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Abstract: Landslides cause huge human loss and property damage when they occur near 

infrastructure such as highways. The current approach for dealing with landslides by the 

Oklahoma Department of Transportation (ODOT) is primarily reactive because there is no 

effective monitoring mechanism to assess the risk of landslide properly. When the damage 

is already done, expensive repairs follows because the repair process is time driven and the 

use of resources may not be the most cost-effective. Traffic lane closures during the repair 

increases travels time and road users’ cost. This gives an opportunity to look for alternative 

practices. Several studies have proved that the LIDAR technology can be used to detect the 

slope changes in mountains, but there is no readily available generalized framework to 

apply this technology to monitor or assess the risk of landslides. The objectives of this 

study are 1) to develop a comprehensive workflow to apply this technology, 2) to evaluate 

registration and vegetation algorithms on the collected data, 3) to assess the displacement 

change over various seasons, and 4) to assess the impact of vegetation removal and 

downsampling algorithms on displacement change. For this study, the data was collected 

from four different sites that include both rock type and soil type slopes on Oklahoma 

highways, collected in four different seasons (summer, dry, winter and warm seasons) of 

the year. Then, M3C2 displacement analysis was performed on different seasons’ data to 

identify the displacement change over different seasons. Throughout the entire research 

process, various technical challenges associated with the application of the LIDAR 

technology were reported along with recommendations to overcome these challenges. 

Through M3C2 analysis, it was observed that the largest change was observed during June 

and September. By considering the current level of registration, no significant change was 

observed in the majority of the areas. It was also observed from the study that vegetation 

removal and downsampling have impacts on the result of statistical displacement and 

significant change analyses. The comprehensive workflow developed in this study can help 

ODOT to implement the LIDAR technology to monitor and assess the risk of landslides 

on highways in a cost effective manner. 
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CHAPTER I 
 

 

INTRODUCTION 

 

1.1 Problem Statement 

Landslides that occur on major highways endanger drivers and surrounding properties. Oklahoma 

Department of Transportation’s (ODOT’s) current practice in dealing with landslides is reactive. 

Cleaning and repairs are undertaken after the fact, which results in costly repairs and a longer period 

of road closures causing an inconvenience for road users. Monitoring the fill/cut slopes change over 

the time along the roads that pass through the mountainous area can be an effective approach to 

assessing the risk of a landslide properly and proactively deploy prevention, mitigation measures, 

or emergency response to reduce the impact of landslides. To address this issue, the use of terrestrial 

Light Detection and Ranging (LiDAR) technology was examined by a plethora of previous studies 

(Abellán et al. 2006; Mukupa et al. 2017; Reshetyuk 2010) and it was found that terrestrial LiDAR 

is a technically feasible solution for landslide monitoring. However, there is no generalized 

workflow that can guide potential users to apply this technology for landslide monitoring on 

highways. In addition to the development of the generalized framework, this study also focuses on 

the documentation of technical challenges encountered while applying this technology as well as 

the documentation of the recommendations to address these technical challenges. 
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1.2 Objectives 

The overarching goal of this study is to develop a comprehensive workflow to apply terrestrial 

LiDAR technology to monitor landslides on highways by evaluating the existing workflow 

identified in the literature through a case study of four slopes on Oklahoma highways. This study 

has several secondary objectives, as follows:  

Specific objectives include:  

 To evaluate various processes such as data collection, registration, downsampling, 

vegetation removal and displacement analysis to identify technical challenges in the current 

workflow and provide recommendations to overcome these challenges. 

 To determine the impacts of various factors such as vegetation removal, downsampling, 

registration error, etc. on displacement analysis. 

 To develop a comprehensive workflow to apply LiDAR technology for landslide 

monitoring on highways. 

 To determine the displacement change over various seasons of the year. 

1.3 Thesis Organization 

This thesis is made up of five chapters: 

 Chapter-1 introduces the problem statement and summarizes the overall objective of the 

research. 

 Chapter-2 includes general introduction of landslides/rockslides and provides background 

information about the landslide monitoring techniques, principles of laser scanning 

technology, applications of terrestrial laser scanners, registration techniques, displacement 

analysis and comparison of various displacement analysis. 
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 Chapter-3 summarizes the site characteristics and data collection process. It also briefly 

explains all the data processing steps and tools used in this research. In the end, it describes 

the research workflow used for this study. 

 Chapter-4 presents the result of registration, displacement analysis and comparison of 

displacement analysis over various seasons. It reports technical challenges and 

recommendations for registration process and displacement analysis. It also presents the 

generalized workflow to apply terrestrial laser scanning technology. 

 Chapter-5 summarizes all the findings of the research and explains the limitations of the 

research and future research in this area. 
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CHAPTER II 
 

 

REVIEW OF LITERATURE 

 

2.1 Introduction to Landslides/Rockslides 

Landslides are one of the natural catastrophes that result from the downward movement of the earth 

mass (Whittow 1984). They affect both the built environment and the natural environment directly 

or indirectly. They also cause human loss and huge property damage (Fernandez Merodo et al. 

2004). In mountainous areas, many road sections bear certain risks of landslide/rockslide or falling 

rock causing blockage or damage of the roadway (Pfeiffer et al. 1993). According to the United 

States Survey Fact Sheet 2004-3072, landslides cause loss of life and billions of dollars in property 

damage each year (USGS 2004).  

S. Falemo & Andersson-Sköld (2011) developed a framework to quantify and visualize 

consequences of landslides using existing data and GIS-based weighted linear combination models. 

As a result, a map showing the geographical distribution of anticipated losses and landslide 

susceptibility was developed. Figure 1, shows relative landslide incidence and susceptibility across 

the United States.  
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Figure 1. Landslide Incidence and Susceptibility Map (USGS Landslides) 

Similarly, Amy B. Cerato et al.  (2014) performed a real-time monitoring of slope stability in the 

Oklahoma region. They proposed a landslide susceptibility map of Oklahoma by combining soil 

texture layer, slope derived from Digital Elevation Models (DEM), land cover from United State 

Geological Survey (USGS), etc. From this research, they concluded that the southeastern corner of 

Oklahoma is highly susceptible to landslides. Figure 2 shows the landslide susceptibility of 

Oklahoma and the landslide events based on USGS and ODOT’s data inventory. 

 

Figure 2. Landslide Susceptibility Map of Oklahoma (Amy B. Cerato et al. 2014) 
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2.2 Mechanism and Influencing Factors of Landslides/Rockslides 

Landslides occur when a slope changes from a stable condition to an unstable condition over time. 

These changes in slopes are caused by fluctuations in the effective stresses and changes in the 

material properties or variation of the geometry (FEMA 2017). These changes are trigged by 

various factors like groundwater fluctuations, erosion, seismic activities, volcanic eruptions, heavy 

rainfall, freeze-thaw and human activities such as deforestation, blasting, earthworks, etc.(Wold 

and Jochim 1989). There are various types of landslides based on nature of the material involved 

and triggering mechanism. Rockslides are the fastest landslides (Varnes 1984), which are induced 

by rock failure where the bedding plane of failure travels through intact rock from a cliff or other 

steep slope and causes the rock’s instability, resulting in a massive blocks collapse (Bates and 

Jackson). As the blocks slide downslope, they can collide with other rocks and loosen other rocks 

on their way. Due to the gravity force, the broken pieces of rocks gain very high speed on the slope 

and travel a long distance, causing destructive damage to the properties and traveling traffic located 

on the path.  

An increased incidence of extreme weather as a result of climate change can become a critical 

factor that triggers a landslide. Among extreme weather conditions, heavy rain is a common cause 

of landslide (FEMA 2017). For instance, because of excessive rains during June 2015, a rockslide 

occurred in Oklahoma’s Arbuckle Mountains along the Interstate 35 (I-35) (Figure 3). 

Approximately 15,000 to 20,000 tons of fallen rocks were removed, which caused a few weeks of 

lane closures at part of I-35 North, costing ODOT nearly one million dollars to repair (NewsOn6 

June 22 2015). 
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Figure 3. Rockslide on I-35 near Davis, Oklahoma (Source: News Channel 4, KFORD.com) 

Moreover, an earthquake is an emergent factor in Oklahoma that may contribute to landslides. As 

per the Oklahoma Geological Survey (OGS 2017) earthquake report, 2,325 earthquakes of 

magnitudes 3.0 or above were reported as of June 24th, 2016. Figure 4 shows the distribution of 

earthquakes over the Oklahoma region. From the map, it can be concluded that the central and 

southeastern regions are more susceptible to earthquakes. Over the last five years, the number of 

felt earthquakes has quadrupled. Increased extreme weather conditions in Oklahoma, such as 

floods, tornados, and drastic temperature fluctuation, may induce more occurrences of landslides 

in the mountainous areas of Oklahoma. 
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Figure 4. Seismicity Map of Earthquakes in the State of Oklahoma (USGS Earthquakes OK 

2016) 

2.3 Evaluation of Landslide Hazards 

Landslide prediction is very challenging (Wieczorek and Snyder 2009). Detailed instrumental 

monitoring is valuable for evaluation and the prediction of landslides, but challenges exist because 

of a lack of expertise or insufficient funds to purchase instrumentation and subsurface exploration. 

The major challenge in the instrumental monitoring is a selection of the particular small area for 

intensive investigation. For the selection of potentially hazardous areas, information regarding 

historical landslide events and current observations have to be studied. The slope movements in a 

region can be assessed by incorporating indicators like seismic activity, rainfall intensity, 

groundwater level, etc., but some of the landslides cannot be predictable by triggering event 

because they are occurred due to subsurface failures (Wieczorek and Snyder 2009). 
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2.3.1 United State Geological Survey’s Landslide Monitoring Systems 

Monitoring fill/cut slopes is an essential step to model the landslide behavior as well as to predict 

landslide occurrence (USGS 2017). Triggering mechanics and physics of landslides are a complex 

problem; research in these areas is still an ongoing process. Learning about landslides is a data-

driven process. Therefore, scientists at the United State Geological Survey (USGS) Landslide 

Hazards Program installed monitoring stations in ten selected sites that have frequent landslides to 

acquire more data to study the behavior of landslide. Various sensors and instruments were installed 

onsite to monitor and measure the metrics that constitute good predictors of landslides, such as 

rainfall, ground-water pressure, soil water content, soil temperature, etc. Modeling and forecasting 

landslides is a continuous research effort for the USGS. In this effort, ten monitoring sites across 

the nation were selected and equipped with cameras, sensors, and gauging instruments to provide 

either real-time or periodic monitoring data (USGS 2017). Different sites may have different 

monitoring purposes. For example, while the monitoring site at Poplar Cove, Nantahala National 

Forest, North Carolina was established to support the research on hydrologic factors that influence 

landslide initialization; Colby Fire Monitoring Site in California was established to gain 

understanding of post-fire runoff, erosion, and debris-flow generation to help National Weather 

Service’s decision makings in sending out warnings. Among those monitoring sites, slope 

movement or change over time is often collected because the process of slope change occurs slowly 

over a long period of time and slope change is a good indicator of the risks of potential 

landslides/rockslides. 

2.3.2 Landslide Monitoring Techniques 

Wieczorek and Snyder (2009) have proposed five basic steps for monitoring slope movement. 

These basic steps include: (1) identification of types of landslides, (2) monitoring causes of 

landslides, (3) identification of materials involved in landslides, (4) determination of landslide 



10 
 

displacement, and (5) landslide regional risk assessment. Each one of these five vital signs includes 

three monitoring methods.  Comparisons of these vital signs and monitoring methods based on 

technical needs, relative costs, and labor intensity are summarized in Table 1. 

Table 1. Summary of Landslide Monitoring Vital Signs (Wieczorek and Snyder 2009) 

Vital Signs Methods Expertise 
Technical 

needs 

Relative 

costs* 
Personnel 

Labor 

intensity# 

Types of 

landslides  1. Identification Volunteer No A Individual Medium 

 2. Measurement Volunteer Yes B Group Medium 

 3. Imagery Scientist Yes C Individual High 

Landslide triggers 

and Causes 1. Online Data Volunteer No A Individual Medium 

 

2. Climatic and 

Seismic instruments Volunteer No B Individual High 

 

3. Subsurface 

sampling and 

testing Scientist Yes C Group High 

Geologic 

materials in 

landslides  1. Examination Volunteer No A Individual Medium 

 2. Surface sampling Scientist Yes B Group High 

 

3. Subsurface 

sampling and 

testing Scientist Yes C Group High 

Measurement of 

landslide 

movement  1. Tapes and GPS Volunteer Yes A Individual High 

 2. Extensometers Scientist Yes B Group High 

 

3. Aerial photos, 

LiDAR and InSAR Scientist Yes C Group High 

Assessing 

landslide hazards 

and risks 1. Inventory Scientist No A Individual High 

 

2. Volume, velocity 

and travel distance Scientist Yes B Individual High 

 3. Modeling Scientist Yes C Individual High 

Note: GPS—Global Positioning System; LiDAR—Light Detection and Ranging; InSAR—interferometric 

synthetic aperture radar* Relative Costs (in US$): A—up to $1,000; B—>$1,000–$10,000; C—>$10,000 

#Labor intensity: low = <few hours; medium= <full day; high =>full day 

Liu and Wang (2008) have classified landslide monitoring techniques into three basic type: visual 

monitoring; instrumentation monitoring, and surveying. Visual monitoring techniques involve 

inspection using photographs and human inspection. Instrumentation techniques include 

installation of equipment such as piezometers, inclinometers for periodic or continuous data 
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collection. A surveying technique involves physical measurement to detect surface movements. In 

the past, devices such as metal tapes or invar wire, levels, theodolites, Electromagnetic Distance 

Measurement (EDM) and total stations were used. In recent years, the use of aerial or terrestrial 

photogrammetry is widespread. In addition, other monitoring techniques include Global 

Positioning System (GPS), Interferometric Synthetic Aperture (InSAR), Light Detection and 

Ranging (LiDAR). These techniques also support monitoring landslide initiation and continuous 

movement. Table 2 summarizes typical range and precision for various monitoring techniques.  

Table 2. Summary of Typical Range and Precision of Landslide Monitoring Techniques (Shao-

tang Liu and Wang 2008) 

Method/Technique Results Typical range Typical precision 

Precision tape Distance change <30 m 0.5 mm/30 m 

Fixed wire extensometer Distance change <10-80 m 0.3 mm/30 m 

Rod for crack opening Distance change <5 m 0.5 mm 

Offsets from baseline Coordinates differences (2D) <100 m  0.5–3 mm 

Triangulation Coordinates differences (2D) 
Variable <300 

- 1000m  
5–10 mm 

Traverse/polygon Coordinates differences (2D) 

Variable, 

usually <100 

m  

5–10 mm 

Leveling Height change 

Variable, 

usually <100 

m  

2–5 mm/km 

Precise leveling Height change 
Variable, 

usually <50 m  
0.2–1 mm/km 

EDM (Electronic Distance 

Measurement) 
Distance change 

Variable, 

usually 1-14 

km  

1–5 mm + 1–5 

ppm 

Terrestrial photogrammetry Coordinates differences (2D) 
Ideally < 100 

m 
20 mm from 100 m 

Aerial photogrammetry Coordinates differences (2D) 
H flight <500 

m 
10 cm 

Clinometer Angle change ±10degree ±0.01–0.1degree 

Precision theodolite Angle change Variable ±10 

GPS survey Coordinates differences (2D) Variable 
2–5 mm + 1–2 

ppm 



12 
 

Wang (2011) have used permanently mounted GPS for monitoring landslide movements by 

analyzing changes in the GPS units. It is also proved that landslide movement can be measured 

within 2 mm, 6 mm in horizontal and vertical direction, respectively. But the main disadvantage of 

using this technique is a huge cost involved in installing permanent GPS units. This technique is 

very suitable for monitoring landslides in highly populated areas. 

Interferometric Synthetic Aperture Radar (InSAR) technique uses phase change between radar 

photographs to measure landslide movement. Rosen et al. (2000) have explained how vegetation 

cover reduces correlation between radar photographs due to the volumetric scattering which affects 

the results of InSAR technique. Therefore, it is very difficult to apply InSAR in the densely forested 

environment.   

2.4 LIDAR Background 

Since the last few decades, advancement in the fields of electronics, photogrammetry, and computer 

vision has made it possible to develop consistent, high resolution, and accurate laser scanners or 

LiDAR. The laser scanners are non-contact 3D measurement instruments used to capture or record 

the geometry and sometimes textural information of visible surfaces of the objects or sites in 3D 

digital representation - point cloud (Conner and Olsen 2014).  

2.4.1 Measurement Principle of Laser Scanners or LIDAR 

LiDAR works on the principle of measuring the time delay caused by the laser pulse traveling from 

source to the target surface and back to the instrument, which provides an easy way to evaluate the 

distance and angles (Vosselman and Maas 2010) (see Figure 5). Scanners are a line of sight 

technology: if the complete laser pulse reflects from an object, no points are detected behind the 

object, creating an occlusion (shadow). When only part of the laser pulse reflects back from a small 

object, the remaining light continues, multiple X, Y, and Z coordinates (returns) can be obtained 
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from one laser pulse (Renslow 2012). Multiple returns enable improved penetration of vegetation 

canopies compared to many other techniques. 

The terrestrial laser scanners use the light transit time estimation measurement technique. 

In this technique, measurement of time delay is generated when the light travels from 

source to target and back to the source, which provides a method to evaluate the distance. 

Such systems are also known as time-of-flight measurement systems (Vosselman and Maas 

2010). Light transit estimation measurement systems can also be realized by phase 

measurement technique, where laser systems emit a continuous wave to measure the time 

delay by determining the phase difference between transmitted and received signals. 

 

Figure 5. Principle of Laser scanner or LiDAR, Showing Example of Terrestrial Laser Scanner 

(TLS) (Jaboyedoff et al. 2010) 

Based on the measurement techniques, lasers are classified as pulsed lasers and continuous wave 

(CW) lasers. In both pulsed and CW laser systems, the position of the reflecting surface or object 

is relative to the scanner position which is known as a local coordinate system. Georeferencing 

transfers data from local coordinate system to global coordinate system (Conner 2013). By 

comparing the range resolution of pulsed and CW-lasers, it is observed that pulse laser system 

resolution is dependent on the resolution of time interval measurement. Whereas in CW lasers, the 

resolution depends on the frequency of the actual ranging signal. It is proved that, with an increase 
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in frequency, higher range resolution can be achieved with CW systems. Wehr & Lohr (1999) 

through various system analysis and calculation have proved that, if centimeter level of ranging 

accuracy is considered, pulse systems have higher accuracy than CW systems, in spite of high peak 

power. But to achieve sub-centimeter level accuracy, CW systems with high frequency have to be 

used (Wehr and Lohr 1999). CW systems have very high data rates (up to 1Million 3D points per 

second for amplitude modulated CW systems) and a limited operating range generally less than 

100 meters. On the other hand, pulse based time-of-flight system is characterized by lower data 

rates but longer operational between 160 – 16000 meters (Vosselman and Maas 2010). 

Time-of-flight systems measure more than one pulse echo due to multiple returns that are caused 

by object or site characteristics, particularly when vegetation is scanned. Wehr et al. (1999) also 

concluded that laser power is required when ranging is performed on non-cooperative targets. 

Therefore, the number of echoes measured depends on the type of scanner and target (Hofton et al. 

2000).  Usually, time-of-flight receivers can record four echoes per pulse. Time-of-flight scanners 

are often used in the following three main areas of topographic mapping: (I) Terrestrial laser 

scanning (TLS), (II) Airborne Laser Scanning (ALS), and (III) Mobile Laser Scanning (MLS). 

2.4.2 Terrestrial Laser Scanning 

Terrestrial laser scanners (TLS) are used in various applications, including agricultural and 

vegetation analysis, catastrophic mapping and analysis, terrain modeling, and industrial and 

structural modeling (Vosselman and Maas 2010). Compared to Airborne Laser Scanning (ALS) 

and Mobile Laser Scanning (MLS) systems, TLS systems have higher accuracy and precision. This 

is mainly because TLS systems are mostly used for smaller area data collection, typically less than 

few miles (Conner 2013) and absence of real-time inertial and position measurements. Airborne 

laser scanner requires only one scanning direction, whereas another direction is provided by 



15 
 

moving aircraft, but in the case of terrestrial laser scanners are equipped with a 2D scanning device, 

which can rotate 360 degrees.  

As discussed above in the LiDAR section regarding the range measurement principles, it was 

concluded that pulsed laser measurement systems provide high range capacity whereas phase 

measurement based continuous wave (CW) systems deliver high accuracy and data rate. Phase 

measurement based terrestrial laser scanners work with a range of 20 – 80 m  and a range accuracy 

of 1 – 3 mm while pulsed laser based terrestrial laser scanners have a range of 250 – 1000 m with 

a maximum measurement accuracy of 5 -10 mm (Vosselman and Maas 2010). 

TLS systems are usually operated on a tripod or bollard in a static position. Unlike ALS and MLS 

systems, TLS systems don’t require vibration dampening system. Scanning is performed at a fixed 

position. Multiple scan positions are necessary to capture all components of an object or scene. The 

camera integrated with the terrestrial laser scanners are used to capture digital photographs of the 

scene, which can be registered to the point cloud data to add texture or color values to the point 

cloud. With the integrated bundle adjustment that involves fusion of data from all measurement 

devices such as a scanner, camera, and panoramic camera, a digital camera may also help in self-

calibration of the laser scanner (Schneider and Maas 2007). 

2.4.3 Applications of Terrestrial Laser Scanning 

LiDAR has been widely used in a variety of areas in the field of civil infrastructure systems, 

including survey, site development design, urban planning, construction documentation, and asset 

condition assessment. For instance, Jaselskis et al. (2005) conducted a series of case studies and 

proved the effectiveness of using LiDAR in the area of soil and rock volume calculation and 3D 

as-built drawing creation. Kinzel et al.(2007) conducted an experiment on surveying a shallow, 

braided, sand-bedded river using LiDAR and compared the results with conventional survey 

methods. The research findings showed that the accuracy is comparable to conventional methods 
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but that the productivity with LiDAR is an advantage over traditional surveying methods. Priestnall 

et al.(2000) demonstrated the possibility of using airborne LiDAR to create a Digital Elevation 

Model (DEM) by removing the extracted surface features from a 3D surface model created by 

LiDAR. Chen et al.(2013) investigated the use of LiDAR for the evaluation of bridge damage due 

to vehicle collisions, surface erosions, and reinforcement corrosion and the information captured 

by LiDAR provides a specific measurement for damage analysis, which otherwise cannot be 

acquired by photogrammetry or plan photographic techniques. LiDAR can accomplish many tasks 

that would otherwise be difficult to perform with traditional survey instruments. It not only 

increases the productivity of surveyors by reducing the number of persons but also reduces the 

chance of exposing surveyors to safety hazards from traffic. Table 3 shows the different 

applications of LiDAR in landslide investigation. 

Table 3. Applications of LiDAR in Landslides Investigation (Jaboyedoff et al. 2012) 

Applications Landslides Rockfall Debris flow 

Detection and 

characterization 

of mass 

movements 

Mapping of 

geomorphic features 

Rock face imaging and 

characterization, calculating 

discontinuity orientation 

 

Detection of 

mobilizable volumes, 

hydromorphone 

characterization 

 

Hazard 

assessment and 

susceptibility 

mapping 

 

Mainly as support 

for mapping 

Some attempts for susceptibility and 

hazard mapping (not yet achieved) 

Input for mapping 

hazard based on 

geomorphologic 

approach 

 

Modelling Classical modeling 

tools are not able yet 

to handle huge 3D 

information density; 

High-resolution 

DEM allow more 

accurate landslide 

modeling by 

improving 

geometrical 

characterization 

 

High-resolution DEM for trajectory 

modeling 

Input for spreading 

modeling 

Mapping Monitoring of 

surface displacement 

and volume budget 

Monitoring of surface displacement, 

detection of pre-failure displacements, 

quantification of rockfall activity 

Sediment budget, 

monitoring of 

morphologic changes in 

channels 
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2.5 Point Cloud Registration 

Point cloud data registration is the crucial step of the entire data processing phase. Since terrestrial 

laser scanners are line-of-sight equipment, capturing the whole scene from a single scan position is 

often not adequate. It is required to record from multiple viewpoints to generate models of larger 

areas. Point cloud data from each scan position is in the scanner’s local coordinate system. In order 

to combine different point clouds, it is necessary to transform different scans into a common 

coordinate system by estimating shifts and rotations between the scans. The process of determining 

the parameters of this transformation is known as registration.  

During the last few years, many methods have been proposed for registration of LiDAR data. Most 

of these techniques assume that data is homogenous where data is compatible regarding point 

quality and density. These techniques result in inappropriate alignment parameters if the 

assumption is false, this is mainly due to improper weighting ratios of points. With advancements 

in laser scanning technologies, it is very important to address the registration of heterogeneous laser 

scans where the data is incompatible regarding point density and accuracy due to changes in the 

scanning mechanism and the mounting platform. The main reason for the motivation behind a 

registration process is to meet the need of aligning multiple scans from different scan positions into 

the common coordinate system to cover all the features of interest. For example, point cloud data 

acquired using tripod mounted LiDAR equipment are on the scanner’s coordinate system. Since 

scans from different positions are usually used to cover complex objects or larger areas, each of the 

required scans must be registered into the common coordinate system before processing the data.  

Various registration methods are available today, which vary in theory and implementation. The 

selection of a registration technique depends on the scanning mechanism and dataset. All these 

registration methods could be classified into three main categories: target-based registration, 
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feature-based registration, and iterative closest point (ICP) based registration techniques. These 

techniques are discussed in the following subsections. 

2.5.1. Target Based Registration 

Static TLS can be used to monitor landslide displacements by installing targets on a landslide mass. 

Because of the robustness and accuracy, target based registration is more reliable compared to other 

registration methods. Typically, targets are highly reflective machined geometric entities (such as 

a disc, plate or sphere) mounted on a stable platform. For terrestrial scans, these are usually 10 cm 

in radius. Becerik-Gerber et al. (2011) explained the advantages and disadvantages of various 

targets,  and also provided a study on the achievable accuracy of different targets. The figure 6 

shows some of the 3D laser scanner targets used in the target-based registration technique. 

 

Figure 6.Commonly used targets for terrestrial laser scanning 
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Even though using targets is more reliable, it is very expensive. It also requires a lot of preparation 

on site to setup them properly. In addition, these targets have to be positioned strategically between 

scanner positions (Reshetyuk 2010). Depending on the site, it may not be possible to place the 

targets at desired locations. Moreover, processing of such data requires manual effort to identify 

the same target in each scan and may depend on feature detection algorithms to detect these targets. 

In the case of heterogeneous data where data is collected at various times, using targets is not 

feasible. This is because it is not possible to maintain targets on site for a long period of time. In 

this case, it fails to setup common targets to perform heterogeneous point cloud data registration.  

2.5.2 Feature-Based Registration 

For the feature-based registration, a higher level of primitives is established to remove cost and 

extra labor associated to set up the signalized targets properly and to recognize the distinct points. 

Strategies that depend on a pre-preprocessing step to concentrate components of interest for the 

request to create conjugate elements for the registration fall normally under the class of feature-

based registration. Planar patches (Huang et al. 2012) created through a segmentation method can 

be used in the registration of overlapping scans. Rabbani et al. (2007) utilized planar components 

alongside barrel, circle, and torus that are basic elements in the industrial sites. They proposed two 

strategies, direct and indirect techniques utilizing previously mentioned geometric components. 

The indirect technique is fused for surmised registration through minimization of an aggregate of 

squares of contrasts in parameters of models. Direct technique proposes concurrent registration of 

different scans by limiting the sum of the square distance of the points from the relating model 

surface utilizing the outcomes from the primary method as estimated values. Dold and Brenner 

(2006) suggested a computerized registration procedure of terrestrial laser filtering information 

utilizing extracted planar patches as a geometric imperative. To avoid the lack of planar patches 

with different orientations and to enhance the registration outcomes, image data gathered from a 

hybrid sensor was integrated as additional information. This demonstrates a probability to 
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incorporate extra information for the laser scanning data registration additionally. (Canaz 2012) 

fused photogrammetric data to enroll terrestrial laser scanning information with the least 

overlapping area. This work gave a relative evaluation of terrestrial laser scanning information 

registration utilizing both linear and planar components. Linear features (Chang et al. 2008) are 

extremely helpful for the registration of laser scans in urban regions since they can be inferred with 

a high level of automation. These linear features can be retrieved from the intersection of planar 

objects which produce a line. On the other hand, the linear feature could likewise be pulled out 

from building edges in spite of the fact that they are known to create degraded accuracies because 

of the discrete way of LiDAR at break-lines, for example Catenaries lines. Power lines in urban 

areas have likewise been investigated as a source of control for covering LiDAR information for 

mobile mapping frameworks (MMS) adjustment (Chan et al. 2013) and enlistment of overlapping 

datasets. The great capability of utilizing objects features has been demonstrated in few studies. 

The feature primitive is derived using a large number of LiDAR points which results in a high 

confidence in the feature in a scene. Therefore, linear features are very reliable. In any case, 

utilizing linear and planar features stays restricted to scenes that contain such primitives. Likewise, 

extraction of such features is sometimes yielded to blunders in the information (i.e., if not 

demonstrated appropriately) and occlusions (Rodrigues et al. 2002). Likewise, segmentation issues, 

for example, over-segmentation, and under-segmentation - if not settled - may prompt mistakes in 

the extracted features, which then are passed to the registration step, thus debasing the overall 

registration quality. The initial estimation of the transformation parameters among the features is 

also challenging and remains a subject of recent research (Al-Durgham et al. 2013). 

2.5.3 Iterative Closest Point Registration (ICP) 

The ICP is the most popular technique in use. There are many ICP variants, and all of them assume 

that there exists an initial approximation between scans. Examples of the variants included in the 

studies presented by (Bae and Lichti 2008; Besl and McKay 1992; Rusinkiewicz and Levoy 2001). 
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The algorithm consists of mainly point-to-point matching procedure. Due to the assumption of 

point-to-point correspondence which is usually not true, final transformation parameters can be 

biased. 

A primitive alternator representation is that one of the point clouds is undisturbed, whereas another 

cloud is converted to a higher order (e.g. triangles, planes). Although the model can be complex 

and takes more time to execute, the expected surface registration accuracy is higher (Beinat et al. 

2006; Beinat et al. 2007; Boström et al. 2008; Habib et al. 2011). For instance, a variant of the ICP 

algorithm (Habib et al. 2010) which uses triangular primitives in one input scan and the normal 

distance between points of the first scan and triangulated surface’s second scan is then minimized. 

In feature-based registration algorithm, the use of object primitives is even more complex, as 

illustrated in the work done by (Rabbani et al. 2007). The first step is the segmentation of point 

clouds to obtained useful objects (like cylinders). The next two steps are to fit the model and 

correspondence specification. To make sure that a good amount of geometric configuration 

information is obtained, a thorough check needs to be undertaken. Finally, the sum of squares of 

perpendicular distances along points and objects are minimized to get final registration. The 

obstacle one may find is that it is challenging to identify a feature in heterogeneous data due to the 

continuously changing level of difficulty and sampling of the overlapping scans. Since this 

registration method performs differently as compared to ICP and applies the different algorithm, it 

is called irregular of ICP. 

In general, ICP-Variant is sub-grouped in three categories: Point-to-point, point-to-surface, and 

point-to-object. ICPatch and ICPP algorithms presented by Al-Durgham et al. (2013) belong to 

point-to-surface. 

2.6 Displacement Measurement Techniques 

One of the common data which is used to analyze landslide motion is LiDAR data. There is no 

such a method that analyzes the raw point data cloud and measures the 3D displacement field. A 

narrow list of methods was required based on qualitative metrics before performing any detailed 



22 
 

performance tests. In order to identify the available methods, an in-depth literature review was 

performed. A preliminary evaluation was conducted to eliminate any poor performance techniques. 

In order to find an appropriate technique for landslide displacement analysis, a survey of different 

techniques was conducted, and advantages and disadvantages of each technique are discussed 

below. 

2.6.1 Point Cloud Based Displacement Measurement Techniques 

Displacements can be measured using multi-temporal point cloud data. Landslide velocities and 

displacements can also be measured using these methods. Various available displacement 

measurement techniques are discussed in this section: 

2.6.2 Point-to-Point Displacement Measurement Technique  

This is a technique where each and every point measurement is made. The distance between two 

points (i.e. a point in compared cloud and a point in reference cloud) is measured. Point snapping 

and direct-measuring tools are used to measure in point cloud processing software manually. P2P 

is a common method used for rock mass characterization as well as rockfall analysis, but no 

landslide studies that utilized this technique in the literature were found. For obtaining geometric 

parameters of surface features and analyzing temporal changes in the object, P2P is an excellent 

technique, and it has many applications in fields, such as mechanical and structural engineering for 

measuring spot movements. 

2.6.3 Cloud-to-Cloud Displacement Measurement Technique  

P2P and cloud-to-cloud (C2C) are similar in principle, but C2C uses shortest-path distance. The 

distance between two points (i.e. a point in reference cloud and its nearest neighbor in the compared 

cloud), is measured (Figure 7a). Local model or height function can also be used to measure C2C 

distances – to represent the reference cloud’s surface (Figure 7b). The local model is a best-fit 

planar surface centered at an arbitrary, pre-defined location in the reference cloud and interpolated 
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using the points that fall within a pre-defined radius of that center point. Then the distance to the 

nearest point in the compared cloud is then computed in the direction normal to the local model. 

 

Figure 7. C2C Measurement Technique with Nearest Point (a) and Local Height Function (b) 

from (Lague et al. 2013) 

2.6.4 Cloud to Mesh (C2M) and Mesh to Mesh (M2M) Displacement Measurement Technique 

C2M and M2M are similar measuring techniques that work on the same principles as that of the 

local version of C2C method except that they utilize globally fit surfaces instead of locally fit 

surfaces for their functioning and for interpolating the surfaces, many methods are used such as 

kriging, inverse distance weighted averaging, Delaunay triangulation, etc. and each carries their 

own advantages and disadvantages. The key difference between the local and global interpolation 

is that, in the local interpolation, the point cloud data “fits” more closely but fails to capture the 

large-scale topography, whereas in the global models the data is “smooth” and designed to represent 

large-scale topography trends. 

In C2M, the global surface is used to represent the reference cloud. It measures the distance to the 

nearest point in the compared cloud in the direction of the surface normal vector at given spacing 

(Figure 8). M2M uses the global models for both clouds and measures the distance between the 

reference and compared surface at some given spatial interval and direction. 
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Figure 8. C2M Measurement Technique (Lague et al. 2013) 

The M2M has two forms, the most widely used is known as DEM-of-Difference technique 

(DEMoD). This method interpolates the both reference and compared clouds elevation (z) values, 

such that raster data pattern is created called the Digital Elevation Model (DEM). The compared 

surface is then subtracted from the reference, and a new surface is generated with values that 

correspond to the difference in surface elevation. Generally, DEMoD is used in a landslide, slope 

stability, and rockfall analyses to calculate volumes of displaced material and analyze slope 

movement (Baldo et al. 2009; Casson et al. 2005; Daehne and Corsini 2013; Dewitte et al. 2008). 

The second most common form of M2M is the slope normal method. This model can be of any 

form of surface model that represents the cloud geometry in a triangulated irregular network. The 

distance between the models is measured along the direction normal to the surface of the plane, 

usually with the positive direction of the Z-axis. This method hasn’t been applied to landslides but 

is used in mechanical and structural engineering for getting area based displacement measurements. 

2.6.5 Multiscale Model to Model Cloud Comparison (M3C2) Measurement Technique 

The M3C2 model was developed to track displacements using time series laser scans in natural 

environments (Lague et al. 2013). This technique measures the distance between point clouds in a 

surface normal direction (Figure 9). The surface normal is calculated using a local model fitted to 

the points within a certain radius around each point in the reference point cloud. The radius can be 

set to a rough estimated value or can be set depending on the user based experience. Another smaller 

radius is drawn in the plane of the local model. It is the extended in the direction of the normal at a 
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specified distance to form a cylindrical domain. All points from each cloud that fall within this 

domain are selected, and the average position of each set of points along the axis of the cylinder is 

identified. The average locations are considered as the position of the “surface” in each cloud, and 

the distance between them is the surface displacement measurement. The radii, cylinder length, and 

types of average used are user-defined. 

 

Figure 9. Principle of M3C2 Displacement Measurement Technique (Lague et al. 2013) 

The methodology for M3C2 is summarized as follows: 

 From initial point cloud, a set of points is chosen as subsample to perform the measurement. 

Subsampling is an optional step; it is performed only to reduce the calculation time. 

 A surface normal vector is defined for each core point i by defining a plane which fits a set 

of points. The points NNi are within a sphere of radius D/2 of i. Where D is a normal scale. 

These vectors are oriented in the direction of user-defined orientation 

 Roughness of the point cloud around i is calculated as standard deviation of distance 

between points on scale D 

 The second step includes defining a cylinder with a radius d/2 where d is defined as 

projection scale. The axis of cylinder passes through the point i. The cylinder is extended 
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both the direction of the axis to a maximum depth which manually defined. The cylinder 

intersects both the clouds and generated subset of points n1 and n2 

 The mean distance between two point clouds is calculated along surface normal using n1 

and n2 which are defined as i1 and i2. The M3C2 distance between two point clouds is the 

distance between i1 and i2.  

The normal and projection scale have to be chosen based on the data roughness and point density. 

Higher the normal radius more smooth is surface, hence surface roughness has less impact on the 

distance measurement. 

The other attribute of M3C2 analysis is Level of Detection (LOD), which is calculated using surface 

roughness of both the point clouds and registration uncertainty. The M3C2 analysis also calculates 

the distance uncertainty based on Level of  Change Detection (LOD95%). If  LOD95% calculated to 

be more than the measured distance, then the change is considered as ‘non-significant’ and 

conversely, if the LOD95% is less than the measured distance, then the measured value is considered 

as significant at 95% confidence interval. 

2.7 Advantages and Disadvantages of Various Displacement Measurement Techniques 

A comprehensive literature review has been performed, and a summary of advantages and 

disadvantages of various displacement measurement techniques is presented in this section: 

2.7.1 Advantages/Disadvantages of P2P 

The primary advantage of P2P is that it helps the user to pick a precise measurement point and 

allow for the true point displacements. P2P doesn’t depend on the surface modeling or interpolated 

point locations. The user can choose from individual data points and select the most appropriate 

points in each cloud (Haugen 2016). 

The Disadvantage of P2P is that it is not accurate when small displacements are taken into account. 

The displacement measurements are not reliable and could be greater or smaller than the actual 

displacements when they are small (Haugen 2016). 
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2.7.2 Advantages/Disadvantages of C2C 

The advantage of C2C is that it can generate measurements for the entire point cloud. It also 

successfully accounts for the local model for data variance. Thus the data spread on displacement 

measurements minimize errors which are associated with global surface interpolation (Haugen 

2016).  

The primary disadvantage of C2C is that actual or true surface displacements cannot be measured 

by this technique. The point the only version measures the motion along the distance vector, and it 

can successfully measure true landslide displacement if the landslide movement occurs in the 

direction normal to the surface. The reality, landslides rarely exhibit such perpendicular 

phenomenon (Haugen 2016).  

2.7.3 Advantages/Disadvantages of C2M and M2M 

The primary advantage of C2M and M2M lies in the computational speed and usability. The 

simplicity with which the raster and the global surface can be interpolated and measured with 

accurate displacements using a variety of software programs (Haugen 2016).  

The primary disadvantages of C2M and M2M methods are errors arising from surface interpolation 

and spatial averaging. The spatial averaging occurs when point cloud data are smoothed due to 

global surface creation. The LiDAR point cloud data shows a spread of points around the actual 

surface, this surface may have some irregularities at a smaller scale than data spread. Moreover, 

surface interpolation is required for the point spacing of the data. Surface morphologies are clearly 

observed in zones at this scale. Point clouds with low or no density produce erroneous interpolation 

data as compared to the actual surface. Even the most advanced algorithms for interpolation fails 

to generate surface morphologies if the data obtained is below a certain specified threshold (Aguilar 

et al. 2010; Hodgson and Bresnahan 2004). Therefore, C2M and M2M measurements are not 

reliable if the point spacing is large (Haugen 2016). 
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 2.7.4 Advantages/Disadvantages of M3C2 

The primary advantage of the M3C2 technique is that it utilizes statistical methods to measure the 

position of the ground surface in the reference and compared clouds.  It can also fit variation in 

scale and magnitude of surface roughness of a local model to the data spread. Thus validating both 

the variance in point cloud data and morphological surface changes in the generated data spread. 

This helps to make computation process much simpler and easier for the optimal cylinder radius 

selection (Haugen 2016).  

The primary disadvantage of the M3C2 method is that it uses a surface-normal displacement 

process, which is computationally intensive and less reasonable. Surface-normal displacement 

motion in landslides may or may not be accurate measures of slope movement. The assumption 

that the majority of movement will occur in the direction normal to the slope may be valid in the 

case of vertical or near-vertical slopes but is not valid for shallower slopes both horizontal and 

vertical movement may exist (Haugen 2016). 

2.8. Summary 

Although predicting landslides is a challenging task because the triggering mechanism of landslides 

is complex, various studies have proved that terrestrial laser scanning can be used to monitor the 

landslides and assess the risk of landslide/rockslides. However, there is not a readily available 

generalized workflow that guides practitioners to apply this technology to landslide monitoring. 

The literature says target based registration is more reliable registration technique, but it may not 

be true in all cases, which was observed in this study. This means there is a gap in addressing all 

the challenges in applying this technology, particularly the technical challenges encountered when 

applying this technology to different sites that have different geotechnical properties. None of the 

research focuses on providing the requirements in choosing the algorithm for data processing. From 

the various displacement measurement comparisons, it was observed that M3C2 technique has 
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more advantages compared to other techniques. The only disadvantage of the M3C2 technique is 

that the results are influenced by surface roughness and normal scale. In order to overcome the 

influence of surface roughness, it was also explained in the literature that higher normal surface 

values would smoothen the surface and prevents the disorientation of Normals. To the research 

team’s best knowledge, there is no generalized workflow to apply the LiDAR technology for 

landslide monitoring on highways and also none of the research reported the challenges of applying 

this technology. 
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CHAPTER III 
 

 

METHODOLOGY 

 

The application of 3D Laser Scanning/ LiDAR technology for landslide monitoring on highways 

involves mainly two steps: 

 Data Collection 

 Data Processing 

This section explains each of these steps in detail. 

3.1 Data Collection 

Since slope change is of major interest in this study, LiDAR was used to perform data acquisition 

on the slope/s of selected locations. LiDAR scanning is a very efficient and non-intrusive surveying 

method that does not require traffic closure during the survey. However, safety measures have to 

be taken by using road work signs, road safety cones, and safety vests to avoid accidents due to 

moving traffic. Climate impacts play a significant role in the slope movement that may trigger a 

landslide or rockslide (FEMA 2017). In the state of Oklahoma, freeze-thaw, rain, and earthquakes 

are believed to be the factors that can significantly influence the slope change (OGS 2017). In order 

to understand the effect of weather scenarios on slope change, data collection is performed at each 

selected location during four different times of the year:
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1) summer season (June 2016), 2) dry season (September 2016), 3) winter season (December 2016), 

4) warm season (April 2017).  

3.1.1 Site Description 

For this study, four road sections with potential landslide risks have been chosen by consulting the 

geotechnical experts in Oklahoma Department of Transportation (ODOT). Two of these locations 

are on Interstate 35 (I-35) near Davis, Oklahoma and other two locations are on US 82 near Lequire, 

Oklahoma. They were named as Locations 0 to 3. Figure 10 shows the geographical location 

of the four sites. Figures 11 and 12 are a close-up look at the sites.  Figure 13 shows the 

pictures of four sites taken during data collection.  Various characteristics of the sites are shown 

in Table 4 below.  

Table 4. Specifications of the Data Collection Sites 

Sl. No. 

Location 

Code 

Location on 

Highway 

Slope 

Type 

Length of Road 

Section (m) 

Height of Cliff 

(m) 

1 Location-0 I-35 Rock 209 25 

2 Location-1 I-35 Rock 250 23 

3 Location-2 US-82 Soil 240 22 

4 Location-3 US-82 Soil 150 30 
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Figure 10. Location of Study Areas in Oklahoma area 

 

Figure 11. Location 0 & Location 1 on I35 
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Figure 12. Location 2 & Location 3 on US 82 

 

 

Figure 13. Pictures of the Slopes of All Four Locations 
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Four data collections were performed on each of the location, and each data collection was 

undertaken in one season (Table 5).  

Table 5. The Corresponding Data Collection Dates for Each of the Locations 

Sl. No. 
Location 

Code 
Scanning Dates 

  
June 

(Summer) 

September 

(Dry) 

December 

(Winter) 

April 

(Warm) 

1 Location 0 6/23/2016 9/27/2016 12/6/2016 4/5/2017 

2 Location 1 6/23/2016 9/27/2016 12/6/2016 4/5/2017 

3 Location 2 6/20/2016 9/30/2016 12/13/2016 4/7/2017 

4 Location 3 6/20/2016 9/30/2016 12/13/2016 4/7/2017 

 

3.1.2 Equipment Used 

Compared to the traditional surveying methods, very few equipment is required for this application. 

Only the LiDAR equipment is used during data acquisition, and it is not needed to be left at the site 

unattended for continuous monitoring. Following equipment (Figure 14) was used throughout our 

data collection process: 

1. RIEGL VZ-400 Laser Scanner 

2. Laptop with RiSCAN Pro software installed (Optional) 

3. Tripod for scanner 

4. Battery for the scanner 
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Figure 14. Equipment Used for Scanning 

The Riegl VZ-400 terrestrial laser scanner was used for data acquisition (the instrument 

specifications are listed in Table 6). To record RGB values, a calibrated Nikon D700 digital SLR 

camera was used. At the time of data acquisition, the scanner was always mounted on a tripod. A 

high capacity battery that supplies power to the scanner throughout the scanning process was used. 

Using a laptop is optional. The Riegl VZ-400 laser scanner supports stand-alone operation with an 

integrated Human-Machine interface. It supports internal storage up to 32GB and external storage 

via USB 2.0. The main advantages of using a laptop with a software package installed are a user-

friendly interface, a 3D object view on the site, and easy access to all settings. Except for Locations 

2 and 3 during June, all the other data collection was performed using a laptop. 
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Table 6. Technical Specifications of RIEGL VZ-400 Laser Scanner (from www.riegl.com) 

Parameter Long Range Mode High-Speed Mode 

Laser Pulse Repetition Rate 100 kHz 300kHz 

Effective Measurement Rate 42,000 meas./second 125,000 meas./second 

Max Measurement Range                

(natural targets, ≥90%, highly reflective) 600 m 300 m 

(natural targets, ≥20%, less reflective) 280 m 160 m 

Minimum Range 1.5 m 1.5 m 

Accuracy (1 5 mm 5 mm 

Precision (1 3 mm  3 mm 

Angular Measurement Resolution 
Better 0.0005° (1.8 

acrsec) 

Better 0.0005° (1.8 

arcsec) 

Beam Divergence  0.3 mrad 0.3 mrad 

 

3.1.3 Field Scanning 

During data collection for each location, multiple scans from different scan positions were 

performed to ensure the scans cover the entire scene from different angles. Table 7 shows a total 

number of scan positions for each data collection. For every data collection trip for each site, a 

RiSCAN Pro project was created and saved in .rsp file format. This project contains scans of all 

scan positions. Whereas in the case of the scanner alone, it creates a .rxp file for each scan position. 

These .rxp files were used to recreate a RiSCAN Pro project. Whereas in the case of using a laptop, 

it is not required to recreate a RiSCAN Pro project. This is another advantage of using a laptop to 

operate the scanner. The scanner was always operated in a high-speed mode with standard 

panorama settings (i.e., resolution = 0.08). Each scan on an average collected 3 million points per 

scan position resulting in approximately 30 million points for each location per trip. 
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3.2 Data Processing 

Data collected from all the four collections using the Riegl scanner were processed to obtain the 

landslide displacement. Data processing involves data registration, data down sampling, data 

filtering and displacement analysis. The following subsections explain these processes: 

 3.2.1 Registration 

The first and important step of data processing involves registration and merging of scans acquired 

at multiple scan positions for each location. All the registration algorithms used in this research 

study are considered pairwise registration scenario. Due to some disturbances in the scans which 

were because of obstruction of a digital camera by the antenna or obstruction of the scanner by 

humans or traffic. Scans from these scan positions were not considered for the registration. In 

addition, scans without planar features were also ignored. The importance of the planar features is 

explained in the later sections. Table 7 shows an actual number of scan positions used for scanning 

and number of scan positions used for registration for all data collection.  

Table 7. Number of scan positions (SP) used for scanning and number of scan positions used for 

registration 

Location 

Code June September December April 

  
Actual 

SP 

Used 

SP 

Actual 

SP 

Used 

SP 

Actual 

SP 

Used 

SP 

Actual 

SP 

Used 

SP 

Location 0 5 4 9 9 12 12 10 9 

Location 1 6 5 10 10 13 9 10 9 

Location 2 4 4 6 3 12 5 10 3 

Location 3 4 4 9 5 11 11 10 10 

 

From Table 7, it is observed that Location 2 uses very few scan positions for registration, this is 

due to the absence of planar features. Since the data was collected without using targets or GPS, 

feature-based registration or the iterative closest point (ICP) technique were used to register this 
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data. In this project, all the scans of each data collection were registered using the scanner 

manufacturer’s data processing software, RiSCAN Pro with Multi-Station Adjustment (MSA) 

plugin. The data registered using this technique was used for further processing. The following 

subsections explain all the registration techniques used in this project. 

3.2.1.1 Coarse Registration 

Coarse registration is the first step of the registration process which involves manual alignment of 

scans as close as possible which can be performed using coarse registration tool in RiSCAN Pro or 

CloudCompare (open source software used to process 3D point cloud or mesh data). This process 

involves picking a pair of corresponding points in each scan (Figure 15). Most of the points were 

picked from the sign boards available on the highways. Coarse registration is performed using 

RiSCAN Pro throughout this project (See Appendix for the process). 

 

Figure 15. Coarse Registration Using RiSCAN Pro 
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3.2.1.2 Fine Registration 

Fine registration involves refining the scans obtained in the coarse registration. In this project, the 

RiSCAN Pro Multi-Station Adjustment (MSA) algorithm was used for fine registration (See 

Appendix for the MSA process). MSA algorithm uses polydata which is the filtered version of each 

scan to perform the plane patch registration process. A plane patch filter was used to create 

polydata. Various parameters have to be defined for plane patch filter. Parameters and their values 

are shown in Figure 16. A plane patch filter identifies and triangulates planar areas (plane patches) 

in each scan. The MSA algorithm then identifies a common planar patch from each scan and shifts 

the scan until the best match is obtained. These adjustments were performed in three iterations. The 

parameters required for MSA and values of parameters for three iterations are shown in Table 8. 

All the scans aligned using MSA were exported into ASCII or .pcd format and merged into a single 

scan using CloudCompare for each data collection. This merged scan was used for further 

processing. In addition to MSA, other registration algorithms like ICP (using CloudCompare) and 

Normal Distribution Transformation (NDT) (using Point Cloud Libraries) were tested for this data. 

All these methods required coarse registration. 
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Figure 16. Parameter Values for Plane Patch Filter to Create Polydata in Multi-Station 

Adjustments (MSA) 

Table 8. MSA Parameters and Their Values for Three Iterations 

Parameter First Iteration Second Iteration Third Iteration 

Mode all nearest points all nearest points all nearest points 

Search radius(m) 0.5 0.2 0.1 

Max tilt angle(deg) 5 5 5 

Min. change of error 1 (m) 0.1 0.1 0.1 

Min. change of error 2 (m) 0.05 0.005 0.005 

Outlier threshold 2 2 2 

Calculation mode least square fitting least square fitting least square fitting 

Update display seldom seldom seldom 
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3.2.1.3 Merging and Aligning  

For each data collection, scans registered using MSA were exported into ASCII or .pcd files. These 

scans were merged into a single scan for each data collection using CloudCompare. For each season 

a single merged scan is obtained. Merged scans of each season were aligned using CloudCompare 

and are used for further processing. Each of these registration processes involves error, which is 

discussed in the later sections. The error obtained during this registration and the aligning process 

is considered for displacement analysis. 

3.2.1.4 Registration Error Analysis 

Since coarse registration is a manual process, it incorporates some error during the registration 

process which is carried throughout the data processing. As explained in the literature review 

section, systematic and random errors can be modeled mathematically and eliminated through 

system calibration procedures. However, it is difficult to model the registration error (Brodu and 

Lague 2012). In this project, errors obtained due to various registration steps were used to calculate 

a total error using the additive RMS error analysis which was proposed by (Collins et al. 2009). 

The error calculated through this technique was used to identify the significance of the changes 

measured between two point clouds. The (Collins et al. 2009) equation is modified for this study. 

                                   𝐸𝑡𝑜𝑡𝑎𝑙 = √𝐸𝑟𝑒𝑔
2 + 𝐸𝑎𝑙𝑔

2                                  Eq. 1 

Where Ereg was the error associated with registration of scans using RiSCAN Pro and Ealg was the 

error associated with registration of scans using CloudCompare. Ereg includes registration errors of 

all the scans involved in the displacement measurement. For instance, for the displacement analysis 

of June and September, the total error can be described as Equation 2 is as follows: 

                                                                 𝐸𝑟𝑒𝑔 = √𝐸𝐽𝑢𝑛𝑒
2 + 𝐸𝑆𝑒𝑝

2                         Eq. 2 
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3.2.1.5 Segmentation 

To focus on the area of the mountain which is highly prone to landslides, this part of the entire 

location was segmented using the interactive segmentation tool in CloudCompare. This was an 

edge-based segmentation. In order to segment similar patch from all seasons point cloud for a 

particular location, all these point clouds were aligned, and a patch was segmented using polygon 

edition mode by defining a 2D polygon on the selected point clouds. During this process, unwanted 

features and outliers were removed. 

3.2.2 Downsampling 

The size of the final merged scan of each data collection was huge. The large files slow down the 

data processing. In some cases, due to large file size, the CloudCompare shuts down. In this study, 

since we were working only on a particular area of the mountain which was usually lower in size, 

downsampling was not preferred, so downsampling of the point cloud was not a mandatory task. 

To compare the displacements results of original and downsampled point cloud, various algorithms 

such as VoxelGrid filter (using Point Cloud Libraries) and subsampling (using CloudCompare) 

were used. The VoxelGrid filter (Libraries) creates a 3D voxel grid (basically 3D boxes in the 

space) over the input point cloud. In each voxel, all the points were approximated with respect to 

their centroid. Whereas in the case of subsampling using CloudCompare point cloud was 

downsampled just by picking a random point and flagging all the points around it to be removed. 

For this process, CloudCompare provides various methods such as space (minimum distance 

between points is specified), random (remaining points are specified), and octree (subdivision 

octree level is specified). 
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3.2.3 Vegetation Removal 

Prior to the displacement comparison, vegetation removal was performed to reduce the noise due 

to vegetation. Similar to the downsampling, vegetation removal was an optional task depending on 

the characteristics of the site. Vegetation removal is required for Locations 2 and 3 since they have 

thick vegetation which adds a lot of noise to the displacement measurement. Whereas for Locations 

0 and 1 vegetation removal was not compulsory because both locations are rock type and have less 

vegetation. Sometime vegetation removal may even remove part of rock portion of the mountain, 

which may provide inaccurate results. To compare the displacement results of both vegetation 

removed and original point cloud, multiscale dimensionality classification vegetation removal 

algorithm (Brodu and Lague 2012) was used. Multiscale dimensionality classification algorithm 

was applied to the point cloud using CloudCompare qCANUPO plugin where classifiers were 

obtained from (Lague et al. 2013) 

3.2.4 Displacement Analysis 

After analyzing the advantages and disadvantages of various displacement analysis algorithms, 

Multiscale Model-to-Model Cloud Comparison (M3C2) displacement analysis was chosen for this 

study. Since M3C2 algorithm measures the distance between two point clouds along the surface 

normal direction, this gives a proper understanding of the landslide. Lague et al. (2013) explains 

all the characteristics of the M3C2 algorithm and also its application to Rangitikei River data. In 

the current study, the M3C2 algorithm was applied using CloudCompare. The concept of M3C2 

analysis is explained in the literature review section. In order to compare the displacement results, 

the analysis was performed on the vegetated surface (original patch), non-vegetated surfaces 

(vegetation removed patch) and downsampled (downsampled patch) point cloud. In order to obtain 

the accurate displacement, the analysis was performed only on a patch of the mountain which is 

more prone to landslides. In order to perform M3C2 analysis, two points clouds are required, the 
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reference cloud which is considered as a reference to measure the displacement and data cloud 

which is used to measure the distance from reference to data cloud. In this project, four data 

collection trips were performed between June 2016 and April 2017. Displacement change between 

different seasons was calculated pairwise. The combinations for the displacement comparison are 

shown in Table 9 below. 

Table 9. Various Combinations for Displacement Analysis 

Seasons Duration Reference Cloud Data Cloud 

Summer-Dry June-Sep June Sep 

Dry-Winter Sep-Dec Sep Dec 

Winter-Warm Dec-April Dec April 

Summer-Warm June-April June April 

 

For a detailed understanding of landslide displacement change, the displacement was calculated in 

X, Y and Z orientations. For Normals diameter in the main parameters section of M3C2 analysis 

(Figure 17), Normals for the reference cloud (Cloud#1) were calculated using “Normals Compute” 

in all three orientations. Based on a range of guess parameter (an option which predicts a range of 

values for the parameters based on the data) values, specific values were assigned to the parameters, 

such as projection scale and maximum depth. The values for Locations 1 and 3 are shown in Table 

10; these values were maintained same for all seasons comparison. The core points are the 

subsample of reference cloud (cloud#1), where minimum distance between the points was chosen 

as 10 cm. The registration error calculated in the registration error analysis was included here. The 

direction of displacement measurement was along the Normals orientation. Apart from the 

displacement analysis, a significant change was also calculated. Significant change highlights areas 

in the 3D where the measured change is significant. Usually, change is considered statistically 

significant if the level of change detection (LOD95%) is smaller than the measured change.  
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Table 10. M3C2 Displacement Analysis Parameter Values for Locations 1 and 3  

Parameters Location 1 Location 3 

Normal Scale 0.5 13 

Projection Scale 0.5 5 

Max Depth 6 9 

Subsample 0.01 0.01 

 

 

Figure 17. Shows Main Parameters of M3C2 Distance Analysis 

3.3 Research Workflow 

The Figure 18 below shows the workflow used for this research.  
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CHAPTER IV 
 

 

RESULTS AND DISCUSSIONS 

 

In order to achieve proposed objectives, various experiments were performed on sites described in 

the previous section. This section presents results of all experiments. As mentioned earlier, this 

research deals with four locations, namely Locations 0, 1, 2, and 3. Among these locations, 

Locations 0 and 1 are rock type slopes and Locations 2 and 3 are soil type slopes. For simplicity, 

results of one rock type slope (Location 1) and one soil type slope (Location 3) are presented in 

this section. 

4.1 Registration Results 

As mentioned in the methodology section, RiSCAN Pro software with Multi-Station Adjustment 

(MSA) plugin was used to register various scan positions for each data collection to obtain a single 

merged point cloud of the location for each data collection. Along with RiSCAN Pro, other 

registration algorithms such as Iterative Closest Point (ICP) and Normal Distribution 

Transformation (NDT) were evaluated on this data. Along with the registration results of these 

algorithms, a visual comparison was performed on the results of various registration algorithms.  
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4.1.1 Coarse Registration 

Coarse registration is an essential step before applying multi-station adjustments using RiSCAN 

Pro. Coarse registration is the process of manual alignment of scans by picking corresponding 

points in two separate scans. Through various experiments, it was observed that the accuracy of 

coarse registration depends on the closeness of the corresponding points chosen but not on the 

number of points. A weak correlation of 0.003 was observed between a number of points and the 

standard deviation of coarse registration. The results of coarse registration are shown below. Figure 

19 shows the orientation of two scan positions of Location 1 before and after coarse registration. 

The number of points used for coarse registration and standard deviation error of coarse registration 

is shown in Table 11. 

 

Figure 19. Scans Before (Left) and After (Right) Coarse Registration 

From the above figures, it can be observed that coarse registration helps in aligning the scans more 

or less along the same orientation. Through various experiments and visual comparison, it was 
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concluded that the accuracy of fine registration depends on the quality of the initial alignment of 

two point clouds through coarse registration.  

Table 11. Number of Point Pairs, Standard Deviation Error for Coarse and Fine Registration for 

Location 1 

    Standard Deviation Error 

Location 1-June 

Number of Point 

Pairs 

Coarse 

Registration 

Multi-Station 

Adjustments 

Registration of SP 1-3 6 0.130 0.013 

Registration of SP 3-4 8 0.090 0.014 

Registration of SP 4-5 7 0.069 0.021 

Registration of SP 5-6 8 0.069 0.018 

Location 1-September    

Registration of SP 1-2 9 0.047 0.017 

Registration of SP 2-3 11 0.073 0.018 

Registration of SP 3-4 11 0.038 0.016 

Registration of SP 4-5 11 0.046 0.015 

Registration of SP 5-6 9 0.059 0.013 

Registration of SP 6-7 8 0.043 0.015 

Registration of SP 7-8 8 0.066 0.015 

Registration of SP 8-9 9 0.109 0.016 

Registration of SP 9-10 8 0.057 0.017 

Location 1-December    

Registration of SP 1-2 11 0.093 0.017 

Registration of SP 2-3 11 0.084 0.015 

Registration of SP 3-4 11 0.081 0.015 

Registration of SP 4-5 13 0.129 0.015 

Registration of SP 5-6 10 0.139 0.014 

Registration of SP 6-7 10 0.081 0.014 

Registration of SP 7-8 10 0.054 0.015 

Registration of SP 8-9 10 0.126 0.015 

Location 1-April    

Registration of SP 1-2 9 0.112 0.017 

Registration of SP 2-3 11 0.051 0.014 

Registration of SP 3-4 12 0.049 0.014 

Registration of SP 4-5 10 0.050 0.012 

Registration of SP 5-6 13 0.158 0.014 

Registration of SP 6-7 13 0.135 0.016 
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4.1.2 Fine Registration 

After the coarse registration had been performed, multi-station adjustments were applied to the 

scans. Multi-station adjustments refine scans and reduce the registration error. A similar procedure 

was followed for all the locations. For simplicity, only results of Location 1 are presented here. See 

Appendix for the results of other locations. Figure 20 shows the registration results of both coarse 

and fine registration for Location 1. 

 

Figure 20. Shows Coarse Registered (on the left) and Fine Registered (on the right) Using 

RiSCAN Pro for Location 1 

From the results, it can be observed that, after the coarse registration, the scans were aligned 

approximately in the same orientation but are not completely overlapped. After applying multiple 

iterations of MSA, scans were finely aligned, and error was minimized (see Table 11). It was 

assumed that the MSA standard deviation error of fewer than 0.02 meters was desirable (Mapping 

2013). Table 11 presents point pairs used for coarse registration, error in standard deviation for 
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coarse registration and MSA. It is to be noted that the standard deviation error of MSA corresponds 

to the final iteration of MSA. 

4.1.3 Evaluation of Other Registration Algorithms 

For each data collection, once all the scans were registered they were exported and merged into 

single scan for each season. For every location, we have four single merged scans, which 

correspond to four different seasons (summer, dry, winter and warm). In order to measure and 

compare the displacement change over various seasons, displacement analysis was performed on 

two scans collected in two different seasons each time. In order to compute the displacement 

between two scans, two scans have to be aligned and registered. Since RiSCAN Pro doesn’t support 

working with scans from two different projects (i.e. it is not possible to merge two RiSCAN Pro 

projects), and neither does it support importing single merged scans into the RiSCAN Pro software. 

So to register scans from different seasons, other registration algorithms such as ICP (using 

CloudCompare) and Normal Distribution Transformation (NDT) (using Point Cloud Libraries) 

were evaluated. In order to compare the accuracy of the above-mentioned algorithms, registration 

was performed on coarse registered scans of Location 1 of June month which were exported from 

RiSCAN Pro. 
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Figure 21. Shows Coarse Registered (on left) and Fine Registered (on right) using ICP 

(CloudCompare) for Location 1 

The RMS (Root Mean Squared) error obtained from the ICP algorithm is much higher compared 

to the error from MSA. In the case of this example, the error obtained through ICP was 0.853 for 

20 iterations whereas in the case of MSA it was 0.015. It was also observed that with an increase 

in the number of iterations for ICP, the RMS error was increased. This technique was efficient for 

rock type locations compared to soil type. For Locations 2 and 3, the error was too high, and the 

scans were not aligned properly through visual check (Figure 22). This was mainly because of the 

absence of planar features and heavy vegetation.  

 

Figure 22. Shows Fine Registered Scans using CloudCompare for Location 3 
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On applying the NDT algorithm for coarse registered scans, the scans were completely misaligned 

(Figure 23). Multiple trials were performed, but similar results were obtained. It can be concluded 

that NDT registration algorithm cannot be used for our data.  

 

Figure 23. Shows Results of NDT Algorithm 

4.1.4 Results Registration Error Analysis 

All the registration processes performed above involve errors, which are carried to the point cloud 

displacement analysis. Therefore, the M3C2 displacement analysis should take registration errors 

into account. As explained in the Section-3.2.1.5, Equation-1 was used to calculate the total 

registration error. The major registration errors include registration error due to RiSCAN Pro MSA 

(standard deviation of MSA iteraration-3) and alignment error due to CloudCompare (RMS error 

during registration of two season scans). Table 12 shows the registration errors for Location 1. A 

similar analysis was performed for all the other locations. See Appendix for other location results. 
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Table 12. Registration, Alignment, and Total Errors for Location 1 

Seasons Registration Error 

June 0.034 

September 0.047 

December 0.042 

April 0.043 

    

Seasons Alignment Error 

June-September 0.158 

September-December 0.114 

December-April 0.118 

June-April 0.088 

    

Seasons Total Error 

June-September 0.168 

September-December 0.130 

December-April 0.133 

June-April 0.104 

 

As mentioned earlier, alignment error is much higher compared to registration error. The total error 

obtained through this analysis was used later in the M3C2 analysis. 

4.1.5 Technical Challenges and Recommendations for Point Cloud Registration 

The following are the major challenges experienced and lessons learnt from the above results and 

site experiences during registration process. 

 Georeferencing was not possible due to the absence of high precision GPS unit for the 

scanner which prevented us from using reflector based registration. Because of this 

problem various registration techniques were evaluated to choose the best algorithm that 

suits this data. Among all the registration techniques, feature-based registration (using 

plane patch filter in MSA) was effective. But this algorithm was not majorly successful in 

the case of locations with soil slopes; this was due to the presence of fewer planar surfaces 

and heavy vegetation. In order to prevent the above-mentioned situation, a preliminary site 
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analysis is required before the start of scanning. This analysis helps in identifying various 

features available on site and helps in choosing the registration algorithm to be used for 

future data processing.  

 From the Table 7, it can be observed that, for Locations 2 and 3, few scan positions were 

used in registration. This was because the signboards that were used for coarse registration 

were not properly scanned from those scan positions. The reason for this problem was that 

the sign boards are either not in the visible range of the scanner or occluded by traffic, the 

antenna of the equipment, or humans. This problem can be solved by choosing scan 

positions considering various factors such as distance, orientation from the 

reflectors/targets/planar surfaces. The study avoided disturbances at the time of scanning 

and visually verify the scan at the end of scanning for each scan position.  

 In some cases, it was observed that the registration was poor (scans were completely 

misaligned) despite very low error values. This was purely random. Therefore, a visual 

“sanity check” is very important after every registration step. 

 Due to the lack of full license for RiSCAN Pro, various tools had to be used for different 

processes. Using multiple tools may result in the following problems: losing the data, time-

consuming and file format incompatibilities. A decision on the processing tools should be 

made in the preliminary site analysis stage based on the site characteristics and available 

resources. 

 Even though there was no GPS unit, reflectors were used during the scanning process in 

order to use reflectors for coarse registration. But it was not unsuccessful; this is because 

the reflectors were not scanned completed or they were not clearly visible. The reasons 

were due to incorrect selection of reflectors and choice of wrong reflector positions on site. 

A visual check for initial scans is required.  
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 The values for the parameters of plane patch filter and MSA are obtained through trial and 

error which is a challenging task. 

4.2 Results of M3C2 Analysis 

One of the major objectives of this research study is to analyze the displacement change of slope 

during various seasons. Registered scans obtained from the registration step were used for this 

analysis. In order to obtain more accurate results and a good understanding of displacement change, 

the analysis was performed only on the portion of the slope which was more susceptible to 

landslide. The M3C2 analysis was also performed on vegetation removed data (vegetation removed 

patch) and downsampled data (downsampled patch) to understand the impact of vegetation removal 

and downsampling. The results of the M3C2 analysis are presented in this section. For simplicity, 

the M3C2 analysis results of Location 1 and 3 are discussed in the later sections. 

4.2.1 M3C2 Analysis on Original Patch 

The data for analysis are in scanner’s coordinate system. According to the scanner’s coordinate 

system, Y- Axis represents the horizontal component, Z-Axis as a vertical component, and X-Axis 

acts as a depth component. In order to obtain a detailed understanding of displacement change, the 

M3C2 analysis was performed on reference data along X, Y and Z Normals orientation. The 

analysis was performed between scans each time, where one is considered as reference and other 

as a model. The distance is always measured from reference to the model. M3C2 analysis for 

Location 1 was performed using the values of the parameters mentioned in Table 10. The analysis 

results of Location 1 are shown below. The M3C2 analysis also includes significant change in 

scalar field which represents the significance of displacement change. In the significant change 

result, the red color portion corresponds to statistically significant change, and gray color 

corresponds to insignificant change. The displacement change was presented with a blue-to-red 

heat map. The negative values of M3C2 distance were shown in blue and positive values in red. In 
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order to identify the slope movement at centimeter level, the scale of M3C2 distance was adjusted 

between 5 and 10 cm. In addition, Gaussian Statistics were also calculated for each analysis. 

4.2.1.1 M3C2 Analysis of June and September Scans 

The analysis was performed on the June (Summer) and September (Dry) seasons data, where the 

June scan was considered as reference and the September scan was considered as a model. The 

results of this analysis are presented along X, Y and Z orientations (Figures 25, 26, 27). The 

significant change remains same along all orientations (Figure 24). 

 

Figure 24. Significance of Change for June – September Scans 

From Figure 24 it can be observed that only a small portion on the top right has a significant change. 

The change was approximately 0.55 meters. This is partly due to vegetation available in that 

portion.  It was also observed that most of the displacement is insignificant, which is due to large 

registration error in the data in relation to the magnitude of displacement obtained.  After tweaking 

the parameter of registration error in the M3C2 analysis for multiple times, it was concluded that 

by lowering the registration error, more portions of the slope would show significant change.  
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Figure 25. Displacement Heat Map of June - September Scans for Location 1 Along X-Axis with 

Scale of 10cm 

A mean change of 0.055 meters with a standard deviation of 0.03 was obtained along the X-Axis. 

The positive value of displacement along the X-Axis may be interpreted as a swelling in those 

portions.  

 

Figure 26. Displacement Heat Map of June - September Scans for Location 1 Along Y-Axis with 

a Scale of 10cm 
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A mean change of -0.057 meters with a 0.024 standard deviation along Y-Axis. The negative value 

of displacement along the Y-Axis represents the movement in the horizontal direction.    

 

Figure 27. Displacement Heat Map of June - September Scans for Location 1 Along Z-Axis with 

a Scale of 10cm 

A mean change of 0.033 meters with 0.053 standard deviation along the Z-Axis is observed. The 

positive value of displacement along the Z-Axis represents the movement in the vertical direction. 

4.2.1.2 Comparison of Displacement Change Over Various Seasons 

Similarly, the M3C2 analysis was performed on June-September, September-December and 

December-April scans and results are shown in the Appendix. Table 13 shows mean and standard 

deviation results of each analysis for Location 1.  

Table 13. Shows Statistics of M3C2 Analysis of All Seasons for Location 1 

  X-Axis Y-Axis Z-Axis 

Seasons  Mean SD Mean SD Mean SD 

June-September 0.055 0.030 -0.057 0.024 0.033 0.053 

September-December 0.005 0.014 0.008 0.013 -0.007 0.013 

December-April -0.017 0.023 -0.025 0.012 0.021 0.019 

June-April -0.019 0.026 -0.026 0.020 0.021 0.025 
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From Figure 28, it can be observed that the major change in distance was observed between June 

and September scans. The least change was observed between September and December. Even 

though there was a change, the change was not significant. This is due to higher registration error, 

and the relatively smaller mean distance between scans. 

 

Figure 28. Displacement Change Over Different Seasons 

 

Figure 29. Displacement Heat Map for Location 1 Along X-Axis for Various Seasons (Scale-

10cm) 
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Note: The values in each heat map represents the displacement change (i.e. M3C2 distance) at that 

point. 

4.3 M3C2 Analysis on Soil Type Location (Location 3) 

Due to the presence of heavy vegetation and fewer planar surfaces, it was very difficult to register 

two different season scans for Location 3. Compared to other seasons, better results were obtained 

for June and September scans with an error of 0.75. By considering this error, the M3C2 analysis 

was performed on the June and September scans, and the results are shown below (Figure 30). 

From the results, it can be concluded that most of the displacement change measured was not 

significant (Figure 30). This is because of the presence of trees and a thick layer of grass on the 

surface. Several attempts were made to remove the vegetation, but the CANUPO algorithm didn’t 

provide effective results for Location 3 compared to Location 1. This is due to the presence of a 

thick layer of grass; no land portion was classified. Vegetation classification results of both 

locations are shown below (Figure 31). But the author was not able to perform any meaningful 

analysis on other seasons’ data because of large registration error.  

 

Figure 30. Significant Change (Left) and Displacement Heat Map (Right) for June and September 

Scans of Location 3 
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The above-shown heat map (Figure 30) is the result of M3C2 analysis with Normals oriented along 

the X-Axis. A mean change of 0.028 meters with a standard deviation of 0.156 was observed along 

the X-Axis. The significant change (red portion) shown in the above Figure 30 is due to the 

vegetation. So the change is not considered as significant, and results in the change in other 

orientations are not shown here. 

4.3.1 CANUPO Vegetation Classification on Location 1 & 3  

From the Figure 31, it can be observed that for Location 1 the land portion and vegetation were 

classified perfectly. Whereas for Location 3 even the vegetation was classified as land. The impacts 

of vegetation removal are discussed in the later section. 

 

Figure 31. Vegetation and Land Classification of Location 1 (Left) and Location 3 (Right) 

4.4 Impact of Vegetation Removal on M3C2 Analysis 

In order to study the impact of vegetation removal on the M3C2 analysis results, the vegetation 

removal was applied to Location 1. The results of original and vegetated removed data were 

compared. The figure shows significant change analysis results and displacement heat map for the 

both original and vegetation removed data.  
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Figure 32. Significant Change (Top) and Displacement Heat Map (Bottom) of Original Patch 

(Left) and Vegetation Removed Patch (Right) 

From the above figure, it can be concluded that there is not much change in the displacement heat 

map and also the Gaussian Statistics are almost similar in the case of Location 1. But change can 

be observed in the significant change result. The significant change is represented in red; it can be 

observed that there is a less red portion in the vegetation removed patch compared to original 

patch. The smaller red portion is due to the removal of change because of vegetation. In other 

words, the noise due to the vegetation in the significant change analysis was removed after 

vegetation removal. The significant change obtained in the case of vegetation removed data is a 

better representation of change. Whereas in the case of Location 3, if vegetation removal is 

achieved, there might be considerable difference both in significant change analysis and statistical 

results. 
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4.5 Impact of Downsampling on M3C2 Analysis 

The impact of downsampling was studied on Location 1. The results of M3C2 on original and 

downsampled data are shown in Figure 33. The downsampling was performed on the data based 

on the spacing between the points using CloudCompare. The mean of the M3C2 distance of original 

data was 0.055 meters whereas for the downsampled data was 0.0183 meters. From this, it can 

conclude that downsampling affects statistical results of the analysis. Usually, downsampling is 

preferred when the data size is large. If downsampling is performed on smaller size data, the results 

would be similar to the one shown in Figure 33. The downsampled results on smaller size data are 

too sparse and hardly possible for visualization. 

 

Figure 33. Displacement Heat Maps of Original (Left) and Downsampled (Right) Patch 

4.6 Technical Challenges and Recommendations for M3C2 Analysis 

The following are the major challenges experienced, and lessons learned from the above results 

and site experiences during displacement change analysis. 

 The most important step before applying M3C2 analysis is registration of scans collected 

in two different seasons. The global registration error must be as minimum as possible to 
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obtain accurate displacement results. Large portions of significant slope change were not 

able to be detected at 95% confidence level because of high registration errors. The 

registration error was relatively higher for Locations 2 and 3 compared to Locations 1 and 

2. This is due to the absence of planar surfaces and presence of thick vegetation in 

Locations 2 and 3. In order to overcome the registration challenge, suitable reflectors have 

to be used which improves the registration. 

 The M3C2 analysis was performed on Location 3 for the June and September scans, but it 

was not possible with the data collected during other seasons because of poor registration 

results. Better registration was possible in case of June and September scans because ICP 

algorithm was applied twice. Once for the whole scene after coarse registration, and later 

for a patch of the mountain considered for analysis. When tried to repeat the similar 

procedure for other seasons, the results were neither consistent nor desirable.  

 The presence of a thick layer of grass resulted in poor M3C2 results for Location 3. In the 

case of rock type location, the CANUPO algorithm worked very well since there was no 

layer of grass. Whereas in the case of soil slope (Location 3), the algorithm yielded only 

few ground points. The alternative algorithm has to be implemented which is not the scope 

of this study. 

 Mean change of the displacement analysis cannot be used as the only measure for slope 

over various seasons because the total registration error has an effect on the analysis. 

Therefore, both displacement heat maps and significant change analysis have to be jointly 

evaluated to get a clear picture of the slope change. 

4.7 Generalized Workflow 

Previous studies have used different workflows to apply terrestrial laser scanning technology to 

landslide monitoring. Basically, application of this technology needs to be customized, i.e., 

different tasks of processing are determined based on the characteristics of the site. Based on the 
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above analysis, a generalized workflow was developed for the application of laser scanning 

technology to measure the slope change for the sake of assessing the risk of landslide. The most 

important step of the generalized workflow is preliminary site analysis; this is performed to obtain 

travel plan to locations, labor required, and a list of scanning and safety equipment. Apart from 

these, some of the features such as planar surfaces, reflecting objects of the site are analyzed which 

can be used to decide on registration algorithm used later to process the data. For this step, Google 

maps, Google earth, site specifications and pictures can be used.  Moreover, personal trips to the 

sites need to be made. One of the major steps of the generalized framework is visual check (VC). 

In visual check-1 the original patch is verified for the registration, alignment, and vegetation. If 

there is thick vegetation or data is large in size, the data should go through a downsampling or 

vegetation removal process. After the data is processed with downsampling or vegetation removal, 

the data is visually checked (VC-2) to confirm whether vegetation is removed or not. Then, the 

processed data is subjected to M3C2 analysis. If VC-2 is failed, then the original patch has to retreat 

with the other algorithms and process is repeated. 
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CHAPTER V 
 

 

CONCLUSION 

 

This research has studied the use of terrestrial laser scanning to monitor the landslide movement 

on the Oklahoma highways in the mountainous region. Through this study, a generalized workflow 

to apply terrestrial laser scanning technology to landslide monitoring on highways was developed, 

which can be applied to any site. During the process of developing a generalized framework, 

various data processing steps such as registration, displacement analysis were evaluated. It can be 

concluded from the study that the registration algorithm has to be decided during the preliminary 

site analysis step based on the features (such as planar surfaces, reflecting objects) available on site. 

From the above registration algorithm evaluation analysis, it was observed that Multi-Station 

adjustment (MSA) with plane patch filter produced best results for a location (e.g. Locations 0 &1) 

with more planar surfaces. In the case of Locations 2 and 3 MSA results were not effective 

compared to results of Location 0 and 1, but they were better compared to the results of ICP or 

NDT algorithms. This is because of the presence of less number of planar surfaces and thick 

vegetation. It is also observed from this study that we cannot solely rely on the statistical results 

and the visual check is very important at every stage of data processing. For example, in the case 

of ICP registration even though the RMS error is very small, the scans were completely misaligned. 

For Locations 2 and 3, registration of two different scans obtained in different seasons using the   
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ICP algorithm was difficult due to the presence of vegetation and a layer of thick grass on the 

surface. 

The M3C2 analysis provided a detailed understanding of the displacement change of the landslide. 

For Location 1, there was a high displacement change during June-September when compared to 

other seasons. But it was observed that the change observed was not significant because of a larger 

registration error. Whereas for soil type (Location 3) landslides, the displacement results were not 

meaningful. This is due to the presence of a thick layer of grasses and trees on the surface. Several 

attempts were made to filter vegetation, but it yielded very few ground points. Unfiltered data was 

used, and the displacement results were not significant, which is one of the limitations of this study.  

The impact of vegetation removal on displacement analysis proved that the results were improved 

due to the vegetation removal. Due to the vegetation removal, the change observed due to 

vegetation noise was removed. Because of which more accurate a significant change was observed. 

Through this study, it is recommended that a visual check is required after the vegetation removal 

to make sure that all land portion of the data is retained or not. The study of downsampling impact 

on the displacement analysis proved that the statistical results of displacement vary greatly due to 

downsampling. Therefore, it is recommended that downsampling should only be performed on 

large data sets.  

Since the slope is not statistically significant over the period of this research study, a single year of 

monitoring is not sufficient to assess the risk of landslide/rockslide. These sites have to be 

continuously monitored for a few years. In addition, the displacement analysis should be used in 

conjunction with geological characteristics of the site to assess the risk of landslides/rockslides 

This generalized framework and challenges reported by this study will help the Department of 

Transportation (DOT) to apply laser scanning technology to monitor and assess the landslide risk 

on highways more effectively. Various challenges reported through this study not only helps in 
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understanding the feasibility of this technology for monitoring landslides on highways but also 

directs researchers to address these issues.  

The future work of this study includes the use of GPS units for registration and compares the 

registration errors with the current process. There is a need for a robust algorithm for the registration 

of scans with no planar surfaces. In addition, there is need to develop a tool using the proposed 

generalized workflow which can help in the real-time processing of the data.    
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APPENDICES 
 

Coarse and Fine Registration Using RiSCAN Pro 

The link below explains coarse registration and Multi-Station Adjustments using RiSCAN on 

Location 1 data. 

Link for Coarse and Fine Registration using RiSCAN Pro 

https://drive.google.com/open?id=0B0W26tsi2OuVT1IyZTZSZDBCMEk 

M3C2 Analysis of September and December Scans for Location 1 

 

Figure A-1. Significant Change and Displacement Heat Map of September and December Scans 

of Location 1 Along X, Y and Z Axis (Scale 5cm) 

 

https://drive.google.com/open?id=0B0W26tsi2OuVT1IyZTZSZDBCMEk
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M3C2 Analysis of December and April Scans for Location 1 

 

Figure A-2. Significant Change and Displacement Heat Map of December and April Scans of 

Location 1 Along X, Y and Z Axis (Scale 5cm) 

M3C2 Analysis of December and April Scans for Location 1 

 

Figure A-3. Significant Change and Displacement Heat Map of June and April Scans of Location 

1 Along X, Y and Z Axis (Scale 5cm) 
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