
ON A BIOBJECTIVE FLOW PROBLEM IN NETWORKS

By

SAMPREET S. MANGALVEDHE

Bachelor of Engineering
University of Mumbai

Mumbai, India
2012

Master of Science in Industrial Engineering &
Management

Oklahoma State University
Stillwater, OK

2016

Submitted to the Faculty of the
Graduate College of

Oklahoma State University
in partial fulfillment of
the requirements for

the Degree of
MASTER OF SCIENCE

December, 2016

ON A BIOBJECTIVE FLOW PROBLEM IN NETWORKS

Thesis approved:

Dr. Balabhaskar Balasundaram

Thesis Advisor

Dr. Austin Buchanan

Dr. Farzad Yousefian

ii

ACKNOWLEDGMENTS

I would like to thank my advisor Dr. Balasundaram Balabhaskar for his support

and patience. He helped me find the right direction for my research and guided me

through his helpful inputs. I would also like to thank Dr. Austin Buchanan and

Dr. Farzad Yousefian for their active participation and valuable comments. Their

feedback steered my thesis further and showed the room for improvement.

Finally, I would thank my parents, brother and friends for providing me continuous

support and encouragement. This accomplishment would not have been possible

without them.

Disclaimer: Acknowledgments reflect the views of the author and are not endorsed

by committee members or Oklahoma State University.

iii

Name: Sampreet Sudheer Mangalvedhe Date of Degree: December, 2016

Institution: Oklahoma State University Location: Stillwater, Oklahoma

Title of Study: ON A BIOBJECTIVE FLOW PROBLEM IN NETWORKS

Candidate for the Degree of Master of Science

Major Field: Industrial Engineering & Management

Abstract: Supply chain disruptions not only impact the regular operations, but can
also affect the reputation of an organization. In this thesis, we considered a capaci-
tated network that transported products from the source node to the sink node based
on an operating plan. This network underwent a disruption, which led to arc closures.
The problem of interest is to move the products from the source to the sink with min-
imal deviation from the original operating plan, and also transport a sufficiently large
amount of the products. We proposed optimization models to minimize the dissim-
ilarity between two operating plans and also transport a sufficient value of flow to
the sink. These models are motivated by lexicographic goal programming philosophy.
Further, we implemented these models to understand the scalability of these models.
The solver parameters were tuned to enhance the computational performance of our
models. We also developed a visualization aid for the end-user. The visualization was
designed to help the user understand the merits of our models. We also conducted
a visualization experiment to understand the impact of number of disrupted arcs on
dissimilarity.

iv

TABLE OF CONTENTS

Chapter Page

1 INTRODUCTION 1

1.1 Preliminaries . 1

1.1.1 The maximum flow problem 1

1.1.2 Multi-objective optimization 4

1.2 Problem statement and motivation 5

1.3 Thesis objectives . 6

2 BACKGROUND AND LITERATURE REVIEW 8

2.1 The maximum flow problem . 8

2.2 Biobjective optimization . 9

3 OPTIMIZATION MODELS 12

3.1 Minimize the support dissimilarity 12

3.2 Minimize the total absolute flow deviation 14

3.3 Numerical illustration . 15

4 IMPLEMENTATION AND EXPERIMENTAL RESULTS 21

4.1 Implementation details and experimental data 21

4.1.1 Model I: Minimizing the support dissimilarity 23

4.1.2 Model II: Minimizing the total absolute flow deviation 23

4.2 Visualization case studies . 25

4.2.1 Model I: Minimizing the support dissimilarity 26

4.2.2 Model II: Minimizing the total absolute flow deviation 28

v

4.3 Impact of number of disrupted arcs on dissimilarity 31

5 CONCLUDING COMMENTS AND FUTURE WORK 35

REFERENCES 37

vi

LIST OF TABLES

Table Page

3.1 Support dissimilarity when ε = 0.0. 17

3.2 Support dissimilarity when ε = 0.75. 17

3.3 Support dissimilarity when ε = 1.0. 18

3.4 Total absolute flow deviation when ε = 0.0. 19

3.5 Total absolute flow deviation when ε = 0.75. 19

3.6 Total absolute flow deviation when ε = 1. 20

4.1 Test-instances for network Go. 22

4.2 Support dissimilarity model results (Running times reported in seconds). 24

4.3 Total absolute flow deviation model results (Running times reported

in seconds). 24

4.4 Support dissimilarity in network G using the maximum flow model. . 27

4.5 Support dissimilarity in network G using the support dissimilarity model. 28

4.6 Total absolute flow deviation in network G using the maximum flow

model. 29

4.7 Total absolute flow deviation in network G using the total absolute

flow deviation model. 30

vii

LIST OF FIGURES

Figure Page

3.1 Maximum flow in Go. 15

3.2 G obtained after arc (3,5) is deleted from Go in Figure 3.1. 16

3.3 Support dissimilarity of 7 when flow obtained is 16. 16

3.4 Support dissimilarity of 5 when flow obtained is 4. 17

3.5 Support dissimilarity of 2 when flow obtained is 0. 18

3.6 Total absolute flow deviation of 45 when flow obtained is 16. 18

3.7 Total absolute flow deviation of 39 when flow obtained is 4. 19

3.8 Total absolute flow deviation of 0 when flow obtained is 0. 20

4.1 Maximum flow in network Go. 26

4.2 Support dissimilarity in network G using the maximum flow model. . 27

4.3 Support dissimilarity in network G using the support dissimilarity model. 28

4.4 Total absolute flow deviation in network G using the maximum flow

model. 29

4.5 Total absolute flow deviation in network G using the total absolute

flow deviation model. 30

4.6 Support dissimilarity in network G1−4. 32

4.7 Support dissimilarity in network G1−8. 32

4.8 Total absolute flow deviation in network G1−4. 33

4.9 Total absolute flow deviation in network G1−8. 33

viii

CHAPTER 1

INTRODUCTION

Network models are pervasive. They offer an intuitive way for representing a com-

plex system of interconnected components. We find their application in many settings;

power transmission, transportation, communication systems are some of the familiar

applications. Many of the real-world problems are modeled as networks because they

provide a structure that facilitates the development of algorithms.

In the maximum flow problem, we intend to send as much flow as possible from a

source node to a sink node in a capacitated network without violating capacity and

flow conservation constraints [1]. There are numerous instances where this problem

arises [1] and hence it is extensively studied. This thesis focuses on a biobjective

variant of the maximum flow problem, where one objective is to minimize the dissim-

ilarity between two solutions and the other objective is to send a sufficient amount of

flow to the sink.

1.1 Preliminaries

1.1.1 The maximum flow problem

Let G = (N,A) be a finite, directed network, with N as the set of nodes and A as

the set of arcs. Let s and t be two special nodes that denote a source and a sink

respectively in the network G. Let xij denote the amount of flow through an arc (i, j).

The capacity of an arc (i, j) is defined as the maximum amount of flow that can pass

through arc (i, j). Let us denote the capacity of arc (i, j) by uij. A conservation law

1

must be satisfied at every node except s and t. That is, the flow that goes out of

a node i must equal the flow that comes into node i. Given a capacitated network

G = (N,A) and uij ≥ 0 ∀(i, j) ∈ A, the maximum flow problem seeks to send a

maximum amount of flow from the source node s to the sink node t while obeying

all arc capacities and flow conservation at all nodes (except the source and the sink).

The maximum flow problem can be formulated as follows:

max v (1.1)

subject to:

∑
j:(i,j)∈A

xij −
∑

j:(j,i)∈A

xji =

v, if i = s

0, ∀i ∈ N \ {s, t}

−v, if i = t

(1.2)

xij ≤ uij, ∀(i, j) ∈ A (1.3)

xij ≥ 0, ∀(i, j) ∈ A (1.4)

In the above formulation, the constraints (1.2) enforce the conservation law and

hence these constraints are called the flow conservation constraints. Constraints (1.3)

and (1.4) define the upper and lower bounds on xij. Constraints (1.3) are called the

capacity constraints.

Any assignment of nonnegative values to xij ∀(i, j) ∈ A that satisfies the flow

conservation constraints and the capacity constraints is called a feasible flow or simply,

flow, and v is its value. A maximum flow corresponding to the maximum flow value

v∗, is denoted by x∗. In this thesis, we assume that there is an s-t path in G with

positive “bottleneck” capacity, i.e. every arc (i,j) on this path has uij > 0. We further

assume that G does not contain an s-t path of∞ bottleneck capacity, i.e. on every s-t

2

path there is some arc (i,j) with uij <∞. Under these assumptions the formulations

(1.1) - (1.4) has an optimal solution that is also integral due to total unimodularity

of the constraint matrix [1]. Before we present some key theorems, we introduce

additional terminology.

Definition 1 (Cut) Given a partition of the node set N into S and S̄, the cut of S

denoted by [S, S̄], is defined as the set of arcs with one end-point in S and the other

in S̄.

Definition 2 (s-t cut) A source-sink cut, or s− t cut for short, is a cut [S, S̄] such

that s ∈ S and t ∈ S̄.

We are interested only in s− t cuts and henceforth we will simply refer to it as a cut.

Definition 3 (Capacity of cut) An arc (i, j) ∈ A is said to be a forward arc if

i ∈ S and j ∈ S̄. The capacity of a cut [S, S̄] is the sum of the forward arc capacities.

We use (S, S̄) to denote the forward arcs in [S, S̄]. Therefore,

u[S, S̄] =
∑

(i,j)∈(S,S̄)

uij.

Definition 4 (Minimum cut) A minimum cut is an s − t cut [S, S̄] that has the

minimum capacity among all s− t cuts.

Theorem 1 (Maximum Flow Minimum Cut Theorem) The maximum value of

a flow is equal to the minimum capacity among all source-sink cuts. A flow x∗ with

value v∗ is the maximum flow if and only if there exists some s − t cut [S, S̄] such

that v∗ = u[S, S̄].

Theorem 1 establishes the strong duality between the maximum flow problem

and the minimum cut problem. The next theorem provides another optimality con-

dition/characterization for a flow in G, which is based on the notion of a residual

network.

3

Definition 5 (Residual network) The residual capacity on a particular arc (i,j)

is made up of two components: (i) unused capacity uij − xij, and (ii) the flow on the

opposite arc (j, i) given by xji (if it exists), canceling which has the same effect as

increasing the flow on (i, j). Formally, rij = uij − xij + xji for each arc (i, j) ∈ A.

Given a capacitated network G = (N,A), and a flow x ∈ R|A|+ , a residual network with

respect to x denoted by G(x) only contains those arcs of A that have positive residual

capacity.

Theorem 2 (Augmenting Path Theorem) A flow x∗ is maximum if and only if

the residual network G(x∗) does not contain a directed path from the source to the

sink.

1.1.2 Multi-objective optimization

Many real-world problems deal with multiple conflicting objectives. In such cases,

describing an ‘optimal’ solution is nontrivial. One can have a solution that is optimal

with respect to one objective but might turn out to be inferior for another objec-

tive. We explain the following terminologies that facilitate a better understanding of

‘optimal’ solutions in multi-objective optimization problems [2, 3].

Definition 6 (Efficient solution) A feasible solution y′ is called efficient if there

exists no other feasible solution that is at least as good as y′ with respect to all objec-

tives and strictly better with respect to at least one objective. Such a solution is also

called a Pareto optimal solution.

Definition 7 (Efficient frontier) The set of all efficient solutions is called an ef-

ficient frontier or the Pareto optimal set.

Definition 8 (Ideal point) A solution which is efficient with respect to all objec-

tives is called an ideal point.

4

1.2 Problem statement and motivation

Consider a capacitated pipeline network modeled as Go = (N,Ao) which transports

petroleum products from various sources to different cities. Based on an operating

plan, there are certain pipelines (i.e., arcs) that carry flow while certain arcs are not

utilized. Let us say this network is disrupted for some reason (e.g., maintenance,

natural hazards), which has led to pipeline closures. With this reconstructed network

G = (N,A), where A ⊂ Ao, the company would still wish to move products while

deviating minimally from its current operating plan for a variety of reasons (e.g.,

transportation risk, time, cost, etc). This gives rise to two objectives: i) transporting

a sufficiently large quantity of petroleum to customers, and ii) minimal deviation of

arc flows from the current operating plan.

The aforementioned situation motivated us to consider a biobjective network flow

problem, where one would like to minimize a dissimilarity metric between two flows

and still send the sufficient amount of flow to the sink. The following definition will

aid us in better describing the problem.

Definition 9 (Support of flow, S(x)) Given a flow x on a network G = (N,A),

the support of x is defined as the arc set in which each arc has a positive flow on

them. Formally, it is defined as, S(x) = {(i, j) ∈ A | xij > 0}.

Consider a network Go = (N,Ao) carrying a flow xo from s to t. Suppose this network,

after some arc closures, is represented by G = (N,A) where A ⊂ Ao. Suppose x

denotes a feasible s− t flow in G. We can quantify the dissimilarity between xo and

x in two different ways as described next.

Support dissimilarity: The symmetric difference between S(x) and S(xo) is made

up of two sets: (i) the set of arcs that belong to the support of x but not to the

support of xo, i.e., S(x) \ S(xo), and (ii) the set of arcs that belong to the support

of xo but not to the support of x, given by S(xo) \ S(x). Using these sets, we define

5

the support dissimilarity as the cardinality of the symmetric difference between S(x)

and S(xo), given by:

| S(x)4S(xo) |=| S(x) \ S(xo) | + | S(xo) \ S(x) | .

Since A ⊂ Ao, we can classify A into two sets: (i) A \ S(xo), and (ii) A ∩ S(xo).

Finding a flow x that minimizes | S(x)4S(xo) | discourages flow along the arcs in

A \ S(xo), and encourages flow along the arcs in A∩ S(xo), regardless of the amount

of flow on these arcs.

Total absolute flow deviation: We measure the sum of absolute differences be-

tween xij and xoij for each arc (i, j) ∈ A. Finding a flow x that minimizes the sum

of absolute differences between xij and xoij for each arc (i, j) ∈ A encourages the arcs

to carry the flow similar in magnitude to the flow in Go. We denote this metric by

d(x, xo), defined as:

d(x, xo) =
∑

(i,j)∈A

| xij − xoij | .

Biobjective Flow Problem: Consider a capacitated network Go = (N,Ao) car-

rying an s − t flow xo, and a network G = (N,A), where A ⊂ Ao. The problem of

interest is to find an s − t flow in G, denoted by x, that minimizes the dissimilarity

between x and xo by minimizing the support dissimilarity or the total absolute flow

deviation, such that we are still able to send a sufficient value of flow from s to t. We

will refer to this problem as the biobjective flow problem (BFP).

1.3 Thesis objectives

In this thesis, we investigate various ways to model BFP that are motivated by the

goal programming philosophy. Then, we solve, assess, and visualize the quality of

solutions produced by the models developed. Thus, our thesis objectives include:

6

Objective 1 – Modeling BFP: Investigate two ways to model BFP that ensure

desired value of flow in the network while minimizing:

1. the support dissimilarity between two solutions, and

2. the total absolute flow deviation between two solutions.

Objective 2 – Implementation and Computational Study: Implement the

models from objective 1, and conduct a computational study to investigate the scal-

ability of the models.

Objective 3 – Visualization of solutions: Compare the two models with respect

to their optimal solutions by visualizing the optimal solution for both the models in

a manner that helps the user understand the merits of each model.

7

CHAPTER 2

BACKGROUND AND LITERATURE REVIEW

In this chapter, we provide the necessary background and review some of the existing

literature on the maximum flow problem and multi-objective optimization.

2.1 The maximum flow problem

From an algorithmic standpoint, the classical maximum flow algorithms broadly fall

into one of the following categories [1].

1. Augmenting path algorithms: These algorithms maintain a feasible flow in

every iteration and strive to attain optimality by augmenting the flow along an

s− t path.

2. Preflow-push algorithms: These algorithms violate conservation constraints,

allowing nodes to retain excess flow. Such nodes are referred to as active nodes.

A flow that obeys capacity constraints but violates conservation constraints is

called a preflow. Preflow-push algorithm then iteratively sends the excess either

to the sink or back to the source.

In [4], Ford and Fulkerson presented a labeling algorithm that hinges on the proce-

dure of finding an augmenting s− t path and sending flow along it. This procedure is

repeated until no augmenting s−t path to the sink is found and the flow is guaranteed

to be maximum according to Theorem 2.

On the other hand, preflow-push algorithms [5] are based on saturating all the

source arcs and gradually transferring the excess from an active node to a node nearest

8

to the sink. In this way preflow-push algorithms get rid of all the excess in the network

and the maximum flow is reached.

2.2 Biobjective optimization

Consider a polyhedron P = {x ∈ Rn | Ax = b, x ≥ 0}. A linearly constrained

multi-objective optimization problem over P is as shown below,

min f1(x), f2(x), . . . fp(x)
x∈P

. (2.1)

A biobjective problem is a special case of multi-objective problem and is widely

studied. Geoffrion developed a parametric programming approach for solving biob-

jective optimization problems [6]. A parametric optimization problem given some

parameter t ∈ [0, 1] is stated as follows:

min ft(x) = tf1(x) + (1− t)f2(x)
x∈P

. (2.2)

The optimal solutions to the above parametric problem yield a set of efficient

solutions. Furthermore, Lee and Pulat [7], developed an algorithm that modifies the

out-of-kilter algorithm [8] to solve the above parametric problem.

Goal programming is another approach extensively used to solve multi-objective

optimization problems. The essence of this approach lies in setting target values

to each objective in the problem and introducing deviational variables. Then, we

minimize the total deviation from the target values. There are many variants that

embrace the goal programming philosophy. We list a few of the major approaches

next.

1. Lexicographical goal programming: This method is generally used when

a decision-maker is not able to assign priority weights to the objectives. In

such instances, the decision-maker can rank order the objectives. This variant

tries to optimize the most important objective first, before optimizing the next

important objective over optimal or near optimal solutions to the first objective.

9

2. Weighted goal programming: This method assigns priority weights to

the deviation variables that quantify the deviation in the objective from user-

specified targets. Thus, weighted goal programming requires directly compara-

ble objectives.

3. Priotized goal programming: This approach combines the ideas of lexi-

cographic goal programming and weighted goal programming. Objectives are

classified into prioritized groups, and objectives within a group are weighted

and aggregated.

In the following we give an example of a goal programming formulation assuming

we have p objectives. Here, ai and ci denote the priority weights assigned to d−i and

d+
i deviational variables, respectively.

min

p∑
i=1

(aid
−
i + cid

+
i) (2.3)

subject to:

f1(x) + d−1 − d+
1 = b1 (2.4)

f2(x) + d−2 − d+
2 = b2 (2.5)

... (2.6)

fp(x) + d−p − d+
p = bp (2.7)

x ∈ P (2.8)

d+
i , d

−
i ≥ 0 ∀i = 1 . . . p (2.9)

In the goal programming formulation (2.3) – (2.9), b1, . . . bp are the target values

set to each objective and d+
i , d

−
i are the deviational variables. Thus, we convert the

objectives into soft constraints by introducing the deviational variables (d−i and d+
i)

as shown above. We also observe from the above formulation that d+
i and d−i can

never simultaneously take positive values in an optimal solution, assuming strictly

10

positive priorities in the (new) objective function. A more detailed discussion on goal

programming can be found in [2].

Many network flow problems are solved using goal programming techniques. Arthur

and Lawrence in [9], developed a multi-objective model that aids in making decisions

regarding production and shipping over some time intervals. Using goal program-

ming, they assigned targets to the production, shipment and final inventory objec-

tives. Accordingly, priorities were set to each objective, and the model was run using

a partitioning algorithm for (linear) goal programming problems (PAGP). PAGP al-

gorithm [10] involves assignment of goal constraints to different priorities and then

solving the subproblems involving only the first priority constraints. If alternate op-

tima exist, second priority constraints are included and solved. This procedure is

repeated until a unique optimum is found or all goal constraints have been included

in the problem. At termination, the current decision variables are locked and all

objective values are computed. In [11], Moore and Lee demonstrated an application

of goal programming on a transshipment problem, in which cost and labor objectives

were considered. They solved it using Lee’s modified simplex algorithm [12].

To the best of our knowledge, available literature on biobjective optimization

problems does not deal with dissimilarity and flow objectives together. Hence, we

would like to examine this problem in the context of flows in networks subject to arc

disruptions.

11

CHAPTER 3

OPTIMIZATION MODELS

We propose optimization models that achieve a sufficient value of flow in G, while min-

imizing the support dissimilarity or the total absolute flow deviation metric. These

models are motivated by the lexicographic goal programming approach. In other

words, a decision-maker assigns a flow value to guide our solution. The flow value is

controlled by ε, such that 0 ≤ ε ≤ 1.

3.1 Minimize the support dissimilarity

In this model, we build a model to minimize the support dissimilarity, and obtain

a sufficient value of flow in the network. This model uses binary decision variables

to trigger arcs in G that minimize the support dissimilarity between x and xo. We

define a binary decision variable yij for each (i, j) ∈ A such that,

yij =

1 if xij > 0, ∀(i, j) ∈ A,

0, otherwise.

(3.1)

We note that A can be partitioned into two sets: (i) A \S(xo), and (ii) A∩S(xo).

We also know from Section 1.2 that the support dissimilarity is given by | S(x)\S(xo) |

+ | S(xo) \ S(x) |. The binary decision variables, defined in Equation (3.1), help

in modeling the sets S(x) \ S(xo) and S(xo) \ S(x). By minimizing
∑

(i,j)∈A\S(xo)

yij,

we discourage the arcs belonging to the set A \ S(xo) from carrying any flow, and

thereby minimize | S(x) \ S(xo) |. Also, the set S(xo) \ S(x) can be written as

(S(xo) \A)∪ ((S(xo)∩A) \ S(x)). The term | (S(xo) \A) | is a constant, and can be

12

ignored in our analysis. Maximizing
∑

(i,j)∈A∩S(xo)

yij encourages the arcs belonging to

the set A ∩ S(xo) to carry flow, resulting in the minimum value of | S(xo) \ S(x) |.

Let c+ and c− be the weights associated with the arcs in A \ S(xo) and A ∩ S(xo),

respectively. In our setting, c+ > c−, i.e., using the arcs (i, j) ∈ S(x) \ S(xo) is

penalized more than using the arcs (i, j) ∈ S(xo)\S(x). With this setting, if we have

a perfectly similar solution, the objective function is capable of taking a negative

value. So we include the constant term c− | A ∩ S(xo) | in the objective function,

which provides a lower bound of 0 on the objective value. Therefore, the objective

value of 0 indicates a perfectly similar solution. Thus, in the following formulation

the objective function minimizes the | S(x)4S(xo) |.

min
∑

(i,j)∈A\S(xo)

c+yij −
∑

(i,j)∈A∩S(xo)

c−yij + c− | A ∩ S(xo) | (3.2)

subject to:

∑
j:(i,j)∈A

xij −
∑

j:(j,i)∈A

xji =

v, if i = s

0, ∀i ∈ N \ {s, t}

−v, if i = t

(3.3)

v ≥ (1− ε)v∗ (3.4)

xij ≤ yijuij, ∀(i, j) ∈ A (3.5)

xij ≥ yij, ∀(i, j) ∈ A (3.6)

yij ∈ {0, 1}, ∀(i, j) ∈ A (3.7)

In formulation (3.2)− (3.7), the constraints (3.3) ensure that x is a conserved flow

of value v. A sufficient value of flow in the network is obtained via the constraint

(3.4), where v∗ is the maximum flow in G. If ε is 0, we enforce a maximum flow in

G. As the ε increases, we enforce at least 100(1 − ε)% of the maximum flow in G.

The constraints (3.5) and (3.6) together capture the rationale presented in Equation

13

(3.1). If yij = 1, then the constraints (3.5) and (3.6) enforce xij to lie between 1 and

uij. If yij = 0, then xij becomes 0. We will henceforth refer to this model as the

support dissimilarity model.

3.2 Minimize the total absolute flow deviation

We present a model to find a flow that minimizes the total absolute flow deviation

between x and xo. In formulation (3.8) − (3.10), the constraints (3.9) enforce the

flow conservation of value v. Also, the constraints (3.11) provide the lower and upper

bound on xij. The constraint (3.10) is employed to attain a sufficient value of flow in

G.

min
∑

(i,j)∈A

| xij − xoij | (3.8)

subject to:

∑
j:(i,j)∈A

xij −
∑

j:(j,i)∈A

xji =

v, if i = s

0, ∀i ∈ N \ {s, t}

−v, if i = t

(3.9)

v ≥ (1− ε)v∗ (3.10)

0 ≤ xij ≤ uij, ∀(i, j) ∈ A (3.11)

The objective function is a piecewise linear convex function. We define a decision

variable zij such that zij ≥ max(xij − xoij,−(xij − xoij)) ∀(i, j) ∈ A. The objective

function | xij − xoij | is equal to the smallest value of zij, for all (i, j) ∈ A in an

optimal solution. In the following model, the constraints (3.13) and (3.14) ensure

zij ≥ max(xij − xoij,−(xij − xoij)) ∀(i, j) ∈ A.

14

min
∑

(i,j)∈A

zij (3.12)

subject to:

xij − xoij ≤ zij, ∀(i, j) ∈ A (3.13)

−(xij − xoij) ≤ zij, ∀(i, j) ∈ A (3.14)

∑
j:(i,j)∈A

xij −
∑

j:(j,i)∈A

xji =

v, if i = s

0, ∀i ∈ N \ {s, t}

−v, if i = t

(3.15)

v ≥ (1− ε)v∗ (3.16)

0 ≤ xij ≤ uij,∀(i, j) ∈ A (3.17)

We will henceforth refer to this model as the total absolute flow deviation model.

3.3 Numerical illustration

We provide a numerical example that shows the trade-off between the dissimilarity

metric and the flow obtained. Consider a network Go with a maximum flow as shown

in Figure 3.1. Consider 1 as the source node and 5 as the sink node in Go.

Figure 3.1: Maximum flow in Go.

15

Figure 3.2: G obtained after arc (3,5) is deleted from Go in Figure 3.1.

Suppose arc (3, 5) undergoes disruption to form a network G as shown in Figure

3.2. We compute the support dissimilarity metric and the flow obtained for various

values of ε. We set c+ = 2 and c− = 1 to calculate the support dissimilarity objective

value. Therefore, the term c− | A∩S(xo) | in the support dissimilarity objective value

is 2.

Let ε = 0. We require the maximum flow in G. Figure 3.3 shows a maximum flow of

value 16 and the support dissimilarity objective value of 7. The support dissimilarity

objective value for the flow in Figure 3.3 is shown in Table 3.1.

Figure 3.3: Support dissimilarity of 7 when flow obtained is 16.
.

16

Table 3.1: Support dissimilarity when ε = 0.0.

Objective term Value∑
(i,j)∈A\S(xo) c

+yij 2× 3 = 6

−(
∑

(i,j)∈A∩S(xo) c
−yij) −(1× 1) = −1

c− | A ∩ S(xo) | 1× 2 = 2

Support dissimilarity 7

Suppose ε = 0.75. Then, at least 4 units of flow is enforced by our support

dissimilarity model. Figure 3.4 shows 4 units of flow sent along the path 1−2−4−5.

If arc (2, 5) was utilized, then that would have increased the support dissimilarity

metric to 7 as seen before. Therefore, to minimize the support dissimilarity objective

value, arc (2, 5) is not utilized and all 4 units of flow is sent along path 1− 2− 4− 5.

Table 3.2 summarizes the support dissimilarity observed.

Figure 3.4: Support dissimilarity of 5 when flow obtained is 4.

Table 3.2: Support dissimilarity when ε = 0.75.

Objective term Value∑
(i,j)∈A\S(xo) c

+yij 2× 2 = 4

−(
∑

(i,j)∈A∩S(xo) c
−yij) −(1× 1) = −1

c− | A ∩ S(xo) | 1× 2 = 2

Support dissimilarity 5

Consider the case when ε = 1.0. We can have any flow in G that corresponds

17

to the minimum support dissimilarity objective value. If the flow is 0, that would

correspond to the support dissimilarity objective value of 2. Any flow value greater

than 0 would only increase the support dissimilarity objective value. Figure 3.5 shows

0 flow in G. Table 3.3 shows the support dissimilarity objective value for 0 flow.

Figure 3.5: Support dissimilarity of 2 when flow obtained is 0.

Table 3.3: Support dissimilarity when ε = 1.0.

Objective term Value∑
(i,j)∈A\S(xo) c

+yij 2× 0 = 0

−(
∑

(i,j)∈A∩S(xo) c
−yij) −(1× 0) = 0

c− | A ∩ S(xo) | 1× 2 = 2

Support dissimilarity 2

Now, we compute the total absolute flow deviation and the flow obtained for

various values of ε. Notice that to minimize the total absolute flow deviation, the

model must minimize the absolute flow deviation for all (i, j) ∈ A.

When ε of 0 is enforced, we obtain the maximum flow as shown in Figure 3.6. The

total absolute flow deviation observed for this flow is 45 as shown in Table 3.4.

Figure 3.6: Total absolute flow deviation of 45 when flow obtained is 16.

18

Table 3.4: Total absolute flow deviation when ε = 0.0.

| x12−xo12 | | x23−xo23 | | x24−xo24 | | x25−xo25 | | x45−xo45 | Total

0 16 13 3 13 45

Consider ε = 0.75. Then, our model imposes at least 4 units of flow in G. In

Figure 3.7, 4 units of flow is sent along arc (1, 2). Three units of flow is sent along arc

(2, 5), and one unit of flow is sent along arcs (2, 4) and (4, 5). This flow corresponds

to the total absolute flow deviation of 33. Sending all 4 units of flow along path

1− 2− 4− 5 would increase the total absolute flow deviation metric to 36. The total

absolute flow deviation for the flow in Figure 3.7 is computed as shown in Table 3.5.

Figure 3.7: Total absolute flow deviation of 39 when flow obtained is 4.

Table 3.5: Total absolute flow deviation when ε = 0.75.

| x12−xo12 | | x23−xo23 | | x24−xo24 | | x25−xo25 | | x45−xo45 | Total

12 16 1 3 1 33

Let ε = 1.0. Sending no flow in the network G corresponds to the minimum

total absolute flow deviation of 32 as shown in Figure 3.8. Table 3.6 shows the total

absolute flow deviation for 0 flow.

19

Figure 3.8: Total absolute flow deviation of 0 when flow obtained is 0.

Table 3.6: Total absolute flow deviation when ε = 1.

| x12−xo12 | | x23−xo23 | | x24−xo24 | | x25−xo25 | | x45−xo45 | Total

16 16 0 0 0 32

20

CHAPTER 4

IMPLEMENTATION AND EXPERIMENTAL RESULTS

In this chapter, we discuss the implementation details and the results from solving the

models presented in Chapter 3. We solve our models on various testbeds and record

the performance of the solver on each model. The purpose of these computational

experiments is to investigate the scalability of the models, and understand the impact

of the dissimilarity objectives on the solutions obtained. We also visualize the optimal

solutions of the models on geospatial data to understand the merits of each model.

4.1 Implementation details and experimental data

We implemented the models of BFP using Python 3.4.3 and GurobiTM Optimizer

6.5. All the experiments were conducted on 64-bit Windows 10 computer equipped

with 8 GB of RAM and IntelR© XeonR© 3.20 GHz CPU. The solver parameters were

tuned to improve the computational performance of the models without significantly

compromising the quality of the optimal solution.

The computational experiments were conducted on the network topologies pro-

vided by Zuse Institute Berlin [13]. All instances are directed networks with a source

node and a sink node. The arcs were randomly assigned integer capacities from the

range [1, 1000]. Table 4.1 lists test-instances used to represent Go. The maximum

flow in Go was computed using NetworkX package (v1.10) of Python.

21

Table 4.1: Test-instances for network Go.

Instance | N | | A | v∗ Time to com-

pute maximum

flow (seconds)

elist96d.rmf 96 528 1931 0.00

elist160d.rmf 160 912 2100 0.02

elist200d.rmf 200 1340 1288 0.02

elist500d.rmf 500 3975 2823 0.08

elist640d.rmf 640 12608 3058 0.20

elist1440d.rmf 1440 22128 4628 0.35

elist2560.rmf 2560 44160 5405 0.72

We invoked the standard implementation of the minimum cut algorithm from

Python - NetworkX package to obtain a minimum cut [S − S̄]. The instances for G

were constructed from Go using the following procedure: (i) we sorted the arcs in

S(xo) in ascending order of the ratio xoij/u
o
ij; (ii) then, b |S(xo)|

k
c number of top arcs

were deleted to generate three networks of G using different values of k. We conducted

preliminary experimentation on k, to obtain interesting and nontrivial instances of

G that demonstrated trade-off between dissimilarity metrics and flow obtained. The

naming convention for the instances of G is the number of nodes followed by a hyphen

‘-’ then the value of k used.

To compute a maximum flow in G, a linear programming formulation for the max-

imum flow problem was implemented in Gurobi. The presolve level for the support

dissimilarity model and the total absolute flow deviation model was set to aggressive.

Also, the feasibility tolerance during the experiment was set to the value of 1e-9.

That is, the constraint violations were limited to 1e-9.

22

4.1.1 Model I: Minimizing the support dissimilarity

We tested the model presented in Section 3.1 on the network G. The maximum

flow value and the corresponding flow solution for each instance of G were computed

before invoking this model. To accelerate the model performance, we provided an

initial feasible solution, which was obtained from an optimal flow solution of the

maximum flow model. If Gurobi heuristics find a better solution, the model will not

be initiated with the feasible solution injected [14]. For the numerical experiments,

we set c+ to 2 and c− to 1. The root node was solved using three methods: (i) Barrier

method, (ii) Dual simplex method, and (iii) Concurrent optimizer. Among these

methods, the concurrent optimizer was the fastest method to solve our test instances.

Hence, the solver was fixed to run the concurrent optimizer method at the root node.

The Gurobi parameter ‘IntFeasTol’ was set to the minimum value, to increase the

numerical accuracy. Table 4.2 summarizes the performance and results of the model

for each instance of G. Let RT denote the model solving time and NE denote the

number of nodes explored.

We observe from Table 4.2 that as the epsilon value increases from 0 to 0.75,

the support dissimilarity objective value decreases in most cases. Also, most of the

instances show drastic decrease in the flow obtained as ε moves from 0 to 1. Table 4.2

confirms that as the flow obtained in G decreases, the support dissimilarity objective

value can either decrease or remain constant. We also observe that the model solving

time is maximum for ε = 0, where the model is finding the maximum flow.

4.1.2 Model II: Minimizing the total absolute flow deviation

We found from preliminary experiments that the concurrent optimizer was the fastest

method to solve the instances of G as before. We present the performance and results

of this model for each instance of G, when solved using the concurrent optimization

approach in Table 4.3.

23

Table 4.2: Support dissimilarity model results (Running times reported in seconds).

G
Average time (seconds) ε = 0.0 ε = 0.75 ε = 1.0

Maximum flow Model building RT Obj value Flow obtained NE RT Obj value Flow obtained NE RT Obj value Flow obtained NE

2560 - 10 6.50 3.33 776.10 30 5405.00 875 4.59 21 1351.25 0 7.87 21 37.00 0

2560 - 15 6.55 3.40 578.53 24 5405.00 823 6.20 18 1351.25 0 4.55 18 38.00 0

2560 - 20 6.59 3.60 8.69 19 5405.00 0 5.25 16 1351.25 0 5.44 16 42.00 0

1440 - 2 2.59 1.98 91818 143 4628.00 60919 9.75 121 1157.00 0 6.48 121 1363.00 0

1440 - 3 2.57 2.16 2.78 87 4628.00 0 2.70 85 2459.00 0 4.01 85 30.00 0

1440 - 4 2.55 2.05 2.28 75 4628.00 0 2.35 75 1157.00 0 2.33 75 851.00 0

160 - 2 0.25 0.37 83.47 111 2059.00 5353 0.45 83 516.00 0 0.53 83 32.00 0

160 - 3 0.39 0.30 0.89 26 2100.00 0 0.52 22 525.00 0 0.40 22 11.00 0

160 - 4 0.33 0.44 0.42 14 2100.00 0 0.55 14 525.00 0 0.27 14 82.00 0

200 - 2 0.23 0.45 79.90 48 1288.00 3545 0.59 27 322.00 0 0.40 27 3.00 0

200 - 3 0.40 0.48 1.29 27 1288.00 0 0.52 21 322.00 0 0.48 21 8.00 0

200 - 4 0.25 0.49 3.17 24 1288.00 69 0.60 18 322.00 0 0.52 18 318.00 0

500 - 2 0.42 0.31 85669 79 2823.00 1057899 0.12 51 1312.00 0 0.93 51 1276.00 0

500 - 3 0.40 0.33 12.13 20 2823.00 1063 0.53 16 1789.00 0 0.58 16 1665.00 0

500 - 4 0.41 0.37 0.62 4 2823.00 0 0.80 4 2579.00 0 0.65 4 2393.00 0

640 - 2 0.90 0.98 45.59 79 3058.00 0 2.40 70 1260.00 0 2.01 70 1219.00 0

640 - 3 1.10 1.16 2.39 46 3058.00 0 1.99 45 2228.00 0 1.99 45 1967.00 0

640 - 4 1.27 1.21 2.18 48 3058.00 0 1.72 47 2178.00 0 1.50 47 1906.00 0

96 - 2 0.25 0.30 23.48 57 1539.00 2679 0.25 32 384.75 0 0.22 32 53.00 0

96 - 3 0.27 0.27 0.69 42 1841.00 0 0.20 25 460.25 0 0.43 25 10.00 0

96 - 4 0.28 0.28 0.58 26 1931.00 0 0.17 19 482.75 0 0.47 19 9.00 0

Table 4.3: Total absolute flow deviation model results (Running times reported in seconds).

G
Average time (seconds) ε = 0.0 ε = 0.75 ε = 1.0

Maximum flow Model building RT Obj value Flow obtained RT Obj value Flow obtained RT Obj value Flow obtained

2560 - 10 6.80 4.93 2.58 318 5405 0.75 261 5384 0.72 261 5384

2560 - 15 6.65 5.38 1.82 151 5405 0.72 142 5394 0.70 142 5394

2560 - 20 6.85 5.19 1.11 98 5405 0.72 86 5397 0.69 86 5397

1440 - 2 2.59 2.53 0.7 16565 4628 0.63 15906 4296 0.49 15906 4296

1440 - 3 2.53 2.56 0.55 7044 4628 0.43 6733 4453 0.43 6733 4453

1440 - 4 2.51 2.59 0.71 5468 4628 0.43 5319 4517 0.39 5319 4517

160 - 2 0.20 0.25 0.05 11438 2059 0.13 9953 1607 0.03 9953 1607

160 - 3 0.24 0.3 0.13 5298 2100 0.05 5213 1997 0.04 5213 1997

160 - 4 0.42 0.22 0.18 2995 2100 0.15 2952 2058 0.04 2952 2058

200 - 2 0.50 0.39 0.05 5103 1288 0.08 4769 1088 0.03 4769 1088

200 - 3 0.29 0.15 0.07 3075 1288 0.05 2997 1217 0.06 2997 1217

200 - 4 0.17 0.17 0.06 2079 1288 0.05 2028 1226 0.05 2028 1226

500 - 2 0.4 0.42 0.2 16286 2823 0.13 15768 2568 0.19 15768 2568

500 - 3 0.64 0.55 0.22 9382 2823 0.15 9382 2823 0.26 9382 2823

500 - 4 0.6 0.53 0.17 5723 2823 0.15 5723 2823 0.15 5723 2823

640 - 2 1.12 1.44 0.5 13833 3058 0.49 13684 2897 0.40 13684 2897

640 - 3 1.23 1.43 0.37 6903 3058 0.36 6843 2974 0.40 6843 2974

640 - 4 1.26 1.6 0.27 4977 3058 0.27 4977 3036 0.38 4977 3036

96 - 2 0.24 0.2 0.12 8959 1539 0.03 7331 876 0.03 7331 876

96 - 3 0.23 0.12 0.05 6032 1841 0.11 4838 1321 0.08 4838 1321

96 - 4 0.10 0.07 0.12 3301 1931 0.11 3116 1790 0.03 3116 1790

24

From Table 4.3, we observe that as the epsilon value increases from 0 to 0.75, the

total absolute flow deviation metric and the flow obtained decrease. We also observe

significant decrease in the model solving time as the epsilon value increases from 0 to

0.75. The total absolute flow deviation and the flow obtained has remained the same

for ε = 0.75 and ε = 1. Therefore, we conclude that as the flow obtained decreases,

the total absolute flow deviation may either decrease or stay constant.

4.2 Visualization case studies

Network visualization utilizes the perceptive ability of humans to better understand

the problem setting and flow in networks. Apart from being visually appealing, it

facilitates exploratory analysis of network data, and thus leads a user through a com-

plex analytical process. We used the network visualization to convey to the end-user

the model solution and the associated dissimilarities. This helps the end-user to easily

understand the dissimilarity between x and xo, and thereby assess the behavior of

our models. Thus, visualization enables the end-user to assess the network disruption

with much more clarity. We performed all the visualizations with the open source

software Gephi 0.9 [15].

We adopted the geospatial dataset from TranStats - Bureau of Transportation

[16] to visualize our model solution. The dataset was manipulated to obtain 94

cities from the mainland United States and 207 arcs joining them. The cities in the

dataset represented nodes of network Go and their coordinates were available. The

arc structure was amended to obtain the density of the network that would facilitate

effortless visualization. The arcs were assigned with a random integer capacity ranging

from [1, 1000]. This network was represented as Go, with a source node represented

by ‘Hartford CT’ and a sink node represented by ‘Kansas City MO’. We assigned a

random number between [0,1] to each arc in Go, and chose to delete the top 20% of

25

the arcs to construct G. Thus, G comprises of 94 nodes and 194 arcs. The source

node and the sink node remained the same.

4.2.1 Model I: Minimizing the support dissimilarity

We considered a hypothetical situation, where there was already a flow of maximum

value from ‘Hartford CT’ to ‘Kansas City MO’ in Go. The following figure 4.1 illus-

trates such maximum flow, along with the arcs susceptible to disruption, indicated in

red. Thick arcs indicate S(xo), while thin arcs indicate Ao \ S(xo).

Figure 4.1: Maximum flow in network Go.

The network Go underwent a disruption to form a network G, with an arc set

denoted by A. We solved a maximum flow model on this network G to obtain a flow

of the maximum value. The associated support dissimilarity between x and xo is

shown in Figure 4.2.

26

Figure 4.2: Support dissimilarity in network G using the maximum flow model.

There are two types of arcs contributing to the dissimilarity metric: (i) Arcs

belonging to S(xo), but not to S(x), and (ii) arcs belonging to S(x), but not to

S(xo). The following table summarizes the count of these two types of arcs observed

in Figure 4.2:

Table 4.4: Support dissimilarity in network G using the maximum flow model.

Arcs adding to the support dissimilarity Count

Flow in Go, but not in G 33

Flow in G, but not in Go 18

Total arcs 51

In situations where we would like to adopt the original plan, the above model

solutions could prove costly. Therefore, to minimize the support dissimilarity metric,

we solved the support dissimilarity model on G. In order to obtain the maximum flow

in G, the epsilon value was set to 0. Also, c+ and c− were set to 2 and 1, respectively.

We clearly see fewer arcs in Figure 4.3 as compared to Figure 4.2, indicating less

dissimilarity between x and xo. Since c+ > c−, we observe far fewer green arcs than

27

Figure 4.3: Support dissimilarity in network G using the support dissimilarity model.

the red arcs. As seen from Table 4.5, our model utilizes fewer arcs which belong to

A \ S(xo).

Table 4.5: Support dissimilarity in network G using the support dissimilarity model.

Arcs adding to the support dissimilarity Count

Flow in Go, but not in G 15

Flow in G, but not in Go 5

Total dissimilar arcs 20

We clearly observe that the number of arcs contributing to the support dissimi-

larity has halved. As the ε was set to 0, the model enforced the maximum flow in

G. In this manner, our model allows us to minimally change the original operating

plans.

4.2.2 Model II: Minimizing the total absolute flow deviation

In this section, we compared the total absolute flow deviation with the maximum flow

model. We used the thickness of the arcs to convey the amount of flow on the arc.

28

Absolute flow deviation between xij and xoij is depicted by the color of the arc. The

color scheme adopted in the visualization of the total absolute flow deviation is based

on [17]. Figure 4.4 shows the arcs contributing to the total absolute flow deviation

metric in G for the maximum flow model. Table 4.6 summarizes the number of arcs

observed in Figure 4.4.

Figure 4.4: Total absolute flow deviation in network G using the maximum flow model.

Table 4.6: Total absolute flow deviation in network G using the maximum flow model.

Arcs adding to Total Absolute Flow Deviation Count

xij − xoij > 600 0

400 ≤ xij − xoij ≤ 600 1

200 ≤ xij − xoij < 400 3

0 < xij − xoij < 200 19

−200 ≤ xij − xoij < 0 19

−400 ≤ xij − xoij < −200 22

−600 ≤ xij − xoij < −400 11

xij − xoij < −600 1

Total arcs 76

To minimize the absolute difference between x and xo, we solved the total absolute

29

flow deviation model on G. The epsilon value of 0 was set to obtain the maximum

flow. Figure 4.5 shows the arcs contributing to the total absolute flow deviation metric

using the total absolute flow deviation model. Table 4.7 summarizes the various arcs

observed in Figure 4.5.

Figure 4.5: Total absolute flow deviation in networkG using the total absolute flow deviation

model.

Table 4.7: Total absolute flow deviation in network G using the total absolute flow deviation

model.

Arcs adding to Total Absolute Flow Deviation Count

xij − xoij > 600 0

400 ≤ xij − xoij ≤ 600 1

200 ≤ xij − xoij < 400 2

0 < xij − xoij < 200 11

−200 ≤ xij − xoij < 0 14

−400 ≤ xij − xoij < −200 9

−600 ≤ xij − xoij < −400 4

xij − xoij < −600 0

Total arcs 41

30

From Tables 4.6 and 4.7, we see a drastic decrease in the number of arcs whose

absolute flow deviations are greater than 200. Thus, our model not only obtained the

maximum flow, but also decreased the total absolute flow deviation between x and

xo.

4.3 Impact of number of disrupted arcs on dissimilarity

We further conducted a visualization experiment to understand the impact of num-

ber of disrupted edges on the dissimilarity metrics. This experiment is intended to

guide the end-user through the post-optimization analysis involving links prone to

disruption.

We worked on the same network Go as mentioned in Section 4.2. The arcs prone

to disruption were ordered according to xoij/uij. These arcs were then deleted in

three steps. In the first step, we deleted top 4 arcs to build a network G1−4. In the

second step, the next 4 arcs were deleted to build a network G1−8. And, in the final

step, all the arcs prone to disruption were deleted (this is G). We ran the maximum

flow model on each of these networks G1−4, G1−8, G, and they all yielded the same

maximum flow value. To understand the impact of number of disrupted arcs on the

support dissimilarity, we deployed our models on G1−4, G1−8, and G. The following

visualizations in Figures 4.6 and 4.7 are the results of our models on G1−4 and G1−8,

respectively. The results for G are already shown in Figure 4.3.

31

Figure 4.6: Support dissimilarity in network G1−4.

Figure 4.7: Support dissimilarity in network G1−8.

We observe fewer dissimilar arcs in Figure 4.6 as compared to Figure 4.7. Figure

4.3 exhibits the most number of arcs among networks G1−4, G1−8, and G. We can

therefore conclude from Figures 4.3, 4.6, and 4.7 that as the number of disrupted arcs

increases, the support dissimilarity increases.

32

Next, we visualize the impact on the total absolute flow deviation metric. The

following visualizations in Figures 4.8 and 4.9 resulted from solving the total absolute

flow deviation model on G1−4 and G1−8, respectively.

Figure 4.8: Total absolute flow deviation in network G1−4.

Figure 4.9: Total absolute flow deviation in network G1−8.

33

The result for the network G was presented in Figure 4.5. From Figures 4.5, 4.8,

and 4.9, we conclude that as the number of disrupted arcs increases, the total absolute

flow deviation metric can either increase or stay constant.

Thus, visualization helped us to observe the impact of the disrupted arcs on the

dissimilarity metrics.

34

CHAPTER 5

CONCLUDING COMMENTS AND FUTURE WORK

Transportation and supply chain networks are witnessing disruptions with increasing

frequency [18]. Disruptions can not only impact the capacity of the links to carry

the flow, but also breach the commitments made to suppliers, distribution partners,

and customers. Therefore, it is necessary to have contingency plans in place. In this

thesis, we developed models that enable a decision maker to address network disrup-

tions. The models not only attain the desired flow but also support the commitments

made before disruption.

This thesis defined two metrics, namely support dissimilarity and total absolute

flow deviation that measure the dissimilarity between the flow before disruption and

the flow after disruption. We developed models to minimize the support dissimilar-

ity and the total absolute flow deviation between two flows. We adopted the best

implementation of these models on Python and Gurobi by tuning parameters that

improved the computational performance as well as resolved numerical issues. To

convey our model solutions to the end-user, we developed visualizations that pro-

vided intuition of the dissimilarity metrics and the associated model solutions. The

visualizations clearly showed the merits of our models over solving a maximum flow

model, by helping us visualize our model solutions against the maximum flow solu-

tion. We also used visualization to understand the impacts of number of disrupted

edges on the dissimilarity metrics.

35

One possible area of future research is to incorporate probabilistic arc failures, and

model it in a stochastic optimization setting. This setup would enable us to address

disruptions beforehand with much more clarity. We can still improve the perfor-

mance of total absolute flow deviation model, if we can find faster algorithms for

solving linear programming models with piecewise convex objective function. Other

future work includes determining the computational complexity of the support dis-

similarity model.

From the visualization perspective, we worked on a relatively small dataset that

allowed clear visualization. It would be interesting to visualize a 3D network model

that would allow us to fit a network of larger size, without aggregation of informa-

tion, and also allowing cleaner visualizations. Another important area of research in

visualization, would be allowing the end-user to participate in tweaking or modifying

the optimal solution based on other considerations.

36

REFERENCES

[1] R. Ahuja, T. Magnanti, and J. Orlin, Network Flows: Theory, Algorithms and

Applications. Englewood Cliffs, New Jersey: Prentice Hall, 1993.

[2] D. Jones and M. Tamiz, Practical Goal Programming. New York, US: Springer,

2010.

[3] R. Rardin, Optimization in Operations Research. Englewood Cliffs, New Jersey:

Prentice Hall, 1998.

[4] L. R. Ford Jr and D. R. Fulkerson, “A simple algorithm for finding maximal

network flows and an application to the hitchcock problem,” tech. rep., DTIC

Document, 1955.

[5] A. Goldberg and R. Tarjan, “A new approach to max flow,” Journal of ACM,

vol. 35, no. 4, 2008.

[6] A. Geoffrion, “Solving bicriterion mathematical programs,” Operations Research,

vol. 15, no. 1, pp. 39–54, 1967.

[7] H. Lee and S. Pulat, “Bicriteria network flow problems: Continuous case,” Eu-

ropean Journal of Operations Research, vol. 51, no. 1, pp. 119–126, 1991.

[8] D. Fulkerson, “An Out-of-Kilter Method for Minimal-Cost Flow Problems,”

Journal of the Society for Industrial and Applied Mathematics, vol. 9, no. 1,

pp. 18–27, 1961.

37

[9] L. Arthur and K. Lawrence, “Multiple goal production and logistics planning in

a chemical and pharmaceutical company,” Computers and Operations research,

vol. 9, no. 2, pp. 127–137, 1982.

[10] J. Arthur and A. Ravindran, “PAGP, a partitioning algorithm for (linear) goal

programming problems,” ACM Transactions on Mathematical Software, vol. 6,

no. 3, pp. 378–386, 1980.

[11] L. Moore, B. Taylor III, and S. Lee, “Analysis of a transhipment problem with

multiple conflicting objectives,” Computers and Operations research, vol. 5, no. 1,

pp. 39–46, 1978.

[12] S. M. Lee et al., Goal programming for decision analysis. Philadelphia, US:

Auerbach, 1972.

[13] G. Skorobohatyj, “Maximum flow problem instances.” http://elib.zib.de/

pub/Packages/mp-testdata/maxflow/.

[14] Gurobi Optimization, Inc., “Gurobi optimizer reference manual, version 6.5,

copyright c© 2015.” http://www.gurobi.com/documentation/6.0/refman/,

2016.

[15] M. Bastian, S. Heymann, and M. Jacomy, “Gephi: An open source software for

exploring and manipulating networks,” 2009.

[16] U.S. Department of Transportation, Research and Innovative Technology Admin-

istration, Bureau of Transportation Statistics, Freight Transportation: Global

Highlights, 2010. http://www.bts.gov/. Accessed May 2016.

[17] Brewer A. C, Penn State. www.ColorBrewer.org. Accessed Nov 2016.

[18] C. Bode, Causes and effects of supply chain disruptions. PhD thesis, WHU–Otto

Beisheim School of Management, 2008.

38

[19] D. Altner and O. Ergun, “Rapidly solving an online sequence of maximum flow

problems,” in Integration of AI and OR Techniques in Constraint Programming

for Combinatorial Optimization Problems (L. Michel, ed.), (Spain), pp. 283–287,

Springer, 2008.

39

VITA

Sampreet Sudheer Mangalvedhe

Candidate for the Degree of

Master of Science

Thesis: ON A BIOBJECTIVE FLOW PROBLEM IN NETWORKS

Major Field: Industrial Engineering & Management

Biographical:

Personal Data: Born in Miraj, Maharashtra, India on September 29, 1990.

Education:
Received the B.E. degree from University of Mumbai, Mumbai, Maharash-
tra, India, 2012, in Mechanical Engineering

Completed the requirements for the degree of Master of Science with a
major in Industrial Engineering & Management Oklahoma State Univer-
sity in December, 2016.

Experience:
Graduate Teaching Assitant - School of Industrial Engineering & Manage-
ment, Oklahoma State University (August 2015 - December 2016)

Graduate Trainee Engineer - Tenova, India (July 2012 - June 2013)

