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Abstract: Currently there is little known about the long-term freeze thaw durability of 

ACMs. There are no established limits for air content or other durability parameters for 

most ACMs. For ACMs to be used in structural and transportation structures such as 

roads, buildings, and bridges with long design service lives in climates that experience 

freezing and thawing, limits and specifications for long-term durability must be 

determined. The work presented investigates the requirements for different ACMs to 

achieve satisfactory results in both ASTM C666 and ASTM C672. From this testing 

recommendations are made for minimum requirements to achieve durable concrete using 

ACMs. 
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CHAPTER I 

 
 

INTRODUCTION 

 

Alternative cementitious materials (ACMs) have been used for decades in specialized 

applications and as repair material. To be considered for use in structural or paving 

applications long term durability is very important and must be understood. Over 60 

years of research has been done on Portland cement (OPC) concrete to determine and set 

standards to ensure long-term durability in both bulk freezing and thawing and salt 

scaling. The ability to meet these durability requirements is not widely known for many 

of the current ACMs in use today. Testing to determine if an ACM has the ability to pass 

current durability standards must be determined before widespread use of these materials 

is allowed in critical projects exposed to freezing conditions and deicing chemicals. 

Many ACMs are often referred to as fast setting cements. Depending on the intended use, 

this can be either a desired quality or a hindrance. Many projects require an ample 

amount of time for placement and finishing. To address this, citric acid was added to 

many of the ACMs to approximate the setting time of OPC. Modifying set time could 

cause strength concerns so strength data was collected to ensure that a sufficient strength 

could still be achieved with extended set time.
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This work is part of a much larger project sponsored by the FHWA – Exploratory 

Advanced Research program.  The focus of this project, led by Georgia Tech, The Army 

Corps of Engineers, Tourney Consulting, and Oklahoma State University, is to 

investigate these materials in a number of durability tests.  This document specifically 

investigates the bulk freeze thaw and salt scaling performance in standardized ASTM 

tests.  This created several new insights and developed a number of possible mechanisms.   
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CHAPTER II 

 

 
 

PERFORMANCE OF ACMS IN FREEZE THAW DURABILITY TESTING 

 

2.0  INTRODUCTION 

The requirements for OPC concrete for strength and durability are well known and 

understood. Specifications exist to address durability and strength concerns. Strength gain 

rates, ultimate strength, and durability requirements such as air content and spacing factor 

have been widely discussed in previous publications.   

To consider using an ACM for a structure with a long design life where freezing and 

thawing cycles are experienced then one must reexamine these parameters.  Since both 

ACMs and OPC are hydraulic ceramics that are exposed to water and outside chemicals 

while experiencing freeze thaw cycles, it is logical that similar material properties can 

describe the performance of both.  However, it is also logical that the critical values may 

be different as the strength, pore structure, total porosity, and possibly some other critical 

parameters are not the same for these materials.   

To examine the freeze thaw durability of ACMs their performance in bulk freeze thaw 

durability (ASTM C 666) and surface scaling (ASTM C 672) was investigated.   

Performing these tests is done to experimentally determine what material properties are 

needed to provide comparable performance to OPC. 
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Compressive strength (ASTM C 39) gain from 2 d to 56 d is used to compare the relative 

strength gain between the ACMs.  Not all ACMs are fast setting or high early strength.  It 

is also helpful to understand how the increase in air content impacts the strength of these 

materials.  This information is helpful to quantify the rate of strength gain of these 

different materials.   

Ultimately, the work aims to make relative comparisons between all of these 

measurements for OPC and the ACMs in order to find if consistent freeze thaw 

performance can be obtained.   

2.1  MATERIALS 

The concrete mixtures were prepared using a Type I/II OPC, blended calcium 

sulphoaluminate cement (CSA2), blended calcium sulphoaluminate cement with polymer 

(CSA2B), blended calcium aluminate cement (CAC2), calcium aluminate cement 

(CAC3), and alkali activated fly ash (AA1). The oxide analysis is shown in Table 1 below. 

Table 1: Chemical composition of binders with bulk XRF (% weight) 

Binder type OPC 
CSA2, 

CSA2B 
CAC2 CAC3 

Fly Ash 

for AA1 

SiO2  17.39 14.24 14.95 5.50 38.24 

Al2O3  4.87 14.84 12.03 45.16 17.87 

Fe2O3  4.71 1.12 2.66 6.90 5.88 

CaO  65.15 49.23 55.15 37.68 24.75 

MgO  1.40 1.55 2.57 0.22 6.24 

SO3  2.51 13.55 7.72 0.07 1.56 

K2O  0.48 0.67 0.83 0.26 0.34 

Na2O  0.46 0.21 0.28 0 1.85 

P2O5  0.13 0.11 0.14 0.09 - 

TiO2  0.39 0.70 0.51 2.11 - 

Mn2O3  0.11 0.02 0.16 0.02 - 

SrO  0.15 0.20 0.21 0.04 - 

ZnO  0.03 0.01 0.11 0 - 

Cr2O3  0.09 0.05 0.07 0.089 - 

LOI  2.12 3.51 2.61 1.86 0.20 
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The aggregates used were a crushed granite from Georgia and natural sand from 

Michigan.  All collaborators shared these materials and so the results are comparable.  

The maximum nominal aggregate size was (¾ in), and the sand had a fineness modulus 

of 3.04. Both the rock and sand met ASTM C 33 “Standard Specification of Concrete 

Aggregates”. Table 2 shows the details of the mixtures investigated and Table 3 has 

information about the admixtures.   

Table 2: SSD Mixture Proportions 

 

 

Table 3: Admixture Descriptions 

 

CSA2 0.42 765 35.7 1789 1121 319 SYNTH, WRA, RETA

CSA2B 0.42 765 35.7 1789 1121 319 POWDER, WRA, RETA

CSA2B .35 0.35 765 32.8 1873 1173 268 POWDER, WRA, RETA

CAC2 0.42 765 34.8 1789 1181 318 SYNTH, WRA, RETA

CAC2 .35 0.35 765 31.8 1880 1235 268 SYNTH, WRA, RETA

CAC3 0.42 765 34.8 1780 1163 319 WROS,RETB

AA1 0.22 822 31.4 1780 1354 183 SYNTH, ACT

OPC 0.42 765 34.5 1789 1163 318 SYNTH, WRA

Water 

lb/yd³
Admixtures Used

SSD Mixture Proportions

Cement 

Type
w/cm

Cement 

lb/yd³

Paste 

Volume 

(%)

Coarse 

lb/yd³

Fine 

lb/yd³

ID Description Application

WROS Wood rosin Air Entrainer

SYNTH
Synthetic chemical 

combination
Air Entrainer

Powder
Long-chain olefin 

sulphonate
Air Entrainer

WRA Polycarboxylate
Highrange 

water reducer

RETA Citric acid Retarder

RETB Proprietary retarder Retarder

ACT Alkali activator Activator
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Mixture designs with constant cement weight and three different w/cms were tested. 

Citric acid was used in varying dosages to give all cements approximately the same set 

time. The synthetic air entrainer and the high range water reducer were chosen because 

they worked with nearly all of the cements. CAC3 would not entrain air with a synthetic 

air entrainer so a wood rosin air entrainer was used instead.  CSA2B used the same 

powdered air entrainer that is typically pre blended into the cement, but it was added 

separately in varying dosages to produce the desired air contents. The 0.42 w/cms was 

used as a baseline mixture that represented a typical concrete mixture used for bridge 

decks. A water reducer was added to give all mixtures approximately the same slump. 

The AA1 mixture uses a two part chemical activator that reacts with the fly ash in the 

material.  Water is added to this material to increase the slump.  A w/cm of 0.22 was used 

in AA1 as this created a comparable slump to the other mixes. Mixes for CSA2B and 

CAC2 were created with a 0.35 w/cm to investigate the performance of a lower water 

content.  This will be discussed in more detail later in the document.   

2.2  CONCRETE MIXTURE PROCEDURE 

Aggregates are collected from outside storage piles, and brought into a temperature-

controlled room at 73°F for at least 24 h before mixing. Aggregates were placed in the 

mixer and spun and a representative sample was taken for a moisture correction.  At the 

time of mixing, citric acid was added to the water if used.  Citric acid was used as a set 

retarder for these mixtures.  Next, all aggregates were loaded into the mixer along with 

approximately half of the mixing water. This combination was mixed for three minutes to 

allow the aggregates to saturate and ensure that the aggregates were evenly distributed. 
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Next, the cement and the remaining water was added and mixed for three minutes. If an 

alkali activator was being used it was added to the mixture at the same time as the 

cement. The resulting mixture rested for two minutes while the sides and paddles of the 

mixing drum were scraped. After the rest period, the mixer was turned on and admixtures 

were introduced. If a water-reducer was used then it was incorporated into the mixture 30 

s before the AEA was added. After the addition of the AEA the concrete was mixed for 

three minutes. 

2.3  SAMPLING AND TESTING 

After mixing, the material was tested for slump (ASTM C 143), unit weight (ASTM C 

138), and SAM (AASHTO TP 118). Next, samples were prepared for freeze thaw 

durability testing (ASTM C 666), salt scaling (ASTM C 672), strength (ASTM C 39), 

and hardened air void analysis (ASTM C 457). For each mixture two ASTM C 666 

beams, three ASTM C 672 blocks and an ASTM C 457 sample were cast. Freeze thaw 

prisms were cured for one day in steel molds while covered with wet burlap. The beams 

were then demolded and placed in saturated limewater for the remainder of the 14 d 

curing period, as per ASTM C666. The ASTM C 672 samples were sealed in their 

containers for 14 d after casting. Next, the blocks were demolded and allowed to dry at 

73°F and 50% relative humidity for another 14 d. 

The freeze thaw beams were then placed inside a temperature controlled water bath and 

brought to 40°F. Once the prisms were at 40°F the length, mass, and dynamic modulus 

were measured. The soaked prisms were then investigated in the ASTM C 666 test for 

300 cycles. The dynamic modulus, expansion, and mass change were measured every 36 
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cycles or before. Measurements were taken as long as dynamic modulus readings were 

measurable.  The dynamic modulus was used to calculate the Durability Factor as per 

ASTM C 666.  ASTM C 666 does not clearly define freeze thaw failure, but based off 

previous freeze thaw work an acceptable value for the durability factor of 70% was used 

(Ley 2007). Although many specifications are based on investigating the durability factor 

after 300 cycles, this work also investigated the total mass loss of the samples. This is 

important because it is not satisfactory for concrete to lose significant mass during 

freezing and thawing cycles as this would reduce the cover, member dimensions, and 

impact the smoothness and ride quality of a bridge deck or pavement.  It was decided that 

one appropriate way to investigate the mass loss is to use the same mass loss criteria for 

ASTM C 666 that is suggested in the MTO LS-412 version of the ASTM C 672 test.  The 

allowable scaling was determined by comparing the total mass loss to calculated surface 

area of the formed dimensions.  This mass loss was equal to 1.5% of the sample mass.  

For simplicity, a specimen was determined to fail if the Durability Factor decreased 

below 70% at any point during the testing or noted as a concern if the mass loss exceeded 

1.5%. Figure 1 shows a sample with unacceptable mass loss but a Durability Factor 

above 90%.  This mass loss occurred on concretes made with CSA2B and occurred worse 

on the side of the sample that was closest to the freezing plate. 
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Figure 1: CSA2B Mass Loss 

The salt scaling blocks were placed in a plastic container and then a silicone seal was 

placed between the concrete and the form.  Drain holes were added to the bottom of the 

sample to allow any solution that leaked by the seal to drain and not saturate the sample 

from any side other than the surface. Sample mass, scaled mass, and visual surface 

ranking were performed every 5 cycles until either a rank of 5 was reached or 50 cycles 

had been completed. A visual ranking of 4 or higher or if the cumulative scaled mass 

reached .0182 oz/in² which is equivalent to the scaling threshold set in MTO LS-412 was 

deemed as failure. 
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2.4  HARDENED AIR SAMPLE PREPARATION 

The hardened air samples were cut into (¾) in thick slices using a self-propelled concrete 

saw with an 18 in diameter continuous rim blade with oil based cutting fluid. The sample 

was cleaned with water and dried under a fan. An equal parts mixture of lacquer and 

acetone was applied to harden the surface and protect the rims of the air voids. An 18 in 

lapping machine with magnetically bonded diamond discs of decreasing grit size were 

used to prepare the samples for testing. The samples were prepared as per ASTM C 457. 

After the lapping was complete each sample was inspected under a stereomicroscope to 

ensure aggregates and paste had been lapped to the same elevation and there was a high 

quality finish on the specimen. After the specimen had received an acceptable polish, 

they were soaked in acetone to remove the lacquer. After soaking in acetone, the prepared 

sample surface was colored solid with a black permanent marker then dried for 3 h. A 

second coat of black marker was then applied in the perpendicular direction to the first 

coat and the sample dried for 8 h. A thin layer of barium sulfate, a white powder with a 

particle size less than 3.94 x 10-5 in, was pressed on the colored surface twice with a 

rubber stopper to force the white powder into the voids. This technique is described in 

EN 480 and ASTM C 457. This left the surface of the concrete black and the voids 

stained white. Since the analysis is concerned with the voids in the paste, the voids in the 

aggregate must be masked. To do this the voids within the aggregate were colored with a 

fine permanent ink pen under a stereomicroscope. Once completed a final inspection was 

made of the surface to ensure that voids in the paste are white and all other areas in the 

sample are black. A sufficiently polished sample and a finished sample can be seen in 
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Figure 2. This technique is outlined in detail in (Ley 2007) and has been used by several 

other researchers (Jakobsen et al 2006, Carlson 2005, Peterson et al 2007). 

Once the voids in the paste had been preferentially marked the contrast between the voids 

and the surrounding material is used to determine the air void parameters of the mixture. 

The research team used the Rapid Air 457 from Concrete Experts, Inc. This machine 

completes an automated linear traverse analysis on the sample by using a CCD camera to 

image the surface and an automated stage for precise movement. Image analysis is then 

used to discern voids (white) from other portions of the sample (dark). A single threshold 

value of 145 was used for all of the samples that has been shown to be satisfactory with 

the sample preparation materials and processes used (Ley 2007). This technique requires 

that the volume of paste be given. This was determined from the batch weights for each 

concrete mixture design. For the results of the hardened air void analysis reported in this 

paper chords smaller than .0012 in were not included in the analysis as they are not easily 

detected by a human during an ASTM C 457 analysis. By excluding these chords the air 

void parameters determined by the hardened air void analysis are better comparable to 

previously reported values of ASTM C 457 results. This has been done previously by 

many researchers (Jakobsen et al 2006, Ley 2007, Peterson et al 2009, Ramezanianpour 

& Hooton 2010). 
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      Figure 2: Satisfactory Lapped Sample and Completed  Sample 

 

2.5  RESULTS AND DISCUSSION 

2.5.1  Strength 

To examine the effect of air content and curing time on the compressive strength of the 

cements, testing was performed at four different time periods. From this testing the 

effects of air content and curing time on compressive strength are shown in Table 4 

below. The slope of the line is the compression strength loss in psi per percent of air. The 

Y intercept is the theoretical maximum strength of a mixture with 0% air. The slope of 

the line divided by the theoretical maximum strength is also shown. This is helpful as it 

gives percent strength change per percent air increase.  If mixtures with different 

theoretical maximum strengths are produced then the same relationship can be used since 

it is a percentage. 
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Table 4: Effect of Air Content on Strength 

 

Table 4 above shows that the effects of air content on compressive strength varies 

significantly depending on the binder. The table shows that CSA2’s compressive strength 

was the most affected by air, while CSA2B .35W/C was the least affected by air. This is 

graphically shown at 2 and 56 days in Fig. 3 and 4 with each point being an average of 3 

samples.  

2 Days 7 Days 28 Days 56 Days Description

-535 -557 -485 Psi change per % air

9902 10338 12016 Theoretical maximum strength

0.88 0.87 0.97 R²

-5.4% -5.4% -4.0% % Strength change per % air increase

-207 -231 -152 -245 Psi change per % air

7606 8213 9475 10467 Theoretical maximum strength

0.95 0.54 0.90 0.83 R²

-2.7% -2.8% -1.6% -2.3% % Strength change per % air increase

-136 -158 -194 Psi change per % air

10180 11279 12326 Theoretical maximum strength

0.23 0.19 0.22 R²

-1.3% -1.4% -1.6% % Strength change per % air increase

-144 -69 -393 -295 Psi change per % air

3904 4786 8916 9277 Theoretical maximum strength

0.29 0.05 0.67 0.44 R²

-3.7% -1.4% -4.4% -3.2% % Strength change per % air increase

-281 -241 -222 -214 Psi change per % air

9203 10146 10376 9851 Theoretical maximum strength

0.87 0.64 0.46 0.43 R²

-3.0% -2.4% -2.1% -2.2% % Strength change per % air increase

-181 -219 -292 -275 Psi change per % air

4153 6113 7546 7980 Theoretical maximum strength

0.61 0.48 0.45 0.41 R²

-4.4% -3.6% -3.9% -3.4% % Strength change per % air increase

-196 -246 -298 Psi change per % air

5037 6301 8014 Theoretical maximum strength

0.99 0.99 0.97 R²

-3.9% -3.9% -3.7% % Strength change per % air increase

C
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B
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Figure 3: Compressive Strength at 2 Days 
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Figure 4: Compressive Strength at 56 Days
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Compressive strength gain comparisons were done by finding the percent change for the 

7 d, 28 d, and 56 d compressive strength compared to the 2 d compressive strength. This 

is shown in Figure 5. These percentages were then averaged for all the mixtures of each 

type of cement.  Comparing each mixture to itself removes air content as a factor 

allowing the different cements to be compared to each other despite each cement having 

varying air contents. This shows that the range of 2 d strength obtained at 7 d varies from 

105% for CSA2 to 155% for AA1. This means that for CSA2 there is very little strength 

gain from 2 d to 7 d. 

   

The 2 d, 7 d, and 28 d compressive strengths were also compared to the 56 d compressive 

strength on a percent basis. This is shown in Figure 6. The results range from 42% for 

CAC2 to 87% for CAC3 meaning that for CAC3 nearly all the strength gain occurs 

within the first 2 d. The data also shows how CAC3 reaches its maximum compressive 

strength before 56 days and then starts to loose strength.  This is likely caused by 

conversion, a process where hydrates transform causing a volume reduction resulting in 

an increase in porosity and a loss of strength. 
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Figure 5: Percent of Strength at 2 Days



18 

 

 

Figure 6: Percent of Strength at 56 Days
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2.5.2 ASTM C672 

Many of the samples did not make it to 50 cycles in the salt scaling test. For these 

samples the number of cycles is noted and the cumulative scaled mass loss is reported 

through the last completed cycle. The results are shown in Fig. 7-11. Figures 7-10 show 

the different forms of scaling that some of the cements experienced. Figure 11 

graphically shows scaling vs air content. The results showed a surprising finding. Based 

on previous research for OPC, there is consistently improved performance in the salt 

scaling test with increased air contents. But many of the ACMs did not show this same 

performance.  Some ACMs performed better at low air contents in the scaling test. For 

example CAC2 and CAC3 showed better scaling performance when the air content was 

below 3% and 6% respectively. Other ACMs performed better at moderate air contents. 

AA1 showed better performance for air contents between roughly 4% and 6% while 

CSA2B had the best performance between 2% and 4%. CSA2B .35W/C showed no 

significant difference in scaling performance over the range of air contents investigated. 

The w/cm of the mixture appears to be very important for some of these ACMs. 
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Figure 7: OPC Sample with Visual Rank of 3 

OPC sample with 3.8% air after 50 cycles with a visual rank of 3. There is noticeable 

scaling over the coarse aggregates but a majority of the surface is still intact. This image 

shows how a typical sample performs, scaling mainly over coarse aggregate while 

showing no scaling on the rest of the surface. 
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Figure 8: OPC Sample with Visual Rank of 1 

OPC sample with 6.4% air after 50 cycles with a visual rank of 1. There is minor scaling 

over a few coarse aggregates but almost the entire surface is still intact. This image shows 

how a typical sample of adequate air content performs, minor scaling over coarse 

aggregate while showing no scaling on the rest of the surface. 
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Figure 9: AA1 Sample with Visual Rank of 4 

AA1 sample with 8.4% air after 25 cycles with a visual rank of 4. There is scaling over 

nearly the entire surface but very little coarse aggregate is visible. This type of scaling is 

very different from OPC.  Nearly the entire surface has scaled but hardly any coarse 

aggregate is visible. For example, the scaling example of OPC in Figure 8 has a lower 

visual ranking but the aggregates are exposed.   
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Figure 10: CSA2 Sample with Visual Rank of 5 

CSA2 sample with 7.2% air after 25 cycles with a visual rank of 5. Severe scaling over 

the entire surface. The entire sample has coarse aggregate showing with some smaller 

aggregates missing and none of the original surface left. 
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Figure 11:  Scaled Mass vs. Air
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2.5.3  ASTM C666 

The results from the ASTM C666 testing is shown in Fig. 12 and 13.  Most cements 

investigated needed less than 4% air to pass the ASTM C 666 test with a Durability 

Factor limit of 70%. CSA2 was the only cement that required 5% air content to achieve a 

satisfactory Durability Factor.  However, CSA2B with the typical w/cm of 0.42 showed 

problems with surface scaling during the ASTM C666 test.  When a lower w/cm of 0.35 

was used then satisfactory performance for Durability Factor was found for all mixtures.  

Scaling was observed only in samples with air contents above 6%.  CSA2B and CSA2B 

.35W/C were the only cements that showed severe mass loss on mixtures that had a 

satisfactory Durability Factor.  
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Figure 12: Durability Factor vs. Air
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Figure 13: ASTM C666 Mass Loss vs. Air
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2.6  DISCUSSION OF FINDINGS 

Practitioners want cements that are durable in both bulk freeze thaw and in salt scaling.  

Table 5 shows the satisfactory ranges of air contents that satisfy both of these criteria.  

This is valuable as it shows that there is only a narrow range of air contents and in some 

cases, for example CSA2 and CAC2, there is not an acceptable range.  This chart 

provides a preliminary estimate of air content ranges that are expected to show 

satisfactory performance in the field.  Of the cements tested OPC, CAC3, and CAC2B 

.35W/C were the only cements that had an acceptable air content that would allow them 

to pass both ASTM C666 and ASTM C672.  These results should be carefully interpreted 

as a limited number of admixture and material combinations were investigated.   
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Table 5: Minimum Specification Requirements 

 

 

 

 

Pass Fail Concern

Binder Fresh Air Cycles

Pass or 

Fail 

Scaled 

Mass

Pass or Fail 

Visual 

Inspection

Pass or 

Fail C666 

DF

Pass or 

Concern 

C666 

Mass 

Pass, Fail, 

or Concern 

C666 and 

C672

Passing Air 

Content Range

4.7 20 0.0634 5 76% -0.56%

7.2 20 0.1458 5 98% -1.43%

8.4 25 0.1019 5 98% -0.14%

1.0 25 0.0417 5 33% -3.83%

3.1 50 0.0137 3 96% -2.93%

4.3 20 0.0302 4 98% -3.38%

4.5 50 0.0185 4 94% -2.58%

8.2 20 0.0256 5 98% -2.59%

2.5 50 0.0019 1 91% -1.12%

3.5 50 0.0018 2 96% -0.41%

5.0 50 0.0024 2 100% -0.75%

6.4 50 0.0022 1 100% -2.21%

2.1 50 0.0018 2 69% -5.23%

3.3 25 0.0354 4 101% -0.40%

4.0 35 0.0450 4 103% -0.19%

5.8 50 0.0310 4 103% -0.06%

9.0 25 0.1141 5 99% -1.27%

1.4 50 0.0013 1 60% 0.88%

2.4 50 0.0039 1 103% -0.21%

3.7 50 0.0113 1 100% -0.04%

5.3 50 0.0110 3 102% -0.85%

7.2 50 0.0313 5 98% -0.33%

2.4 40 0.0260 3 63% -0.52%

3.2 25 0.0324 4 93% -0.14%

4.6 50 0.0197 4 99% -0.17%

5.5 25 0.0243 4 98% -0.16%

8.4 25 0.0327 4 96% -0.19%

2.6 10 0.0400 4 27% -0.95%

3.8 50 0.0132 3 87% -0.51%

4.9 50 0.0136 3 98% -0.21%

6.4 50 0.0045 2 99% -0.50%

11.5 50 0.0018 1 98% -0.76%

OPC ≥ 3.8%

CAC2 None

CAC3 2.4% to 5.3%

AA1 None

None

3.1%

CSA2

CSA2B

CSA2B 

.35W/C
2.5% to 6.4%
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2.7  CONCLUSION 

This work has shown that all cements tested showed the ability to meet compressive 

strength requirements to be used in structural members. All cements were also able to 

meet the requirement of a durability factor of 70% in ASTM C666. For ASTM C672 only 

OPC, CAC3, and CSA2B .35W/C were able to have passing ranges of air contents. 

Findings: 

� CAC3 began to lose strength after 28 days 

� CSA2 compressive strength was the most affected by increasing air content 

� CSA2B w/cm 0.42 showed a concerning amount of mass loss in ASTM C666 

at all air contents investigated. 

� All cements were able to pass ASTM C666 with a durability factor of 70% or 

greater over a wide range of air contents 

� Only 3 cements were able to pass ASTM C672 

Recommended air contents for passing both ASTM C666 and ASTM C672: 

� CSA2B .35W/C 

� Air ≥ 2.5% to 6.4% 

� CAC3 

� Air 2.4% to 5.3%. 

� OPC 

� Air ≥ 4.0% 
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CHAPTER III 
 

INVESTIGATION OF ACM FREEZE THAW DURABILITY AGAINST THE 

SPACING FACTOR AND SAM NUMBER 

 

3.0  INTRODUCTION 

Hardened air void analysis (ASTM C 457) the SAM (AASHTO TP 118) were used to 

study the air void distribution in the different cement mixtures. It is well know that air 

content is not the only factor when determining how a mix will perform in bulk freeze 

thaw. Spacing factor is often the other parameter that is measured. This parameter was 

first determined by Powers (1954a, 1954b). ACI 201.2R-08 (ACI 2008) currently 

specifies a spacing factor of .008 in for freeze thaw durable concrete. This value was 

determined for OPC concrete. Every cement tested will result in different properties such 

as porosity and permeability. The more porous and permeable that the concrete is the 

easier it is for water to move through the paste.  This could cause less pressure during a 

freezing event and so less damage.  If every cement has different properties then the 

spacing factor required for freeze thaw durability could be different for every ACM. 

It has also been shown that a SAM Number of 0.20 correlates well with a spacing factor 

of .008 in (Welchel, 2014). This relationship is empirical and has been determined 

through extensive testing on OPC concrete. Since the SAM mechanism relies on the 

dissolution of bubbles at given pressures in the concrete pore solution, changes in the 

pore solution chemistry may modify this process. This does not mean that the SAM 
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cannot be used for ACMs.  However, there may be a different correlation to the spacing 

factor for the different ACMs. 

3.1  SAM AND HARDENED AIR RESULTS 

Figure 14 shows the relationship between the air content and spacing factor.  As the air 

content increased then the spacing factor decreased for OPC and all ACMs except 

CSA2B.  Also, it was not possible to obtain a satisfactory polish on the AA1 samples and 

so the data is not reported for these mixtures.  As the air content increased the spacing 

factor decreased until the air content was approximately 5% and then started to level out. 

CSA2B showed no significant change in spacing factor from 1% to 8% air.  This is not 

expected and should be investigated in more detail. 

The results for CSA2 and CAC2 most closely match the performance of OPC. This may 

be caused by all of these mixtures using the same air entrainer. The offset for the other 

curves could be caused by differences in water reducer dosage, citric acid dosages, and 

pore solution chemistry.  All three of these could impact the quality of the air void 

system.   

CAC3 was the most efficient air void system of the cements tested as it required only 4% 

air -- the lowest dosage of AEA for all ACMs -- to attain a spacing factor of .010 in.  

CAC3 used a different AEA that was not used in any of the other cements. This AEA 

may be more effective at producing a high quality air void system than the others.  
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CSA2B and CSA2B .35W/C had different trends from additions of AEA.  Both of these 

mixtures used the same AEA, had the same polymer addition, used the same citric acid 

dosage, and the same water reducer but in different dosages. The differences could be 

caused by a synergistic effect between the water reducer and the AEA.  It is also possible 

that the lower w/cm mixture also caused improved mixing and so a better air void system.  

This needs to be investigated in further testing. 
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Figure 14:  Spacing Factor vs. Air
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The SAM versus the air content is shown in Fig. 15. CAC2, CSA2B, and CSA2B 

.35W/C all had similar performance to OPC. CAC3 showed a similar result but it was 

offset and had a lower slope.  The SAM Number for this mixture did not get below 0.34 

even at air contents greater than 7%.  The AEA in this mixture is not the same as the 

others and so this could contribute to this difference in performance.  The curve for CSA2 

had a similar shape as CAC3 but was offset to lower SAM numbers.  The AA1 results 

had almost no change in SAM numbers for the different air contents.  This could be 

caused by the high concentration of chemical activator in the solution that greatly 

decrease the solubility of the air in the solution. 
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Figure 15: SAM vs. Air
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The results for the SAM Number and Spacing Factor are shown in Fig. 16.  For all the 

cements investigated, except for AA1 as it was not possible to accurately polish the 

samples, there was a linear relationship between SAM Number and spacing factor.  This 

means that the SAM Number can be used for each of these cements to determine the 

spacing factor.  However, much more work is needed to determine an accurate SAM limit 

between these materials and a recommended spacing factor for freeze thaw durability.  

Another important observation is that the response between the SAM number and spacing 

factor is different for the different cements.  As stated previously, this is not surprising 

since the pore solution chemistry may be different between the different cements and this 

would have an impact on the solubility of the air.  Point 1 and Point 2 on the graph seem 

to have a different response compared to the other mixtures.  These samples should be 

repeated to see if they were measured incorrectly. 
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Figure 16:  Spacing Factor vs. SAM
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3.2  DISCUSSION 

Spacing factor proved to be a useful parameter to dertermine if a mixture would be freeze 

thaw durable.  However, the spacing factor limit is different for different cements.  

CAC2, CAC3, and OPC all performed nearly indentically and needed a spacing factor of 

aproximately 0.020 in to have a freeze thaw durability of at least 70%. CSA2 needed the 

lowest spacing factor of 0.0100 in for a durability factor of 70%. CSA2B did not show 

any clear trend as the durability factor droped sharply with only a small change in 

spacing factor. CSA2B .35W/C showed a slight decline in durability factor with 

increasing spacing factor but no mixtures had a durability factor below 91%.  This 

mixture needed minimal air content to achieve freeze thaw durability.  This is a 

signigicant improvement over the same mixture at a higher w/cm. Due to passing SAM 

numbers being much higher for many of the ACMs, many cements could not be sorted 

soley off of SAM number, a minumum air content was also needed due to very low air 

contents resulting in SAM numbers lower than expected for some mixes. This can be 

seen in Fig. 18 where it is hard to see the trend of SAM vs Durability Factor without 

taking into account that a minimum air content must be used in all mixtures. 



40 

 

 

Figure 17: Durability Factor vs. Spacing Factor 
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Figure 18: Durability Factor vs. SAM 
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The minimum values for the fresh air content, spacing factor, and SAM are given in Table 6.  

These values are based on performance of these mixtures in the ASTM C 666 and ASTM C 672 

results.  One should be careful in interrpreting these values.  These values are the minimum 

values required for freeze thaw durability.  For a specificaiton one would use a safety factor on 

these values to minimize the number of unsatisfactory materials provided.  Furthermore, this 

work has investigated these materials with a limited number of admixtures, w/cm, and aggregates.  

This means that these recommendations may change for other mixtures.  However, the amount of 

information in previous literature on the performance of these materials in durability tests is 

minimal.  Furthermore, there is no known publications that have compared all of these cements in 

the same laboratory, with largely the same admixtures, and in the same testing.  This makes this 

work an important contribution to the body of knowledge and could serve as a foundation for 

much more indepth work in the future. 
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Table 6: Minimum Specification Requirements 

 

 

 

 

 

 

  

Pass Fail Concern

Binder
SAM 

Number

Fresh 

Air

56 Day 

Compressive 

Strength (psi)

Spacing 

Factor
Cycles

Pass or Fail 

Scaled 

Mass

Pass or Fail 

Visual 

Inspection

Pass or 

Fail 

C666 DF

Pass or 

Concern 

C666 Mass 

Change

Pass, Fail, 

or Concern 

C666 and 

C672

Passing Air 

Content 

Range

Minimum 

Requirements

0.21 4.7 9511 0.0105 20 0.0634 5 76% -0.56%

- 7.2 - 0.0083 20 0.1458 5 98% -1.43%

0.14 8.4 7949 0.0060 25 0.1019 5 98% -0.14%

0.33 1.0 10045 0.0175 25 0.0417 5 33% -3.83%

0.50 3.1 9619 - 50 0.0137 3 96% -2.93%

0.39 4.3 9182 0.0161 20 0.0302 4 98% -3.38%

0.30 4.5 9768 0.0137 50 0.0185 4 94% -2.58%

0.06 8.2 8546 0.0136 20 0.0256 5 98% -2.59%

0.50 2.5 12426 0.0208 50 0.0019 1 91% -1.12%

0.54 3.5 10753 0.0111 50 0.0018 2 96% -0.41%

0.21 5.0 11581 0.0112 50 0.0024 2 100% -0.75%

0.22 6.4 11175 0.0109 50 0.0022 1 100% -2.21%

0.38 2.1 8000 0.0186 50 0.0018 2 69% -5.23%

0.53 3.3 9082 0.0148 25 0.0354 4 101% -0.40%

0.49 4.0 8374 0.0131 35 0.0450 4 103% -0.19%

0.20 5.8 7318 - 50 0.0310 4 103% -0.06%

- 9.0 - 0.0050 25 0.1141 5 99% -1.27%

0.70 1.4 9959 0.0212 50 0.0013 1 60% 0.88%

0.53 2.4 9125 0.0165 50 0.0039 1 103% -0.21%

0.47 3.7 8041 0.0107 50 0.0113 1 100% -0.04%

0.34 5.3 9151 0.0089 50 0.0110 3 102% -0.85%

0.38 7.2 8490 0.0065 50 0.0313 5 98% -0.33%

0.20 2.4 6801 - 40 0.0260 3 63% -0.52%

0.20 3.2 6617 - 25 0.0324 4 93% -0.14%

0.23 4.6 7502 - 50 0.0197 4 99% -0.17%

0.16 5.5 7390 - 25 0.0243 4 98% -0.16%

0.19 8.4 5002 - 25 0.0327 4 96% -0.19%

0.57 2.6 7156 0.0251 10 0.0400 4 27% -0.95%

0.37 3.8 6985 0.0178 50 0.0132 3 87% -0.51%

0.19 4.9 6580 0.0107 50 0.0136 3 98% -0.21%

0.14 6.4 6055 0.0081 50 0.0045 2 99% -0.50%

- 11.5 - 0.0040 50 0.0018 1 98% -0.76%

Not 

Recommended

Not 

Recommended

SAM ≤ 0.50

Air ≥ 3.0%

SF ≤ .0200

Not 

Recommended

SAM ≤ 0.50

Air 2.5% to 

5.5%

SF ≤ .0150

OPC ≥ 3.8%

CAC2 None

CAC3 2.4% to 5.3%

AA1 None
Not 

Recommended

SAM ≤ 0.35

Air ≥ 4.0%

SF ≤ .0150

None

3.1%

CSA2

CSA2B

CSA2B 

.35W/C
2.5% to 6.4%
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3.3  CONCLUSION 

This work has shown that there are satisfactory spacing factor and SAM Number limits 

for almost all the cements tested. Each cement has a different porosity, pore connectivity, 

strength, and pore solution chemistry and so it is not surprising that each cement shows 

different requirements for SAM Number and spacing factor to ensure freeze thaw 

durability. The following findings and recommendations have been made. 

Findings 

� AA1 did not show change in result in the SAM test 

� CSA2B did not show a significant change in spacing factor across a 7% air 

content range 

� With compatible air entraining admixtures every cement was able to meet the 

durability factor criteria of 70% 

Recommendations for passing ASTM C666 

� CSA2 

� Air ≥ 5.0% 

� Spacing Factor  ≤ .0100 in. 

� CSA2B 

� SAM ≤ 0.50 

� Air ≥ 4.0% 

� Spacing Factor  ≤ .0150 in. 

� CSA2B .35W/C 

� SAM ≤ 0.50 

� Air ≥ 3.0% 

� Spacing Factor  ≤ .0200 in. 

� CAC2 

� SAM ≤ 0.50 

� Air ≥ 4.0% 

� Spacing Factor  ≤ .0150 in. 

� CAC3 
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� SAM ≤ 0.50 

� Air ≥ 3.0% 

� Spacing Factor  ≤ .0150 in. 

� AA1 

� Air ≥ 4.0% 

� OPC 

� SAM ≤ 0.35 

� Air ≥ 4.0% 

� Spacing Factor  ≤ .0150 in. 

 



46 

 

CHAPTER IV 

 

CONCLUSION 

 

This thesis addresses both the ability and the requirements for ACMs in structural or 

paving applications and their ability to reduce freeze thaw damage. ACMs are both 

chemically and structurally different from OPC. These differences can be both a positive 

and a negative. Many ACMs showed increased strength and higher strength gain rates 

than OPC but proved to have durability problems, especially in salt scaling. 

AA1 showed the closest match to OPC in final strength and strength gain rate. CSA2 

showed the highest strength of any ACM at the standard .42W/C mixture design nearly 

double the strength of OPC at 2 days. Using varying dosages of citric acid allowed for 

approximately the same set time to be attained for all cements tested. All of the ACMs 

attained more than sufficient strength to be used in structural or paving applications. 

Freeze thaw durability, based on durability factor, was achieved with all cements at 

standard air content ranges. CSA2B showed concerning amounts of mass loss even at 

durability factors over 90%. Salt scale performance was not as easily attained for many 

cements with it being unattainable for some. Only OPC, CSA2B .35W/C, and CAC3 

were able to obtain satisfactory results in both salt scale and freeze thaw at the same air 

contents.
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Current recommendations for using an ACM in a freezing climate must result in a 

structure that is durable in both freeze thaw and salt scaling.  A range of material 

properties were given for these materials where satisfactory performance was observed. 

Because of the loss of compressive strength of CAC3 the use of this material may be 

concerning for some owners.  Because of this the ACM with the most promise for freeze 

thaw durability would be CSA2B .35W/C with the following properties: SAM ≤ 0.50, Air 

≥ 3.0%, and Spacing Factor  ≤ .0200 in. This combination has shown the ability to 

provide durability and strength on par with or better than OPC. 

Further testing is needed to examine more mixture designs with different W/C, different 

admixture combinations and dosages, and continued work on developing specifications 

so that a wider range of viable material combinations could be identified to achieve  

durable mixes using ACMs. 
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