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Abstract: Programming new abilities on a robot ought to take negligible time and 

exertion. One way to accomplish this objective is to permit the robot to ask questions. 

This idea, called Active Learning, has recently caught a lot of attention in the robotics 

community. We are interested in the potential of active learning to improve learned skills 

from human demonstrations in an HRI setting. In this thesis, I explore different types of 

queries proposed in the Active Learning(AL) Literature and apply them to Learning from 

Demonstration(LfD) problems. The central part of this work is to design a strategy for 

data selection for the query in order to avoid unnecessary and redundant queries, select 

different types of query that will help the robot learn better and explore how the 

incorporation of AL methods in LfD impacts a robot’s learning and performance. 
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CHAPTER I 

 

 

INTRODUCTION 

 

In existing and future human-robot environments, robots may play various roles. For 

example, some robots may primarily interact with robots, while others may interact directly with 

people. Designing controllers for various types of tasks performed by robots is usually done by 

people specialized in programming robots. Most often this is a complicated process, as it 

essentially requires creating a new and different controller for each particular task. The variety of 

situations in which a robot may have to perform makes the job of the robot programmer more 

difficult. Rather than pre-programming a robot for all the tasks its users might want it to perform, 

it would be more useful if the robot could learn such tasks from the user, through flexible and 

natural interaction. However, users may not have the necessary skills to re-set, re-task and 

program the robots. Because of this, a good goal is to develop an approach to designing the robot 

controllers that is accessible to all users. Various frameworks have been proposed in the past that 

aim to provide robots with task learning capabilities that address the above problems, and thus 

reduce the amount of time and expertise required for the development of an autonomous, 

intelligent robot systems. A natural approach to this problem is to have the robots learn a 

particular task from a teacher’s demonstration, thus increasing the ability of robots to interact 

with people, and relieving the user from writing controllers by hand [1].  
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Robot Learning from Demonstration (LfD) or Robot Programming by Demonstration (PbD) is a 

paradigm for enabling robots to autonomously perform new tasks [1]. LfD allows the end-user to 

program the robot simply by showing it how to perform the task - no coding required. To this 

end, LfD techniques try to maximize the generalizability of the learned skill to unseen situations 

with a minimal number of demonstrations provided by humans. Recently, Active Learning (AL) 

methods have been explored to achieve this goal.  

For all supervised and unsupervised learning tasks, more often than not we first accumulate a 

huge amount of information that is randomly sampled from the underlying population distribution 

and we then initiate a classifier or model. This approach is called passive learning. A passive 

learner (Figure 1) gets a random data set from the world and after that yields a classifier or 

model. 

An active learner (Figure 2) assembles data about the world by asking questions and receiving 

information. It then yields a classifier or model contingent on the undertaking that it is being 

utilized for. An active learner varies from a passive learner which just gets a random data set from 

the world and after that yields a classifier or model. One analogy is that a standard passive learner 

is a student that assembles information by sitting and listening to an instructor while an active 

learner is a student that asks the instructor questions, listens to the answers and asks additional 

questions based upon the teacher’s response. It is conceivable that this additional capacity to 

adaptively question the world in view of past reactions would permit an active learner to perform 

superior to a passive learner, and indeed we shall later demonstrate that, in many situations, this is 

indeed the case.  
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Figure 1: General schema for a passive learner [2]. 

 

Figure 2: General schema for an active learner [2]. 

The idea in AL is to improve learning rates by giving the learner more control over what 

examples it receives.  The core contrast between an active learner and a passive learner is the 

capacity to get some information about the world in light of the past inquiries and reactions. The 

thought of what precisely a question is and what reaction it gets will rely upon the exact task at 

hand. Recent work in robotics involves the robots, making a query [4], which is a request for 

certain information, and the teacher provides this information. The requested information can take 

various forms, although most commonly it is a category label for an unlabeled data instance [4].  

The assessment of robotic systems that make inquiries to people or request information to people 

has been limited, particularly in LfD settings. We are interested in estimating the performance 

improvement by incorporating AL in learning from demonstration setting. We also intend to 

explore the ease with which AL can be incorporated in Lfd framework. There is some research 

conducted in this area such as, addressing the question of when to ask questions in a mixed-

initiative AL setting [3], types of questions that can be asked, feasibility of novel query types [4] 
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or cost of different query types [5]. In this thesis, we propose that a robot using active learning 

could achieve more accurate and faster learning as compared to passive learner in HRI setting. 
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CHAPTER II 

 

 

LITERATURE REVIEW 

 

2.1 Active Learning 

Active learning (sometimes called “query learning”) is a subfield of machine learning and, more 

generally, artificial intelligence. Active learning is a special case of semi-supervised machine 

learning in which a learning algorithm is able to interactively query the user (or some other 

information source) to obtain the desired outputs at new data points [1] [2]. In statistics literature, 

it is sometimes also called optimal experimental design [3]. 

The key hypothesis of active learning is that if the learning algorithm is allowed to choose the 

data by which it learns, it will perform better with less training. Why is this a desirable property 

for learning algorithms to have? Consider that, for any supervised learning system to perform 

well, it must often be trained on hundreds (even thousands) of labeled instances. Sometimes 

labels come at little or no cost, such as five-star rating you might give to films, or likes to articles 

on a social networking website. Learning systems may use these likes and ratings to suggest 

movies you might enjoy. In these cases, you are provided labels for free, but for many other 

supervised learning tasks, labeled instances are very difficult, time-consuming, or expensive to 

obtain. Here are a few examples:   
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• Speech recognition. Accurate labeling of speech utterances is extremely time consuming and 

requires trained linguists. [4] reports that annotation at the word level can take ten times 

longer than the actual audio (e.g., one minute of speech takes ten minutes to label), and 

annotating phonemes can take 400 times as long (e.g., nearly seven hours). The problem is 

compounded for rare languages or dialects.   

• Information extraction. Good information extraction systems must be trained using labeled 

documents with detailed annotations. Users highlight entities or relations of interest in text, 

such as person and organization names, or whether a person works for a particular 

organization. Locating entities and relations can take a half-hour or more for even simple 

newswire stories [6]. Annotations for other knowledge domains may require additional 

expertise, e.g., annotating gene and disease mentions for biomedical information extraction 

usually requires PhD-level biologists.   

• Classification and filtering. Learning to classify documents (e.g., articles or web pages) or 

any other kind of media (e.g., image, audio, and video files) requires that users label each 

document or media file with particular labels, like “relevant” or “not relevant.” Having to 

annotate thousands of these instances can be tedious and even redundant.   

Active learning systems attempt to overcome the labeling bottleneck by making queries in the 

form of unlabeled instances to be labeled by an oracle as shown in Figure 3, making it iterative 

supervised learning. Since the learner chooses the examples, the number of examples to learn a 

concept can often be much lower than the number required in normal supervised learning. In this 

way, the active learner aims to achieve high accuracy using as few labeled instances as possible, 

thereby minimizing the cost of obtaining labeled data. Active learning is well-motivated in many 

modern machine learning problems where data may be abundant but labels are scarce or 

expensive to obtain.  
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Figure 3: Active Learning process [8] 

Active learning systems attempt to overcome the labeling bottleneck by making queries in the 

form of unlabeled instances to be labeled by an oracle as shown in Figure 3, making it iterative 

supervised learning. Since the learner chooses the examples, the number of examples to learn a 

concept can often be much lower than the number required in normal supervised learning. In this 

way, the active learner aims to achieve high accuracy using as few labeled instances as possible, 

thereby minimizing the cost of obtaining labeled data. Active learning is well-motivated in many 

modern machine learning problems where data may be abundant but labels are scarce or 

expensive to obtain.  
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2.1.1 Active Learning Heuristic 

Typical active learning strategies use a simple heuristic to decide which data point to label next 

[9];  

• Start with a pool of unlabeled data  

• Pick a few point at random and get their labels 

• Repeat the following  

1. Fit a classifier to the labels seen so far  

2. Pick the BEST unlabeled point to get a label for 

 

2.1.2 How does the learner ask queries? 

There are several different problem scenarios (Figure 4) in which the learner may be able to ask 

questions [8]: 

• Membership Query Synthesis: The learner may request labels for any unlabeled instance 

in the input space. 

•  Stream-Based Selective Sampling: The learner obtains an unlabeled instance and uses an 

“informative measure” or “query strategy” (threshold) to decide whether to request its 

label or not.  

• Pool-Based Sampling: The learner obtains large collections of unlabeled data at once and 

uses an “informative measure” or “query strategy” (threshold) to evaluate and classify the 

entire collection. 
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Figure 4: Three main Active Learning Scenarios [1] 

2.1.3 Query Strategies 

Algorithms for determining which data points should be labeled can be organized into a number 

of categories [8] : 

• Uncertainty sampling: label those instances for which the current model is least certain as 

to what the correct output should be 

• Query by committee: a variety of models are trained on the current labeled instances, and 

vote on the output for unlabeled instances; label those instances for which the 

"committee" disagrees the most 

• Expected model change: label those instances that would most change the current model 

• Expected error reduction: label those instances that would most reduce the model's 

generalization error 

• Variance reduction: label those instances that would minimize output variance, which is 

one of the components of error 
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• Balance exploration and exploitation: the choice of examples to label is seen as a 

dilemma between the exploration and the exploitation over the data space representation. 

This strategy manages this compromise by modelling the active learning problem as a 

contextual bandit problem. For example, Bouneffouf et al. [6] propose a sequential 

algorithm named Active Thompson Sampling (ATS), which, in each round, assigns a 

sampling distribution on the pool, samples one point from this distribution, and queries 

the oracle for this sample point label. 

• Exponentiated Gradient Exploration for Active Learning: [7] In this paper, the author 

proposes a sequential algorithm named Exponentiated gradient (EG)-active learning that 

can improve any active learning algorithm by employing an optimal random exploration. 

A wide variety of algorithms have been studied that fall into these categories. [1] [3] 

 

2.2 Related Work 

Leveraging human input has received considerable attention in both the machine learning and 

robotics communities. Active Learning has been applied to a number of LfD frameworks. For 

example, confidence based autonomy [8] and dogged learning [9], use the principle of uncertainty 

sampling to select states in which the learning agent requests a demonstration while learning a 

policy. In [10], the robot actively selects points outside the region of stability of a learned policy, 

and requests demonstrations from these states.  

Much earlier work deals with the scenario in which a machine learns by watching human conduct 

[11] [12]. Other work has concentrated on how a machine can learn tasks from human direction 

[13] [14], with human advice [15] [16] or through interruption on the learner's activities amid the 

learning procedure [17]. 
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The assessment of robotic systems that make inquiries to people has been limited, particularly in 

LfD settings. Prior work deals with comparing passive and active learning [18], addressing the 

question of when to ask questions in a mixed-initiative AL setting [19]. One framework 

demonstrated certainty based active learning with (nonsocial) human labelers [20]. Similarly, 

Lopes et al. utilized active learning to figuring out how to choose the states in which a specialist 

human ought to be questioned for an appropriate action [21]. Rosenthal et al. investigate how 

augmenting robot’s questions with different types of additional information could improves the 

accuracy of human teacher’s [22]. Considerable work has been done to explore the idea of 

learning actions for robots through dialogue and demonstrations [23] [24]. Many studies 

investigated different HCI issues such as feasibility of novel query types (e.g. feature queries) 

[25] or cost of different query types [5].  Cakmak et al.  and Gervasio et al. have investigated 

question asking in procedure learning with a range of question types [26] [27]. 

Our work focuses on utilizing various types of label queries using an active learning approach in 

a learning from demonstration framework. Querying is crucial to many robotic tasks, allowing the 

robot to precisely localize objects, build maps, perform manipulation tasks and achieve many 

other goals. There has not been enough work on annotations or queries on motion primitives to 

learn the target concept. 

The active learning setting in the review introduced here is fundamentally unique in relation to 

different assessments of active learning on the grounds that the active learner receives labels 

through a dynamic teaching–learning collaboration instead of through monotone query labeling 

or annotation. In our situation, the individual is attempting to educate the robot independent of 

whether the robot makes questions. The learner can therefore, pick up data without making a 

question, and the learner is ensured that the educator will answer its inquiry. 
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CHAPTER III 

 

 

METHODOLOGY 

 

3.1. Problem Statement 

As outlined in previous sections, if we just pick the RIGHT examples to label, we can learn the 

concept from only a few labeled examples. This thesis proposes that a robot using active learning 

could achieve more accurate and faster learning as compared to passive learner in HRI setting. 

In an active learning approach the learning process may iteratively query unlabeled samples to 

select the most informative samples to annotate and update its learned models. The central part of 

our work is (i) to design a strategy for data selection for query in order to avoid unnecessary and 

redundant queries, (ii) select different types of query that will help the robot learn better and (iii) 

test how the incorporation of AL methods in LfD impacts a robot’s learning and performance. 

One way the robot could make a query is to execute a motion and ask a teacher whether the skill 

was performed correctly. This is called a label query [29]. Second, the robot could request 

demonstrations. This is called a demonstration query [29]. Other queries involve asking whether a 

feature is important or relevant for the target concept that is being learned [5] [31]. 

We use various types of queries described in chapter II with an HRI experiment that involves 

teaching skills to a robot and answering its questions. 
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3.2. Preliminaries 

We present here, the basic definitions that are used throughout the further description of the 

methodology. We use the terms (making a) query and (asking a) question interchangeably 

throughout the discussion. The tasks or skills involve a fixed set of objects. Four demonstrations, 

varied in certain aspects, were recorded for each skill.  

 

3.3.  Platform 

The robot platform used in our experiments is Baxter, an upper torso humanoid robot with 7 

Degree of Freedom (DoF) compliant arms and state-of-the-art sensing technologies, including 

force, position, and torque sensing and control at every joint, cameras in support of computer 

vision applications, integrated user input and output elements such as a head-mounted display, 

buttons, knobs and more.  

Interfaces for Demonstration:  

1) Directly recording human motions: Various methods used for this approach are existing 

motion tracking systems, based on vision, exoskeleton or other wearable motion sensors. These 

external means of tracking human motion return a precise measurement of the angular 

displacement of the joints. They have been used in various works for LfD of full body motion 

[32] [33] [34]. These methods are advantageous in that they allow the human to move freely, but 

require good solutions to the correspondence problem. Typically, this is accomplished by an 

explicitly mapping between human and robot joints, but can be quite difficult if the robot (e.g., a 

hexapod) differs greatly from the human.  

2) Kinesthetic teaching: The robot is physically guided through the task by the humans. One main 

drawback of kinesthetic teaching is that the human must often use more of their own degrees of 
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freedom to move the robot than the number of degrees of freedom they are trying to control. A 

possibility is to proceed incrementally [35].  

3) Immersive teleoperation scenarios: A human operator is limited to using the robot’s own 

sensors and effectors to perform the task. The teleoperation itself may be done using joysticks or 

other remote control devices, including haptic devices [36] [37]. Teleoperation is, however, more 

frequently used solely to transmit the kinematic of motion [14] [38].  In our experiments, teaching 

robot involves both Kinesthetic teaching and Immersive teleoperation. In the first two 

experiments, the robot is guided through the task by human using teleoperation. The teleoperation 

is done using keyboard control. In the third task, the robot is physically guided through the task 

by a human. In our task scenarios, the robot works alongside or across from a human partner at a 

tabletop workshop.  

Baxter’s joint names are mentioned a number of times in this documentation. A labeled diagram 

can be found below (S=Shoulder, E=Elbow, W=Wrist) in Figure 5. 

 

Figure 5: Baxter's joint names [39]



15 
 

3.4. Experimental Design 

The experiment involves the teaching of three different skills to Baxter using multiple 

demonstrations. From the given demonstration a learned motion is obtained and evaluated on 

Baxter for successful task completion. If Baxter fails to perform the task correctly, it 

communicates to the human using various Active Learning queries with the goal of improving its 

skills with the help of human interaction. 

 

3.4.1 Skill Representation 

The robot state can be represented in a number of different ways. Among the commonly used in 

LfD are joints of the robot, end-effector configuration (position and orientation) relative to the 

robot, or relative to a reference/goal coordinate frame in the world. In this paper, we consider the 

example skill of pick and place of a box (Figure 6) and writing numbers (Figure 7).We represent 

the state ‘x’ of the robot as the end-effector configuration relative to the Baxter’s torso.  
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Figure 6: Pick and Place Task 

 

Figure 7: Writing Task 
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3.4.2 Description of Tasks 

We considered three tasks as described in Figure 6 and Figure 7. The tasks are chosen to cover 

two types of LfD problems in robotics. The first two tasks are focused on learning a task goal 

(desired end state) whereas the latter one emphasizes learning skills to perform the task (desired 

actions or movements to accomplish the task). Each of these is designed to be an abstraction of a 

real-world task (e.g. moving an object). To access the effectiveness of our approach, following 

tasks are performed using Baxter in the real world. We perform these tasks using the right arm of 

the robot. The end-effector is Baxter’s right arm gripper. 

Task 1: Baxter learns to pick up and place a box with fixed start and end positions. 

Task 2: Baxter learns to pick up and place a box with varying start and end positions. 

Task 3: Baxter learns to write numbers e.g. ‘412’. 

 

3.5. Teaching Skills  

A demonstration consists of a sequence of state-action pairs; Di = {(xi0, ẋi0), … , (xiNi
, ẋiNi

)}. A 

skill is learned from a set of m demonstrations {Di}
m

i=1
. Demonstration data in the form of joint 

positions xt  are sampled from a demonstration of a task at time instants t = 1, 2, …, T, and is 

used as an input for the experiment. For learning tasks, Baxter is provided with four 

demonstrations using keyboard control and manual demonstration. 

Task 1: pick and place a box with fixed start and end positions 

Demonstration data in the form of joint positions xt are sampled from four demonstrations of a 

pick and place task performed using keyboard control at time instants t = 1, 2, …, T. We divide 

the pick and place operation into two main sub-tasks and we break them into five states as shown 

in Figure 8. The main states of a pick action are as follows (the description of place states is 

similar): 
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• Start: At the start of the experiment, Baxter’s right arm is at a specific 3D end-effector 

position (xinitial, yinitial, zinitial). 

• Approach: The end-effector moves to the vicinity of the box to be picked up, located at a 

fixed position (xbox, ybox, zbox).  

• Grasp: The end-effector moves to the box position. 

• Close Gripper: The end-effector closes the gripper attached to the right arm to grab the box. 

• Retract: The end-effector moves (zbox + h) in z direction. 

After the box has been picked up the end-effector position is offset by  (xbox, ybox + l, zbox + h). 

When the arm has been moved to the desired destination, the box is placed at (xbox, ybox, zbox) 

following similar steps as in the pick state. 

 

Figure 8: The states involved in a pick and place task [37] 
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Task 2: Baxter learns to pick and place a box with varying start and end positions 

Demonstration data in the form joint positions xt are sampled from four demonstrations of a pick 

and place task using keyboard control. We divide the pick and place into two main sub-tasks and 

break them into five states as shown in Figure 8 same as Task1. In this task, the initial position of 

the box varies in each demonstration.  

Task 3: Baxter learns to write numbers say ‘412’ 

Demonstration data in the form of joint positions xt are sampled from four demonstrations of a 

writing task by manual control of Baxter’s right arm. The writing task in our case involved 

drawing numbers ‘4’, ‘1’, ‘2’ on a sheet of paper.  

 

3.6. Deriving a policy 

After acquiring the dataset of state-action example, the next step involves deriving a policy using 

the data. The approach for deriving the policy is initially split between the three core derivation 

techniques:  

Mapping Function: The mapping function approach to policy learning calculates a function that 

approximates the state to action mapping. In general, mapping approximation techniques fall into 

two categories depending on whether the prediction output of the algorithm is discrete or 

continuous. Classification techniques produce discrete output and Regression techniques produce 

continuous output [2]. Many techniques for performing classification and regression have been 

developed outside of LfD [41].  

System Models: This approach uses a state transition model of the world, T (s'|s, a), and from this 

derives a policy. This approach is typically formulated within the structure of Reinforcement 

Learning (RL). Demonstration data, and any additional autonomous exploration the robot may 

do, generally determines the transition function T(s'|s, a). To derive a policy from this transition 

model, a reward function R( [17]), which associates reward value r with world state ‘s’, is either 
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learned from demonstrations or defined by the user. The goal of RL is to maximize cumulative 

reward over time. Inverse Reinforcement Learning(IRL) is one of the techniques concerned with 

finding the reward function of a human demonstrator from the demonstrated state and action 

samples [17] [42] [43]. 

Plans: The planning framework, represents the policy as a sequence of actions that lead from the 

initial state to the final goal state. Actions are often defined in terms of pre-conditions, the state 

that must be established before the action can be performed, and post-conditions, the state 

resulting from the actions execution. Unlike other LfD approaches, planning techniques 

frequently rely not only on state-action demonstrations, but also on additional information in the 

form of annotations or intentions from the teacher. 

In our case study, we have used the mapping function to derive the policy. In our experiments, 

demonstrations are first collected and synthesized into learned motion using dynamic time 

warping (DTW) and barycenter averaging [44] [45].  

Dynamic time warping: DTW is based on the Levenshtein distance (also called edit distance) 

and was introduced in [46] and [47], with applications in speech recognition. It finds the optimal 

alignment (or coupling) between two sequences of numerical values, and captures flexible 

similarities by aligning the coordinates inside both sequences. The cost of the optimal alignment 

can be recursively computed by 

D(Ai,Bj) = (ai,bj) + min {

    D(Ai−1,Bj−1)

D(Ai,Bj−1)

D(Ai−1,Bj)

 

 where Ai, is the subsequence 〈a1, … ai〉. The overall similarity is given by D(A|A|,B|B|) =

 D(AT,BT) . This measure has thus a time and a space complexity of  O(|A|. |B|). DTW is able to 

find an optimal global alignment between sequences and is probably the most commonly used 

measure to quantify the dissimilarity between sequences. It also provides an overall real number 

that quantifies similarity.  
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DBA: To create pairwise averaging, a global averaging strategy called DTW Barycenter 

Averaging (DBA) is used. The aim is to minimize the sum of squared DTW distances from the 

average sequence to the set of sequences. Technically, for each refinement i.e., for each iteration, 

DBA works in two steps:  

Step 1: Computing DTW between each individual sequence and the temporary average 

sequence to be refined, in order to find associations between coordinates of the average 

sequence and coordinates of the set of sequences.  

Step 2: Updating each coordinate of the average sequence as the barycenter of coordinates 

associated to it during the first step.  

The resulting learned motion L obtained as  a result of DTW Barycenter Averaging performed on a 

set of m demonstrations {Di}
m

i=1
  is then tested on Baxter for successful task completion. If the 

learned motion fails to successfully complete the task, an interactive correction is performed to 

improve the learned skill as covered in following section. 

 

3.7. Interactive Corrections/ Active Skill Learning 

Interactive correction utilizes the concept of Active Learning for correction and improvement of 

the learned skill MLfD. The conventional query in the AL literature involves choosing an unlabeled 

instance and requesting a label for it. The instance can be chosen from a pool of unlabeled 

instances or instantiated by the learner in some way. Such queries have been used in learning 

skills on a robot, where a skill is represented as a policy that maps a state to a discrete action. In 

this context, a query consists of asking for an action in a chosen state [46] [21] [9]. This is useful 

in an HRI setting when the robot’s actions are discrete and the human has a way to refer to each 

action. However, robot skills often involve continuous actions and the input from the teacher to 
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the learner is a sequence of state-action pairs (i.e. trajectories). In these cases, it is impractical to 

ask for an isolated state-action pair (e.g. asking for the motor commands of a given arm 

configuration). Thus we need to re-think the way that a query is made. We consider the following 

alternatives.  

3.7.1 Types of Queries 

Label queries: Robot skill learning involves modeling/encoding a skill from a set of 

demonstrations, such that it can be reproduced correctly. The demonstrations provided by the 

teacher are inherently labelled as positive. One way the robot could make queries is to execute a 

motion and ask whether the skill was performed correctly. We call this a label query. Methods for 

generating label queries depend on the particular framework used for representing the skill. 

However, a general approach applicable to most frameworks is to sample trajectories from the 

learned skill and evaluate them with a certain criterion. For instance, the robot can choose to 

query the trajectory that it is least certain about or the trajectory that is most likely to increase the 

applicability of the skill.  

Demonstration queries: The second type of query, which we call demonstration or demo queries, 

involves requesting a demonstration from the teacher. Demo queries give less control over what 

information is acquired from a query, as compared to label queries. In label queries, the learner 

specifies the whole trajectory and the teacher only provides a label. In demonstration queries, the 

learner only specifies certain constraints, while the trajectory is still produced by the teacher. 

Nevertheless, this gives some control to the learner such that useful demonstrations can be 

acquired. Demo queries are analogous to a method known as active class selection [47], which 

consist of requesting an example from a certain class.  

One way to constrain trajectories provided by the teacher is to specify the starting state. 

Trajectories are often represented with a sequence of end-effector configurations relative to a goal 



23 
 

object. Thus the robot can configure its end-effector in a certain way relative to the goal and 

request the demonstration to start in this configuration. A larger range of queries can be made by 

manipulating the target object.  

3.7.2 Data Selection Strategy for Query 

Given a task’s learned motion MLfD obtained as  a result of DTW Barycenter Averaging performed 

on a set of m demonstrations {Di}
m

i=1
 , we collect critical joint-position instances that are 

representative of a target concept. Steps to generate the change-points in the Learned Skill MLfD 

are as follows: 

Step 1: Compute second derivatives of the joint-position data of MLfD. 

Step 2: Compute the standard deviation on each segment of the second derivative data that are 

half a second apart (half a second time intervals were selected for our task. These can be 

changed based on what task is being demonstrated to Baxter and how frequently the 

changes need to be observed). 

Step 3: Compute the Mean of all the standard deviations across all the segments. 

Step 4: Select segments with standard deviation greater than the Mean-Standard-Deviation. 

3.7.3 Approach for Querying  

Once the change-points are collected, the following approach is used for querying label as shown 

in Fig.4:  

Step 1: Let the robot perform the learned task MLfD. 

Step 2: While the learned task is being performed by robot, map the running instances of the 

joint positions to the set of critical points collected in section 3.6.2. 

Step 3: If a match is not found, goto step 2 and continue. If a match is found, goto step 4. 
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Step 4: The robot queries the correctness of the subtask (label query) performed, from a teacher. 

If a teacher confirms the correctness of subtask, goto step 2. If the subtask was 

performed incorrectly, goto step 5. 

Step 5: The robot queries for a correction of subtask performed, from a teacher (demonstration 

query).  

Step 6: Demonstration query response are introduced on the same learned motion to improve the 

sequence.  

Step 7: Goto step 2 and continue until the learned skill is improved and the robot is able to 

perform the task successfully. 
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Figure 9: Approach for Interactive Corrections 
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3.8. Evaluation Measure 

The model obtained using the Active learning approach i.e. demonstration queries, in conjunction 

with label queries (MAL), is expected to perform better than the robot’s learned model obtained 

using plain LfD (MLfD) when compared with an idealized, hard-coded, perfect task (MI). To 

evaluate the performance of the models, we use two parameters: 

1. Successful task completion  

2. RMSE (Root Mean Square Error) of MLfD vs RMSE of MAL 
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CHAPTER IV 

 

 

FINDINGS 

 

4.1 Experiments 

4.1.1 Experiment: Pick and place – TYPE I 

Task Details: Baxter learns to pick and place a box with fixed start and end positions.  

We have collected four sample demonstrations of pick and place. In this experiment, Baxter is 

trained with demonstrations that are very precise and close to each other in terms of trajectory 

used for pick and place.  Demonstration samples are shown in Figure 1. Each data set sample 

consists of joint position data for joints at right arm of Baxter, named right_s0, right_s1, right_e0, 

right_e1, right_w0, right_w1 and right_w2.  
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Figure 10: Task 1 - Plot for joint position data in demonstration samples 
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The learned model MLfD is obtained by processing sample demonstrations using DBA in plain 

learning from demonstration framework. As seen in Figure 11, the resulting learned model from 

DBA is extremely noisy.  To smooth the noisy learned model, we used Gaussian smoothing. The 

result of Gaussian smoothening is as shown in Figure 12.  

 

 

Figure 11: Task 1 - Plot for joint position data in Learned Model MLfD 

 

Figure 12: Task 1 - Plot for joint position data in Smoothened Learned Model MLfD 

 

The smoothened-learned-model the change point is computed using the approach described in the 

section “Data selection strategy for query” of the methodology chapter. We found fifteen change 

points in the learned model as highlighted in Figure 13. The learned model is tested on Baxter to 

pick up and place a box. While the learned model is being executed, the running instances of the 
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model are mapped to change points. On encountering a change point, a label query “Is the subtask 

performed correctly?” is generated. In this task we found that, at every change point, the answer 

to label query was “yes”. 

 

 

Figure 13: Task 1 – Plot for change points in joint positions in Learned Model MLfD 

 

Analysis: When tested on Baxter, the learned model MLfD gave positive results for the task 

completion and therefore did not require any interactive corrections. This shows us that for a 

simple task, with very similar sample demonstrations, the MLfD obtained was quite reliable in 

terms of successful task completion. But in a true real world setting, it is improbable to give 

indistinguishable demonstrations considering human factors, which is one of the major issues in 

LfD. Therefore, we conducted another experiment considering real world setting and human 

errors.  
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4.1.2 Experiment: Pick and place – TYPE II 

Task Details: Baxter learns to pick and place a box with varying start and end positions.  

We have collected four sample demonstrations of pick and place. For every sample 

demonstration, the x coordinate for the box was offset by 5 centimeters. Demonstration samples 

are shown in Figure 14. Each data set sample consists of joint position data for joints of Baxter’s 

right arm, named right_s0, right_s1, right_e0, right_e1, right_w0, right_w1 and right_w2.  
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Figure 14: Task 2 - Plot for joint position data in demonstration samples 
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The learned model MLfD is obtained by processing sample demonstrations using DBA in plain 

learning from demonstration framework. As seen in  

Figure 15, the resulting learned model from DBA is extremely noisy.  To smoothen the noisy 

learned model, we used Gaussian smoothing. The result of Gaussian smoothening is as shown in 

Figure 16.  

 

 

Figure 15: Task 2 - Plot for joint position data in Learned Model MLfD 

 

Figure 16: Task 2 - Plot for joint position data in Smoothened Learned Model MLfD 
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The smoothened-learned-model change point is computed using the approach described in the 

section “Data selection strategy for query” of the methodology chapter. We found sixteen change 

points in the learned model as highlighted in  

Figure 17. The learned model is tested on Baxter to pick and place a box which is initially located 

at one of the coordinates used in a sample demonstration. While the learned model is being 

executed, the running instances of the model are mapped to change points. On encountering a 

change point, a label query “Is the subtask performed correctly?” is generated. 

 

 

Figure 17: Task 2 - Plot for change points in joint positions in Learned Model MLfD 

 

Analysis on MLfD:  In this task we found that, at sixteenth change point in MLfD , the answer to 

label query was “no” and therefore required interactive correction for placing the object correctly. 

At this point, Baxter requests corrections using Demonstration query. To provide the corrections, 
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Baxter’s arm is moved to the previous change point (i.e. fourteenth change point, the state where 

the subtasks were performed correctly so that the corrections can be given from that point 

onwards) for further corrections. After providing interactive corrections and updating the learned 

model MLfD the resulting corrected model MAL is as shown in Figure 18. 

 

 

Figure 18: Task 2 - Plot for joint position data in Interactively Corrected Model MAL 

 

Analysis on MAL:  When tested on Baxter, the interactively corrected model was able to 

successfully complete the task.  
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Evaluation: To evaluate the performance of MAL over MLfD, we computed the RMSE for the end-

effector positions of the MAL and MLfD against the standard Model MStd and RMSE for the joint-

positions data of the MAL and MLfD against MStd.  

RMSE MLfD MAL 

joint-position data 0.0836 0.0493 

end-effector data 0.0608 0.0224 

 

Table 1: Task 2 - RMSE of joint-position data and end-effector data for MLfD vs MAL 

Results from Table 1 and performance of MAL shows us that for a simple task, with 

distinguishable sample demonstrations, the MLfD is not always completely reliable in terms of 

successful task completion and therefore required interactive corrections. Next, we conducted the 

experiment to test the performance of LfD for complex task.  
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4.1.3 Experiment: Writing Task 

Task Details: Baxter learns to write numbers “412”.  

We have collected four sample demonstrations for writing “412”. In this experiment, Baxter is 

trained with demonstrations that are close to each other in terms of similarity in trajectory.  

Demonstration samples are shown in Figure 19. Each data set sample consists of joint position 

data for Baxter’s right arm, named right_s0, right_s1, right_e0, right_e1, right_w0, right_w1 and 

right_w2.  
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Figure 19: Task 3 - Plot for joint position data in demonstration samples 
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The learned model MLfD is obtained by processing sample demonstrations using DBA in plain 

learning from demonstration framework. As seen in Figure 20, the resulting learned model from 

DBA is extremely noisy.  To smoothen the noisy learned model, we used Gaussian smoothing. 

The result of Gaussian smoothening is as shown in Figure 21.  

 

 

Figure 20: Task 3 - Plot for joint position data in Learned Model MLfD 

 

Figure 21: Task 3 - Plot for joint position data in Smoothened Learned Model MLfD 
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The smoothened-learned-model change points are computed using the approach described in the 

section “Data selection strategy for query” of the methodology chapter. We found nineteen 

change points in the learned model as highlighted in  

Figure 17. The learned model is tested on Baxter for writing “412”. While the learned model is 

being executed, the running instances of the model are mapped to change points. On encountering 

a change point, a label query “Is the subtask performed correctly?” is generated. 

 

 

Figure 22: Task 3 - Plot for change points in joint positions in Learned Model MLfD 

 

Analysis on MLfD:  When tested on Baxter, the learned model MLfD gave positive outcomes for 

numbers “4” and “1”; however, MLfD failed to clearly write “2”. Along these lines, an interactive 

correction was required for writing “2” at the 12th change point in the form of a demonstration 

query. Subsequent to giving intuitive rectifications and updating the learned model MLfD the 

resulting model MAL is as shown in  
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Figure 23. 

 

 

Figure 23: Task 3 - Plot for joint position data in Interactively Corrected Model MAL 

 

Analysis on MAL:  When tested on Baxter, the interactively corrected model was able to write all 

the numbers clearly and was able to complete the task successfully.  
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Evaluation: To evaluate the performance of MAL over MLfD, we computed the RMSE for the end-

effector positions of the MAL and MLfD against standard Model MStd and RMSE for the joint-

positions data of the MAL and MLfD against MStd.  

RMSE MLfD MAL 

joint-position data 0.0584 0.0348 

end-effector data 0.0173 0.0261 

 

Table 2: Task 3 - RMSE of joint-position data and end-effector data for MLfD vs MAL 

Results from Table 2 and performance of MAL shows us that for a complex task, the MLfD is not 

always completely reliable in terms of successful task completion and therefore requires 

interactive corrections.  

 

4.2 Inference:  

Experiment 1: Baxter learns to pick and place a box with fix start and end positions. 

The learned model MLfD, when tested on Baxter, gave positive results in terms of task completion 

and therefore did not require any interactive corrections.  

Experiment 2: Baxter learns to pick and place a box with varying start and end positions. 

The learned model MLfD, when tried on Baxter, gave positive outcomes for pick; however, it 

neglected to put the box correctly. Therefore, an intelligent revision was given at the change point 

where the direction was wrong. After the intuitive amendment, RMSE decreased for both joint-
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position information and end-effector information. Additionally, the model acquired from the 

active learning MAL gave positive outcomes as far as undertaking task completion contrasted with 

MLfD. 

Experiment 3: Baxter learns to write numbers “412”.  

The learned model MLfD, when tested on Baxter, gave positive results for numbers “4” and “1” 

but failed to clearly write “2”. Therefore, an interactive correction was required for writing “2”. 

After providing interactive corrections and updating the learned model MLfD, RMSE subsided 

for only joint position data. There was no improvement in end-effector position data. However, 

the learned model from interactive correction using active learning MAL gave positive results in 

terms of task completion compared to MLfD.  

Our analysis assumes that (i) human are equally and consistently noisy, and (ii) annotation is a 

noisy process over some underlying true label because human may not be reliable for several 

reasons. First, some instances are implicitly difficult for people and machines, and second, people 

can become distracted or fatigued over time, introducing variability in the quality of their 

demonstration/annotations. And this may have been one of the reasons for failure in improving 

the RMSE even after interactive corrections.  

In the above three experiments, we have covered three cases:  

case 1: simple task, undistinguishable demonstration samples.  

case 2: simple task, distinguishable demonstration samples.  

case 3: complex task, undistinguishable demonstration samples.  

Finally looking at the results of all three experiments, it can be concluded that for a simple task, 

with very undistinguishable sample demonstrations, the MLfD obtained was quite reliable in 
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terms of successful task completion (case1 covered under experiment 1). But as the complexity of 

the task being taught increases, even undistinguishable demonstrations do not yield a very reliable 

Learned model and require rectifications (case3 covered under experiment 3). Also in a true real 

world setting, it is far-fetched to expect similar and error-free demonstrations considering human 

factors, which is one of the major issues in LfD. In the second experiment of pick and place 

which covers a real world scenario (a simple task, varying demonstration samples), the learned 

model was not completely reliable as expected but only minor corrections were required towards 

the end to achieve the expected goal. The above results confirm our hypothesis that incorporating 

an Active Learning approach in a Learning from Demonstration framework outperforms passive 

learning both in terms of workable results and the ease with which it is incorporated, given a real 

world setting. 
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CHAPTER V 
 

 

CONCLUSION 

Active learning is a developing area of research in machine learning, doubtlessly filled 

with the fact that information is increasingly simple or modest to acquire yet troublesome 

or expensive to label for training. In the course of recent decades, there has been much 

work in figuring and understanding the different ways in which queries are chosen from 

the learner's perspective (CHAPTER III). This has produced a great deal of proof that a 

number of marked illustrations are important to prepare exact models and can be 

successfully decreased in a variety of applications.  

Drawing on these establishments, in this thesis, we have explored active learning in a 

human- robot interaction setting. After comparing the task completions in various cases, 

we found that as the complexity of the task increases, the model obtained from LfD alone 

is not reliable enough. These MLfD can be easily corrected by incorporating the Active 

Learning techniques. The performance of the learned models is evaluated on the basis of 

successful task completion and RMSE against the standard task.  

This work provides a foundation for developing active learning systems that can be 

successfully deployed, with improvements, on robots in everyday human environments. 

As future work, our approach can also be used for creating semantic labeling for motion 

primitives which can further be used in the robot-teaching-human setting. 
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