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Abstract: There has been significant interest in the development of synthetic tissue 

constructs for drug screening.  Multiple approaches to developing tissue cultures that 

mimic in vivo conditions have been investigated, including three dimensional (3D) 

culturing and co-culturing. Little work has been done to develop in silico tools that 

provide drug pharmacokinetic (PK) profiles that can tie in vitro results to clinical data.  In 

this regard, the possibility of integrating data and models into a 3D computational 

simulation using acetaminophen (APAP) as a case study was explored.  Of particular 

concern with synthetic tissue constructs is maintenance of cellular functions.  Thus, the 

effect of culturing 2 different hepatic cell lines (HepG2 and HepaRG) in 2D and 3D, 

using monoculture and co-culturing techniques, on enzyme activity, protein and urea 

section were investigated. A computational fluid dynamics software (Comsol) was used 

to create a 3D geometry based on 24-well and 96-well plate configurations.  The effects 

of i) considering a total contribution to metabolism versus individualized contribution for 

CYP and UGT isoforms, ii) evaluating individualized metabolism based on isoform 

contributions and abundance, iiI) dosage and cell number, and iv) tissue culture size on 

APAP metabolism for 24 h were evaluated in silico.  Obtained metabolic profiles were 

compared with the clinical data.  APAP-GSH formation was over-predicted when rates of 

individual CYP isoform kinetics were simulated.  When relative contributions of activity 

of each isoform was incorporated, metabolic distribution agreed with clinical data.  

Increased APAP content decreased APAP-Sulfation yield.  Increased cell number 

increased APAP conversion and all metabolite yields.  Simulation results validated by 

clinical data were compared with the various culturing systems.  Results demonstrated 

that co-culturing had the greatest effect on PK results, as well as enzyme activity and 

protein and urea synthesis. 
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CHAPTER I 

 

 

INTRODUCTION 

 

 

Most big pharmaceutical companies work on developing multiple drugs at once and spend 

billions of dollars per successfully developed new medication due to an alarming nearly 95% 

drug failure rate in human trials [1].  Moreover, drugs that receive FDA approval to go to market 

only to be recalled due to safety inadequacies are even more costly.  The extremely high initial 

cost of new drugs is a result of the need to recuperate development costs of these failed drugs.  

The need for less expensive and more efficient methods of screening drug effectiveness and 

safety prior to investigation in humans and the heavy monetary investments human trials require 

are vital to increasing safety and decreasing the cost of medications for both producers and 

consumers.   

Drug failure in human trials can be traced back to the use of poorly predictive preclinical models, 

indicating serious limitations in preclinical testing as well as large gaps in knowledge of drug-

specific metabolism [2].  Animal models are the current standard for evaluating preclinical drug 

safety and efficacy.  Unfortunately, animal models, while good for predicting efficacy, are poor 
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models for predicting human toxicity.  As a result, there is a sway toward the incorporation of tissue 

culture and computational models for evaluating preclinical toxicity, particularly those pertaining to 

liver metabolism.  Improving preclinical models for evaluating human toxicity at the preclinical level 

holds the greatest potential for increasing the overall efficiency of the drug development process.   

A wide variety of tissue culture techniques and environmental setups have been investigated in an 

attempt to create predictive hepatic models.  Some of these techniques include monocultures or 

cocultures, 2D or 3D environments, and whole liver cells or liver microsomes.  Additionally, liver 

tissue cocultures can involve the growth of hepatocytes with endothelial, kupffer, or stellate cells, and 

numerous methods for creating 3D environments have been investigated.  Different labs have 

different setups for evaluating the same metabolic function and yet obtain different results.  Also, 

drug screening requires high-throughput analysis, thus rendering environments the size of the whole 

human liver incompatible.  Thus, a method that both scales between local tissue metabolic response 

and whole-body response and that validates experimental results using in vivo data is necessary.  

Computational modeling is useful in addressing these requirements. 

Due to the challenges of mathematically modeling the complexities of the human body, in silico 

research in drug development did not gain a significant increase in application until the late 1990’s [3, 

4].  The U.S. FDA’s Office of Clinical Pharmacology (OCP) has used modeling and simulation 

strategies to address a variety of drug development issues over the past decade.  The FDA has made 

appeals for innovation in modeling areas (computational and experimental) and collaboration between 

FDA, industry, and academic scientists [5].  Improvement in drug development efficiency requires 

the employment of a combination of experimental and computational models from full body down to 

the cellular level to tell the interactive story between the body and a specific drug [5],[6].  
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This project was split into three aims and employed a “learn and confirm” or synergistic approach to 

the creation of an in vitro/in silico drug development platform for which metabolic and hepatic 

function data could be validated by comparison against clinical data.   

1.1  Aim 1:  Develop a computational model to connect liver tissue culture metabolic data with 

clinical and experimental data for validation purposes.   

The purpose of Aim 1 was to develop a computational model incorporating Fick’s aw of diffusion, 

mass balance, and Michaelis-Menten reaction kinetics for a constant volume, static bioreactor capable 

of producing transient metabolic profiles for a drug.  APAP was selected for investigation due to the 

large amount of metabolic data available in literature.  The first goal was to obtain metabolic profiles 

from simulation that matched clinical data, using a physiologically relevant hepatocyte density.  

Numerous kinetic constants for the same pathway (bioactivation, sulfation, or glucuronidation) or 

specific enzyme were evaluated along with multiple approaches to representing reaction rates (i.e. on 

a specific enzyme or grouped sum basis).  Results demonstrated that consideration of the 

bioactivation reaction rate on individual enzyme basis weighted by each enzyme’s contribution to 

metabolism yielded results that most closely matched clinical data.  After validation of the kinetic 

constants and reaction rate equations, the computational model was used to scale down cell densities 

to those more appropriate for high-throughput applications.  The effects of cell density, initial dose, 

and bioreactor size on metabolic distribution were evaluated.  The computational model helped by 

evaluating multiple metabolic profiles simultaneously and validating reaction rate constants with 

clinical data.  Results demonstrated that both dose and cell density changes affect metabolic profiles; 

however, metabolism did not appear to be sensitive to well size, allowing for up or down scaling. 
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1.2  Aim 2:  Create a tissue culture environment mimicking simulated geometry to investigate 

differences in hepatocyte behavior using an immortalized cell line (HepG2) and varying culture 

techniques (monoculture versus coculture with endothelial cells and 2D versus 3D). 

HepG2 cells, a hepatocarcinoma cell line are commonly used to evaluate liver functions.  As 

evidence, they are being used in the government collaborative project, Tox21.  The highly 

proliferative state of these cells make them desirable and easy to maintain.  However, there is concern 

as to their predictive capabilities and ability to maintain function due to their classification as a 

cancerous cell line.  This aim examined HepG2 abilities to i) maintain liver specific functions (protein 

synthesis) over an eight-day culture period and ii) mimic clinical metabolic metabolism of APAP.  

Multiple cell culture techniques were used to determine which setup more closely matched the 

transient metabolic profiles obtained from the simulation mimicking experimental setup.  

Monoculture experiments in 2D were performed to provide a base case.  Coculture experiments and 

3D experiments were performed to determine whether these conditions would promote cell-cell 

communication similar to in vivo conditions, yielding metabolic and functionality results similar to 

clinical data.   Coculture experiments were performed with Liver Sinusoidal Endothelial Cells 

(LSEC) and Human Umbilical Vein Endothelial Cells (HUVEC) to determine whether the endothelial 

cell source affected results. Reorganization of cells in culture was observed in 2D.  In 3D, multiple 

methods were used to validate that cells were distributed in all dimensions.  Assessment of hepatocyte 

viability was comparable across all experimental setups and cultures, and HUVEC demonstrated 

higher viability than LSEC in both 2D and 3D cultures.  Protein secretion was comparable for 2D and 

3D within respective cultures until Day 9 (post dosing).  3D coculture with HUVEC yielded an APAP 

consumption profile that more closely matched simulation and thus clinical data.  The trend for 

APAP-sulfate production was observed in simulation and experimental metabolic profiles.  APAP-

glucuronide production in experimentation did not match well with simulation, indicating that the 
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glucuronidation pathway in HepG2 cells is less active than primary hepatocytes in vivo.  Enzymatic 

activity for CYP3A4 was higher in coculture with HUVEC for 2D and 3D cultures.  HepG2 tissue 

culture models demonstrated sensitivity to the endothelial cell line used. 

1.3  Aim 3:  Create a tissue culture environment mimicking simulated geometry to investigate 

differences in hepatocyte behavior using a terminally differentiated cell line (HepaRG) and 

varying culture techniques (monoculture versus coculture with endothelial cells and 2D versus 

3D). 

HepaRG is a terminally differentiated hepatocarcinoma cell line with reportedly higher enzymatic 

activity and the ability to maintain cell functions for longer periods of time, relative to HepG2.  A 

major difference between HepG2 and HepaRG is that HepaRG line does not proliferate.  The same 

analyses were performed in Aim 2 and 3 for comparison purposes.  Reorganization of hepatocytes 

and endothelial cells, both LSEC and HUVEC, was again observed in all 2D cultures.  Endothelial 

cells were observed to attach in and around established HepaRG colonies, suggesting cell-cell 

communication.  Morphological changes were observed in HepaRG cells between Day 1 to Day 3, in 

agreement with previously reported occurrences of the formation of bile canaliculi.  For both 

monoculture and cocultures, cells were confirmed to be distributed in 3D.  Hepatocyte viability was 

comparable with initial seeding for 3D monoculture and 2D and 3D cocultures with LSEC.  

Endothelial cell viability was comparable for both cell lines for the same dimensionality; however, 

3D cocultures yielded higher endothelial cell viability compared with 2D.  Protein secretion was 

comparable for 2D and 3D in the respective cultures throughout culturing.  3D coculture with LSEC 

yielded an APAP conversion profile that closely matched simulation.  The trend for APAP-sulfate 

production was observed in simulation and experimental metabolic profiles.  APAP-glucuronide 

production in experimentation did not match well with simulation; however, production was 

increased compared with HepG2 profiles.  Enzymatic activity for CYP3A4 was higher in coculture 
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with HUVEC for 2D and 3D cultures.  HepaRG tissue culture models also demonstrated sensitivity to 

the endothelial cell line used.   

1.4  Summary 

The overall objective of this project was to create a drug development, tissue culture platform for 

which metabolic and hepatic function data could be validated by comparison against clinical data.  A 

number of obstacles were addressed in order to create this method of validation.  Numerous tissue 

culture techniques have been investigated, but with the abundance of cell lines and experimental 

conditions to choose from, cross-comparison testing and selection of the best predictive platform is 

difficult.  A method of bridging the gap between experimental and clinical results was achieved 

through the creation of a computational model.  The developed computational model allowed for 

scaling between high-throughput screening conditions to those more physiologically relevant.  With a 

method for connecting experimental and clinical results in place, a tissue culture platform needed to 

be selected.  Multiple tissue culture techniques were performed for comparison under similar 

conditions using the commonly used HepG2 cell line.  Coculture experiments were performed with an 

endothelial cell line that was native to the liver, and one that was not, to determine if the source of the 

non-metabolizing cell line affected results. Metabolic distribution and liver specific function data 

were compared with clinical data to evaluate each tissue culture model’s ability to predict clinical 

data.  Investigation of a second hepatocyte cell line was performed to determine whether use of the 

terminally differentiated cell line (HepaRG), rather than an immortal one (HepG2), would impact 

results.  Again, evaluation of the effect of a native versus non-native endothelial cell line for coculture 

was performed.  The same metabolic and functional analyses performed for HepG2 models were 

repeated with HepaRG models.  Further validation of this methodology using other drugs is 

necessary, and if successful, would indicate potential for use in predicting the human response to 

newly developed medications.
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CHAPTER II 

 

 

BACKGROUND 

 

 

2.1  Drug Development Process Deficiencies 

Medications and treatments are developed through a series of controlled trials in which the 

efficacy and toxicity of a drug are analyzed. The drug development process is comprised of two 

major components: preclinical testing and clinical trials (Figure 2.1).  At the preclinical phase, 

laboratory and animal studies are used to assess drug safety and biological activity.  In clinical 

trials the drug is introduced to humans for expansion of safety profiles, determination of dosing, 

and evaluation of efficacy - first in healthy individuals, followed by intended patient populations.  

There are two FDA “check points” prior to major advancement of the drug.  Drugs that make it to 

market are still monitored for an additional 11 – 14 years for long-term adverse effects [7].  

Though entities like the FDA perform rigorous analysis at major advancement points throughout 

the process, some unsafe drugs still make it to market.   

The drug development process is incredibly time and cost intensive.  Development of a successful 

drug takes an average of 12 years [7], reaching an estimated cost of $2.6 billion when considering
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time costs (expected returns that investors forego while a drug is in development) and post 

approval study costs, in addition to average out-of-pocket expenditures [8].  Failures at later 

phases of the drug development process are extremely costly and contribute significantly to 

increasing the cost of successfully developed drugs.  The process is also very inefficient, 

considering that only 8% of the drugs that enter the preclinical stage actually make it to market.  

Additionally, some medications are withdrawn from the market even after FDA approval. 

 

Figure 2.1:  Drug development process timeline 

Due to the inability to change clinical trial data acquisition methods, 

validation/alteration/optimization of preclinical testing methods provides the greatest potential for 

improving efficiency of the overall process.  As evidence, out of all drugs studied at the 

preclinical level, approximately 70% fail to meet requirements to move on to human trials, and 

over half of those that make it to phase I clinical trials do not make it to phase II.  The lack of 

accurate and predictive preclinical testing methods needs to be addressed.  Improvement of 

knowledge and screening methods at the preclinical phase would increase safety in clinical trials 
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and efficiency of the entire process, decreasing industry and consumer expenses.   

2.2  Preclinical Drug Screening 

The primary goal of preclinical testing is to determine and evaluate human toxicity.  One of the 

most important organ systems for determining toxicity is the liver, as it is the metabolic hub of 

the body.  As further evidence, over 900 drugs, toxins, and herbs have been reported to cause 

hepatotoxicity.  Drug-induced hepatic injury is the most common reason for withdrawal of a 

market-approved drug [9].  Preclinical hepatotoxicity is assessed in vivo using animal models and 

in vitro/ex vivo using human or animal organ slices or cell cultures.   

2.2.1 Animal Models 

Currently, the primary method for evaluating preclinical hepatotoxicity is animal testing [10].  

Animal models are used to determine pharmacokinetic [11] and pharmacodynamics (PD) data for 

a specific drug.  Animal models are advantageous in the fact that they provide results without 

harming patients and are readily available.  The major issue with using animals in drug screening 

is cross species variation.  Enzyme levels and activities differ from individual to individual and 

certainly differ between species.  The argument over animal model predictability has gone on for 

decades.  While animal models can be useful in gathering initial information, studies have shown 

that predictability is only around 50% [12-15].  The employment of animal models to determine 

drug safety and efficacy allows room for unsafe drugs to get to human trials, as well as eliminates 

drugs that could have possibly been safe and effective in treating human maladies.  While animal 

models are necessary, models that more closely mimic the human body and improve prediction of 

human responses must be included in preclinical studies. 

Methods circumventing primary dependence on cross species models would aide in increasing 

predictability of human response at the preclinical level.  Use of human cells, tissue, or organ 
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slices for in vitro analysis of the human response would provide more accurate data without 

threatening human life.   

2.2.2  Cell Culture Models 

Due to the large expense of evaluating hepatotoxicity at the whole body level and the lack of 

readily available human organ slices, numerous less complex hepatocyte culture systems have 

been investigated [16, 17].  A wide assortment of devices and environments from static to flow-

through, two-dimensional (2D) and three-dimensional (3D) cultures, and multiple culture 

techniques, including cell aggregation, cell suspension, and monolayer cultures have been 

investigated [18-23].   

Three dimensional cell culture systems are preferred to 2D culture systems because 3D cultures 

require less area to seed more cells [17].  Also, 3D cultures provide necessary architectural 

structure, avoid exposure limitations due to cell-to-surface adhesion, and are shown to behave 

more organotypically, all of which cause major limitations for the application of 2D culturing 

systems in drug toxicity testing [24].  While 3D systems are preferred, they are not easy to 

maintain.  Investigations of a variety of 3D systems have been performed.  Cell suspension 

systems are not restricted to a flat surface and allow for an increase in cell count.  However, the 

culture volume to surface area ratio is increased to a level at which adequate gas exchange is 

hindered (usually 0.2–0.5 mL/cm2), and the medium requires agitation to adequately distribute 

nutrients throughout the system, which can result in cell death due to shear stress [25].  Aggregate 

systems or spheroids, a clump of many cells, encounter issues with uniform distribution of 

nutrients, where cells located closer to the center of the aggregate are deprived of the nutrient 

level necessary to survive [26, 27].  Recent advances in tissue culturing techniques have led to the 

development of porous structures from various sources, including Matrigel® obtained from a 
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mouse sarcoma [28].  Cell culture or tissue engineering using 3D porous, biodegradable scaffolds 

for use in drug development is an area with significant potential.  This method provides results 

without causing harm to patients and could be made available on-demand, as a number of 

different cell lines have been immortalized, cryopreserved, and are commercially available.   

Efforts to obtain more appropriate results, similar to the human body, in drug metabolism and 

toxicity studies, have led to investigation and development of multiple cell lines of the same cell 

type and environmental optimization.  For example, there are many commercially available 

selections of human hepatocytes including primary, carcinogenic (i.e. HepG2), and terminally 

differentiated (HepaRG) cell lines.  With so many choices available, one must consider which cell 

line will provide results that most closely mimic the human response for a particular study.  

Comparison of experimental results is often difficult due to setup and condition differences 

between laboratories.  For example, analysis can be performed using whole liver cells or liver 

microsomes, subcellular fractions containing membrane bound drug metabolizing enzymes.  As a 

result, numerous source and method combinations are available for hepatotoxicity assessment.  

Each preparation could yield different results, making cross-testing comparisons difficult. 

2.3  Computational Modeling of Pharmacokinetics/Pharmacodynamics 

There has been an immense interest in screening therapeutic agents in silico with the intent of 

reducing cost and time investments, while improving the success rate of candidate drugs.  A 

variety of PKPD models and physiologically-based PK (PBPK) models have been developed 

using compartmental modeling and physiological observations at the whole body level.  These 

models range from the molecular to whole body level.  At the molecular level, significant 

research has been performed to investigate the effect of xenobiotic binding on cellular protein 

structures.  PBPK models, such as SimCYP, MoBi, and GastroPlus, can be useful to predict the 

generic behavior of a drug a prior at the whole body-level, while providing the flexibility to 
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customize population distribution of factors like age and gender [29]. 

While these computational models characterize behavior at the smallest and largest levels, there is 

a need for intermediate mathematical models.  Thus, interest in developing computational PKPD 

models for specific organ systems has increased in recent years.  In terms of liver metabolism, 

many of these models employ grouped kinetics which ignore enzyme specific mechanisms which, 

in some cases, can yield very different results [30].  With the rise of tissue engineered constructs, 

there is a demand for data validation methods.  These constructs can provide important PKPD 

data for a specific drug, but there is currently no method for determining the validity of that data 

by connecting to clinical data.  Validation of a methodology using computational modeling to 

bridge the gap between tissue engineered constructs and the human response at the whole body-

level would indicate potential predictive capabilities. 

2.4  Employing a Cyclical Testing and Validation Approach 

Data and information on metabolism and toxic pathways can be found in a number of published 

papers concerning clinical trials, animal work, cell culture, and simulation.  Unfortunately, even 

with all of this data and information available, investigation of how the information from the 

three different prongs of drug research computational modeling, experimental work, and clinical 

data - have yet to all be compared and evaluated for appropriateness (Figure 2.2).  There is also a 

lack of reliable parameters and validation experiments.   
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Figure 2.2:  Cyclical testing and validation strategy to preclinical drug screening 

Comparison of data from these different areas would help promote a “Learn and Confirm” testing 

methodology resulting in safer and more effective clinical trials.   

2.5  Using Acetaminophen as a Case Study 

APAP, an analgesic used to treat headaches, arthritis, and a wide assortment of other pain related 

ailments, as well as to reduce fever, is one the most widely used drugs in the world.  Due to 

APAP’s ability to treat a wide array of maladies and the ease of its acquisition, a high degree of 

misuse and overdose are associated with this drug.  As a result, there is a significant amount of 

research and data pertaining to APAP metabolism.  APAP is metabolized in the liver by hepatic 

enzymes via three different pathways (Figure 2.3).  The bioactivation pathway is an oxidation 

pathway by which many toxic metabolites are produced.  In the case of APAP, bioactivation 

produces N-acetyl-p-benzoquinone imine (NAPQI) via Cytochrome P450 (CYP) enzymes [31-

33].  Normally, toxic NAPQI is quickly conjugated with glutathione, promoting bodily excretion.  

However, during APAP overdose, glutathione reserves in the body are depleted, leading to 

NAPQI buildup [34], which can cause hepatotoxicity.   
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Figure 2.3:  APAP hepatic metabolic pathways 

The other two pathways, sulfation and glucuronidation, are detoxifying pathways.  They produce 

self-named, conjugated metabolites that are easier to eliminate from the body.  Glucuronidation 

produces APAP-Glucuronide via UDP-glucuronosyl transferase enzymes (UGT), and sulfation 

produces APAP-Sulfate via sulfotransferase enzymes (SULT) [35].  APAP and metabolites are 

eliminated from the body primarily via renal or urinary excretion.   

Despite the clinical [36-39], experimental [40, 41], and simulation [11, 42, 43] research that has 

been performed, APAP overdose remains a leading cause of acute liver injury.  APAP toxicities 

in the US alone have led to 56,000 emergency room visits, 26,000 hospital admissions, and nearly 

500 deaths annually [44].  In fact, APAP would most likely not receive FDA approval by today’s 

standards [45].  Understanding APAP metabolic events in vitro in less complex settings has not 

been possible due to i) the limitation of available organoid models, particularly 3D configuration 

mimicking in vivo architecture of the liver, and ii) lack of in silico comparable models for 

validation of in vitro synthetic tissues based on the available clinical data. 
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CHAPTER III 

 

 

COMBINING PHARMACOKINETICS WITH ENZYME ISOFORM CONTRIBUTIONS IN 

3D SYNTHETIC CULTURE SYSTEMS TO VALIDATE WITH CLINICAL DATA:  USING 

ACETAMINOPHEN AS A CASE STUDY 

 

3.1  INTRODUCTION 

There has been an immense interest in screening therapeutic agents in silico with the intent of 

reducing the cost and time while improving the success rate of candidate drugs.  A variety of 

pharmacokinetic and pharmacodynamics (PKPD) models and physiologically-based PK (PBPK) 

models have been developed using compartmental modeling and physiological observations at 

the whole body level.  PBPK models, such as SimCYP, MoBi, and GastroPlus, can be useful to 

predict the generic behavior of a drug a prior at the whole body-level, while providing the 

flexibility to customize population distribution factors like age and gender [29].  However, drug-

induced hepatotoxicity is the most common reason for the after-market withdrawal of a drug, 

despite effectiveness in treating a disease [46].  For example, acetaminophen overdose remains a 

leading cause of acute liver injury [47], despite many simulation studies using 
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SimCYP [42].  APAP toxicities in the US alone have led to 56,000 emergency room visits, 

26,000 hospital admissions, and nearly 500 deaths annually [44].  Understanding APAP 

metabolic events in vitro in less complex settings has not been possible due to i) the limitation of 

available organoid models, particularly in 3D configuration mimicking in vivo architecture of the 

liver, and ii) in silico comparable models for validation of in vitro synthetic tissues based on the 

available clinical data. 

There has been a significant development in generating 3D synthetic tissues using various 

techniques [48].  Three-dimensional systems provide a new integrative level, which is a complex 

environment where cells can interact, create cellular networks, and extend processes.  Many 

synthetic tissues are developed based on the fundamental understanding that cell-cell and cell-

matrix interactions in 3D systems are crucial to integrate the extensive signaling pathways, and 

the biophysics that regulate the development and regeneration of tissues.  Cell-cell interactions 

between hepatocytes and non-parenchymal cells alter the functionality of hepatocytes [49], 

prolonging CYP-450 activity and albumin production.  Novel bioprinting technology is emerging, 

allowing users to spatially locate multiple cell types in a desired configuration  [50].  However, 

there is a lack of in silico models that help predict the overall metabolic product distribution 

within synthetic tissues.   

In this regard, a computational fluid dynamic (CFD) approach was used to test APAP metabolism 

in configurations routinely used in 3D synthetic tissue cultures.  A major advantage of CFD is 

that one could obtain concentration profiles across 3D structure in widely explored static cultures.  

This simulation approach has been extensively used in modeling fluid flow through porous 

medium, and validated using experimental results [51].  Our group has reported and validated 

various reactive systems by comparing CFD models with experimental results using HepG2 cells 

[52-54].  Here, the fact that drug metabolism within the whole liver tissue occurs simultaneously 
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was considered.  Nearly 55% of APAP metabolism is formation of non-toxic APAP-Glucuronide 

(APAP-Gluc) via glucuronidation, which is mediated by UDP-glucuronosyltransferases (UGT’s).  

Sulfation accounts for 30% of APAP metabolism into non-toxic APAP-Sulfate mediated by 

Sulfotransferases (SULT’s).  Remaining APAP is oxidized via bioactivation by the CYP450 

family of enzymes to form the hepatotoxin, N-acetyl-p-benzoquinone imine (NAPQI).  NAPQI is 

then conjugated glutathione (GSH) to form the nontoxic metabolite, APAP-GSH.  Hepatotoxicity 

occurs when GSH is depleted and NAPQI builds up [34].  Abundance of these isoforms in 

hepatocytes has been analyzed, showing that some isoforms, such as CYP1A2, may be abundant, 

but their contribution to metabolism is low [55].  Also, some isoforms may be present in 

relatively small quantities, such as CYP2A6, but their contribution to metabolism is high [56].  In 

this study, static culture dimensions mimicking in vitro 3D cell culture experiments were 

simulated to show that this modeling approach is useful in linking pharmacokinetic parameters 

obtained in vitro to clinical metabolic profiles. 

3.2  METHODOLOGY 

3.2.1  Simulation Geometry 

Using the dimensions of commercially available 24 and 96-well plates, a discoid-shaped, static 

culture was simulated (Figure 3.1).  In order to incorporate the 3D configuration of cells in 

culture, a porous scaffold region was simulated.  The scaffold region was given the same 

diameter as the culture plates and 1 mm thickness.  The scaffold was elevated 0.5 mm above the 

bottom of the well, as previous simulations demonstrated physical diffusion limitations with 

scaffold placement directly on the well bottom [57].   
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Figure 3.1:  Schematic showing culture dimensions simulated in CFD.  (Scaffold 

corresponds to the region where cells are assumed to be present) 

The selection of 1 mm thick scaffolds was used for standardization and to ensure nutrient 

diffusion in and out of the porous scaffold was not a limitation.  Working volumes of 500 µL for 

the 24-well plate and 100 µL for the 96-well plate were based on vendor suggested working 

volumes.  These values were used to calculate the media height of 2.62 mm and 3.11 mm, 

respectively.   

The 3D disc-shaped geometry was generated in COMSOL Multiphysics 5.2, (COMSOL, Inc., 

Burlington, MA) using 2D geometry and assuming axis symmetry, similar to previous 

publications [58].  A free tetrahedral mesh with a maximum element size of 0.5 mm and a 

minimum element size of 0.2 mm was used, resulting in a total of 260,731 nodes.  A grid test was 

performed, decreasing the maximum element size by half and doubling the number of nodes.  The 

percent difference in the volume average concentration was 0.016%, which indicated mesh 

quality to be sufficient so as not to affect results.  A time step size of 120 seconds was used.  

Physical properties (density and viscosity) of the growth medium used for culturing cells were 

assumed to be that of water at 37°C.  Scaffold porosity was assumed to remain constant at 85% 

based on the porosity of freeze-dried, chitosan-gelatin scaffolds which have been extensively 

evaluated in recreating 3D hepatic cultures [52, 53, 58].  Diffusivity values in both the porous and 

nonporous regions were assumed to be constant and isotropic.  Free diffusivity of APAP through 
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the nonporous region was obtained from literature [59], while APAP’s effective diffusivity 

through the porous region was calculated through interpolation, based on pore size of the 

scaffold, from literature [58]. 

3.2.2  Modeling Strategy  

Mathematical equations were determined for characterization of APAP uptake, metabolite 

production, and molecular transport.  A mass balance, Fick’s law of diffusion, and a reaction rate 

term were combined to evaluate time dependent changes in concentration for the porous scaffold 

region in a constant volume, static bioreactor yielding 

iii
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 2          (1) 

where 
t

Ci




 is the change in concentration of species i over time, Di is the effective diffusivity 

constant for molecule i in water, 2Ci is the second order gradient along each of the major 

dimensions in the system, ri is the rate of consumption or production depending on the species, 

and i, is the species being evaluated.  In the non-porous region, the reaction rate term from 

Equation 1 is zero.  An assumption of no mass flux occurring at the bottom (z = 0), walls (r =R), 

and atmosphere interface (z = 2.62 or 3.11 mm) was applied.  The initial dose of APAP was used 

to set the initial condition for time dependent concentration.  The interface between porous and 

non-porous regions was considered continuous.  The COMSOL physics module, Transport of a 

Diluted Species, was selected to simulate Equation 1.  The rate of APAP consumption and rate of 

production of APAP metabolites were assumed to be characterized by Michaelis-Menten kinetics 

[35, 60, 61] 
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where Vm is the maximum uptake or production rate of species i, Ci is the species concentration, 

and Km is the Michaelis-Menten constant.  Equations 1 and 2 were used due to previous success 

in characterizing urea production in HepG2 cell culture [57].  

The rate of APAP bioactivation was input into simulation by two different methods:  individually 

per CYP 450 enzyme, and as a grouped sum for Km and Vm.  Reaction rate constants employed 

are listed in Table 3.1 by specific enzyme along with the reference.  The reaction rate equation 

for individualized APAP bioactivation enzyme activity is 
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Where the subscripts for Vm and Km identify kinetic constants related to specific CYP 450 

enzymes (i.e. Vm for CYP3A4 is given as Vm3A4).  Instead of assuming all CYP enzymes 

contribute to APAP metabolism completely, one could assume individual CYP enzymes 

contribute to metabolism partially, based on involvement in drug metabolism or abundance in the 

hepatocyte.  Contribution probability of CYP enzymes based on their involvement in drug 

metabolism [55] was analyzed first.   
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Table 3.1:  Kinetic constants and enzyme abundance and contribution data 

Metabolic 

Pathway 
Active Enzyme 

Km  

(µM) 

x (% Contribution) x (% abundance)  

 

Vmax                                 

(pmol/min/mg microsomal 

protein) 

Bioactivation 

CYP 3A4/5  [31] 313 50.0 [55] 53.6 [62] 52 

CYP 2D6  [33] 1760 2.3 [55] 7.10 [62] 1298.6 

CYP 2A6  [32] 4600 34.9 3.60 [62] 3397 

CYP 2E1  [31] 1260 5.80 12.5 [62] 536 

CYP 1A2  [31] 3440 7.00 23.2 [62] 119 

      

Glucuronidation 

UGT 1A1 [63] 9400  18.6 [64] 1300 

UGT 1A6 [63] 2200  59.3 [64] 100 

UGT 1A9 [63] 20900  22.1 [64] 6300 

   
  Vmax                                 

(mmol/h/kg body weight) 

Sulfation [35] 97  100 0.011 

Glucuronidation  [35] 6890  100 0.968 

Percentage contributions (x) were incorporated into the simulation using the equation 
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where individual xj values correspond to the activity contributions from that CYP isoform 

“j” from Table 3.1.  Alternatively, analysis using the abundance of each CYP isoform and with 

Equation 4, but different values for xj, shown in Table 3.1 [50] was performed.  Grouping 

constants and expressing as a single rate law was also considered 
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Initial APAP concentration was calculated based on the reported safe to toxic (commonly used in 

in vitro studies) range of adult doses [65] and the number of hepatocytes in an adult liver.  The 

widely recommended, maximum clinical dose was 20 mg/kg [66].  For a 50 kg patient, the dose 

corresponds to a 1000 mg single dose, the most commonly recommended single, maximum 

APAP dose.  Using the number of hepatocyte cells per gram of human liver, the average liver 

weight per kg body weight, and the cell density, the clinical dose was equivalent to 5.95 mg/L.  

Initial simulations were performed using this dosage.  APAP was considered to be 

homogeneously distributed throughout the system at time t=0.  The Km and Vm values for each 

metabolic pathway were summed or “grouped” into one value to give a total contribution to 

metabolism.  An initial cell density of 1.2×1012 cells/m3 was used in simulation.  To account for 

cell growth, a 24 hour doubling time was assumed, based on a broad range of reported average 

doubling times [67-69].  The following differential equation was used to determine the change in 

the number of cells, dN, in the scaffold over time, 

0N
dt

dN
           (6) 

where µ is the specific growth rate constant and N0 represents the initial number of cells seeded in 

the scaffold.  An analytic function was used to vary the kinetic constant Vm, with respect to the 
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increase in cell number over time.  The initial number of cells in the scaffold was calculated 

based on the cell density and the calculated volume of the scaffold. 

APAP metabolism was simulated for a 24 hour time period, for clinical data comparison purposes 

[70].  A time-dependent, fully-coupled, iterative, Generalized Minimal Residual solver (GMRES) 

[71] was used to simultaneously solve the governing equations at node points throughout the 3D 

geometry.  The selected solver and method for determining mesh quality was used due to 

previous successful use in characterizing urea synthesis [57].  APAP conversion was calculated at 

various time points to create a transient profile using

0 t at time 

 t at time 
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Generated profiles are independent of initial dosage and cell number, making them comparable 

with clinical data at any specific time.  Further, concentration of each metabolite was used to 

calculate the yield using the expression 

100*%
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C

C
Yield i

       (8) 

where Ci is the concentration of the metabolite yield being calculated. 

3.3  RESULTS 

3.3.1  Converting the Kinetic Constants to a Standard Form 

In order to understand the metabolism of therapeutic agents by hepatocytes, various techniques 

have been utilized.  Specific pharmacokinetic constants involved in liver metabolism are 

determined using hepatocytes, although the origin of hepatocytes varies from primary cells to 

hepatocarcinoma cell lines.  Some studies even utilize liver microsomes, particularly when the 
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primary metabolic enzymes of interest are CYPs.  In order to compare various pathways, one has 

to express these constants on a basis that is convenient to relate to the total liver and to clinical 

data.  In this regard, pharmacokinetic constants obtained using liver microsomes were converted 

to a per cell density used in the in vitro cell cultures basis.  For this purpose, microsomally 

obtained kinetic constants (for Vmax only, as Km is not affected by cell count) were converted 

using the microsomal protein content per gram of human liver and the number of hepatocytes per 

gram of human liver (Table 3.2).  Use of conversion parameters helped in comparing simulated 

results to clinical data. 

Table 3.2:  Parameters for the liver  

Number of hepatocytes in adult human liver [72] 139×106 cells/g liver 

Mean liver weight 1561 g 

Liver weight (males)  [73] 20 g/kg body weight 

Human microsomal protein  [73] 45mg/g liver 

Total P450 Concentration (Caucasians) [56] 0.43 nmol/mg protein 

Diffusivity (De) 2.22×10-10 m2/s 

Partition Coefficient (PA) 0.79 

Hepatocyte Wall Thickness (δ) 4×10-9 m 

Cell Radius (R) 11.2×10-6 m 

Hepatocyte Volume (Vcell) 5.88×10-15 m3  * 

Time Interval (Δt) 300 s 

*Hepatocyte surface area and volume were calculated assuming spherical shape using the radius 

3.3.2  Effect of Individualized Bioactivation Reaction Rate Constants 

Many have reported various CYPs playing a role in bioactivation of APAP.  APAP bioactivation 

reaction rate constants have been extensively characterized by isoform (Table 3.1), while APAP 

glucuronidation and APAP sulfation rate constants are more commonly reported on a grouped 

enzyme basis.  In order to understand the effect of these rates on the total products formed, 

simulations were performed using individual rate constants and Equation 3 for each CYP isoform, 
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to obtain metabolic profiles.  Individualized reaction rate results showed that nearly 93% of 

APAP was converted after 24 h, and the yield of APAP-GSH was 31% (Figure 3.2).  Also, 

APAP-Sulfate comprised 19% of the distribution, while that of APAP-Gluc was 39%.   

 

Figure 3.2:  Effect of reaction rates on the metabolic profiles with a dosage of 5.95 mg/L in 

different well configurations: (a) APAP conversion, (b) yield of APAP-GSH, (c) yield of 

APAP-Sulfate, and (d) yield of APAP-Glucuronide 

When percentage distribution of products and unchanged APAP were compared with clinical data 

[66] after 24 h (Figure 3.3), clinical data showed that only 8% of the metabolic distribution 

corresponded to APAP-GSH formation.  Clinical data also showed APAP-Sulfate composition to 

be 30%, while that of APAP-Gluc was 55%.  Since all reactions were simulated to occur at the 
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same time, the concentration of APAP-GSH was increasing faster.  Further, the other two 

metabolites were smaller in comparison with clinical data.  Distributions of APAP and 

metabolites at 24 h showed that consideration of APAP bioactivation (Figure 3.3) on an 

individual CYP isoform basis significantly over-predicted APAP-GSH formation when compared 

with clinical data.   

 

Figure 3.3:  Comparison of APAP and metabolites distribution after 24 hours when 

simulated in a 24-well plate using 5.95 mg/L 

This over-prediction may be due to the method by which CYP isoform parameters were obtained, 

or these pathways could be redundant and only one CYP isoform could be active.  In order to test 

this possibility, one scenario is to consider the dominant CYP2E1 pathway.  When simulations 

were performed with CYP2E1 reaction only, 20.7% APAP remained after 24 h, while the rest of 
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the distribution was 7% APAP-GSH, 28.6% APAP-Sulfate, and 43.7% APAP-Gluc.  This 

suggested that other CYP isoforms are also contributing, although possibly not independently.   

3.3.3  Effect of Incorporating Fractional Contributions 

Alternatively, contribution of each CYP isoform could be regulated by the percentage of 

abundance within the hepatocyte or contribution to metabolic activity.  In literature, many of 

these values have been extensively analyzed due to the critical role of CYP isoforms in drug 

metabolism. Using those values (Table 3.1), simulations were performed in conjunction with 

Equation 4.  These results showed that incorporating the percentage of contribution to activity for 

each isoform provides a profile in agreement with that reported in the clinical data.  This is in line 

with the understanding that it is not the enzyme abundance, but rather the enzyme activity that is 

more important in metabolism studies.  In the case of activity-based simulation, 21% APAP 

remained after 24 h, while the rest of the distribution was 6% APAP-GSH, 29% APAP-Sulfate, 

and 44% APAP-Gluc.  Hence, formed APAP-GSH and APAP-Sulfate were similar to clinical 

data [66].  However, when simulations were performed using CYP isoform abundance, there was 

an under prediction of APAP-GSH while the other components did not change significantly.  

Only 3.8% of the distribution was due to APAP-GSH formed, which suggests that CYP 2A6 

isoform, which is less in abundance, contributes significantly to APAP-GSH formation.  Further, 

other isoforms which are in abundance contribute less to the formation of APAP-GSH.  

Nevertheless, formed APAP-Gluc was consistently less than clinical data and corresponded to a 

greater amount of unconverted APAP.  This suggested that the kinetic parameters used for 

APAP-Gluc could be underestimated by consideration on a total contribution to metabolism basis 

(Figure 3.3).  Thus, the glucuronidation pathway was analyzed on an individual, UGT isoform 

and isoform abundance-weighted basis using the same methodology discussed for bioactivation 

by CYP isoforms.  The kinetic constants for UGT isoforms 1A1, 1A6, and 1A9 as well as their 
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respective abundance in the liver (Table 3.1) were also used in conjunction with Equation 4 in 

simulation.  The resulting metabolic profiles demonstrated complete conversion of APAP to 

APAP-Gluc within minutes for individualized UGT isoform activities.  However, when 

abundance-weighted UGT isoform activities were used, the distribution of APAP-Gluc formation 

matched that of clinical results (Figure 3.3). 

In order to understand whether an algebraic averaging of Vm and Km for CYP isoforms would 

provide a reasonable estimate of APAP-GSH formation, simulations were performed using 

Equation 5.  These results showed that formed APAP-GSH was in agreement with that reported 

in the clinical data (Figure 3.3).  Since the rate of APAP-GSH formation decreased, compared 

with individualized reaction rate considerations, this showed improvements in the formation of 

APAP-Sulfate and APAP-Gluc (Figure 3.2).   

3.3.4  Effect of Diffusion of Molecules 

Since some enzyme activities were evaluated in isolated microsomes or purified form, differences 

between simulated and clinical data could be due to diffusion being the rate limiting step.  In 

order to understand whether the phenomenon is diffusion limited at the cellular membrane, a 

material balance was performed around a single cell according to 
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where De is the diffusivity, PA is the partition coefficient, δ is the cell wall thickness, Cs is the 

surface concentration of APAP, Ccell is the concentration of APAP inside of the cell, A is the 

surface area of a hepatocyte, Vcell is the volume of the cell, and Δt is the time interval for 

evaluation.  Equation 9 was rearranged to solve for Ccell yielding 
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Ccell was determined in terms of fraction of Cs.  The values listed in Table 3.2 were used to 

determine that Ccell was 0.999Cs, indicating that the vast majority of APAP at the cell surface 

enters the cytoplasm, indicating that APAP metabolism is a reaction rate limited process.   

An additional method for determining reaction or diffusion limitation employs the Thiele 

modulus.  For a reaction that follows Michaelis-Menten kinetics, such as those involved in APAP 

metabolism, the Thiele modulus (φ) is defined as 
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where R represents the particle or cell radius.  The calculated Thiele modulus was significantly 

less than 1, again suggesting that the process is reaction limited.  Hence, the observed difference 

in the formation of metabolic products and APAP conversion is not due to diffusional limitation.  

Thus the observed variation in the product formation is attributed to the difference in kinetic 

parameters. 

3.3.5  Effect of Cell Density 

While converting many of the kinetic parameters, generalized liver parameters (Table 3.2) were 

used.  Also, when individual components of tissue or cells are harvested, there could be loss of 

some components during the isolation process.  Thus, there could be discrepancy in scaling the 

Vm values to per cell basis.  Alterations in cell density also alter Vm for all metabolites, but the Km 

value is independent of cell density.  In order to understand the effect of cell density on APAP 

metabolic profiles, simulations were performed a 4, 2, and 0.5 times the initial cell density 
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(Figure 3.4) using “grouped” pharmacokinetic parameters.  As expected, increased cell density 

increased APAP conversion and formation of all metabolites.  With 4 times the cell density, less 

than 1% of APAP remained, with an increase in metabolites; nearly 11% of the distribution was 

APAP-GSH, while 30% was APAP-Sulfate and 59% was APAP-Gluc.  Formation of APAP-

Sulfate seemed to be less dependent on the increased cell number compared to the other two 

metabolites.  However, when cell numbers were decreased by one half, 51% of APAP remained, 

and nearly 6% of the distribution was APAP-GSH, 13% was APAP-Sulfate, and 31% was APAP-

Gluc.

 

Figure 3.4:  Effect of cell density and the reaction rates on the metabolic profiles with a 

dosage of 20mg/L in a 24-well configuration: (a) APAP conversion, (b) yield of APAP-GSH,  

(c) yield of APAP-Sulfate, and (d) yield of APAP-Glucuronide 
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This suggested that reduction in cell number affects the overall conversion of all components, 

including APAP-Sulfate (Figure 3.4c).  Cell number to dosage needs to be appropriately 

accounted for in order to understand the formed metabolic profiles, as some pathways may show 

dependency at lower cell density.  Thus, a higher cell number could account for such variation in 

the simulation. 

3.3.6  Effect of APAP Dosage 

Many dosages are used and evaluated in the clinical setting.  Hence, observed differences could 

be attributed to the dosage.  In this regard, the sensitivity of product distribution to initial dosage 

was evaluated.  In order to test the effect of initial APAP concentration on metabolic products, 

simulations were performed and metabolic profiles were examined (Figure 3.5).  Initial 

concentrations of 5.95 mg/L and 50 mg/L, equivalent to a highly toxic adult dose, were simulated 

in a 24-well plate.   

With 50 mg/L dosage, nearly 29% of APAP remained, and the rest of the distribution was 9% 

APAP-GSH, 13% APAP-Sulfate, and 49% APAP-Gluc.  At 5 mg/L dosage, less than 20% of 

APAP remained, and nearly 8% of the remaining distribution was APAP-GSH, while 29% was 

APAP-Sulfate and 43% was APAP-Gluc.  Initial concentration was observed to only effect 

APAP-Sulfate production.   
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Figure 3.5:  Effect of APAP dosage in a 24-well configuration:  (a) APAP conversion, (b) 

yield of APAP-GSH, (c) yield of APAP-Sulfate, and (d) yield of APAP-Glucuronide 

When cell cultures are performed, even higher doses were reportedly used due to low metabolism 

of APAP.  In order to test the effect of higher dosage, a 150 mg/L APAP dosage was simulated.  

Increasing the APAP dosage decreased the conversion (Figure 3.6a).  Nearly 35% of APAP 

remained unchanged, while 9% APAP-GSH, 6% APAP-Sulfate, and 49% APAP- Gluc was 

present at 24 h.  This suggests that APAP-Sulfate is very sensitive to initial concentration of 

APAP relative to the other two metabolites (Figure 3.6b).  While both APAP-GSH and APAP-

Gluc yield increased with dosage, APAP-Sulfate decreased.   
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Figure 3.6:  Product Distribution at 24-hr in various conditions on different products 

formed:  (a) effect of APAP dosage and (b) cell number effect 

Thus when different dosages are used to evaluate the metabolic profiles, different rates than in 

vivo conditions may be observed.  APAP-sulfate yield decreased significantly with increased 

substrate concentration.   

There was no significant increase observed for APAP-Gluc or APAP-GSH yield, indicating 

APAP-sulfate yield decrease was not attributed to increases in the yield of these other two 

metabolites.  APAP-sulfate results are in agreement with previous studies [74-76] demonstrating 

that the sulfate pathway employs high affinity, not high capacity, enzymes and experiences 

uncompetitive inhibition resulting in a bypass ordered mechanism.   

3.3.7  Effect of Well Size 

There is increasing need to develop high throughput screening technologies in drug development. 

In order to understand how reduced size would affect the metabolic profiles, the same 
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configuration was tested in a 96-well plate (Figure 3.7).  Change in well size from that of a 24-

well plate to a 96-well plate demonstrated no discernable impact on metabolism of APAP.   

 

Figure 3.7:  Effect of reaction rates on the metabolic profiles with a dosage of 5.95 mg/L in 

different well configurations:  (a) APAP conversion, (b) yield of APAP-GSH, (c) yield of 

APAP-Sulfate, and (d) yield of APAP-Glucuronide 

Hence, one could use small well sizes, but the formed product quantity is significantly smaller.  

In order to detect and validate those results, one has to have sensitive techniques to detect the 

formed metabolites.  Typically used techniques, such as HPLC and ELISA, may not be sensitive 

in such low ranges, thus requiring the determination of alternative techniques.   
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3.4  DISCUSSION 

Development of in silico approaches for use in drug discovery are important as simulation plays a 

vital role in reducing drug development costs and increasing drug screening throughput relative to 

in vitro and in vivo methods.  Hence, PBPK and pharmacodynamics methods are used in drug 

development as a cost effective tool for analyzing various aspects of drug and body interactions 

[77].  Simulation allows evaluation of numerous kinetic parameters quickly and at low cost.  

Models range from whole body [78] to compartmental [79] to cellular [80] levels, and even 

nanoscale.  Although these models rely on literature data for model constants or parameters, one 

has to choose various compartments and regress the obtained data.  Further, these tools have to be 

adapted to conditions that mimic in vitro 3D tissue culture conditions that are becoming the next 

stage of drug screening.  In this study, we evaluated a novel, in silico approach, predicting 

metabolic profiles for comparison of 3D culture conditions with clinical data.  

Time dependent changes obtained for the various metabolites of a drug can be used to test in vitro 

results by plotting them in tandem with experimental results.  Data obtained from in vitro 

experiments using synthetic tissues at various times can be compared to the simulation data.  

Experimental, simulated, and clinical data values should be non-dimensionalized to ease cross-

testing comparison.  This helps in understanding whether the developed in vitro model(s) mimic 

whole liver metabolism.  These comparisons would help validate the 3D models whether further 

modifications, such as adding another cell type, changing cell density ratios, altering the porosity 

of the porous structure, incorporating fluid flow to induce shear stress, and/or recreating zonation 

observed in the liver [81], are required.  There is also an increasing need to develop high 

throughput, 3D, synthetic tissue screening technologies in the discovery and development of new 

drugs.  Product profiles from 96-well cultures evaluated similar to 24-well configuration or other 

well sizes could be scaled to the requirement.  Also, simulation aides in understanding the 
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sensitivity of various parameters while developing synthetic cell cultures.  We have shown that 

one could test the effects of drug dosage, cell number, and sizes of 3D cultures on the metabolic 

profiles.  Further, CFD can be extended to understand zonal variations in metabolic activity.   

Well-investigated APAP was used as a case study to evaluate the utility of such 3D structures.  

Evaluation of these 3D cultures is critical, as there is currently no FDA-approved tissue culture 

method for drug development, due to the vast number of differences in culturing conditions and 

techniques observed in cross-laboratory comparisons.  Using various hepatocyte cultures, 

differing results are often reported with little overlapping information.  Some differences could be 

due to varying experimental setup, cross species comparisons, or comparison of data from 

different cell lines.  The lack of methods capable of connecting and validating data across 

laboratories to clinical data indicate great need for technologies that can close this gap.  There are 

many biochemical assays for evaluating enzymatic activity which can be compared to determine 

the effect of various culture conditions on specific enzymatic activity.  For example, if activity of 

one CYP isoform is increased without changing the other two pathways in APAP metabolism and 

other CYP isoforms, an increase in APAP-GSH concentration and yield would be observed.  

However, if all three pathways show a reduction, then APAP conversion would decrease.  We 

need to extend these analyses to other drugs and establish whether the pharmacokinetic 

parameters mimic clinical data.  Further, databases utilized in various PBPK models could be 

refined to improve the prediction capabilities.  Comparison of data from these different areas 

would help extend “Learn and Confirm” testing methodology resulting in safer and more 

effective clinical trials.   

This study demonstrated that when CYP isoforms are simulated with individual rate parameters, 

there is an increased amount of the bioactivated product, leading to over prediction of APAP-

GSH formation.  When each isoform was coupled with its relative contribution based on activity, 
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the overall product distribution was similar to that observed in clinical data.  Similarly, “grouped” 

averages of those rate constants showed similar results.  Further evaluation of these 

pharmacokinetic equations using different drugs could help in determining whether a “grouped” 

or contribution based activity is more appropriate for consideration when evaluating 

bioactivation.  The pharmacokinetic parameter values for APAP-sulfation and APAP-

glucuronidation were not listed by individual transferases in the initial resource used.  

Unfortunately, UGT isoform pharmacokinetic data is sparse relative to CYP isoforms, making 

value selectivity difficult.  SULT isoform pharmacokinetic data is not currently obtainable.  

Investigation of different individual kinetic constants as well as activity-weighted UGT isoform 

kinetics needs to be further investigated.  Verifying whether the pharmacokinetic parameters 

provide comparable metabolic profiles with respect to clinical data is vital for validity evaluation.   
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CHAPTER IV 

 

 

EVALUATION OF THE IINFLUENCE OF ENDOTHELIAL CELL TYPE ON HEPG2 CELL 

FUNCTION IN CO-CULTURE AND 3D SCAFFOLDS ON ACETAMINOPHEN 

METABOLISM 

 

4.1  INTRODUCTION 

The liver is a multifunctional organ involved in the metabolism, detoxification, excretion of 

substances, and maintenance of appropriate levels of circulating proteins essential for homeostasis.  

Liver is uniquely organized with a high density of hepatocytes (~70%) aligned along liver sinusoids 

comprised of endothelial cells (<20%), ensuring many interactions [82].  Liver sinusoidal 

endothelial cells (LSEC) are strategically located between the blood stream and hepatocytes, and 

play vital roles in waste clearance [83].  Hence, numerous cell culture methods have been 

investigated to predict metabolism and toxicity of a drug prior to animal studies in the preclinica l 

phase [84].  The shortage of readily available primary human hepatocytes and limitations for long 

term storage present a primary obstacle.  As a result, many studies pertaining to hepatic drug 

metabolism/toxicity employ HepG2 heaptocarcinoma cell line, [85-87].  HepG2 cells are highly 

proliferative, easy to culture, and many molecular mechanisms and drug interactions are well 

documented.  While 2D monolayer or sandwich cultures are often explored, they do not provide  
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the high cell density and cell-cell communication necessary to mimic in vivo functions.   

With the introduction 3D culture techniques as early as 1912 [88], cells were shown to behave 

more organotypicly when cultured in higher density [89].  Owing to a unique architecture which 

dictates complex interactions between cell-types, indicating that mimicking liver architecture is 

vital to maintaining hepatocyte function [90].  Three dimensional systems provide a new 

integrative level, where cells can interact, create cellular networks, and extend processes.  

Developing liver cultures using 3D porous scaffolds have shown significant promise [91].  Porous 

scaffolds provide a surface for cell attachment allowing for a homogeneous cell distribution 

across the scaffold, resulting in homogeneous distribution of nutrients/drugs to all cells in the 

culture.  In this study, chitosan-based scaffolds formed by lyophilization based on their unique 

advantage of mechanical property and chemical properties were used.  Chitosan is a 

polysaccharide, similar to heparan sulfate [92] richly present in the extracellular environment of 

the liver and sharing many features [93].  Various molecules can be blended through electrostatic 

interactions to modulate biochemical and mechanical signals, including gelatin [94-96] and 

heparin sulfate and dextran sulfate [97].  Due to the absence of a cell binding domain in chitosan, 

gelatin was blended, as gelatin has been shown to promote adhesion and spreading of endothelial 

cells (EC) in the absence of serum proteins [94] and promote matrix synthesis [98]. 

An additional consideration in 3D liver culturing to promote in vivo functionality is co-culturing.  

The addition of LSEC to primary hepatocytes has been shown to stabilize hepatic urea and 

albumin secretion in vitro [99, 100].  LSEC promote hepatocyte proliferation via secretion of 

HGF in co-culture systems or after partial hepatectomy [101].  LSEC are morphologically 

different from other EC present in other organs.  LSEC possess non-diaphragmed fenestrae and 

are distributed on an ill-organized basement membrane [102].  However, LSEC are very sensitive 

to environmental conditions and changes.  As a result, HepG2 cells have been co-cultured with 
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established human umbilical vein endothelial cells (HUVEC), which can be maintained and 

proliferated.  Studies have shown restoration of some HepG2 cell functions when co-cultured 

with HUVEC [103].  However, effects of co-culturing with different cell types have not been 

investigated.  In this regard, the effect of pairing HepG2 with primary LSEC or HUVEC on 

hepatic function was questioned.  Further, the effect of culturing cells in 3D porous structures 

made of chitosan and gelatin in comparison with 2D configurations as a reference was 

investigated.  Using these cultures, the effect of 2D and 3D configurations on APAP metabolism 

as a model to understand hepatic function was evaluated.  These results show discernable 

culturing effects on APAP metabolism and influence on all three pathways.  Further, there are 

differences in the activity of CYP3A4 enzyme.   

4.2  MATERIALS AND METHODS 

4.2.1  Chemicals 

Chitosan (190–310 kDa MW and 85% degree of deacetylation, Catalog # 448877), gelatin type-A 

from porcine skin (Bloom300, Catalog # G2500), acetaminophen (Catalog # A3035), 

acetaminophen-sulfate (Catalog #UC448), acetaminophen-gluconuride (Catalog # 43073), 

perchloric acid solution (Catalog # 311413), theophylline (Catalog # T1633), and sodium sulfate 

(Catalog # 71729) were all purchased from Sigma Aldrich Chemical Co. (St. Louis, MO).  

Absolute Ethanol (ACS grade, Catalog # 111000200), glacial acetic acid (ACS grade, Catalog # 

281000ACS), and acetonitrile (Distilled/HPLC grade, Catalog # 300000DIS) were purchased 

from Pharmco-AAper (Shelbyville, KY). Phosphoric acid (85%, certified ACS Catalog # A242-

212) was purchased from Fisher Scientific (Hampton, NH). Carboxyfluorescein diacetate 

succinimidyl ester (CFDA-SE) and live/dead cell viability assay kit (Catalog # L34951) were 

purchased from Invitrogen Corp. (Carlsbad, CA). eFluor® 670 (Catalog #) was purchased 
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from eBioscience (San Diego, CA).  Pierce™ BCA (bicinchoninic acid) Protein Assay Kit 

(Catalog # 23227) was purchased from Thermo Fisher Scientific (Waltham, MA).   

4.2.2  Cells and Media 

HepG2 cells (hepatocellular carcinoma line, Catalog # HB-8065), Eagles Minimum Essential 

Medium (EMEM Catalog # 30-2003), Fetal Bovine Serum (FBS Catalog # 30-2020), and 

Trypsin-EDTA Solution (Catalog # 30-2101) were purchased from American Type Culture 

Collection (ATCC, Manassas, VA).  Maintenance and subculture processes for all cell lines is 

given in Table 4.2.  Liver sinusoidal endothelial cells (LSEC, Catalog # ACBRI 566), CSC 

Complete Medium with 10% serum (Catalog # 4Z0-500), CSC Passage Reagent Group (includes 

PRG1: an EDTA/dPBS solution, PRG2: a Trypsin/EDTA/dPBS solution, and PRG3: a Trypsin 

Inhibitor/PBS solution, Catalog # 4Z0-800) were all purchased from Cell Systems Corp.  

(Kirkland, WA).   

Table 4.1:  Cell sources and maintenance/subculture procedures and chemical requirements 

Cells Source Maintenance medium Centrifuge Subculture process 

HepaRG Lonza 

Base Medium with 12% 

Plated Metabolism 
Additive 

100×g 

Not subcultured.  Plated using 

Base Medium with 12% 
Thawing and Plating Additive 

LSEC 
Cell 
Systems 

CSC Complete Medium 
with 10% serum 

150×g 

Washed with EDTA/dPBS, 

detached using 

Trypsin/EDTA/dPBS, and 

neutralized with Trypsin 
Inhibitor Solution/PBS 

HUVEC 
BD 
Biosciences 

200PRF Medium with 
10% LSGS 

125×g 

Detached using 

trypsin/EDTA, and 

neutralized with trypsin 
neutralizer solution 

 



42 

 

Human umbilical vein endothelial cells (HUVEC-2) derived from single donors were purchased 

from BD Biosciences (San Jose, CA).  Medium 200 phenol red free (PRF, Catalog # M-200PRF-

500), low serum growth supplement (LSGS, Catalog # S-003-10), trypsin/EDTA (Catalog # 

R001100), trypsin neutralizer solution (Catalog # R002100) were all purchased from Life 

Technologies Corporation (Carlsbad, CA).  Cell combinations for experiments are shown in 

Table 4.2. 

Table 4.2: Cell culture combinations explored 

Cell Culture Combinations 

HepG2 LSEC HUVEC 

X   

X X  

X  X 

 

4.2.3  Porous Chitosan-Gelatin Scaffold Preparation 

Discoid-shaped, chitosan-gelatin (CG) scaffolds of 10 cm diameter with 1 mm thickness were 

prepared by previously reported methods with minor modifications [54].  In brief, 2% chitosan 

and 2% gelatin were mixed and sterilized using a benchtop oven set at 148 °C.  Under sterile 

conditions, powder was dissolved in a 0.5 M acetic acid solution.  The CG solution was then 

poured into 10 cm diameter circular molds on a Teflon sheet (US Plastics Co.) and frozen 

overnight at -80 °C, then freeze-dried overnight in a Virtis freeze dryer (Gardiner, NY).  Dry CG 

scaffolds were sealed in petri dishes, wrapped in aluminum foil, and stored in a desiccator until 

time of use.  The day prior to cell culture, CG scaffolds were cut to 34 mm diameter discs using a 

stencil to fit into the well of a 6-well plate (Figure 4.1a).  CG scaffolds were neutralized in 

absolute ethanol (pH 7.4) for 24 hours at room temperature.   



43 

 

 

Figure 4.1:  The basic steps for (a) preparation of chitosan-gelatin porous scaffolds and (b) 

the culturing timeline followed for all conditions 

A wear-resistant, 8×8 nylon mesh with an opening size of 0.0944" (McMaster-Carr, Atlanta, GA) 

cut to the diameter of the well was sterilized via autoclave, and then placed on the bottom of each 

well i) to elevate the CG scaffold from the bottom of the tissue culture plate to avoid diffusion 

limitations along the bottom, and ii) to provide support while removing scaffolds for analysis 

post-experiment.  The neutralized, CG scaffolds were placed on top of the mesh and rinsed with 

sterile PBS to remove trace ethanol, and ten soaked in HepG2 media for 2 hours prior to cell 

seeding.   

4.2.4  Establishing Co-cultures  

Cell culture experiments were performed in triplicate for each condition (2D, 3D, Mono, and 

Coculture) in two formats: i) seeding pre-stained cells for imaging and viability analysis, and ii) 

seeding non-stained cells for enzyme activity analysis.  HepG2 cells were pre-stained with 

eFluor® 670 and EC were stained with CFDA-SE following the vendor’s protocol.  In brief, a 

10 µM solution of eFluor® 670 in PBS was mixed in equal parts with a hepatocyte cell 



44 

 

suspension.  The mixture was then incubated for 10 minutes at 37°C in the dark.  Cells were 

washed twice with media prior to seeding.  For EC staining, a 1 µM CFDA-SE stain solution was 

added to cell suspension and incubated at 37 °C for 20 min, followed by washing with PBS and 

then cell seeding.   

The timeline shown in Figure 4.1b was used for all cell culture experiments.  On Day 0, 0.5×106 

viable HepG2 cells were seeded and allowed to attach on the CG scaffold for one hour prior to the 

addition of 2 mL media per well.  After the first day, spent medium was collected and replaced 

with fresh media.  On day 3, the media was changed and, in the case of co-culture experiments, EC 

were added.  Considering the physiological ratio of hepatocytes to EC in an adult liver, 0.1×106 

LSEC or HUVEC were seeded.  One day was allowed for EC attachment prior to aspiration of 

spent media followed by the addition of 2 mL of fresh media.  A ½ and ½ mixture of hepatocyte 

(Hep) and respective EC medium was used from day 3 through the rest of the co-culturing timeline.   

For 2D experiments, digital fluorescent and phase contrast micrographs were taken at random 

locations on days 1, 3, 4, 6, and 8 for stained and unstained cells using an inverted fluorescent 

microscope (Nikon Eclipse TE 2000-U, Melville, NY) equipped with a CCD camera, similar to 

previous publications [104].   

4.2.5  Challenging with APAP 

After 8 days of culture, each condition was randomly assigned to one of the two groups:  

Group 1: Controls: no APAP was added and cultured by adding medium, as before. 

Group 2: Treated: Cells were challenged with APAP at a concentration of 150 µg/mL.   
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A 5 mg/mL stock solution of APAP was prepared by dissolving 50 mg of APAP powder in 10 

mL of sterile, deionized water.  The solution was mixed on a temperature controlled stir plate at 

25 ºC.  The solution was syringe filtered with a 0.2 μm nylon filter.   

From both groups, a 25 μL sample was retrieved from each well every six hours for 24 hours, 

including a sample at the zero time point.  All samples were stored at -20 °C until time of 

analysis. 

4.2.6  Cell Distribution in 3D Culture 

Upon completion of the 24 hours of APAP challenge, the scaffolds (treated and control) were 

divided into 3 parts (Figure 4.2) for use in the following analyses: 

 Viability by freeze-thaw using a spectrofluorometer  

 Cell distribution through the scaffold thickness by H&E staining 

 Cell distribution in the radial direction by confocal imaging  

 

Figure 4.2:  Scaffolds were split post-experimentation for performing multiple analyses 

Initially, all treated and non-treated CG scaffolds were split into two parts.  One half was used in 

fluorescence imaging, while the other half was stored in 1 mL of PBS and frozen until used to 
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determine viability via methodology described in the section below.  For 3D experimental 

configurations, confocal images were collected using Leica TCS SP II (Heidelberg, Germany).  

Images were captured at various depths for both HepG2 and EC.  Obtained images were 

overlapped to obtain a single image at each depth and location. 

One portion of the harvested CG scaffolds was fixed after 9 days in culture according to 

previously reported methods [105].  In brief, half of the CG scaffold was washed with PBS, then 

fixed in a 3.7% formalin solution for 45 minutes at room temperature, washed with PBS (×2), and 

submerged in 2 mL of absolute ethanol.  The 6-well plates in which the CG scaffolds were 

housed were tightly sealed using paraffin film and stored at 4 °C.  From each CG scaffold, 4 µm 

thick sections were cut and processed according to standard haematoxylin and eosin (H/E) 

staining protocols.  Bright field micrographs were obtained at random locations using an EvosTM 

AME-i2111 Digital Inverted Microscope. 

Cell morphology and distribution were analyzed using a JOEL 6360 electron microscope (Joel 

USA Inc., Peabody, MA) at an accelerated voltage of 8 kV, similar to previous methods [97].  

Twenty-four hours prior to SEM analysis, a portion of the fixed CG scaffolds was vacuum dried 

in a Virtis freeze dryer (Gardiner, NY).  Dry samples were attached to 10 mm diameter aluminum 

stubs (Electron Microscopy Sciences, Hatfield, PA) using a conductive graphite glue (Ted Pella, 

Redding, CA), and sputter-coated with gold for 1 minute. 

4.2.7  Determining cell Viability 

Cell viability was analyzed, using a fluorescence method previously described [105].  After 9 

days, media was aspirated, wells were filled with 1 mL of PBS, then frozen at -80 ºC.  The 

number of viable cells per well for each condition was determined by lysing cells via four repeats 

of a freeze-thaw cycle and measuring fluorescence released from pre-stained cells.  The freeze-



47 

 

thaw cycle involved freezing at -80 ºC for 30 min and thawing at room temperature for 30 min.  

After the final thaw, 150 μL were taken from each well and pipetted into a black, 96-well plate.  

Fluorescence was measured using a Spectramax GeminiXS spectrophotometer (Molecular 

Devices Sunnyvale CA) with excitation wavelengths of 485 nm and 615 nm and emission 

wavelengths of 538 nm and 660 nm for EC and hepatocytes respectively. 

Fluorescence intensity was converted to cell number using a calibration curve developed using 

corresponding cell types and respective fluorescence stains.  For this purpose, cells were 

harvested from T-75 plates, and counted using a trypan blue dye exclusion assay.  Hepatocytes 

were stained with eFluor® 670 and EC with CFDA-SE, using the protocol described above.  

Cells ranging from 250,000 to 1,500,000 for HepG2 cells and 25,000 to 200,000 for ECs were 

deposited into separate wells, sterile PBS was added to bring the total volume to 1 mL, and plates 

were then frozen at -80 ºC.  Using the four freeze-thaw cycles, cells were lysed.  Fluorescence 

was measured using respective excitation and emission wavelengths.  Relative fluorescence to a 

known number of cells was prepared for each cell type.  The linear regression equation from each 

calibration line was used to calculate the number of given cells in experimental wells and 

scaffolds.   

4.2.8  Protein Content Analysis 

Protein content in the media was evaluated using a BCA assay, according to the vendor’s 

protocol.  In brief, standards and samples were diluted 1:5 by mixing 25 µL of sample/standard 

with PBS.  Twenty-five µL of the diluted standard/sample followed by 200 µL of working 

reagent were mixed in a 96-well plate on a plate shaker for 30 seconds, and incubated at 37 °C for 

30 minutes.  Absorbance was measured at 490 nm using Emax spectrophotometer (Molecular 

Devices Sunnyvale, CA).   
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Blood urea nitrogen content (BUN) was analyzed using QuantiChromTM  Urea Assay Kit 

(BioAssay System, Hayward, CA) following the vendor’s protocol.  In brief, 50 L samples were 

added to a 96-well plate along with 200 L of reagent.  After 20 min of incubation at room 

temperature, absorption was measured using a Emax spectrophotometer at 490 nm.   

4.2.9  APAP and Metabolite Analysis 

APAP and its formed metabolites were analyzed using a Dionex HPLC system (Dionex 

Sunnyvale, CA), similar to previously reported methods, with minor modifications [106].  In 

brief, a 25 µL sample from each time point was deproteinated using a 6% perchloric acid 

solution, containing 10 mg/mL of theophylline (the internal standard), at twice the sample 

volume.  Samples were mixed on a mini vortex for 5 s and centrifuged at 14,000 g for 6 min.  

Supernatant was aspirated and placed into a glass vial for analysis.  An injection volume of 10 µL 

was delivered to the HPLC column via the autosampler (Model ASI-100).  APAP and metabolites 

were resolved using a 4.6 ×150 mm C18 column (Acclaim, National Scientific Rockwood, TN) 

with a 5 µm particle diameter and a 120 Å pore size.  A 4.6 × 10 mm C18 guard column with a 5 

µm particle diameter (Acclaim, National Scientific Rockwood, TN Guard Cartridge and Cartridge 

Holder) was included in line for column protedtion.  The HPLC system was controlled using 

Chromeleon software (version 6.8 Dionex Sunnyvale, CA). An isocratic mobile phase consisting 

of 93% 0.05 mM sodium sulfate solution and 7% acetonitrile was used.  Mobile phase pH was 

decreased to 2.2 using phosphoric acid (85%).  Samples were eluted employing a 1.5 mL/min 

flowrate, column oven temperature of 30 °C, and UV absorbance was detection wavelength of 

254 nm.   

Standards were prepared using a 12 to 159 µg/mL concentration range for APAP, and 9 to 100 

µg/mL range for APAP-sulfate and APAP-gluc.  Two combination standards were prepared for 
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quality control, where i) APAP and metabolite concentrations were equal at 60 µg/mL and ii) 

APAP concentration was 81 µg/mL and APAP-sulfate and APAP-glucuronide concentrations 

were 24 µg/mL concentrations.  APAP concentrations from HPLC analysis were converted to 

conversion values by,  

0C

 C
1Conversion APAP   

where C is the APAP concentration at any given time, and C0 is the initial APAP concentration. 

4.2.10  Enzymatic Activity Analysis 

A CYP 3A4 assay kit with Luciferin-IPA (Promega Corp. Madison, WI Catalog # V9002) was 

used to quantify changes in the activity of that enzyme, following vendor’s protocol.  In brief, 

cells were washed with medium prior to the addition of the substrate, luciferin-IPA, and then 

incubated at 37 ºC for 50 minutes.  Twenty-five µL of culture medium from each experiment was 

transferred into a 96-well, opaque, white plate (Thermo Fisher Scientific Waltham, MA Catalog # 

15042) at room temperature, followed by the addition of 25 µL of luciferin detection agent for 

reaction initiation.  Plates were incubated for 20 minutes at room temperature.  A DTX 880 

Multimode Detector and Multimode Analysis software (Beckman Coulter, Brea, CA) was used to 

quantify luminescence and enzymatic activity.  

4.2.11  Statistical Analysis 

Each experiment was performed in triplicate for each condition.  Viability and CYP 3A4 activity 

averages are based on results from non-stained and stained sets respectively.  Total protein 

content and metabolism averages are based on data from both stained and non-stained 

experiments, with n = 6.  In order to determine significance of variance, ANOVA analysis was 

performed in MS Excel between groups.   
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4.3.  RESULTS 

4.3.1  Morphological Changes in Cell Culture 

In this study, porous CG scaffolds prepared using freeze-drying were used to develop 3D cultures 

where cells can be uniformly distributed throughout the structure.  This study did not employ 

spheroid culture, though also referred to as 3D cultures [107].  The 3D porous scaffolds were 

first examined in dry and hydrated conditions in order to confirm pore openness and stability of 

pores to ensure that cells could infiltrate uniformly, similar to previous results [98].  Scanning 

electron micrographs showed that the dry surface (Figure 4.3b) possessed an open pore 

architecture which would allow cell infiltration when seeded.  Hydrated scaffolds were semi-

transparent (Figure 4.3a), which allowed visualization of internal pore architecture via light 

microscopy.  Pores appeared intact even after hydration. 

 

Figure 4. 3:  Chitosan-gelatin 3D scaffold showing porous structure. (a) Digital phase 

contrast micrograph in hydrated condition and (b) SEM micrograph in dry condition.  The 

SEM micrograph shows that pores at the surface are open to allow for cell infiltration 

Next, many experiments were performed to develop a protocol for testing the co-culture system.  

Initially, when 1×106 HepG2 cells were seeded per well, there was limited space for the 
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organization of cells, even without the addition of EC for co-cultures.  Alternatively, seeding at 

lower than 0.5×106 HepG2 cells was explored; however, metabolite production was undetectable.  

For co-cultures, seeding of HepG2 cells and EC simultaneously was also explored.  Simultaneous 

seeding led to cultures that appeared disorganized after allowing 2 to 3 days for reorganization of 

cells.  Seeding separately allowed establishment of HepG2 cell colonies, around and among 

which EC preferred to attach (Figure 4.4), more similar to the configuration of these cell types in 

vivo.  On Day 1, HepG2 cells were uniformly distributed throughout the culture, and more as 

individual cells (Figure 4.4).  After 3 days, small colonies of HepG2 cells were observed with an 

increase in number of cells with time progression for all cultures.  Increases in cell number were 

particularly significant in 2D cultures with HUVEC.  No changes in morphology of any cell line 

were observed.  Hence, after allowing for HepG2 cells to attach and reorganize, EC were added.  

Comparison of fluorescent micrographs in the same location allowed for distinction of cell type.  

CFDA-stained EC attached in and around hepatocyte colonies (Figure 4.5).  These analyses 

confirmed that seeding HepG2 cells first followed by EC seeding after 3 days helped in 

promoting organizational changes and aided in the elimination of issues due to space limitation.  

Challenging the cell cultures on day 8 with APAP, also helped minimize the effects of proteases 

used during subculturing. 

  4.3.2  Evaluating the Distribution of Cells in 3D Cultures 

In order to evaluate the distribution of cells in 3D cultures, confocal images were taken at various 

depths through the scaffold thickness.
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Figure 4.4:  Digital micrographs of 2D cultures for observation of morphology and distribution.  Proliferation of cells was observed in all 

cases, particularly for HepG2 cells 
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Figure 4.5:  Digital and fluorescent micrographs show cell distribution in coculture with 

respect to time.  The fluorescent images make HUVEC/LSEC (-green) discernable from 

HepG2 

The collection of confocal images demonstrated that both efluor-stained HepG2 and CFDA-

stained LSEC or HUVEC were distributed in the scaffold (Figure 4.6).  A considerably larger 

number of hepatocytes were observed compared to EC, in agreement with the seeding ratio of 

5:1.  This suggested the presence of both the cell types in co-cultures.  However, hepatocytes 

appeared in greater number in 3D cocultures compared to 3D monocultures. 

Additional analyses were performed to confirm cell distribution in 3D i) at the surface and ii) in 

the open pore architecture.  SEM images of the scaffold surface demonstrated cell attachment of 

all cell lines (Figure 4.7).  HepG2 cells appeared as rough, spheres approximately 7 μm in 

diameter, while both EC lines were more elongated, approximately 50 μm in length.    EC were 

observed in smaller numbers relative to HepG2, in agreement with the seeding ratio.  
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Figure 4.6:  Confocal images of 3D cultures with HepG2 cells (red) and LSEC/HUVEC (-green) at different depths confirming 3D 

configuration. (scale = 100 µm) 
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HepG2 cells were observed in clusters as well as independently.  Micrographs obtained after 

H&E staining from cross-sections of the thickness of the scaffold showed HepG2 cells in clusters 

and individually distributed (Figure 4.8).  HepG2 were identified by high nuclear to cytoplasmic 

ratio.   

 

Figure 4.7:  SEM micrographs show attachment of HepG2 cells (red) and LSEC/HUVEC (-

green) on the surface of the scaffold.  HepG2 were observed to grow individually and in 

clusters 

This confirmed the presence of cells in the interior of the scaffolds.  The combination of confocal 

imaging, SEM, and H&E staining confirmed that cells were distributed in 3D and present both i) 

on the surface and ii) within the porous structure. 
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Figure 4.8:  H&E treated scaffold slices of the cross sectional view of the thickness.  HepG2 

cells were observed as individual cells and as clusters 

4.3.3  Evaluation of Cell Viability 

While the various imaging techniques qualitatively confirmed 3D distribution of cells, a 

quantitative analysis was also performed using pre-stained cells and lysing hem by use of a 

freeze-thaw cycle.  Initial calibration plots prepared with varying cell numbers demonstrated a 

linear increase in fluorescence with increased cell number, suggesting the possibility of using 

such a technique.  The ratio of the fluorescent signal to the number of cells was much lower for 

HepG2 cells (Figure 4.9a) compared to both EC lines (Figure 4.9b), indicating an increased 

cytoplasmic content in ECs relative to HepG2, in agreement with known cell morphologies.   
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Figure 4.9:  Cell viability analysis during cell culture.  Calibration curves for a) HepG2 cells 

and b) LSEC and HUVEC were prepared over a range of relevant cell totals for each cell 

line.  The regression line equations were used to obtain the relative viability for c) HepG2 

cells in monoculture and co-culture with LSEC or HUVEC and d) LSEC and HUVEC in 

co-culture.  * represents statistically significance between 2D and 3D HUVEC co-cultures 

with p<0.01.  $ represents statistically significance between 3D monoculture and 3D 

HUVEC co-culture with p<0.01.  There was statistically significant difference between each 

group of EC and not shown to reduce cluttering of the figure. 

Also, LSEC has less cytoplasmic content relative to HUVEC, suggesting LSEC are smaller in cell 

size. 
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When viability was assessed using respective fluorescent signals, HepG2 cell viability on Day 9 

was comparable to the initial 0.5×106 cells per well seeding (Figure 4.9c) across most cultures.  

ANOVA analysis demonstrated significant differences between 2D and 3D co-cultures with 

HUVEC, and a significant difference between 3D monoculture and 3D co-culture with HUVEC.  

Viability results confirmed that the majority of the initial HepG2 cells survived, unlike EC 

viability, which varied significantly according to dimensionality and cell line (Figure 9d), as 

indicated by ANOVA analyses.  EC demonstrated higher viability in 3D cultures compared with 

2D cultures for both cell lines.  LSEC’s were observed to be less viable than HUVEC, confirming 

increased sensitivity of LSEC compared with HUVEC.  However, HepG2 cell viability was not 

significantly affected by culturing in 2D or 3D and in presence of LSEC, but HUVEC co-cultures 

affected viability.   

The effect of 1 M APAP concentration on viability was also compared.  Comparison between 

APAP treated and untreated viability showed no significant difference in viability in all cultures.  

Hence, that data is not shown.  

4.3.4  Assessment of Total Protein Content 

In order to better understand the viable cell population and the effect of co-culture on 

hepatocytes, total protein content was evaluated during nine day culture.  First, differences in 

total protein content were observed for three media mixtures (pure HepG2 media, ½ and ½ 

HepG2 and LSEC medium, and ½ and ½ HepG2 and HUVEC medium).  When fresh media was 

analyzed, the protein content of the HepG2 and LSEC mixture had the highest protein content, 

followed by pure HepG2 media and then the HepG2 and HUVEC mixture.  The protein content 

for the EC and HepG2 mixtures were normalized for total protein content to pure HepG2 media.  

An increase in the total protein content was observed in media for all APAP treated cultures at 
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Day 9 (Figure 10a).  Otherwise, the protein content remained constant (from Day 1 to Day 8).  

Dimensionality did not greatly affect protein content; however, a trend of increased protein 

content was noticeable in co-cultures compared with monoculture. 

In order to understand HepG2 cell specific functionality, urea content was analyzed in the 

retrieved media.  These results showed (Figure 10b) trends similar to the total protein content, 

except 3D configuration, which showed increased urea production relative to corresponding 2D 

cultures.  Co-cultures with HUVEC seemed to have higher urea production during day 4 but 3D 

configuration had more effect.  Previously, increased matrix synthesis by fibroblasts in CG 

scaffolds while cell proliferation was minimal has been shown [98].  Similar behavior with 

HepG2 cells and EC were expected, given the ratio of HepG2 cells to EC in co-cultures.  This 

suggested that protein content variations mimic HepG2 cell function and there may lead to 

increased urea production.  Dimensionality did not appear to greatly affect protein content; 

however, co-culture trends demonstrated increased protein content compared with monoculture. 

4.3.6  APAP Metabolism 

The primary focus was to evaluate the effect of various cell culture conditions on hepatocellular 

metabolism with APAP as a model.  First, the detection system was established using HPLC and 

obtaining calibrations prepared for APAP and the associated metabolites.  All calibrations 

(Figure 11) demonstrated high linearity as evidenced by the r-squared (r2) values for the 

respective regression lines.  As the theophylline concentration remained the same throughout all 

preparations, the standard curves also indicated that for the same concentration, APAP yielded a 

higher area under the curve in HPLC analysis, compared to metabolites (Figure 4.11a); while 

APAP-sulfate and APAP-glucuronide areas under the curve were comparable (Figure 4.11b and 

4.11c). 
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Figure 4.10:  Changes in the total protein content and urea concentration during the culture period 
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Comparison of metabolite data from in vitro cultures with clinical data is important for 

understanding whether the integrity of metabolic processes is maintained in in vitro culture 

settings.  Experimental metabolic data was compared to clinical data by use of the computational 

model discussed in Chapter III.  In experiments, APAP conversion was highest in 3D co-cultures 

containing HUVEC (Figure 10d).  Other cultures also showed similar increases.  Production of 

the APAP-sulfate conjugate followed a general increasing trend for most cultures, but 2D co-

cultures yielded results with the highest product formation matching that of the clinical scenario 

(Figure 10e).  Three-dimensional monoculture and co-culture with LSEC gave the better results, 

with significantly higher distribution of APAP-sulfate.  However, production of the APAP-

glucuronide metabolite (Figure 10f) was lower compared with APAP-sulfate production, which 

is in contradiction to clinical results reported by others [66].  APAP-sulfate distribution was 

higher than that of APAP-glucuronide in 2D monoculture, 2D co-culture with LSEC, and 3D co-

culture with HUVEC.  Three dimensional co-cultures yielded lower production values relative to 

2D cultures, unlike urea production.  Although diffusion and distribution may not be significantly 

different between urea (molecular weight is 60 Da) and APAP (molecular weight is 151 Da) and 

its metabolites, the possibility of non-specific binding of APAP, which could lower the 

concentration of APAP, is suspected.  In this regard, additional experiments where APAP was 

loaded directly on to CG porous scaffolds without cells were performed.  However, no significant 

variation was observed.  With the observation of higher APAP conversion in 3D structures and no 

binding, it is possible that metabolites could bind to the structures or the cell phenotype in these 

pathways are not affected.  Thus, phenotypic changes have to be further investigated.  
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Figure 4.11:  Calibration curves for APAP and metabolites (left column) were prepared 

over a relevant concentration range.  The regression line equations were used to determine 

experimental concentrations with respect to line (right column) 

4.3.6  Changes in CYP Enzyme Activity 

When metabolite analyses were performed, APAP-GSH metabolite was not detectable using 

these HPLC methods.  As a result, CYP3A4 activity was evaluated on Day 9 (Figure 4.12) in 
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separate cultures.  CYP 3A4 activity was significantly higher in all 2D cultures when compared 

with 3D counterparts.  CYP 3A4 activity was significantly higher in all 2D cultures when 

compared with 3D counterparts.  Significantly higher CYP3A4 activity was observed in co-

culture with HUVEC for both 2D and 3D conditions in untreated and treated cultures, when 

compared with monoculture.  ANOVA analyses indicated differences in CYP3A4 activity 

between treated and control cultures for 2D experiments were significant.  Others have shown 

similar increase in CYP3A4 activity when primary human hepatocytes are co-cultured with 

adipocyte stem cells in spheroid cultures [108].  Further, the location of increased expression is 

shown to exist at the periphery of the cell.  Monoculture and co-culture with LSEC demonstrated 

higher activity under treated conditions compared with controls for both 2D and 3D; however, the 

opposite was observed when evaluated in 2D co-cultures with HUVEC, and activity was 

comparable for treated and controls in 3D co-cultures with HUVEC.   

 

Figure 4.12:  The CYP450 enzyme activity for isoform 3A4 was measured at the end of 

experiments on Day 9 via a luminescent assay 
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As the protocol for the assay and others have reported, CYP3A4 activity increases in hepatocytes 

when challenged with a drug.  Observance of the activation of CYP3A4 activity in untreated co-

cultures with HUVEC indicates that co-culture of hepatocytes with a non-native liver cell line 

could cause changes in behavior.  Hence, not all co-cultures are similar.  Further, analyses of 

other enzymes should be performed to better understand the effect of these configurations and 

observed changes in APAP metabolic products. 

4.3.7. Comparison to Clinical Data 

Comparison of the metabolic distribution of the parent drug and metabolites from cell culture 

experiments to clinical data is challenging, as changes in parameters, such as the cell density, can 

alter the distribution.  Computational modeling was used to evaluate APAP metabolism over a 24 

h period under identical conditions.  Pi charts (Figure 4.13) representing the metabolic 

distribution results from the 6 experimental setups were compared with computational results 

previously validated by clinical comparison.  APAP-glucuronide distribution was higher than 

simulation predictions by at least 1% in all 3D cultures as well as 2D co-cultures with LSEC.  

APAP-glucuronide production was less than that predicted by simulation by 1% in 2D 

monocultures.  Two dimensional cocultures with HUVEC appeared to more closely match the 

metabolic distribution of APAP from simulation than any other experimental set up. 
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Figure 4.13:  Metabolic distribution comparison with simulated data with APAP-GSH and 

APAP-glucuronide metabolism individualized and weighted.  Simulation was performed 

under the same conditions as experiments: 150 mg/L dose, 6-well plate, and 0.5×106 HepG2 
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4.4  DISCUSSION  

In this study, extensively explored CG porous structures were used to evaluate the effect of co-

culturing HepG2 cells with ECs from two origins.  First, the integrity of the porous structure was 

maintained in these experiments, as evidenced by SEM and bright light microscope imaging.  

Many 3D systems employ the development of cell aggregates or spheroids [109].  While 

spheroids provide increased, appropriate cell-cell communication and development of the 

extracellular matrix, diffusion limitation issues in such 3D systems lead to cell death at the core 

of the aggregates, as well as heterogeneous distribution of substrates.  In addition, drugs to be 

tested are not uniformly exposed to all cells.   

Similar to our results, others show using micro-patterned cultures that hepatocytes reorganize 

with time [110].  In addition, our study demonstrated that delayed EC seeding allowed the 

formation of hepatocyte colonies and EC to orient themselves around the hepatocyte colonies on 

their own.  Hence hepatocytes self-organize and move toward each other into small colonies, 

while the delay in seeding EC allowed their organization around the established hepatocyte 

colonies.  Others show similar benefit of delaying the culture time as HUVEC need three days for 

formation of tubular networks [111].  Also, CYP450 enzymes have shown alterations in isoform 

activity with respect to time in culture [110, 112, 113].  Where urea production [110] and albumin 

secretion [110, 114] are stable for a longer period of time.  For these reasons, the culture timeline 

was increased to 8 days prior to challenging with APAP, unlike other studies that challenge cells 

with a drug 24 hours after plating [115, 116].   

Both 2D and 3D fluorescent imaging showed opportunities for cell-cell communication between 

the same cell types and across cell types.  Our cell viability analysis used cytoplasmic stain, and 

calibration comparison between LSEC and HUVEC showed that HUVEC are nearly twice the 
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size relative to LSEC.  Viability comparison of HUVEC and LSEC co-cultures indicated that 

LSEC were more sensitive to change from a monoculture condition, with a significant decrease in 

viability relative to HUVEC.  Several factors, including hormones, cytokines, and alcohol 

influence the porosity and filtering function of LSEC.  In chronic liver disease and aging, 

morphological changes in LSEC, including capillarization, the loss of LSEC fenestration with 

formation of organized basement membrane, have been observed [117].  Thus, one has to 

evaluate such changes in order to better understand the co-culturing effect on LSEC.  Differences 

in CYP3A4 activity were observed in response to being challenged with APAP.  Co-culture with 

LSEC demonstrated typical response with an increase in CYP3A4 activity when challenged with 

APAP; however, co-culture with HUVEC had the opposite response.  Others have seeded at a 

higher ratio of HepG2 to HUVEC and shown altered activity [103].  Although the physiological 

ratio of hepatocytes to ECs was used, one has to test other ratios to fully understand these effects.  

Further, one could compare the effect of HepaRG cells, which show different CYP450 enzyme 

activity [107] in similar settings and evaluate the effect of 3D and co-cultures of EC [118].   

Hepatocellular metabolism of drugs is a well-orchestrated process with multiple pathways.  In 

order to obtain detectable results in metabolic studies in vitro, high doses of APAP have been 

used which are toxic to humans [60, 63, 119].  For example, using 10 to 50 μM APAP 

concentration, which is equivalent to a 755 to 75,550 mg/L single dose.  Nevertheless, using 10 to 

40 μM APAP concentration on rat primary cells, effect of co-culturing LSEC, Kupffer cells, and 

hepatocytes in sandwich cultures was recently reported [120].  Effect on cell viability 

demonstrated reduction at 20 to 40 μM concentration in sandwich cultures.  They also observed 

reduction in LSEC viability.  However, no direct metabolic product analysis was performed.  

While high doses facilitate sensitive detection of metabolites and molecular mechanisms, toxic 

doses can lead to downregulation of enzymes as cells adapt to high drug concentrations by 
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desensitizing, internalizing, and then down regulating enzyme expression [121-123].  A dose of 1 

μM was used, one of the lowest previously explored that also facilitated detection of three 

different metabolites formed via CYP450, UGT, and SULT enzymes.   

Metabolism along these different pathways can be affected by many factors [124].  Interactions 

between pathways can play an important role in the metabolic outcome.  Inhibiting or inducing 

enzyme activity along any of the pathways, in order to study one isoform or one pathway can 

skew results by the way cells compensate [125, 126].  Compensation can occur in the form of 

“metabolic switching, a phenomenon in which a change in metabolic pathway occurs either to the 

same enzyme family or to a different one [127].  While whole cells were used, many studies 

using isolated, microsomal isoforms may be able to avoid metabolic switching issues; however, 

one must consider that microsomes are not present in healthy, living cells [128].   

Modeling biological liver tissue is complex as (1) precisely controlling the seeding and 

distribution of multiple cell types, (2) the challenge to achieve high cell density comparable to 

native tissues, and (3) difficulty in organizing 3D architecture of native tissue to mimic its 

accompanying microenvironmental cellular interactions are extremely difficult to incorporate 

[129-131].  However, seeding cells in pre-formed porous scaffolds depends on random 

distribution of cells in the pores.  In order to develop highly structured organs with many distinct 

cell sub-populations [132-137], using novel technologies such as bioprinting would add value.  

Further, a physiologically relevant seeding ratio was used, but viability analysis of ECs showed a 

reduction relative to HepG2.  At day 8, the ratio of ECs to HepG2 was nearly 1:10 instead of 1:5.  

Hence, seeding at a higher ratio would help in understanding the effect better.  However, one 

must consider optimizing the culture medium that could equally support both the cell types. 
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CHAPTER V 

 

 

EVALUATION OF THE METABOLIC FUNCTIONS OF MULTIPLE HEPARG TISSUE 

CULTURE PLATFORMS FOR USE IN DRUG SCREENING 

 

 

5.1 INTRODUCTION 

Drug-induced liver injury, termed hepatotoxicity, is the most common reason for the after-market 

withdrawal of a drug, despite effectiveness in treating a disease [138].  Currently available in 

vitro models do not mimic the in vivo performance of the liver thereby explaining shortcomings 

in predicting hepatotoxicity.  HepG2 cells, frequently used to study the general cytotoxic 

potential of drugs, express very low levels of phase I drug-metabolizing enzymes such as 

cytochrome P450s [107, 139].  A more recently developed hepatic cell line differentiated from a 

hepatoma line is HepaRG, which have shown higher expression of P450 enzymes [140], 

comparable to primary human hepatocytes [141].  Increases in gene expression, enzymes, and 

transporters have been reported, relative to HepG2 [142, 143].  With the introduction of 3D 

culture techniques as early as 1912 [88], cells were shown to behave more organotypic when 

cultured in higher density [89].  Some have explored forming HepaRG spheroid cultures to  
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perform drug metabolic studies in 3D [109] and investigate alterations in enzyme 

expression/activity [144].  Although these results show differences in enzymatic activity, they 

suffer from two limitations: 1) non-uniformity in added drug and 2) difficulty in co-culturing 

other cells.   

First, when cells are cultured in spheroids [140], addition of factors to medium is hindered by the 

creation of a concentration gradient across the spheroid.  Typically, cells located in the periphery 

are exposed to higher concentration while those in the interior of the spheroid are exposed to 

lower concentration of the drug.  Components added in the medium need to diffuse through freely 

via cells or cell-cell junctions [145]. Based on the organization of human liver which contains 

nearly 60 -70% hepatocytes and 30-40% nonparanchymal cells (<20% liver sinusoidal 

endothelial cells (LSEC) [82], and Kupffer cells), some have shown the importance of heterotypic 

cell-cell interactions.  For example, co-culturing HUVEC and HepG2 cells is shown to restore 

some HepG2 cell function [103].  LSEC co-cultures have been shown to promote hepatocyte 

proliferation in co-culture systems or after partial hepatectomy [101].  Co-culturing with Kupffer 

cells to mimic inflammatory responses has also been investigated [146].  An alternative in 

developing 3D cultures is using porous matrices, which offer a 3D matrix where cells can be 

distributed evenly similar to in vivo conditions.  Further, they provide an opportunity to develop 

high cell density cultures due to a high surface area to volume ratio [147].  These 3D structures 

have shown sensitivity of cells to the physical properties of the structure such as stiffness, pore 

size and void fraction in addition to chemical properties [148].  They have been generated and 

utilized in various tissue engineering applications [149].   

The effect of co-culturing LSEC and HUVEC on HepaRG survival and functionality was 

investigated.  Porous structures formed by freeze-drying of a CG solution, which have been 

extensively characterized in our group [94], were used.  CG scaffolds made of 2% chitosan and 
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2% gelatin have a modulus of 5-12 kPa in hydrated conditions [96], making scaffolds i) 

conducive for adhesion of various cell types [150], and ii) optically transparent.  How HepaRG 

function would change when cultured with liver native LSEC compared with non-native HUVEC 

was questioned.  In addition, cultures were challenged with APAP.  Significant effect of these 

culture configurations on HepaRG activity was shown. 

5.2  MATERIALS AND METHODS 

5.2.1  Chemicals 

Chitosan (190–310 kDa MW and 85% degree of deacetylation, Catalog # 448877), gelatin type-A 

from porcine skin (Bloom300, Catalog # G2500), acetaminophen (APAP) (Catalog # A3035), 

acetaminophen-sulfate (Catalog #UC448), acetaminophen-gluconuride (Catalog # 43073), 

perchloric acid solution (Catalog # 311413), theophylline (Catalog # T1633), and sodium sulfate 

(Catalog # 71729) were all purchased from Sigma Aldrich Chemical Co. (St. Louis, MO).  

Absolute Ethanol (ACS grade, Catalog # 111000200), glacial acetic acid (ACS grade, Catalog # 

281000ACS), and acetonitrile (Distilled/HPLC grade, Catalog # 300000DIS) were purchased 

from Pharmco-AAper (Shelbyville, KY). Phosphoric acid (85%, certified ACS Catalog # A242-

212) was purchased from Fisher Scientific (Hampton, NH). Carboxyfluorescein diacetate 

succinimidyl ester (CFDA-SE) and live/dead cell viability assay kit (Catalog # L34951) were 

purchased from Invitrogen Corp. (Carlsbad, CA). eFluor® 670 (Catalog #) was purchased from 

eBioscience (San Diego, CA).  Pierce™ BCA (bicinchoninic acid) Protein Assay Kit (Catalog # 

23227) was purchased from Thermo Fisher Scientific (Waltham, MA).   

5.2.2  Cells and Media 

No-Spin HepaRG cells (terminally differentiated, hepatocellular carcinoma line, Catalog # 

NSHPRG), Base Medium with supplement (Catalog # MH100), Thawing and Plating Additive 
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(Catalog # MHTAP), and Plated Metabolism Additive (Catalog # MHMET) were purchased from 

Lonza (Basel, Switzerland). Table 5.1 shows the maintenance and subculture process for all cells 

used in experiments.  Liver sinusoidal endothelial cells (LSEC, Catalog # ACBRI 566), CSC 

Complete Medium with 10% serum (Catalog # 4Z0-500), CSC Passage Reagent Group (includes 

PRG1: an EDTA/dPBS solution, PRG2: a Trypsin/EDTA/dPBS solution, and PRG3: a Trypsin 

Inhibitor/PBS solution, Catalog # 4Z0-800) were all purchased from Cell Systems Corp.  

(Kirkland, WA).  . 

Table 5.1:  Cell lines with materials and methods for culturing 

Cells Source Maintenance medium Centrifuge Subculture process 

HepaRG Lonza 

Base Medium with 12% 

Plated Metabolism 

Additive 

100×g 

Not subcultured.  Plated using 

Base Medium with 12% 

Thawing and Plating Additive 

LSEC 
Cell 

Systems 

CSC Complete Medium 

with 10% serum 
150×g 

Washed with EDTA/dPBS, 

detached using 

Trypsin/EDTA/dPBS, and 

neutralized with Trypsin 
Inhibitor Solution/PBS 

HUVEC 
BD 

Biosciences 

200PRF Medium with 

10% LSGS 
125×g 

Detached using 

trypsin/EDTA, and 

neutralized with trypsin 
neutralizer solution 

 

Human umbilical vein endothelial cells (HUVEC-2) derived from single donors were purchased 

from BD Biosciences (San Jose, CA).  Medium 200 phenol red free (PRF, Catalog # M-200PRF-

500), low serum growth supplement (LSGS, Catalog # S-003-10), trypsin/EDTA (Catalog # 

R001100), trypsin neutralizer solution (Catalog # R002100) were all purchased from Life 

Technologies Corporation (Carlsbad, CA).  The combinations of cell lines used in experiments 

are shown in Table 5.2 
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Table 5.2:  Culturing combinations for 2D and 3D systems 

Cell Culture Combinations 

HepaRG LSEC HUVEC 

X   

X X  

X  X 

5.2.3  Porous Chitosan-Gelatin Scaffold Preparation 

Discoid-shaped CG scaffolds of 10 cm diameter and 1 mm thickness were prepared as discussed 

in Chapter 4.  In brief, dry CG scaffolds were placed in sealed petri dishes, wrapped in aluminum 

foil, and stored in a desiccator until time of use.  The CG scaffolds were cut down to 34 mm 

diameter discs prior to the 24-hour neutralization process.  A sterilized, 34 mm diameter nylon 

mesh was placed on the bottom of wells for 3D systems.  Neutralized, CG scaffolds were placed 

on top of the mesh, rinsed with sterile PBS to remove trace ethanol, and soaked in HepaRG media 

for 2 hours.   

5.2.4  Cell Culture in 2D and 3D Systems 

In parallel with HepG2 experiments, HepaRG experiments were carried out in triplicate for each 

cell culture condition and system.  In brief, one set of experiments contained pre-stained cells for 

imaging and viability analysis, while the other contained non-stained cells for enzyme activity 

analysis.    

The same cell culture timeline used in HepG2 experiments were employed in HepaRG 

experiments.  In brief, 0.5 × 106 HepaRG cells were seeded on Day 0 and allowed 24 hours to 

attach to the well bottom or CG scaffold, depending on dimensionality of the experiment, prior to 

the addition of media.  Media was added to all cultures to render a total liquid volume of 2 mL.  
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On day 3, media was changed and, 100,000 LSEC or HUVEC were seeded in cocultures based on 

the physiological ratio of hepatocytes to endothelial cells in an adult liver.  Endothelial cells were 

given allowed to attach, same as HepaRG.  A ½ and ½ mixture of HepaRG and EC medium was 

used in cocultures to accommodate the two cell types.  After the cultures were well established, (8 

days) they were split into two groups:  

Group 1: Controls: no APAP was added and cultured by adding medium, as before. 

Group 2: Treated: Cells were challenged with APAP at a concentration of 150 µg/mL.   

The same 5 mg/mL stock solution of APAP from HepG2 experiments was used.   

A 25 μL sample was taken from each well every six hours for 24 hours, including a sample at the 

zero time point.  The media changes and time point samples were stored in 2 mL centrifuge tubes 

at -20 °C until time of analysis. 

5.2.5  Determining Cell Distribution 

In order to understand the distribution and viability of cells, separate experiments were performed 

where HepaRG cells were pre-stained with eFluor® 670 following the vendor’s protocol.  In 

brief, a 10 µM solution of eFluor® 670 in PBS was mixed in equal parts with a hepatocyte cell 

suspension.  The mixture was then incubated for 10 minutes at 37°C in the dark.  Cells were 

washed twice with media prior to seeding.  In co-culture studies, endothelial cells were stained 

with a 1 µM CFDA-SE solution, according to the vendor’s protocol.  In brief, a CFDA stain 

solution was added to cell suspension and incubated at 37 °C for 20 min, followed by washing of 

the excess stain with PBS and then cell seeding.  
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For 2D experiments, micrographs were taken on days 1, 3, 4, 6, and 8.  After the seeding of EC’s, 

digital and fluorescent micrographs were captured at the same location through an inverted 

microscope outfitted with a CCD camera.   

All treated and non-treated CG scaffolds were harvested and fixed after 9 days in culture.  

Scaffolds were split into two parts, and the following three analyses were performed: 

 Half of the split scaffolds from 3D experiments were stored in 1 mL of PBS and frozen 

until viability analysis was performed, as described in Chapter 4.   

 The other half of the split scaffolds were immediately analyzed by confocal imaging 

using a confocal microscope as discussed in Chapter 4.  In brief, images were taken 

throughout the scaffold thickness along the z-axis.  At each step, the two fluorescent 

signals of hepatocyte and endothelial stains were collected.  In co-cultures, the 

fluorescent signals of hepatocyte and EC’s at the different steps along the z-axis were 

overlapped to obtain a single image at each location. 

 The half CG scaffold used in confocal microscopy was washed with PBS to remove trace 

media.  The CG scaffolds were then fixed as discussed in Chapter 4.  In brief, scaffolds 

were submerged in a 3.7% formalin solution for 45 minutes at room temperature, washed 

with PBS (×2), and submerged in 2 mL of absolute ethanol.  The 6-well plates in which 

the CG scaffolds were housed were tightly sealed using paraffin film and stored at 4 °C.  

CG scaffolds were then processed according to standard H/E staining protocols.  The 

samples were sliced 4 µm thick and sealed in slides.  Bright field micrographs were taken 

and cell morphology and distribution were analyzed.  Twenty-four hours prior to SEM 

analysis, the fixed CG scaffolds were vacuum dried.  Dry samples were attached to 10 
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mm diameter aluminum stubs using a conductive graphite glue and sputter-coated with 

gold for 1 minute. 

5.2.6  Determining Cell Viability 

All cultures and conditions were analyzed by fluorescence for viability, using the standard curves 

developed and discussed in Chapter 4.  In 2D experiments, cell culture wells were aspirated of 

media, filled with 1 mL of PBS, and frozen at -80 ºC.  In 3D, the experimental wells and half 

scaffolds were analyzed separately.  The half scaffolds, placed into a new 6-well plate, and the 

3D experimental wells were filled with 1 mL of sterile PBS and frozen at -80 ºC.  The number of 

viable cells per well for each condition was determined by lysing cells via a repeated freeze-thaw 

cycle and measuring fluorescence released from pre-stained cells.  A 150 μL sample was taken 

from each well and pipetted into a black, 96-well plate.  Fluorescence was measured using a 

Spectramax GeminiXS spectrophotometer with excitation wavelengths of 485 and 615 nm and 

emission wavelengths of 538 nm and 660 nm for endothelial cells and hepatocytes respectively. 

5.2.7  Protein Content and Albumin Secretion Analysis 

A BCA assay was used to evaluate the total protein content of the supernatant of media changes, 

according to the vendor’s protocol.  Identical to HepG2 analysis methods, a sample diluted by 

mixing 25 µL of supernatant in 100 µL of PBS was mixed with 200 µL of the working reagent 

mixture.  An Emax spectrophotometer was used to measure absorbance at 490 nm, and converted 

to concentration using the standard curves created and discussed in Chapter 4.  

A Bromocresol Green (BCG) albumin assay kit was used to measure the albumin concentration 

of the supernatant collected during media changes.  In brief, 5 µL of supernatant was pipetted into 

a clear, 96-well plate, followed by the addition of 200 µL of Reagent.  Solutions were mixed by 

light tapping and then incubated for 5 minutes at room temperature.  Absorbance was measured 
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using an Emax microplate reader (Molecular Devices) at 650 nm.  Albumin concentration was 

converted from absorbance using an exponential standard curve.  This assay was not performed in 

HepG2 experiments due to the presence of phenol red in the maintenance media, which interferes 

with absorbance readings.  

5.2.8  APAP and Metabolite Analysis 

Sample preparation was performed similar to previously reported methods [106] and identical to 

HepG2 metabolic analysis methods.  In brief, 25 µL sample aliquots were deproteinated by the 

addition of a 6% perchloric acid solution, containing 10 mg/mL of theophylline at twice the 

sample volume.  Supernatant was aspirated and placed into a glass vial for analysis.  A 10 µL 

injection volume was analyzed by the same HPLC methods discussed in Chapter 4.  

Chromeleon® software was used to control of all components of the Dionex HPLC system.  An 

isocratic mobile phase consisting of 93% 0.05 mM sodium sulfate solution and 7% acetonitrile 

was used for sample separation (pH 2.2).  A constant flowrate of 1.5 mL/min and temperature of 

30 °C were maintained throughout separation.  APAP and metabolites were resolved on the C18 

column, preceded by a guard column with a 5 µm particle diameter.  Detection of APAP and 

metabolites was achieved using UV absorbance of 254 nm.  Prior to analysis, samples were 

equilibrated to room temperature for 60 min.  For clinical data comparison, APAP concentration 

values from HPLC analysis were converted to conversion. 

5.2.9  Enzymatic Activity Analysis 

Due to the inability of HPLC methods to detect APAP-GSH concentrations, enzyme activity 

along the bioactivation pathway was evaluated.  A CYP 3A4 activity assay was used to assess 

enzyme activity for all cultures and conditions, as well as cell-free environments as discussed in 

Chapter 4.  In brief, HepaRG cells were washed with medium prior to the addition of the 
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substrate and incubated at 37 ºC for 50 minutes in the experimental wells.  Then 25 µL from each 

well was transferred into a white 96-well plate, followed by the addition of 25 µL of luciferin 

detection reagent for reaction initiation.  The 96-well plate was incubated for 20 minutes at room 

temperature.  A DTX 880 Multimode Detector was used to quantify luminescence and thus 

enzymatic activity.  

5.2.10  Statistical Analysis 

Each set of experiments (stained and non-stained) was performed in triplicate for each culture and 

condition combination.  Viability and CYP 3A4 activity averages are based on results from non-

stained and stained sets respectively.  Total protein content and metabolism averages are based on 

data from both stained and non-stained experiments, for a total of six data points.  In order to 

determine significance of variance, ANOVA analysis was performed.   

5.3  RESULTS 

5.3.1  Morphological Changes in 2D During Cell Culture Timeline 

In 2D cultures, HepaRG cells were uniformly distributed and attached to tissue culture plastic on 

Day 1 (Figure 5.1).  Some random migration of HepaRG cells were observed from Day 1 to Day 

3.  Reorganization of hepatocytes and EC, both LSEC and HUVEC, was observed in all 2D 

cultures.  EC were observed to attach in and around established HepaRG colonies, suggesting 

cell-cell communication.  The morphology of HepaRG cells appeared to differ throughout the 

culture timeline.  As the HepaRG reorganized, regions of extremely compact cells with easily 

identifiable nuclei were observed (Figure 5.1).  This change in morphology occurred in all 

culture conditions and systems. 
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Figure 5.1:  Digital micrographs of 2D cultures for observation of morphology and distribution
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Fluorescent micrographs were captured at the same locale as light microscopy to compare and 

discern different cell types.  CFDA-stained ECs attached to tissue culture plastic surfaces 

amongst and around the edges of HepaRG cells (Figure 5.2).   

 

Figure 5.2:  Digital and fluorescent micrographs show cell distribution in coculture with 

respect to time.  The fluorescent images make HUVEC/LSEC (green fluorescence) 

discernable from HepG2  

In all cultures, LSEC was smaller in size than HUVEC when comparing fluorescent images.  The 

cytoplasmic portion of HUVEC were more prominent compared with LSEC.   

5.3.2 Evaluating the Distribution of Cells in 3D Cultures 

Unlike 2D cultures, evaluating cell distribution needs observations at different depths within the 

porous structure.  Hence, confocal imaging was employed to evaluate cell distribution in 3D 

cultures.  Comparison of fluorescent images at various depths demonstrated that the efluor-

stained HepaRG, CFDA-stained LSEC, and CFDA-stained HUVEC were present in the scaffold 

(Figure 5.3).  HepaRG were observed with considerably higher frequency compared to 

endothelial cells, in agreement with the seeding ratio of 5:1.   
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Figure 5.3:  Confocal images of 3D cultures with HepG2 cells (red) and LSEC/HUVEC         

(-green) at different depths confirming 3D configuration. (scale = 100 µm) 

Additional analyses using scanning electron microscopy and histology were performed to confirm 

cell distribution in 3D at the surface.  Similar to previous reports, these analyses confirmed the 

presence of cells and some matrix elements in porous structures.  Only a few representative 

micrographs are shown (Figure 5.4).   
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Figure 5.4:  Micrographs of HepaRG cells after 9 days of cell culture (top row) at the 

scaffold surface captured by SEM and (bottom row) showing the cross-sectional view of 

H&E stained scaffolds.  Arrows indicate the location of HepaRG cells 

The combination of confocal imaging and SEM, confirmed that cells were distributed in 3D. 

5.3.3 Evaluation of Cell Viability 

Various imaging techniques qualitatively confirmed the presence of cells and their uniform 

distribution in both 2D and 3D cultures.  In order to further understand those results 

quantitatively, viability of cells was determined using pre-stained cells.  As two different 

fluorescent stains were used to identify hepatocytes and ECs, they were also used to quantify the 

number of each cell type.  These results showed (Figure 5.5a) that HepaRG viability on Day 9 

was nearly double in 3D monoculture relative to 2D monoculture, suggesting improved viability 

in 3D configuration.  Interestingly, the presence of LSEC significantly improved the survival rate 
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in 2D culture and similar viability was observed in 3D cultures.  However, presence of HUVEC 

in 2D cultures did not change cell viability.  On the contrary, presence of HUVEC in 3D cultures 

decreased cell viability.  

When EC viability was analyzed, these results varied by dimensionality (Figure 5.5b).  Higher 

EC viability was observed in 3D cultures compared with 2D cultures for both cell lines.  Presence 

of a higher number of HUVEC in 3D cultures with reduced HepaRG cultures suggest that these 

interactions may not be favorable for the survival of HepaRG cells and origin of EC affects 

survival of HepaRG cells.   

 

Figure 5.5:  Relative viability for a) HepaRG cells in monoculture and co-culture with 

LSEC or HUVEC and b) LSEC and HUVEC in coculture 

5.3.4 Assessment of Total Protein Content and Urea and Albumin Synthesis 

In order to better understand the viable cell population and the effect of co-culture on 

hepatocytes, first, total protein content was evaluated during nine day culture.  Since a 1:1 

mixture of HepaRG medium with respective EC medium was used, the total protein content for 

the three media mixtures (pure HepaRG medium, ½ and ½ HepaRG and LSEC media, and ½ and 



84 

 

½ HepaRG and HUVEC media) were analyzed.  When fresh media was analyzed, the protein 

content of the HepaRG and LSEC mixture had the highest protein content, followed by pure 

HepaRG medium, and then the HepaRG and HUVEC mixture.  The protein content of the ½ and 

½ mixtures were normalized for total protein content to pure HepaRG medium.  Both 

monoculture and co-culture with LSEC showed increase in protein content during the culture 

duration (Figure 5.6a).  An abrupt increase in protein content was observed from Day 8 to Day 9, 

which could be partially attributed to some toxicity effect of APAP damaging the cell membrane.  

This could also be due to the adaptation of cells for acute toxicity. 

However, co-cultures with HUVEC showed a reduction in the total protein content from day 4 

and a moderate increase at day 9.  This could be due to a reduced number of viable cells.  There 

was no significant difference between the protein content of 2D and 3D cultures.  Protein content 

was not affected by dimensionality or co-culturing with HUVEC. 

Urea is solely synthesized in the liver and is commonly used to assess hepatocyte function.  Urea 

production (normalized by the total protein content of media changes) was relatively constant 

over the nine day period for all experimental setups, with the exception of 3D and 2D co-culture 

with HUVEC’s (Figure 5.6b).  In both monocultures and co-cultures with LSEC, a decreasing 

trend was observed during the culture period.  On the contrary, an increase in urea content or 

similar levels of production were observed in both 2D and 3D co-cultures with HUVEC.  This 

trend could be confounded by the fact that the urea values were normalized by the total protein 

content.  In any case, these results suggest that the cells that were viable had similar functionality.    

In order to further understand the cell viability and function of HepaRG cells, albumin secretion 

was assessed in culture supernatants.  Albumin secretion in HepaRG monocultures increased 

(Figure 5.6c) in the beginning until day 4 and then remained relatively constant in both 2D and  
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Figure 5.6:  Concentration time profiles for (a) the total protein content, (b) urea synthesis, and (c) albumin synthesis in experimental 

setups 
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3D cultures. Co-cultures with LSEC showed further improvements over the nine day period for 

all experimental setups, with the pattern mimicking the total protein content.  Similarly, co-

culture experiments with HUVEC showed reduced albumin secretion after four days, mimicking 

the total protein content.  Comparison of 2D cultures to 3D cultures suggests that the 

configuration did not affect the functionality of HepaRG cells.  However, type of cells used in co-

cultures significantly influenced the performance of HepaRG cells.   

5.3.5 APAP Metabolism 

As the intent of this work was to evaluate various cell culture conditions for use in drug 

screening, hepatic function was assessed through drug metabolism studies.  APAP conversion 

was highest in 3D co-culture with LSEC, followed by 2D co-culture with LSEC and 3D co-

culture with HUVEC (Figure 5.7a).  Two dimensional co-culture with LSEC and 3D co-culture 

with HUVEC yielded similar APAP conversions at sample time points of 12 hours through 24 

hours.   

Production of the APAP-sulfate conjugate followed a general increasing trend for most 

cultures, but 2D cocultures yielded results with the highest production values (Figure 

5.7b).   

The production of APAP-glucuronide was much lower than expected when compared with 

simulation predictions.  Two dimensional co-culture with HUVEC yielded the highest production 

value, followed by 2D co-culture with LSEC (Figure 5.7c). Three dimensional cultures appeared 

to produce very little APAP-glucuronide.   
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Figure 5.7:  Metabolic profiles for (a) APAP conversion, (b) APAP-sulfate concentration 

production, and (c) APAP-glucuronide concentration production  

5.3.6  Changes in CYP Enzyme Activity 

The most abundant cytochrome P450 enzyme in the liver is CYP 3A4.  CYP 3A4 is responsible 

for the metabolism of more than 50 % of all marketed drugs.  Further, others have shown that 

HepaRG cells have the highest CYP34 activity, relative to other hepatocyte cell lines [143].  In 
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order to understand culturing effects on enzyme activity changes in CYP 3A4 enzyme activity 

were assessed.  These results showed that CYP 3A4 activity was significantly higher in all 2D 

cultures when compared with 3D counterparts.  The highest CYP3A4 activity was observed in 

HepaRG monoculture, followed by co-cultures with LSEC.  Higher CYP 3A4 activities were 

observed in untreated 2D cultures for both monocultures and co-cultures with HUVEC (Figure 

5.8).   

 

Figure 5.8:  CYP 3A4 activity in HepaRG tissue cultures 

This is in contrast to findings with HepG2, where only co-cultures with HUVEC had higher 

activity in untreated cultures.  The relative luminescence values were significantly higher than 

those observed in HepG2 experiments, suggesting that the bioactivation pathway is more active in 

HepaRG cells.   
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5.4  DISCUSSION  

In this study, the influence of culturing HepaRG cells in combination with LSEC and HUVEC on 

cell viability and functionality was investigated.  Morphological changes in HepaRG were 

observed over the culturing timeline.  Migration of HepaRG cells through Day 8 was observed, 

similar to that reported for the first three days [151].  HepaRG also demonstrated abilities to 

reorganize themselves into colonies in 2D, suggesting the occurrence of homogeneous cell-cell 

communication.  The formation of bile canaliculi was observed, as others have shown during 

shorter culture periods [141].  The functionality of bile canaliculi specific transporters should be 

investigated to confirm their presence.  In 3D porous structures, HepaRG cells were observed 

both individually and in clusters.  The relative viability data for HepaRG was highest, and 

comparable to initial seeding, in both 2D and 3D co-cultures with LSEC and 3D monocultures.  

This suggests that the CG porous scaffolds are conducive for culturing HepaRG cells and the 

microarchitecture of those scaffolds are also suitable.  Further, total protein secretion was not 

sensitive to dimensionality.  The relatively constant value throughout the culture timeline 

suggests that protein secretion functions were stable and maintained.  In addition, one could blend 

heparan sulfate to chitosan and gelatin and form porous structures to mimic the liver architecture.  

One could also add other cell types such as Kupffer cells in 3D liver tissue constructs to test the 

effect on metabolism of APAP [152].   

In co-cultures, LSEC and HUVEC attachment was observed amongst and/or around HepaRG 

colonies, suggesting the occurrence of heterogeneous cell-cell communication.  HepaRG cells 

demonstrated sensitivity to the EC line used.  HepaRG viability in the presence of HUVEC 

decreased significantly relative to LSEC.  This is unlike the results obtained using the HepG2 

derived C3A cell line in combination with HUVEC [153].  Those co-cultures showed 

improvements in albumin synthesis by day 3 and less toxicity towards APAP.  On the contrary, 
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there was a reduction in albumin secretion on day 6 in co-cultures of HepaRG and HUVEC cells.  

Further investigation into whether these sensitivities are due to changes in media composition 

[154] or cell-cell interaction is necessary.  Also, this study focused on evaluating the functionality 

of HepaRG cells.  Evaluation of EC activity in these set ups need to be performed as well.  Some 

have shown the importance of HepG2 cells in remodeling of HUVEC and their importance in 

providing physical support [155].  In order to understand the such interactions, one could measure 

the production of nitric oxide (NO) and hydrogen peroxide by EC and compare the difference in 

the level between HUVEC and LSEC. 

In this study, a 1mM concentration of APAP was used, unlike other studies which have used 

higher concentrations [118].  Comparison of total protein secretion with and without APAP 

challenge showed some increases in conditions containing APAP.  This could be due to either 

cells responding to APAP or some toxicity.  Further, investigation into understanding the cell 

growth during the culture time would help understand these issues.  Some using HepaRG 

spheroid cultures, some have shown the effect of APAP metabolism and alterations in enzymes 

[144].  However, direct comparison with such results are hindered by cell distribution of APAP.  

The trend for APAP-sulfate production was observed in simulation and experimental metabolic 

profiles.  APAP-glucuronide production in experimentation did not match well with simulation; 

however, production was increased compared with HepG2 profiles.   

Enzymatic activity for CYP 3A4 was higher in co-culture with HUVEC for 2D and 3D cultures.  

The enzymatic activity of CYP 3A4 was difficult to detect in 3D cultures.  In 2D, CYP 3A4 

activity was significantly higher in HepaRG cultures compared to HepG2.  This was particularly 

evident in monocultures.  The increased CYP 3A4 activity in HepaRG cultures compared with 

HepG2 is in agreement with previous reports [107, 156].  The addition of EC decreased activity.  

HepaRG activity alone may be higher than that seen in vivo; thus rendering co-cultures superior.  
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Some researchers have reported higher activity in HepaRG compared with primary human 

hepatocytes for CYP 3A4.  This study revealed that HepaRG cultures are metabolically superior 

to HepG2 cultures.  Co-culture with HepaRG cells performed best, particularly with LSEC.  This 

indicates metabolic results are sensitive to the endothelial cell line used in co-culture.  Further 

investigation into diffusion limitations of APAP-glucuronide and APAP-GSH in the scaffold 

region should be pursued.   

In this study, evaluation of whether the use of a terminally differentiated cell line, like HepaRG, 

would yield different results than an immortalized cell line, like HepG2, when set up under 

identical conditions was performed.  The initial seeding distributions of HepaRG were observed 

to be homogeneous in 2D.  Between Days 1 and 3, rearrangement of HepaRG cells into colonies 

was observed, similar to that seen in HepG2 experiments.  In addition to rearrangement, the 

development of bile canaliculi was observed when dense HepaRG colonies were formed.  In co-

culture experiments, both LSEC and HUVEC were attached amongst and around the outer edges 

of the established HepaRG colonies, again suggesting the occurrence of heterogeneous cell-cell 

communication, similar to HepG2 experiments.  The distribution of cells in 3D was confirmed by 

multiple approaches.  The relative viability of HepaRG on Day 9 was comparable to the initial 

seeding density for 3D monocultures and 2D and 3D co-cultures with LSEC.  Monocultures in 

2D and co-cultures with HUVEC in 2D exhibited around 50% viability, compared with initial 

seeding.  The relative viability for endothelial cells was higher in 3D for both LSEC and HUVEC.  

Total protein secretion was comparable between 2D and 3D on respective days and within 

respective cultures (monoculture, co-culture with LSEC, and co-culture with HUVEC), through 

Day 9.  Total protein secretion remained relatively constant within respective cultures throughout 

the culture process, indicating maintenance of that particular function.  Experimental metabolic 

profiles for HepaRG cultures were also compared with scaled simulation profiles from Aim 1.  
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Co-culture in 3D with LSEC yielded results that closely matched simulation, followed by 2D co-

cultures with LSEC and 3D co-cultures with HUVEC.  APAP-glucuronide formation results from 

HepaRG experiments were significantly lower than simulation, but also higher than in HepG2 

experiments.  The increasing trend in the APAP-sulfate amount produced with respect to time 

was observable in both 2D and 3D LSEC co-cultures, as well as 2D co-culture with HUVEC; 

however, all APAP-sulfate production results were slightly lower than those observed in HepG2 

experiments and in simulation. The metabolite APAP-GSH was still not detectable by the HPLC 

methods used, though the CYP 3A4 enzymatic assay demonstrated much higher activity in 

HepaRG experiments compared with HepG2.  Enzymatic activity was considerably higher in 2D 

than 3D experiments.  This could be due to diffusion limitations of the detection reagent into or 

out of the scaffold.   Enzyme activity was activated in treated co-cultures with LSEC, but 

activated in non-treated cultures in monocultures. 
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CHAPTER VI 

 

 

CONCLUSIONS AND RECCOMMENDATIONS 

 

 

6.1  CONCLUSIONS 

The goal of this study was to create a tissue culture platform for use in drug development for 

which experimental results could be connected to clinical data by incorporation of computational 

modeling, thereby creating a method of validation for experimental results.  There has been 

significant development in generating 3D synthetic tissues using various techniques [109, 157-

159].  Three dimensional systems provide a new integrative level, which is a complex 

environment where cells can interact, create cellular networks, and extend processes.  Many 

synthetic tissues are developed based on the fundamental understanding that cell-cell and cell-

matrix interactions in 3D systems are crucial to integrate the extensive signaling pathways, and 

the biophysics that regulate the development and regeneration of tissues [149].  Cell-cell 

interactions between hepatocytes and nonparenchymal cells have been shown to alter the 

functionality of hepatocytes [101], prolonging CYP-450 activity and albumin production.  While 
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tissue culture models using a wide range of techniques have demonstrated the ability to provide 

PK values and metabolic profiles, there is currently no method for validating local tissue culture 

results by tying to clinical data.  I decided to address the lack of a validation methodology by 

incorporating computational modeling to act as a bridge for scaling between local tissue culture 

and clinical data.  To achieve this goal, the project was split into three aims.  Aim 1 was to i) 

develop a computational model that was capable of mimicking clinical data at physiologically 

relevant conditions using kinetic constants from literature, and ii) determine whether the 

computational model could be used for scaling between different initial doses, cell densities, and 

bioreactor sizes.  Aim 2 was to evaluate the impact various tissue culturing techniques had on i) 

metabolic function by comparing experimental results to scaled simulated metabolic profiles, ii) 

enzymatic activity, and iii) protein synthesis, using a commonly used cell line, HepG2.  Aim 3 

employed the same evaluation methods and endpoints, but used an alternative hepatocyte cell 

line, HepaRG. 

6.1.1  Conclusions from Aim 1:   

I investigated numerous kinetic constants for the three metabolic pathways of APAP metabolism.  

In addition to compiling kinetic constant values for enzyme specific and total contributions to the 

different metabolic paths, I also explored multiple forms by which reaction rates could be 

expressed, including i) individually by each enzyme ii) as a grouped sum contributing to total 

metabolism, iii) individually by each enzyme, but weighted by abundance or contribution to 

metabolism.  The metabolic distribution of APAP and metabolites 24 hours after dosing for 

different combinations of kinetic constants and reaction rate considerations were compared with 

clinical distributions at the same time point.  At the physiological hepatocyte density, the 

combination of i) a bioactivation reaction rate equation employing individualized kinetic 

parameters weighted by each enzyme’s contribution to metabolism and ii) kinetic constants given 



95 

 

in literature as total contributions to metabolism for both the sulfation and glucuronidation 

pathways yielded a metabolic distribution that most closely matched clinical distribution.  The 

effect of initial dose was evaluated to determine whether results would follow mechanistic trends.  

The glucuronidation pathway is considered high capacity; therefore, a trend of increased APAP-

Gluc production should be seen with an increase in dose.  The sulfation pathway is considered 

high affinity; therefore, a trend of decreased APAP-sulfate production with an increase in dose 

should be observed.  Both of these trends were observed with contribution weighted kinetics were 

considered, further confirming the validity of the computational model.  Cell density scaling was 

also investigated.  As expected, APAP conversion and all metabolite yields increased as cell 

density increased.  Exploration of changing the well-size of the static bioreactor indicated that 

metabolic profiles were not sensitive to such changes, suggesting scaling of using the 

computational model was possible.  The ability to i) match clinical metabolic distribution, ii) 

follow dose related mechanistic trends, iii) adhere to expected results for changes in cell density, 

and iv) lack sensitivity to changes in bioreactor size, affirmed the ability of the developed 

computational model to be used to tie together experimental and clinical data as a method for 

validation. 

6.1.2  Conclusions from Aim 2: 

Aim 2 was devoted to determining the culturing condition which yielded metabolic and hepatic 

function data that most closely matched clinical data using commonly used HepG2 cells.  In 2D, 

initial seeding distributions of HepG2 cells were observed to be homogeneous over the plate 

bottom, and rearrangement of HepG2 cells into colonies was observed between Days 1 and 3 for 

both mono and cocultures.  Endothelial cells, both LSEC and HUVEC, were shown to attach 

amongst and around the outer edges of HepG2 established colonies, suggesting the occurrence of 

cell-cell communication.  Cell growth/spreading in 2D was qualitatively observed in all cultures 
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and was particularly high in cocultures with HUVEC.  In 3D cultures, cell distribution in all 3 

dimensions was confirmed by multiple approaches.  A relative viability assessment for 

hepatocytes showed that HepG2 viability was comparable across all cultures.  In the case of the 

relative viability assessment for endothelial cells, HUVEC demonstrated higher viability than 

LSEC.  Total protein secretion was evaluated as a measure of hepatocyte function, and was 

comparable in 2D and 3D cultures relative to each mono or coculture condition for each day, 

through Day 8.  A major focus of Aim 2 was to compare experimental metabolic profiles with 

scaled simulation profiles from Aim 1.  Three dimensional coculture with HUVEC yielded an 

APAP consumption profile that more closely matched simulation, followed closely by 2D and 3D 

coculture with LSEC and 3D monoculture.  For the major APAP metabolic product, APAP-

glucuronide, all experimental results were significantly lower than simulation.  Experiments using 

other drugs have reported up to a thousand-fold decrease in APAP-glucuronide production 

compared with primary hepatocytes.  Similar APAP-sulfate production trends were observed 

between simulation and experimental data, with the exception of 3D monocultures and 3D 

cocultures with LSEC.  The metabolite APAP-GSH, produced by CYP450s, was not detectable 

by the HPLC methods used.  An enzymatic assay was performed to determine whether CYP 3A4, 

one of the major contributors to APAP bioactivation, was active.  The assay indicated that CYP 

3A4 was active in all 2D culture conditions and 3D cocultures with HUVEC.  CYP 3A4 activity 

was undetectable in the other 3D culture settings.  Activity was higher for all cocultures with 

HUVEC.  Increased enzymatic activity was observed in monocultures and cocultures with LSEC 

that were challenged with APAP.  Observance of the activation of CYP3A4 activity in untreated 

cocultures with HUVEC indicate that coculture of hepatocytes with a non-native liver cell line 

can cause changes in behavior as activation should occur in treated hepatic cultures.  Considering 

all of the metabolic, functional, and enzymatic data, I would consider the coculture with LSEC in 

2D to be superior to the other systems. 
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6.1.3  Conclusions from Aim 3:   

In Aim 3, I wanted to determine whether use of a terminally differentiated cell line, like HepaRG, 

would yield different results than an immortalized cell line, like HepG2, when set up under 

identical conditions.  The initial seeding distributions of HepaRG were observed to be 

homogeneous in 2D.  Between Days 1 and 3, rearrangement of HepaRG cells into colonies was 

observed, similar to that seen in HepG2 experiments.  In addition to rearrangement, the 

development of bile canaculi was observed when dense HepaRG colonies were formed.  In 

coculture experiments, both LSEC and HUVEC were attached amongst and around the outer 

edges of the established HepaRG colonies, again suggesting the occurrence of cell-cell 

communication, similar to HepG2 expeeriments.  The distribution of cells in 3D was confirmed 

by multiple approaches.  The relative viability of HepaRG on Day 9 was comparable to the initial 

seeding density for 3D monocultures and 2D and 3D cocultures with LSEC.  Monocultures in 2D 

and cocultures with HUVEC in 2D exhibited around 50% viability, compared with initial 

seeding.  The relative viability for endothelial cells was higher in 3D for both LSEC and HUVEC.  

Total protein secretion was comparable between 2D and 3D on respective days and within 

respective cultures (monoculture, coculture with LSEC, and coculture with HUVEC) , through 

Day 9.  Total protein secretion remained relatively constant within respective cultures throughout 

the culture process, indicating maintenance of that particular function.  Experimental metabolic 

profiles for HepaRG cultures were also compared with scaled simulation profiles from Aim 1.  

Coculture in 3D with LSEC yielded results that closely matched simulation, followed by 2D 

cocultures with LSEC and 3D cocultures with HUVEC.  APAP-glucuronide formation results 

from HepaRG experiments were still significantly lower than simulation, but also higher than in 

HepG2 experiments.  The increasing trend in the APAP-sulfate amount produced with respect to 

time was observable in both 2D and 3D LSEC cocultures, as well as 2D coculture with HUVEC; 
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however, all APAP-sulfate production results were slightly lower than those observed in HepG2 

experiments and in simulation. The metabolite APAP-GSH was still not detectable by the HPLC 

methods used, though the CYP 3A4 enzymatic assay demonstrated much higher activity in 

HepaRG experiments compared with HepG2.  Enzymatic activity was considerably higher in 2D 

than 3D experiments.  This could be due to diffusion limitations of the detection reagent into or 

out of the scaffold.   Enzyme activity was activated in treated cocultures with LSEC, but activated 

in non-treated cultures in monocultures. 

6.2  RECOMMENDATIONS 

6.2.1  Investigate Higher Cell Densities in 3D 

In aim one, changes in cell density were shown to affect the distribution of metabolic profiles.  

The number of cells in this study was limited to half a million cells due to the use of 2D cultures.   

As a measure of further validation, alterations in dell density in experimental settings should be 

investigated.  I suggest using larger cell densities in 3D systems, as 2D were limited, in order to 

obtain greater values of metabolic production.   

6.2.3  Explore the Addition of Other Non-Parenchymal Liver Cells 

The goal of tissue engineering is to mimic the architecture and composition of the liver in an 

attempt to increase functionality.  In this study, cocultures out performed monocultures in terms 

of metabolic analysis.  With this in mind, the addition of a third cell type to tissue culture systems 

could further supplement appropriate cell to cell communications.  The kupffer cell performs 

important immune response functions in the liver; thus, cell-cell communication between 

hepatocytes and kupffer cells could play an important role maintaining appropriate hepatic 

function. 
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6.2.4  Expand the Methodology to Other Known Drugs 

While this methodology appears to work for acetaminophen, it is important to further validate the 

methodology by application to other well researched drugs.  Of particular interest would be drugs 

that follow a different reaction rate equation than acetaminophen.  All pathways of 

acetaminophen metabolism have been reported to follow the Michalis-Menten reaction rate 

equation.  I suggest investigation of drug metabolism that follows a first order reaction rate or 

Hill equation reaction rate for further validation of this methodology. 

6.2.5  Explore Flow Systems 

Flow through systems are of particular interest to tissue engineers.  Flow systems can constantly 

provide fresh, nutrient-rich medium to support cell survival and growth.  Moreover, flow systems 

can also flush out toxic waste products that may inhibit proper cell function.  Under these 

conditions, tissue culture platforms may be able to be cultured for increased time periods, which 

is extremely important when considering repeated dosing studies.  Flow systems can also apply 

mechanical stress that is important to the development of certain tissues in correlation to 

performance.  Investigation of a flow system would require the addition of convective 

considerations in the computational model, making it more complex and requiring more solving 

power and time.  These considerations would need to be investigated prior to experimentation. 

6.2.5  Expand the Research to Newly Developed Drugs 

The optimal goal of this project was to develop a testing and validating methodology that was 

adaptable to various conditions and reactions.  An adaptable model would suggest that this 

methodology could be applied to newly developed or in the process of being developed drugs.  

By obtaining kinetic constants from laboratory experiments, one could input experimental data 

and use the computational model to predict in vivo metabolic profiles. 
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