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ABSTRACT 
 

Soybean [Glycine max (L.) Merr.] yield is sensitive to drought stress during critical 
reproductive growth stages. This study was conducted to determine both the ability of the 
soybean to recover after drought stress has subsided and to determine if a specific soil 
moisture matric potential could be identified as a reference for plant stress, and thus serve 
as a practical irrigation guide. Soybeans were subjected to drought stress during pod-fill 
(R5) in a growth chamber study and measurements of the growth of individual beans 
were collected non-destructively. In a complementary field study with rain-fed and 
irrigated soybean plots, measurements of photosynthetic CO2 assimilation, stomatal 
conductance, leaf fluorescence, and leaf relative water content were recorded near 
Braman, OK, on an Ashport silt loam (fine-silty, mixed, superactive, thermic Fluventic 
Haplustolls). In the growth chamber study, a four-day drought with soil matric potential 
not dropping below  -200 kPa, was sufficient to abort 10.5% of initiated beans, reduce the 
final mass of individual beans by 20%, and depress the growth rate of beans by 25% after 
the drought stress had been removed for 5 days. The transition point from positive growth 
to negative growth occurred when soil matric potentials dropped below -60 kPa. Plant 
metrics from the field trial confirm that drought stress conditions occurring when soil 
matric potentials fall below -60 kPa can negatively influence the growth and development 
of soybean. This susceptibility of soybean to relatively mild drought stress, supports the 
need for improved soil moisture monitoring when irrigation capabilities are present. 
Direct monitoring of the soil matric potential would improve the accuracy of estimating 
the plant water status indirectly via the water status of the soil, and irrigation scheduling 
utilizing a -60 kPa base level would help to avoid yield losses due to drought stress.   
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CHAPTER I 
 

GENERAL INTRODUCTION 

Soybean (Glycine max) is a global staple crop with diverse uses for peoples and 

industries worldwide. While by-products of soybean can be incorporated into products from ink 

to upholstery, most soybeans are utilized as a food source for livestock and human consumption 

(Janick, 1974; NCSPA, 2014). This is a direct result of the high nutritional value of soybeans 

which contain ~35-38% protein, omega-3 fatty acids, and a multitude of essential micronutrients 

(United). Such utility and nutrition has led to an ever-increasing demand for soybeans. In 

response, the world soybean production elevated to over 319.7 million tons in 2014-2015 

growing seasons (FAO, 2016). For the 2015 production year, the United States alone accounted 

for 107 million tons of that global production (FAO, 2016). While soybean traditionally favors a 

semitropical environment, advances in genetics and agronomy have allowed soybean production 

to proliferate across the United States into regions less conducive to soybean growth (Miller et 

al., 2002).  

Oklahoma lies in a region where environmental conditions can be challenging for 

soybean production, and only 151 thousand hectares of the total 33.1 million harvested hectares 

of production in the United States could be attributed to Oklahoma during 2015 season (USDA, 

2016a; USDA, 2016b). Even more disconcerting for the production of soybean in Oklahoma than 

the production area is the resulting yield. Oklahoma returned an average yield of 2,004 kg ha-1 
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during the 2013-15 growing seasons while the national average reached 3,127 kg ha-1 during the 

same period (USDA, 2016a; USDA, 2016b). This ranks Oklahoma last among soybean producing 

states in yield per hectare. Still, for regions of northern and eastern Oklahoma, soybean 

production is vital as a primary cash crop and as an option in crop rotations.                                                                                                                                                                                                                                       

A leading factor in the limited production of soybean throughout Oklahoma and similar 

environments is the probability and frequency of drought and heat induced stress. Soybean 

planting occurs during a wide window from mid spring through early summer and it has a growth 

cycle where maturity develops during the fall from September to November. During this growing 

season, it is likely that the environment will present conditions unfavorable for soybean growth. 

As a temperate legume native to southern Siberia and eastern China (Harlan, 1995; Janick, 1974), 

soybeans are adapted to thrive under conditions where daytime temperatures do not exceed 30°C 

and water is supplied at regular intervals to total between 380-700 mm for the duration of the 

growing season (Dogan et al., 2007; Gibson and Mullen, 1996; Kranz, 2012). Given the 

sometimes extreme and erratic nature of the Oklahoma weather patterns, it is common for the 

temperature to exceeded optimum conditions and for irregularities in rainfall to manifest as 

drought.  

Drought is the major driving factor in the yield and production discrepancy between 

Oklahoma and the more prolific soybean producing regions. As with all plants, available water is 

necessary as it governs four general functions. As outlined by Kramer (Kramer, 1963), 1) water is 

the major constituent of physiologically active tissue, 2) it is a reagent in photosynthesis and in 

hydrolytic processes, 3) serves as the solvent in which salts, sugars, and other solutes move from 

cell to cell or organ to organ, 4) and is essential for the maintenance of the turgidity necessary for 

cell enlargement and growth. Together, the success or failure of these processes manifests 

outwardly through the quality and quantity of plant growth (Kramer, 1995). In soybean, this is 

reflected in the ability of the plant to grow vegetatively, flower, pollinate, and set large beans 
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with high concentrations of the oil and protein that determine quality. Depending on the soybean 

growth stage during which the plant is experiencing drought stress, any one of these essential 

plant functions could be negatively impacted as a result of the cascading effects of water stress 

(Liu et al., 2003).  

Since most interest in the production of soybean is focused on increasing seed yield, 

much work has centered around determining the soybean growth stage during which drought is 

most damaging to the final yield. With vegetative growth encompassing a large portion of the 

soybean life cycle, it is important to understand if droughts during this early stage are highly 

influential in final yield. Work conducted by the USDA-ARS determined that mild water deficits 

during vegetative growth can have a significant negative impact on soybean biomass production, 

reducing leaf production and expansion (Muchow et al., 1986). While such stress could influence 

yield if the reduction in vegetative growth continued throughout the early reproductive phases; 

stress strictly during the vegetative period is not the most critical time in the life cycle as 

vegetative growth can continue through the early reproductive stages (Board and Harville, 1996; 

Casteel, 2009). Early irrigation studies even found that there was very little benefit in yield for 

irrigation applied before the reproductive stages began (Grissom et al., 1955; Spooner, 1961).  

 Flowering has long been considered a period susceptible to drought stress as it governs 

the initial number of pods on a plant and is a key contributor to final yield (Board and Tan, 1995). 

Work by Liu noted that, “severe drought stress soon after anthesis decreased pod set by 40% and 

resulted in a 50% seed reduction”. Other studies by Westgate and Peterson in addition to 

Andriani, all found that water deficits early in the reproductive stages where flowering is 

prominent (R1-R3) resulted in a decreased number of viable pods in contrast to those plants 

which did not experience the water deficit (Andriani et al., 1991; Liu et al., 2003; Westgate and 

Peterson, 1993).  
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In many cereal crops, pollination can be a very sensitive stage to drought stress, but in 

soybeans this process is not considered to be sensitive in regards to pollen function. A study on 

drought stress influence on pollen sterility determined that “flower abortion cause by a 

preanthesis water deficit is not attributed to an impairment of pollen, but was probably due to 

impairment of ovule function” (Kokubun et al., 2001). Lastly, the period of seed filling is 

arguably the most stress sensitive stage in soybean growth and development. Sionit and Kramer 

tested the effects of water stress during different stages of growth and determined that stress that 

occurred during pod formation or pod filling resulted in greater yield reduction than when stress 

occurs at earlier stages (Sionit and Kramer, 1977). In a three year study with ten variations in 

drought timing, it was determined that water availability during the pod-fill stage is most critical 

in achieving maximum yield (Doss et al., 1974). Brevedan and Egli suggest that a completely 

water stress free environment must exist during the period of pod-fill in order for soybeans to 

reach maximum yield (Brevedan and Egli, 2003).  

From the foregoing research, it is apparent that much care should be taken to ensure a 

water stress free environment during rapid seed development and pod-fill (R5-R6). There are two 

positions from which producers must address this problem, those with irrigation capabilities and 

those without. For those areas with irrigation capabilities, it is necessary to have insight into the 

progression of the drought stress as a measure of both soil water status and plant water status. To 

make informed irrigation applications, one must know the level of water deficit at which the 

soybean plant begins to experience stress as a reference point for the current water conditions. 

Given both the ability to accurately measure the water status of the soil and the availability of 

credible thresholds levels for the onset of plant stress, growers would have the information 

necessary to apply water at the correct time and rate before stress is induced.  

Two problems currently exist in accurately supplementing water to soybeans via 

irrigation. The first develops from the potential differences between the water status of the soil 
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and the water status of the soybean plant, which is dictated by the combination of plant, soil and 

environmental interactions. Thus, it is not always appropriate to assume a direct correlation 

between the soil water status and plant water status (Kramer, 1995). This theory originated from 

observations of a well-watered plant experiencing temporary wilting early in the mornings and 

then again when transpiration is highest during midday (Kramer, 1995; Maximov and Yapp, 

1929). From this we can see that a seemingly constant soil water status is at times sufficient and 

others insufficient in allowing the plant to transpire water at a rate that meets the atmospheric 

demand. This would suggest that when monitoring the water status of a sensitive crop, one should 

directly measure the water status of the plants and not the soil. Although existing technologies 

can be used to measure the plant water status, none are as easily employed in a continuous field 

setting as current systems designed to measure soil moisture.  

This creates the second issue in that a large percentage of soil moisture measurements are 

based on a ratio between the volume of water and the volume of soil, this is insightful, but not a 

true measure of the soil moisture conditions that the plant is experiencing (Kramer, 1995). To 

understand the true moisture environment, either the soil physical and hydraulic properties should 

be determined in conjunction with the volumetric water content values, or the matric potential of 

the soil should be measured directly. This value could then be compared against reference critical 

values associated with the onset of stress within the plant. Previously, these critical values or 

thresholds are considered to occur when roughly 50% of the maximum plant available water 

remains in the rooting zone (Richard G. Allen, 1998). Having additional knowledge of these 

thresholds would serve as a guideline for irrigation applications across soil types and soil 

properties. 

For many growers, irrigation is not available and only agronomic decisions can be made 

to prepare a plant for potential drought stress. Historically, producers have attempted to assist 

soybeans in escaping potential droughts via refinement of plant population, timing of planting and 
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selection of a soybean variety with a specific growth habit. The refinement of plant populations is 

utilized to reduce levels of interplant competition for limited water resources. The time of 

planting and stem growth habit selection are utilized to position the timing of soybean 

reproduction during a period that is either before or after the period of the growing season with 

the greatest historical potential for drought. The difference in stem growth habits amongst 

soybeans, determinate or indeterminate, each offer unique opportunities and risks when 

combating potential drought conditions. Soybeans that have a determinate habit cease vegetative 

growth when the terminal bud flowers (Woodworth, 1932). This is beneficial if the determinate 

variety completes the sensitive reproductive stages before the onset of drought or withstands the 

drought and completes the reproductive stages after the drought has subsided. It is a liability 

however, if the drought stress occurs near pod-fill (R5) as inflorescence has ceased since the 

terminal bud has flowered and the plant is now allocating resources to the development of 

existing pods (Gai et al., 1984). For an indeterminate soybean, vegetative growth and 

reproductive growth occur sequentially as the terminal bud continues to grow while flowers 

initiate outward on axillary racemes (Carlson and Lersten, 2004; Woodworth, 1932). This allows 

the reproductive phases to extend over a longer period at the whole plant level. This creates an 

environment where droughts can arise during the reproductive stages, but the delay between the 

initiation of subsequent growth stages between nodes may allow for an extended period of pod 

production on the apical nodes of the plant (Egli and Bruening, 2006).  

 Irrespective of drought escape measures, many soybean acres are exposed to droughts of 

varying severity during this sensitive period. During a non-lethal drought, soybean plants can still 

suffer yield loss which is apparent to growers in the form of visible pod and bean abortion, 

reduced seed size and foliar damage. In this situation, research is needed to determine the 

drought’s impact on soybean yield potential and the soybean’s ability to recover if conditions 

improve and water deficit conditions reside. Our research attempts to address these issues through 
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a drought trial in a controlled growth environment coupled with a large-scale field trial for growth 

chamber data validation. 

Two objectives were thus developed in an effort to evaluate drought during pod-fill (R5). 

The first objective was to observe and quantify the loss and recovery of bean growth during 

drought stress and throughout the recovery period. The second focuses on drought preventive 

measures as our objective was to determine the matric potential where drought stress signals 

begin to manifest physiologically in the soybean plant. 
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CHAPTER II 
 

METHODOLOGY 

2.1 Growth Chamber Experiment 

 2.1.1 Settings and Soils 

 This study was conducted in a controlled environment growth chamber (Percival 

Modular Control Systems, Boone, IA). The climate was maintained at one static environment 

with variation only occurring in night and day temperatures and lengths. Daytime temperature 

was maintained at 27.8◦C while the night temperature was reduced to 20.0◦C. Day length was 

adjusted to mimic the light conditions observed from May – October in northern Oklahoma with 

light ranges starting at fourteen hours of sunlight and diminishing to eleven hours by maturity. 

Carbon dioxide and humidity fluctuated with CO2 ranging from 500 – 700 ppm and humidity 

from 20 – 40%. A preliminary experiment was conducted to determine the specific lighting 

conditions necessary to grow a photoperiod sensitive plant anatomically correct. We determined 

that an alternating placement of metal halide and high pressure sodium bulbs would be utilized as 

the main energy source, with additional 440 nm (blue) LED lights placed in between to reduce 

stem elongation. The soil medium was Ashport silt Loam extracted from the site of the field trial 

near Braman, OK (36◦ 56’ 44’’ N, 97◦ 23’ 25’’ W).  
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 2.1.2 Plant Propagation 

Soybeans were selected to be representative of a widely used variety for northern 

Oklahoma and southern Kansas, the variety Asgrow 45X6 was also selected for its indeterminate 

growth habit. Prior to planting, seed was inoculated using the product Vault HP which contains 

living strains of Bradyrhizobium japonicum. The inoculated beans were planted into a pre-

watered silt loam soil (35.8% sand, 17.2% silt and 47.0% clay) in 1.5 liter pots. At V5, fifth 

trifoliate, selected plants were transplanted into 10 liter pots containing the same soil. At this 

time, Decagon soil moisture sensors (5TE) were inserted horizontally into the base of the 

established root ball. These plants remained well watered from VC-R5 (emergence to pod-fill). 

 2.1.3 Experimental Design 

Five plants were selected at the time of transplanting and soil probe insertion. The five 

plants were ordered randomly within the chamber to mitigate any bias in the micro environment 

within the climate control system. One plant was chosen at random to serve as the well-watered 

control. For the other four plants, short-term water stress was induced via a four-day dry down 

period. The dry down was initiated at early R5, beginning pod-fill. After four days the plants 

were experiencing severe wilting, with matric potentials approaching -200 kPa. Re-watering to 

levels between field capacity and saturation ensued, with conditions remaining well-watered until 

plant maturity.  

 2.1.4 Soil Moisture Measurements 

Volumetric water content of the soil was measured via Decagon 5TE probes (Decagon 

Devices, Pullman, WA) with data recorded via a Decagon Em 50 ECH2O data logger. Sensors 

measured moisture in 20 minute intervals with commands and data review occurring in ECH2O 

Utility software program. To convert the gathered volumetric water content measurements, a soil 

moisture retention curve was developed utilizing the Rosetta pedotransfer function (Schaap et al., 
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2001) within HYDRUS/1D to estimate the soil hydraulic properties. Measurements of the basic  

physical properties of the soil were needed to complete this estimate, and thus soil samples were 

taken directly from the soybean pots to measure texture, bulk density, volumetric water content at 

field capacity (-33 kPa) and volumetric water content at permanent wilting point (-1500 kPa). 

Soil texture was determined utilizing the hydrometer method as defined by Gee (Gee, 2002). 

Determination of field capacity was made using Tempe cells while a pressure plate was used to 

determine the water content at permanent wilting point (Dane, 2002). These parameters were 

used in the van Genuchten water retention curve equation to obtain corresponding tension values 

(Van Genuchten, 1980). 

 2.1.5 Bean Measurements 

 All of the ~450 beans initiated at the start of R5, beginning pod fill, were tagged and 

labeled for sampling. First, pots were labeled based on their water status (1 well-watered & 2-5 

stressed). Tagging started at the base (node 1) of the soybean plant with a numbered tag tied 

around the node locations on the main stem. Second, the pods within each node were numbered 

directly via permanent marker. To determine the individual bean in that pod, the bean located 

nearest to the petiole was considered number one with progression towards the distal end. To 

measure the size of the bean non-destructively, digital calipers with a resolution of 0.01 mm was 

used to measure the thickness of the bean within the pod (Figure 1). Careful practice was taken 

amongst individuals recording the measurements to develop a uniform understanding of the 

firmness at which to measure each bean. The same lab technician typically measured each plant 

in an additional effort to reduce sampling error. With the soybeans entering R5, all beans were 

measured and the drought stress was initiated. Thickness of all beans were measured daily for 

twenty-five consecutive days. At plant maturity, soybeans were hand harvested and final 

thickness and bean mass measurements were recorded. For data analysis, thickness of the bean 

was considered as an effective diameter, and the beans were considered to be spheres. 
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 2.1.6 Statistical Analysis 

 Data were analyzed using Graphpad Prism Version 7.0 (Graphpad Software Inc., La 

Jolla, CA). Significance was tested for the resulting accumulated volumes via a one-sample t-test. 

Since no replication was available for the well-watered treatment at the whole plant level, the 

accumulated volume for the well-watered control was considered a hypothetical value and results 

were compared at α=0.05. A one-sample t-test, α=0.001, was conducted to compare the 

individual masses of the finished beans between the control and drought stressed plants (Table 1). 

A sigmoid function was used to derive the relationship between bean growth rates and the 

volumetric water content.  

2.2 Field Experiment 

 2.2.1 Locations and Soils 

  The field trial was established for a single growing season (2015) at a location near 

Braman, OK (36◦ 56’ 44’’ N, 97◦ 23’ 25’’ W). The location was selected due to its irrigation 

capabilities with access to both center pivot irrigation and rain-fed production. The soil was an 

Ashport silt loam 0-1% Slopes (fine-silty, mixed, superactive, thermic Fluventic Haplustolls) with 

a bulk density of 1.24 g/cm3. 

 2.2.2 Experimental Design 

  Since irrigation location could not be randomized and soil moisture measurements are 

sensitive to soil variation, the trial utilized a split plot design. The plot was split in half east to 

west, in ~53 meter long blocks, by the soil moisture regime (irrigated or rain-fed) and was split in 

half north to south by planting population (247,000 seeds ha-1 or 494,000 seed ha-1)  in ~12.2 

meter wide blocks. The plot design was established to create four zones of varying degrees of 

water stress. Based on the combination of water availability plus planting population, the 
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following zones were created in increasing order of potential drought stress: irrigated population 

247,000 seeds ha-1, irrigated population 494,000 seeds ha-1, rain-fed 247,000 seeds ha-1, and rain-

fed 494,000 seeds ha-1. Within each zone, five locations were selected at random to establish 

locations for continued plant and soil sampling. 

 2.2.3 Field Methodology 

  The soybean variety utilized (Asgrow 3832) was an indeterminate group 3.8 maturity. 

Before planting, the seed was treated with Vault HP to supplement the bacterial strain 

Bradyrhizobium jacpanicum and aid in root nodule development. Soybeans were planted via a 

White 9816 plate planter into no-till corn residue on 0.762 m row spacing. Two gallons per acre 

of liquid started, Agroliquid Progerminator (9% nitrogen 24% phosphorus 3% potassium), were 

applied in furrow. A pre-emergent application of 2.5 oz. Zidua, (0.13 lb. pyroxasulfone) in 

addition to a post-emergent application of 24 oz. Roundup Powermax (1.03 lb. glyphosate salt) 

were used for weed control. A fungicide application of 8 oz. Priaxor (0.087 lb. fluxapyroxad and 

0.174 lb. pyraclostrobin) was applied aerially at R5, one day prior to sampling. Harvest was 

manual as an area of two row meters was collected from all 20 sampling location. Soybeans were 

later threshed via a small plot combine. 

 2.2.4 Soil and Plant Measurements 

  Soil moisture was recorded at each of the 20 sampling locations weekly. Readings were 

taken to a depth of 20 cm. utilizing a Hydro Sense II portable moisture probe (Campbell 

Scientific Inc., Logan, UT). The instrument has a typical accuracy of ±3% with a volumetric 

water content resolution of <0.05%. Triplicate soil moisture measurements were made at the base 

of the plants being sampled at each location, if soil conditions allowed for probe insertion. 

  Measures of photosynthetic CO2 assimilation, stomatal conductance and fluorescence 

(Fv’/Fm’) were collected using a LI-6400XT portable photosynthesis system (LI-COR, Lincoln, 
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NE). A single reading was taken from the top-most fully expanded leaf at each of the 20 sampling 

locations. The sampled leaf was removed for further analysis of leaf relative water content. 

Collected leaves were chilled until the current field weight could be determined. Leaves were 

then soaked to determine turgid weight and dried for 24 hours at 80◦C to determine the dry 

weight. Protocols for this procedure follow the methods described by Barr and Weatherly, but 

deviate in that an entire leaflet was utilized instead of leaf disks (Barr and Weatherley, 1962). 

Leaf relative water content (RWC) was calculated utilizing the following equation: 

RWC (%) = [(FW-DW)/(TW-DW)] x 100 

FW = sample fresh weight 

TW = sample turgid weight 

DW = sample dry weight 

 

  To determine the physical properties of the soil, 7.6 cm. diameter core samples were 

taken to a depth of 50 cm. using a hydraulic probe. Two cores were taken from both the irrigated 

and rain-fed plots with the top 20 cm. being analyzed to develop a soil water retention curve. 

Laboratory methods for this analysis follow those outlined in the measurement section for the 

growth chamber experiment (Section 2.1.4). 

 2.2.5 Statistical Analysis 

  Data were analyzed using Graphpad Prism Version 7.0 (Graphpad Software Inc., La 

Jolla, CA). Significance was tested for the adjusted grain yields and seed size utilizing one-way 

ANOVA at α=0.01 to analyze the influence of drought in the rain-fed treatment as compared to 

the irrigated. To determine significance amongst treatments for volumetric water content, 

photosynthetic CO2 assimilation, stomatal conductance, fluorescence (Fv′/Fm′) and leaf relative 

water content, the rain-fed trails which experienced the water stress were compared to the 

irrigated treatments using two-way ANOVA at α=0.05 . 
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CHAPTER III 
 

RESULTS AND DISCUSSION 

3.1. Growth Chamber 

 3.1.1. Soybean Development 

  3.1.1.1. Bean Abortion 

   3.1.1.1.1 Abortion Timing 

Beginning with the first day of the drying phase, all plants with developing drought stress 

experienced a dramatic decline in the percentage of soybeans experiencing positive growth 

(Figure 2). During the same four-day period, nearly 100% of the soybeans in the well-watered 

control experienced positive growth (Figure 2), with an average growth rate of 7.02 mm3 day-1 

(data not shown). With continued growth during this period, no bean abortions occurred for the 

well-watered control. In contrast, the period of stress forced the abortion of 39 beans (10.5% of 

total) amongst the plants experiencing the drought stress and the reduction of plant available 

water (Figure 3). Of these 39 abortions, 33 of the initiated embryos finished with less than 1 mm3 

volume while 6 others accumulated less than 10 mm3 volume. Previous work supports the 

absence of abortions in the check and the presence of abortions in the treatments as individual 

seeds must experience multiple days of assimilate deprivation before abortion of the bean will 

occur (Egli, 2010; Weibold, 1990). Currently, uncertainty exists about the actual length of
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assimilate deprivation necessary to result in the act of abortion or termination (Egli, 2010). 

Though determining the exact duration of stress required to induce abortion was not the direct 

objective of this study, our data indicates that a four-day drought stress period was sufficient to 

abort a portion of the soybeans (Figure 3). Determining the exact time of termination of a bean 

proves difficult as minute accumulations of assimilate could be occurring at a volume below the 

volume of water loss, resulting in a net loss of volume but a continued carbohydrate gain. 

Alternatively, after the plants have been re-watered, there may be a time lag in the recovery 

process such that assimilate flow to the beans may not resume immediately. If this occurs, the 

actual length of time in which beans could survive with no inputs of assimilate could be longer 

than the four-day drought stress period that our plants endured. Work by Boyer and Westgate 

offer similar reasoning for the difficulty in determining ovary abortion in corn (Boyer and 

Westgate, 2004).  

While other research has asserted that though pod abortion is largely a phenomenon that 

occurs early in the reproductive stages of soybean development (R1-R5), pod abortion can occur 

10-12 days after R5 (Board and Tan, 1995; Liu et al., 2003; Westgate and Peterson, 1993). Our 

study supports the occurrence of abortion after R5 for individual beans within a pod. Even though 

the abortion of entire pods remained possible during this period, the majority of abortions in our 

study resulted from the loss of a single bean within a pod. Understanding these abortions is 

critical in analyzing the soybean plant’s ability to cope with drought stress at the sensitive stage 

of R5. Since yield is the product of the number of seeds produced and the relative size of those 

seeds, losing beans through late R5 abortions can lower yield potential (Board and Tan, 1995).  

3.1.1.1.2 Abortion Location 

While it is common to observe pod or bean abortion throughout the entirety of the plant, 

abortion is typically most notable in the extremities such as branches, or the most apical or basal 

locations on the main stem (Frederick et al., 2001; Liu et al., 2003). Frederick observed that an 
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earlier drought stress, between flowering and early seed fill, is especially damaging to the 

vegetative growth of lateral branches (Frederick et al., 2001). Thus, combining the sensitivity of 

drought on the early branch vegetative growth with the sensitivity reported during the 

reproductive stages, branch yield as a component of the whole plant is highly dependent on water 

stress conditions (Norsworthy and Shipe, 2005). For our study, classification of the location of 

the beans was not dependent on main stem or branch location, instead our classification scheme 

categorized beans based on their point of attachment to a node on the main stem. We documented 

a negative correlation between abortion and nodal location as the magnitude of abortion increased 

with decreasing node height (Figure 3). The bottom third of the drought stressed plants 

experienced 61.5% of the total abortions while the middle third contained 35.9%, and top third 

2.6% . When corrected for the number of beans located within each nodal region; 16.6% of the 

beans within the lower third aborted, 10.4% within the middle third and 1.1% in the upper third.  

The soybean variety utilized in our study has an indeterminate growth habit, so one would 

have hypothesized that this late season drought stress would result in the reverse effect. We 

would expect more abortion in the upper portion of the plant, as the upper nodes have smaller 

pods with less mature seed and the beans in the lower nodes are growing rapidly making them a 

stronger sink and thus less likely to abort (Duthion and Pigeaire, 1991; Egli, 2010; Westgate and 

Peterson, 1993). There are two likely explanations as to why the soybean plants in our study 

experienced the negative correlation between abortion and node location. First, the timing of the 

drought could have aborted late stage flowers and infant soybean pods in the upper nodes which 

are more susceptible to abortion than the more developed pods at lower nodal locations (Egli, 

2010; Egli and Bruening, 2006; Heitholt et al., 1986). This would result in a potentially greater 

assimilate availability in the upper nodes as fewer soybeans are competing for assimilate because 

of the early reproductive abortions. This has been observed by Gent, who depodded branches of 

soybean and noticed that the remaining beans had lower abortion rates and faster growth due to 

greater assimilate availability (Gent, 1982). Second, during intense prolonged drought, tissue 
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damage and degradation due to age can severely reduce the photosynthetic capacity of the leaves 

lower in the canopy, and these leaves are directly associated with the basal nodes that experienced 

abortion (Boyer, 1976; Field, 1987). Both hypotheses have their origin in the mechanics of 

carbon partitioning.  

Throughout the period of drought stress and the subsequent recovery, there is an intra-

plant competition for the available carbon resources (Wardlaw, 1990). Fundamental to this 

competition is the phyllotaxis of source leaves with respect to the reproductive and vegetative 

sinks. Within the soybean canopy, the vertical growth and initiation of new nodes creates a 

continuously evolving hierarchy of source leaves with changing assimilatory capacity. Initially, 

the most productive source leaves are associated with the lower nodes. As development proceeds, 

the most productive source leaves are attached to ever-higher nodes and thus, a large proportion 

of assimilate is available to those sinks in the immediate vicinity (Rawson and Hofstra, 1969).  

This evolution of the location of the maximum assimilate producing region within the 

soybean plant likely contributes to the variable distribution of abortion. As witnessed, the lower 

third of the soybean plants experienced greater abortion relative to the nodes in more elevated 

locations (Figure 3). At this stage in the plants’ lifecycle (R5-R6) many of the main source leaves 

are attached to the main stem and branches associated with the more elevated nodes. As the older 

leaves directly associated with the lower nodes progress, they lose photosynthetic capacity and 

become more shaded as the canopy density intensifies, thus resulting in less readily available 

assimilate for those beans located on the lower nodes (Boyer, 1976; Field, 1987; Wardlaw, 1990). 

This variation in the location and strength of the sources is important as it plays a role in 

“regulating the pattern of carbon portioning” to the pods throughout the plant (Wardlaw, 1990). 

While assimilate is still being produced in the younger source leaves above, this localized 

reduction of assimilate could ultimately starve beans of assimilate thus limiting the growth and 

development of the beans on the lower nodes. If the drought stress is creating a concurrent 
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assimilate shortage in the upper regions of the plant, we would expect there would be less 

assimilate transfer and thus, the localized shortage could be more pronounced leading to abortion 

if continued (Egli, 2010). A comparable observation was made in the allocation of carbon 

between kernels in a wheat head in which the kernels closest to the awn producing the 

photosynthate received 10-30 times more 14C-labled photosynthate than did kernels of 

comparative size located on the opposite side of the grain head (Cook and Evans, 1983). 

Similarly in soybean, photosynthate movement from the leaves to the pods was favored to the 

sinks directly attached to the source or within adjacent nodes of one to two node locations away 

from the source (Blomquist and Kust, 1971; Stephenson and Wilson, 1977; Thrower, 1962).   

In addition to the availability of assimilate, the strength of which a soybean is able to 

extract assimilate from the vascular system is influential in determining carbon partitioning 

amongst the competing sinks. The magnitude of a sink’s strength to attract assimilate depends on 

the actual physical size of the sink and the relative growth rate that the organ is experiencing 

(Marcelis, 1996; Starck and Ubysz, 1974; Wardlaw, 1990). Together, these features determine the 

ability of the organ to “effectively lower the concentration of photosynthate in the sieve elements 

servicing the sinks and thus establish a favorable concentration gradient between the sink and the 

source” which then dictates the priority for assimilates amongst competing sinks (Wardlaw, 

1990). With the onset of the drought stress at R5, our trial lacks the ability to accurately describe 

the relative growth rate of the newly initiated embryos because of their small size. What can be 

stated is that of the beans that ultimately aborted, all held volumes in the lower 20th percentile of 

the entire bean population. The largest bean that aborted had an initial volume of 11.74 mm3 

when competing beans had volumes ranging from 0.51 to 180.27 mm3 (Figure 2 and 3). The 

average aborted bean had a volume of 3.43 mm3 while the average initial volume of the non-

aborted beans was 39.91 mm3. In a study by Duthion and Pigeaire, images of bean lengths were 

taken through the pod wall over a period of 5.7 weeks. With this data, they were able to denote 
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the maximum length which a soybean was able to achieve during its growth if it ultimately 

aborted before maturity. They found that 95% of aborted beans never reached a length of above 

10 mm (Duthion and Pigeaire, 1991). By using a conversion factor of 1:2 (Shahbazi et al., 2011) 

for converting the measured bean thickness of our data set to the length measurement used in the 

Duthion Pigeaire study, we found no abortions to occur in beans with lengths greater than 6 mm 

long. 

3.1.1.2 Growth Recovery 

3.1.1.2.1 Whole Plant Recovery 

 While the onset of the drought stress produces a rapid decline in the number of growing 

beans, the period of recovery necessary to resume growth was just as rapid (Figure 2). This 

suggests that the vascular system in the plant was not extensively harmed during the short 

drought. This allowed water uptake and distribution to regain functionality upon re-watering, 

which is critical for the recovery process (Boyer, 1971; Grace, 1993). Even though the plants 

were able to rehydrate and bean growth resumed, sampling continued in an effort to determine the 

degree of growth recovery. Figure 2 displays this sudden recovery with the percentage of beans 

growing nearly reaching that of the well-watered control, but then slightly declining below 

control levels for the remainder of the filling period. In a similar short-term drought study 

conducted at the University of Kentucky, similar results for the recovery of drought stressed 

plants were observed through measurements of carbon exchange rate. After experiencing small 

periods of water stress and rescue applications of water during the R6 growth stage, it was noted 

that the,” carbon exchange rate rapidly increased to near control levels in early stress-relief 

treatment, but it was always less than the control for the rest of filling” (Brevedan and Egli, 

2003). Visualization of bean volume accumulation, post stress initiation, further supported the 
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hypothesis that the stress was not a single event, but that it could depress plant growth 

indefinitely (Figure 4). 

To quantify the residual influence of drought stress during the recovery, the average daily 

rate of growth was calculated for a five-day period. The five-day window began ten days after the 

first bean measurement at early R5 and ended with ten days of sampling remaining. This period 

removes both the early portion of the onset and recovery from drought, plus the end of the trial 

where the plants are close to reaching R7, beginning maturity, in an effort to reduce error 

generated by potential ripening of the control plant. During this timeframe, beans which 

experienced drought stress averaged a growth rate of 4.35 mm3 day-1 while the well-watered 

control beans gained an average 5.8 mm3 day-1 (Figure 5). This equates to a 25 % reduction in 

growth rate for the stressed plants lasting at minimum ten days after the drought stress had 

subsided. This is made more alarming by the fact that aborted beans were not included in this 

calculation. Thus, the plant had already lost yield potential through abortion and it was then 

losing yield through reduced growth rates. The exact mechanisms involved were not the target of 

this growth chamber study. However, results from our field study and from Brevedan and Egli 

2003, support the hypothesis that reduced photosynthetic levels may have been a significant 

contributor to the reduced recovery growth rates. Observations of lower leaf senescence in the 

water stressed plants, supports the hypothesis that composite assimilate production was reduced 

in the drought stress treatments. 

The accumulated volume, total mass of beans and average mass of beans (Figure 6 and 

Table 2) encompass the accrued physiological effects that the single period of stress had 

throughout the growing season. The accumulated volume for all of the beans on the stressed 

plants were significantly lower (p-value 0.05) than the volume amassed by beans on the well-

watered check (Figure 6). Upon maturity, analysis of the mass of these beans indicated that the 

individual beans were only ~80% the mass of the well-watered check with this difference being 
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significant to p-value 0.001. The total mass of beans per plant returned similar results with the 

drought-stressed plants only yielding ~83% of the mass of the check (Table 2). While some of 

this loss is attributed to the actual period of stress where the beans experienced reduced growth to 

volume loss, a significant portion of this loss resulted from the discrepancy in the growth which 

occurred during the pod-fill stage when the plants had ample plant available water. 

3.1.1.2.2 Nodal Recovery 

In contrast to the nodal variation observed during the period of stress. Growth and 

development during the recovery phase seems indiscriminate of the nodal location. This is 

apparent in the relative uniformity of the bean growth rates (Figure 5), average mass per finished 

bean and total bean mass (Table 1). The average growth rates during the five-day window 

between ten days after the first bean measurement at early R5 and ten days prior to the end of 

sampling, did not follow the same pattern of injury as did the bean abortion rates. Growth rates 

for this period were greatest in the top nodal region (nodes 7+) and lowest in the middle region 

(nodes 4-6) (Figure 5). This pattern is also expressed in the well-watered control. The difference 

in the growth rates experienced by the drought stressed plants in relation to the growth rate 

experienced by the well-watered check is the widest in the top nodes (7+) and the lower third 

(nodes 1-3). In the drought stressed plants, the additional mass per finished bean (Table 1) of the 

beans located in nodes 7+ is likely the result of a slightly extended growing period relative to the 

control (Figure 2C), and low sink demand due to a low pod density. The extended growth can be 

seen several days beyond the point where the control plant was entering R7, beginning maturity 

(Figure 2C). At this time, the control is starting to decrease its’ water content, losing volume, 

while the beans on the upper nodes of the stressed plants continue to accumulate carbohydrates.  

When analyzed by nodal location, the total bean mass produced by nodal groups again does 

not follow the same pattern as the abortion rates. The plants were able to balance production with 
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each region bearing ~29% to ~36% of the total plant production and average bean size not 

varying greater than ~7% between node regions (Table 1). This balance is beneficial to the 

overall yield of a soybean plant that has experienced a period of drought stress. After losing yield 

potential early by aborting the soybeans for which the plant was unable to supply assimilate, the 

plant has maintained beans which it must fill to reach its new maximum yield potential. For 

optimal bean growth to occur, the plant must be able to distribute the produced assimilate across 

the plant to sinks where localized production has been diminished. Since the plant has the 

capability to transport the carbon throughout the plant (Gent, 1982), improved rates of growth 

during the recovery will be dictated by the plant’s ability to maintain the largest and healthiest 

photosynthetic area possible.  

 

3.1.2 Soil Moisture  

Through concurrent measurements of soil moisture during the growth chamber trial, we 

found the transition from positive growth to negative growth rates occurred at a volumetric water 

content of 18.3% (Figure 7). This corresponds to a soil moisture matric potential of -60 kPa 

(Figure 8). Previous work has shown the magnitude of soil moisture deficit necessary to induce 

stress on soybeans not in terms of matric potential but in terms of percent available water and 

fraction of transpirable soil water (FTSW). 

In a similar study where drought stress was introduced earlier in the lifecycle, near 

anthesis, pod fresh weight started to decrease at FTSW = 0.43 ± 0.02 and pod set started to 

decrease at FTSW = 0.30 ± 0.01 (Liu et al., 2004). Our data supports a heightened sensitivity to a 

decline in plant available water as the initial reduction in positive growth occurred near 19% 

volumetric water content or FTSW = 0.47. The transition from positive growth to loss of volume 

of beans for the entire plant occurred near FTSW = 0.43, consistent with the results of Liu et al. 

(2004). Sinclair found similar sensitivities of soybeans to water stress, noting that transpiration 
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rates would begin to decline as FTSW approached 0.3, it was also determined that reactions 

within the nitrogen fixation process declined when FTSW was below 0.5 (Sinclair, 1986). While 

FTSW is a useful measurement in visualization of the plant and soil water status, one must 

carefully note the boundaries considered upon calculation of the FTSW as slight shifts in the 

upper bounds (field capacity) can shift the FTSW value of a volumetric soil moisture value.  

Similarly, the terms readily available water (RAW) and total available water (TAW) can 

be utilized to describe the plants’ ability to uptake water at the roots in response to a given 

transpirational demand and given soil medium (Richard G. Allen, 1998). Figure 7 illustrates how 

closely the onset of growth reduction and the utilization of the RAW correspond. Based on 

literature from the FAO, the percentage of TAW that was deemed at a tension low enough to be 

accessed by the plant at a rate at or exceeding the transpirational demand routinely occurs when 

TAW is 50% of maximum (Richard G. Allen, 1998). Since this value is in respect to the 

transpirational demand by the plant, it is subject to change with environmental conditions 

(Kramer, 1963). Thus, in conditions that create a greater atmospheric demand for water the 

percentage of TAW that is considered RAW would be reduced, shifting the lower limit for RAW 

on Figure 7 to the right (Kramer, 1995; Richard G. Allen, 1998). The opposite is true during 

periods where there is a low atmospheric demand, under those conditions less water is required to 

be taken up by the plant roots allowing the plant to meet the transpirational demand at a lower 

soil water content without experiencing drought stress. With day and night conditions being static 

in the growth chamber, we would not expect the lower limit of RAW to deviate between days 

except for the fact that as the soybeans grow the larger canopy transpires greater volumes of 

water. This is often compensated for through root development and extraction of water from a 

larger volume of the soil profile (Richard G. Allen, 1998). 

The dependency of the stress threshold on the environmental conditions also applies to 

the matric potential by which the water is held by the soil (Figure 8). Given that the data from the 
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growth chamber was generated in that static environment, the critical tension value would shift 

with increasing or decreasing transpirational demand under field conditions. To maximize 

soybean yields where irrigation capabilities are present, our data suggests it is critical to apply 

irrigation before water tension drops below -60 kPa while being mindful of additional 

environmental stressors that may shift this critical value. Slight increases in the tension by which 

the water is held by the soil can significantly affect plant functions and result in a suboptimal 

level of bean growth and development. This data suggests that for growers with irrigation 

potential, irrigation planning should be determined via direct analysis of soil moisture tension. 

Measures of volumetric water content cannot provide the necessary information of the soil 

moisture status unless a thorough analysis of the soil physical properties are conducted to provide 

the corresponding moisture release curve.  

3.2 Field Trial 

 3.2.1 Plant and Soil Measurements 

 Field trial results showed an increase in seed size and yield for plots irrigated versus rain-

fed with differences significant at α=0.01 (Table 2). Periods of drought stress occurring after full 

pod (R4) negatively affected the ability of the soybean to set, maintain, and fill beans under the 

rain-fed treatments. Figure 9 illustrates periods of stress that occurred after sampling began at R4 

with convergence of the estimated crop evapotranspiration and cumulative precipitation on the 

week of 9/6. Weekly monitoring of the plant water status and soil water status (from R4 through 

the end of R6) supports conclusions drawn about the critical thresholds of soil moisture stress 

determined during the growth chamber study. Based on the critical matric potential value 

determined to induce stress under the static conditions in the growth chamber trial, -60 kPa, we 

determined, via the soil water retention curve, that volumetric water content of <21% should 

induce water stress in the field if the evaporative demand is similar to that in the growth chamber 
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(Figure 8). Soil moisture level, for the field trial revealed that the rain-fed trails experienced 

similar levels of soil moisture stress for roughly three weeks during their reproductive stages 

(Figure 10A). 

  This water stress caused progressively more pronounced impacts on the soybean 

physiological process over time. During the second week of sampling (8/30), the photosynthetic 

CO2 assimilations rates were reduced in the rain-fed treatments and the relative water content of 

the sampled leaves was reduced in the rain-fed treatment with the lower population (Figure 10B 

& 10D). In the third week of data collection (9/6) and the second straight week in which the 

plants experience soil water contents below the determined water content threshold, significant 

reductions occurred in the levels of photosynthetic carbon assimilation, leaf relative water 

content, and leaf conductance for the rain-fed treatments relative to the irrigated treatments at 

α=0.05 (Figure 10A,B,C & D). By the fourth week of data collection, (9/13), after three weeks of 

soil volumetric water content below the critical threshold, measurements of fluorescence were 

also significantly reduced in the rain-fed treatments relative to the irrigated treatments (Figure 

10A & 10D).  

The gradual progression of symptomology occurring in the plant after the onset of water 

stress, can be contributed to at least three factors. First, with a soil volumetric water content 

measurement depth of 20 cm, the plants are able to extract water being held at lower tensions 

(closer to zero) at deeper depths within the rooting zone (Richard G. Allen, 1998). Second, 

osmotic adjustment, which can contribute to the lowering of the osmotic potential in the soybean 

cells can assist in maintaining the physiological process in the early stages of drought as solute 

accumulation aids in the maintenance of turgor pressure (Morgan, 1992; Morgan, 1984). Lastly, 

the relative water content of a leaf for a given soil water deficit can vary widely based on 

genotype and full turgidity may not be necessary for maximal photosynthetic levels to occur 

(Boyer, 1976; James et al., 2008). 
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 Interestingly, the large disparity in the soil volumetric water content of treatments during 

the second week (8/30) is less apparent in the related plant measurements for the same week 

(Figure 10A & 10D). This suggests plant mechanisms that are relatively resilient during the early 

onset of drought. Several studies have found that leguminous plants utilize a feed-forward 

mechanism of drought sensing in the root cap, coupled to stomatal regulation as a means to 

control the internal water balance of the plant (Bates and Hall, 1981). Via a dry down experiment 

similar to the one we conducted, Liu found that stomatal conductance was reduced at a very high 

water availability, FTSW = 0.64 (Liu et al., 2005). This is far more sensitive than the crops of 

wheat and sunflowers in which signaling occurred when only 40% of plant available water 

remained  (Gollan et al., 1986; Schulze, 1993). Stomatal regulation became clear in the second 

week of water stress in our study (9/6) as lower leaf conductance levels coincide with much lower 

photosynthetic levels and reduced leaf water content in the rain-fed plots. Thus, there is a 

reduction in carbon dioxide entering the plant, which results in the lack of available carbon for 

assimilation in the mesophyll cells (Chaves et al., 2009; Flexas et al., 2004). 

 Throughout the following weeks, this trend of reduced conductance and photosynthetic 

CO2 assimilation continued (Figure 10B & 10C). Differences between treatments in the leaf 

relative water content and Fv’/Fm’ become significant in the final two weeks of data collection, 

which occurred mostly during the R6 growth stage. Tardieu and Simonneau recorded a similar 

findings in the timing of plant drought response as “most down regulation of photosynthesis 

occurred before any change in RWC could be detected” (Tardieu and Simonneau, 1998).With the 

drought stress below the determined soil moisture threshold for the rain-fed treatments from week 

two (8/30) through week four (9/13), the stressed soybean plants exhibited accelerated maturity 

and potential chlorophyll damage based on the fluorescence values in figure 10E, likely as a 

result of photoinhibition (Krause, 1988; Souza et al., 2004). These processes, in conjunction with 
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the progressing growth stage of the plant (R6), hinder the plant recovery when improved soil 

moisture conditions occurred at the end of the season.  

 The trends in plant functions and parameters that arose as a result of the levels and 

durations of induced soil moisture stress help to confirm the soil moisture threshold determined 

via the growth chamber study. One such parameter that is crucial in relating these experiments is 

the association seen between the levels of soil moisture and the relative water content of the leaf. 

By plotting these values for the first three weeks of the sampling period where no major leaf 

damage or senescence had occurred, an apparent trend arises in the decline of water in the leaf 

when soil water contents drops below the threshold value (Figure 11). Visual observation of the 

sampled leaves reflect morphological reactions similar to the results seen in a study by James et 

al. where well-watered soybeans had RWC values about 90%, and turgor loss did not occur until 

leaves reached a RWC near 70% (James et al., 2008). As drought continued, it took leaf RWC 

50% or below to reach levels near lethal (James et al., 2008). This critical lower level is supported 

by our data as we witnessed neither the occurrence of 50% RWC nor plant death at the levels near 

60%, which were observed (Figure 11). Research by Sinclair and Ludlow confirm this lethal 

value as they observed plant death when the RWC of the youngest fully expanded leaf dropped 

below 50 ± 0.6% (Sinclair and Ludlow, 1986). Although the exact point of decline in leaf water 

content cannot be determined precisely from the data, the decline appears to be consistent with 

the estimate value of 21% soil water content, or -60 kPa. Based on this field trail study, we can 

confirm that soil moisture conditions at or below -60kPa will likely initiate drought stress within 

the soybean; response in the plant will vary based on genotype and environmental conditions.  

3.2.2 Priaxor Treatment 

 During an experimental trial day, one week prior to the start of sampling, the 

photosynthetic measurements recorded rates considerably higher than typical carbon assimilation 
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rates gathered in the weeks that followed (Table 3). The day prior to sampling, the fungicide 

Priaxor (active ingredients fluxapyroxad and pyraclostrobin) was applied to the crop. The 

manufacturer, BASF, has reported this fungicide to have plant health benefits, one of which is 

increasing photosynthetic assimilation rates. One hypothesis is that the fungicide acts to promote 

the carboxylation activity of rubisco (ribulose 1,5-bisphosphate). This method of accelerated 

photosynthesis has been proposed as an explanation for the ability of soybean to increase 

photosynthetic rates in unshaded leaves when neighboring leaves have been intentionally shaded 

and their assimilate production levels decline (Peet and Kramer, 1980). Further research could 

determine the utility or efficacy of such an application in deterring potential flower and bean 

abortions. It may also be beneficial in improving growth and development after a period of stress 

via an upregulation in photosynthesis to produce additional assimilates.  
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CHAPTER IV 
 

CONCLUSION 

Soil water stored at a relatively high matric potential of -60 kPa is held tightly enough to 

the soil that environmental conditions could generate a demand greater than the root uptake 

potential for soybean. Such deficits will lead to the impairment of necessary physiological 

processes if allowed to persist. Abortion rates of 10.5% occurred for initiated beans on plants 

stressed by the four-day drought. At maturity, beans on the stressed plants were 20% smaller than 

beans growing on the well-watered treatment. Growth rates exhibited by once stressed beans 

averaged 25% less growth per day after stressed conditions had been alleviated for 5 days, 

confirming theories of chronic damage due to past stress events. The cumulative effects of a 

short-term drought at R5 resulted in a 20% decrease in the plant yield compared to the control, 

despite ideal moisture conditions from mid R5 to maturity.  

 In light of soybean sensitivity to droughts of short duration and limited intensity, it is 

necessary to pursue agronomic practices that aid in the preservation of soil moisture, continue 

efforts in breeding for improved drought tolerance mechanisms, and to promote the aggressive 

monitoring of the soil moisture status in fields where irrigation capabilities are present. While the 

most precise water status monitoring would occur at the plant level, current practices and the 

most utilized technology for monitoring the water status of a crop is via analysis of volumetric 

water content. These measurements of volumetric water content are not informative without 

knowledge of the soil hydrological properties and are thus inadequate for providing an accurate 

measure of the water status of the plant. Current technology for monitoring the plant water status 
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is not conducive for growers to implement in soybean production, and the nature of the soybean 

to adjust various processes at the onset of a soil water deficit can delay visibility of approaching 

water deficit conditions. Thus, soil moisture monitoring is still necessary. Our research supports 

the use of soil moisture sensors such as tensiometers that directly measure soil water matric 

potential, so that the hydraulic properties of the soil are accounted for in determining the moisture 

content as a tension value. Best soybean production practices would employ use of these sensors 

at varying depths within the soybean rooting profile with irrigation applied prior to the integrated 

tension value reaching -60 kPa. 

 Further analysis of this critical matric potential value across soil types and additional 

soybean genotypes would contribute additional support to this value as a base irrigation threshold. 

After recording reduced bean growth rates post drought recovery, it would be beneficial to 

analyze the growth rates after varying intensities and duration of drought. Lastly, exploration of 

any efforts to manipulate photosynthetic rates post drought stress could prove as a means to assist 

bean growth during the remaining period of pod-fill and result in improved soybean yield 

recovery. 
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APPENDICES 
 

 

Table 1. Mass of soybeans at maturity in growth chamber experiment. Values marked (*) are 

significantly different from the control at p-values < 0.001. 

 
 Check Plant Replicates  
 WW P1X 

0.171 
P2X 
0.151 

P3X 
0.171 

P4X 
0.132 

Rep. Avg. 

  
 Average Mass per Finished Bean (grams) 

Nodes 7+ 0.199 0.174 0.165 0.170 0.166 0.169 
Nodes 4-6 0.199 0.151 0.166 0.149 0.161 0.157 
Nodes 1-3 0.208 0.150 0.165 0.164 0.159 0.159 
Total Plant 0.202* 0.156 0.165 0.163 0.162 0.161* 

       
 Number of Beans 

Nodes 7+ 21 17 18 28 27 22.5 
Nodes 4-6 31 40 23 18 39 30 
Nodes 1-3 27 22 44 28 26 30 
Plant Total 79 79 85 74 92 82.5 

       
 Total Bean Mass (grams) 

Nodes 7+ 4.18 2.96 2.97 4.76 4.48 3.79 
Nodes 4-6 6.17 6.04 3.82 2.68 6.28 4.71 
Nodes1-3 5.62 3.30 7.26 4.59 4.13 4.82 

Total Plant 15.97 12.30 14.05 12.03 14.89 13.32 
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Table 2. Harvest measurements for 2015 Field Trail. Superscript letters denote differences which 

are significant at α=0.01. Test weight, moisture and seed size are not reflective of harvest 

conditions. 

§ Yield corrected to represent a harvest moisture of 13.0% water by mass. 

 

 

 

 

2015 Field Trial – Yield Results 
Treatment Plot 

ID 
Harvest 

Wt. 
Test 

Weight  
Moisture Seed 

Number 
Yield§ 

  g 1.52m2-1 kg hl-1 % Seeds kg-1 kg ha-1 

Irrigated 
 

Population  
247,000 seeds 

ha-1 

AI1 920.6 69.9 6.4 6,067 6450.3 
BI1 868.1 69.1 6.6 6,544 6082.4 
CI1 882.0 70.1 6.6 6,684 6179.8 
DI1 745.6 69.9 6.5 6,631 5224.1 
EI1 1027.2 68.5 6.5 6,618 7197.2 

Avg.    6,509 A 6226.7 A 

       

Irrigated 
 

Population  
494,000 seeds 

ha-1 

AI2 778.3 70.0 6.5 6,277 5453.2 
BI2 839.1 70.0 6.5 6,176 5879.2 
CI2 957.7 70.1 7.0 6,123 6710.2 
DI2 945.2 69.9 6.3 5,959 6622.6 
EI2 693.2 69.4 6.4 6,038 4857.0 

Avg.    6,115 A 5904.4 A 

       

Rain-fed 
 

Population  
247,000 seeds 

ha-1 

AD1 524.2 69.5 6.5 7,836 3672.8 
BD1 573.6 70.5 6.5 7,564 4019.0 
CD1 427.2 71.6 6.6 7,968 2993.2 
DD1 506.6 69.8 6.5 7,309 3549.5 
ED1 591.0 70.8 6.6 7,558 4140.9 
Avg.    7,647 B 3675.1 B 

       

Rain-fed 
 

Population  
494,000 seeds 

ha-1 

AD2 539.4 71.3 6.9 7,968 3779.3 
BD2 471.4 69.9 6.4 7,326 3302.9 
CD2 422.8 71.5 6.5 7,496 2962.4 
DD2 373.9 71.0 6.5 7,412 2619.8 
ED2 695.2 70.3 6.5 7,215 4871.0 
Avg.    7,483 B 3507.1 B 
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Table 3. Measurements taken via LI-COR 6400 one week prior to initiation of experiment 

sampling at R4. Photosynthetic levels are in excess of rates recorded from other weeks during this 

trial and observed literature. Aerial application of Priaxor fungicide occurred 18 hours before data 

collection. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2015 Field Trial - Priaxor Fungicide Treatment 

Plot Replicate Photosynthesis 
umol CO2 m-2s-1 

Conductance 
mol H2O m-2s-1 Fv’/Fm’ Transpiration 

mmol  H2O m-2s-1 

Leaf 
RWC 

% 
AI1 57 1.07 0.519 12.2 0.84 
BI1 64.5 1.31 0.574 12.6 0.77 
CI1 65.7 1.47 0.568 12.6 0.85 
DI1 45.1 1.17 0.528 11.8 0.74 
EI1 58.2 1.08 0.575 11.3 0.84 
AI2 63.2 1.62 0.541 13.1 0.69 
BI2 53.7 1.32 0.557 12.5 0.66 
CI2 64.9 1.44 0.563 13.3 0.77 
DI2 61.5 1.21 0.539 13.4 0.75 
EI2 59.3 1.43 0.525 13.6 0.84 

Replicate Avg. 59.3 1.31 0.549 12.6 0.78 
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Figure 1. Images depict sampling methods for growth chamber data collections of bean size 

(thickness) and soil moisture (volumetric water content). 
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Figure 2. Lines indicate the percentage of soybeans experiencing positive growth in volume 

relative to the number of viable beans that the plant initiated prior to water stress. Proximity of 

line for the average percent growing of soybean amongst drought stress treatments (P1-P4 Avg.) 

in relation to line for percent growing of well-watered check (WW) is an indicator of the ability 

of the soybean to recover after the period of stress. Data depicted includes beans which aborted. 

Rates of growth were initially smoothed via single Hanning (0.25 day prior 0.5 current day 0.25 

day post). 
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Figure 3. Volume of individual beans that aborted after the period of drought stress. (RW – point 

of re-watering for stressed plants) 
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Figure 4. Lines indicate the average accumulate volume for the individual beans within each node 

as growth progresses from R5. The drought stress treatments (P1-P4) all show injury with initial 

loss of volume. The most basal node group (nodes 1-3) show the largest loss in bean volume 

accumulated after stress. Drought stress treatments recover closer to the accumulated volume of 

beans in the well-watered check (WW) with nodes located higher in the canopy. 
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Figure 5. Growth rates were calculated during a five-day period spanning from ten days after the 

first sampling date, until ten days before the final sampling date. The composite average growth 

rate for beans on the plants that had experienced drought stress is 25% less than the growth rate 

achieved by the control which never experienced stress. This growth is occurring during a time 

when all plants are considered to be free from water stress. The calculations for growth rate 

excluded beans which were deemed aborted. The elevated growth rates in the upper nodes are 

likely a product of low pod density per node. 
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Figure 6. Accumulated volume for all soybeans on a plant from the initiation of stress (Early R5) 

to the end of data collection (Late R6). A four-day drought resulted in a lasting reduction of 

soybean volume. 
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Figure 7. Average daily growth rate for all beans on plant, exhibited for soybeans experiencing 

varying water conditions. X-intercept indicates point where greater stress results in the loss of 

bean volume. Dotted line indicates 95 % confidence interval. (RAW = 0.5 plant available water, 

PWP = permanent wilting point -1500 kPa, FC = field capacity -10 kPa). Data was smoothed via 

single Hanning (0.25 day prior 0.5 current day 0.25 day post). 
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Figure 8. Soil water retention curves for the growth chamber soil medium and the top 20 cm. of 

field trial profile. Vertical dotted line at X = 0.18 cm3 cm-3 represents the determined critical 

volumetric water content for the onset of water stress in the growth chamber medium. The matric 

potential for which this volumetric water content corresponds is -60 kPa. Utilizing -60 kPa as the 

critical matric potential value across soils, the corresponding critical volumetric water content for 

the field trial occurs at volumetric water content ~0.20 cm3 cm-3. 
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Figure 9. Bars depict single precipitation events provided through rainfall or irrigation. Dotted lines represent the accumulation of these 

precipitation events throughout the growing season. Estimated ET (evapotranspiration) is approximated from weather data recorded at the closest 

Mesonet weather station (Blackwell, OK). Rain events are approximates from the Blackwell, OK Mesonet weather station while irrigation events 

were record at the center pivot system. 
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Figure 10. A) Average volumetric water content for plots within treatment (only single 

measurement recorded for water content on week 9/6 due to inability to insert probes into soil). 

B) Photosynthetic carbon dioxide assimilation rate recorded on the youngest fully expanded leaf 

in an upper node utilizing a LI-COR 6400. Significant differences in assimilation rate coincide 

with the occurrence of water contents at or below the critical value determined in growth chamber 

study. Figures 10C, 10D & 10E represent additional plant metrics. Bars indicated mean and 

standard deviation with letters denoting significant difference p-values <0.05.  
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Figure 11. Point distribution of measured leaf relative water content percentages with the 

associated soil moisture conditions that the plant was experiencing display a downward trend 

with decreasing soil moisture. This begins after conditions dry to near the predetermined critical 

soil moisture content. Dry values from week 9/6 are assumed at a volumetric water content of 

14.0% as conditions were too dry to allow for ground penetration and sampling with the soil 

moisture probe. The value 14.0% was the driest attainable sample.  
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