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Abstract: The U.S. Environmental Protection Agency has developed a three-tiered 

framework to categorize wetland assessments.  Level 1 assessments are conducted 

remotely and condition is evaluated based on surrounding land-use.  Level 2 assessments 

rely on rapid assessment methods (RAMs) to evaluate condition.  Level 3 assessments 

use the most intensive sampling techniques to produce quantitative data.  RAMs have 

become the preferred method for many programs, because they are conducted on-site, 

and require less time and expertise than Level 3 methods.  Because RAMs are based on 

best professional judgment and inferred relationships between indicators of stress and 

wetland condition, validation with intensive data is necessary to confirm that condition 

scores are reflected in quantifiable components of the ecosystem.  Chapter 1 presents our 

validation analysis of the Oklahoma Rapid Assessment Method (OKRAM) in 28 

depressional wetlands across the state.  We found strong, consistent relationships 

between OKRAM scores and Level 1 (e.g., Landscape Development Intensity Index) and 

Level 3 (e.g., plant and soil) data to suggest that OKRAM is tracking condition within the 

wetland as well as with anthropogenic disturbance factors in the surrounding landscape.  

Chapter 2 presents the initial application of OKRAM in 30 lacustrine fringe wetlands 

within central Oklahoma, alongside abiotic (e.g., soil and water quality) and biotic (e.g., 

vegetation and macroinvertebrate) data collection.  Our analysis did not reveal consistent 

relationships between OKRAM and intensive data, indicating the method requires further 

modification.  In addition to RAMs, Floristic Quality Assessment (FQA) is also used to 

evaluate wetland condition and guide conservation and management efforts.  FQA results 

are assumed to be valid across large regions, despite areas of high environmental 

variability.  Given the diverse ecoregions and environmental gradients across the state, 

Oklahoma provides an opportunity to examine spatial variation on FQA results.  Chapter 

3 presents our evaluation of 68 depressional wetlands to examine the influence of 

environmental variation on FQI scores.  We found substantial variation between 

reference wetlands based on location, with higher scores occurring in the east (high 

precipitation) and lower scores occurring in the west (low precipitation).  Our results 

highlight the importance of considering regional environmental differences when 

developing thresholds for wetland assessments.
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CHAPTER I 
 

 

VALIDATION OF THE OKLAHOMA RAPID ASSESSMENT METHOD (OKRAM) IN 

DEPRESSIONAL WETLANDS USING EPA’S THREE-TIERED FRAMEWORK 

 

Sarah Gallaway1, Craig Davis1, Daniel Dvorett2, Brooks Tramell2 

1 Department of Natural Resource Ecology and Management, Oklahoma State 

University, 008C Agricultural Hall, Stillwater, OK 74078 
2 Oklahoma Conservation Commission, 2800 N. Lincoln Suite 200, Oklahoma City, OK 

73105 

 

Abstract: The U.S. Environmental Protection Agency has developed a three-tiered 

framework to categorize wetland assessment methods.  Level 1 assessments are 

conducted remotely and wetland condition is evaluated based on surrounding land-use 

practices.  Level 2 assessments rely on rapid assessment methods (RAMs) to evaluate 

wetlands by using systematic, repeatable indices that represent wetland condition.  Level 

3 assessments rely on the most intensive sampling techniques to produce quantitative 

data.  Because RAMs are conducted on-site, but require less time and expertise than 

Level 3 assessments, they have become an integral part of many state and federal wetland 

programs by providing a consistent method for ambient monitoring and prioritizing 

wetland management activities such as protection, restoration, and compensatory 

mitigation.  RAMs evaluate condition along an anthropogenic disturbance gradient based 

on qualitative and quantitative measures of wetland indicators.  Because RAMs are based 

on best professional judgment and inferred relationships between visible indicators of 

stress and wetland condition, validation with intensive data (i.e., Level 3 data) is 

necessary to confirm that condition scores are reflected in quantifiable components of the 

ecosystem.  We conducted a validation analysis of the Oklahoma Rapid Assessment 

Method (OKRAM) in 28 depressional wetlands across the state using Level 1 and Level 

3 data.  Specifically, we evaluated OKRAM’s ability to detect condition along a 

disturbance gradient and assessed the repeatability of OKRAM between practitioners and 

consistency of results across seasons.  We found strong, consistent relationships between 

OKRAM scores and plant data (e.g., Floristic Quality Index, species richness, and 

diversity) and with the Landscape Development Intensity Index, a landscape assessment 
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of surrounding anthropogenic disturbance.  Our results indicate that OKRAM is tracking 

wetland condition within the wetland as well as with anthropogenic disturbance factors in 

the surrounding landscape.  The difference in scores between practitioners was below the 

acceptable threshold of 10%, indicating the method is repeatable.  OKRAM scores 

between spring and summer assessments had an average difference of only 2.4%, 

indicating the method is consistently detecting condition regardless of when OKRAM 

was applied.  Based on our results we are confident that OKRAM has utility as a tool for 

differentiating between high quality depressional wetlands for protection and low quality 

depressional wetlands for restoration.  Currently, we recommend the State apply 

OKRAM in future evaluations of depressional wetlands throughout Oklahoma.  

However, further calibration and validation is needed to expand OKRAM use to other 

Oklahoma wetlands.   

Key Words: Depressional Wetlands, Oklahoma Rapid Assessment Method, Rapid 

Assessment Method, Wetland Assessments 

Corresponding Author: 

Sarah Gallaway, (361) 799-9276, Sarah.Gallaway@okstate.edu 

 

INTRODUCTION 

Although wetlands are now widely recognized as valuable ecosystems that 

provide a variety of important functions and services, they continue to undergo 

degradation through draining, dredging, and filling, hydrological alterations, highway 

construction, mining and mineral extraction, and water pollution (Mitsch and Gosselink 

2007).  To improve our understanding of how these anthropogenic disturbances alter 

wetland condition, the development of unified and consistent assessment methods 

capable of detecting direct and indirect stressors is key for wetland monitoring programs.  

Rapid assessment methods (RAMs) have been recognized for their utility in state and 

federal wetland programs by providing a consistent, affordable approach for ambient 

monitoring and prioritizing wetland management activities such as protection, 

restoration, and compensatory mitigation (USEPA 2006).  Moreover, because they are 
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less time-consuming compared to other methods, they are becoming an important 

element of wetland monitoring programs. 

RAMs fit within the three-tiered framework established by the United States 

Environmental Protection Agency (USEPA), which evaluates wetland condition based on 

qualitative and quantitative measures of wetland indicators (USEPA 2006).  Level 1 

assessments use readily available geographic information and remote sensing techniques 

to determine wetland extent across a landscape as well as wetland condition according to 

surrounding land-use practices.  Level 2 assessments rely on RAMs to evaluate wetlands 

by using systematic, repeatable indices that represent wetland condition (Sutula et al. 

2006).  Level 3 assessments rely on the most intensive sampling techniques to produce 

quantitative data, often by implementing wetland bioassessments (i.e., indices of 

biological integrity [IBIs]) or hydrogeomorphic functional assessment methods (USEPA 

2006).  All three levels of assessments provide unique, valuable information about the 

condition of wetlands, but each provides information at different scales and requires 

different resources (e.g., personnel, equipment, training, etc.) and costs to implement.   

In recent years, much research has focused on the development of Level 1 GIS-

based assessment methods that utilize remote sensing techniques to determine wetland 

condition.  These assessments typically require less time than field-based assessments, 

use fewer resources, and are especially beneficial when fieldwork is limited or not 

possible.  An example of a Level 1 assessment is the Landscape Development Intensity 

Index (LDI).  The LDI index is based on the types of land-use practices surrounding the 

wetland, with each land-use type assigned a coefficient based on its potential as an 

anthropogenic disturbance (Brown and Vivas 2005).  As land-use types such as 
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agricultural, residential, and recreational can impact wetland condition at multiple scales, 

the surrounding land-use is typically assessed at multiple scales or within multiple buffers 

(Rooney et al. 2012).  Considering several ecologically-relevant scales can reduce errors 

associated with applying a scale that is too broad or too narrow.  Level 1 assessments are 

based on the assumption that the composition and configuration of landscapes are 

predictive of wetland condition.   

Level 2 assessments, also known as RAMs, use metrics to record observable field 

indicators such as vegetation, topography, and alterations to the wetland’s hydrology 

(e.g., sedimentation, dikes, ditches, etc.) to define wetland condition.  Specifically, these 

metrics provide qualitative measurements of a biological or physical attribute that reflect 

ecological condition (Sutula et al. 2006).  Individual metric scores are aggregated into an 

overall condition score, which represents the relative degree of deviation in condition 

from least-disturbed wetlands (e.g., reference condition).  In comparison to Level 1 

assessments, these on-site Level 2 evaluations provide consideration for local factors that 

are often disregarded when applying Level 1 assessments alone.  RAMs offer a 

compromise between coarse, remote Level 1 methods and often costly, intensive Level 3 

methods (Reiss and Brown 2007).   

In an evaluation of several existing RAMs, Fennessy et al. (2007) recommended 

that each RAM should be calibrated and validated through a comparison of RAM scores 

with independent measures of wetland condition (e.g., Level 3 assessment data).  Because 

Level 2 assessment data are often based on inferred relationships and best professional 

judgment, it is necessary to confirm that condition scores are actually reflected in 

quantifiable components of the ecosystem.  Therefore, validation and calibration are 
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important components in the development of RAMs.  Validation determines the accuracy 

of the RAM to compute condition scores that correspond with known measures of 

condition (i.e., responsiveness) obtained from more intensive assessments such as IBIs or 

the Floristic Quality Index (FQI) (Stein et al. 2009).  Calibration is the process of 

adjusting the assessment method by rescaling or rescoring metrics to improve the RAM’s 

ability to discern differences in wetland condition (Stein et al. 2009).  Several states have 

completed RAM validations using various abiotic measurements (e.g., soil and water 

chemistry) and biotic assemblages such as bird, amphibian, macroinvertebrate, and 

vegetation communities.  In the calibration and validation of the Ohio Rapid Assessment 

Method (ORAM), Mack et al. (2000) found strong, linear trends when comparing a 

vegetation IBI with overall ORAM scores.  Stein et al. (2009) also reported significant 

correlations in the validation of the California Rapid Assessment Method (CRAM) 

between overall CRAM scores and IBIs (bird, macroinvertebrate, and vegetation).  

Additional validations include the use of bird and amphibian communities for ORAM 

(Micacchion 2004; Stapanian et al. 2004; Peterson and Niemi 2007) and 

macroinvertebrates for the Kentucky Wetland Rapid Assessment Method (Garrison 

2013).  In each case, RAM comparisons with Level 3 assessment data either confirmed 

the validity of the RAM for determining wetland condition or provided insight for further 

calibration to assure the method is capable of capturing wetland condition.  

Wetland assessments have become an important focus for Oklahoma’s 

Conservation Commission (OCC) Wetlands Program with the primary objective of 

developing a monitoring and assessment strategy to track local and statewide trends in 

wetland health and extent, which will allow the state to prioritize wetlands for protection 
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and restoration and provide guidance for compensatory mitigation projects (OCC 2013).  

Currently, Oklahoma is in the early stages of developing an effective assessment method 

for the evaluation of wetlands across the state.  During the RAM development process, 

RAMs shown to be effective in other states (e.g., CRAM and the Functional Assessment 

of Colorado Wetlands [FACWet]) were applied in Oklahoma wetlands; however, these 

methods were not able to consistently evaluate wetland condition (Dvorett et al. 2014; 

Gallaway et al. 2016).  These results emphasize the fact that RAM applicability outside 

of the calibration and validation region may be difficult or inappropriate due to 

differences in wetland types, natural variability, and types of stressors.  Therefore, it is 

necessary to develop a state- or region-specific RAM to provide an effective method with 

the most consistent and reliable results.   

A recently completed wetland program development project (Dvorett et al. 2014) 

developed the Oklahoma Rapid Assessment Method (OKRAM) for assessing the 

condition of depressional wetlands.  OKRAM was initially applied to depressional 

wetlands in the Cimarron River Pleistocene Sand Dunes Ecoregion of central Oklahoma.  

The application of OKRAM to this ecoregion confirmed that all RAM requirements were 

met (i.e., the method can determine condition, is truly rapid, requires a site visit, and can 

be verified; USEPA [2006]), and OKRAM is capable of capturing condition along an 

anthropogenic disturbance gradient.  Although this initial method has been shown be an 

effective tool for assessing wetland condition, further refinement and validation across 

Oklahoma is required for OKRAM to be an effective tool for the state.  Therefore, our 

primary objective was to evaluate the effectiveness of OKRAM at assessing the condition 

of depressional wetlands through a statewide validation and calibration analysis 
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following U.S. EPA’s three-tiered framework.  A secondary objective was to evaluate the 

repeatability of OKRAM results among practitioners and consistency of OKRAM results 

across seasons by conducting assessments at two different times of the year (i.e., early 

growing season and late growing season).   

METHODS 

Study Area  

The study area encompasses the majority of Oklahoma, including five ecoregions 

(Central Great Plains, Cross Timbers, Central Irregular Plains, Arkansas Valley, and 

South Central Plains; Figure 1).  The Central Great Plains Ecoregion is a dry-subhumid 

area mostly underlain with red, Permian-age sedimentary rock.  The vegetation is 

predominantly mixed-grass prairie and riparian forests.  Common agricultural crops in 

the ecoregion include wheat, rye, alfalfa, and sorghum.  The Cross Timbers Ecoregion is 

the transition zone between eastern forests and western prairies and is comprised of a mix 

of savannas, woodlands, native prairies, and rangelands (Omernik 1987; Woods et al. 

2005).  Oak-woodlands occur on coarse-textured soils and are dominated by post oak 

(Quercus stellata) and blackjack oak (Quercus marilandica), while finer-textured soils 

are dominated by tall-grass prairies.  This region is typically not suitable for crops; 

therefore, rangeland and pastureland are the predominant land uses.  The Central 

Irregular Plains Ecoregion has a variable topography as compared to the Central Great 

Plains Ecoregion, resulting in a mix of land cover, including rangeland, grassland, 

woodland, floodplain, farmland, and cropland.  The Arkansas Valley Ecoregion occurs 

between the Ozark Plateau and the Ouachita Mountains, consisting of oak savanna, 

prairie, and oak-hickory-pine forests.  Land use within the ecoregion includes 

pastureland, cropland, timber harvest, poultry production, coal mining, and natural gas 
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production (Omernik 1987; Woods et al. 2005).  Lastly, the South Central Plains 

Ecoregion consists of uplands with oak-hickory-pine forests and bottomlands in 

floodplains.  With approximately two-thirds of the ecoregion being forested, lumber and 

pulpwood production are major economic activities in this area.  Annual precipitation 

varies greatly across the study area, with precipitation ranging from 61 cm in western 

counties to 142 cm in the southeastern portion of the state (Oklahoma Climatology 

Survey 2015).  

We identified depressional wetlands following HGM guidance (Brinson 1993; 

Smith et al. 1995) and a dichotomous key developed by Dvorett et al. (2012).  

Depressional wetlands occur in topographic depressions that accumulate water from 

precipitation, surface flows, and groundwater discharge (Smith et al. 1995).  Depressional 

wetlands may function as an open wetland with numerous inlets or outlets or as a closed 

wetland (Brinson 1993).  Hydrodynamics are dominated by vertical fluctuations in water 

levels with water loss via outlets, evapotranspiration, or groundwater recharge (Smith et 

al. 1995).  Depressional wetlands provide many functions and services, including 

groundwater recharge, nutrient cycling, water quality improvement, and wildlife habitat.  

These wetlands are also highly dynamic systems with variable hydroperiods based on 

climate and geographic location.   

We used National Wetlands Inventory maps and 2008-2013 National Agricultural 

Imagery Program (NAIP) aerial imagery to locate 28 depressional wetlands.  Wetlands 

were selected based on the level of anthropogenic disturbance (e.g., agricultural and 

urban land-use, point and non-point source runoff, etc.) and alterations to hydrology (e.g., 

dikes, ditches, culverts, etc.) to represent the disturbance gradient (Table 1).  Surrounding 
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land-use was determined using 2011 National Landcover Dataset (NLCD), which 

classifies land cover into categories based on 30-meter Landsat TM imagery.  Wetlands 

initially selected to represent the least-disturbed category based on surrounding land-use 

were further validated using field reconnaissance to confirm the lack of hydrological and 

biological disturbance.  Wetlands confirmed to have minimal anthropogenic impacts 

were included as reference wetlands (i.e., best attainable condition).  Additionally, we 

further segregated wetlands using I-35 as the geographic boundary between high (east of 

I-35; 14 wetlands) and low precipitation (west of I-35; 14 wetlands).  Wetlands were 

located on both public and private land.  Prior to conducting the assessment, we selected 

an assessment area (AA) within each wetland as a representative sample of the entire 

wetland.  The AA for depressional wetlands was based on the 1.0-hectare threshold 

recommended in CRAM (Collins et al. 2013).  For wetlands comprising smaller than 1.0-

hectare, the entire wetland was considered the AA.  For wetlands larger than 1.0-hectare, 

the AA was defined by a 1.0-hectare circle randomly placed within the wetland.   

Data Collection 

For Level 1 data, we initially calculated the LDI Index for each depressional 

wetland using ArcGIS 10.2 within a 100 m, 500 m, and 1,000 m buffer surrounding the 

wetland.  The percentage of each land-use type surrounding the wetland (e.g., 

agricultural, residential, industrial, commercial, transportation, natural areas, and open 

water) was recorded within each of the three buffers.  Each land-use type was weighted 

by land-use coefficients representing the level of disturbance (Brown and Vivas 2005; 

Mack 2006; Table 2).  LDI Index scores were calculated using the equation (Brown and 

Vivas 2005): 
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LDItotal =  %LUi × LDIi 

where LDItotal = LDI ranking for landscape unit (i.e., buffer zone or watershed) and %LUi 

= percent of the total area in land-use i.  Higher LDI Index scores represent greater 

deviations from least-disturbed systems.   

Between June and mid-August 2015, two practitioners applied OKRAM in each 

of the 28 depressional wetlands.  Additionally, we re-visited 10 of the depressional 

wetlands in the early-growing season of the following year (i.e., April-May 2016) to 

assess any potential seasonal effects on overall OKRAM scores and individual metric 

scores.   

OKRAM uses nine metrics, which are divided into three attributes (hydrologic 

condition, water quality, and biotic condition) to identify the presence and severity of 

stressors impacting wetlands (Appendix A).  Hydrologic condition identifies alterations 

to the hydroperiod, water source, and hydrologic connectivity.  The water quality 

attribute examines the input of excessive nutrients, sediment, and chemical contaminants 

and the ability of the surrounding buffer to reduce input of contaminants.  Lastly, the 

biotic condition attribute evaluates any anthropogenic disturbance to the vegetation 

community and the percentage of contiguous habitat surrounding the wetland.  Each 

metric is scored as a value between 0 and 1.  Several metrics are scored as a percentage 

of intact function, such as percent functioning buffer or percent of connected habitat.  The 

remaining metrics are scored based on a weighted severity of stress using minor, 

moderate, and major categories (i.e., 0.25, 0.50, and 0.75, respectively).  The area 

impacted by a stressor (e.g., sedimentation, algal blooms, chemical spills, etc.) is 

multiplied by the severity of the disturbance.  OKRAM aggregates the metrics into an 
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overall score ranging from 0 to 1, with 0 being complete degradation and 1 being least-

disturbed condition.   

We collected Level 3 vegetation and soil data within each AA concurrently with 

OKRAM application.  We collected vegetation community data using a step-point 

method in which transects were randomly placed throughout the wetland, and all plant 

species occurring at each meter were recorded (Smith and Haukos 2002).  All transects 

were placed along an elevational gradient in each wetland and terminated at the edge of 

the AA or upland transition zone.  Within each AA, we walked a minimum of three 

transects, totaling at least 150 sampling points.  The length of transects were variable as 

AAs were not the same shape or size.  To avoid sampling bias, all transects were 

traversed through the entirety of the AA, which led to more than 150 m of vegetation 

sampling in several wetlands.  In these cases, we randomly selected 150 points from the 

total number of points sampled for inclusion in analyses (Smith and Haukos 2002).  All 

unknown plant species were collected, pressed, and identified to the lowest taxonomic 

group possible using dichotomous keys (Mohlenbrock 2005, 2006, 2008, 2010; Tyrl et al. 

2009).  For each wetland, we calculated native species richness, species richness, 

Shannon-Weiner diversity, and FQI.  FQI is a widely used vegetation method that infers 

condition based on plant species richness and species’ tolerance to anthropogenic 

disturbance.  Experts assign each species a coefficient of conservatism (C-value) ranging 

from 0 to 10 based on the likelihood of the species to occur at a disturbed site within a 

specific region.  Generally, a rank of zero is given to non-native and opportunistic 

invasive species and a rank of 10 is assigned to plant species with a high degree of 
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fidelity to a narrow range of synecological parameters (Andreas and Lichvar 1995).  We 

calculated FQI using the following equation (Andreas and Lichvar 1995): 

𝐹𝑄𝐼 = (
∑ 𝐶𝐶𝑖  

𝑆
) √𝑆 

where CC is the coefficient of conservatism for species i and S is total species richness.  

We collected one composite soil sample at each wetland, comprised of five 

subsamples taken to a depth of 10 cm.  Subsamples were taken at locations in proportion 

to the dominant habitat cover types.  Soil samples were immediately labeled, placed on 

ice, and stored at 4°C until processing.  Samples were thoroughly mixed prior to being 

analyzed by the Oklahoma State Soil Water and Forage Analytical Laboratory for nitrate 

(NO3), ammonium (NH4), sodium (Na), phosphorus (P), pH, organic matter, total soluble 

salts (TSS), and sodium adsorption ratio (SAR).  Phosphorous was extracted using the 

Mehlich III method, while sodium was extracted using a 1:1 soil to water extraction.  

Both phosphorous and sodium values were determined using inductively coupled plasma 

mass spectrometry.  Nitrate and ammonium were extracted using a 1M KCL extraction 

and calculated using a flow injection analyzer.  Sodium, nitrate, ammonium, 

phosphorous, and TSS are presented as parts per million (ppm) dry weight.  Organic 

matter was calculated using a combustion analyzer and is presented as a percentage of 

dry weight.   

OKRAM Validation Analysis 

We evaluated the effectiveness of OKRAM to identify the condition in 

depressional wetlands by comparing overall OKRAM, individual attribute, and individual 

metric scores with Level 3 vegetation and soil data based on Spearman’s non-parametric 

correlations using R version 3.2.2. (Crawley 2013; R Core Development Team 2015).  
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Consistent patterns of correlations in expected directions were interpreted as evidence of 

OKRAM responsiveness (i.e., ability to discern differences in wetland condition; Stein et 

al. 2009).  A second assessment of OKRAM’s ability to determine wetland condition was 

based on the relationships between overall OKRAM scores and the LDI Index.  

Spearman’s correlations were used as an additional measure of the OKRAM’s ability to 

capture disturbance within the surrounding landscape.  The repeatability of OKRAM was 

evaluated to estimate potential observer-to-observer variability.  We assessed 

repeatability by determining the difference in overall OKRAM, individual attribute, and 

individual metric scores between assessments completed by two practitioners.  Metrics 

were deemed to be repeatable if they varied by an average of less than ten percent 

between OKRAM users (Stein et al. 2009).  Seasonal influences were also addressed by 

revisiting approximately one-third of the wetlands during the early-growing season.  

Additionally, wetlands were placed into condition classes of good, fair, and poor based 

on overall OKRAM scores.  The 25th percentile of overall OKRAM scores for a priori 

reference or least-disturbed wetlands was utilized as the threshold for the good condition 

class and the 75th percentile of a priori high disturbance wetlands as the threshold for the 

poor condition class (Sifneos et al. 2010).  

RESULTS 

Responsiveness of OKRAM to Level 1 and 3 Data 

Level 1 data (LDI scores) indicated that our wetlands occurred along an 

anthropogenic disturbance gradient, with scores ranging from 1.04 to 9.01 within the 100 

m buffer, 1.24 to 9.00 within the 500 m buffer, and 1.30 to 8.61 within the 1,000 m 

buffer.  OKRAM overall scores were significantly negatively correlated with LDI scores 
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across all spatial scales (Table 3).  Additionally, all OKRAM attributes were significantly 

negatively correlated with LDI scores at each of the spatial scales.     

We found consistent, significant relationships between overall OKRAM scores 

and Level 3 data.  Overall OKRAM scores exhibited moderate to strong correlations with 

plant data (species richness: ρ = 0.647, P = 0.001, native species richness: ρ = 0.72, P < 

0.001, Shannon-Weiner diversity: ρ = 0.487, P = 0.009, and FQI: ρ = 0.701, P < 0.0001; 

Figure 2).  Additionally, overall OKRAM scores were moderately correlated with soil 

chemistry data (P:  ρ = -0.495, P = 0.007 and SAR: ρ = 0.436, P = 0.02; Figure 3).  

Furthermore, we found significant relationships between OKRAM attributes (hydrologic 

condition, water quality, and biotic condition) and Level 3 data (Table 4).  Hydrologic 

condition and water quality attributes had the strongest correlations with native species 

richness.  Biotic condition scores were significantly correlated with plant data (e.g., 

native and total species richness, Shannon-Weiner diversity, and FQI) and soil chemistry 

data (e.g., P and SAR).  

Repeatability and Consistency across Seasons 

The average difference in overall OKRAM scores for two practitioners was 1.9% 

and the maximum difference for one site was 7.5% (Table 5).  Eight of the nine metrics 

had an average difference below 5%.  The water source metric, within the hydrologic 

condition attribute, had the greatest difference in scores between practitioners, with an 

average difference of 8.4%.  Although we found substantial differences between water 

source metric scores (e.g., 50.7 % for one site), these differences were not common.  

Overall OKRAM and attribute scores from assessments in summer 2015 and spring 2016 

were comparable (Table 5).  Eight of the nine metrics had an average difference in scores 
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below 5%, except the vegetation metric, which had an average difference of 12.8%.  The 

average difference between overall scores was only 2.4% and the greatest difference 

observed at one site was 11.3%.   

DISCUSSION 

Responsiveness of OKRAM to Level 1 and 3 Data   

The use of RAMs to define wetland condition relies on the assumption that a set 

of qualitative field metrics can capture biological and physical attributes of wetlands and 

represent overall condition (Stein et al. 2009).  Based on this assumption and the reliance 

on best professional judgment of the practitioners, RAMs are inherently subjective and 

must be validated to confirm that the individual metric, attribute, and overall scores 

represent wetland condition (Sutula et al. 2006).  Without proper validation, RAMs may 

produce misleading results that overestimate or underestimate actual wetland condition.  

Validation of OKRAM with Level 1 and Level 3 data confirms the method can define 

wetland condition and establishes the scientific defensibility necessary to apply OKRAM 

for wetland regulatory and management efforts.   

Level 1 assessments have been used in other studies to provide support for RAM 

validations (Mack 2006; Reiss and Brown 2007; Margriter et al. 2014).  The strong 

relationships between overall OKRAM and attribute scores with a Level 1 assessment 

(i.e., LDI index) demonstrates the ability of the method to detect anthropogenic 

disturbance within the surrounding landscape up to 1,000 m.  Specifically, the strong 

relationships between LDI and water quality and biotic condition attributes indicate that 

OKRAM is effectively capturing evidence of landscape stressors on-site within the 

wetland and surrounding buffer (e.g., excessive nutrients and sedimentation due to non-
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point source runoff).  Significant correlations between OKRAM and LDI across all 

spatial scales (e.g., 100 m, 500 m, and 1,000 m) suggest that a 100 m buffer may be 

sufficient to detect landscape disturbances to depressional wetlands.  Brown and Vivas 

(2005) found similar results, concluding that a 100 m buffer is the most appropriate width 

for small depressional wetlands.  Although a 100 m buffer may be sufficient to detect 

landscape stressors, as the buffer width increases, correlation strength also increases, 

indicating that a greater inference can be made when using a larger scale.   

In addition to using a Level 1 assessment, an important component of RAM 

validation is to confirm that the RAM metric, attribute, and overall scores are 

representative of wetland biological condition (e.g., vegetation, invertebrate, bird, and 

amphibian communities).  In ephemeral depressional wetlands where wetlands are often 

dry during sampling, vegetation is the most commonly used assemblage to represent 

biological condition.  Plant communities are known to shift in response to the severity 

and type of anthropogenic disturbance with highly disturbed sites having lower species 

richness and diversity and an increase in invasive species (Chipps et al. 2006; DeKeyser 

et al. 2009; Tsai et al. 2012).  In addition to observing lower species richness and 

diversity in disturbed wetlands, we also found strong, significant relationships between 

overall OKRAM scores and FQI.  FQI has been established as an indicator of condition 

for depressional wetlands (Fennessy et al. 1998; Lopez and Fennessy 2002; Andreas et al. 

2004) and has been used to validate RAMs in other states (Miller and Wardrop 2006; 

Wardrop et al. 2007).   

Because each RAM attribute represents a different component of wetland 

condition (e.g., hydrological, water quality, biotic condition), it is important to evaluate 
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the relationships between individual attributes and Level 3 data.  For example, the strong 

relationships between plant data and the biotic condition attribute were anticipated, given 

that they both evaluate vegetation; however, the significant relationships between plant 

and soil chemistry data with OKRAM hydrologic condition and water quality attributes 

are also an indication that the method is detecting hydrological alterations (e.g., changes 

in hydroperiod and water source impacts) and water quality stressors (e.g., nutrient and 

sedimentation).  For instance, sites with lower water quality attribute scores typically had 

lower species richness and diversity and increased phosphorus levels.  Furthermore, sites 

with intact buffers typically had decreased phosphorus levels, which suggests that the 

OKRAM buffer metric is effectively tracking the influence of buffer on reducing nutrient 

impacts.   

OKRAM Calibration 

 RAM calibration assures that the method can detect condition changes along the 

entire disturbance gradient and typically involves the modification of metrics, such as 

rescaling or rescoring, to improve RAM performance (Stein et al. 2009).  Our results 

confirm that the OKRAM metric and attribute scores reflect the disturbance gradient 

from least to most-disturbed.  However, our results suggest that one of the nine OKRAM 

metrics, habitat connectivity, which is currently assessed as the percent of contiguous 

habitat within a 2,500 m buffer around the wetland, could be improved by using a 

different scale.  Relationships between habitat connectivity metric scores and Level 3 

data were consistently stronger at 500 m and 1,000 m compared to 2,500 m.  This is 

likely due to Oklahoma’s highly fragmented landscape in which large areas of contiguous 

habitat are uncommon and typically only occur in the southeastern part of the state.  For 
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instance, habitat connectivity metric scores reflect this fragmentation, with only 4 of the 

28 study wetlands receiving scores of 0.9 or greater.  Our results suggest that assessing 

this metric at a smaller scale may be more appropriate for Oklahoma, however, it is also 

important to consider the scale at which wildlife species utilize wetlands and surrounding 

habitat.  Many reptiles and amphibian species depend on terrestrial habitats surrounding 

wetlands during at least a portion of their life cycle (e.g., nesting, hibernating, aestivating, 

foraging, and dispersal; Gibbons 2003).  For example, Semlitsch (1998) compiled 

traveled distances for six species of salamanders and found the average distance to be 164 

m, with some individuals traveling 450-625 m.  Wetland-dependent birds also use 

wetlands at multiple scales.  In the Southern Great Plains, habitat density of suitable 

habitat within 1,500 m was shown to be an important predictor of shorebird density and 

richness within wetland stopover sites (Albanese and Davis 2015).  When assessing 

habitat connectivity, it is critical to consider at what scales wildlife species, especially 

wetland-dependent species, use wetlands and surrounding landscape.  We recommend 

adjusting the habitat connectivity metric to be calculated using a 1,000 m buffer, which 

may improve the range and representativeness of the metric while accounting for the 

biologically relevant scales at which organisms utilize wetlands.  

In general, providing additional guidance for calculating individual metrics can 

improve interpretation and OKRAM results.  For instance, determining the severity (i.e., 

minor, moderate, major) of hydrologic and water quality stressors (e.g., alterations to the 

hydroperiod, nutrients, and sedimentation) can be improved by including photo examples 

and detailed descriptions of each stressor at different severities.  Now that the method has 

been validated in depressional wetlands statewide, developing a comprehensive user 
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guidebook with photos and detailed descriptions will be a top priority for OKRAM 

development.     

Repeatability and Seasonal Effects 

 Assessing a method’s repeatability is an important component of the RAM 

development process.  Repeatability evaluates the consistency among users for metric 

interpretation and calculation to assure the method can produce consistent, reliable 

results.  We recognize that our repeatability analysis only used the results of two 

practitioners; therefore, our results should be interpreted as a preliminary repeatability 

analysis.  We recommend further assessment of the repeatability of OKRAM across 

multiple practitioners and teams.  Nonetheless, all OKRAM metrics had an average 

difference in scores below the 10% threshold applied by Stein et al. (2009), indicating the 

metrics are repeatable.  The differences observed in the water source metric are likely due 

to the metric requiring an observer to delineate the wetlands’ watershed and record 

potential impacts to the water source.  When two practitioners delineate the watershed 

differently, certain stressors may be included or excluded from calculations, resulting in a 

difference in scores.  Providing additional clarification and guidance for delineation 

would likely improve the metric’s repeatability.   

Because wetland regulatory and management actions (e.g., protection, restoration, 

mitigation, etc.) are not confined to the growing season, condition assessments that are 

not influenced by seasonal changes and can be applied year-round are desirable.  A 

comparison of RAM results from applications at different times of the year can be used to 

evaluate seasonal influence on the method.  Our comparison of spring (i.e., early growing 

season) and summer (i.e., late growing season) assessments confirms that the majority of 
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OKRAM metrics are not influenced by timing of application.  The metrics most 

susceptible to seasonal influence are the metrics within the water quality attribute (i.e., 

nutrients, sediments, and chemical contaminants) and the vegetation metric.  The greatest 

change observed in the nutrient metric for one site was an increase of 7.5% in the spring 

assessment due to algae only occurring in the summer assessment.  The greatest 

difference in the chemical contaminants metric for one site (12.5%) was due to the 

presence of an oil sheen in the summer assessment that was not observed in the spring 

assessment.  For the sediment metric, the greatest observed difference at one site was a 

5.0% decrease in the spring based on the presence of water turbidity that was not 

observed in the summer.  The differences we observed between seasons were minor (e.g., 

maximum deviation for the water quality attribute was only 4.7%) and represent natural 

fluctuations in the condition based on climatic and intrinsic factors.  We did not observe 

seasonal differences for any of the water quality metrics in 7 of the 10 revisited wetlands.  

Additionally, because metrics are aggregated into attribute and overall scores, the 

deviation of one metric is moderated by the others.   

 RAMs, such as CRAM and ORAM that are designed to assess vegetation 

structure and composition to determine overall wetland condition are likely to have 

variable scores across seasons (Mack 2001; Collins et al. 2013).  Because these RAMs 

use metrics to evaluate plant community complexity (e.g., number of plant layers; 

horizontal interspersion), they are not recommended for use outside of the growing 

season (Mack 2001; Collins et al. 2013).  Alternatively, the OKRAM vegetation metric 

does not focus on the complexity of plant communities, but rather detects indicators of 

stress (e.g., vegetation removal, invasive and exotic species, monocultures, herbicide 
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application, excessive grazing, and mechanical disturbance).  Because OKRAM uses a 

stressor-based approach, rather than the assessment of vegetation complexity to define 

condition, the method is not susceptible to natural variation within plant communities.   

Our comparison of spring and summer assessments resulted in vegetation metric 

scores differing for 6 of the 10 revisited wetlands.  However, these differences in scores 

were due to changes in stressors rather than changes in plant community complexity.  

Thus, differences in vegetation metric scores reflect actual changes in wetland condition.  

For example, a wetland with a high percentage of invasive species during the summer 

assessment received a low vegetation score.  The wetland underwent vegetation removal 

to promote the growth of native species in the spring, which improved the vegetation 

metric score and overall OKRAM score.  Additionally, a wetland with hydrophytic 

vegetation present in the summer was then disked and planted with wheat before the 

spring assessment, resulting in a lower vegetation and overall score.  In these instances, 

OKRAM is not being impacted by seasonal effects, but rather reflecting actual changes in 

wetland condition.  However, it is important to recognize that RAMs are assessing the 

condition of a wetland at one specific time and are subject to inconsistencies resulting 

from the difficulty in identifying invasive and exotic species outside of the flowering and 

fruiting stage.  With an average seasonal difference of only 2.4% for overall scores, our 

seasonality analysis confirms OKRAM is not significantly influenced by seasonal effects 

and can be applied at different times throughout the year.    

Condition Classes 

Development of an assessment method with the ability to differentiate between 

high quality and low quality wetlands is an important objective of Oklahoma’s wetland 
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monitoring and assessment program.  Following the protocol outlined by Sifneos et al. 

(2010), the threshold for reference condition was 0.84.  Thus, all wetlands scoring 0.84 

and greater were considered to be in reference condition.  The poor condition class 

threshold was 0.50 and included all wetlands scoring 0.50 and lower.  Wetlands scoring 

between 0.84 and 0.50 were considered to be in fair condition.  These thresholds are very 

similar to those determined in the previous OKRAM application (0.81 and 0.50 from 

Dvorett et al. [2014]).  When applying these thresholds, 10 wetlands were categorized as 

good condition, all of which were in the a priori good class, and 8 wetlands were 

categorized as poor condition, all of which were in the a priori poor condition class.  The 

remaining 10 wetlands were considered to be in fair condition, of which two were in the 

a priori good class and three were in the a priori poor class.  There was an 82% 

agreement between assigned condition classes and a priori classifications, which 

provides support for the appropriateness of these thresholds (Table 6).  

CONCLUSION 

The overall goal of OKRAM is to provide state and federal agencies with a 

consistent, rapid, and affordable wetland assessment method with statewide applicability.  

OKRAM incorporates a multi-scale approach by assessing local stressors within the 

wetland and evaluating impacts within the watershed at a larger scale.  Applying different 

spatial scales within an assessment method promotes the detection of stressors that may 

be otherwise excluded when focusing on a single scale, such as a 100 m buffer.  RAMs 

are efficient and effective tools for determining wetland condition and when properly 

validated, they can be applied year-round regardless of the presence of water within the 

wetland.  With the natural dynamic wet and dry cycles of wetlands, a method that can be 
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applied in the absence of surface water and wetland vegetation is important.  

Additionally, this study has highlighted the importance of using a multi-metric approach 

to evaluate wetland condition, as opposed to focusing on vegetation or surrounding land-

use alone.  When evaluating condition, all components should be considered, including 

the hydrological, biological, physical, and chemical processes occurring within wetlands.  

This study provides an example of conducting a Level 1 assessment for additional 

support in RAM validations.  Our results also demonstrate the utility of FQI as a 

validation tool for Level 1 and Level 2 assessments in Oklahoma.  FQI has been applied 

in ecoregions to assess the condition of Oklahoma wetlands (Bried et al. 2014), but it has 

not previously been used to define the condition of depressional wetlands across the 

entire state.  While FQI proved to be an excellent tool for validation, it is important to 

recognize that FQI can vary between different plant communities (i.e., wetland vs. 

upland; Rooney and Rogers 2002), based on seasonal influences (i.e., time of year of 

sampling; Matthews 2003; Euliss and Mushet 2011), and the ability of evaluators to 

identify plants correctly (Chamberlain and Brooks 2016).  Additionally, we observed 

substantial variation in FQI scores based on geographic location (e.g., the average FQI 

score for high quality wetlands was 19.9 in eastern sites and 14.1 in western sites).  

Stratification by ecoregions can improve assessments by reducing spatial variability in 

soils, climate, vegetation, and land cover (Stoddard 2005; Bried et al. 2016).  FQI has 

been shown to be a good indicator of wetland condition, and with these considerations 

taken into account, it can be applied to gather intensive data about plant communities and 

wetland health.  
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Our validation analysis of OKRAM with Level 1 and Level 3 data demonstrates 

its ability to define condition in depressional wetlands across a large study area.  Our 

analysis confirms that with adequate training and guidance, OKRAM is repeatable and 

can assess wetland condition regardless of geographic location or time of year.  Based on 

our results, we are confident that OKRAM has utility as a tool for differentiating between 

high quality wetlands for protection and low quality wetlands for restoration.  Currently, 

we recommend the State apply OKRAM in future evaluations of depressional wetlands 

throughout Oklahoma.  However, further calibration and validation is needed to expand 

OKRAM use to other Oklahoma wetlands.   
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FIGURES AND TABLES 

Figure 1: Map of the study area and location of the 28 depressional wetlands sampled in 

2015 across Oklahoma.  Wetlands were segregated based on high (east of I-35; 14 sites) 

and low precipitation (west of I-35; 14 sites). 
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Figure 2: Relationships between Oklahoma Rapid Assessment Method (OKRAM) 

overall scores and biotic condition attribute scores with a) plant species richness, b) 

native species richness, and c) floristic quality index.  Correlations are presented in terms 

of Spearman’s r (ρ). 

 

 

  

0

0.2

0.4

0.6

0.8

1

0 10 20 30

O
K

R
A

M
 B

io
ti

c

Native Species Richness

Ρ = 0.74

P < 0.0001

0

0.2

0.4

0.6

0.8

1

0 10 20 30

O
K

R
A

M
 B

io
ti

c

Species Richness

0

0.2

0.4

0.6

0.8

1

0 10 20 30

O
v

er
al

l O
K

R
A

M

Species Richness

0

0.2

0.4

0.6

0.8

1

0 10 20 30

O
v

er
al

l 
O

K
R

A
M

Native Species Richness

Ρ = 0.72

P < 0.0001

b)

0

0.2

0.4

0.6

0.8

1

0 10 20 30

O
K

R
A

M
 B

io
ti

c 

Floristic Quality Index

Ρ = 0.788

P < 0.0001
0

0.2

0.4

0.6

0.8

1

0 10 20 30

O
v

er
al

l 
O

K
R

A
M

Floristic Quality Index

Ρ = 0.701

P < 0.0001

c)

Ρ = 0.647 
P = 0.0001 

Ρ = 0.676 
P < 0.0001 

a) 

 



31 
 

Figure 3: Relationships between Oklahoma Rapid Assessment Method (OKRAM) overall 

scores and water quality attribute scores indicated by soil phosphorus.  Correlations are 

presented in terms of Spearman’s r (ρ). 

 

 

 

 

Figure 4: The distribution of Oklahoma Rapid Assessment Method (OKRAM) scores 

across 28 depressional wetland sites in Oklahoma during 2015. 
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Table 1: Descriptions of depressional wetlands sampled in 2015 across Oklahoma.  

Wetlands are categorized by a priori classification, which is based on a GIS desktop 

analysis of the land-use types surrounding wetlands.  Reference represents best attainable 

condition with minimal anthropogenic disturbance and no hydrological alterations, fair 

condition wetlands were moderately disturbed, and poor condition wetlands were 

significantly altered (e.g., agricultural or urban landscapes).  

A priori 

Classification Number of Wetlands Size Range (ha) Mean Size (ha) 

Reference 12 0.05 - 2.27 0.52 

Fair 5 0.45 - 2.30 1.01 

Poor 11 0.06 - 2.10 0.57 

 

 

Table 2: Oklahoma land-use classes defined by National Land Cover Database (NLCD) 

and corresponding coefficients used to calculate Landscape Development Intensity Index 

(LDI) scores (Brown and Vivas 2005; Mack 2006) 

Land Use Classification LDI Coefficient 

Natural System 1.0 

Open Water 1.0 

Pasture 3.41 

Developed, Open Space 6.92 

Cropland 7.0 

Developed, Low Intensity 7.55 

Barren Land 8.32 

Developed, Medium Intensity 9.42 

Developed, High Intensity 10.0 
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Table 3: The relationships between the Landscape Development Intensity Index (LDI) at 

three spatial scales (e.g., 100 m, 500 m, and 1,000 m) and the Oklahoma Rapid 

Assessment Method (OKRAM) attributes (i.e., hydrologic, water quality, and biotic 

condition) and overall OKRAM scores.  Additionally, the relationships between LDI and 

Level 3 data are shown, including plant species richness (SPR), native species richness 

(NSPR), Floristic Quality Index (FQI), and soil phosphorus (P).  Correlations are 

presented in terms of Spearman’s r (ρ) and all relationships that are significant at α = 0.05 

level are shown. 

 

 

 

 

 

  

LDI Level 2 and 3 Metrics ρ P-value 

LDI 100 m A1: Hydrologic Condition -0.754 <0.0001 

 A2: Water Quality -0.802 <0.0001 

 A3: Biotic Condition -0.839 <0.0001 

 Overall OKRAM  -0.832 <0.0001 

 SPR -0.522 0.004 

 NSPR -0.589 0.001 

 FQI -0.596 0.001 

 P (ppm) 0.433 0.020 

LDI 500 m A1: Hydrologic Condition -0.814 <0.0001 

 A2: Water Quality -0.761 <0.0001 

 A3: Biotic Condition -0.824 <0.0001 

 Overall OKRAM  -0.853 <0.0001 

 SPR -0.497 0.001 

 NSPR -0.547 0.003 

 FQI -0.553 0.003 

 P (ppm) 0.488 0.020 

LDI 1000 m A1: Hydrologic Condition -0.795 <0.0001 

 A2: Water Quality -0.744 <0.0001 

 A3: Biotic Condition -0.843 <0.0001 

 Overall OKRAM  -0.861 <0.0001 

 SPR -0.580 0.001 

 NSPR -0.605 0.001 

 FQI -0.570 0.002 

  P (ppm) 0.421 0.030 
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Table 4: Relationships between Oklahoma Rapid Assessment Method (OKRAM) 

attributes and overall scores with Level 3 data based on Spearman’s rank correlation (ρ).  

Level 3 data includes species richness (SPR), native species richness (NSPR), Floristic 

Quality Index (FQI), Shannon-Weiner diversity (SWD), soil phosphorus (P), soil nitrate 

(NO3), soil ammonium (NH4), and sodium absorption ratio (SAR).  All relationships that 

are significant at α = 0.05 level are shown. 

OKRAM Level 3 Metric     ρ P-value 

A1: Hydrologic Condition SPR    0.459 0.014 

 NSPR    0.503 0.006 

 FQI    0.463 0.013 

 SAR    0.385 0.043 

A2: Water Quality SPR    0.564 0.001 

 NSPR    0.632 0.0003 

 FQI    0.569 0.002 

 SWD    0.475 0.010 

 P (ppm)   -0.464 0.013 

A3: Biotic Condition SPR    0.676 <0.0001 

 NSPR    0.740 <0.0001 

 FQI    0.788 <0.0001 

 SWD    0.464 0.013 

 P (ppm)  -0.524 0.004 

 NO3 (ppm)  -0.479 0.010 

 NH4 (ppm)    0.398 0.036 

 SAR    0.506 0.006 

Overall OKRAM SPR    0.647 0.0001 

 NSPR    0.720 <0.0001 

 FQI    0.701 <0.0001 

 SWD    0.487 0.009 

 P (ppm)  -0.495 0.007 

  SAR   0.436 0.020 
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Table 5: Repeatability of the Oklahoma Rapid Assessment Method (OKRAM) was 

assessed as the average difference and the maximum difference between the scores of 

two practitioners.  Seasonal differences were assessed as the average and maximum 

difference in scores between spring and summer assessments. 

 

OKRAM 

Metrics and Attributes 

Avg. 

Practitioner 

Difference (%) 

Max. 

Practitioner 

Difference (%) 

 

Avg. Seasonal 

Difference (%) 

 

Max. Seasonal 

Difference (%) 

Hydroperiod 1.2 15.0 0.5 3.8 

Water Source 8.4 50.7 3.6 12.9 

Hydrologic Connectivity 3.0 50.0 0.0 0.0 

Attribute 1: Hydrology 4.0 17.5 1.5 4.3 

Nutrients 1.6 25.0 1.5 7.5 

Sediment 2.3 15.0 1.8 5.0 

Chemical Contaminants 1.2 25.0 2.0 12.5 

Buffer Filter 2.0 16.0 0.9 6.5 

Attribute 2: Water Quality 1.4 9.4 1.4 4.7 

Vegetation 3.1 14.8 12.8 50.0 

Habitat Connectivity 4.2 26.9 1.5 8.1 

Attribute 3: Biotic Condition  3.9 17.3 7.9 27.5 

Overall OKRAM Score 1.9 7.5 2.4 11.3 
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Table 6: Comparison of a priori classifications and condition classes assigned based on 

overall Oklahoma Rapid Assessment Method (OKRAM) scores.  Condition classes were 

determined by using the 25th percentile of OKRAM scores for a priori reference wetlands 

and the 75th percentile of OKRAM scores for a priori poor wetlands.  Resulting 

thresholds were 0.84 and greater for reference condition, 0.50 and lower for poor 

condition, and sites falling in between were considered to be in fair condition. 

 

Site 

A priori 

Classification 

Overall  

OKRAM Score 

OKRAM Condition 

Classification 

1 Reference 0.96 Reference 

2 Reference 0.95 Reference 

3 Reference 0.87 Reference 

4 Poor 0.48 Poor 

5 Fair 0.82 Fair 

6 Poor 0.48 Poor 

7 Reference 0.82 Fair 

8 Poor 0.40 Poor 

9 Fair 0.53 Fair 

10 Poor 0.62 Fair 

11 Reference 0.79 Fair 

12 Poor 0.55 Fair 

13 Poor 0.25 Poor 

14 Poor 0.47 Poor 

15 Poor 0.45 Poor 

16 Reference 0.84 Reference 

17 Fair 0.74 Fair 

18 Fair 0.54 Fair 

19 Reference 0.87 Reference 

20 Poor 0.52 Fair 

21 Reference 0.84 Reference 

22 Poor 0.34 Poor 

23 Poor 0.41 Poor 

24 Reference 0.89 Reference 

25 Reference 0.97 Reference 

26 Fair 0.72 Fair 

27 Reference 0.98 Reference 

28 Reference 0.98 Reference 
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CHAPTER II 
 

 

DEVELOPMENT OF A RAPID ASSESSMENT METHOD FOR DETERMINING THE 

CONDITION OF LACUSTRINE FRINGE WETLANDS IN CENTRAL OKLAHOMA 

 

Sarah Gallaway1, Craig Davis1, Daniel Dvorett2, and Brooks Tramell2 

1 Department of Natural Resource Ecology and Management, Oklahoma State 

University, 008C Agricultural Hall, Stillwater, OK 74078 
2 Oklahoma Conservation Commission, 2800 N. Lincoln Suite 200, Oklahoma City, OK 

73105 

 

Abstract: Wetland assessments have become a fundamental component of many state and 

federal wetland programs, as they provide consistent methods for the evaluation of 

wetland ecological condition.  Wetland assessments have been categorized into a three-

tiered framework by the U.S. Environmental Protection Agency based on the type of 

assessment (i.e., remote or field-based) and the type of data collected (i.e., qualitative or 

quantitative).  Level 1 assessments evaluate wetland condition based on the composition 

of the surrounding landscape.  Level 2 assessments, known as rapid assessment methods 

(RAMs), use repeatable metrics on-site to collect qualitative measurements of biological 

and physical attributes that reflect ecological condition.  Level 3 assessments utilize the 

most intensive sampling techniques to produce quantitative data, which is often used to 

develop wetland bioassessments.  Oklahoma agencies have developed a RAM, the 

Oklahoma Rapid Assessment Method (OKRAM), which has been applied and validated 

in depressional wetlands.  In order to be an effective tool applicable to all wetlands, 

OKRAM application and validation with Level 3 data is needed in other wetland types 

across the state.  Our study presents the initial application of OKRAM in 30 lacustrine 

fringe wetlands within central Oklahoma, alongside intensive abiotic (e.g., soil and water 

quality) and biotic (e.g., vegetation and macroinvertebrate) data collection.  We also 

evaluated the effectiveness of two other methods (California Rapid Assessment Method 
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[CRAM] and Functional Assessment of Colorado Wetlands [FACWet]) at assessing 

wetland condition in lacustrine fringe wetlands.  Spearman’s non-parametric analysis did 

not reveal consistent relationships between OKRAM and intensive data, which indicates 

that the method requires further modification.  There was no evidence to support that 

CRAM and FACWet were able to detect wetland condition.  Based on our results, we 

determined several key stressors of lacustrine fringe wetlands that OKRAM is not 

currently detecting, (e.g., reservoir water level fluctuations and stability).  We also 

recommend further investigation into the existing disturbance gradient (i.e., highly 

degraded and pristine sites) to develop a list of potential sample sites.  Lastly, given the 

unique attributes of these wetlands, OKRAM refinement would be aided by additional 

information on the relationship between biotic communities and water quality 

degradation from surrounding land-use practices.  

 

Key Words: Condition Assessments, Lacustrine Fringe Wetlands, Rapid Assessment 

Methods, Validation 

Corresponding Author: 

Sarah Gallaway, (361) 799-9276, Sarah.Gallaway@okstate.edu 

 

INTRODUCTION 

Wetland assessments have become a fundamental component of many state and 

federal wetland programs, as they provide consistent methods for the evaluation of 

wetland ecological condition.  Assessments can be applied to meet ambient monitoring 

goals and wetland regulatory actions including mitigation, restoration, and protection 

(USEPA 2006; Fennessy et al. 2007).  Wetland assessment methods have been 

categorized into a three-tiered framework by the U.S. Environmental Protection Agency 

(USEPA) based on the type of assessment (i.e., remote or field-based) and the type of 

data collected (i.e., qualitative or quantitative; USEPA 2006).  Level 1 assessments rely 

on GIS and remote sensing techniques to evaluate wetland condition based on the 

composition of the surrounding landscape.  Level 2 assessments, known as rapid 

assessment methods (RAMs), use repeatable metrics on-site to collect qualitative 

measurements of biological and physical attributes that reflect ecological condition 
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(Sutula et al. 2006).  RAM metrics detect the presence and severity of stressors within 

and around the wetland (e.g., alterations to wetland hydrology, disturbance to vegetation, 

impacts to water quality, etc.).  Level 3 assessments utilize the most intensive sampling 

techniques to produce quantitative data, which is often used to develop wetland 

bioassessments (i.e., indices of biological integrity [IBIs]) or hydrogeomorphic functional 

assessment methods (USEPA 2006).  Specifically, these assessments involve on-site 

collections of abiotic (e.g., soil and water chemistry) and biotic (e.g., diatom, 

macroinvertebrate, vegetation) data to estimate wetland condition.  

Level 2 assessments (RAMs) typically require less time in the field than intensive 

Level 3 assessments, while providing consideration for on-site factors that may be 

overlooked by coarse, Level 1 assessments (Fennessy et al. 2007; Reiss and Brown 

2007).  As such, RAMs have become a preferred method, with many states (e.g., 

California [Collins et al. 2013], Colorado [Johnson et al. 2013], Delaware [Jacobs 2010], 

Montana [Apfelbeck and Farris 2005], New Mexico [Muldavin et al. 2011], Ohio [Mack 

2001], Oregon [Adamus et al. 2016], and Rhode Island [Kutcher 2011]) developing their 

own RAMs.   

A central component in RAM development is to determine the method’s accuracy 

in computing scores that are representative of actual wetland condition (Fennessy et al. 

2007).  Because RAMs are based on inferred relationships between wetland indicators 

and condition and rely on the best professional judgment of evaluators, validation with 

independent measures of wetland condition (e.g., Level 3 assessments) is necessary 

(Fennessy et al. 2007; Stein et al. 2009).  In addition to a validation with Level 3 data, 

RAMs should also be calibrated along a disturbance gradient prior to implementation for 
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wetland monitoring and management.  Calibration involves the rescaling or rescoring of 

metrics to improve the method’s ability to discern differences in condition along an 

anthropogenic disturbance gradient (Stein et al. 2009).  Following these steps in RAM 

development will increase reliability and scientific defensibility of the method (Fennessy 

et al. 2007).  Despite the importance of undergoing these developmental steps, Fennessy 

et al. (2007) found that most RAMs had not been validated or calibrated across the 

regions in which they were applied.  Nonetheless, there are examples provided in the 

literature, including the calibration and validation of the Ohio Rapid Assessment Method 

(ORAM) with vegetation (Mack et al. 2000), amphibians (Micacchion et al. 2004), and 

birds (Stapanian et al. 2004; Peterson and Niemi 2007) and the validation of the 

California Rapid Assessment Method (CRAM) with multiple assemblages using IBIs 

(e.g., bird, macroinvertebrate, and vegetation communities; Stein et al. 2009).  These 

studies can act as guidelines for other states in conducting RAM calibration and 

validation analyses to ensure that RAM scores represent true wetland condition.  

Another critical component in RAM development is the recognition of different 

wetland types because wetlands vary in their susceptibility to different types and 

severities of stressors (Fennessy et al. 2007).  For example, stressors from surrounding 

land-use practices are critical when assessing depressional wetlands where surface runoff 

is a dominant water source, but may be less significant in some riverine wetlands where 

overbank flow is the dominant water source (Brinson 1993).  If this variation is not 

recognized or accounted for, applying RAMs within different wetland types may produce 

misleading results.  One way to reduce this variability in wetland assessments is to use 

the hydrogeomorphic approach (HGM), which classifies wetlands based on geomorphic 
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setting, water source, and hydrodynamics (Brinson 1993).  Variation can be further 

reduced by classifying wetlands into subclasses (Dvorett et al. 2013).  The development 

and validation of RAMs for each wetland type will likely increase the precision of RAMs 

and their applicability in wetland monitoring and management programs.   

The Oklahoma Conservation Commission (OCC) has recognized the importance 

of wetland assessment methods and has made the development of a RAM capable of 

defining the condition of all wetlands across the state a priority of its Wetlands Program 

(OCC 2013).  This study builds on results from recent efforts including the initial 

development and application of the Oklahoma Rapid Assessment Method (OKRAM) in 

interdunal depressional wetlands in the Cimarron River Pleistocene Sand Dunes 

Ecoregion (Dvorett et al. 2014) and the validation of OKRAM in depressional wetlands 

statewide (Chapter 1).  With the initial development and validation of OKRAM complete, 

further application across Oklahoma’s wetland classes is imperative.   

Lacustrine fringe wetlands are a dominant wetland class in Oklahoma, making 

them an important target for the next OKRAM validation.  According to HGM 

classification, lacustrine fringe wetlands occur adjacent to lakes where the water table is 

maintained by the elevated water levels of lakes (Brinson 1993).  These wetland systems 

are located along the numerous reservoirs created by the Army Corps of Engineers, U.S. 

Bureau of Reclamation, and Grand River Dam Authority that occur across the state 

(Johnson 1993).  Lacustrine fringe wetlands typically maintain long hydroperiods with 

additional water sources of precipitation and groundwater discharge and water loss 

occurring via evapotranspiration and receding floodwaters (Smith et al. 1995).  They 

provide a variety of functions and services, including breeding and foraging habitat for 
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various wildlife species, reducing the direct input of sediment into lakes, and filtering 

nutrients within the lake water.   

While there have been many wetland assessment studies (e.g., IBIs and RAMs) 

conducted within natural lake systems, such as the Great Lakes region (Wilcox et al. 

2002; Uzarski et al. 2004; Bourdaghs et al. 2006; Peterson and Niemi 2007; Rothrock et 

al. 2008), condition assessments of wetlands associated with man-made reservoirs are 

deficient.  Reservoirs or impoundments provide a suite of stressors such as the age of the 

reservoir, manipulation of lake water levels for recreation, water supply, and storage, and 

disconnection with the nearby upland that are not typically considered when assessing 

natural systems.  Wardrop et al. (2007) applied a RAM within wetlands associated with 

reservoirs; however, there were not enough sample sites for a proper validation.  To the 

best of our knowledge, our study presents the first application of RAMs targeting 

unnatural lacustrine fringe systems for the purpose of validation and calibration.   

The primary objective of our study was to conduct the first application of 

OKRAM in lacustrine fringe wetlands and evaluate the ability of the method to define 

wetland condition through validation using a Level 1 assessment and Level 3 assessment 

data (e.g., vegetation, macroinvertebrate, soil, and water quality data).  Our second 

objective was to conduct two additional assessment methods (CRAM and Functional 

Assessment of Colorado Wetlands [FACWet]) to determine if any additional metrics 

could improve OKRAM results.  Our final objective was to evaluate the repeatability of 

OKRAM to minimize observer error and address any potential seasonal effects by 

conducting assessments at two different times of the year (i.e., early growing season and 

late growing season).   
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METHODS 

Study Area  

The study area occurs within the Central Great Plains and Cross Timbers 

ecoregions of Oklahoma (Figure 1).  The Central Great Plains Ecoregion is a dry-

subhumid area mostly underlain with red, Permian-age sedimentary rock.  The vegetation 

is predominantly mixed-grass prairie and riparian forests.  Common agricultural crops in 

the ecoregion include wheat, rye, alfalfa, and sorghum.  The Cross Timbers Ecoregion is 

the transition zone between eastern forests and western prairies, and is comprised of a 

mix of savannas, woodlands, native prairies, and rangelands (Omernik 1987; Woods et al. 

2005).  Oak-woodlands occur on coarse-textured soils and are dominated by post oak 

(Quercus stellata) and blackjack oak (Quercus marilandica), while finer-textured soils 

are dominated by tall-grass prairies.  As this region is typically unsuitable for crops, 

rangeland and pastureland are the dominant land-uses.  Mean annual precipitation within 

the study area increases eastward and varies from approximately 56 to 97 cm (Oklahoma 

Climatology Survey 2015).  

We selected 30 lacustrine fringe wetlands along an anthropogenic disturbance 

gradient in central Oklahoma using ArcGIS 10.2 desktop application (Table 1).  

Surrounding land-use was based on the 2011 National Land Cover Dataset (NLCD), 

which classifies land-use types into 16 categories at a 30-meter scale (Homer et al. 2015).  

Lacustrine fringe wetlands were selected alongside reservoirs comprising at least five 

hectares of open water to reduce variability and assure that wetlands were adjacent to 

deepwater habitat (i.e., wetland hydrology maintained by lake levels).  Wetlands were 

selected on both public and private land.  A majority of the reservoirs on public land 
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serve as recreational lakes and sources of drinking water, with some also serving to 

provide hydropower generation.  To account for the size variability between individual 

wetlands, two wetlands were sampled within each reservoir.  One wetland was positioned 

within a cove or concave area of reservoir’s shoreline, resulting in a larger circular 

wetland, while the second wetland was characterized as a narrow strip on a convex curve, 

creating a much smaller, linear wetland.  Lacustrine fringe wetlands were selected to 

represent a disturbance gradient from least-disturbed to most-disturbed condition.  

Placement into an a priori disturbance category (i.e., low, intermediate, and high 

disturbance) was based on a GIS desktop analysis to determine the degree of 

anthropogenic disturbance (e.g., impervious surface, nearby roads, point and non-point 

source runoff, etc.) impacting the wetland.  Within each wetland, we selected an 

assessment area (AA) as a representative sample of the entire wetland.  For wetlands 

comprising smaller than 0.5-hectare, the entire wetland was considered the AA.  For 

wetlands larger than 0.5-hectare, the AA was defined by a 0.5-hectare circle randomly 

placed within the wetland (Sifneos et al. 2010).   

Level 1 Assessment 

We applied a well-established Level 1 assessment method, the Landscape 

Development Intensity Index (LDI), to define the condition of the 30 study wetlands for 

our validation analysis.  LDI evaluates condition based on the types of land-use 

surrounding a wetland and each land-use type is assigned a predetermined coefficient 

based on the severity of anthropogenic disturbance (Brown and Vivas 2005).  The LDI 

index has been calculated using multiple scales, including 100 m (Brown and Vivas 

2005; Chen and Lin 2011), 200 m (Reiss et al. 2010), 1,000 m (Mack 2006; Margriter et 
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al. 2014), and at the watershed scale (Nestlerode et al. 2014).  Evaluating assessment 

methods across several scales may reduce errors associated with applying scales that are 

too broad or too narrow.   

An LDI was calculated for each wetland within a 100 m, 500 m, and 1,000 m 

buffer using GIS desktop application.  Within each buffer, the percentage of each land-

use type was recorded (e.g., agricultural, residential, industrial, commercial, 

transportation, natural areas, and open water).  Coefficients were assigned following 

Brown and Vivas (2005) and Mack (2006) (Table 2).  Open water was excluded from the 

analysis to reduce the bias from the wetland’s position within the reservoir.  LDI scores 

range from 1 to 10, with 1 representing natural systems and 10 representing the highest 

anthropogenic disturbance.  LDI scores were calculated as an area weighted average 

using the equation (Brown and Vivas 2005): 

LDItotal =  %LUi × LDIi 

where LDItotal = LDI ranking for landscape unit (i.e. buffer zone or watershed), %LUi = 

percent of the total area in land-use I, and LDIi = LDI coefficient for land-use category i.  

Level 2 Assessment 

Between June and mid-August 2014, we conducted three RAMs (OKRAM, 

CRAM, and FACWet) at each of the 30 lacustrine fringe wetlands.  A comparison table 

of RAM metrics is presented in Appendix D.  At least two technicians consistently 

completed all three RAMs at each wetland, and repeatability was assessed by 

determining the difference between each individual's overall OKRAM score, attribute 

scores, and metric scores.  Additionally, 10 wetlands were re-visited in the early-growing 
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season of the following year (i.e., April-May 2015) to evaluate potential seasonal effects 

on OKRAM results.  

OKRAM consists of nine metrics divided into three attributes (hydrologic 

condition, water quality, and biotic condition) and emphasizes the presence and severity 

of stressors within and adjacent to the AA.  The hydrologic condition attribute focuses on 

alterations to the hydroperiod, water source impacts, and hydrologic connectivity.  The 

water quality attribute assesses the input of excessive nutrients, sediments, and chemical 

contaminants and the ability of the surrounding buffer to reduce impacts.  Lastly, biotic 

condition evaluates stressors to the vegetation community within the AA and the amount 

of contiguous habitat surrounding the wetland.  Each individual metric is scored as a 

value between 0 and 1, and all metric scores are aggregated into an overall condition 

score ranging from 0 to 1, with 0 being complete degradation and 1 being ideal or a least-

disturbed condition.   

There is not a CRAM manual for lacustrine fringe wetlands, therefore we applied 

CRAM for depressional wetlands in each wetland.  CRAM is comprised of ten metrics 

divided into four attributes: landscape, hydrology, physical structure, and biological 

structure.  Each individual metric is given a letter grade of A, B, C, or D based on the 

narrative or numerical description that best fits the conditions observed at the time of 

assessment.  Individual metric scores are aggregated into an attribute score, and attribute 

scores are then averaged to represent overall wetland condition.  CRAM condition scores 

are calculated such that wetlands in the best condition (i.e., those providing multiple 

ecosystem functions) receive the highest overall scores.  For a more detailed description 

of CRAM methods, refer to the CRAM depressional guidebook (Collins et al. 2013). 
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FACWet uses a stressor-based approach to evaluate a wetland’s deviation from 

reference condition.  As in OKRAM, when stressors are not identified, the wetland is 

assumed to represent the best possible ecological condition.  Metrics are divided into 

eight attributes that target stressors to the habitat connectivity and surrounding area, 

hydrology, geomorphology, soil and water chemistry, and vegetation.  Each metric is 

scored by selecting one of the five categories ranging from reference standard to non-

functional.  Reference standard refers to wetlands in a least-disturbed or pristine 

condition.  Non-functional does not imply that the wetland has ceased all functionality, 

but rather it indicates that the wetland is in a state of extreme alteration from natural 

condition (Johnson et al. 2013).  Metric scores are used to calculate seven functional 

capacity indices, which are then averaged into an overall condition score.  For a more 

detailed description of FACWet metrics, refer to Johnson et al. (2013). 

Level 3 Assessment 

Level 3 assessments were conducted alongside RAM application and involved the 

collection of vegetation and soil data in each AA and macroinvertebrate and water quality 

data in each AA comprising at least 30% water.  Vegetation community data were 

collected using a step-point method, in which transects were randomly placed throughout 

the wetland, and all plant species occurring at each meter were recorded (Smith and 

Haukos 2002).  Within each wetland, a minimum of three transects were walked, totaling 

at least 150 sampling points.  All transects were placed along the elevational gradient and 

terminated at the edge of the AA, deepwater habitat, or upland transition zone.  Because 

AAs were not always the same shape or size, transect length was variable.  All transects 

were traversed through the entirety of the AA to avoid sampling bias associated with 
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discontinuing sampling midway through the wetland.  This led to sampling more than 

150 m of vegetation at several wetlands.  When total transect length exceeded 150 m, we 

randomly selected 150 points from the total number of points sampled for inclusion in 

statistical analyses (Smith and Haukos 2002).  All unknown plant species were collected, 

pressed, and identified to the lowest taxonomic group possible using dichotomous keys 

(Mohlenbrock 2005, 2006, 2008, 2010; Tyrl et al. 2009).  For each wetland, we 

calculated species richness (SPR), native species richness (NSPR), Shannon-Weiner 

diversity (SWD), and the percent of wetland plants (i.e., facultative, facultative wetland, 

and obligate wetland species [%WET]).   

We also calculated the Floristic Quality Index (FQI), a commonly applied 

vegetation method for evaluating wetland condition that is based on a species’ tolerance 

to anthropogenic disturbance.  The overall concept of FQI is that plant species differ in 

their fidelity to natural areas and in their ability to tolerate disturbance (Andreas and 

Lichvar 1995).  Experts assign coefficients of conservatism (C-values) ranging from 0 to 

10 to individual species based on the likelihood of the species to occur at a disturbed site 

within a particular region.  Non-native and opportunistic species receive a value of zero, 

whereas species with a high degree of fidelity to sites in remnant condition are assigned a 

value of 10 (Andreas and Lichvar 1995).  FQI was also calculated for each wetland using 

the following formula:  

𝐹𝑄𝐼 = (
∑ 𝐶𝐶𝑖 

𝑆
) √𝑆 

where CC is the coefficient of conservatism for species i and S is total species richness.  

In each wetland, up to five dominant habitat cover types (i.e., comprising 10% or 

more of the entire AA) were identified as collection areas for macroinvertebrate, soil 
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chemistry, and water quality data.  Habitat cover types included areas dominated by a 

plant species (e.g., cattail [Typha spp.], black willow [Salix nigra], etc.), a specific 

functional group or structure (e.g., short emergent, short woody species, etc.), or open 

water.  Macroinvertebrates were collected from dominant wet habitat cover types by 

sweeping a 500 μm mesh D-net within a 0.5 m2 quadrat for 1 minute (USEPA 2002).  At 

least two samples were collected from random locations within each habitat type, with a 

minimum of four samples collected per AA.  The D-net was swept back and forth along 

the substrate, ensuring that all depths of the water column were sampled (Meyer et al. 

2013).  Obtaining samples within vegetated areas consisted of sweeping the D-net up and 

down vertically against the vegetation to assist with dislodging invertebrates.  Samples 

were stored in 1-L polyethylene jars with 70% ethanol to preserve specimens.  All 

macroinvertebrate samples were sorted, identified to appropriate taxonomic level, and 

counted (Stehr 1987; Smith 2001; Merritt et al. 2008; Thorp and Covich 2010).  Twelve 

parameters were calculated for each wetland (percent of functional feeding groups [e.g., 

filterers, gatherers, shredders, and predators], percent of taxonomic groups [e.g., Diptera, 

Chironomidae, Oligochaeta, Ephemeroptera, Coleoptera, and Odonata], species richness 

(MSPR), and Shannon-Weiner diversity (MSWD).  

One composite soil sample, which was comprised of five subsamples taken to a 

depth of 10 cm, was collected per wetland.  Subsamples were taken from locations in 

proportion to the dominant habitat cover types.  Soil samples were labeled, immediately 

placed on ice, and later stored at 4°C until processing.  Samples were thoroughly mixed 

prior to being analyzed by the Oklahoma State Soil Water and Forage Analytical 

Laboratory for nitrate (NO3), ammonium (NH4), sodium (Na), phosphorus (P), pH, 
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organic matter (OM), total soluble salts (TSS), and sodium adsorption ratio (SAR).  P 

was extracted using the Mehlich III method, while Na was extracted using a 1:1 soil to 

water extraction.  Both P and Na values were determined using inductively coupled 

plasma mass spectrometry.  NO3 and NH4 were extracted using a 1M KCL extraction and 

calculated using a flow injection analyzer.  Na, NO3, NH4, P, and TSS are presented as 

parts per million (ppm) dry weight.  OM was calculated using a combustion analyzer and 

is presented as a percentage of dry weight.   

One 1,000 ml composite water sample, comprised of five 200 ml samples, was 

collected per wetland.  Subsamples were extracted from the middle of the water column 

using a polyethylene jar at locations proportional to the dominant habitat cover types.  

Water samples were immediately placed on ice and stored at 4°C until processing.  A 

HACH CEL/850 environmental water quality kit was used to determine soluble reactive 

phosphorous (SRP), nitrate (NO3), and ammonia (NH3) in a laboratory at Oklahoma State 

University using methods in Standard Methods for the Examination of Water and 

Wastewater 20th Edition (APHA 1998).  Additionally, physiochemical data including pH, 

dissolved oxygen, temperature, and conductivity were recorded using a YSI 556 multi-

probe system (YSI Inc., Yellow Springs, Ohio, USA) at water collection sites.  Turbidity 

was determined at these locations using a HACH 2100Q portable turbidimeter.  

Validation Analysis 

We evaluated the ability of OKRAM to accurately define wetland condition by 

comparing overall OKRAM, attribute, and metric scores with Level 3 intensive data 

using Spearman’s non-parametric correlations in R version 3.2.2. (Crawley 2013; R Core 

Development Team 2015).  Significant correlations in expected directions were 
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interpreted as evidence of the method’s ability to discern difference in wetland condition 

(Stein et al. 2009).  Additionally, we examined the relationships between CRAM and 

FACWet scores and Level 3 data to determine if any additional metrics could improve 

OKRAM relationships.  We evaluated the relationships between OKRAM and LDI 

scores to provide additional support for validation.  Consistent relationships with LDI can 

demonstrate the ability of OKRAM to capture disturbance within the surrounding 

landscape.  Additionally, wetlands were placed into reference (good), fair, and poor 

condition classes based on overall OKRAM scores.  The 25th percentile of overall 

OKRAM scores for reference or least-disturbed wetlands was utilized as the threshold for 

the reference condition class and the 75th percentile of high disturbance wetlands as the 

threshold for the poor condition class (Sifneos et al. 2010).  

RESULTS 

Relationships between RAMs and Level 3 data  

The relationships between RAMs and Level 3 data (e.g., vegetation, soil, 

macroinvertebrate, and water quality data) were evaluated to provide support for RAM 

validation.  However, sufficient water for macroinvertebrate and water quality sampling 

was only present in 15 of the 30 lacustrine fringe wetlands.  Nonetheless, we did not find 

consistent, relationships between OKRAM and Level 3 data to indicate the method is 

tracking wetland condition.  For instance, there were no significant correlations between 

overall OKRAM scores and vegetation or macroinvertebrate data (Figure 2) and only a 

few significant relationships between soil data and OKRAM scores were noted (Na [ρ = - 

0.614, P < 0.001], TSS [ρ = - 0.453, P = 0.01], and SAR [ρ = - 0.621, P < 0.001]).  

Additionally, there were few significant correlations between OKRAM attributes 
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(hydrologic, water quality, and biotic condition) and Level 3 data (Table 3).  For 

example, hydrologic condition scores were weak to moderately correlated with plant data 

(FQI [ρ = 0.387, P = 0.034], SPR [ρ = 0.423, P = 0.02], and NSPR [ρ = 0.445, P = 0.014]) 

and soil data (TSS [ρ = - 0.37, P = 0.044], Na [ρ = - 0.432, P = 0.02], and SAR [ρ = - 

0.429, P = 0.018]).  Water quality attribute scores were significantly correlated with two 

macroinvertebrate community metrics (% Chironomids [ρ = 0.604, P = 0.017] and % 

Diptera [ρ = 0.531, P = 0.042]) and water temperature (ρ = - 0.543, P = 0.036).  Lastly, 

biotic condition displayed weak to moderate relationships with soil data (NO3 [ρ = - 

0.513, P = 0.004], Na [ρ = - 0.404, P = 0.027], and SAR [ρ = - 0.392, P = 0.032]).   

We observed only a few weak to moderate significant relationships between 

overall CRAM scores and Level 3 data (macroinvertebrate SPR [ρ = 0.508, P = 0.05], 

water temperature [ρ = - 0.529, P = 0.045], and Na [ρ = - 0.363, P = 0.05]).  Additionally, 

we observed only one significant relationship between overall FACWet scores and Level 

3 data (water temperature [ρ = - 0.611, P = 0.018]).  

Relationships between RAMs and LDI  

We found significant, negative correlations between overall OKRAM scores and 

LDI at all three spatial scales (100 m [ρ = - 0.642, P = 0.0001], 500 m [ρ = - 0.664, P < 

0.0001], and 1000 m [ρ = - 0.664, P < 0.0001; Figure 3).  OKRAM attributes also 

displayed significant relationships with LDI at certain scales.  For instance, we observed 

a weak relationship between hydrologic condition scores and LDI at 1,000 m (ρ = - 

0.375, P = 0.04).  In contrast, water quality and biotic condition scores were significantly 

correlated with LDI at all three spatial scales (Table 4).  However, we did not find any 
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relationships between LDI and several OKRAM metrics including hydroperiod, 

hydrologic connectivity, nutrients, sediments, chemical contaminants, and vegetation.   

We found similar correlations between overall CRAM scores and LDI (100m [ρ = - 

0.544, P = 0.002], 500 m [ρ = - 0.561, P = 0.001], and 1,000 m [ρ = - 0.50, P = 0.005]).  

We observed weaker relationships between overall FACWet scores and LDI (100m [ρ = - 

0.378, P = 0.039], 500 m [ρ = - 0.368, P = 0.045], and 1,000 m [ρ = - 0.247, P = 0.188]).   

OKRAM Repeatability and Seasonality Analyses 

OKRAM repeatability and seasonal influences were examined for both overall 

OKRAM scores and individual metric scores (Table 5).  The average difference in the 

overall OKRAM scores of two evaluators was 1.7%, with the maximum difference for 

one site being 10.9%.  All individual metrics had an average difference below 5%.  We 

revisited 10 wetlands the following spring (i.e., early growing season) and compared 

overall OKRAM and metric scores to evaluate any seasonal influences on the method.  

The average difference between overall scores was 2.4% and the greatest difference 

observed at one site was 5.7%.  Metrics with the greatest average changes between 

seasons were nutrients (4.7%), sediments (6.2%), and vegetation (10.5%).  

DISCUSSION 

OKRAM Validation 

 To validate a RAM within a wetland type, statistical analysis should reveal strong, 

consistent relationships between overall RAM scores, attribute scores, and metric scores 

with Level 3 data.  RAM validations have implemented the weight-of-evidence approach 

in which multiple lines of evidence (i.e., several assemblages, such as vegetation, birds, 
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and amphibians as well as a landscape assessment) are used to provide support for the 

ability of the RAM to effectively determine wetland condition (Stein et al. 2009).   

The validation analysis of OKRAM in lacustrine fringe wetlands did not reveal 

consistent relationships with Level 3 data indicating the method is likely not able to 

provide accurate estimates of condition.  The few significant OKRAM correlations may 

indicate that some metrics are appropriate for use in lacustrine systems, while others need 

to be modified.  For instance, from the correlations of hydrologic condition with plant 

data (e.g., SPR, NSPR, and FQI) and soil data (e.g., TSS, Na, and SAR), we can infer that 

the attribute is detecting meaningful changes in condition.  Through further investigation, 

we found that while the water source metric has a relationship with Level 3 data, the 

hydroperiod and hydrologic connectivity metrics did not exhibit a relationship with Level 

3 data.  From these results, we can conclude that the attribute is likely not detecting all of 

the hydrologic stressors having an impact on the wetland.  Additionally, we found 

significant correlations between the water quality attribute and certain macroinvertebrate 

data (i.e., % Chironomids and % Diptera) and water temperature. However, based on the 

lack of relationships between the water quality attribute and any other macroinvertebrate 

or water quality data, OKRAM metrics within this attribute (i.e., nutrients, sedimentation, 

chemical contaminants, and buffer filter) are likely not capturing the full extent of 

disturbance within the wetland.  Furthermore, a lack of correlation with plant and soil 

data suggests that we may be missing key stressors within these systems and/or metric 

severities (i.e. minor, moderate, or major) may need to be modified.  Lastly, the biotic 

condition attribute only had weak to moderate relationships with soil data (e.g., NO3, Na, 

and SAR).  The lack of a relationship between biotic condition scores and plant or 
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macroinvertebrate data can be explained in two scenarios: (1) the attribute is not 

detecting disturbance to the wetland biotic communities and needs to be modified or (2) 

plant and macroinvertebrate data collected for this study do not adequately represent the 

biotic condition within the wetland.   

The limited or lack of relationships between Level 3 biological data and OKRAM 

can be attributed to several factors. First, it is important to recognize that reservoirs in 

Oklahoma are man-made, often highly regulated, and are not characterized by natural 

lacustrine fringe wetland systems.  In fact, water level fluctuations in natural lakes are 

considered natural patterns necessary for the survival of many plant species and have 

been found to increase both productivity and biodiversity (Gafny et al. 1992; Gafny and 

Gasith 1999; Wantzen et al. 2002).  For example, high lake levels may eliminate canopy-

dominating emergent and woody species, but as water recedes, extremely low water 

depths expose areas of open mudflat and provide the opportunity for expansion of annual 

species and invasion of upland and woody species (Wilcox et al. 2002).  In contrast, plant 

communities in regulated lakes tend to be less diverse, contain more exotic species, and 

are usually devoid of rare species, when compared to unregulated waterbodies (Hill et al. 

1998).  While natural water level fluctuations are known to have a positive impact on 

lacustrine fringe wetlands, some reservoirs undergo rapid and extreme water level 

fluctuations on several occasions throughout the season, which can also result in a 

stressed plant community (e.g., tree die off).   

Stable water levels in manmade reservoirs can also alter the plant communities of 

lacustrine fringe wetlands.  For example, reservoirs with highly stable water levels year-

round commonly develop monocultures of competitive species, such as cattails (Typha 



56 
 

spp.) and giant cutgrass (Zizaniopsis miliacea) (Wilcox et al. 1984; Shay et al. 1999; 

Albert and Minc 2004).  We observed similarities in the species richness and diversity of 

lacustrine fringe plant communities regardless of local stressors (i.e., sedimentation, 

surface runoff, etc.), which may be the result of stable conditions provided by the 

reservoir.  For instance, ten wetlands in highly disturbed areas (i.e., urban or agricultural 

landscape, excessive sedimentation, golf course runoff, etc.) had an average SPR of 24, 

and twelve wetlands in least-disturbed areas (i.e., minimal use recreation areas and 

private reservoirs) had an average SPR of 28.  When assessing the health of wetlands, it 

is critical to assess the impacts of the hydroperiod and the reservoir’s water levels on 

plant communities.    

Wetland habitat for fauna, including invertebrates and fish, also undergoes 

substantial changes due to these water level fluctuations and changes in plant 

communities (McDonald 1955; Farney and Bookhout 1982; Keddy and Reznicek 1986).  

Wilcox et al. (2002) recognized that due to significant variations in lake levels and 

corresponding variations in wetland plant communities and fauna habitat, plant, 

invertebrate, and fish indices may not be reproducible throughout the year and between 

years.  Furthermore, studies evaluating local and landscape stressors on wetland 

invertebrate communities have reached equivocal results.  A recent study in depressional 

wetlands in western Oklahoma found local variables and sampling date to be more 

important than landscape variables when evaluating invertebrate communities (Meyer et 

al. 2015).  Additionally, in lacustrine fringe systems, the influence of fish predation can 

play a significant role in the distribution and abundance of invertebrate communities.  

Between-site differences in invertebrate communities may result from variability in fish 
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communities as well as the environmental determinants of fish predation rates, such as 

substrate and turbidity (Pierce and Hinrichs 1997).  Our study highlights the need to 

further investigate the biological and physiochemical components of lacustrine fringe 

wetlands to determine which components would be appropriate to collect for future RAM 

validation in these systems. 

Metric Calibration 

We observed significant relationships between overall OKRAM and attribute 

scores and LDI at all three spatial scales.  From these results, we can infer that OKRAM 

metrics (e.g., water source, nutrients, sedimentation, and habitat connectivity) are 

capturing disturbance within the surrounding landscape.  Although we found 

relationships with LDI, a lack of evidence and support from the validation with Level 3 

data indicates that OKRAM is not effectively discerning condition in lacustrine fringe 

wetlands.   

While OKRAM metrics are capturing landscape stressors (e.g., nearby 

agricultural and urban land-use), it appears that the metrics developed and applied in 

depressional wetlands do not appropriately characterize the hydrological condition of 

lacustrine fringe wetlands.  Hydrological differences between natural and manmade 

wetlands are an important consideration for wetland assessment methods and should be 

addressed in future versions of OKRAM, as well as for any RAMs developed for 

lacustrine fringe wetlands associated with manmade reservoirs.  We aim to incorporate a 

hydrologic metric that evaluates lake water levels through direct observation and 

information obtained online from state monitoring programs in a future version of 

OKRAM for lacustrine fringe wetlands.   
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The location of lacustrine fringe wetlands within the reservoir relative to the dam 

may also be an important consideration for assessing wetland condition.  Water chemistry 

differs depending on the location within the reservoir (Jones and Knowlton 1993).  For 

example, water quality near the stream inflow differs from water quality within the down-

lake zone near the dam, where in-reservoir processes (e.g., sedimentation, uptake, and 

dilution) have altered the chemistry of inflow from the catchment.  It may be important to 

determine if the wetland’s location (i.e., near the dam vs. near the stream inflow) is 

impacting sedimentation rates and nutrient loading.  Additionally, Jones et al. (2004) 

found that flushing index, which is the inflow volume relative to reservoir volume, 

explained some of the variation in total phosphorus among sample sites in Missouri 

reservoirs.  These results suggest that the ratio of the watershed to the lake surface area, 

along with wetland location within the reservoir, could be important factors to integrate 

into the water quality attribute (i.e., nutrient and sedimentation metrics) in lacustrine 

fringe wetland assessments.  

In addition to modifying hydrology metrics, we found the buffer metric to be 

inappropriate for lacustrine fringe systems.  The metric currently calculates the 

percentage of buffer based on land-use types occurring in the cardinal and ordinal 

directions around the AA.  Lacustrine fringe wetlands by definition are adjacent to deep 

water; thus, if open water is considered a suitable buffer, there is a significant bias based 

on the amount of water surrounding each wetland.  The metric should be modified to 

estimate buffer similar to CRAM, in which open water is considered neutral and is 

excluded from the assessment (Collins et al. 2013).  Additionally, many reservoirs are 

surrounded by vegetated recreational areas that are frequently mowed and often 
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comprised of invasive or exotic species.  The current version of OKRAM does not 

consider these areas as suitable buffer, which results in similarly low buffer metric scores 

across the majority of lacustrine fringe wetlands.  Further research is needed to determine 

the buffer potential of these vegetated areas to reduce the impact of urban and agricultural 

runoff on water quality and wetland condition.   

Site Selection 

In addition to modifying OKRAM metrics, wetland site selection along the entire 

disturbance gradient (i.e., reference, fair, and poor condition) is a critical component for 

RAM calibration.  Wetlands were initially selected based on the extent of urban and 

agricultural impacts within the watershed via desktop analysis, but more consideration 

should be given to localized stressors within or adjacent to the wetland.  For instance, 

several sites that were considered to be in reference condition based on an a priori 

desktop classification (i.e., minimal urban and agricultural use within the watershed) 

were later found to be in poor condition due to on-site stressors (e.g., presence of cattle, 

excessive sedimentation, etc.).  With several of our a priori reference condition sites 

actually representing fair or poor condition, we were not able to sample the entire 

disturbance gradient.  In future calibration analyses for lacustrine fringe wetlands, we 

recommend thorough site reconnaissance to confirm that high quality wetlands are being 

sampled.  Further consideration in site selection should include wetlands along stable 

reservoirs and wetlands in areas with extreme water level fluctuations to assess the 

significance of this stressor on plant communities and wetland functions.  

Repeatability and Seasonal Effects 
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Using the 10% repeatability threshold established in Stein et al. (2009), all 

OKRAM metrics were deemed repeatable.  Metrics with the greatest differences in scores 

between evaluators were hydroperiod, hydrologic connectivity, vegetation, and habitat 

connectivity.  The hydroperiod metric accounts for alterations to the wetland’s 

hydrology.  Evaluators were inconsistent in their determination of the severity at which 

services provided by the reservoir (e.g., drinking water, hydropower generation, etc.) may 

impact the hydroperiod.  Additionally, hydrologic connectivity metric, which refers to the 

wetland’s connectivity with the surrounding upland, exhibited differences between 

practitioners due to inconsistencies when scoring the metric based on the presence of 

nearby impervious surface, riprap, and steep banks.  Providing more clarification of these 

stressors, including photos and descriptions, could greatly improve the repeatability of 

this metric.  We also found inconsistencies with the vegetation metric that derived from 

differences in the evaluators’ estimations of percent cover of invasive species.  Providing 

lists of commonly found invasive species within particular ecoregions and comparative 

charts for estimating percent cover could increase user consistency.  Lastly, habitat 

connectivity, which estimates the amount of contiguous habitat surrounding a wetland, 

could be improved by providing additional guidelines for other land-uses (e.g., hay 

meadows) that are not currently considered for this metric.  In general, providing 

additional guidance for each metric through the development of an OKRAM guidebook 

will certainly increase the method’s repeatability.  Furthermore, providing training 

opportunities and workshops will also increase consistency among users and ensure 

OKRAM metrics are interpreted correctly (Sutula et al. 2006; Herlihy et al. 2009). 
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We did not observe a significant seasonal influence on the majority of OKRAM 

metrics.  In some instances, the differences we observed between spring and summer 

assessments were reflecting actual changes in wetland condition (e.g., vegetation removal 

through mowing or haying, an increase in invasive species, etc.).  These changes may be 

a response to different management practices at different times of the year.  However, we 

did observe differences that can be attributed to seasonal influence.  For example, three of 

the 10 revisited wetlands had an increase in sedimentation likely due to increased 

precipitation and runoff in the spring.  We also found a significant seasonal influence on 

the nutrient metric (i.e., 30% score difference) for two wetlands due to extensive algal 

blooms in late summer that were no longer present in spring of the following year.  We 

recognize that the absence of algae at one time does not imply absence of excess 

nutrients, but rather that the method is only detecting it when algae is present.  As we 

continue to modify the method, we will continue examining additional indicators of stress 

and impairment.  Because OKRAM metric scores are aggregated into a single condition 

score, the minor differences observed for some metrics had little impact on overall 

scores.  Our results suggest that OKRAM is not significantly influenced by seasonal 

differences and can be applied at different times throughout the year.   

OKRAM and other RAMs 

We did not observe consistent relationships between CRAM and FACWET and 

Level 3 data.  There was no evidence to support that either of these two methods are able 

to detect condition in these wetlands.  When analyzing score distributions, overall 

OKRAM scores ranged from 0.61 to 0.92, CRAM scores ranged from 0.52 to 0.80, and 

FACWet scores ranged from 0.72 to 0.96 (Figure 4).  These narrow score ranges are 
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likely a result of the inability of the RAMs to detect condition in lacustrine fringe 

wetlands, and our site selection did not encompass the entire disturbance gradient.  

Despite our intensive reconnaissance efforts, we were unable to sample a sufficient 

number of least-disturbed or most-disturbed wetlands.  It is possible that lacustrine fringe 

wetlands on both ends of the disturbance gradient may be rare due to water levels being 

highly regulated in many of the reservoirs, resulting in many of the these wetlands being 

moderately impacted.  Further investigation is needed into the existing disturbance 

gradient for lacustrine fringe wetlands to determine potential sample wetlands for future 

calibration.   

CRAM typically scores wetlands lower than both OKRAM and FACWet, which 

is likely due to the high significance that the method places on wetland complexity (e.g., 

topographic complexity, plant structural complexity, structural patch richness, etc.).  

Wetlands generally had low plant structural complexity and interspersion, which 

decreased overall scores.  CRAM acknowledges that the method may not perform well in 

low-complexity seasonal wetlands (Collins et al. 2013).  Plant communities of lacustrine 

fringe wetlands are closely tied to water table levels and the frequency of inundation, 

which often results in linear strips of plant species (Wilcox et al. 2002).  Obligate wetland 

species (e.g., pondweeds [Potamogeton spp.], spikerushes [Eleocharis spp.]) occur near 

frequently inundated areas and species less dependent or tolerant of water grow outward 

towards the uplands (Cronk and Fennessy 2001).  Even when these wetlands have high 

plant species richness and diversity, the communities are typically not interspersed and 

have low structural complexity.   
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FACWet scores were not shown to be effective in assessing lacustrine fringe 

wetlands in Oklahoma.  The FACWet scoring procedure differs from OKRAM in that 

each variable in FACWet is scored by determining which category captures the wetland’s 

condition (e.g., reference standard [0.9 to 1.0], highly functioning [0.8 to 0.9], 

functioning [0.7 to 0.8], functioning impaired [0.6 to 0.7], and non-functioning [< 0.6]; 

Johnson et al. 2013).  FACWet variables are typically scored between 0.5 and 1.0, as 

scores less than 0.5 are rare, indicating a complete loss of wetland function.  This differs 

significantly from OKRAM where the potential scoring range for each metric is 0 to 1.0.  

The FACWet narrow score range could partially explain why we found stronger 

correlations with OKRAM and CRAM and LDIs at all three spatial scales.  

CONCLUSION 

RAMs provide a consistent, affordable approach for the evaluation of wetland 

condition.  However, without proper validation, methods can overstate or understate 

actual wetland condition (Fennessy et al. 2007).  Because RAMs may be applied for 

wetland regulatory and management purposes, misleading assessment results can have 

serious implications for wetland protection, restoration, and mitigation.  If RAMs have 

not been validated within the wetland class or location of concern, methods may 

underestimate the condition of high quality wetlands, resulting in fewer mitigation 

requirements.  In this case, valuable wetlands could be removed from the landscape 

without appropriate mitigation and restoration to offset wetland loss.  

Our calibration and validation analyses of OKRAM in lacustrine fringe wetlands 

did not provide support for the ability of the method to detect condition within these 

systems.  The current version of OKRAM is not applicable in lacustrine fringe wetlands, 
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but based on our initial assessment results, we were able to determine key stressors of 

these wetlands (e.g., impact of stable water levels of reservoirs and fluctuating 

hydroperiods due to significant withdrawal from reservoirs on wetland functions and 

plant communities) that OKRAM is not currently detecting.  Further refinement of 

existing metrics (e.g., hydroperiod, hydrologic connectivity, buffer filter, etc.) and the 

incorporation of additional metrics (e.g., accounting for the location of the wetland within 

the reservoir, the ratio of the watershed to the lake surface area, etc.) may allow us to 

better assess the condition of lacustrine fringe wetlands.  We also recommend further 

investigation into the occurrence of a wider range of disturbance gradients on the 

landscape as our efforts were initially hampered by the lack of extremes along the 

disturbance gradient for calibration.  Specifically, wetlands at both ends of the 

disturbance gradient (i.e., highly degraded and pristine sites) need to be sampled.  It is 

possible that lacustrine fringe wetlands only exist in moderately disturbed sites due to the 

nature of Oklahoma’s man-made and often highly managed reservoirs.  Lastly, further 

refinement of OKRAM and future validation analyses would be aided by additional 

information on the relationship between plant and invertebrate communities and water 

quality degradation from surrounding land-use practices.   

LITERATURE CITED 

 

Adamus P, Verble K, Rudenko M (2016) Manual for the Oregon rapid wetland 

assessment protocol (ORWAP, revised). version 3.1. Oregon Department of State 

Lands, Salem, OR, USA. 

Albert DA, Minc LD (2004) Plants as regional indicators of Great Lakes coastal wetland 

health. Aquatic Ecosystem Health and Management 7:233-247. 

American Public Health Association (1998) Standard methods for the examination of 

water and wastewater. United Book Press, Inc., Baltimore, MD, USA. 

Andreas BK, Lichvar RW (1995) Floristic index for assessment standards: A case study  



65 
 

 for northern Ohio. Technical Report WRP-DE-8. U.S. Army Corps of Engineers,  

 Waterways Experiment Station, Vicksburg, MS, USA. 

Apfelbeck R, Farris E (2005) Montana wetland rapid assessment method guidebook,  

 version 2.0. Montana Department of Environmental Quality, Helena, MT, USA. 

Bourdaghs M, Johnston CA, Regal RR (2006) Properties and performance of the floristic  

 quality index in Great Lakes coastal wetlands. Wetlands 26:718-735. 

Brinson MM (1993) A hydrogeomorphic classification for wetlands. Technical Report  

 WRP-DE-4. U.S. Army Corps of Engineers, Washington, DC, USA. 

Brown MT, Vivas MB (2005) A landscape development intensity index. Environmental  

 Monitoring and Assessment 101:289-309. 

Chen T, Lin H (2011) Application of a landscape development intensity index for 

assessing wetlands in Taiwan. Wetlands 31:745-756. 

Collins JN, Stein ED, Sutula M, Clark R, Fetscher AE, Grenier L, Grosso C, Wiskind A  

 (2013) California rapid assessment method (CRAM) for wetlands. Depressional  

 wetlands field book version 6.1, San Francisco Estuary Institute, Oakland, CA,  

 USA. 

Crawley MJ (2013) The R book second edition. John Wiley and Sons, Ltd. Chichester,  

 UK. 

Cronk JK, Fennessy MS (2001) Wetland plants: Biology and ecology. CRC Press, LLC.  

 Boca Raton, FL, USA. 

Dvorett D, Bidwell J, Davis C, DuBois C (2013) Assessing natural and anthropogenic  

 variability in wetland structure for two hydrogeomorphic riverine wetland  

 subclasses. Environmental Management 52:1009-1022. 

Dvorett D, Davis C, Sherrod E, Koenig P, Tramell B (2014) Oklahoma rapid wetland  

 condition assessment method (OKRAM) development: Initial validation of draft  

 OKRAM on interdunal wetlands. Wetland Program Development Project.  

 Oklahoma State University, Oklahoma Water Resources Board, Oklahoma  

 Conservation Commission, Stillwater, OK, USA. 

Farney RA, Bookhout TA (1982) Vegetation changes in a Lake Erie marsh (Winous  

 Point, Ottawa County, Ohio) during high water years. Ohio Journal of Science  

 82:103-107. 

Fennessy MS, Jacobs AD, Kentula ME (2007) An evaluation of rapid methods for  

 assessing the ecological condition of wetlands. Wetlands 27:543-560. 

Gafny S, Gasith A (1999) Spatially and temporally sporadic appearance of macrophytes  

 in the littoral zone of Lake Kinneret, Israel: Taking advantage of a window of  

 opportunity. Aquatic Botany 62:249-267. 



66 
 

Gafny S, Gasith A, Goren M (1992) Effect of water level fluctuation on shore spawning  

 of Mirogrex terraesanctae (Steinitz), (Cyprinidae) in Lake Kineret, Israel. Journal  

 of Fish Biology 41:863-871. 

Herlihy AT, Sifneos J, Bason C, Jacobs A, Kentula ME, Fennessy MS (2009) An  

 approach for evaluating the repeatability of rapid wetland assessment methods:  

 The effects of training and experience. Environmental Management 44:369-377. 

Hill NM, Keddy PA, Wisheu IC (1998) A hydrological model for predicting the effects  

 of dams on the shoreline vegetation of lakes and reservoirs. Environmental  

 Management 22:723-736. 

Homer CG, Dewitz JA, Yang L, Jin S, Danielson P, Xian G, Coulston J, Herold ND,  

 Wickham JD, Megown K (2015) Completion of the 2011 National Land Cover  

 Database for the conterminous United States: Representing a decade of land cover  

 change information. Photogrammetric Engineering and Remote Sensing 81:345- 

 354. 

Jacobs AD (2010) Delaware rapid assessment procedure version 6.0. Delaware  

 Department of Natural Resources and Environmental Control, Dover, DE, USA. 

Johnson B, Beardsley M, Doran J (2013) Functional assessment of Colorado wetlands  

 (FACWet) method version 3.0. Colorado Department of Transportation,  

 Environmental Programs Branch, Denver, CO, USA. 

Johnson KS (1993) Mountains, streams, and lakes of Oklahoma. Oklahoma Geology  

 Notes 53:180-188. 

Jones JR, Knowlton MF (1993) Limnology of Missouri reservoirs: An analysis of  

 regional patterns. Lake Reservoir Management 8:17-30. 

Jones JR, Knowlton MF, Obrecht DV, Cook EA (2004) Importance of landscape  

 variables and morphology on nutrients in Missouri reservoirs. Canadian Journal  

 of Fisheries and Aquatic Sciences 61:1503-1512. 

Keddy PA, Reznicek AA (1986) Great Lakes vegetation dynamics: The role of  

 fluctuating water levels and buried seeds. Journal of Great Lakes Research 12:25- 

 36. 

Kutcher TE (2011) Rhode Island rapid assessment method user's guide: RIRAM version  

 2.1. Rhode Island Department of Environmental Management, Kingston, RI,  

 USA. 

Mack JJ (2001) Ohio rapid assessment method for wetlands, manual for using version  

 5.0. Ohio EPA Environmental Protection Agency, Division of Surface Water, 401  

 Wetland Ecology Unit, Columbus, OH, USA. 

Mack JJ (2006) Landscape as a predictor of wetland condition: An evaluation of the  

 landscape development index (LDI) with a large reference wetland dataset from 

 Ohio. Environmental Monitoring and Assessment 120:221-241. 



67 
 

Mack JJ, Micacchion M, Augusta LD, Sablack GR (2000) Vegetation indices of biotic  

 integrity (VIBI) for wetlands and calibration of the Ohio rapid assessment method  

 for wetlands v. 5.0. Ohio Environmental Protection Agency, Division of Surface  

 Water, 401 Wetland Ecology Unit, Columbus, OH, USA. 

Margriter SC, Bruland GL, Kudray GM, Lepczyk CA (2014) Using indicators of land- 

 use development intensity to assess the condition of coastal wetlands in Hawai‘i.  

 Landscape Ecology 29:517-528. 

McDonald, ME (1955) Cause and effects of a die-off of emergent vegetation. Journal of  

 Wildlife Management 19:24-35. 

Merritt RW, Cummins KW, Berg MB (2008) An introduction to the aquatic insects of  

 North America, fourth edition. Kendall Hunt Publishing Company. Dubuque, IA,  

 USA. 

Meyer MD, Davis CA, Bidwell JR (2013) Assessment of two methods for sampling  

 invertebrates in shallow vegetated wetlands. Wetlands 33:1063-1073. 

Meyer MD, Davis CA, Dvorett D (2015) Response of wetland invertebrate communities  

 to local and landscape factors in north central Oklahoma. Wetlands 35:533-546. 

Micacchion M (2004) Integrated wetland assessment program part 7: Amphibian index of  

 biotic integrity (AmphIBI) for Ohio wetlands. Technical Report WET/2004-7.  

 Ohio Environmental Protection Agency Division of Surface Water, 401 Wetland  

 Ecology Unit, Columbus, OH, USA. 

Mohlenbrock RH (2005) Aquatic and standing water plants of the central Midwest,  

 Cyperaceae: Sedges. Southern Illinois University Press, Carbondale, IL, USA. 

Mohlenbrock RH (2006) Aquatic and standing water plants of the central Midwest,  

 Filicineae, Gymnospermae, and other monocots, excluding Cyperaceae: Ferns,  

 conifers, and other monocots, excluding sedges. Southern Illinois University  

 Press, Carbondale, IL, USA. 

Mohlenbrock RH (2008) Aquatic and standing water plants of the central Midwest,  

 Acanthaceae to Myricaceae: Water willows to wax myrtles. Southern Illinois  

 University Press, Carbondale, IL, USA. 

Mohlenbrock RH (2010) Aquatic and standing water plants of the central Midwest,  

 Nelumbonaceae to Vitaceae: Water locuses to grapes. Southern Illinois University  

 Press, Carbondale, IL, USA. 

Muldavin EH, Bader B, Milford ER, McGraw M, Lightfoot D, Nicholson B, Larson G  

 (2011) New Mexico rapid assessment method: Montane riverine wetlands,  

 version 1.1. New Mexico Environment Department, Surface Water Quality  

 Bureau, Santa Fe, NM, USA. 

Nestlerode JA, Hansen VD, Teague A, Harwell MC (2014) Application of a three-tier  

 framework to assess ecological condition of Gulf of Mexico coastal wetlands.  



68 
 

 Environmental Monitoring and Assessment 186:3477-3493. 

Oklahoma Climatology Survey (2015) Normal annual precipitation. Board of Regents of  

 the University of Oklahoma. Norman, OK, USA. 

Oklahoma Conservation Commission (2013) Oklahoma’s wetland program plan 2013- 

 2018.  Oklahoma Conservation Commission, Oklahoma City, OK, USA. 

Omernik JM (1987) Ecoregions of the conterminous United States. Annals of the  

 Association of American Geographers 77:118-125. 

Peterson AC, Niemi GJ (2007) Evaluation of the Ohio rapid assessment method for  

 wetlands in the western Great Lakes: An analysis using bird communities. Journal  

 of Great Lakes Research 33:280-291. 

Pierce C, Hinrichs B (1997) Response of littoral invertebrates to reduction of fish density:  

 Simultaneous experiments in ponds with different fish assemblages. Freshwater  

 Biology 37:397-408. 

R Core Team (2015) R: A language and environment for statistical computing. R  

 Foundation for Statistical Computing, Vienna, Austria. URL https://www.R- 

 project.org/ 

Reiss KC, Brown MT (2007) Evaluation of Florida palustrine wetlands: Application  

USEPA levels 1, 2, and 3 assessment methods. EcoHealth 4:206-218. 

Reiss KC, Brown MT, Lane CR (2010) Characteristic community structure of Florida’s  

 subtropical wetlands: The Florida wetland condition index for depressional  

 marshes, depressional forested, and flowing water forested wetlands. Wetlands  

 Ecology and Management 18:543-556. 

Rothrock PE, Simon TP, Stewart PM (2008) Development, calibration, and validation of  

 a littoral zone plant index of biotic integrity (PIBI) for lacustrine wetlands.  

 Ecological Indicators 8:79-88. 

Shay JM, de Geus PMJ, Kapinga MRM (1999) Changes in shoreline vegetation over a 50  

 year period in the Delta Marsh, Manitoba in response to water levels. Wetlands  

 19:413–25. 

Sifneos JC, Herlihy AT, Jacobs AD, Kentula ME (2010) Calibration of the Delaware  

 rapid assessment protocol to a comprehensive measure of wetland condition.  

 Wetlands 30:1011-1022. 

Smith DG (2001) Pennak’s freshwater invertebrates of the United States, fourth edition.  

 John Wiley and Sons, Inc., New York, NY, USA. 

Smith LM, Haukos DA (2002) Floral diversity in relation to playa wetland area and 

watershed disturbance. Conservation Biology 16:964-974. 

Smith RD, Ammann A, Bartoldus C, Brinson MA (1995) An approach for assessing  



69 
 

 wetland functions using hydrogeomorphic classification, reference wetlands, and  

 functional indices. U.S. Army Corps of Engineers, Engineer Research and  

 Development Center, Vicksburg, MS, USA. 

Stein ED, Fetscher AE, Clark RP, Wiskind A, Grenier JL, Sutula M, Collins JN, Grosso  

 C (2009) Validation of a wetland rapid assessment method: Use of EPA's level 1- 

 2-3 framework for method testing and refinement. Wetlands 29:648-665. 

Stapanian MA, Waite TA, Krzys G, Mack JJ, Micacchion M (2004) Rapid assessment  

 indicator of wetland integrity as an unintended predictor of avian diversity.  

 Hydrobiologia 520:119-126. 

Stehr FW (1987) Immature insects. Kendall Hunt Publishing Company. Dubuque, IA,  

 USA. 

Sutula MA, Stein ED, Collins JN, Fetscher AE, Clark R (2006) A practical guide for the  

 development of a wetland assessment method: The California experience. Journal 

 of the American Water Resource Association 42:157-175. 

Thorp JH, Covich AP (2010) Ecology and classification of North American freshwater  

 invertebrates, third edition. American Press, Amsterdam, Netherlands.  

Tyrl RJ, Barber SC, Buck P, Elisens WJ, Estes JR, Folley P, Magrath LK, Murray CL,  

 Ryburn AK, Smith BA, Taylor CES, Thompson RA, Walker JB, and Watson LE  

 (2009) Keys and descriptions for the vascular plants of Oklahoma. Flora  

 Oklahoma, Inc., Noble, OK, USA. 

U.S. Environmental Protection Agency (2002) Methods for evaluating wetland condition:  

 Developing an invertebrate index of biological integrity for wetlands. EPA-922- 

 R-02-019. U.S. Environmental Protection Agency, Office of Water, Washington, 

 DC, USA. 

U.S. Environmental Protection Agency (2006) Application of elements of a state water  

 monitoring and assessment program for wetlands. U.S. Environmental Protection 

 Agency, Wetlands Division, Washington, DC, USA. 

Uzarski DG, Burton TM, Genet JA (2004) Validation and performance of an invertebrate  

 index of biotic integrity for Lakes Huron and Michigan fringing wetlands during a  

 period of lake level decline. Aquatic Ecosystem Health and Management 7:269- 

 288. 

Wantzen KM, Machado FA, Voss M, Boriss H, Junk WJ (2002) Floodpulse-induced  

 isotopic changes in fish of the Pantanal wetland, Brazil. Aquatic Sciences 64:239- 

 251. 

Wardrop DH, Kentula ME, Stevens Jr DL, Jensen SF, Brooks RP (2007) Assessment of  

 wetland condition: An example from the Upper Juniata watershed in  

 Pennsylvania, USA. Wetlands 27:416-430. 

Wilcox DA, Meeker JE, Hudson PL, Armitage BJ, Black MG, Uzarski DG (2002)  



70 
 

 Hydrologic variability and the application of index of biotic integrity metrics to  

 wetlands: A Great Lakes evaluation. Wetlands 22:588-615. 

Wilcox DA, Apfelbaum SI, Hiebert RD (1984) Cattail invasion of sedge meadows  

 following hydrologic disturbance in the Cowles Bog wetland complex, Indiana  

 Dunes National Lakeshore. Wetlands 4:115-128. 

Woods AJ, Omernik JM, Butler DR, Ford JG, Henley JE, Hoagland BW, Arndt DS,  

 Moran BC (2005) Ecoregions of Oklahoma. U.S. Geological Survey, Reston, VA,  

 USA. 
 

 

 

 

 

 

 

 

 

 

  



71 
 

FIGURES AND TABLES 

Figure 1: Map of the study area and locations of the 30 lacustrine fringe wetlands 

sampled in 2014 within the Central Great Plains and Cross Timbers ecoregions.  

  

 

Central Great Plains 

Cross Timbers 
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Figure 2: Relationships between Oklahoma Rapid Assessment Method (OKRAM) overall 

scores and biotic attribute scores with a) plant species richness, b) native species richness, 

and c) Floristic Quality Index for lacustrine fringe wetlands.  Correlations are presented 

in terms of Spearman’s r (ρ). 
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Figure 3: Relationships between Oklahoma Rapid Assessment Method (OKRAM) overall 

scores and Landscape Development Intensity Index scores at 100 m, 500 m, and 1,000m 

buffers around lacustrine fringe wetlands.  Correlations are presented in terms of 

Spearman’s r (ρ). 
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Figure 4: Distributions of rapid assessment method scores for 30 lacustrine fringe 

wetlands assessed in 2014, a) Oklahoma Rapid Assessment Method (OKRAM), b) 

California Rapid Assessment Method (CRAM), and c) Functional Assessment of 

Colorado Wetlands (FACWet).  
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Table 1: Descriptions of lacustrine fringe wetlands sampled in 2014 in Oklahoma.  

Wetlands are categorized by a priori classification, which is based on land-use types 

within the surrounding landscape.  Reference represents best attainable condition with 

minimal anthropogenic disturbance and no hydrological alterations, fair condition 

wetlands occur in moderately disturbed landscapes, and poor condition wetlands 

represent highly altered systems (e.g., agricultural or urban landscapes). 

 

A priori            

Classification 

Number of 

Wetlands Size Range (ha) Mean Size (ha) 

Reference 12 0.09 - 0.50 0.23 

Fair 10 0.07 - 0.68 0.32 

Poor 8 0.03 - 1.10 0.31 

 

 

 

Table 2: Oklahoma land-use classes defined by National Land Cover Database (NLCD) 

and corresponding coefficients used to calculate Landscape Development Intensity Index 

(LDI) scores in this study (Brown and Vivas 2005; Mack 2006) 

 

Land-Use Classification LDI Coefficient 

Natural System 1.00 

Open Water 1.00 

Pasture 3.41 

Developed, Open Space 6.92 

Cropland 7.00 

Developed, Low Intensity 7.55 

Barren Land 8.32 

Developed, Medium Intensity 9.42 

Developed, High Intensity 10.00 
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Table 3: Relationships between Oklahoma Rapid Assessment Method (OKRAM) 

attributes and overall scores with Level 3 data based on Spearman’s rank correlation (ρ) 

for lacustrine fringe wetlands.  Level 3 data includes species richness (SPR), native 

species richness (NSPR), Floristic Quality Index (FQI), soil pH, soil sodium (Na), soil 

ammonium (NH4), soil nitrate (NO3), total suspended solids (TSS), sodium absorption 

ratio (SAR), and water temperature (WTemp).  Level 3 data also includes 

macroinvertebrate metrics % shredders, % Chironomidae (%Chiron), and % Diptera.  All 

relationships that are significant at α = 0.05 level are shown. 

 

OKRAM Level 3 Metric ρ P-value 

A1: Hydrologic Condition SPR  0.423 0.020 

 NSPR  0.445 0.010 

 FQI  0.387 0.034 

 Soil pH -0.435 0.016 

 Na (ppm) -0.429 0.018 

 TSS -0.370 0.044 

 SAR -0.423 0.020 

 % Shredders  0.600 0.018 

 NH3  0.615 0.015 

A2: Water Quality SAR -0.372 0.043 

 % Chiron  0.604 0.017 

 % Diptera  0.531 0.042 

 WTemp -0.543 0.036 

A3: Biotic Condition Soil NO3 (ppm) -0.513 0.004 

 Na (ppm) -0.404 0.027 

 SAR -0.392 0.032 

Overall OKRAM Na (ppm) -0.614 <0.001 

 TSS -0.453 0.010 

  SAR -0.621 <0.001 
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Table 4: Relationships between the Landscape Development Intensity Index (LDI) at 

three spatial scales (e.g., 100 m, 500 m, and 1,000 m) and the Oklahoma Rapid 

Assessment Method (OKRAM) attributes (i.e., hydrologic, water quality, and biotic 

condition), overall OKRAM, California Rapid Assessment Method (CRAM), and 

Functional Assessment of Colorado Wetlands (FACWet) scores for lacustrine fringe 

wetlands.  Correlations are presented in terms of Spearman’s r (ρ). 

LDI Level 2: RAMs ρ p-value 

LDI 100m A1: Hydrologic Condition -0.351 0.057 

 A2: Water Quality -0.506 0.004 

 A3: Biotic Condition -0.451 0.012 

 Overall OKRAM  -0.642 0.0001 

 Overall CRAM -0.544 0.002 

 Overall FACWet -0.378 0.039 

LDI 500m A1: Hydrologic Condition -0.330 0.072 

 A2: Water Quality -0.573 0.001 

 A3: Biotic Condition -0.557 0.001 

 Overall OKRAM  -0.664 < 0.0001 

 Overall CRAM -0.561 0.001 

 Overall FACWet -0.368 0.045 

LDI 1,000m A1: Hydrologic Condition -0.375 0.040 

 A2: Water Quality -0.550 0.002 

 A3: Biotic Condition -0.554 0.002 

 Overall OKRAM  -0.664 < 0.0001 

  Overall CRAM -0.500 0.005 

 Overall FACWet -0.247 0.188 
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Table 5: Two practitioners applied the Oklahoma Rapid Assessment Method (OKRAM) 

within 30 lacustrine fringe wetlands in central Oklahoma in 2014.  Repeatability was 

evaluated as the average difference and the maximum difference between the scores of 

two practitioners.  Ten of the 30 sites were revisited in the early growing season of 2015.  

Seasonal differences were assessed as the average and maximum difference in scores 

between spring and summer assessments.  

OKRAM  

Metrics and Attributes 

Avg. 

Practitioner 

Difference (%) 

Max. 

Practitioner 

Difference (%) 

Avg. Seasonal 

Difference (%) 

Max. Seasonal 

Difference (%) 

Hydroperiod 2.1 20.0 3.9 20.0 

Water Source 2.5 9.8 0.9 2.0 

Hydrologic Connectivity 2.9 43.0 1.8 7.0 

Attribute 1: Hydrology 2.1 14.3 1.6 6.5 

Nutrients 1.4 10.0 4.7 30.0 

Sediments 1.7 15.0 6.2 22.5 

Chemical Contaminants 0.1 3.8 0.0 0.0 

Buffer Filter 0.8 12.5 0.3 2.5 

Attribute 2: Water Quality 0.9 5.3 2.8 9.7 

Vegetation 5.0 34.8 10.5 25.2 

Habitat Connectivity 3.7 14.6 4.5 10.7 

Attribute 3: Biotic Condition 4.1 18.5 6.6 15.6 

Overall OKRAM Score 1.7 10.9 2.4 5.7 
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CHAPTER III 
 

 

EVALUATING THE EFFECTIVENESS OF FLORISTIC QUALITY ASSESSMENT 

AS A TOOL FOR DETERMINING THE CONDITION OF DEPRESSIONAL 

WETLANDS IN OKLAHOMA 

 

Sarah Gallaway1, Craig Davis1, Daniel Dvorett2, and Brooks Tramell2 

1 Department of Natural Resource Ecology and Management, Oklahoma State 

University, 008C Agricultural Hall, Stillwater, OK 74078 
2 Oklahoma Conservation Commission, 2800 N. Lincoln Suite 200, Oklahoma City, OK 

73105 

 

Abstract: Floristic Quality Assessment (FQA) has been recognized as a useful tool for 

evaluating wetland condition and guiding conservation and management efforts.  

However, with no standard protocols established, methodologies, including the 

calculation of FQA metrics (Mean C and Floristic Quality Index [FQI]), are inconsistent 

across studies.  In addition, FQA has not always undergone a validation analysis to 

confirm that results represent actual wetland condition.  Furthermore, FQA results are 

assumed to be valid across large regions, despite areas of high environmental variability 

(e.g., temperature, precipitation, topography, etc.).  Given the diverse ecoregions and 

environmental gradients across the state, Oklahoma provides an opportunity to examine 

spatial variation and environmental influence on FQA results.  We sampled 68 

depressional wetlands dispersed across the state to (1) evaluate the effectiveness of two 

methods of plant collection (e.g., transects and five-minute survey) and four metric 

calculations (e.g., with and without non-natives and species cover) for conducting FQAs, 

(2) validate FQA with two established methods (e.g., Landscape Development Intensity 

Index [LDI] and Oklahoma Rapid Assessment Method [OKRAM]), and (3) evaluate the 

influence of environmental variation (e.g., high and low precipitation) on FQI scores.  

When comparing FQIs from transect data with those from transects and the additional 

plant survey, we found that FQI scores increased significantly with increasing sampling 

effort.  We also found that FQI scores were significantly lower when including non-

native species compared to using only natives (P < 0.0001), but we found no significant 

differences when including species cover data for all species (P = 0.883) or for only 

natives (P =0.304).  In our validation analysis, we found strong positive relationships 
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between FQIs and OKRAM to indicate the method can detect changes in depressional 

wetlands along a disturbance gradient.  Additionally, strong negative relationships 

observed between FQI and LDI suggest that the method is effective at detecting stressors 

within the surrounding landscape.  When evaluating environmental influence on FQI 

scores, we found substantial variation between reference wetlands based on location, with 

higher scores occurring in eastern sites (high precipitation) and lower scores occurring in 

western sites (low precipitation).  We used Canonical Correspondence Analysis (CCA) to 

assess the relationship between plant communities and environmental variables, and 

found that precipitation was the single most important driver in the distribution of plant 

species.  Our results demonstrate that wetland plant communities can differ based on 

environmental gradients regardless of wetland condition.  This phenomenon highlights 

the importance of considering regional environmental differences when developing FQI 

thresholds for wetland assessments, especially across diverse states or regions.  To reduce 

the influence of regional differences on FQIs, as well as other vegetation-based methods, 

condition class thresholds and reference criteria can be established based on ecoregions 

and use HGM guidance to minimize variation between wetland types.  

Key Words: Depressional Wetlands, Environmental Gradients, Floristic Quality 

Assessment, Floristic Quality Index, Reference Condition  

Corresponding Author: 

Sarah Gallaway, sarah.gallaway@okstate.edu 

 

INTRODUCTION 

Assessment methods have become essential tools for state and federal agencies to 

evaluate the ecological integrity of wetlands and to make informed decisions to guide 

wetland conservation and management efforts.  Specifically, assessment methods can be 

applied to track broad trends in wetland health, prioritize wetlands for protection and 

restoration, and determine mitigation needs if wetlands are degraded or removed from the 

landscape (Fennessy et al. 2007).  Additionally, these methods provide agencies with the 

ability to comply with monitoring requirements for compensatory mitigation wetlands 

(National Research Council 2001; USACE 2002).  Assessment methods often rely on 

ecological indicators to evaluate condition (Mack et al. 2004; Niemi and McDonald 

2004), with vegetation being one of the most commonly used indicators (Cronk and 
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Fennessy 2001; USEPA 2002).  Plant communities are known to respond to 

anthropogenic disturbance in predictable ways (Taft et al. 1997), making them a reliable 

indicator of wetland condition.  For example, plant communities typically decrease in 

species richness and diversity as human disturbance (e.g., excessive sedimentation, 

nutrient enrichment, altered hydrology) within and surrounding a wetland increases (Jurik 

et al. 1994; Mahaney et al. 2003a, 2003b; Zedler and Kercher 2004).  Furthermore, 

anthropogenic disturbance often results in a plant community shifting to favor those 

species (e.g., annuals, non-natives, and invasives) more tolerant of disturbance (van der 

Valk 1981; Thompson et al. 1987; Hobbs and Huenneke 1992). 

Wetland condition has been evaluated using a wide range of assessment methods 

including Rapid Assessment Methods (RAMs) and Indices of Biotic Integrity (IBIs) for 

bird, invertebrate, and plant communities; however, one method based on floristic quality 

has become especially popular for combining measures of species richness and plant 

tolerances to disturbance (Bried et al. 2013).  The Floristic Quality Assessment (FQA) 

was originally developed by Swink and Wilhelm (1979, 1994) to assess prairies and 

undeveloped land within the Chicago Region, but it has since become widely used to 

evaluate wetland condition in many states (Ladd 1993; Andreas and Lichvar 1995; 

Herman et al. 1997; Taft et al. 1997; Freeman and Morse 2002; Bernthal 2003; Rothrock 

2004; Herman et al. 2006).  The premise of FQA is that conservative species are less 

tolerant of anthropogenic disturbance and as such, the proportion of conservative species 

within a wetland can provide a metric for the severity of human disturbance (Wilhelm 

and Ladd 1988; Lopez and Fennessy 2002; DeKeyser et al. 2003).  To calculate FQA 

metrics (e.g., Mean C and Floristic Quality Index [FQI]) experts assign a coefficient of 
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conservatism (C-value) to each plant species based on its fidelity to high quality remnant 

habitats that represent unaltered conditions (Swink and Wilhelm 1994; Taft et al. 1997).   

Although FQA has been established as a reliable method to evaluate wetland 

condition, there are limitations associated with plant-based indices, as well as 

inconsistencies in methodologies used across studies to determine FQI scores.  For 

instance, a complete list of plant species representative of the entire wetland is required to 

compute FQA metrics (Herman et al. 1997; Taft et al. 1997), but obtaining such data 

typically requires rigorous and time-consuming sampling efforts as well as additional 

resources.  Furthermore, C-values are assigned at the species level, and at times at the 

variety and subspecies level, which requires that each plant species must be identified to 

its lowest taxonomic level (USEPA 2002; Chamberlain and Brooks 2016).  

Unfortunately, such botanical expertise is typically not available, which is a confounding 

issue with using FQAs (Johnston et al. 2008).  Plant-based indices are also limited by 

when sampling occurs because differences in phenology and growth of plants influence 

detection and identification of plant species (Andreas et al. 2004).  In fact, FQI scores 

tend to increase with sampling date throughout the growing season (Matthews 2003), 

which emphasizes the importance of following standardized protocols (e.g., conduct plant 

surveys within the same time period or conduct multiple surveys throughout the growing 

season) to reduce inconsistencies in sampling methods and metric calculations that may 

limit comparisons of FQI scores (Lopez and Fennessy 2002).  

FQA results are presumed to be independent of location across the regions in 

which they are applied, which typically occurs at the state level (Spyreas 2014).  Because 

of this presumption, statewide implementation of FQA implies that natural variation is 
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neutral, and differences in scores reflect meaningful changes in floristic quality and 

wetland condition (Spyreas 2014).  However, plant community distributions are not 

restricted to state boundaries, and are known to vary considerably across ecological 

gradients (Pearman et al. 2006; Muratet et al. 2008), even in relatively undisturbed 

landscapes (Pickett and Parker 1994; Morgan and Short 2002).  FQA has been effective 

in evaluating wetland condition across many states, but a number of studies have reported 

variable and inconsistent performance of FQA across large geographic regions (Nichols 

1999; Reiss 2006; Johnston et al. 2010).  For example, Reiss (2006) found that FQI 

scores for reference depressional wetlands in Florida varied among locations, with higher 

FQI values in the Panhandle and in the north and lower values in the south and central 

regions.  Variations in scores between locations were attributed to both environmental 

conditions (e.g., climate) and human disturbances (e.g., increased development intensity, 

increased drainage, etc.) in the south and central regions.  Score variations across regions 

due to environmental gradients emphasize the need to calibrate and apply methods using 

biological indicators on a regional level, with best reference condition sites observed 

within each region (Karr and Chu 1997).  If assessment methods are not calibrated across 

the entire state, wetlands prone to lower scores could be unintentionally disfavored for 

protection and mitigation (Spyreas 2014).  To be effective, wetland assessments should 

indicate the degree of anthropogenic disturbance and should not be confounded by 

temporal or spatial variation or by natural disturbance (e.g., flooding, drought, wildfires, 

and hurricanes). 
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Objectives 

Despite FQA metrics being successfully applied in many states, there are no 

standard protocols established for plant data collection and metric calculation.  

Additionally, metric calculations for Mean C and FQI will vary based on the inclusion or 

exclusion of non-native species and the incorporation of species cover data.  With 

different FQA calculations likely producing different results, our first objective was to 

evaluate the effectiveness of two methods of plant data collection (e.g., transects vs. 

transects plus a five-minute survey) for FQA and four FQI metrics.  With Oklahoma 

currently in the process of developing assessment methods to evaluate the condition of all 

wetlands across the state, methods must be validated with independent measures of 

wetland condition statewide prior to integration within a monitoring and assessment 

program.  Bried et al. (2014) conducted a validation of FQA in Oklahoma with a Level 1 

assessment, the landscape development intensity index (LDI).  Our second objective is to 

provide additional validation support for FQA application in depressional wetlands across 

Oklahoma using LDI and an established Level 2 method, the Oklahoma Rapid 

Assessment Method (OKRAM).  Validation with OKRAM, a method conducted on-site, 

allows for consideration of local factors that may be overlooked by the landscape level 

assessment.  Additionally, with other studies indicating varying FQA results across large 

geographic regions, our third objective was to evaluate the method’s performance across 

Oklahoma.  Given the diverse ecoregions and variable precipitation gradient across the 

state, this provides an excellent opportunity to examine spatial variation and the influence 

of environmental gradients on FQA results.  Lastly, given the results from our three 
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objectives, we provide recommendations for using FQA as a wetland assessment tool in 

Oklahoma.   

METHODS 

Study Area  

The study area encompasses a large portion of Oklahoma that includes five Level 

III ecoregions (Central Great Plains, Cross Timbers, Central Irregular Plains, Arkansas 

Valley, and South Central Plains Ecoregions; Figure 1).  Ecoregions range from a dry-

subhumid area mostly underlain with red, Permian-age sedimentary rock and 

predominantly mixed-grass prairie and riparian forests in the Central Great Plains to 

uplands with oak-hickory-pine forests and bottomlands in floodplains in the South 

Central Plains (Woods et al. 2005).  Land use varies across the state with agriculture 

dominating in western Oklahoma and areas of urbanization and pastureland more 

common in central and eastern Oklahoma (Omernik 1987; Woods et al. 2005).  A large 

portion of the study sites occur in the Pleistocene Sand Dunes Ecoregion within the 

Central Great Plains.  This area has a high density of depressional wetlands that formed 

in the valleys of dune fields on old alluvial terraces of the Cimarron River.  Annual 

precipitation varies greatly across the study area, with precipitation ranging from 61 cm 

in western counties to 142 cm in the southeastern portion of the state (Oklahoma 

Climatology Survey 2015).  The growing season also varies substantially, with 175 days 

in northwestern counties and 225-230 days in the southeastern counties (Oklahoma 

Climatological Survey 2012).  The distribution of plant communities largely reflects the 

precipitation and temperature gradient that occurs across the state, with deciduous forests 

in the eastern third of the state shifting to tallgrass and mixed-grass prairies in central 
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portion of the state and shortgrass prairies occurring in the western portion of the state 

(Hoagland 2000).   

We identified depressional wetlands following Hydrogeomorphic (HGM) 

guidance (Brinson 1993; Smith et al. 1995) and a dichotomous key developed by Dvorett 

et al. (2012).  Depressional wetlands occur in topographic depressions that accumulate 

water from precipitation, surface flows, and groundwater discharge (Smith et al. 1995).  

Hydrodynamics are dominated by vertical fluctuations in water levels with water loss 

through outlets, evapotranspiration, or groundwater recharge (Smith et al. 1995).  

Depressional wetlands provide many functions and services, including groundwater 

recharge, nutrient cycling, water quality improvement, and habitat provisioning for 

various wildlife species during breeding, migration, and wintering stages.  They are 

typically found on private lands, with the majority occurring in the central and western 

portion of Oklahoma.  Depressional wetlands are highly dynamic systems with 

hydroperiods that vary based on climate and geographic location.   

We selected 28 depressional wetlands using National Wetlands Inventory (NWI) 

maps and 2008-2013 National Agricultural Imagery Program (NAIP) aerial imagery.  

Wetlands were dispersed along a precipitation gradient in which we used I-35 as the 

geographic boundary to separate high (east of I-35) and low (west of I-35) precipitation 

sites, with 14 sites selected from each.  We also collected data in 2014 from 40 interdunal 

depressional wetlands within the Cimarron Pleistocene Sand Dunes Ecoregion in north 

central Oklahoma.  Annual precipitation ranged from 69 cm to 94 cm for western 

wetlands (54 sites) and 94 cm to 135 cm for eastern wetlands (14 sites).  Wetlands were 

selected on public and private land and placed into a priori classes (reference, fair, and 
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poor) based on surrounding land-use practices (e.g., agricultural, urban, pastureland) and 

hydrologic alterations (e.g., culverts, dikes, ditches).  Least-disturbed sites were selected 

to represent reference wetlands (i.e., best attainable condition).  These sites were initially 

selected using GIS desktop surveys of surrounding land-use, and then field verified to 

confirm the lack of any hydrological alterations and biological disturbances.  In total, our 

study includes 68 wetlands, with 27 wetlands in the a priori least-disturbed class, 13 

wetlands in the a priori intermediate disturbance class, and 28 wetlands in the a priori 

high disturbance class (Table 1).  

Condition Determination 

 We used two wetland condition assessments, LDI and OKRAM, to define the 

condition of the 68 study wetlands.  These two assessments are applied at different scales 

(e.g., landscape scale and on-site) and overall condition scores were compared with FQA 

metric scores to evaluate the ability of the method to discern wetland condition along a 

disturbance gradient.   

 LDI is conducted remotely and defines wetland condition based on the land-use 

practices occurring within a specified buffer distance surrounding the wetland.  Land-use 

types (e.g., agricultural, residential, pastureland, etc.) are assigned coefficients ranging 

from 1 to 10 based on the severity of human disturbance, with a value of 1 assigned to 

natural areas (forest, wetlands, and open water) and a value of 10 assigned to highly-

developed urban areas.  We used GIS desktop application to calculate an LDI Index 

within a 1,000 m buffer surrounding each wetland.  In a previous depressional wetland 

study, land-use within 1,000 m of a wetland was shown to define wetland condition 

(Chapter 1), while accounting for a biological relevant scale at which wetland-dependent 



88 
 

wildlife such as waterbirds, amphibians, and mammals may use wetlands (Semlitsch 

1998; Gibbons 2003; Albanese and Davis 2015).  We calculated the percentage of land-

use types within the buffer based on 2011 National Land Cover Dataset (NLCD) (Homer 

et al. 2015) and each land-use type was assigned a weighted coefficient representing the 

level of disturbance (Brown and Vivas 2005; Mack 2006; Table 2).  LDI Index scores 

were calculated using the equation (Brown and Vivas 2005): 

LDItotal =  %LUi × LDIi 

where LDItotal = LDI ranking for landscape unit (i.e., buffer zone or watershed) and %LUi 

= percent of the total area in land-use i. Higher LDI Index scores represent greater 

deviations from least-disturbed systems.   

OKRAM, a rapid assessment method, has been validated and shown to be an 

effective method for the evaluation of the condition of depressional wetlands throughout 

the state (Chapter 1; Dvorett et al. 2014).  OKRAM is conducted on-site and defines 

condition based on the presence and severity of stressors within and adjacent to a 

wetland.  To minimize the effect of wetland size and area on results, a 1.0-hectare 

assessment area (AA) was selected within each wetland as a representative sample of the 

entire wetland.  For wetlands smaller than 1.0-hectare, the entire wetland was considered 

the AA.  For wetlands larger than 1.0-hectare, the AA was defined by a 1.0-hectare circle 

randomly placed within the wetland.  The method computes an overall condition score 

based on nine metrics aggregated into three attributes (hydrologic condition, water 

quality, and biotic condition).  Hydrologic condition detects alterations to the 

hydroperiod, water source inputs, and hydrologic connectivity to nearby uplands.  Water 

quality metrics evaluate the input of excessive nutrients, sediment, and chemical 
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contaminants into the wetland and the amount of surrounding buffer.  Lastly, biotic 

condition measures disturbance to the wetland’s plant community and the percentage of 

contiguous habitat surrounding the wetland.  OKRAM was applied in each wetland 

concurrently with the collection of plant community data.  

Wetland Vegetation 

We collected plant community data within each wetland between June and 

August 2014 and 2015.  We used a step-point method, in which transects were randomly 

placed throughout the AA, and all plant species occurring at each meter were recorded 

(Smith and Haukos 2002).  Data collection was conducted within the AA, rather than the 

entire wetland, to make results comparable with OKRAM scores by using the same study 

area.  However, the majority of wetlands (i.e., 60 of 68 sites) were 1.0 ha or smaller, thus 

the AA comprised the entire wetland.  We walked a minimum of three transects totaling 

at least 150 sampling points within each wetland.  All transects were placed along the 

elevational gradient, and terminated at the edge of the AA or upland transition zone.  

Because AAs were not always the same shape or size, transect length was variable.  All 

transects were traversed through the entirety of the AA to avoid sampling bias associated 

with stopping mid-way through the wetland.  This led to sampling more than 150 m of 

vegetation at several wetlands.  When total transect length exceeded 150 m, we randomly 

selected 150 points from the total number of points sampled for inclusion in analyses 

(Smith and Haukos 2002).  Additionally, we conducted a five-minute survey, in which 

we strategically walked through the wetland to collect species that were not encountered 

on transects.  All unknown plant species were collected, pressed, and identified to the 
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lowest taxonomic group possible using dichotomous keys (Mohlenbrock 2005, 2006, 

2008, 2010; Tyrl et al. 2009).   

To calculate FQA metrics, C-values developed for Oklahoma were assigned to all 

plant species (Ewing and Hoagland 2012), and those not listed were assigned values 

based on C-values developed for Kansas (Freeman and Morse 2002) and Missouri (Ladd 

1993).  Generally, low values (0-3) represent widespread taxa that are very tolerant of 

disturbance, intermediate values (4-6) are assigned to species that are associated with a 

specific plant community and tolerate moderate disturbance, and high values (7-10) 

represent species that are found in a narrow range of plant communities in advanced 

stages of succession with low disturbance tolerance (Andreas et al. 1995; Taft et al. 

1997).   

The primary components of FQA are Mean C and FQI, where Mean C is the 

average C-value of native vascular species observed at a site and FQI is the product of 

Mean C and the square root of native species richness (Swink and Wilhelm 1994).  

Modifications to FQI include the addition of non-native species (Lopez and Fennessy 

2002; Andreas et al. 2004; Cohen et al. 2004; Rothrock 2004; Taft et al. 2006) and 

measures of abundance (Taft et al. 1997; Poling et al. 2003; Gara 2013).  Higher Mean C 

and FQI scores typically indicate higher floristic integrity and a lower level of human 

disturbance for a given site.  Because there is no standard methodology for FQI metric 

calculation, we calculated four FQIs to examine the influence of including non-natives 

and species cover data to determine which is the most effective.  FQI incorporates species 

richness making it the more commonly used metric, therefore our study focuses on FQI.  
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Nonetheless, Mean C calculations are necessary to compute FQIs and the following 

formulas were used: 

𝑀𝑒𝑎𝑛𝐶native = (
∑ 𝐶𝐶𝑖 

𝑁
)         𝐹𝑄𝐼native = (

∑ 𝐶𝐶𝑖 

𝑁
) √𝑁 

𝑀𝑒𝑎𝑛𝐶all = (
∑ 𝐶𝐶𝑖 

𝑆
)         𝐹𝑄𝐼all = (

∑ 𝐶𝐶𝑖 

𝑆
) √𝑆 

𝐶𝑜𝑣𝑒𝑟𝑀𝑒𝑎𝑛𝐶native = (
∑ 𝐶𝐶𝑖𝑥𝑖

∑ 𝑥𝑖 
)        𝐶𝑜𝑣𝑒𝑟𝐹𝑄𝐼native = (

∑ 𝐶𝐶𝑖𝑥𝑖

∑ 𝑥𝑖 
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𝐶𝑜𝑣𝑒𝑟𝑀𝑒𝑎𝑛𝐶all = (
∑ 𝐶𝐶𝑖𝑥𝑖

∑ 𝑥𝑖 
)       𝐶𝑜𝑣𝑒𝑟𝐹𝑄𝐼all = (

∑ 𝐶𝐶𝑖𝑥𝑖

∑ 𝑥𝑖 
) √𝑆 

where CC is the coefficient of conservatism for species i, x is the cover of species i, N is 

native species richness, and S is total species richness.  

Condition Classes 

During our initial site selection, wetlands were placed into a priori condition 

classes (i.e., reference, fair, and poor) to assure that sites were sampled along the entire 

disturbance gradient.  We then used these a priori determinations to establish condition 

classes based on FQI scores.  For instance, we used the 25th percentile of FQI scores 

within the a priori reference class to represent reference condition, and the 75th percentile 

of high disturbance wetlands to represent poor condition (Sifneos et al. 2010).  Sites 

falling between the thresholds for reference and poor condition were considered to be in 

fair condition.  The same protocol was used in a previous study to establish condition 

classes based on OKRAM scores (e.g., >0.84 represents reference class and <0.50 

represents poor condition; Chapter 1).  We then evaluated the agreement between each 

classification protocol (i.e., a priori, classes based on FQI scores, and classes based on 

OKRAM scores).    
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Statistical Analyses 

To meet our first objective and determine the most effective FQA method, we 

used paired t-test analyses to compare FQI scores (1) with and without additional species 

from the five-minute survey, (2) with and without non-native species, and (3) with and 

without species cover data.  Because one or both of the assumptions of parametric 

statistics tests (normality and equality of variance) were violated in all of the data, paired 

comparisons were performed using a Wilcoxon Signed-Rank Test (α = 0.05).  To address 

our second objective and provide validation support for the use of FQI in Oklahoma 

depressional wetlands, we evaluated the relationships between FQI and other established 

methods (e.g., OKRAM and LDI) using Spearman’s rank correlation (α = 0.05) in R 

version 3.2.2. (Crawley 2013; R Core Development Team 2015).  Lastly, we used 

Canonical Correspondence Analysis (CCA) to assess the relationship between plant 

communities and environmental variables, including site condition (i.e., reference vs 

disturbed), average annual precipitation, and inundation at the time of sampling (i.e., wet 

vs dry).  All analyses were conducted using Canoco 5 (Šmilauer and Lepš 2014; ter 

Braak and Smilauer 2014).  CCA is a direct gradient analysis that combines ordination 

and regression to define axes that are linear combinations of the environmental variables 

that best explain the variation in the vegetation data.  We used constrained selection of 

environmental variables and Monte Carlo permutations tests with 5000 randomizations to 

test the significance of the constrained ordination (Šmilauer and Lepš 2014). 

RESULTS  

FQI Methodology 
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We identified 275 plant species along transects within the 68 study wetlands.  We 

also identified an additional 152 plant species during the five minute survey following 

transect sampling.  On average, we collected 3.2 additional species per site during the 

five minute survey, with a maximum of 11 additional species at one site.  We compared 

Mean C and FQI scores from transects and transects combined with the five minute 

additional plant survey (Table 3).  Three of the four Mean C calculations (i.e., 

MeanCnative, CoverMeanCnative, and CoverMeanCall) were not significantly different when 

including additional survey species.  Alternatively, all four of the FQI calculations were 

significantly different when including these additional species at the α = 0.5 level.  Our 

results demonstrate that increased sampling effort (e.g., five-minute survey) can 

significantly increase FQI scores; therefore, all species collected (e.g., transect data and 

additional survey data) were included in subsequent analyses.  

In evaluating the influence of species abundance on FQI scores, abundance 

weighting did not improve relationships with OKRAM or LDI, and FQI scores did not 

change significantly between FQInative and CoverFQInative (P = 0.304) or between FQIall 

and CoverFQIall (P = 0.883).  Alternatively, when comparing FQIs with and without non-

natives, we found that scores changed significantly (FQInative and FQIall P < 0.0001; Table 

4).  When including non-native species, FQI scores decreased for 57 sites, increased for 1 

site, and scores remained the same for 10 sites.  Based on our results and the recognition 

of non-natives as indicators of anthropogenic disturbance for vegetation assessments 

(Lopez and Fennessy 2002; Rooney and Rogers 2002), we determined that FQIall would 

be the most reliable indicator of wetland condition; therefore, it was used in all of the 

following analyses.   
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FQI Validation 

Score ranges for OKRAM (i.e., 0.25 to 0.98) and LDI (i.e., 1.24 to 9.0) both 

reflect our site selection along the entire disturbance gradient.  We found strong, 

consistent relationships between FQIs, OKRAM, and LDI (Table 5), with the strongest 

correlations being FQIall and OKRAM (ρ = 0.749, P < 0.0001) and FQIall and LDI (ρ = -

0.595, P < 0.0001; Figure 2).  We also found significant relationships between FQIall and 

OKRAM attributes (hydrologic condition: ρ = 0.496, P < 0.0001, water quality: ρ = 

0.652, P < 0.0001, and biotic condition: ρ = 0.814, P < 0.0001).   

Condition Classes 

Wetland condition classes were assigned based on FQIall scores using the 

following criteria: reference condition was defined as >11 and poor condition as <8.  

Sites falling between this range were considered to be in fair condition.  Of the 68 sites, 

26 were considered reference condition, 12 fair condition, and 30 poor condition.  

Additionally, we used the same approach (i.e., 25th percentile of a priori reference and 

75th percentile of a priori poor condition) to determine condition class thresholds for 

eastern (high precipitation) and western (low precipitation) sites.  For the eastern sites, 

sites with FQI scores >18 were reference condition and sites with FQI scores <10 were 

poor condition.  Alternatively, for the western sites FQI scores >10 represent reference 

condition and <7 represent poor condition.  In defining condition classes for eastern and 

western sites, we found condition thresholds were quite different between the two 

regions.  For instance, wetlands with FQI scores of 10 were considered reference 

condition in the western region, but wetlands with similar scores in the eastern region 

were considered in poor condition. 
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We evaluated the agreement between reference wetlands assigned using FQIall 

scores and those assigned using OKRAM scores across all sites as well as within the 

eastern and western region.  Of the 68 study sites, 18 sites (6 eastern and 12 western 

sites) were categorized as reference condition based on OKRAM scores.  When 

comparing condition classes defined by FQIall scores, there was an 89% agreement (i.e., 

16 reference sites) with OKRAM.  When applying condition classes defined by only 

western sites, there was a 94% agreement (i.e., 17 reference sites) with OKRAM.  

Finally, when applying classes based only on eastern sites, we found a 22% agreement 

with only four reference sites in agreement.   

Relationship of Plant Communities to Environmental Variables 

We included 326 plant taxa collected from 68 wetlands in the CCA.  The sum of 

all canonical eigenvalues was 1.19, and the total variance was 13.0.  The first and second 

CCA axes accounted for 7.4 % of the variance in species occurrences with 79.9% of the 

variation explained by environmental variables.  The first CCA axis revealed a strong 

positive correlation to precipitation (0.81), indicating that average annual precipitation is 

the primary driver in plant species occurrence (Figure 3).  The second CCA axis is 

positively correlated with reference site condition (0.77) and negatively correlated with 

disturbed site condition (-0.77).   

DISCUSSION 

As the development of wetland assessments continues in Oklahoma, it is 

imperative that performance of various wetland assessments be evaluated statewide and 

any existing limitations of these assessments be addressed prior to implementation for 

wetland management and conservation efforts.  Without proper method validation, 
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methods may produce misleading results for ambient monitoring programs and impede 

regulatory decision-making (e.g., mitigation, restoration).  This study examines the 

inconsistencies in using FQA to determine wetland condition and provides a statewide 

validation of FQA based on two established wetland assessment methods (e.g., LDI and 

OKRAM).  Additionally, we evaluated the potential use of FQA to discern differences in 

depressional wetland condition, particularly reference condition, given Oklahoma’s 

diverse ecoregions and environmental gradients.   

FQI Methodology 

With no standard methodology established for the use of FQA metrics (i.e., Mean 

C and FQI), it is important to consider the influence of different vegetation collection 

techniques and metric calculations on scores.  Our results demonstrate that FQI scores 

can increase significantly with increasing sampling effort (i.e., five-minute survey), 

which is likely the result of increasing species richness, as well as increasing the 

detection probability for rare or conservative species.  Taft et al. (1997) also concluded 

that a few conservative species could have an impact on FQI scores, thus demonstrating 

the necessity for a comprehensive species list for each site.  When evaluating the 

influence of species cover on scores, we found that the relationships between FQI and 

both OKRAM and LDI were not improved with the addition of abundance data.  This 

suggests that while a complete list of species is necessary, sampling protocols to collect 

species cover are not necessary and a more rapid walk-through inventory could be 

sufficient, assuming all species are detected.  Cohen et al. (2004) also noted that 

collecting abundance data is often too time consuming or too costly.  Lastly, we found 

that the inclusion of non-native species resulted in significant changes to FQI scores.  
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These results are not surprising given that the establishment of non-natives has been 

shown to indicate ecosystem stress and anthropogenic disturbance (Simberloff et al. 

1997; Cronk and Fennessy 2001).  Thus, FQI methods using non-natives are likely to 

provide a more realistic evaluation of floristic quality (Fennessy et al. 1998; Bowles and 

Jones 2006; Cohen et al. 2004; Rocchio 2007).    

FQI Validation 

Validation is an important component of assessment method development to 

ensure that results are representative of actual wetland condition.  FQI has been validated 

in other states using Level 1, 2, and 3 data.  For example, Lopez and Fennessy (2002) 

found significant correlations between FQI and a Level 1 disturbance rank index for 20 

depressional wetlands in Ohio.  Additionally, Cohen et al. (2004) assessed 75 

depressional wetlands in Florida and found significant relationships between FQI and 

LDI, as well as with soil and water chemistry metrics (e.g., turbidity, total phosphorus, 

total nitrogen, and organic matter).   

The consistent relationships we observed between FQI and other established 

assessment methods (e.g., OKRAM and LDI) demonstrate the ability of FQI to detect 

changes in depressional wetland condition along a disturbance gradient.  Not surprisingly, 

FQI had the strongest relationship with the OKRAM biotic condition attribute, which 

identifies disturbances to wetland plant composition and structure.  Additionally, the 

strong relationships between FQI and the OKRAM water quality attribute indicate that 

the method is detecting the presence of water quality stressors (e.g., excessive nutrients, 

sedimentation, chemical contaminants, and the lack of buffer) and their influence on plant 

communities.  Although FQI is an effective method, we found certain hydrological 
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stressors that the method did not detect, such as culverts diverting water out of the 

wetland, nearby impervious surfaces, and levees obstructing the wetland’s hydrologic 

connectivity with adjacent uplands.  Collecting data to characterize hydrological 

alterations alongside FQI application may provide a more comprehensive outlook on 

wetland condition.   

Variation in Reference Condition across Sites 

The utility of FQI in wetland management programs (e.g., monitoring, mitigation, 

and restoration) can be improved with the establishment of reference condition criteria 

for the comparison of individual wetlands.  FQI reference condition criteria have been 

used to estimate the integrity of wetlands being impacted, set mitigation ratios, and 

evaluate compensatory wetland mitigation projects (Herman et al. 1997; Streever 1999; 

Herman et al. 2001; Matthews et al. 2005; Matthews and Endress 2008; Matthews et al. 

2009).  FQI scores are often used as benchmarks to categorize wetlands into condition 

classes and used as targets for performance standards in mitigation and restoration 

projects.  For example, performance standards in the Chicago District include an FQI 

score >20 and a Mean C >3.5 (Rocchio 2007).  Bried et al. (2014) also recommended an 

FQI value of 20 to identify reference wetlands in Oklahoma.   

We applied this benchmark (i.e., FQI score >20) to wetlands identified by 

OKRAM as reference condition, and found that no wetlands in the western portion of the 

study area and only four in the eastern portion of the study area met the criteria.  We 

observed considerably lower FQI scores for western reference wetlands (e.g., range of 8.0 

to 17.2), with a median of 13.  The same held true when applying reference condition 

determined from eastern wetlands (i.e., FQI >18) statewide.  These results indicate that a 
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single threshold to designate reference condition cannot be applied statewide, as western 

wetlands are unlikely to meet the criteria.  Other studies have documented floristic 

quality patterns across regions, with FQI scores typically increasing latitudinally (Reiss 

2006; Johnston et al. 2010).  For example, Johnston et al. (2010) found strong latitudinal 

variation in FQI scores from coastal emergent wetlands along the Great Lakes, with 

scores increasing to the north.  Score variations were attributed to a combination of 

anthropogenic disturbance and natural variation based on latitudinal differences in mean 

annual temperature, length of growing season, and soil texture (Johnston et al. 2010).  We 

found similar trends with FQI scores increasing from west to east along a precipitation 

gradient, as well as other environmental gradients (e.g., mean annual temperature and 

length of growing season).   

Because FQI is calculated with species richness, several authors have criticized 

the method as being biased towards high richness sites and recommend using Mean C as 

an alternative when making site comparison (Taft et al. 1997; Francis et al. 2000; 

Matthews 2003; Cohen et al. 2004; Miller and Wardrop 2006; Bried et al. 2013).  When 

using Mean C to identify reference wetlands across the state, we reached the same 

conclusions as with FQI, with higher values in the east (2.47 to 5.0) and lower values in 

the west (1.86 to 3.76).  On average, plant communities within eastern reference wetlands 

were comprised of half as many low C-values species (i.e., 0-3) and almost five times as 

many high C-values species (i.e., 7-10), compared to western wetlands (Table 6).   

Using plant communities to assess wetland condition relies on the assumption that 

species are stable in composition or in quality (Deimeke et al. 2013).  However, plant 

community shifts in response to hydrology and climate are well documented, with 
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species composition varying based on water depth, water chemistry, flow rates, and 

timing of inundation (Gosselink and Turner 1978; van der Valk 1981; Spence 1982; 

Wilcox 1995; Mitsch and Gosselink 2000; Euliss et al. 2004).  Plant community shifts are 

especially common in ephemeral depressional wetlands that may undergo multiple wet 

and dry cycles in a single season.  Because FQI is based on the conservatism of 

individual plant species, FQI scores will vary as a plant community changes in response 

to the wetland hydrology.  For example, Euliss and Mushet (2011) found that FQI scores 

for seasonal wetlands varied dramatically over a four year study based on plant 

community shifts due to natural wet and dry cycles.  Annual species, typically with lower 

C-values, dominated wetlands under dry conditions and when flooded, annuals were 

replaced by perennials, which are generally more conservative species (i.e., higher C-

values).  We found similar relationships between FQI and hydrology with FQI scores 

increasing as mean annual precipitation increases along a gradient from west to east.   

FQI is intended to differentiate between high and low quality wetlands based on 

the presence of plant species (i.e., conservative vs. stress-tolerant), but our CCA results 

suggest that precipitation is the primary driver of plant species occurrence regardless of 

site condition (i.e., reference vs. disturbed).  Annual precipitation in eastern Oklahoma 

typically promotes prolonged flooding in depressional wetlands to support a variety of 

wetland plants.  In comparison, decreased rainfall in western Oklahoma often results in 

drought conditions that promote the establishment of more tolerant species (e.g., annuals, 

invasives, and non-natives), as well as the encroachment of upland species (Mulhouse et 

al. 2005; Euliss and Mushet 2011; Lovell and Menges 2013; Merlin et al. 2015).  Based 

on the premise of FQI, this resulting preference for tolerant species in western plant 
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communities is likely to impact the method’s effectiveness at differentiating wetland 

condition.   

Not all studies have concluded that FQI and Mean C were influenced by natural 

variation (Cohen et al. 2004; Bried et al. 2013).  However, it is possible that wetlands in 

these studies did not undergo significant disturbance prior to or during the sampling 

season.  For example, Bried et al. (2013) found that Mean C was not confounded by 

natural variation based on wetland size, surface water depth, or time of sampling within 

the growing season; however, all of the wetlands remained inundated throughout the 

study.  The authors acknowledged that FQA metrics might be subjected to greater 

seasonal and inter-annual variation when applied in drought-prone regions.  The 

influence of drought events on plant-based indices has been recognized by others, and 

their use is often not recommended following extreme weather events (Mack et al. 2008; 

Wilson et al. 2013).  Hargiss et al. (2008) recommends including surrounding upland 

species in plant-based indices to account for the shift in species due to natural 

hydrological fluctuations.  This method may improve FQI results in ephemeral 

depressional wetlands that are often dry during sampling.   

In addition to drought susceptibility, western Oklahoma has endured more 

extreme land-use changes as compared to eastern Oklahoma.  Although the state as a 

whole has undergone significant changes in land-use, the severity of disturbance and 

stressors associated with land-use types differ considerably across the state.  For instance, 

anthropogenic land-use in eastern Oklahoma mainly consists of pastureland and hay 

meadows (i.e., 67% of total disturbed land), with smaller areas of urban development and 

agriculture.  Whereas, land-use in western Oklahoma includes urban development and 
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pastureland, but the predominant land-use is agriculture, which accounts for 83% of 

disturbed land-use (NLCD 2011).  While urban development and pastureland have 

impacted wetlands statewide, wetlands in central and western Oklahoma have likely 

undergone greater stress as they are imbedded in an agriculturally intensive landscape.  

Although reference wetlands were surrounded by at least a 250 m buffer, it is possible 

these wetlands are being influenced by historic and current agricultural practices at a 

larger scale.  For instance, wetlands may be susceptible to wind-blown sediment deposits, 

which may also carry pesticides during aerial application.  Therefore, wetlands in 

relatively undisturbed watersheds, but within an agricultural landscape, may be impacted 

to a certain degree (Irwin et al. 1996; Thurman et al. 2000; Skagen et al. 2008).   

Depressional wetlands in central and western Oklahoma have been characterized 

as being naturally low in vegetation complexity and diversity (Dvorett et al. 2014).  With 

plant communities in stressful environments favoring stress-tolerant plant species (Grime 

1979; Keddy and MacLellan 1990; Wisheu and Keddy 1992), we would expect to find a 

greater proportion of these species in these regions, where seasonal wetlands have 

historically undergone a greater severity of natural and anthropogenic disturbance.  

Despite being surrounded by native and relatively undisturbed grasslands, plant 

communities in western reference wetlands were comprised of more stress tolerant 

species compared to eastern reference wetlands.  FQI is intended to characterize and 

compare floristic quality between wetlands, but FQI scores may reflect differences in 

plant communities rather than floristic quality (Andreas et al. 2004).  As such, plant 

communities with naturally high proportions of habitat specialists will likely score higher 

than equally intact communities consisting primarily of generalist species.   
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CONCLUSION 

A critical component in conducting wetland assessments is to define the overall 

objective and evaluate which method is the most appropriate to produce desirable results.  

For instance, if the objective is to designate natural areas with the highest floristic 

integrity across the state, then FQI application can identify wetlands that represent natural 

remnant condition.  Alternatively, if the objective is to define current wetland condition 

for monitoring and regulatory purposes, then FQI may be prone to produce misleading 

results without prior development of performance criteria that considers regional 

variation in precipitation and other climatic variables.  Because plant communities are 

known to vary along ecological gradients, an inherent bias exists when applying 

biological indicator methods statewide.  While this notion may be irrelevant when 

identifying biological integrity based on comparisons with historic or pre-European 

settlement condition, it needs to be addressed when evaluating wetland condition for 

applied management (Nichols 1999; Reiss 2006; Matthews and Endress 2008).   

To be an effective management tool for monitoring, restoration, and mitigation, 

wetland assessments should distinguish between high and low quality wetlands.  Ideally, 

compensatory mitigation occurs within the same region in which wetlands were 

destroyed, in an effort to maintain “no net loss” policy (National Wetlands Policy Forum, 

1988).  If assessment methods are not calibrated within each region, the actual quality 

and value of impacted wetlands may be greatly underestimated.  Likewise, if reference 

criteria are not appropriate across the region, mitigation performance standards may not 

be achievable, increasing costs throughout the mitigation process.  In applying the 

reference standard previously established for Oklahoma and other states (i.e., FQI > 20), 
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our results suggest that there may be no reference wetlands found in the western half of 

the state, and the majority would occur within the southeastern region of the state.  

Although FQI is an invaluable tool for designating high floristic integrity, the method 

might overlook important wetlands for protection and mitigation.  While, wetlands in 

western Oklahoma have undergone more natural and anthropogenic disturbance 

compared to wetlands located in eastern Oklahoma, they contribute valuable functions 

and services, including providing critical breeding, migration, and overwintering habitat 

for waterfowl and shorebirds, habitat for various other wildlife species, groundwater 

recharge, and water quality improvements through sediment and nutrient retention in an 

agriculturally dense landscape.   

Our study demonstrates that wetland plant communities can differ based on 

environmental gradients regardless of wetland condition.  This phenomenon highlights 

the importance of considering regional environmental differences when developing FQI 

thresholds for wetland assessments, especially across diverse states or regions.  To reduce 

the influence of regional differences on FQIs, as well as other vegetation-based methods, 

condition class criteria can be established based on ecoregions and use HGM guidance to 

minimize variation between wetland types.   
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FIGURES AND TABLES 

Figure 1: Map of Oklahoma with the locations of depressional wetlands sampled in 2014 

and 2015.  Insert shows a cluster of wetlands sampled within the Cimarron River 

Pleistocene Sand Dunes Ecoregion.  Wetlands were separated based on high (east of I-35; 

14 sites) and low precipitation (west of I-35; 54 sites).   
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Figure 2: The relationships between Floristic Quality Index using total species richness 

(FQIall) with the Landscape Development Intensity Index (LDI) at 1,000 m buffer and the 

Oklahoma Rapid Assessment Method (OKRAM) using Spearman’s rank correlation (ρ).  
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Figure 3: Biplot of the first and second CCA axes for plant taxa collected from 

depressional wetlands across Oklahoma in 2014 and 2015.  Environmental variables are 

precipitation (PREC), reference condition (REF), disturbed condition (DIST), and 

hydrological condition of the wetland during sampling (DRY or WET).  Plant species are 

categorized by C-values to represent tolerance to anthropogenic disturbance.  Low values 

(0-3) represent widespread taxa very tolerant of disturbance (black triangle), intermediate 

values (4-6) represent species tolerant of moderate disturbance (purple diamond), and 

high values (7-10) represent species only found in a narrow range of plant communities 

with very low disturbance tolerance (blue triangle) (Andreas et al. 1995; Taft et al. 1997).  

Plant species shown are Panicum capillare (PACA), Teucrium canadense (TECA), 

Ambrosia psilostachya (AMPS), Cephalanthus occidentalis (CEOC), Salix nigra (SANI), 

Polygonum hydropiperoides (POHY), Carex lupuliformis (CALU), Ludwigia palustris 

(LUPA), Diospyros virginiana (DIVI), Campsis radicans (CARA), Dichanthelium 

dichotomum (DIDI), Quercus nigra (QUNI), Juncus effusus (JUEF), Lycopus virginicus 

(LYVI), Trachelospermum difforme (TRDI), Impatiens capensis (IMCA), Liquidambar 

styraciflua (LIST), Mikania scandens (MISC), Panicum coloratum (PACO), and 

Sesbania herbacea (SEHE).  
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  Species

High C-values (7-10) Mid C-values (4-6) Low C-values (0-3)
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Table 1: Descriptions of depressional wetlands sampled across Oklahoma in 2014 and 

2015.  Wetlands were categorized by a priori classes based on the land-use types 

surrounding wetlands.  Reference represents best attainable condition with minimal 

anthropogenic disturbance and no hydrological alterations, fair condition wetlands were 

moderately disturbed, and poor condition wetlands were significantly altered (e.g., 

agricultural or urban landscapes).  Wetlands were further separated within eastern (high 

precipitation) and western (low precipitation) Oklahoma. 

A priori 

Condition 

Number of 

Wetlands 

Wetland Size 

Range Mean Size Eastern  Western 

Reference 27 0.05 - 2.27 0.59 6 21 

Fair 13 0.10 - 1.00 0.68 4 9 

Poor 28 0.60 - 2.10 0.61 4 24 

 

 

Table 2: Oklahoma land-use classes defined by National Land Cover Database (NLCD) 

and corresponding coefficients used to calculate Landscape Development Intensity Index 

(LDI) scores (Brown and Vivas 2005; Mack 2006) 

Land-use Classification LDI Coefficient 

Natural System 1.00 

Open Water 1.00 

Pasture 3.41 

Developed, Open Space 6.92 

Cropland 7.00 

Developed, Low Intensity 7.55 

Barren Land 8.32 

Developed, Medium Intensity 9.42 

Developed, High Intensity 10.00 
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Table 3: Comparison of Floristic Quality Assessment (FQA) metric scores (e.g., Mean C 

and Floristic Quality Index [FQI]) calculated with transect data only and those calculated 

with transect data plus additional species collected during a five-minute survey.  Paired t-

test analyses were conducted using the Wilcoxon Signed-Rank Test and metric scores 

were considered to be significantly different at the α = 0.05 level. 

FQA Metrics                    V P-value 

MeanCnative 658.5 0.472 

FQInative 51.0 <0.001 

CoverMeanCnative 778.0 0.703 

CoverFQInative 0.0 <0.001 

MeanCall 493.0 0.013 

FQIall 46.0 <0.001 

CoverMeanCall 599.0 0.071 

CoverFQIall 0.0 <0.001 

 

Table 4: Comparison of four methods to calculate Floristic Quality Assessment metrics 

(Mean C and Floristic Quality Index [FQI]) such as, the inclusion and exclusion of non-

native species and species cover.  Paired t-test analyses were conducted using the 

Wilcoxon Signed-Rank Test and metric scores were considered to be significantly 

different at the α = 0.05 level. 

Comparison V P-value 

NSPR vs. SPR  0.0 <0.001 

MeanCnative vs. MeanCall 1711.0 <0.001 

FQInative vs. FQIall 1705.0 <0.001 

CoverMeanCnative vs. CoverMeanCall 1711.0 <0.001 

CoverFQInative vs. CoverFQIall 1359.0 <0.001 

FQIall vs. CoverFQIall 955.0 0.883 

FQInative vs. CoverFQInative 775.0 0.304 

MeanCall vs. CoverMeanCall 1012.0 0.806 

MeanCnative vs. CoverMeanCnative 758.0 0.249 
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Table 5: The relationships of Floristic Quality Index (FQI) scores with Landscape 

Development Intensity Index (LDI) scores and Oklahoma Rapid Assessment Method 

(OKRAM) attribute and overall scores presented in terms of Spearman’s r (ρ).  All 

relationships that were significant at α = 0.05 level are shown. 

 FQIs Level 1 and 2 Data  ρ P-value 

 FQInative LDI -0.539 <0.0001 

 
A1: Hydrologic Condition  0.449   0.0001 

  A2: Water Quality  0.612 <0.0001 

  A3: Biotic Condition  0.811 <0.0001 

  Overall OKRAM  0.717 <0.0001 

 FQIall LDI -0.566 <0.0001 

 
A1: Hydrologic Condition  0.496 <0.0001 

  A2: Water Quality  0.652 <0.0001 

  A3: Biotic Condition  0.814 <0.0001 

  Overall OKRAM  0.749 <0.0001 

 CoverFQInative LDI -0.521 <0.0001 

 
A1: Hydrologic Condition  0.401   0.0007 

  A2: Water Quality  0.601 <0.0001 

  A3: Biotic Condition  0.793 <0.0001 

  Overall OKRAM  0.688 < 0.0001 

 CoverFQIall LDI -0.582 <0.0001 

 
A1: Hydrologic Condition  0.449   0.0001 

  A2: Water Quality  0.627 <0.0001 

  A3: Biotic Condition  0.823 <0.0001 

  Overall OKRAM  0.733 < 0.0001 
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Table 6: The proportions of plant species with low, intermediate, and high C-values were 

determined for each reference wetland (i.e., 12 western [low] and 6 eastern [high 

precipitation] sites).  The average proportion of each category for western and eastern 

wetlands is shown.  Low C-values (0-3) represent widespread taxa that are very tolerant 

of disturbance, intermediate values (4-6) represent species that tolerate moderate 

disturbance, and high values (7-10) represent species that are found in a narrow range of 

plant communities in advanced stages of succession, with low disturbance tolerance 

(Andreas et al. 1995; Taft et al. 1997).  

 Reference Wetlands % Low (0-3) % Intermediate (4-6) % High (7-10) 

Western sites 63 34 3 

Eastern sites  35 51 14 
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APPENDICES 

Appendix A: OKRAM datasheets 

The Oklahoma Rapid Assessment Method (OKRAM) for Wetlands

Step 5. Ensure that the AA boundaries are appropriate, within the wetland and within one 

HGM subclass.  Adjust the boundaries as necessary so AA is entirely contained within one 

HGM subclass and as close to 0.5 hectares as possible.

Step 6. Complete all OKRAM metric sheets.  Check the accuracy of the metrics completed in 

the office and make changes to scores as necessary.

Step 7. Calculate the final site score by combining all the metrics on worksheet 4. Condition 

Score.  Submetric scores are calculated for hydrology, water quality and biota.  These 

submetric scores are then combined to produce a maximum condition score of 11 (0-4 for 

hydrology and water quality submetrics and 0-3 for the biota submetric). 

Step 9. Enter hard copies of data into an electronic format in excel and GIS.  Archive hard 

copies.

IN THE FIELD

Step 8. In worksheet 5 record where you believe the assessment was inaccurate and how the 

assessment could be improved for future users.

Step 1: Assemble all the materials necessary to complete the assessment. Necessary 

geographic information systems (GIS) frame materials include: topographic quadrangles, 

aerial photographs, national wetlands inventory (NWI) maps, and land-use datasets.  

Additional relevant GIS data may be helpful and include soil maps, vegetation maps, geologic 

maps, hydrologic feature maps etc.    

Step 2: Classify the wetland into the appropriate Hydrogeomorphic (HGM) subclass using the 

included dichotomous key (Worksheet II)

Step 3: Determine the boundary of the Assessment Area (AA).  Ideally the assessment area 

will be 0.5 hectares.  However, any assessment area size ranging from 0.1 to 0.5 hectares is 

acceptable.  Delineate the boundary of the wetland.  This can be completed using NWI maps 

or through visual assessment of aerial photography.  Wetland boundary should only include 

one HGM subclass.  If the entire wetland boundary is less than 0.5 hectares and greater than 

0.1 hectare, conduct the assessment on the entire wetland.  If the wetland is greater than 0.5 

hectares randomly assign a point with wetland boundaries and delineate an assessment area 

that contains that point.  The preferred method is to create a circle with the randomly chosen 

point at the center and a 40 meter radius.  If this places a portion of the AA outside the 

wetland boundary, the point can be moved up to 60 meters in any direction.  However, do not 

move the point more than is necessary to place the entire AA within the wetland boundaries.  

If the point cannot be move such that the circle fits within the wetland boundary, an irregular 

polygon can be used.  This irregular polygon should include the randomly chosen point (not 

necessarily at the center) and be as close to 0.5 hectares as possible.  See worksheet III for 

assessment area diagrams.    

Step 4: Complete the site description sheet, and metrics: 1b. Water Source, 2d. Buffer Filter, 

3b. Wetland Loss and 3c. Habitat Connectivity using GIS frame materials.

IN THE OFFICE
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Hydrogeomorphic Wetland Subclassification Dichotomous Key
1.      Wetland is within the 5 year floodplain of a river but not fringing an impounded water 

body. Riverine (5)

1.      Wetland is associated with a topographic depression, flat or slope. 2

2.      Wetland is located on a topographic slope (slight to steep) and has groundwater as the 

primary water source.  Wetland does not occur in a basin with closed contours. Slope  (16)

2.      Wetland is located in a natural or artificial (dammed/excavated) topographic 

depression or flat. 3

3.      Wetland is located on a flat without major influence from groundwater. Flat  (Hardwood Flat)

3.      Wetland is located in a natural or artificial (dammed/excavated) topographic 

depression. 4

4.      Topographic depression has permanent water greater than 2 meters deep. Lacustrine Fringe  (10)

4.      Topographic depression does not contain permanent water greater than 2 meters. Depression (12)

5.      The wetland is a remnant river channel that is periodically hydrologically connected to 

a river or stream every 5 years or more frequently. Connected Oxbow 

5.      The wetland is not an abandoned river channel. 6

6.      The hydrology of the wetland is impacted by beaver activity. Beaver Complex

6.      The hydrology of the wetland is not impacted by beaver activity. 7

7.      The wetland occurs within the bankfull channel. In-channel

7.      The wetland occurs on the floodplain or is adjacent to the river channel. 8

8.      The wetland occurs within a depression on the floodplain. Floodplain Depression

8.      The wetland occurs on a flat area on the floodplain or is adjacent to the river channel. 9

9.      Wetland water source primarily from overbank flooding that falls with the stream water 

levels or lateral saturation from channel flow. Riparian

9.      Wetland water source is primarily from overbank flooding that remains in the wetland 

due to impeded drainage after stream water level falls. Floodplain

10.  Wetland is associated with a remnant river channel that is hydrologically disconnected 

from the stream or river of origin. Disconnected Oxbow

10.  Wetland is associated with a reservoir or pond created by impounded or excavation. 11

11.  Wetland water source is primarily from a permanent river. Reservoir Fringe

11.  Wetland water source is primarily from a draw or overland flow. Pond Fringe

12.  Wetland was created by human activity. 13

12.  Wetland was not created by human activity. 14

13.  Wetland does not have discernible water outlets.

Closed Impounded 

Depression

13.  Wetland has discernible water outlet.

Open Impounded 

Depression

14.  Wetland primary water source is groundwater.

Groundwater 

Depression

14.  Wetland primary water source is surface water. 15

15.  Wetland does not have any discernible water outlets.

Closed Surface Water 

Depression

15.  Wetland has discernible water outlets.

Open Surface Water 

Depression

16.  Wetland is hydrologically connected to a low order (Strahler <=4), high gradient, or 

ephemeral stream. Headwater Slope

16.  Wetland is hydrologically connected to a high order (Strahler >=5), low gradient river.  

Slope may be imperceptible or extremely gradual (includes wet meadows). Low Gradient Slope
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Site Name

Date of Assessment

Assessor Name(s)

Assessor Affiliation(s)

Site Latitude

Site Longitude

Coordinate System

Ecoregion

Directions

Size of Wetland

Assessment Area size

Reason for Assessment

Dominant Water Source

Hydrodynamics

Geomorphic Setting

HGM Class Flat Slope
Hardwood Headwater

Low-gradient

Floodplain Depression

Riparian

Class % AA
Class % AA
Class % AA
Class % AA

Notes

Connected Oxbow

Bidirectional Vertical

FringeFlat

Closed Impounded

Open Impounded

Unidirectional

Beaver Complex

Cowardin Class (four 

most dominant and area 

as a % of AA)

Regional Subclass

Disconnected Oxbow

Reservoir Fringe

Pond Fringe

Overbank Flooding

Slope

Riverine

In-Channel

Floodplain

Closed Surface Water

Groundwater

Open Surface Water

Site Description

Surface Flow Precipitation Groundwater

Depression

Depression Lacustrine
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1. Hydrologic condition
a. Hydroperiod

Indicators of Reduced hydroperiod Minor Moderate Major Complete Loss Indicator Description

Upstream Dams

Fill/sedimentation

Water pumping out of the wetland

Water control structures

Culverts, discharges, ditches or tile 

drains out of the wetland

Beaver dam removal

Indicators of increased hydroperiod Minor Moderate Major Complete Loss Indicator Description

Downstream dams

Excavation/Dredging/Mining

Water pumping into the wetland

Water control structures 

Culverts, discharges, diversions or 

ditches into wetland

TOTAL IMPACTED AREA 0 0 0 0

SEVERITY WEIGHT 0.25 0.5 0.75 1

SEVERITY WEIGHTED AREA 0 0 0 0

METRIC SCORE 1A

2. Severity of alteration is based on indicator severity on the following worksheet.

3. Fill in the area as a percent of the AA and severity for each indicator of altered hydroperiod.  

Overlapping areas of indicators are only counted once and for the highest level of severity.  Describe the 

indicator and circle all indicators on the indicator worksheet.

4. The metric is calculated by applying severity weights to the impacted area.  For example a severity 

weight of 0.25 is applied to minor sources of impacted hydroperiod.  If 50% of the AA is affected by a 

minor source of altered hydroperiod, the metric score would be 0.875 (1-[0.50*0.25] = 0.875).

1

Instructions:     

1. On an aerial photograph in the field outline all areas within the AA where hydroperiod has been altered 

and severity of alteration.  For calculations, sketches on aerial photographs can be converted to GIS or 

estimated from aerial photos.
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1. Hydrologic condition                                                                                           
a. Hydroperiod
Indicators of Reduced 

hydroperiod Minor Moderate Major Complete Loss

1. Upstream impoundments 

(Riverine wetlands only)

Impoundment within 500 meters upstream of 

wetland that likely alters wetland hydrology to 

some extent.

Only receives inflows from channel source during large flood 

events and retains wetland hydrology from other water inputs 

(e.g. precipitation, overland flow, groundwater).

Complete loss of inflows/ flooding 

from channel source but still retains 

wetland hydrology  from other 

water inputs (e.g. precipitation, 

overland flow, groundwater).

Complete loss of 

inflows/ flooding and 

wetland dried.

2. Fill/sedimentation
Silt covered vegetation, extremely turbid water, 

rills on adjacent uplands

Sediment splays, completely buried vegetation, silt deposits 

around trees

Silt deposits  or fill that have greatly 

reduced wetland volume

Complete loss of 

basin. 

3. Water pumping out of the 

wetland

Water level is properly manipulated for wetland 

management activities including slow, cool-

season drawdowns.  Desirable annual moist 

soil plants present.

Water is pumped out of the wetland for agricultural or other 

human uses or Water level is poorly manipulated for wetland 

management activities including rapid, warm-season 

drawdowns.  Undesirable weedy plants present (e.g. 

cocklebur).

n/a n/a

4. Water control structures

Water level is properly manipulated for wetland 

management activities including slow, cool-

season drawdowns.  Desirable annual moist 

soil plants present.

Water level is poorly manipulated for wetland management 

activities including rapid,  warm-season drawdowns.  

Undesirable weedy plants present (e.g. cocklebur).

n/a n/a

5. Culverts, discharges, 

ditches or tile drains out of 

the wetland

Old drainages present that appear to have 

minor influences on current wetland hydrology 

(e.g. old ditches that have sedimented in or tile 

drains that have been damaged)

Water drained only during high water events.

Water is drained from wetland at all 

times of the year but still retains 

wetland hydrology

Wetland completely 

dried

6. Beaver dam removal n/a n/a Still retains wetland hydrology
Wetland completely 

dried

7. Center of wetland 

excavated to dry remainder 

of wetland

n/a n/a Still retains wetland hydrology
Wetland completely 

dried

Severity

Indicators of 

increased hydroperiod
Minor Moderate Major Complete Loss

8. Downstream 

impoundments

Impoundment within 500 meters downstream of 

wetland that likely alters wetland hydrology to 

some extent.

Impoundment within 100 meters downstream of wetland that 

likely alters wetland hydrology to some extent.

Still retains wetland hydrology but 

hydroperiod substantially 

lengthened.

Wetland converted to 

permanent deepwater

9. Excavation/ Dredging/ 

Mining
n/a n/a

Wetland excavated but still retains 

wetland hydrology.  Hydroperiod 

substantially lengthened.

Wetland converted to 

permanent deepwater

10. Water pumping into the 

wetland

Water level is properly manipulated for wetland 

management activities including slow, cool-

season drawdowns.  Desirable annual moist 

soil plants present.

Water level is poorly manipulated for wetland management 

activities including rapid, warm-season drawdowns.  

Undesirable weedy plants present (e.g. cocklebur).

n/a n/a

11. Water control structures 

Water level is properly manipulated for wetland 

management activities including slow, cool-

season drawdowns.  Desirable annual moist 

soil plants present.

Water level is poorly manipulated for wetland management 

activities including rapid, warm-season drawdowns.  

Undesirable weedy plants present (e.g. cocklebur).

n/a n/a

12. Culverts, discharges, 

diversions or ditches into 

wetland

Old drainages present that appear to have 

minor influences on current wetland hydrology 

(e.g. old ditches that have sedimented in)

Water enters wetland from culverts, diversions or ditches only 

during large storm events.

Water from culvert, diversion, or 

ditch is the dominant water source 

for the wetland.

Wetland converted to 

permanent deepwater
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1. Hydrologic condition                                                                                                                             
b. Water Source                                                                                                                                                                                                                                                                                           

Indicators of altered water source % Cover Description

Impervious surface (paved roads, parking lots, structures and 

compacted gravel and dirt roads)

Irrigated agricultural land (center pivot, ditch, flood etc.)

Dryland agricultural land that is tilled

Woody encroachment (e.g. eastern red cedar (Juniperus 

virginiana ) and salt cedar (Tamarix sp.) )

Impounded water

Topographic alteration (leveling, excavation, mining)

Total Altered Cover

METRIC SCORE 1b 1

Instructions: 

1. Delineate the catchment for the wetland on an aerial photograph or in GIS.  Ideally the catchment for 

the wetland can be delineated using topographic maps and hydrologic unit maps.  However, a 2 km buffer 

can be substituted if it is not possible to delineate a catchment.  

2. On an aerial photograph or in GIS determine the percent cover of indicators of altered water source in 

the catchment for the wetland.  

3. Fill in the % Cover of each of the indicators of altered water source.

4.  This metric is calculated by dividing the percentage of unaltered land-cover by 100% cover.  For 

example, a catchment with 20% impervious surface and 40% irrigated agricultural land would receive a 

score of 0.4. ([100-40-20]/100 =  0.4)

0
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1. Hydrologic condition                                                                                                                                        
c. Hydrologic Connectivity- Depressions, Flats, Lacustrine Fringes and Slopes

Indicators of altered connectivity Perimeter Description

Levees, Berms, Dams, Weirs

Road Grades

Culverts

METRIC SCORE 1C 1

3.  The metric is calculated as a percentage of unimpacted wetland perimeter.  For example a wetland 

where 60% of the perimeter is bounded by a levee would receive a score of 0.4 ([100-60]/100 = 0.4).

Instructions:

1. On an aerial photograph in the field outline all areas within the AA where hydrologic connectivity has 

been altered.  For calculations, sketches on aerial photographs can be converted to GIS or estimated from 

aerial photos.

2. Fill in the percentage of the perimeter where hydrologic connectivity is impaired.
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2. Water Quality Condition                                                                                                                                                                       
a. Nutrients/Eutrophication                                                                                                                                                        

Indicators of Altered Nutrient Cycling Minor Moderate Major Indicator Description

Livestock/animal waste

Septic/sewage discharge

Excessive algae or Lemna sp. (Do not 

count this metric if algae or Lemna 

blooms are a result of 

evapoconcentration of nutrients as 

wetland is drying.)

TOTAL IMPACTED AREA 0 0 0

SEVERITY WEIGHT 0.25 0.5 0.75

SEVERITY WEIGHTED AREA 0 0 0

1. On an aerial photograph in the field outline all areas within the AA where nutrient cycling has been 

altered and severity of alteration.  For calculations, sketches on aerial photographs can be converted to GIS 

or estimated from aerial photos.
2. Severity of alteration is based on indicator severity on the following worksheet.

3. Fill in the area as a percent of the AA and severity for each indicator of altered nutrient cycling.  

Overlapping areas of indicators are only counted once and for the highest level of severity.  Describe the 

indicator and circle all indicators on the indicator worksheet.

4. The metric is calculated by applying severity weights to the impacted area.  For example a severity weight 

of 0.25 is applied to minor sources of impacted nutrient cycling.  If 50% of the AA is affected by a minor 

source of altered nutrient cycling, the metric score would be 0.875 (1-[0.50*0.25] = 0.875).

METRIC SCORE 2a 1

2.Water Quality                                                                                                                                                              
a. Nutrients
Indicators of Altered Nutrient 

Cycling Minor Moderate Major

Livestock/animal waste

Sparse domestic animal feces 

(e.g. cow pies), evidence of 

sparse feral pig activity (rooting, 

wallows, feces)

High concentration of domestic animal feces 

(e.g. cow pies),  evidence of large scale feral 

pig activity (rooting, wallows, feces)   

Runoff from wastewater lagoons 

into wetland, Evidence of manure 

piles, poultry litter piles draining to 

wetland 

Septic/sewage discharge
Residential dwellings within 200 

meters of wetland

Residential dwellings within 50 meters of 

wetland

Discharge from sewage treatment 

plant

Excessive algae or Lemna 

sp. (Do not count this 

metric if algae or Lemna 

blooms are a result of 

evapoconcentration of 

nutrients as wetland is 

drying.)

Sparse mats or blooms of 

filamentous algae, Lemna, or 

cyanobacteria.  Small contiguous 

patches are less than 200 square 

meters 

Mats or blooms of filamentous algae, 

Lemna , or cyanobacteria may cover large 

areas but will not be contiguous for more 

than 0.1 hectares and will contain 

intermittent gaps where no mats or blooms 

or present.

Mats or blooms of filamentous 

algae, Lemna , or cyanobacteria that 

are contiguous for areas larger than 

0.1 hectares.

Severity
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2. Water Quality Condition
b. Sediment

Indicators of Altered Sediment loading Minor Moderate Major Indicator Description

Sedimentation (e.g. presence of sediment 

plumes, fans or deposits, turbidity, silt laden 

vegetation)

Upland erosion (e.g. gullies, rills)

TOTAL IMPACTED AREA 0 0 0

SEVERITY WEIGHT 0.25 0.5 0.75

SEVERITY WEIGHTED AREA 0 0 0

METRIC SCORE 2b 1

1. On an aerial photograph in the field outline all areas within the AA where sediment loading has been 

altered and severity of alteration.  For calculations, sketches on aerial photographs can be converted to GIS 

or estimated from aerial photos.

2. Severity of alteration is based on indicator severity on the following worksheet.

3. Fill in the area as a percent of the AA and severity for each indicator of altered sediment loading.  

Overlapping areas of indicators are only counted once and for the highest level of severity.  Describe the 

indicator and circle all indicators on the indicator worksheet.

4. The metric is calculated by applying severity weights to the impacted area.  For example a severity weight 

of 0.25 is applied to minor sources of impacted sediment loading.  If 50% of the AA is affected by a minor 

source of altered sediment loading, the metric score would be 0.875 (1-[0.50*0.25] = 0.875).

2.Water Quality
b. Sediment
Indicators of Altered 

Sediment Loading Minor Moderate Major

Sedimentation (e.g. 

presence of sediment 

plumes, fans or deposits)

Excessive turbidity (in excess of 

expectation for the system), silt 

laden vegetation

Sediment plumes or fans, silt deposits less 

than 0.5 centimeters in thickness

Silt deposits greater than 0.5 

centimeters in thickness

Upland erosion (e.g. 

gullies, rills)

Sparse rills connecting upland to 

wetland
Dense rills connecting upland to wetland

Gullies connecting upland to 

wetland

Severity
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2. Water Quality Condition
c. Chemical contaminants

Indicators of Chemical Contaminants Minor Moderate Major Indicator Description

Point source discharge (wastewater plant, 

factory etc.)

Stormwater inputs (discharge pipes, 

culverts, adjacent impervious surface or 

railroads)

Increased salinity (e.g. salt crust)

Industrial spills or dumping

Oil sheen*

TOTAL IMPACTED AREA 0 0 0

SEVERITY WEIGHT 0.25 0.5 0.75

SEVERITY WEIGHTED AREA 0 0 0

*Oil sheen can result from petroleum spills or from a natural phenomena.  If the oil sheen does not break 

apart when hit with a stick, it is a result of a petroleum spill and should be counted as an indicator of 

chemical contaminants.  If the oil sheen does break apart when hit, do not count it as a chemical 

contaminant.

METRIC SCORE 2c 1

1. On an aerial photograph in the field outline all areas within the AA where chemical contaminants have 

been introduced and severity of alteration.  For calculations, sketches on aerial photographs can be 

converted to GIS or estimated from aerial photos.

2. Severity of alteration is based on indicator severity on the following worksheet.

3. Fill in the area as a percent of the AA and severity for each indicator of introduced chemical 

contaminants.  Overlapping areas of indicators are only counted once and for the highest level of severity.  

Describe the indicator and circle all indicators on the indicator worksheet.

4. The metric is calculated by applying severity weights to the impacted area.  For example a severity weight 

of 0.25 is applied to minor sources of chemical contaminants.  If 50% of the AA is affected by a minor 

source of chemical contaminants, the metric score would be 0.875 (1-[0.50*0.25] = 0.875).

Notes:
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2.Water Quality
c. Contaminants
Indicators of Chemical 

Contaminants Minor Moderate Major

Point source discharge 

(wastewater plant, factory 

etc.)

n/a

Discharge from wastewater/sewage 

treatment plant or industrial factor to 

adjacent water body that is intermittently 

connected to wetland

Direct discharge from wastewater 

treatment plant or industrial factory

Stormwater inputs 

(discharge pipes, culverts, 

adjacent impervious 

surface or railroads)

Adjacent impervious surfaces 

such as paved roads or railroads 

(within 10 meters of wetland)

Stormwater inputs from culverts or 

discharge pipes 
n/a

Increased salinity (e.g. salt 

crust, excessively high 

conductivity)

Oil and gas exploration within 30 

meters of wetland (e.g. 

pumpjacks, tank batteries)

Salt crust present on soil surface (excludes 

saline wetlands such as those in the Great 

Salt Plains of Alfalfa County)

n/a

Industrial spills or dumping

55 gallon drums present but 

otherwise no signs of chemical 

contamination, metal objects or 

other potentially harmful trash 

dumped within the wetland

n/a

Knowledge or evidence of industrial 

spill within or directly adjacent to 

the wetland

Oil sheen

Oil sheen present but not 

contiguous over areas exceeding 

200 square meters, likely a result 

of motorcraft use within or 

adjacent to the wetland

Oil sheen contiguous over moderate areas 

within the wetland exceeding 200 square 

meters, likely a result of a spill or adjacent 

exploration

Oil sheen contiguous over large 

areas within the wetland exceeding 

0.1 hectares, likely a result of a spill 

or adjacent exploration

Severity
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2. Water Quality Condition
d. Buffer filter

Land use category Types of Land-use Beyond Buffer Buffer width

High Impact Intensive livestock (feedlot, dairy farm, pig farm) or urban area 250m

Moderate Impact

Conventional tilled agriculture, landscaped park, golf course, 

suburban area, active construction sites, areas of vegetation 

removal, earth moving operations 100m

Low Impact No till agriculture, pasture, hay meadow, paved road 30m

Buffer Required Distance (based on first encountered land-use) Intact Distance

1

2

3

4

5

6

7

8

METRIC SCORE 2d

Instructions:

Land-uses that can be included in a functioning buffer:  natural uplands, water bodies, wildland parks, 

bike trails, foot trails, horse trails, gravel/dirt roads, railroads

1

1. On an aerial photograph or in GIS, draw eight evenly spaced 250 m lines emanating from the AA 

boundary starting at due North.  If the AA is connected to permanent open water begin the line on the 

other side of the open water.      

2. Calculate the distance until human impacted land-use (see table below).  For high impact land-use the 

buffer must be 250 m in length to be fully functioning.  For moderate impact land-use the buffer must be 

100 m in length to be fully functioning and for low impact land-use the buffer must be 30 m to be 

considered fully functioning. 

3.  For each buffer line calculate the percentage of intact buffer distance.  For example if the buffer is 

intact for 80 meters before intersecting a golf course the buffer is 80% of fully functioning (80/100).  On 

the other hand, if the buffer is intact for 80 meters before intersecting a feedlot the buffer is only 32% 

functioning (80/250). 
4. For the overall buffer filter score, take the average of all eight buffer lines. 
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a. Vegetation condition

Indicators of altered vegetation community (% 

cover in each layer) Tree Shrub/sapling

Herbaceous/ 

Emergent

Submergent/ 

Floating leaved

Invasive species and crop/pasture grasses*

Native monoculture (only emergent and 

submergent layers) **

Vegetation removal (e.g. tree harvest, brush 

hogging, haying, mowing)  ***

Excessive grazing (only emergent and 

submergent) ****

Herbicide impacted area

Mechanical disturbance from structures (e.g. 

rip-rap, right of ways and roads etc.)

Percent Cover of Layer

Percent disturbed cover per layer

METRIC SCORE 4a

**** Excessive grazing represents areas where vegetation is eaten to the ground.  Grazing can be an 

effective management strategy for improving the quality of wetland vegetation by removing invasive species 

or native monocultures.  Grazing for invasive species or monoculture control should not be included in this 

field.

3. Biotic Condition

*** Vegetation removal can be an effective management strategy for improving the quality of wetland 

vegetation by removing invasive species or native monocultures.  Vegetation removal for invasive species or 

monoculture control should not be included in this field.

Instructions: 

Vegetation Layers

* Invasive species include all plant species listed on the Oklahoma Non-Native Invasive Plant Species List 

developed by OK Native Plant Society, OK Biological Survey and OSU Natural Resource Ecology and 

Management.  A species is considered invasive if it is listed as a problem in border states as well. http://ok-

invasive-plant-council.org/images/OKinvasivespp.pdf

** Native monocultures occur when more than 50% of a an assessment area is covered by one native 

perennial species including cattails (Typha sp.), river bulrush (Schoenoplecuts fluviatis) , giant cutgrass 

(Zizaniopsis miliacea) , and reed canary grass (Phalaris arundinacea). Native monoculture cover is scored as 

the percent cover greater than 50%.  For example a wetland with 70% cover reed canary grass would receive 

a score of 20% (70-50= 20).

Notes:

1. Conduct a visual assessment of the percent cover of each vegetation layer and % cover of indicators of 

altered vegetation community in each vegetation layer.  

2. Vegetation condition score is based on the percent of unimpacted vegetation cover relative to the overall 

vegetation cover.  

1
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3. Biotic Condition
c. Habitat connectivity

dryland farming

Area of Connected Habitat

Area within 2500 m buffer

METRIC SCORE 4c 1

sports fields

traditional golf courses

urbanized parks with active recreation

pedestrian/bike trails with near constant traffic

lawns

parking lots

intensive livestock production (e.g. horse paddocks, feedlots, chicken ranches etc.)

residential areas

sound walls

Dispersal Barriers not included in connected habitat

Commercial Developments

Fences that interfere with animal movements

intensive agriculture (e.g. row crops, orchards, vineyards)

paved roads

Instructions:  

Included in connected habitat

open water

1. On an aerial photograph or in GIS delineate the connected habitat surrounding the AA within a 2500 m 

buffer.  Connected habitat does not include any of the dispersal barriers below.  

2. Calculate the metric by dividing the total connected area by the total area in the 2500 m buffer. 

other wetlands

natural uplands

nature or wildland parks

bike trails

railroads

roads not hazardous to wildlife

swales and ditches

vegetated levees

open range land
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4. OKRAM Overall Condition Score

Metric Score

1 Hydrology

1a. Hydroperiod 1

1b. Water source 1

1c. Hydrologic Connectivity 1

Hydrology Subscore 1

2 Water Quality

2a. Nutrients 1

2b. Sediment 1

2c. Contaminants 1

2d. Buffer Filter 1

Water Quality Subscore 1

3 Biota

3a. Vegetation 1

3b. Habitat Connectivity 1

Biota Subscore 1

1 (Hydrology Subscore + Water Quality Subscore + Biota Subscore)/3

 (metric 1a +metric 1b + metric 1c)/3

(metric 2a +metric 2b + metric 2c + metric 2d)/4

(metric 3a + metric 3b )/2

Overall Condition Score
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Appendix B: List of plant species collected in 28 depressional wetlands across Oklahoma 

Scientific Name Common Name 

Coefficient of 

Conservatism 

Number 

of Sites 

Acer negundo boxelder 1 2 

Acer rubrum red maple 6 1 

Acer saccharinum silver maple    2 * 1 

Acorus calamus calamus 0 1 

Alisma subcordatum American water plantain 6 2 

Amaranthus palmeri carelessweed    0 * 3 

Amaranthus tuberculatus roughfruit amaranth    0 * 1 

Ambrosia artemisiifolia annual ragweed 3 7 

Ambrosia trifida great ragweed 2 3 

Ammannia auriculata eared redstem 6 2 

Ammannia coccinea valley redstem 6 8 

Amorpha laevigata smooth false indigo 6 1 

Ampelopsis cordata heartleaf peppervine 2 1 

Andropogon glomeratus bushy bluestem 3 1 

Apios americana groundnut 6 1 

Arundinaria gigantea giant cane 7 1 

Asclepias incarnata swamp milkweed 5 1 

Baccharis salicina willow baccharis     4 * 1 

Bacopa rotundifolia disk waterhyssop 6 3 

Berchemia scandens Alabama supplejack      6 ** 1 

Bolboschoenus fluviatilis river bulrush 4 3 

Bolboschoenus maritimus cosmopolitan bulrush 6 1 

Broussonetia papyrifera paper mulberry 0 1 

Brunnichia ovata American buckwheat vine 6 1 

Calamovilfa gigantea giant sandreed    8 * 1 

Campsis radicans trumpet creeper 3 8 

Cardiospermum halicacabum balloon vine 0 3 

Carex aureolensis goldenfruit sedge 5 1 

Carex davisii Davis' sedge    4 * 1 

Carex frankii Frank's sedge 5 1 

Carex hyalinolepis shoreline sedge 5 1 

Carex joorii cypress swamp sedge 8 1 

Carex lupuliformis false hop sedge 8 2 

Carex lupulina hop sedge 6 1 

Carex microdonta littletooth sedge 7 1 

Carya illinoinensis pecan 6 4 

Celtis laevigata sugarberry    5 * 1 

Cephalanthus occidentalis common buttonbush 4 12 

Chamaesyce humistrata spreading sandmat    3 * 2 

Chenopodium album lambsquarters    0 * 1 

Cinna arundinacea sweet woodreed 5 1 
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Scientific Name Common Name 

Coefficient of 

Conservatism 

Number 

of Sites 

Clitoria mariana Atlantic pigeonwings    7 * 1 

Cocculus carolinus Carolina coralbead 3 1 

Commelina virginica Virginia dayflower 4 1 

Conyza canadensis Canadian horseweed 1 1 

Coreopsis tinctoria golden tickseed    1 * 7 

Cornus drummondii roughleaf dogwood 3 1 

Cornus foemina stiff dogwood 6 1 

Cuscuta cuspidata cusp dodder    3 * 1 

Cuscuta polygonorum smartweed dodder    3 * 1 

Cynodon dactylon Bermudagrass 0 7 

Cyperus acuminatus tapertip flatsedge 3 10 

Cyperus echinatus globe flatsedge    3 * 2 

Cyperus iria ricefield flatsedge 0 2 

Cyperus odoratus fragrant flatsedge 3 5 

Cyperus squarrosus bearded flatsedge 4 1 

Cyperus strigosus strawcolored flatsedge 4 6 

Cyperus surinamensis tropical flatsedge 3 2 

Cyperus pseudovegetus marsh flatsedge 6 2 

Desmodium canescens hoary ticktrefoil    4 * 1 

Dichanthelium aciculare needleleaf rosette grass 8 1 

Dichanthelium acuminatum tapered rosette grass 4 1 

Dichanthelium depauperatum starved panicgrass    7 * 3 

Dichanthelium dichotomum cypress panicgrass    8 * 2 

Dichanthelium scoparium velvet panicum 7 1 

Digitaria sanguinalis hairy crabgrass 0 1 

Diospyros virginiana common persimmon 2 3 

Distichlis spicata saltgrass 4 1 

Echinochloa colona jungle rice  0 2 

Echinochloa crus-galli barnyardgrass 0 8 

Echinochloa muricata rough barnyardgrass 0 10 

Echinodorus berteroi upright burhead 8 4 

Eleocharis engelmannii Engelmann's spikerush 5 3 

Eleocharis geniculata Canada spikesedge 10 1 

Eleocharis macrostachya  pale spikerush 6 1 

Eleocharis obtusa blunt spikerush 4 7 

Eleocharis palustris common spikerush 7 7 

Eleocharis quadrangulata squarestem spikerush 7 1 

Eleusine indica Indian goosegrass 0 2 

Eragrostis pectinacea tufted lovegrass    0 * 1 

Equisetum laevigatum smooth horsetail 3 1 

Eragrostis secundiflora red lovegrass    7 * 1 

Eupatorium perfoliatum common boneset 5 1 

Eupatorium serotinum lateflowering thoroughwort 3 1 
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Scientific Name Common Name 

Coefficient of 

Conservatism 

Number 

of Sites 

Eustoma exaltatum catchfly prairie gentian 6 1 

Euonymus kiautschovicus  creeping strawberry bush 0 1 

Frangula caroliniana Carolina buckthorn      6 ** 1 

Fraxinus pennsylvanica green ash 3 3 

Gleditsia triacanthos honeylocust 2 1 

Glycine max soybean 0 1 

Helianthus petiolaris prairie sunflower    1 * 1 

Heteranthera limosa blue mudplantain 7 1 

Heteranthera rotundifolia roundleaf mudplantain 5 3 

Hibiscus laevis halberdleaf rosemallow 4 2 

Hordeum jubatum foxtail barley 2 2 

Hydrolea ovata ovate false fiddleleaf 8 1 

Ilex vomitoria yaupon 7 1 

Impatiens capensis jewelweed 5 2 

Ipomoea lacunosa whitestar 2 2 

Juncus effusus common rush 5 4 

Juncus nodatus stout rush 5 1 

Juncus secundus lopsided rush      5 ** 2 

Juncus torreyi Torrey's rush 6 3 

Juncus diffusissimus slimpod rush 5 1 

Juniperus virginiana eastern redcedar 0 2 

Justicia americana American water-willow 5 1 

Kummerowia striata Japanese clover 0 2 

Leersia oryzoides rice cutgrass 4 5 

Lemna minor common duckweed 5 2 

Leptochloa fusca Malabar sprangletop 3 2 

Lindernia dubia yellowseed false pimpernel 4 8 

Leptochloa panicea mucronate sprangletop 3 1 

Liquidambar styraciflua sweetgum      6 ** 2 

Lonicera japonica Japanese honeysuckle 0 1 

Ludwigia alternifolia seedbox 5 2 

Ludwigia palustris marsh seedbox 5 3 

Lycopus americanus American water horehound 4 2 

Lycopus virginicus Virginia water horehound 5 2 

Lythrum alatum winged lythrum 6 1 

Melothria pendula Guadeloupe cucumber 1 1 

Mikania scandens climbing hempvine 5 2 

Mimulus alatus sharpwing monkeyflower 5 2 

Mollugo verticillata green carpetweed 1 3 

Muhlenbergia cuspidata plains muhly    5 * 1 

Panicum anceps beaked panicgrass    4 * 3 

Panicum capillare witchgrass 1 2 

Panicum coloratum kleingrass 0 4 
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Scientific Name Common Name 

Coefficient of 

Conservatism 

Number 

of Sites 

Panicum dichotomiflorum fall panicgrass 1 2 

Panicum obtusum vine mesquite    2 * 1 

Panicum verrucosum warty panicgrass 5 1 

Panicum virgatum switchgrass 4 1 

Panicum miliaceum proso millet 0 1 

Panicum philadelphicum Philadelphia panicgrass    4 * 3 

Paspalum dilatatum dallisgrass 0 2 

Paspalum distichum knotgrass 7 2 

Paspalum floridanum Florida paspalum 5 3 

Passiflora incarnata purple passionflower    4 * 1 

Phyla lanceolata lanceleaf fogfruit 3 6 

Phyla nodiflora turkey tangle fogfruit 3 2 

Physalis virginiana Virginia groundcherry    6 * 1 

Pinus taeda loblolly pine 2 1 

Plantago lanceolata narrowleaf plantain 0 1 

Platanus occidentalis American sycamore 4 1 

Pluchea odorata sweetscent 4 1 

Polygonella americana southern jointweed      5 ** 1 

Polygonum amphibium water knotweed 7 2 

Polygonum aviculare prostrate knotweed 0 1 

Polygonum hydropiperoides swamp smartweed 4 14 

Polygonum lapathifolium curlytop knotweed 4 3 

Polygonum persicaria spotted ladysthumb 0 2 

Polygonum pensylvanicum Pennsylvania smartweed 2 4 

Polygonum ramosissimum  bushy knotweed 1 1 

Polygonum punctatum dotted smartweed 4 1 

Polygonum virginianum jumpseed        5 *** 1 

Polypremum procumbens juniper leaf      4 ** 1 

Populus deltoides eastern cottonwood 1 4 

Quercus alba white oak 3 1 

Quercus marilandica blackjack oak    4 * 1 

Quercus nigra water oak      5 ** 2 

Quercus phellos willow oak 4 1 

Quercus stellata post oak    4 * 1 

Rhus copallinum winged sumac 7 1 

Rhynchospora corniculata shortbristle horned beaksedge 7 3 

Rhynchospora macrostachya tall horned beaksedge 6 1 

Robinia pseudoacacia black locust 1 1 

Rubus trivialis southern dewberry    4 * 1 

Rumex altissimus pale dock 0 3 

Rumex crispus curly dock 0 2 

Rumex stenophyllus narrowleaf dock 0 4 

Sagittaria ambigua Kansas arrowhead 8 1 
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Scientific Name Common Name 

Coefficient of 

Conservatism 

Number 

of Sites 

Sagittaria brevirostra shortbeak arrowhead 4 1 

Sagittaria graminea grassy arrowhead 8 1 

Salix babylonica Weeping willow 0 1 

Salix interior sandbar willow      3 ** 2 

Salix nigra black willow 2 9 

Saururus cernuus lizard's tail 6 1 

Schoenoplectus acutus hardstem bulrush 4 2 

Schoenoplectus americanus chairmaker's bulrush 6 3 

Schoenoplectus pungens common threesquare 6 1 

Scirpus cyperinus woolgrass 7 1 

Sesbania herbacea bigpod sesbania 2 4 

Setaria parviflora marsh bristlegrass 2 2 

Sicyos angulatus oneseed bur cucumber 3 1 

Smilax bona-nox saw greenbrier 5 1 

Solanum carolinense Carolina horsenettle 1 3 

Solanum dimidiatum western horsenettle    3 * 1 

Sorghum halepense Johnsongrass 0 9 

Strophostyles leiosperma slickseed fuzzybean    3 * 1 

Symphyotrichum subulatum eastern annual saltmarsh aster 4 3 

Tamarix chinensis five-stamen tamarisk 0 1 

Taraxacum officinale common dandelion 0 2 

Teucrium canadense Canada germander 3 7 

Thalia dealbata powdery alligator-flag 7 1 

Toxicodendron radicans eastern poison ivy 1 2 

Trachelospermum difforme  climbing dogbane 6 2 

Trifolium repens white clover 0 3 

Typha domingensis southern cattail 2 3 

Ulmus alata winged elm 3 4 

Ulmus americana American elm 2 7 

Urochloa platyphylla broadleaf signalgrass 0 1 

Vernonia missurica Missouri ironweed 4 1 

Vernonia texana Texas ironweed 4 1 

Viola sagittata arrowleaf violet    7 * 2 

Vitis riparia riverbank grape 4 1 

Vitis vulpina frost grape    3 * 1 

Xanthium strumarium rough cocklebur 0 6 

Zea mays corn 0 1 

      Notes:  * Kansas CoC; ** Missouri CoC, *** Iowa CoC 
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Appendix C: Metrics calculated for 28 depressional wetlands across Oklahoma 

 

(a) Landscape Development Intensity Index (LDI) Scores 

Site LDI 100_B LDI_500_B LDI 1000m 

1 2.47 2.48 2.24 

2 2.90 3.05 2.86 

3 3.77 3.36 2.98 

4 4.56 8.00 7.83 

5 1.04 1.90 2.40 

6 5.37 4.53 4.20 

7 2.69 2.85 3.25 

8 7.00 7.00 6.78 

9 4.01 5.57 4.94 

10 7.49 7.96 8.32 

11 3.74 4.62 4.30 

12 7.65 7.31 7.03 

13 9.01 9.00 8.63 

14 6.15 5.56 5.46 

15 7.85 8.40 7.85 

16 3.19 3.03 3.27 

17 5.71 3.89 2.86 

18 7.04 5.58 4.49 

19 2.28 3.78 3.14 

20 7.00 6.34 5.20 

21 3.24 3.57 4.11 

22 6.43 5.31 4.73 

23 7.17 7.39 7.37 

24 1.35 2.68 2.61 

25 1.59 2.27 2.20 

26 3.66 2.99 2.75 

27 1.51 1.51 1.66 

28 1.82 1.24 1.35 
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(b) Plant Diversity, Richness, Native Richness, % WET, and FQI Scores 

Site Diversity 

Species 

Richness 

Native Species 

Richness % WET FQIall 

1 2.45 22 20 96.07 16.53 

2 1.86 20 18 91.25 14.84 

3 2.41 16 14 92.58 16.80 

4 2.11 16 14 88.21 12.16 

5 1.30 8 7 69.12 8.00 

6 0.00 0 0 0 3.00 

7 1.44 12 8 98.19 7.77 

8 1.01 4 3 100 13.87 

9 2.10 20 18 100 17.85 

10 1.21 7 7 100 11.46 

11 1.71 9 8 84.62 14.70 

12 2.15 15 12 67.95 8.49 

13 1.53 9 3 51.88 6.63 

14 0.45 6 5 95.54 9.53 

15 1.86 13 9 79.34 8.37 

16 2.47 19 15 91.43 16.10 

17 2.08 15 11 99.49 8.25 

18 2.04 14 8 95.13 6.95 

19 2.26 17 14 97.01 10.19 

20 2.59 20 17 71.58 12.09 

21 1.93 14 13 97.58 14.25 

22 0.00 1 1 88.89 2.24 

23 1.43 9 3 67.4 4.11 

24 2.83 29 24 92.2 24.33 

25 1.96 18 15 96.32 22.26 

26 2.34 23 18 97.64 19.21 

27 2.13 21 18 95.94 21.80 

28 2.02 21 19 98.58 24.49 
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 (c) Soil Metrics 

 
 

 

 

 

  

Site 

P 

(ppm) 

NO3 

(ppm) 

NH4 

(ppm) 

Na 

(ppm) 

TSS 

(ppm) 

OM 

(%) SAR (%) pH 

1 2.0 3.5 39.1 77.0 1320.7 3.5 1.6 8.3 

2 28.5 3.5 31.5 177.0 1615.7 3.8 3.6 7.2 

3 6.5 1.0 44.3 255.0 3415.5 4.7 3.3 8.1 

4 21.0 2.0 21.3 23.0 550.4 2.8 0.7 8.2 

5 50.5 9.0 6.4 7.0 1021.7 7.9 0.1 7.8 

6 32.0 14.0 4.6 6.0 681.1 1.8 0.2 8.5 

7 29.0 10.5 6.6 921.0 6831.0 3.5 8.6 8.1 

8 60.5 1.5 17.8 41.0 1350.4 1.9 0.9 7.1 

9 24.0 3.5 7.7 95.0 639.5 2.6 4.1 6.5 

10 58.0 12.0 10.4 19.0 1057.3 4.0 0.4 7.4 

11 11.0 2.5 36.6 14.0 354.4 3.5 0.7 6.0 

12 29.5 15.0 6.3 9.0 902.9 2.6 0.2 7.9 

13 34.0 23.0 8.9 22.0 1059.3 4.4 0.5 7.5 

14 9.5 2.5 44.3 259.0 4613.4 4.6 2.5 8.0 

15 27.0 4.5 13.8 12.0 750.4 7.8 0.3 6.6 

16 9.5 25.0 14.7 41.0 912.8 3.9 1.1 5.8 

17 83.0 3.5 11.8 21.0 344.1 2.1 1.2 5.9 

18 67.0 2.0 4.5 14.0 269.7 1.7 0.7 6.4 

19 100.0 25.0 11.2 33.0 891.0 5.9 0.9 5.2 

20 85.5 17.0 8.3 24.0 778.1 4.2 0.7 6.7 

21 15.5 7.5 17.3 13.0 335.6 2.4 0.7 5.2 

22 54.0 10.0 37.5 18.0 497.0 2.5 0.9 5.6 

23 88.5 7.5 16.4 12.0 564.3 4.1 0.4 6.4 

24 22.5 0.0 51.0 80.0 817.7 8.8 3.0 5.1 

25 19.5 0.5 24.3 18.0 260.4 1.6 1.4 5.5 

26 25.0 10.0 34.8 30.0 799.9 6.2 0.9 5.9 

27 15.0 1.5 12.6 13.0 281.4 4.2 0.7 4.9 

28 13.0 0.5 32.0 79.0 1411.7 7.4 1.5 7.6 
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Appendix D: Comparison of Oklahoma Rapid Assessment Method, California Rapid 

Assessment Method, and Functional Assessment of Colorado Wetlands 

Note: RAM metrics were placed into five broad categories for a general comparison. 

 

  

RAM Components OKRAM CRAM FACWet 

Landscape Component Buffer - 250 m Buffer - 250 m Buffer - 250 m 

    Aquatic Area - 500 m Aquatic Area - 500 m 

  Habitat Connectivity - 2500 m   Habitat Connectivity - 500 m 

Hydrology Component Water Source Water source Water Source 

  Hydroperiod Hydroperiod Hydroperiod 

  Hydrologic Connectivity Hydrologic Connectivity Hydrologic Connectivity 

Physical Component   Structural Patches   

    Topographic Complexity Topographic Complexity 

      Substrate Alterations 

Biological Component Plant Layers Plant Layers Plant Layers 

  Plant Invasion Plant Invasion Plant Invasion 

    Co-dominant Species   

    Horizontal Interspersion   

    Vertical Biotic Structure   

  Disturbance to Vegetation   Disturbance to Vegetation 

Physiochemical  Nutrients/Eutrophication   Nutrients/Eutrophication 

Component Sedimentation   Sedimentation 

  Contamination   Contamination 

      Soil Chemistry 

      Water Temperature 
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Appendix E: List of plant species collected in 30 lacustrine fringe wetlands in central 

Oklahoma 

Scientific Name Common Name 

Coefficient of 

Conservatism 

Number 

of Sites 

Acalypha virginica Virginia threeseed mercury     0  * 2 

Acer negundo boxelder 1 1 

Acer saccharinum silver maple     2  * 1 

Achillea millefolium common yarrow 5 1 

Ambrosia artemisiifolia annual ragweed 3 3 

Ambrosia psilostachya Cuman ragweed 3 9 

Ambrosia trifida great ragweed 2 4 

Amorpha fruticosa false indigo bush 6 9 

Ampelopsis cordata heartleaf peppervine 2 4 

Andropogon gerardii big bluestem     4  * 1 

Andropogon glomeratus bushy bluestem 3 2 

Andropogon virginicus broomsedge bluestem     0  * 1 

Antennaria parlinii Parlin's pussytoes     5  * 1 

Apios americana groundnut 6 1 

Apocynum cannabinum Indianhemp 1 4 

Artemisia ludoviciana white sagebrush     2  * 1 

Arundo donax giant reed 0 2 

Bolboschoenus fluviatilis river bulrush 4 1 

Bolboschoenus maritimus cosmopolitan bulrush 6 1 

Bothriochloa ischaemum yellow bluestem 0 2 

Bothriochloa laguroides silver beardgrass 1 5 

Bouteloua dactyloides buffalograss     3  * 2 

Bromus arvensis field brome 0 4 

Campsis radicans trumpet creeper 3 3 

Carex annectens yellowfruit sedge 4 3 

Carex aureolensis goldenfruit sedge 5  2 

Carex cherokeensis Cherokee sedge 6 1 

Carex crus-corvi ravenfoot sedge 7 1 

Carex frankii Frank's sedge 5 4 

Carex lupuliformis false hop sedge 8 1 

Carya illinoinensis pecan 6 3 

Celtis laevigata sugarberry    5 * 1 

Cephalanthus occidentalis common buttonbush 4 25 

Ceratophyllum demersum coon's tail 5 2 

Cercis canadensis eastern redbud 2 2 

Chasmanthium latifolium Indian woodoats 4 3 

Chenopodium album lambsquarters    0 * 1 

Clematis versicolor pale leather flower       9  ** 1 

Cocculus carolinus Carolina coralbead 3 1 

Commelina erecta whitemouth dayflower 4 1 
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Scientific Name Common Name 

Coefficient of 

Conservatism 

Number 

of Sites 

Conium maculatum poison hemlock 0 2 

Convolvulus arvensis field bindweed 0 1 

Conyza canadensis Canadian horseweed 1 18 

Cornus drummondii roughleaf dogwood 3 3 

Cornus florida flowering dogwood     6  * 1 

Cynodon dactylon Bermudagrass 0 25 

Cyperus echinatus globe flatsedge     3  * 2 

Cyperus erythrorhizos redroot flatsedge 3 1 

Cyperus odoratus fragrant flatsedge 3 16 

Cyperus pseudovegetus marsh flatsedge 6 2 

Cyperus squarrosus bearded flatsedge 4 7 

Cyperus strigosus strawcolored flatsedge 4 4 

Datura stramonium jimsonweed 0 2 

Desmanthus illinoensis Illinois bundleflower 3 8 

Dichanthelium oligosanthes Heller's rosette grass 5 7 

Diospyros virginiana common persimmon 2 8 

Echinacea purpurea eastern purple coneflower     5  * 1 

Echinochloa spp. barnyardgrass 0 22 

Eclipta prostrata false daisy 3 2 

Eleocharis compressa flatstem spikerush 6 2 

Eleocharis engelmannii Engelmann's spikerush 5 1 

Eleocharis geniculata Canada spikesedge 10 2 

Eleocharis lanceolata daggerleaf spikerush 7 1 

Eleocharis obtusa blunt spikerush 4 2 

Eleocharis parvula dwarf spikerush 8 3 

Eleocharis quadrangulata squarestem spikerush 7 1 

Elymus canadensis Canada wildrye     5  * 1 

Elymus virginicus Virginia wildrye 3 1 

Equisetum laevigatum smooth horsetail 3 2 

Eragrostis reptans creeping lovegrass 6 2 

Eupatorium serotinum lateflowering thoroughwort 3 8 

Euphorbia marginata snow on the mountain 3 2 

Fimbristylis autumnalis slender fimbry 6 1 

Fraxinus americana white ash 6 1 

Fraxinus pennsylvanica green ash 3 4 

Fuirena simplex western umbrella-sedge 6 1 

Geum canadense white avens     1  * 2 

Gleditsia triacanthos honeylocust 2 1 

Grindelia squarrosa curlycup gumweed     0  * 2 

Helenium amarum sneezeweed 1 6 

Hordeum jubatum foxtail barley 2 2 

Hypericum drummondii nits and lice     5  * 2 

Hypericum mutilum dwarf St. Johnswort 4 2 
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Scientific Name Common Name 

Coefficient of 

Conservatism 

Number 

of Sites 

Juncus acuminatus tapertip rush 5 6 

Juncus diffusissimus slimpod rush 5 1 

Juncus effusus common rush 5 6 

Juncus scirpoides needlepod rush 7 2 

Juncus torreyi Torrey's rush 6 2 

Juncus validus roundhead rush 7 3 

Juniperus virginiana eastern redcedar 0 1 

Justicia americana American water-willow 5 8 

Kummerowia stipulacea Korean clover 0 1 

Leersia oryzoides rice cutgrass 4 15 

Lemna minor common duckweed 5 2 

Lepidium virginicum Virginia pepperweed     0  * 2 

Leptochloa fusca Malabar sprangletop 3 4 

Lespedeza cuneata serecia lespedeza 0 12 

Lipocarpha aristulata awned halfchaff sedge 6 1 

Lonicera japonica Japanese honeysuckle 0 1 

Ludwigia peploides floating primrose-willow 6 1 

Lythrum alatum winged lythrum 6 3 

Melilotus officinalis sweetclover 0 8 

Melothria pendula Guadeloupe cucumber 1 2 

Mimosa nuttallii Nuttall's sensitive-briar     6  * 2 

Morus alba white mulberry 0 2 

Morus rubra red mulberry 5 1 

Panicum anceps beaked panicgrass    4  * 4 

Panicum philadelphicum Philadelphia panicgrass    4  * 6 

Panicum virgatum switchgrass 4 1 

Panicum capillare witchgrass 1 1 

Paspalum dilatatum dallisgrass 0 5 

Paspalum distichum knotgrass 7 3 

Paspalum floridanum Florida paspalum 5 2 

Paspalum pubiflorum hairyseed paspalum 4 2 

Paspalum setaceum thin paspalum 9 1 

Paspalum urvillei Vasey's grass 0 1 

Phyla lanceolata lanceleaf fogfruit 3 16 

Phyla nodiflora turkey tangle fogfruit 3 4 

Physalis pubescens husk tomato     4  * 1 

Pistacia chinensis Chinese pistache 0 1 

Platanus occidentalis American sycamore 4 2 

Pluchea odorata sweetscent 4 8 

Poa arachnifera Texas bluegrass     5  * 5 

Polygonum amphibium water knotweed 7 7 

Polygonum hydropiperoides swamp smartweed 4 11 

Polygonum lapathifolium curlytop knotweed 4 14 
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Scientific Name Common Name 

Coefficient of 

Conservatism 

Number 

of Sites 

Polygonum pensylvanicum  Pennsylvania smartweed 2 1 

Polygonum punctatum dotted smartweed 4 1 

Polygonum ramosissimum bushy knotweed 1 2 

Polypogon monspeliensis annual rabbitsfoot grass 0 1 

Polypremum procumbens juniper leaf       4  ** 1 

Populus deltoides eastern cottonwood 1 15 

Potamogeton nodosus longleaf pondweed 6 9 

Potamogeton pusillus small pondweed 5 4 

Ptilimnium nuttallii laceflower 4 1 

Pyrrhopappus carolinianus Carolina desert-chicory 3 1 

Quercus lyrata overcup oak 7 1 

Quercus marilandica blackjack oak     4  * 1 

Quercus palustris pin oak     3  * 1 

Quercus stellata post oak     4  * 2 

Ranunculus sceleratus cursed buttercup 3 2 

Rorippa palustris bog yellowcress 3 1 

Rudbeckia hirta blackeyed Susan     2  * 1 

Rumex altissimus pale dock 0 1 

Rumex crispus curly dock 0 11 

Sabatia campestris Texas star     6  * 2 

Saccharum ravennae ravennagrass 0 1 

Salix interior sandbar willow 3 1 

Salix nigra black willow 2 26 

Samolus valerandi seaside brookweed 5 1 

Schizachyrium scoparium  little bluestem     5  * 6 

Schoenoplectus americanus chairmaker's bulrush 6 2 

Schoenoplectus tabernaemontani softstem bulrush 6 5 

Sesuvium verrucosum verrucose seapurslane 7 2 

Setaria parviflora marsh bristlegrass 2 3 

Sideroxylon lanuginosum gum bully 5 1 

Smilax bona-nox saw greenbrier 5 2 

Solidago canadensis Canada goldenrod 3 1 

Sorghastrum nutans Indiangrass     5  * 1 

Sorghum halepense Johnsongrass 0 7 

Spermacoce glabra smooth false buttonweed 6 3 

Sporobolus compositus composite dropseed     3  * 4 

Strophostyles helvola amberique-bean       2  ** 2 

Strophostyles leiosperma slickseed fuzzybean     3  * 2 

Symphoricarpos orbiculatus coralberry 1 4 

Symphyotrichum ericoides white heath aster     5  * 2 

Tamarix spp. saltcedar spp. 0 4 

Taxodium distichum bald cypress 9 2 

Teucrium canadense Canada germander 3 16 
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Scientific Name Common Name 

Coefficient of 

Conservatism 

Number 

of Sites 

Toxicodendron radicans eastern poison ivy 1 6 

Tradescantia ohiensis bluejacket     5  * 1 

Tridens strictus longspike tridens     6  * 1 

Typha spp. cattail spp. 3 7 

Ulmus alata winged elm 3 1 

Ulmus americana American elm 2 11 

Ulmus rubra slippery elm 3 2 

Vitis aestivalis summer grape 4 1 

Xanthium strumarium rough cocklebur 0 5 

Zizaniopsis miliacea giant cutgrass 9 20 

                    Notes:  * Kansas CoC; ** Missouri CoC 
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Appendix F: Metrics calculated for 30 lacustrine fringe wetland in central Oklahoma 

 

(a) Landscape Development Intensity Index (LDI) Scores 

Site LDI 100 m LDI 500 m LDI 1000 m 

1 1.05 2.05 2.52 

2 3.43 2.95 2.99 

3 3.63 4.35 4.87 

4 6.62 6.36 5.83 

5 3.24 2.22 2.23 

6 3.39 2.08 2.44 

7 3.41 2.93 2.75 

8 3.21 3.21 3.32 

9 5.98 3.09 2.54 

10 2.27 4.14 2.87 

11 5.84 4.70 4.00 

12 2.06 3.45 3.22 

13 6.81 5.29 3.57 

14 5.52 4.73 3.79 

15 4.98 6.24 6.51 

16 7.78 7.10 6.60 

17 5.12 3.69 3.74 

18 5.77 4.14 3.74 

19 5.32 5.25 5.57 

20 4.81 5.03 5.97 

21 3.78 2.82 2.29 

22 4.29 2.63 2.35 

23 3.41 3.35 3.39 

24 3.41 3.38 3.34 

25 3.26 3.22 2.68 

26 4.05 2.16 1.96 

27 3.41 2.86 2.96 

28 3.35 2.62 2.92 

29 3.41 4.14 3.78 

30 4.43 4.09 3.77 
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(b) Plant Diversity, Richness, Native Richness, % WET, and FQI Scores  

Site Diversity 

Species 

Richness 

Native Species 

Richness % WET 

 

FQIall 

1 2.29 17 14 92.17 13.66 

2 1.97 16 14 95.14 16.32 

3 2.59 19 15 99.62 11.62 

4 2.04 13 10 84.15 7.75 

5 3.06 37 31 53.67 16.71 

6 2.65 28 22 54.24 16.51 

7 2.70 29 23 87.11 15.87 

8 2.36 23 18 79.60 12.02 

9 2.65 26 22 88.69 20.20 

10 2.89 30 26 89.95 21.61 

11 2.79 27 20 79.55 18.26 

12 2.72 28 23 63.33 16.24 

13 2.87 32 28 82.10 21.54 

14 2.76 29 23 86.38 16.55 

15 2.53 26 19 83.41 13.16 

16 2.48 24 18 83.94 13.01 

17 1.73 13 12 95.73 13.31 

18 2.07 13 10 94.74 9.80 

19 2.45 21 18 77.82 13.97 

20 2.24 20 15 80.83 15.88 

21 3.24 39 35 47.17 20.67 

22 2.85 34 27 73.66 19.95 

23 2.86 29 24 46.18 16.47 

24 2.78 29 23 51.71 15.20 

25 2.46 17 12 88.24 9.94 

26 1.57 8 5 93.98 5.67 

27 2.96 32 26 71.94 15.52 

28 2.76 26 22 51.27 15.64 

29 1.83 14 11 97.08 8.66 

30 1.61 14 10 92.09 11.88 
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 (c) Soil Metrics 

 

 

 

 

 

  

Site 

P 

(ppm) 

NO3 

(ppm) 

NH4 

(ppm) 

Na 

(ppm) 

TSS 

(ppm) OM (%) SAR (%) pH 

1 1.5 0.5 10.3 80.0 633.6 0.6 2.7 8.5 

2 8.0 0.5 20.1 64.0 1166.2 1.5 1.5 8.3 

3 23.0 0.5 32.3 622.0 4138.2 2.9 8.0 8.1 

4 3.0 1.0 7.9 46.0 570.2 0.7 1.6 8.7 

5 7.0 4.0 17.8 34.0 805.9 2.5 0.9 8.2 

6 3.0 0.5 6.6 101.0 1053.4 1.2 2.4 8.0 

7 8.0 1.0 13.6 54.0 817.7 1.7 1.4 7.4 

8 5.0 1.0 6.0 25.0 453.4 1.0 0.9 7.7 

9 3.5 0.5 13.8 29.0 491.0 1.7 1.0 8.1 

10 2.5 0.5 13.7 52.0 586.1 0.8 1.7 8.4 

11 2.0 0.5 23.2 129.0 1421.6 1.2 2.8 8.4 

12 2.0 1.0 4.9 83.0 756.4 0.6 2.5 8.3 

13 6.0 0.5 24.4 109.0 1213.7 4.1 2.4 8.1 

14 6.0 1.5 41.4 281.0 1760.2 6.3 5.9 7.4 

15 1.5 0.5 4.1 133.0 639.5 0.6 5.5 8.0 

16 1.5 1.0 3.2 143.0 663.3 0.9 5.9 8.3 

17 3.5 0.5 14.1 44.0 370.1 1.4 2.1 6.8 

18 1.5 0.5 3.9 162.0 829.6 1.4 5.6 8.3 

19 17.5 1.5 22.6 1136.0 5009.4 4.3 16.6 8.1 

20 23.0 1.5 37.0 1313.0 6652.8 3.4 14.6 8.2 

21 4.0 0.5 18.0 40.0 361.9 2.3 2.1 5.7 

22 1.5 0.5 4.7 87.0 594.0 1.1 3.2 6.8 

23 3.0 0.5 7.0 37.0 469.3 2.3 1.4 6.8 

24 2.5 1.5 14.9 70.0 364.1 3.2 3.9 6.8 

25 2.0 0.5 6.8 27.0 481.1 4.2 0.9 7.8 

26 2.0 1.0 8.4 16.0 393.4 1.0 0.6 7.5 

27 3.0 1.0 9.3 25.0 663.3 2.4 0.7 6.8 

28 2.0 2.5 7.8 25.0 605.9 2.2 0.7 7.9 

29 5.5 1.0 11.1 411.0 1740.4 1.9 12.8 8.3 

30 2.5 0.5 7.8 416.0 1875.1 1.3 12.0 8.3 
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(d) Invertebrate Richness (SPR), Diversity (SWD), and % Functional Feeding 

Groups 

Coleo = Coleoptera, Dipt = Diptera, Ephem = Ephemeroptera, Odon = Odonata, Chiron = 

Chironomidae 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Site SPR SWD 

% 

Coleo 

% 

Dipt 

% 

Ephem 

% 

Odon 

% 

Chiron 

% 

Filterer 

% 

Gatherer 

% 

Predator 

% 

Scraper 

% 

Shredder 

1 24 1.17 0.88 7.02 1.40 0.35 5.61 0 81.6 9.5 8.2 0.7 

2 34 2.11 1.31 13.43 4.94 4.38 12.31 0 23.83 69.31 6.11 0.75 

4 20 0.81 0.32 1.22 0.00 0.05 0.85 0 0.85 98.57 0.42 0.16 

8 24 1.10 3.39 3.80 2.44 0.95 3.12 0.27 86.84 7.87 4.21 0.81 

9 30 0.70 0.75 2.88 1.67 1.17 0.71 0 88.75 4.92 6 0.33 

10 22 0.34 0.27 1.49 0.00 0.35 0.55 0 95.28 2.61 2.04 0.08 

13 23 2.13 2.38 19.35 6.25 8.33 8.33 0 54.61 15.18 29.91 0.3 

17 19 1.93 6.70 54.90 3.09 0.89 53.35 1.03 82.47 10.82 5.41 0.26 

20 19 1.54 0.12 37.36 28.48 0.25 37.24 0.62 78.98 5.18 15.23 0 

23 17 2.40 2.42 20.97 22.58 10.48 16.13 4.84 50.81 33.06 10.48 0.81 

24 27 1.73 3.83 7.15 25.62 6.66 3.16 0 61.81 12.73 23.96 1.5 

25 19 1.33 0.00 61.85 6.15 3.08 59.69 0 88.77 6.62 4.62 0 

26 15 1.69 2.62 15.18 29.32 7.33 14.66 1.57 69.9 12.04 15.97 0.52 

29 21 1.62 3.21 1.40 8.42 3.61 1.20 23.85 57.72 8.62 9.82 0 

30 18 1.29 1.71 2.99 2.99 4.27 0.43 9.4 74.57 11.97 3.63 0.43 
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(e) Water Quality Metrics 

Site  pH 

Turbidity 

(NTU) 

Conductivity 

(uS/cm) 

Temperature 

(°C) 
DO 

(mg/L) 

Nitrate 

(mg/L) 

Ammonia 

(mg/L) 

Phosphorus 

(mg/L) 

1 8.5 73.1 781.6 24.4 6.0 0.00 0.04 0.2 

2 8.5 11.4 802.6 25.8 6.1 0.01 0.06 0.3 

4 8.2 85.8 733.4 27.4 6.9 0.02 0.01 0.4 

8 8.6 18.8 428.6 30.6 8.5 0.00 0.05 0.1 

9 8.5 5.9 444.4 26.5 6.2 0.01 0.05 0.2 

10 8.1 90.7 425.2 24.8 4.3 0.01 0.02 0.4 

13 8.8 5.6 420.6 29.1 5.6 0.01 0.03 0.7 

17 8.7 41.4 388.6 27.5 5.6 0.04 0.02 0.3 

20 8.6 133.8 914.0 25.0 5.9 0.00 0.05 0.7 

23 7.6 136.6 124.2 28.7 4.5 0.01 0.02 0.5 

24 7.3 261.0 134.4 34.8 7.3 0.01 0.07 0.4 

25 8.9 35.3 125.6 30.1 7.8 0.03 0.00 0.1 

26 7.9 38.6 116.4 26.3 6.1 0.03 0.02 0.2 

29 8.6 3.9 2400.0 30.0 6.6 0.01 0.01 0.1 

30 8.4 3.1 2451.4 31.3 7.5 0.02 0.01 0.1 
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Appendix F: List of plant species collected from 68 depressional wetlands across Oklahoma 

Scientific Name Common Name 
Coefficient of 

Conservatism 

Number 

of Sites 

Abutilon theophrasti velvetleaf 0 2 

Acer negundo boxelder 1 2 

Acer rubrum red maple 6 1 

Acer saccharinum silver maple    2 * 1 

Achillea millefolium common yarrow 5 2 

Acorus calamus calamus 0 1 

Agalinis fasciculata beach false foxglove    6 * 5 

Agrostis hyemalis winter bentgrass  3 6 

Agrostis perennans upland bentgrass    5 * 1 

Alisma subcordatum American water plantain 6 2 

Alopecurus carolinianus Carolina foxtail 2 8 

Amaranthus palmeri carelessweed    0 * 8 

Amaranthus retroflexus redroot amaranth    1 * 7 

Amaranthus tuberculatus roughfruit amaranth    0 * 3 

Ambrosia artemisiifolia annual ragweed 3 9 

Ambrosia psilostachya Cuman ragweed 3 15 

Ambrosia trifida great ragweed 2 4 

Ammannia auriculata eared redstem 6 2 

Ammannia coccinea valley redstem 6 8 

Amorpha fruticosa false indigo bush 6 1 

Amorpha laevigata smooth false indigo 6 1 

Ampelopsis cordata heartleaf peppervine 2 1 

Andropogon glomeratus bushy bluestem 3 1 

Andropogon virginicus broomsedge bluestem    0 * 6 

Aphanostephus ramosissimus plains dozedaisy    5 * 1 

Apios americana groundnut 6 1 

Artemisia ludoviciana white sagebrush    2 * 2 

Arundinaria gigantea giant cane 7 1 

Asclepias incarnata swamp milkweed 5 1 

Asclepias viridis green antelopehorn    1 * 1 

Baccharis salicina willow baccharis     4 * 1 

Bacopa rotundifolia disk waterhyssop 6 3 

Bassia scoparia burningbush 0 4 

Berchemia scandens Alabama supplejack      6 ** 1 

Bolboschoenus fluviatilis river bulrush 4 3 

Bolboschoenus maritimus cosmopolitan bulrush 6 1 

Bromus arvensis field brome 0 1 

Bromus catharticus rescuegrass 0 7 

Bromus racemosus bald brome 0 8 

Bromus secalinus rye brome 0 3 

Bromus tectorum cheatgrass 0 6 

Broussonetia papyrifera paper mulberry 0 1 

Brunnichia ovata American buckwheat vine 6 1 

Buchloe dactyloides buffalograss    3 * 1 

Calamovilfa gigantea giant sandreed    8 * 1 

Campsis radicans trumpet creeper 3 8 
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Scientific Name Common Name 
Coefficient of 

Conservatism 

Number 

of Sites 

Cardiospermum halicacabum balloon vine 0 4 

Carex aureolensis goldenfruit sedge 5 1 

Carex austrina southern sedge    2 * 1 

Carex davisii Davis' sedge    4 * 1 

Carex festucacea fescue sedge    6 * 7 

Carex frankii Frank's sedge 5 1 

Carex hyalinolepis shoreline sedge 5 1 

Carex joorii cypress swamp sedge 8 1 

Carex lupuliformis false hop sedge 8 2 

Carex lupulina hop sedge 6 1 

Carex microdonta littletooth sedge 7 1 

Carex pellita woolly sedge 6 3 

Carex tetrastachya Britton's sedge 5 1 

Carya illinoinensis pecan 6 4 

Celtis laevigata sugarberry    5 * 1 

Celtis occidentalis common hackberry 5 3 

Cenchrus longispinus mat sandbur    0 * 1 

Cenchrus spinifex coastal sandbur    2 * 2 

Cephalanthus occidentalis common buttonbush 4 16 

Chamaesyce humistrata spreading sandmat    3 * 2 

Chamaesyce prostrata ground spurge    0 * 1 

Chenopodium album lambsquarters    0 * 13 

Chenopodium berlandieri pitseed goosefoot    0 * 3 

Chenopodium leptophyllum narrowleaf goosefoot    0 * 4 

Chenopodium pallescens slimleaf goosefoot    1 * 1 

Chenopodium pratericola desert goosefoot    3 * 7 

Chenopodium standleyanum Standley's goosefoot 3 1 

Chrysopsis pilosa soft goldenaster  4 1 

Cinna arundinacea sweet woodreed 5 1 

Citrullus lanatus watermelon 0 1 

Clitoria mariana Atlantic pigeonwings    7 * 1 

Cocculus carolinus Carolina coralbead 3 1 

Commelina erecta whitemouth dayflower 4 2 

Commelina virginica Virginia dayflower 4 1 

Convolvulus arvensis field bindweed 0 1 

Conyza canadensis Canadian horseweed 1 23 

Coreopsis tinctoria golden tickseed    1 * 14 

Cornus drummondii roughleaf dogwood 3 1 

Cornus foemina stiff dogwood 6 1 

Croton glandulosus vente conmigo    1 * 1 

Croton lindheimerianus threeseed croton    8 * 1 

Croton texensis Texas croton    1 * 2 

Cuscuta cuspidata cusp dodder    3 * 1 

Cuscuta polygonorum smartweed dodder    3 * 1 

Cynodon dactylon Bermudagrass 0 24 

Cyperus acuminatus tapertip flatsedge 3 10 

Cyperus echinatus globe flatsedge    3 * 2 

Cyperus iria ricefield flatsedge 0 2 
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Scientific Name Common Name 
Coefficient of 

Conservatism 

Number 

of Sites 

Cyperus pseudovegetus marsh flatsedge 6 2 

Cyperus rotundus nutgrass 0 1 

Cyperus squarrosus bearded flatsedge 4 1 

Cyperus strigosus strawcolored flatsedge 4 7 

Cyperus surinamensis tropical flatsedge 3 2 

Datura stramonium jimsonweed 0 1 

Desmodium canescens hoary ticktrefoil    4 * 1 

Dichanthelium aciculare needleleaf rosette grass 8 1 

Dichanthelium acuminatum tapered rosette grass 4 7 

Dichanthelium depauperatum starved panicgrass    7 * 3 

Dichanthelium dichotomum cypress panicgrass    8 * 2 

Dichanthelium oligosanthes Heller's rosette grass  5 3 

Dichanthelium scoparium velvet panicum 7 1 

Digitaria cognata fall witchgrass    3 * 1 

Digitaria pubiflora Carolina crabgrass    3 * 1 

Digitaria sanguinalis hairy crabgrass 0 1 

Diospyros virginiana common persimmon 2 4 

Distichlis spicata saltgrass 4 4 

Dysphania ambrosioides Mexican tea 0 4 

Echinochloa colona jungle rice  0 2 

Echinochloa crus-galli barnyardgrass 0 18 

Echinochloa muricata rough barnyardgrass 0 23 

Echinodorus berteroi upright burhead 8 5 

Eleocharis acicularis needle spikerush  5 1 

Eleocharis compressa flatstem spikerush 6 2 

Eleocharis engelmannii Engelmann's spikerush 5 3 

Eleocharis geniculata Canada spikesedge 10 1 

Eleocharis lanceolata daggerleaf spikerush  7 2 

Eleocharis macrostachaya  pale spikerush 6 5 

Eleocharis obtusa blunt spikerush 4 9 

Eleocharis palustris common spikerush 7 8 

Eleocharis quadrangulata squarestem spikerush 7 1 

Eleusine indica Indian goosegrass 0 2 

Elymus canadensis Canada wildrye    5 * 2 

Equisetum laevigatum smooth horsetail 3 1 

Eragrostis cilianensis stinkgrass 0 1 

Eragrostis curvula weeping lovegrass  0 4 

Eragrostis frankii snadbar lovegrass 6 1 

Eragrostis pectinacea tufted lovegrass    0 * 3 

Eragrostis secundiflora red lovegrass    7 * 2 

Erigeron bellidiastrum western daisy fleabane    4 * 1 

Erigeron tenuis slenderleaf fleabane    4 * 1 

Euonymus kiautschovicus  creeping strawberry bush 0 1 

Eupatorium perfoliatum common boneset 5 1 

Eupatorium serotinum lateflowering thoroughwort 3 1 

Euphorbia humistrata spreading sandmat       3 ** 3 

Eustoma exaltatum catchfly prairie gentian 6 1 
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Scientific Name Common Name 
Coefficient of 

Conservatism 

Number 

of Sites 

Frangula caroliniana Carolina buckthorn      6 ** 1 

Geranium carolinianum Carolina geranium     0 * 5 

Geranium texanum Texas geranium    0 * 2 

Gleditsia triacanthos honeylocust 2 1 

Glycine max soybean 0 4 

Grindelia squarrosa curlycup gumweed    0 * 2 

Helianthus annuus common sunflower 1 3 

Helianthus petiolaris prairie sunflower    1 * 3 

Heliotropium curassavicum salt heliotrope 5 2 

Heteranthera limosa blue mudplantain 7 1 

Heteranthera rotundifolia roundleaf mudplantain 5 3 

Hibiscus laevis halberdleaf rosemallow 4 2 

Hordeum jubatum foxtail barley 2 9 

Hordeum pusillum little barley 1 14 

Hydrolea ovata ovate false fiddleleaf 8 1 

Ilex vomitoria yaupon 7 1 

Impatiens capensis jewelweed 5 2 

Ipomoea lacunosa whitestar 2 2 

Juncus diffusissimus slimpod rush 5 1 

Juncus effusus common rush 5 4 

Juncus interior inland rush    2 * 6 

Juncus nodatus stout rush 5 1 

Juncus secundus lopsided rush      5 ** 2 

Juncus torreyi Torrey's rush 6 3 

Juniperus virginiana eastern redcedar 0 4 

Justicia americana American water-willow 5 1 

Koeleria macrantha prairie Junegrass    6 * 2 

Kummerowia striata Japanese clover 0 2 

Lactuca serriola prickly lettuce 0 3 

Leersia oryzoides rice cutgrass 4 5 

Lemna minor common duckweed 5 2 

Lepidium densiflorum common pepperweed    0 * 16 

Lepidium virginicum Virginia pepperweed    0 * 5 

Leptochloa fusca Malabar sprangletop 3 10 

Leptochloa panicea mucronate sprangletop 3 1 

Limnosciadium pinnatum Arkansas dogshade 6 2 

Lindernia dubia yellowseed false pimpernel 4 8 

Liquidambar styraciflua sweetgum      6 ** 2 

Lolium perenne perennial ryegrass  0 5 

Lonicera japonica Japanese honeysuckle 0 1 

Lotus unifoliolatus American bird's-foot trefoil    3 * 1 

Ludwigia alternifolia seedbox 5 2 

Ludwigia palustris marsh seedbox 5 3 

Lycopus americanus American water horehound 4 2 

Lycopus virginicus Virginia water horehound 5 2 

Lythrum alatum winged lythrum 6 1 

Marsilea vestita hairy waterclover 4 4 

Melilotus officinalis sweetclover 0 1 
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Scientific Name Common Name 
Coefficient of 

Conservatism 

Number 

of Sites 

Melothria pendula Guadeloupe cucumber 1 3 

Mikania scandens climbing hempvine 5 2 

Mimulus alatus sharpwing monkeyflower 5 2 

Mollugo verticillata green carpetweed 1 15 

Monarda punctata spotted beebalm    5 * 2 

Muhlenbergia cuspidata plains muhly    5 * 1 

Oenothera laciniata cutleaf evening primrose    0 * 9 

Oxalis dillenii slender yellow woodsorrel    0 * 2 

Oxalis stricta common yellow woodsorrel    2 * 3 

Panicum anceps beaked panicgrass    4 * 4 

Panicum capillare witchgrass  1 5 

Panicum coloratum kleingrass 0 4 

Panicum dichotomiflorum fall panicgrass 1 7 

Panicum obtusum vine mesquite    2 * 1 

Panicum verrucosum warty panicgrass 5 1 

Panicum virgatum switchgrass 4 5 

Panicum miliaceum proso millet 0 1 

Panicum philadelphicum Philadelphia panicgrass    4 * 3 

Parthenocissus quinquefolia Virginia creeper 2 1 

Paspalum dilatatum dallisgrass 0 2 

Paspalum distichum knotgrass 7 5 

Paspalum floridanum Florida paspalum 5 3 

Paspalum setaceum thin paspalum 9 7 

Passiflora incarnata purple passionflower    4 * 1 

Phyla lanceolata lanceleaf fogfruit 3 6 

Phyla nodiflora turkey tangle fogfruit 3 12 

Physalis heterophylla clammy groundcherry    4 * 4 

Physalis pumila dwarf groundcherry    4 * 2 

Physalis virginiana Virginia groundcherry    6 * 1 

Phytolacca americana American pokeweed    0 * 5 

Pinus taeda loblolly pine 2 1 

Plantago lanceolata narrowleaf plantain 0 1 

Plantago virginica Virginia plantain 1 3 

Platanus occidentalis American sycamore 4 1 

Pluchea odorata sweetscent 4 1 

Poa annua annual bluegrass 0 1 

Polygonella americana southern jointweed      5 ** 1 

Polygonum amphibium water knotweed 7 12 

Polygonum aviculare prostrate knotweed 0 1 

Polygonum hydropiper marshpepper knotweed 0 3 

Polygonum hydropiperoides swamp smartweed 4 14 

Polygonum lapathifolium curlytop knotweed 4 8 

Polygonum pensylvanicum Pennsylvania smartweed 2 13 

Polygonum persicaria spotted ladysthumb 0 13 

Polygonum punctatum dotted smartweed 4 2 

Polygonum ramosissimum bushy knotweed 1 3 

Polygonum virginianum jumpseed        5 *** 1 

Polypogon monspeliensis annual rabbitsfoot grass  0 2 
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Coefficient of 

Conservatism 

Number 

of Sites 

Polypremum procumbens juniper leaf      4 ** 1 

Populus deltoides eastern cottonwood 1 8 

Pyrrhopappus carolinianus Carolina desert-chicory 3 2 

Pyrrhopappus grandiflorus tuberous desert-chicory     4 * 1 

Quercus alba white oak 3 1 

Quercus marilandica blackjack oak    4 * 2 

Quercus nigra water oak      5 ** 2 

Quercus phellos willow oak 4 1 

Quercus stellata post oak    4 * 1 

Ranunculus sardous hairy buttercup 0 2 

Ranunculus sceleratus cursed buttercup 3 5 

Rayjacksonia annua viscid tansyaster    3 * 2 

Rhus copallinum winged sumac 7 1 

Rhus glabra smooth sumac    1 * 1 

Rhynchospora corniculata shortbristle horned beaksedge 7 3 

Rhynchospora macrostachya tall horned beaksedge 6 1 

Robinia pseudoacacia black locust 1 1 

Rorippa palustris bog yellowcress 3 5 

Rorippa sessilifloria stalkless yellowcress 3 3 

Rubus oklahomus Oklahoma blackberry 4 2 

Rubus trivialis southern dewberry    4 * 1 

Rudbeckia hirta blackeyed Susan    2 * 2 

Rumex altissimus pale dock 0 4 

Rumex crispus curly dock 0 7 

Rumex hastatulus heartwing sorrel    1 * 1 

Rumex stenophyllus narrowleaf dock 0 4 

Sagittaria ambigua Kansas arrowhead 8 1 

Sagittaria brevirostra shortbeak arrowhead 4 1 

Sagittaria graminea grassy arrowhead 8 1 

Salix babylonica Weeping willow 0 1 

Salix interior sandbar willow      3 ** 2 

Salix nigra black willow 2 22 

Salsola iberica russian thistle 0 1 

Saururus cernuus lizard's tail 6 1 

Schedonorus pratensis meadow fescue  0 1 

Schoenoplectus acutus hardstem bulrush 4 3 

Schoenoplectus americanus chairmaker's bulrush 6 3 

Schoenoplectus pungens common threesquare 4 4 

Schoenoplectus tabernaemontani softstem bulrush 6 5 

Scirpus cyperinus woolgrass 7 1 

Secale cereale cereal rye 0 8 

Sesbania herbacea bigpod sesbania 2 4 

Setaria parviflora marsh bristlegrass 2 2 

Sibara virginica Virginia winged rockcress    2 * 2 

Sicyos angulatus oneseed bur cucumber 3 1 

Sideroxylon lanuginosum chittamwood 5 1 

Smilax bona-nox saw greenbrier 5 1 

Solanum carolinense Carolina horsenettle 1 3 



161 
 

Scientific Name Common Name 
Coefficient of 
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Solanum dimidiatum western horsenettle    3 * 2 

Solanum physalifolium hoe nightshade 0 2 

Solanum rostratum buffalobur nightshade     0 * 2 

Solanum ptycanthum West Indian nightshade    1 * 1 

Solidago canadensis Canada goldenrod  3 5 

Sonchus asper spiny sowthistle 0 1 

Sorghum halepense Johnsongrass 0 11 

Sphenopholis obtusata prairie wedgescale 2 1 

Strophostyles leiosperma slickseed fuzzybean    3 * 1 

Symphoricarpos orbiculatus coralberry 1 1 

Symphyotrichum subulatum eastern annual saltmarsh aster 4 4 

Tamarix chinensis five-stamen tamarisk 0 1 

Taraxacum officinale common dandelion 0 2 

Teucrium canadense Canada germander 3 14 

Thalia dealbata powdery alligator-flag 7 1 

Toxicodendron radicans eastern poison ivy 1 2 

Trachelospermum difforme  climbing dogbane 6 2 

Tragopogon dubius yellow salsify 0 1 

Tridens flavus purpletop tridens 1 3 

Trifolium repens white clover 0 3 

Triodanis holzingeri Holzinger's Venus' looking-glass    5 * 3 

Triticum aestivum common wheat 0 6 

Typha angustifolia narrowleaf cattail 3 2 

Typha domingensis southern cattail 2 4 

Ulmus alata winged elm 3 4 

Ulmus americana American elm 2 8 

Urochloa platyphylla broadleaf signalgrass 0 1 

Verbena bracteata prostrate vervain    0 * 4 

Vernonia missurica Missouri ironweed 4 1 

Vernonia texana Texas ironweed 4 1 

Veronica peregrina neckweed 2 2 

Vicia sativa garden vetch 0 2 

Viola sagittata arrowleaf violet    7 * 2 

Vitis aestivalis summer grape 4 1 

Vitis riparia riverbank grape 4 2 

Vitis vulpina frost grape    3 * 1 

Vulpia octoflora sixweeks fescue    5 * 2 

Xanthium strumarium rough cocklebur 0 10 

Zea mays corn 0 3 

       Notes:  * Kansas CoC; ** Missouri CoC, *** Iowa CoC 
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Appendix H: Floristic Quality Assessment metrics (i.e., Mean C and Floristic Quality 

Index [FQI]) calculated for 68 depressional wetlands 

Site MeanCnative FQInative MeanCall FQIall CoverMeanCnative CoverFQInative CoverMeanCall CoverFQIall 

1 3.68 17.27 3.38 16.53 4.07 19.10 3.99 19.55 

2 3.58 15.60 3.24 14.84 4.65 20.25 4.49 20.58 

3 4.16 18.12 3.76 17.24 3.02 13.17 3.00 13.73 

4 3.12 12.85 2.79 12.16 3.65 15.07 3.29 14.34 

5 3.00 8.49 2.67 8.00 3.70 10.47 2.69 8.08 

6 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 

7 2.64 8.74 2.23 8.04 3.06 10.16 3.04 10.95 

8 4.89 14.67 4.00 13.27 5.11 15.33 2.95 9.78 

9 3.79 18.58 3.50 17.85 3.71 18.15 3.66 18.65 

10 3.80 12.02 3.45 11.46 4.81 15.22 4.79 15.88 

11 4.00 14.42 4.00 14.42 4.42 15.95 4.42 15.95 

12 2.57 9.62 2.12 8.73 2.13 7.97 1.09 4.49 

13 4.40 9.84 2.00 6.63 4.40 9.84 0.09 0.31 

14 3.30 10.44 2.75 9.53 4.79 15.16 4.58 15.87 

15 3.11 9.33 2.33 8.08 2.28 6.83 1.92 6.67 

16 4.50 18.00 3.60 16.10 4.85 19.39 4.27 19.10 

17 3.00 9.95 1.94 8.00 3.66 12.14 3.25 13.40 

18 3.25 9.19 1.86 6.95 3.60 10.19 2.52 9.41 

19 2.80 10.84 2.47 10.19 2.93 11.35 2.83 11.69 

20 3.00 12.73 2.45 11.51 2.71 11.49 2.06 9.68 

21 3.38 13.50 3.38 13.50 3.29 13.16 3.29 13.16 

22 1.25 2.50 1.00 2.24 1.63 3.25 1.44 3.23 

23 4.33 7.51 1.30 4.11 4.99 8.65 3.15 9.95 

24 4.45 25.59 4.08 24.50 4.49 25.78 4.31 25.87 

25 4.86 22.26 4.86 22.26 5.64 25.86 5.64 25.86 

26 3.82 20.22 3.45 19.22 3.36 17.80 3.32 18.46 

27 4.54 22.25 4.36 21.80 3.78 18.50 3.73 18.64 

28 5.00 24.49 5.00 24.49 4.61 22.59 4.61 22.59 

38 1.80 4.02 1.13 3.18 0.39 0.88 0.06 0.18 

39 2.41 9.94 1.71 8.37 3.00 12.39 2.14 10.50 

42 1.00 2.65 0.64 2.11 1.13 3.00 0.10 0.33 

43 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

46 2.42 8.37 1.38 6.33 2.49 8.62 0.45 2.06 

59 3.38 15.49 2.96 14.49 3.15 14.45 3.10 15.18 

71 2.84 12.39 2.25 11.02 2.32 10.11 1.80 8.81 

72 2.35 11.96 1.74 10.31 2.63 13.40 2.08 12.32 

62 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

64 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

85 1.33 2.31 0.80 1.79 1.40 2.42 0.15 0.32 

86 1.75 3.50 0.88 2.47 1.83 3.67 0.41 1.16 

96 1.00 2.00 0.57 1.51 0.80 1.60 0.40 1.06 
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Site MeanCnative FQInative MeanCall FQIall CoverMeanCnative CoverFQInative CoverMeanCall CoverFQIall 

115 1.29 3.40 0.90 2.85 0.70 1.84 0.11 0.34 

128 2.50 10.61 1.80 9.00 4.11 17.44 3.60 18.02 

135 2.39 10.14 2.15 9.62 2.53 10.72 1.72 7.68 

156 1.67 4.08 1.11 3.33 1.37 3.35 0.24 0.71 

157 2.96 15.69 2.86 15.41 3.03 16.05 2.95 15.87 

158 2.91 13.64 2.67 13.06 2.94 13.81 2.86 14.03 

159 1.95 8.72 1.86 8.51 2.52 11.29 2.50 11.46 

174 1.50 2.12 0.75 1.50 2.50 3.53 0.43 0.86 

175 1.00 1.00 0.50 0.71 1.00 1.00 0.05 0.08 

182 2.27 8.78 1.89 8.01 2.60 10.05 1.88 7.97 

183 2.18 7.24 1.85 6.66 1.35 4.47 0.94 3.38 

185 2.00 6.00 1.20 4.65 1.69 5.07 0.85 3.28 

186 2.30 11.05 1.89 10.02 3.28 15.74 2.50 13.23 

187 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

205 2.57 12.30 2.19 11.35 2.87 13.76 2.33 12.13 

209 1.77 6.38 1.35 5.58 4.41 15.91 1.93 7.98 

210 2.76 12.66 2.23 11.37 3.10 14.18 2.18 11.14 

221 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

222 2.67 9.24 2.46 8.88 1.21 4.18 1.00 3.61 

223 3.05 13.64 2.65 12.72 3.20 14.29 3.15 15.10 

224 3.54 12.76 3.07 11.88 4.52 16.30 4.44 17.20 

226 1.00 3.61 0.68 2.98 0.50 1.81 0.08 0.33 

228 2.28 9.66 1.58 8.04 2.12 9.01 1.03 5.23 

229 3.05 13.64 2.77 13.01 2.71 12.13 2.66 12.46 

230 2.95 12.85 2.80 12.52 3.15 13.72 3.13 14.02 

231 2.17 7.51 1.86 7.43 0.88 3.06 0.53 2.10 

232 2.73 9.05 2.50 9.35 1.81 5.99 0.55 2.04 
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