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Major Field: INDUSTRIAL ENGINEERING & MANAGEMENT 

 

Abstract: This research is motivated by challenges in addressing optimization models 

arising in Big Data. Such models are often formulated as large scale stochastic 

optimization problems. When the probability distribution of the data is unknown, the 

Sample Average Approximation (SAA) scheme can be employed which results in an 

Empirical Risk Minimization (EMR) problem. To address this class of problems 

deterministic solution methods, such as the Broyden, Fletcher, Goldfarb, Shanno (BFGS) 

method, face high computational cost per iteration and memory requirement issues due to 

presence of uncertainty and high dimensionality of the solution space. To cope with these 

challenges, stochastic methods with limited memory variants have been developed 

recently. However, the solutions generated by such methods might be dense requiring 

high memory capacity. To generate sparse solutions, in the literature, standard 𝐿1 

regularization technique is employed, where the term 1 1
  is added to the objective 

function of the problem. Here, 
1  is called the  𝐿1 regularization parameter and 

1

denotes 𝐿1 norm. Under this approach, addition of constant 
1  changes the original 

problem and the solutions obtained by solving the regularized problem are approximate 

solutions. Moreover, limited information is available in the literature to obtain sparse 

solutions to the original problem. To address this gap, in this research we develop an 

iterative 𝐿1 Regularized Limited memory Stochastic BFGS (iRLS-BFGS) method in 

which the 𝐿1 regularization parameter and the step-size parameter are simultaneously 

updated at each iteration. Our goal is to find the suitable decay rates for these two 

sequences in our algorithm. To address this research question, we first implement the 

iRLS-BFGS algorithm on a Big Data text classification problem and provide a detailed 

numerical comparison of the performance of the developed algorithm under different 

choices of the update rules. Our numerical experiments imply that when both the step-

size and the 𝐿1 regularization parameter decay at the rate of the order
1

k
, the best 

convergence is achieved. Later, to support our findings, we apply our method to address a 

large scale image deblurring problem arising in signal processing using the update rule 

from the previous application. As a result, we obtain much clear deblurred images 

compared to the classical algorithm’s deblurred output images when both the step-size 

and the 𝐿1 regularization parameter decay at the rate of the order
1

k
. 
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CHAPTER I 

 

 

INTRODUCTION 

Optimization algorithms are widely used to extract knowledge from the data in 

machine learning. The usage is increasing exponentially relative to the technological 

advancement in generating, storing and retrieving high volume of data. This research 

focuses on unconstrained optimization problems arising in machine learning which are 

given by,  

min ( ) : [ ( , )]
nw

F w E f w 


 ,    (1) 

where : n df    is a loss function, nw  is the decision variable and 
d   is a 

random variable. In Big Data applications, the function f is given as a loss function

( , ) ( ( ; ), )f w l h w x z  , where ( , )x z  is a random variable, 
nx  is the input vector, 

and z  is the true output vector. In addition, F in equation (1) can be seen as 

[ ( , )] ( , ) ( )E f w f w P    ,    (2)
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where P is the probability distribution of  . Under this setting, problem (1) is known as 

the ‘Expected Risk Minimization problem’. The loss function, l(h;z)  is a real-valued 

convex function defined to find the distance of the true output z from the prediction 

function output h(w,x)  which is parametrized by w and x  is the input data. Moreover, in 

machine learning, l could be logistic loss function, support vector machine (SVM) loss 

function, least square loss function, or etc., depending upon the application.  

However, two major challenges arise while optimizing the objective function over 

large scale data: uncertainty (random variables) and high dimensionality of the decision 

space. First, when the dimensions of the random variable is high, d >5, the evaluation of 

the multivariate integration to get expectation over random variable as seen in relation (2) 

becomes difficult to compute. Moreover, it is only possible to evaluate equation (2) when 

we have complete information of the probability distribution P, which is usually not the 

case. Therefore, to formulate the objective function of the problem in the absence of the 

distribution information, Monte Carlo simulation methods such as Sample Average 

Approximation (SAA) scheme have been widely used in the literature (Kleywegt et al., 

2002 and Shapiro et al., 2003). This scheme results into an alternative formulation known 

as ‘Empirical Risk Minimization’ (ERM) problem which is an approximation of the 

expected risk minimization problem and is given by, 

1

1
min ( ) : ( , )

n

N

i
w

i

F w f w
N






  ,    (3) 
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where N is the sample size of the set of independent random input-output pairs and 
i  is 

the ith sample of the random variable used to train the model. However, when N is large, 

application of deterministic solution methods becomes very challenging and inefficient. 

The second challenge arise due to high dimensionality of the solution space. In 

machine learning applications n is the number of features, which is often large in Big 

Data applications. In such application, to compute solutions and store the computed 

solutions as the algorithm proceeds we require high storage memory. Insufficient 

memory results in the termination of the algorithm making it computationally inefficient 

and infeasible for Big Data applications. 

1.1 Deterministic solution methods and challenges in machine learning 

In this section we consider advantages and disadvantages of the deterministic 

methods in solving the unconstrained optimization applications in machine learning. 

1.1.1 Deterministic gradient method (DG): The SAA scheme is employed in the 

deterministic gradient method also known as the ‘batch’ gradient method which 

minimizes F given by equation (3) by updating the vector nw as follows, 

1 1: ( )k k k kw w F w    ,    (4)                                    

where k is the step size parameter, and the gradient at each iteration, k= 1, 2,…, t, 

(where t is the maximum number of iterations specified) is computed as,

1 1

1

1
( ) ( , )

N

k k i

i

F w f w
N

 



   , where , 1{( )}N

i i i ix z  is the ith input-output vector. Note 

that at each iteration, the gradient is evaluated using all the N values from the sample 
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size. Although, we obtain a better update by using all the data points, the method has a 

high computation cost per iteration and may take an unreasonable time to converge. 

Especially, when the data is large scale with number of instances in billions or more, then 

the DG method becomes impractical.  

1.1.2 Deterministic Newton method (DN): The Deterministic Newton method can be 

used to solve problem (3) in a similar fashion with additional use of second order 

information in the update rule given by, 

1

1 1 1: ( )k k k k kw w B F w 

     ,    (5)  

where k  is the step-size parameter, k= 1, 2,..., t and
2

1 1( )k kB F w   is the symmetric 

Hessian matrix of the objective function with the dimensions n n , where n is the 

dimensionality of the decision variable w. The gradient is evaluated as,

1 1

1

1
( ) ( , )

N

k k i

i

F w f w
N

 



   and the Hessian by, 
2 2

1 1

1

1
( ) ( , )

N

k k i

i

F w f w
N

 



   . The 

advantage of this method is that it has a faster convergence rate than that of the DG 

method. However, with high dimensionality of n in large-scale datasets, the memory 

requirements to store the Hessian becomes very high and makes the computation 

infeasible. Moreover, the calculation of the inverse Hessian at each iteration becomes 

inefficient due to high cost of computation when the data is large scale. 

1.1.3 Deterministic Broyden, Fletcher, Goldfarb, and Shanno method (D-BFGS): 

In 1950, W.C. Davison, developed an update formula to solve large scale optimization 

problems by approximating the Hessian and the inverse Hessian instead of the actual 

computation. This led to creation of a new class of optimization methods known as the 
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‘Quasi-Newton methods’ (QN). Later, Fletcher and Powell demonstrated that the 

developed update rule was much faster and reliable (Nocedal and Wright, Chapter 6, 

1999), and then various other quasi-Newton methods were developed since then. The D-

BFGS algorithm is one of the most popular quasi-Newton algorithm in which instead of 

re-computing the Hessian and the inverse Hessian from scratch every time to be used in 

the update rule, the algorithm provides a much simpler approximation formula. To solve 

problem (3) the following update rule is used, 
1

1 1: ( )k k k k kw w B F w 

    , where, k  is 

the step size parameter, k= 1, 2,..., t , 
2 ( )B F w , is the symmetric n n  Hessian 

matrix and the gradient is given by, 1 1

1

1
( ) ( , )

N

k k i

i

F w f w
N

 



   . Note that the update 

rules in the DN and the D-BFGS method are the same, however, in the D-BFGS method 

new Hessian kB  is approximated from the previous Hessian approximate 1kB  using the 

following formula, 

1 1 1 1 1 1
1

1 1 1 1 1

T T

k k k k k k
k k T T

k k k k k

B s s B y y
B B

s B s y s

     


    

   ,   (6) 

where 1k k ks w w    is called the displacement factor and 1( ) ( )k k ky F w F w   is 

called the gradient mapping factor. Also, note that, 
1

k kH B , the inverse of the Hessian 

matrix is also approximated at each iteration unlike the DN method. New Hessian 

inverse, kH  is approximated iteratively from the previous approximation, 1kH   using the 

following formula, 

   1 1 1 1 1 1 1 1 1 1( ) ( )T T T

k k k k k k k k k k kH I s y H I y s s s               , (7) 
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where 1

1 1

1
k T

k ky s
 

 

 . The D-BFGS update works well as long as the curvature condition 

1 1

T

k ky s  > 0 is satisfied.  

Note that these formulae only use most recent observed information of the 

objective function and the curvature steps 1 1( , )k ks y  to approximate the new Hessian ( kB ) 

or the inverse Hessian ( kH ). The algorithm is robust and has a super-linear rate of 

convergence which is faster than the Deterministic Gradient method but slower than the 

Newton method.  Also, it is known that the D-BFGS has much better self-correcting 

property than its competitor Davison-Fletcher-Powell (DFP) update under certain 

conditions, that is if the matrix kH estimated incorrect curvature in the objective function 

which slows down the convergence, then the approximation formula corrects itself with 

in a few iterations. However, when the data to be learnt is large scale, the D-BFGS 

method requires lot of memory as it stores all the computed Hessian or the inverse 

Hessian ( n n ) information and makes the algorithm infeasible to use when enough 

computational memory is not available (Liu & Nocedal, 1989). Moreover, the 

computation of the deterministic gradient incurs high computational cost and makes the 

algorithm infeasible to use when number of samples (N) is high. This challenge is 

addressed by the following method. 

1.1.4 Limited memory Deterministic BFGS update (LD-BFGS): The D-BFGS 

method approximates the new inverse Hessian kH from the previous inverse Hessian 

1kH   and curvature pairs 1 1( , )k ks y  . Throughout the execution the LD-BFGS method 
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stores all the obtained inverse Hessians and the curvature information which is generally 

dense and incurs high cost of storing the matrices each iteration. This prohibits the use of 

it when the dimensions of decision variable, n is large. The high memory requirement 

drawback of the D-BFGS method is addressed by the limited memory variant of the D-

BFGS update developed by Nocedal in 1990 called LD-BFGS. 

To address the memory issues in solving problem (3), the same update rule is 

used which is given by 1 1: ( )k k k k kw w H F w    , where, k= 1, 2,…, t, k is the step 

length parameter, and the deterministic gradient is given by,

1 1

1

1
( ) ( , )

N

k k i

i

F w f w
N

 



   . However, instead of obtaining the new inverse Hessian 

kH from the previous inverse Hessian 1kH   and multiplying by 
1( )kF w   for the update, 

the LD-BFGS directly approximates the product 
1( )k kH F w   by only using latest user 

specified number of curvature vector pairs.  

The advantage of the LD-BFGS method is that instead of storing all the inverse 

Hessian matrices and the curvature pair information, only the latest certain user specified 

number of vectors of curvature pairs{( , )}i is y where 1,2,...,i m , are stored and used in 

the approximation formula. The user specified number of the vectors m is called the batch 

size where usually, 3<m<20.  At each iteration, the product 1( )k kH F w  is evaluated 

using the ‘L-BFGS two-loop recursion’ scheme in that a sequence of inner products and 

vector summation of 1( )kF w  and m recent { , }i is y  pairs are used as mentioned in the 

Chapter 4 Algorithm 2. 
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The oldest vector pair is less likely to be relevant in describing the actual behavior 

of the current Hessian therefore, it is discarded to save storage space. That is after the 

computation of new iterate, the oldest vector pair in the set{( , )}i is y where 1,2,...,i m  is 

replaced by the new curvature pair ( , )k ks y . This method requires much less memory and 

gets comparative convergence results effectively. However, when the uncertainty in the 

data, i.e., the number of samples (N) is high then the computation of gradient at each 

iteration over the entire data set incurs high cost of computation per iteration and 

prohibits the use of LD-BFGS in that case of machine learning applications. 

1.2 Stochastic solution methods and challenges in machine learning 

In this section, we consider advantages and disadvantages of stochastic methods 

in unconstrained optimization applications in machine learning. 

1.2.1 Stochastic approximation (SA) method: Robbins & Monro in 1951 studied a 

root finding problem in regression analysis and devised SA update rule to find the roots 

of the equation [ ( , )] 0E g w   , where g  is parameterized by nw  and   is the random 

variable. The proposed update rules is as follows, 

1 1: ( , )k k k k kw w g w    ,    (8) 

where 𝑘=1, 2,…,t,  and k  is the step size parameter. When 1 1( , ) ( )k k kg w F w  in 

equation (8) then the method is known as the ‘Stochastic Gradient Descent (SGD) 

method’. Note that the update rule is similar to the DG’s update rule, however, the only 

difference is in the computation of the gradient.  



9 
 

Here, the gradient is evaluated as 1 1( ) ( , )k k kF w f w    , where ,( )k k kx z   is 

the kth input-output vector pair. The advantage of the stochastic approach is that, at each 

step 𝑘=1, 2,...,t, the  update involves computation of the gradient 1kF  using only a 

single sample pair 
k . This reduces computational efforts by not evaluating over 

redundant data points present in large data. This also results in to less computationally 

expensive iterative steps and is comparatively memory efficient. However, the 

performance of the SA method is highly influenced by the choice of the step size 

parameter. As incorrect step size parameter may result in to poor convergence and noisy 

iterations. Also when the dimensionality of the data increases, the computation of actual 

gradient becomes costly and infeasible. 

1.2.2 Stochastic BFGS method (S-BFGS): As mentioned in details in Section 1.1.3, 

the D-BFGS method resolved the issues associated with computation of the Hessian and 

the inverse Hessian by providing an approximation formula for both as mentioned by 

equations (6 and 7). However, in the D-BFGS, gradients at each iteration are obtained by 

taking summation of the gradients over all the data points such as,

1 1

1

1
( ) ( , )

N

k k i

i

F w f w
N

 



   ), which makes the Deterministic BFGS method 

impractical to use when the number of data points (N) is large. On the other hand, the S-

BFGS method replaces the summation of the gradients obtained over entire data points 

by a noisy gradient computed using only a single data point, that is

1( ) ( , )k k kF w f w   , where ,( )k k kx z   is the kth input-output vector pair. However, 
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the S-BFGS method has high memory requirements to store the approximated inverse 

Hessians, which makes the method infeasible to be used on large scale data. 

1.2.3 Limited memory Stochastic BFGS method (LS-BFGS): The LS-BFGS (Byrd 

et.al, 2015) method computes the gradients stochastically as mentioned in Section 1.2.2 

which helps the algorithm to be less expensive computationally. Moreover, the product of 

inverse Hessian and the gradient is approximated using the Algorithm 2 (see Chapter 4) 

and the old less influencing curvature information 1ks   and 1ky   is overridden by new 

curvature information ks  and ky  as mentioned in the Section 1.1.4 in details. By 

discarding the old inverse Hessian and old curvature pair vectors, the algorithm requires 

much less memory. The aforementioned reasons make LS-BFGS suitable and an 

algorithm of choice for large scale unconstrained optimization applications in machine 

learning.  

1.3 Preliminaries 

Before we explore key concepts of large scale stochastic optimization, we define 

the following terms: 

Definition 1 (Large scale stochastic optimization problem) Problem (3) is considered to 

be large scale when it deals with high dimensional data (i.e. n, number of variables is 

very large) and is considered to be stochastic when it deals with high volume of data (i.e. 

N, number of instances is very large). 

Definition 2 (Norm) A p-norm is a function that assigns a positive length or size to each 

vector in a vector space given as 
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1

1

p
n

p

ip
i

w w


 
  
 
 .    (9) 

By inserting different values of p in equation (9), a variety of norms can be realized as 

follows, 

(i) 𝐿1𝑛𝑜𝑟𝑚: When p=1, we get 
1

1

n

i

i

w w


 . 

(ii) 𝐿2𝑛𝑜𝑟𝑚: Also known as Euclidean norm, when p=2, we get, 2

2
1

n

i

i

w w


  . 

(iii) 𝐿∞𝑛𝑜𝑟𝑚: Also known as Max-norm, when 𝑝 = ∞, we get max iw w

 for 

i=1, 2,…, n. 

Definition 3 (Hessian) The Hessian ∇2𝑓(𝑥) is a symmetric 𝑛 × 𝑛 matrix whose entries 

are second order partial derivatives of 𝑓 at 𝑥:[∇2𝑓(𝑥) ]𝑖𝑗 =
𝜕2𝑓(𝑥)

𝜕𝑥𝑖𝜕𝑥𝑗
, for 𝑖, 𝑗 = 1, … , 𝑛. 

Definition 4 (Positive definite matrix) A matrix 𝐴 is positive definite if it is symmetric 

and all its eigenvalues are positive or if 𝑥𝑇𝐴𝑥 > 0 for all vectors nx , where 𝑥 ≠ 0. 

Definition 5 (Semi positive definite matrix) A matrix 𝐴 is semi-positive definite if it is 

symmetric and  𝑥𝑇𝐴𝑥 ≥ 0 for all vectors nx , where 𝑥 ≠ 0. 

Definition 6 (Convex sets) A set in 
nX  is convex if the line segment between any 

two points in 𝑋 lies in 𝑋, i.e., if for any 𝑥1, 𝑥2 ∈ 𝑋 and for any 𝜃 with 0 ≤ 𝜃 ≤ 1, we 

have, 𝜃𝑥1 + (1 − 𝜃)𝑥2 ∈ 𝑋. 

Definition 7 (Convex functions) A function : nf X   is convex if 𝑋 is convex set 

in 
n
and if for all 𝑥1, 𝑥2 ∈ X, and 𝜃 ∈ (0,1) , when it satisfies either case: 

(i) In the absence of differentiability, 
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 𝑓(𝜃𝑥1 + (1 − 𝜃)𝑥2) ≤ 𝜃 𝑓(𝑥1) + (1 − 𝜃) 𝑓(𝑥2). 

(ii) If the function is differentiable, 

 1 2 1 2( ) ( ) ( ) 0
T

f x f x x x    . 

(iii) If the function is twice differentiable, 

 ∇2𝑓(𝑥1) ≽ 0 . 

Definition 8 (Strictly convex functions) A function : nf X   is strictly convex if 

𝑋 is a strictly convex set in 
n
and if for all 𝑥1, 𝑥2 ∈ X, and 𝜃 ∈ (0,1) , when it satisfies 

either case: 

(i) In the absence of differentiability, 

 𝑓(𝜃𝑥1 + (1 − 𝜃)𝑥2) < 𝜃 𝑓(𝑥1) + (1 − 𝜃) 𝑓(𝑥2). 

(ii) If the function is differentiable, 

 1 2 1 2( ) ( ) ( ) 0
T

f x f x x x    . 

(iii) If the function is twice differentiable, 

 ∇2𝑓(𝑥1) ≻ 0 . 

Definition 9 (Strongly convex functions) A function : nf X   is strongly convex 

with parameter 𝜆 > 0, when 𝑋 is convex for all 𝑥1, 𝑥2 ∈ X,  

(i) If the function is differentiable, 

 
2

1 2 1 2 1 2 2
( ) ( ) ( )

T
f x f x x x x x     . 

(ii) If the function is twice differentiable, 

 ∇2𝑓(𝑥1) ≽ 𝜆𝐼. 
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Definition 10 (Convex optimization problem) A convex optimization problem is one of 

the form, min  𝑓0(𝑥), subject to 𝑓𝑖(𝑥) ≤ 𝑏𝑖 ,    𝑖 = 1, … , 𝑚, where, the functions 

0 ,..., : n

mf f  are convex that is they satisfy, 𝑓𝑖(𝛼𝑥 + 𝛽𝑦) ≤ 𝛼 𝑓𝑖(𝑥) + 𝛽 𝑓𝑖(𝑦) for 

all ,x y and all 𝛼, 𝛽 ∈ 𝑅  with 𝛼 + 𝛽 = 1, 𝛼, 𝛽 ≥ 0. 

1.4 Loss function equations 

The loss function in (3) can represent variety of problems arising in machine 

learning such as: 

(i)  Logistic loss function: A logistic regression loss function used for binary 

classification problems is given as 𝑙(ℎ(𝑤; 𝑥𝑖), 𝑧𝑖) = log(1 )
T

i iz x w
e


 where log(1 )
T

i iz x w
e


  is 

the logit loss function, 
n

ix   is the input vector, 𝑧𝑖 ∈ {−1,1} is actual binary output 

vector and function is parameterized by nw . The goal is to learn a classifier 𝑤 which 

can classify the input vectors in to binary true or false with minimum error possible. See 

Section 5.1.b for more detailed information. 

(ii) Least square loss function: It is when in equation (3) we have 𝑙(ℎ(𝑤; 𝑥𝑖), 𝑧𝑖) =

1

2
||𝑤𝑇𝑥𝑖 − 𝑧𝑖||

2
 to find the squared error between the predicted output ℎ(𝑤; 𝑥𝑖) and the 

actual output 𝑧𝑖. Such loss function are used in image deblurring applications (see Beck 

& Teboulle, 2009) where 𝑥𝑖 is denoted as blur operator, 𝑤𝑇 as true image vectors and 𝑧𝑖  

as the captured image vectors to get clear images. See Section 5.2 for more detailed 

information. 

(iii)  Support vector machine (SVM): The SVM problem is in which we have a large 

number of training data of inputs, 
n

ix   and output, iz   pairs where 1,2,...,i N  

and 𝑣𝑖 ∈ {−1,1} is the categorical output. The goal is to learn a hyperplane ℎ(𝑤; 𝑥𝑖) 



14 
 

parametrized by vector 𝑤. Then a function which measures the distance of the observed 

output 𝑧𝑖 from the classifier function ℎ can be modeled as a convex loss function given as 

𝑙(ℎ(𝑤; 𝑥𝑖), 𝑧𝑖). See Section 5.1.c for more detailed information. 

2.5 Regularization 

To find an optimal solution to the problem (3) using any quasi-Newton method 

such as the BFGS algorithm the objective function needs to be strongly convex. This 

implies an assumption of the Hessian to be positive definite to achieve proper rate of 

convergence. However, most of the machine learning optimization problem are convex 

but not strongly convex which results in undesired rate of convergence when quasi-

Newton algorithms are applied. Moreover, the solutions generated by solving even the 

strongly convex function using such methods result in non-sparse solutions that have high 

memory requirements and high cost of computation per iteration. In order to achieve the 

desired missing properties such as strong convexity and sparsity, the regularization 

technique is used. A regularized convex optimization objective function can be given as, 

( ) ( ) ( )F w F w R w   ,    (10) 

where : nR  is a proper convex regularizing function with respective regularization 

parameter, 𝜆 > 0 being a scalar.  

To convert a convex function into a strongly convex function 𝐿2 regularization is 

used i.e. when
2

2

1
( )

2
R w w  and 

2  in equation (10) where 
2  is called the  𝐿2 

regularization parameter. Therefore, when the objective function in the problem (3) is 

added with the term 
2

2 2

1

2
w  and the approximate problem of the form, 
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2

2 2

1
min ( )

2nw
F w w


 ,     (11) 

where 
2

w denotes 𝐿2 or Euclidean vector norm, is solved to establish convergence 

properties equipped with rate results. This type of regularization is popularly known as 

Tikhonov regularization named after Andrey Tikhonov in machine learning community. 

 To induce sparsity in the solutions, 𝐿1 regularization is used i.e. when

1
( )R w w  and 

1  in equation (10) where 
1  is called the  𝐿1 regularization 

parameter. Therefore, when the objective function in the problem (3) is added with the 

term 1 1
w  and the approximate problem of the form, 

1 1
min ( )

nw
F w w


 ,    (12) 

where 
1

w denotes 𝐿1 norm, is solved, sparse solutions are obtained. This type of 

regularization is popularly used in LASSO introduced by Tibshirani (1996) for linear 

least square functions. 

Therefore, to obtain sparse solutions to non-strongly convex objective functions 

using methods like the BFGS methods both 𝐿1and 𝐿2 regularization are used and the 

regularized problem becomes, 

1

2

21 2

1
min ( )

2nw
F w w w 


  .   (13) 



16 
 

CHAPTER II 

 

 

LITERATURE REVIEW 

Since past century, we have witnessed technological advancements in powerful 

computing platforms. Today data is massively generated and stored which is readily 

available to extract information like never before. To tap the information from such large 

data, various data mining models are employed, but the models generally have prediction 

errors. These errors can be written in the form of a loss function, ( , ) : n

i

df w     

in the expected minimization problem such as, min ( ) : [ ( , )] ( , ) ( )
n i i i

w
F w E f w f w P  


    

where nw  is the decision variable and 
d

i   is the random variable. The random 

variable , 1{( )}N

i i i ix z  has 
n

ix  as the ith input vector, iz  as the ith true output 

vector, N as the total number of input-output pairs and n as the dimensionality of  w and x 

vectors. Such problems are minimized using various convex optimization methods and 

algorithms which started developing since 19th century.  

However, with high dimensionality and uncertainty in the data, the evaluation of 

the multi-dimensional integrals in the expected objective function as mentioned above 

becomes infeasible in the absence of the probability distribution P. To formulate the 

objective function of the problem in the absence of the distribution information, Monte 

Carlo simulation method such as Sample Average Approximation (SAA) schemes has
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 been widely used in the literature Kleywegt et al. (2002) and Shapiro et al. (2003). As 

per the SAA scheme, the minimization problem could be approximated as, 

1

1
min ( ) ( , )

n

N

i
w

i

F w f w
N






  , which is also known as ‘Empirical Risk Minimization 

(EMR)’ problem in machine learning.  

Traditionally, to solve EMR problems deterministic schemes such as the 

Deterministic Gradient method (DG) (see Section 1.1.1) and the Deterministic Newton 

method (DN) (see Section 1.1.2) were used. The deterministic methods evaluate the 

gradients at each iteration using all the data points such as, 1 1

1

1
( ) ( , )

N

k k i

i

F w f w
N

 



  

for k= 1, 2,…, t which results in high cost of computation at each iteration and might take 

infeasible amount of time to converge when the number of data points N is large. 

Therefore, the deterministic scheme becomes inefficient (see Nemirovski et al., 2009), 

expensive (see Bottou, 2010) and ill-suited for learning continuous stream of big data 

(see Schraudolph et al., 2007). 

In 1951, Robbins and Monro developed first Stochastic Approximation (SA) (see 

Section 1.2.1) method (Robbins & Monro, 1951) which resolved the above mentioned 

issues by considering small random subsamples or a single data point at a time from the 

training data to compute gradients reducing the computational requirement as studied in 

Bottou (2010). In the stochastic methods, the gradients at each iteration is evaluated as 

( ) ( , )k k kF w f w   , where ,( )k k kx z   is the kth input-output vector pair for k= 1, 2,…, 

t. The advantage of the stochastic approach is that, at each step 𝑘=1, 2,...,t, the  update 
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involves computation of the gradient kF using only a single random pairs 
k  which 

results in less computationally expensive iterative steps and is comparatively memory 

efficient. Although, the SA is comparatively efficient (Nemirovski et al. 2009), its 

performance is highly sensitive to the choice of step-size sequence as mentioned in 

Yousefian et al. (2012). Also the convergence results become poorer with increase in the 

dimensionality of the data (see Mokhtari & Ribeiro, 2014).  

On the other hand, often it is either expensive or impossible to compute actual 

gradients, in such cases, gradients are approximated using finite-difference methods as 

first mentioned by Kiefer and Wolfowitz in 1952 and later developed more by Spall in 

1992. Such methods are known as quasi-Newton (QN) methods. The Deterministic QN 

methods exhibit reliable performance while handling high dimensional problems 

(Schraudolph et al., 2007). Moreover, in some schemes the curvature information of 

objective function is incorporated to approximate the gradients and the Hessians by 

increasing robustness. One of the popular update rule in such regime is the Deterministic 

BFGS method (see Section 1.1.3), named after Broyden, Fletcher, Goldfarb, and Shanno 

(Fletcher, 1987) which incorporates displacement factor 𝑠𝑘 and gradient mapping 𝑦𝑘 (see 

Chapter 4, Algorithm 2).  

However, when the data is large scale, the D-BFGS method and other 

deterministic QN method requires lot of memory and have slow convergence when 

enough computational memory is not available (Liu & Nocedal, 1989). Therefore, limited 

memory deterministic version such as LD-BFGS (see Byrd et al., 2015) (see Section 

1.1.4), is employed to handle such issues arising in large scale optimization. The main 

idea in the LD-BFGS is that instead of storing entire 𝑛 × 𝑛 matrix at each iteration, only 
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a fix number of vectors (𝑅𝑛) are stored and used to compute approximate Hessian inverse 

using two loop recursive scheme given Nocedal & Wright (1999). However, the 

computation of the gradients and the Hessians deterministically incurs high 

computational cost per iteration and makes the deterministic methods impractical for 

large scale data optimization.  

Moreover, in the developed full memory and limited memory QN methods, it is 

assumed that the objective function is strongly convex (Byrd et al., 2015) and violation of 

that assumption hampers the rate of convergence as mentioned by Yousefian et al. 

(2016). As, the objective functions in most of the applications are convex but not strongly 

convex, they are regularized to make them strongly convex as seen in Regularized 

version of the BFGS also known as RES (see Mokhtari & Ribeiro, 2014). However, the 

solutions generated with regularization are of approximate problem and limited 

information is available to find the solutions to the original problem. 

To overcome the mentioned challenges such as high computational-memory 

requirements, slow convergence and high cost of gradient computation faced by classical 

deterministic quasi-Newton algorithms such as LD-BFGS method while handling Big 

Data, new limited memory stochastic variants of classical methods have been developed 

such as the Limited memory Stochastic BFGS (LS-BFGS) method as mentioned in Byrd 

et. al., 2015 (see Section 1.2.3). However, the solutions generated through the LS-BFGS 

method are dense which could result in potential memory outage issues and a limited 

literature is available to obtain sparse solutions iteratively to non-strongly convex 

objective functions using LS-BFGS method. To address this gap, we present an ‘Iterative 

L1 Regularized LS-BFGS (iRLS-BFGS) method’ for big data applications. The proposed 
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iRLS-BFGS algorithm uses L2 regularization to make the objective function strongly 

convex and an iterative L1 regularization term to induce sparsity. We identify the best 

update rules through the application of the iRLS-BFGS method for text classification 

using logistic regression which generates sparse solutions and demonstrates faster rate of 

convergence on the non-strongly convex optimization problems arising in machine 

learning. Later, we test the best found update rate on the Image deblurring application in 

signal processing and compare the convergence results.
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CHAPTER III 

 

 

MOTIVATION AND OBJECTIVES 

The focus of the thesis is to develop and implement an iterative Limited memory 

Stochastic Broyden, Fletcher, Goldfarb, and Shanno method (LS-BFGS) to solve large 

scale unconstrained optimization problems arising in machine learning of the form (3). 

All the quasi-Newton methods discussed in Section 1.1 and 1.2 to solve the problem (3) 

require the objective function to be strongly convex to assure convergence, however, in 

reality most applications have convex but not strongly convex objectives. To make the 

objective function strongly convex, we use 2L regularization where we add the term 

2

2 2

1

2
w to the objective function where, 2 0  is a constant 2L regularization parameter 

(Nocedal et.al, pg. 9, 2015) and 
2

w is the 2L norm as defined in Section 1.3 Definition 2 

(ii).  

Moreover, the solutions generated by solving 2L regularized objective function 

may be dense which require high storage memory, therefore, we employ 1L

regularization term 1 1
w  to induce sparsity in the solutions where, 1  is the 1L

regularization parameter and 
1

w is the 1L norm as defined in Section 1.3 Definition 2 

(ii). Therefore the problem (3) is written as,
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2

2 12 1
1

1 1
min ( ) ( , )

2n

N

i
w

i

F w f w w w
N

  




   ,  (12) 

where , 1{( )}N

i i i ix z  is the ith input-output pair vector. However, addition of constant 1L

regularization term to get sparse solutions changes the original problem (3) and the 

obtained solutions of regularized problem (12) are not exact, instead they are solutions to 

an approximate problem.  

Therefore, there is a trade-off in selection of 1L regularization parameter  in 

which higher value of it leads to sparse solutions but the solutions obtained are not exact 

while lower value of  might generate exact optimal solutions but with low sparsity. 

Moreover, limited information is available in the literature for the selection of appropriate 

regularization term to obtain exact sparse solutions to the original problem. Motivated 

by this gap our goal is to find exact sparse solutions to problem (12) by decaying the 1L

regularization parameter, 1  using the LS-BFGS algorithm. We employ iterative 

𝐿1regularization scheme in which the 𝐿1regularization parameter decays at the rate of 1

k 



, that is the value of the initial 𝐿1regularization parameter  decreases during the 

implementation of the algorithm as the iteration number increases from 1,2,...,k t . We 

test the algorithm on test application for different values of simulation parameters, 1  and 

  to find the best update rule. 

 Moreover, as we know from Section 1.2 that in stochastic optimization 

algorithms, the choice step-size also plays a vital role to get convergence. In order to 

1

1

1L

1
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obtain feasible update rules for step-size, we employ iterative step-size parameter with 

drop rate of 
k


 as the algorithm proceeds with for different values of 

simulation parameters, and  .   

The objective of the thesis is to implement an iterative L1 Regularized Limited memory 

Stochastic BFGS (iRLS-BFGS) algorithm to find out the best update rule for the iterative 

1L regularization term and the step-size parameter by considering the simulation 

parameters, ,  , and  that gives best convergence results. For that, the iRLS-BFGS 

algorithm is coded in MATLAB v9.0.0.341360 (R2016a) and is tested on two large scale 

(see Section 1.3 Definition 6) applications. First, text classification using logistic 

regression and Support Vector Machine (SVM) over RCV1 dataset (see Lewis et al., 

2004) to classify the document type (Section 5.1). Second, image deblurring problem 

where the blur error is realized in the form of the least square loss function and is 

minimized using the developed algorithm (Section 5.2) to get a clear image. In this study, 

we run simulation scenarios with different combinations of ,  , 1 and  on the Cowboy 

(Oklahoma State University’s super computer) and compare the convergence results for 

each application to determine the best update rules.

1,2,...,k t

1
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CHAPTER IV 

 

 

ALGORITHMS 

In this section, we present the notations used in the developed ‘iterative L1 Regularized 

Limited memory Stochastic BFGS algorithm’ (iRLS-BFGS), the outline of the iRLS-

BFGS algorithm, and the ‘Two loop scheme’ developed by Nocedal. The developed 

algorithm is characterized by the iterative step-size parameter given by k
k


   and the 

iterative 𝐿1regularization parameter given by 1
1k

k 


  , where we find the best update 

rules by simulating different possible parameter settings for 1 , ,   and  . The novelty 

of the iRLS-BFGS algorithm over the classical LS-BFGS algorithm is that, in the iRLS-

BFGS algorithm the step-size parameter and the 𝐿1regularization parameter decay during 

the algorithm to generate exact sparse solutions. In this research, based on the earlier 

work on the iterative regularization for stochastic approximation methods as mentioned 

in Yousefian et al., 2017, we assume the simulation decay rate parameter values such that 

1   where   for all applications. 

4.1 Algorithm outline: Before we present our algorithm, we define following 

notations, 

𝑁: the number of training data points used to train the model
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𝑤𝑘: the decision vector generated at kth iteration, 1 10nw   

𝑛: the number of variables associated with each data point 

𝑚: the batch size which is user specified number of vectors stored per iteration, 𝑚 = 20 

𝑥𝑖: the ith input vector (
n
) from X, the input n N  matrix. (i=1,2,…,N) 

𝑧𝑖: the ith ouput ( ) from Z, the output 1 n  vector. (i=1, 2,..., N) 

𝜆1𝑘: the iterative 𝐿1regularization parameter, 1
1k

k 


  , where 1,2,...,k t  

𝜆2: the fixed 𝐿2 regularization parameter, (An arbitrary small value) 

1 2( , , , , )kF w x z   : the objective function as per application where 

2

1 2 2 12 1
1

1 1
( , , , , ) ( , , )

2

N

k i i k

i

F w x z f w x z w w
N

   


   in which ( , , )i if w x z  is the loss 

function as mentioned in Section 1.4 

1 2( ; , , , )k k k kF w x z   : the gradient of the objective function
1 2( , , , , )kF w x z   respectively 

𝑠𝑘: the kth displacement vector given as, 𝑠𝑘 = 𝑤𝑘+1 − 𝑤𝑘 

 

S: the n m matrix which gets updated at each iteration by only storing m latest 𝑠 vectors 

𝑦 : the gradient difference vector given as, 𝑦𝑘 = ∇𝐹(𝑤𝑘+1; 𝑥𝑘 , 𝑧𝑘) − ∇𝐹(𝑤𝑘;; 𝑥𝑘, 𝑧𝑘)     

 

Y: the n m matrix which is updated at each iteration by only storing m latest 𝑦 vectors 

𝑒: the number of epochs, checkpoints at which objective function is evaluated 

q: the counter, 1,2,…, 𝑒 

epoch: {qN/ 𝑒 | q=1,2,..., 𝑒 } 

𝑂𝑞: the objective function value at each epoch 

k : the iterative step length parameter, k
k


  , where 1,2,...k t and ,   
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We implemented the following developed algorithm in our research: 

Algorithm 1: An Iterative 𝐿1 Regularized Limited memory Stochastic BFGS (iRLS-

BFGS) 

Initialization 

Set 2 , m, e, 1w , 1 ,  ,   and   

for 𝑘 = 1 to 𝑚 do 

k
k


   

1
1k

k 


   

1 1 2: ( ; , , , )k k k k k k kw w F w x z       

𝑠𝑘 = 𝑤𝑘+1 − 𝑤𝑘 

𝑦𝑘 = ∇𝐹(𝑤𝑘+1; 𝑥𝑘 , 𝑧𝑘, 0, 𝜆2) − ∇𝐹(𝑤𝑘;; 𝑥𝑘, 𝑧𝑘 , 0, 𝜆2)     

if 𝑘 = 𝑒𝑝𝑜𝑐ℎ 

𝑂𝑞 = 𝐹(𝑤𝑘+1, 𝑋, 𝑍, 𝜆1𝑘, 𝜆2)        

𝑞 = 𝑞 + 1 

end if 

end for 

for 𝑘 =  𝑚 to 𝑁 do 

𝑤𝑘+1 ≔ 𝑤𝑘 − 𝛼𝑘𝐻𝑘∇𝐹(𝑤𝑘; 𝑥𝑘, 𝑧𝑘, 𝜆1𝑘, 𝜆2),   ⊳ Evaluate 𝐻𝑘∇𝐹𝑘as per Algorithm 2 

𝑠𝑘 = 𝑤𝑘+1 − 𝑤𝑘 

𝑦𝑘 = ∇𝐹(𝑤𝑘+1; 𝑥𝑘 , 𝑧𝑘, 0, 𝜆2) − ∇𝐹(𝑤𝑘;; 𝑥𝑘, 𝑧𝑘 , 0, 𝜆2)     

if 𝑘 = 𝑒𝑝𝑜𝑐ℎ 

𝑂𝑞 = 𝐹(𝑤𝑘+1, 𝑋, 𝑍, 𝜆1𝑘, 𝜆2)  

𝑞 = 𝑞 + 1 

end if 

update S and Y 

end for 
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4.2  Two loop recursion scheme: This scheme was developed by Nocedal in 1999 to 

evaluate the product of the Hessian and the gradient using only the recent curvature pair 

information. The advantage this scheme is that it evaluates the product of the Hessian and 

the gradient without calculating or storing any matrix.  

The two-loop scheme is given as: 

Algorithm 2: L-BFGS two-loop recursion 

𝑞 ←  ∇𝐹𝑘;  

for i = k-1, k-2,…, k-m do 

        𝛼𝑖 ←  𝜌𝑖𝑠𝑖
𝑇𝑞;           ⊳ Where, 𝜌𝑖 =

1

𝑦𝑖
𝑇𝑠𝑖

 

        𝑞 ← 𝑞 − 𝛼𝑖𝑦𝑖; 
end for 

𝑟 ←  𝐻𝑘
0𝑞;           ⊳ Initialize 𝐻𝑘

0=𝛾𝑘𝐼, where,  𝛾𝑘 = 
𝑠𝑘−1

𝑇 𝑦𝑘−1

𝑦𝑘−1
𝑇 𝑦𝑘−1

, 

for i = k-m, k-m+1,…, k-1 do 

         𝛽 ←  𝜌𝑖𝑦𝑖
𝑇𝑟; 

         𝑟 ← 𝑟 + 𝑠𝑖(𝛼𝑖 − 𝛽); 
end for 

 

Stop with result 𝐻𝑘∇𝐹𝑘 = 𝑟 
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CHAPTER V 

 

 

NUMERICAL EXPERIMENTS 

In this section we compare the convergence properties of the developed iterative 

L1 Regularized Limited memory Stochastic BFGS (iRLS-BFGS) algorithm with classical 

L1 Regularized Limited memory Stochastic BFGS (cRLS-BFGS) algorithm. For that, we 

implemented the iRLS-BFGS algorithm (Chapter 4) on various problems arising in 

machine learning of the form, 

2

2 2
1

1 1
min ( ) ( , ) ,

2n

N

i
w

i

F w f w w
N

 




     (13) 

where 
2

2 2

1

2
w  is the 2L  regularization term in which 2 0   is the 2L regularization 

parameter. The classical approach uses constant L1 regularization to solve the problem 

13, however, in the developed iRLS-BFGS algorithm the L1 regularization is performed 

iteratively in the algorithm, i.e., by addition of iterative L1 regularization term to the 

gradient function during the optimization to generate exact sparse solutions. 

Also, the update rule of the iRLS-BFGS is given by, 1: ( )k k k k kw w H F w   , 

where k
k


  is the iterative step-size parameter in which is the initial step-size 

parameter and is the step-size decay rate parameter. Therefore, to obtain the best update 
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rule of the iterative L1 regularization parameter and the iterative step-size parameter, we 

implemented the iRLS-BFGS algorithm with different combinations of parameter setting 

,  , 1 and   in two different big data applications  as mentioned later in this chapter.  

5.1  Binary text classification 

We consider a binary classification problem using logistic regression and Support 

Vector Machine (SVM) in our research to train a classification model and have the 

minimum classification error.  

5.1.a RCV1 Dataset: The dataset in consideration is the RCV1dataset (see Lewis et al., 

2004) which consists of newswire articles produced in the Reuters magazine from 1996-

1997. The dataset consists of words present in the articles that are characterized into four 

categories namely, Corporate/Industrial, Economics, Government/Social, and Markets. 

Our goal is to classify the documents into ‘Markets’ and ‘non-Markets’. The raw data file 

consisted tokenized words present in the articles, which were then organized into a term-

document matrix using Python. A term-document matrix is a matrix, which has rows 

representing the documents, i.e., individual articles, and columns representing the tokens. 

The presence of a word in an article is indicated by a binary parameter in the respective 

article’s row and column. As a result we obtain a feature input vector in 
n
where, 𝑛 =

13892 is the total number of unique words for each of 𝑁 = 199328 documents. Each 

input vector 𝑥𝑖 ∈ [0,1]𝑛 is extremely sparse and output labels 𝑧𝑖 ∈ {−1,1} where, 1 

indicates the article of ‘Markets’ and -1 of other categories. The iRLS-BFGS algorithm is 

implemented to minimize the objective function for number of iterations, 𝑡 = 10000.  
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5.1.b Logistic Regression: Here we train a binary logistic classification model using 

the training dataset which has N random input-output pairs, , 1{( )}N

i i i ix z  in which

n

ix   is the ith binary input vector and 𝑧𝑖 ∊ {−1,1} is the ith  true output for all 

1,2,...,i N .  

i. Objective function: At each iteration of the algorithm, we evaluate the 

regularized objective function in the problem (3) which is given by, 

2

1 2 2 12 1
1

1
( ; , , , ,

2
,

1
) ( )

N

k i

i

ki w wF w x z f w x z
N

  


  ,  (14)  

where ( , , ) log(1 :)
T

i iz x w

i

n

i

df w x z e


    is the logistic binary classification loss 

function, nw  is the decision variable vector, 
n

ix   is the ith binary input vector, 

iz  , { 1,1}iz   is the ith  true output for all 𝑖 = 1,2, … , 𝑁 and n is the dimensionality of 

parameter w and input x vectors. Also, 2 is the constant L2 regularization parameter, 

here 2 =0.1 and 1
1k

k 


  is the iterative L1 regularization parameter which decreases the 

influence of initial L1 regularization parameter 1  on the objective function as the 

algorithm proceeds ( 1,2,...,k t ). The corresponding regularized stochastic logistic 

gradient at the kth iteration is evaluated as, 

2
1 2 1( ; , , , ) ( )

21
T

i i

i
i i k i kz x w

z
F w x z x sign w w

e


      


,  (15) 

where sign(.) is the sign operator. 
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ii. Concluding remarks: To find the best update rules given by 1
1k

k 


  and 

k
k


   we find the best parameter set of the parameters 1 , ,   and   by comparing 

the convergence properties of the iterative L1 Regularized Limited memory Stochastic 

BFGS (iRLS-BFGS) algorithm with the classical L1 Regularized Limited memory 

Stochastic BFGS algorithm using scenario approach. Table 5.1.b shows all the scenario 

codes with combination of algorithm parameters.  

 Scenario codes and parameters: Table 5.1.b shows the 48 scenario codes and 

corresponding values of , 1 , and  used in the experiment.
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Table 5.1.b.i                 Table 5.1.b.ii 

   
     

 Output plot: Figure 5.1.b.1 to Figure 5.1.b.12 shows, the convergence plots of the 

objective function with L1 regularization and scenario parameters corresponding to 

legend’s respective values in Table 5.1.b. 

 
 Figure 5.1.b.1      Figure 5.1.b.2 

No. Scenario code

1 S11 1 0

=0.001 2 S12 0.5 0.5

=0.001 3 S13 0.67 0.33

4 S14 0.9 0.1

5 S21 1 0

=0.001 6 S22 0.5 0.5

=  0.01 7 S23 0.67 0.33

8 S24 0.9 0.1

9 S31 1 0

=0.001 10 S32 0.5 0.5

=    0.1 11 S33 0.67 0.33

12 S34 0.9 0.1

13 S41 1 0

=  0.01 14 S42 0.5 0.5

=0.001 15 S43 0.67 0.33

16 S44 0.9 0.1

17 S51 1 0

=  0.01 18 S52 0.5 0.5

=  0.01 19 S53 0.67 0.33

20 S54 0.9 0.1

21 S61 1 0

=  0.01 22 S62 0.5 0.5

=    0.1 23 S63 0.67 0.33

24 S64 0.9 0.1



1



1

 



1



1



1



1

No. Scenario code

25 S71 1 0

=   0.1 26 S72 0.5 0.5

=0.001 27 S73 0.67 0.33

28 S74 0.9 0.1

29 S81 1 0

=    0.1 30 S82 0.5 0.5

=  0.01 31 S83 0.67 0.33

32 S84 0.9 0.1

33 S91 1 0

=    0.1 34 S92 0.5 0.5

=    0.1 35 S93 0.67 0.33

36 S94 0.9 0.1

37 S101 1 0

=        1 38 S102 0.5 0.5

=0.001 39 S103 0.67 0.33

40 S104 0.9 0.1

41 S111 1 0

=       1 42 S112 0.5 0.5

=  0.01 43 S113 0.67 0.33

44 S114 0.9 0.1

45 S121 1 0

=       1 46 S122 0.5 0.5

=    0.1 47 S123 0.67 0.33

48 S124 0.9 0.1

 



1



1



1



1



1



1
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 Figure 5.1.b.3     Figure 5.1.b.4 

 
 Figure 5.1.b.5     Figure 5.1.b.6 

 
 Figure 5.1.b.7      Figure 5.1.b.8 
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 Figure 5.1.b.9     Figure 5.1.b.10 

 

 Figure 5.1.b.11     Figure 5.1.b.12 

 

 Interpretations: In this experiment, we implemented the iRLS-BFGS algorithm to 

solve large scale unconstrained nonlinear optimization problems arising in machine 

learning. The iRLS-BFGS algorithm was tested on RCV1 dataset to minimize the 

binary logistic regression loss function used for text classification. The iterative L1 

regularization parameter in the iRLS-BFGS method is given as 1
1k

k 


   and the step-

size parameter is given as k
k


   where, the initial value of step-size is given as 
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={0.001,0.01,0.1,1}, the initial value of L1 regularization parameter is given as 1

={0.001,0.01,0.1} and the drop rate parameters as ( ,  ) = {(1,0), (0.5,0.5), 

(0.67,0.33), (0.9,0.1)} for 1,2,...k t . Table 5.1.b shows all the different 

combinations of the , 1 , and  used in for the simulation. Scenario codes S1 (

=0.001, 1 =0.001), S2 ( =0.001, 1 =0.01),  S3( =0.001, 1 =0.1), S4( =0.01, 1

=0.001), S5( =0.01, 1 =0.01), S6( =0.01, 1 =0.1), S7( =0.1, 1 =0.001), S8( =0.1,

1 =0.01), S9( =0.1, 1 =0.1), S10( =1, 1 =0.001), S11( =1, 1 =0.01) and S12(

=0.1, 1 =0.1) have corresponding four update settings of ( ,  ) ={(1,0), (0.5,0.5), 

(0.67,0.33), (0.9,0.1)} each, which is denoted by subscript 1,2,3 and 4 respectively. 

For example S23 has  =0.001, 1 =0.01,  =0.5 and  =0.5 as the scenario 

parameters.  

In this section, we compare the convergence results, which is a plot of

log( ( ))epochF w value at each epoch of the iRLS-BFGS algorithm with L1 regularization 

(where, the L1 regularization parameter 1  is as per Table 5.1.b) as seen in Figure 

5.1.b.1 to Figure 5.1.b.12. 

 Figure 5.1.b.1 to Figure 5.1.b.12 shows the convergence plot of the objective 

function values at the epochs as the algorithm proceeds when the iRLS-BFGS algorithm 

(see Chapter 4 Algorithm 2) is applied to the RCV1 data set to minimize the binary 

logistic loss function given by equation (14).  In the Figure 5.1.b.1, the best convergence 

is achieved by S12 setting of the Table 5.1.b in which ( ,  ) = (0.5, 0.5) as it has the 



36 
 

fastest convergence that is steepest slope and is below other convergence lines with 

lowest loss function value. Similarly, in all the results as seen in Figure 5.1.b.1 to Figure 

5.1.b.12, the scenario parameter settings of ( ,  ) = (0.5, 0.5) in all the scenario setting 

of (S12, S22,..., S122) respectively have the best convergence. Therefore, we conclude that 

irrespective of the initial value of the L1 regularization parameter ( 1 ) and the step-size 

parameter ( ), the best convergence is achieved with the update rule with decay 

parameter setting of ( ,  ) = (0.5, 0.5) which imply that when both the step-size and the 

𝐿1 regularization parameter decay at the rate of the order
1

k
, the best convergence is 

achieved. 

 In the Figure 5.1.b.1 to Figure 5.1.b.12, another interesting observation is that 

with the first update setting which had scenario codes 
1Sj  for all j=1, 2, …, 12. These 

scenarios resulted in slowest convergence and comparatively highest loss function value. 

The first update setting has the update parameters ( ,  ) = (1, 0) in the drop rates as 

mentioned in Section 4.1.3. This update setting has comparatively a faster decay rate in 

the step-size as =1 and no drop in the L1 regularization parameter as  =0. For example, 

in the Figure 5.1.b.1 the scenario code S11 has the worst convergence speed 

comparatively. Similarly in all the results as seen in Figure 5.1.b.1 to Figure 5.1.b.12, 

the scenario parameter settings where there is no drop in the L1 regularization parameter 

(S11, S21,..., S121) have worst convergence results. Therefore, we conclude that the 

performance of the iRLS-BFGS algorithm with iterative L1 regularization parameter is 
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generally better than the classical RLS-BFGS algorithm with constant L1 regularization 

parameter. 

5.1.c  Support Vector Machine  

Here we train a SVM hyperplane for classification using the training dataset 

which has N random input-output pairs, , 1{( )}N

i i i ix z  in which
n

ix   is the ith binary 

input vector and 𝑧𝑖 ∊ {−1,1} is the ith  true output for all 1,2,...,i N .  

i. Objective function: At each iteration of the algorithm we evaluate the 

regularized objective function in the problem (3) which is given by, 

2

1 2 2 12 1
1

1
( ; , , , ,

2
,

1
) ( )

N

k i

i

ki w wF w x z f w x z
N

  


  ,  (16)  

where ( , , ) max{0,1 :}T

i i i i

n df w x z z x w    is the hinge loss function, nw  is 

the decision variable vector, 
n

ix   is the ith binary input vector, iz  , { 1,1}iz   is the 

ith  true output for all 1,2,...,i N and n is the dimensionality of parameter w and input x 

vectors. Also, 2 is the constant L2 regularization parameter, here 2 =0.1 and 1
1k

k 


  is 

the iterative L1 regularization parameter which decreases the influence of initial L1 

regularization parameter 1  on the objective function as the algorithm proceeds (

1,2,...,k t ). The corresponding regularized stochastic logistic gradient at the kth iteration 

is estimated by subgradient as, 

2
1 2 1

1 ( )
( ; , , , ) ( )

2 2

T

i i
k i i k

sign z x w
F w x z z x sign w w


  


    ,  (17) 
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where sign(.) is the sign operator. 

ii Concluding remarks: To foster the claim of the best update rules given by 

1
1k

k 


  and k

k


   we again seek the best choices of the parameters 1 , ,   and   

by comparing the convergence properties of the iterative L1 Regularized Limited memory 

Stochastic BFGS (iRLS-BFGS) algorithm with the classical L1 Regularized Limited 

memory Stochastic BFGS (cRLS-BFGS) algorithm using the scenario approach. Table 

5.1.c shows all the scenario codes with combination of algorithm parameters.  

 Scenario codes and parameters: Table 5.1.c shows the scenario codes and 

corresponding values of , 1 , and  used in the experiment. 
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Table 5.1.c    

   
     

 Output plot: Figure 5.1.c.1 to Figure 5.1.c.6 shows, the convergence plots of the 

objective function with L1 regularization and scenario parameters corresponding to 

legend’s respective values in Table 5.1.c. 

 
 Figure 5.1.c.1     Figure 5.1.c.2 

No. Scenario code

1 S11 1 0

=0.001 2 S12 0.5 0.5

=0.001 3 S13 0.67 0.33

4 S14 0.9 0.1

5 S21 1 0

=0.001 6 S22 0.5 0.5

=  0.01 7 S23 0.67 0.33

8 S24 0.9 0.1

9 S31 1 0

=0.001 10 S32 0.5 0.5

=    0.1 11 S33 0.67 0.33

12 S34 0.9 0.1

13 S41 1 0

=  0.01 14 S42 0.5 0.5

=0.001 15 S43 0.67 0.33

16 S44 0.9 0.1

17 S51 1 0

=  0.01 18 S52 0.5 0.5

=  0.01 19 S53 0.67 0.33

20 S54 0.9 0.1

21 S61 1 0

=  0.01 22 S62 0.5 0.5

=    0.1 23 S63 0.67 0.33

24 S64 0.9 0.1



1



1

 



1



1



1



1
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 Figure 5.1.c.3     Figure 5.1.c.4 

 
  Figure 5.1.c.5     Figure 5.1.c.6 

 Interpretations: In this experiment, the iRLS-BFGS algorithm is tested on RCV1 

dataset to minimize the hinge loss function used for text classification using SVM. 

The iterative L1 regularization parameter in the iRLS-BFGS method is given as

1
1k

k 


   and the step-size parameter is given as k

k


   where, the initial value of 

step-size is given as  ={0.001,0.01}, the initial value of L1 regularization parameter 

is given as 1 ={0.001,0.01,0.1} and the drop rate parameters as ( ,  ) = {(1,0), 

(0.5,0.5), (0.67,0.33), (0.9,0.1)} for 1,2,...,k t . Table 5.1.c shows all the different 
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combinations of the , 1 , and  used in for the simulation. Scenario codes S1 (

=0.001, 1 =0.001), S2 ( =0.001, 1 =0.01),  S3( =0.001, 1 =0.1), S4( =0.01, 1

=0.001), S5( =0.01, 1 =0.01) and S6( =0.01, 1 =0.1) have corresponding four 

update settings of ( ,  ) ={(1,0), (0.5,0.5), (0.67,0.33), (0.9,0.1)} each, which is 

denoted by subscript 1,2,3 and 4 respectively. For example S23 has  =0.001, 1

=0.01,  =0.5 and  =0.5 as the scenario parameters.  

In this section, we compare the convergence results, which is a plot of

log( ( ))epochF w value at each epoch of the iRLS-BFGS algorithm with L1 regularization 

(where, the L1 regularization parameter, 1  is as per Table 5.1.c) as seen in Figure 

5.1.c.1 to Figure 5.1.c.6. 

 Figure 5.1.c.1 to Figure 5.1.c.6 shows the convergence plot of the objective 

function values at the epochs as the algorithm proceeds when the iRLS-BFGS algorithm 

(see Algorithm 2) is applied to the RCV1 data set to minimize the SVM loss function 

given by equation (16).  In the Figure 5.1.c.1, the best convergence is achieved by S12 

setting of the Table 5.1.c in which ( ,  ) = (0.5, 0.5) as it has the fastest convergence 

that is steepest slope and is below other convergence lines with lowest loss function 

value. Similarly, in all the results as seen in Figure 5.1.c.1 to Figure 5.1.c.6, the scenario 

parameter settings of ( ,  ) = (0.5, 0.5) in all the scenario setting of (S12, S22,..., S62) 

respectively have the best convergence. Therefore, we conclude that irrespective of the 

initial value of the L1 regularization parameter ( 1 ) and the step-size parameter ( ), the 



42 
 

best convergence is achieved with the update rule with decay parameter setting of ( , ) 

= (0.5, 0.5) which imply that when both the step-size and the 𝐿1 regularization parameter 

decay at the rate of the order
1

k
, the best convergence is achieved. 

 In the Figure 5.1.c.1 to Figure 5.1.c.6, another interesting observation was that 

with the first update setting which had scenario codes 
1Sj  for all j=1, 2, …, 6. These 

scenarios resulted in slowest convergence and comparatively highest loss function value. 

The first update setting has the update parameters ( ,  ) = (1, 0) in the drop rates as 

mentioned in Table 5.1c. This update setting has a comparatively faster decay rate in the 

step-size as =1 and no drop in the L1 regularization parameter as  =0. For example, in 

the Figure 5.1.c.1 the scenario code S11 has the worst convergence comparatively. 

Similarly in all the results as seen in Figure 5.1.c.1 to Figure 5.1.c.6, the scenario 

parameter settings where there is no drop in the L1 regularization parameter (S11, S21,..., 

S61) have worst convergence results. Therefore, we conclude that the performance of the 

iRLS-BFGS algorithm with iterative L1 regularization parameter is generally better than 

the classical RLS-BFGS algorithm with constant L1 regularization parameter. 

5.2  Image deblurring problem 

Image deblurring process is one of the popular Big Data applications in signal 

processing where with the help of algorithms the noise or blur in the original image is 

minimized.  The blur in the images occurs due to imperfections in the imaging devices 

(defocusing), relative motion between the camera and the object (MRI scans or CCTV 

footages) or atmospheric turbulence (spectral imaging). This phenomenon can be realized 
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in the form of the linear inverse problem given by, Xw z e  , where 
N NX   is the 

blur operator ( N n n  ),
Nw  is the original image vector, 

Nz is the blurred 

image vector and e is the bias. The vectors w and z are formed by stacking the columns 

of their corresponding two dimensional images ( n n ). The problem in which we 

estimate the true image w , given the blurred or noisy image z is called the image 

deblurring problem. 

5.2.a Dataset: The image considered for this experiment is the famous black and white 

‘Cameraman.pgm’ 8 bit image which is converted in the form of intensity matrix in 

Matlab 2016 using ‘imread()’ command. Therefore, we obtain the true image matrix *W  

of size 256 256  with pixel intensity with in the range of [7,253] in which ‘0’ represents 

complete black and ‘256’ represents complete white pixel. The columns of the matrix *W  

are stacked to form the original image vector * Nw  where 256 256 65536N    . 

The original image intensity matrix *W is used to generate the blur operator matrix

N NX   where 65536N  using the function ‘mblur.m’ (Hansen P. C., 1997) which 

models a horizontal motion blur of level 10.  The blurred image vector
Nz  is obtained 

by the product of the blur operator ( X ) and the original image vector ( *w ).  The iRLS-

BFGS algorithm is implemented to minimize the objective function for number of 

iterations, 𝑡 = 10000. 

5.2.b Objective function: To solve the image deblurring problem mentioned above 

least square approach is popularly used in the literature (Beck and Teboulle, 2009). The 

regularized objective function is given by, 

2

1 2 2 12 1
1

( , , )
1 1

( ; , , , ) ,
2

kik

i

i

N

F w f wx z x
N

z w w   


    (18) 
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where 
2

( , :, ) T N N

i ii if w x wx z z   is the least square loss function, Nw  is 

the estimated true image vector, 
N

ix   is the ith row vector of the blur operator matrix 

N NX  , iz   is the ith  element of the blurred image vector 
Nz for all i=1,2,…, 

N. Also, 2 is the constant L2 regularization parameter, here 2 =0.001 and 1
1k

k 


  is 

the iterative L1 regularization parameter which decreases the influence of initial L1 

regularization parameter 1  on the function F as the algorithm proceeds ( 1,2,...,k t ).  

In this application we evaluate the batch gradient which is the average of the 

gradients evaluated using a small batch of user specified size of M data point rows 

instead of entire matrix. The corresponding regularized stochastic batch gradient at kth 

iteration is evaluated as, 

2
1 2 1

1

1
( ; , , , ) 2( ) ( )

2

M
T

i i k i i i k

i

F w x z x w b x sign w w
M


  



     , (19) 

where sign(.) is the sign operator. 

5.2.c Concluding remark: Our goal is to study the performance of the iRLS-BFGS 

algorithm with the update rules of the L1 regularization parameter to be 1

k


and the step 

size parameter to be
k


 as suggested by our findings in the previous section. Therefore, 

we implement the developed iRLS-BFGS algorithm to deblur the ‘cameraman’ image 

with different values of the initial L1 regularization parameter
1  and step size parameter

 . Later, we compare the performance of the iRLS-BFGS algorithm (iterative L1 
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regularization parameter) with the cRLS-BFGS algorithm (constant L1 regularization 

parameter) with the same initial regularization and step length values for gradient batch 

size M=5000. 

          
Figure 5.2.a Original image (left) and the blurred image (right). 
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Figure 5.2.b Deblurred image outputs using cRLS-BFGS (left), iRLS-BFGS (middle) 

and convergence plots (right). 

 

Figure 5.2.a shows the original cameraman image and the blurred or noisy image 

which is to be deblurred. Figure 5.2.b shows the output of the deblurred images and 

convergence rate comparision of the cRLS-BFGS and the iRLS-BFGS for three different 

random initial values of {(
1 , )} = {(5, 5), (7.5, 7.5), (15, 15)} where 

k is the step size 

and 
1k is the L1 regularization parameter. Note that the initial L1 regularization parameter

1  remains constant in the cRLS-BFGS and the step size parameter decays at the rate of

k


, while, in the iRLS-BGFS the decay rate of the L1 regularization parameter is 1

k


 and 

the step size parameter is
k


. 

 Figure 5.2.b shows that the images produced by the iterative L1 regularization in 

the iRLS-BFGS algorithm are far better than the constant L1 regularization as in the 

cRLS-BFGS algorithm. It is also observed from the convergence plots that the 

convergence rate of the iRLS-BFGS as indicated by red color is consistently better than 

the convergence rate of the cRLS-BFGS as indicated by black color. Therefore, the 

results support our claim that the performance of the iRLS-BFGS algorithm with iterative 

L1 regularization parameter is generally better than the cRLS-BFGS algorithm with 

constant L1 regularization parameter. 
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