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Abstract: Low impact development practices are commonly installed to mitigate the negative 

impacts urbanization can have on stormwater runoff and the environment. Research on the long-

term performance of aged low impact development practices is lacking. This dissertation includes 

three studies related to the long-term performance of aged low impact development practices. The 

first study focuses on hydraulics and leaching potential of two 8-year old bioretention cells with 

fly ash media filter media. With the use of flooding tests, it was determined that both bioretention 

cells were meeting design standards and providing pollution retention. However, both 

bioretention cells leached bacteria when flooded with treated municipal water. The second study 

involves the evaluation of pervious concrete infiltration rate changes over time, cleaning methods 

for restoring clogged pervious concrete, and the correlation of results to pervious concrete mix 

design. Five different pervious concrete tests plots were evaluated, all were used regularly in a 

parking lot. Infiltration rate underwent three phases as the pervious concrete aged. There was an 

initial decrease, then a phase of relatively constant infiltration rates, and finally a secondary 

decrease after which the pervious concrete was considered clogged. Spraying water while 

simultaneously vacuuming, significantly (95% confidence level) improved infiltration rates. 

Mixes with higher sand content experienced improved cleaning. The third study involved the 

application of porous media x-ray computer tomography (CT) techniques to quantify porosity, 

clogging, and internal characteristics of aged pervious concrete. Pervious concrete evaluated in 
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CHAPTER I 
 

 

INTRODUCTION 

BACKGROUND 

Low impact development (LID) has become a predominate stormwater management technique 

over the past three decades because it goes beyond traditional stormwater goals by utilizing 

natural processes to improve hydrology and reduce pollutant transport.  It is well documented that 

urbanization can negatively impact stormwater and cause environmental degradation (Paul and 

Meyer 2001; Walsh et al. 2005; USEPA 1997). Stormwater management is driven by regulations 

at the city, state, and federal level (USEPA 2017). Traditional stormwater management practices 

primarily focus on volume and peak discharge management with centralized infrastructure (Roy 

et al. 2008). In the early 1990’s, LID was formaly established in Prince George's County, 

Maryland and has been implemented widely throughout the area (USEPA 2000). Even though 

LID techniques have been in practice for over two decades, many questions remain related to 

effectivness and maintenance as LID stormwater control measures (SCM) age (Ahiablame et al. 

2012; Dietz 2007; NAP 2009; Vogel et al. 2015; WEF 2015). 

Degradation of waterways from poor stormwater runoff quality prompted the creation of the 

National Pollutant Discharge Elimination Systems (NPDES) to improve stormwater runoff 

quality (USEPA 1997; Roy-Poirier et al. 2010). The NPDES led to the formal creation of 

stormwater best management practices (BMPs) (Roy-Poirier et al. 2010). LID practices have 
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historically been classified as stormwater BMPs, though the now adopted terminology is 

stormwater control measures (SCM) (Fletcher et al. 2015). SCM conveys a clearer classification 

of the practices (Fletcher et al. 2015). Common LID SCMs include bioretention cells (BRCs), 

permeable pavements (including pervious concrete (PC)), green roofs, vegetated swales, 

rainwater harvesting, and infiltration trenches. 

LID research is an active field, with 9,670 results being returned when searching “low impact 

development stormwater” on Google Scholar, limiting the search to 2016 to August 4th, 2017. 

Even with highly active research, there is a general need for research to advance the 

understanding of LID related to targeted designs and aged of SCMs (Hunt et al. 2012; Vogel and 

Moore 2016). Additionally, opportunities exist to utilize methodologies from of other fields of 

science to advance the scientific understanding and application of LID SCMs.  

RESEARCH OBJECTIVES AND QUESTIONS 

The objectives of this research focus on aged LID SCMs. In this study, the LID SCMs are 

considered aged because they have been in the field for multiple years. The first objective is to 

determine and compare the hydraulic performance of two 8-year-old BRCs to post-construction 

performance using controlled-flood testing. Secondly, pollutant leaching potential of the two aged 

BRCs will be investigated by measuring, analyzing, and interpreting water quality samples. The 

remaining objectives are related to 2.5-year-old PC. The first set of objectives related to PC 

include: evaluate how infiltration rate of PC changes with time, evaluate various cleaning 

methods and quantify their effectiveness to restore infiltration rate, create statistically significant 

relationships between clogging and mix design. The second set of PC related objectives involves 

the application of x-ray computer tomography. The objectives for the PC experiments are: (1) cut 

cores from each of the PC plots in Tulsa, OK and complete x-ray computer tomography on a 

section near the surface and a section near the bottom; (2) apply multiple component 



3 

 

segmentation methods to CT images to quantify void space and clogging; (3) assess clogging and 

internal features of reconstructed images from multiple component segmentation; and (4) 

statistically relate results from image analysis to mix design and clogging trends. 

The research questions addressed in this dissertation are: 

1. Does the hydrologic performance of BRCs amended with fly ash degrade with age or 

vary with wet and dry conditions? 

2. Do aged BRCs amended with fly ash leach pollutants when flushed with treated 

municipal water? 

3. Does PC that receives stormwater runoff clog nonuniformly when it is not maintained? 

4. What, if any, cleaning methods are effective at restoring the infiltration rate of clogged 

PC? 

5. Can x-ray computerized tomography and Hsieh et al (1998) segmentation methodology 

be used to classify porosity and clogging material in PC? 

6. Are there statically significant correlations between clogging, cleaning, internal 

characteristics, and mix design of PC? 

DISSERTATION FORMAT 

The research questions are related in that they address aged LID SCMs, however, the specifics 

are not interrelated. The research in this dissertation is presented as a collection of three related 

research papers formatted for publication in peer-reviewed journals. Preceding the three 

manuscripts are an introduction and literature review. Following the manuscripts are a 

conclusion, list of references, and appendices. The manuscript titles in order as they appear this 

dissertation are 1) hydraulic analysis and pollutant leaching potential of two established BRCs 

amended with fly ash, 2) PC long-term clogging trends and evaluation of cleaning methods, and 
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3) characterizing PC with x-ray computed tomography, component frequency segmentation, and 

geostatistics. 
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CHAPTER II 
 

 

LITERATURE REVIEW 

INTRODUCTION 

Stormwater is vital to humankind as it provides water to the ecosystems we enjoy and rely on for 

food and product and shapes the landscape which we live in. The U.S. Environmental Protection 

Agency (EPA) defines stormwater as, 

“Stormwater runoff is generated from rain and snowmelt events that flow over land or 

impervious surfaces, such as paved streets, parking lots, and building rooftops, and does 

not soak into the ground. The runoff picks up pollutants like trash, chemicals, oils, and 

dirt/sediment that can harm our rivers, streams, lakes, and coastal waters.” – USEPA 

2017 

Urbanization is the primary cause of impervious surfaces and pollution that negatively alter the 

natural course and composition of stormwater. Polluted or excessive stormwater runoff creates 

unnatural conditions that change the physical, chemical, and ecological components of a stream 

(USEPA 1997; Paul and Meyer 2001; Walsh et al. 2005). Urbanization is common in for much of 

the world; therefore, it is imperative that we develop synergy between economic development and 

the management of natural processes within our urban zones. 
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Streams in the urban environment can be physically, chemically, and biologically altered by 

stormwater runoff (Paul and Meyer 2001; Walsh et al. 2005). The first, and probably the most 

significant, change is to the hydrology that feeds the stream. As watershed imperviousness 

increases, the amount of water that would have been infiltration or evapotranspiration becomes 

runoff. Forested watershed hydrology is approximately 40% evapotranspiration, 25% shallow 

infiltration, 25% deep infiltration, and 10% runoff on an annual basis (Paul and Meyer 2001). An 

equivalent watershed that is urbanized to 75-100% imperviousness will have approximately 30% 

evapotranspiration, 10% shall infiltration, 5% deep infiltration, and 55% runoff (Paul and Meyer 

2001). This imbalance in the hydrology increases flash flooding, decreases stream baseflow, and 

reduces groundwater aquifer recharge (Viessman and Lewis 2003; Walsh et al. 2005). 

The geomorphology of a stream transforms because of urbanization. Erosion from construction 

activities fills streams with sediment. The aggraded stream systems lose habitat and discharge 

carrying capacity. As construction ceases sediment loading to the stream slows but runoff 

increases because of increased imperviousness. This causes the newly aggraded channel to 

degrade which results in channel deepening and widening. These changes destabilize the banks 

and reduce natural habitat (Paul and Meyer 2001). 

Within the urban landscape, there are increased loads of nutrients and other ions that are washed 

into streams during storm events (Paul and Meyer 2001; Pitt et al. 1995; Sansalone and 

Buchberger 1997; Walsh et al. 2005). This includes phosphorus and nitrogen from fertilizers, 

wastewater, and illicit discharges and chloride from road salting. Phosphorus is often the limiting 

nutrient therefore an increase in phosphorus can cause increased algae growth which leads to 

eutrophication (Correll 1998). Cars and industrial activities increase the loading of metals 

(Sansalone and Buchberger 1997). There are other numerous compounds that are sourced from 

the urban area, some of which have unknown effects on the stream ecosystem. This includes, but 
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is not limited to, pesticides, polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons 

(PAHs), petroleum-based aliphatic hydrocarbons, and pharmaceuticals. The chemical impacts 

combined with the physical changes create unfavorable conditions for the microbes, algae, 

macrophytes, invertebrates, and fish. Ultimately causing degradation of the stream and river 

ecosystem (Paul and Meyer 2001; Walsh et al. 2005). 

According to the most recent assessment of waters in the United States, 54.9% of assessed rivers 

were impaired (USEPA 2017). The impacts of urbanization are a leading cause of stream 

impairment. According to Paul and Meyer (2001), urbanization was the second leading source of 

impairments, exceeded only by agriculture. This not necessarily surprising because agriculture 

accounts for a much higher percentage of land use, and the U.S. Streams that are impaired for 

specific pollutants have load budgets created for them. These pollution budgets are known as a 

Total Maximum Daily Load (TMDL), and are, as stated, the maximum amount that a water body 

can receive daily and still meet water-quality standards. There is a positive trend in the number of 

water bodies with TMDLs (Figure 2.1). This trend is influenced by the rate of urbanization. 

 
Figure 2.1. Number of Total Maximum Daily Loads (TMDL) reports by states and territories to the U.S. Environmental 

Protection Agency (USEPA 2017). 
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With greater than fifty percent of the world’s population now residing in urban areas, properly 

managing stormwater is critical for long-term sustainability and economic growth (National 

Academy Press 2009; UN DESA 2014). In the United States, approximately seventy percent of 

the population lives in urban areas (US Census Bureau 2010). This equates to 223 million people. 

The U.S. urban population lives on only 88,000 square miles of land, which is less than five 

percent of the U.S. land area (US Census Bureau 2010). It is not surprising, given the high 

number of people in urban areas, that urban watersheds and streams suffer from overwhelming 

areas of imperviousness when considering the amount of infrastructure needed for business, 

homes, and transportation. Urban areas are relatively compact and thus provide the opportunity 

for significant improvement in a small footprint. This requires the development of innovative and 

targeted treatment techniques that continue to function as designed year after year. 

LOW IMPACT DEVELOPMENT 

Low impact development (LID) is a stormwater management approach that includes practices and 

control measures that are intended to mimic the natural hydrology of altered landscapes. While 

LID is mainly applied in urban areas, the techniques and practices can be implemented in many 

landscapes. LID practices include reduced impervious area, urban forest preservation, soil 

restoration, and disconnecting impervious surfaces. Common LID stormwater control measures 

(SCMs) include bioretention cells (BRCs), permeable pavements, rainwater harvesting, green 

roofs, and bioswales. These practices and techniques are widely implemented in the U.S. and 

throughout the world. In Australia, LID is called Water-Sensitive Urban Drainage and in the 

United Kingdom, it is called Sustainable Urban Drainage Systems (Fletcher et al. 2015). In China 

LID often is applied to create ‘sponge cities’, which indicates the wide speared application of LID 

practices in city (Ding et al. 2017).  
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Application of LID practices in Oklahoma are not new, but currently, there are only 49 LID 

implementations listed on the National Low Impact Development Atlas (Dickson et al. 2011, 

database accessed 2017-03-28). Of the 49 projects, 26 are BRCs or bioswales (53%) and only 6 

(12%) are permeable pavements. This list does not constitute every LID practice in Oklahoma but 

does provide a general sense of Oklahoma’s LID footprint and image to the nation. The national 

average in the database is 61% bioretention or bioswales and 24% permeable pavements. 

Oklahoma’s implementation of bioretention and bioswales is more similar to the national 

average, while the permeable pavement implementation is lacking. 

Knowing the long-term performance of an LID control measure is important when installed to 

meet specific water management targets. LID is a proven method, but long-term performance 

data is variable and limited. The lack of research and application is further limited in the Great 

Plains and specifically in Oklahoma (Vogel et al. 2015). Because specific water quality targets 

are becoming more prevalent, understanding how LID control measures change as they age will 

be critical for long-term success and improving designs to meet future needs. 

BIORETENTION CELLS 

BRCs are an infiltration based LID technique that have been in practice for over two decades. A 

BRC is shallow landscape feature that has an inlet, ponding area, soil media, overflow, and often 

a drainpipe below the soil media. They are sized to store and treat runoff produced by small to 

medium sized precipitation events on lot-sized catchment areas (Vogel et al. 2015). The volume 

of runoff to be treated is often the first 25.4 mm (1.0 in) of runoff from the contributing area 

(Vogel et al. 2015). Stormwater storage capacity of a BRC includes the ponded surface and voids 

in the soil media. BRC filter media varies, but the main component is a low-fines sandy soil. The 

sandy soil provides storage and filtration and is the medium which biological and chemical 

sorption can occur. Infiltration capacity at the surface and percolation through soil media are key 
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attributes for the long-term application and reliability of BRCs as a SCM. As BRCs age and a 

biological community develops, the long-term performance may change, which could result in 

infiltration rates and storage volumes above or below design specifications. 

Design specifications 

BRCs are shallow depressions in the landscape where stormwater collects and is treated. The 

primary components of a BRC include the inlet, ponding area, filter media, and overflow (Liu et 

al. 2014). There different types of BRCs. Major types of BRCs include; infiltration, filtration with 

bottom underdrain, biofiltration with internal water storage zone, and filtration with sump (OCES 

2017). Infiltration systems do not have an underdrain and only function properly when the native 

underlying soil can drain stored water within 24 hours to 48 hours. Filtration BRCs rely on an 

underdrain positioned near the bottom of the BRC for sufficient drainage during and after storm 

events. An internal water storage zone is created with an upturned elbow underdrain, while a 

sump is created by elevating the entire underdrain above the bottom of the BRC. 

Specific design details vary, but the depth of the ponding area typically ranges from 15 cm to 30 

cm typically. The ponding area is often planted with wet and dry tolerant plants that are 

surrounded by shredded hardwood mulch, though, other ground covers include turf grasses and 

rock mulch (Claytor and Schueler 1996). Filter media blends are mostly sand. Compost and other 

organic matter have been added in the past, but recent finding indicate nutrient leaching from 

organic sources in the media (Liu et al. 2014; Ahearn and Rheaume 2014). Modern mix designs 

limit organic content in filter media (Liu et al 2014). Filter media amendments have been used to 

improve nutrient and microbial retention (Ahiablame et al. 2012; Youngblood et al. 2017). An 

underdrain system is needed if the native underlying soil infiltration is low. Liu et al. (2014) 

reported that 13 mm/hr or less is a common design value for determining underdrain needs. 
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Restoring urban hydrology 

Volume 

BRCs provide stormwater benefits by reducing stormwater runoff volume and decreasing peak 

discharges. Volume reduction is better for small storms compared to larger storms with 

reductions of up to 100% (Davis et al. 2012; DeBusk and Wynn 2011; Hatt et al. 2009; Winston 

et al. 2016b). Yearly mean volume retention greater than 60% was reported for eight of the ten 

research studies reviewed by Dietz (2007). An internal water storage zone can improve volume 

retention by increasing the storage time in BRCs with an underdrain, which increases exfiltration 

and evapotranspiration (Brown and Hunt 2011; Wadzuk et al. 2015; Winston et al. 2016b). 

Lateral exfiltration was reported as the dominate water loss for BRCs in low permeability soils 

with the use of an internal water storage zone (Winston et al. 2016b). A BRC mesocosm studied 

by Wadzuk et al. (2015) had an evapotranspiration rate of 50% for a fully drained system. 

Flow rate and timing 

Peak flow reductions have been reported between 49% to 100%, and lag times and time to peak 

discharge can be increased (Davis 2008; DeBusk and Wynn 2011; Jarden et al. 2016; Winston et 

al. 2016b). Davis (2008) found that peak discharge was delayed by more than six times the inlet 

time to peak for 36% of monitored storms. Jarden et al. (2016) studied the before and after impact 

of LID at the neighborhood scale. Lag times to peak discharge were not different with the 

primary reason being that the monitoring time step was too long at 15 mins (Jarden et al. 2016). 

However, the runoff hydrograph center of mass lag time increased up to 49 minutes after LID 

was constructed for one of the monitored neighborhoods. 

Water quantity performance 

BRCs have also been shown to improve stormwater quality. Reports of nitrogen reduction 

indicated variability with greater reduction for total nitrogen than nitrate (Chen et al. 2013; Davis 
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et al. 2006; Hsieh and Davis 2005). In some cases, nitrate is exported (Li and Davis 2014). The 

use of a saturated zone created by an upturned elbow can reduce nitrate in the effluent (Brown 

and Hunt 2011; Passeport et al. 2009). Phosphorus reduction has been reported by many (Dietz 

2007; Hsieh and Davis 2005; Hunt et al. 2008; Randall 2011; Zhang et al. 2008). Though, 

phosphorus leaching has also been observed (Dietz and Clausen 2006; Hatt et al. 2009; Paus et al. 

2014). Phosphorus sorption can be enhanced by including amendments. Fly ash, steel wool, alum, 

and iron rich soils have been shown to improve sorption (Erickson et al. 2007; Lucas and 

Greenway 2011; Zhang et al. 2008; Vogel and Moore 2016). Bacteria have been detected in 

discharged stormwater from the outlet of BRCs, though removal rates from 64% to 97% have 

been observed (Ahiablame et al. 2012; Youngblood et al. 2017). BRCs are efficient at filtering 

total suspended solids (TSS) from stormwater (Dietz 2007; Hsieh and Davis 2005; Hunt et al. 

2008; Kandel et al. 2017). TSS removal over 90% is not uncommon (Dietz 2007; Hsieh and 

Davis 2005). 

Tests methods 

There is a need for standard tests methods for evaluating SCMs (Adair et al. 2014). Individual 

infiltration rates measurements with a ring infiltrometer can be used to evaluate drawdown rate 

Jenkins et al. (2010) measured the drawdown rate of a BRC over a three-year period with a ring 

infiltrometer. They found that infiltration rate had not statistically significantly changed over 

three years, though measurements statistically varied between locations in the BRC within the 

same year. Steady-state flood tests are a valid way to quantify BRC hydraulics (Asleson et al. 

2009; Christianson et al. 2012; Nichols and Lucke 2016). Asleson et al. (2009) compared the 

drawdown rate from flood testing to ring infiltrometer test. Two of the three BRCs in Asleson et 

al. (2009) had comparable results while the ring infiltrometer overestimated the third BRC’s 

infiltration rate. Christianson et al. (2012) used steady-state flood testing to calibrate and validate 

a hydraulic model. Nichols and Lucke (2016) successfully flooded small 10-year old BRCs with 
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synthetic stormwater to measure pollution reduction of synthetic stormwater and infiltration rate. 

In Nichols and Lucke (2016) flooding study, total suspended solids and total nitrogen increased 

while total phosphorus decreased when the synthetic stormwater had no pollutants added to it. 

Concentrations were reduced from inlet to underdrain when the synthetic stormwater was spiked 

with pollutants. 

PERVIOUS CONCRETE 

Pervious concrete (PC) is an engineered structural surface that has a network of interconnected 

pores that allow rapid water drainage. The voids enable storage and infiltration of stormwater 

making PC a LID technology for stormwater management. PC was not initially created as a 

stormwater management tool, but as building material.  The first reported use of PC in 1852, 

though intensive use did come about until the 1940’s and 1950’s (Ghafoori and Dutta 1995). 

During this time, PC was known as no-fines concrete and was used to construct building a to 

reduce cost as after World War II (Ghafoori and Dutta 1995). The use of PC for stormwater 

management in the U. S. came about in the mid 1970’s as course overlays. Interest in PC as a 

conduit for stormwater infiltration has increased over the past two decades as urbanization 

increases and with the development of improved mix designs (Ghafoori and Dutta 1995; Tennis 

et al. 2004; Dietz 2007; Kia et al. 2017). PC is also being utilized for other applications. A unique 

example of this is the application of PC for the creation of artificial reefs for algae farming 

(Taniguchi et al. 2001). Even with varied uses, PC mixes have similar design specifications. 

The basic components of Portland cement based PC are aggregate, Portland cement, and water 

(Ferguson 2005). PC is created by having proportions of aggregate to cement (A:C) between 2 to 

12 and water to cement (W:C) between 0.2 to 0.5 (Kia et al. 2017; Permeable Pavements Task 

Committee 2015). PC is typically constructed of a narrowly-graded coarse aggregate with D50 of 

5.75 mm (3/8th inch). Void content is typically around 20%. Sand, water reducers, air entertainers, 
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and fly ash may be added in addition to the basic components. Sand content may be added at 5% 

to 10% of the total aggregate content to improve freeze thaw resistance (Permeable Pavements 

Task Committee 2015). Mix designs have been investigated for strength, freeze thaw resistance, 

surface finish, albedo, heat island effects, and void content (Bonicelli et al. 2015; 

Boriboonsomsin and Reza 2007; Dean et al. 2005; Zhang et al. 2015). Increasing voids results in 

decreased strength but increase infiltration rate (Kia et al. 2017; Schaefer et al. 2006). Sand and 

fibers can increase freeze thaw resistance (Dean et al. 2005). Additionally, including sand can 

increase mechanical strength and improve surface finish, though, it reduces infiltration (Bonicelli 

et al. 2015).  

A typical PC system is composed of the top layer of PC, an aggregate base, and separating layer 

between aggregate and underlying soil. The thickness of the PC layer is based on the structural 

strength needed for the anticipated driving load, where a parking lot is typically 4 to 6 inches 

thick (Ferguson 2005). Below the concrete layer is a crushed aggregate base that serves two 

purposes. It distributes the driving load to the underlying non-compacted native soil and is a 

reservoir for stormwater storage. Often there is an underdrain in the crushed aggregate layer to 

drain excess stormwater and ensure there is storage space for successive storm event. The 

underdrain either drains water from the bottom of the aggregate layer or from an elevated level. 

The purpose of an elevated underdrain is to increase exfiltration through the native soil and 

prevent water from backing up into the PC. 

Long-term performance 

A critical question regarding the implementation and success of PC is performance over time (Li 

et al. 2017). This includes the how it clogs, what changes occur to infiltration rate, does the 

surface deteriorate, and how often it needs maintenance. Infiltration rates for PC can vary greatly, 

with values over 84.7 cm/min (2000 in/hr) to near 0 cm/min for clogged systems (Chopra et al. 
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2010; Ferguson 2005). Typical design values are on the order of a 4.23 cm/min to 21.2 cm/min 

(100 in/hr to 500 in/hr) (Permeable Pavements Task Committee 2015). Infiltration rate has been 

shown to increase exponentially with increasing voids (Neithalath et al. 2010a). Additionally, 

clogging can drastically reduce infiltration rate. 

Clogging 

Clogging is the result of the clogging particle type and size, pore size and connectivity, mix 

design, and stormwater runon quality (Kia et al. 2017). In some cases, clogging is intentional. PC 

has been applied as the surface filter layer for groundwater recharge facilities in the United States 

and other countries (Hogland and Niemczynowicz 1986; Teng and Sansalone 2004). This 

application of PC is termed a unit superstructure. Teng and Sansalone (2004) showed that PC can 

act as a filter, but there is a need to quantify the clogging rate and particles that were collected 

from the schmutzdecke. In a laboratory study, Sansalone et al. (2012) found that 80% of sediment 

was filtered by PC and that 100% of particles were filtered for particles greater than 300µm. 

Welker et al. (2013) also studied clogging. They found that the majority of the particles removed 

from the pore space were raveled particles, pieces of the PC, but they highlighted the benefits of 

clogging; filtration and sorption of pollutants to clogged particles. 

Multiple studies have investigated clogging PC that has was not intentionally used as a filter 

(Balades et al. 1995; Boogaard et al. 2014; Coughlin et al. 2012; Kumar et al. 2016; Lin et al. 

2016; Sansalone et al. 2012; Suozzo and Dewoolkar 2012). PC evaluated by Kumar et al. (2016) 

exhibited a linear relationship between clogging and time over a four-year period. Winston et al. 

(2016a) and Lim et al. (2015) found that an exponential curve fit the decrease in infiltration rate 

versus time best. The PC in these studies did not receive runoff from impervious surfaces. 

There are many studies that researched clogging in a laboratory setting (Andrés-Valeri et al. 

2016; Aryal et al. 2015; Coughlin et al. 2012; Deo et al. 2010; Haselbach 2010; Haselbach et al. 
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2006; Lim et al. 2015; Nichols et al. 2015; Yong et al. 2008, 2013). Studies that utilize synthetic 

stormwater and laboratory mixed concrete are limited in their applicability to field installations 

and large-scale maintenance practices. Laboratory studies have shown that clay clogging is less 

likely because the particles can pass through the pore, though when clay clogged, the sediments 

often clog below the surface layer (Coughlin et al. 2012). Though, high levels of clay can cause 

surface clogging (Haselbach 2010).  

Clogging mechanisms and type of clogging material are becoming more actively researched (Kia 

et al. 2017). Kia et al. (2017) concluded in their review of PC clogging that particles, sized 

similar to the pore size of the PC, are more likely to cause clogging. Clogging occurs because the 

particles can enter a pore but not travel through to the underlying rock base. Even though 

clogging is a major concern for long-term PC research, some have shown that clogged PC is often 

not the limit layer (Bean et al. 2007; Coughlin et al. 2012; Kia et al. 2017). Instead, the subbase or 

the underlying native soil are the flow restricting layer, both of which can clog. 

Cleaning 

Clogged PC can be cleaned to restore infiltration rate. Many studies have evaluated different 

cleaning methods (Chopra et al. 2010; Haselbach 2010; Hein et al. 2013; Kumar et al. 2016; 

Suozzo and Dewoolkar 2012; Winston et al. 2016a). Haselbach (2010) showed that infiltration 

could be restored with sweeping alone because the clogging was near the surface. Others had less 

success with sweeping alone, but recommend pressure spraying and vacuuming. From a brief 

literature review, Kumar et al. (2016) recommend pressure spraying water and then suction. 

Winston et al. (2016a) showed that high-pressure spraying water and vacuuming was an effective 

way to restore infiltration rate, but the spraying water and vacuuming occurred on a slight delay 

rather than simultaneously. Pressure washing with water and vacuuming were found to work 

better together than either independently by Hein et al. (2013). Suozzo and Dewoolkar (2012) 
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restored the infiltration to 100% of the initial infiltration rate with pressure washing followed by 

vacuuming. There are many examples showing that a combination of cleaning with spraying 

water and vacuuming in a single process is effective, but no study has examined the use of a 

Vactor truck and standard attachments that municipalities may already own. 

Characterization of internal features 

Destructive methods 

Destructive methods involve cutting PC cores to expose internal material. The surface of the cut 

is polished and then scanned to create digital images of the surface. Many have utilized this 

methodology to quantify prosody and other pore size parameters with depth in PC 

(Sumanasooriya and Neithalath 2009, Sumanasooriya et al. 2010, Deo and Neithalath 2010, 

Kayhanian et al. 2012, Radlińska et al. 2012, Rehder et al. 2014). From the scanned images, 

porosity and other internal characteristics can be quantified. 

Radlińska et al. (2012) evaluated nine PC cores to determine porosity change with depth. Porosity 

in the upper 1.5 inches ranged from 1% to 10.8% with porosities near the bottom as high as 

25.5% but as low as 1.4% (cement to aggregate ratio varied between samples). Haselbach and 

Freeman (2006) showed that porosity increased in the vertical direction from top to bottom 

because of compaction during installation. However, porosity can be lower near the bottom 

because of cement paste drain down (Kia et al. 2017). Cement paste drain down occurs when the 

water to cement ratio is too high. A limitation of the destructive method is low vertical resolution. 

Reporated vertical resolutions range from 37.5 mm to 50 mm (Sumanasooriya and Neithalath 

2009; Sumanasooriya et al. 2010; Rehder et al. 2014). Additionally, segmentation of void content 

and solid content is not well defined for surface-scanned cut cores, though, the results are 

indicated to be validated with visual inspection. Slogging material cannot be accurately accessed 

because the cutting process can disturb loose particles. 



21 

 

Computer tomography methods 

Computed tomography (CT) imaging is the process of taking multiple radiograms and creating 

two-dimensional images, the cross-section of material densities. A radiogram is an array of all 

attenuation values that represent the sum of all densities along multiple, often parallel, paths 

through a material. Gamma and x-ray light emitting and detecting systems are the most common, 

with x-ray systems being more common than gamma-ray systems. Tomograms of porous media 

have also been investigated with neutron, resistive, and ultra-sound imaging (Anderson and 

Hopmans 2013). 

CT imaging has been applied to porous media to quantify pore characteristics (Udawatta et al. 

2013). Udawatta et al. (2013) imaged the same cores at 190, 74, and 9.6 μm resolutions to 

quantify pore connectivity and quantity as well as tortuosity. The 190 μm resolution was 

adequate for pore number, two-dimensional feature recognition, and pore area, though the 9.6 μm 

resolution provided information on the pore geometry, tortuosity, and connectivity. CT imaging 

has been applied to identify and map micro-porosity by coupling it with microscopy.  

Pervious concrete studies 

The use of x-ray CT imaging for PC research is a more recent relative to CT research as a whole, 

which dates back to 1973 (Hounsfield 1973). Analysis of pore space with x-ray CT imaging has 

been applied to PC by researchers (Ahn et al. 2014; Chandrappa and Biligiri 2017; Kuang et al. 

2011, 2015; Manahiloh et al. 2012; Sansalone et al. 2008; Teng and Sansalone 2004). Teng and 

Sansalone (2004) analyzed 20 cross sections of a 69.09 mm core that had a porosity of 0.258 

using x-ray tomography. They found that the majority of the pores were approximately 5 mm2 in 

area, though some were measured up to 45 mm2. Sansalone et al. (2008) examined porosity, 

filtration, and hydraulics of PC cores. Particularly, the hydraulics were studied based on clogging 

potential and the effective porosity, tortuosity, and pore size distribution. This study imaged 19 
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cores from field installed PC. Images were collected at a vertical spacing of 0.5 mm and 

reconstructed at horizontal resolution of 30 μm. Images gathered by Sansalone et al. (2008) were 

later used by Kuang et al. (2011, 2015) to model the pore structure and relate hydraulic 

conductivity to total and effective porosity. Porosity profiles were created using x-ray imaging of 

seven field cores by Kayhanian et al. (2012). The cores were denser near the surface compared to 

the bottom. In some cases, the upper porosity was less than half the average porosity. 

Meulenyzer et al. (2012) x-ray imaged cores made in the lab to relate mix aggregate size to pore 

size, permeability, porosity, compressive strength, and specific surface area. The voxel resolution 

was 140 μm. Compressive and tensile strength of PC was examined with x-ray CT by Agar-

Ozbek et al. (2013) to view fracture location and patterns. Additionally, gray scale values were 

correlated to material properties to quantify the composition of the samples. Reported resolution 

of the scanning equipment was 0.5 μm/voxel. Ahn et al. (2014) imaged laboratory constructed 

cores with two different x-ray CT machines; one at 450 kV and the other at 225 Kv. They 

reported that the images were better from the 450 kV system.  

Understanding the porosity of PC does not directly produce information regarding the size and 

shape of the pores within PC. Many studies have characterized pore size and shape (Teng and 

Sansalone 2004; Sansalone et al. 2008; Sumanasooriya and Neithalath 2009; Neithalath et al. 

2010b; Kuang et al. 2011, 2015; Meulenyzer et al. 2012). Common methods include equivalent 

pore size, two-point correlation function, and granulometry. Teng and Sansalone (2004) analyzed 

20 cross sections of a single 69.09 mm using x-ray tomography. The average porosity was 

determined to be 26% for their cores. They found that most pores were approximately 5 mm2 in 

area, though some were measured up to 45 mm2. This work was followed up by Kuang et al. 

(2011) through the modeling of pore structure and relating hydraulic conductivity to total and 

effective porosity. The d50 representing their cores was 3.4 mm.  
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Total and effective porosity, tortuosity, pore size distribution, and specific surface area of PC 

using x-ray tomography were measured by Kuang et al. (2015). This study examined image 

resolution and its impact on pore size, total porosity, and specific surface area. Specific surface 

area is the pore surface area divided by the total volume. The cores were backwashed and 

porosity was gravimetrically measured prior to imaging. Images were collected on fan beam x-ray 

tube at 250kV and at a vertically spacing of 0.5 mm. They found that the d50 was independent of 

resolution when based on the weighted area of the pores. Image reconstruction resolution ranged 

from 35 to 558 μm. Additionally, effective and total porosity was not a function of resolution. 

This implies that the small pores captured by the finer resolution have limited impact on the 

hydraulics of the system. 

Meulenyzer et al. (2012) x-ray imaged cores made in the lab to relate mix aggregate size to pore 

size, porosity, and specific surface area. The voxel resolution was 140 μm. They utilized a two-

point correlation (TPC) method to determine a representative pore size. Lengths ranged from 0.38 

to 1.26 mm for cores with porosities ranging from 22.8% to 35.3%. TPC method has also been 

applied to PC images by Sumanasooriya and Neithalath (2009). Neithalath et al. (2010) and Deo 

et al. (2010) analyzed pore size with the TPC function and granulometry. Granulometry involves 

placing a circle in each void space with a radius of length l and then incrementally increasing the 

radius length. The radius at which the pore no longer surrounds the circle is the assumed pore 

diameter for that specific pore. Neithalath et al. (2010) found that the TPC function more closely 

matched the d50 from equavivalent pore size than did the characteristic length from 

granulometery. Characteristic lengths ranged from 1.5 mm to 3.6 mm. 

Manahiloh et al. (2012) analyzed x-ray CT images of clogged PC. Based on the porosity from 

segmented images, clogging had occurred throughout the entire core except in the top 25 cm. 

Clogging was not directly identified, but inferred from porosity measurements. Porosity was 
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determined with Otsu image segmentation (Manahiloh et al. 2012; Otsu 1979). Manahiloh et al. 

(2012) includes many useful figures showing the reconstructed x-ray images. The reconstructed 

images have noticeable beam hardening on the edges, which appears to have affected the 

segmentation results (see Figures 7 and 8 in Manahiloh et al. 2012). 

Segmentation thresholding is an image process technique that has been used to determine 

heterogeneity and material quantities (Ahn et al. 2014; Hsieh et al. 1998a, 1998b; Iassonov et al. 

2009; Kuang et al. 2015; Tuller et al. 2013). Segmentation is described by Tuller et al. (2013) as 

the most critical step in CT image analysis prior to any quantification. In short, there are two 

basic techniques for segmentations. Either images are segmented into binary images or voxels are 

categorized into multiple categories. Regardless of the number of segmentations, attenuation 

values are assigned a new discrete value based on threshold levels (Iassonov et al. 2009). The 

quantity of voxels within each segmentation range can then easily be quantified. Over 100 

segmentation methods were reported in literature in 2013, though most were developed for 

medical or object recognition applications (Tuller et al. 2013). Table 2.1 lists the image 

acquisition and segmentation method of PC research. 
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Table 2.1. List of image acquisition method and segmentation (or other method) used to quantify internal 

characteristics of pervious concrete. 

Reference Image type Segmentation or other porosity method 

Neithalath et al. (2006) cut and scanned Segmentation method not specified. 

Gravimetric was used as validation 

Sumanasooriya and Neithalath (2009) cut and scanned Manual segmentation. 

Deo and Neithalath (2010) cut and scanned References Deo et al. 2010 

Deo et al. (2010) cut and scanned References Sumanasooriya and Neithalath 

2009 

Neithalath et al. (2010a) cut and scanned Not specified. Used a NIST program  

Neithalath et al. (2010b) cut and scanned Manual segmentation. 

Sumanasooriya et al. (2010) cut and scanned Manual segmentation. 

Sumanasooriya and Neithalath (2009) cut and scanned Manual segmentation. 

Kayhanian et al. (2012) cut and scanned Segmentation method not specified. 

Gravimetric was used as validation 

Radlińska et al. (2012) cut and scanned Manual porosity by filling pores in Adobe 

Photoshop 

Rehder et al. (2014) cut and scanned Segmentation method not specified. 

Gravimetric was used as validation 

Teng and Sansalone (2004) x-ray CT Segmentation method not specified. 

Schaefer et al. (2006) x-ray CT Not specified 

Sansalone et al. (2008) x-ray CT Segmentation method not specified. 

Gravimetric was used as validation 

Kuang et al. (2011) x-ray CT References Sansalone et al. 2008 

Meulenyzer et al. (2012) x-ray CT Segmentation method not specified. 

Gravimetric was used as validation 

Manahiloh et al. 2012 x-ray CT Otsu (1979) 

Ahn et al. (2014) x-ray CT Otsu (1979) 

Kuang et al. (2015) x-ray CT Bayes decision theory of pattern recognition 

(Jain and Dubuisson 1992; Sauer and 

Bouman 1992; Iassonov et al. 2009) 

Chandrappa and Biligiri (2017) x-ray CT Segmentation method not specified. 

Gravimetric was used as validation 

Abera et al. (2017) x-ray CT Otsu (1979), Pun (1980), Kapur et al. 

(1985), Johannsen and Bille (1982), and 

Kittler and Illingworth (1986) 

 



26 

 

There are two classes of segmentation methods commonly utilized in porous media research; 

global and locally adaptive. Global methods incorporate data from the entire image for 

thresholding. Otsu (1979) thresholding technique, a global method, was used to distinguish void 

locations in PC (Ahn et al. 2014; Manahiloh et al. 2012). The automated thresholding technique 

developed by Otsu (1979) segments images based on the zeroth and first-order moments of an 

image’s gray scale histogram. Abera et al. (2017) examined the effectiveness of two global 

thresholding techniques, Otsu (1979) and Kupar et al. (1985), on their ability to classify porosity 

of PC. Kupar’s method was determined to be the most accurate, though, Otsu’s method 

performed better on a column of packed beads. Regardless of the method, the two thresholding 

techniques only segmented the images into two materials; voids and solid material. There was 

also visual evidence of beam hardening at the outer edges of the PC cores shown in Figure 5 of 

Abera et al. (2017), which appears to have affected the segmentation results. 

Locally adaptive methods are similar to global methods except that segmentation occurs on a 

local matrix of voxel values. Indicator kriging, probabilistic fuzzy C-means clustering, edge 

detection, active contours, and supervised Bayesian segmentation based on the Markov random 

field framework are locally adaptive methods that have been used to quantify porous media 

(Tuller et al. 2013). Edge detection based Bayes decision theory was utilized by Kuang et al. 

(2015) to identify the pores of PC cores. These techniques generate two component binary 

images, from which the sum of the segmented portions can be easily calculated. 

Multiple component segmentation has not been applied to PC. Hsieh et al (1998a) segmented 

multiple materials from CT images by fitting theoretical histograms to CT images. The 

segmentation method developed by Hsieh et al. (1998a) allowed for the accurate quantification of 

gypsum, dolomite, and mixed-components. This method relies heavily on the fundamentals of the 

creation of CT images from high energy photo sources (x-ray and gamma ray). A brief 
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explication of CT image capture and reconstruction is presented here because an understanding of 

how individual voxel values are assigned is important when considering the segmentation 

methodology and quantifying internal structure from binary images. 

Computer tomography theory 

Reconstruction of an image is achievable because attenuation of photons is proportional to 

material density, measured attenuation is a sum of all possible attenuations at the location of the 

beam, and the integral of all possible projections across a two-dimensional function is composed 

of unique values. Therefore, individual density values are obtainable by taking the inverse of the 

measured function. In 1917, Johann Radon (1986) developed proofs showing that the line integral 

of a series of integrals is a unique transformation of those values. Thus, individual values are 

obtainable by taking the inverse of what is now known as the Radon function. Hounsfield (1973) 

and Ambrose (1973) applied this theory to x-ray imaging to create the first computerized two-

dimensional scans of the human brain. Figure 2.2 illustrate the basic concept of CT imaging a 

circular core that contains a denser region (black dot) with a pencil beam photon source. 

 

Figure 2.2. Computed tomography single beam imaging schematic and illustrative projection of a circular object with 

denser object (black dot) within it. 
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Attenuation of photons is proportional to the density of the material and is defined by Lambert’s 

law (ASTM 2011). For a single beam of photons that pass through a medium the line integral of 

all attenuation I is 

𝐼(𝑟, 𝜃) =  𝐼0 exp (− ∫ 𝜇(𝑥, 𝑦)𝑑𝑠) (2.1) 

where Io is the source intensity, μ(x,y) is the attenuation at location x and y, r is the radial distance 

from the center to the tangent of the beam path, and s is the beam path. A projection, p, of 

attenuation values along r is the line integral and is created by varying r for a constant θ. A single 

projection is defined as 

𝑝(𝑟, 𝜃) = ∫(𝜇(𝑥, 𝑦)𝑑𝑠) (2.2) 

Multiple projections are needed to reconstruct an image. All unique projections can be obtained 

by incrementing θ between 0 and π. 

𝑝(𝑟, 𝜃) =  ∫ ∫(𝜇(𝑥, 𝑦)𝑑𝑠)
𝜋

0

(2.3) 

The attenuation at any point (x, y) is obtained by back projecting Eq. 2.3 through the space.  

𝜇(𝑥, 𝑦) =  ∫ ∫ 𝑝(𝑟, 𝜃) 𝑞(𝑥 cos 𝜃 + 𝑦 sin 𝜃 − 𝑟)
∞

−∞

 𝑑𝑟
𝜋

0

(2.4) 

where q is a filter function. This method is called convolution-backprojection with a filter and is 

the most common, though methods others exist (ASTM 2011). The purpose of the filter is to 

sharpen the convoluted image which is blurred. The basic form of the filter is  

𝑞(𝑟) =  
𝜋2

2
(

𝛿(𝑟)

𝑟
−

1

𝑟2) (2.5) 



29 

 

where δ(r) is the Dirac delta function. This is a weighted function that maintains the original 

information while suppressing the response at a distance of r-2. Many reconstruction and filter 

methods exist (Lewitt 1983; Tuller et al. 2013), all of which can improve image sharpness. The 

fastest and most common approach to transfer the projections to Fourier domain with a Fast-

Fourier Transformation, apply a filter to increase flow frequency data, and then transfer back to 

the spatial domain to complete the backprojection (ASTM 2011). 

The accuracy of attenuation values is a function of the resolution of the beam and detector, 

reconstruction resolution, accuracy of the attenuation measurement instrumentation, and the 

accuracy of the reconstruction (ASTM 2011). Image accuracy decreases because of noise (i.e. 

normal variations among the data) and artifacts created by variations within the material being 

imaged, equipment configuration, and image reconstruction. The reconstruction process, as 

mentioned previously, requires numerical reconstruction and interpolation between or averaging 

of line integral values, which can result in reduced image accuracy. In addition to issues with 

accuracy, there are uncertainties of the true proportion of components within a voxel. 

Measured attenuation values for a given voxel are dependent upon the material and density within 

the voxel space. Partial-volume imaging occurs when multiple materials with different density 

exist in a voxel (Ketcham and Carlson 2001). The attenuation value assigned to that voxel does 

not represent the true density of material but rather the average density within the voxel space 

(Brown et al. 1993). Partial-volume reduces contrast of the image and can make material 

identification complicated. The existence of attention values that occur outside of known material 

density may be identified as partial-volume errors, though knowing the exact proportion of a 

material that passes through the partial-volume is not quantifiable. Partial-volume effects are 

more problematic for very heterogeneous materials and may prevent proper thresholding analysis 

(Hsieh et al. 1998a; b; Ketcham and Carlson 2001). In PC, mixed component voxels will occur at 
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the interface between materials. This causes uncertainty when trying to identify the true 

component content of voxel at the interface between voids and solids. Partial volume voxels can 

be improperly classified which would lead to inaccurate void and solid content classification. 

Additionally, clogged PC would be expected to have many edges and partial volume voxel, 

making quantification difficult. 

Meulenyzer et al. (2012) x-ray imaged cores made in the lab to relate mix aggregate size to pore 

size, permeability, porosity, compressive strength, and specific surface area. The voxel resolution 

was 140 μm. They utilized a two-point correlation method to determine a representative pore size. 

This process involves randomly placed different length lines on the image and determines if both 

ends fall within the same material. Lengths ranged from 0.38 to 1.26 mm. Neithalath et al. (2010) 

segmented pore sizes with a two-point correlation function and granulometry. Granulometry 

involves placing a circle in each void space with a radius smaller than the pore and then 

incrementally increasing the radius. The radius at which the pore no longer surrounds the circle is 

the assumed pore diameter for that specific pore. The critical pore diameter is calculated as the 

50th percentile of the pore distribution. TPC methods have been applied to images in research by 

Sumanasooriya and Neithalath (2009) and Meulenyzer (2012). Akand et al. (2016) imaged PC 

cores with a microCT system. Pore location and area was determined and used to make a Fast 

Fourier Transformation (FFT) distribution. The FFT distribution was then used to create a finite 

element model of the strength, stiffness, and permeability. Methodologies that do not rely on 

segmented images have not been explored in PC research. 

The use of CT for porous media research is a large field with many techniques that have not been 

applied to PC (Iassonov et al. 2009; Tuller et al. 2013). Common techniques such as the TPC, 

tortuosity, and sphericity require image segmentation, which as discussed previously is not often 

well defined or can have potential accuracy errors. An alternative method is to apply geostatistics 
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directly to attenuation values measured by the x-ray CT systems. One example is the 

semivariogram. Vogel et al. (2003) utilized semivariograms to quantify the relative elementary 

volume of rock cores. Such techniques may be useful for advancing the understanding of internal 

features of PC without introducing errors through segmentation. 

CONCLUSIONS 

With an increasing urban population and number of water bodies with TMDLs, there is an 

immediate need to for targeted LID SCMs designs that will function as designed for many years. 

This literature covers many topics of LID research. A common theme among research gaps is 

how LID SCMs will perform as they age and what maintenance will be needed. BRCs are heavily 

researched, with many results indicating the positive benefits of volume and peak flow mitigation 

and pollution reduction. However, there is uncertainty related to the performance of amended 

filter media BRCs. Additionally, testing infiltration rate can be variable when multiple discrete 

locations are measured. This can be avoided by flooding the entire surface. 

Urban landscapes are covered with hardscape impervious surfaces that alter stormwater. PC has 

been shown as an alternative surface and has gained popularity over past two decades. While mix 

design for strength and durability have improved, there is a lack of research focused on clogging, 

cleaning, and mix design. The internal structure of PC has been well documented by destructive 

and nondestructive techniques; mainly x-ray CT. There, however, are two gaps in the 

nondestructive research; 1) segmentation techniques for quantifying porosity are often not clearly 

identified or rely on global methods that do not account for photon statistical errors and 2) 

clogging has not been directly quantified, but indirectly identified as changes to the porosity. CT 

has been around for decades and there exist many techniques related to porous media that may be 

useful for the advancement of PC design. 
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CHAPTER III 
 

 

HYDRAULIC ANALYSIS AND POLLUTANT LEACHING POTENTIAL OF TWO 

ESTABLISHED BIORETENTION CELLS AMENDED WITH FLY-ASH 

 

This chapter will be submitted the Journal of Environmental Engineering, an American Society of 

Civil Engineers journal. 

 

ABSTRACT 

In this study, established bioretention cells that are amended with fly ash are subjected to 

controlled flooding tests to quantify hydraulics, leaching potential, and how performance 

compares to post construction flooding tests and common design standards. Low impact 

development practices can improve urban stormwater water runoff, but long-term performance is 

not well documented. Two 8-year-old bioretention cells treated on average 23.8 mm of runoff 

prior to overflow, which is close to the design storage capacity of 25.4 mm. From the inlet to the 

underdrain, steady-state flow rates were reduced by 90% on average. Measured drawdown rates 

at steady-state flow were 86.5 mm/hr and 28.5 mm/hr. Electrical conductivity, chloride, nitrate, 

pH, and turbidity had significantly lower levels from the inlet to the underdrain even though the 

bioretention cells were flushed with treated municipal water. Measured at the underdrain, E. coli,  
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enterococci, electrical conductivity, nitrate, pH, and turbidity all had lower levels during the latter 

of two back-to-back flooding tests. Both studied bioretention cells had drawdown times less than 

48 hours. The results of this study are applicable to future BRC designs and stormwater 

management planning. 

INTRODUCTION 

Long-term performance of aged low impact development stormwater infrastructure is not well 

understood. Bioretention cells (BRCs) have been used in practices for over two decades (PGCo 

2001). Knowing the performance of aged BRCs is essential to the development of long-term 

stormwater management goals; principally, offsetting the negative alterations urbanization has on 

stormwater runoff. Increased flow rates and surface runoff volumes caused by urbanization can 

create flooding and erosion of downstream waterways (Paul and Meyer 2001). Pollutants 

produced by urban activities collect on impervious surfaces. These pollutants can be transported 

by stormwater to nearby ecosystem, where they can negatively alter the ecosystems (Paul and 

Meyer 2001). A BRC is an infiltration based LID practice that can mitigate the negative effects of 

urban stormwater runoff with physical, chemical, and biological processes. Maintaining storage 

and drawdown rate of the BRC surface is critical for long-term success. Research investigating 

the long-term performance of BRCs is needed (Ahiablame et al. 2012; Emerson and Traver 2008; 

Vogel et al. 2015)  

For over two decades BRC have been used in practice (PGCo 2001). BRCs are shallow 

depressions in the landscape where stormwater runoff collects. The main components of BRCs 

include an inlet, ponding area, filter media, overflow, and often a drainpipe (known as an 

underdrain) at the bottom of filter media. In general, BRCs are sized to store and treat runoff 

produced by small to medium sized precipitation events on relative small (lot to neighborhood) 

catchment areas (Vogel et al. 2015). Design specifications for the volume of runoff to be treated 
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by BRCs ranges from 12.7 to 30.5 mm (0.5 to 1.2 in.), and is commonly the first 25.4 mm (1.0 

in.) of runoff from the contributing area (Vogel et al. 2015). Stormwater storage capacity of a 

BRC includes the ponded surface and voids in the soil media. The ponded surface is for short-

term storage and is typically designed to drain in 24 to 48 hours. BRC filter media varies, but the 

main component is usually a low-fines, sandy soil. The sandy soil provides storage and filtration, 

and is the medium in which biological and chemical sorption can occur. Infiltration capacity at 

the surface and percolation through soil media are key attributes for the long-term application and 

reliability of BRCs as a stormwater control measure. 

BRCs has been well documented for their ability to restore the runoff hydrograph from urban 

landscapes to a more natural condition (Dietz 2007; DeBusk and Wynn 2011; Ahiablame et al. 

2012; Davis et al. 2012). This includes reduction of runoff volumes by up to 100% for smaller 

storms (Davis et al. 2012; DeBusk and Wynn 2011; Youngblood et al. 2017). Peak flow 

reductions have been reported between 49% and 99%, and lag times and time to peak discharge 

can be increased (Davis 2008; DeBusk and Wynn 2011; Jarden et al. 2016; Winston et al. 2016). 

Davis (2008) found that peak discharge was delayed by more than six times the inlet time to peak 

discharge for 36% of monitored storms. 

BRCs have also been shown to improve stormwater quality. Reports of nitrogen reduction 

indicated variability with greater reduction for total nitrogen than nitrate (Chen et al. 2013; Davis 

et al. 2006; Hsieh and Davis 2005). In some cases, nitrate is exported (Li and Davis 2014). The 

use of a saturated zone created by an upturned elbow can improve nitrate reduction compared to 

traditional bottom underdrain BRCs (Brown and Hunt 2011; Passeport et al. 2009). Phosphorus 

reduction has been reported by many (Dietz 2007; Hsieh and Davis 2005; Hunt et al. 2008; 

Randall 2011; Zhang et al. 2008). Though, phosphorus leaching has also been observed (Dietz 

and Clausen 2006; Hatt et al. 2009; Paus et al. 2014). Bacteria removal rates have been reported 
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and range from 64% to 97% (Ahiablame et al. 2012; Youngblood et al. 2017). BRCs are efficient 

at filtering total suspended solids (TSS) from stormwater (Dietz 2007; Hsieh and Davis 2005; 

Hunt et al. 2008, 2012; Kandel et al. 2017). TSS removal over 90% is not uncommon (Dietz 

2007; Hsieh and Davis 2005). Chloride movement through BRCs is not well documented and 

concentrations are considerably impacted by winter salting (Dietz 2007).  

Pollution retention can be increased with the use of amendments in the filter media (Zhang et al. 

2008, Kandel et al. 2017). Zhang et al. (2008) demonstrated through laboratory studies that fly 

ash at 5% by weight mixed with sand improved phosphorus retention. Later, Kandel et al. (2017) 

determined that 7-year-old BRCs that were amended with 5% fly ash weight still had available 

sorption sites based on laboratory analysis of aged filter media and stormwater monitoring. 

Electrical conductivity and pH can be influenced by filter media amendments (Reddy et al. 2014). 

With laboratory batch experiments, Reddy et al. (2014) showed that calcite, zeolite, sand, and 

iron filing increased pH but decreased EC. The impact fly ash has on the filter media infiltration 

rate and storage capacity is not well documented. 

Stormwater benefits from BRCs rely heavily on infiltration into the filter media. The infiltration 

rate into the filter media at steady-state is the drawdown rate and is a good measure of 

performance. The drawdown rate of BRC filter media can be evaluated by monitoring stormwater 

events, conducting spot infiltration tests, and/or artificially flooding the ponded area (Emerson 

and Traver 2008; Jenkins et al. 2010; Komlos and Traver 2012; Johnson and Hunt 2016; Nichols 

and Lucke 2016). It can be useful to know how drawdown rate changes with time to estimate the 

life expectancy and maintenance needs of a BRC. Individual infiltration rates measurements with 

a ring infiltrometer can be used to evaluate drawdown rate. Jenkins et al. (2010) measured the 

drawdown rate of a BRC over a three-year period with a ring infiltrometer. They found that 

infiltration rate had not significantly changed over three years, though measurements varied 
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significantly at separate locations in the BRC within the same year. Variability within the BRC 

can be avoided by flooding the entire ponded area. 

Two types of flooding methods have been used on BRCs; mimicking storm events and steady-

state flood testing. Anderson (2012) evaluated how well established residential BRCs meet local 

standards with a storm runoff simulator. The local design storm was 30.2 mm SCS-Type II 30-

min event. The use of controlled flooding allowed this test to be conducted on 12 difference 

BRCs over a shorten time span. Their design storm would be expected to naturally occur about 

once per year. Nichols and Lucke (2016) successfully flooded small 10-year old BRCs with 

synthetic stormwater to measure pollution reduction of synthetic stormwater and infiltration rate. 

In the Nichols and Lucke (2016) flooding study, total suspended solids and total nitrogen 

increased while total phosphorus decreased when the synthetic stormwater had no pollutants 

added to it. Concentrations were reduced from inlet to underdrain when the synthetic stormwater 

was spiked with pollutants. 

Fire hydrants as the water source, which are common in urban setting where BRCs are often 

placed, can be used for controlled flooding tests. Flood tests have been shown to be a useful way 

to quantify BRC hydraulics (Asleson et al. 2009; Christianson et al. 2012; Minnesota Stormwater 

Manual 2017). Asleson et al. (2009) compared the drawdown rate from flood testing to ring 

infiltrometer test. Two of the three BRCs had comparable results while the third BRC had its 

infiltration rate over estimated by the ring infiltrometer method. Christianson et al. (2012) used 

steady-state flood testing one year after installation on BRC amended with fly ash. While the 

primary focus of Christianson et al. (2012) was to calibrate and validate a model, steady-state 

flow rate, volume, and timing parameters can be determined from the reported results. Three 

flooding tests were completed by Christianson et al (2012): (1) Grove High School (GHS)-dry, 

GHS-wet, and Grand Lake Association (GLA)-dry. Parameters describing the flooding 
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experiments are shown in Table 3.1. Overall, validation of flood testing methods are limited, and 

the evaluation of aged BRCs that have measured benchmark data from controlled flood tests is 

not present in the literature. 

Table 3.1. Results from Christianson et al. (2012) bioretention cell flooding test at Grove High School (GHS) and 

Grand Lake Association (GLA). 

 GHS-dry GHS-wet GLA-dry 

Steady-state flow rate (L/s)    

Inflow * 9.9 9.2 15.1 

Overflow 6.5 5.3 9.0 

Underdrain 1.2 1.2 2.6 

Volume (m3)    

Inflow 217.5 108.0 384.3 

Overflow 69.8 19.0 128.0 

Underdrain 49.4 37.6 150.0 

Flow start time (minutes)    

Underdrain 48 32 14 

Overflow 120 117 149 

Steady-state start time (minutes)    

Inflow 0* 0* 0* 

Overflow 270 174 149 

Underdrain 270 174 352 

End of flow time (hr)    

Inflow 6.1 3.3 7.1 

Overflow 21.3 18.2 48.0 

Underdrain 6.8 3.7 7.73 

*Inflow was measured at fire hydrant. 

 

The objectives of this are to (1) quantify hydraulics and leaching potential of two 8-year old 

BRCs amended with fly ash, (2) compare current hydraulic performance to the flood tests results 

of Christianson et al. (2012) completed seven years prior, and (3) determine if the BRCs are 

meeting design specifications and common BRC design standards. 
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MATERIAL AND METHODS 

Study site description 

Two BRCs located in Grove, Oklahoma and constructed in 2007 were evaluated in this study 

(Figure 3.1). The filter media of the BRCs were designed to be identical and is a mixture of 

Dougherty Sand and 5% fly ash (Chavez et al. 2015). Both cells were constructed with sand plugs 

to reduce long-term clogging potential. The sand plugs, which were constructed with Dougherty 

Sand, span from the surface through growth media to the filter media and occupy approximately 

25% of surface area. A 0.3 m thick layer of local top soil was installed around the sand plugs as a 

growth media for vegetation. The two BRCs in this study are the same ones Christianson et al. 

(2012) studied; Grove High School (GHS) and Grand Lake Association (GLA). 

 

Figure 3.1. Map showing the location of Grove, Oklahoma, which is the where the bioretention cells are located 

(OKtag 2007; U.S. Government 2016). 

The GHS BRC has 149 m2 of surface area and 2600 m2 of contributing area, which is an asphalt 

parking lot. GLA has a cell surface area of 320 m2 and a contributing area of 4000 m2. The 

contributing area to GLA is mostly asphalt pavement with a mix of turf and gravel in-between the 

BRC inlet and asphalt pavement. GHS ponding depth is 0.20 m and GLA ponding depth is 0.17 

m. Both cells were sized to store 13 mm of runoff in filter media and an additional 13 mm on the 

surface before the cells would overflow. The 90th percentile precipitation event in Grove, 

Grove, OK
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Oklahoma is 27.9 mm, which produces 22.6 mm of runoff when modeled with a 98 curve 

number. Chavez et al. (2015) provides detailed description of the design and construction of the 

GHS and GLA BRCs. 

Flood testing 

To determine the hydraulics of the two BRCs in the study, each was flooded at a constant flow 

rate. The flooding test methods used in this study were similar but not identical to the methods 

used by Christianson et al. (2012). Water from a fire hydrant was piped near the inlet of the BRCs 

with firehose. The fire hydrant was opened to produce a constant flow rate. A Hose Monster was 

fitted to the end of the hose for stability (Hose Monster Company, Lake Zurich, IL). Water was 

discharged onto an impermeable surface and allowed to flow overland to the inlet of the BRC. 

There was approximately 3 m of shallow concentrated flow through grass at GHS before reaching 

the BRC inlet and 21 m of shallow concentrated flow over grass and gravel at Grand Lake 

Association before reaching the BRC inlet. A constant flow rate was maintained at the inlet until 

the underdrain and overflow reach a constant flow rate. 

Two flood tests were completed on the GHS BRC. The first flood test was to assess the cell’s 

performance when the media was in a dry condition. The dry condition test was completed in 

November of 2015. The most recent precipitation event was 5 days prior and was 7.87 mm. Three 

grab samples of the filter media were collected to assess soil moisture content; one from the near 

the inlet, one in the middle, and one near the overflow. All samples were collected from the filter 

media immediately below the growth media. Sampling volume was 87 cm3. The second flood test 

was completed a day after the dry condition tests to evaluate the hydraulics when the cell media is 

at a wet condition. The cell was allowed to drain prior to completing the wet condition test. Grab 

samples to measure soil moisture were collected prior to starting the wet condition test near the 
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same locations as the dry condition samples. Only a dry condition test was completed on the GLA 

BRC. This sequence of tests aligns with those completed by Christianson et al. (2012). 

Flow rate at the inlet, underdrain, and overflow at GHS was measured every minute with an ISCO 

720 submerged flow pressure module and logged by an ISCO 6712 automatic sampler. Inlet flow 

was measured with a 0.31 m H-flume, underdrain flow was measured with a 0.076-m Palmer-

Bowlus flume, and overflow was measured with a 0.762-m sharp crested rectangular weir. At 

GLA, inlet flow was measured with a 0.31-m H-flume, underdrain flow was measured with a 

0.102-m Palmer-Bowlus flume, and overflow was measured with a 1.05-m sharp-crested 

rectangular weir. Water samples were collected by the ISCO 6712 automatic samplers at set time 

intervals at the inlet and underdrain. Overflow samples were collected by hand at set time 

intervals. The samples were analyzed for electrical conductivity (EC), chloride, nitrate, 

orthophosphate, pH, turbidity, total coliform, E. Coli, and enterococci. EC was determined using 

Method 2510 B from Standard Methods for the Examination of Water and Wastewater (2005). 

Chloride was determined using a Lachat instrument and chloride analysis method from U.S. EPA 

(1979). Lachat method 12-107-04-1-B was used for nitrate analysis, and Lachat method 10-115-

01-1-A was used for orthophosphate analysis. A Hach 2100Q benchtop turbidity meter will be 

used to measure turbidity (Hach Company, Loveland, CO). Total coliform and E. coli was 

analyzed using Standard Methods 9223B and enterococci was analyzed using ASTM D6503–14 

(Standard Method 2005; ASTM 2014). 

Flooding tests were conducted with a steady inflow rate and stopped once the overflow and 

underdrain reached a steady-state flow rate. Flow rates were assumed steady-state when the level 

remained within 0.5 cm for at least a 10-minute period. The median value within the steady-state 

period was taken as the steady-state flow rate. Exfiltration is the movement of water out of a BRC 



58 

 

through the surrounding native soil. Steady-state flow rates were used to estimate exfiltration 

rates. Exfiltration rate is calculated as 

𝑄𝐸 = 𝑄𝐼 − (𝑄𝑂 + 𝑄𝑈𝐷)  (3.1) 

where Q is flow rate and subscripts E, I, O, and UD represent exfiltration, inlet, overflow, and 

underdrain, respectively. 

Bioretention cell surface drawdown 

Filtering and storage within the media of a BRC requires adequate infiltration rate to meet 

stormwater management needs. As BRCs age, the surface may clog and result in decreased 

drawdown rate and an increased drawdown time. Drawdown rate of the filter media is calculated 

as  

𝐼 =
𝑄

𝐴𝑐𝑒𝑙𝑙
 (3.2) 

where I is the drawdown (infiltration) rate, Q is a flow rate and Acell is the BRC surface area. Time 

to drain the surface of a BRC is known as the drawdown time. Often, the goal in BRC design to 

denote a maximum drawdown time to ensure adequate storage space for successive storm events 

and to prevent stagnant water issues such as mosquitoes. Drawdown time is calculated as 

𝑡𝐷𝐷 =
𝑑𝐵𝑅𝐶

𝐼
 (3.3) 

where tdd is the drawdown time and dBRC is the surface ponding depth. 

Equivalent curve number 

The NRCS curve number (CN) model can be used to estimate runoff depths produced by a depth 

of rainfall on a known surface cover, hydrologic soil type, and antecedent runoff condition 

(NRCS 1986). Runoff depth (QCN) is calculated as 
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𝑄𝐶𝑁 =  
(𝑃 − 0.2 𝑆)2

(𝑃 + 0.8 𝑆)
 (3.4) 

where P is the rainfall depth and S the potential maximum retention after runoff begins; all 

variables have unites of inches. S is determined with the CN as 

𝑆 =  
1000

𝐶𝑁
− 10 (3.5) 

where the CN is an empirical variable that has a value between 0 and 100. Common CN values 

are listed in NRCS (1986). An equivalent CN produced by the volume reduction of a BRC can be 

back calculated with Eqs. 3.4 and 3.5 to estimate the equivalent hydrologic condition a BRC on 

the contributing catchment. Depth variables, P and QCN, are calculated as 

𝑃 =
𝑉𝐼𝑛

𝐴𝐶𝐴
 (3.6) 

and 

𝑄 =
𝑉𝑂𝑢𝑡

𝐴𝐶𝐴
 (3.7) 

where VIn is the inlet volume of the BRC, VOut is the total outflow volume of the BRC, and ACA is 

the area of the catchment. 

Statistical methods 

Performance of the BRCs for leaching of water-quality constituents were tested for differences 

using non-parametric analyses. Anderson-Darling tests for normality was completed to determine 

if non-parametric statistics were appropriate; data were defined as non-parametric when the alpha 

value was less than 0.05. Differences between inlet, overflow, and underdrain water-quality 

constituents were determined with a Kruskal-Wallis tests and pairwise comparison analysis. 

Difference between underdrain water-quality parameters for the dry and wet experiments were 
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determined with Wilcoxon rank-sum tests at a 95% confidence level. Statistical tests were 

completed with MATLAB (The MathWorks Inc 2016). 

RESULTS AND DISCUSSION 

Water quantity 

Steady-state flow rates 

BRCs are often installed to mitigate peak flow rates from impervious surfaces. In this study, 

steady-state peak flow rates were reduced. Average flow rate during periods of steady-state flow 

are compared. Table 3.2 shows steady-state flow rates, volumes, and timing based parameter 

results for 1-year and 8-year after installation. One-year after values are from Christianson et al. 

(2012). GHS-dry and -wet flood tests hydrographs for the inlet, overflow, and underdrain of the 

8-years after installation are shown in Figures 3.2. Hydrographs for GLA-dry flood test 

completed for this study, showing the inlet, overflow, underdrain, and total outflow, are shown in 

Figure 3.3. Antecedent dry period of GHS-dry was 5 days, where the antecedent dry period is 

defined as the number of day prior with less than 0.1 inches of precipitation. GHS-wet was 

completed approximately 24 hrs after GHS-dry, antecedent dry period of 0 days. GLA-dry 

antecedent dry period was 8 days. 

Underdrain steady-state flow rates were much less than inlet steady-state flow rates. GHS-dry 

underdrain was 0.57 L/s, a 95% reduction. GHS-wet was 0.55 L/s, also a 95% reduction. GLA-

dry underdrain was 2.2 L/s, an 81% reduction. Lower percent reduction during GLA-dry is 

attributed to surface area and potential seepage of groundwater upslope of the BRC. GLA has 2.1 

times the surface area as GHS, thus has potentially 2.1 times as much infiltration capacity. GLA 

is located at the bottom of hill near Grand Lake, and the long overland flow path between the 

firehose outlet and the inlet of GLA may be a source of groundwater seepage. Some flow likely 
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infiltrated and became groundwater before reaching the inlet. Nevertheless, an 81% reduction in 

peak flows rate is substantial. 

Table 3.2. Flooding test results: steady-state flow rate, volume, flow start time, steady-state start time, and end of flow 

time for Grove High School (GHS) dry and wet flooding tests and Grand Lake Association (GLA) dry flooding test. 

Results from Christianson et al. (2012) (1-year after construction) and this study are included (8-years after 

construction). 

 GHS-dry  GHS-wet  GLA-dry 

 1-year 8-year  1-year 8-year  1-year 8-year 

Steady-state flow rate 

(L/s) 
  

 
  

 
  

Inflow * 9.9 11.80  9.2 11.60  15.1 11.40 

Overflow 6.5 8.27  5.3 8.27  9.0 8.87 

Underdrain 1.2 0.57  1.2 0.55  2.6 2.20 

Volume (m3)         

Inflow 217.5 106.0  108.0 108.0  384.3 126.3 

Overflow 69.8 34.5  19.0 43.9  128.0 37.8 

Underdrain 49.4 14.7  37.6 14.8  150.0 125 

Flow start time (minutes)         

Underdrain 48 12  32 4  14 12 

Overflow 120 86  117 64  149 87 

Steady-state start time 

(minutes) 
        

Inflow 0* 17  0* 14  0* 130 

Overflow 270 94  174 62  149 152 

Underdrain 270 126  174 108  352 167 

End of flow time (hr)         

Inflow 6.1 2.9  3.3 3.0  7.1 4.9 

Overflow 21.3 16.8  18.2 18.6  48.0 73.0 

Underdrain 6.8 3.0  3.7 3.1  7.73 4.2 

*Inflow was measured at fire hydrant and not the entrance of the BRC. 
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Figure 3.2. Hydrographs for Grove High School (GHS) flood experiments. 

 

Figure 3.3. Hydrographs for the Grand Lake Association (GLA) flood experiment. 
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Steady-state overflow rates and the total steady-state outflow rates (overflow and underdrain 

combined) were more than four times greater than steady-state underdrain flow rates for all 

flooding tests. Once the storage space in the BRCs filled, overflow rate increased rapidly. The 

increase is visible in Figures 3.2 and 3.3. There is a 25% reduction between the inlet steady-state 

flow rate and total steady-state outflow rate for GHS-dry and a 26% reduction for GHS-wet. The 

GLS-dry inlet steady-state flow rate reduction was only 2.9% once the underdrain and overflow 

reached steady-state. The 0.3 L/s that was not measured is assumed to be exfiltration. A low 

estimation for the exfiltration rate may be contributed to a shallow groundwater table as 

previously mentioned. GHS, however, did have an estimated exfiltration rate of 3.0 L/s and 3.1 

L/s for GHS-dry and GHS-wet, respectively. These flow rates are higher than the underdrain 

steady-state flow rate indicating that water flowing into the media is more likely to become 

groundwater than underdrain discharge at the studied inlet steady-state flow rate. 

A critical question regarding the performance of aged BRCs is what changes occur to the 

underdrain and exfiltration flow rates. For GHS, the underdrain steady-state flow rate was on 

average 13% of the inlet for the 1-year after flooding tests while it was on average 4.8% of the 

inlet for the 8-years after flooding tests. Percentage of the underdrain steady-state flow rate 

during GLA-dry tests increased by 2% from 17% from 1-year to 8-years after construction. These 

percentages are influenced by the differences between the inlet steady-state flow rates. 

Comparing the steady-state flow rates from the underdrain is a better indicator of performance 

since the underdrains experienced similar hydraulic heads between both tests. The difference 

between the underdrain steady-state flow rates decreased for all tests on both BRCs. A decrease 

of 0.63 L/s for GHS-dry, 0.65 L/s for GHS-wet, and 0.4 L/s for GLA-dry. It appears, based on the 

underdrains, that the filter media at GHS is clogging as the BRCs aged. However, comparison of 

the exfiltration rates suggests that GHS is not clogged, but is more hydraulically connected to the 

surrounding soil. The exfiltration rate increased by 0.76 L/s for GHS-dry and 0.38 L/s for GHS-
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wet. GLA-dry exfiltration decreased by 3.17 L/s. This reduction may be caused by clogging and 

compaction of the filter media. Though, at least a partition of the decrease could be attributed to 

the seepage that occurred before the inlet of GLA-dry during the 8-year after test. Additionally, 

the inlet flow rate during the 1-year after test was measured at the fire hydrant. If seepage had 

occurred, it would have not been excluded from the inlet and would be in exfiltration estimate 

and underdrain flow. 

Volume 

Impervious surfaces typically increase the volume of stormwater runoff; this can be mitigated 

with BRCs. A volume balance analysis was completed on the GHS-dry, GHS-wet, and GLA-dry 

experiments. Volumes were calculated from the hydrographs shown in Figure 3.2 and 3.3 and are 

listed in Table 3.2. GLA-dry is mostly excluded from the volume analysis discussion because the 

measured total outflow volume was greater than the inflow volume. GLA-dry 8-year after 

exported 36.5 m3. Exporting water from GLA-dry further suggests that seepage from up slope of 

the inlet contributed to underdrain flow and exfiltration. 

Runoff that entered the BRCs is this study became surface storage first. After which, the runoff 

water either exited the cell as overflow or entered the filter media. A portion could have 

evaporated from the surface. Flooding tests at GHS were completed in November and the average 

max air temperature was 17.6oC for the 2 days during the tests. The evapotranspiration during this 

period is on the order of a 0.5 cm or 0.75 m3 from GHS. This volume is negligible compare to the 

total inflow volume of 214 m3 for GHS-dry and -wet combined. 34.5 m3 (33%) of the inflow 

volume exited the cell as overflow for GHS-dry. The remainder entered the filter media with 14.7 

m3 (14%) coming out of the underdrain. The remaining 56.8 m3 (53%) of the inflow water was 

retained by the BRC. The retained water was stored in the filter media, exfiltrated to the 

surrounding native soil, or became evapotranspiration. GHS-wet inflow volume was 108 m3 and 
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43.9 m3 (41%) became overflow. Underdrain volume was 14.8 m3 (14%) and 49.3 m3 (45%) was 

retained. The dry test performed better on volume retention bases than the wet flooding test; 

being dry increased the retention by 5.4 m3 (8%). Differences can be attributed to the time to 

reach a steady-state drawdown rate into the media, which influenced the overflow beginning 

time. More water was stored in the soil because the moisture content was lower at the start of the 

dry test compared to the wet test. Filter media moisture content was 11% by weight before 

starting GHS-dry and 15% by volume before starting GHS-wet. The difference accounts for 

approximately 1.6 m3 of pore space in the filter media. The surrounding native soil is assumed to 

have had similar difference in moisture content. A portion of the extra retention was in the filter 

media, but ultimately some of the retention was in the surrounding soil. 

Retention and filtration performance between the 1-year after and the 8-year after flooding tests 

are compared by analyzing volumes normalized to the inlet volume of their respective test. For 

GHS-dry, the underdrain volume decreased from 23% to 14% from the 1-year tests to the 8-year 

tests. The decrease was greater for GHS-wet; from 35% to 14%. The decreases were caused in 

part by a decrease in the underdrain steady-state flow rates and an increase in the inlet steady-

state flow rates. A decrease as the BRC aged can have negative and positive effects. It lowered 

the overall percentage of the inflow that was filtered, but increased the percentage that became 

exfiltration. The 1-year after exfiltration volume percentages were 68% for GHS-dry and 48% for 

GHS-wet. The 8-year after exfiltrations are similar at 67% and 46% for GHS-dry and -wet, 

respectively. These results further suggest the hydraulic connectivity of the filter media with the 

native soil increased as the BRC aged. 

Hydrograph timing 

An important parameter when trying to mimic natural hydrology with LID practices is the timing 

of the runoff hydrograph. Urbanized areas tend to shorten the time to the beginning of direct 
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runoff, time to the end of direct runoff, and time to peak. In this study, inlet flow rates increased 

quickly and reached steady state in 17 minutes for GHS-dry and 14 minutes for GHS-wet. Within 

12 minutes after the inlet started, the underdrain began to flow for GHS-dry, and GHS-wet 

underdrain began to flow in 4 minutes. Underdrain flow began 8 minutes sooner when the filter 

media was wet, compared to when the media was dry. The corresponds to an extra 3.37 m3 of 

runoff being stored before underdrain flow started for GHS-dry. This is equivalent to 

approximately 9% of the BRC media total porosity and 30% of the water holding capacity of 

filter media, based on a loamy fine sand soil texture. 

The inlet flow for GLA-dry test increased less rapidly than the inlet flow for the GHS flooding 

tests, though the underdrain started to flow at a similar time, 12 minutes after inlet flow began. 

GLA-dry inlet reached steady-state discharge 130 minutes after the test began. There was an 

apparent short-circuiting of water to the underdrain near the inlet as indicated by the short times 

for underdrain flow to begin. The storage volume exists in the BRC, but an almost immediate 

discharge from the underdrain is occurring because of the underdrain design and infiltration rate. 

The underdrains of the BRCs in the study have multiple literately drainage pipes. These drainage 

pipes expanse covers the entire bottom of the BRC, thus allowing from almost anywhere along 

the bottom of the BRC. Short circuiting could be alleviated with an upturned elbow and sufficient 

exfiltration into the native soil between storm events. This would work best during the dry season 

when the antecedent dry period is longer. Decreasing the BRC infiltration rate could also reduce 

short-circuiting. An alternatively underdrain design that could decrease short-circuiting would be 

to position the underdrain as far away from the inlet as possible. This would require specific 

design changes such as sloping the bottom of the BRC towards the underdrain. While design 

changes may prevent the short circuiting, the near immediate flow at the underdrain is not 

necessarily a negative result. Given the relatively small underdrain flow rates, the initial flow 

might mimic the natural hydrology better than if the entire BRC must fill before any water 
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discharges. Additionally, the water discharged from the underdrain is filtered as it passes through 

the media. This means that a BRC can treat more than the design storage volume. All three 

flooding tests filtered or retained the design storm because of the continual flow through filter 

media. Figure 3.5 shows the equivalent runoff depths that were filtered or retained for each 

flooding test. 

 

Figure 3.5. Equivalent runoff depth from the contributing area and the equivalent runoff depth that is filtered or 

retained by the BRC for the Grove High School dry and wet flooding tests and Grand Lake Association dry flooding 

tests. 

The timing of the overflow discharge is important because the overflow rates contributed the 

majority of the flow to the total outflow rate. Discharge from the overflow began 86 minutes after 

the inflow for GHS-dry, 64 minutes after inflow for GHS-wet, and 87 minutes after the inflow for 

GLA-dry. These times follow a similar trend as the underdrain; dry condition flooding tests 

stored and filtered more water before discharge began. Time to reach steady-state flow rate was 

also shorter for GHS-wet compared to GHS-dry. A steady-state flow rate occurred 126 minutes 

(2.1 hrs) into the flood test for GHS-dry, while a steady-state flow rate occurred 108 minutes (1.8 

hrs) into the flood test for GHS-wet. GLA-dry reached steady-state overflow discharge 167 
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minutes (2.8 hrs) into the test. The delay to steady-state flow rate is used here as a surrogate for 

the impact BRCs? have on peak flows. The delays of steady-state flow rates were 109 minutes 

(1.8 hrs) for GHS-dry and 94 minutes (1.6 hrs) for GHS-wet. GLA-dry’s steady-state flow rate 

delay was 37 minutes. The shorter delay to peak as well as the longer time to reach stead-state at 

the inlet is probably the result of groundwater seepage upslope of the BRC inlet. 

Time to the end of direct runoff was increased more than the other hydrograph time parameters. 

The separate hydrograph plots for the underdrains in Figures 3.2 and 3.3 illustrate the differences 

between the inlet flow durations and the underdrain flow durations. Inflow ended 2.9 hrs, 3.0 hrs, 

and 4.9 hrs into the flooding test for GHS-dry, GHS-wet, and GLA-dry, respectively. Underdrain 

flow lasted an additional 13.9 hrs for GHS-dry and 15.6 hrs for GHS-wet. The underdrain during 

GLA-dry discharged water for 68.1 hrs after the inlet stopped; however, the flow rate did not 

exceed 0.07 L/s approximately 45 hrs after the inlet stopped. Even though the underdrain flow 

rate was during GLA-dry was low, the drainage time was more than twice that of GHS-dry and -

wet underdrain flow. This is caused by the increased storage volume in the GLA BRC, increased 

inflow volumes (GLA-dry inlet flow lasted 40 minutes longer than GHS at approximately the 

same steady-state flow rate), and potential shallow groundwater at the site and seepage upslope of 

the BRC. Both BRCs in this study lengthened the hydrographs resulting in a more natural runoff 

condition. The time to the end of direct runoff would only be approximately 40 minutes if the 

parking lot is modeled as woods and grass in good condition over a type D soil (CN=79) and was 

exposed to a constant rainfall equivalent to the inflow runoff from the flooding tests. This basic 

modeling does not account for the contribution retained water has on the timing of base flow 

discharge. For the simple pre-developed model, the retained runoff percentage was 81%. Part of 

which would likely become groundwater. At the GHS BRC, having a wet condition increased the 

hydrograph length. At the start of the GHS-wet tests the native soil surrounding the BRC had a 
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higher moisture content than the GHS-dry test. This would cause less water to exfiltrate the BRC. 

The extra water that was discharged during GHS-wet caused the lengthened discharge time from 

the underdrain. 

Water quality 

Pollutant concentration reduction 

The BRCs in this study were amended with fly ash to provide water quality improvements in 

addition to hydrologic improvements to stormwater runoff. Flooding tests were completed with 

municipally treated water from the City of Grove, OK, thus the water quality analysis presented 

here focuses on leaching potential from BRCs based on concentrations. There are significant 

differences between the inlet and underdrain for EC, Cl, NO3-N, pH, and turbidity. 

Orthophosphate concentration did not significantly change from inlet to overflow or underdrain. 

In general, bacteria were detected in underdrain samples, but not in inlet or overflow samples. A 

mass analysis for differences between parameters from the inlet to underdrain follow the volume 

reductions previously discussed because differences between concentrations are relatively small 

compared to the volume differences. This is important because even though the underdrain 

discharged contained specific parameters, the total mass leaving the BRC is small relative to the 

total inflow. 

Median values and pairwise comparison of significant differences are listed in Table 3.3. GHS 

and GLA BRCs reduced EC and Cl in the runoff water.  The differences are small because the 

incoming water was treated municipal water. Turbidity decreased from the inlet to the underdrain 

for the GHS flooding test but not GLA. A decrease during the GHS flooding tests is unexpected 

because the incoming water is treated. There is an approximately a 15 cm drop from the parking 

lot down to a grassed area before the runoff entered the GHS inlet. It is suspected that minor 

erosion at the drop caused elevated turbidity levels. Regardless, the magnitudes of the turbidity 
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medians are lower than typical stormwater runoff. Only during GHS-wet did the pH significantly 

decrease from the inlet to the underdrain. The chemical reduction of nitrate to nitrogen gas 

produces hydroxyl ions that should cause an increase of pH. Perhaps the pH increase is the result 

of nitrification of ammonia to nitrite, which produces hydrogen ions. However, this does not 

explain the decreased nitrate concentration from inlet to underdrain during the wet condition tests. 

The pH levels for all samples have similar magnitudes. Significant differences of pH may be the 

result of a type 1 statistical error or the result of unknown processes within the BRC. 

Table 3.3. Median water-quality results of samples collected for the entire duration of the Grove High School (GHS)-

dry GHS-wet, Grand Lake Association (GLA)-dry flooding tests.. Statistical differences at a 95% confidence level base 

on Kruskal-Wallis and pairwise comparison. Medians within individual flooding test that do not share a letter are 

significantly different. Medians without letters have no significant differences. 

 

GHS-dry GHS-wet GLA-dry 

 
Inlet Overflow 

Under-

drain 
Inlet Overflow 

Under-

drain 
Inlet Overflow 

Under-

drain 

Number of 

samples 

6 6 11 7 8 14 7 7 14 

EC 

(μS/cm) 

314 

A 

316 

A 

288 

B 

299 

A 

312 

A 

257 

B 

262 

A 

263 

A 

297 

B 

Cl 

(ppm) 

14 

A 

13 

AB 

8 

B 

14 

A 

16 

A 

9 

B 

20 

A 

23 

A 

8 

B 

NO3-N 

(ppm) 

0.40 

A 

0.38 

A 

0.59 

B 

0.38 

A 

0.37 

AB 

0.30 

B 

1.05 

A 

1.03 

A 

0.55 

B 

Orthophos-

phate 

(ppm) 

0.04 

A 

0.04 

A 

0.03 

A 

0.03 

A 

0.03 

A 

0.03 

A 

0.04 

A 

0.05 

A 

0.04 

A 

pH  7.7 

A 

7.7 

A 

7.6 

A 

7.7 

A 

7.6 

A B 

7.5 

B 

7.5 

A 

7.5 

A 

7.7 

A 

Turbidity 

(NTU) 

7.80 

A 

0.91 

B 

0.84 

B 

1.44 

A 

2.02 

A 

0.47 

B 

0.78 

A 

1.23 

A 

0.75 

A 

 

NO3-N concertation reduction varied between flooding experiments. The median NO3-N 

concentration increased from the inlet to underdrain by 0.19 mg/L during GHS-dry, decreased by 
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0.08 mg/L for GHS-wet and decreased by 0.50 gm/L during the GLA-dry condition tests. Nitrate 

leaching from a dry bioretention cell is expected because nitrates can accumulate in the media 

between storm events (Hsieh et al. 2007). Results from the flooding experiments contradicts this 

finding. The varied results may be in part attributed to two conditions of the flooding tests; (1) 

inlet NO3-N at GLA is twice that of GHS-day or -wet and (2) a potential shallow groundwater 

table at GLA. If the GLA site had a shallow groundwater table, then the groundwater could have 

diluted the filtered runoff water. The dilution may have cause the measured significant reduction 

of NO3-N from inlet to underdrain. 

Bacteria were found to leach from the GHS BRC during the flooding tests. E. coli was detected in 

all the underdrains samples but in none of the inlet samples and in one of the overflow samples 

from GHS-wet and GHS-dry combined. The median most probable number (MPN) for 

underdrain samples during GHS-dry and -wet were 215 MPN and 66 MPN for GHS-dry and -

wet, respectively. The single overflow samples for GHS-wet was 10 MPN. Enterococci was 

detected in all underdrain samples but in none of the inlet or overflow sample for GHS-dry. From 

GHS-wet, only three underdrain samples, one inlet sample, and two overflow samples had 

positive enterococci detections. The median was 41 MPN for the three positive underdrain 

samples from GHS-wet. 10 MPN was the value of the single positive enterococci GHS-wet inlet 

sample, and 37 MPN was the median of the two positive enterococci GHS-wet overflow samples. 

The detection limit for all samples was 5.9 MPN on average and ranged from 2 to 10 MPN. 

Having most samples below the detection limit at the inlet is expected because the inflow water 

was treated municipal water and travel a short distance before being sampled. Under sample non-

detects is most likely occurring because inlet water if flow straight through without interacting 

with plants for media. In general, there was an evident flushing of bacteria from the BRC’s filter 

media as indicated by the number of positive samples from the underdrain and limited number of 
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detectable samples from the inlet and overflow. Comparisons of underdrain bacteria samples 

between dry and wet flooding tests are presented in the antecedent dry period effects section.  

Antecedent dry period effects 

The antecedent dry period influenced the water quality at the underdrain between GHS-dry and 

GHS-wet. The median E. coli, enterococci, EC, NO3-N, pH, and turbidity levels from underdrain 

samples were significantly lower during GHS-wet than GHS-dry based on Wilcoxon rank-sum 

tests and an alpha of 0.05. Box plots of this data are shown in Figure 3.5. P-values for differences 

are 0.003, <0.001, 0.009, <0.001, 0.002, and 0.001 for E. coli, enterococci, EC, NO3-N, pH, and 

turbidity, respectively. There appears to be a flushing effect from the BRC that was more 

pronounced during the dry condition flooding tests. Cl and orthophosphate concertation’s at the 

underdrain did differ between the GHS-dry and GHS-wet flooding tests. 

Implication on design and performance 

Infiltration drawdown rate and time 

Long-term success of BRC is very dependent on their ability to infiltrate stormwater and prevent 

prolonged ponding. During the 7-year period between flooding tests, GHS drawdown rate 

changed by only 1.0 mm/hr. The average drawdown rate 1 year after installation was 87.5 mm/hr 

and the average was 86.5 mm/hr 8 years after. In contrast, the drawdown rate for GLA-dry 

changed from 82 mm/hr to 28.5 mm/hr; a 65% reduction. According to Christianson et al. (2012), 

the drawdown time 1 year after installation was on average 2.3 hrs for GHS and 2.1 hrs for GLA-

dry. These are short times compared to the often 24 to 48 hr maximum time recommended for 

BRCs. This is in part a result of installing sand plugs to the growth media of the BRCs to ensure 

adequate drainage. A short drawdown time allows for clogging as a BRC ages while ensuring it 

meets design standards. After 8 years in the field, drawdown at GHS was 2.3 hrs based on both 

the dry and wet condition flooding tests. Drawdown time was 6 hrs for GLA-dry, 8 years after 
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installation. It is expected that both studied BRCs will continue to provide stormwater benefits 

and meet a 24 hr drawdown time for many years to come if the BRCs progress as they have in the 

past. It also appears that the use of fly ash in filter media is not preventing drainage in these 

BRCs. 

 

Figure 3.5. Box plots of data from the underdrain during the dry and wet experiments at Grove High School. Center 

red line is the median, upper and lower edges of the box are the 75th and 25th percentiles respectively, the whiskers 

extend to include 99.3% of the data, and the plus (+) symbol indicate outliers. * Enterococci samples that were below 

the detection limit (11 of 14 samples) were assigned a value of half the detection limit (10 MPN for four the samples 

and 4 MPN for the seven of the samples). 

Why GHS exhibited minor change and GLA decrease by over 50% is not evident through the 

data collected. However, the two BRCs have differences that are worth mentioning here. The 

surface and vegetation of GHS are maintained by the Grove Public School system. During the 
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study, the GHS BRC was full of vegetation, some of which was installed and some was 

volunteer. A landscaping company kept the GLA BRC free of miscellaneous plant growth and 

minimized leaf litter (Figure 3.6). Increased organic matter from plants along with root growth 

has been shown to improve soil infiltration rates by improving soil structure and creating 

macropores (Saxton and Rawls 2006; Skorobogatov, 2014; Lefevre et al., 2013). Maintenance 

activities in the GLA site require repeated trips by a technician through the cell. Over time, this 

could lead to compaction in the heavily traveled areas. Soils with higher bulk densities will have 

lower hydraulic conductivities compared to less dense soils with similar textural classifications 

(Saxton and Rawls 2006). 

 

Figure 3.6. Picture of flooding tests at Grove High School and Grand Lake Association bioretention cells during the 

Fall of 2015. 

Stormwater storage capacity 

Inflow volume before overflow occurred was quantified to evaluate the first flush treatment 

capacity of the BRCs. The BRCs are designed to capture 25.4 mm of stormwater. This value is 

approximately the runoff that would be produced by the 90th percentile storm event in Grove, OK 

based on a curve number of 98. Table 3.4 list the equivalent runoff depth that would have 

produced the inflow volumes for GHS-dry, GHS-wet, and GLA-dry flooding tests up to the 

beginning of overflow. Additionally, the rainfall amount need to create the runoff depth using the 

Grove High School Bioretention Cell Grand Lake Association Bioretention Cell
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SCS curve number method and a curve number of 98 (impervious surface) is listed. GHS-dry 

effectively treated the runoff that would be produced by a 25.4 mm storm event. The increased 

moisture content of the filter media prevented GHS from treating the first 25.4 mm before 

overflow. GLA-dry treated nearly 25.4 mm. Both of the BRCs treated nearly the design volume 8 

years after installation. The difference between GHS-dry and GHS-wet illustrate that moisture 

content is an important factor. BRCs may need to be overbuilt if they are specifically designed to 

capture successive storm events. 

Compared to 1-year after construction, the storage capacity before overflow began performance 

for 8-years after varied. GHS-dry was less effective 1-year than 8-years after. This was not 

expected given that the steady-state flow rate during the 1-year after study was less than the 8-

year after study by 1.9 L/s. This suggest that the aging has improved the hydraulics of the BRC. It 

is suspected that the GHS BRC became more hydraulically connected to the surrounding native 

soil. This would occur as plant roots grew between the two difference soils. Additionally, there 

was visual evidence of water flowing up through animal burrowing holes outside of the cell 

during the flooding tests. Performance GHS-wet decrease by only 0.2 mm of runoff depth before 

overflow began. The difference is small but may be influenced by reduced porosity caused by 

settling of the filter median over time. Though, it is important to note that the inlet steady-state 

flow rate of the 1-year after was 2.4 L/s less than the 8-year after flooding test. GLA-dry retention 

efficiency of before overflow began decreased by 15.2 mm. The difference is large compared the 

GHS flooding tests. It also reflects the decrease in drawdown rate for GLA and the greater inlet 

steady-state flow rate during the 1-year after flooding test. 

Often a primary goal of LID is to mimic the natural hydrology of drainage area. The effectiveness 

of GHS BRC to restore the curve number of their drainage area is presented in Table 3.5. Only 

GHS was included in this analysis because the volume balance for GLA was effected by 



76 

 

unmeasured flow as described previously. Currently the drainage area is an asphalt parking lot 

with underlying soil classified as a hydrologic soil group type D. Historically, this site was 

probably meadow of continuous grass without grazing, which is classified as curve number of 78 

for type D soils. When the filter media was drier, the inflow water retained by the GHS BRC 

lowered the effective curve number to 90 for the 8-years after installation flooding test and 84 for 

the 1-year after flooding test. Neither time has the BRC restored the native curve number of the 

site. When wet, GHS lowered the curve number to 92 and 91 for the 8-year and 1-year after 

installation flooding tests, respectively. To restore the curve number of the site, the retention 

needs to be 82.5%. This site would benefit from an upturned elbow underdrain because it would 

prevent the short-circuiting of flow out the underdrain. Additionally, this would provide storage 

for runoff to exfiltrate the cell rather than leave as underdrain flow. 

Table 3.4. Equivalent runoff depths and corresponding rainfall amounts that would create the runoff based on a curve 

number of 98 for Grove High School dry and wet and GLA-dry flooding tests. Results are presented for this study and 

from Christianson et al. (2012) 1-year after construction flooding tests. 

 GHS-dry  GHS-wet  GLA-dry 

1 

year 

8 

year 

 1 

year 

8 

year 

 1 

year 

8 

year 

Equivalent runoff depth from 

contributing watershed before 

overflow started (mm) 

17.8 21.3 

 

16.2 16.0 

 

33.7 18.5 

Equivalent rainfall depth before 

overflow started, assume CN = 

98 (mm) 

23.0 26.7 

 

21.4 21.1 

 

39.3 23.8 
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Table 3.5. Equivalent rainfall depth in and out for the Grove High School bioretention cell based on the inflow volume 

and outflow volumes during the flooding tests and the contributing area. Additionally, included are the percent 

reduction and curve number produced by the reduction in runoff depth. 

 Equivalent runoff depth 
Reduction 

(%) 

Curve 

number In (mm) Out (mm) 

8-yr dry 40.9 19.1 54 90 

8-yr wet 41.7 22.6 46 92 

1-yr dry 83.6 45.7 45 84 

1-yr wet 41.4 21.8 48 91 

 

Water quality implications 

Flooding experiment provided a unique opportunity to evaluate leaching potential of fly ash 

amended BRCs when flushed with treated municipal water. While the results do not directly 

mimic stormwater events, they provide insight into the performance back-to-back storm events. 

Pollutants that accumulated, or possible originated from, the GHS BRC were flushed out in 

higher concentrations when with the 5-day antecedent dry period flooding test compared to the 

day-after flooding test. Bacteria level may have been influenced by animals living in the GHS 

BRC. Voles were visually identified to have created burrows through and out of the GHS BRC. 

Ortho-phosphate was a water quality parameter that did not have significant differences between 

the inlet and outlets nor between antecedent dry period at GHS. The BRCs in this study were 

specifically designed to reduced phosphorus levels entering the nearby lake by amending the 

filter media with fly ash. Phosphorus export from BRCs has been document by others (Dietz and 

Clausen 2006; Hatt et al. 2009; Paus et al. 2014). The BRCs in this study appear to be retaining 

accumulated phosphorus. However, it is important to note that total phosphorus was not 

quantified in this study. 
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CONCLUSIONS 

Controlled flooding tested were employed to quantify the hydraulics and leaching potential of 

two BRCs in Grove, OK. Repeated flooding tests were conducted on the GHS BRC to evaluate 

the impact of soil moisture. Increased soil moisture did not affect peak discharge attenuation, but 

did reduce retention efficiency and time to peak discharge. The increased soil moisture flooding 

test, wet condition, was conducted the day after the dry condition test. A flushing effect occurred 

that caused the underdrain water quality to be better from the wet-condition flooding test. GHS 

BRC is expected to performed better hydrologically during the dry season when the filter media 

moisture content is lower, though what quality is expected to be better during the wet season. 

Peak discharge was reduced by 95% from the inlet to the underdrain for both GHS tests. The 

retention efficiency was 53% for GHS-dry and 41% GHS-wet. The BRC also increased time until 

discharge stopped by an average of 14.8 hrs. 

The second BRC in this study, GLA, was only flooded once. A volume balance could not be 

conducted because of unknown sources of discharge from the underdrain, which may be the 

result of a shallow groundwater table or restrictive layer. Subsurface features can influence the 

performance a BRC and should be thoroughly investigated if designing to meet specific 

hydrologic requirements. GLA-dry did delay the peak discharge time and extend the hydrograph 

to over 45 hrs past when the inlet discharge stopped. It is evident from the GHS and GLA 

flooding tests that BRCs provide water quality and quantity benefits. 

Modified designs could further enhance the benefits of BRCs. Reconfigure the underdrain would 

prevent the short circuiting of inflow water to the underdrain at the beginning of the runoff event. 

The underdrain could be placed away from the inlet rather than extending near it. This would 

force the stormwater to travel a longer distance through the filter media when the filter media is 

not saturated or increase surface flow distance through the ponded area. To ensure the cell drains 
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adequately, the excavated surface at the bottom of the filter media would need to be sloped to the 

underdrain. Another option would be to install a flow restricting outlet where a traditional 

underdrain would be placed. This could be accomplished by the decreasing the size or number of 

opening in the underdrain or reducing the size of the underdrain. If the goal is to maximize the 

percentage of stormwater filtered, a multiple flow rate outlet could be installed. This would be 

comparable to stormwater detention riser outlets and could be achieved by inverting an upturned 

elbow underdrain and adding addition, restrictive, lateral pipes at lower elevations.  

Flooding tests were a recreation of the flooding tests completed by Christianson et. al (2012), 

which were conducted 1 year after the BRCs were installed. This allowed for comparison of 

hydraulics as BRCs age and comparison to design specifications. GHS drawdown rate had minor 

change over the 7-year period, increased by 1.0 mm/hr, which corresponds to less than 0.1 hr 

change to the drawdown time. At GLA, drawdown rate increased by 53%, resulting in 6.0 hr 

drawdown time. Both BRCs drained in less than 24 hrs indicating that the BRCs do not, and 

according to a linear regression model, will not clog over the next 20 years. Both cells continued 

to function near design specifications, treating on average 23.8 mm of runoff before overflow 

began. The addition of fly ash in the filter media does not appear to have a negative effect on 

long-term infiltration performance. BRCs, when designed appropriately, can be expected to 

mitigate urban stormwater issues for years. The cell in this study that had the least amount of 

change from post installation measurements had more vegetation, which was minimally 

maintained. Controlled flooding testing BRCs proved to be a valid method that may be useful for 

other LID best management practices. 
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CHAPTER IV 
 

 

PERVIOUS CONCRETE LONG-TERM CLOGGING TRENDS AND EVALUATION OF 

CLEANING METHODS 

 

This chapter will be submitted the Journal of Hydrologic Engineering, an American Society of 

Civil Engineers journal. 

 

ABSTRACT 

Pervious concrete is a low impact development practice that can provide long-term stormwater 

benefits when properly constructed and maintained. In this study, the performance of five 

different pervious concretes were evaluated by monitoring infiltrations rates, assessing restorative 

cleaning methods, and correlating results with mix design parameters. The tests plots were not 

maintained during the monitoring period to assess clogging trends. Tests plots were installed on a 

slope and received stormwater runoff from an upslope impervious surface. Infiltration rates went 

through three phases: 1) initial decrease, 2) steady infiltration rate, and 3) secondary decrease. 

The average duration of phases 1 and 2 combined was 650 days, after which the tests plots began 

to experience considerable performance decreases from clogging. Restorative cleaning methods 

were tested on clogged tests plots. Water jets and simultaneous  
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Vactor truck, significantly improved infiltration rates while four other methods did not. Cleaning 

performance was improved with the addition of water compared to vacuuming dry as indicated by 

the capture efficiency of small particles. The results indicate that regular maintenance should 

occur at least annually. Monitoring infiltration rate can improve long-term performance and 

reduce maintenance by preventing secondary clogging. Additionally, there is potential to 

influence maintenance requirements with mix design. Increased sand content and water to cement 

content were negatively related to initial infiltration rate, phase 1 duration, and phase 2 duration. 

However, increased sand content was positively correlated with cleaning performance. Future 

pervious concrete applications should consider the impact of mix design on maintenance and 

clogging rate. 

INTRODUCTION 

Pervious concrete (PC) is a Low Impact Development practice that when working properly can 

mitigate many of the negative impacts impervious surfaces have on the ecosystem. Stormwater 

runoff in urban areas often contains sediments that can cause siltation in waterways (Paul and 

Meyer 2001). When the polluted stormwater is intercepted by PC, sediments can be captured. 

Sediments will collect on the PC surface and in the pores or migrate to the subbase. Over time, 

accumulation of sediments will clog the pores and prevent PC from meeting stormwater 

management goals. Once clogged, PC must be cleaned to reopen the voids and allow stormwater 

movement through the PC. In this study, infiltration rate of PC is tracked over time to evaluate 

clogging trends, and cleaning methods are evaluated for their effectiveness at restoring the 

infiltration rate of clogged PC. 

A typical PC system is composed of the top layer of PC, an aggregate base, and a separating layer 

between aggregate and underlying soil. PC is made of Portland cement, aggregates, and 

optionally with admixtures and fines, such as sand, at proportions that create an interconnected 

pore network. It is the pores that enable infiltration of stormwater, making PC an ideal alternative 
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for hard surfaces in the urban landscape. The thickness of the PC layer is based on the structural 

strength needed for the anticipated driving load, where a parking lot is typically 4 to 6 inches 

thick (Ferguson 2005). The aggregate used for PC is a narrowly-graded coarse aggregate with D50 

of 5.75 mm (3/8th inch). Void content should be around 20% which is achieved with a water to 

cementitious material ratio (W:(C+A)) between 0.27 and 0.34. Sand content may range from 5% 

to 10% of the aggregate portion (S:(S+A)), though sand is not always included (Permeable 

Pavements Task Committee 2015). Mix design has been investigated for strength, freeze thaw 

resistance, surface finish, albedo, heat island effects, and void content (Bonicelli et al. 2015; 

Boriboonsomsin and Reza 2007; Dean et al. 2008). Increasing voids results in decreased strength 

(Schaefer et al. 2006). The addition of sand to the mix can improve mechanical strength and 

surface finish, through it reduces infiltration (Bonicelli et al. 2015). Additionally, sand has been 

added to improve freeze thaw resistance (Kevern et al. 2008). The relationship between mix 

design and infiltration rate, clogging, and cleaning has not been investigated. 

Infiltration rates for PC can vary greatly with values over 84.7 cm/min (2000 in/hr) to near 0 

cm/min for clogged systems (Chopra et al. 2010; Ferguson 2005). Typical design values are on 

the order of a 4.23 cm/min to 21.2 cm/min (100 in/hr to 500 in/hr) (Permeable Pavements Task 

Committee 2015). Infiltration rate has been shown to increase exponentially with increasing voids 

(Neithalath et al. 2010). Measuring voids during installation is difficult, therefore density, 

measured as the fresh unit weight, is often used as the design parameter in place of voids and 

infiltration rate. 

Multiple studies have investigated clogging PC (Balades et al. 1995; Boogaard et al. 2014; 

Coughlin et al. 2012; Kumar et al. 2016; Lim et al. 2015; Sansalone et al. 2012; Suozzo and 

Dewoolkar 2012). PC evaluated by Kumar et al. (2016) exhibited a linear relationship between 

clogging and time over a four-year period. Winston et al. (2016) and Lim et al. (2015) found that 

the best fit equation to predict infiltration rate versus time was an exponential curve. The PC in 
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these studies did not receive runoff from impervious surfaces. There are many studies that 

explore clogging only in a laboratory setting (Andrés-Valeri et al. 2016; Aryal et al. 2015; 

Coughlin et al. 2012; Deo et al. 2010; Haselbach 2010; Lim et al. 2015; Nichols et al. 2015). 

Studies that utilize synthetic stormwater and laboratory mixed concrete are limited in their 

applicability to field installations and large-scale maintenance practices. There is a need to 

investigate clogging of field installed applications, especially ones that are installed on a slope 

and receive stormwater runon from impervious surfaces. The influence slope and stormwater 

runon have on clogging has not be thoroughly investigated. 

Clogging is typically considered an issue because it results in reduced infiltration rate and 

increased cost for cleaning. However, PC has been intentionally used as the surface filter layer for 

groundwater recharge facilities in the United States and other countries (Hogland and 

Niemczynowicz 1986; Teng and Sansalone 2004). This application of PC is termed a unit 

superstructure. Teng and Sansalone (2004) showed that PC can act as a filter, but there is a need 

to quantify the clogging rate and particles that collect on the surface. In a laboratory study, 

Sansalone et al. (2012) found that 80% of sediment was filtered by PC and that 100% of particles 

were filtered for particles greater than 300µm. Welker et al. (2013) also studied clogging. They 

found that the majority of the particles removed from the pore space were raveled particles, 

pieces of the PC, but they highlighted the benefits of clogging; filtration and sorption of 

pollutants to clogged particles. PC concrete as a filter has the potential to provide targeted 

stormwater treatment, but the long-term usage is reliant on the ability to restore the infiltration 

rate.  

Clogged PC can be cleaned to restore infiltration rate. Many studies have evaluated different 

cleaning methods (Haselbach 2010; Hein et al. 2013; Kumar et al. 2016; Suozzo and Dewoolkar 

2012; Winston et al. 2016). Haselbach (2010) showed that infiltration could be restored with 

sweeping alone because the clogging was near the surface. Others had less success with sweeping 
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alone, but recommend pressure spraying and vacuuming. From a brief literature review, Kumar et 

al. (2016) recommend pressure spraying water and then suction. Winston et al. (2016) showed 

that high-pressure spraying water and vacuuming was an effective way to restore infiltration rate, 

but the spraying water and vacuuming occurred on a slight delay rather than simultaneously. 

Pressure washing with water and vacuuming were found to work better together than either 

independently by Hein et al. (2013). Suozzo and Dewoolkar (2012) restored the infiltration to 

100% of the initial infiltration rate with pressure washing followed by vacuuming. There are 

many examples showing that a combination of cleaning with spraying water and vacuuming in a 

single process is effective, but no study has examined the use of a Vactor truck and standard 

attachments that municipalities may already own. 

This paper has three main objectives: 1) quantify and analyze infiltration rate versus time trends 

without completing maintenance, 2) test and evaluate cleaning methods for restoring clogged PC, 

and 3) link results from the first two objectives to PC mix design parameters through correlation 

and regression analysis. The goal of objective 1 is to determine if and how different mixes of PC 

clog when installed on a slope and receive stormwater runoff from an upslope imperious surface. 

Objective 2 involves the use of multiple cleaning methods to determine effectiveness to restore 

clogged PC. This is different from routine maintenance because the PC plots were allowed to 

clog. Five PC mixes are included in this study, which allows for correlations and regression 

models be fitted to long-term infiltration rate trends and cleaning performance data. 

MATERIALS AND METHODS 

Study site description 

Five different PC mixtures were installed as demonstration and test plots in Tulsa, OK. The test 

plots were installed in an existing parking lot (Figure 4.1). Each mix was poured and finished by 

the same installer and measured 6.1 m by 3.05 m and 0.15 m thick. There is a joint separating 

each the five mixes in half along the 6.1 m length to create two equally sized sides. Each side is 
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approximately the size of a standard parking stall. Mixes are numbered 1 through 5 from west to 

east with the equally sized sides labeled A and B from west to east. Runoff from the impervious 

area up gradient drains to the test plots and is outlined with a dashed line in Figure 4.1. The 

contributing impervious area is 344 m2. The loading ratio, which is the ratio of the contributing 

impervious area to PC area, is 3.7. The parking lot slope, including the test plots, is 3% on 

average. Down gradient of the test plots is an impervious concrete apron and curb designed to 

drain excess stormwater from the site. A slight crown runs north to south through the middle of 

test plot 4. 

 

Figure 4.1. Arial view of the pervious concrete plots in Tulsa, OK. There are five different plots which are 

distinguishable by the different shades of gray in the northern edge of the parking lot. 

Mix designs for each of the plots except plot 2 are listed in Table 4.1. Each plot has a different 

mix design. All but one plot had sand in the mix and the other mix constituents were different 

except the median aggregate size. The mix proportions were not specifically selected for this 

research study but rather donated by different companies as demonstrations for the community. 

Plot 1 Plot 2 Plot 3 Plot 4 Plot 5

A BA BA BA BA B

contributing impervious area

N
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Plots were installed on the same day by a certified company. The PC was delivered to the site in 

standard concrete mixing trucks. A concrete chute off the back of the mixing truck was used to 

place the PC. The end of the chute extended to the finished elevation of the PC. Leveling was 

completed with a vibratory screed. All the plots except side B of plot 5 were finished with a 

roller. Sides B of plot 5 was finished with hand tools in a similar manner as traditional concrete. 

Table 4.1. Pervious concrete mix designs by plot. The mix design for plot 2 is proprietary and not disclosed in this 

document. 

  Plot Number 

Description Units 1 3 4 5 

Aggregate (A) (kg) 1130 925 1090 998 

Sand (S) (kg) 68.0 231 68.0 0.0 

A+S (kg) 1198 1157 1158 998 

Cement (C) (kg) 204 280 218 256 

Flay Ash (FA) (kg) 68.0 49.0 38.1 0.0 

C+FA (kg) 272 329 256 256 

Water (W) (kg) 81.6 82.2 69.1 82.9 

W/(C+FA)  0.30 0.25 0.27 0.32 

(A+S)/(C+FA)  4.40 3.52 4.52 3.90 

C/FA  3.00 5.71 5.71 0.00 

Sand (%) 5.7 20 5.9 0 

Median Aggregate Size (cm) 0.95 0.95 0.95 0.95 

Design voids (%) 18 na na 26.1 

Fresh unit weight (kg/m3) 2012 2047 1855 2079 

 

Long-term infiltration testing 

Infiltration rate was measured on each plot over a period of 2.5 years. During this period, the PC 

was used daily, but not maintained. The total precipitation during the study period was 97.4 

inches and was 0.9 inches below average based on a yearly data. Infiltration measurements were 

collected according to ASTM C 1701. These long-term measurements were collected near the 

center of side A on plots 1 through 4 and the center of side A and B on plot 5. Additional 

infiltration rate measurements were taken during the last four months of the 2.5-year period. 
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During this time, infiltration rate was measured at 12 locations per plot to increase the spatial 

distribution of the data set. During these four months, spatial infiltration tests were collected to 

have 4 infiltration rate measurements per plot in the up, middle, and down gradient regions for a 

total of 12 infiltration rate tests per plot. Up gradient is located closest to the impervious area and 

down gradient is near the concrete apron. The spatial tests were completed monthly during the 

four-month period. Linear regression analysis was completed to quantify trends among the long-

term data. Two-sample t-tests were used to test difference between the spatial infiltration rate data 

to identify clogging trends along the slope. These statistical tests were completed in Microsoft 

Excel with the Analysis ToolPak. 

Cleaning methods 

Five different cleaning methods were evaluated: 1) hand vacuum dry, 2) hand vacuum wet, 3) 

street sweeper dry, 4) street sweeper wet, and 5) Vactor truck wet. Evaluation of cleaning 

methods began following the spatial infiltration tests. Methods 1 through 4 were evaluated within 

a month-long period. The total precipitation during this test period was 4.8 inches. Method 5 was 

completed size months after the spatial test because there were concerns that cold temperatures 

would cause freeze thaw issues. There was a total of 11.74 inches of precipitation from the end of 

the first set of cleaning test and the evaluation of method 5. Hand vacuuming was completed with 

a 3 hp Shop Vac was a 1.25-in diameter brush fitting. Wet hand vacuuming water was completed 

with the same vacuum and the addition of water sprayed in front of the intake to the vacuum. 

Water was sprayed through a fan nozzle attached to a garden hose and held at an angle of 

approximately 45o to the concrete. Direction of the water jet came from opposite the vacuum inlet 

to encourage uptake of dislodged particles by the vacuum. The street sweeper used in the study 

was a Tymco 600 regenerative street sweeper with a steel gutter broom. Wet street sweeping was 

completed by wetting the PC plots with sprinklers overnight prior to cleaning. The street sweeper 

was driven over the plots multiple times for even coverage with the gutter broom. A Vactor 2100 
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series was used at a low suction and spraying rate. A 4-nozzle spray attachment was fixed the 

intake hose of the Vactor truck. Each nozzle produced a jet, so the hose and nozzles were moved 

back and forth across the pavement surface for even coverage. Figure 4.2 shows dry hand 

vacuuming, wet street sweeping, and Vactor truck cleaning methods. 

 

Figure 4.2. Pervious concrete cleaning methods. Left: hand vacuuming; Center: street sweeper; Right: Vactor truck 

Cleaning methods were completed in sequence as described. Since the tests plots are 

approximately the size of parking stalls, the street sweeper had to be completed on the entire 

demonstration surface. To be consistent, the other cleaning methods were also completed on the 

entire plot. This means that successive cleaning methods were cleaning an area that had already 

been cleaned by the previous method. After completing each cleaning method, infiltration rate 

was measured on the spatial grid as described previously. Differences between cleaning methods 

were quantified with an Analysis of Variance (ANOVA), which was completed in Minitab 17 

(Minitab Inc. 2010). 

Clogging material characterization 

Material collected by the hand vacuum, both wet and dry, was saved for laboratory analysis. Wet 

vacuum collected material was dried in an oven at 105oC until all the water was evaporated based 

on a visual inspection and then for an additional 24 hours. The dry material, from dry and wet 

vacuuming, was separated using a dry sieving process to particles size ranges shown in Figure 

4.3. Many of the particles had cement paste on them indicating that they had broken off the PC 

through a process known as raveling. Particles greater than 4 mm were visually determined to be 
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raveled particles because they were covered in cement paste (Figure 4.3). Particles less than 4 

mm are therefore classified as clogging particles. After being separated, the mass within each 

range was measured. Dry and wet vacuuming particle analyses were completed independently.  

Statistical relationship to mix design. 

Correlations between long-term performance and mix design were quantified with linear 

regression analysis, which was completed in Microsoft Excel with the Analysis ToolPak and 

MATLAB (The MathWorks Inc 2016). Pearson’s correlations coefficients were calculated 

between cleaning effectiveness, mix design, and infiltration rate with the Analysis ToolPak in 

Microsoft Excel.  
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Figure 4.3. Images of particle for each range of sizes analyzed for hand vacuum dry and hand vacuum wet methods. 

Particles were collected only from side A of each test plot. 

Raveled Particles

Clogging Particles



Alex McLemore 

99 

 

RESULTS AND DISCUSSION 

Long-term infiltration rate performance 

Infiltration rate trends 

Infiltration rate for each plot changed phases. There was an initial decrease of infiltration rate for 

approximately the first 200 days. After which, the infiltration rate remained more constant. After 

phase 2, another decrease of infiltration rate occurred for all but plot 4. Average slope of linear 

regression fits for all plots in second phase was -0.006 cm/day, while the slope was -0.10 cm/day 

on average for the 1st phase. The third phase has an average slope -0.07 cm/day. Measured 

infiltration rates versus time and fitted linear regression lines to phases 1, 2, and 3 are for all plots 

and sides A and B of plot 5 are shown in Figure 4.4. Details of the regression fits, durations, and 

infiltrations rates are listed in Table 4.2. The second phase lasted on average 401 days, with plot 4 

remaining in this phase throughout the duration of the study. Plot 3 was in phase 2 for 179 days, 

the shortest of all the plots. Linear regression fits to phases 1 and 3 were strong with R2 values 

above 0.81 for all with an average of 0.94. There was no statistically signification relationship at 

a 95% confidence level between duration and infiltration rate during phase 2 for any of the plots. 

The slope of the PC and the upgradient impervious surface is the probable cause of the three-

phase clogging progression. It is theorized that Phase 1 is the result of small pores clogging by 

sediments transported by wind, on vehicles, or suspended in stormwater runon. The infiltration 

rate remained steady in phase 2 as larger pores remained open to flow. Long-term infiltration rate 

measurements were taken in the center of the plots, which is the midpoint along the gradient. 

There was visible evidence that larger sediments were washing onto the plots from upgradient. 

Over time, the large particle clogging progressed down the gradient until it reached the location 

of the long-term measurements. This resulted in the secondary decrease of infiltration rate, the 

third phase. 
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Impact of a gradient and contributing impervious surface 

Decrease of the infiltration rate with time indicated that the PC was clogging over time. Spatially 

intensive infiltration rate measurements were completed monthly from June to August to 

determine if there were differences along the gradient, as it was suspected and visually confirmed 

that a large particle clogging front was progressing from upslope to downslope. Box plots and 

individual data points grouped by gradient for plots 1, 2, and 4 are shown in Figure 4.5. These 

plots have significant differences between the infiltration rates on the gradients. Table 4.3 lists the 

P-value for the t-tests between gradients for these plots. Up gradient is significantly lower than 

the down gradient on plots 1 and 2 with P-values of 0.027 and 0.013, respectively, at an alpha of 

0.05. Plot 4 does not follow this trend, suggesting that it is not clogging and supports the findings 

that it remained in phase 2 throughout the duration of the study. 

The statistical significance between down-gradient and middle-gradient for plot 4 illustrates the 

variability among the infiltration rates of the plots, though, the magnitude between differences 

within plot 4 are minimal compared to infiltration rates between plots. Natural variability of 

infiltration rate within plots may be the reason that no differences were detected along the 

gradient for plots 3 and 5. Although, lack of significant differences along the gradient in plots 3 

and 5 may also be contributed to the phase 3 ending time; 827 days and 725 days for plots 3 and 

5, respectively. Plots 1 and 2 did not end until 921 days. Based on the spatial infiltration rate 

measurements, nearly the entire surface of plots 3 and 5 were clogged. Clogging at all spatial 

measurement points suggests that the large-particle clogging front had migrated down the entire 

gradient. 
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Figure 4.4. Long-term infiltration rates and linear regression fit to clogging phases. No cleaning occurred during the 

presented time period. 
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Table 4.2. Long-term infiltration rate linear regression slopes, intercepts, and fits. 

 Plot 

1 2 3 4 5.A 5.B 
P

h
as

e 
1
 

initial infiltration 

rate (cm/min) 
34.4 82.0 32.4 181.0 14.6 6.2 

duration (days) 187 187 274 274 274 274 

slope (cm/min/day) -0.104 -0.096 -0.057 -0.282 -0.043 -0.020 

intercept (cm/min) 35.4 79.8 33.4 179.2 15.8 6.98 

R-sq 0.98 0.86 0.98 >0.99 0.94 0.81 

P
h

as
e 

2
 

mean infiltration rate 

(cm/min) 
18.0 57.8 17.4 112.3 3.0 1.3 

duration (days) 472 538 179 6471 286 286 

slope (cm/min/day) 0.000 -0.023 -0.010 -0.001 -0.001 -0.002 

intercept (cm/min) 18.1 68.3 20.9 113 3.56 2.12 

R-sq <0.01 0.55 0.22 <0.01 0.04 0.67 

P
h
as

e 
3
 

duration (days) 262 196 374 na1 165 165 

slope (cm/min/day) -0.006 -0.283 -0.039 na1 -0.021 -0.005 

intercept (cm/min) 57.2 263 30.9 na1 15.0 4.08 

R-sq 0.99 0.91 0.87 na1 0.98 >0.99 

1Plot 4 remained in the phase 2 throughout the duration of the experiment.  
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Figure 4.5. Box plots of infiltration rates prior to cleaning for plots 1, 2, and 4 by gradient location. The circles are 

individual data points, X is the mean, the bar inside the box is the median, the bottom and top of the box are the 25th 

and 75th percentiles, respectively, and the upper and lower whiskers cover 99.3% of the distribution. 

 

Table 4.3. P-values from 2 sample t-tests between gradients (down, middle, and up) based on non-paired data. Grayed 

values are significant at an alpha of 0.05. 

 PLOT 1 PLOT 2 PLOT 4 

DOWN VS. UP 0.027 0.013 0.128 

DOWN VS. 

MIDDLE 
0.148 0.129 0.003 

MIDDLE VS. UP 0.124 0.062 0.152 
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Cleaning performance 

Cleaning method performance 

Once PC is completely clogged, it must undergo intensive cleaning to restore the infiltration rate. 

This is different from routing cleaning, which is intended to maintain PC that has sufficient 

infiltration to meet stormwater management goals. Multiple restorative cleaning methods were 

tested, but only the Vactor truck cleaning method statistically improved infiltration rate from the 

other cleaning methods and the pre-cleaned infiltration rate for plots 1, 2, 3, and 5 (P-

value<0.001). Cleaning methods performed on Plot 4 did not significantly change the infiltration 

rate, though Vactor cleaning was not performed on this plot. Plot 4 was not clogged as indicated 

by the measured infiltration rates that were still at phase 2 values, therefore Vactor cleaning was 

not necessary. There were also concerns that the already raveled surface would be further 

damaged and potentially ruined by the water jets from the Vactor cleaning. 

Infiltration rate after Vactor cleaning was similar to the mean Phase 2 infiltration rate but not the 

initial infiltration rate. Figure 4.6 shows the phase 2 mean infiltration rate, pre-clean mean 

infiltration rate, and post Vactor clean mean infiltration rate normalized to the initial infiltration 

rate for plots 1, 2, 3, 5.A, and 5.B. None of the plots had their infiltration rates restored to the 

initial infiltration rate. At best, the post Vactor clean infiltration rate was restored to 47% of the 

initial infiltration rate for plot 3. However, Vactor cleaning improved the infiltration rate from the 

pre-cleaned condition for all plots tested. Plot 2 infiltration rate increased by 4 times pre-clean 

rate, the minimum of the plots tested, and plot 3 increased by 86 times pre-clean rate, the 

maximum of the plots tested. Relative to its own infiltration rate, plot 3 was most effectively 

cleaned. Plot 3 has the closest post Vactor clean mean infiltration rate to its phase 2 mean 

infiltration rate at 87%. The percent of phase 2 infiltration rate after Vactor cleaning is 69% for 

plot 1, 45% for plot 2, 77% for plot 5.A, and 53% for plot 5.B. Resorting the infiltration rate to 

phase 2 does not necessarily indicate high infiltration rates. Plot 2 was the least well cleaned, but 
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the infiltration rate after Vactor cleaning was the greatest at 25 cm/min. Plot 3, the next greatest 

infiltration rate after cleaning, was restored to 15 cm/min. The phase 2 infiltration rate may be a 

better indicator of long-term performance and a realistic infiltration rate for maintenance 

purposes. Although, higher infiltration rates may be sustainable with regular maintenance prior to 

reaching phase 2. 

 

Figure 4.6. Initial, before cleaning, after Vactor cleaning, and phase 2 average infiltration rate relative to the initial 

rate. 

Particle size analysis 

Particles collected during hand vacuuming cleaning methods were used to evaluate clogging 

particles that had accumulated on the surface of the PC plots. The cumulative mass collected 

during hand vacuuming varies between tests plots. Cumulative mass and cumulative mass 

distributions are presented in Figure 4.7. These distributions are based on particles size 

classifications shown in Figure 4.3. It is assumed that no single plot was receiving a meaningfully 

different quantity or size distribution of washed-on particles because the plots shared a common 

upgradient impervious surface. Plot 3 differs from the others with the most mass collected over 

the entire range of particles. This corresponds with the results of the Vactor cleaning. 

Additionally, plot 3 was the most improved relative to its pre-clean infiltration rate. Plot 3 
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aggregate content was 20% sand; this may have influenced the performance. Over 50% of the 

particles collected from plot 4, which maintained the highest infiltration rate over the duration of 

the study, were raveled particles. The lack of clogging particles from plot 4 supports the long-

term results, maintaining an infiltration rate in the phase 2. Plot 1, 3, and 5 have similar 

cumulative mass distribution curves. Raveling particles are approximately 10% of the cumulative 

particles for each of these plots. These plots have limited deterioration compared to plots 2 and 4. 

Fresh unit weights for plots 2 and 4 were the lowest of the test plots in the study at 1954 kg/m3 

and 1855 kg/m3, respectively. 

 

Figure 4.7. Cumulative mass particle size distribution of particles collected during hand vacuuming. Cumulative mass 

includes particles collected during dry and wet vacuuming. 

Impact of water on cleaning performance 

Differences between dry and wet hand vacuuming methods were compared to determine if the 
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not the case. Large particles were more successfully collected compared to small particles during 

dry hand vacuuming than wet hand vacuuming. The percent of particles collected by wet cleaning 

increased as the particle size decreased in Figure 4.8. This indicates that vacuuming with water 

was increasingly more efficient at removing clogging particles from the PC surface compared to 

dry vacuuming. 

 

Figure 4.8. Percentage of particles by size from dry- and wet-hand vacuum cleaning for each pervious concrete plot 

and the average of all pervious concrete plots. 

Correlations between clogging, cleaning, and mix design 

The unique set of data in this study enable the development of regression equations that link 

performance over time and cleaning effectiveness to PC mix design. A routinely measured 

parameter during installation, fresh unit weight, was statistically related to the initial infiltration 

rate, phase 2 mean infiltration rate, and phase 2 duration. Plotted data and best fit power 

regression equations of these relationships are shown in Figure 4.9. All the best-fit equations 

indicate that fresh unit weight is inversely related to parameters shown in Figure 4.9. These 
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porosity than low unit weight PC (Kevern et al. 2008; Kia et al. 2017). Infiltration rate and 

clogging are influenced by porosity (Kia et al. 2017). 

The power fit exponents for all the fit equations has a small range, from -18.18 to -18.67, 

indicating that initial infiltration rate, Phase 2 mean infiltration rate, and Phase 2 duration are 

related. Initial infiltration rates and phase 2 mean infiltration rates have a strong positive 

correlation, 0.99 Pearson’s correlation coefficient. There is a strong positive correlation between 

the initial infiltration rate and phase 2 duration, 0.806 Pearson’s correlation coefficient. Phase 2 

mean infiltration rate and duration also have strong positive correlation, 0.822 Pearson’s 

correlation coefficient. Since these independent variables are actually correlated, measuring one 

would enable the prediction of the others. 

Linking long-term performance measures to mix properties enables the development of tailored 

PC mixes to meet specific needs. In this study, sand content ratio (S:(S+A)) and the water to 

cementitious material ratio (W:(C+FA)) were linearly related to the initial infiltration rate, phase 

2 mean infiltration rate, and phase 2 duration. Best fit equations and 1:1 plots of these 

relationships are shown in Figure 4.10. The sand content and the water to cementitious material 

ratio are negatively related to the each of the dependent variables. A strong fit for each regression 

model, R2 values greater than 0.95, was expected because of the strong correlations between the 

independent variables as described previously.  

The ability to predict the long-term performance before clogging occurs provides information 

about maintenance scheduling. Phase 2 is a period of relatively stable infiltration rates that can be 

predicated based on mix design and installed fresh unit weight. From the models presented in 

Figure 4.9 and 4.10, mix parameters can be determined if there is a desired maintenance schedule. 

For example, a yearly maintenance schedule (365 days) means that the fresh unit weight at install 

should be at least 2009 kg/m3. The mix design can vary to achieve a yearly maintenance schedule. 
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For example, if the sand content is 5% then the W:(C+FA) ratio needs to be 0.30, but if the sand 

content is 0% then the W:(C+FA) ration needs to be 0.32. Additionally, setting a minimum 

maintenance cycle allows the designer to determine an expected infiltration rate that can be used 

to evaluate stormwater management capabilities of PC. For the examples presented here, the 

phase 2 infiltration rate would be 26.7 cm/min, 20.5 cm/min, and 16.8 cm/min (631 in/hr, 484 

in/hr, and 395 in/hr) respectively. A table of Pearson’s correlation values for all parameter is 

provided as supplemental information. 

 

Figure 4.9. Fresh unit weight regression equations with the initial infiltration rate, phase 2 mean infiltration rate, and 

phase 2 duration. 
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Figure 4.10. Sand content (S:(S+A)) and water content (W:(C+FA)) regression 1:1 fit lines for the initial infiltration 

rate, phase 2 mean infiltration rate, and phase 2 duration. 
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high fresh unit weight will have little to no pores space. It makes sense that a concrete with little 

to no pores is effectively cleaned because clogging material cannot enter the pores as there are 

few of them. If pores do begin to clog, the clogging material will not be able migrate deep within 

the pores because the pores will be smaller. The opposite occurs when the fresh unit weight is 

low. In this case, the PC does not clog because clogging material can pass through the pores. 

While designing for a low fresh unit weight might prevent the need of maintenance do to 

clogging, it can lead to alternative negative results. Low fresh unit weight PC in this study had 

increased deterioration as indicated by the quantity of raveled particles collected during cleaning. 

Decreased strength has been shown to be related to low fresh unit weight (Kevern et al. 2008) 

There is also the potential for long-term clogging of the geosynthetic material below the sub-base 

with the material that passes through. 

Table 4.4. Pearson's correlation coefficient between the % of the recovery from Vactor cleaning to various parameters. 

Parameters Pearson’s correlation coefficient 

Fresh Unit Weight (kg/m^3) 0.88 

S:(A+S) 0.53 

W:(C+FA) -0.42 

(A+S)/(C+FA) -0.63 

Initial infiltration rate (cm/min) -0.87 

 

CONCLUSIONS 

Five different PC tests plots, which were retrofitted into an asphalt parking lot, were evaluated for 

clogging and cleaning. The test plots had a slight slope and received stormwater runon from an 

upgradient impervious surface. Infiltration rate of these plots over a 2.5-year period changed in a 

patterned that was categorized by three phases. The second phase was a period of relatively 

constant infiltration rate. The test plots that did not stay in the phase 2 region clogged and needed 

enhanced cleaning to restore infiltration rate. Allowing PC to clog to phase 3 conditions is not 

advised, therefore the duration phase 2 may be an indicator of routine maintenance needs. The 

initial infiltration rate, phase 2 mean infiltration rate, and phase 2 duration are strongly correlated 
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with the fresh unit weight, sand content, and water content. Regression fit models linking these 

parameters have R2 values greater than or equal to 0.952. 

An upgradient impervious surface and slope caused the PC plots to clog in the upgradient region 

first. A clogging front of larger particles progressed down the gradient, eventually clogging the 

majority of the PC surface. At which point, cleaning was needed to restore the infiltration rate. 

The clogging front from up to down gradient was evaluated by measuring infiltration rate at 

multiple locations on the surface of the PC. This type of analysis need to be completed on 

additional plots to further understand the progression of clogging in PC. Two of the plots in the 

study were fully clogged by the time spatial analysis was completed, therefore, no differences 

were measurable even though visual evidence suggested a clogging front from the up-gradient 

region to the down-gradient region. 

 Hand vacuuming, street sweepers, and Vactor truck cleaning methods were evaluated to restore 

the infiltration rate. The addition of water during cleaning improved the removal of smaller 

particles compared to dry cleaning. The Vactor truck, which involved spraying water while 

simultaneously vacuuming, was the only method that significantly improved the infiltration rates 

from clogged conditions. Infiltration rates were restored to values near the phase 2 mean 

infiltration rate further suggesting the importance of phase 2 as useful parameter for design and 

maintenance. PC mix impacts not only the infiltration rate, but also the ability to successfully 

clean or even need to clean the PC surface. The mix that had the most sand experienced better 

cleaning results, but will require more frequent cleaning because its phase 2 duration is shorter 

than the others. The mix with the highest fresh unit weight remained in phase 2 throughout the 

duration of the study suggesting that is an ideal PC if maintenance is not an option. However, this 

PC plot is weaker than the others and has major issues with raveling. 
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The results in this study are based on a relatively small set of data points, 5 different mixes, for 

correlations between mix design and long-term and cleaning performance. These relationships 

should be further investigated with new mix recommendations and tested in real applications. 

Additionally, the link between mix design and actual installed PC needs to be further 

investigated. The only field measured parameter of the mix design was fresh unit weight. 

Specification for fresh unit weight were listed in the mix design specifications for Plot 4 as 2401 

kg/m3 (149.9 lb/ft3), while the measured value was 2047 kg/m3 (127.8 lb/ft3). This highlights the 

importance of field measured mix parameters. 
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CHAPTER V 
 

 

MULTIPLE COMPONENT ANALYSIS OF AGED PERVIOUS CONCRETE FROM X-RAY 

COMPUTER TOMOGRAPHY AND RELATIONSHIPS TO FIELD PERFORMANCE 

 

This chapter will be submitted to Cement and Concrete Research, an Elsevier journal. 

  

ABSTRACT 

Pore space is a critical attribute of pervious concrete because it is the conduit for stormwater 

infiltration and can act as a filter to capture pollutants. X-ray computer tomography was used to 

non-destructively quantify voids and clogging of four different pervious concrete mixes that had 

experienced field conditions. Segmentation is one of the most important steps when quantifying 

material from x-ray images. In this study, a multi-component content frequency fitting process is 

applied to pervious concrete to quantify pore space, mixed component voxels, and cementitious 

material. Poristy was on average 5% less with the frequency fitting method compared to Otsu’s 

method. Multiple component classification prevents voxels in regions of high density 

heterogeneity from being forced into a binary segmentation; voids or solid material. Mixed 

component content was determined to be an indicator of clogging. Mixed component fraction was 

generally greatest in the top 10 mm and is an indication of clogging near the surface. The field 

pervious concrete plots were cleaned after cutting the cores. Cores with less mixed component 
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content in the top 10 mm correlated to pervious concrete that was more efficiently cleaned.  

INTRODUCTION 

Impervious surfaces alter the natural coarse of stormwater runoff, which can cause negative 

effects on the landscape and ecosystem. Pervious concrete (PC), a Low Impact Development 

practice, is designed to drain surface water to the subsurface and promote infiltration and 

treatment. Interconnect voids within PC create a network of pores that are the conduits for flows. 

The void content and size of the pores within PC influences performance. For PC to maintain an 

infiltration rate for its lifespan, the pores need to not only allow water flow but be resistant to 

clogging and cleanable. 

Proper identification of void space within PC is critical for porosity quantification and analysis of 

pore size and connectivity. Porosity is often determined by optically surface scanning cut and 

polished surfaces or imaging with x-ray Computed Tomography (CT). Porosity analysis from cut, 

polished, and surface scanned cores is common in PC research (Neithalath et al. 2006, 

Sumanasooriya and Neithalath 2009, Sumanasooriya et al. 2010, Deo and Neithalath 2010, 

Kayhanian et al. 2012, Radlińska et al. 2012, Rehder et al. 2014). Void and solid content 

segmentation methods for surface-scanned cut cores are not well defined. This prevents 

automated and easily repeatable segmenation methods from being applied to other PC samples. 

Many x-ray CT based PC research studies use manual or unspecified threshold selection 

methodology for image segmentation (Teng and Sansalone 2004, Schaefer et al. 2006, Sansalone 

et al. 2008, Kuang et al. 2011, Meulenyzer et al. 2012). Kuang et al. (2015) segmented CT images 

with Bayes’ discussion theory of pattern recognition while Manahiloh et al. (2012) and Ahn et al. 

(2014) segmented images with Otsu’s method (Otsu 1979). Otsu’s method is a common 

automated global methodology for CT image segmentation (Wildenschild and Sheppard 2013, 

Iassonov et al 2009). Porosity from CT methods are often validated with gravimetric methods. 
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Porosity from CT analysis has been reported greater than and less than gravimetric based 

porosity. Segmentation of PC cores is limited to voids and solid material. Clogging material, 

cement paste, and aggregates have been directly identified through threshold analysis.  

The typical depth of PC is 102 to 152 mm (4 to 6 inches) and is designed to have a porosity of 

approximately 20% (Permeable Pavements Task Committee 2015; Ferguson 2005). Mix design, 

compaction during installation, and clogging causes actual porosity in field installations to vary 

with depth. Porosity has been shown to vary with depth because of compaction (Haselbach and 

Freeman 2006; Kayhanian et al. 2012; Manahiloh et al. 2012; Meulenyzer et al. 2012; Radlińska 

et al. 2012). Radlińska et al. (2012) evaluated nine PC cores to determine porosity change with 

depth. Porosity in the upper 38 mm (1.5 inches) ranged from 1.0% to 10.8% with porosities near 

the bottom as high as 25.5% but as low as 1.4% (cement to aggregate ratio varied between 

samples). Haselbach and Freeman (2006) showed that porosity increased in the vertical direction 

from top to bottom because of compaction during installation. Porosity at the top quarter of a 

152-mm (6-inch) slab was on average 5% less than the middle half. In addition, the bottom 

quarter of field cores had 5% more porosity than the middle half. Porosity profiles were created 

using x-ray imaging of seven field cores by Kayhanian et al. (2012). In some cases, the upper 

porosity was less than half the average porosity. Three cores were imaged by Meulenyzer et al. 

(2012). All three had a linearly decreasing trend for porosity in the upper 70 mm (2.75 inches) 

and a nearly constant average porosity from 70 to 140 mm (2.75 to 5.50 inches). Lower porosity 

in the upper portion of the PC causes the pores near the surface to act as a filter, which would 

cause the surface to clog quicker implying that clogging will occur in the top. 

PC clogs as it ages and is exposed to natural urban stormwater conditions. Depth of clogging has 

experimentally been measured with a microscope to only migrate 12.7 mm (0.5 inches) into the 

pores (Vancura 2012). Manahiloh et al. (2012) utilized x-ray CT imaging and Otsu’s 

segmentation to quantify clogging in PC cores attributed some of the porosity change to clogging. 
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They estimated the clogging fraction by taking the difference of segmented images from before 

and after vacuuming the surface of the cut cores. Kayhanian et al. (2012) utilized x-ray CT to 

image clogged PC cores that were collected from the field. They concluded that clogging 

occurred in the top 25 mm (1.0 inches), though, this conclusion appears mainly from decreased 

porosity near the surface of the cores and no visual evidence is clearly showing clogging material.  

Mix design influences porosity and pore size. In general, the porosity is less with larger aggregate 

but has larger pores compared to PC made with smaller aggregate (Neithalath et al. 2010). 

Statistical relationship between mix design and PC porosity are lacking. Additionally, there is 

limited research that utilizes statistically analysis to link mix design, long-term performance 

(including clogging), and internal characteristics of field aged PC. Past studies that have 

examined internal features in efforts to quantify clogging have utilized segmentation processes 

that do not directly account for the clogging material. There is a need to examine aged PC with 

nondestructive methods that directly identify clogging in an automated process and utilize the 

results to provide insight into to the influence of mix design on clogging potential. 

PC cores collected from the field installed test plots are imaged with x-ray CT with the objective 

to quantify PC with a multiple component segmentation process. The specific objective are: (1) 

complete multiple component segmentation with methodology developed by Hsieh et al. (1998) 

on x-ray CT images of PC cored from a field installation, (2) compare multiple component 

segmentation results to segmentation results completed using Otsu (1979) methodology, (3) 

quantify the multiple components relative to depth from the surface, identified clogging, and 

different PC mixes, and (4) determine trends between segmentation results and known field 

performance metrics of the sampled PC. 
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MATERIALS AND METHODS 

Site description and coring 

PC cores from the Tulsa, OK tests plots described in Chapter 4 were analyzed in this study. Each 

test plot was installed on the same day. The PC was installed with a vibrating screed and finished 

with a roller compactor. Clogging was observed for this PC as a decrease in infiltration rate over 

2.5 years. Two cores were cut from tests plots 1, 3, 4, and 5. One core per plot was from the up-

gradient region and the other in the down gradient region. Cores from plots 1, 3, and 4 were 

collected from side B, while cores from plot 5 were collected from side A. Cores were cut with 

69.85 mm diameter concrete coring bit (Figure 5.1). A small stream of water was sprayed on the 

outside of the coring bit to cool it. No water was sprayed on the inside bit to minimize cuttings 

from flowing into the cores and flushing of clogged particles. The cores were cut from the test 

plots 2.5-years after installation, where not maintenance occurred during this time period. Depth 

of the PC test plots varied. Core depths are listed in Table 5.1. 

Image acquisition and processing 

Cores were imaged with a ZEISS Xradia 410 Versa x-ray system, which has a cone beam source 

(Carl Zeiss X-ray Microscopy, Inc., Pleasanton, CA). System settings for acquisition are listed in 

Table 5.2. Image reconstruction, including beam hardening and ring artifact removal, was 

competed with ZEISS Scout-and-Scan Control System Reconstructor (Carl Zeiss X-ray 

Microscopy, Inc., Pleasanton, CA). Individual images representing a slice through the core equal 

to the voxel size were exported as 16-bit TIFF (Tag Image File Format) format for analysis. 

Table 5.1. X-ray computer tomography image acquisition settings of ZEISS Xradia 410 Versa 

Parameter Value 

Lens type Macro (0.4X) 

Source voltage 113 kV 

Source current 66.0 mA 

Detector charge-coupled device 2,048 by 2,048 pixel 

Pixel bin size 2 pixels 

Reconstructed image size 1024 by 1024 voxel 

Number of projections 2200 

Reconstructed voxel size 60.15 μm 
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Images were cropped for quality control. This includes removal of 50 images from the top and 

bottom of each image stack. This effectively is cropping in the vertical scale (z-direction) to 

remove image artifacts. Image artifacts on the circular edge were removed by cropping the 

images in the x- and y-direction down to 40 mm by 40 mm. Cropping in the x- and y-direction 

also removes edge effects caused by breaking edge pieces or the migration of cuttings into the 

pores during cutting. The length of the cores required two separate x-ray imaging scans in order 

to analyze the top 100 mm of the core. Scans completed on the same core overlapped and image 

stacks were group together by matching the mean attenuation in the overlapping region. Figure 

5.1 shows the relative location of x-ray scans, a single reconstructed image slice from a top scan 

and from a bottom scan, and an example of the stitching overlap. Directions x and y have no 

specific directional meaning other than to denote a 90-degree difference in the horizontal plane. 

 

Figure 5.1. General location of x-ray scans and mean attenuation overlap for stitching x-ray image stacks together. 

Threshold methods and void space quantification 

Two different threshold techniques were completed on the image stacks. Otsu, a common 

threshold technique that has been used by others to quantify PC (Zhong and Willie 2016, Ahn et 

al. 2014, and Manahiloh et al. 2012). The second threshold technique is an adaptation of Hsieh et 

al. (1998) voxel frequency distribution fitting and is referred to here as Hsieh’s method. This 
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method fits theoretical distributions to material-densities histograms of reconstructed image 

slices. Theoretical distributions are developed from known densities of the scanned material and 

photon statistics. PC is predominantly composed of void space, cement paste, and aggregate. It 

may also contain sand, add mixtures, and clogged material. The sand will have a similar density 

to that of the aggregate and cement paste compared to the void space. 

X-ray attenuation is linearly related to the density of the material that it passes through Petrovic et 

al. (1982) and Orsi et al. (1994). Attenuation can be converted to density with a calibration 

process. Stacks of reconstructed image slices from the CT scans of the cores require independent 

calibration coefficients. The calibration process involved converting the voxel value such that the 

attenuation in the center of clearly identifiable voids matched the density of near zero. In this case 

the density of air was assume constant for all experiments at 1.15 kg/m3. To avoid temperature 

effects on the air temperature, a 20-minute warm-up scan was completed before tomographs were 

acquired. Then, the adjusted attenuation was converted to density with a calibration coefficient. 

Voxel densities of reconstructed image slices were calculated as 

𝜌(𝑥, 𝑦) = (𝐴(𝑥, 𝑦) − 𝐶𝑣𝑜𝑖𝑑) 
𝜌𝑎𝑔𝑔

𝐶𝑎𝑔𝑔
(5.1) 

where ρ is the density of voxel x, y, A is the x-ray attenuation of voxel x, y, Cvoid is the offset of 

the voids, ρagg is the density of the aggregate, and Cagg is the calibration coefficient of the 

aggregate. An assumed value of 2500 kg/cm3 was used for ρagg because a system calibration 

coefficient was not available. Cvoid and Cagg were manually determine for each scan by estimating 

an average attenuation of the known materials through visual inspection. 

Images were initially investigated with Otsu’s segmentation method (Otsu 1979). This is a 

common unsupervised histogram thresholding technique that calculates the gray level that 

corresponds to the maximum variance between the gray level values above and below the 
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threshold value (Iassonov et al. 2009). The gray level threshold value identified through Otsu’s 

method is then used to segment the image. PC is predominantly composed of void space and 

cementitious material thus a single threshold value can be applied to identify void content (Zhon 

and Willie 2016, Ahn et al. 2014, and Manahiloh et al. 2012). Otsu’s threshold value was used to 

segment reconstructed images to quantify void content. Threshold identification and 

segmentation were completed with the Otsu algorithm in Matlab (The MathWorks Inc 2016).  

An alternative approach is to examine multiple components based on their densities and photon 

statistics. Hsieh et al (1998) showed that for a material composed of pure components, the 

relative frequency of a voxel being a pure component is defined as 

𝑓𝑐(𝜌) = {
1 (𝑅𝑐), 𝜌 = 𝜌𝑐

0 (𝑅𝑐), 𝜌 ≠ 𝜌𝑐
 (5.2) 

where f is the relative frequency, R is the fraction of the pure component in the mixture, and 

subscript c denotes the component. Since the voxel size is often larger than pure components, 

some voxels contained a mixture of materials. Density of a mixed component voxel will be 

greater than the least dense pure material and less than the densest pure material. Hsieh et al. 

(1998) showed that the distribution of mixed component voxels can be modeled with a beta 

distribution. 

𝑓𝑚 (
𝜌

𝜌𝑚𝑎𝑥
) = {

([(
𝜌

𝜌𝑚𝑎𝑥
)

𝛼−1

 (1 −
𝜌

𝜌𝑚𝑎𝑥
)

𝛽−1

]
Γ(𝛼 + 𝛽)

Γ(α) Γ(β)
)  (𝑅𝑚) , 0 ≤ (

𝜌

𝜌𝑚𝑎𝑥
) ≤ 1

0 (𝑅𝑚) , 𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒

 (5.3) 

where ρmax is the density of the densest component, α and β define the shape of the beta 

distribution, and Rm is the fraction of the mixed voxels. Each of the individual components 

represents a fraction of the scan material, therefore the component fractions are related as 
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1 = ∑ 𝑅𝑐

𝐶

𝑐=1

+  𝑅𝑚 (5.4) 

and Rc and Rm must be greater than or equal to 0.  

X-ray generation is a random event that induces a normal random error distribution to the image 

voxels (Brown et al. 1993). Photon statistical errors transform the true density distribution by the 

Gaussian distribution, gc() (Hsieh, et al. 1998) 

𝑔𝑐(𝜌) =  
1

√2𝜋 𝜎2
 𝑒

−
(𝜌−𝜌𝑐)2

2 𝜎2  (5.5) 

where gc represents the statistics of component c and σ is the standard deviation. Photon statistics 

modify the relative frequency of pure components by completing a convolution of Eq. 5.5 with 

the relative frequency of the components, Eq. 5.2, and the mixed components, Eq. 5.3. The 

relative frequency of multiple components with photon statistics is defined as 

𝑓(𝜌) = ∑(𝑔𝑐 ∗ 𝑓𝑐(𝜌))

𝐶

𝑐=1

+ (𝑔𝑚 ∗ 𝑓𝑚 (
𝜌

𝜌𝑚𝑎𝑥
)) (5.6) 

where * represents the coevolution of the photon statistics with component fractions. 

Fraction of components and mixed components were determined by fitting Eq. 5.6 to the relative 

frequencies of each image. The known parameters are the component densities. All other 

parameters were fitted by maximizing the coefficient of determine, R2. R2 is calculated as 

𝑅2 = 1 −
∑ (𝑒𝑖 − 𝑓𝑖)𝑛

𝑖=1

∑ (𝑒𝑖 − �̅�)𝑛
𝑖=1

 (5.7) 

where f is the fitted frequency generated by Eq. 5.6, e is the empirical relative frequency, and �̅� is 

the mean of the empirical relative frequency. Fitted parameters were determined using an interior-

point algorithm as part of the fmincon function within Matlab (The MathWorks Inc 2016). The 
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fitted parameters include α, β, and σ, and the fraction of components; Rv, Rp, Ra, and Rm, which 

represent the fractions of voids, cement paste, aggregate, and mixed component voxels, 

respectively. 

RESULTS AND DISCUSSION 

Multiple component segmentation of pervious concrete 

Frequency distributions were successfully fitted for each reconstructed image of the x-rayed cores 

by implementing a semi-automated process of the Hsieh et al. (1998) methodology. The 

MATLAB code of the frequency distribution fitting is shown in Appendix A2. Fraction 

components and the cumulative relative frequency distribution fit for three image slices of 3D are 

shown in Figure 5.2. Reconstructed images are included with the distribution fits for illustrative 

purposes. Images were selected from depths of 6.02 mm, 48.12 mm, and 90.23 mm as examples 

from near the top, middle, and bottom of the core. Cumulative fits are good with R2 values of 

0.961, 0.993, and 0.972 for 6.02 mm, 48.12 mm, and 90.23 mm, respectively. The two 

predominate peaks in the histograms represent the voids and cementitious material. Cement paste 

and aggregate are collectively referred to as cementitious material. The region between the voids 

and cementitious material is fitted as mixed component. In the 6.02 mm histogram, there is a 

regional peak in the mixed component. This peak is not present in the 48.12 mm, and 90.23 mm, 

suggesting that high mixed component fractions represent images with higher quantities of 

heterogeneous regions. This would be an indicator of clogging assuming the quantity of pore 

edges are constant through all images and image reconstruction does not affect gray level 

intensity values with depth. 

Density of the voids peak shifted between images as did the cementitious material peak. This is 

caused by image artifacts from CT scanning and image reconstruction. The shifting cementitious 

material peaks affected proper classification of cement paste and aggregate individually. Figure 

5.3 shows the fractions of cement paste and aggregate with depth of core 3D. Fractions of these 
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materials follow different trends between the top CT scan and bottom CT scan. The trend with 

depth of the top scan is higher aggregate near the top and less near the bottom. In the bottom 

scan, the aggregate content is greatest near the middle and less at the top and bottom. Visual 

identification through segmentation does not support the individual classification of paste and 

aggregate as correct. 

Beam hardening is suspected as the main source of error for proper classification of cement paste 

and aggregate fraction. Figure 3 illustrates the variability between the cement paste and aggregate 

fraction for core 3D. X-ray scans were completed by rotating the core sample through a cone 

shaped x-ray source. Ray paths near the cone’s center traveled through more cementious material 

compared to ray paths near the edges. X-rays passing through more material harden and thus 

intensity readings are expected to be less in these regions; specifically, the center of the core near 

the top and bottom a scan. The bottom scan of figure 5.3 has signs of beam hardening near the top 

(48 mm to 60 mm) and bottom (80 mm to 96 mm). The top scan of figure 5.3 does not follow this 

trend. It is suspected that increased solid and mixed component material in the upper region of the 

top scan impacted the beam hardening disproportionality compared to the bottom region of the 

top scan. This caused over correction by the automated beam hardening correction completed by 

the reconstruction process, resulting in an increase of the aggregate classification near the top of 

the top scan. Cement paste and aggregate fraction were inconsistently identified across all cores, 

so they are presented as a single component, cementitious material. Fraction of cementitious 

material is not a fitted distribution, but the summation of the cement paste and aggregate 

fractions. 



Alex McLemore 

129 

 

 

Figure 5.2. Gray level images and corresponding relative frequency distribution of density with fraction component 

and cumulative fitted curves from Hsieh et al. (1998) methodology. Contrast of image gray level values are enhanced 

for visual purposes. 

R2 = 0.961

R2 = 0.993

R2 = 0.972
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Figure 5.3. Cement paste and aggregate fractions classified by Hsieh et al. (1998) methodology for core 3D. The range 

of the top scan and bottom scan are identified. 

Comparison of multiple component segmentation to binary segmentation 

Differences between void content 

All reconstructed images were quantified and analyzed to have two primary components, voids 

and cementitious materials, and a mixed component. For comparison to other segmentation 

methods, the cementitious material is often referred to here as solid content. Component fraction 

results from Hsieh method are compared to component fraction from Otsu method. Classification 

of components differed between the Otsu method and Hsieh method. Figures 5.4 shows the 

reconstructed image, Otsu void fraction, Hsieh void fraction, and the difference between Otsu and 

Hsieh void fraction for core 3D at 6.02 mm. The comparison in figure 5.4 visually illustrates the 

differences between the methods by leaving the segmented data as the actual reconstructed image 

gray level values. There is a visible difference in the quantity of lighter gray voxels in the Otsu 

voids image compared to the Hsieh void image. The lighter gray level voxels predominately show 

up in the difference image between the two methods (figure 5.4 lower left image) indicating that 

Otsu void content has included non-void voxels. 

Average Otsu porosity as indicated by the void fraction content is 24.1%, while the porosity as 

indicated by Hsieh’s void fraction is 17.7%. The difference is caused by the improper 

top scan bottom scan
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classification of voxels that have a density less than pure paste or aggregate and greater than a 

void space. The regions of high density heterogeneity are composed of a mix of components with 

varied densities. The Otsu method does not account for these mixed component voxels when 

implemented as a binary process; voids or solids only. The regions identified in the difference 

image appear to contain the clogging material, though the quantity of clogging is not directly 

measurable from the difference. 

Classifying mixed material with Hsieh’s method produced a more representative segmentation of 

the true void content compared to the Otsu segmentation because it rejected the mixed voxels. 

The void fraction would differ between the two segmentation methods even if the image did not 

contain the region of high-density heterogeneity. Voxels at the interface between voids and 

cementitious material contain varying fractions of both components. Classification as a void as is 

the case with Otsu’s segmentation is a miss representation because the known location of material 

within the voxel is not known and photon statistics indicate that the true density of the voxel may 

be greater. Component classification by fitting relative frequency distribution accounts for these 

types of classification errors and is a valid way to quantify voids, cementitious material content, 

and regions of mixed components. This suggests that the fraction of mixed components may be 

greater for images with clogging material than those without. 
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Figure 5.4. Reconstructed image at 6.02 mm for 3D, segmentation of voids with Otsu and Hsieh et al. (1998) 

methodology, and the difference between segmented images. Segmented voids are shown with their gray level values 

from the reconstructed image. The background of segmented images is white. 

Void content determined with Hsieh and Otsu methodology are plotted against depth for all core 

are shown in figures 5.5–5.8. Similarities between the methods are visibly evident by the general 

trends of each curve. Void content with Otsu methodology is always greater than with Hsieh 
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methodology. This occurs because Otsu void content will in most cases include a partition of 

mixed component voxels. Differences between the void contents are also plotted in figures 5.5–

5.8. It was suspected that the difference would be greater near the surface because of near surface 

clogging as present in the reconstructed image shown in figure 5.4. Greater differences between 

void content near the surface is present in 1D, 3D, 5U, and 5D. In contradiction, the difference is 

near zero or almost constant for cores from 3U and 1U. These cores came from clogged PC plots. 

The difference between void content for cores from plot 4, which was not clogged, have an 

increase in the void content difference near the surface. There is not a consistent trend indicting 

that the difference between the methods is quantifying clogging, but most of the clogged cores 

have greater differences near the surface. Clogging was visually determined to be near the surface 

for the clogged cores. Overall, the Hsieh method provides a more accurate assessment of the 

voids because it rejects the clogging material better than the Otsu method. 

Differences between solid content 

Solid content fractions from Hsieh and Otsu methodology are plotted in figures 5.5–5.8. The 

Hsieh solid content is generally less than Otsu solid content, but the two methods are more 

similar at predicting solid content compared to void content throughout the entire depth of the 

cores. However, the differences between the methods is often greater than the voids differences 

near the top of the cores. This trend is more pronounced in core 1U, 1D, 3D, 5U, and 5D. All of 

the cores came from clogged PC plots. An increase between the solid content differences are 

similar to the findings shown in figure 5.4 where Hsieh methodology is rejecting clogging 

material. Plot 4, which was not fully clogged at the time of the cutting, experienced mixed results 

between the two methods suggesting that clogging cannot fully explain the variation in solid 

content. 
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Figure 5.5. Top: plots of voids and solid content from Hsieh et al. (1998) and Otsu methods for cores 1U and 1D. 

Bottom: plots of the difference of voids with Otsu’s methods to Hsieh’s methodology and difference of solids with 

Otsu’s methods to Hsieh’s methodology for cores 1U and 1D. The top surface of the core is at 0 mm. 

 

Figure 5.6. Top: plots of voids and solid content from Hsieh et al. (1998) and Otsu methods for cores 3U and 3D. 

Bottom: plots of the difference of voids with Otsu’s methods to Hsieh’s methodology and difference of solids with 

Otsu’s methods to Hsieh’s methodology for cores 3U and 3D. The top surface of the core is at 0 mm. 

1U 1D

3U 3D
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Figure 5.7. Top: plots of voids and solid content from Hsieh et al. (1998) and Otsu methods for cores 4U and 4D. 

Bottom: plots of the difference of voids with Otsu’s methods to Hsieh’s methodology and difference of solids with 

Otsu’s methods to Hsieh’s methodology for cores 4U and 4D. The top surface of the core is at 0 mm. 

 

Figure 5.8. Top: plots of voids and solid content from Hsieh et al. (1998) and Otsu methods for cores 5U and 5D. 

Bottom: plots of the difference of voids with Otsu’s methods to Hsieh’s methodology and difference of solids with 

Otsu’s methods to Hsieh’s methodology for cores 5U and 5D. The top surface of the core is at 0 mm. 

4U 4D

5U 5D
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Analysis of void, mixed, and cementitious material content 

Content trends with depth 

Void and cementitious material content determined with Hsieh methodology cycle up and down 

complementary with depth for all cores (figure 5.9). This is expected as they are dominating 

components within PC. Mixed component fraction is also plotted against depth in figure 5.9 for 

all cores. Void and cementitious material fractions vary between cores more than the mixed 

component fraction. For all cores, mixed component fraction has a max of 0.26 which occurs at 

3.6 mm in core 3D. The maximum void fraction is 0.47, which occurs at 72.5 mm in core 4U, and 

the minimum is 0.03, which occurs at 1.3 mm in core 5D, for all cores. Cementitious material 

fraction has a maximum of 0.95 at 10.5 mm in core 5D. The minimum cementitious material 

occurs at 95.5 mm in core 4U and is 0.47. Maximum mixed, minimum voids, and maximum 

cementitious material content all occur near the top of the cores. These properties should be 

related to clogging; therefore, the top 10 mm is quantified separately. 

The average material content fractions of the cores and the top 10 mm of the cores provides 

insight into the difference between cores, gradient, and depth. Averages of the void, cementitious, 

and mixed material fractions are listed in table 5.2. The top 10 mm is included separately because 

clogging is suspected in this region based on the findings in figure 5.4 and because maximum 

mixed component fractions occur in this region. In general, the void and cementitious material 

fractions in the top 10 mm were less than core averages. The top 10 mm has on average 0.03 

lower void fraction than the entire core. This occurs because the mixed component fraction was 

greater in the top 10 mm for most cores. Clogging is considered the primary cause of the 

differences.  
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Figure 5.9. Void, mixed, and cementitious material component fractions with depth for cores 1U, 1D, 3U, 3D, 4U, 4D, 

5U, and 5D from Hsieh et al. (1998) methodology. The top surface of the core is at 0 mm. 
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The cores are utilized to represent the PC from which they were cut, but it is important to note 

that each core represents less than 0.02% of the total surface area of the test plots. There is 

variability between core void content of cores from the same test plot. The average absolute 

difference is 0.032 between the void fraction from up-gradient to the down-gradient core from the 

same test plot. Void content fraction of the top 10 mm had a slightly higher average absolute 

difference of 0.038 for up compared to down gradient. This may be caused by clogging at the 

surface. Though, differences between up- and down-gradient were not significantly different at a 

95% confidence level when tested with a paired t-test for the core averages nor the top 10 mm 

averages. Plot 1 was the only plot tested that had significant difference between the up-gradient 

infiltration rate and down-gradient infiltration rate based on the finding in chapter IV (figure 4.5). 

Lack of significant differences between up- and down-gradient void content determined from x-

ray analysis and Hsieh methodology supports the findings that the plots 3 and 5 were clogged all 

along the gradient.  

Table 5.2. Average void, solid, and mixed content of the entire core and the top 10 mm of each core from Hsieh et al. 

(1998) methodology. 

 Voids  Solid (cementitious)  Mixed 

 Core 

average 

(fraction) 

Top 10 

mm 

(fraction) 

 Core 

average 

(fraction) 

Top 10 

mm 

(fraction) 

 Core 

average 

(fraction) 

Top 10 

mm 

(fraction) Sample ID   

1U 0.162 0.133  0.702 0.662  0.137 0.205 

1D 0.153 0.101  0.771 0.734  0.076 0.166 

3U 0.199 0.210  0.726 0.709  0.076 0.081 

3D 0.177 0.117  0.733 0.715  0.090 0.168 

4U 0.325 0.290  0.620 0.628  0.055 0.081 

4D 0.231 0.283  0.682 0.586  0.087 0.131 

5U 0.138 0.082  0.773 0.767  0.089 0.151 

5D 0.141 0.061  0.797 0.859  0.062 0.081 
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Component fractions vary with depth (figure 5.9). The void content increases with depth while 

the cementitious material decreases for all cores except 4D. This is the result of the installation 

process. A vibratory screed and roller were used to finish the concrete. This caused compaction 

near the surface. Listed in Table 5.3 are fit coefficients for linear regression models of void 

content for each core and the void fraction of the core and the top 10 mm of the core. Plot 5 has 

the lowest average void content (table 5.2) and has the strongest relationship between with depth 

according to R2 values. Linear regression models for 1U, 1D, 3U, 3D, and 4U have weak fits as 

indicated by R2 less than 0.5. The primary cause of the lack of fit is the cyclic pattern of the void 

fraction data with depth, which is influenced by the sample size, mix design, and clogging.  

Table 5.3. Void fraction and linear regression fit of void fraction with depth of each core and top 10 mm of each core. 

Sample 

ID 

Slope 

(voids fraction/mm) 

Intercept 

(voids fraction) 

R2 

1U 0.94 x 10-3 0.116 0.28 

1D 1.10 x 10-3 0.100 0.41 

3U 1.03 x 10-3 0.147 0.26 

3D 1.41 x 10-3 0.110 0.41 

4U 1.72 x 10-3 0.240 0.47 

4D -0.52 x 10-3 0.254 0.09 

5U 1.75 x 10-3 0.052 0.74 

5D 1.64 x 10-3 0.064 0.70 

 

Quantification of clogging 

The reconstructed image at 6.02 mm depth for 3D was visually selected to be segmented with 

Otsu’s and Hsieh’s methods to illustrate what looks like clogging material (figure 5.4). Mixed 

voxel classification accounts for the voxels that are associated with clogging. Therefore, mixed 

material can be used as means to quantify clogging in an automated process for all images. An 

automated process was needed for constancy between classification and to reduce processing 

time. Approximately 13000 images were processed. Additionally, mixed component fraction was 

greater in the top 10 mm portion compared to the core averages. This further suggests the 
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usefulness of quantify clogging with a mixed component fraction because clogging has been 

found by other to occur in the top portion of PC (Vancura 2012). 

Mixed component fraction is greater at the top than elsewhere for cores 1U, 1D, 3D, 4D, 5U, and 

5D. The mixed component fraction is at or near 0.2 for these cores and peaks between 4 mm and 

8 mm, after which, it decreases. Clogging is the primary cause of the elevated mixed component 

near the top. Plots 1, 3, and 5 were known to be clogged with infiltration rates of 13.8, 3.7, and 

1.6 mm/min, respectively. Plot 4 was not clogged, but the infiltration rate had decreased from 

1810 mm/min at instillation to 1120 mm/min. There is an additional increase of the mixed 

component fraction near the 50 mm of 1U, 3U, 3D, 4U, 4D, and 5U. This is assumed to be caused 

by CT image artifacts near the edges of scans. Mixed component fraction peaks near the middle 

of the cores are not as great as the peaks near the surface, except for 4U, which was not clogged. 

Additionally, there is an increase in mixed components near the bottom of some of the cores. This 

is also assumed to be the result of image artifacts produced by the x-ray process. 

The predominate factor influencing mixed component changes with depth are clogging and CT 

image reconstruct artifacts. Factors that were not considered that may influence the mixed 

component quantity and relationship to clogging include the density of clogging material, the 

bulk density of clogged regions, and the individual size clogging particles. The test plots from 

which the cores were collected were cleaned and the particles collected during hand vacuuming 

were collected and quantified. Results from cleaning are in chapter IV. Clogging particles 

collected during vacuuming range from 10 to 4000 µm. The voxel size used for reconstruction 

was 60.15 μm. Some of the clogging material occupies entire voxels and therefore classified as 

cementitious material rather than mixed material. Additionally, clogging material that is tightly 

packed into the pore can be classified as cementitious material. Denser clogged regions may have 

influenced the low mixed component fractions near the top of 3U and 5D. These locations were 

completed clogged based on infiltration rates measurement prior to cutting cores. The location 
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from which these cores were collected may have experienced repeated vehicle traffic that would 

cause higher bulk densities in these cores. 

Trends between component fractions and pervious concrete mix design and field measured 

performance 

Pervious concrete is typically made from three basic material classifications: water, cement paste, 

and aggregate. The proportions of these materials define the mix design and have an influence on 

the internal structure. Mix design proportions reported as ratios between common materials are 

plotted against void content (figure 5.10). Linear regression trend lines are included. Void content 

is the average for the core. Mix design data is on a plot bases, therefore, each set of plotted points 

has only three unique points values for mix design. This occurs because there are two cores per 

plot. 

Cores with higher void content had lower fresh unit weight. This trend was expected as Kevern et 

al. (2008) presented similar findings. Trends with other PC mix design parameters were less 

pronounced or completely lacking. Sand content (sand:(sand+aggregate)) does not trend with 

void content. This is occurring because the sand in the mixes tested is a small portion compared 

to the crush rock aggregate quantity. Sand content may influence the size of the voids but does 

not affect the content of the voids in the tested cores. The total aggregate content, which is the 

combination of sand and crushed rock aggregate, trend with void content is slightly positive and 

has a weak relationship (R2=0.17). This weak relationship is caused in part by the limited number 

of data points and small range of aggregate ratios. The reported aggregate ratios range from 3.52 

to 4.52. Cores with increased voids where those with higher aggregate to cement paste ratio 

(figure 5.10). The relationship would vary if the aggregate size between PC mix design varied. 

Reported mean aggregate sizes were the same for all cores.  
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Figure 5.10. Top: plot of average Hsieh et al. (1998) void content of the entire core and fresh unit weight from chapter 

4. Bottom left: plot of average Hsieh void content of the entire core and water:(cement_fly ash) ratio and 

sand:(agg.+sand) ratio. Bottom right: plot of average Hsieh void content of the entire core and cement:(fly ash) ratio 

and (agg.+sand):(cement_fly ash) ratio. Agg. stands for aggregate. 

Void content and cementitious material determined with Hsieh methodology are not directly 

linked as the complement of each other as they are with a binary segmentation process. Trends 

between solid content and PC mix design along with mixed content and PC mix design were 

analyzed in addition to voids. Analysis of cementitious content and mixed content did not result 

in unique trends between PC mix design parameters that void content did not provide. Pearson’s 

correlation coefficient between content fractions and PC mix design parameters are listed in table 

5.3 to illustrate the similarities. The correlations of PC mix design to cementitious material 

content have similar magnitude but opposite sign of correlations with void content. This occurs 
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because the cementitious material is the near complement of void content. Mix content was not 

strongly correlated PC mix design parameters. There was a moderate correlation between the 

mixed fraction of the top 10 mm and % recover to phase 2 infiltration rates. This indicates that 

plots with more clogging were not cleaned as well as plots with less clogging. Core average voids 

was also moderately related to % recover to phase 2 infiltration rates. This is expected because 

PC with more pore space will maintain unobstructed pores even if some pores clog compared to 

PC with low void content. Linear regression relationships to % recover to phase 2 infiltration 

rates are shown in figure 5.11. 

Table 5.4. Pearson's correlation coefficients between the average Hsieh void, mixed, and cementitious (solid) material 

component fraction of each core and the top 10 mm of each core and field measured parameters and mix design. Green 

values have a strong positive correlation (>0.75) and red values have a strong negative correlation (<-0.75). 

  

Core 

average 

voids 

(fraction) 

Top 10 

mm voids 

(fraction) 

Core 

average 

cemt. 

(fraction) 

Top 10 

mm avg. 

cemt. 

(fraction) 

Core 

average 

mixed 

(fraction) 

Top 10 

mm 

mixed 

(fraction) 

S:(A+S) 0.16 0.23 -0.19 -0.24 0.05 -0.02 

W:(C+FA) -0.56 -0.64 0.57 0.59 0.09 0.16 

C:FA 0.69 0.78 -0.73 -0.77 -0.06 -0.11 

(A+S)/(C+FA) 0.41 0.41 -0.49 -0.54 0.09 0.18 

Fresh Unit Weight (kg/m3) -0.86 -0.89 0.86 0.84 0.18 0.18 

Initial infiltration rate (mm/min) 0.88 0.90 -0.84 -0.79 -0.28 -0.30 

Initial clogging duration (days) 0.33 0.29 -0.12 0.07 -0.56 -0.68 

Phase 2 avg. inf. rate (mm/min) 0.88 0.91 -0.85 -0.80 -0.27 -0.29 

Phase 2 duration (days) 0.61 0.62 -0.66 -0.68 -0.02 0.03 

% recovery to phase 2 inf. rate 0.64 0.45 -0.14 0.03 -0.38 -0.51 

S – sand, A – aggregate, W – water, C – cement, FA – fly ash 

inf. – infiltration, avg. – average, cemt. – cementitious 
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Figure 5.11. Left: plot of average Hsieh et al. (1998) void content of the entire core and % percent recovery of the 

phase 2 infiltration rate after Vactor truck cleaning from chapter 4. Right: plot of average Hsieh mixed component 

content for the top 10 mm of the cores and % percent recovery of the phase 2 infiltration rate after Vactor truck 

cleaning from chapter 4. Pervious concrete test plot 4 is not included because it was not cleaned with the Vactor truck 

Average core void content is positively related to the initial and phase 2 average infiltration rates 

(figure 5.12). This is a logical relationship because PC with more voids has the potential to pass 

more water per area of PC. However, the quantity of voids through segmentation does not 

directly indicate that the voids provide a continuous path from the top to the bottom. Further 

analysis of spatial connectivity of the pores may improve the relationship between void content 

and infiltration rate performance. Regardless of the connectivity of the pores, there is a strong 

correlation between voids and the initial infiltration rate and infiltration rate as the PC clogged. 

Duration of the phase 2 was greater for cores with greater void content (figure 5.12). A linear 

regression fit explains only 37% of the variability, but the correlation coefficient is moderate at 

0.61. This relationship is similar to that of the infiltration rate in that more voids provides more 

opportunity for infiltration rate regards of the size. It is expected that PC with greater voids will 

continue to have open pores even as some clog. The size and shape of the pores will determine 

the size of particles that will clog the pores. An initial attempt to characterize the pore size of the 

PC cores is provided in appendix A6. 
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Figure 5.12. Left: plot of average Hsieh et al. (1998) void content of the entire core and the initial and phase 2 average 

infiltration rate from chapter 4. Right: plot of average Hsieh void content of the entire core and phase 2 duration from 

chapter 4. 

CONCLUSIONS 

Utilizing known information about the components within PC and photon statistics of x-ray CT 

proved to be a valid and useful method to quantify porosity. Content classification and 

quantification with Hsieh’s method more accurately rejected regions of high-density 

heterogeneity that appear to be clogged regions compared to Otsu’s threshold and segmentation. 

Fraction of cement paste and aggregate could not be properly identified with Hsieh’s method 

because of image artifacts associated with x-ray CT and the similarity between the densities of 

the two materials. Void fraction increased with depth for most cores. 

Analysis was completed on cores that were known to have clogged pores based on reduced 

infiltration rates, making the results presented here more applicable to aged PC that has been 

subjected to stormwater runoff. Analyzing PC with clogging may be more useful for long-term 

planning and modeling of PC because PC exposed to stormwater does not maintain its initial 

condition for an indefinite period.  

Clogging was more prevalent in the top 10 mm of the cores based on increased mixed component 

fraction in this region. However, no definitive process is evident to isolate only clogging material. 
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Density similarities between clogging material and cementitious material and mixed voxel that 

occur at the edges of void and cementitious material influence the quantity of the mixed 

component fraction. 

Component fraction averages for the cores were related to many of the PC mix design ratios and 

field performance infiltration rate and cleaning performance. In general, cores with less void 

content had mix designs with more cementitious material and lower infiltration rates. Cleaning 

performance was negatively related to the mixed component content fraction of the top 10 mm of 

the cores. This further indicates the link between mixed component and clogging. Correlations in 

the study are based on a limited dataset; eight data points for length and void correlations, four 

data points for mix design and long-term performance parameters, and three data points for phase 

3 regression slope and cleaning performance.  
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CHAPTER VI 
 

 

CONCLUSION 

 

MAJOR FINDINGS 

Three different research projects were completed to assess aged bioretention cells (BRCs) and 

pervious concrete (PC). The first project, chapter III, focused on two 8-year old BRCs. Both 

BRCs were flood tested 1-year after construction and discussed in Christianson et al. (2012). 

Similar flooding tests were completed and compared to the 1-year after results to determine 

changes in performance. Additionally, water samples were collected from the inlet, overflow, and 

underdrain and analyzed for E. coli, enterococci, nitrate, pH, turbidity, ortho-phosphate, chloride, 

electrical conductivity, and pH. The major findings from chapter III are: 

1. Aged BRCs constructed with fly ash amended filter media maintained sufficient storage 

and drawdown rates to meet design standards. 

2. Change in BRC drawdown rate after 8-years varied. One of the BRC exhibited no 

measurable change, while the other decreased by 65 %. 

3. A short antecedent dry period resulted in decreased volume reduction but similar peak 

flow mitigation. Additionally, antecedent dry period impacted pollutant leaching. E. coli, 

enterococci, EC, NO3-N, pH, and turbidity levels from underdrain samples were 

significantly lower.
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4. E. coli and enterococci leached from both aged BRCs when flushed with treated 

municipal water. 

The second project, chapter IV, was the assessment of infiltration rate of five pervious concrete 

tests plots over a 2.5-year period. Each of the plots was constructed from a different mix but 

installed by the same company. The test plots were installed on a slope, received stormwater 

runoff from an upslope impervious asphalt surface, and each was approximately the size of two 

parking stalls. In addition to monitoring infiltration rates, cleaning methods evaluated on clogged 

pervious concrete and correlations were development between long-term infiltration rate trends, 

cleaning performance, and mix design. Major findings from chapter IV are: 

1. The infiltration rate of PC on a slope that received stormwater runoff from an upslope 

impervious surface underwent three phases as it aged. The infiltration rate phases were: 

1) initial decrease, 2) steady period, and 3) secondary decrease. 

2. The average combined duration of phases 1 and 2 was 650 days. 

3. Combining spraying water and vacuuming with a Vactor truck restored infiltration rates 

to near phase 2 levels. 

4. Mixes with higher sand content experienced improved cleaning performance. 

The third study, chapter V, was the assessment and quantification of voids, clogging, and 

cementitious material content of PC cores with x-ray computer tomography methods. A 

frequency distribution fitting segmentation method developed by Hsieh et al. (1998) was 

evaluated to quantify multiple components within clogged PC. Segmentation results were 

compared to the commonly used Otsu (1979) gray level segmentation method. PC mix design and 

field measured performance measurements were compared to segmentation results. The major 

findings from chapter V are: 
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1. Multiple component segmentation is a valid method for quantification of clogged PC 

because it identifies void space, areas of high heterogeneity (which can be caused by 

clogging), and cementitious material. 

2. Segmenting x-ray images of PC with Hsieh et al. (1998) frequency distribution fitting 

methodology resulted in an average of 5% less porosity than with the common Otsu 

(1979) methodology because it more accurately rejected regions of clogging material. 

3. Infiltration based performance measures and PC mix design were strongly correlated to 

void content. PC with higher fresh unit weight had less voids. Plots that were most 

efficiently cleaned had less mixed component voxels (an indication of clogging) in the 

top 10 mm of the analyzed cores. 

BROADER IMPACTS 

Scientific community 

The results here add to the existing body of long-term performance studies related to LID, but 

overall, this field of research is still lacking. Performance of the two tested BRC varied. The 

possible influence of a shallow water table, roll of vegetation, and influence of animals on the 

long-term performance of BRCs need further investigation. Flooding tests proved to be a viable 

testing method and should be considered for future assessments of infiltration based LID 

practices. Four out of five pervious concrete mixes that were studied clogged during the 2.5-year 

period. The clogging rate was influenced by mix design but was ultimately caused by washed on 

sediments. The impact of source control on pervious concrete and other LID practices is lacking.  

The results from all three studies are all related to the specific design of the LID practices that 

were tested. The BRC exhibited short-circuiting of inflow to the underdrain. Additional research 

is needed to develop designs that increase the flow path, both through the filter media and in the 

ponded area. The results indicated that exfiltration was a major component of the water balance 

of the tested BRCs. Designs that encourage exfiltration while ensuring complete drawdown of the 
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storage water in the filter media are needed. Designs that utilize multi-stage underdrain outlets, 

similar to stormwater detention pond outlet risers, could be developed and researched. Related to 

pervious concrete, there exists opportunities to evaluate different mix design that may improve 

filter performance while improving cleaning efficiency. Sand content is a potential mix 

component that could be further investigated as it was found to be correlated to many 

performance parameters.  

Chapter V utilized computer tomography methods from other fields of research to evaluate PC. 

The results are an example of how the research of other porous medias can be applied to pervious 

concrete to investigate clogging. The frequency distribution fitting component content method 

developed by Hsieh et al. (1998) has limited application in the literature, but proved to be a useful 

approach to quantify PC. 

Practicing professionals 

LID is now a common, and often preferred, stormwater management technique. The results from 

this dissertation can benefit the professional stormwater community. The tested BRC performed 

at or near design specifications. Design features that may have contributed to the long-term 

performance include the addition of sand plugs through growth media, amendment of fly ash at 

5% by weight, and inclusion of an underdrain with multiple laterals. These design features should 

be considered for future BRCs. However, modified underdrain configurations should be 

considered if increased exfiltration or increased discharge times are wanted. 

Maintenance proved to be a necessity for the tested pervious concrete. Yearly preventive cleaning 

and inspection for clogging is recommended for all types of permeable pavement. Any upslope 

impervious surface should also be cleaned in addition to cleaning the pervious concrete. This type 

of cleaning schedule could prevent the need for time-intensive restorative cleaning and ensure 

long-term success of pervious concrete. Furthermore, source control of sediments near pervious 
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concrete is highly recommend. Once clogged, restorative cleaning is needed. The simultaneous 

use of spraying water and vacuuming should be considered. 
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APPENDIX A 
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APPENDIX A1 – PEARSON'S CORRELATION TABLE OF LONG-TERM CLOGGING 

PARAMETERS, MIX DESIGN, AND CLEANING PERFORMANCE. 
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APPENDIX A2 – HSIEH ET AL. (1998) FREQUENCY DISTRIBUTION FITTING 

MATLAB CODE 

%function [] = histFitStackFun_V3() 
%% Set working folder 
tic 
% set working folder 
mainFolderName = 'C:\Users\ajmclem\Desktop\PC xray 

temp\beamHardCorCombined\'; 
subFolderName = '5D\'; 
folderName = sprintf('%1$s%2$s',mainFolderName,subFolderName); 
imageSetID = '5D'; 
coreNum = 8; 

  
%% Define voxel size 
voxelSize = 60.154114; % (um) 

  
%% Image intensity information 
% these values were manually determined by average the attenuation 

values 
% of a known region with in the center slice of each stack. Where the 
% stacks are split into each scan (i.e. top and bottom of a single 

core) 
% Order: 1UT, 1UB,  1DT,  1DB,  3UT,  3UB,  3DT,  3DB,  4UT,  4UB,  

4DT,  4DB,  5UT,  5UB,  5DT,  5DB 
att1 = [11310,11300;10100,12097;12350,10500;6300, 10800; 6000,10100; 

4300,11700;11200,12000; 7100, 4500]; 
att2 = [21400,22400;18700,24000;25250,21250;11800,22800;12700,22500; 

9100,22000;18900,21200;11400, 8400]; 
att3 = 

[24500,25700;22400,28700;29650,25300;14150,26700;15100,26250;10500,2730

0;24100,27200;14800,10900]; 

  
% image number of the last image in the top image stack 
% need to apply the correct density adjustment 
%               1U   1D   3U   3D   4U   4D   5U   5D 
topLastImage = [829, 816, 816, 787, 850, 816, 816, 816]; 

  
% densities; paste density is defined inside loop 
rho1 = 1.15; % density of air 
rho3 = 2500; % density of aggregate 

  
%% Load image stack 

  
% Number of images 
D = dir([folderName, '\*.tif']); 
numIm = length(D(not([D.isdir]))); 

  
%% Preallocate variables 
% laod images into a 3D matrix (i.e. stack) 
%imHistograms = nan(65536, numIm); 
solution = nan(numIm, 12); 

  
%% solver stuff not needed in the loop 
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% other constraints 
% R1+R2+R3+Rm = 1 
% the sum of the product Aeq*x = beq 
% Ae1 --> muMixed, R1, R2, R3, Rm, a,  b,  stdM 
Aeq = [0, 1, 1, 1, 1, 0, 0, 0]; 
beq = 1; 
% no linear inequalities 
%A = []; bs = []; 
A = [0, 0, 0, 0, 0, -1, 1, 0]; bs = 0; 

  
% solver 
nonlcon = []; 
options = optimset('Display', 'off'); 

  
%% solver loops through images 
parfor i = 1:numIm 
    %% 
    if i <= topLastImage(coreNum) 
        location = 1; % top of core 
    else 
        location = 2; % bottom of core 
    end 

    
    %% get image 
    fileName = sprintf('%1$s%2$04d.tif',folderName,i); 
    im=imread(fileName); 
    imSize = size(im); 
    imHeight = imSize(1); % [pixels] in x-axis 
    imWidth = imSize(2); % [pixels] in y-axis 

     

    %% Crop 
    % cropping width and height 
    cDiaMm = 40; % diameter of crop [mm] 
    % cropping parameters 
    cRad = round(cDiaMm/2/voxelSize*1000); % radius of crop [pixels] 
    ci = [round(imHeight/2),round(imWidth/2)]; % center [pixels] 

([c_row, c_col, r]) 
    cRangeX = ((ci(1)-cRad):(ci(1)+cRad)); % pixel range to crop to 
    cRangeY = ((ci(2)-cRad):(ci(2)+cRad)); % pixel range to crop to 
    imCropSq = im(cRangeX,cRangeY); % crop 
    numObs = length(imCropSq)*length(imCropSq); 
    % view image 
    %{ 
    f2 = figure; 
    imshow(imCropSq) 
    title('cropped image') 
    %} 

     
    %% Convert hist x-axis to density 

  
    imDen = double(imCropSq)-att1(coreNum,location); 
    imDen = imDen.*(rho3/(att3(coreNum,location)-

att1(coreNum,location))); 
    imDenSize = size(imDen); 
    imDen = reshape(imDen,[imDenSize(1)*imDenSize(2),1]); 
    [hisIm,den] = hist(imDen,1000); 
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    hisIm = hisIm./sum(hisIm); % converte to PDF 
    %figure; plot(den,hisIm) 

     
    %% Fitting minimization 

  
    % known input variables: x, hisIm, Q1_loc, Q2_loc 
    % set means, i.e. location of pure components 
    mu1 = rho1; 
    mu3 = rho3; 
    mu2 = rho3*(att2(coreNum,location)/att3(coreNum,location)); % 

density of cement paste 

     
    % first guess of unknowns 
    muM = (mu1+mu3)/2; % mean density of peaks, start at midway between 

mu1 and mu2 

     
    %% 
    if i <= topLastImage(coreNum) 
        sig_0 = 266;% abs(den(2)-den(1))*1200; 
    else 
        sig_0 = 265;% abs(den(2)-den(1))*1200; 
    end 

     
    %     muMixed,     R1,   R2,   R3, Rm,  a,   b,    sigma   % 

variables to solve 
    x0 = [muM,         0,    0,    0,  0,   6,   2,    sig_0]; % first 

guess 
    lb = [mu1+4*sig_0, 0,    0,    0,  0,   1.1, 1.01, 150]; % lower 

bound 
    ub = [mu2-3*sig_0, 0.75, 0.75, 1,  0.5, 5,   5,    265]; % upper 

bound 

     
    %% 
    % define function to minimize 
    % solver variables, x 
    % passing extra variables through 
    fun = @(x)minimizeFun(x, den, hisIm, mu1, mu2, mu3, numObs); 

     
    % solver 
    [x,fval,~,~] = fmincon(fun,x0,A,bs,Aeq,beq,lb,ub,nonlcon,options); 

     
    % store results 
    %imHistograms(:,i) = hisIm; 
    solution(i,:) = [mu1, mu2, mu3, x, 1-fval]; 

     
end 

  
%% stop timer 
dt = toc/60; 
sprintf('Code ran for %1$s mins',dt) 

  
%% check out the results 
% 
figure 
plot(solution(:,5:8)) 
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xlabel('depth (as image num)') 
ylabel('content as fraction') 
grid on  
legend('voids','paste','solids','mixed') % create legend 

  
figure; 
depth = (voxelSize:voxelSize:voxelSize*numIm)./1000; 
plot(depth,solution(:,5)) 
hold on 
plot(depth,solution(:,6)+solution(:,7)); 
plot(depth,solution(:,8)) 
hold off 
xlabel('depth (mm)') 
ylabel('content as fraction') 
grid on  
legend('voids','cementitious material','mixed') % create legend 

  
figure; 
plot(depth,solution(:,6),depth,solution(:,7)); 
xlabel('depth (mm)') 
ylabel('content as fraction') 
legend('cement paste','aggregate') 
%print(imageSetID,'-dpng') 
%} 
%% Look at solution 

  
% split out solver variables 
mu1, mu2, mu3 
muM = x(1) 
R1 = x(2) 
R2 = x(3) 
R3 = x(4) 
Rm = x(5) 
a = x(6) 
b = x(7) 
sig = x(8) 

  
% get fit curve 
[f, f1, f2, f3, fm, R_sqr, Xc] = HsiehHistFitting(... 
    den, hisIm, mu1, mu2, mu3, muM,... 
    R1, R2, R3, Rm, a, b, sig, numObs); 

  
% Chi-squre fit 
R_sqr 
Xc 

  
%% plot 
figure(1); 
subplot(2,2,1) 
imshow(imCropSq) 
title('image') 

  
subplot(2,2,2) 
plot(den,f1,den,f2,den,f3,den,fm) 
title('density distributions of components') 
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ylabel('probability') 
grid on 
legend('voids','paste','agg','mixed') % create legend 

  
subplot(2,2,3) 
plot(den,hisIm,'.',den,f) 
ylabel('probability') 
grid on  
legend('image histogram','fitted histogram') % create legend 

     
subplot(2,2,4) 
plot(den,hisIm,'.',den,f1,den,f2,den,f3,den,fm) 
ylabel('probability') 
grid on  
legend('image histogram','voids','paste','agg','mixed') % create legend 

  

  
% save all variables as a Matlab file 
% dataName = 'histogramFit'; 
% filename = sprintf('%1$s_%2$s.mat',imageSetID,dataName); 
% save(filename,'-v7.3') 

  

  
%% Histogram 
histScal = 10; 
[hisIm2,bins] = imhist(imCropSq,65536); 
hisIm2(end)=0; %remove white (65536) background 
hisIm2(1)=0; %remove black (1) background 
hisIm2 = hisIm2./sum(hisIm2); % converte to PDF 

     
%binsAdj = bins-att1(coreNum,location);%+rhoP1; % shift axis down to 

the density of air 
%den = binsAdj.*(rho3/(att3(coreNum,location)-att1(coreNum,location))); 
%{ 
    f3 = figure; 
    plot(bins,hisIm) 
    title('image histogram') 
%} 

  
%% Segment and view 

  
otusThresLevel = otsuthresh(hisIm2); 
otusLocIdx = round(otusThresLevel*length(hisIm2)); 
binSize = (bins(2)-bins(1)); 
otusLocVal = otusLocIdx*binSize; 

  
% Otsu 
% pores 
imOtsuPores = imCropSq; 
imOtsuPores(imOtsuPores>otusLocVal) = 65536; 
% solid 
imOtsuSolid = imCropSq; 
imOtsuSolid(imOtsuSolid<otusLocVal) = 0; 

  
%% Hsieh 
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imDen = double(imCropSq)-att1(coreNum,location); 
imDen = imDen.*(rho3/(att3(coreNum,location)-att1(coreNum,location))); 

  
% pores 
[~,p1] = max(f1); 
[~,pm] = max(fm); 
[~,intersection] = min(abs(f1(p1:pm)-fm(p1:pm))); 
thresHsiehVoids = den(p1+intersection); 
imHsiehPores = imCropSq; 
imHsiehPores(imDen>thresHsiehVoids) = 65536; 

  
% aggregate 
[~,p2] = max(f2); 
[~,p3] = max(f3); 
[~,intersection] = min(abs(f3(p2:p3)-f2(p2:p3))); 
thresHsiehSolid = den(p2+intersection); 
imHsiehSolid = imCropSq; 
imHsiehSolid(imDen<thresHsiehSolid) = 0; 

  
% paste 
[~,intersection] = min(abs(f3(pm:p2)-f2(pm:p2))); 
thresHsiehPaste = den(pm+intersection); 
imHsiehPaste = imCropSq; 
imHsiehPaste(imDen<thresHsiehPaste) = 65536; 
imHsiehPaste(imDen>thresHsiehSolid) = 65536; 

  
% mixed 
imHsiehMixed = imCropSq; 
imHsiehMixed(imDen<thresHsiehVoids) = 65536; 
imHsiehMixed(imDen>thresHsiehPaste) = 65536; 

  
%% plot 
figure(2) 
subplot(3,3,1) 
imshow(imCropSq); title('original') 

  
subplot(3,3,2) 
plot(den,hisIm,den,f) 
ylabel('probability') 
grid on  
legend('image histogram','fitted histogram') % create legend 

     
subplot(3,3,3) 
plot(den,hisIm,den,f1,den,f2,den,f3,den,fm) 
ylabel('probability') 
grid on  
legend('image histogram','voids','paste','agg','mixed') % create legend 

  
subplot(3,3,4) 
imshow(imOtsuPores); title('Otsu pores, with white background') 

  
subplot(3,3,7) 
imshow(imOtsuSolid); title('Otsu solid, with black background') 
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subplot(3,3,5) 
imshow(imHsiehPores); title('Hsieh pores, with white background') 

  
subplot(3,3,8) 
imshow(imHsiehSolid); title('Hsieh solid, with black background') 

  
subplot(3,3,6) 
imshow(imHsiehMixed); title('Hsieh mixed, with white background') 

  
subplot(3,3,9) 
imshow(imHsiehPaste); title('Hsieh paste, with white background') 
%} 

  
%% save all variables as a Matlab file 
%{ 
dataName = 'histogramFit'; 
filename = sprintf('%1$s_%2$s.mat',imageSetID,dataName); 
save(filename,'-v7.3') 
%} 

 

 

function [fminValue] = fmincon(... 
    x, den, hisIm, mu1, mu2, mu3, numObs) 
% split out solver variables 
muM = x(1); 
R1 = x(2); 
R2 = x(3); 
R3 = x(4); 
Rm = x(5); 
a = x(6); 
b = x(7); 
std = x(8); 

  
[~, ~, ~, ~, ~, Rsq, ~] = HsiehHistFitting(... 
    den, hisIm, mu1, mu2, mu3, muM,... 
    R1, R2, R3, Rm, a, b, std, numObs); 

  
fminValue = 1-Rsq; 

 

 

function [f, f1, f2, f3, fm, R_sqr, Xc] = HsiehHistFitting(... 
    den, hisIm, mu1, mu2, mu3, muM,... 
    R1, R2, R3, Rm, a, b, sig, numObs) 

  
% inputs %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% x, histogram bins 
% hisIm, image histogram 
% mu1, pure component 1 peak 
% mu2, pure component 2 peak 
% mu3, pure component 3 peak 
% muM, mixed component mean density 
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% R1, fraction of pure component 1 
% R2, fraction of pure component 2 
% R3, fraction of pure component 3 
% Rm, fraction of mixed component 
% a, beta-distribution alpha value 
% b, beta-distribution beta value 
% std, normal-distribution standard deviation 

  
% outputs %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% f_pure, pure component density distribution 
% f_mixed, mixed/partial voxel component density distribution 
% f_comp,  pure and mixed/partial voxel component density distribution 
% f, density distribution with photon statistics 
% R_sqr, R-squard of a linear fit between f and hisIm 
% Xc, chi-square fit between f and hisIm 

  
%% Mixed and partial voxel compoenent 

  
% fraction of mixed components 
% Rm = 1-R1-R2-R3; 
% mixed and partial voxel will be between the lowest and highest pure 
% components. The range of this is based on the lcoation of peaks. 
numPts = int16((mu2-mu1)/abs(den(2)-den(1))); 
%xm_range = (mu1:step:mu2); % mix/partial voxel range 
beta_range = linspace(0,1,numPts); 
% distribution, assume a beta distribution works 
Qm_betaPDF = betapdf(beta_range,a,b); % create PDF of a normal 

distribution 
Qm = Qm_betaPDF./sum(Qm_betaPDF); 
%figure; plot(Qm_betaPDF); sum(Qm_betaPDF) 

  
%% Photon statistical noise 

  
% create Gaussian distribution 
% according to Brown et al. 1993 (Accuracy of Gamma Ray Computerized 
% Tomography in Porous Media), the standard deviation is equation to 

the 
% squre-root of mean of I 
g_normPDF = normpdf(den,mu1,sig); % crate PDF of a normal distribution 
g1_noise = g_normPDF./sum(g_normPDF); 
g_normPDF = normpdf(den,mu2,sig); % crate PDF of a normal distribution 
g2_noise = g_normPDF./sum(g_normPDF); 
g_normPDF = normpdf(den,mu3,sig); % crate PDF of a normal distribution 
g3_noise = g_normPDF./sum(g_normPDF); 
g_normPDF = normpdf(den,muM,sig); % crate PDF of a normal distribution 
gM_noise = g_normPDF./sum(g_normPDF); 
%plot(den,g1_noise,den,g2_noise,den,g3_noise,den,gM_noise) 

  
%% Convolution of component histogram with photon statistics 

  
f1 = conv(g1_noise, R1, 'same'); 
f2 = conv(g2_noise, R2, 'same'); 
f3 = conv(g3_noise, R3, 'same'); 
fm = conv(gM_noise, (Qm*Rm), 'same'); 
f = f1+f2+f3+fm; 
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%% Fit quantification 

  
% linear model 
% mdl = fitlm(hisIm,f); 
% R_sqr = mdl.Rsquared.Ordinary; 
% R_sqr = true; 
SSr = sum((hisIm.*numObs-f.*numObs).^2); 
SSt = sum((hisIm.*numObs-mean(hisIm.*numObs)).^2); 
R_sqr = 1 - SSr/SSt; 

  

  
% Chi-square 
% density histograms (i.e. range from 0 to 1) are convereted to 

frequency 
Xc= true; 
% Xc_i = (((hisIm.*numObs)-(f.*numObs)).^2./(f.*numObs)); 
% Xc = sum(Xc_i(isfinite(Xc_i))); 
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APPENDIX A3 – OTSU (1979) SEGMENTATION POROSITY MATLAB CODE 

 

%% set working folder 
mainFolderName = 'C:\...'; 
subFolderName = '4Dc\'; 
folderName = sprintf('%1$s%2$s',mainFolderName,subFolderName); 
imageSetID = '4D'; 

  
%% Get num of images in folder 
% Number of images 
D = dir([folderName, '\*.tif']); 
numIm = length(D(not([D.isdir]))); 

  
%% pre-allocate loop variables  
porosity = nan(numIm,1); 
 

%% loop through the other images 
for i = 0:numIm 

     
    % open file 
    fileName = sprintf('%1$s%2$04d.tif',folderName,i); 
    im=imread(fileName); 

     
    % Otsu's segmentation 
    level = graythresh(im); 
    BW = imbinarize(im,level); % simple Otsu segmentation 
    BW = BW==0; %invert image 
    imSize = size(BW); 
     

    % Save porosity result 

    porosity(i) = sum(sum(BW))/(imSize(1)*imSize(2)); 

end 
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APPENDIX A4 – SEMIVARIOGRAM MATLAB CODE 

%% Setup 

 
% set working folder 
mainFolderName = 'C:\Users\ajmclem\Desktop\PC xray 

temp\beamHardCorCombined\'; 
subFolderName = '3D\'; 
folderName = sprintf('%1$s%2$s',mainFolderName,subFolderName); 
imageSetID = '3D'; 
coreNum = 4; 

  
voxelSize = 60.154114; % (um) 

  
%% Image intensity information 
% these values were manually determined by average the attenuation 

values 
% of a known region with in the center slice of each stack. Where the 
% stacks are split into each scan (i.e. top and bottom of a single 

core) 
% Order: 1UT,   1UB,   1DT,  1DB,   3UT,   3UB,     3DT,   

3DB,4UT,4UB,4DT,4DB,5UT,5UB,5DT,5DB 
att1 = [11310,11300;10100,12097;12350,10500;6300, 10800; 6000,10100; 

4300,11700;11200,12000; 7100, 4500]; 
att2 = [21400,22400;18700,24000;25250,21250;11800,22800;12700,22500; 

9100,22000;18900,21200;11400, 8400]; 
att3 = 

[24500,25700;22400,28700;29650,25300;14150,26700;15100,26250;10500,2730

0;24100,27200;14800,10900]; 

  
% image number of the last image in the top image stack 
% need to apply the correct density adjustment 
%               1U   1D   3U   3D   4U   4D   5U   5D 
topLastImage = [829, 816, 816, 787, 850, 816, 816, 816]; 

  
% densities; paste density is defined inside loop 
rho1 = 1.15; % density of air 
rho3 = 2500; % density of aggregate 

  
%% Load image stack 

  
% Number of images 
D = dir([folderName, '\*.tif']); 
numIm = length(D(not([D.isdir]))); 

  
%% Load image stack 

  
% preallocate loop variables 
% get sample image size 
fileName = sprintf('%1$s%2$04d.tif',folderName,1); 
imVec=imread(fileName); 
imSize = size(imVec); 
imHeight = imSize(1); % [pixels] in x-axis 
imWidth = imSize(2); % [pixels] in y-axis 
% crop image 
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cDiaMm = 40; % diameter of crop [mm] 
cRad = round(cDiaMm/2/voxelSize*1000); % radius of crop [pixels] 
ci = [round(imHeight/2),round(imWidth/2)]; % center [pixels] ([c_row, 

c_col, r]) 
cRangeX = ((ci(1)-cRad):(ci(1)+cRad)); % pixel range to crop to 
cRangeY = ((ci(2)-cRad):(ci(2)+cRad)); % pixel range to crop to 
imCropSq = imVec(cRangeX,cRangeY); % crop 
imSize = size(imCropSq); 
% create density matrix 
imDen = zeros(imSize(1),imSize(2),numIm); 

  
%% 
% loop through images and save into a single matrix as density 
for i = 1:numIm 

     

    % get sample image size 
    fileName = sprintf('%1$s%2$04d.tif',folderName,i); 
    imVec=imread(fileName); 
    imSize = size(imVec); 
    imHeight = imSize(1); % [pixels] in x-axis 
    imWidth = imSize(2); % [pixels] in y-axis 

     
    % crop image 
    cDiaMm = 40; % diameter of crop [mm] 
    cRad = round(cDiaMm/2/voxelSize*1000); % radius of crop [pixels] 
    ci = [round(imHeight/2),round(imWidth/2)]; % center [pixels] 

([c_row, c_col, r]) 
    cRangeX = ((ci(1)-cRad):(ci(1)+cRad)); % pixel range to crop to 
    cRangeY = ((ci(2)-cRad):(ci(2)+cRad)); % pixel range to crop to 
    imCropSq = imVec(cRangeX,cRangeY); % crop 

     
    % convert to density 
    %% 
    if i <= topLastImage(coreNum) 
        location = 1; % top of core 
    else 
        location = 2; % bottom of core 
    end 
    imDen_i = double(imCropSq)-att1(coreNum,location); 
    imDen_i = imDen_i.*(rho3/(att3(coreNum,location)-

att1(coreNum,location))); 

     
    imDen(:,:,i) = imDen_i;  

     
end 

  
clear imDen_i imVec D imCropSq 

  
% get image dimensions 
imSize = size(imDen); 
imLngX = imSize(1);   % num of voxels in X-direction 
imLngY = imSize(2);   % num of voxels in Y-direction 
imLngZ = imSize(3);   % num of voxels in Z-direction 
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%% Compute directional semivariograms 

 
% ~x-direction semivariogram~ 
% determine unique combination of pionts 
points = int8(ones(imLngX,imLngX)); 
unqPoints = logical(triu(points)); 
[ii,jj] = (find(unqPoints)); % location of unique points 
h_iijj = abs(ii-jj)*voxelSize; % distance vector 

  
% define semivariogram distances count and vectors for loop 
sumSqDiff = zeros(length(h_iijj),1); 
N_h_iijj = imLngY*imLngZ; 
N_h_iijj(1:length(h_iijj),1) = N_h_iijj; 

  
% loop 
parfor j = 1:imLngY % y-axis loop 
    for k = 1:imLngZ % z-axis loop 
        % get vector of voxels in direction being analyzed 
        semVec = imDen(:,j,k); % converted to double precision 
        % square difference between unique points 
        sqDiff = (semVec(ii)-semVec(jj)).^2; 
        sumSqDiff = sumSqDiff+sqDiff; 
    end 
end 

  
hx = unique(h_iijj); 
N_h = zeros(length(hx),1); 
sumSqDiff_h = N_h; 
for i = 1:length(hx) 
    h_iijj_true = h_iijj==hx(i); 
    N_h(i) = sum(N_h_iijj(h_iijj_true)); 
    sumSqDiff_h(i) = sum(sumSqDiff(h_iijj_true)); 
end 
Xvariogram = 1./(2*N_h).*sumSqDiff_h; % semivariogram 

  
% save data 
% x semivariogram 
SemVarTable = table(hx,Xvariogram,... 
    'VariableNames',{'length__mm' 'Semivariance'}); 
dataName = 'xSemVar'; 
filename = sprintf('%1$s_%2$s.csv',imageSetID,dataName); 
writetable(SemVarTable,filename) 

  
% ~Y-direction semivariogram~ 
% determine unique combination of pionts 
points = int8(ones(imLngY,imLngY)); 
unqPoints = logical(triu(points)); 
[ii,jj] = find(unqPoints); % location of unique points 
h_iijj = abs(ii-jj)*voxelSize; % distance vector 

  
% define semivariogram distances count and vectors for loop 
sumSqDiff = zeros(length(h_iijj),1); 
N_h_iijj = imLngX*imLngZ; 
N_h_iijj(1:length(h_iijj),1) = N_h_iijj; 
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% loop 
parfor j = 1:imLngX % y-axis loop 
    for k = 1:imLngZ % z-axis loop 
        % get vector of voxels in direction being analyzed 
        semVec = imDen(j,:,k); % converted to double precision 
        semVec = semVec'; 
        % square difference between unique points 
        sqDiff = (semVec(ii)-semVec(jj)).^2; 
        sumSqDiff = sumSqDiff+sqDiff; 
    end 
end 

  
hy = unique(h_iijj); 
N_h = zeros(length(hy),1); 
sumSqDiff_h = N_h; 
for i = 1:length(hy) 
    h_iijj_true = h_iijj==hy(i); 
    N_h(i) = sum(N_h_iijj(h_iijj_true)); 
    sumSqDiff_h(i) = sum(sumSqDiff(h_iijj_true)); 
end 
Yvariogram = 1./(2*N_h).*sumSqDiff_h; % semivariogram 

  
% save data 
% y semivariogram 
SemVarTable = table(hy,Yvariogram,... 
    'VariableNames',{'length__mm' 'Semivariance'}); 
dataName = 'ySemVar'; 
filename = sprintf('%1$s_%2$s.csv',imageSetID,dataName); 
writetable(SemVarTable,filename) 

  

% ~Z-direction semivariogram~ 
% determine unique combination of pionts 
points = int8(ones(imLngZ,imLngZ)); 
unqPoints = logical(triu(points)); 
[ii,jj] = find(unqPoints); % location of unique points 
h_iijj = abs(ii-jj)*voxelSize; % distance vector 

  
% define semivariogram distances count and vectors for loop 
sumSqDiff = zeros(length(h_iijj),1); 
N_h_iijj = imLngX*imLngY; 
N_h_iijj(1:length(h_iijj),1) = N_h_iijj; 

  
% loop 
parfor j = 1:imLngX % y-axis loop 
    for k = 1:imLngY % z-axis loop 
        % get vector of voxels in direction being analyzed 
        semVec = imDen(j,k,:); % converted to double precision 
        semVec = reshape(semVec,[length(semVec),1]); 
        % square difference between unique points 
        sqDiff = (semVec(ii)-semVec(jj)).^2; 
        sumSqDiff = sumSqDiff+sqDiff; 
    end 
end 

  
hz = unique(h_iijj); 
N_h = zeros(length(hz),1); 
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sumSqDiff_h = N_h; 
for i = 1:length(hz) 
    h_iijj_true = h_iijj==hz(i); 
    N_h(i) = sum(N_h_iijj(h_iijj_true)); 
    sumSqDiff_h(i) = sum(sumSqDiff(h_iijj_true)); 
end 
Zvariogram = 1./(2*N_h).*sumSqDiff_h; % semivariogram 

  
% save data 
% z semivariogram 
SemVarTable = table(hz,Zvariogram,... 
    'VariableNames',{'length__mm' 'Semivariance'}); 
dataName = 'zSemVar'; 
filename = sprintf('%1$s_%2$s.csv',imageSetID,dataName); 
writetable(SemVarTable,filename) 

  
% Visulize 
figure 
subplot(3,1,1) 
plot(hx/1000,Xvariogram) 
title('x-axis semivariogram') 
xlabel('distance (mm)') 
ylabel('semivariance') 
xlim([0 55]) 
xticks(0:5:55) 
grid on 
subplot(3,1,2) 
plot(hy/1000,Yvariogram) 
title('y-axis semivariogram') 
xlabel('distance (mm)') 
ylabel('semivariance') 
xlim([0 55]) 
xticks(0:5:55) 
grid on 
subplot(3,1,3) 
plot(hz/1000,Zvariogram) 
title('z-axis semivariogram') 
xlabel('distance (mm)') 
ylabel('semivariance') 
xlim([0 55]) 
xticks(0:5:55) 
grid on 

  

  
end 

  
toc 

  
save semivarData 
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APPENDIX A5 – SEMIVARIOGRAM MODEL FITTING MATLAB CODE 

function [] = semivariogramModelFitting() 
%% semivariogram modeling fitting 
clear 
load('C:\Users\ajmclem\Desktop\PC xray 

temp\resultsSemivar\5DsemivarData.mat',... 
    'Xvariogram', 'Yvariogram', 'Zvariogram','hx','hy','hz') 

  

  
%% process variables 
% only use points out the h = 0.5 image width 
% limit to 20 mm 
xV = Xvariogram(1:335); 
xH = hx(1:335); 
yV = Yvariogram(1:335); 
yH = hy(1:335); 
% limit to 50 mm 
zV = Zvariogram(1:832); 
zH = hz(1:832); 

  
% normilize varience values 
%xV = xV./max(xV); 
%yV = yV./max(yV); 
%zV = zV./max(zV); 

  
% convert to mm 
xH = xH./1000; 
yH = yH./1000; 
zH = zH./1000; 

  
%% minimize x-direction 
% variables to fit 
H = xH; 
V = xV; 
% first quess 
sill = 10000; % normalized 
range = 5; % (mm) 
i0 = [sill,range]; % first guess 
lb = [0,0]; % lower bound 
ub = [1e8,50]; % upper bound 
A = [];b = []; Aeq = []; beq = []; 
% define function to minimize 
% solver variables, x 
% passing extra variables through 
fun = @(x)minimizeRsq(x, V, H); 
% solver 
[x,fval,~,~] = fmincon(fun,i0,A,b,Aeq,beq,lb,ub); 
% output 
sprintf('x-direction') 
sill = x(1) 
range = x(2) 
R_sq = 1-fval 
% plot 
figure(1) 
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subplot(3,1,1) 
fit = sill*(1-exp(-(3*H./range))); 
plot(H,V,H,fit) 
title('x-direction') 
legend('emperical','fit') 

  
%% minimize y-direction 
% variables to fit 
H = yH; 
V = yV; 
% first quess 
sill = 10000; % normalized 
range = 5; % (mm) 
i0 = [sill,range]; % first guess 
lb = [0,0]; % lower bound 
ub = [1e8,50]; % upper bound 
A = [];b = []; Aeq = []; beq = []; 
% define function to minimize 
% solver variables, x 
% passing extra variables through 
fun = @(x)minimizeRsq(x, V, H); 
% solver 
[x,fval,~,~] = fmincon(fun,i0,A,b,Aeq,beq,lb,ub); 
% output 
sprintf('y-direction') 
sill = x(1) 
range = x(2) 
R_sq = 1-fval 
% plot 
subplot(3,1,2) 
fit = sill*(1-exp(-(3*H./range))); 
plot(H,V,H,fit) 
title('y-direction') 
legend('emperical','fit') 

  
%% minimize x-direction 
% variables to fit 
H = zH; 
V = zV; 
% first quess 
sill = 10000; % normalized 
range = 5; % (mm) 
i0 = [sill,range]; % first guess 
lb = [0,0]; % lower bound 
ub = [1e8,50]; % upper bound 
A = [];b = []; Aeq = []; beq = []; 
% define function to minimize 
% solver variables, x 
% passing extra variables through 
fun = @(x)minimizeRsq(x, V, H); 
% solver 
[x,fval,~,~] = fmincon(fun,i0,A,b,Aeq,beq,lb,ub); 
% output 
sprintf('z-direction') 
sill = x(1) 
range = x(2) 
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R_sq = 1-fval 
% plot 
subplot(3,1,3) 
fit = sill*(1-exp(-(3*H./range))); 
plot(H,V,H,fit) 
title('z-direction') 
legend('emperical','fit') 

  
%% 
function [fit] = semivariogramModel(H,sill,range) 

  
fit = sill*(1-exp(-(3*H./range))); 

  
function [fval] = minimizeRsq(x,V,H) 
sill = x(1); 
range = x(2); 

  
fit = semivariogramModel(H,sill,range); 

  
SSr = sum((V-fit).^2); 
SSt = sum((V-mean(V)).^2); 
R_sqr = 1 - SSr/SSt; 

  
fval = 1-R_sqr; 
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APPENDIX A6 – CHARACTERIZATION OF PERVIOUS CONCRETE WITH X-RAY 

COMPUTER TOMOGRAPHY AND GEOSTATISTICS DATA REPORT 

Introduction 

Multiple methods were applied to characterize pervious concrete (PC) cores. The outcome did not 

lead to a fully developed research project and do not fully align with the topic of chapter V. 

Methods and results of the additional work are presented here in a data report as a record. X-ray 

computer tomography data used by the methods presented here were the same data sets used in 

chapter V. The relative elementary volume (REV) is determined with the use of geostatistics and 

is compared to commonly used length parameters. Length parameters quantified include the two-

point correlation function and equivalent diameter. Segmentation of x-ray CT images is required 

to computer the two-point correlation function and equivalent diameter. Hsieh et al. (1998) 

segmentation result from chapter V were used to the length parameters calculations. 

Methods 

Collection of cores 

 

Figure A7.1. Coring drill and rig used to collect pervious concrete cores from the Tulsa, OK demonstrating plots 
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Table A7.1. Pervious concrete core identification labeling scheme, and total length. 

Core ID 

(plot #-gradient) 

Length 

mm 

1U 152 

1D 137 

3U 140 

3D 133 

4U 127 

4D 105 

5U 140 

5D 114 

 

Characterization of pores 

Three techniques were employed to characterize pore size of the voids within the PC cores. Two 

of the methods rely on segmented images while the third does not. Methods that require 

segmented images utilized voids identified through Hsieh relative frequency fitting. A 

representative pore diameter determined from voids in the two-point correlation length and 

equivalent diameter from non-connected pores. Semivariogram modeling was utilized to 

determine a representative length that does not rely on segmentation. 

A representative pore diameter was determined with the two-point correlation procedure 

developed by Berrymand and Blair (1986). Two-point correlation has been extensively used in 

PC research to identify representative pores sizes (Deo et al. 2010, Neithalath et al. 2010, Martin 

2013, Kuang et al. 2015, Sumanasooriya et al. 2009, Akand et al. 2016). The process involves 

randomly placing different length lines on the image and determining if both ends fall within the 

same material. The two-point correlation function is defined as 

𝑆2(𝑙) =
1

2𝑙 + 1
∑ 𝑆2 (𝑟,

𝜋𝑙

4𝑟
) 

2𝑟

𝑙=0

  (𝐴7.1) 
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where S2 denotes the second corrleation funciton, l is the length of the line, and r is the maximum 

radius of line l. Berryman and Blair (1986) showed that the two-point correlation function has the 

properties that 

𝑆2(0) = 𝜙 (𝐴7.2) 

and 

𝑆2(𝑙 → ∞) = 𝜙2 (𝐴7.3) 

where ϕ is the core porosity, segmented as void space. A representative pore size is calculated 

from the shape of the two-point correlation function as 

𝑑𝑇𝑃𝐶 =  
𝑙𝑇𝑃𝐶

1 − 𝜙
(𝐴7.4) 

The correlation length, lTPC, is the corresponding length when the slope of the two-point 

correlation function at l=0 intersects the horizontal asymptote defined by Eq. 5.9. Stacks of 

segmented images were analyzed for each core with ImageJTM (freely downloadable from 

www.rsb.info.nih.gov). The images were segmented using the component frequency fitting by 

Hsieh et al. (1998). A single representative pore diameter was determined for each core. 

A representative length was also determined by back calculating the radius of connected void 

voxels within an image slice. Voids were considered connected if any of the surrounding 8-voxel 

were also classified as a void (Figure A7.2). Voxel i is considered connected to any of the 

surrounding 8 voxels if they are both classified as voids by the segmentation process. After pores 

are identified, the count of the voxels defines the individual pore area. A representative diameter 

was determined for each individual pore by modeling the area as a circle such that the diameter is 

calculated as 
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𝑑𝑟𝑎 =  √
4 (𝑣𝑜𝑥𝑒𝑙 𝑠𝑖𝑧𝑒)2  ∑(𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 𝑣𝑜𝑥𝑒𝑙)

𝜋
(𝐴7.5) 

where dra is the diameter that represents the pore area. This process was completed on each image 

slice of all cores. Matlab’s Image Toolbox regionprops function was used to automate this 

process (The MathWorks Inc 2016). The d50 and d75 were determined for each core for 

comparison to other core based representative parameters and mix design and long-term 

infiltration rate performance. 

 
Figure A7.2. Pore space object identification check with an 8-connected voxel matrix. 

Segmentation is required to compute the representative pore diameter with the two-point 

correlation function and back calculation of dra from non-connected pores. Vogel et al. (2003) 

showed that geostatistics can be used to evaluate isotopy, heterogeneity, and representative 

volume directly from density values of a CT images with semivariogram modeling. The 

semivariogram represents spatial variability from point x separated by a distance h to point y by 

taking the one-half the average of the square difference between the points. 

𝛾(𝑙) =
1

2𝑁(ℎ)
∑ (𝑥𝑖 − 𝑦𝑖)2

𝑁(ℎ)

𝑖=1

(𝐴7.6) 

The distance at which the semivariogram reaches a horizontal asymptote is the range. The 

horizontal asymptote is called the sill. Here, the range is used as representative length for PC. 

Another attribute of a semivariogram is the nugget, which is variance at h = 0. The images in this 

1 2 3

4 i 5

6 7 8
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study had varying image artifact corrections applied them during the reconstruction process. 

Range values were determined by fitting an exponential model to measured data. 

𝛾(𝑙) = 1 − 𝑒(−(3𝑙/𝑎)) (𝐴7.7) 

where a is the range. 

Statistical correlations 

Statistical relationships between porosity and pore size characterizations were compared to the 

long-term infiltration trends and cleaning effectiveness presented in chapter 3. Pearson’s 

correlation coefficients were used as an indicator of meaningful statistical relationships. A 

Pearson’s correlation coefficient was considered strong if it was greater than or equal to 0.75 or 

less than or equal to -0.75. Matlab was used to calculate Pearson’s correlation coefficient and p-

values (The MathWorks Inc 2016). 

Characterization of pores and statistical correlations 

Pore size and correlations 

Segmentation based characteristic length dTPC is generally less than d50 with an average difference 

of 0.573 mm for the entire core and 0.438 mm for the top 10 mm of all core samples (Table 

A7.2). Representative length, d50 and d75 of the top 10 mm of each core are less than the entire 

core all core except 3U, 4U, and 4D. Mixed component fraction indicated less clogging for cores 

3U and 4U, and 4D was not considered clogged based on infiltration rate. These three cores also 

have the largest dTPC, suggesting that dTPC may be related to clogging potential. Table A7.3 is a 

matrix of Pearson’s correlation coefficients and corresponding p-values for characteristic lengths. 

All segmentation based characteristic lengths are strongly correlated and statistically significant 

with a confidence of 95%; expect d50 for the core to all variables and d75 for the core to d50 for the 

top 10 mm. For the cores imaged, d50 of the core is inconsistent and is not a good indicator of 
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other length scales. Though, the d50 in the top 10 mm is correlated with many other parameters. 

Additionally, the top 10 mm d75 and dTPC are strongly correlated to each other and the entire core 

segmentation based characteristic lengths and the void content. Measurements from the top 10 

mm, which is more easily accessible compared to the entire core, provide information relative to 

the entire core. Only needing to analyze the top 10 mm could make estimating the void content 

more accessible to techniques that cannot measure the entire core depth. Subsamples from the top 

could be collected and void content quantified. Characteristic lengths could then be estimated 

from the correlations between voids and representative lengths. 

Table A7.2. dTPC, d50, and d75 for the entire and top 10 mm from segmented photos using Hsieh et al. (1998) 

methodology. 

 Entire core  Top 10 mm 

Sample 

ID 

dTPC 

(mm) 

d50 

(mm) 

d75 

(mm) 

 dTPC 

(mm) 

d50 

(mm) 

d75 

(mm) 

1U 1.067 1.940 3.590  0.693 1.640 2.770 

1D 1.302 2.033 3.649  0.852 1.438 2.665 

3U 1.376 1.754 3.466  1.671 1.786 3.292 

3D 1.238 1.732 3.366  1.027 1.381 2.668 

4U 2.093 1.925 4.289  2.139 2.272 4.870 

4D 1.470 2.006 4.356  1.902 1.662 4.543 

5U 0.972 1.809 3.164  0.569 1.318 2.200 

5D 1.064 1.966 3.320  0.526 1.386 2.183 
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Table A7.3. Pearson's correlation coefficient (lower triangle) and p-value (upper triangle) between representative pore 

lengths. Green correlation coefficients have strong positive correlations and blue p-values values are significant at an 

alpha=0.05. There were 8 data points used for each correlation. 
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The use of a segmentation process can bias the representative pore lengths as evident in the 

difference between Otsu’s and Hsieh’s void fraction results (Figure 5.2). The range and sill from 

semivariogram models are an alternative method that requires only spatially defined material 

densities, which is a fundamental characteristic of CT images. All semivariogram models have 

strong fits with R2 values above 0.970 (Table A7.4). Range values for the x- and y-direction are 

more similar than between x- and z-direction or y- and z-direction. The average absolute 

difference between x- and y- direction ranges values is 0.125 mm, while it is 0.310 mm and 0.270 

mm for x- and z-direction or y- and z-direction, respectively. However, the range values in the x- 

and y- direction are greater than and less than the z-direction range value. There is no consistent 

trend to explain the variability. It was hypothesized that the z-direction range would be less than 

the others because of the porosity changes with depth, but that trend is not evident in the data. Sill 

values follow a similar trend as the range relative to direction, though, they have strong 

correlations to segmentation based characteristic lengths and void content (Table A7.3). Range 

values are only strongly correlated to each other. They are correlated to other characteristic 

lengths or the void fraction, but none of the correlations are strong nor are they statistically 

significant at a 95% confidence level. The results indicate that semivariogram range values 

cannot be used as a substitute to estimate segmentation based characteristic lengths, though sill 

values can. 
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Table A7.4. Semivariogram model range, sill, and R2 for the entire core in the x, y, and z directions. 

 X-direction  Y-direction  Z-direction 

Sample 

ID 

range 

(mm) 

sill 

 

R2  range 

(mm) 

sill 

 

R2  range 

(mm) 

sill 

 

R2 

1U 5.60 8.97E+05 0.986  5.83 9.09E+05 0.985  5.53 9.17E+05 0.987 

1D 5.73 8.47E+05 0.990  5.63 8.38E+05 0.988  5.08 8.41E+05 0.981 

3U 6.24 9.79E+05 0.995  6.20 9.88E+05 0.991  5.86 9.73E+05 0.983 

3D 5.94 8.96E+05 0.993  5.96 8.92E+05 0.988  6.66 9.21E+05 0.987 

4U 6.20 1.27E+06 0.986  6.36 1.29E+06 0.987  6.28 1.24E+06 0.988 

4D 5.37 1.11E+06 0.981  5.27 1.11E+06 0.979  5.22 1.09E+06 0.988 

5U 4.89 8.26E+05 0.984  5.12 8.25E+05 0.990  5.09 8.26E+05 0.970 

5D 4.78 7.90E+05 0.986  4.90 8.03E+05 0.987  5.01 8.08E+05 0.980 

 

Mix design correlations 

Measuring void content and characteristic lengths can be time consuming and expensive. Here, 

correlations are presented in an effort to provide a means of determining relationships between 

void content and characteristic lengths from mix design (Table A7.5). Correlations were 

determined between the previously presented characteristic lengths and void content to ratios of 

predominate PC constituents and fresh unit weight presented in chapter 3. This analysis is limited 

to data sets of only 4 unique points per variables, which caused a lack of significance at a 95% 

confidence level even though many of the correlations are strong. 

Fresh unit weight is strongly correlated to void content and characteristic lengths, except d50 for 

the core and range values. The relationship between fresh unit weight and porosity was expected 

as Kevern et al. (2008) presented similar findings. Having a strong correlation between fresh unit 

weight and several of the characteristic length is also expected because many of the characteristic 

lengths are strongly correlated (Table A7.3). Lack of significant relationships is partially related 

to the small sample size. Many of the correlations to W:(C+FA), C:FA, and S:(A+S) are strong 

and this is expected because these ratios describe the actual quantities of material within the PC. 

Multiple strong correlations to (A+S)/(C+FA) were expected, but only the d50 is statistically 
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significant and strongly correlated. The core d50 is also correlated to S:(A+S), indicating that the 

addition of sand modifies the distribution of smaller pore sizes. 

Table A7.5. Pearson's correlation coefficients between representative pore lengths and mix design parameters. Green 

values have strong positive correlations, red values have strong negative correlations, and bolded values are 

significant at an alpha=0.05. There were 4 data points used for each correlation. Representative pore lengths were 

taken as the average of the core from the same pervious concrete test plot. 

 

S:(A+S) W:(C+FA) C:FA (A+S)/(C+FA) 

Fresh Unit Weight 

(kg/m^3) 

Core void fraction 0.171 -0.616 0.762 0.451 -0.939 

Top 10 mm void fraction 0.246 -0.675 0.819 0.434 -0.931 

Core d50 (mm) -0.754 0.495 -0.222 0.959 -0.513 

Core d75 (mm) -0.074 -0.394 0.623 0.745 -0.999 

Top 10 mm d50 (mm) 0.175 -0.616 0.792 0.546 -0.965 

Top 10 mm d75 (mm) 0.120 -0.575 0.746 0.538 -0.969 

Core dTPC (mm) 0.191 -0.632 0.790 0.486 -0.951 

Top 10 mm dTPC (mm) 0.371 -0.765 0.865 0.282 -0.860 

X-direction Range (mm) 0.835 -0.929 0.945 -0.048 -0.397 

Y-direction Range (mm) 0.834 -0.923 0.940 -0.046 -0.391 

Z-direction Range (mm) 0.934 -0.984 0.891 -0.407 -0.238 

X-direction Sill 0.154 -0.603 0.760 0.487 -0.953 

Y-direction Sill 0.142 -0.594 0.750 0.489 -0.953 

Z-direction Sill 0.190 -0.632 0.783 0.463 -0.944 

S – sand, A – aggregate, W – water, FA – fly ash 
 

Long-term and cleaning performance correlations 

Initial infiltration rate and sustained long-term performance of PC are critical for meeting 

stormwater management goals. Pores in PC are the conduits for flow and the medium for 

clogging. Linking pore characteristics lengths to long-term performance provides insight into the 

controlling properties of PC. Pearson’s coefficients indicating correlations between mix design, 

infiltration rate, and clogging trends are discussed in chapter 4 and are listed in Appendix A1. 

Phase 1 infiltration rates have a strong positive correlation to many of the characteristic lengths 

and the void content (Table A7.6). It is also strongly correlated to the semivariogram sill values. 
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Pore characteristic are not statistically correlated the initial clogging duration. Phase 1 clogging is 

assumed be the result of small pore clogging. Characteristic pore lengths represent medium to 

large pore sizes and not necessarily the small pores, thus supporting the theory regarding the 

initial clogging phase. The rate of clogging during phase 1 only has a statistically significant 

(alpha = 0.05) negative correlation with d75 of the core and the top 10 mm of the core. This 

relationship may be influenced by the magnitude of the initial infiltration rate. Cores with higher 

infiltration rate also have larger d75. These cores most likely have more small pores because the 

void content is also strongly correlated to the d75. Since cores with a larger void content probably 

have a higher quantity of small pores compared to cores with lower void content, their initial 

infiltration rate will decrease at a faster rate than cores with fewer small pores. 

Phase 2 infiltration rate has a statistically positive correlation with many of the pore 

characteristics (Table A7.6). The duration of phase 2 and slope of the regression fit are not 

statistically correlated at a 95% confidence level, though, many of the parameters have strong 

positive correlations. These strong correlations are logical; PC with larger pores would be 

expected to have higher infiltration rates and would be less likely to clog. Phase 3 regression 

slope has a significant negative correlation to d75. This follows the trend of the phase 1 regression 

slope, suggesting that the infiltration rate of PC with larger pores and higher infiltration rates are 

will decrease more rapidly than cores with smaller pores. This does not mean that the magnitude 

of infiltration rate is less, just that the rate of change is larger. PC with larger pores exhibit a 

faster decline of infiltration rate, but the duration of the phase is long because the total pore space 

is greater. 

Similar to many mix design parameter, d50 of the cores have no statistical significant correlations 

to clogging trends. However, d50 has a strong negative correlation (p-value = 0.0018) to cleaning 

performance (-0.999). It is assumed that the PC with a greater percentage of smaller pores would 

cause clogging to stay near the surface. This is supported by the correlation to the d50 of the core, 
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but is contradicted by the positive correlations with void content and all characteristic length 

except the d75 of the core. 

Table A7.2. Pearson's correlation coefficients between representative pore lengths and long-term infiltration rate 

trends. Green values have strong positive correlations, red values have strong negative correlations, and bolded values 

are significant at a 95% confidence level. There were 4 data points used for each correlation. Representative pore 

lengths were taken as the average of the core from the same pervious concrete test plot. 
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Core void fraction 0.966 0.360 -0.925 0.895 0.971 -0.298 0.676 

Top 10 mm void fraction 0.946 0.307 -0.909 0.935 0.953 -0.429 0.566 

Core d50 (mm) 0.418 -0.549 -0.550 0.098 0.409 -0.470 -0.999 

Core d75 (mm) 0.973 0.043 -0.993 0.846 0.975 <-0.999 -0.477 

Top 10 mm d50 (mm) 0.958 0.184 -0.945 0.939 0.965 -0.711 0.251 

Top 10 mm d75 (mm) 0.979 0.264 -0.956 0.903 0.983 -0.598 0.394 

Core dTPC (mm) 0.962 0.281 -0.933 0.925 0.968 -0.512 0.486 

Top 10 mm dTPC (mm) 0.891 0.405 -0.832 0.931 0.899 -0.201 0.747 

X-direction Range (mm) 0.338 -0.089 -0.323 0.832 0.360 -0.593 0.399 

Y-direction Range (mm) 0.329 -0.104 -0.317 0.827 0.351 -0.603 0.388 

Z-direction Range (mm) 0.265 0.359 -0.172 0.695 0.284 -0.127 0.794 

X-direction Sill 0.972 0.318 -0.938 0.902 0.977 -0.429 0.566 

Y-direction Sill 0.975 0.327 -0.940 0.895 0.979 -0.406 0.587 

Z-direction Sill 0.963 0.321 -0.927 0.914 0.968 -0.411 0.582 

*correlations based on 3 data points 
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