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CHAPTER 1

INTRODUCTION

This report describes the opening phase of a project to develop an automated Electro-

cardiogram (EKG) annotation system. The electrical activity of the heart is measured

by the EKG, as shown in Figure 1.1. At rest, the interior of myocytes (heart muscle

cells) is negatively polarized. When these cells depolarize, they become positive and

contract. The depolarization wave of positive charges flows outward from the Sinus

Node, which is the main pacemaker of the heart. It is this electrical phenomena of

polarization and depolarization that is recorded on the EKG.

The depolarization wave on both atria produces a wave called the P wave. The

ventricular depolarization, on the other hand, produces the QRS complex. The Q

wave is the part of this complex that is directed downward. It may or may not appear

in the complex. However, if it appears, it must appear before the R wave, the upward

wave. The downward wave of the complex is the S wave. After the QRS complex,

there is a flat baseline called the ST segment, which is the initial part of ventricular

re-polarization. This re-polarization produces the T wave. A cardiac cycle is a cycle

that contains the P wave, QRS complex and the T wave. A single EKG sequence

may contain several cycles.

1.1 Problem Description

An electrode is the skin sensor that is used to measure the heart signals. Two elec-

trodes are required to record a lead. Though the standard EKG recording has twelve

leads, several heart arrhythmias can be detected using a single lead EKG. Based on

a one lead recording method, devices have been developed to record and store elec-

tric signals of individuals. Wireless ambulatory electrocardiograms have changed the

way we collect EKG signals. Now we can monitor our heart from anywhere. These

monitoring devices use smart phone apps to detect potential problems and to transfer

the signals to professional interpreters. In addition, these applications send alarms

through email or other communication channels when they need attention.
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Figure 1.1: Schematic Diagram of Normal Sinus Rhythm[12]

The more people use these devices, and the more frequently the measurements

are taken, the more manpower is required to interpret the signals. Due to the com-

plexity of the signals, a well trained professional is required to interpret them. This

is expensive. As a result, several signal processing techniques have been introduced

to automatically analyze and categorize EKG signals. However, the noisy nature of

these signals makes it difficult to identify the locations of the P, QRS, and T waves.

Since the QRS complex contains substantial information regarding the functions and

structures of the heart, detection of this complex in a signal is very crucial. The ob-

jective of this project is to develop an automated annotation system for EKG signals.

This involves three subsystems:

1. Detecting the QRS complexes in a signal.

2. Categorizing the normal and abnormal cycles in a signal.

3. Specifying the types of arrhythmia of the abnormal cycles.

2



Many algorithms have been developed so as to detect the QRS complex as well

as to detect arrhythmia. Some of the algorithms involve artificial neural networks,

genetics algorithms, wavelet transforms, filter banks and heuristic methods. However,

only a few developers made their source code available to the public for corroboration

[11]. For those whose source code is available, an analysis has been made so as

to compare their performances using the MIT/BIH database [3]. In this analysis,

three algorithms are tested. The two algorithms are based on digital filters, Pan

and Tompkins algorithm, and Hamilton and Tompkins algorithm, and the third one

is based on phasor transform. According to this analysis, the Pan and Tompkins

algorithm in [2] outperformed the rest of the algorithms. For this reason, we will

compare our algorithm with the Pan and Tompkins algorithm stated in [2] using our

data.

This report will focus on the two subsystems - QRS detection and beat classifi-

cation. In Chapter 2 we will present some neural network background and notation.

This will be followed by a discussion of neural network training procedures in Chap-

ter 3. Chapter 4 will describe the data sets that will be used to train and test the

automated QRS detector. Chapter 5 will describe the architecture of the QRS detec-

tor, and Chapter 6 will present the results of training and testing. In chapter 7, we

describe the data for beat classification. Chapter 8 discusses the network and training

for beat classification. Then, following the result of the beat classification system in

chapter 9, the conclusion and a brief summary of future works will be give in chapter

10.
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CHAPTER 2

BASIC NEURAL NETWORK CONCEPTS AND NOTATION

We will be using neural networks as part of our automated EKG annotation system.

In this chapter we introduce some neural network concepts and notation that will be

needed for the description of the annotation system. We will begin with the simplest

building block, the neuron, and will build up to the multilayer network, which is the

architecture we will use for the automated annotation system.

2.1 Single-Input Neuron

The basic building block of a neural network is the neuron, as shown in Figure 2.1.

Let w, p and b denote the scalar weight, input and bias of a network, respectively.

The weight multiplies the inputs, and the bias is added to the result. The net input,

n = wp + b, then passes through the transfer function, f . Hence, the output of the

neuron is given by a = f(n).

a = f (wp + b)

General Neuron

an

Inputs

AAA
AAA
AAA

b

p w

1
AAA
AAA
AAA

Σ f

Figure 2.1: Single Neuron

2.2 Multiple-Input Neuron

We often have more than one input. Figure 2.2 depicts a neuron with R inputs. For

each input pi, there is a corresponding weight element, w1,i, such that n = w1,1 ∗ p1 +
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w1,2 ∗ p2 + w1,3 ∗ p3...+ w1,R ∗ pR + b. Here, the output is a = f(Wp + b), where

W =
[
w1,1 w1,2 . . . w1,R

]
(2.1)

and

p =



p1

p2

.

.

.

pR


(2.2)

Multiple-Input Neuron

p1

an

Inputs

b

p2
p3

pR
w1, R

w1, 1

1

AAA
AAA
AAA

Σ

a = f (Wp + b)

AAA
AAA
AAA

f

Figure 2.2: Multiple Input Neuron

2.3 A Layer of Multiple Neurons

Figure 2.3 shows a layer that contains S neurons and R inputs. Each input is weighted

and connected to each neuron. The matrix notation of the layer operation is given

by

a = f(Wp + b) (2.3)

where,

W =



w1,1 w1,2 . . .w1,R

w2,1 w2,2 . . .w2,R

. . . . .

. . . . .

. . . . .

wS,1 wS,2 . . .wS,R


,p =



p1

p2

.

.

.

pR


,b =



b1

b2

.

.

.

bS


(2.4)
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The following figure shows a layer of S neurons and R inputs. Notice that the transfer

functions for each neuron are the same.

Layer of S Neurons

AAA
AAA

f

p1

a2n2

Inputs

p2

p3

pR

wS, R

w1,1

b2

b1

bS

aSnS

a1n1

1

1

1

AAA
AAA

Σ

AAA
AAA

Σ

AAA
AAA

Σ

AAA
AAA

f

AAA
AAA

f

a = f(Wp + b)

Figure 2.3: A Layer of Multiple Neurons

2.4 Multilayer Network

A three layer network is shown in Figure 2.4. In this network, there are S1, S2, and

S3 neurons in the first, second and third layer, respectively. In general, we denote

the number of neurons in the M th layer by SM . In each of the layers, there is only

one transfer function. For the first layer in this figure, the transfer function is f 1, the

weight matrix is W1, and there are R inputs and S1 neurons. The outputs of the first

layer are inputs for the second layer, the outputs of the second layer are inputs for

the third layer, and so forth. All but the last layer of the network are called Hidden

Layers. The last layer is known as the Output Layer. A neural network that contains

only forward connections is known as a multilayer network. In general, for a network

of M layers, we have

am+1 = fm+1(Wm+1 ∗ am + bm+1),m = 1, 2, 3, ...M− 1 (2.5)
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First Layer

a1 = f 1 (W1p + b1) a2 = f 2 (W2a1 + b2) a3 = f 3 (W3a2 + b3)

AAA
AAA

f 1

AAA
AAA

f 2

AAA
AAA

f 3

Inputs

a3
2n3

2

w 3
S 

3
, S 

2

w 3
1,1

b3
2

b3
1

b3
S 

3

a3
S 

3n3
S 

3

a3
1n3

1

1

1

1

1

1

1

1

1

1

p1

a1
2n1

2
p2

p3

pR

w 1
S 

1
, R

w 1
1,1

a1
S 

1n1
S 

1

a1
1n1

1

a2
2n2

2

w 2
S 

2
, S 

1

w 2
1,1

b1
2

b1
1

b1
S 

1

b2
2

b2
1

b2
S 

2

a2
S 

2n2
S 

2

a2
1n2

1

AAA
AAA

Σ

AAA
AAA

Σ

AAA
AAA

Σ

AAA
AAA

Σ

AAA
AAA

Σ

AAA
AAA

Σ

AAA
AAA

Σ

AAA
AAA

Σ

AAA
AAA

Σ

AAA
AAA

f 1

AAA
AAA

f 1
AAA
AAA
AAA

f 2

AAA
AAA

f 2

AAA
AAA

f 3

AAA
AAA

f 3

a3 = f 3 (W3f 2 (W2f 1 (W1p + b1) + b2) + b3)

Third LayerSecond Layer

Figure 2.4: Three Layers Network

2.5 Transfer Function

In pattern recognition problems, the transfer function of the output layer is normally

either a sigmoid function or a softmax function. The outputs of the softmax function

range from 0 to 1 and sum to one. The form of softmax is given by

ai = f(ni) = eni ÷
S∑
j=1

enj (2.6)

In the hidden layers of multilayer networks, tansigmoid functions are common.

The tansigmoid transfer function is given by:

f(n) =
en − e−n

en + e−n
(2.7)

2.6 Focused Time Delay Network

When annotating the EKG, it is useful to consider a moving window of the signal.

This requires a network that has memory. This can be done by adding delays to a

multilayer network. The output of a delay is the input delayed by one time step, as

shown in Figure 2.5.

A tapped delay line (TDL) is a set of delays cascaded together, as shown in

Figure 2.6. In problems that require analysis of time-varying patterns, TDLs operate

so that a history of the data can be presented to the network. This is illustrated in

7



AA
AA
AA
D

a(t)u(t)

a(0)

a(t) = u(t - 1)

Delay

Figure 2.5: A Delay Block

Figure 2.7, which is the focused time delay network architecture we will use for QRS

detection, with a TDL of length Nw at the input of the network.

D

D

a( )t

a( )t ad( )t

a( )t

a( -1)t

a( - +1)t N

TDL

N

T

D

L

Figure 2.6: Tap Delay Line

2.6.1 Example

Suppose that we have one EKG sequence:

{z(1), z(2), ..., z(Q)} (2.8)

and corresponding target sequence

t(k) =

{[
0

1

]
,

[
0

1

]
,

[
1

0

]
,

[
0

1

][
0

1

]
,

[
1

0

]
, ...

}
(2.9)
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Tan-Sigmoid Layer Softmax Layer

a tansig W p b
1 1 1
( ) ( )t t= ( + ) a softmax W a b

2 2 1 2
( ) ( )t t= ( + )

S
1
x 1 2 x 1

S
1
x 1 2 x 1

S
1
x 1 2 x 1

1 x 1 N
w
x 1

S
1
x N

w
2 x S

1

S
1

2

n
1

n
2

p( )t a
1
( )t a

2
( )t

W
1

W
2

b
1

b
21 1

Inputs

N
w

T
D
L

z t( )

Figure 2.7: Focused Time Delay Network

where
[
1 0

]T
in the target sequence represents the locations of an R wave. For

simplicity, assume an R wave occurs every three time steps. Since, in this example,

each cycle of the EKG would consist of 3 points, we would use a TDL of length 3.

It is possible to convert the dynamic network of Figure 2.7 into a static network

by subdividing and stacking the input sequence. The TDL of Figure 2.7 creates a

three dimensional input vector p from the scalar z. We can create a matrix P whose

columns are the p vectors as follows:

P =


z(1) z(2) . . . z(Q− 2)

z(2) z(3) . . . z(Q− 1)

z(3) z(4) . . . z(Q)

 (2.10)

We would select the corresponding targets to indicate when the R wave is in the

center of the TDL, as follows:

T =

[
0 1 0 0 1 0 . . . 1 0 0

1 0 1 1 0 1 . . . 0 1 1

]

where
[
1 0

]T
in the column of T would occur whenever an R wave is indicated at

the time point z(k) that is located in the center of the corresponding column of P.

To state this in a more general way, let Q1 = Q−Nw +1, where Q is the length of

a sequence and Nw is the length of the tapped delay line. Each column of the input

is given by

P(:, j) = z(j : j +Nw − 1)T , ∀j = 1, 2, 3, ..., Q1 (2.11)

The corresponding target columns are given by

T(:, j) = t(j + bNw

2
c), ∀j = 1, 2, 3, ..., Q1 (2.12)
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In order to determine an appropriate length for the tapped delay line in our

problem, we scanned the entire data set looking for the largest interval containing

a QRS complex. It was found that the largest number of data points between two

consecutive QRS complexes is 175. Hence, we used a tapped delay line of length

Nw = 351. The sequence length is Q = 9000, and we trained using 625 sequences at a

time. The resulting input matrix size is 351× 5406250 and target size is 2× 5406250,

where 625× (9000− 351 + 1) = 5406250. A discussion of why we used 625 sequences

at a time is given later in this report.

2.7 Scaling the Network Input

In order for the Neural Network to extract the necessary features of the training data,

data preprocessing is essential. Normalization is one part of the preprocessing. Here,

we discuss the two common normalization techniques.

• mapstd is a transforms the data so that the mean and standard deviation are

0 and 1, respectively. The transformation is defined by

pn = (p− pmean)./pstd (2.13)

where pmean is the average of the input vectors p, and pstd is the standard

deviation of the input vector p.

• mapminmax transforms the data so that the normalized inputs fall in the

interval [−1, 1]. The transformation is defined by

pn = 2 ∗ (p− pmin)./(pmax − pmin)− 1 (2.14)

where pmin and pmax are the minimum and maximum of the input vector p,

respectively.

For the work presented in this report, we used the mapminmax preprocessing step.

Now that we have described the network architecture, and associated data pre-

processing, we will discuss how the network is trained.
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CHAPTER 3

TRAINING NEURAL NETWORKS

Changing the weights and biases of the network changes the network performance.

We want to modify these parameters so that the network outputs match the target

outputs as closely as possible. The techniques we use to modify these parameters

are called Training Algorithms or Learning Rules. Depending on the nature of the

problem, there are several learning rules to choose from. Section 3.3 discusses one of

the most common algorithms, the steepest descent learning algorithm.

3.1 Supervised Learning

For supervised learning algorithms, the training data contains both network inputs

and target network outputs. The network is trained so that the network outputs are

close to the targets. A performance index is used to measure how close the network

outputs are to the targets. During training, the weights and biases of the networks

are adjusted to optimize the performance index.

3.2 Performance Index

A performance index is a quantitative measure of the network’s performance. This

performance index is small whenever the outputs match the targets, and large oth-

erwise. Before we talk about the methods for optimizing the performance index, we

will discuss the common performance indexes. The most common performance index

in multilayer networks is sum square error. Suppose we have sets of inputs and their

corresponding targets:

{p1, t1}, {p2, t2}, . . ., {pq, tq} (3.1)

The weighted sum square error performance index is given by

F (x) =

Q∑
j=1

SM∑
i=1

wei,j(ti,j − ai,j)2 (3.2)
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where wei,j is the error weighting, x is the vector of weights and biases, ti,j is the

ith element of the jth target vector and ai,j is the ith network output for the input

pj. The error weighting is needed because the number of time points at which an

R wave is located is a small percentage of the total number of samples in the EKG

signal. It is possible to make the error very small by simply classifying every point as

not an R wave. This would increase Type II errors, but the overall error rate would

be small. To prevent this problem, we can weight Type II errors more than Type I

errors. For example, in one of the target sets only 22,168 time steps out of 5,406,250

are R locations, which is only 0.41%. For this research we will use an error weighting

of one for all data points where there is no R wave, and an error weighting of ρ for

data points where an R wave is indicated. In a later section we will test to determine

an optimal value for ρ, which we will refer to as the error weighting ratio.

Another common performance index for pattern recognition is cross entropy. The

weighted cross entropy performance index is given by

F (x) = −
Q∑
j=1

SM∑
i=1

wei,jti,jln(ai,j/ti,j) (3.3)

This is the performance index we will use in the remainder of this report.

3.3 Training Algorithm

After defining the performance index, the next task is to determine those weights

and biases that minimize the performance index. There are several algorithms that

can be used for performance optimization. These algorithms are iterative. In each

iteration, we would like to move in a direction that reduces the performance index.

For every k, we want to have F (xk+1) ≤ F (xk). A general iteration would be

xk+1 = xk + αpk (3.4)

where α is the learning rate, and pk is the search direction. One of the most common

training algorithms is the steepest descent algorithm. In this algorithm, the search

direction is the negative gradient direction. The learning rate, α, can be fixed, or

it can be determined by minimizing the performance with respect to α by searching

along the line xk − αgk, where gk is the gradient, which is given by

∇F =
[
∂F
∂x1

∂F
∂x2

. . . ∂F
∂xn

]T
(3.5)
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An alternative to the steepest descent, or gradient descent, algorithm is the con-

jugate gradient algorithm. Conjugate gradient algorithms use the gradient, but then

make small adjustments to the search direction. The Scaled Conjugate Gradient

(SCG) algorithm [1], in particular, has been very successful in training neural net-

works for pattern recognition problems. We will use the SCG algorithm for this

work.

3.4 Gradient Calculation

In the case of a single layer linear network, the error is a linear function of the

parameters. We can easily determine the derivative of the error with respect to the

parameters. However, multi-layer networks with nonlinear transfer functions require

an application of the chain rule, which is referred to as backpropagation. In this

pattern recognition problem, we used two layers, with a tansigmoid transfer function

(Eq. 2.7) in the first layer and a softmax (Eq. 2.6) transfer function in the second

layer. The performance index is cross entropy, given in (Eq. 3.3).

The following steps describe how the gradient is computed. In the first step the

input is propagated forward through the network and the network error is computed.

In the second step sensitivities are backpropagated through the network. In the final

step the gradient is computed by multiplying sensitivities times the layer inputs.

1. Propagate the input forward though the network

a0 = p (3.6)

am+1 = fm(Wm+1am + bm+1) m = 0, 1, 2, ...,M, (3.7)

where M is the total number of layers. Since we have only two layers, Eq. 3.7

becomes

a1 = f 1(W1a0 + b1)

a1
i =

en
1
i − e−n1

i

en
1
i + e−n

1
i

(3.8)

a = a2 = f 2(W2a1 + b2)

a2
i = f 2(n2

i ) =
en

2
i∑S2

j=1 e
n2
j

,
(3.9)
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2. Propagate the sensitivity backward through the network. We start from the

last layer M .

sM =
∂F

∂nM
(3.10)

Then the sensitivities for the hidden layers can be calculated by

sm = ˙Fm(nm)(Wm+1)Tsm+1 (3.11)

where

˙Fm =



˙fm(nm1 ) 0 . . . 0

0 ˙fm(nm2 ) . . . 0

. . . . . .

. . . . . .

. . . . . .

0 0 . . . ˙fm(nmsm)


(3.12)

and

˙fm(nm1 ) =
∂fm(nmj )

∂nmj
(3.13)

Since the elements in the target vector and the output vector have only two elements,

and always sum to 1, Eq. 3.3 can be simplified to

F (x) = −
q∑
j=1

(wej(tjln(a2
j) + (1− tj)ln(1− a2

j))) (3.14)

The sensitivity in the second layer is

s2
i =

∂F

∂n2
i

= wei (
−ti
ai

+
ti

1− ai
)
∂ai
∂n2

i

= wei (
−ti
ai

+
ti

1− ai
)ḟ 2(n2

i )

(3.15)

where

ḟ 2(n2
i ) =

en
2
i
∑q

j=1(en
2
j )− e2n2

i∑q
k=1

∑q
j=1 e

n2
j+n

2
k

(3.16)

The sensitivity in the first layer is

s1 = Ḟ 1(n1)(W 2)Ts2 (3.17)
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where

Ḟ 1 =



˙fm(n1
1) 0 . . . 0

0 ˙fm(n1
2) . . . 0

. . . . . .

. . . . . .

. . . . . .

0 0 . . . ḟ 1(n1
s1)


(3.18)

and

ḟ 1(n1
i ) =

∂f 1(n1
i )

∂n1
i

= 1− (a1
i )

2 (3.19)

Using these sensitivities, the portions of the gradient associated with each weight

and bias are

gW2 = s2(a1)T (3.20)

gb2 = s2 (3.21)

gW2 = s1pT (3.22)

gW2 = s1 (3.23)

The steps above produce the gradient corresponding to a single input-target pair.

To compute the total gradient for the entire training set, the individual gradients

for each pair must be summed together. If weights are updated after each individual

input-target pair, this is referred to as incremental training. If the weights are updated

after the total gradient has been computed, this is referred to as batch training. In

this work, we divided the data into several groups of sequences. The gradient was

computed on a single group, and the weights were updated after each group was

presented. The reason for this compromise between batch and incremental training

was that the data set was too large to be loaded into memory at the same time. This

will be discussed in a later section.
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3.5 Stopping Criteria

Part of the training algorithm is determining when to stop. There are several tech-

niques that can be used. One is to check the magnitude of the gradient. When a

minimum of the performance is reached, the gradient will be zero. We will stop the

training if the magnitude of the gradient is less than some predetermined level.

An additional method is called early stopping. By increasing the number of it-

erations of training, we are increasing the complexity of the resulting network. If

training is stopped before the minimum is reached, then the network will be less

likely to overfit the data. One early stopping method is called cross-validation, which

uses a validation set to decide when to stop. The available data (after removing the

test set, as will be described later) is divided into a training set and a validation set.

The training set is used to compute gradients and to determine the weight update

at each iteration. The validation set is an indicator of what is happening to the net-

work function in between the training points, and its error is monitored during the

training process. When the error on the validation set goes up for several iterations,

the training is stopped, and the weights that produced the minimum error on the

validation set are used as the final trained network weights.

We also set a maximum number of iterations, after which the training is stopped.

If the weights do not converge after the maximum number of iterations, then we

restart the training by taking the weights saved from the last training as the initial

condition.
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CHAPTER 4

DATA FOR QRS DETECTION

In this chapter we will describe the data set and will explain how the data was selected

for training, validation and testing sets. Also, because of the size of the data set, we

needed to divide it into subgroups for processing.

4.1 Description of the Data

The nominal EKG signal was recorded for 30 seconds at 300 samples/second, which

gives us a sequence length of Q = 30 × 300 = 9000 data points. There were 16,000

sequences presented for analysis. The sequences did not all have the same length. For

example, there were 14,488 sequences with length greater than 7,000, and only 4,156

sequences with a length greater than 9,500. For training purposes, it was convenient

to have sequences of equal length. There were 13,971 of these sequences with a length

of at least 9000 points. Therefore, we selected those sequences for analysis, and called

them the usable sequences.

The EKG signals in the data set have been annotated by physicians. These

annotations will form the targets to be used when training neural networks to perform

automated annotations. In the annotated signals, the waveforms did not always follow

the classic pattern shown in Figure 1.1. In some cases, the R wave was a negative

pulse instead of a positive pulse. We found that it was important to include both

types of signals in any data set that we used to train the neural networks.

On average, there are 32 cardiac cycles in a 30 second sequence, and each cycle

contains only one R-location. If at least 16 of the R waves of a sequence are negative,

then we will label the sequence a Negative Sequence, otherwise it is said to be a

Positive Sequence. Twenty percent of the usable data were negative sequences and

the other eighty percent were positive sequences.
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4.2 Training and Testing Data

It is important to hold aside a certain subset of the data during the training process.

After the network has been trained, we will compute the errors that the trained

network makes on this test set. The test set errors will then give us an indication of

how the network will perform in the future; they are a measure of the generalization

capability of the network. We divided the usable EKG data into two partitions -

training/validation data and testing data. Both partitions must be representative

of the entire data set. If the training/validation set does not cover all regions of the

input space, it will be difficult for the neural network to generalize when tested on new

sequences. The training/validation set usually contains 85% of the usable data. The

remaining 15% will be used to test the network. We selected and isolated the testing

data set so that it will not be used for any purpose other than testing the network

after all the training is done. In order to cover all of the input space with both data

sets, we performed some preliminary tests to determine the types of sequences we

have.

Roughly 20% of the usable data are negative sequences (a total of 2,373 sequences)

and the other 80% are positive (a total of 9502 sequences). From the usable sequences,

we selected 11,875 sequences for training/validation (85% of the usable data) and

2,096 sequences for testing (15%of the usable data). The data were selected randomly,

with the restriction that 20% of the training/validation data were negative and the

remaining 80% were positive. Similarly, 20% of the testing data (2,096 sequences)

were negative and the remaining 80% were positive.

4.2.1 Group Formulation

One of the challenges in dealing with big data is memory. It was not possible to fit

the entire data set in memory at the same time, so we needed to divide the training

set into groups. In order to decide the number of sequences to be included in a group,

it was important to test the number of sequences, Ns, that can be accommodated in

memory. In MATLAB, if an array becomes too large to fit in memory, the system will

automatically use virtual memory, which significantly slows down computations. In

our tests, we increased the size of the data sets, and noted when computation times

began to increase dramatically.

Table 4.1 shows training times for two iterations as the number of sequences in

the data set is varied in the interval Ns = [300, 760]. We see that there is a linear
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relationship between the number of sequences and the training time until Ns = 700.

However, the iteration time for more than 700 sequences increases dramatically. This

would imply that 700 sequences would fit adequately in the available memory. A

further test was made to verify the consistency of this conclusion, and the results are

shown in Table 4.2. We can see that the times are consistent for 700 sequences.

Ns First Iteration Time (sec) Second Iteration Time ( sec)

300 32.199 33.633

350 57.954 52.572

400 56.175 62.276

450 55.037 46.457

500 62.868 50.466

550 55.754 65.645

600 70.293 59.468

650 77.563 65.848

700 76.455 74.615

750 243.08 264.9

750 106.064 45.474

760 83.647 86.018

Table 4.1: Iteration Times vs. Number of Sequences

Trails Time for the First Iteration Time for the Second Iteration

1 76.455 74.615

2 77.258 73.621

3 76.516 75.091

4 76.404 74.484

5 74.523 73.546

Table 4.2: Time (sec) Required for Two Iterations with 700 Sequences

Based on this result, we can determine the number of groups (Ng) and the number

of sequences in a group (Ns). If we use exactly 700 sequences per group, this will

reduce the total number of sequences used from the available 11,875 to 11,200. If we

want to use all of the sequences, we could choose 625 sequences per group (Ns = 625),

which will produce 19 groups (Ng = 19).
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It was also important to test whether a completely random grouping or a propor-

tional grouping produces better training. In a completely random grouping, all the

625 sequences in a group are selected randomly from the 11,875 training sets. The

distribution of positive and negative sequences would be different from one group to

the other. On the other hand, with proportional grouping, we randomly select 20% of

the 625 sequences in a group from the 2,373 negative sequences and randomly select

the rest from the 9,502 positive sequences. In this way, each group has the same

proportions of positive and negative sequences as in the total data set. We found

that the proportional grouping produced the best training results.
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CHAPTER 5

LOCATION OF QRS COMPLEX

After the focused time delay neural network of Figure 2.7 has been trained, we need

to do some processing on the network output to determine the identified R wave

locations. The network is supposed to produce an output of
[
1 0

]T
at the location

of an R wave, but this will not be exactly true. Figure 5.1 shows a small segment of an

EKG signal, and the corresponding network outputs after training. We can see that

the outputs do not go exactly to 1 and 0. The first output reaches approximately 0.8

in this case. We have to make a decision as to how close to 1 the first network output

should be in order to be considered as an R wave indication. We will set a detection

threshold dt, and wherever the first network output is larger than dt will be considered

an R wave indication. (A later section of this report will describe tests to determine

an appropriate value for dt.) In addition, we only want to have one indication in each

cardiac cycle. To ensure this, if more than one indication occurred within 50 samples

(167 ms), we selected only the point with the highest network output to be the single

indication.
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Figure 5.1: EKG signal segment and network output
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5.1 Committee of Networks

Each time a network is trained, the training starts from a different initial set of

weights and biases. In addition, the data is divided into different random training

and validation sets each time a network is trained. In this way, it is possible to

train a number of different networks on the same overall data set. After training,

these networks can be combined together to form a committee of networks, which

can produce a joint decision. This can be done by averaging the outputs of the

committee members before applying the threshold test, or by taking a vote of the

members after the threshold has been applied. If we have Nn networks, and if at

least Nn/2 of them indicate an R wave, then we accept that indication. Since it is

possible that different committee members might indicate slightly different locations

for the R wave, an algorithm needs to be designed to combine votes when the indicated

R wave locations are close to each other. Such an algorithm is described below.

5.1.1 Committee Formulation Algorithm

The idea of the following algorithm is that whenever any committee member indicates

an R wave, the other committee members are checked to see if they have an indication

within a detection width dw of the original indication. If any of them do, then again

the remaining members are checked for indications within dw of the last indication.

This continues until no other indications are found within the detection width. At

this point, if at least Nn/2 have indications that are close, the committee indicates

an R wave at a location that is an average of the member locations.

Algorithm for Committee Vote:

We denote the output of the second layer of the kth network by ka
2
1(t). Hence, we

can define the indicator output by

y(k)(t) = {1 if ka
2
1(t) ≥ dt

0 else , (5.1)

The sum of the indicator outputs of all the networks is given by

ytot(t) =
k∑
i=1

y(i)(t), (5.2)

Let Γy be an ordered set of indexes such that

Γy = find
(t)

{ytot(t) 6= 0}
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j = Γy(1).

while j ∈ Γy

Γtot = {j}
k = j

go = True

while go

Γ = [k + 1 : k + dw]

Γ
′
= Γ ∩ Γy

If Γk 6= ∅
Γtot = Γtot ∪ Γ

′

k = max{Γ′}
else

go = False

end if

end while

N
′
n =

∑
l∈Γtot

ytot (l)

If N
′
n ≥ Nn

2

wave =

∑
lε(Γtot)

ytot(l)∗l

N ′
n

ytotc (round(wave)) = 1

j = next value in Γy greater than k

end if

end while

It is easier to explain this concept using an example. Suppose that we have three

networks. Each network might suggest existence of a pattern at a specific location.

For simplicity, we assign patterns on the interval t ∈ [1, 10]. Let the output from the

three networks be given as follows.

1a
2
1(t) =

[
0.01 0.02 0.25 0.06 0.01 0.02 0.02 0.12 0.11 0.01

]
(5.3)

2a
2
1(t) =

[
0.01 0.02 0.05 0.6 0.01 0.02 0.02 0.12 0.11 0.01

]
(5.4)

3a
2
1(t) =

[
0.01 0.02 0.05 0.06 0.01 0.60 0.02 0.01 0.11 1.00

]
(5.5)
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The indicator output selects those elements of the output that are above the given

detection threshold dt. The indicator output with a threshold of dt = 0.15 is

y(1)(t) =
[
0 0 1 0 0 0 0 0 0 0

]
(5.6)

y(2)(t) =
[
0 0 0 1 0 0 0 0 0 0

]
(5.7)

y(3)(t) =
[
0 0 0 0 0 1 0 0 0 1

]
(5.8)

Now we have

ytot(t) =
k∑
i=1

y(i)(t) =
[
0 0 1 1 0 1 0 0 0 1

]
(5.9)

and the ordered set of indexes is

Γy = find
(t)

{ytot(t) 6= 0} =
[
3 4 6 10

]
(5.10)

Now we start with Γy(1) = 3. We search for R location within the detection width

distance of, say dw = 2. On the first search we will find the fourth and the sixth data

points. Hence Γ
′

= {4, 6} and Γtot = {3, 4, 6}. Then we take the maximum element

which is max{3, 4, 6} = 6 and we start another search beginning at 6. Since there

is no R-location within the detection width distance, we take the sum of R-locations

in the set Γtot. We count the total number of votes, which is 3, so we can have an

R-location suggested by the majority.

N
′

n =
∑
l∈Γtot

ytot (l) = 3 ≥ Nn

2
=

3

2
(5.11)

The average location is calculated by

wave =

∑
lε(Γtot)

ytot(l) ∗ l

N ′
n

=
3 + 4 + 6

3
= 4.33 ≈ 4 (5.12)

Therefore we have an indicated R wave at 4. That is

ytotc (round(wave)) = ytotc (4) = 1 (5.13)

We then restart the next search at the next element of Γy greater than 6, which is

10. The process proceeds until we cover all the elements of Γy.
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5.2 Definition of Errors

In order to assess the performance of the automated annotation system, we need to

define appropriate measures of quality. A standard measure would be error rate. The

difficulty with using this metric is that errors in R wave location can occur at every

time point in the EKG sequence. However, on average, only one point in 250 will

actually be an R wave location. (For example, there are 22,168 points indicated as R-

locations from 5,406,250 data points in one of the 19 training groups.) An algorithm

could be 99.7% accurate by simply saying that there are no R waves in a sequence. We

will report error rate (ER), but we will also use the following performance measures:

False Discovery Rate (FDR), which is a measure of how often the network detects an

R wave when it is not there, Miss Rate (MR), which measures how often the network

does not detect an R wave when it is there, and Relative Error Rate (RER), which is

a ratio of the number of errors to the number of R wave locations and false detections

of R waves. The RER will be much larger than the ER, which divides by the total

number of time points. Before defining these measures precisely, we first define some

key variables in Table 5.1.

Symbol Definition

P # of R wave locations in the data set

N # of time points with no R wave

FP # of false positives, Type I errors (false indications of R wave)

FN # of false negatives, Type II errors (R wave without indication)

TN # of true negatives (no R wave without indication)

TP # of true positives (correct indications of R wave)

Table 5.1: Symbol Definitions

We can now define ER, FDR, MR and RER in Table 5.2.

There is one other aspect of error calculation to be addressed, and that is precision.

It may be that the network indication of an R location is only one time step (3.3

miliseconds) away from the physician indication of the location. On the other hand,

the network may have no R wave indication over a compete cardiac cycle (beat).

These two situations should be treated differently. If the network indicates an R

wave within a detection width dw, then we will say that the network indication is

correct. If it is greater than dw, we will say that it is wrong. We will report errors
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Symbol Definition Equation

ER Error Rate FP+FN
P+N

FDR False Discovery Rate FP
FP+TP

MR Miss Rate FN
P

RER Relative Error Rate FP+FN
P+FP

Table 5.2: Performance Measures QRS Detection

using two different detection widths - 3 and 50. Correct results with dw = 3, which is

one hundredth of a second, will indicate that the network is producing precise R wave

locations. Correct results with dw = 50 will indicate that at least the network is able

to detect the beat, although the precise location of the R wave within the beat may

be off. Because a number of the EKG sequences in the database have inconsistent

physician indications of R wave locations, as will be described later, using both 3 and

50 for dw will give us a better understanding of the operation of the network.

5.3 Setting Algorithm Parameters

5.3.1 Number of Neurons, Detection Threshold and Error Ratio

Before testing the R wave location system, we need to determine appropriate settings

for the following parameters: 1) error weighting on FN errors, ρ; 2) the detection

threshold, dt; and 3) the number of neurons in the hidden layer, S1. To find these

values, we ran some preliminary tests with a subset of the data (20 sequences). The

results are shown in Table 5.3. The best results were obtained with dt = 0.1, ρ = 5

and S1 = 30. The light gray row depicts the combination that causes the smallest

relative error rate.

We performed a further refinement on the number of hidden neurons. We set

dt = 0.1 and ρ = 5 and then adjusted S1 from 10 to 65. We also increased the

number of test sequences from 20 to 200, to be sure that we were not overfitting. The

results are shown Table 5.4. In this preliminary test, reasonable results are obtained

when S1 = 30 or more. A network with S1 = 40 has a total of 14,162 parameters

(weights and biases), and the full data set (19 groups) we will use to train the final

network has 421,192 target points, so we will not overfit during the full training. We
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ρ dt S1 FN FP Sum FNR FDR ER RER

5 0.1 10 43 41 84 0.0537 0.0513 4.76e-4 0.0998

5 0.1 20 31 28 59 0.0393 0.0356 3.34e-4 0.0722

5 0.1 30 16 23 39 0.0207 0.0294 2.21e-4 0.0489

5 0.05 10 65 33 98 0.0790 0.0417 5.55e-4 0.1145

5 0.05 20 71 17 88 0.0856 0.0219 4.98e-4 0.1040

5 0.05 30 41 15 56 0.0513 0.0194 3.17e-4 0.0688

5 0.025 10 94 25 119 0.1103 0.0319 6.74e-4 0.1360

5 0.025 20 152 13 165 0.1670 0.0169 9.35e-4 0.1788

5 0.025 30 90 12 102 0.1061 0.0156 5.78e-4 0.1186

10 0.1 10 43 23 66 0.0537 0.0294 3.74e-4 0.0801

10 0.1 20 37 27 64 0.0465 0.0344 3.62e-4 0.0779

10 0.1 30 24 16 40 0.0307 0.0207 2.27e-4 0.0501

10 0.05 10 76 17 93 0.0911 0.0219 5.27e-4 0.1093

10 0.05 20 61 18 79 0.0745 0.0232 4.47e-4 0.0944

10 0.05 30 41 12 53 0.0513 0.0156 3.00e-4 0.0654

10 0.025 10 123 11 134 0.1396 0.0143 7.59e-4 0.1502

10 0.025 20 134 11 145 0.1502 0.0143 8.21e-4 0.1606

10 0.025 30 72 8 80 0.0867 0.0104 4.53e-4 0.0955

Table 5.3: Optimization of dt, S
1 and ρ
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will use S1 = 40 for the full test. After analyzing the results, we will determine if the

data set can be better fit with more neurons.

S1 FN FP Sum FNR FDR ER RER

10 529 277 806 0.124383 0.069233 0.000913 0.177925

15 531 202 733 0.124794 0.051452 0.00083 0.16446

20 565 205 770 0.131732 0.052176 0.000872 0.17134

25 499 201 700 0.118162 0.051210 0.000793 0.158228

30 451 223 674 0.108024 0.056499 0.000763 0.153251

35 420 262 682 0.101351 0.06573 0.000773 0.154788

40 486 258 744 0.115439 0.064792 0.000843 0.166517

45 479 183 662 0.113966 0.046839 0.00075 0.150935

50 475 185 660 0.113122 0.047327 0.000748 0.150547

55 473 168 641 0.1127 0.043165 0.000726 0.14685

60 462 215 677 0.110368 0.054582 0.000767 0.153829

65 405 248 653 0.098087 0.062437 0.00074 0.1491889

Table 5.4: Optimization of S1

5.3.2 Number of Iterations per Cycle

Because the full data set is too large to fit in memory, we divided the data into 19

groups, as described earlier. We will train on each group for a certain number of

iterations, and then switch to the next group, until we have completed the cycle of

all groups. After that, we will repeat the cycle. In the complete training/validation

set, the number of groups is Ng = 19, and the number of sequences per group is

Ns = 625. The number of iterations in cycle k will be indicated as Ni(k), and the

number of cycles will be indicated as Nc. The choice of the number of iterations per

cycle is a trade-off between efficiency of computation and potential for overfitting and

slowed training. It is more efficient to leave a group in memory for more iterations,

rather than switching groups in and out of memory every few iterations. On the other

hand, if we train too long on one group, the network may overtrain on the specific

characteristics of that group, and have to relearn general characteristics when the

next group is presented, causing some oscillation in training and slower convergence.

As a preliminary experiment, we used Ng = 2, Ns = 300 and S1 = 40. We tested

for Ni = {2, 3, 4, ..., 39} assuming that Ni ∗ Nc ≈ 100, so that the total number of
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iterations in each test is approximately the same (with the restriction that Nc must

be an integer). The results of this experiment are shown in Table 5.5. The smallest

error occurred for Ni = 39. This means it is possible to perform 39 iterations on each

group before going to the next group and still achieve a better overall error. The total

number of iterations in each case shown in Table 5.5 is approximately the same, but

we get a bigger reduction in error if we perform 39 iterations on each group before

switching.

We have tested the overhead associated with switching groups into memory. We

found that it is a very small percentage of the time required to perform 40 iterations

on a group with 625 sequences. For that reason, we decided to use Ni = 40 for the

initial training cycles. After the first 5 cycles, after which the training error is quite

small, we reduced Ni to 10.

5.3.3 Detection Threshold

We made a further refinement of the detection threshold after the network with S1 =

40 had been completely trained. As described earlier, after the network is trained,

the first network output is passed through a detection threshold dt to determine if the

network output is large enough to indicate the existence of an R wave. Ideally, the

first output should equal 1, if an R wave exists. However, in practice an appropriate

threshold might be much lower. If we make dt too large, we will miss some R waves,

causing more False Negative, or Type II errors. If we make dt too small, we will

indicate R waves where they do not exist, causing more False Positive, or Type I

errors. We want to set the threshold to minimize the total number of errors. Figure 5.2

shows a plot of the number of Type I, Type II and total errors as dt is adjusted over

the interval [0.05, 0.4] for a trained network. The value that minimizes the total error

is approximately dt = 0.15. This is the value that was used for the remaining tests.

5.4 Summary

To summarize, the training/validation data set of 11,875 sequences was normalized

using the mapstd preprocessing function, reformed with a tapped delay line of length

Nw = 351, and divided into Ng = 19 groups of Ns = 625 sequences each. Each group

has a 351× 5, 406, 250 input matrix and a 2× 5, 406, 250 target matrix. A two-layer

focused time delay network, as in Figure 2.7, with S1 = 40 tansigmoid neurons in the

hidden layer and S2 = 2 softmax neurons in the output layer was trained using the
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Ni Ni ∗Nc Performance

20 100 0.009521

21 105 0.009579

22 110 0.009329

23 92 0.009247

24 96 0.009366

25 100 0.008946

26 104 0.008945

27 108 0.008964

28 112 0.00845

29 87 0.009299

30 90 0.009155

31 93 0.008772

32 96 0.008739

33 99 0.008863

34 102 0.008608

35 105 0.008572

36 108 0.008361

37 111 0.008197

38 114 0.008062

39 117 0.007929

Table 5.5: Comparison for Number of Iterations

30



0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

Detection Threshold (d
t
)

N
um

be
r 

of
 E

rr
or

s

 

 

Type I Error
Type II Error
Total Error

Figure 5.2: Detection Threshold (dt) Optimization

scaled conjugate gradient training algorithm to minimize the weighted cross entropy

performance function. The performance weighting for the
[
1 0

]T
targets (indicating

an R wave) was ρ = 5, and it was equal to 1 for the remaining cases.

The training was performed for Ni = 40 iterations per cycle for the first 5 cycles.

This means there were a total of Ni × Ng × 10 = 40 × 19 × 5 = 3, 800 iterations in

the first 5 cycles. During these first 5 cycles, 15% of the data were randomly selected

for a validation set to be used for early stopping. After the first 5 cycles of training,

the training continued with Ni = 10 iterations per cycle for 135 additional cycles.

The total number of iterations in the training was 3, 800 + 10 × 19 × 135 = 29, 450

iterations. After the first 5 cycles, all of the training/validation data was used for

training. After training was completed, the first element of the network output was

checked against a detection threshold of dt = 0.15 to produce an R wave indication.

We currently have trained three different networks using the above procedures.

Each network was trained using a different set of initial weights, and with different

random selections of training and validation sets during the first 5 training cycles.

The three networks were combined to test the committee concept, although this is a

small number of networks. After an analysis of the results and a check of the validity

of the data set, additional networks will be trained.

Each of the networks was trained using the Neural Network Toolbox for MATLAB

on a Linux server with 24 Intel Xenon processors using 2.80 GHz clocks. The server

had a 47.1 GB RAM with 32 GB swap RAM. To perform the total of 29,450 iterations
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on a single network required 423.28 hours.
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CHAPTER 6

RESULTS FOR QRS DETECTION

Table 6.1 summarizes the training/validation set errors for the three networks and

the committee when the detection width, dw, is set to 3 and 50. As mentioned earlier,

correct results with dw = 3, which is one hundredth of a second, indicate that the

network is producing precise R wave locations (relative to the physician annotations).

Correct results with dw = 50 indicate that at least the network is able to detect the

beat, although the precise location of the R wave within the beat may be off. As

we will see later, this seems to be caused mainly by inconsistencies in the physician

annotations.

There are a few things we can notice from the summary. First, the False Discovery

Rate and the Miss Rate are almost equal in all three individual networks. This means

that the networks are not biased in their decisions. By using the error ratio of ρ = 5,

we are weighting the false negative errors enough to balance the results, even though

there are many more opportunities for false positive errors. Second, with dw = 50,

we remove approximately 60% of the errors, when compared to dw = 3. (RER goes

from 11% to 4.2%.) This means that most of the errors occurred when the network

annotation was offset from the physician annotation, although they both came within

the same beat. We will analyze these errors in a later section. It is our impression

that the physicians did not always indicate the R wave location at the same location

on the signal.

Nets dw = 50 dw = 3

FDR MR RER ER FDR MR RER ER

Net1 0.0215 0.0236 0.0442 1.91e-4 0.0559 0.0569 0.1068 4.95e-4

Net2 0.0204 0.0224 0.0419 1.81e-4 0.0553 0.0562 0.1057 4.89e-4

Net3 0.0207 0.0227 0.0424 1.83e-4 0.0549 0.0559 0.1049 4.85e-4

Com 0.0201 0.0220 0.0412 1.78e-4 0.0421 0.0787 0.1146 5.36e-4

Table 6.1: Training Error Summary for the Three Networks and the Committee
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Figure 6.1 shows the convergence in training for one of the networks, with dw = 3.

The first point represents the first 5 cycles of training (with 40 iterations and 19

groups per cycle), and the remaining points represent the final 135 cycles (with 10

iterations and 19 groups per cycle). Figure 6.2 represents the same training process,

but with dw = 50. Even though we are switching between groups during each cycle,

we can see that the overall error (over the entire training/validation set) is trending

lower. It appears that we can continue to improve the performance with additional

training cycles. We will continue to train longer, and to potentially use more neurons

and more layers, but first we want to analyze the current errors, to see if they are

caused by a failure of the network to correctly identify patterns, or by problems in the

data set. We will also train additional networks, as three networks is a very small size

for the committee. At this point, we have merely verified the committee algorithm,

but do not have enough networks to determine if the committee can significantly

improve performance.
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Figure 6.1: RER Versus Iteration Number on One Network with dt = 3

Table 6.2 shows the performance of the networks on the test set. Recall that

the test set contained 2,096 sequences that were randomly selected from the original

13,971 usable sequences in the full data set (15%), with the requirement that 20% of

the sequences be negative. The test set was not used in any way to train the neural

networks or to set any parameters (e.g., ρ, dt, S
1, etc.). The errors on the test set are

very similar to the training set errors. This means that the errors we obtained on the

training set are reliable, and we would expect to see similar errors on any new data

that would be collected in the future.
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Method dw = 50 dw = 3

FDR MR RER ER FDR MR RER ER

Net1 0.0206 0.0262 0.0458 1.97e-4 0.0570 0.0615 0.1119 5.17e-4

Net2 0.0220 0.0264 0.0473 2.04e-4 0.0575 0.0610 0.1119 5.17e-4

Net3 0.0220 0.0259 0.0468 2.01e-4 0.0580 0.0608 0.1121 5.18e-4

Com 0.0225 0.0232 0.0447 1.92e-4 0.0574 0.0572 0.1084 4.99e-4

Table 6.2: Testing Error Summary for the Three Networks and the Committee

6.1 Error Analysis

Most of the errors occur in only a few of the sequences in the data set. Of the total of

11,875 sequences in the training/validation data set, 6,135 sequences had no errors at

all. Only 10% of the sequences contribute 68% of the total error. This is illustrated

in Figure 6.3, which shows the number of sequences that produce a specific number

of errors. We can see that over 6,000 sequences have no error, and that the majority

of the errors are concentrated in a few sequences.

In general, the network performed better on positive sequences than on negative

sequences (see the definition of positive and negative sequences in Section 4.1. The

positive sequences, which represent 80% of the data, contribute only 41.48% of the

errors, while the negative sequences, which represent only 20% of the data, contribute

58.52% of the errors. The network located the R wave with no error in 5,149 of

the positive sequences but only in 986 of the negative sequences. Figure 6.4 shows

examples of positive and negative sequences in which there were no errors in the
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Figure 6.3: Number of Sequences Versus Number of Errors

location of the R waves. (These are short segments of two of the 6,135 sequences

with no errors.) The black spikes indicate the physician annotation of the R wave

location, which for these sequences corresponded exactly to the network annotation.
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Figure 6.4: Negative and Positive Sequences with no Error

In the following sections we will investigate some of the types of errors.

6.1.1 Inconsistent Physician Annotations

As mentioned above, 60% of the errors are removed by changing the detection width

from dw = 3 to dw = 50. This means that, in 60% of the errors, the network is able to

detect the cardiac cycle, but is not able to detect the location of the R wave within
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10 ms (three samples) of the physician annotation. After analyzing many sequences

in which there were errors for dw = 3 but not for dw = 50, we found that the

main cause was a seeming inconsistency in the physician annotations. An example of

inconsistency within the same sequence is shown in Figure 6.5. The red line represents

the physicians annotated R wave location (target). The green line represents the raw

output of the neural network (first neuron). The black line represents the annotated R

wave location determined by the network (output larger than the detection threshold

dt).
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Figure 6.5: Intra-sequence Inconsistency of Annotation

Three different cardiac cycles are shown. In the first cycle, the physician indicates

the R wave as located near the peak of the final rising wave in the cycle. In the second

cycle, the physician annotation of the R wave occurs at the first negative wave of the

cycle. (The total network output matches the target in this case, producing no error.)

In the third cycle, the physician annotation of the R wave occurs near the peak of the

first positive wave of the cycle. To the untrained observer, these three annotations

do not seem to be consistent, and the network is confused, as a result.

Notice that the neural network produces some output (green line) at all of the

physician-annotated locations. However, if a network has more than one output over

threshold within 50 samples (0.167 sec), then the largest output is selected as the

indicated R wave location. This is to eliminate multiple indications within a cardiac

cycle. Figure 6.6 is an expanded view of the last cardiac cycle in Figure 6.5. From this

expanded figure, we can see that the network produces some output at each location

where the physician might have given an indication. (Note that, overall, the total

network annotation is consistent. It always indicates the R wave at the first negative
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wave of the cycle.)
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Figure 6.6: Intra-sequence Inconsistency of Annotation (Expanded)

This effect is also illustrated in Figure 6.7. This figure shows cardiac cycles in

two different sequences. In the top figure, the physician indicated the R wave on the

falling edge of the first negative wave. In the bottom figure, the physician indicated

the R wave on the rising edge of the first positive wave. Note that there is a network

output at both locations on both cycles, but only the largest one was selected.
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Figure 6.7: Inter-sequence Inconsistency of Annotation

There are also cases where the physician indicated multiple R waves within one

cardiac cycle, as shown in Figure 6.8.

In other sequences there are even more indicated R waves within one cycle, as in

Figure 6.9 and Figure 6.10.
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Figure 6.8: Multiple Targets per Cardiac Cycle
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Figure 6.9: Three Targets in a Cardiac Cycle

To summarize, it seems that the number of errors (for the 10 ms precision) can

be reduced by up to 60%, if the physician annotations can be made more consistent.

6.1.2 Noisy and Irregular Sequences

A certain percentage of the sequences have a high level of noise, which makes it

difficult to determine the R locations. An example is shown in Figure 6.11.

There are also sequences with irregular shapes, which are often combined with

physician annotations that do not seem to be consistent, such as the sequence shown

in Figure 6.12.

Overall, we estimate that approximately 32% of the errors produced by the neural

network, for a detection width of dw = 3, are caused by signals with a large amount of

noise. These errors are very unlikely to be improved by larger networks and additional
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Figure 6.10: Sequence with Multiple R Wave Indications

training, since the noise level is so high that even a close visual inspection of the

signal by a trained physician could only produce a very rough guess of where the

QRS complex was located. In these cases, it probably would make sense to either

remove these sequences from the training set, or have no R wave indications.

6.1.3 Small Amplitude Signals

In addition to the inconsistencies in signal annotation and the high noise levels in

some signals, there was a third issue that we uncovered in analyzing the network

errors. There are some EKG sequences in the data base that have a much lower

signal level than the large majority of sequences. This is illustrated in Figure 6.13.

Because there were so few of these types of sequences, relative to the total number

of sequences, the network did not see enough examples to consistently recognize the

patterns. There were also issues with consistent physician annotations with these

sequences, as can be seen in Figure 6.13.
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Figure 6.11: Noisy Sequence

6.2 Comparison with the Pan-Tompkins Algorithm

A common algorithm used for QRS complex detection is the Pan-Tompkins algorithm

[2]. According to its authors, ”the algorithm detects QRS complexes using slope,

amplitude, and width information. A bandpass filter preprocesses the signal to reduce

interference, permitting the use of low amplitude thresholds in order to get high

detection sensitivity. In the algorithm, they used a dual-thresholds technique and

search back for missed beats. The algorithm periodically adapts each threshold and

RR interval limit automatically. This adaptive approach provides for accurate use

on EKG signals having many diverse signal characteristics, QRS morphologies, and

heart rate changes.”

Since Pan-Tompkins is considered a standard, we will use it to provide a baseline

to compare with our neural network algorithm. It was recently tested [3] against

two other popular methods and was found to be the most accurate. We used an

implementation of the Pan-Tompkins algorithm in MATLAB by Hooman Sedghamiz

[4]. The results of applying this algorithm to the same data set that we used to

train the neural network is shown in Table 6.3. This is a repeat of Table 6.1, with

the added first row that contains the Pan-Tompkins statistics. We can see that the
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Figure 6.12: Irregular Sequence

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

−0.2

0

0.2

0.4

0.6

0.8

1

 

 

Target
Signal

Figure 6.13: A Low Amplitude Sequence

neural network method is consistently better than Pan-Tompkins in all cases. For

dw = 3, the RER is reduced from 33% to 10%. For dw = 50, it is reduced from about

7% to about 4%.

For the high precision case (dw = 3), Pan-Tompkins has particular problems,

especially with negative sequences. This can be seen when comparing Figure 6.14,

which shows results for a segment of a positive sequence, and Figure 6.15, which

shows results for a segment of a negative sequence. For these two full sequences, the

neural network method made no errors. The Pan-Tompkins method did well on the

positive sequence, but it made 45 errors on the negative sequence, which means that

it did not correctly identify any R wave location with a precision of dw = 3.

Table 6.4 shows the test set errors of the Pan-Tompkins algorithm, as well as the

neural network errors. The test set errors for Pan-Tompkins are similar to the training
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Method dw = 50 dw = 3

FDR MR RER ER FDR MR RER ER

Pan-Tom 0.0427 0.0346 0.0744 3.33e-4 0.2027 0.1978 0.3337 2.08e-3

Net1 0.0215 0.0236 0.0442 1.91e-4 0.0559 0.0569 0.1068 4.95e-4

Net2 0.0204 0.0224 0.0419 1.81e-4 0.0553 0.0562 0.1057 4.89e-4

Net3 0.0207 0.0227 0.0424 1.83e-4 0.0549 0.0559 0.1049 4.85e-4

Com 0.0201 0.0220 0.0412 1.78e-4 0.0421 0.0787 0.1146 5.36e-4

Table 6.3: Comparison of Neural Network and Pan-Tompkins Methods
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Figure 6.14: NN and Pan-Tompkins Methods on a Positive Sequence

set errors. The high precision, dw = 3, RER is unchanged, and the low precision,

dw = 50, RER is only slightly higher. The neural network performs consistently

better than Pan-Tompkins in both cases. Because the test set was not used at all for

training the network, or setting any algorithm parameters, and because testing and

training errors are consistent for the neural network and Pan-Tompkins results, we

can expect the neural network method to outperform Pan-Tompkins significantly on

sequences that would be collected in the future.

43



1600 1700 1800 1900 2000 2100 2200

−1.5

−1

−0.5

0

Pan−Tompkins Approach
1600 1700 1800 1900 2000 2100 2200

−1.5

−1

−0.5

0

0.5

1

1.5
Neural Network Approach

 

 

Total Out
target
Signal
Output

Figure 6.15: NN and Pan-Tompkins Methods on a Negative Sequence

Method dw = 50 dw = 3

FDR MR RER ER FDR MR RER ER

Pan-Tom 0.0437 0.0399 0.0802 3.59e-4 0.2000 0.1980 0.3321 2.04e-3

Net1 0.0206 0.0262 0.0458 1.97e-4 0.0570 0.0615 0.1119 5.17e-4

Net2 0.0220 0.0264 0.0473 2.04e-4 0.0575 0.0610 0.1119 5.17e-4

Net3 0.0220 0.0259 0.0468 2.01e-4 0.0580 0.0608 0.1121 5.18e-4

Com 0.0225 0.0232 0.0447 1.92e-4 0.0574 0.0572 0.1084 4.99e-4

Table 6.4: Test Set Comparison of Neural Network and Pan-Tompkins Methods
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CHAPTER 7

DATA FOR BEAT CLASSIFICATION

In the previous chapters, we have covered the automated QRS detection system. This

chapter and the chapters that follow will cover the classification of cardiac cycles

into normal and abnormal categories. After detecting the beat locations within the

sequences, we need to identify whether those beats are normal or abnormal. Albeit

the focus of QRS detection is on the entire sequence, the focus of beat classification

is on individual beats, which we need to extract from the sequences. In this chapter,

we describe the mechanisms used to select the beats to be used to train the beat

classifier and the characteristics of the final data set.

7.1 Selection of Beats

We used the QRS detection system to identify each cycle or beat in a sequence.

Wherever a cycle is detected, and the identified R location agrees with a physician

annotation, the contents of the 351 element tapped delay line at the input to the QRS

detection network are saved. At the same time, the physician indication of normal

or abnormal for that beat are also saved. This was done for all EKG sequences.

The physicians’ indication of a beat identifies one of these five categories: Atrial

A, Junctional J, Normal N, Ventricular V, or Unidentified X. Any A, J, V, or X

represents an abnormal beat, whereas N represents a normal beat.

In order to conveniently plot annotations and beats, we assigned numbers one

through five, alphabetically, to represent the annotations. Therefore A, J, N, V, and

X are represented by 1, 2, 3, 4, and 5 respectively. All but N (3) represent abnormal

beats. (The binary representation of the target data for this beat classification system

is discussed in Section 7.2.) An abnormal beat of type V, is given in Figure 7.1. Here

the amplitude of the target is 4, which corresponds to the alphabetical representation

of arrhythmia type V. A normal heart beat is shown in Figure 7.2. Note that the

amplitude of the target is 3, representing the normal beat, which is type N.
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Figure 7.1: Abnormal Beat of Type V
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Figure 7.2: Normal Beat

7.2 Data Description

From the QRS detection system, those detected cycles within a detection width of 3

of the physicians annotation were selected for inclusion in the beat classification data

set. There were 400,544 beats that met this criterion. The 351x1 tapped delay line

input for each of these beats then formed the inputs for the beat classification data

set. If the physician indicated that a beat was normal, N, then the corresponding

target for that beat was assigned to be
[
0 1

]T
. If the physician indicated that the

beat was abnormal ( A, J, N, V, or X), the corresponding target was assigned to be[
1 0

]T
.

When dividing the data into training, validation and test sets, it is important

that each subset be representative of the full data set. For this reason, we need to

investigate the characteristics of the data. One characteristic that was important for

the QRS detection system was whether the R wave was a positive or negative pulse.

For the beat detection data, if the R wave of a beat is a negative pulse, then we

will call it a negative beat; if it is a positive pulse, we will call it a positive beat.

As in the QRS detection system, we need to consider the distribution of the positive
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and negative beats as we form training, testing and validation sets. An example of

a positive normal beat is given in Figure 7.2, and an example of a positive abnormal

beat is given in Figure 7.1. Two negative beats, one normal and one abnormal, are

shown in Figure 7.3. Notice that the amplitude of the targets in the beats indicates

whether they are normal or abnormal.
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Figure 7.3: Negative Beats

In the beat classification data set, we have a total of 11,810 abnormal and 388,734

normal beats. The percentages of positive and negative beat distributions within the

normal and abnormal cases is given in Table 7.1. It is interesting that the ratio of

positive and negative beats in both the normal and the abnormal cases is very similar,

and is close to the ratio of positive and negative sequences in the QRS detection

system, which was 80% positive and 20 % negative.

Table 7.1: Positive and Negative Beats in Normal and Abnormal Sets

Normal Abnormal

Positive Beats 81 79.2

Negative Beats 19 20.8
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CHAPTER 8

NETWORK AND TRAINING FOR BEAT CLASSIFICATION

As with QRS detection, beat classification is a pattern recognition problem. In pat-

tern recognition problems, there are commonly used transfer functions, training algo-

rithms and performance index functions. These features are known to be effective in

classification problems. For that reason, for the beat classification system, we used

some of the same network and training features that we used in the QRS detection

system.

8.1 Network Architecture

In the QRS detection system, we needed a moving window of the EKG signal, and

for that we used a network with memory. The general network architecture was a

focused time delay network, as shown in Figure 2.7. For the beat detection system, a

two layer feed forward neural network architecture with no memory is used, as shown

in Figure 8.1. There are R = 351 elements of the input vector, which corresponds to

the size of the tapped delay line in the QRS detection network. The first layer of this

network has S1 = 40 neurons and a tansigmoid transfer function (see Eq. 2.7). Since

using forty neurons in the hidden layer resulted in a satisfactory result in the QRS

detection system, we continued using it for beat classification. The second layer of

the network has two neurons and a softmax transfer function, Eq. 2.6.

Tan-Sigmoid Layer

p a1 a2

1 1

n1 n2

Inputs

W2

b1

W1

b2

R S1 S2

S1xR

S1x1

S1x1

S1x1

S2x1

S2xS1

S2x1

S2x1Rx1

S2x1

Softmax Layer

a1 = tansig(W1p+b1) a2 = softmax(W2a1+b2)

Figure 8.1: Beat Classification Network
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8.2 Performance Index

As in the QRS detection system, we will use the weighted Cross Entropy performance

index, Eq. 3.3. The beat classification problem also has an unbalanced data set; as

was described in Section 7.2, only 3% of the beats are abnormal. As discussed in

the paragraph before Eq. 3.3, it is possible to make the error very small by simply

classifying every point as normal. This would increase Type II errors, but the overall

error rate would be small. To prevent this problem, we can weight Type II errors

more than Type I errors. In a similar strategy to the QRS detection problem, we will

use an error weighting of one for all normal beats, and an error weighting of ρ for all

abnormal beats. The selection of ρ will be discussed in a later section.

8.3 Training Algorithm and Stopping Criteria

In order to train the beat classification neural network, as in the QRS detection net-

work, we used the Scaled Conjugate Gradient (SCG) training algorithm. Unlike the

QRS detection system, the input data was small enough to fit in computer memory,

so we did not have to divide the data into mini-batches. Moreover, we were able to use

a GPU for training. In comparison to training only with the CPU, training using the

GPU was five time faster. Relative to the QRS detection system, the computational

burden is reduced, because of the smaller data set.

As in the training of the QRS detection network, we used early stopping to prevent

overfitting. The available data is divided into a training set and a validation set. (As

described earlier, a separate testing set was already put aside.) The training set is

used to compute gradients and to determine the weight update at each iteration. The

validation set is an indicator of what is happening to the network function in between

the training points, and its error is monitored during the training process. When the

error on the validation set goes up for ten iterations, the training is stopped, and the

weights that produced the minimum error on the validation set are used as the final

trained network weights. We randomly selected 15% of the data for the validation set,

with the remaining 85% used for training. Training was also stopped, if the validation

error did not go up after 500 iterations, but this rarely happened.
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8.4 Committee of Networks

In the QRS detection system, we used a committee of networks to improve perfor-

mance. Each network in the committee was trained with different initial weights

and different training and validation sets. The method for combining the committee

outputs in that case was somewhat complex, because the R wave indications of each

network could be slightly offset from each other. For the beat classification case, the

committee formation is much simpler, since the individual beats are aligned.

We considered two approaches for combining the network outputs to provide a

single committee classification. In the first approach – the voting committee – each

network is given a vote. For example, if there are ten networks in the committee, and

five or more networks have their first output above the detection threshold (typically

dt = 0.5), then the committee indicates an abnormal beat. In the second approach

– the averaged committee – the first outputs from all the networks are averaged

together, and if the average is above the detection threshold, then the committee

indicates an abnormal beat.

8.4.1 Committee Using Full Data

We used two different methods to compensate for the unbalanced data set. For one

method, we used the full data set, but we tested different error weighting ratios (ρ)

to determine a value that balanced the percentage of Type I and Type II errors. For

each ρ, one hundred networks were trained.

8.4.2 Committee Using Balanced Data

Another way of compensating for the unbalanced data set is to produce new training

sets that contain an equal number of normal and abnormal beats. In each such

training set, the proportion of negative and positive beats needs to be as indicated in

Table 7.1. In addition, for each network the balanced data sets should contain some

different beats. As mentioned in the previous chapter, the total data set contains

11,810 abnormal and 388,734 normal beats. For the balanced data sets, we selected

10,628 beats (90% of 11,810) at random from both the normal and abnormal sets,

for a total of 21,256 total beats. Each of these balanced sets was then used to train

one network. For a committee with 100 networks, we selected 100 balanced data sets.

Since each data set was balanced, the error weighting ratio was one.
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8.5 Definition of Errors

The beat classifier considers an abnormal beat to be positive and a normal beat to

be negative. We assessed the performance of the system using false positive rate

(FPR), false negative rate (FNR), and error rate (ER). FPR indicates the percentage

of normal beats that are incorrectly classified as abnormal. On the other hand, FNR

(also called miss rate, MR) indicates the percentage of abnormal beats that are miss-

classified as normal. We also used the standard measure, ER, to determine how

often the classifier made wrong decisions of any type. These measures of performance

(except for FPR) are also defined in Table 5.2, and the definitions of the variables

that define the measures are given in Table 5.1.

Two other measures of performance of a pattern recognition system are sensitivity

and specificity. The probability that the classifier correctly detects an abnormal beat

as abnormal is the sensitivity, or true positive rate (TPR), which is given by TP
P

. On

the other hand, the probability that the classifier correctly detects a normal beat as

normal is the specificity, or true negative rate (TNR), which is given by TN
N

.

A curve that illustrates the relation between TPR and FPR, as the detection

threshold is adjusted, is known as the Receiver Operating Characteristic (ROC) curve

[6]. For measuring the performance of the classifier, we used the area under the ROC

curve (AUROC). AUROC measures the discriminating performance of the classifier.

An area of 1 means that the system discriminates the positives and negatives perfectly.

In contrast, an area of 0.5 means that the system discriminates the positives and

negatives by chance. Any AUROC close to 1 is good and anything close to 0.5 is bad.

An example of an ROC curve whose AUROC is 0.8521 is given in Figure 8.2.
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Figure 8.2: ROC
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CHAPTER 9

BEAT CLASSIFICATION RESULTS

In Section 8.4, we described two methods for forming a committee output. For the

first method – the voting committee – each network is given a vote, and if the number

of positive votes is greater than or equal to the voting threshold vt (typically half of

the total number of networks), then the committee vote is considered positive. (An

individual network vote is considered positive, if the first network output is greater

than or equal to the detection threshold dt [typically 0.5].) For the second method –

the averaged committee – the outputs of the individual networks are averaged, and

the committee result is considered positive, if the average of the first output is greater

than or equal to dt.

In Section 8.4, we also described two ways of forming the training data set. In

one method, balanced data sets (equal numbers of normal and abnormal beats) are

obtained to train committee members by randomly selecting subsets of the full data

set. In the other method, the full data set is used. However, when the full data

set is used, something must be done to compensate for the fact that there are fewer

abnormal beats than normal beats in the overall data set. There are three ways to

compensate – we can adjust the error weighting ρ, the detection threshold dt or the

voting threshold (vt). Each of these parameters influences FPR and FNR, which we

would like to keep relatively equal. If ρ is increased (or vt or dt is decreased), then

FPR will increase and FNR will decrease. The idea will be to hold two of these

parameters fixed, and adjust the other two until FPR and FNR are approximately

balanced.

In Section 9.1, we show results for the balanced data set and the voting commit-

tee. In this case, ρ = 1 and dt = 0.5, but vt is adjusted to make FPR and FNR

approximately equal.

In Section 9.2, we use the full data set to train a voting committee of 100 networks,

and we begin by adjusting ρ, with dt = 0.5 and vt = 50. We select two values of ρ,

and then use these two values in the remainder of the section. In Subsection 9.2.1,

we set ρ = 5 or ρ = 39 and dt = 0.5, and then we adjust vt to balance TPR and TNR
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for a voting committee. In Subsection 9.2.2, we set ρ = 5 or ρ = 39 and vt = 50, and

then we adjust dt to balance TPR and TNR for an averaged committee. Finally, in

Section 9.3, we analyze the beat classification errors.

9.1 Errors for Balanced Data Committee

Based on the balanced data formation described in Subsection 8.4.2, 100 different

training data sets were formed and were used to train 100 networks. The voting

committee output is considered positive if at least vt networks have their first output

above dt = 0.5. For this committee, FP, FN, total error, FPR, FNR (MR) and ER are

calculated. According to Table 9.1, FPR and FNR are approximately balanced when

vt = 70. At this voting threshold, FNR, FPR and ER are all near 29%. The ROC

curve for the averaged committee is given in Figure 9.1. The corresponding AUROC

is 0.7915. This indicates that the averaged committee of beat classifiers formed using

balanced data discriminates normal and abnormal beats with a probability of 0.7915.

This result will be compared with the result of a committee formed using the full

data set in Section 9.2.
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Figure 9.1: ROC curve for Balanced Data

9.2 Errors for Full Data Committee

When using the full data set, we selected values of ρ to produce approximately equal

FPR and FNR, and also to balance the number of false negatives and false positives.
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Table 9.1: Errors for Balanced Data with Varying vt

vt FN FP Sum FNR ER FPR

5 113 358356 358469 0.009568 0.894955 0.921854

10 250 332604 332854 0.021169 0.831005 0.855608

15 404 310143 310547 0.034208 0.775313 0.797828

20 549 289966 290515 0.046486 0.725301 0.745924

25 723 271474 272197 0.061219 0.679568 0.698354

30 887 254136 255023 0.075106 0.636692 0.653753

35 1079 237393 238472 0.091363 0.59537 0.610682

40 1282 220563 221845 0.108552 0.553859 0.567388

45 1515 203736 205251 0.128281 0.512431 0.524101

50 1788 186839 188627 0.151397 0.470927 0.480635

55 2103 169533 171636 0.178069 0.428507 0.436116

60 2453 151548 154001 0.207705 0.38448 0.38985

65 2868 133090 135958 0.242845 0.339433 0.342368

70 3403 113950 117353 0.288146 0.292984 0.293131

75 4020 94342 98362 0.34039 0.245571 0.24269

80 4761 74633 79394 0.403133 0.198215 0.19199

85 5646 54856 60502 0.478069 0.15105 0.141114

90 6856 35106 41962 0.580525 0.104763 0.090309

95 8408 16761 25169 0.711939 0.062837 0.043117

100 10819 1975 12794 0.916088 0.031942 0.005081
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Table 9.2 compares results for several error weighting ratios. The FN and FP values

are close when ρ = 5, and FPR and FNR are close when ρ = 39. For each of

these two values for ρ, we trained 100 networks with different random initial weights,

and different training/validation divisions. The resulting networks were used to form

committees using the voting and averaging approaches described in Section 8.4.

9.2.1 Using Voting Threshold

This section discusses the results for the voting committee, trained on the full data

set, which was formed by counting the number of networks whose first output was

above the detection threshold dt = 0.5. For error weightings of ρ = 5 and ρ = 39,

we tested twenty different vt values. The committee output is considered positive

(indicating an abnormal beat), if at least vt networks out of the hundred have their

first output above 0.5. If not, the given beat will be considered normal. The summary

of the error calculations when ρ = 5 and ρ = 39 are given in Table 9.3 and Table 9.4,

respectively.

The ROC curve of the averaged committee output using ρ = 5 is given in Fig-

ure 9.2.1. The corresponding AUROC is 0.8376. Notice that the discriminating

performance of this committee is better than the committee formed using the bal-

anced data set. In this case, the probability that the system will discriminate normal

and abnormal beats is about 84%, as compared to 79% when balanced data sets are

used.

(Observe in Table 9.3 that as vt increases, the FP error decreases. When vt =

100, we were able to classify most of the normal beats with an error rate of only

2.89%. Those remaining 119 normal beats that were not classified correctly – the

false positives in Table 9.3 – must have been very difficult for the networks to classify.

A detailed analysis of these beats is given in Subsection 9.3.1, which will identify

problems in the data set.)

With ρ = 5, it is not possible to balance FPR and FNR. For ρ = 39, as shown in

Table 9.4, FPR and FNR are approximately equal when vt = 52. At this value, FPR,

FNR and ER are all approximately 25%. This is less than the 29% rate achieved

using the balanced data sets. In Section 9.3.2, we will go through the details of the

beats that are misclassified using vt = 52.

The ROC curve for the averaged committee, trained with ρ = 39, is given in

Figure 8.2. The corresponding AUROC is 0.8521, which is larger than the 0.8376
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Table 9.2: Error Weighting Ratio Selection

ρ FN FP Sum FNR ER FPR

1 10380 904 11284 0.878916 0.028172 0.002325

2 9913 2244 12157 0.839373 0.030351 0.005773

3 8912 4087 12999 0.754615 0.032453 0.010514

4 8739 5626 14365 0.739966 0.035864 0.014473

5 8104 7859 15963 0.686198 0.039853 0.020217

10 6754 20543 27297 0.571888 0.06815 0.052846

15 6006 33815 39821 0.508552 0.099417 0.086988

20 5508 44100 49608 0.466384 0.123852 0.113445

25 4772 61410 66182 0.404064 0.16523 0.157974

30 4190 75079 79269 0.354784 0.197903 0.193137

35 3309 89465 92774 0.280186 0.23162 0.230145

40 3137 106958 110095 0.265622 0.274864 0.275144

45 3246 133845 137091 0.274852 0.342262 0.34431

50 2694 138970 141664 0.228112 0.353679 0.357494

55 2011 139073 141084 0.170279 0.352231 0.357759

60 2381 161968 164349 0.201609 0.410314 0.416655
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Figure 9.2: ROC Curve for Full Data Trained with ρ = 5
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Table 9.3: Error Calculation Using Voting for Full Data, ρ = 5

vt FN FP Sum FNR ER FPR

5 5474 30699 36173 0.463506 0.09031 0.078972

10 6033 21492 27525 0.510838 0.068719 0.055287

15 6447 16448 22895 0.545893 0.05716 0.042312

20 6809 13086 19895 0.576545 0.04967 0.033663

25 7085 10565 17650 0.599915 0.044065 0.027178

30 7369 8592 15961 0.623963 0.039848 0.022103

35 7641 6983 14624 0.646994 0.03651 0.017963

40 7920 5735 13655 0.670618 0.034091 0.014753

45 8143 4724 12867 0.6895 0.032124 0.012152

50 8394 3941 12335 0.710754 0.030796 0.010138

55 8651 3244 11895 0.732515 0.029697 0.008345

60 8879 2726 11605 0.75182 0.028973 0.007013

65 9081 2259 11340 0.768925 0.028311 0.005811

70 9337 1858 11195 0.790601 0.027949 0.00478

75 9571 1529 11100 0.810415 0.027712 0.003933

80 9807 1268 11075 0.830398 0.02765 0.003262

85 10070 1033 11103 0.852667 0.02772 0.002657

90 10358 798 11156 0.877053 0.027852 0.002053

95 10722 520 11242 0.907875 0.028067 0.001338

100 11427 119 11546 0.96757 0.028826 0.000306
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value for ρ = 5 and the 0.7915 value for the balanced data set method.

To summarize, the best result is observed when we use the voting committee,

trained with the full data set, and with ρ = 39, dt = 0.5 and vt = 52. The resulting

FPR, FNR and ER are somewhat less than 25%.

It would seem that with more than 400,000 sample beats in the data set, we should

be able to achieve smaller error rates. In the analysis section, Section 9.3, we discuss

the types of errors that occur and their causes.

9.2.2 Using Detection Threshold

Another way of compensating for the unbalanced data set is to use an averaged

committee and vary the detection threshold dt. For 100 networks trained using ρ = 5

and ρ = 39, we formed averaged committees. We calculated the error rates for 20

different values of dt. The summaries of the errors are given in Table 9.5 for ρ = 5

and Table 9.6 for ρ = 39.

Notice that FNR and FPR are approximately equal at dt = 0.125 and at dt = 0.5

for ρ = 5 and ρ = 39, respectively. However, these error rates are larger than those for

the voting committee with vt = 52. Hence, for further error analysis and application

we use the network that produced the gray row in Table 9.4, which is the voting

committee, trained with the full data set, and with ρ = 39, dt = 0.5 and vt = 52.

9.3 Error Analysis

In order to have a better understanding of why the errors occur, it is important to

look at those beats that are difficult to classify. In this section, we will identify and

analyze those beats carefully. Later in this section, we will categorize the types of

errors that occur for the best committee.

9.3.1 Difficult to Classify Beats

The first step in this section is to identify those beats that are most difficult to classify

correctly. If we reduce ρ, the number of false positives will be reduced, as there is a

smaller penalty for the false negatives. Also, increasing vt leads to a reduction of the

number of false positives. This is because a larger number of networks must agree

on the existence of an abnormal beat. Therefore, if we use a small ρ and a large vt,

we will have a small number of false positives, and these will be the normal beats
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Table 9.4: Error Calculation Using Voting for Full Data with ρ = 39

vt(ρ = 39) FN FP Sum FNR ER FPR

1 548 258123 258671 0.046401 0.645799 0.664009

2 710 237770 238480 0.060119 0.59539 0.611652

3 824 225638 226462 0.069771 0.565386 0.580443

4 913 216971 217884 0.077307 0.54397 0.558148

5 972 209771 210743 0.082303 0.526142 0.539626

10 1300 185817 187117 0.110076 0.467157 0.478006

15 1527 169708 171235 0.129297 0.427506 0.436566

20 1738 156914 158652 0.147163 0.396091 0.403654

25 1924 145653 147577 0.162913 0.368441 0.374686

30 2082 135718 137800 0.176291 0.344032 0.349128

35 2266 126136 128402 0.191871 0.320569 0.324479

40 2437 117049 119486 0.206351 0.298309 0.301103

45 2603 108347 110950 0.220406 0.276998 0.278718

50 2783 99479 102262 0.235648 0.255308 0.255905

52 2858 96063 98921 0.241998 0.246967 0.247118

55 2968 90940 93908 0.251312 0.234451 0.233939

60 3203 82080 85283 0.271211 0.212918 0.211147

65 3454 73298 76752 0.292464 0.191619 0.188556

70 3762 64586 68348 0.318544 0.170638 0.166144

75 4131 55511 59642 0.349788 0.148902 0.142799

80 4495 46066 50561 0.38061 0.126231 0.118503

85 5013 36339 41352 0.424471 0.10324 0.09348

90 5697 26243 31940 0.482388 0.079742 0.067509

95 6707 15915 22622 0.567909 0.056478 0.040941

100 8943 4227 13170 0.75724 0.03288 0.010874
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Table 9.5: Error Calculation Using Threshold with ρ = 5

dt(ρ = 5) FN FP Sum FNR ER FPR

0.05 517 262924 263441 0.043776 0.657708 0.67636

0.1 2362 121958 124320 0.2 0.310378 0.313731

0.125 3232 87334 90566 0.273666 0.226107 0.224663

0.15 3881 65513 69394 0.32862 0.173249 0.168529

0.2 4822 40314 45136 0.408298 0.112687 0.103706

0.25 5578 26603 32181 0.472312 0.080343 0.068435

0.3 6183 18025 24208 0.523539 0.060438 0.046368

0.35 6775 12317 19092 0.573666 0.047665 0.031685

0.4 7316 8356 15672 0.619475 0.039127 0.021495

0.45 7896 5548 13444 0.668586 0.033564 0.014272

0.5 8415 3834 12249 0.712532 0.030581 0.009863

0.55 8936 2610 11546 0.756647 0.028826 0.006714

0.6 9424 1736 11160 0.797968 0.027862 0.004466

0.65 9879 1196 11075 0.836494 0.02765 0.003077

0.7 10250 819 11069 0.867909 0.027635 0.002107

0.75 10632 538 11170 0.900254 0.027887 0.001384

0.8 11046 325 11371 0.935309 0.028389 0.000836

0.85 11449 133 11582 0.969433 0.028916 0.000342

0.9 11721 24 11745 0.992464 0.029323 6.17E-05

0.95 11809 0 11809 0.999915 0.029482 0

1 11810 0 11810 1 0.029485 0
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Table 9.6: Error Calculation Using Threshold with ρ = 39

dt(ρ = 39) FN FP Sum FNR ER FPR

0.05 0 388594 388594 0 0.970166 0.99964

0.1 9 377635 377644 0.000762 0.942828 0.971448

0.15 59 350280 350339 0.004996 0.874658 0.901079

0.2 168 315827 315995 0.014225 0.788915 0.81245

0.25 351 278323 278674 0.029721 0.695739 0.715973

0.3 611 238784 239395 0.051736 0.597675 0.614261

0.35 996 198208 199204 0.084335 0.497334 0.509881

0.4 1560 159995 161555 0.132091 0.403339 0.41158

0.45 2160 126779 128939 0.182896 0.32191 0.326133

0.5 2755 98761 101516 0.233277 0.253445 0.254058

0.55 3485 75255 78740 0.295089 0.196583 0.19359

0.6 4141 55666 59807 0.350635 0.149314 0.143198

0.65 4900 39593 44493 0.414903 0.111081 0.101851

0.7 5672 26551 32223 0.480271 0.080448 0.068301

0.75 6517 16523 23040 0.55182 0.057522 0.042505

0.8 7535 9249 16784 0.638019 0.041903 0.023793

0.85 8645 4281 12926 0.732007 0.032271 0.011013

0.9 9893 1488 11381 0.83768 0.028414 0.003828

0.95 11195 350 11545 0.947925 0.028823 0.0009

1 11810 0 11810 1 0.029485 0
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that are most difficult to classify. In contrast, a large ρ and a small vt will give us a

small number of false negatives, and these will be the abnormal beats that are most

difficult to classify.

Table 9.3 shows errors for a small ρ (5). If we check the row for the largest vt

(100), we find that there are only 119 false positive beats. These are the most difficult

normal beats to classify correctly. Table 9.7 shows errors for a large ρ (60). If we

check the row for a small vt (2), we find that there are only 201 false negative beats.

These are the most difficult abnormal beats to classify.

Table 9.7: Error Calculation with ρ = 60

vt FN FP Sum FNR ER FPR

1 0 388734 388734 0 0.970515 1

2 201 317975 318176 0.017019 0.79436 0.817976

3 262 301633 301895 0.022185 0.753712 0.775937

4 321 291318 291639 0.02718 0.728107 0.749402

5 365 283260 283625 0.030906 0.708099 0.728673

In order to understand why these 119 FP and 201 FN beats are difficult to identify,

we will investigate other beats with similar shapes that are classified correctly. To

measure the similarity between two beats, we will use Euclidean distance. If the

distance between beats is small, we will call them neighbors, as defined below.

1. The Euclidean Distance d between two vectors, p and q, is given by

d(p,q) = (

length(p)∑
j=1

(pj − qj)
2)0.5 (9.1)

where pj and qj are elements of the vectors p and q, respectively.

2. Two vectors p and q are said to be neighbors, if d(p,q) <= nd, where nd ∈ R+

is called the neighbor distance. Through experimentation, we found that nd =

0.25 produced beats that looked similar to each other, so we used this distance

in the remaining research described below.

For each misclassified beat, we found up to 100 neighbors for analysis. Of the 119

false positives, 41 of them had at least one neighbor. Of the 201 false negatives, 169

of them had at least one neighbor. Then, for those misclassified beats with neighbors,
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Table 9.8: Types of Neighbors for FNs and FPs

Type of Neighbor # Neighbors of FN # Neighbors of FP

FN 3 19

FP 669 17

TN 4954 16

TP 90 39

we identified the neighbors as TP, TN, FP, or FN. Table 9.8 shows the number of FP,

FN, TP and TN neighbors of the false negative and false positive beats.

Notice that the number of TN neighbors of the false negatives is much higher than

the other types of neighbors. There are 4,654 TN neighbors of the false negatives.

A TN beat is a normal beat that is classified as normal by the network, whereas

a false negative beat is an abnormal beat that is misclassified as normal. Because

the neighbors of the FN beats are mainly TN beats, this indicates that there may

be inconsistencies in the physician annotations (as we found for the QRS detection

problem). If the beats are neighbors, then they must have a very similar shape. Since

the FN beats look like many of the TN beats, this means that the physicians classified

beats with the same shape in different ways. (This suggests that many FN beats are

actually normal beats that some physicians classified as abnormal.) The network will

make the choice that is consistent with the majority of the physician annotations,

but if the physician annotations are not consistent, the network will make mistakes

on the minority of annotations that disagree.

For the false positives, most of the neighbors are TP. As in the FN case, this

suggests inconsistency in the physician annotations. There are FP and TP beats that

look very similar. However, the physicians annotated some as normal and others

as abnormal. The network will go with the majority of annotations, since this will

optimize the overall performance. If two beats are almost identical in shape, the

network must assign them to the same class. The physicians do not have the same

constraint.

This effect is illustrated in Figure 9.3. The top left axis is a false negative beat, and

the rest are its neighbors. Similarly, in Figure 9.4, the top left figure is a false positive

beat, and the rest are its neighbors. Recall that the amplitude of a target indicates

whether the beat is normal or abnormal. In Figure 9.3, the amplitude of the target

for the FN beat is 4, which indicates a ventricular abnormality. But the rest of the
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TN beats have a target of amplitude 3, which indicates a normal beat. Visually, all of

the beats in each figure look very similar. However, they were annotated differently

by the physicians. There was a sufficient amount of this inconsistency to significantly

degrade network performance. We will quantify this effect in Subsection 9.3.2.

9.3.2 Types of Errors

When ρ = 39 and vt = 52, we were able to obtain the smallest balanced values

for FPR, FNR and ER. This is represented by the gray row in Table 9.4, which

is reproduced in Table 9.9. Here, there are a total of 98,921 (2,858 FN and 96063

FP) misclassified beats. For each of these beats, we searched for neighbors within

a distance of 0.25. Out of the 2,858 false negatives, 1,840 of them have neighbors,

and out of the 96,063 false positives, 30,964 of them have neighbors. (Note that the

number of neighbors of each misclassified beat might vary from 1 to 500.) There are

60,566 and 85,243 neighbors of false negatives and false positives, respectively. These

neighbors are then classified as TP, TN, FP, or FN. The summary is given in Table

9.10.

Table 9.9: Minimum Balanced Errors

FN FP Sum FNR ER FPR TP TN

2858 96063 98921 0.241998 0.246998 0.247118 8952 292671

Table 9.10: Neighbors Classification for ρ = 39

Type of Neighbor # Neighbors of FNs # Neighbors of FPs

FN 1050—0.88% 748—1.7%

FP 2313—31.7% 27041—3.8%

TN 56927—65.9% 56185—94%

TP 276—1.5% 1269—0.5%

For the false negatives, we see that the majority of the neighbors are TN. This is

consistent with the discussion in Section 9.3.1 for the most difficult to classify beats.

When the FN neighbors are TN, there are beats that look the same, but some are

annotated as normal, and others are annotated as abnormal. This is going to cause

difficulties for the neural network.
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The pattern for the false positives in this case is different than it was for the most

difficult to classify beats in the previous section. Here the largest group of neighbors

for the false positives are TN. This is most likely caused by the unbalanced data set.

Because we are trying to balance FNR and FPR, we are going to classify some normal

beats as abnormal.

To clarify these ideas, we provide some specific examples next.

1. True Negative Neighbors of a False Negative Beat

In Figure 9.3, a false negative beat is given at the left top corner; the rest are

true negative neighbors. The type of neighbor, the vote and the distance to the

neighbor are also shown at the top of each axis. Notice that the vote for each

of the cases in the figure was zero. This indicates that all 100 networks agreed

that all four beats shown in the figure have the same pattern, which is normal.

Moreover, the relative distances of the false negative from the true negatives is

0.1, 0.1, and 0.13, which indicates that the beats are very close to each other

(which can also be seen visually), although the physician annotation for the top

left beat is different. There are 1,184 such beats that are annotated as abnormal

while their neighbors are normal. This suggests that 41.4% of the false negative

errors were caused by inconsistent annotations.

2. True Positive Neighbors of a False Positive Beat

As with the false negative beat example, there are inconsistent annotations

among the false positive beats. In Figure 9.4, all but the top left beat are

normal. The number of votes in all of these four beats is 100, which indicates

that all the 100 networks agreed that the given beat is indeed abnormal. There

are 29,307 such beats that are annotated as normal while their neighbors are

abnormal. If the annotation was consistent, we would have reduced 30.5% of

the false positive errors caused by such inconsistent annotations.

3. Exactly the Same Sequences and Beats Annotated Differently

Some sequences were annotated multiple times by different physicians. This

has resulted in different annotations for exactly the same beats. According to

Figure 9.5, there is no abnormal beat in the sequence, since the amplitude of

the target in red is 3. When this same sequence was annotated by a different

physician, in Figure 9.6, five abnormal beats are indicated. Note that the

amplitude of the target in red is 1, wherever these abnormal beats occur.
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Figure 9.3: True Negative Neighbors of a False Negative Beat
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Figure 9.4: True Positive Neighbors of a Missclassified False Positive
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On the other hand, Figure 9.7 shows that all of the three TN beats are exactly

the same as the FN beat at the left top corner. Though they are exactly the

same beats, as indicated by their relative distance of 0, the FN beat is annotated

as 1, and the rest as 3. Clearly, these four beats are exactly the same. The

network classified them as normal.
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Figure 9.5: Exactly the Same Sequences Annotated Differently 2

Summary

There are many fewer abnormal beats than normal beats in the data set. If the

error weighting were equal for all cases, the network could make the error very small

by classifying all beats as normal. We have used an unbalanced error weighting in

order to achieve a balance between false negative and false positive error rates. As

we increase the error weighting on the false negatives, we can cause more abnormal

beats to be correctly classified, but more normal beats will then be misclassified

(false positives). For the abnormal beats that continue to be misclassified (false

negatives), even as the error weighting increases, we find that approximately 94% of

their neighbors are normal (true negative). This implies that the physicians are not

consistent in their classifications.

There are certain types of beats that the physicians sometimes classify as normal,

and other times classify as abnormal. The network classifies them as normal, because

the majority of the physicians classify them as normal. But the physicians are not
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Figure 9.6: Exactly the Same Sequences Annotated Differently 1

consistent in these classifications. For the normal beats that are misclassified (false

positives), some neighbors are false positives, but some neighbors are true negatives.

The number of true negative neighbors increases as the error weighting increases,

because the network is penalized more for false negatives than for false positives. It

appears that a large proportion of the errors can be reduced by obtaining a more

consistent physician classification. We estimate that we could have reduced 41.4% of

the false negative errors and 30.5% of the false positive errors errors if there was no

inconsistency.
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Figure 9.7: Exactly the Same Beats Annotated Differently
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CHAPTER 10

CONCLUSIONS

This report has described the development of an automated system for EKG signals.

The system involves two subsystems:

1. Detecting the QRS complexes in a signal.

2. Categorizing the normal and abnormal cardiac cycles in a signal.

This first subsystem – the detection of QRS complexes uses a focused time delay

neural network (or a committee of such networks), followed by a threshold detection

module, to provide an indication of the location of the R wave. The network was

trained using 11,875 different physician-annotated sequences of EKG signals, each

consisting of 9,000 time points at a 300 Hz sampling rate. To incorporate the 351

time delays at the input of the neural network, so that a window in time of the EKG

signal can be used to determine the R wave location, the data used to train the

network consisted of 19 groups of 351× 5, 406, 250 input matrices and 2× 5, 406, 250

target matrices. Only one group could be resident in memory at the same time, so

training proceeded in stages.

The final trained QRS detection system was tested for precisions of 10 ms and

167 ms on the R wave location. On the training/validation data set, for the 10

ms precision, the system achieved a Miss Rate of approximately 5.6% and a False

Detection Rate of approximately 5.5%, with a Relative Error Rate of approximately

11% and a total Error Rate of 0.049%. For the 167 ms precision, the system achieved

a Miss Rate of approximately 2.3% and a False Detection Rate of approximately

2.1%, with a Relative Error Rate of approximately 4.2% and a total Error Rate of

0.018%.

On the test set, which was not used at all for network training, or for setting

any algorithm parameters, the error rates were almost the same as the training set

rates. Because the test set was randomly selected from the large original data set,

and because it was not used in any way to develop the neural network QRS detection
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system, we can expect that error rates obtained on future data sets will be similar to

those described in this report.

An analysis of the errors in the automated QRS detection system found that ap-

proximately 60% of the training/validation set errors for the 10 ms precision occurred

because of inconsistencies in the physician annotation. An additional 32% of the er-

rors occurred because of very high noise on the EKG signal. A further 3.7% of the

errors occurred because of very low signal levels. The remaining 4.3% of the errors

occurred for miscellaneous reasons.

To provide a reference point with which to gauge the neural network annota-

tion system, we also used the Pan-Tompkins QRS detection algorithm, which is the

most cited EKG algorithm in the literature. Pan-Tompkins was recently tested [3]

against two other popular methods and was found to be the most accurate. The

results of our tests showed that the Pan-Tompkins error was a 200% increase (0.11

to 0.33 RER) over the neural network error for the 10 ms precision, and approxi-

mately a 75% increase (0.046 to 0.08 RER) for the 167 ms precision. The neural

network significantly and consistently outperformed Pan-Tompkins throughout the

training/validation data set. The neural network also outperformed Pan-Tompkins

by a similar amount on the test set, which was not used in any way in developing the

neural network QRS detection system.

The conclusion of this subsystem is that the neural network QRS detection system

is very accurate. It can be made more accurate by refining the data set. In particular,

if the inconsistency in physician annotations can be adjusted, the errors should drop

significantly. In addition, with the more accurate data set, it should be possible to

use larger (perhaps deeper) networks, a larger committee, and longer training times,

which should further enhance the performance.

Although the QRS detection system can be improved, it is accurate enough to

develop the beat classification system. In this second subsystem, an attempt has

been made to classify cardiac cycles as normal and abnormal. First, we selected

those correctly detected beats from the QRS detection system. We have 400,544 such

beats, where each beat contains the contents of the 351 tapped delay line that are

at the input to the QRS detection system. Along with this beats, the corresponding

physician annotation for normal or abnormal is used to form the target set.

For this system we used a committee of 100 networks and a voting of 52. Each

of the 100 networks that form the committee are trained using an error weighting of

ρ = 39. The training and validation error of this system is 24.7% of ER, 24% of FPR
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and FNR. However, 41.4% of the false negative and 30.5% of the false positives occur

due to inconsistent annotations by the physicians.

10.1 Future Work

The final stage of the development of a full flagged system includes a system that

specifies the arrhythmia of the abnormal cycles. This system can use all abnormal

cycles from the beat classification data set. Again, a multilayer network can be

used to refine the classification into types of arrhythmia. Starting from a two layer

networks, one can use deeper networks with more neurons. This will depend on the

accuracy of the QRS detection system and the beat classification system. Moreover,

the refinement of the data set will be very crucial as the process proceeds.
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