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Abstract: One of the practical problems encountered in the coordination and cooperation of multi-UAS
systems is to obtain the position and the orientation information of the neighboring vehicles while working
in a GPS-denied environment. The research work is based on estimating the relative states between multiple
vehicles and analyzing their observability properties. It has been divided into two sub-problems. First, the
relative heading estimation between two unmanned aerial systems in the presence of constant disturbances
is considered in a GPS-denied environment. Second, the observability properties of relative state estimation
between two vehicles in bearing-only scenarios is investigated.
In the first problem, the nonlinear observability rank condition is employed and observability conditions of
the relative states are established when the relative position between the two UAS is measured. In the first
scenario, it is shown that if a UAS (say UAS 2) measures the position of another UAS (say UAS 1), the
relative states between the two UAS, including the relative heading and the relative wind, and the airspeed
and the heading rate of UAS 1, are locally weakly observable. The observability result holds even when UAS
2 is stationary. In the second scenario, observability properties of the relative states when UAS 1 is tracking
a ground target using a feedback control are investigated. It is proved that the relative states and the range
between UAS 1 and the target are locally weakly observable. The observability of the target range implies
that UAS 2 can estimate the target position without observing the target.
In the second problem, global observability of the relative state estimation problem in bearing-only scenarios
is investigated. It is assumed that one vehicle is equipped with a monocular camera sensor to obtain bearing
measurements of the other vehicle. Global observability properties are investigated when the linear speeds
and the angular velocities of both vehicles are constant. Unobservable scenarios when both vehicles are
cruising or orbiting are also illustrated. It is further proved that the relative state is observable without
communication between the vehicles. When both vehicles are orbiting, conditions on the angular velocities
of the vehicles are developed to ensure observability.
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Chapter 1

INTRODUCTION

1.1 Unmanned Aerial System

Unmanned Aerial system (UAS) refers to the aerial vehicles which operate without a human pilot. They

are basically classified into three types i.e., unmanned aerial vehicles (UAVs), remotely piloted vehicles

(RPVs) and drones. The terms UAV and RPV are used interchangeably, but an RPV is controlled or steered

from a remote location and is always a UAV. However, a UAV may perform its operations autonomously or

through preprogrammed navigation system, it need not always be an RPV. The term drone is used for aircraft

controlled by radio signals and commonly referred to an aircraft with limited capabilities [13].

A typical UAS consists of air vehicles, ground control stations, payload and data links. Some UAS may

include launch and recovery subsystems. They are now equipped with autopilots and human controllers

which uses various navigation systems for preprogrammed missions. The accuracy of their flight and target

identification is made capable by the use of different types of sensors. A few of them are described below:

1.1.1 Sensors

Main sensors used by UAS are as follows [32]:

Proprioceptive sensors are also called self-monitoring sensors. They are designed to monitor their self-

maintenance and control their internal states. One of the commonly used proprioceptive sensors is an Inertial

measurement unit (IMU) that is used to measure angular rate or the magnetic field around an object by using

a combination of accelerometers and gyroscopes. The other common use of proprioceptive sensors is battery

percentage monitoring, internal heat monitoring, and voltage and current sensing.

Degree of freedom (DOF) refers to both the amount and quality of sensors on-board.

• 6 DOF stands for 3-axis gyroscopes and accelerometers (a typical inertial measurement unit)

• 9 DOF refers to an IMU plus a compass

• 10 DOF refers to an IMU, compass and adds a barometer

• 11 DOF usually combine a GPS receiver to a 10 DOF system
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Exteroceptive sensors are used to estimate an objects relative measurements with respect to another objects

frame of reference. They are used to determine if an object/ robot is near another object and help them

avoid collision. They can also be used to determine the distance of one object to another.The main types of

exteroceptive sensors are listed below:

Contact Sensors are the sensors that send an object detection signal to the processor when a physical contact

is established. They are mechanical switches that are used to detect a contact or the mechanical interactive

forces and torques objects parts meet each other.

Range Sensors are used to measure the distance to objects in the area of their range. They are used for robot

navigation and obstacle avoidance, or to recover the 3rd dimension for monocular vision. They work on one

of the two principles: time-of-flight and triangulation.

Vision Sensors involves extraction and characterization of the information from images and to interpret the

data to identify objects in the surrounding environment.

The common examples of exteroceptive sensors are Camera (CMOS, infrared), range sensors (radar, sonar,

lidar).

1.1.2 Challenges in position estimation using GPS

The Global Positioning System, commonly abbreviated as GPS is a constellation of 24 well-spaced satellites-

based navigation system orbiting the Earth to provide geographic locations to anyone who has a ground

receiver. The accuracy of the GPS location estimate is from 10 to 100 meters. It is available for general use

around the world. Briefly, here is how it works: [15]

21 GPS satellites are in orbit at around 10600 miles above the Earth. Three spare satellites are also launched

in the space for emergency purposes, making it a system of 24 satellites. They are spaced in a way that 4

satellites will be above the horizon when viewed from any point of the Earth. They are equipped with a

computer, a radio and an atomic clock. The clock and an estimate of its own orbit, the satellites continually

broadcast their changing positions and time. The GPS receiver at the ground triangulated its own position by

getting bearings from 3 out of 4 satellites. The final geographic location is shown in the form of longitudes

and latitudes.

The main problem in estimating the position of moving body using a GPS is that there are different factors

that degrade the GPS signal and affect the position accuracy as listed below [11]:

Signal multipath is an error that is caused by an increase in time travel of the GPS signal after it reflects off

from an object like a building before it reaches the receiver which affects the accuracy. Similarly, a GPS

satellite atomic clock is more accurate than the receiver’s built-in clock so it may have very slight timing

errors. Though, three satellites are enough for position measurement, but the more satellites available, the

2



Table 1.1: Classification of UAS [21]

Description Weight (kg) Range (m) Endurance (h) Airspeed (Knots) Models

Small/Micro ≤ 5 10 ≤ 5 ≤ 100 Dragon Eye

Medium/ Light 5-50 ≤ 100 ≤ 5−24 ≤ 250 RPO Midget

Larger/ Medium 50-200 100-400 ≤ 5−24 ≤ 250 Raven

Larger/ Heavy 5-2000 ≤ 400-15000 ≤ 5−24 Any air Speed A-160

Largest/ Super Heavy ≥ 2000 ≥ 15000 ≥ 24 Any air Speed Global Hawk

more accuracy is achieved. This is also one of the reasons why GPS does not work good in underwater,

indoors or underground. Moreover, accurate measurements are achieved when satellites are positioned at

wide angles relative to one another whereas the accuracy in position is degraded when they are located in a

line or in a tight grouping. Secondly, the reliability of position estimation on GPS is greatly halted as GPS

signals are also prone to other unusual situations as listed below:

• Intentional Jamming

• Unintentional Interference

• Blockage in cluttered urban environment

Considering the problems in position estimation through the GPS navigation system, a lot of recent research

is being conducted in developing GPS denied technologies. Through the GPS-denied environment, through

the use of multiple sensors and by utilizing computer vision technology, the over-dependency on GPS has

been reduced.

1.1.3 Classification of UAS

UAS has been classified into different categories according to the following parameters:

• By weight

• By range and endurance

• By altitude

• By wing loading

• By engine type

3



1.1.4 Applications of UAS

UAS has been used in different remote sensing applications due to their rapid response and cost effectiveness.

They are used to perform multiple military and civil tasks where a mission/ observation is to carried out in a

harmful environment. The adoption of remote sensing in archaeology and vegetation monitoring using UAS

has become popular in the recent times [12]. Rapid response imaging using UASs has received attention as

this has been demonstrated for road accident simulations and in many cases of forest fire monitoring. UAVs

have also been proposed as platforms to monitor volcanoes. A final example of the flexibility of UAVs is

their use in traffic monitoring [26].

1.2 Multi-UAS Systems

Autonomous flying vehicles or UASs have continuously been exploited in different commercial and civil as

well as military applications for reconnaissance, explorations and detection, monitoring and disaster man-

agement. For many applications, a group of coordinated UASs can play a more important role than a single

UAS. Multi-UAS systems can monitor a certain area much quickly or gather more information from dif-

ferent perspectives at the same time. To take benefit from this emerging technology, profound amount of

research work is being done in field of Multi-UASs. The group of UASs working together can overcome the

shortcomings of single UAS system. In this way, they can accomplish something better than the single unit.

Multi-UASs exchange their sensor information, coordinate with one another to track and monitor targets,

monitor activities and even collaborate to transport the payloads.

1.2.1 Classification of Multi-UAS Systems

The classification of Multi-UASs on the basis of coupling is as follows [8] :

Physical Coupling

UASs are physically connected to one another through some link and the motion of all UASs is dependent

on others. The whole system is considered a single body when path planning is considered. It can only

have small number of UASs, therefore, both centralized and distributed architectures can be used. One of the

applications is to transport the payload from one position to another.

Formations

UASs are not linked physically but the movement of UASs is strictly controlled to maintain the formation.

Path planning of the system can be considered as a single unit. For small number of vehicles, both centralized
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and decentralized architecture can be used but for higher number of formations, decentralized technique is

preferred.

Swarms

A group of vehicles whose interaction creates a collective behavior to accomplish a common goal. They are

not physically linked or does not necessarily make formations. Usually large number of vehicles participate

so scalability is a problem and a decentralized approach is advised.

Intentional Cooperation

UASs are programmed to follow specific trajectories to finish individual tasks which are part of a big task.

No physical link, formations or any geometric configuration is expected between different UASs. Due to

preservation of individuality of UASs, both centralized or decentralized architectures can be used.

Figure 1.1: Classification of multiple UAS systems: a) Physical coupling, b) Formations, c) Swarms and d)

Intentional cooperation [8]

1.2.2 Coordination and cooperation in Multi-UAS Systems

To accomplish different tasks, the coordination and cooperation of Multi-UASs plays a very critical part.

Generally, the coordination refers to sharing the resources amongst the UASs, temporal and spatial. The

former deals with syncing of multiple UASs whereas the later relies on space allocation amongst UASs.

These concepts are used for UASs path planning in which the regular path planning concepts can be applied

to multi-UAS scenario [20] [6]. The concept of cooperation revolves around a collective behaviour of UASs
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to accomplish a common goal with some mechanized cooperation algorithms which results in a dramatic

improvement in the total efficiency of the system [4]. The cooperation of multi-UAS system integrates the

sensor information, control and path planning algorithms in an appropriated decisional architecture which is

application dependent. The centralized architectures require more storage and computational capabilities but

offers better cooperation amongst UASs whereas decentralized architecture offers better scalability. There

are different benefits of using Mutli-UAS system as compared to a single UAS and are listed below [23]:

Multitasking

Multiple UASs collect information from different locations simultaneously to build models used to take de-

cisions which can be time consuming for a single UAS.

Improved Efficiency

The total time for exploration and object detection using multi-UASs is drastically reduced as compared to

single UAS, critically increasing the efficiency of the system.

Complementarities of Team Members

Multi-UAS system provides advantage over single UAS by exploiting their complementarities e.g., fixed wing

aircrafts have better range and time of flight, whereas quadcopters are capable of having better manoeuvring

abilities. They can work together and provide better results than working alone.

Redundancy

Multi-UAS system is more reliable as it is more fault tolerant and offer more flexibility incase of malfunction.

Cost Effective

A group of UASs performing tasks simultaneously is more cost effective and time saving as compared to a

single UAS performing different tasks.

1.3 Target Handoff

A simple example of multi-UAS coordination is when UAS, tracking a target, can not continue its task and

its job has to be handed over to a new UAS. This concept is known as target handoff. The need for target

handoff arise from different reasons. In a practical scenario, a battery operated tracking UAS can have its

battery level below certain values or a gasoline operated UAS needs refueling. There may be a scenario when
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a more demanding target is to be located and the services of the current tracking UAS, with more tracking

capabilities, are required. In these cases, one of the possibilities is to let go off the target due to the limitations

of the current tracking UAS capabilities. The other and a much better approach is to handoff the target to a

new UAS. The objective of target handoff is to enable another UAS to have a visual lock on the target and

continue tracking.

One of the practical problems encountered in the coordination and cooperation of multi-UAS system is to get

position and orientation information of the neighboring vehicle in a GPS-denied environment. However, it

can obtained by estimating the relative position of the target as shown in Fig. 1.2. Suppose a UAS is tracking

a moving object on ground or air. Let’s call this a tracking UAS. The tracking UAS has a visual lock on the

target. The other UAS being the handoff UAS. Let rT represents the inertial position of target whereas rt and

rh denotes the inertial position of tracking UAS and the handoff UAS respectively. Let Rab show the rotation

matrix between the frame a and frame b. Therefore, rt
T represents the position of the target in the tracking

UAS reference frame. If the handoff UAS can obtain an accurate estimate of (rT - rh)h, the relative position

of the target in the handoff frame, it can position its sensor to lock the target [3]

(rT − rh)h = (rt − rh)h + Rh
t (rT − rt)t, (1.1)

= (rt − rh)h + Rh(Rt)−1(rT − rt)t, (1.2)

To obtain promising results and a lock of target, the handoff UAS should obtain the following estimates:

(rt−rh)h, the relative position estimate of tracking and handoff UAS represented in the handoff frame (rT −rt)t,

the relative position between the tracking UAS and the target in the tracking reference frame Rh(Rt)−1, the

relative attitude between the two UASs. Here, it is assumed that (rT –rt)t is a known value by tracking UAS

and handoff UAS can get it without any delay.

1.4 Summary of Thesis

The rest of the thesis is organized as follows. In chapter 2, literature of some important topics which are

related to the main problems is reviewed. First, the concept of observability and lie derivative has been

discussed. The study of different vehicle tracking methodologies has been done. One of the estimating

techniques using Kalman filters has been discussed in detail. The concept of bearing only tracking has

been reviewed. In the end, the problem of relative heading estimation between multi-vehicle in GPS denied

environment has been analyzed. In the first part of the chapter 3, relative heading estimation between two

Unmanned Aerial Systems is considered and observability properties of relative states between the two UASs

in the presence of constant disturbances are examined. State observability properties are established when

UAS 1 is tracking a stationary ground target using a feedback control. The simulation results demonstrate its
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Figure 1.2: GPS denied Target Handoff problem [3]

effectiveness in estimating the relative states. In the second part of chapter 3, global observability properties

are investigated while estimating the relative position and heading between two vehicles. Unobservable

scenarios are illustrated and conditions on the angular velocities to ensure observability are also developed.

In chapter 4, the experimental results have been shown. First, the detail of all the hardware used in the

experiment has been provided. The software details and configuration of software is explained later. In the

end, the experimental and simulation results have been shown. In chapter 5, conclusion and future work have

been included.
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Chapter 2

LITERATURE REVIEW

2.1 Observability and State Estimation

Observability analysis is a fundamental component of any real-time State Estimator. It is an estimate of the

internal states of a system by the knowledge of its external outputs. Therefore, a system is observable if the

current state is measured by only using the output sensors in a finite time period for any sequence of state and

control vectors. It means that only by visualizing the output data of the system, the whole behaviour of the

system can be determined. A state-space representation is a mathematical description of a physical system in

the form of inputs, outputs and state variables where the state variables are on the axes and the vectors in that

space represents the state of the system [18]. State estimation gives an estimate of internal states of a real

physical system only from the input and output measurements. Practically, it is difficult to estimate the state

of the system by just observing the inputs and outputs of the systems e.g., the exact information about the

internal states of the cars inside the tunnel is difficult to know from someone viewing the cars exiting a tunnel

from outside, though the velocities of the cars entering and exiting (input and output) is available. However,

if the system is observable, the states of the system inside the tunnel can possibly be reconstructed only by its

output measurements using the state estimator. It is similar to the scenario that when a car enters a tunnel, the

GPS signal keeps on showing a moving car, even though, the GPS signal of the car has already been lost and

no updated position of the car is received. It is through state estimators like Kalman filters etc that the next

states are continually estimated even with a noisy sensor data or control commands with uncertain effects [1]

2.1.1 Review of Observability

For linear time-invariant (LTI) systems in the state space representation, there is a convenient test to check

if a system is observable. Consider a single input single output (SISO) LTI system consists of n states [34].

The state equations are defined in terms of matrices A and B as shown in (2.1) whereas the output equations

are expressed in terms of C and D matrices as shown in (2.2).
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ẋ = Ax + Bu (2.1)

y = Cx + Du (2.2)

where the state vector x is a column vector of length n, the input vector u is a column vector of length r, A is

an nxn square matrix of the constant coefficients ai j, B is an nxr matrix of the coefficients bi j that weight the

inputs, y is a column vector of the output variables, C is an mxn matrix of the constant coefficients ci j that

weight the state variables, and D is an mxr matrix of the constant coefficients di j that weight the system in-

puts [34]. The matrices A and B are properties of the system and are determined by the system structure and

elements. The output equation matrices C and D are determined by the particular choice of output variables.

For the SISO LTI system defined in (2.1) - (2.2), if the row rank of the following observability matrix

O =



C

CA

CA2

...

CA(n−1)


(2.3)

is equal to n, then the system is observable. The rationale for this test is that if n rows are linearly independent,

then each of the states is viewable through linear combinations of the output variables.

2.1.2 Nonlinear Observability

Lets consider a nonlinear system
∑

of the following form: [17]

ẋ = f (x,u), x ∈ M ⊆ Rn (2.4)

y = h(x) ⊆ Rm (2.5)

Please note that the two states x0, x1 ∈ M are said to be indistinguishable, if for every admissible input u(t),

t0 ≤ t ≤ tend, identical output results:

y(t; x0) = y(t; x1) f or t0 ≤ t ≤ tend (2.6)

The nonlinear system
∑

is observable at x0, if I(x0) = x0. The nonlinear system
∑

is observable, if I(x) = x

for all x ∈ M.

Notation: I(x0) = set of all points that are indistinguishable from x0.
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Figure 2.1: Nonlinear Observability [17]

It must be noted that the observability is sometimes called ‘global observability’. The reconstruction of x

from measurement data may be possible for certain inputs u(t), t0 ≤ t ≤ tend only.

Local Observability

The nonlinear system
∑

is locally observable at x0, if for every open neighbourhood N of x0 and for every

solution x(t) completely in N, IN(x0) = x0. The nonlinear system
∑

is locally observable, if IN(x) = x for all

x ∈ M.

Figure 2.2: Local Observability [17]

Here, it must be noted that the local observability is a stronger property than observability.
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Weak Observability

The nonlinear system
∑

is weakly observable at x0, if there is some neighbourhood V of x0 where I(x0)
⋂

V =

x0. The nonlinear system
∑

is weakly observable, if such a neighbourhood V exists for all x ∈ M.

Figure 2.3: Weak Observability [17]

Locally Weak Observability

The nonlinear system
∑

is locally weakly observable at x0, if there is some neighbourhood V of x0 where

I(x0)
⋂

V = x0, for all solutions x(t) completely in any neighbourhood N of x0. System
∑

is locally weakly

observable if this property holds for all x ∈ M. The nonlinear system
∑

is weakly observable, if such a

neighbourhood V exists for all x ∈ M.

Figure 2.4: Locally Weak Observability [17]
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Lie Derivative

Consider an autonomous system

ẋ = f (x) (2.7)

y = h(x) (2.8)

The derivative of the measurements:

dy
dt

=
∂y
∂x

dx
dt

=
∂h
∂x

f (x) (2.9)

Higher derivative of y can be written compactly by introducing the operator L f [.] (Lie Derivative) [17]

where L f [h] = ∂h
∂x f (x) is the time derivative of h along the system trajectory x

d2y
dt2 =

∂y
∂x

(
∂y
∂x

f (x)
)

f (x) = L f [L f [h]] = L2
f [h] (2.10)

dky
dtk = Lk[h] (2.11)

The observability mapping Q(x) for the autonomous system will be defined as:



y

ẏ

˙̇y
...


=



L0
f [(x)]

L1
f [(x)]

L2
f [(x)]
...


= Q(x) (2.12)

Q(x) defines a set of nonlinear equations for determining x from y, ẏ, . . . For a general nonlinear system, the

number of time derivatives is not fixed which means that Cayley Hamilton theorem is not applicable. For LTI

system, Q(x) = O(x) with Kalman observability matrix O.

The nonlinear system
∑

satisfies the observability rank condition at x0, if ∂Q(x)
∂x at x0 contain n-linearly

independent row vectors. The observability indices of a given system are not unique. The observability rank

condition is sufficient but not necessary for locally weak observability [17]

2.2 Kalman Filter

Kalman Filter is a recursive data processing tool to measure predicted values through an iterative mathemat-

ical process. It uses a series of measurements and consecutive data inputs measured over time to quickly
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estimate the unknown state variables e.g., position, velocity, heading of the object being measured which

contains statistical noise, unpredicted errors and other uncertainties. It uses a feedback loop that begins with

estimating the states from the previous states. The measured values from a sensor act as a feedback to the

filter. The filter basically consists of time update and measurement update equations which estimates current

state ahead of time and adjust the projected estimate by an actual measurement of that time, respectively

[35].

Let say 50 consecutive data points are considered and a distribution of these values is made, and the average

is taken which must be very close to the true value. But it requires lots of inputs to give a true estimate.

However, Kalman filter uses very few data inputs to start giving values that are very close to the true estimate.

There are numerous applications of Kalman Filter in technology which includes navigation and control of

aircrafts etc. It is also used in the field of controls and robotics for path planning and trajectory optimization

etc.

The main difference between Kalman and extended Kalman filter is that Kalman filter could not work with

the Nonlinear systems whereas Extended Kalman filters can be used to solve nonlinear systems.

2.2.1 Example (Temperature measurement)

Lets consider a very simple example of measuring a temperature value from the thermometer. The thermome-

ter is not very accurate and there is some uncertainty in the data measurements. As shown in Fig. 2.5, the

x-axis shows the time on which continuous sample points have been taken at regular intervals. The y-axis

shows the temperature. The little crosses are the measured values at regular intervals. It will take a lot of

time to average these values to get an estimate of the real temperature because of lots of variation in the data

measured. However, the Kalman filter predicts the actual temperature much faster and accurately.

It starts with taking an initial estimate and it does not matter what the initial estimate is. In the initial esti-

mate, a certain amount of uncertainty or error is considered. As data points start coming in and an iterative

process begins, the Kalman filter starts estimating the values. It does not take too many inputs to reach close

to the actual temperature value.

2.2.2 Flowchart of a simple measured value

The process of implementing Kalman filter consists of basic three basic equations or calculations which

always go on iteratively. The first is calculating the Kalman gain. Next, the current estimate is evaluated and

it is updated on regular intervals and, finally, the new error/uncertainty in estimate is calculated [33].

1. Calculate the Kalman Gain
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Figure 2.5: Temperature measurement

2. Calculate the current estimate

3. Calculate new error in estimate

The first step is to calculate the Kalman gain or gain, the error in the estimate needs to be known which is

either the previous error in estimate or the original error. Each time the error is estimated (step-3 in Kalman

Filtering), the error estimate is updated and fed to measure the new Kalman gain. The other parameter

required to calculate the gain is the error in data input. Both of these feed into the calculations and come up

with a new gain. The gain gives a relative importance between the error in the estimate versus the error in the

data input. If the error in the estimate is smaller, more importance is put in it and if the error in the input is

smaller, more importance is put in it. Kalman Gain = KG

Error in estimate = EES T

Error in measurement = EMEA

KG =
EES T

EES T + EMEA
,0 ≤ KG ≤ 1 (2.13)

Secondly, the Kalman gain is fed into the calculations of current estimation. New estimate depends on the

gain. Beside gain, it also depends on the previous estimate or the original estimate. The other required data

will be the data input. The gain will decide how much to put on the previous estimate and the new measured

value.

In the last step, for the calculation of new error estimate, the gain and the current estimate are needed. It is
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Figure 2.6: Flowchart for Kalman Filter Estimation

then fed to calculate the new gain in the next iterative cycle and process continues to refine and gets closer to

the true value.

Current estimate = ES Tt

Error in current estimate = EES T (t)

Previous Estimate = ES Tt−1

Measurement = MEA

ES Tt = ES Tt−1 + KG(MEA–ES Tt−1) (2.14)

EES T (t) =
(EMEA)(EES T (t−1))

(EMEA) + (EES T (t−1))
= [1−KG](EES T (t−1)) (2.15)

The earlier discussion was regarding a single parameter based system. However, the real applications of

Kalman filtering is performed on a set of parameters representing a dynamic system. Before starting, lets

define a few terms:

1. The mathematical model of the system, represented by matrices A, B, and H.

2. An initial estimate about the complete state of the system, given as a vector x.

3. An initial estimate about the error of the system, given as a matrix P.

4. Estimates about the general process and measurement error of the system, represented by matrices Q

and R respectively.
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During each time step, you are expected to give it the following information:

• A vector containing the most current control state (vector ”u”). This is the system’s guess as to what it

did to affect the situation (such as steering commands).

• A vector containing the most current measurements that can be used to calculate the state (vector ”z”).

After the calculations, you get the following information:

• The most current estimate of the true state of the system.

• The most current estimate of the overall error of the system.

Kalman Filter equations are given below:

State Prediction (predicts the new state)

XPredicted = AXn−1 + BUn

Covariance Prediction (Predicts the error)

PPredicted = APn−1AT + Q

Innovation (Compares measured values against estimated)

Y = Zn–HXPredicted

Innovation Covariance (Compares real error against estimated)

S = HPPredictedHT + R

Kalman Gain (Moderates the prediction)

K = PPredictedHT S −1

State update (New estimate of state)

Xn = XPredicted + Ky

Covariance update (New estimate of error)

Pn = (I−KH)PPredicted

Inputs

Un = Control vector. This indicates the magnitude of any control system’s or user’s control on the situation.

Zn = Measurement vector. This contains the real-world measurement in this time step.

Outputs

Xn = Newest estimate of the current ”true” state.

Pn = Newest estimate of the average error for each part of the state.

17



Constants

A = State transition matrix. Basically, multiply state by this and add control factors, and you get a prediction

of the state for the next time step.

B = Control matrix. This is used to define linear equations for any control factors.

H = Observation matrix. Multiply a state vector by H to translate it to a measurement vector.

Q = Estimated process error covariance. Finding precise values for Q and R are beyond the scope of this

guide.

R = Estimated measurement error covariance. Finding precise values for Q and R are beyond the scope of

this guide.

2.3 Bearing Only Tracking

Bearing-only tracking is a method to estimate the position and target of the vehicle by only using the angular

measurements or bearing angles. Bearing angle is the angle between the horizontal plane of the observer i.e.,

sensor, and the line of sight between the target and the observer. The sensor which can be a monocular cam-

era provides the bearing angle measurements. One of the two main issues that make the process of tracking

hard is the high degree of nonlinearity of the measurement process. The second one being the target not fully

observable if the tracking vehicle or sensor platform does not out maneuver the target [24] . Incase, correct

maneuver is not done, sufficient information is not avilable to estimate the range of the target. The other

practical problem is the estimation of vehicle trajectory from a noise corrupted sensor measurements.

Fig. 2.7 shows an example of bearing-only tracking problem and the importance of tracking vehicle maneu-

vering. It is considered that the target vehicle has a constant velocity and it is currently not maneuvering. The

vector from point D-E’ shows the target motion. The motion of the observer or tracking vehicle is shown

from point A-B and then from point B-C. If only the observer constant motion from point point A-B and

target motion from point D-E is considered, the tracking algorithm can not estimate the target’s trajectory or

range as several target trajectories can generate the same bearing angles. The maneuvering of observer (two

distinct legs) is necessary as shown from A-C in Fig. 2.7 to estimate the target’s trajectory and allows to have

a unique solution. Multiple maneuvering legs are required to get a satisfactory estimation. This example

only considers a constant motion of observer and target . The complexity of the estimation problem increases

when the measurement noise and environmental disturbances are considered, and the target maneuvers.

Different estimation algorithms have been proposed to the bearing-only problem which have varying

outcomes. Extended Kalman filter (EKF)is one of the common methods when dealing with nonlinear models.

EKF often yields good estimates and accurate covariance estimates, it is known to have diverged if the degree
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Figure 2.7: Bearing-only target-observer encounter [24]

on nonlinearity is high or the filter is not properly initialized. The polar coordinate system representation

for the target motion is used to overcome the initialization issue based on bearing information. However, it

is assumed that the target has a straight trajectory and bearing measurements are noisefree to the maximum

extent possible. Under these assumptions, this method can calculate target velocity components from three

consecutive bearing. With the availability of fourth bearing, this method can calculate the range to target

with good accuracy. For noisy measurements, the initialization is done through a batch of measured bearings.

Another method used to estimate the trajectory of vehicles using bearing only measurements is the modified

polar coordinate filter which considers bearing, bearing and range rate, and reciprocal range as state variables.

It isolates the propagation of observable states in the covariance matrix during the first leg. It results in a

normalized solution in the first leg and the remaining states converging on the following legs.

2.4 Relative Heading Estimation in GPS-Denied Environments

The paper [3] proposes a solution for estimating relative heading between two fixed wing aircrafts to achieve

target handoff in a GPS denied environment. The results are achieved by estimating the relative pose between

the aircrafts. It is assumed in the paper that the Unmanned Aerial System (UAS) has been equipped with

inertial Navigation System (INS), which measures the pitch and roll angles. In this way, the 6 DOF system

has been reduced to just relative heading estimation i.e., yaw estimation, considering that the tracking UAS

can transmit the pitch and roll angles to the handoff UAS. It is considered that the relative position is measured

by the handoff UAS. Under these assumptions, the paper examined the relative states between the UAS to

achieve the target handoff when the only measurement available is the relative position between the UAS. It

is shown that the relative heading is locally weakly observable when relative position is measured.
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2.4.1 Relative Heading Estimation

The paper defines tracking UAS as UAS 1 and the handoff UAS as UAS 2. It is assumed that both the UAS

are flying at the same altitude. The kinematics of the system is given by:

ṗi = vi

cosθi

sinθi

 (2.16)

= vi

cosθi

sinθi

 (2.17)

θ̇i = ωi (2.18)

where pi ∈<
2 and θi is the heading of UAS i in the inertial frame. vi and ωi are the linear and angular speeds,

respectively.

Here, the speeds ω1 and v1 are considered constant which means that the UAS-1 is either cruising with a

constant velocity or in an orbit. Secondly, it is assumed that UAS-2 has ω2 and v2 information which means

that the UAS-2 is equipped with an airspeed sensor that measures v2 and an INS that estimates the roll angle

φ2.

The relative position in UAS-2 frame is defined as

p̃2 = RT
θ2

p̃ (2.19)

(2.20)

where Rθi is defined as the attitude of the ith UAS, also known as the Yaw and is represented by

Rθi =

cosθi −sinθi

sinθi cosθi

 (2.21)

(2.22)

The observability of the relative heading and position in UAS 2’s frame is analyzed when the relative position

between the two UAS is available. The relative position in UAS 2 frame is defined as

p̃2 = RT
θ2

(p1− p2), the relative heading is defined as θ̃ = θ1− θ2, and the state vector x as

x = [ p̃2
T , θ̃,ω1,v1] ∈ <5.
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The system dynamics is represented by the following equation

ẋ = f (x) =



ω2x2 +Cx3 x5− v2 + x6

−ω2x1 + S x3 x5 + x7

x4−ω2

0

0


=



˙̃P21

˙̃P22

θ̇

ω̇1

v̇1


(2.23)

It is assumed that UAS-2 can measure p̃2, The relative position of UAS 1 in UAS 2’s frame is given by p̃2

and the measurement equation is

y = p̃2 =

[
x1 x2

]T
= Hx (2.24)

where

H =

1 0 0 0 0 0 0

0 1 0 0 0 0 0

 (2.25)

The nonlinear observability rank condition is used to determine if the system is locally weakly observable.

Specifically, the matrix `k is calculated which is given by

`k =



L0
f y

L1
f y
...

Lk
f y


(2.26)

where L0
f y = y and Li

f y = ∂
∂x [Li−1

f y] f (x)

If the matrix `k
∂x is a full rank matrix i.e., 5 in this case, then the state vector x is locally weakly observable.

The following proof shows that the state vector x is locally weakly observable when x5 = v1 , 0.

L1
f y is calculated and shown below as

L1
f y =

ω2x2 +Cx3 x5− v2

−ω2x1 + S x3 x5

 (2.27)

which leads to

∂`1

∂x
=



1 0 0 0 0

0 1 0 0 0

0 ω2 −S x3 x5 0 Cx3

−ω2 0 Cx3 x5 0 S x3


(2.28)
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It is of rank 4 matrix if x5 is non-zero.

Next, L2
f y is calculated

L2
f y =

∂L1
f y

∂x
f (x)

=

 ω2(−ω2x1 + x5S x3 )− x5S x3(x4−ω2)

−ω2(ω2x2 + x5Cx3 − v2) + x5Cx3(x4−ω2)



=

 −ω2
2x1 + x5S x3 (2ω2− x4)

−ω2
2x2− x5Cx3 (2ω2− x4) +ω2v2

 (2.29)

where

∂L2
f y

∂x
=

−ω
2
2 0 x5Cx3 (2ω2− x4) −x5S x3 S x3 (2ω2− x4)

0 −ω2
2 x5S x3 (2ω2− x4) x5Cx3 −Cx3 (2ω2− x4)

 (2.30)

∂`2

∂x
=



1 0 0 0 0

0 1 0 0 0

0 ω2 −S x3 x5 0 Cx3

−ω2 0 Cx3 x5 0 S x3

−ω2
2 0 x5Cx3 (2ω2− x4) −x5S x3 S x3 (2ω2− x4)

0 −ω2
2 x5S x3 (2ω2− x4) x5Cx3 −Cx3 (2ω2− x4)



(2.31)

It is a rank 5 matrix if x5 is non-zero which proves that x is locally weakly observable.

It is concluded from the above statement that when the state vector x is locally weakly observable, all the

states of x can be estimated with accuracy. It indicates that the relative heading between the two UAS can also

be estimated when the relative position measurements are available. It also shows that the linear and angular

velocity of UAS 1 can also be estimated. It means that UAS 1 does not need to communicate its velocities to

UAS 2 and relative heading can still be achieved. It leads to communication savings. An interesting observa-

tion is that the linear and angular velocities of UAS 2 can be zero which means that UAS 2 can be stationary

i.e., an observatory point.

2.4.2 Simulation Output

In Fig. 2.8, the simulation output of estimated results of the system defined in kinematics (2.18) with the

measurements shown in (2.24). The extended kalman filter is used to track the a circular vehicle moving with

linear velocity of 13m/s and an angular velocity of 0.3rad/s. The true value of the position of the vehicle is

22



shown in red in the top left figure. Our EKF estimate of the position of the vehicle is accurate and shows the

circular motion of the vehicle. It is to be noted that, though, EKF results are accurate in this case, it is not

always the case. The initialization of EKF is a big challenge and the estimated results may not converge with

the true values if proper initialization of EKF filter in not done. In this simulation, it has been shown that all

the states in the state vector x can be estimated which proves the the state vector x is observable.

Figure 2.8: Simulation output of Extended Kalman Filter. Top left figures shows EKF tracking an object

moving in a circle. Top right, Bottom left and Bottom right figures show the estimated results of heading rate,

heading and speed as compared to true heading rate, heading and speed, respectively.
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Chapter 3

OBSERVABILITY PROPERTIES OF RELATIVE STATE ESTIMATION

In the first section of this chapter, relative heading estimation between two Unmanned Aerial Systems (UAS)

is considered. Observability properties of relative states between the two UAS in the presence of constant

disturbances are examined. It is assumed that UAS 2 measures UAS 1’s position in its own frame. First,

observability conditions of the relative states when UAS 1 maintains a constant heading rate and a constant

airspeed under the disturbance are presented. Next, state observability properties when UAS 1 is tracking a

stationary ground target using a feedback control is established. In this case, the heading rate is non-constant.

An extended Kalman filter (EKF) is designed and simulations to demonstrate its effectiveness in estimating

the relative states are conducted.

In the second section, global observability properties of relative state estimation in bearing-only scenario are

investigated when the linear speeds and the angular velocities of both vehicles are constant. Observability

conditions when the velocity information of vehicle 1 is communicated to vehicle 2 are established. Unob-

servable scenarios when both vehicles are cruising or orbiting are illustrated. It is further proved that the

relative state is observable without communication between the vehicles, if vehicle 1 and 2 are orbiting and

cruising, respectively. When both vehicles are orbiting, conditions on the angular velocities of the vehicles to

ensure observability are developed.

3.1 Relative Heading Estimation under Constant Disturbances

In [3], the authors consider a target handoff problem between two UAS in GPS-denied environments. To

ensure handing off the target tracking responsibility from UAS 1 to UAS 2, UAS 2 needs to estimate the

relative states between the two UAS, including the relative position and the relative heading. Reference [3]

shows that if the relative position is measured, the relative heading is observable for UAS 2 even if UAS 1

does not communicate its airspeed and heading rate information. In [16], the authors present a navigation

algorithm for relative pose estimation in GPS-denied environments. The algorithm uses inertial sensors and

computer vision techniques to estimate the relative states between two UAS. Reference [14] and [31] outline

different filter techniques to estimate the relative pose between two UAS. These techniques can be used in

cooperative missions, such as formation flight and aerial refueling.
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The previous work [3] is extended and relative heading estimation under constant disturbances is considered,

such as a constant wind field. To address the estimation problem, the nonlinear observability rank condition

in [17] is employed and observability conditions of the relative states are established when the relative po-

sition between the two UAS is measured. It is assumed that the vehicles do not exchange their linear and

angular speeds, which is different from most of the existing work on relative localization, e.g., [10, 22, 28].

In the first scenario, UAS 1 maintains a constant heading rate and a constant airspeed in the presence of the

constant disturbance. It is shown that if UAS 2 measures the position of UAS 1 and if the heading rate of

UAS 1 is non-zero, the relative states between the two UAS, including the relative heading and the relative

wind, and the airspeed and the heading rate of UAS 1, are locally weakly observable. The observability result

holds even when UAS 2 is stationary.

In the second scenario, observability properties of the relative states when UAS 1 is tracking a ground target

using a feedback control are investigated. Specifically, the tracking method developed in [27] to control the

heading rate of UAS 1 are used. This tracking method ensures that the target remains in the field of view of

a fixed angle camera on UAS 1 in the presence of the disturbance. The resulting heading rate is time-varying

and the trajectory is elliptical. It is then proved that the relative states and the range between UAS 1 and the

target are locally weakly observable. The observability of the target range implies that UAS 2 can estimate

the target position without observing the target.

In [3], it is assumed that both UAS are at the same altitude and consider the following 2D kinematics of the

two UAS [5]

ṗi =

 vicψi

visψi

 (3.1)

ψ̇i = ωi =
g
vi

tan(φi), i = 1,2, (3.2)

where pi ∈ R
2 are the north-east positions of UAS i in the inertial frame, vi and ωi are the linear and angular

speeds, respectively, and g is the gravitational constant.

In [3], the following assumptions are made:

Assumption 1: The speeds ω1 and v1 are constant.

Assumption 2: UAS 2 has ω2 and v2 information.

Assumption 1 implies that UAS 1 is either cruising with a constant velocity or in an orbit. Assumption 2

is satisfied when UAS 2 is equipped with an airspeed sensor that measures v2 and an INS that estimates φ2

in (3.2).

The relative position measured in UAS 2’s frame as p̃2 ∈ R
2 are defined, the relative heading as ψ̃ = ψ1 −ψ2,
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and a state vector x ∈ R5 as

x = [p̃T
2 , ψ̃,v1,ω1]T . (3.3)

Note that

p̃2 = RT
ψ2

(p1− p2), (3.4)

where Rψi ∈ SO(2) is the attitude matrix of the ith UAS defined as

Rψi =

 cψi −sψi

sψi cψi

 . (3.5)

The kinematics of x is given by

ẋ =



ω2x2 + cx3 x4

−ω2x1 + sx3 x4

x5

0

0


+



−v2

0

−ω2

0

0


, (3.6)

where xi is the ith element of x.

Employing the observability rank condition in [17], the following result are proved in [3]:

Proposition 1: Consider the kinematics (3.60) with the relative position measurement p̃2, where x is defined

in (3.3). Suppose that Assumption 1 and 2 hold. Then the state vector x is locally weakly observable if

x4 = v1 , 0.

Proposition 1 requires that UAS 1 be moving for the observability of x. This is intuitive since the relative

position measurement does not contain any information of the relative heading when UAS 1 is stationary.

Proposition 1 also indicates that the unknown constants v1 and ω1 are observable and can be estimated. Thus,

UAS 1 does not need to transmit those two states to UAS 2, leading to communication savings. In addition,

Proposition 1 holds when v2 and ω2 are zero, which means that UAS 2 can be a stationary vehicle, e.g., a

ground station.

Section 3.1.1 and 3.1.2 outline the observability conditions for relative heading estimation between two

aircraft under constant disturbances such as wind. Our objective is to analyze whether the relative states

between UAS 1 and UAS 2 are observable in the presence of the disturbances. In Section 3.1.1, an open-loop

scenario is considered, where UAS 1 is not tracking a ground target. Due to the disturbance, the trajectory of

UAS 1 is spiral. It is shown that state observability is ensured if UAS 2 measures the relative position to UAS

1 and if UAS 1 has a non-zero constant heading rate. In Section 3.1.2, a closed-loop scenario is considered,

where UAS 1 counteracts the effect of the disturbance and tracks a stationary ground target. It is then proved

that the relative states between the two UAS are observable given the relative position measurements. The
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range to the target from UAS 1 is also observable. Section 3.1.3 presents a simulation example to demonstrate

that the relative states can be estimated by an EKF.

3.1.1 Relative heading estimation without target tracking

Let the unknown constant disturbance affecting UAS i be zi ∈ R
2. Modify (3.1) and (3.2) and obtain the

kinematics of UAS i under the disturbance zi, i = 1,2, as

ṗi = vi


cψi

sψi

+ zi, (3.7)

ψ̇i = ωi =
g
vi

tan(φi). (3.8)

Note that (3.7) and (3.8) can also model ground vehicles. When vi = 0, ωi = 0 and zi = 0, (3.7) and (3.8)

model a stationary vehicle.

A state vector x in UAS 2’s frame is defined as

x = [ p̃T
2 , ψ̃,v1,ω1, z̃T

2 ]T ∈ R7, (3.9)

where

z̃2 = RT
ψ2

(z1− z2). (3.10)

The state x includes the relative position, heading and wind, and the speeds of UAS 1. Next, the conditions

under which x is locally weakly observable are examined when UAS 2 measures the relative position p̃2.

Proposition 2: Assume v1 , 0 and ω1 , 0. Suppose that Assumption 1 and 2 hold. Then the state x in (3.9)

is locally weakly observable given the measurement p̃2.

Proposition 2 holds independently of the value of v2, ω2 or z2. Thus, UAS 2 can be stationary. Comparing

Proposition 2 with Proposition 1 , it is noticed that in the presence of the disturbance, UAS 1 must maintain a

non-zeroω1 to ensure the observability of x. To see whyω1 , 0 is a necessary condition, consider a simplified

system where UAS 2 is stationary at (0,0) and measures the position of UAS 1. Then p̃2 = p1. Because p1

is measured, ṗ1 is known and it follows from (3.7) that v1[cψ1 sψ1 ]T + z1 is known. Suppose that ω1 = 0.

Then ψ1 is an unknown constant, which means that v1[cψ1 sψ1 ]T is an unknown constant vector. Since z1 is

also unknown and only z1 + v1[cψ1 sψ1 ]T is known, it is impossible to distinguish the two unknown constant

vectors z1 and v1[cψ1 sψ1 ]T . Thus, ω1 , 0 is a necessary condition for the observability of x.
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Proof : Derive the dynamics of x in (3.9). Using (3.5), (3.4) and (3.7), obtain the kinematics of p̃2

˙̃p2 = RT
ψ2

˙̃p + ṘT
ψ2

p̃ = RT
ψ2

( ṗ1− ṗ2) + ṘT
ψ2

Rψ2 p̃2, (3.11)

= RT
ψ2

v1


cψ1

sψ1

− v2


cψ2

sψ2


+ RT

ψ2
(z1− z2) +ω2


0 1

−1 0

 p̃2, (3.12)

= v1

cψ̃sψ̃
− v2

10
+ z̃2 +ω2


0 1

−1 0

 p̃2. (3.13)

The kinematics of z̃ is given by

˙̃z2 = ω2

 0 1

−1 0

 z̃2. (3.14)

Thus, obtain the dynamics of x as

ẋ = f (x) =



ω2x2 + cx3 x4− v2 + x6

−ω2x1 + sx3 x4 + x7

x5−ω2

0

0

ω2x7

−ω2x6



. (3.15)

Since UAS 2 measures p̃2, the measurement equation is given by:

y = p̃2 =

[
x1 x2

]T
= Hx, (3.16)

where

H =

1 0 0 0 0 0 0

0 1 0 0 0 0 0

 . (3.17)

To analyze the observability of x given y, nonlinear observability rank condition [17] is used to determine if

the system is locally weakly observable. Specifically, the matrix `k is calculated which is given by:

`k =



L0
f y

L1
f y
...

Lk
f y


, (3.18)
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where L0
f y = y and Li

f y = ∂
∂x [Li−1

f y] f (x), i = 1, · · · ,k. Then, iteratively calculate
∂`k

∂x
until a full rank matrix is

obtained. In that case, x is locally weakly observable.

First, calculate

L1
f y =

ω2x2 + cx3 x4− v2 + x6

−ω2x1 + sx3 x4 + x7

 , (3.19)

and obtain

∂`1

∂x
=



1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 ω2 −sx3 x4 cx3 0 1 0

−ω2 0 cx3 x4 sx3 0 0 1


, (3.20)

which is rank 4 if x4 is non-zero. Proceed to calculating L2
f y

∂L2
f y

∂x
=

[
−ω2

2 0 x4cx3 [2ω2−x5] sx3 [2ω2−x5] −x4 sx3 0 2ω2

0 −ω2
2 x4 sx3 [2ω2−x5] −cx3 [2ω2−x5] x4cx3 −2ω2 0

]
, (3.21)

and obtain from (3.20) and (3.21) that

∂`2

∂x
=


1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 ω2 −sx3 x4 cx3 0 1 0
−ω2 0 cx3 x4 sx3 0 0 1

−ω2
2 0 x4cx3 [2ω2−x5] sx3 [2ω2−x5] −x4 sx3 0 2ω2

0 −ω2
2 x4 sx3 [2ω2−x5] −cx3 [2ω2−x5] x4cx3 −2ω2 0

 , (3.22)

which is rank 6 if x4 in non-zero. Now, calculate L3
f y and obtain

∂L3
f y

∂x
=

[
0 −ω3

2 −x4 sx3 a −cx3 a x4cx3 [3ω2−2x5] −3ω2
2 0

ω3
2 0 −x4cx3 a −sx3 a x4 sx3 [3ω2−2x5] 0 −3ω2

2

]
, (3.23)

where

a = 3ω2
2−3ω2x5 + x2

5. (3.24)

It is obtained from (3.22) and (3.23)

∂`3

∂x
= (3.25)

1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 ω2 −sx3 x4 cx3 0 1 0
−ω2 0 cx3 x4 sx3 0 0 1

−ω2
2 0 x4cx3 [2ω2−x5] sx3 [2ω2−x5] −x4 sx3 0 2ω2

0 −ω2
2 x4 sx3 [2ω2−x5] −cx3 [2ω2−x5] x4cx3 −2ω2 0

0 −ω3
2 −x4 sx3 a −cx3 a x4cx3 [3ω2−2x5] −3ω2

2 0

ω3
2 0 −x4cx3 a −sx3 a x4 sx3 [3ω2−2x5] 0 −3ω2

2


. (3.26)

Further calculate

det
(
∂`3

∂x

T ∂`3

∂x

)
= x4

4x6
5

(
(ω3

2−ω
2
2x5)2 + (3ω2

2−2ω2x5)2 + (3ω2 + x5)2 + 1
)
, (3.27)
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which is non-zero if x4 (v1) and x5 (ω1) are non-zero. Thus,
∂`3

∂x
is rank 7, which proves that x is locally

weakly observable given the measurement y.

3.1.2 Relative heading estimation with target tracking

In the previous section, observability conditions are developed when UAS 1 has a constant ω1. However,

when UAS 1 tracks a stationary target on the ground, its own control counteracts the disturbance and results

in a time-varying ω1. For example, in [27], the authors develop a feedback method of target tracking using

image plane target movement in a side mounted camera. To ensure that the target is in the camera field

of view in the presence of a constant wind, the feedback control generates a non-constant heading rate and

results in an elliptical tracking path.

In this section, it is assumed that UAS 1 uses the control in [27] to track a target and analyze the observability

of relative heading given the relative position measurements in UAS 2’s frame. First, briefly review the

control in [27]. Let ρ be the range-to-target and η be the bearing-to-target, both from UAS 1. The wind

disturbance zi is parameterized by its magnitude viω ∈ R≥0 and angle γi ∈ S
1, i.e.,

zi = viw

cγi

sγi

 . (3.28)

The closed-loop tracking dynamics of UAS 1 described in [27] is given by

ṗ1 = v1

cψ1

sψ1

+ v1w

cχ1

sχ1

 , (3.29)

ρ̇ = −v1sη− v1wsη+χ1w−ψ1 , (3.30)

η̇ = ψ̇1−
v1

ρ
cη−

v1w

ρ
cη+χ1w−ψ1 , (3.31)

ψ̇1 =
v1

ρ
cη +

v1w

ρ
cη+χ1w−ψ1 − k1η+ ν, (3.32)

where k1 > 0 and ν is a signal to minimize the average value of ρ. Set ν = 0.

Substituting the control (3.32) into (3.31), obtain η̇ = −k1η, which means that the bearing to the target con-

verges to zero. It is further assumed that UAS 1 is tracking the target at the steady state i.e., η = 0. Equations

(3.30)–(3.32) are reduced to

ρ̇ = −v1wsχ1w−ψ1 , (3.33)

η = 0, (3.34)

ψ̇1 =
v1

ρ
+

v1w

ρ
cχ1w−ψ1 . (3.35)
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Given the expression of ψ̇1 in (3.35), let

x7 = v1wcχ1w−ψ1 , (3.36)

and

x8 = v1wsχ1w−ψ1 . (3.37)

Let x9 = ρ. Note that

ψ̇1 =
x4 + x7

x9
(3.38)

and

ẋ9 = −x8. (3.39)

The state vector x is defined as

x = [ p̃T
2 , ψ̃,v1, z̃T , x7, x8, x9]T ∈ R9, (3.40)

and derive its dynamics assuming that UAS 1 performs target tracking according to (3.29) and (3.33)–(3.35).

Taking the derivative of (3.36) and (3.37) and using (3.38) lead to

ẋ7 = v1wsχ1w−ψ1 ψ̇1 = x8
( x4 + x7

x9

)
, (3.41)

ẋ8 = −v1wcχ1w−ψ1 ψ̇1 = −x7
( x4 + x7

x9

)
. (3.42)

Then the dynamics of x is given by

ẋ = f (x) =



ω2x2 + cx3 x4− v2 + x5

−ω2x1 + sx3 x4 + x6

x4+x7
x9
−ω2

0

ω2x6

−ω2x5

x8
( x4+x7

x9

)
−x7

( x4+x7
x9

)
−x8



. (3.43)

Proposition 3: Suppose that Assumption 2 holds. Assume that v1 is a positive constant. The state x in (3.43)

is locally weakly observable given the measurement p̃2.

Proposition 2 is significant because i) no motion constraint on UAS 2 is required, i.e., v2 and ω2 can be zero;

ii) not only ψ̃ and v1 are observable, ρ is also observable, which means that UAS 2 can estimate the position

of the ground target without observing the target.
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Proof : The relative kinematics is given by (3.43) and the measurement equation is given by

y = p̃2 = Hx, (3.44)

where

H =

1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

 . (3.45)

Calculate the Lie derivatives according to (3.18). Since the dimension of x and y is 9 and 2, respectively,

calculate the Lie derivatives up to k = 4 and obtain ∂`4
∂x .Using Matlab symbolic toolbox, it is verified that

∂`4
∂x is rank 9, which proves the state observability given the p̃2 measurement. In particular, the rank of ∂`4

∂x

evaluated at v2 = 0 and ω2 = 0 is also 9. Thus, the state x is observable even if either v2 or ω2 is zero.

A simpler scenario is when UAS 2 is stationary, i.e., v2 = 0, ω2 = 0, and z2 = 0. In this case, the state vector

x in (3.40) is reduced to

x = [p̃T
2 , ψ̃,v1,zT

1 ,ρ]T ∈ R7. (3.46)

Proposition 4: Suppose that Assumption 2 holds. Assume that v1 is a positive constant. The state x in (3.46)

is locally weakly observable given the measurement p̃2.

Proof : Obtain the dynamics of x by simplifying (3.43) with v2 = 0, ω2 = 0, and z2 = 0

ẋ =



cx3 x4 + x5

sx3 x4 + x6

(x4+x5cx3 +x6 sx3 )
x7

0

0

0

x6cx3 − x5sx3



. (3.47)

The measurement equation is given by (3.44).

Using (3.18), calculate the Lie derivatives up to k = 3 and obtain rank
(
∂`3
∂x

)
= 7 using Matlab symbolic toolbox.

Thus, x is locally weakly observable. In particular, when z1 = 0,

det
(
∂`3

∂x

T ∂`3

∂x

)
= (x14

4 + x12
4 x2

7)/x12
7 , (3.48)

which is positive if x4 , 0.
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3.1.3 Simulation results

In this section, a simulation example of Proposition 4 is presented to illustrate that the state can be estimated

based on the observability result. Consider a ground station located at (0,0) meters in the x− y plane. UAS

1 starts at (200,200) meters with the heading along the positive x axis and tracks a ground target located

at (200,300) meters. Thus, the initial range to the target is 100 meters. The wind velocity is (0,5) m/s.

The scenario is shown in Fig. 3.1. The ground station measures the position of UAS 1 by fusing range and

Figure 3.1: UAS 1 is tracking a ground target in the presence of wind (2D view). The wind direction is

marked with the dashed arrows. The wind velocity is (0,5) m/s. The ground station measures the position of

UAS 1.

azimuth angle measurements of the UAS. The noise associated with the range and azimuth measurements is

modeled as zero mean Gaussian noise with a standard deviation of σr meters and σa degrees, respectively.

At time kT , let the azimuth and range measurements be a(k) and r(k), respectively. Then the relative position

measurement is given by

ŷ(k) = r(k)[ca(k) sa(k)]T , (3.49)

whose uncertainty is approximated by

Σp(k) =

 ca(k) −sa(k)

sa(k) ca(k)


 σ2

r 0

0 r(k)2σ2
a


 ca(k) sa(k)

−sa(k) ca(k)

 . (3.50)

Note that Σp(k) varies with r(k) and a(k). In the simulation, choose σa = 0.2π/180 rad and σr = 5 meters.

The sampling time is 0.05 seconds.

An extended Kalman filter (EKF) [29] is designed to estimate x in (3.46) using the position measurements

of UAS 1. The initial estimate of UAS 1’s position is given by the first measurement of the UAS and its
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covariance is given in (3.50). The initial heading estimate is generated randomly between 0 rad and 2π rad

with its variance equal to (2π)2

12 . The initial speed estimate is set to 8 m/s with a variance 5. The initial wind

estimate is (0,0) m/s with a covariance matrix 5I2. The initial estimate of the range between the target and

the UAS is 50 m with a variance of 30.

Fig. 3.2–3.4 show that the estimates of UAS 1’s speed, the wind, UAS 1’s heading, and the range between

UAS 1 and the target converge to the truth, respectively. Since UAS 1’s position is measured and the range

between UAS 1 and the target can be estimated, the ground station can estimate the position of the target

without actually observing the target.

Figure 3.2: The speed of the UAS estimated at the ground station converges to the true speed of the UAS.

Figure 3.3: The estimated wind velocity in the x and y directions converges to the true velocity.

34



Figure 3.4: The estimation error between ρ and the estimated ρ converges to zero..

Figure 3.5: The estimation error between the true heading ψ1 and the estimated heading converges to zero.

35



3.2 Observability Properties of Relative State Estimation with Bearing-Only Measurements

In denied environments, it is possible to use relative measurements between vehicles to perform relative state

estimation and localization [19, 30]. For two-vehicle relative localization, [22] analyzes the observability of

the relative states given four types of relative measurements: relative orientation, relative range, and two kinds

of relative bearing. In [28], the authors extend the observability analysis in [22] from two-vehicle scenarios

to multi-vehicle scenarios with bearing-only measurements. In [10], observability of the relative state in 3D

is analyzed.

For the observability results in [10, 22, 28] to hold, the linear and angular velocities of the vehicles must

be time-varying and constantly exchanged between vehicles. Such an assumption does not hold for non-

cooperative vehicles or in denied environments, where communication bandwidth is limited. Therefore, it is

important to understand observability properties of the relative state between the vehicles in the absence of

communication. In [3], the observability rank condition [17] is employed and it is shown that if vehicle 2

measures the relative position to vehicle 1, the linear speed and angular velocity of vehicle 1 and the relative

heading between the two vehicles are locally weakly observable without communication. In [2], the analysis

in [3] is extended to scenarios with disturbances.

Observability properties of relative state estimation between two vehicles are investigated in bearing-only

scenarios. It is assumed that one vehicle, say vehicle 2, is equipped with a monocular camera sensor and

measures the bearing (azimuth) angles of vehicle 1. This is more challenging than the scenarios considered

in [2,3], where relative position measurements are available. Because of the nonlinear bearing measurements,

applying the observability rank condition results in a complicated observability matrix. It is possible to ob-

tain the generic rank of the observability matrix from Matlab. However, it remains difficult to understand

scenarios in which the observability matrix loses rank.

Instead, global observability [7, 17] of the relative state estimation problem is investigated. Given measure-

ments y(t), conditions under which a unique initial condition of the relative state exists is examined. Global

observability is weaker than local observability since the states do not need to be distinguished locally or

in a small time interval [17]. Thus, global observability is easier to achieve. In addition, analyzing global

observability allows us to obtain unobservable conditions. These conditions should be avoided in practice to

ensure consistent and stable estimates of the relative state.

It is assumed that the angular velocities and linear speeds of the two vehicles are constant and consider four

scenarios where each of the vehicles can be orbiting or cruising. In Section 3.2.1, vehicle 1 to communicate

its linear speed and angular velocity to vehicle 2 is allowed. Even with communication, it is proved that there

are unobservable scenarios, particularly when both vehicles are cruising or orbiting with the same angular

36



velocity. An interesting finding is that in these unobservable scenarios, vehicle 2 moves with a greater linear

speed than vehicle 1.

In Section 3.2.2, observability properties without communication between the vehicles are analyzed.

When both vehicles move with constant velocities, it is well known that the range between the vehicles

is not observable [25]. When vehicle 2 moves with a constant velocity and vehicle 1 is orbiting, it is proved

that the relative state is observable. It is also prove that when both vehicles are orbiting, the relative state is

generally observable. However, when the angular velocities of both vehicles are the same, the relative state is

not weakly observable, implying that no estimator can provide stable and consistent estimates of the relative

state. The proofs for the observability results are presented in Appendix A

3.2.1 Cooperative bearing-only scenarios

A. Relative kinematics

Consider the model of two vehicles as defined in Section ??. It is assumed that vehicle 1 is cooperative and

sends its ω1 and v1 information to vehicle 2 with negligible delays. Define the relative state vector x ∈ R3 as

x = [ p̃T
2 , θ̃]

T , (3.51)

and obtain its kinematics from (3.1)- (3.2) as

ẋ =


ω2x2 + cx3v1− v2

−ω2x1 + sx3v1

ω1−ω2

 , (3.52)

where xi is the ith element of x.

Observability properties of x when vehicle 2 measures the relative bearing between the two vehicles are

analyzed, e.g., when vehicle 2 has a monocular camera sensor. The measurement model takes the following

form

y(t) = atan2(p̃y
2(t), p̃x

2(t)) = atan2(x2(t), x1(t)), (3.53)

where p̃x
2(t) and p̃y

2(t) are the x and y component of p̃2 at time t, respectively, and atan2(·, ·) ∈ (−π,π] is the

arctan function with two arguments that takes into account the sign information of the arguments to return

the appropriate quadrant information.

In Section 3.2.1.B, an example where the relative state may not be observable even when v1 and ω1 are

available to vehicle 2 is provided. In Section 3.2.1.C, observability properties of (3.52) and (3.53) for four

common scenarios are analyzed. To develop observability conditions for each scenario, it is assumed that

there exist two initial conditions that generate the same set of measurements. Based on the trajectories of the
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relative state, conditions under which the two initial conditions are the same are obtained, thereby establishing

observability. The observability properties are summarized in Theorem 1 and Table 3.1.

B. A Motivating example

It has been shown in the passive ranging literature (see e.g., [25]) that if vehicle 1 and 2 move with constant

velocities and v1 is unknown to vehicle 2, their range is not observable with only bearing measurements.

In this section, scenarios where the range remains unobservable even if vehicle 1 transmits its speed v1 to

vehicle 2 are illustrated. Following assumption is made:

Assumption 1: The bearing measurements y(t) are time-varying.

Assumption 1 is reasonable because constant bearing measurements provide no motion information of vehicle

1 and therefore result in an unobservable system.

Consider an example, where vehicle 2 moves with a constant speed of v2 > 0 along the x axis. Without loss of

generality, it is assumed that vehicle 2 starts at (0,0). Consider one trajectory of vehicle 1 starting at (a1,b1)

and moving with a constant speed of v1 > 0 and a constant relative heading θ̃1 ∈ [0,2π) with respect to vehicle

2. Consider another trajectory of vehicle 1 starting at (a3,b3) and moving with the same constant speed v1 and

a constant relative heading θ̃3 ∈ [0,2π) with respect to vehicle 2. The bearing angles of the two trajectories of

vehicle 1 relative to vehicle 2 are given by

y j(t) = atan2(b j + v1sθ̃ j
t,a j + v1cθ̃ j

t− v2t), j = 1,3. (3.54)

Proposition 1: Suppose that a1,b1,a3,b3 satisfy

a1

a3
=

b1

b3
=

sθ̃1

sθ̃3

> 0 (3.55)

and v1,v2 satisfy

v1 =
sθ̃3
− sθ̃1

sθ̃3−θ̃1

v2. (3.56)

Then the two trajectories of vehicle 1 yield the same bearing angles relative to vehicle 2, i.e., y1(t) = y3(t),

where y j(t), j = 1,3 are defined in (3.54).

Proof. Using (3.56),

v1cθ̃1
t− v2t

v1cθ̃3
t− v2t

=
sθ̃3

cθ̃1
− sθ̃1

cθ̃1
− sθ̃3−θ̃1

sθ̃3
cθ̃3
− sθ̃1

cθ̃3
− sθ̃3−θ̃1

=
sθ̃1

(cθ̃3
− cθ̃1

)

sθ̃3
(cθ̃3
− cθ̃1

)
=

sθ̃1

sθ̃3

. (3.57)
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Letting k =
sθ̃1
sθ̃3

and using (3.55) and (3.57),

b1 + v1sθ̃1
t = k(b3 + v1sθ̃3

t) (3.58)

a1 + v1cθ̃1
t− v2t = k(a3 + v1cθ̃3

t− v2t). (3.59)

Since k > 0, it follows from (3.54), (3.58) and (3.59) that y1(t) = y3(t). Therefore, both trajectories yield the

same bearing measurements (3.54) for vehicle 2.

In the traditional passive ranging literature, the speed v1 is unknown and there exist an infinite number of

trajectories that have the same bearing angles relative to vehicle 2 as vehicle 1’s. With the knowledge of

v1, it is shown that the infinite number of trajectories are reduced to those determined by (3.55) and (3.56).

Given v1, v2 and θ̃1, if there exists a solution of θ̃3 to (3.55) and (3.56), the two trajectories will have different

relative heading and range to vehicle 2 but yield the same bearing measurements. Thus, the relative position

and heading between vehicle 1 and 2 are unobservable.

Proposition 2: A solution of θ̃3 to (3.55) and (3.56) exists only if v1 < v2.

Proposition 2 is illustrated using a numerical example. The proof is presented in Section A.1. Assume that

θ̃1 = π/6 and v1 = v2. Then there is no solution of θ̃3 that satisfies (3.55) and (3.56). However, when v1 < v2,

say v1 = 0.9342v2, a solution of θ̃3 ≈ 0.2527 , θ̃1 exists. Thus, the relative state between the two vehicles is

not observable. Fig. 3.6 shows this unobservable scenario.

The existence of a solution to (3.55) and (3.56) depends on θ̃1, which is unknown a priori. Although the

two trajectories of vehicle 1 are isolated in space, an estimator of vehicle 1’s trajectory may converge to

either of the two trajectories, depending on the initialization of the estimator. In the next section, sufficient

conditions for the relative state to be observable are derived. These conditions ensure that no other trajectory

can generate the same bearing measurements as vehicle 1. In particular, four scenarios are considered:

i) vehicle 1 and 2 both cruising;

ii) vehicle 1 and 2 both orbiting;

iii) vehicle 2 orbiting and vehicle 1 cruising;

iv) vehicle 1 orbiting and vehicle 2 cruising.

C. Observability results

Theorem 1: Consider the kinematics (3.52) with the measurements in (3.53). Suppose that v1 and ω1 are

constant and available for vehicle 2 and v1 > 0. Suppose that Assumption 1 holds. The relative state ( p̃2, θ̃),

θ̃ ∈ [0,2π) is observable if

i) ω1 = 0, ω2 = 0, and v1 ≥ v2, or
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Figure 3.6: An unobservable example where two trajectories of vehicle 1 generate the same set of bearing

measurements with respect to vehicle 2. The bearing angles at five sample points are indicated by cyan lines.

Vehicle 1 and 2 move with a linear speed of 5 m/s and 5.3523 m/s, respectively. The relative headings of the

two trajectories with respect to vehicle 2 are 30 degrees and 14.4775 degrees, respectively.

ii) ω1 , 0, ω2 , 0, ω1 , ω2 if v1 < v2, ω1 , 2ω2, ω2 , 2ω1, and v2 > 0, or

iii) ω1 = 0, ω2 , 0, and v2 > 0, or

iv) ω2 = 0 and ω1 , 0 and v2 > 0.

The observability results in Theorem 1 are summarized in Table 3.1 below. It is concluded the observability

condition v1 ≥ v2 for case i) based on Proposition 2 . For case iii), it has been shown in the traditional passive

ranging literature that if vehicle 2 maneuvers and vehicle 1 moves with a constant velocity, the range between

them is observable even without the v1 information. The orbiting motion as the maneuver in case iii) is con-

sidered. Thus, the relative state is observable. The proofs for case ii) and iv) are presented in Section A.2.

Table 3.1: Observability results for bearing-only scenarios when v1 > 0, vehicle 1 transmits v1 and ω1 to

vehicle 2 and Assumption 1 holds.
Observability ω1 = 0 ω1 , 0

ω2 = 0 i) v1 ≥ v2, or v2 = 0 iv) v2 > 0

ω2 , 0 iii) v2 > 0 ii) ω1 , ω2 if v1 < v2, ω1 , 2ω2,

ω2 , 2ω1, v2 > 0

As discussed later in Remark 1 in Section A.2, when ω1 = ω2 , 0 and v1 < v2, an unobservable scenario

exists for every initial condition. Fig. 3.7 below shows such an unobservable scenario. For ω1 = 2ω2 or ω2 =
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2ω1, unobservable scenarios exist only for some specific initial conditions. These conditions for ω1 = 2ω2 in

Remark 1 are characterized.

Figure 3.7: An unobservable example where two trajectories of vehicle 1 generate the same set of bearing

measurements with respect to vehicle 2. Vehicle 1 and 2 both orbit at 0.215 rad/s. The bearing angles at three

sample points are indicated by cyan lines. The two trajectories move with a linear speed of 17 m/s while

vehicle 2 moves with a linear speed of 22.2224 m/s. The initial relative headings of the two trajectories with

respect to vehicle 2 are 60 degrees and 30 degrees, respectively.

3.2.2 Non-cooperative bearing-only scenarios

Theorem 1 assumes that v1 and ω1 are available to vehicle 2. In denied environments or for non-cooperative

vehicles, v1 and ω1 can be unknown and thus need estimation. It is assumed that v1 and ω1 are unknown

constants and augment the state x in (3.51) with v1 and ω1. Let x4 = ω1 and x5 = v1. The dynamics of the

augmented x is given by

ẋ =



˙̃p2

˙̃θ

ω̇1

v̇1


=



ω2x2 + cx3 x5− v2

−ω2x1 + sx3 x5

x4−ω2

0

0


. (3.60)

Next, observability properties of (3.60) and (3.53) are studied for case i)–iv). It is well known from the

passive ranging literature that without the knowledge of v1, case i) and iii) are unobservable and observable,

respectively. Therefore, case ii) and iv) are focussed.
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The scenario in case iv) is of particular interest to the target handoff problem [?] because vehicle 1 may be

orbiting to track a stationary or slowly moving target while vehicle 2 moves towards vehicle 1 and estimates

the relative state between the two vehicles. The following observability result establishes that even if ω1 and

v1 are not transmitted, all the state ( p̃2, θ̃,ω1,v1) is observable:

Proposition 3: Consider the kinematics (3.60) with the measurement in (3.53). Suppose that ω1 , 0, ω2 = 0,

v1 > 0 and v2 > 0. Then the state ( p̃2, θ̃,ω1,v1) in (3.60) is observable.

For case ii), the result are as follows:

Proposition 4: Consider the kinematics (3.60) with the measurement in (3.53). Suppose that ω1 , 0, ω2 , 0,

v1 > 0 and v2 > 0. Then the relative state ( p̃2, θ̃,ω1,v1) in (3.60) is observable except that

a) if ω1 = ω2, the relative state is not weakly observable for any initial conditions;

b) if ω1 = ω2/3 or ω1 = ω2/2 or ω1 = 2ω2/3 or ω1 = 3ω2/2 or ω1 = 2ω2 or ω1 = 3ω2, the relative state is

not observable for some specific initial conditions.

c) if ω1 = −ω2 and v1 = v2, the relative state is not observable for some specific initial conditions.

Proposition 4 shows that the relative state is generally observable in case ii) except under specific conditions

related to ω1 and ω2. The scenario in a) should be avoided in practice since no estimator can provide stable

and consistent estimates of the relative state. a) using the observability rank condition are also verified. The

conditions in b)–c) present less of an issue than a) since unobservable scenarios occur only for specific initial

conditions. Compared with the conditions of case ii) in Table 3.1, additional unobservable conditions appear

in b)–c) due to the unknown ω1 and v1.

The proofs for Proposition 3 and 4 are presented in Appendix A.
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Chapter 4

EXPERIMENTAL SETUP

4.1 Hardware

4.1.1 Optitrack Motion Capture System

Multiple cameras, calibration tools and other components make up a motion capture system setup. The

correctly mounted cameras and other devices ensure that the cameras are able to capture all the necessary

movements of the object which improves the tracking capabilities of the motion tracking system. An opti-

mized capture volume provides good system performance and accuracy and overcomes the marker occlusions

and mislabeling issues. Thus, a well-configured setup can save a significant amount of time and effort in data

post-processing. The detail of some important components of Optitrack motion capture system is provided

below [9]

Prime 17W Cameras

The prime 17W cameras as shown in Fig. 4.1 are wide angle cameras that provides edge-to-edge coverage

across the camera’s image sensor. It has an amazing 70 degree horizontal field of view and 40 degrees vertical

field of view with upto 360 frames per second capture rate and a resolution of 1.7 megapixels.

The set up of Prime 17W cameras is easy as they are connected through the ethernet. It provides an extensive

cabling range of up to 300 feet and a good bandwidth capabilities. The are low powered cameras which uses

almost 25W of power. It has been observed that some wide angle cameras which are used to capture motion

are vulnerable to vignetting on their eges that adversely affect the camera’s coverage capabilities. State-of-

the-art prime 17W cameras do not face such problems. These cameras also have different camera control

features which enhance the overall performance of the motion capture system. Some are listed below

• Image processing type

• Frame rate

• Exposure

• Threshold
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Figure 4.1: Optitrack Prime 17W Camera [9]

• Illumination

• Status LED control

Netgear Prosafe 24-port ethernet switch are used. The 8 cameras used in the lab are connected through this

switch. Overall, this switch has the capability to support up to 12 Prime 17W ethernet cameras.

Calibration Tools

Calibration tools required to properly initialize the Motive capture software are calibration wand and calibra-

tion square. Their use and description has been defined below

Calibration Wand CWM 250

The Calibration Wand CWM 250 as shown in Fig. 4.2 is a Micron Series wand is an aluminum wand which is

designed for precise calibration of medium to large capture volumes. The wand remained calibrated through

a wide range of temperature as they are usually made up of a material with a low coefficient of thermal

expansion. It has a calibration accuracy of around 2 microns.

Figure 4.2: Optitrack Calibration Wand CWM 250 [9]

The CW-250 Calibration Wand Kit includes the following items
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• Markers - 3x12.7 mm (1/2”)

• Spacing - 250 mm

• Wand Handle: ¼-20 mount

• Handle extension thread

• Adjustable wand position

Calibration Square CS 100

Calibration square as shown in Fig. 4.3 is used to set the ground plane. It has been standardized on a

Right-Handed Coordinate System.

Figure 4.3: Optitrack Calibration Square CS 100 [9]

Motion Capture Markers

Motion capture markers as shown in Fig. 4.4 are highly reflective spherical markers which are used for better

visualization of a body whose movement is supposed to be captured by the motion capture cameras. In motive

software, a group of markers on a body is grouped together to make it a rigid bosy. Then, all the camera detect

the movement of a group of markers as movement of one body.

The marker size affects the visibility of the object being tacked. Larger markers are able to stand out in the

camera view and can be tracked from a longer distance. These big markers are not good for capturing fine

movements. On the other hand, small markers are used for precise facial tracking and small objects but not

good for tracking from long distances.
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Figure 4.4: Motion Capture Markers with adhesive [9]

License Key USB

To run the Motive software, an activated license information is required. Along with the activated license, a

license file is also required to be installed inside the PC for the Motive software to work. For this purpose,

a Hardware key or a dongle as shown in Fig. 4.5 is used which has the necessary software file to run the

Motive software, allowing one license to be used on multiple computers. Motive software can not run with

out a hardware key.

Figure 4.5: Motion Capture Software Hardware Key [9]

4.1.2 Optitrack Hardware Setup

To set up the Optitrack motion track hardware, the minimum requirement is to have the hardware as described

in section 4.1.1. Other than that, ethernet cables are also needed for connecting cameras, a frame to mount

cameras at different position which would enable us to capture the maximum details of the whole capture

volume.
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Camera placement

For 3D tracking of orientation and position of a body, the camera should be placed at the boundaries of the

capture volume. This ensures that the cameras are able to properly overlapping with one another to cover all

the area and minimizes the wastage of camera coverage. A few important points to consider before mounting

the camera are listed below:

1. The cameras should be mounted at one of the highest points in the desired capture area. The cameras

should be distributed equidistantly around the area.

2. The motion capture markers enable the cameras to see the object in 2D. These marker positions are

triangulated to compute the 3D position of each marker. Thus, it is advised to place proper number of

markers at specific places on the object which covers almost the whole body of the object. It allows

the triangulation algorithm to properly calculate the 3D image of the object which helps the accuracy

of the object tracking.

3. Camera-to-camera distance should also be consistence to prevent occlusion and errors in reconstruction

calculations.

4. Camera-to-object distance may vary for different types of capture applications. The long distances

provides enough coverage to capture large capture areas whereas short distances will give less camera

coverage but a more accurate tracking measurement.

5. Placing cameras at high elevation is suggested so that it can cover all the capture area. It is also seen

that cameras with varying altitudes are mounted. It provides different viewing angles from different

heights.

Wiring and Connections

The motion track camera Prime 17W is an ethernet camera and the network of multiple cameras is created

through ethernet cables which are also used to interface with the host PC. All the cameras are connected

together a Netgear Prosafe 24-port ethernet switch as shown in Fig. 4.6. The ouput of this switch is connected

to the host PC which communicates all the information of cameras to the motion capture software Motive.

Different ethernet cables are commercially available which has different specifications. for data transfer rate

. Cat6e, Cat6 and Cat7 are recommended for 10 gigabit uplink switch. The ethernet cables offer faster data

transfer rates as well as longer distance capabilities i.e., upto 100m.
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Figure 4.6: Camera Ethernet Network [9]

4.1.3 Parrot AR 2.0 Drone

The Parrot AR.Drone 2.0 as shown in Fig. 4.7 is an automatic piloting drone which makes the take-off and

landing very easy. It allows drone flips with a single button. The actuators of the Parrot AR drone has 4

brushless motors, each with a power of 14.5 watts and a revolution capacity of 28,500 revolutions per minute.

They are equipped with a lithium polymer (LiPo) battery of 1000mAh capacity. The embedded linux system

in this drone has the ARM Cortex A8, 32-bit processor with high-speed USB 2.0 for extensions. They are

connected with mobile applications and other workstation though wifi network. They are different internal

and external sensors for measuring the physical quantities around it during the flight. They are equipped with

gyroscope which has an accuracy of 2,000’ per second, an accelerometer with an accuracy of close to 50 mg,

a magnetometer which has an accuracy of 6°, and a pressure sensor whose accuracy of around 10 Pa They

have the HD recording capabilities and has a front camera of 720p, 30FPS. They have a vertical VGA camera

with 60 FPS to measure the ground speed.

4.2 Software

4.2.1 Motive Software

Motive software is designed to track object for the motive motion capture systems. It allows calibration of

the system and provides user with the option to calibrate the hardware according to their needs so that the

overall system can be used to capture and process 3D data. With the help of the motion capture markers, it
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Figure 4.7: Parrot AR 2.0 Drone [9]

combines all the markers to form a rigid body or a skeleton and provides the user with 6 DOF (3D position

and orientation).

Camera Calibration

Once the software is installed and all the licenses are activated, calibration and integration of hardware with

the motive software is done. Camera calibration of motive motion capture system is one of the most essential

parts to get the best tracking results from this system. During calibration, the cameras assess the position and

orientation of the object with respect to all the cameras. They calculate the distortion in the captured frames

and construct a 3D capture area through triangulation.

The different steps involved in camera calibration are as follows:

Masking

The unnecessary reflections and markers should be removed to the maximum extent before the calibration of

the motion capture system is done. In the worst case, the software would deny to calibrate the motion capture

cameras if the camera is having too many reflections or errors because it would degrade the results of the

object tracking. In some cases, these reflections and errors could not be adjusted through simple calibration

changes. Then, these are ignored using a masking tool. This tool masks the certain pixels of the camera

where errors are present. It should be noted that masking exceeding a certain number of pixels would result

in inaccurate tracking results. It must be noted that the camera is not taking in the values where the camera

masking is applied. It may result on occlusion of data if more than necessary pixels are masked and our object

is continuously lying in the masked area.

Wanding

The process of wanding involves waving of wand infront of the camera for a certain period of time till the

camera capture system captures sufficient values.These values are use to compute the respective position and
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orientation of the in the 3D space. It is recommended to cover the camera area where the object is supposed

to move otherwise, the cameras wont be able to capture the object motion.

Figure 4.8: Wanding Results [9]

Once wanding is done and it has been established that enough readings have been obtained as shown in

Fig. 4.8, calibration calculation is done where the software assesses the quality of the calibration. If too much

of masking is done and insufficient wanding data is obtained, the software may not allow to finish the system

calibration. It may ask for some other steps to improve the calibration quality before motion capturing is

started.

Ground Plane and Origin

The last calibration step is to adjust the ground plane and the origin. It is achieved by using the calibration

square. It is placed in the capture area of interest where lately wanding has been done. The exact place

of the calibration square will be defined as the origin. The longer length of the calibration square will be

referenced as z-axis and smaller length as x-axis. As per right hand coordinate system, the vertical length

will automatically be defined as the y-axis.

Rigid Body Tracking

After camera calibration and origin adjustment, a rigid body is created with the help of retroreflective markers

to combine all the markers as one object. In this way, these individual markers are treated as a single body

and can easily be tracked. The position and orientation of object through this (6 DOF) can be obtained.
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4.3 Data Collection

In our experiment, two rigid bodies are defined i.e., vehicle 1 and vehicle 2. Parrot AR 2.0 drone is used

as vehicle 1 which is moving in an anti-clockwise circular path whereas vehicle 2 is stationary as shown in

Fig. 4.9. It must be noted that our drone is not equipped with sensors which can measure linear and angular

velocities of the drone. So this information is currently not available. It is considered that the drone is rotating

on a constant altitude.

The optitrack motive cameras are used to track the trajectory of vehicle 1 and the stationary location of

vehicle 2 as shown in Fig. 4.9. The live data from the optitrack cameras is recorded with the help of the

motive software. In live modes, all cameras are active and the motive software continuously reconstructs

the trajectory of the vehicles through the reflections of the markers detected by the cameras. Once data is

recorded, post-processing of data is done in matlab to generate the trajectory of the vehicles and calculate the

heading angles as shown in Fig. 4.10. In Fig. 4.11, the heading angles at 9 different locations are shown on

the trajectory of vehicle 1.

Figure 4.9: Vehicles Trajectory Tracking
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Figure 4.10: Heading Angle Measurement

Figure 4.11: Vehicle 1 Trajectory with Heading Angles
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Chapter 5

CONCLUSION

5.1 Conclusion and Future work

For the first problem, we analyze observability properties of relative states between two UAS in the presence

of constant disturbances. These properties are important for many applications in GPS-denied environments,

such as target handoff and relative navigation. We assume that UAS 2 measures UAS 1’s position in its own

frame. We show that if UAS 1’s heading rate is constant and non-zero, the relative states between the two

UAS, including the relative heading and the relative disturbance, are locally weakly observable. We further

show that when UAS 1 is tracking a stationary ground target under the disturbance, the relative state is also

observable. In addition, the range between UAS 1 and the target is observable. We present a simulation

example to demonstrate that the relative state can be estimated by an EKF.

For the second problem, we consider relative state estimation between two vehicles with bearing-only mea-

surements. We assume constant angular velocity and linear speed for each vehicle. We examine global ob-

servability conditions for four scenarios in which the angular velocity of each vehicle can be zero or non-zero.

When the linear speed and angular velocity of vehicle 1 is available to vehicle 2, we establish unobservable

conditions when both vehicles are cruising or orbiting. Under these conditions, proper initialization of rela-

tive state estimators is required to ensure convergence to the true state. Without vehicle communication, we

show that the system is observable if one of the vehicles is orbiting and the other is cruising. When both are

orbiting, their angular velocities must be different to ensure observability.

The theoretical analysis provides unobservable conditions that should be avoided in practice for multi-vehicle

relative localization. Scenarios close to those unobservable conditions will cause difficulties in accurate and

consistent estimation of relative state between vehicles.

Future work includes testing on real flight data, investigating the effect of non-constant disturbances such as

wind gusts, and extension to multi-UAS, multi-target scenarios. The future work for our experimental work is

to estimate vehicle 1 heading with respect to vehicle 2 using the extended kalman filter to check the accuracy

of the algorithm. This work can further be extended to relative heading estimation under disturbances.
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Appendix A

APPENDIX

A.1 Proof for Proposition 2

Let d = θ̃3− θ̃1 ∈ (−2π,2π) and rewrite (3.56) as

v1

v2
=

sθ̃1+d − sθ̃1

sd
= cθ̃1

− sθ̃1
t d

2
(A.1)

where t· = tan(·). First, suppose that v1 = v2. It follows from (A.1) that either θ̃1 = 0 or

t d
2

+ t θ̃1
2

= 0, (A.2)

which implies

d + θ̃1 = θ̃3 = 0. (A.3)

If θ̃1 = 0, y1(t) in (3.54) is given by the constant atan2(b1,a1), which violates Assumption 1 . Similarly, if

θ̃3 = 0, y3(t) is a constant. Therefore, given Assumption 1 and v1 = v2, no solution of θ̃3 to (3.55) and (3.56)

exists.

Next, suppose that v1 > v2, which means that

cθ̃1
− sθ̃1

t d
2
> 1. (A.4)

Two cases are considered: sθ̃1
> 0 and sθ̃1

< 0. The case where sθ̃1
= 0 is not considered because it does not

satisfy (3.55). When sθ̃1
> 0, i.e., θ̃1 ∈ (0,π), it is further obtained from (A.4)

t
− d

2
> t θ̃1

2
> 0. (A.5)

Because d
2 ∈ (−π,π), it follows from (A.5) that

π

2
> −

d
2
>
θ̃1

2
> 0 (A.6)

or

−
π

2
> −

d
2
>
θ̃1

2
−π > −π, (A.7)

which implies

d + θ̃1 = θ̃3 < 0, 0 > d > −π (A.8)
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or

θ̃3 < 2π, 2π > d > π. (A.9)

Since θ̃3 > 0, (A.8) is impossible. In addition, (A.9) and θ̃1 ∈ (0,π) imply θ̃3 = θ̃1 + d ∈ (π,2π), which means

sθ̃3
< 0. However, (3.55) requires sθ̃3

> 0 since sθ̃1
> 0. Thus, if sθ̃1

> 0, no solution θ̃3 exists such that v1 > v2.

Similarly, if sθ̃1
< 0, i.e., θ̃1 ∈ (π,2π), so

t
− d

2
< t θ̃1

2
, (A.10)

which leads to
π

2
< −

d
2
<
θ̃1

2
< π (A.11)

or

−
π

2
< −

d
2
<
θ̃1

2
−π < 0. (A.12)

Further simplification results in

θ̃3 > 0 and −2π < d < −π, (A.13)

or

2π < θ̃3 and 0 < d < π. (A.14)

Equation (A.13) implies θ̃1 + d = θ̃3 ∈ (0,π). Then sθ̃3
> 0, which contradicts (3.55) because sθ̃1

< 0. Equa-

tion (A.14) does not hold because θ̃3 < 2π. Therefore, if v1 > v2, no solution of θ̃3 to (3.55) and (3.56)

exists.

A.2 Proof for Theorem 1

Proof. Case i). The condition v1
v2
> 1 has been discussed in Section 3.2.1. The case is considered when v2 = 0.

The trajectory of vehicle 1 is given by (px
1(0)+v1cθ1 t, py

1(0)+v1sθ1 t) while vehicle 2 is stationary at p2(0) with

a constant heading θ2(0). Then,

p̃2 = R(θ2)T

px
1(0)− px

2(0) + v1cθ1 t

py
1(0)− py

2(0) + v1sθ1 t

 . (A.15)

To simplify the derivation, let θ2(0) = 0. Since the relative heading and position in vehicle 2’s frame is to

be considered , such a simplification will not affect our result. Thus, R(θ2) = I2, θ̃ = θ1, and the bearing

measurements are given by

y(t) = atan2(a1 + v1sθ1 t,b1 + v1cθ1 t), (A.16)

where a1 = py
1(0)− py

2(0) and b1 = py
1(0)− py

2(0).
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It is now shown that there do not exist a3,b3 and θ3 such that (a3,b3, θ3) , (a1,b1, θ1), θi ∈ [0,2π), and

atan2(a1 + v1sθ1 t,b1 + v1cθ1 t)

= atan2(a3 + v1sθ3 t,b3 + v1cθ3 t).
(A.17)

Note that (A.17) implies
a1 + v1sθ1 t
b1 + v1cθ1 t

=
a3 + v1sθ3 t
b3 + v1cθ3 t

(A.18)

and

atan2(a1,b1) = atan2(a3,b3). (A.19)

It is proved by contradiction. Suppose that (A.17)–(A.19) hold with (a3,b3, θ3) , (a1,b1, θ1). First, two

special scenarios are considered. In the first scenario, it is considered that b1 + v1cθ1 t ≡ 0, which implies

θ1 = ±π/2, b1 = 0, and thus y(t) ≡ ±π/2. However, Assumption 1 indicates that y(t) is time-varying. Thus,

b1 + v1cθ1 t is not always zero. In the second scenario, it is considered that θ1 = 0 or π and a1 = 0. Thus,

y(t) ≡ 0, which contradicts Assumption 1

Then for (A.18) to hold,

a1b3 = b1a3 (A.20)

a1cθ3 + b3sθ1 = a3cθ1 + b1sθ3 (A.21)

sθ1cθ3 = sθ3cθ1 . (A.22)

In addition, since (A.18) holds at t = 0, ai’s and bi’s, i = 1,3, must be of the same sign, respectively. Also if

a1 = 0, a3 = 0 and if b1 = 0, b3 = 0.

Equation (A.22) implies that tanθ1 = tanθ3 or cθ1 = cθ3 = 0. If cθ1 = cθ3 = 0, |sθ1 | = 1, |sθ3 | = 1, and (A.21)

becomes b3sθ1 = b1sθ3 . Because b1 and b3 have the same sign, it follows b1 = b3 = 0 or θ3 = θ1 and b1 = b3 , 0.

However, if b1 = 0 and cθ1 = 0, b1 + v1cθ1 t = 0, which has been shown to violate our assumption. Thus, if

cθ1 = 0, θ3 = θ1 and b1 = b3 , 0. Then (A.20) implies a1 = a3.

If tanθ1 = tanθ3, θ1 = θ3 or θ1 = θ3±π. If θ3 = θ1, it is further obtained from (A.21) that

(a1−a3)cθ1 − (b1−b3)sθ1 = 0. (A.23)

Thus, (a1−a3,b1−b3)T lies in the null space of (cθ1 ,−sθ1 ), which means that a1 = a3 +`sθ1 and b1 = b3 +`cθ1

for some scalar `. Then (A.20) becomes (a3 + `sθ1 )b3 = (b3 + `cθ1 )a3.

It is now shown that ` = 0 by contradiction. Suppose ` , 0. It follows that sθ1b3 = cθ1a3. It is shown that

if cθ1 = 0, then a1 = a3 and b1 = b3, which means that ` = 0. Thus, it is concluded that cθ1 , 0. If b3 = 0,

sθ1b3 = cθ1a3 means a3 = 0, which implies a1 = 0 and b1 = 0 (due to (A.19)). Thus a1 = a3 and b1 = b3, which

contradicts ` , 0. If b3 , 0 and cθ1 , 0, it follows that tanθ1 = a3/b3. From (A.20), it is further obtained
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tanθ1 = a1/b1. Therefore, (A.17) equals to a constant a1/b1, which contradicts Assumption 1 . Thus, ` = 0,

which means that a1 = a3 and b1 = b3.

If θ1 = θ3 ± π, (A.21) leads to (a1 + a3)cθ1 = (b1 + b3)sθ1 , which together with (A.20) results in tanθ1 =

a1/b1 = a3/b3. It then follows from (A.18) that

a1 + v1sθ1 t
b1 + v1cθ1 t

=
a1

b1
, (A.24)

which contradicts Assumption 1 . Thus θ1 , θ3±π.

It is concluded that (a3,b3, θ3) must be the same as (a1,b1, θ1). Since there do not exist a3,b3 and θ3 such

that (a3,b3, θ3) , (a1,b1, θ1) and (A.18) holds, the relative state (p̃2, θ̃) is observable. Case ii) In this case, the

inertial position pi(t) of vehicle i, i = 1,2 is obtained, from (??) as

pi(t) = di +

 visωit+θi(0)/ωi

−vicωit+θi(0)/ωi

 , (A.25)

where di = [dx
i dy

i ]T ∈ R2 is a constant vector. Writing p1− p2 in vehicle 2’s frame,

p̃2 = R(θ2)T (p1− p2)

=

 cω2t+θ2(0) sω2t+θ2(0)

−sω2t+θ2(0) cω2t+θ2(0)



d

x
1 −dx

2

dy
1−dy

2


+


v1
ω1

sω1t+θ1(0)−
v2
ω2

sω2t+θ2(0)

−
v1
ω1

cω1t+θ1(0) +
v2
ω2

cω2t+θ2(0)




=

 cω2ta + sω2tb +
v1
ω1

sω̃t+θ̃(0)

cω2tb− sω2ta−
v1
ω1

cω̃t+θ̃(0) +
v2
ω2

 =

 p̃x
2(t)

p̃y
2(t)

 , (A.26)

where ω̃ = ω1−ω2, θ̃(0) = θ1(0)− θ2(0), and a and b are unknown constants dependent on θ2(0), dx
1 −dx

2, and

dy
1−dy

2.

There are three unknowns a, b and θ̃(0) in p̃2. Lemma A.1 below proves that given the conditions in ii)

in Theorem 1 , there exists a unique (a,b, θ̃(0)) that generate a given set of bearing measurements in (3.53).

Therefore, the relative state is observable.
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Case iv)

p̃2 = R(θ2(0))T


d

x
1 −dx

2

dy
1−dy

2

+


v1
ω1

sω1t+θ1(0)− v2cθ2(0)t

−
v1
ω1

cω1t+θ1(0)− v2sθ2(0)t


 (A.27)

= R(θ2(0))T

d
x
1 −dx

2

dy
1−dy

2

+


v1
ω̃ sω̃t+θ̃(0)− v2t

−
v1
ω̃ cω̃t+θ̃(0)

 (A.28)

=

a +
v1
ω̃ sω̃t+θ̃(0)− v2t

b− v1
ω̃ cω̃t+θ̃(0)

 =

p̃x
2(t)

p̃y
2(t)

 . (A.29)

where a and b are constants related to θ2(0), dx
1−dx

2, and dy
1−dy

2. It follows from Lemma A.2 below that given

measurements y(t) in (3.53), there exists a unique (a,b, θ̃(0)) that gives rise to y(t). Therefore, the relative state

is observable.

Lemma A.1 Suppose v1 > 0, ω1 , 0, ω2 , 0, ω1 , ω2, ω2 , 2ω1, and ω1 , 2ω2. Let ω̃ = ω1 −ω2. If the

constants (a1,b1, δ1) and (a2,b2, δ2) with δi ∈ [0,2π), i = 1,2, satisfy

atan2
(
cω2tb1− sω2ta1−

v1
ω1

cω̃t+δ1 +
v2
ω2
,

cω2ta1 + sω2tb1 +
v1
ω1

sω̃t+δ1

)
= atan2

(
cω2tb2− sω2ta2−

v1
ω1

cω̃t+δ2 +
v2
ω2
,

cω2ta2 + sω2tb2 +
v1
ω1

sω̃t+δ2

)
, ∀t ≥ 0,

(A.30)

then a1 = a2, b1 = b2, and δ1 = δ2.

Proof. First, let cω2tb1 − sω2ta1 = A1cω2t+ψ1 , cω2ta1 + sω2tb1 = A1sω2t+ψ1 , cω2tb2 − sω2ta2 = A2cω2t+ψ2 , and

cω2ta2 + sω2tb2 = A2sω2t+ψ2 , where Ai =

√
a2

i + b2
i , cψi = bi/Ai, and sψi = ai/Ai, i = 1,2. Note that Ai ≥ 0,

i = 1,2. When ai = bi = 0, Ai = 0 and ψi can be arbitrary.

Note that the left and right sides of (A.30) are the bearing angles generated by the initial conditions (a1,b1, δ1)

and (a2,b2, δ2), respectively. Then (A.30) yields

(A1cω2t+ψ1 −
v1
ω1

cω̃t+δ1 +
v2
ω2

)(A2sω2t+ψ2 +
v1
ω1

sω̃t+δ2 )

= (A1sω2t+ψ1 +
v1
ω1

sω̃t+δ1 )(A2cω2t+ψ2 −
v1
ω1

cω̃t+δ2 +
v2
ω2

).
(A.31)

Expanding (A.31),

A1A2sψ2−ψ1 −
v2

1

ω2
1

sδ2−δ1 +
A1v1

ω1
sω1t+ψ1+δ2 −

A2v1

ω1
sω1t+δ1+ψ2

+
A2v2

ω2
sω2t+ψ2 −

A1v2

ω2
sω2t+ψ1 +

v2v1

ω2ω1
sω̃t+δ2 −

v2v1

ω2ω1
sω̃t+δ1 = 0. (A.32)

Because ωi , 0, i = 1,2, ω̃ , −ω2 and ω̃ , ω1. Because ω1 , 2ω2, ω̃ , ω2. Because ω2 , 2ω1, ω̃ ,

−ω1. Thus, ω̃ , ±ω2, ω̃ , ±ω1, and the sinusoidal terms in (A.32) contain three distinct frequencies. Then
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for (A.32) to hold,

A1A2sψ2−ψ1 =
v2

1

ω2
1

sδ2−δ1 (A.33)

A1v1

ω1
sω1t+ψ1+δ2 =

A2v1

ω1
sω1t+δ1+ψ2 (A.34)

A2v2

ω2
sω2t+ψ2 =

A1v2

ω2
sω2t+ψ1 (A.35)

v2v1

ω2ω1
sω̃t+δ2 =

v2v1

ω2ω1
sω̃t+δ1 . (A.36)

It follows from (A.35) that A1 = A2 = 0 or A1 = A2 , 0 and ψ1 = ψ2, which both mean that a1 = a2 and

b1 = b2. Also (A.36) leads to δ2 = δ1. Thus, (a1,b1, δ1) = (a2,b2, δ2).

Remark 1: When ω1 = ω2, ω2 = 2ω1, or ω1 = 2ω2, the four equations in (A.33)–(A.36) are reduced to

three or two equations. For example, if ω1 = ω2, (A.33)–(A.36) become the following two equations:

A1A2sψ2−ψ1 +
v2v1

ω2
1

sδ2 =
v2

1

ω2
1

sδ2−δ1 +
v2v1

ω2
1

sδ1 (A.37)

A1v1

ω1
sω1t+ψ1+δ2 +

A2v2

ω1
sω1t+ψ2 =

A2v1

ω1
sω1t+δ1+ψ2 +

A1v2

ω1
sω1t+ψ1 . (A.38)

Besides the trivial solution (A2,ψ2, δ2) = (A1,ψ1, δ1), the other two solutions to (A.37) and (A.38) are a)

ψ2 = ψ1, δ2 = δ∗, A2 = −A∗ and b) ψ2 = ψ1−π, δ2 = δ∗, A2 = A∗, where

δ∗ = −2arctan

 v1− v2

(v1 + v2) tan δ1
2

 , A∗ = A1
v2

1− v2
2

v2
1−2cδ1v1v2 + v2

2

. (A.39)

Solution a) holds if v1 < v2 and b) holds if v1 > v2. If v1 = v2, both solutions become A2 = 0 and δ2 = 0.

Then the right hand side of (A.30) becomes atan2(0,0), which is physically impossible. Thus, the system is

observable if v1 = v2.

If v1 > v2, a time t∗ is picked such that A1sω2t∗+ψ1 = A2sω2t∗+ψ2 = 0. Such a t∗ exists because ψ2 =

ψ1 −π. Then the second argument of the atan2 function on both sides of (A.30) becomes v1
ω1

sδ1 and v1
ω1

sδ2 ,

respectively. It is also noted from δ∗ in (A.39) and δ2 = δ∗ that if δ1 ∈ (0,π), δ2 ∈ (π,2π) and if δ1 ∈ (π,2π),

δ2 ∈ (0,π). Thus, v1
ω1

sδ1 and v1
ω1

sδ2 are of opposite signs, which contradicts (A.30) at time t∗. It follows that

the system is observable when v1 > v2. Unobservable scenarios occur only when v1 < v2 (see e.g., Fig. 3.7).

When ω1 = 2ω2, (A.33)–(A.36) become

A1A2sψ2−ψ1 =
v2

1

4ω2
2

sδ2−δ1 (A.40)

A1v1

2ω2
s2ω2t+δ2+ψ1 =

A2v1

2ω2
s2ω2t+δ1+ψ2 (A.41)

A2sω2t+ψ2 +
v1

2ω2
sω2t+δ2 = A1sω2t+ψ1 +

v1

2ω2
sω2t+δ1 . (A.42)
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From (A.41), A1 = A2 and δ2 +ψ1 = δ1 +ψ2 are obtained, which means that δ2−δ1 = ψ2−ψ1 := ∆.

To search for unobservable scenarios, it is assumed that ∆, 0. It follows from (A.40) that either A1 =
v1

2|ω2 |

or ∆ = π. When ω2 > 0, (A.42) holds whenever ψ1 = δ1 + π for arbitrary ∆. When ω2 < 0, (A.42) holds

whenever ψ1 = δ1 for arbitrary ∆.

Therefore, the unobservable scenarios for ω1 = 2ω2 are characterized by the following two initial condi-

tions: i) A1 = A2 =
v1

2|ω2 |
, ω1 = 2ω2, δ2−δ1 = ψ2−ψ1, and ii) ω2 > 0, ψ1 = δ1 +π, or ω2 < 0, ψ1 = δ1.

A similar analysis can be conducted and the unobservable scenarios can be characterized for ω2 = 2ω1.

Lemma A.2 Suppose v1 > 0 and ω̃ , 0. If the constants (a1,b1, δ1) and (a2,b2, δ2), with δi ∈ [0,2π), i = 1,2,

satisfy

atan2(b1−
v1
ω̃ cω̃t+δ1 ,a1 +

v1
ω̃ sω̃t+δ1 − v2t)

= atan2(b2−
v1
ω̃ cω̃t+δ2 ,a2 +

v1
ω̃ sω̃t+δ2 − v2t), ∀t ≥ 0,

(A.43)

then a1 = a2, b1 = b2, and δ1 = δ2.

Proof. From (A.43),

(b1−
v1
ω̃ cω̃t+δ1 )(a2 +

v1
ω̃ sω̃t+δ2 − v2t)

= (a1 +
v1
ω̃ sω̃t+δ1 − v2t)(b2−

v1
ω̃ cω̃t+δ2 ),

(A.44)

which leads to

b1(a2 +
v1
ω̃ sω̃t+δ2 − v2t)− v1

ω̃ cω̃t+δ1 (a2 +
v1
ω̃ sω̃t+δ2 − v2t)

= b2(a1 +
v1
ω̃ sω̃t+δ1 − v2t)− v1

ω̃ cω̃t+δ2 (a1 +
v1
ω̃ sω̃t+δ1 − v2t).

(A.45)

Expanding (A.45),

b1a2−b2a1−
a2v1

ω̃
cω̃t+δ1 +

b1v1

ω̃
sω̃t+δ2 +

a1v1

ω̃
cω̃t+δ2

−
b2v1

ω̃
sω̃t+δ1 −b1v2t + b2v2t−

v2
1

ω̃2 cω̃t+δ1 sω̃t+δ2 +
v2

1

ω̃2 cω̃t+δ2 sω̃t+δ1

+
v1v2

ω̃
cω̃t+δ1 t−

v1v2

ω̃
cω̃t+δ2 t = 0. (A.46)

For (A.46) to hold,

b1a2−b2a1 +
v2

1

ω̃2 sδ1−δ2 = 0 (A.47)

−
a2v1

ω̃
cω̃t+δ1 +

b1v1

ω̃
sω̃t+δ2 = −

a1v1

ω̃
cω̃t+δ2 +

b2v1

ω̃
sω̃t+δ1 (A.48)

b1v2t = b2v2t (A.49)

v1

ω̃
cω̃t+δ1v2t =

v1

ω̃
cω̃t+δ2v2t. (A.50)
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Since v1 and v2 are not zero, it is obtained from (A.50) that δ1 = δ2. Equation (A.49) indicates b1 = b2.

Given δ1 = δ2 and b1 = b2, equation (A.48) is simplified to

a2cω̃t+δ1 = a1cω̃t+δ1 , (A.51)

which shows a1 = a2.

A.3 Proof for Proposition 3

Following the proof for Lemma A.2, it is proved that if the constants (a1,b1, δ1,α1, ω̃1) and (a2,b2, δ2,α2, ω̃2),

δi ∈ [0,2π), αi > 0, ω̃i , 0, i = 1,2, satisfy

atan2(b1 +
α1
ω̃1

cω̃1t+δ1 ,a1−
α1
ω̃1

sω̃1t+δ1 − v2t)

= atan2(b2 +
α2
ω̃2

cω̃2t+δ2 ,a2−
α2
ω̃2

sω̃2t+δ2 − v2t), ∀t ≥ 0,
(A.52)

then (a1,b1, δ1,α1, ω̃1) = (a2,b2, δ2,α2, ω̃2). Note that ω̃i and αi, i = 1,2, represent two potential solutions to

ω̃ = ω1−ω2 and v1 in (A.43), respectively. Since ω̃ , 0, ω̃i , 0 is required. Since v1 > 0, αi > 0 is required.

It is shown ω̃1 = ω̃2 by contradiction. Suppose that ω̃1 , ω̃2. Similarly to the proof for Lemma A.2,

expand (A.52), group alike terms and obtain

b1a2−a1b2 + (b2v2t−b1v2t) + (
α2

ω̃2
v2cω̃2t+δ2 −

α1

ω̃1
v2cω̃1t+δ1 )t

+
α1

ω̃1

α2

ω̃2
s(ω̃1−ω̃2)t+δ1−δ2 +

α1

ω̃1
a2cω̃1t+δ1 −

α2

ω̃2
a1cω̃2t+δ2

−
α2

ω̃2
b1sω̃2t+δ2 +

α1

ω̃1
b2sω̃1t+δ1 = 0. (A.53)

For (A.53) to hold,

b1v2t = b2v2t (A.54)

α1

ω̃1
v2cω̃1t+δ1 t =

α2

ω̃2
v2cω̃2t+δ2 t. (A.55)

Equation (A.54) holds when b1 = b2. Equation (A.55) holds in two cases: 1) ω̃1 = ω̃2, δ1 = δ2, and α1 = α2,

and 2) ω̃1 = −ω̃2, δ1 = −δ2±π, and α1 = α2. Since it is assumed that ω̃1 , ω̃2, case 1) cannot be true.

It is then shown that case 2) cannot be true either, thereby proving ω̃1 = ω̃2. For case 2), substitute b1 = b2,

ω̃1 = −ω̃2, δ1 = −δ2±π, and α1 = α2 into (A.53) and note that the frequency of the α1
ω̃1

α2
ω̃2

s(ω̃1−ω̃2)t+δ1−δ2 term

is 2ω̃2, which is different from the frequencies of all the other terms. Thus, α1
ω̃1

α2
ω̃2

s(ω̃1−ω̃2)t+δ1−δ2 must be zero,

indicating α1 = 0 or α2 = 0. However, it is assumed that αi > 0, i = 1,2. Thus, case 2) is invalid and ω̃1 = ω̃2.

Since (A.55) holds only when ω̃1 = ω̃2, δ1 = δ2, and α1 = α2, verify from (A.53) that a1 = a2.
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A.4 Proof for Proposition 4

Similarly to the proof for Lemma A.1, suppose that (a1,b1, δ1,α1, ω̃1) and (a2,b2, δ2,α2, ω̃2) with δi ∈ [0,2π),

αi > 0, i = 1,2, satisfy

atan2
(
cω2tb1− sω2ta1−

α1
ω̄1

cω̃1t+δ1 +
v2
ω2
,

cω2ta1 + sω2tb1 +
α1
ω̄1

sω̃1t+δ1

)
= atan2

(
cω2tb2− sω2ta2−

α2
ω̄2

cω̃2t+δ2 +
v2
ω2
,

cω2ta2 + sω2tb2 +
α2
ω̄2

sω̃2t+δ2

)
, ∀t ≥ 0,

(A.56)

where ω̄i = ω̃i +ω2, i = 1,2 and αi and ω̃i, i = 1,2, represent two potential solutions to v1 and ω̃ = ω1 −ω2

in (A.30), respectively. Similarly, ω̄i, i = 1,2, correspond to two possible solutions to ω1 and ω̄i , 0.

Let cω2tb1 − sω2ta1 = A1cω2t+ψ1 , cω2ta1 + sω2tb1 = A1sω2t+ψ1 , cω2tb2 − sω2ta2 = A2cω2t+ψ2 , and cω2ta2 +

sω2tb2 = A2sω2t+ψ2 , where Ai =

√
a2

i + b2
i , cψi = bi/Ai, and sψi = ai/Ai, i = 1,2. Note that Ai ≥ 0, i = 1,2. When

ai = bi = 0, Ai = 0 and ψi can be arbitrary. Then rewrite (A.56) as

(A1cω2t+ψ1 −
α1
ω̄1

cω̃1t+δ1 +
v2
ω2

)(A2sω2t+ψ2 +
α2
ω̄2

sω̃2t+δ2 )

= (A1sω2t+ψ1 +
α1
ω̄1

sω̃1t+δ1 )(A2cω2t+ψ2 −
α2
ω̄2

cω̃2t+δ2 +
v2
ω2

).
(A.57)

Expanding (A.57) yields

A1A2sψ2−ψ1 +
A1α2

ω̄2
cω2t+ψ1 sω̃2t+δ2 −

A2α1

ω̄1
cω̃1t+δ1 sω2t+ψ2

−
α1α2

ω̄1ω̄2
cω̃1t+δ1 sω̃2t+δ2 +

A2v2

ω2
sω2t+ψ2 +

v2α2

ω2ω̄2
sω̃2t+δ2

= −
A1α2

ω̄2
sω2t+ψ1cω̃2t+δ2 +

A1v2

ω2
sω2t+ψ1 +

A2α1

ω̄1
sω̃1t+δ1cω2t+ψ2

−
α1α2

ω̄1ω̄2
sω̃1t+δ1cω̃2t+δ2 +

v2α1

ω2ω̄1
sω̃1t+δ1 , (A.58)

which is simplified to

A1A2sψ2−ψ1 −
α1α2

ω̄1ω̄2
s(ω̃2−ω̃1)t+δ2−δ1 +

A1α2

ω̄2
sω̄2t+δ2+ψ1

−
A2α1

ω̄1
sω̄1t+ψ2+δ1 −

A1v2

ω2
sω2t+ψ1 +

A2v2

ω2
sω2t+ψ2

+
v2α2

ω2ω̄2
sω̃2t+δ2 −

v2α1

ω2ω̄1
sω̃1t+δ1 = 0. (A.59)

Proof for Part a) To prove that the system is not weakly observable when ω1 = ω2, set ω̄1 = ω̄2 = ω2,

which means that ω̃1 = ω̃2 = 0. Then (A.59) is equivalent to

A1A2sψ2−ψ1 −
α1α2

ω̄1ω̄2
sδ2−δ1 +

v2α2

ω2ω̄2
sδ2 −

v2α1

ω2ω̄1
sδ1 = 0 (A.60)

and

A1α2sω2t+δ2+ψ1 −A2α1sω2t+ψ2+δ1 −A1v2sω2t+ψ1 + A2v2sω2t+ψ2 = 0. (A.61)

65



Given any (A1,ψ1, δ1,α1), use (A.60) and (A.61) to solve for (A2,ψ2, δ2,α2). Solutions to (A2,ψ2, δ2,α2)

correspond to unobservable scenarios. Since (A.60) provides one constraint and (A.61) provides two con-

straints in terms of the magnitude and phase of the sinusoids, there are three independent constraints for

four unknown variables (A2,ψ2, δ2,α2). The Jacobian matrix of the constraints evaluated at (A2,ψ2, δ2,α2) =

(A1,ψ1, δ1,α1) has a nontrivial null space, which implies that a (A2,ψ2, δ2,α2) arbitrarily close to (A1,ψ1, δ1,α1)

always exists. Thus, the state is not weakly observable.

Proof for Part b) To prove part b) of Proposition 4 , first consider the case where ω̃1 , ω̃2, which means

that ω̄1 , ω̄2. Given that the system is unobservable when ω1 =ω2, it is also assumed that ω̄1 ,ω2 in the rest

of the proof.

In (A.59), there are six sinusoidal terms

T1 = −
α1α2

ω̄1ω̄2
s(ω̃2−ω̃1)t+δ2−δ1 , T2 =

A1α2

ω̄2
sω̄2t+δ2+ψ1 , (A.62)

T3 = −
A2α1

ω̄1
sω̄1t+ψ2+δ1 , T4 = −

A1v2

ω2
sω2t+ψ1 +

A2v2

ω2
sω2t+ψ2 , (A.63)

T5 =
v2α2

ω2ω̄2
sω̃2t+δ2 , T6 = −

v2α1

ω2ω̄1
sω̃1t+δ1 . (A.64)

It follows from (A.59) that
∑6

i=1 Ti = 0 and A1A2sψ2−ψ1 = 0. Next,a number of cases are considered to derive

the unobservable conditions in part b).

A) Suppose that none of Ti’s is of frequency ω2 except T4. It then follows that T4 = 0, which means that

A1 = A2 , 0 and ψ1 = ψ2 or A1 = A2 = 0.

A1) If A1 = A2 = 0, T2 = T3 = 0. Then
∑6

i=1 Ti = 0 leads to T1 + T5 + T6 = 0. Note that the magnitudes of

T1, T5 and T6 are non-zero, which implies from T1 + T5 + T6 = 0 that the frequencies of T1, T5 and T6 must

be the same, that is |ω̃2− ω̃1| = |ω̃2| = |ω̃1|. Since ω̃1 , ω̃2, so ω̃2 = −ω̃1. Then |ω̃2− ω̃1| = |ω̃1| leads to ω̃1 = 0

and thus ω̄1 = ω2, which contradicts our assumption. Thus case A1) is invalid.

A2) When A1 = A2 , 0 and ψ1 = ψ2,
∑6

i=1 Ti = 0 leads to T1 + T2 + T3 + T5 + T6 = 0. Since all the five

sinusoids have non-zero magnitudes, either all of them have the same frequency or three of them have one

frequency and the other two have another frequency. If all the five sinusoids have the same frequency, the

frequencies of T1, T5 and T6 must be the same, which implies ω̄1 = ω2 from case A1) and contradicts our

assumption. Thus, conditions under which three out of the five sinusoids are of one frequency and the other

two sinusoids are of another frequency are searched.

Matlab is used to conduct an extensive search and solve for ω̄1 and ω̄2 using the Symbolic toolbox and

the “solve” command. The following two conditions are obtained

a1) ω̄1 = ω2/3, ω̄2 = 2ω2/3 or

a2) ω̄1 = 2ω2/3, ω̄1 = ω2/3.
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Given a1), T1, T3 and T5 have the same frequency and T2 and T6 have a different frequency. Similarly, given

a2), T1, T2 and T6 have the same frequency and T3 and T5 have a different frequency.

Take a1) as an example to illustrate the unobservable conditions. It follows from
∑6

i=1 Ti = 0 and a1) that

T1 +T3 +T5 = 0 and T2 +T6 = 0. Then the system is not observable for specific conditions of (A1,ψ1, δ1,α1, δ2,α2)

such that T1 + T3 + T5 = 0 and T2 + T6 = 0 are true and α1 , α2 or δ1 , δ2.

B) Suppose that there exists at least one term from Ti, i = 1, · · · ,6, i , 4, that has frequency ω2.

B1) Suppose that A1 , 0 and A2 , 0. In this case, since Ti’s all have non-zero magnitudes,
∑6

i=1 Ti = 0 can

be satisfied in one of the following scenarios:

1) group the six terms into three groups, each containing two terms. The two terms within each group are

of the same frequency;

2) group the six terms into two groups, one group containing four terms and the other containing two

terms. The terms within each group are of the same frequency;

3) group the six terms into two groups, one group containing three terms and the other containing three

terms. The terms within each group are of the same frequency.

Matlab is used to conduct an extensive search and solve for ω̄1 and ω̄2 for each scenario above. The

solutions to ω̄1 are found to be either 0 or ω2, which contradicts our assumption. Thus, B1) is invalid.

B2) Suppose that A1 = 0 and A2 , 0. In this case, T1 +T3 +T4 +T5 +T6 = 0 can be satisfied in the following

scenario: group the five terms into two groups, one group containing three terms and the other containing two

terms and the terms within each group are of the same frequency. Using Matlab, two conditions are found

that achieve this scenario:

b1) ω̄1 = ω2/2, ω̄2 = 3ω2/2 or

b2) ω̄1 = 2ω2, ω̄2 = 3ω2.

In either b1) or b2), setting the sum of the sinusoids in each group to zero provides two constraints,

resulting in 4 constraints in total. The system is not observable for initial conditions under which those four

constraints are satisfied.

B3) A1 , 0 and A2 = 0. This is similar to B2). The conditions obtained from Matlab are

b3) ω̄1 = 3ω2/2, ω̄2 = ω2/2 or

b4) ω̄1 = 3ω2, ω̄2 = 2ω2.

B4) A1 = A2 = 0. This has been considered in A1).

In summary, when ω̄1 satisfies a1) or a2) or one of b1)–b4), the system is not observable for specific

initial conditions.

Proof for the observability result Based on the proof for part b), it is concluded that when ω̄1 does not

satisfy a1) and a2) and b1)–b4), ω̃1 , ω̃2 cannot be true for (A.59) to hold. Thus, it is considered the case
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ω̃1 = ω̃2, which means that ω̄1 = ω̄2. Because ω̄1 does not satisfy b2) and ω̄1 , 0, so |ω̃1| , |ω2|.

When ω̄1 , −ω2, alike terms in (A.59) are equated and obtain

A1A2sψ2−ψ1 =
α1α2

ω̄1ω̄2
sδ2−δ1 (A.65)

A1α2

ω̄1
sω̄1t+δ2+ψ1 =

A2α1

ω̄1
sω̄1t+ψ2+δ1 (A.66)

−
A1v2

ω2
sω2t+ψ1 = −

A2v2

ω2
sω2t+ψ2 (A.67)

v2α2

ω2ω̄1
sω̃1t+δ2 =

v2α1

ω2ω̄1
sω̃1t+δ1 . (A.68)

From (A.67), A1 = A2 , 0 and ψ1 = ψ2 or A1 = A2 = 0, which both imply a1 = a2 and b1 = b2. Equation (A.68)

leads to α1 = α2 and δ1 = δ2. Since ω̄1 = ω̄2, it follows that the system is observable.

Proof for Part c) If ω̄1 = ω̄2 = −ω2, (A.66) and (A.67) have the same frequency. From (A.59), (A.66)

and (A.67) are combined as

A1

(
α1

ω̄1
sω̄1t+δ1+ψ1 +

v2

ω̄1
s−ω̄1t+ψ1

)
=A2

(
α1

ω̄1
sω̄1t+ψ2+δ1 +

v2

ω̄1
s−ω̄1t+ψ2

)
, (A.69)

where α1 = α2 and δ1 = δ2 are used from (A.68).

Substituting δ1 = δ2 into (A.65) yields

A1A2sψ2−ψ1 = 0, (A.70)

which is satisfied under one of the following conditions:

c1) ψ2 = ψ1, Ai , 0;

c2) ψ2 = ψ1±π, Ai , 0;

c3) A1 = 0 or A2 = 0.

Substituting c1) into (A.69) results in A1 = A2, which means that the system is observable. Substituting

c2) into (A.69) yields

A1

(
α1

ω̄1
sω̄1t+δ1+ψ1 +

v2

ω̄1
s−ω̄1t+ψ1

)
=−A2

(
α1

ω̄1
sω̄1t+ψ1+δ1 +

v2

ω̄1
s−ω̄1t+ψ1

)
, (A.71)

which indicates A1 = −A2. Since A1 ≥ 0 and A2 ≥ 0, it follows that A1 = A2 = 0. In this case, ψi’s are arbitrary

because a1 = a2 = b1 = b2 = 0. The system is also observable.

Given c3), if A1 = 0 and A2 , 0, (A.69) is reduced to

α1

ω̄1
sω̄1t+ψ2+δ1 =

v2

ω̄1
sω̄1t−ψ2 (A.72)
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which leads to α1 = α2 = v2 and ψ2 = −δ1/2. If A1 , 0 and A2 = 0, α1 = α2 = v2 and ψ1 = −δ1/2 are obtained.

Thus, if v1 , v2, (A.72) cannot be true and the system is observable.

If v1 = v2, the unobservable scenarios are given by the following two conditions i) ω̄1 = ω̄2 = −ω2, α1 =

α2 = v2, and ii) A1 = 0, A2 , 0, δ1 = δ2 = −2ψ2, or A1 , 0, A2 = 0, δ1 = δ2 = −2ψ1, which proves part c) in

Proposition 4 .
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