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Abstract: Each year, the amount of data that is produced in the digital universe is 

continuously increasing, so much so that some sources claim that the amount of data is 

doubled every two years.  This type of data can be characterized as a form of Big Data in 

which it is described as containing the 3V’s properties: Volume, Velocity, and Variety.  

In terms of data processing, technologies like Apache Storm have emerged to provide a 

distributed real time computation system.  Being able to process and provide insightful 

meaning of Big Data in a timely manner has become quite challenging.  In some intended 

environments where seconds matter, real time processing might not be good enough and 

only provides an operator minimal time to react.  This thesis proposes the use of Apache 

Storm’s real time processing engine that uses a Kalman Filter to provide estimation.  The 

proposed approach provides a flexible architecture that leverages the real time processing 

engine for quick response but also provides an additional layer for estimation.  By 

providing estimation, this allows for an operator to have more time to react based on 

trends seen within the data.  Specifically, this thesis focuses on providing estimation to a 

location of an aircraft.  One use case of this estimation solution could be utilized in 

preventing air traffic collisions.  The estimation algorithm presented in this thesis is 

suited for predicting locations; however the architecture presented allows for the 

customization of different estimations for desired use case.  Various test cases were 

executed to evaluate the overall system performance and determine if the proposed 

system would be viable to provide real time situational awareness and estimation. For the 

tests cases focused on the performance of Apache Storm, overall there was no degraded 

performance that present limitations on the proposed architecture.  As for the estimation 

performance, the further out that the estimation was to predict the location there was an 

increasing associated error in estimating that location.  An additional factor in 

contributing to error is the flight path of the aircraft. 
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CHAPTER I 
 

 

INTRODUCTION 

1.1 Background 
Every year, the amount of data that is produced in the digital universe is continuously 

increasing.  Take for instance the data that is created by the social media website Twitter.  

In 2007 about 5,000 tweets were occurring each day whereas in 2013 the number of 

tweets had increased to around 500 million each day [10].   

Figure 1 Twitter Data Trends 

 

This type of surge in the amount of digital data has gained a lot of focus from a variety of 

industries and can be characterized as a form of Big Data.
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Big Data is used to describe data sets that are so large and complex that traditional tools 

and applications have a difficult time processing.  Back in 2001 Doug Laney coined the 

three properties (3 V’s) of Big Data:  Volume, Velocity, and Variety [11].  Volume is 

described as the amount of data that is produced.  Velocity is the speed in which the data 

is being produced at.  Variety is the various formats of incoming data.  While 

understanding the importance on the growing trend of Big Data, the Obama 

administration announced the “Big Data” Initiative of $200 million in 2012. One of the 

Department of Defense’s goals in this initiative is to harness and utilize massive data in 

new ways and bring together sensing, perception and decision support to make truly 

autonomous systems that can maneuver and make decisions on their own [1].  An area of 

interest in terms of Big Data is how to efficiently handle and process the incoming data. 

One tool that has been used to process large data sets on commodity computers is Apache 

Hadoop [12].  The Hadoop framework provides a distributed file system called Hadoop 

Distributed File System (HDFS) [4] that stores data across commodity computers.  

Hadoop also contains a resource management tool called “Yet Another Resource 

Negotiator” (YARN) [14] which manages the computing resources in the cluster.  Lastly, 

Hadoop utilizes MapReduce which is a programming model for large scale data 

processing.  Hadoop provides users a tool to provide analysis on a large set of data but 

lacks the functionality to give real time analysis of the data.  Using some of the similar 

principles that Hadoop was built on, tools like Apache Storm [6] have emerged to 

provide a distributed real time computation system.  Storm has been built on a couple of 

key principles: extremely broad set of use cases, scalable, guarantees of no data loss, 

robust, fault-tolerant, and programming language agnostic.  The flexibility of Apache 
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Storm allows for customization of data processing like data estimation.  The complexity 

and type of the estimating algorithms can vary based on the desired use case.  For 

example, if the use case is to monitor and estimate an object that travels in a linear path, a 

linear algorithm could be used to provide an estimated value of its upcoming position.  

However, if the object travels in a nonlinear motion, the linear estimation algorithm 

would not be suitable for estimation. Under this use case of an object traveling in a 

nonlinear motion, an algorithm like a Kalman filter [14] could be applied for estimation.  

The Kalman Filter takes a series of measurements over time that contains inaccuracies 

and produces an estimate solution.  Kalman filters have been vital in the implementation 

of the navigation systems of the U.S. Navy nuclear ballistic missile submarines, and in 

the guidance and navigation systems of cruise missiles such as the U.S. Navy's 

Tomahawk missile and the U.S. Air Force's Air Launched Cruise Missile. It is also used 

in the guidance and navigation systems of the NASA Space Shuttle and the attitude 

control and navigation systems of the International Space Station [2]. 

1.2 Problem Specification 
The problem that arises is how high velocity data be processed in an efficient manner so 

that it can be useful in the intended use case.  Being able to access, process, and correlate 

the data in an efficient matter with minimal delay is critical in providing situational 

awareness which allows operators ample time to make decisions.  In some environments 

where seconds matter, real time processing might not be good enough and only provides 

an operator minimal time to react.  With the growing trends of drones, both for 

commercial and recreational uses, this thesis explores use case of estimating an aircraft’s 

location. 
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1.3 Solution 
With the flow of Big Data having high velocity, one way to provide situation awareness 

is to provide an operator with an estimated value based on historical trends of the data.  

This thesis utilizes the Apache Storm real time processing engine enhanced with a 

Kalman Filter to provide estimation of an aircraft’s location.  This approach provides an 

architecture that leverages the real time processing engine for quick response as well as 

handling large amounts of data.  Additionally, it also provides a flexible architecture to 

allow for an additional layer for estimation.  By providing an estimation solution, this 

allows for an operator to have more time to react to an up and coming event like collision 

avoidance.  The estimation algorithm presented in this thesis is suited for predicting 

locations; however the flexible architecture presented allows for the use of different 

estimations for different applications. 

1.4 Contributions 
1. With the use of the existing Traffic Collision and Avoidance Systems (TCAS) and 

ground based radars, pilots and air traffic controllers can be informed of any potential 

aircraft collisions.  With the increase of both commercial and personal drones, the use 

of these specialized collision systems are not available on the smaller aircrafts.  With 

the use of a GPS and the Kalman Filter estimation algorithm, the predicted flight path 

can be used to avoid airborne collisions.   

2. In order to provide the operator/pilot ample time to adequately respond, processing of 

this data to provide estimation needs to occur near real time.  The use of Apache 

Storm provides a distributed architecture that leverages high velocity data processing 

that is well suited for this application.    
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3. Existing approaches for flight estimation use Kalman filtering, but they do not take a 

Big Data approach. As systems become more complex, more data is generated at a 

faster rate. Hence a Big Data approach is needed. Secondly, a real time Big Data 

approach is called for as time is critical in this scenario. The main contribution is 

therefore a real time Big Data approach to flight path estimation.  

4. The final contribution is the examination and measurement of the proposed system’s 

performance in terms of time. 

1.5 Outline 
The remaining chapters in the proposed thesis explore the applicable technologies, 

existing research, define the problem, and propose an approach.  Chapter 2 provides a 

background of Big Data and then dives into tools designed for efficiently processing Big 

Data.  In addition, the Kalman Filter algorithm used to estimate locations is further 

explored.  Chapter 3 defines the problem that this thesis intends to solve with the 

proposed methodologies.  Chapter 4 goes through the results of the test cases and 

concludes with Chapter 5 in summary. 
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CHAPTER II 
 

 

REVIEW OF LITERATURE 

 

This thesis focuses on the use of a real time processing engine, Apache Storm, coupled 

with a Kaman Filter to provide smoothing and estimation locations of an aircraft.  To 

achieve the end result of the estimated location, a better understanding of each of the 

technologies in play is needed to incorporate them.  First, “Big Data” is researched to 

understand what it is and the impacts of it.  The second research area is the different 

approaches of data processing and how it is applicable to this thesis.  Batch processing of 

large data sets will be examined to give a basis of processing techniques used in a non-

real time environment.  The principles of the batch processing will then be related into 

the real time processing solution and technologies.  Next, various real time processing 

engines will be examined and the principles they are built upon.  Apache Storm will be 

further examined to understand the architecture and how it handles processing. Finally, 

the Kalman Filter algorithm will be examined to understand the philosophy behind the 

algorithm and it’s intend applications.  
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Once the technologies utilized in the thesis have been examined, a review of existing 

literature will be presented to show how this thesis closes gaps with the current research. 

2.1 Big Data 
In this section, the definition of Big Data is discussed and how it relates to the topic of 

the thesis.  Big data is the term for a collection of data sets so large and complex that it 

becomes difficult to process using on-hand database management tools or traditional data 

processing applications [3].  An analyst named Doug Laney Gartner in 2001 released a 

report that described the current data trends and classified these challenges as having 

three properties:  Volume, Velocity, and Variety. These properties have grown to become 

known as the 3 V’s of Big Data.   Volume is the amount of data that needs to be 

processed. As for today’s standard, the amount of data ranges in terms of Terabytes, 

Petabyte, or larger.  The second “V” of the Big Data property is Velocity.  This pertains 

to how fast the data is streaming in or out of data sources.  For instance, take an online 

user interactive game where the events of simultaneous user’s behavior are needed to be 

captured by the game.   The last property of Big Data is Variety, which refers to the type 

of data.  The data may be structured or unstructured such as plain text, raw sensor data, 

multimedia data and more.  The definition of Big Data has continued to expand over the 

years to contain additional properties.  An additional V of Big Data is Variability which 

refers to the aspect of uncertainty of data.  Due to the emphasis that has been placed on 

handling Big Data, improvements have been made in technologies such as data 

processing.  The White House has gone so far to start a “Big Data Research and 

Development Initiative” in March of 2012 which has set aside commitments of excess of 

$200 million [1].   
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2.2 Data Processing 
Depending on the desired application, different types of technologies are needed in order 

to satisfy the specific property of interest of Big Data.  For instance, if an application 

needs to post process large volumes of data, the data could be processed using Batch 

processing.  However, if real time analysis is needed in order to make quick decisions, 

processing should not be done using batches.  The data would need to be processed in a 

real time manner.  In this section, data processing is broken down into two sections: 

Batch and Real time Processing.  Batch Processing is focused on processing large volume 

of data that is stored.  Once batch processing has started on a data set, new incoming data 

will not be processed until the next iteration. This type of processing would not fit into 

gathering situational awareness near real time.  A popular commonly known tool to 

process large data sets is Hadoop [12].  Some of the same concepts used in Hadoop for 

batch processing are utilized in real time processing engines.  Applications that focus on 

high-velocity data streams that need real time analytics will need to utilize a real time 

processing engine rather than batch processing.  There are a variety of applications for 

processing data real time.  This thesis explores a couple of the options for processing real 

time data but will focus on Apache Storm [6].  Storm has become to be known as the 

“Hadoop” for real time processing. 

2.2.1 Hadoop 
Apache Hadoop [12] is an open source project responsible for storing, processing, and 

analyzing large data sets in a distributed environment. Hadoop possesses a flexible and 

fault tolerant design that is geared to handle large volume of data rather than a high 

velocity. The Hadoop architecture is designed after a master/slave model.  There is a 

single master server which is called the jobtracker and slave servers called tasktrackers.  
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Jobs are passed into the jobtracker which stores them into a queue.  The jobtracker 

manages the jobs assigned to the tasktrackers.  Tasktrackers are responsible for executing 

the jobs.  Hadoop consists of two major components: MapReduce and Hadoop 

Distributed File System (HDFS).  The MapReduce covers the processing aspect of 

Hadoop where the HDFS covers the storage.  MapReduce is the framework that 

distributes computations over multiple nodes to allow for parallel processing which 

complements the Batch processing approach on large volume of data.  In order for the 

data to be processed in parallel, the data has to be separated into independent blocks.  The 

Hadoop Distributed File System (HDFS) is a distributed file system designed to run on 

commodity hardware [4] and is tuned to support large data sets. 

2.2.2 Yahoo! S4 
Yahoo! S4 [13] is a platform that is intended to process data real time unlike the batch 

processing approach as Hadoop.  S4 stands for Simple Scalable Streaming System which 

was introduced in October 2010 and inspired by the MapReduce and Actors model.  S4 is 

a general-purpose, distributed, decentralized, partially fault-tolerant, scalable, pluggable 

platform that allows programmers to easily develop applications for processing 

continuous unbounded streams of data [5]. The design of S4 is to allow for consumption 

of data from a stream, compute intermitted values, and then publish the results as a new 

stream.  A couple of use cases that provided motivations for S4 was to personalized 

Searches, Twitter Treads, and analysis of stock trading.  The S4 Architecture consists of 

the following components: Node, Server, Application, Processing Elements (PEs), and 

Streams.  In the S4 architecture there can be an unlimited number of nodes in which each 

node contains one server process. The server process is responsible for managing the 
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applications.  The applications are a graph comprised of Processing Elements (PE).  

Processing Elements within S4 are responsible for performing computations on the 

streams.  S4 can contain multiple PEs in which they use data events to communicate with 

each other. 

2.2.3 Apache Storm 
Apache Storm [6] is another tool created to handle real time processing of data streams.  

Apache Storm is an open source, distributed and fault-tolerant real time computation 

system.  Storm provides similar functionality as a MapReduce job but with no 

termination.  It essentially has to be terminated manually to stop the computational 

process.  Storm makes it easy to reliably process unbounded streams of data, doing for 

real time processing what Hadoop did for batch processing [6]. The major components of 

the Storm architecture are called spouts and bolts.  A spout is a source of data.  The 

source of data could be from a queuing system or reading streaming data.  The spout 

provides the data to the bolts as shown in Figure 2.  An example of this in the social 

media world is the public streams made available by Twitter. Twitter offers sample 

streams of data in which an application can attach to and process.  In the world of Apache 

Storm, this would be an example of a spout.  A bolt processes the data from the spout and 

produces an output stream.  The bolt contains the majority of the computation logic.  One 

of the possibilities of a bolt is to write the data to a database. The intent of the spouts and 

bolts were that they were inherently parallel which is similar to how the mappers and 

reducers are parallel in Hadoop. The network of how the spouts and bolts tie together is 

called a topology.  The below image was taken from the Apache Storm website 

(http://storm.incubator.apache.org/)  
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Figure 2 Storm Topology 

 

Some of the appealing characteristics that Storm possesses are that it is fast, scalable, 

fault-tolerant, and reliable.  In terms of processing speed, Storm has been benchmarked 

on a computer with a 2x Intel E5645@2.4Ghz and 24GB of Memory in which one 

million 100 byte messages per second were processed per node.  In terms of reliability, 

Storm guarantees that each record will be processed at least once.  Storm also allows for 

monitoring of the workers and nodes within the cluster.  If one of these items fails, Storm 

has the capability to automatically restart them, thus the fault-tolerant benefit.  The 

distribution of Storm cluster is achieved by the use of three different types of nodes: 

Nimbus, Zookeeper, and Supervisor.  The Nimbus node is the master node.  It is 

responsible for launching and monitoring workers across the cluster.  The Zookeeper 

provides the coordination between the Nimbus and the Supervisors.  The Supervisors 

listen for work assignments and react accordingly.  Apache Storm has become a more 

popular real time processing tool and users include companies like The Weather Channel, 

WebMD, Groupon, and Twitter just to name a few. 
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2.3 Kalman Filter Algorithm 
For this thesis, various estimation algorithms were researched in order to see their 

applicability in estimating the location of an aircraft.  The architecture presented in this 

thesis provides the flexibility to use various estimation algorithms but the intended use 

case of estimating aircraft’s location restrict which algorithms are well suited.  Due to the 

aspect of real time estimation, the researched algorithms need to have minimal delay in 

its calculation.  Additionally, knowing the expected movement of the objective object 

(i.e. airplane) the estimation algorithm must be suitable for accounting for this type of 

movement.   

A simple linear prediction algorithm [17] could have been used for estimation objects 

that move in a linear fashion during discrete time intervals.  This algorithm is not 

computationally expensive; however the use case for estimating aircraft location was not 

suited for this algorithm.  An additional algorithm that was considered for the estimation 

was the moving average [18].  The disadvantages associated with a moving average is 

that a series of data points have to be retained in order for the algorithm to compute its 

solution.  Also, the new trends in the data tend to lag in actual behavior due to a series of 

points that make up the average.  For this application, the use of a moving average is 

better suited than a simple linear prediction but the algorithm still has some 

disadvantages that could be overcome through the use of another algorithm.  Lastly, the 

Kalman Filter [2] was examined to see the potential use cases that this algorithm has been 

used for.  Kalman Filters has been used in in estimating objects that move linearly in 

nature with some Gaussian noise in their solution.  The origins of this algorithm date 

back to the 1960 in which Rudolf Kalman realized the applicability of this algorithm 
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when he visited the NASA Research center in determining the trajectory estimation of 

Apollo.  This algorithm has later been utilized in the development of various navigation, 

guidance, and control systems used in the United States Military.  For this thesis, the 

Kalman Filter will not be fully examined in understanding the theory behind it, rather 

will be used as a known algorithm that is well suited for estimating location of airborne 

moving objects.   

The Kalman filter, also known as linear quadratic estimation, is an algorithm that uses a 

series of measurements observed over time, containing noise and other inaccuracies, and 

produces estimates of unknown variables that tend to be more precise that those based on 

a single measurement alone [2]. The below figure was taken from 

http://en.wikipedia.org/wiki/Kalman_filter to provide more details into the flow and logic 

of the Kalman Filter. 

Figure 3 Kalman Filter 

 

2.4 Existing Literature 
The primary uses for tools that predicted upcoming behaviors are in the area of real time 

analytics for trends on the internet. StreamAnalytix [7] claims that by early detection with 
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real time streaming,  operators can benefit by cutting preventable losses, gain operational 

insights, and seize new opportunities.  Included in this are analytics of sensor based data, 

machine generated (Machine to Machine) data, logs, clickstreams, advertising data, and 

processing of financial data and transactions in real time [7].  In terms of the aviation 

industry, there is a lot of interest in Big Data and how to handle it.  To get a sense of how 

much data is created by an aircraft, a single engine on an aircraft can create over 20 

terabytes of data per engine every hour.  Industry leaders are interested in this data to 

provide estimation about when certain parts of the engine will fail.  This allows them to 

replace these parts before a failure occurs, thus saving money and down time of the 

aircraft.  Boeing’s Internal Research Team and other industry partners have published a 

paper for Predictive Analytics with Aviation Big Data.  The end result of this research 

was a novel analytics system that enables query processing and predictive analytics over 

streams of big aviation data [8].  This system was able to correlate flight plans with live 

track data near real time.  As far as the author is aware, work similar to that reported in 

this thesis has not been described in the literature.  The Kalman Filter has been utilized 

on many existing products and research for estimating location.  My thesis combines Big 

Data technologies to provide estimation real time.  This thesis focuses on estimating 

upcoming position of an aircraft, but the proposed architecture enables the use of 

swapping or combining with the estimation algorithm for other desired applications.  

Currently, many commercial aircrafts contain onboard systems to avoid air collisions 

known as Traffic collision Avoidance Systems (TCAS).  These systems require a 

computer, antenna, and some type of display for the pilot to warn of approaching.  Based 

on the proximity of approaching aircrafts, various types of alerts will be issued for pilot 
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awareness.  Besides onboard TCAS, air traffic controllers utilize visual methods as well 

as ground based radars to detect and monitor traffic [16]. 
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CHAPTER III 
 

 

METHODOLOGY 

The challenges of handling Big Data have allowed for continued research and 

advancement of new applications and tools.  The application examined for this thesis 

focuses on handling and processing data quickly as well as being capable of handling 

large amounts of data.  In time sensitive operational environments, real time processing 

of data might not be good enough to provide an operator or analyst minimal time to react 

to an upcoming event. This thesis provides an architecture that leverages the benefits of a 

real time processing engine coupled with an additional layer to allow for estimation.  By 

providing estimation, this allows an operator to have more time to prepare for and react to 

a future event.  Specifically, this thesis focuses on the use case of providing estimation of 

an aircraft’s position.  One use of this estimation solution could be utilized in preventing 

air collisions.  With the recent growth in the popularity of drones, both commercial and 

recreational, the amount of aircrafts flying will continue to rise and the method for 

detecting and monitoring air traffic will need to improve.  This growth further expands 

the need for an architecture that can handle large amounts of data.  
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There are existing companies and projects that utilize the technologies researched to gain 

early detection with real time streaming to gain operational insights.  However, this thesis 

goes one step further to estimate the upcoming trends in the data.  The estimation 

algorithm presented in this thesis is suited for predicting locations; however the 

architecture presented allows for the use of different estimation solutions for different 

applications. 

3.1 Architecture 
This thesis is broken down into different technology blocks with the end goal of 

integrating the technology blocks into a final application.  The overall goal of this thesis 

is to obtain high velocity geo-positional data from multiple aircrafts and be able to 

estimate their upcoming position. The estimation and actual data points will be later 

compared to see how close the estimated state was to actual state.  The time for the 

estimated state will also be adjusted to see how it affects the Kalman filter in predicting 

the up and coming state.  Additionally, use of internal timers will be inserted throughout 

the Storm’s architecture to see how the Storm processing is effected by adjusting the 

amount and frequency of data that is flowing through the architecture.   

3.2 Setup 
For processing and estimating an aircraft’s position in a real time manner, this thesis uses 

Apache Storm coupled with Kalman Filter processing.  The below sections examine how 

each of the technologies were setup and used.  The Java programming language and the 

Eclipse IDE were used for the development of this project.  The tests were performed on 

a single computer.  The Processor used was an Intel Core i7-2670 QM CPU @ 2.20 GHz 
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with 8 GB of RAM.  The functionality of the application and the effectiveness of the 

Kalman Filter can be proven in this environment.       

3.3 Apache Storm 
The two main components for configuring Apache Storm are the source of the data and 

the processing component of that data.  These components are called the spout and bolt 

respectively.  How these components are configured make up the defined Storm 

topology.   The below figures identify the various Storm topologies that are examined in 

this thesis. 

Figure 4 Single Aircraft Topology 

 

Figure 5 Redundant Aircraft Topology  

 

Kalman 
Filter

 

For use within this project, a spout has been created called “TextFileSpout” and a bolt 

“KalmanFilterBolt”.  The details of the Spout and Bolt used in this configuration are 
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examined in more detail below.  The figure below is a screenshot of the source code that 

defines a single aircraft topology configuration. 

Figure 6 Example Source Code - Single Aircraft Topology 

 

For the use case of redundant bolts tied to a single spout, the bolts will be iterated through 

and all tied to the dependent spout.  Below is the sample source code used in this 

configuration. 

Figure 7 Example Source Code - Redundant Aircraft Topology 

 

3.3.1 Spout 
A spout is the source of data that will be used by the bolt for computation.  A spout can 

read its data from a queueing broker like Kafka or it can generate its own data stream.  

For this thesis, the spout reads the data directly from a file that has been previously 

recorded with aircraft positional data.  In order to minimize the performance impacts of 

reading from the hard drive, all of the sensor’s data is loaded into memory when Apache 

Storm is initialized.  By reading from memory, this will allow for simulation of data at 

faster input rates to stress the performance of Apache storm.  Additionally, the use of 

timers (java.lang.System.nanoTime) within the source code help monitor the emitted 

frequency of each record to the bolt.  Additionally, timers are also inserted to monitor the 

time it takes a record to be transmitted from the spout to bolt.   
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3.3.1.1 Data Source 

The first piece of the thesis is to identify a data source.   This thesis uses aircraft 

positional data for the use of the Kalman Filter to provide an estimate for position.  For 

use within this thesis, only the latitude and longitude values are used within the 

estimation model which in essence is the x and y attributes in 2 dimensional space.  

Altitude, the z attribute in 3 dimensional space, could have been added to the estimation 

model to provide further validity in the estimated solution.  However, the use of latitude 

and longitude values provide enough insight into the feasibility of this architecture and 

application.  Depending on the data source, the Kalman Filter can be adjusted to accept 

different sets of parameters like velocities.  The position data was obtained from a 

previously recorded flight from aircraft navigation system aboard a Cessna Caravan.  The 

data rate of the recorded aircraft’s position data is at 30 Hz.  This data was stored to a text 

file.  Only a portion (~157 minute segment) of the aircraft’s positional data will utilized 

instead of the full flight plan.  This was the longest segment of recorded data that was 

available.  Other system testing and objectives were ongoing which required various 

restarts, thus shorter records. 

3.3.2 Bolt 
The bolt is the computational piece that contains most of the processing logic within the 

Storm topology.  A bolt can process any number of streams from either a spout or another 

bolt.  For this thesis, the bolt will contain the Kalman Filter logic.  The bolt will take the 

incoming raw aircraft positional data and process it using a Kalman Filter.  The raw and 

estimated navigation data will be compared to see the viability of the final application.  

Similar to the spouts approach for loaded positional data into memory, the bolt will store 

its estimated solution into memory.  Once the storm cluster has been commanded to 
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shutdown, all of the data points within memory are written out to a file for analysis.  

Also, timers are inserted in two places within the bolt.  One is at the very beginning on 

receiving a new record.  This time will be compared against when the spout “emitted” the 

record.  This allows seeing any delay that is introduced in Storms internal processing.  

Finally, a timer is placed at the end of the Kalman Filter bolt.  This allows the processing 

time of the bolt to be examined in order to see any potential limitations in using this 

algorithm. 

3.3.2.1 Kalman Filter 

For use within this thesis, a known implementation of the Kalman Filter from Apache 

Commons Math is utilized.  By using a known implementation of the Kalman Filter, it 

will reduce the risk of introducing errors in the analysis of the data.  The Kalman Filter is 

an existing algorithm that has been used in a variety of applications for estimating and 

smoothing noisy sensor positions.  Depending on the setup of the Kalman Filter, 

estimating can be done on 1-Dimension, 2-dimenional, and more complex scenarios. A 

Kalman Filter is comprised of a Process Model and a Measurement Model.  For the 

Process Model, the following matrices were used.  State Transition Matrix (A) is defined 

as shown below where dt is 1/frequency of the data.  For the 30Hz case, dt would be 

1/30. 

𝐴 = [

1 0 𝑑𝑡 0
0 1 0 𝑑𝑡
0 0 1 0
0 0 0 1

] 

For this implementation, the Control Input Matrix (B) is not used so it is defined as 
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𝐵 = [

0
0
0
0

] 

The Process Noise Covariance Matrix (Q) is defined as shown below. 

𝑄 =  [

𝐿𝑎𝑡𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑁𝑜𝑖𝑠𝑒 0 0 0
0 𝐿𝑜𝑛𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑁𝑜𝑖𝑠𝑒 0 0
0 0 1 0
0 0 0 1

] 

The LatPositionNoise and LonPositionNoise were set to 0.0001 degrees which is the 

noise in the location.  The precision associated with 0.0001 degrees equates to 11.132 

meters at the equator.  The precision of the associated noise varies as you move away 

from the equator [15]. The initial state estimate is needed for the initialization of the 

Kalman Filter.  The first record that is received by the bolt is used to initialize this vector.  

Since the velocities are not a received input, 0’s are used within the vector.  The Initial 

State Estimate (x) is defined as shown below. 

𝑥 =  [

𝐿𝑎𝑡𝑖𝑡𝑢𝑑𝑒
𝐿𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒

0
0

] 

Lastly is the Initial Error Covariance Matrix (P0).  Since the Initial position is known, the 

default is similar to the previous Latitude and Longitude Noise.  Since the initial 

velocities are not known a high variance is provided. 

𝑃0 =  [

𝐿𝑎𝑡𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑁𝑜𝑖𝑠𝑒 0 0 0
0 𝐿𝑜𝑛𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑁𝑜𝑖𝑠𝑒 0 0
0 0 100000 0
0 0 0 100000

] 
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The Measure Model Definition is comprised of the Measurement Matrix (H) and the 

Measurement Noise Covariance Matrix (R).  Since this thesis only observes the position 

updates, the matrixes are defined as the following 

𝐻 =  [
1 0 0 0
0 1 0 0

] 

𝑅 =  [
𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡𝑁𝑜𝑖𝑠𝑒 0

0 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡𝑁𝑜𝑖𝑠𝑒
] 

After the Process and Measurement models have been defined, these serve as input 

parameters into the Kalman Filter as shown below. 

Figure 8 Example Source Code – Kalman Filter Instance 

 

3.4 Test Cases 
The final aspect of the thesis is to analyze the integrated product.  This will look at the 

accuracies of the estimation algorithms solution.  The actual aircraft location will be 

compared against predicted location.  The overall system performance will be examined 

to determine if the proposed system would be viable to provide real time situational 

awareness and estimation.  Below are the test cases that will be executed for this thesis.  

Based on the findings of this thesis, potential targeted environment for this application 

will be identified.  For instance, instead of using the Kalman Filter for estimating a 

position, maybe the system could replace that algorithm with one that is more suitable for 

estimating the stock market.  This could potential give traders a look ahead and 

determines if the stock should be sold. 
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3.4.1 Apache Storm Performance  
The overall performance of Apache Storm will be analyzed under various test cases.  One 

test case explored is the number of records emitted per second which is adjusted to see 

the impacts to Storm’s performance.  Within the source code, a nanosecond timer is 

added to the record every time the Spout calls emit on a new record.  This helps identify 

the frequency rate at which the actual records are being transmitted to the bolt.  The next 

step was to determine how long it took the record to get to the bolt once the record was 

emitted from the spout.  A timer was added to the bolt within the Execute method.  

Finally, after all of the processing has been done on the Tuple, a timer was added to see 

how long it took for the Kalman Filter to process a record.  The below figure identifies 

the location of each timer used to measure performance.  

Figure 9 Storm Topology Timers 

Emit 
Timer

Receive 
Timer

Processing 
Timer

 

3.4.1.1 Spout to Bolt Performance  

For this series of testing, only one spout was utilized and the number of bolts was 

increased.  The spout was set at an emittance rate of 30 Hz.  The storm topology was set 

to run for 3 minutes while timers were used to monitor performance.  The below figure 

identifies the test case of 1 spout with 3 bolts.  This test case will explore increasing the 

number of bolts and examining the latency.  
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Figure 10 Spout to Bolt Test Case 

Emit 
Timer

Receive 
Timer

 

3.4.1.2 Kalman Filter Processing Time  

The Kalman Filter processing time will be examined to see if the algorithm presents any 

type of bottleneck to the Storm topology.  The input frequency of the spout will be 

increased and the Kalman filter processing time will be re-evaluated.  Based on the 

results of this test case, a maximum input frequency could be determined if the Kalman 

Filter processes a limitation.  The below figure shows where in the Storm topology the 

use of timers are inserted in order to examine the Kalman Filter Processing time. 

Figure 11 Kalman Filter Processing Time Test Case 

Receive 
Timer

Processing 
Timer

 

3.4.2 Predicted vs Actual Location  
The next test case will examine the predicated location versus the actual location of the 

aircraft at that time in the future.  All test cases will be performed at 30 Hz which was the 

recorded rate of the original data.  The original recorded data was a total of 282,951 
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records which equates to 9,431.7 seconds which is about 157 minutes of flight data.  The 

data set used did not have any missing values and contain a timestamp, latitude, and 

longitude.  The average delta will be calculated for what the estimated data point was 

versus the original data at that estimated time.  This calculation will be performed for 

both the latitude and longitude estimates.  Inspection of these deltas will show the 

usefulness of the estimation and how far in the future the estimate position can be 

provided before the estimated solution is no longer useful in predicting a location.  
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CHAPTER IV 
 

 

FINDINGS 

 

The following section identifies the results associated with the performance of Apache 

Storm coupled with a Kalman Filter processing bolt. Various aspects of the Apache 

Storm processing performance are examined to see if there are any potential bottlenecks 

that possess a limitation on estimating an aircraft’s location.  To assess any potential 

limitations, various timers are inserted in the architecture to expose the latency during the 

processing.  Additionally, the predicted versus actual aircraft location is examined to see 

the behavior of the Kalman Filter estimation.  The tests cases that are examined in this 

chapter were described in the previous Section 3.4 Test Cases.  After all of the test cases 

have been examined, Chapter V will conclude with a summary of the findings and the 

feasibility of this architecture to estimate the aircraft’s location.      

4.1 Apache Storm Performance Results  

The following subsections have captured the performance of the Apache Storm 

architecture on a single node computer.  This performance evaluates the feasibility of the 

architecture and identifies any potential bottlenecks that might pose a limit on the test 

case.  These series of tests evaluate the various aspects of the architecture: 

1. Frequency of records inserted into the system 

2. Spout to Bolt performance with using multiple bolts per one spout  

3. Bolt Processing Time with varying record frequency 
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4.1.1 Record Input Frequency  

The goal of this series of testing is to adjust the frequency of the input records and 

monitor the performance of the architecture.  This testing was performed using only one 

spout and one bolt with varying input record frequency.  By the use of timers, the 

performance of the architecture can be monitored to see the impacts.  To keep the input 

frequency as close to the desired rate, all of the position records were loaded into memory 

to reduce the reading limitations of the hard drive during the initialization of the Storm 

topology.  The below table identifies the desired emittance rates of each record.  Each 

record emitted contains the aircraft’s latitude and longitude details.  

Table 1 Expected Record Emittance Rate 

Frequency (Hz) Record Emitted Rate 

30 Every 0.03 seconds 

60 Every 0.016 seconds 

120 Every 0.0083 seconds 

240 Every 0.00416 seconds 

480 Every 0.002083 seconds 

960 Every 0.0010416 seconds 

 

The below table and graphs identify the performance of Apache Storm with the Kalman 

Filter processing bolt when the input frequency was set to 30, 60, 120, 240, 480, and 960 

Hertz.  The record emittance rate was stopped at 960 Hz to see if trends in performance 

can be seen based on the increased emittance rate.  Additionally, typical navigation 

systems do not provided positional data at rates greater than 1000 Hz.  Only the first 5000 

records were analyzed for consistency between the various test cases. 
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Figure 12 Test Case 30 Hz Emittance Rate 

 

Figure 13 Test Case 60 Hz Emittance Rate 
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Figure 14 Test Case 120 Hz Emittance Rate 

 

 

Figure 15 Test Case 240 Hz Emittance Rate 
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Figure 16 Test Case 480 Hz Emittance Rate 

 

Figure 17 Test Case 960 Hz Emittance Rate 
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Based on the varying input record frequency, the performance of Apache Storm with the 

Kalman Filter was not degraded during these test cases and was able to keep up with the 

required demands of the inputted record frequency.  As seen in the 960 Hz Test Case, 

there were more processing spikes then in the previous test cases.  Even though there 

were more performance spikes in 960 Hz processing, the overall performance of Apache 

Storm was able to recover to provide nominal performance.   The below table identifies 

that the average emittance rate and the desired emittance rate were very similar for this 

simulation.  The average times for the Spout to Bolt and the Bolt Processing time 

improved based on the increase in record frequency.   

Table 2 Summary of Varying Emittance Rates Results 

Frequency 
(Hz) 

Desired Emit 
Rate (sec) 

Avg Emit 
Rate (sec) 

Avg Time From 
Spout to Bolt (sec) 

Avg Bolt Processing 
Time (sec) 

30 0.0333333 0.0333740 0.0005070 0.0001410 

60 0.0166667 0.0161747 0.0004000 0.0001127 

120 0.0083333 0.0081926 0.0003869 0.0001085 

240 0.0041667 0.0041174 0.0003245 0.0000899 

480 0.0020833 0.0020925 0.0002639 0.0000777 

960 0.0010417 0.0012921 0.0002131 0.0000593 

 

4.1.2 Spout to Bolt Performance Results  

For this series of testing, only one spout was utilized and the number of bolts was 

increased.  The spout was set at an emittance rate of 30 Hz.  The storm topology was set 

to run for 3 minutes while timers were used to monitor performance.  A total of 5 test 

cases were executed under this scenario with the following results.  The below table 

shows the minimum, maximum, and average time it takes for a record to be transmitted 

from a single Spout to varying number of Bolts. 
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Table 3 Spout to Bolt Performance 

Number of Bolts Minimum Time (NS) Maximum Time (NS) Average Time (NS) 

1 79306 31392327 454920 

3 60179 31058312 470496 

5 68110 47079860 584445 

10 65777 44265453 842642 

20 68109 247559145 1191445 
     

The results of this test case identified that as the number of bolts is increased; the average 

time for a record to get from the Spout to Bolt was also increased. 

Figure 18 Average Time from Spout to Bolt 

  

The results show that Storm messaging to the number of bolts is affected.  Further 

examination of the internal messaging architecture of Storm was researched to provide 

further insight into this behavior.  This test case was performed on a single computer, so 

network latency should not have been seen in the reflected data.  Receiving messages in 

tasks work differently in Storm’s local mode and distributed mode.  In local mode, the 

tuple is sent directly to an in-memory queue for the receiving task.  In distributed mode, 



34 
 

each worker listens on a single TCP port for incoming messages and then routes those 

messages in-memory to tasks [9].  Based on this explanation, this test case was run under 

the local mode and the performance seen would not be expected if it was a distributed 

cluster using Ethernet communications.  However, if too many bolts are executing on the 

same node there is a potential of the increased time for messages to get to the processing 

bolts due to the in-memory queue.   

4.1.3 Kalman Filter Processing Time Results  

After all of the internal Storm processing has been completed to get the Tuple to the Bolt, 

a timer was added to see how long it took for the Kalman Filter to process a record.  The 

time it takes the Kalman Filter algorithm to execute was examined to see any potential 

bottlenecks are within the algorithm and to see if it is feasible within Storm.  The below 

table identifies the various average processing time the Kalman Filter algorithm took 

based on the increasing record frequency.     

Table 4 Kalman Filter Bolt Performance 

Record Frequency (Hz) Average Processing  Time (NS) 

30 133062 

60 91100 

120 62898 

240 88152 

480 33938 

960 26974 

 

Based on the results of examining the Kalman Filter Bolt performances, there does not 

appear to be any correlation to degraded performance in the Bolt processing time when 

the frequency in the input stream is increased.  Therefore, this Kalman Filter does not 

impose a bottleneck in the Storm processing engine with input record frequency up to 

960 Hertz. 
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4.2 Predicted vs Actual Location Results  
The goal of this series of tests was to compare the predicted location versus the actual 

location using the Kalman filter to estimate.  All test cases were performed at 30 Hz 

which was the recorded rate of the original data.  The average delta was calculated for 

what the estimated data point was versus the actual data at that estimated time.  This 

calculation was performed for both the latitude and longitude estimates in decimal 

degrees.  The below table identifies the average error delta in the prediction location 

versus actual location. 

Table 5 Predicted vs Actual Location 

Number of Cycles Latitude Average Delta Longitude Average Delta 

30 (1 Second) 0.000013653 0.000039703 

300 (10 Seconds) 0.000414704 0.000766145 

900 (30 Seconds) 0.001852628 0.004111612 

1800 (60 Seconds) 0.004797343 0.015274288 

3600 (120 Seconds) 0.008324897 0.048876462 

5400 ( 180 Seconds) 0.012156300 0.075083844 

 

For reference, the aircrafts flight path is shown in the figure below.  This shows that the 

flight path that was used in this analysis was not linear in nature.   
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Figure 19 Actual Flight Path 

  

Of the 6 test cases executed, the 30 cycles and the 3600 cycles were examined closer.  

The 30 cycles test case means that the prediction is made 1 second ahead of the aircraft’s 

reported position.  3600 cycles is predicting where the aircraft would be in 120 seconds.  

This prediction is made for every input record that is received which is 30 Hz for these 

cases. Therefore, the prediction is continuously being updated at the same rates as input 

records are being received.  The below graphs include a close-up look in the behavior of 

the predicted latitude location versus the Kalman filter predicted location. 
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Figure 20 Predicted vs Actual Location – 30 Cycles 

 

 

Figure 21 Predicted vs Actual Location – 3600 Cycles 
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Based on the results of the testing, the error associated with estimated location increased 

with the increasing estimating time.  The Kalman Filter predicted locations in the 3600 

cycle graphs had larger spikes in the estimated location versus the 30 cycle graphs.  

Assuming that 0.0001 degrees is about 11.1 meters around the equator, the average error 

for 30 cycles would be about 4.4 meters where the 3600 cycles would be about 5,440 

meters.  To potentially reduce the error estimation, adding knowledge of the aircraft’s 

altitude and velocities as an input into the Kalman Filter model would improve this 

fidelity.  An additional factor to be considered when the estimations are being made 

include the route the airplane flew.  The more turns and maneuvers the airplane makes, 

the expected error would increase in the estimation model.  Additional consideration was 

given for adjusting the record input frequencies.  Adjusting the record input frequencies 

would not change the predicted estimated state or the associated sigmas.  The increased 

in the record input would only affect the performance associated with the architecture, 

which is covered in section 4.1.  The only adjustment to the predicted state would be how 

far “ahead” you would like to predicted.  Table 5 goes into the other test cases that were 

run to show the error when increase how far ahead you predicted. 
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CHAPTER V 
 

 

CONCLUSION 

Apache Storm has been used in various applications to accommodate the increasing flow 

of high velocity “Big Data”.  The objective of this thesis was to utilize this real time 

processing engine coupled with a Kalman Filter and determine if this architecture could 

be utilized in estimating the location of an aircraft.  Various tests cases were performed in 

order to understand any limitations that might be in the Storm architecture or the Kalman 

Filter algorithm. 

In the tests cases focused on the performance of Apache Storm, overall there was no 

degraded performance that present limitations on the architecture.  When increasing the 

number of records emitted from the spout, Apache Storm was able to handle records at 

960 Hertz.  Additionally, the timers associated with processing speed were well within 

limits and were not at a processing boundary threshold.  When one spout was used while 

the number of bolts was increased, there was an observed processing latency that was 

increasing.  This appears to be attributed to the testing environment and would be less 

apparent if the test case was executed in a distributed environment.  Also, the processing 

benefit of Apache Storm is improved when more processing nodes are added to the 

cluster and not all processing residing on a single node.  Finally, the Kalman Filter 

algorithm as a processing bolt did not poses any limitation within Apache Storm.
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The Kalman Filter algorithm provided estimation for the upcoming location of an 

aircraft.  Based on the findings, the further out that the estimation was to use to predict 

the location, there was more associated error estimating that location.  Another factor that 

would increase the error in location is the flight path of the aircraft.  If the aircraft was 

flying a more “straight and level” flight path, one could assume less error in actual versus 

estimated position versus an “S”-turn flight path.  Additionally, the Kalman Filter used in 

this thesis, simply took into account the Latitude and Longitude parameters.  The Kalman 

Filter algorithm and be modified to increase the input parameters, such as Altitude and 

Velocities, to provide a more accurate estimation. 

5.1 Thesis Contribution 
This thesis provides an architecture that leverages a real time processing engine for high 

velocity data for quick responses as well as handling large amounts of data.  Additionally, 

it also provides a flexible architecture to allow for an additional customizing processing 

layer for location estimation.  By providing an estimation solution, this allows for an 

operator to have more time to react to an up and coming event like collision avoidance as 

well as overall situational awareness.  With the growing trend of unmanned aircrafts, 

there will be a growing importance to monitor and estimate the aircraft’s location to 

avoid any collisions.  This flexible distributed architecture provides a means to continue 

to grow with the increase in number of aircrafts.  Lastly, the estimation algorithm 

presented in this thesis is suited for predicting locations; however the flexible architecture 

presented allows for the use of different estimations for different applications. 

Additional items for consideration for future improvements would include: 
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1. A more robust Kalman filter implementation.  Additional inputs into the Kalman 

Filter would be a 3 dimensional (altitude) as well as the respective velocity 

components (X, Y, and Z). 

2. Implement and Test the architecture across multiple computed nodes in a 

distributed architecture.  Additional testing could include, the various 

Architecture induced delays, fail over testing (loss of a processing node), and 

redundancy. 

3. Different use cases instead of aircraft estimations.  This could include stock 

market trends.  
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