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Abstract: A common anthropogenic influence on wildlife is the use of supplemental bird 
feeders. Dependent on abundance and natural food availability, this supplemental food 
source could influence individual survival and productivity. In this study, supplemental 
food availability was experimentally manipulated in a wild population of Eastern 
Bluebirds, Sialia sialis. This was done to examine the influence of the common pastime 
of bird feeding on physiology and reproductive success of bluebirds, especially when 
supplemental feeding is inconsistent. Adult and nestling bluebirds were assigned to one 
of three groups. In the first group, birds received mealworms (Tenebrionidae larvae) 
throughout the breeding attempt. In the second group, birds received mealworms from 
nest completion until nestlings hatched. Birds in the third group received no 
supplementation but were disturbed at the same frequency as birds in the other two 
groups. Nestling growth and reproductive success were calculated to examine differences 
resulting from my experimental manipulation. I also collected blood samples from adults 
and nestlings to quantify differences in bacterial killing ability, circulating corticosterone 
levels, and heterophil to lymphocyte ratios between the experimental groups. Finally to 
determine if differences in habitat quality contributed to the effect of food 
supplementation on bluebird physiology and nest success, data on invertebrate abundance 
were collected on a subset of territories. I found bacterial killing ability, baseline 
corticosterone and heterophil to lymphocyte ratios of adults and nestlings were not 
significantly different across the experimental groups. Nestling mass, tarsus, and wing 
chord length were unaffected by experimental treatment. Invertebrate abundance and 
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laying and later. Supplemental food availability may only have significant effects on 
physiology metrics and nest success in years with low environmental food availability.
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CHAPTER ONE 

 

 

GENERAL INTRODUCTION 

 

 

INTRODUCTION AND OBJECTIVES 

Anthropogenic effects on wildlife are important to consider as these effects can have a 

lasting influence on populations. A particularly common anthropogenic effect is the 

addition of supplemental food to an animal’s environment. Supplemental food 

provisioning for birds is particularly common, especially in urbanized areas (Robb et al., 

2008). Waste around cities can assist generalist and invasive species such as House 

Sparrows (Passer domesticus) by providing additional food sources including grains and 

seeds. Research has been conducted previously on the effects of consolidated waste in 

city landfills on bird populations (Kihlman and Larsson, 1974). The study evaluated 

wintering populations of Herring Gulls (Larus argentatus) and found that the landfill in 

the research area increased the local population size. Several other studies have also 

investigated effects of landfills (Boarman et al., 2006; Duhem et al., 2008). While 

population sizes of species tolerant to urban environments generally increase in density, it 

is typically at the expense of biodiversity (Shochat et al., 2010).  
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Bird feeders, or supplemental feeders, are common in urban environments throughout 

North America with $3.4 billion dollars spent on supplemental bird feed, and 47% of 

households participating in the pastime in 2006 (Orros and Fellowes, 2012; USFWS, 

2006). In my thesis, I used an experimental approach to test the effects of supplemental 

feeding on a wild population of Eastern Bluebirds (Sialia sialis) a common target for bird 

feeding, by addressing three objectives: 

OBJECTIVE ONE: Determine how access to supplemental food impacts baseline 

corticosterone (CORT) concentrations, heterophil to lymphocyte ratios (H:L) ratios, and 

bactericidal capabilities of Eastern Bluebirds. 

OBJECTIVE TWO: Determine how access to supplemental food influences nesting 

success of Eastern Bluebirds. 

OBJECTIVE THREE: Determine how natural food abundance in the environment 

interacts with supplemental feeding to influence metrics of nesting success. 

METHODS OVERVIEW 

I manipulated food availability for Eastern Bluebirds by creating three trial 

groups. The first group was given mealworms as a supplemental food source from the 

nest construction phase until the nestlings fledged (FULL). The second group was given 

supplemental food from nest completion until egg hatching (PART). These groups were 

then compared to the control (CONT), which did not receive supplementation but, in 

which nest boxes were opened the same number of times as the FULL and the PART 

groups.  
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To accomplish my objectives, I used two metrics of activation of the stress 

response. First, I evaluated concentrations of the steroid hormone corticosterone (CORT). 

CORT is the main glucocorticoid in birds, and is released in response to stressors, 

including reduced food availability (Wingfield, 1995). Secondly, I quantified the 

leukocyte profile, particularly the ratio of heterophils to lymphocytes (H:L ratio) in 

circulation. In response to stress exposure, the number of heterophils in circulation 

generally increases and the number of lymphocytes decreases (Davis et al., 2008). This 

change in the leukocyte profile occurs more slowly than the elevation of circulating 

CORT and may also persist over a longer period of time (Davis et al., 2008; Goessling et 

al., 2015). Lack of food, or removal of a food source at a critical time point in the 

breeding cycle, may be a stressor sufficient to affect these metrics in birds. I also 

evaluated plasma bactericidal capabilities through baterial killing assays (BKA). 

Bactericidal capability is a useful metric for evaluating an individual’s susceptibility to 

infection and potential ability to mount an immune response (O’Neal and Ketterson, 

2011).  

To evaluate nesting success, I recorded clutch size, hatching success, brood size 

and fledging success in each of the experimental groups. I also conducted invertebrate 

surveys to approximate natural food availability in the environment. I then compared the 

nest success metrics with my data on natural food abundance, and invertebrate order 

richness to determine if the amount of food available in the environment impacted the 

response of individuals to my supplement groups. Overall, this study evaluated the effects 

of an anthopogenic food source on a species commonly targeted for supplemental feeding 

and thus provides insight into human impact on a species.  
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CHAPTER TWO 

  

 

EFFECTS OF SUPPLEMENTAL FEEDING ON EASTERN BLUEBIRD 

PHYSIOLOGY 

 

INTRODUCTION 

Human populations coexist with wildlife populations; therefore, it is important to 

understand both negative and positive interactions we have with wildlife populations. A 

perceived beneficial anthropogenic effect on wildlife populations is supplemental 

feeding, which is an additional anthropogenic food source in an environment, when it is 

not naturally available (Robb et al., 2008a; Sguassero et al., 2012). Previous studies have 

shown that supplemental feeding can increase bird population numbers and advance 

laying date (Ewald and Rohwer, 1982; Galbraith et al., 2015). However, the 

physiological basis for the effects of supplemental feeding on population numbers and 

mortality have been studied less extensively (Arcese and Smith, 1988; Brittingham and 

Temple, 1988). Additionally, it is possible that earlier laying dates and larger population 

sizes are not beneficial over the long-term. This may be true if some birds that survive as 

a result of supplemental feeding are ultimately not able to successfully compete for 

nesting sites (Jones et al., 2014). Moreover, earlier egg laying may lead to a mis-match 
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between the peak of natural food availability and the peak of offspring food demands 

(Robb et al., 2008b; Schoech and Bowman, 2001). Additionally, among birds, the use of 

supplemental feeders can have ecologically and physiologically detrimental impacts, 

including increased risk for predation exposure and disease transmission due to 

congregation at feeders (Hanmer et al., 2017; Robb et al., 2008b). Metrics that allow us to 

uncover any detrimental effects on wildlife caused by supplemental feeding would be 

extremely valuable in this context.  

To evaluate physiological condition, some metrics are easily quantifiable, indirect 

measures of potential survival probability (Bonier et al., 2009; Davis et al., 2008; Marra 

and Holberton, 1998). These indirect measures include circulating levels of the steroid 

hormone corticosterone (CORT) which, when chronically elevated may be associated 

with reduced survival between years (Goutte et al., 2010) and lower immune function 

(Angelier et al., 2010). However, the relationship between CORT and individual 

condition or allostatic load is complicated, particularly in the context of field studies, as 

many factors can trigger the release of CORT (Bonier et al., 2009; Goutte et al., 2010). 

Another indicator of survival probability is the change which occurs in the leukocyte 

profiles of individuals, particularly the ratio of heterophils to lymphocytes (H:L ratio), in 

response to stressors (Lobato et al., 2009). Nestlings with lower total leukocyte counts 

have higher recruitment rates, as was seen in pied flycatchers, Ficedula hypoleuca 

(Lobato et al., 2009). Also heightened H:L ratios can indicate exposure to ectoparasites 

(Müeller et al., 2011) or recent injury (Vleck et al., 2000), and are modulated by stress 

hormone levels (Davis et al., 2008). A final indicator of survival probability is a 

functional measure of immune function known as bacterial killing ability (Hornef et al., 
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2002). Bactericidal capabilities are good indicators of an individual’s susceptibility to 

bacterial infection (Millet et al., 2007; O’Neal and Ketterson, 2011; Tieleman et al., 

2005).  

CORT is one hormone involved in moderating the stress response in vertebrates, 

and sends signals to the body to respond to stress stimuli (Wingfield, 1995). Stress coping 

methods include redistribution of white blood cells to attack pathogens and heal wounds 

(Dhabhar et al., 2009). CORT secretion has been shown to increase in times of food 

strain or experimental fasting (Kitaysky et al., 2007; Lynn et al., 2003; Lynn et al., 2010).  

Food strain can be induced by low food availability in the environment or the removal of 

a food source at a critical time during reproduction. It is possible, therefore, that birds 

with supplemental food available would have lower baseline levels of CORT due to 

reduced food strain. A study in another passerine bird, the Eurasian Treecreeper (Certhia 

familiaris), found a negative correlation between invertebrate density, as a measure of 

food availability, and CORT concentrations (Suorsa et al., 2003). However, CORT has a 

short half life, approximatey 22 minutes in chickens (Birrenkott and Wiggins, 1984), 

which causes the hormone to dissipate fairly quickly after an acute stressor is removed. 

For stressors of longer duration, such as chronic food stress, baseline CORT levels may 

not be a reliable indicator of stress exposure (Kitaysky et al., 2007; Smith et al., 2006). 

Also, simulations of natural environmental changes including food manipulation can 

have different outcomes than other types of chronic stressors, indicating study design 

may in itself influence CORT results (Dickens and Romero, 2013). Therefore, another 

metric of an elevated stress response, such as changes in the leukocyte profile, may be 
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more responsive to (Mashaly et al., 2004; Maxwell et al., 1993), or better indicate, 

prolonged stress exposure (McFarlane and Curtis, 1989; Vleck et al., 2000).  

In birds, heterophils attack and kill pathogens through phagocytosis (Genovese et 

al., 2013). Lower heterophil numbers indicate that cells have not been recently triggered 

by an inflammatory response or foreign bacteria (Davis et al., 2008). Lymphocytes also 

function in systemic pathogen defense and include T cells, B cells, and Natural Killer 

cells (Berrington, 2005). In response to stress exposure, the number of heterophils in 

circulation increases and the number of lymphocytes decreases, increasing the H:L ratio 

overall (Davis et al., 2008). This change in the leukocyte profile occurs more slowly than 

the elevation of circulating CORT levels and may also persist over a longer period of 

time (Davis et al., 2008). Thus, this measure of innate immune function may provide 

important insight into the effects of food stress over the long-term.  

Supplemental feeding may also contribute directly or indirectly to disease 

susceptibility. Individuals at bird feeders may be at risk of increased risk of exposure to 

diseases, such as Salmonella and avian pox, due to congregation around the feeder site 

(Brittingham and Temple, 1986; Fischer et al., 1997; Robb et al., 2008b; USGS, 2016). It 

is possible that supplemental feeding can prolong the lives of diseased individuals, which 

otherwise may not have been able to forage (Fischer et al., 1997). It is important to 

understand if individuals at supplemental feeders have enhanced immune function either 

through repeated exposure to disease or increased energy available to allocate toward 

immune function. Bactericidal capability as measured with bacteria killing assays (BKA) 

is a good direct measure of constitutive immune function against specific bacterial 

strains, and is easily interpretable because a greater level of killing in the assay indicates 
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greater resistance against bacterial infection (Matson et al., 2006; Millet et al., 2007; 

O’Neal and Ketterson, 2011).  

I studied the potential effects of supplemental feeding on stress physiology and 

immune function of Eastern Bluebirds, Sialia sialis. Eastern Bluebirds are an 

insectivorous and invertebrate consuming passerine species that are commonly provided 

with mealworms (Tenebrionidae beetle larvae) as a supplemental food source. The 

species’ range extends from the central United States to the Atlantic Coast (Sibley et al., 

2014), and birds prefer to nest in edge habitats, including edges created by human 

development, which brings them into close contact with humans (Jones et al., 2014). 

Eastern Bluebirds are secondary cavity nesters, utilizing both natural and artificial 

cavities.  

I manipulated food availability for Eastern Bluebird adults and nestlings in one of 

three ways. A fully supplemented nesting attempt received mealworms from nest 

completion until fledging (FULL). The partially supplemented group received 

mealworms only until hatching (PART), and these two groups were compared to a 

control (CONT), which received no mealworms, but was disturbed at the same 

frequency. All boxes were opened the same number of times, regardless of treatment 

group. Further, I provided supplementation inside of the boxes to be able to specifically 

manipulate food availability for particular individuals, which differs from most externally 

mounted feeders used in previous studies (i.e. Brittingham and Temple, 1986). I 

hypothesized, that CORT and H:L ratios would be higher in birds more subject to food 

strain (PART>CONT>FULL). This would be due to the fact that of my experimental 

groups, the PART group may be the most subject to food strain as this manipulation 
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removes a food source at a time when food requirements rapidly increase (hatching 

stage). Finally, I hypothesized that the bacterial killing ability of nestlings would be 

highest for young in nest boxes with supplemental food available throughout the nesting 

attempt (FULL>PART/CONT), as supplemental feeding of adult females prior to egg-

laying has been shown to improve other metrics of nestling immune function (Moreno et 

al., 2008). Due to the short period of time between food manipulation and blood sample 

collection in my study, I did not anticipate differences in H:L and BKA between the 

FULL and PART groups in the adults. If there were a difference to be seen in H:L and 

BKA, I would predict that the FULL/PART groups would have higher BKA due to 

increased energy availability to devote towards immune function, and lower H:L ratios 

due to the reduction of any potential food strain the adults faced naturally. I also 

predicted that BKA would be higher in adults than in nestlings because younger birds 

cannot yet efficiently produce antibodies endogenously (Grindstaff et al. 2003), and are 

largely limited therefore, to innate immune responsiveness (Lawrence et al., 1981; 

O’Neal and Ketterson, 2011).   

METHODS 

Field methods: Nest boxes (2015: n = 187, 2016: n = 176) located along walking trails 

and roads in Stillwater, Oklahoma (36°7′18″N 97°4′7″W) were used to manipulate the 

food available to breeding Eastern Bluebirds. Nest boxes were checked 2-3 times weekly 

throughout the breeding season from March-August in 2015 and 2016. Individual boxes 

were monitored daily when complete nests were detected to determine first egg dates. 

Boxes were again monitored daily when clutches were within two days of their expected 

hatch date (clutch completion date + 13 days). Then finally, nest boxes were also 
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monitored daily when nestlings were 14 days post-hatch or older to determine if fledging 

occurred. This level of monitoring follows methods used previously in this population 

(e.g., Grindstaff et al., 2012). Small feeding cups (2 oz., plastic) were mounted in all nest 

boxes prior to the breeding season. In these cups, supplemental food (mealworms) was 

provided by adding fifteen mealworms (1.909 ± 0.177g) per individual bluebird in the 

nest box, including both adults and nestlings, three times per week (Smith, 2017). Each 

time I visited the box, I noted whether the cups were empty or contained mealworms to 

track if the birds had consumed them. Nesting pairs with mealworm cups which were 

consistently full upon return were excluded from all analyses.  

Adults were captured for measurement beginning two days after the hatching of 

the brood using a nest box trap (Friedman et al., 2008). At the time of capture, adults 

were first blood sampled, then banded, and finally, wing, tail length, mass, and tarsus 

were measured. We attempted to take all blood samples in under three minutes from 

capture. Those that took longer than three minutes to collect were excluded from CORT 

analysis due to a likely increase in baseline CORT because of handling stress (Romero 

and Reed, 2005). On day 5 post-hatch (hatch date = day 0), nestlings were individually 

marked with nail polish on their claws for identification and were banded with a USFWS 

aluminum band on day 11 post-hatch. Nestling body size was measured on days 5, 11, 

and 14 post-hatch. Wing length and mass were measured on all three days. Tarsus 

measurements were collected only on days 11 and 14.  Nestling blood samples were 

collected on day 14. Bluebirds are sexually dimorphic as adults and nestlings (Gowaty 

and Plissner, 2015). Adult males have a bluer head and typically more intense coloring 

overall than adult females. The sex of nestlings is distinguishable by day 13 and nestlings 
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with predominantly blue wing feathers were sexed as male (Gowaty and Plissner, 2015). 

Further, bluebird nestlings fledge at 16-19 days (Gowaty and Plissner, 2015; Pinkowski, 

1975).   

Blood Sampling and Stress Physiology Methods: Blood samples (50-100 µL) were 

collected from all nestlings and adults within three minutes of removing from the box to 

accurately determine baseline CORT levels (Owen, 2011). All blood samples were taken 

between 0700-1100 hours to minimize variation due to circadian rhythms in hormone 

levels (Romero and Remage-Healey, 2000). Approximately 5-10 µl of each whole blood 

sample was used to prepare blood smears in the field. The remainder of each whole blood 

sample was kept cool on ice until it was brought to the laboratory for processing within 4 

hours of collection. Blood samples were spun down for 7 minutes at 5000 rpm in a 

centrifuge and plasma was separated from red blood cells. The plasma was then stored at 

-20°C until it was used in bacterial killing assays (BKA) to quantify immune function or 

to measure CORT.  

Slides were stained with Differential Quik Stain following kit instructions 

(Triangle Biomedical Sciences; Davis et al., 2008). Heterophil to lymphocyte (H:L) ratios 

were calculated by counting all heterophils and lymphocytes on the slide until 100 cells 

had been counted. Slides were not included in statistical analyses if more than 50% of the 

white blood cells in the inner regions of the slide appeared ruptured. Otherwise, all 

smears collected for each adult were counted. One nestling from each breeding attempt 

was selected at random for analysis. Heterophils, lymphocytes, and other white blood 

cells were identified by comparing them to images in the Atlas of Clinical Avian 
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Hematology (Clark et al., 2009) by an expert in white blood cell identification, Ian 

Kanda, who was blind to the identity of the treatment groups.  

Enzyme immunoassays (Corticosterone ELISA Kit ADI-901-097, Enzo Life 

Sciences) were used to quantify circulating CORT levels. Based on previous optimization 

of the assay for Eastern Bluebirds (Ambardar unpubl. data), plasma samples were diluted 

1:40 and 1.5% steroid displacement reagent (SDR) was used. All samples were run in 

duplicate and the corticosterone standards (20,000, 4,000, 800, 500, 160, and 32 pg/mL) 

were run in triplicate. The optical density of the plates was then read at 405 nm on a 

BioTek ELx808 microplate reader. Intra-assay coefficients of variation (CV) were 

calculated by determining the standard deviation of sample duplicates, dividing by the 

mean of the duplicates, and multiplying by 100%. Samples from 2015 and 2016 were 

distributed across 22 assays. Samples with CVs higher than 15% were re-run once. Those 

that were still above 15% were removed from analyses (intra-assay CV: 6.25%). Inter-

assay CVs were calculated by plating high and low concentration standards on multiple 

plates. The CVs for the high and low standards were calculated by finding the standard 

deviation of the plate triplicates, dividing by the mean of the triplicates, then multiplying 

by 100%. The CVs for the high and low standards were then averaged to determine the 

inter-assay CV (inter-assay CV: 14.57%).    

Bacterial killing ability was quantified for all adults and for one randomly 

selected nestling within each brood. Tryptic soy agar (Fisher Scientific, DF0369-17-6) 

plates were made under sterile conditions and stored at 4°C the day prior to conducting 

assays. Escherichia coli (ATCC #8739, Microbiologics) stocks and dilutions were 

prepared the day before assays were conducted. E. coli stock solutions were prepared by 
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adding one lyophilized bacteria pellet (5.6 x 107 CFU) to 40 mL of phosphate-buffered 

saline (Sigma Aldrich, P-5368), which was then incubated at 37°C for 30 minutes and 

stored at 4°C. Plasma and bacteria were incubated in carbon dioxide independent media 

(Invitrogen Inc, Gibco media #18045). Additionally, 200 µL of 200 mM L-glutamine 

(Life Technologies, 25030-149) was added to the solution prior to incubation. To perform 

the assay, 5 µL of plasma was combined with 100 µL of the media solution and 10 µL of 

bacterial working solution. The bacteria and plasma were incubated together for 30 

minutes at 41°C, the samples were then plated on agar plates and incubated for a 

minimum of 12 hours at 37°C. Control plates were prepared in the same manner as 

experimental plates; however, control plates did not contain plasma. The number of 

colonies on each plate was counted after the 12-hour incubation. The bacterial killing 

ability of each plasma sample was quantified as the percent difference in the number of 

colonies on plasma treated plates compared to the number of colonies on control plates.   

Statistical Methods:  

Baseline corticosterone levels were evaluated for a total of 202 individuals in the 

2015 and 2016 field seasons. CORT data were analyzed using general linear mixed 

models with SAS 9.4 software. CORT data were not normally distributed; therefore, the 

data were normalized to reduce positive skew by log10 transforming (Lobato et al., 2009). 

To account for repeated measures of adult CORT levels, I included individual band 

number as a random effect in general linear mixed models. To account for the non-

independence of young within a brood, I included nest identity as a random effect in 

general linear mixed models. 
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Analyses for BKA and H:L were performed using IBM SPSS Statistics 23 

software. H:L ratio data (n = 105) were not normally distributed; therefore, I normalized 

the data to reduce positive skew by log10 transforming.  H:L ratios were not statistically 

different between years (F1, 104 = 0.94, p = 0.33; 2015: mean±SE=0.73±0.09, n = 46; 

2016: mean±SE=1.08±0.30, n = 59), sexes (F1, 103 = 0.70, p = 0.41; Female: 

mean±SE=1.05±0.28, n = 63; Male: mean±SE=0.74±0.11, n = 41), or age groups (F1, 104 

= 0.17, p = 0.68; Nestlings: mean±SE=0.86±0.10, n = 55; Adults: mean±SE=1.00±0.35, n 

= 50). H:L ratios also were not correlated with mass, CORT, BKA, brood size, or 

collection date (all p > 0.60); therefore, a one-way analysis of variance (ANOVA) with 

food treatment as the predictor variable was used and data were analyzed independent of 

sex, age, or year of sampling.  

A total of 118 individuals were evaluated for bacterial killing ability in the 2015 

(n = 46) and 2016 (n = 72) field seasons. To assess normality, I inspected normality 

curves and skewness and kurtosis values. BKA was analyzed using a one-way ANOVA. I 

first tested if the fixed effects of year, sex, and age class significantly influenced BKA. 

Bacterial killing ability was significantly lower in nestlings than in adults (F1, 116 = 18.68, 

p < 0.001; adults: mean±SE=55.63±3.89%, n = 50; nestlings: mean±SE=36.28±2.56%, n 

= 68; Fig. 1). As a consequence, data for adults and nestlings were analyzed separately. 

Within the adults, there was no significant difference in bacteria killing ability between 

males (mean±SE=52.19±5.83%, n = 21) and females (mean±SE=58.76±5.40%, n = 28; 

F1, 47 = 0.67, p = 0.42). BKA quantified in adults also was not significantly impacted by 

year (F1, 47 = 0.18, p = 0.68; 2015: mean±SE=53.83±6.75%, n = 19; 2016: 

mean±SE=57.28±4.92%, n = 30). Within nestlings, there also was no significant 
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difference in mean bacteria killing ability between males (mean±SE=34.56±4.67%, n = 

31), and females (mean±SE=37.79±2.60%, n = 38; F1, 67 = 0.40, p = 0.53). Among 

nestlings, there also was no significant difference in mean bacteria killing ability between 

samples collected in 2015 (mean±SE= 35.11±5.28%, n = 27) and those collected in 2016 

(mean±SE=37.13±2.45%, n = 42; F1, 67 = 0.15, p = 0.70).  

RESULTS 

Baseline Corticosterone: In adults, CORT concentrations tended to be negatively 

correlated with body mass (r = -0.26, d.f. = 56, p = 0.06); therefore, mass was included as 

a covariate in adult CORT models. There was no significant effect of supplement group 

on baseline corticosterone concentrations (F2, 26.1 = 1.34, p = 0.28; control: 10.20±1.19 

ng/mL; part: 9.21±1.10; full: 12.00±1.53 ng/mL; Fig. 2). Similarly, there was no 

significant effect of supplement group on baseline corticosterone levels in nestlings (F2, 

64.5 = 0.45, p = 0.64; control: 8.57±0.67; part; 9.77±1.21; full: 9.26±0.88 ng/mL; Fig. 3).    

Heterophil to Lymphocyte Ratios:  There was no significant effect of supplement group 

on heterophil to lymphocyte ratios (F2, 101 = 0.17, p = 0.85; control: 0.54±0.32, n = 55; 

part: 0.56±0.13, n = 24; full: 0.62±0.13 n = 23; Fig. 4). 

Bacterial Killing Ability:  

In the adults, no significant correlations were found between bacteria killing 

ability and brood size (r = 0.10, n = 49, p = 0.51) or date of blood sample collection (r = 

0.04, n = 49, p = 0.81). In adults, BKA was negatively correlated with body mass (r = -

0.29, n = 49, p = 0.04). Thus, mass was included as a covariate in the final univariate 

ANCOVA model. There was no significant difference in bacteria killing ability among 
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the control (mean±SE=57.53±5.43%, n = 21), part (mean±SE=56.14±6.42%, n = 14), and 

full treatment groups (mean±SE=53.36±9.60%, n = 14; F2, 49 = 0.36, p = 0.70; Fig. 5). 

No significant relationships were found between nestling bacteria killing ability 

and brood size (r = -0.03, n = 69, p = 0.80) or date of blood sampling (r = 0.01, n = 69, p 

= 0.91). Next, I tested if BKA was significantly correlated with body mass. In nestlings, 

bacterial killing ability was positively correlated with body mass (r = 0.35, n = 69, p = 

0.004). Thus, I included body mass as a covariate in ANCOVAs to analyze differences in 

BKA among the experimental groups. In nestlings, there were no significant differences 

in bacterial killing ability among the control (mean±SE=38.64±3.83%, n = 32), part 

(mean±SE=29.26±5.81%, n = 14), and full treatment groups (mean±SE=37.44±4.07% n 

= 23; F2, 69 = 0.94, p = 0.40; Fig. 6).  

DISCUSSION 

I predicted that corticosterone (CORT) levels and heterophil to lymphocyte ratios 

(H:L) would be highest in adults and nestlings in the PART group due to this group 

facing the greatest potential food strain compared to the CONT and FULL groups 

(PART>CONT>FULL). My results indicate that supplemental feeding did not 

substantially influence baseline CORT or heterophil to lymphocyte ratios. I also predicted 

that bacterial killing ability would be highest in the FULL group (FULL>PART/CONT). 

My analyses showed there to be similar bacterial killing ability across trial groups. 

Therefore, my supplemental feeding groups did not appear to influence stress physiology 

or immune function. 
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 Possible reasons for these results include that CORT has multiple modes of 

activation and is sensitive to changes in weather events amongst other environmental 

changes such as pollution and increased predation (Martin, 2009; O’Neal and Ketterson, 

2011; Wingfield, 1995). Because I conducted the manipulation of supplemental feeding 

in the field, it is possible other changes in the environment may have had an influence on 

CORT concentrations. Heterophil to lymphocyte ratio may also have been influenced by 

environmental changes as this metric is modulated by CORT (Davis et al., 2008; Dhabhar 

et al., 2009). However, there was no significant correlation between H:L and CORT in 

my study, as has been observed in previous research and similar H:L ratios were seen 

across supplement groups. An area for future research would be to evaluate the effects of 

weather changes and severe weather events across the season on baseline corticosterone 

levels and H:L.  

In contrast to many other studies in which supplemental food was manipulated, 

my experimental design did not increase exposure to disease, a potential consequence of 

congregation around feeders, as all of the mealworms were distributed inside the nest 

boxes (Robb et al., 2008b). This design was utilized both to: 1) insure that the birds 

breeding in the nest box were the only ones who could access the food and 2) isolate the 

effects of food supplementation from any effects of increased disease exposure on 

immune function and stress metrics. This is a major difference from previous studies in 

which feeders were mounted externally (Brittingham and Temple, 1986; Wilcoxen et al., 

2015).  

In adults, males and females had similar bactericidal capabilities. Investment in 

immune function may be sexually dimorphic with males typically being 



 

20 

 

immunosuppressed relative to females as a trade-off for reproductive investment (Klein, 

2000; Zuk, 1990). Baseline CORT was nearly negatively correlated with mass in adults, 

which is similar to previous results from other species. Previous studies have found a 

stronger negative relationship between corticosterone and body mass in adults, and 

suggest this is the result of breeding-induced trade-offs in adults as adult birds may 

reduce body mass when food conditions are poor to better care for nestlings (Jenni-

Eiermann et al., 2007). This may have occurred in the bluebirds as well. Hormonal stress 

response is also dependent on physical condition of birds (Wingfield, 1995). In arctic 

birds, individuals with larger fat stores were better adapted to the increased stress of 

winter storm conditions allowing heavier birds to maintain homeostasis without 

increasing CORT secretion (Wingfield, 1995). Passerines do not commonly store fat on 

their bodies during the breeding season; therefore, I did not evaluate existing fat stores in 

adult bluebirds. However, it would be of interest to evaluate parental condition prior to 

the breeding season as this may influence the ability of adults to care for nestlings.  

Nestlings have been shown to have lower bactericidal function than adults due to 

their reduced ability to synthesize antibodies (O’Neal and Ketterson, 2011). Maternal 

condition prior to egg laying may influence both nestling hormone levels and immune 

function. Nestling immune function is also influenced by hormones and antibodies 

deposited in the egg during yolk production (Boulinier and Staszewski, 2008; Grindstaff 

et al., 2003). I manipulated food availability over a few days immediately prior to laying, 

so there may have been an effect on the last laid eggs of clutches during my experiment. 

However, I did not distinguish between first and last eggs laid and these potential 

differences were not accounted for when comparing supplement groups. Measuring the 
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relationship between laying sequence and immune function would be of interest for 

future studies. Further, the addition of food supplement for a longer period of time and in 

higher quantities prior to egg laying could potentially cause greater variation in immune 

function. 

Overall, supplemental feeding did not significantly influence baseline 

corticosterone, bactericidal capacity, or heterophil to lymphocyte ratios in nestlings or 

adults. This does not support my predictions that: 1) nestlings would have increased 

CORT and H:L in the PART group and 2) nest boxes provided with supplemental food 

throughout the nesting attempt would have increased BKA. Another potential reason for 

the non-significant effect of food supplementation is that the experimental manipulation 

may not have substantially impacted the birds’ natural foraging behavior. When bluebirds 

are feeding nestlings, 100 mealworms provided twice daily is considered sufficient to 

sustain both the adults and nestlings in one nest box (Smith, 2017; NABS, 2017). 

Dependent on the number of nestlings present, I provided 45-120 mealworms in each box 

once a day, three days a week. This amount of supplementation may have been 

insubstantial compared to the twice daily supplementation recommended by Smith 

(2017). This supplementation approach was taken due to the scale of my study which 

involved travelling to numerous boxes at different sites, as compared to the backyard 

feeders for which Smith (2017) and NABS (2017) make their recommendations. Further, 

as seen in previous studies, an abundance of food sources reduces potential food stress to 

the birds and presumably increases survival, but additional food is only beneficial when 

there is a lack of food in the environment (e.g., Schoech et al. 2007).  
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A study conducted by Willson and Harmeson (1973) found that handling time of 

the food source was the most significant driver of seed preference in Song Sparrows 

(Melospiza melodia) and Northern Cardinals (Cardinalis cardinalis). Eastern Bluebirds 

are predominantly insectivorous so seed cracking is not relevant to this species, but it 

remains possible that handling time may have affected the birds’ ability to use the 

mealworms in the boxes. It was not uncommon to find mealworms in the nesting material 

after the nestlings fledged and the old nest material was removed. The mealworms were 

alive when placed in feeding cups, though not capable of climbing out of the feeding 

cups. The loose mealworms in the nesting material may indicate the adults struggled to 

pick up and immobilize the mealworms while they were in the nest box. However, the 

adults were documented using the mealworms in nest boxes through the use of next box 

cameras (2 of approximately 70 observations; Pandit, unpublished data). Further, the 

number of mealworms that were found in the nesting material was substantially less than 

the number of mealworms provided over the course of the nesting cycle, so I am 

confident the bluebirds consumed the majority of the mealworms (Perryman, personal 

observation).  

Based on the results of previous studies and the current study, it would be 

beneficial to comprehensively evaluate natural food availability in relation to 

manipulation of supplemental food availability (Fay, 2003). It would also be beneficial to 

evaluate differences in food quality to determine if differences in nutritional content 

between mealworms and natural food sources may have impacted my results. Zebra 

finches (Taeniopygia guttata) with access to protein supplementation laid heavier eggs 

than females without supplementation (Williams, 1996). Mealworms are low in calcium, 
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which aids in appropriate bone development and egg production (Finke, 2002). 

Therefore, if a bird were exclusively feeding on mealworms this could be detrimental to 

individual bone strength and reproductive success. 

Differences in nutritional quality may cause Eastern Bluebirds to exhibit a 

preference for other invertebrates over mealworms. With the possible exception of winter 

when natural food is scarce (Robb et al., 2008a), birds prefer natural food sources over 

supplemental sources. In a study by Brittingham and Temple (1988), black-capped 

chickadees (Parus atricapillus) were provided with supplemental feeders in the winter. 

Even during the winter period, chickadees only supplemented their diet with the food 

source 21% of the time. The remainder of their diet was gathered from natural foraging. 

This result suggests that foraging may be beneficial to birds beyond simply the need to 

attain food. Further, supplemental feeding during times of food abundance may provide 

only a small subsidy of the large amount of food needed to survive or raise a brood. It 

would be of interest to conduct this study during the winter to potentially see a greater 

influence of supplemental feeding on immune function and stress physiology metrics in 

adults.   

While I did not find evidence that supplemental feeding benefitted bluebirds, 

there also was no detrimental effect. Supplemental feeding is a pastime that could have a 

net beneficial effect for birds given the side benefit of engaging the public in the outdoors 

(Newsome and Rodger, 2008). As I observed while conducting this study, nearby citizens 

eagerly await the opportunity to get involved in science and, the use of citizens for data 

collection is increasingly common. An early collaboration of amateur scientists on a 

broad scale, begun in 1749, has been essential to the collection of bird migration data in 
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several European countries and is still being conducted today (Dickinson et al., 2010; 

Greenwood, 2007). Conversely, non-collaborative studies conducted by a single 

researcher have limited potential for longevity as such studies may be limited by the 

career span of the individual researcher. Collaborative science initiatives are additionally 

beneficial because citizen science projects can help establish baseline data for additional 

research (Dickinson et al., 2012). Finally, the increased public understanding that comes 

with citizen participation in science can increase public support for future scientific 

studies and creates a sense of environmental stewardship (Dickinson et al., 2012).  

It would be of interest in the future to set-up feeders in nest boxes at citizen’s 

houses within my study area. This could allow for a longer term study and the evaluation 

of how supplemental feeding affects birds living in a suburban area. Further, as the focal 

human-wildlife interaction in my study, it would be very beneficial to simulate this 

interaction as closely as possible. This would be critical to understanding a common 

human-wildlife interaction and how it affects health and productivity of bird species.   
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FIGURES 

  

Figure 1. Mean percent bacterial killing ability in nestlings and adults across feeding groups. Error bars 

depict calculated standard error. Significant differences (at p < 0.05) indicated by asterisk.
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Figure 2. Mean corticosterone concentration in ng/mL in blood plasma of adults in the control, partially 

supplemented, and fully supplemented groups. Standard errors are indicated by error bars on the 

chart 

 

 

Figure 3. Mean corticosterone concentration in ng/mL in nestling blood plasma in the control, partially 

supplemented, and fully supplemented groups. Standard errors are indicated by error bars on the 

chart 
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Figure 4. Mean heterophil to lymphocyte ratio across feeding groups (non-transformed). Error bars depict 

calculated standard error 
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Figure 5. Mean percent bacterial killing ability in adults from control, partially food supplemented, and 

fully supplemented groups. Error bars depict calculated standard error of each group  

 

 

Figure 6. Mean percent bacterial killing ability in nestlings from the control, partially food supplemented, 

and fully supplemented groups. Error bars depict calculated standard error of each group  

 



 

39 

 

CHAPTER THREE 

 

EFFECTS OF SUPPLEMENTAL FEEDING ON EASTERN BLUEBIRD NESTING 

SUCCESS  

 

INTRODUCTION 

While humans have well-documented negative impacts on wildlife populations, 

certain anthropogenic effects may be beneficial to wildlife. A potential positive 

anthropogenic effect on avian nesting success is supplemental feeding (Marzluff, 2001). 

Supplemental, or supplementary, feeding is the addition of food sources, typically 

anthropogenic, to a species’ diet beyond that which is naturally available (Robb et al., 

2008a; Sguassero et al., 2012). This additional food source can be added deliberately, as 

is the case for residential bird feeders, or incidentally as in the case of an open waste 

disposal area. For songbirds, backyard bird feeders may be an important source of 

supplemental food in urban and suburban environments (Meillère et.al, 2015).  Despite 

the prevalence of backyard birdfeeding, comparatively few studies have experimentally 

manipulated food supplementation and examined its influence on nesting success. 

Previous studies have researched how existing feeders influence nesting success and how 

increased urbanization influences natural food availability (Meillère et al., 2015; 

Tryjanowski et al., 2015). 
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Some of the most extensive previous research on the effects of supplemental feeding 

on reproductive success was conducted on Florida Scrub Jays (Aphelocoma 

coerulescens). Scrub jays with constant access to supplemental food sources generally 

laid eggs earlier in the season than non-supplemented birds, especially when natural food 

availability was low (Schoech et al., 2009). Fleischer et al. (2003) studied two 

populations of scrub jays which differed in the timing of breeding and also bred in 

habitats with differing degrees of urbanization. Birds in the more urbanized habitat had 

increased access to human food sources including cracked corn, bird seed, and food 

provided for domesticated animals. Thus, it was concluded that supplemental food can 

advance laying date and cause changes in foraging efficiency (Fleischer et al., 2003). 

The impact of supplemental feeding on the survival of Black-capped Chickadees 

(Parus attricapillus) was evaluated by concurrently studying supplemented and 

unsupplemented birds (Brittingham and Temple, 1986). This study was one of the first to 

include a control for annual variation in natural food availability.  The study used 

comparable sites randomly designated as experimentally supplemented or controls. 

Experimentally supplemented sites were provided with feeders during the winter, with 

the intent to evaluate subsequent breeding success. During the summer months, when the 

birds were no longer receiving supplementation, there was no difference in the survival 

rates of chickadees between the experimental and control sites, but it was also observed 

that birds only foraged at the feeders 21% of the time in winter (Brittingham and Temple, 

1986).  

A study on the effects of supplemental feeding on Red-Winged Blackbirds (Agelaius 

phoeniceus) included more bird feeders in the study site and evaluated the protein content 
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of the supplemental food. Although supplemental food sources advanced the laying dates 

of blackbirds, predation events and both intra- and interspecific competition increased 

around the feeders (Ewald and Rohwer, 1982). This demonstrates the limits of the 

beneficial effects of supplemental food. 

Despite providing an additional food source for birds, there are also potential negative 

impacts of supplemental feeding on birds. Bird feeding may increase bird population 

sizes beyond numbers that are sustainable by the environment once the supplemental 

food source is removed (Robb et al., 2008b). Also, bird populations have been shown to 

benefit initially from supplemental food, but later suffer increased mortality due to a loss 

of synchrony with natural food availability (Schoech and Bowman, 2001). Birds 

generally breed when natural food sources are most abundant, which for an insectivorous 

and invertebrate consuming species, such as the Eastern Bluebird (Sialia sialis), is in the 

spring and summer (Gowaty and Plissner, 2015). Supplemental feeding can simulate 

peak food abundance at a time of year that is not optimal for rearing a brood; therefore, 

failure to maintain the supplemental food source may negatively affect nestling survival 

(Robb et al., 2008b). Further, it is important to evaluate natural food availability to 

determine if food is limited for the species at the time of the study.  

It is possible supplemental feeding may be provided inconsistently through variable  

provisioning at an established feeder (Wilcoxen et al., 2015). In such conditions, birds at 

supplemental feeders may be subject to removal of a significant food source during 

critical times in the breeding cycle. Few studies have examined how removal of a 

supplemental food source during the nestling stage may impact nest success (Brittingham 

and Temple, 1988; Harrison et al., 2010).  Addition and then subsequent removal of a 
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supplemental food source at a critial time point in the breeding cycle, such as hatching, 

could cause adults to initially increase parental investment (e.g., by increasing clutch 

size) without sufficient resources or time to devote to the investment if the supplemental 

food source is removed. It is important to understand how these manipulations of food 

availability could affect bird productivity, which is important for best managing 

populations in a human dominated landscape.  

In this study, I manipulated supplemental food availability to Eastern Bluebirds, a 

species which is commonly a target of supplemental feeding. Eastern Bluebirds are a 

secondary cavity nesting species with a native range that spans from the central United 

States to the Atlantic Coast (Sibley, 2014). Bluebirds often use nest boxes as breeding 

sites (Gowaty and Plissner, 2015). This species is ideal for this study as, given their 

dependence on secondary cavities for nesting, it is possible to easily locate nests and 

manipulate food availability. Birdwatchers commonly provide bluebirds with mealworms 

(Tenebrionidae beetle larvae) as a supplemental food source (Smith, 2017). Bluebirds 

breed up to three times per season in Oklahoma, laying clutches of 3-5 eggs each time 

(Gowaty and Plissner, 2015). To determine the effect the removal of a supplemental food 

source during the nesting cycle has on nestling growth and nest success, I included two 

groups that were provided with supplemental food; however, in one group the 

supplemental food source was removed when young hatched. The first of my two 

experimental trials received supplementation from the nest completion stage until 

fledging (FULL), and the second group was given supplementation from the nest 

completion stage until hatching (PART). The control group (CONT) was not given 

supplementation at any point. All boxes were opened the same number of times 
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regardless of experimental trial. I expected nesting success of birds in the FULL group to 

be greater than nesting success of birds in the PART group or the CONT group. I also 

conducted invertebrate abundance surveys to approximate natural food availability in the 

environment and to determine the effect of natural food availability on the response to a 

supplemental food source. 

METHODS  

Nest box monitoring: Wooden nest boxes (n = 175) were mounted along trails in 

Stillwater, Oklahoma (36°7′18″N 97°4′7″W). Nest boxes were monitored from March-

August in both 2015 and 2016. Each nest box was checked 2-3 times per week 

throughout the breeding season. When completed nests were discovered, the box was 

then monitored daily for egg laying. Daily monitoring occurred again when clutches 

neared their expected hatching date (clutch completion date + 13 days) to accurately 

determine hatch date. Finally, broods were monitored daily after day 14 to determine 

approximate fledging date and fledging success. Clutch size, hatching success, nestling 

growth, and fledging success were recorded at each of the nest boxes in all three 

treatment groups. Clutch size was quantified as the number of eggs laid in the nest. A 

clutch was considered complete when the number of eggs did not increase for more than 

one day. Hatching success was quantified as the proportion of eggs in the clutch that 

hatched. Brood size was quantified as the number of eggs that hatched in the nest. 

Fledging success was determined as the proportion of nestlings that left the nest after the 

day 14 measurement.  The standard time to fledging in Eastern Bluebirds is 17-19 days 

(Gowaty and Plissner, 2015) with nestlings capable of weak flight at day 14. Nestlings 

absent from the nest after day 14 were considered successfully fledged, unless there was 
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evidence of death or predation. Examples of evidence for death or predation included a 

dead bird in or near the box, predator presence inside the box, or evidence of predation 

such as an excess of feathers on the ground near the box. 

Experimental manipulation of food availability: To provide supplemental food, small 

plastic cups (2 oz., clear) were mounted inside nest boxes in February prior to the start of 

each breeding season. Nest boxes assigned to receive supplemental food were provided 

with fifteen mealworms (1.909 ± 0.177g) per individual bluebird in the nest box, 

including both nestlings and adults, three times weekly (Smith, 2017). The first 

experimental group was the fully supplemented group (FULL; 2015: n = 35, 2016: n = 

22) which received mealworms from nest building through the remainder of the breeding 

attempt. The partially supplemented group (PART; 2015: n = 26, 2016: n = 20) received 

mealworms from nest construction until hatching. The control group (CONT; 2015: n = 

36, 2016: n = 35) did not receive mealworms at any point.  All boxes, regardless of 

experimental treatment, were visited and opened the same number of times to control for 

any effects of disturbance.  

Capture: All birds were captured to collect morphological measurements. Adults were 

captured with a nest box trap no sooner than the second day after hatching. Adults were 

measured at the time of capture. Mass for each individual was determined using either a 

digital balance (accuracy =0.01 g) or Pesola (accuracy=0.1 g). Wing chord and tail length 

of the two outermost retrices were measured using a wing rule (accuracy=1 mm). Tarsus 

length was measured using calipers (accuracy = 0.01 mm). Nestlings were measured on 

days 5, 11, and 14 post-hatch (day 0=hatch day). Wing length and mass measurements 

were collected on all three of these days, while tarsus length was measured only on days 
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11 and 14. Toenails of nestlings were painted with nail polish on day 5 to distinguish 

individuals, then on day 11, nestlings were banded with an aluminum USFWS band.  

Estimates of natural food availability: Relative abundance of probable food sources for 

Eastern Bluebirds (insects and other invertebrates (Gowaty and Plissner, 2015)) was 

approximated using pit fall traps and sweep netting (Fay, 2003). Invertebrate surveys 

(2015: n = 27 ; 2016: n = 22) were conducted in 2015 and 2016 to approximate 

invertebrate order abundance and order richness near a subset of active bluebird nest 

boxes. Surveys were conducted as time permitted during the breeding season at boxes 

with clear evidence of activity (primarily during the nestling stage). Similar numbers of 

surveys were conducted in each supplemental feeding group and on each nest box trail. A 

5x5 m grid was surveyed for invertebrate abundance and richness at least 10-40 m from 

selected active nest boxes to minimize disturbance (Fig. 1). When possible, surveys were 

conducted at a compass heading within which the breeding pair at the nest box had been 

seen previously (Fig. 2; Fay 2003). If this was not possible, a heading was randomly 

selected (1-360°), then 10 m away in the direction of the heading was established as the 

corner of the quadrat within the plot area (Fig. 3). When headings to potential transect 

areas were on private property or were blocked by other physical barriers, a new heading 

was chosen. Next, five plastic pitfall traps were buried (approximately 55 mm deep for 

the cup to be flush with the ground) in the ground and distributed randomly by assigning 

them a random coordinate within a quadrat. All invertebrates captured in the pitfall traps 

after 24 hours were collected. In 2016 pitfall traps were instead spaced 1 m apart in a 

straight line across the transect area (Fig. 4). This method was useful when accessible 

space near the nest box was limited, and the likelihood that eligible areas around the nest 
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box would be surveyed was similar. All other survey methods were consistent between 

2015 and 2016. The transect area was swept 30 times in parallel lines spaced 1 m apart in 

a sinusoid fashion (Fay, 2003). All of the invertebrates in the sweep net were counted at 

the time of the sweep. Relative invertebrate abundance (order abundance) was 

approximated by counting the number of invertebrates in all five of the pitfall traps and 

sweep net. Order abundance was considered to be the number or frequency of individuals 

in an order occurring in a survey area. Order richness was determined as the number of 

different orders caught in the pitfall traps and sweep net at each survey site. Invertebrates 

were identified in the field based on morphology and released. Samples collected from 

pitfall traps were identified in the lab based on morphology.   

 Invertebrates under 8 mm in length are minor food sources used by bluebirds to 

feed to their nestlings (3-7% of observations compared to 35-41% of observations for 

Lepidoptera larvae); therefore, I used 8 mm as a size cut-off for inclusion in further 

analyses (Gowaty and Plissner, 2015; Pinkowski, 1978). Invertebrates under the 8 mm 

size cut-off were not included in abundance analyses because they were very difficult to 

field identify to order and were difficult to collect or store from pitfall traps (Pitts, 1978).    

Statistical Methods: Data on nesting success were analyzed using SAS 9.4 software. 

Pearson’s correlations were run to determine if adult morphometric measures (wing 

length, tail length, mass, and tarsus length) were significantly correlated with clutch size, 

hatching success, brood size, or fledging success. Although morphometric measures were 

generally correlated with one another, adult size was not correlated with any of the 

measures of nesting success (all p > 0.12). Therefore, I did not include adult body size in 

the final models. I also ran correlations between nestling growth measurements and the 



 

47 

 

breeding success metrics and found no significant correlations (all p > 0.08). I then ran 

general linear models to determine if there were significant differences between 2015 and 

2016 in clutch size (CS), hatching success (HS), brood size (BS), and fledging success 

(FS). No significant differences were found between years [(CS: F1, 82 = 0.16, p = 0.69); 

(HS: F1, 82 = 0.03, p = 0.87); (BS: F1, 82 = 0.06, p = 0.81); (FS: F1, 81 = 1.31, p = 0.26)]. 

Therefore, both years were analyzed together in subsequent analyses. I then ran linear 

mixed models on CS, HS, BS, and FS to determine if supplemental feeding affected any 

of these metrics. Female band number was included as a random effect in mixed models 

to account for repeated measures of some individuals.  

Invertebrate abundance data were analyzed using IBM SPSS Statistics 23 

software. Order abundance (OA) and order richness (OR) data were not normally 

distributed; therefore, I normalized the data to reduce positive skew by log10 transforming 

after adding one to eliminate zeroes. I then conducted independent samples t-tests to 

determine if there were any between year differences in OA (2015: mean±SE: 0.72±0.09, 

n = 27; 2016: mean±SE: 0.75±0.10, n = 22) and OR (2015: mean±SE: 0.47±0.05, n = 27; 

2016: mean±SE: 0.49±0.06, n = 22) and found there were no significant differences 

between years for OA (t47 = -0.21, p = 0.98) or OR (t47 = -0.27, p = 0.95). Next, I ran 

Pearson’s correlations to determine if nest box trail, time of sweep netting, invertebrate 

survey date, or average grass height were correlated with OA or OR. No significant 

correlations between sweep net time (OA: r = -0.10, p = 0.62; OR: r = 0.02, p = 0.90), 

survey date (OA: r = -0.11, p = 0.49; OR: r = -0.08, p = 0.60), or grass height (OA: r = 

0.29, p = 0.16; OR: r = 0.33, p = 0.10) were found. I then conducted correlations to 

determine if order abundance and richness were correlated with CS, HS, BS, or FS. 
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Finally, I ran ANCOVA models with OA or OR as covariates and supplemental feeding 

group as a fixed effect to determine if natural food availability influenced the relationship 

between supplemental feeding and nest success. 

RESULTS 

Clutch size was not significantly affected by supplemental feeding (mean±SE: control: 

4.47±0.13; part: 4.73±0.17; full: 4.64±0.16; F2, 72.3 = 0.76, p = 0 .47; Fig. 5). Hatching 

success also was not significantly influenced by supplement group (mean±SE: control: 

0.85±0.04; part:  0.88±0.05; full: 0.76±0.05; F2, 72.6 = 1.84, p = 0.17; Fig. 6). Brood size 

was not significantly influenced by supplement group (mean±SE: control: 3.72±0.19; 

part: 4.15±0.24; full: 3.54±0.22; F2, 75.5= 1.93, p = 0.15; Fig. 7). Finally, fledging success 

also was not significantly influenced by supplemental feeding ((control (mean±SE: 

0.91±0.05), part (mean±SE: 0.76±0.07), full (mean±SE: 0.84±0.07; (F2, 69.9 = 1.55, p = 

0.22; Fig. 8)).  

 Observations of invertebrate order abundance at the study sites are detailed in 

Table 1. Order abundance (OA) and order richness (OR) were not correlated with any of 

the nesting success metrics (OA: CS, HS, BS, FS, all p > 0.35; OR: CS, HS, BS, FS, all p 

>0.32). Finally, I ran ANCOVA models to determine if there were significant interactions 

between supplemental feeding group and invertebrate data as it related to the four 

breeding success metrics. There was no relationship seen for CS (F2, 17= 0.25, p = 0.79), 

HS (F2, 17= 1.18, p = 0.34), or BS (F2, 17= 0.68, p = 0.52). FS did not meet the assumptions 

necessary to run an ANCOVA due to low variability in the sub-sample of nest boxes at 

which I conducted invertebrate surveys.  
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DISCUSSION 

My hypothesis that access to supplemental food would increase clutch size, 

hatching success, brood size, and fledging success was not supported in my study as none 

of these metrics were significantly influenced by food supplementation. A similar study 

conducted by Wilcoxen et al. (2015) evaluated the effects of supplemental feeding on a 

variety of seed eating birds. These authors quantified, among other metrics, body 

condition, feather quality, anti-oxidant levels, and reproductive physiology. They saw 

some improvement in health of individuals using supplemental feeders including faster 

feather growth and increased anti-oxidant levels. However, birds in areas with 

supplemental feeding were also more likely to be infected with diseases, including 

conjunctivitis, avian pox, dermal disease or cloacal disease, and infected birds were not in 

better physiological condition (Wilcoxen et al. 2015). One benefit of the method I used 

for supplemental feeding is that it did not cause birds to aggregate and increase exposure 

to disease. Supplemental food provided away from nest sites may provide a better 

representation of normal foraging behavior, but does not easily allow researchers to track 

the amount of supplemental food consumed or to track the individuals utilizing the food 

source. Additionally, an excess of natural food availability could reduce the birds’ 

dependence on supplemental food sources (Schoech et al., 2007). It is important then to 

understand how natural food availability may influence the response to supplemental 

food.  

Although I did not detect effects of natural food availability on nest success 

metrics, it is still possible natural food abundance may have an influence on the 

effectiveness of supplemental feeding. Utilizing a similar experimental design, Rooney 
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and colleagues (2014) manipulated diet in a bird of prey, Common Buzzards (Buteo 

buteo). A supplemental food source was provided to the buzzards and consumption of the 

food was closely monitored. Buzzards were provided food in one of three experimental 

groups: 1) prior to laying, 2) post-laying, or 3) throughout the breeding cycle. There also 

was a control group that received no supplementation. Additionally, habitat composition 

and quality were evaluated using analysis of land cover data in ArcGIS. The study found 

that habitat quality had the largest influence on breeding success in buzzards, and that 

supplemental feeding had the most prominent effect on individuals in low quality 

habitats. In my study, use of land cover data, specifically comparing differing types of 

grass cover, may be a useful metric for evaluating bluebird habitat quality.  

In Oystercatchers (Haematopus ostralegus), and Curlews (Numenius arquata), 

prey capture rates increased in association with human disturbance. This could indicate 

some species are able to forage quickly in anticipation of interruptions in foraging 

(Fitzpatrick and Bouchez, 1998). In the PART group in my study, I maintained 

disturbance while removing a food source and potentially interrupting foraging time on 

the territory. It is possible the birds increased foraging prior to or after my disturbing 

them, and were able to compensate for the removal of the food source in this group. 

Additionally, I conducted my invertebrate surveys only around active nest boxes, 

particularly those with eggs and nestlings. At this point in the nesting cycle, the pair may 

have already selected the territory by evaluating natural food availability and other 

resources that influence food availability and reproductive potential (Cody, 1981). As a 

consequence, active nests were most likely located on territories with sufficient natural 

food availability. Further, I surveyed a relatively small portion of the nesting pairs’ 
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territories, which can span 1-8 hectare (Gowaty and Plissner, 2015; Kreig, 1971). It is 

possible that the invertebrate surveys did not fully reflect the food sources available to 

bluebirds through foraging. The surveys also were not conducted at controlled stages of 

the breeding cycle, instead varying somewhat across sites. This could contribute to the 

lack of interaction between the supplement groups and order abundance or richness.  

I did not detect any significant benefits or costs of supplemental feeding of 

Eastern Bluebirds. It is possible the birds remained reliant on natural food sources. From 

nest box camera observations, bluebirds were seen feeding their nestlings mealworms on 

two out of nearly 70 observations (Pandit, unpublished data). However, it is still likely 

the birds with empty feeding cups upon return consumed the mealworms as: 1) some 

birds consistently had full mealworm cups when I returned the next time to feed 

mealworms and did not actively remove the worms and 2) birds were never 

independently observed removing the mealworms from the box during video 

observations. I noted whether cups were full, had some left, or were completely empty 

during my visits to provide mealworms. Any nesting pairs with consistently full cups 

were removed from all analyses. There was no evidence that the birds removed the 

mealworms to maintain nest cleanliness. Therefore, the idea that the birds removed the 

mealworms as a nest-fouling object (similar to fecal sacs) was rejected. This supports the 

idea that the birds ate the mealworms when the cups were empty.  

Individual preference may also influence foraging. Hummingbirds have been 

observed to prefer natural food sources, unless flowering plants and nectar availability 

are scarce, even though supplemental nectar feeders were easily accessible (McCaffery 

and Wethington, 2008). Natural food sources may have greater nutritional content than 



 

52 

 

supplemental food sources (McCaffery and Wethington, 2008). In my study, some pairs 

did not consume mealworms in the feeding cups, despite ease of access [6/63 (9.53%) 

boxes total for both years which received PART/FULL treatments and survived to day 5]. 

Future studies should utilize calorimetry analysis of food sources in the environment and 

the supplemental food, and analyze protein and calcium content.  Further, designing a 

study that accounts for food preferences of birds would be valuable.  

The primary goal of this project was to determine whether providing mealworms 

as a supplemental food source to Eastern Bluebirds has direct benefits for bluebirds.  

Although I did not find direct benefits of supplemental feeding for bluebirds, bird feeding 

can be beneficial to the community, professional scientists and wildlife in general 

(Newsome and Rodger, 2008). Through scheduled interactive feeding activities at 

recreational sites, the community can attract tourism to an area, which can in turn 

increase revenue for the recreation site to be used for conservation purposes, so there is 

the possibility that any detrimental effects of supplemental feeding will be outweighed by 

these beneficial effects (Newsome and Rodger, 2008; Horn and Johansen, 2013; 

Wilcoxen et al., 2015). From a scientists’ perspective, citizen involvement in 

observational data collection can facilitate broad reaching studies, which otherwise may 

not have been possible (Dickinson et al., 2010). A very early example of this was the 

monitoring of bird migration patterns in Europe initiated by Johannes Leche in the 18th 

century (Greenwood, 2007). The study required collaboration of amateur scientists in 

Finland and Belgium to track spring migrants, and this research is still being actively 

conducted in the region. Similarly, large scale citizen science projects such as the Cornell 

Laboratory of Ornithology’s project NestWatch and E-bird’s records of bird sightings are 
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maintained to approximate population sizes across the United States and world-wide, 

respectively. Engaging the public in these projects instills a sense of wildlife stewardship 

(Dickinson et al., 2012). This sense of stewardship will benefit birds and other wildlife as 

it leads to humans becoming invested in the species’ success. This can facilitate the 

creation of conservation management initiatives geared toward maintaining populations, 

encouraging responsible resource use, and a sustainable coexistence with wildlife (Shirk 

et al., 2012).  Integrating citizens into my study could be beneficial for simulating 

recreational bird feeding, especially by establishing nest boxes with feeders in suburban 

areas. Further it would allow for increased longevity of this study and provide additional 

insight into this important interaction between humans and wildlife. 
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FIGURES 

 

 

Figure 1. Diagram of invertebrate survey sites around a nest box. The center black dot indicates the active 

nest box. The gray area indicates areas that were not surveyed in order to minimize disturbance. 

The white space and beyond indicate surveyable areas. The square within the figure is a 

representative location of an invertebrate survey plot area. 

 

 

Area that was not surveyed  

 
Beginning of surveyed areas, example plot shown  
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Figure 2. Compass headings were used to determine the location of the invertebrate survey plot area. The 

implied headings are shown here to illustrate how plot area was randomly selected within a 

possible territory area. The square within a figure is an example of a plot randomly placed within 

a degree range on the pair’s territory.  

 

Area that was not surveyed  

 
Beginning of surveyed areas, example plot shown  
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Figure 3. Plot area set up for invertebrate surveys. Solid line indicates the physical line (rope) used to set 

up the grid in the field. Camping stakes were placed at each of the bends in the rope to create the 

grid. Quadrat labeling within the overall plot area started with (1, 1) at the quadrat touching the 

10 m point. Within the quadrat, pitfall locations were points on a traditional coordinate plane with 

origin being (0, 0).  
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Figure 4. Amended invertebrate survey method for very limited space areas. Black dots on the gray line 

indicate pitfall traps along the 5 m line.  

 

 

 

 

 

 

Area that was not surveyed  

 
Beginning of surveyed areas, example shown  
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Figure 5. Average clutch sizes in the control, partially supplemented, and fully supplemented groups. Error 

bars indicate the standard error of the means in each group. 

 

Figure 6. Average hatching success in the control, partially supplemented, and fully supplemented groups. 

Error bars indicate the standard error of the means in each group.  
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Figure 7. Average brood sizes in the control, partially supplemented, and fully supplemented groups. Error 

bars indicate the standard error of the means in each group.  

 

Figure 8. Average fledging success in the control, partially supplemented, and fully supplemented groups. 

Error bars indicate the standard error of the means in each group. 
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TABLES 

 

Diptera Coleoptera Orthoptera Hymenoptera Hemiptera Larvae Araneae 

Animal Sciences 10 19 0 0 1 1 1 

Agronomy Buildings 0 4 1 1 10 4 13 

Botanic Gardens 1 4 1 0 0 0 2 

Cross Country 11 33 7 0 12 4 17 

Sneed Ranch/ 

Research Range 0 24 11 4 4 3 8 

Highway 51 20 12 30 4 20 7 20 

Plant Agronomy 0 1 1 0 0 0 2 
 

Table 1. Abundance of major invertebrate orders observed in both years summarized by trail site. Modeled 

after (Fay, 2003). Other orders observed: Armadillidae, Blattodea, Cicadellidae, Dictyoptera, 
Lepidoptera, Phasmatodea, and Zygoptera. 

 

 

 

 

 

 

 

 

 

 



 

66 

 

CHAPTER FOUR 

 

 

 

CONCLUSIONS 

 

In summary I did not observe any negative side effects associated with 

supplemental feeding (e.g. Brittingham and Temple, 1986; Fischer et al., 1997; Robb 

et al., 2008b, Wilcoxen et. al., 2015) or any negative effects associated with food 

strain previously reported in the literature (e.g., Kitaysky et.al, 2007; Lynn et al., 

2003; Lynn et al., 2010). Corticosterone and H:L metrics remained consistent across 

supplemental groups. Given the multiple modes of activation of corticosterone and its 

influence on the dispersal of white blood cells, it is likely that supplemental feeding 

did not significantly affect stress levels of the bluebirds (Davis et al., 2008). Bacterial 

killing ability was also similar across supplement groups in adults and nestlings. In 

adults this may have been because of the short period of time between food 

manipulation and blood sampling, and in nestlings this may have been due to nestlings 

being largely dependent on innate immune function to combat pathogens (Millet et al. 

2007; O’Neal and Ketterson, 2011). Finally reproductive success metrics, specifically 

clutch size, hatching success, brood size, and fledging success were not significantly 

influenced by supplemental feeding, nor were they related to my measures of 

invertebrate order abundance or richness. It would be worthwhile in future studies to 
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consider land use and weather patterns to determine how these metrics may have also 

affected food availability. An alternative study design could induce greater food strain, 

possibly in a captive setting, although this would be less representative of typical bird 

feeding practices.  

Aside from the main objectives of this study, the primary goal of this project was 

to determine whether providing mealworms as a supplemental food source to Eastern 

Bluebirds is beneficial. These results suggest that there is not an overall negative 

effect of supplemental feeding. Many studies reviewed in Robb et al. (2008) found no 

effect or a positive effect of supplemental feeding. Research gaps existed particularly 

with regard to physiological changes with food supplementation and how natural food 

abundance influences supplemental feeding patterns, both of which I aimed to address 

in this study.  

Additional research can be conducted in this area to more fully test for potential 

negative effects, but it is also important to consider the benefit of engaging the public 

in nature. With regard to bird feeding, most participants begin with the intention of 

wanting to help birds (Horn and Johansen, 2013; Wilcoxen et al., 2015). This effect is 

also seen in recreational spaces, as tourism can attract revenue to a park and benefit 

the public through education programs on how to responsibly feed wildlife (Newsome 

and Rodger, 2008). Over the course of this study, I have seen firsthand how easy it is 

to incorporate citizens into the data collection process and increase public engagement 

in science. Future studies in this area would benefit from incorporating community 
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members into the scientific process, and doing so would provide additional, useful 

data to benefit avian conservation by creating advocates in the community, and 

community members will learn how they can best protect backyard birds. 
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