     1492 Q     20 P at 41.0 P at 81.6 - - 

1594 Y H 6 1493 Y     100 98.6 97.9 - VUS 

1595 K     1494 K     30 Q at 61.2 P at 37.9 - - 

1596 P     1495 P     45 90.7 T at 59.1 - - 

1597 L     1496 L     45 98.6 K at 69.7 - - 

1598 N     1497 G     10 G at 43.9 D at 35.5 - LND 

1599 N     1498 Y     5 V at 52.5 W at 28.5 - LND 

1600 L     1499 L     75 I at 61.2 78.7 - - 

1601 D N 1 1500 D     45 94.2 Q at 73.0 - VUS 

1602 R     1501 R     25 46 P at 39.9 - - 

1603 K     1502 Q     80 88.5 91 - LND 

1604 R     1503 R     100 99.3 96.9 - - 

1605 L     1504 L     25 56.1 Y at 40.3 - - 

1606 A     1505 A     35 S at 41.7 K at 36.9 - - 

1607 A     1506 A     100 100 97 - - 

1608 R     1507 R     45 97.8 H at 38.7 - - 

1609 R     1508 R     20 K at 45.3 L at 30.0 - - 

1610 S     1509 S     20 N at 64.0 M at 34.9 - - 

1611 N     1510 N     20 30.2 G at 72.1 - - 

1612 T     1511 T     100 99.3 96.9 - - 

1613 T     1512 T     95 100 72.1 - - 

1614 Y     1513 Y     95 95 96.3 - - 

1615 C     1514 C     45 99.3 V at 64.0 - - 

1616 Y     1515 Y     100 100 96.9 - - 

1617 D     1516 D     100 100 99.6 - - 

1618 F     1517 F     85 100 81 - - 

1619 P     1518 P     100 100 93.3 CT-β - 

1620 L     1519 L     45 98.6 E at 57.3 CT-β - 

1621 A     1520 A     45 89.2 L at 46.5 CT-β - 

1622 F     1521 F     100 100 90.7 CT-β - 

1623 E     1522 G     35 87.1 R at 61.3 CT-β LND 

1624 T     1523 T     45 82.7 Q at 65.8 CT-β - 

1625 A T 1 1524 A     80 89.9 76.9 CT-β VUS 

1626 L     1525 L     70 82 50.1 CT-β - 

1627 E     1526 E     30 42.5 Q at 26.1 CT-β - 

1628 L     1527 L     10 K at 45.3 K at 33.6 CT-β - 

1629 N     1528 L     5 S at 73.4 S at 36.4 CT-β LND 

1630 W     1529 W     100 98.6 99.3 CT-β - 
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1631 A     1530 A     15 42.5 K at 18.1 CT-β - 

1632 S     1531 S     45 62.6 K at 30.1 CT-β - 

1633 Q     1532 Q     25 41.7 A at 23.2 CT-β - 

1634 H     1533 H     15 13.7 S at 11.2 CT-β - 

1635 S     1534 P     15 P at 38.1 P at 8.3 CT-β LND 

1636 G     1535 G     35 S at 43.2 10.2 CT-β - 

1637 V     1536 V     40 15.1 H at 13.6 CT-β - 

1638 R     1537 K E 1 5 V at 23.7 P at 19.9 CT-β LND 

1639 K     1538 K     30 36 S at 18.9 CT-β - 

1640 P     1539 P     40 37.4 L at 35.4 CT-β - 

1641 C     1540 Y     10 K at 30.9 L at 17.1 CT-β LND 

1642 K     1541 K     20 D at 30.9 P at 47.4 CT-β - 

1643 N     1542 D     20 K at 46.0 D at 35.8 CT-β LND 

1644 R     1543 T     5 C at 17.3 C at 25.5 CT-β LND 

1645 L     1544 L     25 Y at 42.5 43.8 CT-β - 

1646 I     1545 I     40 V at 32.4 E at 14.2 CT-β - 

1647 N     1546 N     10 K at 70.5 T at 19.3 CT-β - 

1648 V     1547 V     30 62.6 17.1 CT-β - 

1649 K     1548 K     20 T at 82.7 T at 37.6 CT-β - 

1650 E     1549 E     50 100 99 CT-β - 

1651 L     1550 L     45 100 97.9 CT-β - 

1652 V     1551 V     30 54 70.3 CT-β - 

1653 F     1552 F     45 96.4 L at 61.2 CT-β - 

1654 S     1553 S     25 A at 75.5 D at 67.2 CT-β - 

1655 N     1554 K     10 D at 54.0 D at 11.4 CT-β LND 

1656 T     1555 P S 1 5 K at 48.2 D at 32.7 CT-β LND 

1657 E A 2 1556 E     20 23.7 Q at 24.9 CT-β VUS 

1658 G     1557 G     45 97.1 60.1 CT-β - 

1659 S     1558 S T 1 30 73.4 N at 21.7 CT-β LND 

1660 L     1559 S L 1 5 W at 85.6 43 CT-β LND 

1661 G S 2 1560 G     35 88.5 18.7 CT-β VUS 

1662 T     1561 T I 1 40 90.7 L at 28.8 CT-β LND 

1663 S     1562 S     25 P at 79.9 P at 16.6 CT-β - 

1664 L V (F) 10 (1) 1563 L     90 75.5 15.9 CT-β VUS 

1665 I     1564 D     30 V at 56.8 V at 43.6 CT-β LND 

1666 P L 2 1565 L     35 64.8 E at 51.6 CT-β LND 

1667 V     1566 V     50 54 48.1 CT-β - 

1668 E D 2 1567 E     45 73.4 N at 34.8 CT-β VUS 

1669 R     1568 R     100 93.5 94.6 CT-β - 

1670 P     1569 P     35 55.4 E at 27.9 CT-β - 

1671 A     1570 P L 2 20 P at 54.7 P at 78.9 CT-β ND 
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1672 G     1571 G     100 92.8 96 CT-β - 

1673 L     1572 L     40 73.4 T at 22.3 CT-β - 

1674 N     1573 N     100 100 97.6 CT-β - 

1675 D     1574 D     35 85.6 24.4 CT-β - 

1676 I     1575 F     45 42.5 40.9 CT-β LND 

1677 G R 1 1576 G     100 99.3 99.7 CT-β VUS 

1678 M     1577 M     90 83.5 96 CT-β - 

1679 V     1578 V     100 94.2 96.1 CT-β - 

1680 A     1579 A     95 97.8 69.3 CT-β - 

1681 W     1580 W     75 100 78.9 CT-β - 

1682 I     1581 C     15 31.7 K at 24.6 CT-β LND 

1683 L     1582 L V 263 25 M at 58.3 M at 36.0 CT-β ND 

1684 E     1583 D     25 55.4 T at 47.8 CT-β LND 

1685 M     1584 M     40 74.8 L at 28.9 CT-β - 

1686 S     1585 S     40 77.7 K at 42.1 CT-β - 

1687 T     1586 T     90 100 90.9 CT-β - 

1688 P     1587 P     95 100 95.1 CT-β - 

1689 E G 1 1588 E     100 99.3 97 CT-β D 

1690 F C 1 1589 F     40 91.4 Y at 74.7 CT-β VUS 

1691 P     1590 P     100 99.3 95.1 CT-β - 

1692 M V 1 1591 M     15 S at 43.2 E at 22.3 CT-β VUS 

1693 G     1592 G R 1 100 100 98.1 CT-β LND 

1694 R     1593 R     100 100 99.1 CT-β - 

1695 K     1594 K     30 T at 30.9 R at 23.4 CT-β - 

1696 L     1595 L     15 I at 85.6 I at 44.8 CT-β - 

1697 L     1596 L     20 45.3 I at 64.0 CT-β - 

1698 I     1597 V     15 V at 79.1 V at 66.4 CT-β LND 

1699 V     1598 I V 4 50 79.9 I at 57.7 CT-β ND 

1700 A     1599 A     60 84.2 66.9 CT-β - 

1701 N     1600 N     100 100 99.9 CT-β - 

1702 D     1601 D     100 100 100 CT-β - 

1703 V     1602 V     35 71.2 I at 75.0 CT-β - 

1704 T     1603 T     100 100 99.3 CT-β - 

1705 F     1604 F     70 95 48.9 CT-β - 

1706 K     1605 K     45 62.6 40.6 CT-β - 

1707 A     1606 A     45 90.7 I at 66.1 CT-β - 

1708 G     1607 G     100 100 100 CT-β - 

1709 S     1608 S     100 100 98.5 CT-β - 

1710 F     1609 F     100 100 99.9 CT-β - 

1711 G     1610 G     100 100 97.5 CT-β - 

1712 P     1611 P     90 93.5 83.1 CT-β - 
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1713 R     1612 R     50 92.8 Q at 30.6 CT-β - 

1714 E     1613 E     100 100 100 CT-β - 

1715 D N 1 1614 D     100 100 99.3 CT-β VUS 

1716 A V (P) 3 (2) 1615 A V 1 45 97.8 21.9 CT-β LND 

1717 F     1616 F     60 97.8 57.9 CT-β - 

1718 F     1617 F     90 100 90.9 CT-β - 

1719 L     1618 L     40 27.3 26.2 CT-β - 

1720 A     1619 A     35 87.1 K at 37.3 CT-β - 

1721 V     1620 V     60 97.8 A at 40.6 CT-β - 

1722 T     1621 T     65 100 56.2 CT-β - 

1723 E     1622 E     60 N at 48.9 60.9 CT-β - 

1724 L     1623 L     75 90.7 70.2 CT-β - 

1725 A     1624 A     100 97.8 96.1 CT-β - 

1726 C     1625 C     45 99.3 R at 76.3 CT-β - 

1727 T     1626 A     10 E at 45.3 K at 34.0 CT-β LND 

1728 K     1627 K     20 K at 48.9 L at 33.4 CT-β - 

1729 K     1628 K     50 98.6 G at 67.9 CT-β - 

1730 L     1629 L     35 79.9 I at 65.4 CT-β - 

1731 P     1630 P     100 100 99.7 CT-β - 

1732 L     1631 L     45 99.3 R at 71.4 CT-β - 

1733 I     1632 I     100 98.6 86.4 CT-β - 

1734 Y     1633 Y     100 100 95.7 CT-β - 

1735 L     1634 L     65 100 66.9 CT-β - 

1736 A     1635 A     75 87.1 S at 53.7 CT-β - 

1737 A     1636 A     95 100 90.7 CT-β - 

1738 N     1637 N     90 84.2 96.4 CT-β - 

1739 S C 12 1638 S     90 86.3 94.3 CT-β PD 

1740 G     1639 G     100 100 99.7 CT-β - 

1741 A     1640 A     100 100 99.7 CT-β - 

1742 R     1641 R     95 100 96.7 CT-β - 

1743 L     1642 L     55 I at 59.7 I at 76.9 CT-β - 

1744 G     1643 G     100 98.6 99.6 CT-β - 

1745 V     1644 V     40 62.6 L at 46.5 CT-β - 

1746 A     1645 A     100 100 93.4 CT-β - 

1747 E     1646 E     80 65.5 68.8 CT-β - 

1748 E     1647 E     100 100 95.5 CT-β - 

1749 V     1648 V     35 81.3 L at 35.2 CT-β - 

1750 K     1649 K     60 95.7 42.6 CT-β - 

1751 A     1650 A     35 S at 51.8 P at 29.4 CT-β - 

1752 C     1651 C     45 97.1 L at 25.0 CT-β - 

1753 F     1652 F     100 100 91.9 CT-β - 
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1754 K     1653 K     30 R at 41.0 27.6 CT-β - 

1755 V D 1 1654 V     90 95 86.4 CT-β VUS 

1756 G     1655 G     45 98.6 A at 69.3 CT-β - 

1757 W     1656 W     100 99.3 94.8 CT-β - 

1758 S L 193 1657 S A 1 45 85.6 N at 33.7 CT-β LND 

1759 D     1658 D     95 85.6 78.3 CT-β - 

1760 E     1659 E     30 64 P at 49.3 CT-β - 

1761 V     1660 I     20 S at 40.3 E at 28.3 CT-β LND 

1762 S     1661 S     45 71.9 D at 31.0 CT-β - 

1763 P     1662 P     100 100 88.2 CT-β - 

1764 G     1663 E     5 E at 92.1 E at 43.3 CT-β LND 

1765 N     1664 N     20 R at 71.9 K at 51.7 CT-β - 

1766 G D (S) (C) 34 (5) (2) 1665 G     100 99.3 97.6 CT-β LND 

1767 F     1666 F     90 99.3 82.9 CT-β - 

1768 Q     1667 Q     50 69.8 K at 47.8 CT-β - 

1769 Y     1668 Y     100 100 97.3 CT-β - 

1770 I     1669 I     40 59 L at 73.8 CT-β - 

1771 Y     1670 Y     100 100 99.3 CT-β - 

1772 L     1671 L     100 97.1 95.4 CT-β - 

1773 S     1672 S T 1 25 T at 69.8 T at 71.1 CT-β LND 

1774 S     1673 P     10 P at 46.8 P at 58.2 CT-β LND 

1775 E     1674 E     50 82 55.9 CT-β - 

1776 D     1675 D     85 98.6 59.7 CT-β - 

1777 Y     1676 H     65 64 53.1 CT-β LND 

1778 A T 3 1677 E K 2 30 54 K at 29.7 CT-β ND 

1779 R     1678 R     70 90.7 48.1 CT-β - 

1780 I     1679 I     50 79.1 L at 32.8 CT-β - 

1781 G     1680 G     25 48.9 S at 30.9 CT-β - 

1782 S     1681 S     55 81.3 39.4 CT-β - 

1783 S     1682 S     50 97.8 21.3 CT-β - 

1784 V     1683 V     45 100 N at 26.5 CT-β - 

1785 I     1684 I     40 90.7 S at 27.0 CT-β - 

1786 A     1685 A     45 98.6 V at 67.8 CT-β - 

1787 H     1686 H     75 99.3 40.8 CT-β - 

1788 E K 1 1687 E     40 69.1 T at 34.2 CT-β VUS 

1789 V     1688 V     10 L at 59.7 E at 55.0 CT-β - 

1790 K     1689 K     30 63.3 H at 23.4 CT-β - 

1791 L     1690 L     40 85.6 V at 35.2 CT-β - 

1792 P     1691 P S (L) 386 (1) 20 E at 38.9 E at 43.8 CT-β ND 

1793 S     1692 S     35 66.9 E at 26.5 CT-β - 

1794 G     1693 G A (T) 80 (1) 95 100 94.8 CT-β ND 
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1795 E     1694 E     95 96.4 91.6 CT-β - 

1796 T     1695 T     35 53.2 S at 24.9 CT-β - 

1797 R     1696 R     100 100 94.8 CT-β - 

1798 W     1697 W     45 98.6 Y at 45.4 CT-β - 

1799 V     1698 V     50 83.5 K at 44.7 CT-β - 

1800 I     1699 I     85 82 87.3 CT-β - 

1801 D N 41 1700 D     45 95.7 T at 46.8 CT-β VUS 

1802 T     1701 T     50 59.7 38.7 CT-β - 

1803 I F 1 1702 I     85 69.1 81.3 CT-β VUS 

1804 V     1703 V     50 89.2 I at 63.0 CT-β - 

1805 G     1704 G     100 100 99.6 CT-β - 

1806 K     1705 K E 3 80 92.8 51.9 CT-β ND 

1807 E     1706 E     80 94.2 61.3 CT-β - 

1808 D     1707 D     65 97.1 66.9 CT-β - 

1809 G     1708 G     95 99.3 89.7 CT-β - 

1810 L     1709 I     80 86.3 85.9 CT-β LND 

1811 G     1710 G     100 100 99.4 CT-β - 

1812 V     1711 V     80 84.2 87.3 CT-β - 

1813 E     1712 E     100 100 98.4 CT-β - 

1814 N     1713 N     80 93.5 54.7 CT-β - 

1815 L     1714 L     90 74.8 94.3 CT-β - 

1816 T     1715 T     20 H at 43.2 R at 54.7 CT-β - 

1817 G     1716 G     95 100 89.5 CT-β - 

1818 S     1717 S     95 99.3 91.6 CT-β - 

1819 G     1718 G     90 72.7 93.6 CT-β - 

1820 A     1719 A     45 99.3 L at 49.0 CT-β - 

1821 I V 1 1720 I     100 100 98.2 CT-β PD 

1822 A     1721 A     100 100 99.6 CT-β - 

1823 G     1722 G     80 S at 60.4 86.4 CT-β - 

1824 A     1723 A     60 96.4 49.9 CT-β - 

1825 Y     1724 Y     45 98.6 T at 57.3 CT-β - 

1826 S     1725 S     100 100 98.1 CT-β - 

1827 R     1726 K     45 79.1 54.3 CT-β LND 

1828 A     1727 A     100 99.3 96.3 CT-β - 

1829 Y     1728 Y     100 100 97.9 CT-β - 

1830 N     1729 N     20 K at 42.5 E at 31.5 CT-β - 

1831 E     1730 E     70 99.3 50.5 CT-β - 

1832 T     1731 T I 2 45 97.8 I at 67.9 CT-β ND 

1833 F     1732 F     65 100 67.9 CT-β - 

1834 T S 2 1733 T     100 100 99.4 CT-β PD 

1835 L     1734 L     45 97.1 I at 57.4 CT-β - 
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1836 T     1735 T     65 99.3 65.1 CT-β - 

1837 F     1736 F     40 56.1 L at 56.4 CT-β - 

1838 V     1737 V     100 100 97 CT-β - 

1839 S     1738 S     20 T at 83.5 T at 87.6 CT-β - 

1840 G     1739 G     45 98.6 C at 63.7 CT-β - 

1841 R     1740 R     100 97.1 98.7 CT-β - 

1842 S A 2 1741 T     20 T at 80.6 49.9 CT-β LND 

1843 V     1742 V     60 92.1 71.1 CT-β - 

1844 G     1743 G     100 100 99.7 CT-β - 

1845 I     1744 I     100 100 99.6 CT-β - 

1846 G     1745 G     100 100 99.6 CT-β - 

1847 A     1746 A     90 100 92.4 CT-β - 

1848 Y     1747 Y     100 100 99.6 CT-β - 

1849 L     1748 L     95 100 94.9 CT-β - 

1850 A     1749 A     45 93.5 V at 71.4 CT-β - 

1851 R     1750 R     100 100 99.7 CT-β - 

1852 L     1751 L     100 99.3 98.5 CT-β - 

1853 G     1752 G     100 100 97.3 CT-β - 

1854 M     1753 M     35 71.2 Q at 67.9 CT-β - 

1855 R     1754 R     100 100 99.7 CT-β - 

1856 C     1755 C     45 99.3 A at 35.5 CT-β - 

1857 I     1756 I     90 98.6 82.3 CT-β - 

1858 Q K 1 1757 Q     100 100 99.6 CT-β VUS 

1859 R     1758 R     45 99.3 V at 46.2 CT-β - 

1860 L     1759 L     40 80.6 E at 63.7 CT-β - 

1861 D     1760 D     50 99.3 G at 39.0 CT-β - 

1862 Q     1761 Q     60 100 58.3 CT-β - 

1863 P     1762 P     65 100 69.7 CT-β - 

1864 I     1763 I     90 99.3 86.1 CT-β - 

1865 I     1764 I     100 100 97.8 CT-β - 

1866 L     1765 L     100 100 99.4 CT-β - 

1867 T     1766 T     100 100 99.6 CT-β - 

1868 G     1767 G     100 100 99.6 CT-β - 

1869 F     1768 F     40 80.6 A at 60.0 CT-β - 

1870 S     1769 S     55 98.6 P at 32.4 CT-β - 

1871 T     1770 T     20 A at 84.2 A at 94.9 CT-β - 

1872 L     1771 L     90 100 73.8 CT-β - 

1873 N     1772 N     100 100 99.4 CT-β - 

1874 K     1773 K     95 100 87.1 CT-β - 

1875 L     1774 L     50 99.3 58.6 CT-β - 

1876 L     1775 L     100 100 96.1 CT-β - 
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1877 G     1776 G     100 99.3 99.3 CT-β - 

1878 R     1777 R     95 100 87.3 CT-β - 

1879 E     1778 E     85 100 88.7 CT-β - 

1880 V     1779 V     95 100 96.7 CT-β - 

1881 Y     1780 Y     100 100 99.4 CT-β - 

1882 S     1781 S     45 98.6 T at 58.6 CT-β - 

1883 S T 8 1782 S     100 100 97 CT-β PD 

1884 H     1783 H     40 88.5 N at 75.7 CT-β - 

1885 M     1784 M     45 97.1 L at 41.1 CT-β - 

1886 Q     1785 Q     100 100 99.4 CT-β - 

1887 L     1786 L     95 100 97.5 CT-β - 

1888 G     1787 G     100 100 99.4 CT-β D 

1889 G     1788 G     100 100 99.4 CT-β - 

1890 P     1789 P     45 97.1 T at 42.1 CT-β - 

1891 K     1790 K     45 99.3 Q at 73.6 CT-β - 

1892 I     1791 I     95 95.7 92.7 CT-β - 

1893 M     1792 M     100 100 99.4 CT-β - 

1894 G     1793 G     20 A at 82.0 Y at 41.5 CT-β - 

1895 T     1794 T     45 93.5 N at 29.1 CT-β - 

1896 N     1795 N     100 100 99.4 CT-β - 

1897 G S 2 1796 G     100 100 99.4 CT-α PD 

1898 V     1797 V     90 100 92.8 CT-α - 

1899 V     1798 V     45 95.7 S at 54.4 CT-α - 

1900 H     1799 H     100 100 99 CT-α - 

1901 L     1800 L     60 94.2 44.1 CT-α - 

1902 T K 21 1801 T A 1 95 100 87.6 CT-α LD 

1903 V     1802 V     75 99.3 47.1 CT-α - 

1904 S     1803 S     45 83.5 25.9 CT-α - 

1905 D     1804 D     90 99.3 77.1 CT-α - 

1906 D     1805 D     95 99.3 95.1 CT-α - 

1907 L     1806 L     55 99.3 46.9 CT-α - 

1908 E     1807 E A 1 75 96.4 61.3 CT-α LND 

1909 G     1808 G     95 99.3 90.7 CT-α - 

1910 V     1809 V     90 80.6 71.7 CT-α - 

1911 S     1810 S     55 93.5 33 CT-α - 

1912 A     1811 A     30 59.7 K at 32.5 CT-α - 

1913 I     1812 I     85 98.6 80.5 CT-α - 

1914 L     1813 L     80 95 59.1 CT-α - 

1915 N     1814 N     20 K at 51.8 E at 29.7 CT-α - 

1916 W     1815 W     100 99.3 98.4 CT-α - 

1917 L     1816 L     85 99.3 74.5 CT-α - 
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1918 S     1817 S     100 99.3 91.8 CT-α - 

1919 Y     1818 Y     90 81.3 69.9 CT-α - 

1920 I     1819 I     30 V at 71.2 V at 53.7 CT-α - 

1921 P     1820 P     100 99.3 99.1 CT-α - 

1922 A     1821 A     45 42.5 28.6 CT-α - 

1923 Y     1822 Y     30 38.1 K at 31.6 CT-α - 

1924 V     1823 V A (L) 4 (1) 40 41.7 R at 33.0 CT-α ND 

1925 G S 2 1824 G     50 99.3 47.4 CT-α VUS 

1926 G     1825 G     45 98.6 S at 30.6 CT-α - 

1927 P     1826 P     75 74.8 73.3 CT-α - 

1928 L     1827 L     50 97.1 V at 43.9 CT-α - 

1929 P     1828 P     100 99.3 94.9 CT-α - 

1930 V     1829 V     15 I at 77.0 I at 65.1 CT-α - 

1931 L     1830 L     45 33.1 34.5 CT-α - 

1932 A V 1 1831 A     15 K at 50.4 S at 16.8 CT-α VUS 

1933 P     1832 P     50 70.5 50.4 CT-α - 

1934 L     1833 L     45 80.6 18 CT-α - 

1935 D     1834 D     100 99.3 98.8 CT-α - 

1936 P     1835 P     75 92.1 55 CT-α - 

1937 P     1836 P     45 88.5 W at 40.3 CT-α - 

1938 E     1837 E     35 59 D at 71.1 CT-α - 

1939 R     1838 R     100 99.3 99.1 CT-α - 

1940 T S 1 1839 I T 153 15 P at 68.4 D at 36.4 CT-α ND 

1941 V     1840 V     70 97.1 53.7 CT-α - 

1942 E     1841 E     55 52.5 36.9 CT-α - 

1943 Y     1842 Y D 2 50 99.3 56.1 CT-α ND 

1944 I     1843 V I 15 15 F at 37.4 V at 19.9 CT-α - 

1945 P     1844 P     100 98.6 96 CT-α - 

1946 E     1845 E K 1 45 95.7 P at 30.3 CT-α LND 

1947 N     1846 N     50 88.5 K at 46.2 CT-α - 

1948 S     1847 S     35 66.9 21.1 CT-α - 

1949 C     1848 C     45 98.6 Y at 74.4 CT-α - 

1950 D     1849 D     95 99.3 95.8 CT-α - 

1951 P     1850 P     75 84.2 62.5 CT-α - 

1952 R     1851 R     95 98.6 98.7 CT-α - 

1953 A     1852 A     45 97.8 W at 62.2 CT-α - 

1954 A     1853 A     45 98.6 M at 41.4 CT-α - 

1955 I     1854 I V 1 65 97.8 60.6 CT-α LND 

1956 A     1855 A     50 S at 36.7 44.4 CT-α - 

1957 G     1856 G     100 99.3 97.9 CT-α - 

1958 I     1857 V I 1 20 38.9 R at 39.3 CT-α LND 
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1959 N     1858 K N 2 15 D at 28.1 E at 24.7 CT-α ND 

1960 D     1859 D     60 87.8 40.6 CT-α - 

1961 N D 7 1860 N     20 S at 37.4 P at 28.5 CT-α VUS 

1962 T     1861 T     40 Q at 40.3 19 CT-α - 

1963 G     1862 G     55 98.6 44.9 CT-α - 

1964 K     1863 K     40 76.3 G at 33.9 CT-α - 

1965 W     1864 W     80 99.3 57.1 CT-α - 

1966 L     1865 L     60 85.6 41.7 CT-α - 

1967 G     1866 G     40 89.9 S at 48.9 CT-α - 

1968 G     1867 G     100 99.3 99 CT-α D 

1969 I     1868 I     25 51.1 L at 37.6 CT-α - 

1970 F     1869 F     100 99.3 95.1 CT-α - 

1971 D     1870 D     100 99.3 99 CT-α - 

1972 K     1871 K     55 73.4 50.8 CT-α - 

1973 N     1872 N     20 D at 66.9 G at 48.9 CT-α - 

1974 S     1873 S     100 97.8 97 CT-α - 

1975 F     1874 F     95 99.3 90.1 CT-α - 

1976 V     1875 I V 194 35 77.7 28 CT-α ND 

1977 E     1876 E     100 99.3 99 CT-α - 

1978 T     1877 T     65 98.6 53.1 CT-α - 

1979 L     1878 L     55 71.9 64.3 CT-α - 

1980 E     1879 E     45 95.7 G at 26.4 CT-α - 

1981 G     1880 G     65 98.6 70.2 CT-α - 

1982 W     1881 W     100 99.3 99 CT-α - 

1983 A     1882 A     100 99.3 96.1 CT-α - 

1984 R     1883 R     25 51.1 K at 36.3 CT-α - 

1985 T     1884 T     80 92.8 76.5 CT-α - 

1986 V     1885 V     100 98.6 97 CT-α - 

1987 V     1886 V     85 85.6 90.6 CT-α - 

1988 T     1887 T     60 97.8 V at 57.3 CT-α - 

1989 G     1888 G     100 98.6 99 CT-α - 

1990 R     1889 R     100 98.6 99.1 CT-α - 

1991 A     1890 A     100 98.6 96.1 CT-α - 

1992 K     1891 K     45 91.4 R at 76.5 CT-α - 

1993 L     1892 L     95 99.3 97.3 CT-α - 

1994 G     1893 G     100 97.8 96.6 CT-α - 

1995 G     1894 G     100 97.8 99 CT-α - 

1996 I     1895 I     90 95 92.1 CT-α - 

1997 P     1896 P     100 99.3 99.1 CT-α - 

1998 I     1897 V     5 97.1 V at 78.7 CT-α LND 

1999 G     1898 G     100 98.6 97.9 CT-α - 
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2000 V     1899 V     90 50.4 83.5 CT-α - 

2001 V     1900 V     40 50.4 I at 72.1 CT-α - 

2002 A     1901 A     95 98.6 81.7 CT-α - 

2003 V     1902 V     100 98.6 94.2 CT-α - 

2004 E     1903 E     100 98.6 97 CT-α - 

2005 T     1904 T     100 97.8 89.7 CT-α - 

2006 Q     1905 Q     40 89.2 R at 75.0 CT-α - 

2007 T     1906 T     90 98.6 63.7 CT-α - 

2008 V     1907 V     80 56.1 70 CT-α - 

2009 M     1908 M     40 91.4 E at 65.4 CT-α - 

2010 H     1909 Q     5 Q at 95.0 N at 27.9 CT-α LND 

2011 V     1910 I     15 41.7 31 CT-α LND 

2012 I     1911 I     75 86.3 47.7 CT-α - 

2013 P L 3 1912 P     95 97.1 98.5 CT-α PD 

2014 A E 1 1913 A     100 97.8 99 CT-α PD 

2015 D     1914 D     100 97.8 98.8 CT-α - 

2016 P     1915 P     100 97.8 98.8 CT-α - 

2017 G     1916 G     45 97.1 A at 77.4 CT-α - 

2018 Q     1917 Q     45 97.8 N at 70.6 CT-α - 

2019 L     1918 L     80 87.8 46.2 CT-α - 

2020 D E 1 1919 D     95 97.1 76.9 CT-α VUS 

2021 S     1920 S     100 98.6 98.1 CT-α - 

2022 H     1921 H     35 76.3 E at 28.6 CT-α - 

2023 E     1922 E     65 98.6 68.7 CT-α - 

2024 R     1923 R     45 94.2 K at 27.1 CT-α - 

2025 V     1924 V     45 65.5 33.6 CT-α - 

2026 V     1925 V     50 97.1 I at 32.7 CT-α - 

2027 P R 2 1926 P     45 97.1 Q at 37.2 CT-α VUS 

2028 Q     1927 Q     70 70.5 49.6 CT-α - 

2029 A     1928 A     95 98.6 96 CT-α - 

2030 G     1929 G     100 98.6 98.8 CT-α - 

2031 Q     1930 Q     95 98.6 75 CT-α - 

2032 V     1931 V     100 98.6 99 CT-α - 

2033 W     1932 W     100 98.6 98.5 CT-α - 

2034 F     1933 F     75 97.1 52.2 CT-α - 

2035 P     1934 P     100 98.6 99 CT-α - 

2036 D     1935 D     75 95 56.8 CT-α - 

2037 S     1936 S     100 98.6 99 CT-α - 

2038 A     1937 A     95 98.6 92.7 CT-α - 

2039 A     1938 A     25 T at 70.5 F at 52.2 CT-α - 

2040 K     1939 K     100 98.6 99 CT-α - 
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2041 T     1940 T     100 98.6 99 CT-α - 

2042 A     1941 A     90 93.5 88.9 CT-α - 

2043 Q     1942 Q     100 98.6 91.9 CT-α - 

2044 A     1943 A     90 98.6 94.3 CT-α - 

2045 L F 8 1944 L     35 61.9 I at 70.0 CT-α VUS 

2046 M     1945 M     20 L at 60.4 K at 28.3 CT-α - 

2047 D     1946 D     100 98.6 98.8 CT-α - 

2048 F     1947 F     100 97.1 94.5 CT-α - 

2049 N     1948 N     95 98.6 84.9 CT-α - 

2050 R     1949 R     70 89.2 49.9 CT-α - 

2051 E     1950 E     100 97.8 98.8 CT-α - 

2052 Q     1951 E     25 E at 56.1 36 CT-α LND 

2053 L     1952 L     100 98.6 98.7 CT-α - 

2054 P     1953 P     100 98.6 98.7 CT-α - 

2055 L     1954 L     95 98.6 84.6 CT-α - 

2056 F     1955 F     50 97.8 M at 50.5 CT-α - 

2057 I     1956 I     75 98.6 80.5 CT-α - 

2058 I     1957 L     5 L at 95.7 L at 59.1 CT-α LND 

2059 A V 1 1958 A     100 98.6 98.2 CT-α VUS 

2060 N     1959 N     100 97.8 97.9 CT-α - 

2061 W     1960 W     100 98.6 97.3 CT-α - 

2062 R     1961 R     100 98.6 99 CT-α - 

2063 G     1962 G     100 98.6 99 CT-α - 

2064 F     1963 F     100 98.6 99 CT-α - 

2065 S     1964 S     100 98.6 99 CT-α - 

2066 G     1965 G     100 98.6 98.2 CT-α - 

2067 G     1966 G     100 98.6 99 CT-α - 

2068 Q R 1 1967 Q     65 98.6 64.9 CT-α VUS 

2069 R     1968 R     65 96.4 62.5 CT-α - 

2070 D     1969 D     100 98.6 99 CT-α - 

2071 L     1970 L     45 97.8 M at 78.3 CT-α - 

2072 F     1971 F     55 97.8 Y at 64.8 CT-α - 

2073 E     1972 E     55 97.8 N at 34.9 CT-α - 

2074 G     1973 G     45 97.8 E at 49.6 CT-α - 

2075 I     1974 I     50 93.5 V at 61.8 CT-α - 

2076 L     1975 L     95 97.8 92.8 CT-α - 

2077 Q L 9 1976 Q     45 97.1 K at 78.3 CT-α VUS 

2078 A     1977 A     45 97.8 F at 37.0 CT-α - 

2079 G     1978 G     100 98.6 99 CT-α - 

2080 S     1979 S     70 93.5 62.8 CT-α - 

2081 A     1980 T     10 T at 79.9 Y at 44.5 CT-α LND 
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2082 I M 1 1981 I     95 97.1 98.7 CT-α VUS 

2083 V G 1 1982 V     100 98.6 98.8 CT-α VUS 

2084 E     1983 E     45 97.8 D at 78.1 CT-α - 

2085 N     1984 N     45 93.5 A at 40.9 CT-α - 

2086 L     1985 L     100 98.6 97.8 CT-α - 

2087 R     1986 R     80 97.1 53.1 CT-α - 

2088 T     1987 T     45 94.2 K at 25.2 CT-α - 

2089 Y     1988 Y     80 97.8 82.9 CT-α - 

2090 R     1989 R     20 K at 43.9 K at 40.0 CT-α - 

2091 Q     1990 Q     95 98.6 88.2 CT-α - 

2092 P     1991 P     100 98.6 99 CT-α - 

2093 V     1992 V     55 43.2 52.3 CT-α - 

2094 F     1993 F     55 98.6 61.5 CT-α - 

2095 V L 1 1994 V     70 95.7 67.9 CT-α VUS 

2096 Y     1995 Y     100 92.8 96.1 CT-α - 

2097 I     1996 I     95 97.1 92.1 CT-α - 

2098 P S 2 1997 P     100 97.8 93 CT-α VUS 

2099 M     1998 M     25 64.8 P at 77.4 CT-α - 

2100 M I 2 1999 M     25 48.9 F at 21.3 CT-α VUS 

2101 G     2000 G     55 79.9 65.4 CT-α - 

2102 E     2001 E     100 98.6 98.8 CT-α - 

2103 L     2002 L     100 98.6 98.2 CT-α - 

2104 R     2003 R     100 98.6 99 CT-α - 

2105 G     2004 G     100 98.6 99 CT-α - 

2106 G     2005 G     100 98.6 99 CT-α - 

2107 A     2006 A     50 98.6 S at 56.2 CT-α - 

2108 W     2007 W     100 98.6 99 CT-α - 

2109 V     2008 V     95 94.2 87.7 CT-α - 

2110 V     2009 V     100 98.6 98.8 CT-α - 

2111 V     2010 V     60 76.3 54.9 CT-α - 

2112 D     2011 D     100 97.8 98.5 CT-α - 

2113 S T 11 2012 S     60 97.8 P at 62.2 CT-α VUS 

2114 Q     2013 Q     20 K at 60.4 T at 59.1 CT-α - 

2115 I R 1 2014 I     100 97.8 98.2 CT-α PD 

2116 N     2015 N     100 98.6 98.1 CT-α - 

2117 S L 1 2016 S     25 P at 57.6 P at 62.1 CT-α VUS 

2118 D E 2 2017 D     50 83.5 35.8 CT-α VUS 

2119 Y     2018 Y     25 H at 53.2 H at 27.0 CT-α - 

2120 I     2019 V     40 80.6 M at 67.9 CT-α LND 

2121 E     2020 E     100 98.6 96.7 CT-α - 

2122 M I 4 2021 M     80 70.5 81.9 CT-α VUS 
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2123 Y     2022 Y     100 98.6 93.1 CT-α - 

2124 A     2023 A     100 97.8 94.3 CT-α - 

2125 D     2024 D     75 E at 64.8 84.1 CT-α - 

2126 E K 51 2025 E     25 R at 75.6 R at 26.5 CT-α VUS 

2127 T A 1 2026 T     45 96.4 E at 45.1 CT-α VUS 

2128 A     2027 A     55 95 S at 24.9 CT-α - 

2129 R     2028 R L (H) 5 (1) 80 K at 67.6 84 CT-α ND 

2130 G     2029 G     90 96.4 80.1 CT-α - 

2131 N     2030 N     45 95 G at 70.6 CT-α - 

2132 V     2031 V     100 97.1 86.5 CT-α - 

2133 L     2032 L     100 98.6 97.6 CT-α - 

2134 E     2033 E     100 98.6 98.5 CT-α - 

2135 P     2034 P     90 87.1 89.8 CT-α - 

2136 E     2035 E     75 60.4 71.8 CT-α - 

2137 G     2036 G     100 97.8 95.8 CT-α - 

2138 M     2037 T     25 L at 46.0 I at 34.3 CT-α LND 

2139 I     2038 I     45 59.9 V at 65.1 CT-α - 

2140 E     2039 E     80 98.6 63.1 CT-α - 

2141 I     2040 I     100 98.6 93.6 CT-α - 

2142 K     2041 K     100 97.1 96.7 CT-α - 

2143 F     2042 F     85 97.1 53.2 CT-α - 

2144 R     2043 R     90 88.5 90.9 CT-α - 

2145 R     2044 T     20 T at 38.1 33.3 CT-α LND 

2146 K Q 15 2045 K     55 41 39 CT-α VUS 

2147 E     2046 E     45 89.2 K at 36.3 CT-α - 

2148 L     2047 L     80 88.5 59.5 CT-α - 

2149 L     2048 L     45 49.6 51.4 CT-α - 

2150 E     2049 E     45 79.1 K at 31.2 CT-α - 

2151 C     2050 C     40 80.6 T at 62.5 CT-α - 

2152 M L 1 2051 M     90 98.6 89.2 CT-α VUS 

2153 G     2052 G     30 74.8 A at 24.1 CT-α - 

2154 R     2053 R     100 97.8 97.6 CT-α - 

2155 L     2054 L     65 95.7 65.8 CT-α - 

2156 D     2055 D     100 98.6 96.9 CT-α - 

2157 Q     2056 Q     20 P at 50.4 P at 55.0 CT-α - 

2158 T     2057 K     15 E at 43.2 V at 23.7 CT-α LND 

2159 L     2058 L     45 96.4 Y at 60.0 CT-α - 

2160 I     2059 I V 1 60 90.7 29.7 CT-α LND 

2161 N     2060 S     15 38.9 E at 17.7 CT-α LND 

2162 L     2061 L     100 94.2 92.5 CT-α - 

2163 K     2062 K     45 76.3 44.1 CT-α - 
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2164 A     2063 A     35 71.9 E at 26.4 CT-α - 

2165 N     2064 K     5 K at 70.5 K at 26.1 CT-α LND 

2166 I     2065 L     5 L at 93.5 L at 76.9 CT-α LND 

2167 Q E 3 2066 Q R 2 20 65.5 D at 27.1 CT-α ND 

2168 D     2067 D     30 E at 43.2 E at 12.1 CT-α - 

2169 A     2068 A     45 67.6 A at 21.6 CT-α - 

2170 K     2069 K     40 58.3 G at 18 CT-α - 

2171 R Q (G) 2 (1) 2070 Q     5 S at 30.2 T at 15.1 CT-α LND 

2172 N     2071 S     10 S at 21.6 S at 30.4 CT-α LND 

2173 K     2072 E V 1 15 N at 23.7 L at 47.8 CT-α LND 

2174 A S 18 2073 A     25 G at 25.9 S at 50.1 CT-α VUS 

2175 Y     2074 Y     15 S at 36.7 P at 16.2 CT-α - 

2176 A     2075 A     20 31.7 E at 35.1 CT-α - 

2177 N     2076 N     15 D at 23.0 E at 37.5 CT-α - 

2178 I     2077 I     20 V at 20.1 R at 21.9 CT-α - 

2179 E     2078 E     40 69.8 K at 23.1 CT-α - 

2180 L     2079 L     20 S at 51.1 E at 36.1 CT-α - 

2181 L     2080 L     60 69.1 45 CT-α - 

2182 Q     2081 Q     25 72.7 K at 27.6 CT-α - 

2183 K     2082 Q     25 Q at 41.0 23.5 CT-α LND 

2184 Q H 1 2083 Q     35 48.2 K at 40.5 CT-α VUS 

2185 I     2084 I V 262 40 82.7 L at 42.9 CT-α ND 

2186 K     2085 K     60 39.6 37.3 CT-α - 

2187 T I 1 2086 A     5 A at 56.1 A at 36.6 CT-α LND 

2188 R     2087 R     100 98.6 96.4 CT-α - 

2189 E     2088 E     70 51.8 82.8 CT-α - 

2190 K     2089 K     45 89.9 37 CT-α - 

2191 Q     2090 Q     50 86.3 39.1 CT-α - 

2192 L     2091 L     100 97.8 96.4 CT-α - 

2193 L     2092 L     65 75.5 64.6 CT-α - 

2194 P     2093 P     95 98.6 92.2 CT-α - 

2195 V I 1 2094 V     25 40.3 I at 42.3 CT-α VUS 

2196 Y     2095 Y     100 98.6 96 CT-α - 

2197 T     2096 I     30 83.5 H at 27.7 CT-α LND 

2198 Q     2097 Q     95 98.6 87.1 CT-α - 

2199 I     2098 I     55 79.1 54.3 CT-α - 

2200 A     2099 A     80 98.6 80.2 CT-α - 

2201 T     2100 T     35 66.2 V at 39.6 CT-α - 

2202 K T 1 2101 K     25 R at 52.5 Q at 52.9 CT-α VUS 

2203 F     2102 F     100 97.8 91.5 CT-α - 

2204 A     2103 A     95 94.2 92.5 CT-α - 
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2205 E     2104 E     40 92.1 D at 76.0 CT-α - 

2206 L     2105 L     95 97.1 93.9 CT-α - 

2207 H Q 1 2106 H     100 98.6 98.1 CT-α PD 

2208 D     2107 D     100 98.6 98.4 CT-α - 

2209 T     2108 T     80 92.1 50.7 CT-α - 

2210 S     2109 S     55 93.5 P at 32.2 CT-α - 

2211 M     2110 M     20 L at 62.6 G at 59.4 CT-α - 

2212 R     2111 R     95 97.1 94.2 - - 

2213 M     2112 M     100 97.1 97.2 - - 

2214 A     2113 A E 4 40 89.2 L at 20.5 - ND 

2215 A     2114 A     60 95 65.5 - - 

2216 K     2115 K     100 96.4 90.1 - - 

2217 G     2116 G     90 97.8 85.8 - - 

2218 V     2117 V     90 95.7 65.2 - - 

2219 I     2118 I     95 89.9 84.7 - - 

2220 K     2119 K     30 44.6 R at 46.5 - - 

2221 S R 22 2120 S     20 K at 48.2 D at 29.5 - VUS 

2222 V     2121 V     55 95.7 33.7 - - 

2223 V     2122 V     45 80.6 L at 56.4 - - 

2224 E     2123 E     50 D at 79.1 31.3 - - 

2225 W     2124 W     100 97.8 96.3 - - 

2226 S R 1 2125 S     25 E at 49.6 K at 36.0 - VUS 

2227 G     2126 G S 46 20 E at 31.7 N at 33.6 - ND 

2228 S L 1 2127 S     70 97.1 53.5 - VUS 

2229 R     2128 R     100 98.6 97.3 - - 

2230 S L 49 2129 S A 1 40 65.5 R at 45.7 - LND 

2231 F     2130 F     90 85.6 73 - - 

2232 F     2131 F     85 98.6 82.2 - - 

2233 Y     2132 Y H 230 95 91.4 82.6 - ND 

2234 K     2133 K     30 46 W at 71.1 - - 

2235 K     2134 K     20 R at 87.1 R at 87.9 - - 

2236 L     2135 L     95 98.6 85.8 - - 

2237 Y     2136 N     5 R at 48.9 R at 79.2 - LND 

2238 R     2137 R     100 98.6 93.3 - - 

2239 R     2138 R     65 97.8 64.9 - - 

2240 I     2139 I     35 60.4 L at 73.0 - - 

2241 A     2140 A     35 44.6 L at 27.6 - - 

2242 E     2141 E     100 95.7 88.8 - - 

2243 S     2142 S     20 D at 46.0 E at 42.0 - - 

2244 S     2143 S     30 56.1 Y at 23.2 - - 

2245 L     2144 L     50 94.2 35.2 - - 
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2246 V     2145 V     20 A at 43.2 L at 25.3 - - 

2247 R     2146 K R 13 15 K at 77.0 K at 54.1 - ND 

2248 N     2147 N     20 E at 33.1 R at 27.7 - - 

2249 I T 1 2148 V I 6 60 V at 56.8 40.5 - ND 

2250 R     2149 R     35 79.1 17.5 - - 

2251 K     2150 E     10 D at 30.9 E at 18.1 - LND 

2252 A     2151 A     75 70.5 43 - - 

2253 S     2152 S     35 A at 66.9 A at 16.6 - - 

2254 G     2153 G     55 97.8 23.5 - - 

2255 D     2154 D     30 44.6 9.8 - - 

2256 I     2155 N S 247 5 Q at 54.0 Q at 11.4 - ND 

2257 L     2156 L     25 54 12 - - 

2258 S     2157 A T 238 35 61.2 35.7 - ND 

2259 Y     2158 Y     25 H at 69.8 R at 27.1 - - 

2260 K     2159 K     20 46 G at 17.8 - - 

2261 S     2160 S     45 85.6 Q at 20.2 - - 

2262 A     2161 S A 184 40 97.1 28.2 - ND 

2263 M     2162 M     25 43.2 L at 28.5 - - 

2264 G V 6 2163 R G 190 15 E at 46.0 A at 25.8 - ND 

2265 L     2164 L     35 67.6 M at 30.6 - - 

2266 I     2165 I     40 78.4 L at 64.8 - - 

2267 Q     2166 Q     20 K at 77.7 R at 37.2 - - 

2268 D     2167 D     25 K at 43.2 R at 26.8 - - 

2269 W     2168 W     45 95.7 84.1 - - 

2270 F     2169 F     20 Y at 53.2 37.3 - - 

2271 R C 1 2170 C S 1 10 L at 74.1 V at 22.2 - LND 

2272 K     2171 N     15 A at 42.5 A at 8.3 - LND 

2273 S     2172 S     45 49.6 19.5 - - 

2274 E     2173 D V 220 10 S at 47.5 29.8 - ND 

2275 I     2174 I     20 30.9 V at 9.9 - - 

2276 A     2175 A T 2 25 54 E at 19.6 - ND 

2277 K     2176 K     30 28.1 G at 27.3 - - 

2278 G     2177 G     40 46 A at 15.9 - - 

2279 K     2178 K     35 26.6 23.5 - - 

2280 E     2179 E     30 36 A at 21.9 - - 

2281 E     2180 E     30 D at 32.4 Y at 25.2 - - 

2282 A     2181 A     30 43.9 L at 20.4 - - 

2283 W     2182 W     45 97.8 57.1 - - 

2284 T R 61 2183 T     20 D at 28.8 D at 35.5 - VUS 

2285 D     2184 D     65 90.7 42.7 - - 

2286 D     2185 D     45 97.8 66 - - 
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2287 Q     2186 Q     35 E at 47.5 R at 22.6 - - 

2288 L     2187 V     5 A at 72.7 A at 34.0 - LND 

2289 F     2188 F     45 96.4 V at 53.1 - - 

2290 F     2189 F     35 66.9 A at 32.5 - - 

2291 T     2190 T     25 A at 49.6 E at 27.0 - - 

2292 W     2191 W     45 98.6 85 - - 

2293 K     2192 K     35 73.4 E at 65.1 - - 

2294 D     2193 D     35 58.3 E at 32.4 - - 

2295 N     2194 N     40 D at 45.3 35.5 - - 

2296 V     2195 V A 6 20 P at 63.3 L at 16.0 - ND 

2297 S     2196 S     55 E at 27.3 K at 25.5 - - 

2298 N     2197 N     35 84.9 22.6 - - 

2299 Y     2198 Y     45 92.1 I at 36.7 - - 

2300 E     2199 E     40 56.8 38.5 - - 

2301 Q     2200 L     5 E at 29.5 E at 26.4 - LND 

2302 K     2201 K     25 Y at 39.6 N at 26.1 - - 

2303 L V 1 2202 L     40 68.4 I at 27.7 - VUS 

2304 S     2203 S     20 K at 34.5 K at 25.0 - - 

2305 E     2204 E     50 88.5 27.9 - - 

2306 L     2205 L     70 98.6 63 - - 

2307 R     2206 R     45 74.8 K at 48.6 - - 

2308 T     2207 A     5 A at 61.9 R at 23.5 - LND 

2309 Q     2208 Q     35 77.7 D at 36.6 - - 

2310 K     2209 K     25 61.2 14.4 - - 

2311 L     2210 L     30 V at 70.5 V at 37.3 - - 

2312 L     2211 L     55 50.4 31.5 - - 

2313 N     2212 N     20 L at 32.4 K at 22.0 - - 

2314 Q     2213 Q     40 49.6 29.8 - - 

2315 L     2214 L     55 90.7 I at 34.9 - - 

2316 A     2215 A     25 S at 56.1 28.6 - - 

2317 E     2216 E     20 N at 25.2 S at 25.8 - - 

2318 I     2217 I     25 42.5 L at 52.9 - - 

2319 G     2218 G     25 54 V at 26.1 - - 

2320 N     2219 N     20 D at 41.7 Q at 21.4 - - 

2321 S T 1 2220 S     50 80.6 G at 34.3 - VUS 

2322 S     2221 S     40 64 V at 21.1 - - 

2323 D     2222 D     45 96.4 E at 34.8 - - 

2324 L     2223 L     35 79.1 V at 45.3 - - 

2325 Q K 1 2224 Q     25 51.8 10.9 - VUS 

2326 A     2225 A     50 92.1 41.2 - - 

2327 L     2226 L     40 87.1 24.4 - - 
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2328 P     2227 P     40 86.3 D at 24.6 - - 

2329 Q     2228 Q     35 78.4 16.6 - - 

2330 G     2229 G     55 93.5 19.5 - - 

2331 L     2230 L     55 94.2 21.9 - - 

2332 A     2231 A     35 48.2 V at 15.0 - - 

2333 N     2232 N     20 A at 36.0 H at 13.9 - - 

2334 L     2233 L     55 90.7 56.8 - - 

2335 L     2234 L     60 95.7 21.6 - - 

2336 N     2235 N     20 S at 34.5 Q at 25.8 - - 

2337 K     2236 K M 32 45 94.2 22 - ND 

2338 V     2237 V     20 M at 49.6 L at 42.4 - - 

2339 D     2238 E     25 45.3 S at 31.5 - LND 

2340 L     2239 P R 1 5 P at 77.0 P at 44.7 - LND 

2341 S     2240 S     40 68.4 E at 25.2 - - 

2342 R     2241 K     15 K at 26.6 E at 34.2 - LND 

2343 R     2242 R     90 96.4 64.6 - - 

2344 E     2243 E     40 34.5 A at 34.3 - - 

2345 E     2244 E     35 Q at 54.7 Q at 24.7 - - 

2346 L     2245 L     35 52.5 V at 37.2 - - 

2347 V     2246 V     55 41 L at 33.1 - - 

2348 D N 1 2247 A     20 37.4 K at 28.5 - LND 

2349 A     2248 A     20 E at 61.9 Y at 15.6 - - 

2350 I     2249 I     10 L at 58.3 L at 78.3 - - 

2351 R     2250 R     35 61.9 S at 24.7 - - 

2352 K     2251 K     35 71.2 T at 21.0 - - 

2353 V     2252 V     40 75.5 18.3 - - 

2354 L     2253 L     45 92.8 22.3 - - 

2355 G S 1 2254 G     30 54 S at 16.3 - VUS 

2356 X     2255 X     - - - - - 
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APPENDIX J: ACC2 Consensus Protein Sequence with Conserved Residues and Genetic 

Variants Highlighted 
 

 

 

 

 

This appendix shows the consensus ACC2 protein sequence among 857 Arabidopsis 

accessions. Also shown in this appendix is the conservation percentage of each amino 

acid based on our multi-kingdom alignment of 667 eukaryotic ACCase sequences, 

accession variation for ACC1 and ACC2, and the current classification of each variant 

based upon its likely impact on ACCase function. Adapted from Parker et al. (2016). 

Footnotes for each row are described below: 

First row: Red, ≥ 99% conserved in the multi-kingdom alignment of 667 eukaryotic 

ACCase sequences; Purple, 95-98%; Blue, 90-94%; Green, 80-89%; Black < 80%. 

Second row: Residues (consensus from homomeric ACCase alignment) that differ from 

the ACC2 consensus among sequenced accessions. Capital letters, amino acid indicated 

is ≥ 50% conserved in the multi-kingdom alignment of 667 eukaryotic ACCase 

sequences; Lower case letters, < 50%; Gray letters, < 25%. Residues preceding the start 

of ACC1 are excluded. 

Third row: Most common ACC2 variant identified among sequenced accessions; Red, 1 

accession with variant indicated; Purple, 2-3; Blue, 4-10; Green, >10; Gray, variant not 

found in the single accession predicted; Underlined, variant confirmed by Sanger 

sequencing. 

Fourth row: Most common ACC1 variant identified; colors and underlining same as for 

ACC2 above.  Lower case letters, consensus ACC1 residue differs from that found in 

ACC2. 
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Fifth row: Variant classification.  Red square, deleterious to protein function; Red 

triangle, deleterious based on phenotype of induced acc1 missense mutation; Purple 

square, likely deleterious; Blue square, possibly deleterious; Open diamond, variant of 

unknown significance; Exclamation point, Likely not deleterious (ACC1 consensus 

differs from ACC2 consensus, and the consensus ACC2 protein is likely functional based 

on sequence information from multiple tolerant accessions); Green diamond, likely not 

deleterious (ACC2 variant found in tolerant or high intermediate accession; or ACC1 

variant found in single accession not tested for sequence confirmation); Black dot, not 

deleterious (ACC1 variant found in natural accessions). 

Sixth row: Protein domains; 1, Transit peptide; 2, Biotin carboxylase; 3, Biotin carboxyl 

carrier protein; 4, Central domain; 5, Carboxyltransferase, beta subunit; 6, 

Carboxyltransferase, alpha subunit; *, Biotin binding site within the BCCP domain.
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MEMRALGSSCSTGNGGSAPITLTNI SPWITTVFPSTVKLRSSLRTFKGVS SRVRTFKGVSSTRVLSRTKQQFPLF CFLNPDPISFLDNDVSEAERTVVLP  100   

------------------------- ------------------------- ------------------------- -------------------------  ACCase 
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------------------------- ------------------------- ------------------------- -------------------------  ACC1  

   ◊ ◊◊          ◊                                          ◊      ◊                     ◊   ◊           Effect  

1111111111111111111111111 1111111111111111111111111 1111111111111111111111111 1111111111111111---------  Domain 

 

 

 

 

DGSVNGAGSVNGYHSDVVPGRN---VAE VNEFCKALGGKRPIHSILVATNGMA AVKFIRSVRTWAYETFGSEKAVKLV AMATPEDMRINAEHIRIADQFVEVP  200 

-----qg  rdrk   ggnslr    ss  k  V  f  htV tkV I N  I     e     k       n R IqF  V      LkA   Y  M   Y      ACCase 

G  A       VC                   L  V  E                         A      D    I              I D       L      ACC2  

-----m     Rn  a R Di yet sq  d      G         i n                      t   il   g T              V         ACC1  

◊  ◊ !     ▪!  ! ♦ ♦! !!! !!  ! ◊  ◊ ▪■        ! !              ◊      ◊!   !!   ! ▪       ◊ ▲    ♦  ◊      Effect  

---------------------------- ------------2222222222222 2222222222222222222222222 2222222222222222222222222  Domain 

 

 

 

 

GGTNNNNYANVQLIVEMAEVTRVDA VWPGWGHASENPELPDALKEKGIIF LGPPADSMIALGDKIGSSLIAQAAD VPTLPWSGSHVKIPPGRSLVTVPEE  300 

           E   DI  R g h    A         k  El aa   v  I   gsA r      s TIV  h g          Gl Vdwveci    d   ACCase 

                                                         A                  V G        N           I     ACC2  

                                            da           s  a          RDR                   Ssn   i     ACC1  

                                            !!           !  !          ♦◊◊  ◊ ◊        ◊     ♦!!   !     Effect 

2222222222222222222222222 2222222222222222222222222 2222222222222222222222222 2222222222222222222222222 Domain 

 

 

 

 

IYKKACVYTTEEAIASCQVVGYPAM IKASWGGGGKGIRKVHNDDEVRALF KQVQGEVPGSPIFIMKVASQSRHLE VQLLCDQYGNVAALHSRDCSVQRRH  400 

v e G  tsv  GLekAeeI F V      E          e eedFp                    L g A         A     aIS FG           ACCase 

    V       VV                             G    G    K  V      TL       I     A                   L      ACC2  

  Lq         T                                                                      kh   s               ACC1  

  ▪!◊       ◊♦                   ▲         ◊    ◊    ◊  ◊      ◊■       ◊     ■     !!   !        ◊      Effect  

2222222222222222222222222 2222222222222222222222222 2222222222222222222222222 2222222222222222222222222 Domain 

 

 

 

 

QKIIEEGPITVAPQETIKKLEQAAR RLAKSVNYVGAATVEYLYSMDTGEY YFLELNPRLQVEHPVTEWIAEVNLP AAQVAVGMGIPLWQIPEIRRFYGME  500 

      A V I kP  FeeM    V     l G  S G       heD kF               t  MV g        LQIA     HR r   lL  vs  ACCase 

   K     N              T                  C T   D                   S T I FL   K               G   A    ACC2  

             S  v                                                        i                     L     i   ACC1  

   ■ ▲   ◊   ▪  !       ◊                  ■ ◊   ◊                   ◊ ◊ ! ■♦   ♦              ▪■   ◊!   Effect  

2222222222222222222222222 2222222222222222222222222 2222222222222222222222222 2222222222222222222222222 Domain 
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HGGGYDSWRKTSVVASPFDFDEAES LRPKGHCVAVRVTSEDPDDGFKPTS GEIQELSFKSKPNMWSYFSVKSGGG IHEFSDSQFGHVFAFGESRSVAIAN  600 

  d   P     ag t I   ktqr rP    vi c I      E    S   tV   N R Ss V G    g a       A      i  y  N ea Rk   ACCase 

             L     LN                 A                H      Q                            S             ACC2  

             A fL    k q  i S                        rv          v a                             al      ACC1  

             ▪ !▪  ■◊! !  ! ▪         ■              !!◊      ◊  ! !                       ◊     !!      Effect  

2222222222222222222222222 2222222222222222222222222 2222222222222222222222222 2222222222222222222222222 Domain                                                                                   

                                                                         

 

 

 

MVLALKEIQIRGDIRTNVDYTIDLL HASDYRENKIHTGWLDSRIAMRVRA ERPPWYLSVVGGALYKASTTSSAVV SDYVGYLEKGQIPPKHISLVHSQVS  700 

  V    LS    F  T E L K   ETe Fed t t     eL  eK t     Dtm a  C   t  haa e c   e lhs     V   d L tvfp e  ACCase 

                 I             W                          I                 G                Q           ACC2  

   g        e                   d                                     a  a                           M   ACC1  

   !        !    ◊             ◊!                         ◊           !  !  ◊                ◊       ♦   Effect  

2222222222222222222222222 22222222222222222222----- ------------------------- ------------------------- Domain 

 

 

 

 

LNIEGSKYTIDVVRGGSGTYRLRMN NSEVVAEIHTLRDGGLLMQLDGKSH VIYAKEEATGTRLLIDGRTCLLQND HDPSKLMAETPCKLLRYLVSDNSSI  800 

 IY     kft t sSpdS v f   G kcEVgVrr s     ls       tv w   Vaa   s        EkE N  Tq RsPS G  v    E GgHV  ACCase 

M   E                   S            G E   I                   C    RS F   SV DN     V    M           M  ACC2  

     N                    N               S             e   a      G                        m   IFH  n   ACC1  

◊   ◊♦                  ♦ ▪          ◊ ■  ◊◊            !   !  ▪   ♦◊◊ ◊   ◊◊ ◊■     ◊    ◊ !   ▪♦♦  !◊  Effect  

------------------------- ------------------------- ------------------------- --33333333333333333333333  Domain   

 

 

 

 

DTDTPYAEVEVMKMCMPLISPASGV IHFKLSEGQAMQAGELIAKLDLDDP SAVRKAKPFRGSFPRLGLPTAISGK VHQRCAATLNAARMILAGYDHKVDE  900 

 AGQ          y   lAqE    vq iKqP AtLe  Di  i a      k kh e  t qL e  p  ivGe  p   F  l  iLeN      l mk   ACCase 

    R                            R    V        P          EALH     FE  R    E I            L      DR     ACC2  

 a M    A         l  S        m             n             eL h              K             C      e       ACC1  

 ! ▪◊   ♦         !  ♦        !  ■    ◊     !  ■          !▪◊!     ◊◊  ◊    ▪ ◊           ♦◊     !◊◊     Effect  

333333333333*333333333333 3333333333333333333344444 4444444444444444444444444 4444444444444444444444444 Domain  

 

 

 

 

VLQDLLNCLDSPELPFLQWQECFAV LATRLPKDLRNMLELKYKEFEIISK TSLTPDFPAKLLKGILEAHLSSCDE KERGSLERLIEPLMSLVKSYEGGRE  1000 

tv e mev RD    y E   imSa  hg i qk ekq rklmaryasnit svklce    q ak  ds  atlvr    evffmttq  vq  qr r  lr  ACCase 

  H   H   T      L                 K     I       F            V  R          K     A  S           F  S    ACC2  

 v                               n   I  s  r   s  r n M t                         a         N a          ACC1  

 !◊   ◊   ◊      ◊               ! ◊ ▪  !◊ !   ! ◊! ! ♦ !     ◊  ◊          ◊     !  ◊      ▪ !  ◊  ◊    Effect  

4444444444444444444444444 4444444444444444444444444 4444444444444444444444444 4444444444444444444444444 Domain  
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SHARLIVHSLFEEYLSVEELFNDNM LADVIERMRQQYKKDRLKIVDIVLS HQGIIHKNKLVLRLMEQLVYPNPAA YREKLIRFSALNHTNYSQLALKASQ  1100 

g ekaV k  L q        sghy dk   lkL e n d ld V        sqVsk      a lD  rp d  l  tde aeLte  esrt KV    Re  ACCase 

  TH                          T          Q    Y                 Q                N     E     S   P   G   ACC2  

    v                               l    l              kn    I                 d      t       e         ACC1  

  ◊◊!                         ◊     !    !    ◊         !!    ♦ ◊               !◊     !     ◊ ! ◊   ◊   Effect  

4444444444444444444444444 4444444444444444444444444 4444444444444444444444444 4444444444444444444444444 Domain 

 

 

 

 

LLEQTKRSELRSNIARSLSELEMFT EAGENMDTPKRKSAISETMENLVSS SLAVEDALVGLFDHSDHTLQRRVVE TYIHRLYQPYVVKESVRMQWHQSGV  1200 

v I chLP   h QmE   svd ys hyet  gwd hrepcl nLke  d  eyt F V pnF y   pwV lAAL  V VR A rA eL siqy  l d pc  ACCase 

  K   Q D       R   I             L      R   K  L       D   M     C   F IWL   I    V    GF            L  ACC2  

      l                    d             n ri d  Ca                E             r         d       r  l  ACC1  

  ◊   ! ◊       ◊   ◊      !      ◊      ! !!◊! ◊♦!     ◊   ◊     ◊♦  ◊ ◊◊◊   ◊  ! ◊    ◊◊ !       !  !  Effect  

4444444444444444444444444 4444444444444444444444444 4444444444444444444444444 4444444444444444444444444 Domain 

 

 

 

 

IASWEFLE-HFERKNTGPDDHEISEK GIVAKSSKRKRGTMVIIKSLQFLPS IINASLRETNHSHCEYARAPLSGNM MHIAVVGINNQMSLLQDSGDEDQTQ  1300 

 v  q id lsylv m gssdtp  l Rk e v eqrm a  af   edfee  ldea k sp tsdpr  pssls v i   l a e  dd e        a   ACCase 

     L             G  M       V        II       C R         K       N                  H        R E H I   ACC2  

I   E   e m    i l NPdt     l G H    w a               T a   AM ndS t g  F         i                  a   ACC1  

▪   ▪■  ! !    ! ! ▪▪!!     ! ♦ ▪    ! !◊       ◊ ◊    ▪ !  ◊♦♦ !!▪ ! !  ▪         !   ◊        ◊ ◊ ◊ !   Effect  

44444444444444444444444444 4444444444444444444444444 4444444444444444444444444 4444444444444444444444444  Domain 

 

 

 

 

ERVNKLAKILKEEEVSLTLCSAGVG VISCIIQRDEGRTPMRHSFHWLMEK QYYVEEPLLRHVEPPLSVYLELDKL KGYSNIQYTPSRDRQWHMYSVTDRP  1400 

  ide     rvq nkse lar  R R TF  g kd ey kyfT Rgpd   l  e Drii  l  A AFQ   gR  sNFnd kpv teN ni l e aKkg  ACCase 

           D  A      VD       K         L               G   Q                 NV    H S                  ACC2  

   H            ss      C                      sl      I       l     i                         l t   k   ACC1  

   ▪       ◊  ◊ !!   ◊◊ ▪     ◊         ◊      !!      ♦♦   ◊  !     !        ◊◊    ◊ ◊        ! !   !   Effect 

4444444444444444444444444 4444444444444444444444444 4444444444444444444444444 4444444444444444444444444  Domain 

 

 

 

 

VPIKRMFLRSLVRQTTMNDGFLLQQ GQDYQLSQTVLSMAFTSKCILRSLM NAMEELELNAHNAAMKPDHAHMFLC ILREQQIDDLVPYPRRFEVNAEDEE  1500 

tevy F t Aii pp   n  ts    g Lrtki asaEYLi Ea e L l d lD   vafn tnvrs cN I            NF  vfktvimd gq    ACCase 

  N Q        KS    A                  IV  PQY                  H   N            H                     K  ACC2  

A             a      M      Yk   L li I  M   v      d                              L  A  Lf   v G        ACC1  

♦ ◊ ■        ◊!    ◊ ▪      ▪!   ♦ !! ♦◊ ♦◊◊◊!      !          ◊   ◊            ◊  ♦  ♦  ▪!   ! ♦     ◊  Effect  

4444444444444444444444444 4444444444444444444444444 4444444444444444444444444 4444444444444444444444444 Domain 
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TTVETILEEATQEIHRSVGVRMHAL GVCEWEVRLWLVSSGLANGAWRVVV ANVTGRTCTVHIYREVEATGRNSLI YHSITKKGPLHGTLINGQYKPLNNL  1600 

a qPskv   vrgfleRy s LWR  R tqA ikInirdpptG pil   I T  S Yvld el    kdektGqiw F   g q     mP  TP pTKdw   ACCase 

                      Y      K  A    L  A TK                  L     K I                 L       H        ACC2  

    R     ar           r     K             c                         tp   T              e p sd     gy   ACC1  

    ▪     !!          ◊!     ▪  ◊    ◊  ◊ ◊!                  ◊     ◊!!   ▪             ◊! ! !! ◊   !!   Effect  

4444444444444444444444444 4444444444444444444444444 4444444444444444444444444 44444444444--------------  Domain 

 

 

 

 

DRKRLAARRSNTTYCYDFPLAFETA LELNWASQHSGVRKPCKNRLINVKE LVFSNTEGSLGTSLIPVERPAGLND IGMVAWILEMSTPEFPMGRKLLIVA  1700 

Qp  yk hlmG   V    El RQ   qks kkasp hpsllpdc et t    LDddq n  lp vE n eP t         kmtlk   Y e  riIVI   ACCase 

N                       T                                 A   S  V L D         R           GC V          ACC2  

  q                   g      l     p  E  y dt           kS  TL I  dl    L     f     cVd        R    vV   ACC1  

◊ !                   ! ◊    !     !  ♦  ! !!           !♦◊ ♦♦◊♦ ◊!! ◊  ▪     !◊    !▪!    ▲◊ ◊♦    !▪   Effect  

------------------5555555 5555555555555555555555555 5555555555555555555555555 5555555555555555555555555 Domain 

 

 

 

 

NDVTFKAGSFGPREDAFFLAVTELA CTKKLPLIYLAANSGARLGVAEEVK ACFKVGWSDEVSPGNGFQYIYLSSE DYARIGSSVIAHEVKLPSGETRWVI  1800 

  I   I     q      ka     RklGI R   S      I l   l  pl   A n ped eK  k L  TP    k ls  nsV tEhvee  s yk   ACCase 

              NV                       C                D  L       D            T         K              ACC2  

               V           a                               A  i  e        Tp   hK             S A        ACC1  

              ◊♦           !           ■                ◊  ♦  !  ! ♦      ♦!   !▪         ◊   ▪ ▪        Effect  

5555555555555555555555555 5555555555555555555555555 5555555555555555555555555 5555555555555555555555555  Domain 

 

 

 

 

DTIVGKEDGLGVENLTGSGAIAGAY SRAYNETFTLTFVSGRSVGIGAYLA RLGMRCIQRLDQPIILTGFSTLNKL LGREVYSSHMQLGGPKIMGTNGVVH  1900 

t  I           R   l    T     e I  I L TC         V    Q a  vEg       ApA           T Nl    tQ  yn   S   ACCase 

N F                 V             S       A                K                         T             S     ACC2  

     E   i                 k    I         t                                                              ACC1  

◊ ◊  ▪   !          ■      !    ▪ ■       !                ◊                         ■    ▲        ■     Effect  

5555555555555555555555555 5555555555555555555555555 5555555555555555555555555 5555555555555555555556666  Domain 

 

 

 

 

LTVSDDLEGVSAILNWLSYIPAYVG GPLPVLAPLDPPERTVEYIPENSCD PRAAIAGINDNTGKWLGGIFDKNSF VETLEGWARTVVTGRAKLGGIPIGV  2000 

           k  e    V  kr  s v I s    wD d   v pk Y    Wm   re p  g  s l   g       g   k   V   R     V    ACCase 

 K                      S       V       S                     D                                          ACC2  

 A     A               A                T  DI K         V  IN                 V                     v    ACC1  

 ■     ♦               ▪◊       ◊       ▪  ▪▪ ♦         ♦  ♦▪ ◊      ▲        ▪                     !    Effect  

6666666666666666666666666 6666666666666666666666666 6666666666666666666666666 6666666666666666666666666 Domain 
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VAVETQTVMHVIPADPGQLDSHERV VPQAGQVWFPDSAAKTAQALMDFNR EQLPLFIIANWRGFSGGQRDLFEGI LQAGSAIVENLRTYRQPVFVYIPMM  2100 

I    R  En      AN   e k  iq           F     Ik          M L            MYnEV  Kf  y  Da  k k        Pf  ACCase 

            LE     E       R                 F              V        R         L    MG           L  S I  ACC2  

         qi                                          e     l                       t                     ACC1  

         !! ■■     ◊       ◊                 ◊       !     !◊        ◊         ◊   !◊◊           ◊  ◊ ◊  Effect  

6666666666666666666666666 6666666666666666666666666 6666666666666666666666666 6666666666666666666666666 Domain 

 

 

 

 

GELRGGAWVVVDSQINSDYIEMYAD ETARGNVLEPEGMIEIKFRRKELLE CMGRLDQTLINLKANIQDAKRNKAY ANIELLQKQIKTREKQLLPVYTQIA  2200 

      S     PT  P hM      res  G      iV       k  k T a   PvY e  ekLdeagtslSp eerke k kl a       i h     ACCase 

            T R LE   I    KA                  Q      L              E   Q  S          H  I       I       ACC2  

                   v         L        t      t             k Vs   klR   qsV          q V a         i     ACC1  

            ◊ ■ ◊◊ ! ◊    ◊◊ ▪        !      !◊      ◊     ! ♦!   !!▪   !!♦◊         !◊▪ !       ◊ !     Effect  

6666666666666666666666666 6666666666666666666666666 6666666666666666666666666 6666666666666666666666666 Domain 

 

 

 

 

TKFAELHDTSMRMAAKGVIKSVVEW SGSRSFFYKKLYRRIAESSLVRNIR KASGDILSYKSAMGLIQDWFRKSEI AKGKEEAWTDDQLFFTWKDNVSNYE  2300 

vQ  D    pG  l     rd L   kn  r   WR R  Ll ey lKr   e a  q  rgq lamLrr  va  v ega ayl d  raVae Ee lk i   ACCase 

 T    Q             R     R L L                  T               V      C             R                  ACC2  

             E             S  A  H   n         R I  e    S T   A G      Sn V  T           v       A      ACC1  

 ◊    ■      ▪      ◊     ◊▪◊ ♦  ▪   !         ▪ ▪  !    ▪ ▪   ▪ ▪      ♦! ▪  ▪       ◊   !       ▪      Effect  

66666666666-------------- ------------------------- ------------------------- -------------------------  Domain 

 

 

 

 

QKLSELRTQKLLNQLAEIGNSSDLQ ALPQGLANLLNKVDLSRREELVDAI RKVLG  2355 

enik  krd v k i sLvqgvev    d   vh  q lspee aqvlkyL st  s  ACCase 

  V                 T   K                       N       S  ACC2  

l      a                             M eR k     a          ACC1  

! ◊    !            ◊   ◊            ▪ !♦ !     !       ◊  Effect  

------------------------- ------------------------- -----  Domain 
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APPENDIX K: Informative Variants that Alter Conserved Residues in Eukaryotic, 

Homomeric Acetyl-CoA Carboxylases 
 

 

 

 

 

This appendix lists the details of informative variants and residues in the ACC2 protein 

sequence. Included data are the position in the ACC2 protein sequence; the variant at that 

position; the variant type; the organism the variant is found in; the current classification 

of the variant based on all information known; the allele strength; the locus and domain 

where the residue is found; the percent conservation of the consensus amino acid at each 

residue for three alignments: (1) the original multi-kingdom alignment of 20 eukaryotic 

sequences, (2) the alignment of 139 plant sequences, and (3) the multi-kingdom 

alignment of 667 eukaryotic sequences; the genotype each variant is found in; the residue 

location in the source organism; relevant references, and additional notes. Adapted from 

Parker et al. (2016). 

Footnotes for the title row of the following table are described below: 

a     The first residue (e.g. "G" in G135E) is found in the consensus sequence among the 

857 accessions; the second is the variant.  

b     D, deleterious to protein function; LD, likely deleterious; PD, possibly deleterious; 

VUS, variant of unknown significance; LND, likely not deleterious; ND, not 

deleterious.  

c     BC, biotin carboxylase; BCCP, biotin carboxyl carrier protein; CT-Beta, 

carboxyltransferase-beta subunit; CT-Alpha, carboxyltransferase-alpha subunit. 
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Residue 

(ACC2) 

Variant 

(ACC2) a 

Variant 

Type 
Organism 

Variant 

Impact b 

Allele  

Strength 
Locus Domain c 

Conservation  (%) 

Genotype 

Source  

AA 

Residue 

Reference Additional Notes Original 

(20) 

Plant  

(139) 

MUSCLE 

(667) 

135 G135E Missense Arabidopsis LD Strong ACC2 (BC) 95 100.0 95.7 Sav-0 Same 
Parker et al. 

(2016) 
Unique to Sav-0 

Accession 

153 K153E 
Site 

 Directed 
Yeast D Strong ACC1 

Dimer 
 Interface 

100 100.0 96.9 K73E 73 
Wei and Tong 

(2015) 
Loss of Enzyme 
Activity in vitro 

156 R156E 
Site 

 Directed 
Yeast D Strong ACC1 

Dimer 

 Interface 
100 99.3 93.6 R76E 76 

Wei and Tong 

(2015) 

Loss of Enzyme 

Activity in vitro; 

Soraphen A 
Interaction Site 

188 E188K Missense Arabidopsis D Weak ACC1 BC 90 99.3 78.0 gsd1 86 Lü et al. (2011) 
Vegetative 

Phenotype 

193 A193V Missense Arabidopsis ND Normal ACC1 BC 100 99.3 98.4 Melni-2 91 
Parker et al. 

(2016) 

Maintained in 

Natural Populations 

219 219 Splicing Arabidopsis D Strong ACC1 BC NA NA NA 
gk-U413;  

gk-sc 
114 

Kajiwara et al. 

(2004) 

Embryo Defective; 

Updated Location 

333 G333D Missense Arabidopsis D Strong ACC1 BC 100 97.1 99.4 acc1-3 231 
Kajiwara et al. 

(2004) 
Embryo Defective; 
Seeds Unavailable 

363 F363L Missense Arabidopsis PD 
Some 

Function 
ACC2 BC 100 97.1 99.3 Sei-0 Same 

Parker et al. 
(2016) 

  

376 V376A Missense Arabidopsis PD 
Some 

Function 
ACC2 BC 100 100.0 100.0 Col-0 Same 

Parker et al. 

(2016) 
  

383 Y383H Missense Arabidopsis ND Normal ACC1 BC 80 71.9 90.6 Consensus   
Parker et al. 

(2016) 

ACC1 Consensus 

Differs from ACC2 

397 Q397X Nonsense Drosophila D Strong ACC BC NA NA NA Acc1 359 
Sasamura et al. 

(2013) 
Lethal 

402.3 x x Arabidopsis x x x 
Large 

Intron  
x x x x x x Large Intron 

404 I404K Missense Arabidopsis LD Strong ACC2 BC 95 100.0 94.8 
Knox-18 
Group 

Same 
Parker et al. 

(2016) 
See Others in Group 

406 E406K Missense Arabidopsis D Weak ACC1 BC 100 100.0 100.0 sfr1 304 
Amid et al. 

(2012) 
Vegetative 
Phenotype 

443 Y443C Missense Arabidopsis VUS Uncertain ACC2 BC 95 92.8 94.0 Etna-2 Same 
This 

dissertation 
  

456 N456I Missense Drosophila D Strong ACC BC 100 100.0 100.0 Acc2 417 
Sasamura et al. 

(2013) 
Lethal 

474 L474F Missense Arabidopsis PD 
Some 

Function 
ACC2 BC 100 97.8 94.5 Chi-0 Same 

Parker et al. 

(2016) 
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475 P475L Missense Arabidopsis LND Normal ACC2 BC 100 99.3 99.7 Lm-2 Same 
Parker et al. 

(2016) 
  

478 Q478K Missense Arabidopsis LND Normal ACC2 BC 100 99.3 97.6 Uod-1 Same 
Parker et al. 

(2016) 
  

493 I493L Missense Arabidopsis ND Normal ACC1 BC 100 99.3 94.6 Multiple 391 
Parker et al. 

(2016) 

Maintained in 

Natural Populations 

494 R494G Missense Arabidopsis PD 
Some 

Function 
ACC2 BC 100 99.3 99.9 Ip-Pal-0 Same 

Parker et al. 

(2016) 
  

520 F520L Missense Arabidopsis PD 
Some 

Function 
ACC2 BC 40 82.7 94.0 In-0 Same 

Parker et al. 

(2016) 
  

528 P528S Missense Arabidopsis ND Normal ACC1 BC 90 99.3 90.1 Multiple 426 
Parker et al. 

(2016) 

Maintained in 

Natural Populations 

538 T538A Missense Arabidopsis PD 
Some 

Function 
ACC2 BC 100 99.3 99.9 Ip-Tor-1 Same 

Parker et al. 
(2016) 

  

564 M564V Missense C. elegans (D) Weak   BC 95 (V) 93.5 (V) 93.3 (V) ye60 (A471V) 471 
Rapppleye et al. 

(2003) 
Temperature 

Sensitive 

565 W565A 
Site 

 Directed 
Yeast D Strong ACC1 

Dimer 

 Interface 
100 97.1 99.3 W487A 487 

Wei and Tong 

(2015) 

Loss of Enzyme 

Activity in vitro 

565 W565X Nonsense Arabidopsis D Strong ACC1 BC NA NA NA emb22 463 
Kajiwara et al. 

(2004) 
Embryo Defective 

572 See Text Splicing Arabidopsis D Strong ACC2 Intron 10 NA NA NA Gn-1; "Gn2-3" Same 
Parker et al. 

(2016) 
Results in Frameshift 

668 S668S Missense Yeast (D) Weak ACC1   35 (S) 68.4 (S) 33.0 (H) acc1ts (F>S)   
Schneiter et al. 

(2000) 
  

686 Q686R 
Site 

 Directed 
Yeast LND Normal ACC1   95 99.3 96.7 Q608R 608 

Wei and Tong 
(2015) 

Functional Enzyme 
in vitro 

725 N725S Missense Arabidopsis LND Normal ACC2   100 95.7 96.9 Pog-0 Same 
Parker et al. 

(2016) 
  

734 H734E 
Site 

 Directed 
Yeast LND Normal ACC1   70 (H) 69.8 (H) 44.2 (R)  R656E 656 

Wei and Tong 

(2015) 

Functional Enzyme 

in vitro 

739 G739E Missense Arabidopsis PD 
Some 

Function 
ACC2   95 97.8 95.2 Wa-1 Same 

Parker et al. 

(2016) 
  

753 Y753X Nonsense Arabidopsis D Strong ACC2   NA NA NA Kb-0; Kl-5 Same 
Parker et al. 

(2016) 
  

762 R762C Missense Arabidopsis ND Normal ACC2   100 97.1 96.6 Tsu-0; Tu-0 Same 
Parker et al. 

(2016) 
  

774 
See Fig. 

S2 
Deletion Arabidopsis D Strong ACC2 

Intron 17; 
Exon 18 

NA NA NA Ip-Ber-0 Same 
Parker et al. 

(2016) 
23 bp Deletion; 

Defective Transcripts 
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777 D777N Missense Arabidopsis PD 
(Some 

Function) 
ACC2 (BCCP) 95 100.0 97.2 

Leska-1-44; 
Sei-0 

Same 
Parker et al. 

(2016) 
  

794 V794I Missense Arabidopsis ND Normal ACC1 BCCP 95 84.9 85.6 Multiple 692 
Parker et al. 

(2016) 
Maintained in 

Natural Populations 

813 K813R 
Site 

 Directed 
Yeast D Strong ACC1 

Biotin 

 Binding 
100 100.0 100.0 

Biotin 

Binding 
735 

Schneiter et al. 

(1996) 

Site-Directed 

Mutagenesis 

833 G833R Missense Arabidopsis PD 
Some 

Function 
ACC2 BCCP 100 98.6 99.3 Dja-1 Same 

Parker et al. 

(2016) 
  

847 L847P Missense Arabidopsis PD 
Some 

Function 
ACC2 Central 100 100.0 96.0 WAR Same 

Parker et al. 

(2016) 
  

865 R865X Nonsense Arabidopsis D Strong ACC2 Central NA NA NA "Nossen" Same 
Parker et al. 

(2014) 
  

901 See Text Splicing Arabidopsis D Strong ACC2 Intron 19 NA NA NA Wl-0 Same 
Parker et al. 

(2016) 
Results in Frameshift 

955 [955] Insertion Arabidopsis D Strong ACC2 Exon 21 NA NA NA acc2-2 Same Salk Insertion 
T-DNA Insertion 

Mutant 

1171 1171fs Frameshift Arabidopsis D Strong ACC2 Central NA NA NA 
Ip-Alo-0;  

Ip-Vin-0 
Same 

Parker et al. 

(2016) 
  

1206 F1206L Missense Arabidopsis LD Moderate ACC2 Central 85 100 96.3 Aitba-1 Same 
Parker et al. 

(2016) 
  

1225 K1225X Nonsense Arabidopsis D Strong ACC2 Central NA NA NA Blh1-1 Same 
Parker et al. 

(2016) 
  

1229 [1229] Insertion Arabidopsis D Strong ACC2 Exon 27 NA NA NA acc2-1 Same Salk Insertion 
T-DNA Insertion 

Mutant 

1355 E1355G Missense Arabidopsis 
VUS;  
LND 

Uncertain; 
(Normal) 

ACC2 Central 100 100.0 98.7 

Knox-18 

Group; 
(Si-0; Ema-1) 

Same 
Parker et al. 

(2016) 
  

1376; 
1377 

K1376R; 
∆1377 

Deletion Arabidopsis VUS Uncertain ACC2 Central 
35 
20 

80.6 
43.9 

Low 
Low 

Qar-8a Same 
This 

dissertation 
  

1405 R1405Q Missense Arabidopsis PD 
Some 

Function 
ACC2 Central 100 100.0 96.1 Db-1 Same 

Parker et al. 

(2016) 
  

1479 ∆1479 Deletion Arabidopsis PD 
Some 

Function 
ACC2 Central 45 (E)  92.1 (E)  19.3 (E)  Ip-Voz-0 Same 

Parker et al. 

(2016) 

Arabidopsis ACC2: 

Glu 

1562 
See Fig. 

S1 
Splicing Arabidopsis D Strong ACC2 Intron 29 NA NA NA 

Spro-2; Ste-2;  
Ste-3; 

Vimmerby 

Same 
Parker et al. 

(2016) 

Variety of Defective 

Transcripts 

1603 K1603Q Missense Arabidopsis ND Normal ACC1   80 88.5 91.0 Consensus   
Parker et al. 

(2016) 

ACC1 Consensus 

Differs from ACC2 
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1621 x x Arabidopsis x x x 

Start of 

Large 
Exon 

x x x x x TAIR 
Start of Large Exon 

(# 31 of 32) 

1623 E1623E Missense C. elegans   Weak   CT-Beta 35 (E)  87.1 (E)  61.3 (R)  
ye162 

(G1351E) 
1351 

Rapppleye et al. 
(2003) 

  

1689 E1689K;G Missense Arabidopsis D Strong 
ACC1; 
ACC2 

CT-Beta 100 99.3 97.0 
pas3-1 (E>K); 

Ts-1 (E>G) 
1588; 
Same 

Baud et al. 

(2004);  
Parker et al. 

(2016) 

Embryo Defective 

(acc1); 
Spectinomycin 

Sensitive (acc2) 

1739 S1739C Missense Arabidopsis PD 
Some 

Function 
ACC2 CT-Beta 90 86.3 94.3 CYR Same 

Parker et al. 

(2016) 

Conserved Residue 
in  

CoA Binding Pocket 

1766 G1766D Missense Arabidopsis LND Normal ACC2 CT-Beta 100 99.3 100 Pog-0 Same 
Parker et al. 

(2016) 
  

1794 G1794A Missense Arabidopsis ND Normal ACC1 CT-Beta 95 100.0 94.8 Multiple 1693 
Parker et al. 

(2016) 

Maintained in 

Natural Populations 

1815 
I > 

L,V,A,T 
Missense 

Resistant 
Grasses 

ND Normal ACC2 CT-Beta 90 (L) 74.8 (L) 94.3 (L) 
Plastid 

ACCase 
1781 

Kaundun 

(2014) 
GenBank: 

AJ310767 

Herbicide Resistant 

Grasses;  
Arabidopsis ACC2: 

Leu 

1821 I1821V Missense Arabidopsis PD 
Some 

Function 
ACC2 CT-Beta 100 100.0 98.2 MNF-Che-2 Same 

Parker et al. 
(2016) 

  

1834 T1834S Missense Arabidopsis PD 
Some 

Function 
ACC2 CT-Beta 100 100.0 99.4 Nemrut-1 Same 

Parker et al. 

(2016) 
  

1854 [1854] Insertion Arabidopsis D Strong ACC1 CT-Beta NA NA NA acc1-1 1753 
Baud et al. 

(2004) 
  

1878 R1878X Nonsense Yeast D   ACC1 CT-Beta NA NA NA Acc1C-term   
Schneiter et al. 

(2000) 
  

1883 S1883T Missense Arabidopsis PD 
Some 

Function 
ACC2 CT-Beta 100 100.0 97.0 Several Same 

Parker et al. 

(2016) 
  

1888 G1888S Missense Arabidopsis D Strong ACC1 CT-Beta 100 100 99.4 pas3-2 1787 
Baud et al. 

(2004) 
Embryo Defective  

1889 G1889A Missense Yeast (D) Weak ACC1 CT-Beta 100 100 99.4 Acc1cs   
Schneiter et al. 

(2000) 
  

1890 P1890C Missense C. elegans (D) Weak   CT-Beta 45 (P) 97.1 (P) 42.1 (T) ye180   
Rappleye et al. 

(2003) 
  

1897 G1897S Missense Arabidopsis PD 
Some 

Function 
ACC2 CT-Alpha 100 100.0 99.4 

Sch1-7;  

WalHaesB4 
Same 

Parker et al. 

(2016) 
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1902 T1902K Missense Arabidopsis LD Strong ACC2 CT-Alpha 95 100.0 87.6 
Knox-18 
Group 

Same 
Parker et al. 

(2016) 
See Others in Group 

1968 G1968E Missense Arabidopsis D Moderate ACC1 CT-Alpha 100 99.3 100 gk-101 1867 
Kajiwara et al. 

(2004) 
Embryo Defective; 
Seeds Unavailable 

2013 P2013L Missense Arabidopsis PD 
Some 

Function 
ACC2 CT-Alpha 95 97.1 98.5 Balan-1 Same 

Parker et al. 

(2016) 
  

2014 A2014E Missense Arabidopsis PD 
Some 

Function 
ACC2 CT-Alpha 100 97.8 99.0 App1-16 Same 

Parker et al. 

(2016) 
  

2020 2020fs Frameshift Arabidopsis D Strong ACC2 CT-Alpha NA NA NA Lu4-2; Lu3-30 Same 
Parker et al. 

(2016) 
  

2033 
W > 

C,L,S 
Missense 

Resistant 

Grasses 
ND Normal ACC2 CT-Alpha 100 98.6 98.5 

Plastid 

ACCase 
1999 

Kaundun 
(2014) 

GenBank: 

AJ310767 

Herbicide Resistant 
Grasses;  

Arabidopsis ACC2: 

Trp 

2059 A2059V Missense Arabidopsis VUS Uncertain ACC2 CT-Alpha 100 98.6 98.2 Grivo-1 Same 
This 

dissertation 
  

2061 W > C Missense 
Resistant 
Grasses 

ND Normal ACC2 CT-Alpha 100 98.6 97.3 
Plastid 

ACCase 
2027 

Kaundun 

(2014) 
GenBank: 

AJ310767 

Herbicide Resistant 

Grasses;  
Arabidopsis ACC2: 

Trp 

2098 P2098S Missense Arabidopsis VUS 
Some 

Function 
ACC2 CT-Alpha 100 97.8 93.0 Hod Same 

Parker et al. 

(2016) 

Nonsense Mutation 

Also Present 

2112 D > G Missense 
Resistant 

Grasses 
ND Normal ACC2 CT-Alpha 100 97.8 98.5 

Plastid 

ACCase 
2078 

Kaundun 

(2014) 

GenBank: 
AJ310767 

Herbicide Resistant 

Grasses;  

Arabidopsis ACC2: 
Asp 

2115 I2115R Missense Arabidopsis PD 
Some 

Function 
ACC2 CT-Alpha 100 97.8 98.2 Iasi-1 Same 

Parker et al. 

(2016) 
  

2122 C > R Missense 
Resistant 

Grasses 
ND Normal ACC2 CT-Alpha 80 (M) 70.5 (M) 81.9 (M) 

Plastid 

ACCase 
2088 

Kaundun 

(2014) 

GenBank: 

AJ310767 

Herbicide Resistant 

Grasses;  

Arabidopsis ACC2: 

Met 

2130 G > A,S Missense 
Resistant 
Grasses 

ND Normal ACC2 CT-Alpha 90 96.4 80.1 
Plastid 

ACCase 
2096 

Kaundun 

(2014) 
GenBank: 

AJ310767 

Herbicide Resistant 

Grasses;  
Arabidopsis ACC2: 

Gly 

2207 H2207Q Missense Arabidopsis PD 
Some 

Function 
ACC2 CT-Alpha 100 98.6 98.1 Ip-Lso-0 Same 

Parker et al. 
(2016) 
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2208 [2208] Insertion Arabidopsis D Strong ACC1 CT-Alpha NA NA NA acc1-2 2107 
Baud et al. 

(2004) 
  

2325 Q2325X Nonsense Arabidopsis LD 
Some 

Function 
ACC2   NA NA NA Hod Same 

Parker et al. 
(2016) 

  

2337 x x Arabidopsis x x x 
End of  
Large 

Exon 

x x x x x TAIR 
End of Large Exon (# 

31 of 32) 

2355 x x Arabidopsis x x x 
End of 

Protein 
x x x x x TAIR End of ACC2 Protein 
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APPENDIX L: ACC2 Variants that Alter Conserved Residues in Sequenced Arabidopsis 

Accessions 
 

 

 

 

 

This appendix lists the details of all variants among Arabidopsis accessions that differ 

than the ACC2 consensus protein sequence. Included data are the position number and 

amino acid substitution for each variant, the percent conservation of the consensus amino 

acid based on our multi-kingdom alignment of 667 eukaryotic ACCase sequences, the 

number of accessions with each variant, and data on the accessions containing the variant 

that have been analyzed on spectinomycin: (1) name of the accessions; (2) whether the 

variant was confirmed in the accession or not; (3) the number of seedlings screened on 

spectinomycin; and (3) the category and score of the spectinomycin response. Adapted 

from Parker et al. (2016). 

Footnotes for the following table are described below: 

a     The first residue (e.g. "G" in G135E) is found in the consensus sequence among the 

accessions; the second is the variant. 

b     Percentage of 667 aligned homomeric ACCase sequences with the accession 

consensus residue. Red, ≥ 99% conserved.  

c     BC, Biotin carboxylase; BCCP, Biotin carboxyl carrier protein; CT, 

carboxyltransferase.  

d     Accessions with the same variant but a more sensitive or problematic seedling 

response are excluded to highlight the most tolerant responses observed with the 

variant present. 

e    The Sav-0 variant was uncovered by sequencing the ACC2 cDNA.  

f    Intermediate responses: Aa-0; Hsm; Kyoto; Rag1-1; Ws-2.
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g    Intermediate responses: Boot-1; Col-0; Ga-0; Hi-0; Kn-0; Ler-1; NFA-8; Pi-0; Tscha-

1; Van-0. 

h    Intermediate responses: Ber; CON-7; Dja-1; Est; Gy-0; Nie1-2; Pla-0; Sch1-7; Wa-1; 

WalHaesB4. 

i    Intermediate responses: Fei-0; Kin-0; Seattle-0; Sq-8. 

j    Intermediate responses: Boot-1; Col-0; Kn-0; Pi-0; Van-0. 

k    Intermediate responses: Dra3-1; Kni-1; Pna-17; Spr1-2. 
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Variant a 
Conservation  

(%) b 

Protein  

Domain c 

1001 Genomes 

Accessions 

with Predicted 

Variant 

Accessions 

Evaluated on  

Spectinomycin d 

Variant 

Confirmed 

Seedlings 

Classified 

Spectinomycin Response 

Category Score 

G135E 95.7 (BC) 0 Sav-0 e Yes 275 Hypersensitive 1.2 

F363L 99.3 BC  5 Sei-0 Yes 56 Intermediate 6.9 

V376A 100.0 BC  12 Col-0 Yes 287 Intermediate 5.6 

I404K 94.8 BC  20 Knox-18 Group Yes - 
Hypersensitive; 

Sensitive 
- 

Y443C 94.0 BC 1 Etna-2 Yes 111 Sensitive 1.9 

L474F 94.5 BC  1 Chi-0 Yes 75 Intermediate 5.1 

P475L 99.7 BC  1 Lm-2 Yes 70 Tolerant 8.3 

Q478K 97.6 BC  28 
Multiple d,f Assumed 126 Intermediate 6.0 

Uod-1 Yes 78 Tolerant 8.5 

R494G 99.9 BC  1 Ip-Pal-0 Yes 51 Intermediate 6.1 

F520L 94.0 BC 2 In-0 Yes 84 Intermediate 4.8 

T538A 99.9 BC  1 Ip-Tor-1 Yes 46 
Low 

Intermediate 
4.1 

V618I 90.9 BC 9 

Ip-Cum-1  

Ped-0 
Yes 

129 

56 
Sensitive 

2.3  

3.1 

Ip-Gua-1 

Ip-Hom-4 
Yes 

81 

94 
Intermediate 

6.3 

4.5 

N725S 96.9   44 
Multiple d,g Assumed 496 Intermediate 5.8 

Pog-0 Yes 60 Tolerant 8.6 

G739E 95.2   1 Wa-1 Yes 40 Intermediate 5.3 

R762C 96.6   6 

Mh-0 Not Tested 28 Intermediate 6.2 

Tsu-0 

Tu-0 
Yes 

490 

84 
Tolerant 

8.8 

9.4 

D777N 97.2   4 Can-0 NO  96 Intermediate 4.7 

G833R 99.3 BCCP 3 Dja-1 Yes 52 Intermediate 4.6 

L847P 96.0   1 WAR Yes 39 
Low 

Intermediate 
3.7 

F1206L 96.3   1 Aitba-1 Yes 53 Sensitive 2.8 

E1355G 98.7   116 

Multiple d,h Assumed 625 Intermediate 5.1 

Ema-1; Si-0 Yes 124 
High 

Intermediate 
8.2 

R1405Q 96.1   1 Db-1 Yes 75 Intermediate 7.2 

Y1594H 97.9   6 None Not Tested None Not Tested   

E1689G 97.0 CT-β 1 Ts-1 Yes 70 Sensitive 2.5 
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S1739C 94.3 CT-β 12 

Multiple d,i Assumed 97 Intermediate 5.6 

CYR  Yes 76 
High 

Intermediate 
7.8 

G1766D 97.6 CT-β 39 
Multiple d,j Assumed 380 Intermediate 5.7 

Pog-0 Yes 60 Tolerant 8.6 

I1821V 98.2 CT-β 1 MNF-Che-2 Yes 53 Intermediate 4.3 

T1834S 99.4 CT-β 2 Nemrut-1 Yes 75 Intermediate 4.2 

S1883T 97.0 CT-β 8 Multiple d,k Assumed 211 Intermediate 6.2 

G1897S 99.4 CT-α 2 
Sch1-7  

WalhaesB4 
Yes 

 70 

39 
Intermediate 

 4.8 

5.6 

P2013L 98.5 CT-α 3 Balan-1 Yes 52 Intermediate 6.2 

A2014E 99.0 CT-α 1 Appl-16 Yes 54 Intermediate 5.6 

A2059V 98.2 CT-α 1 Grivo-1 Yes 73 Sensitive 2.0 

P2098S 93.0 CT-α 2 Hod Yes 72 Intermediate 5.3 

I2115R 98.2 CT-α 1 Iasi-1 Yes 44 Intermediate 5.0 

H2207Q 98.1 CT-α 1 Ip-Lso-0 Yes 55 Intermediate 7.5 
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