
 REAL TIME AIRCRAFT POSITION ESTIMATION

UTILIZING APACHE STORM

 By

 JOSEPH RAYMOND HOUDE

 Bachelor of Science in Computer Science

 Southern Methodist University

 Dallas, Texas

 2003

 Submitted to the Faculty of the

 Graduate College of the

 Oklahoma State University

 in partial fulfillment of

 the requirements for

 the Degree of

 MASTER OF SCIENCE

 May 2017

ii

 REAL TIME AIRCRAFT POSITION ESTIMATION

UTILIZING APACHE STORM

 Thesis Approved:

 Dr Johnson P. Thomas

 Thesis Adviser

 Dr. K. George

 Dr. M. H. Samadzadeh

iii

Name: JOSEPH RAYMOND HOUDE

Date of Degree: May 2017

Title of Study: MASTER OF SCIENCE

Major Field: COMPUTER SCIENCE

Abstract: Each year, the amount of data that is produced in the digital universe is

continuously increasing, so much so that some sources claim that the amount of data is

doubled every two years. This type of data can be characterized as a form of Big Data in

which it is described as containing the 3V’s properties: Volume, Velocity, and Variety.

In terms of data processing, technologies like Apache Storm have emerged to provide a

distributed real time computation system. Being able to process and provide insightful

meaning of Big Data in a timely manner has become quite challenging. In some intended

environments where seconds matter, real time processing might not be good enough and

only provides an operator minimal time to react. This thesis proposes the use of Apache

Storm’s real time processing engine that uses a Kalman Filter to provide estimation. The

proposed approach provides a flexible architecture that leverages the real time processing

engine for quick response but also provides an additional layer for estimation. By

providing estimation, this allows for an operator to have more time to react based on

trends seen within the data. Specifically, this thesis focuses on providing estimation to a

location of an aircraft. One use case of this estimation solution could be utilized in

preventing air traffic collisions. The estimation algorithm presented in this thesis is

suited for predicting locations; however the architecture presented allows for the

customization of different estimations for desired use case. Various test cases were

executed to evaluate the overall system performance and determine if the proposed

system would be viable to provide real time situational awareness and estimation. For the

tests cases focused on the performance of Apache Storm, overall there was no degraded

performance that present limitations on the proposed architecture. As for the estimation

performance, the further out that the estimation was to predict the location there was an

increasing associated error in estimating that location. An additional factor in

contributing to error is the flight path of the aircraft.

iv

TABLE OF CONTENTS

Chapter Page

I. INTRODUCTION ..1

 Background ..1

 Problem Specification ..3

 Solution ..4

 Contributions..4

 Outline..5

II. REVIEW OF LITERATURE..6

 Big Data ...7

 Data Processing ..8

 Hadoop ...8

 Yahoo! S4 ..9

 Apache Storm...10

 Kalman Filter Algorithm..12

 Existing Literature ...13

III. METHODOLOGY ..16

 Architecture..17

 Setup ..17

 Apache Storm...18

 Spout ..19

 Data Source ..20

 Bolt ...20

 Kalman Filter ...21

 Test Cases ..23

 Apache Storm Performance ...24

 Spout to Bolt Performance ...24

 Kalman Filter Processing Time ...25

 Predicted vs Actual Location ...25

v

Chapter Page

IV. FINDINGS ...27

 Apache Storm Performance Results ..27

 Record Input Frequency ...28

 Spout to Bolt Performance Results ..32

 Kalman Filter Processing Time Results ...34

 Predicted vs Actual Location Results ..35

V. CONCLUSION ..39

 Thesis Contribution ..40

REFERENCES ..42

vi

LIST OF TABLES

Table Page

 Table 1 Expected Record Emittance Rate ..28

 Table 2 Summary of Varying Emittance Rates Results..32

 Table 3 Spout to Bolt Performance ...33

 Table 4 Kalman Filter Bolt Performance ..34

 Table 5 Predicted vs Actual Location ...35

vii

LIST OF FIGURES

Figure Page

 Figure 1 Twitter Data Trends ..1

 Figure 2 Storm Topology ..11

 Figure 3 Kalman Filter ..13

 Figure 4 Single Aircraft Topology ..18

 Figure 5 Redundant Aircraft Topology...18

 Figure 6 Example Source Code – Single Aircraft Topology19

 Figure 7 Example Source Code – Redundant Aircraft Topology19

 Figure 8 Example Source Code – Kalman Filter Instance ..23

 Figure 9 Storm Topology Timers ...24

 Figure 10 Spout to Bolt Test Case ..25

 Figure 11 Kalman Filter Processing Time Test Case ...25

 Figure 12 Test Case 30 Hz Emittance Rate ..29

 Figure 13 Test Case 60 Hz Emittance Rate ..29

 Figure 14 Test Case 120 Hz Emittance Rate ..30

 Figure 15 Test Case 240 Hz Emittance Rate ..30

 Figure 16 Test Case 480 Hz Emittance Rate ..31

 Figure 17 Test Case 960 Hz Emittance Rate ..31

 Figure 18 Average Time from Spout to Bolt ...33

 Figure 19 Actual Flight Path ...36

 Figure 20 Predicted vs Actual Location – 30 Cycles ..37

 Figure 21 Predicted vs Actual Location – 3600 Cycles ..37

1

CHAPTER I

INTRODUCTION

1.1 Background
Every year, the amount of data that is produced in the digital universe is continuously

increasing. Take for instance the data that is created by the social media website Twitter.

In 2007 about 5,000 tweets were occurring each day whereas in 2013 the number of

tweets had increased to around 500 million each day [10].

Figure 1 Twitter Data Trends

This type of surge in the amount of digital data has gained a lot of focus from a variety of

industries and can be characterized as a form of Big Data.

2

Big Data is used to describe data sets that are so large and complex that traditional tools

and applications have a difficult time processing. Back in 2001 Doug Laney coined the

three properties (3 V’s) of Big Data: Volume, Velocity, and Variety [11]. Volume is

described as the amount of data that is produced. Velocity is the speed in which the data

is being produced at. Variety is the various formats of incoming data. While

understanding the importance on the growing trend of Big Data, the Obama

administration announced the “Big Data” Initiative of $200 million in 2012. One of the

Department of Defense’s goals in this initiative is to harness and utilize massive data in

new ways and bring together sensing, perception and decision support to make truly

autonomous systems that can maneuver and make decisions on their own [1]. An area of

interest in terms of Big Data is how to efficiently handle and process the incoming data.

One tool that has been used to process large data sets on commodity computers is Apache

Hadoop [12]. The Hadoop framework provides a distributed file system called Hadoop

Distributed File System (HDFS) [4] that stores data across commodity computers.

Hadoop also contains a resource management tool called “Yet Another Resource

Negotiator” (YARN) [14] which manages the computing resources in the cluster. Lastly,

Hadoop utilizes MapReduce which is a programming model for large scale data

processing. Hadoop provides users a tool to provide analysis on a large set of data but

lacks the functionality to give real time analysis of the data. Using some of the similar

principles that Hadoop was built on, tools like Apache Storm [6] have emerged to

provide a distributed real time computation system. Storm has been built on a couple of

key principles: extremely broad set of use cases, scalable, guarantees of no data loss,

robust, fault-tolerant, and programming language agnostic. The flexibility of Apache

3

Storm allows for customization of data processing like data estimation. The complexity

and type of the estimating algorithms can vary based on the desired use case. For

example, if the use case is to monitor and estimate an object that travels in a linear path, a

linear algorithm could be used to provide an estimated value of its upcoming position.

However, if the object travels in a nonlinear motion, the linear estimation algorithm

would not be suitable for estimation. Under this use case of an object traveling in a

nonlinear motion, an algorithm like a Kalman filter [14] could be applied for estimation.

The Kalman Filter takes a series of measurements over time that contains inaccuracies

and produces an estimate solution. Kalman filters have been vital in the implementation

of the navigation systems of the U.S. Navy nuclear ballistic missile submarines, and in

the guidance and navigation systems of cruise missiles such as the U.S. Navy's

Tomahawk missile and the U.S. Air Force's Air Launched Cruise Missile. It is also used

in the guidance and navigation systems of the NASA Space Shuttle and the attitude

control and navigation systems of the International Space Station [2].

1.2 Problem Specification
The problem that arises is how high velocity data be processed in an efficient manner so

that it can be useful in the intended use case. Being able to access, process, and correlate

the data in an efficient matter with minimal delay is critical in providing situational

awareness which allows operators ample time to make decisions. In some environments

where seconds matter, real time processing might not be good enough and only provides

an operator minimal time to react. With the growing trends of drones, both for

commercial and recreational uses, this thesis explores use case of estimating an aircraft’s

location.

4

1.3 Solution
With the flow of Big Data having high velocity, one way to provide situation awareness

is to provide an operator with an estimated value based on historical trends of the data.

This thesis utilizes the Apache Storm real time processing engine enhanced with a

Kalman Filter to provide estimation of an aircraft’s location. This approach provides an

architecture that leverages the real time processing engine for quick response as well as

handling large amounts of data. Additionally, it also provides a flexible architecture to

allow for an additional layer for estimation. By providing an estimation solution, this

allows for an operator to have more time to react to an up and coming event like collision

avoidance. The estimation algorithm presented in this thesis is suited for predicting

locations; however the flexible architecture presented allows for the use of different

estimations for different applications.

1.4 Contributions
1. With the use of the existing Traffic Collision and Avoidance Systems (TCAS) and

ground based radars, pilots and air traffic controllers can be informed of any potential

aircraft collisions. With the increase of both commercial and personal drones, the use

of these specialized collision systems are not available on the smaller aircrafts. With

the use of a GPS and the Kalman Filter estimation algorithm, the predicted flight path

can be used to avoid airborne collisions.

2. In order to provide the operator/pilot ample time to adequately respond, processing of

this data to provide estimation needs to occur near real time. The use of Apache

Storm provides a distributed architecture that leverages high velocity data processing

that is well suited for this application.

5

3. Existing approaches for flight estimation use Kalman filtering, but they do not take a

Big Data approach. As systems become more complex, more data is generated at a

faster rate. Hence a Big Data approach is needed. Secondly, a real time Big Data

approach is called for as time is critical in this scenario. The main contribution is

therefore a real time Big Data approach to flight path estimation.

4. The final contribution is the examination and measurement of the proposed system’s

performance in terms of time.

1.5 Outline
The remaining chapters in the proposed thesis explore the applicable technologies,

existing research, define the problem, and propose an approach. Chapter 2 provides a

background of Big Data and then dives into tools designed for efficiently processing Big

Data. In addition, the Kalman Filter algorithm used to estimate locations is further

explored. Chapter 3 defines the problem that this thesis intends to solve with the

proposed methodologies. Chapter 4 goes through the results of the test cases and

concludes with Chapter 5 in summary.

6

CHAPTER II

REVIEW OF LITERATURE

This thesis focuses on the use of a real time processing engine, Apache Storm, coupled

with a Kaman Filter to provide smoothing and estimation locations of an aircraft. To

achieve the end result of the estimated location, a better understanding of each of the

technologies in play is needed to incorporate them. First, “Big Data” is researched to

understand what it is and the impacts of it. The second research area is the different

approaches of data processing and how it is applicable to this thesis. Batch processing of

large data sets will be examined to give a basis of processing techniques used in a non-

real time environment. The principles of the batch processing will then be related into

the real time processing solution and technologies. Next, various real time processing

engines will be examined and the principles they are built upon. Apache Storm will be

further examined to understand the architecture and how it handles processing. Finally,

the Kalman Filter algorithm will be examined to understand the philosophy behind the

algorithm and it’s intend applications.

7

Once the technologies utilized in the thesis have been examined, a review of existing

literature will be presented to show how this thesis closes gaps with the current research.

2.1 Big Data
In this section, the definition of Big Data is discussed and how it relates to the topic of

the thesis. Big data is the term for a collection of data sets so large and complex that it

becomes difficult to process using on-hand database management tools or traditional data

processing applications [3]. An analyst named Doug Laney Gartner in 2001 released a

report that described the current data trends and classified these challenges as having

three properties: Volume, Velocity, and Variety. These properties have grown to become

known as the 3 V’s of Big Data. Volume is the amount of data that needs to be

processed. As for today’s standard, the amount of data ranges in terms of Terabytes,

Petabyte, or larger. The second “V” of the Big Data property is Velocity. This pertains

to how fast the data is streaming in or out of data sources. For instance, take an online

user interactive game where the events of simultaneous user’s behavior are needed to be

captured by the game. The last property of Big Data is Variety, which refers to the type

of data. The data may be structured or unstructured such as plain text, raw sensor data,

multimedia data and more. The definition of Big Data has continued to expand over the

years to contain additional properties. An additional V of Big Data is Variability which

refers to the aspect of uncertainty of data. Due to the emphasis that has been placed on

handling Big Data, improvements have been made in technologies such as data

processing. The White House has gone so far to start a “Big Data Research and

Development Initiative” in March of 2012 which has set aside commitments of excess of

$200 million [1].

8

2.2 Data Processing
Depending on the desired application, different types of technologies are needed in order

to satisfy the specific property of interest of Big Data. For instance, if an application

needs to post process large volumes of data, the data could be processed using Batch

processing. However, if real time analysis is needed in order to make quick decisions,

processing should not be done using batches. The data would need to be processed in a

real time manner. In this section, data processing is broken down into two sections:

Batch and Real time Processing. Batch Processing is focused on processing large volume

of data that is stored. Once batch processing has started on a data set, new incoming data

will not be processed until the next iteration. This type of processing would not fit into

gathering situational awareness near real time. A popular commonly known tool to

process large data sets is Hadoop [12]. Some of the same concepts used in Hadoop for

batch processing are utilized in real time processing engines. Applications that focus on

high-velocity data streams that need real time analytics will need to utilize a real time

processing engine rather than batch processing. There are a variety of applications for

processing data real time. This thesis explores a couple of the options for processing real

time data but will focus on Apache Storm [6]. Storm has become to be known as the

“Hadoop” for real time processing.

2.2.1 Hadoop
Apache Hadoop [12] is an open source project responsible for storing, processing, and

analyzing large data sets in a distributed environment. Hadoop possesses a flexible and

fault tolerant design that is geared to handle large volume of data rather than a high

velocity. The Hadoop architecture is designed after a master/slave model. There is a

single master server which is called the jobtracker and slave servers called tasktrackers.

9

Jobs are passed into the jobtracker which stores them into a queue. The jobtracker

manages the jobs assigned to the tasktrackers. Tasktrackers are responsible for executing

the jobs. Hadoop consists of two major components: MapReduce and Hadoop

Distributed File System (HDFS). The MapReduce covers the processing aspect of

Hadoop where the HDFS covers the storage. MapReduce is the framework that

distributes computations over multiple nodes to allow for parallel processing which

complements the Batch processing approach on large volume of data. In order for the

data to be processed in parallel, the data has to be separated into independent blocks. The

Hadoop Distributed File System (HDFS) is a distributed file system designed to run on

commodity hardware [4] and is tuned to support large data sets.

2.2.2 Yahoo! S4
Yahoo! S4 [13] is a platform that is intended to process data real time unlike the batch

processing approach as Hadoop. S4 stands for Simple Scalable Streaming System which

was introduced in October 2010 and inspired by the MapReduce and Actors model. S4 is

a general-purpose, distributed, decentralized, partially fault-tolerant, scalable, pluggable

platform that allows programmers to easily develop applications for processing

continuous unbounded streams of data [5]. The design of S4 is to allow for consumption

of data from a stream, compute intermitted values, and then publish the results as a new

stream. A couple of use cases that provided motivations for S4 was to personalized

Searches, Twitter Treads, and analysis of stock trading. The S4 Architecture consists of

the following components: Node, Server, Application, Processing Elements (PEs), and

Streams. In the S4 architecture there can be an unlimited number of nodes in which each

node contains one server process. The server process is responsible for managing the

10

applications. The applications are a graph comprised of Processing Elements (PE).

Processing Elements within S4 are responsible for performing computations on the

streams. S4 can contain multiple PEs in which they use data events to communicate with

each other.

2.2.3 Apache Storm
Apache Storm [6] is another tool created to handle real time processing of data streams.

Apache Storm is an open source, distributed and fault-tolerant real time computation

system. Storm provides similar functionality as a MapReduce job but with no

termination. It essentially has to be terminated manually to stop the computational

process. Storm makes it easy to reliably process unbounded streams of data, doing for

real time processing what Hadoop did for batch processing [6]. The major components of

the Storm architecture are called spouts and bolts. A spout is a source of data. The

source of data could be from a queuing system or reading streaming data. The spout

provides the data to the bolts as shown in Figure 2. An example of this in the social

media world is the public streams made available by Twitter. Twitter offers sample

streams of data in which an application can attach to and process. In the world of Apache

Storm, this would be an example of a spout. A bolt processes the data from the spout and

produces an output stream. The bolt contains the majority of the computation logic. One

of the possibilities of a bolt is to write the data to a database. The intent of the spouts and

bolts were that they were inherently parallel which is similar to how the mappers and

reducers are parallel in Hadoop. The network of how the spouts and bolts tie together is

called a topology. The below image was taken from the Apache Storm website

(http://storm.incubator.apache.org/)

11

Figure 2 Storm Topology

Some of the appealing characteristics that Storm possesses are that it is fast, scalable,

fault-tolerant, and reliable. In terms of processing speed, Storm has been benchmarked

on a computer with a 2x Intel E5645@2.4Ghz and 24GB of Memory in which one

million 100 byte messages per second were processed per node. In terms of reliability,

Storm guarantees that each record will be processed at least once. Storm also allows for

monitoring of the workers and nodes within the cluster. If one of these items fails, Storm

has the capability to automatically restart them, thus the fault-tolerant benefit. The

distribution of Storm cluster is achieved by the use of three different types of nodes:

Nimbus, Zookeeper, and Supervisor. The Nimbus node is the master node. It is

responsible for launching and monitoring workers across the cluster. The Zookeeper

provides the coordination between the Nimbus and the Supervisors. The Supervisors

listen for work assignments and react accordingly. Apache Storm has become a more

popular real time processing tool and users include companies like The Weather Channel,

WebMD, Groupon, and Twitter just to name a few.

12

2.3 Kalman Filter Algorithm
For this thesis, various estimation algorithms were researched in order to see their

applicability in estimating the location of an aircraft. The architecture presented in this

thesis provides the flexibility to use various estimation algorithms but the intended use

case of estimating aircraft’s location restrict which algorithms are well suited. Due to the

aspect of real time estimation, the researched algorithms need to have minimal delay in

its calculation. Additionally, knowing the expected movement of the objective object

(i.e. airplane) the estimation algorithm must be suitable for accounting for this type of

movement.

A simple linear prediction algorithm [17] could have been used for estimation objects

that move in a linear fashion during discrete time intervals. This algorithm is not

computationally expensive; however the use case for estimating aircraft location was not

suited for this algorithm. An additional algorithm that was considered for the estimation

was the moving average [18]. The disadvantages associated with a moving average is

that a series of data points have to be retained in order for the algorithm to compute its

solution. Also, the new trends in the data tend to lag in actual behavior due to a series of

points that make up the average. For this application, the use of a moving average is

better suited than a simple linear prediction but the algorithm still has some

disadvantages that could be overcome through the use of another algorithm. Lastly, the

Kalman Filter [2] was examined to see the potential use cases that this algorithm has been

used for. Kalman Filters has been used in in estimating objects that move linearly in

nature with some Gaussian noise in their solution. The origins of this algorithm date

back to the 1960 in which Rudolf Kalman realized the applicability of this algorithm

13

when he visited the NASA Research center in determining the trajectory estimation of

Apollo. This algorithm has later been utilized in the development of various navigation,

guidance, and control systems used in the United States Military. For this thesis, the

Kalman Filter will not be fully examined in understanding the theory behind it, rather

will be used as a known algorithm that is well suited for estimating location of airborne

moving objects.

The Kalman filter, also known as linear quadratic estimation, is an algorithm that uses a

series of measurements observed over time, containing noise and other inaccuracies, and

produces estimates of unknown variables that tend to be more precise that those based on

a single measurement alone [2]. The below figure was taken from

http://en.wikipedia.org/wiki/Kalman_filter to provide more details into the flow and logic

of the Kalman Filter.

Figure 3 Kalman Filter

2.4 Existing Literature
The primary uses for tools that predicted upcoming behaviors are in the area of real time

analytics for trends on the internet. StreamAnalytix [7] claims that by early detection with

14

real time streaming, operators can benefit by cutting preventable losses, gain operational

insights, and seize new opportunities. Included in this are analytics of sensor based data,

machine generated (Machine to Machine) data, logs, clickstreams, advertising data, and

processing of financial data and transactions in real time [7]. In terms of the aviation

industry, there is a lot of interest in Big Data and how to handle it. To get a sense of how

much data is created by an aircraft, a single engine on an aircraft can create over 20

terabytes of data per engine every hour. Industry leaders are interested in this data to

provide estimation about when certain parts of the engine will fail. This allows them to

replace these parts before a failure occurs, thus saving money and down time of the

aircraft. Boeing’s Internal Research Team and other industry partners have published a

paper for Predictive Analytics with Aviation Big Data. The end result of this research

was a novel analytics system that enables query processing and predictive analytics over

streams of big aviation data [8]. This system was able to correlate flight plans with live

track data near real time. As far as the author is aware, work similar to that reported in

this thesis has not been described in the literature. The Kalman Filter has been utilized

on many existing products and research for estimating location. My thesis combines Big

Data technologies to provide estimation real time. This thesis focuses on estimating

upcoming position of an aircraft, but the proposed architecture enables the use of

swapping or combining with the estimation algorithm for other desired applications.

Currently, many commercial aircrafts contain onboard systems to avoid air collisions

known as Traffic collision Avoidance Systems (TCAS). These systems require a

computer, antenna, and some type of display for the pilot to warn of approaching. Based

on the proximity of approaching aircrafts, various types of alerts will be issued for pilot

15

awareness. Besides onboard TCAS, air traffic controllers utilize visual methods as well

as ground based radars to detect and monitor traffic [16].

16

CHAPTER III

METHODOLOGY

The challenges of handling Big Data have allowed for continued research and

advancement of new applications and tools. The application examined for this thesis

focuses on handling and processing data quickly as well as being capable of handling

large amounts of data. In time sensitive operational environments, real time processing

of data might not be good enough to provide an operator or analyst minimal time to react

to an upcoming event. This thesis provides an architecture that leverages the benefits of a

real time processing engine coupled with an additional layer to allow for estimation. By

providing estimation, this allows an operator to have more time to prepare for and react to

a future event. Specifically, this thesis focuses on the use case of providing estimation of

an aircraft’s position. One use of this estimation solution could be utilized in preventing

air collisions. With the recent growth in the popularity of drones, both commercial and

recreational, the amount of aircrafts flying will continue to rise and the method for

detecting and monitoring air traffic will need to improve. This growth further expands

the need for an architecture that can handle large amounts of data.

17

There are existing companies and projects that utilize the technologies researched to gain

early detection with real time streaming to gain operational insights. However, this thesis

goes one step further to estimate the upcoming trends in the data. The estimation

algorithm presented in this thesis is suited for predicting locations; however the

architecture presented allows for the use of different estimation solutions for different

applications.

3.1 Architecture
This thesis is broken down into different technology blocks with the end goal of

integrating the technology blocks into a final application. The overall goal of this thesis

is to obtain high velocity geo-positional data from multiple aircrafts and be able to

estimate their upcoming position. The estimation and actual data points will be later

compared to see how close the estimated state was to actual state. The time for the

estimated state will also be adjusted to see how it affects the Kalman filter in predicting

the up and coming state. Additionally, use of internal timers will be inserted throughout

the Storm’s architecture to see how the Storm processing is effected by adjusting the

amount and frequency of data that is flowing through the architecture.

3.2 Setup
For processing and estimating an aircraft’s position in a real time manner, this thesis uses

Apache Storm coupled with Kalman Filter processing. The below sections examine how

each of the technologies were setup and used. The Java programming language and the

Eclipse IDE were used for the development of this project. The tests were performed on

a single computer. The Processor used was an Intel Core i7-2670 QM CPU @ 2.20 GHz

18

with 8 GB of RAM. The functionality of the application and the effectiveness of the

Kalman Filter can be proven in this environment.

3.3 Apache Storm
The two main components for configuring Apache Storm are the source of the data and

the processing component of that data. These components are called the spout and bolt

respectively. How these components are configured make up the defined Storm

topology. The below figures identify the various Storm topologies that are examined in

this thesis.

Figure 4 Single Aircraft Topology

Figure 5 Redundant Aircraft Topology

Kalman
Filter

For use within this project, a spout has been created called “TextFileSpout” and a bolt

“KalmanFilterBolt”. The details of the Spout and Bolt used in this configuration are

19

examined in more detail below. The figure below is a screenshot of the source code that

defines a single aircraft topology configuration.

Figure 6 Example Source Code - Single Aircraft Topology

For the use case of redundant bolts tied to a single spout, the bolts will be iterated through

and all tied to the dependent spout. Below is the sample source code used in this

configuration.

Figure 7 Example Source Code - Redundant Aircraft Topology

3.3.1 Spout
A spout is the source of data that will be used by the bolt for computation. A spout can

read its data from a queueing broker like Kafka or it can generate its own data stream.

For this thesis, the spout reads the data directly from a file that has been previously

recorded with aircraft positional data. In order to minimize the performance impacts of

reading from the hard drive, all of the sensor’s data is loaded into memory when Apache

Storm is initialized. By reading from memory, this will allow for simulation of data at

faster input rates to stress the performance of Apache storm. Additionally, the use of

timers (java.lang.System.nanoTime) within the source code help monitor the emitted

frequency of each record to the bolt. Additionally, timers are also inserted to monitor the

time it takes a record to be transmitted from the spout to bolt.

20

3.3.1.1 Data Source

The first piece of the thesis is to identify a data source. This thesis uses aircraft

positional data for the use of the Kalman Filter to provide an estimate for position. For

use within this thesis, only the latitude and longitude values are used within the

estimation model which in essence is the x and y attributes in 2 dimensional space.

Altitude, the z attribute in 3 dimensional space, could have been added to the estimation

model to provide further validity in the estimated solution. However, the use of latitude

and longitude values provide enough insight into the feasibility of this architecture and

application. Depending on the data source, the Kalman Filter can be adjusted to accept

different sets of parameters like velocities. The position data was obtained from a

previously recorded flight from aircraft navigation system aboard a Cessna Caravan. The

data rate of the recorded aircraft’s position data is at 30 Hz. This data was stored to a text

file. Only a portion (~157 minute segment) of the aircraft’s positional data will utilized

instead of the full flight plan. This was the longest segment of recorded data that was

available. Other system testing and objectives were ongoing which required various

restarts, thus shorter records.

3.3.2 Bolt
The bolt is the computational piece that contains most of the processing logic within the

Storm topology. A bolt can process any number of streams from either a spout or another

bolt. For this thesis, the bolt will contain the Kalman Filter logic. The bolt will take the

incoming raw aircraft positional data and process it using a Kalman Filter. The raw and

estimated navigation data will be compared to see the viability of the final application.

Similar to the spouts approach for loaded positional data into memory, the bolt will store

its estimated solution into memory. Once the storm cluster has been commanded to

21

shutdown, all of the data points within memory are written out to a file for analysis.

Also, timers are inserted in two places within the bolt. One is at the very beginning on

receiving a new record. This time will be compared against when the spout “emitted” the

record. This allows seeing any delay that is introduced in Storms internal processing.

Finally, a timer is placed at the end of the Kalman Filter bolt. This allows the processing

time of the bolt to be examined in order to see any potential limitations in using this

algorithm.

3.3.2.1 Kalman Filter

For use within this thesis, a known implementation of the Kalman Filter from Apache

Commons Math is utilized. By using a known implementation of the Kalman Filter, it

will reduce the risk of introducing errors in the analysis of the data. The Kalman Filter is

an existing algorithm that has been used in a variety of applications for estimating and

smoothing noisy sensor positions. Depending on the setup of the Kalman Filter,

estimating can be done on 1-Dimension, 2-dimenional, and more complex scenarios. A

Kalman Filter is comprised of a Process Model and a Measurement Model. For the

Process Model, the following matrices were used. State Transition Matrix (A) is defined

as shown below where dt is 1/frequency of the data. For the 30Hz case, dt would be

1/30.

𝐴 = [

1 0 𝑑𝑡 0
0 1 0 𝑑𝑡
0 0 1 0
0 0 0 1

]

For this implementation, the Control Input Matrix (B) is not used so it is defined as

22

𝐵 = [

0
0
0
0

]

The Process Noise Covariance Matrix (Q) is defined as shown below.

𝑄 = [

𝐿𝑎𝑡𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑁𝑜𝑖𝑠𝑒 0 0 0
0 𝐿𝑜𝑛𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑁𝑜𝑖𝑠𝑒 0 0
0 0 1 0
0 0 0 1

]

The LatPositionNoise and LonPositionNoise were set to 0.0001 degrees which is the

noise in the location. The precision associated with 0.0001 degrees equates to 11.132

meters at the equator. The precision of the associated noise varies as you move away

from the equator [15]. The initial state estimate is needed for the initialization of the

Kalman Filter. The first record that is received by the bolt is used to initialize this vector.

Since the velocities are not a received input, 0’s are used within the vector. The Initial

State Estimate (x) is defined as shown below.

𝑥 = [

𝐿𝑎𝑡𝑖𝑡𝑢𝑑𝑒
𝐿𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒

0
0

]

Lastly is the Initial Error Covariance Matrix (P0). Since the Initial position is known, the

default is similar to the previous Latitude and Longitude Noise. Since the initial

velocities are not known a high variance is provided.

𝑃0 = [

𝐿𝑎𝑡𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑁𝑜𝑖𝑠𝑒 0 0 0
0 𝐿𝑜𝑛𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑁𝑜𝑖𝑠𝑒 0 0
0 0 100000 0
0 0 0 100000

]

23

The Measure Model Definition is comprised of the Measurement Matrix (H) and the

Measurement Noise Covariance Matrix (R). Since this thesis only observes the position

updates, the matrixes are defined as the following

𝐻 = [
1 0 0 0
0 1 0 0

]

𝑅 = [
𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡𝑁𝑜𝑖𝑠𝑒 0

0 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡𝑁𝑜𝑖𝑠𝑒
]

After the Process and Measurement models have been defined, these serve as input

parameters into the Kalman Filter as shown below.

Figure 8 Example Source Code – Kalman Filter Instance

3.4 Test Cases
The final aspect of the thesis is to analyze the integrated product. This will look at the

accuracies of the estimation algorithms solution. The actual aircraft location will be

compared against predicted location. The overall system performance will be examined

to determine if the proposed system would be viable to provide real time situational

awareness and estimation. Below are the test cases that will be executed for this thesis.

Based on the findings of this thesis, potential targeted environment for this application

will be identified. For instance, instead of using the Kalman Filter for estimating a

position, maybe the system could replace that algorithm with one that is more suitable for

estimating the stock market. This could potential give traders a look ahead and

determines if the stock should be sold.

24

3.4.1 Apache Storm Performance
The overall performance of Apache Storm will be analyzed under various test cases. One

test case explored is the number of records emitted per second which is adjusted to see

the impacts to Storm’s performance. Within the source code, a nanosecond timer is

added to the record every time the Spout calls emit on a new record. This helps identify

the frequency rate at which the actual records are being transmitted to the bolt. The next

step was to determine how long it took the record to get to the bolt once the record was

emitted from the spout. A timer was added to the bolt within the Execute method.

Finally, after all of the processing has been done on the Tuple, a timer was added to see

how long it took for the Kalman Filter to process a record. The below figure identifies

the location of each timer used to measure performance.

Figure 9 Storm Topology Timers

Emit
Timer

Receive
Timer

Processing
Timer

3.4.1.1 Spout to Bolt Performance

For this series of testing, only one spout was utilized and the number of bolts was

increased. The spout was set at an emittance rate of 30 Hz. The storm topology was set

to run for 3 minutes while timers were used to monitor performance. The below figure

identifies the test case of 1 spout with 3 bolts. This test case will explore increasing the

number of bolts and examining the latency.

25

Figure 10 Spout to Bolt Test Case

Emit
Timer

Receive
Timer

3.4.1.2 Kalman Filter Processing Time

The Kalman Filter processing time will be examined to see if the algorithm presents any

type of bottleneck to the Storm topology. The input frequency of the spout will be

increased and the Kalman filter processing time will be re-evaluated. Based on the

results of this test case, a maximum input frequency could be determined if the Kalman

Filter processes a limitation. The below figure shows where in the Storm topology the

use of timers are inserted in order to examine the Kalman Filter Processing time.

Figure 11 Kalman Filter Processing Time Test Case

Receive
Timer

Processing
Timer

3.4.2 Predicted vs Actual Location
The next test case will examine the predicated location versus the actual location of the

aircraft at that time in the future. All test cases will be performed at 30 Hz which was the

recorded rate of the original data. The original recorded data was a total of 282,951

26

records which equates to 9,431.7 seconds which is about 157 minutes of flight data. The

data set used did not have any missing values and contain a timestamp, latitude, and

longitude. The average delta will be calculated for what the estimated data point was

versus the original data at that estimated time. This calculation will be performed for

both the latitude and longitude estimates. Inspection of these deltas will show the

usefulness of the estimation and how far in the future the estimate position can be

provided before the estimated solution is no longer useful in predicting a location.

27

CHAPTER IV

FINDINGS

The following section identifies the results associated with the performance of Apache

Storm coupled with a Kalman Filter processing bolt. Various aspects of the Apache

Storm processing performance are examined to see if there are any potential bottlenecks

that possess a limitation on estimating an aircraft’s location. To assess any potential

limitations, various timers are inserted in the architecture to expose the latency during the

processing. Additionally, the predicted versus actual aircraft location is examined to see

the behavior of the Kalman Filter estimation. The tests cases that are examined in this

chapter were described in the previous Section 3.4 Test Cases. After all of the test cases

have been examined, Chapter V will conclude with a summary of the findings and the

feasibility of this architecture to estimate the aircraft’s location.

4.1 Apache Storm Performance Results

The following subsections have captured the performance of the Apache Storm

architecture on a single node computer. This performance evaluates the feasibility of the

architecture and identifies any potential bottlenecks that might pose a limit on the test

case. These series of tests evaluate the various aspects of the architecture:

1. Frequency of records inserted into the system

2. Spout to Bolt performance with using multiple bolts per one spout

3. Bolt Processing Time with varying record frequency

28

4.1.1 Record Input Frequency

The goal of this series of testing is to adjust the frequency of the input records and

monitor the performance of the architecture. This testing was performed using only one

spout and one bolt with varying input record frequency. By the use of timers, the

performance of the architecture can be monitored to see the impacts. To keep the input

frequency as close to the desired rate, all of the position records were loaded into memory

to reduce the reading limitations of the hard drive during the initialization of the Storm

topology. The below table identifies the desired emittance rates of each record. Each

record emitted contains the aircraft’s latitude and longitude details.

Table 1 Expected Record Emittance Rate

Frequency (Hz) Record Emitted Rate

30 Every 0.03 seconds

60 Every 0.016 seconds

120 Every 0.0083 seconds

240 Every 0.00416 seconds

480 Every 0.002083 seconds

960 Every 0.0010416 seconds

The below table and graphs identify the performance of Apache Storm with the Kalman

Filter processing bolt when the input frequency was set to 30, 60, 120, 240, 480, and 960

Hertz. The record emittance rate was stopped at 960 Hz to see if trends in performance

can be seen based on the increased emittance rate. Additionally, typical navigation

systems do not provided positional data at rates greater than 1000 Hz. Only the first 5000

records were analyzed for consistency between the various test cases.

29

Figure 12 Test Case 30 Hz Emittance Rate

Figure 13 Test Case 60 Hz Emittance Rate

30

Figure 14 Test Case 120 Hz Emittance Rate

Figure 15 Test Case 240 Hz Emittance Rate

31

Figure 16 Test Case 480 Hz Emittance Rate

Figure 17 Test Case 960 Hz Emittance Rate

32

Based on the varying input record frequency, the performance of Apache Storm with the

Kalman Filter was not degraded during these test cases and was able to keep up with the

required demands of the inputted record frequency. As seen in the 960 Hz Test Case,

there were more processing spikes then in the previous test cases. Even though there

were more performance spikes in 960 Hz processing, the overall performance of Apache

Storm was able to recover to provide nominal performance. The below table identifies

that the average emittance rate and the desired emittance rate were very similar for this

simulation. The average times for the Spout to Bolt and the Bolt Processing time

improved based on the increase in record frequency.

Table 2 Summary of Varying Emittance Rates Results

Frequency
(Hz)

Desired Emit
Rate (sec)

Avg Emit
Rate (sec)

Avg Time From
Spout to Bolt (sec)

Avg Bolt Processing
Time (sec)

30 0.0333333 0.0333740 0.0005070 0.0001410

60 0.0166667 0.0161747 0.0004000 0.0001127

120 0.0083333 0.0081926 0.0003869 0.0001085

240 0.0041667 0.0041174 0.0003245 0.0000899

480 0.0020833 0.0020925 0.0002639 0.0000777

960 0.0010417 0.0012921 0.0002131 0.0000593

4.1.2 Spout to Bolt Performance Results

For this series of testing, only one spout was utilized and the number of bolts was

increased. The spout was set at an emittance rate of 30 Hz. The storm topology was set

to run for 3 minutes while timers were used to monitor performance. A total of 5 test

cases were executed under this scenario with the following results. The below table

shows the minimum, maximum, and average time it takes for a record to be transmitted

from a single Spout to varying number of Bolts.

33

Table 3 Spout to Bolt Performance

Number of Bolts Minimum Time (NS) Maximum Time (NS) Average Time (NS)

1 79306 31392327 454920

3 60179 31058312 470496

5 68110 47079860 584445

10 65777 44265453 842642

20 68109 247559145 1191445

The results of this test case identified that as the number of bolts is increased; the average

time for a record to get from the Spout to Bolt was also increased.

Figure 18 Average Time from Spout to Bolt

The results show that Storm messaging to the number of bolts is affected. Further

examination of the internal messaging architecture of Storm was researched to provide

further insight into this behavior. This test case was performed on a single computer, so

network latency should not have been seen in the reflected data. Receiving messages in

tasks work differently in Storm’s local mode and distributed mode. In local mode, the

tuple is sent directly to an in-memory queue for the receiving task. In distributed mode,

34

each worker listens on a single TCP port for incoming messages and then routes those

messages in-memory to tasks [9]. Based on this explanation, this test case was run under

the local mode and the performance seen would not be expected if it was a distributed

cluster using Ethernet communications. However, if too many bolts are executing on the

same node there is a potential of the increased time for messages to get to the processing

bolts due to the in-memory queue.

4.1.3 Kalman Filter Processing Time Results

After all of the internal Storm processing has been completed to get the Tuple to the Bolt,

a timer was added to see how long it took for the Kalman Filter to process a record. The

time it takes the Kalman Filter algorithm to execute was examined to see any potential

bottlenecks are within the algorithm and to see if it is feasible within Storm. The below

table identifies the various average processing time the Kalman Filter algorithm took

based on the increasing record frequency.

Table 4 Kalman Filter Bolt Performance

Record Frequency (Hz) Average Processing Time (NS)

30 133062

60 91100

120 62898

240 88152

480 33938

960 26974

Based on the results of examining the Kalman Filter Bolt performances, there does not

appear to be any correlation to degraded performance in the Bolt processing time when

the frequency in the input stream is increased. Therefore, this Kalman Filter does not

impose a bottleneck in the Storm processing engine with input record frequency up to

960 Hertz.

35

4.2 Predicted vs Actual Location Results
The goal of this series of tests was to compare the predicted location versus the actual

location using the Kalman filter to estimate. All test cases were performed at 30 Hz

which was the recorded rate of the original data. The average delta was calculated for

what the estimated data point was versus the actual data at that estimated time. This

calculation was performed for both the latitude and longitude estimates in decimal

degrees. The below table identifies the average error delta in the prediction location

versus actual location.

Table 5 Predicted vs Actual Location

Number of Cycles Latitude Average Delta Longitude Average Delta

30 (1 Second) 0.000013653 0.000039703

300 (10 Seconds) 0.000414704 0.000766145

900 (30 Seconds) 0.001852628 0.004111612

1800 (60 Seconds) 0.004797343 0.015274288

3600 (120 Seconds) 0.008324897 0.048876462

5400 (180 Seconds) 0.012156300 0.075083844

For reference, the aircrafts flight path is shown in the figure below. This shows that the

flight path that was used in this analysis was not linear in nature.

36

Figure 19 Actual Flight Path

Of the 6 test cases executed, the 30 cycles and the 3600 cycles were examined closer.

The 30 cycles test case means that the prediction is made 1 second ahead of the aircraft’s

reported position. 3600 cycles is predicting where the aircraft would be in 120 seconds.

This prediction is made for every input record that is received which is 30 Hz for these

cases. Therefore, the prediction is continuously being updated at the same rates as input

records are being received. The below graphs include a close-up look in the behavior of

the predicted latitude location versus the Kalman filter predicted location.

37

Figure 20 Predicted vs Actual Location – 30 Cycles

Figure 21 Predicted vs Actual Location – 3600 Cycles

38

Based on the results of the testing, the error associated with estimated location increased

with the increasing estimating time. The Kalman Filter predicted locations in the 3600

cycle graphs had larger spikes in the estimated location versus the 30 cycle graphs.

Assuming that 0.0001 degrees is about 11.1 meters around the equator, the average error

for 30 cycles would be about 4.4 meters where the 3600 cycles would be about 5,440

meters. To potentially reduce the error estimation, adding knowledge of the aircraft’s

altitude and velocities as an input into the Kalman Filter model would improve this

fidelity. An additional factor to be considered when the estimations are being made

include the route the airplane flew. The more turns and maneuvers the airplane makes,

the expected error would increase in the estimation model. Additional consideration was

given for adjusting the record input frequencies. Adjusting the record input frequencies

would not change the predicted estimated state or the associated sigmas. The increased

in the record input would only affect the performance associated with the architecture,

which is covered in section 4.1. The only adjustment to the predicted state would be how

far “ahead” you would like to predicted. Table 5 goes into the other test cases that were

run to show the error when increase how far ahead you predicted.

39

CHAPTER V

CONCLUSION

Apache Storm has been used in various applications to accommodate the increasing flow

of high velocity “Big Data”. The objective of this thesis was to utilize this real time

processing engine coupled with a Kalman Filter and determine if this architecture could

be utilized in estimating the location of an aircraft. Various tests cases were performed in

order to understand any limitations that might be in the Storm architecture or the Kalman

Filter algorithm.

In the tests cases focused on the performance of Apache Storm, overall there was no

degraded performance that present limitations on the architecture. When increasing the

number of records emitted from the spout, Apache Storm was able to handle records at

960 Hertz. Additionally, the timers associated with processing speed were well within

limits and were not at a processing boundary threshold. When one spout was used while

the number of bolts was increased, there was an observed processing latency that was

increasing. This appears to be attributed to the testing environment and would be less

apparent if the test case was executed in a distributed environment. Also, the processing

benefit of Apache Storm is improved when more processing nodes are added to the

cluster and not all processing residing on a single node. Finally, the Kalman Filter

algorithm as a processing bolt did not poses any limitation within Apache Storm.

40

The Kalman Filter algorithm provided estimation for the upcoming location of an

aircraft. Based on the findings, the further out that the estimation was to use to predict

the location, there was more associated error estimating that location. Another factor that

would increase the error in location is the flight path of the aircraft. If the aircraft was

flying a more “straight and level” flight path, one could assume less error in actual versus

estimated position versus an “S”-turn flight path. Additionally, the Kalman Filter used in

this thesis, simply took into account the Latitude and Longitude parameters. The Kalman

Filter algorithm and be modified to increase the input parameters, such as Altitude and

Velocities, to provide a more accurate estimation.

5.1 Thesis Contribution
This thesis provides an architecture that leverages a real time processing engine for high

velocity data for quick responses as well as handling large amounts of data. Additionally,

it also provides a flexible architecture to allow for an additional customizing processing

layer for location estimation. By providing an estimation solution, this allows for an

operator to have more time to react to an up and coming event like collision avoidance as

well as overall situational awareness. With the growing trend of unmanned aircrafts,

there will be a growing importance to monitor and estimate the aircraft’s location to

avoid any collisions. This flexible distributed architecture provides a means to continue

to grow with the increase in number of aircrafts. Lastly, the estimation algorithm

presented in this thesis is suited for predicting locations; however the flexible architecture

presented allows for the use of different estimations for different applications.

Additional items for consideration for future improvements would include:

41

1. A more robust Kalman filter implementation. Additional inputs into the Kalman

Filter would be a 3 dimensional (altitude) as well as the respective velocity

components (X, Y, and Z).

2. Implement and Test the architecture across multiple computed nodes in a

distributed architecture. Additional testing could include, the various

Architecture induced delays, fail over testing (loss of a processing node), and

redundancy.

3. Different use cases instead of aircraft estimations. This could include stock

market trends.

42

REFERENCES

[1] White House Office of Science and Technology Policy, “Obama Administration

unveils Big Data Initiative: Announces $200 Million in New R&D Investments”,

March 29, 2012

https://www.whitehouse.gov/sites/default/files/microsites/ostp/big_data_press_rel

ease_final_2.pdf

[2] Zarchan, Paul; Musoff, Howard, Fundamentals of Kalman Filtering: A Practical

Approach. American Institute of Aeronautics and Astronautics, Incorporated.

ISBN 978-1-56347-455-2, 2000

 [3] Snijders, C.; Matzat, U.; Reips, U. "Big Data': Big gaps of knowledge in the field

of Internet". International Journal of Internet Science. 7: 1–5, 2012.

[4] Apache Hadoop, HDFS Architecture Guide, Date of Access: 3/17/2017,

http://hadoop.apache.org/docs/r1.2.1/hdfs_design.html#Introduction

[5] Neumeyer, L.; Robbins, B.; Nair, A.; Kesari, A. “S4: Distributed Stream

Computing Platform”. IEEE International Conference on Data Mining

Workshops, 2010

[6] Apache Storm, Date of Access: 3/17/2017, http://storm.incubator.apache.org/

[7] Streamanalytix, Date of Access: 3/17/2017, http://streamanalytix.com/

[8] Ayhan, S. ; Pesce, J. ; Comitz, P. ; Sweet, D ; Bliesner, S, ; Gerberick, G.

, “Predictive Analytics with Aviation Big Data”; Integrated Communications,

Navigation and Surveillance Conference, 2013

[9] Apache Storm, Message Passing Implementation, Date of Access: 3/17/2017,

http://storm.apache.org/documentation/Message-passing-implementation.html

[10] Weil, Kevin, “Measuring Tweets.” Twitter Official Blog. Feb 22, 2010,

https://blog.twitter.com/2010/measuring-tweets

https://www.whitehouse.gov/sites/default/files/microsites/ostp/big_data_press_release_final_2.pdf
https://www.whitehouse.gov/sites/default/files/microsites/ostp/big_data_press_release_final_2.pdf
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/978-1-56347-455-2
http://hadoop.apache.org/docs/r1.2.1/hdfs_design.html#Introduction
http://storm.incubator.apache.org/
http://streamanalytix.com/
http://storm.apache.org/documentation/Message-passing-implementation.html
https://blog.twitter.com/2010/measuring-tweets

43

[11] Laney, Doug, “3D Data Management: Controlling Data Volume Velocity, and

Variety”, Meta Group Inc. ADS 6 Feb 01.949, February 6, 2001, Date of Access:

3/17/2017, https://blogs.gartner.com/doug-laney/files/2012/01/ad949-3D-Data-

Management-Controlling-Data-Volume-Velocity-and-Variety.pdf

[12] Apache Hadoop, Date of Access: 3/17/2017, http://hadoop.apache.org/

[13] Yahoo! S4, Date of Access: 3/17/2017, http://incubator.apache.org/s4/

[14] Kalman, R.E., “A new Approach to Linear Filtering and Prediction Problems,

Transactions of the ASME Journal of Basic Engineering Vol 82 Series D, pages

35-45, 1960

[15] Robinson, Arthur H., et al. Elements of Cartography, 5th ed. New York: John

Wiley & Sons, 1984. (pp 64-66, Appendix B)

[16] Air Traffic Plans and Publication, Order JO 7110.65W

https://www.faa.gov/documentlibrary/media/order/atc.pdf, Date of Access:

3/17/2017

[17] Barnett, R.A.; Ziegler, M.R.; Byleen, K.E., College Mathematics for Business,

Economics, Life Sciences and the Social Sciences (11th ed.), Upper Saddle River,

N.J.: Pearson, ISBN 0-13-157225-3, 2008

[18] Chou, Ya-lun, Statistical Analysis, Holt International, ISBN 0-03-089422-0,

section 17.9, 1975

https://blogs.gartner.com/doug-laney/files/2012/01/ad949-3D-Data-Management-Controlling-Data-Volume-Velocity-and-Variety.pdf
https://blogs.gartner.com/doug-laney/files/2012/01/ad949-3D-Data-Management-Controlling-Data-Volume-Velocity-and-Variety.pdf
http://hadoop.apache.org/
http://incubator.apache.org/s4/
https://www.faa.gov/documentlibrary/media/order/atc.pdf

VITA

Joseph Raymond Houde

Candidate for the Degree of

Master of Science

Thesis: REAL TIME AIRCRAFT POSITION ESTIMATION UTILIZING APACHE

STORM

Major Field: Computer Science

Biographical:

Education:

Completed the requirements for the Master of Science in Computer Science at

Oklahoma State University, Stillwater, Oklahoma in May, 2017.

Completed the requirements for the Bachelor of Science in Computer Science

and Mathematics at Southern Methodist University, Dallas, Texas in 2003.

Experience:

Systems Engineering Manager / Senior Software Engineer I, Feb 2009 - present

L3 Technologies / Aeromet, Tulsa, OK

Contributed to the development of requirements, design, implementation, and

verification for the FMV project. Participated in formal customer meetings

throughout the various product stages. Continued to lead the FMV Software team

through multiple successful release cycles while ensuring customer satisfaction.

Senior Software Engineer I, Jan 2006- Feb 2009

L-3 Communications, IS, Greenville, TX

Contributed to all phases of the CMMI Level 5 Software development of an airborne

mission system. The mission system operated in a multi-node environment on a

Windows platform and interfaced with a variety of external hardware devices and

sensors.

Associate Programmer / Analyst, Oct 2004- Jan 2006

Quest Diagnostics Inc., Dallas, TX

Developed and led a dozen plus projects using MUMPS. These solutions included

enhancements as well as bug fixes to Antrim’s Microbiology paperless software.

Developer, Aug 2003- Oct 2004

Pinnacle Engineering, Houston, TX

Designed web applications written in JSP and HTML that connects to a MySQL

database. Apache Tomcat web server was used to host these applications.

