
SMALL UNMANNED AIRCRAFT SYSTEMS OPERATIONAL

AND TRAFFIC MANAGEMENT CONSIDERATIONS

By

ZACHARY P. BARBEAU

Bachelor of Science in Mechanical & Aerospace
Engineering

Oklahoma State University
Stillwater, OK

2014

Submitted to the Faculty of the
Graduate College of

Oklahoma State University
in partial fulfillment of
the requirements for

the Degree of
MASTER OF SCIENCE

JULY, 2017

SMALL UNMANNED AIRCRAFT SYSTEMS OPERATIONAL

AND TRAFFIC MANAGEMENT CONSIDERATIONS

Thesis Approved:

Dr. Jamey Jacob

Thesis Advisor

Dr. James Kidd

Dr. Brian Elbing

ii

ACKNOWLEDGMENTS

First and foremost, I would like thank Dr. Jamey Jacob for his mentorship and

guidance throughout my studies at Oklahoma State University. I’ll always be grateful

for the countless opportunities to grow and develop as a researcher and engineer. I

would also like to acknowledge my colleagues for all the help provided during this

thesis project. I would like to thank Seabrook Whyte and Marc Hartman for the time

spent manually flying aircraft for tuning and also serving as safety pilots. Thanks

to Taylor Mitchell and Fred Keating for all of the operational guidance. As a flight

team we have developed a highly regarded reputation for safe and professional UAS

operations. Finally, I would like to thank my Mom, Dad, and Brother for all of their

support throughout my studies.

Acknowledgments reflect the views of the author and are not endorsed by com-

mittee members or Oklahoma State University.

iii

Name: Zachary P. Barbeau Date of Degree: JULY, 2017

Institution: Oklahoma State University Location: Stillwater, Oklahoma

Title of Study: SMALL UNMANNED AIRCRAFT SYSTEMS OPERATIONAL
AND TRAFFIC MANAGEMENT CONSIDERATIONS

Major Field: Mechanical and Aerospace Engineering

A substantial growth in the number of unmanned aircraft systems (UAS) operating
within U.S. national airspace is projected through the next two decades. Regulations
for small UAS weighing under 55 pounds have been enacted per Part 107. Small
UAS are restricted from operating outside Part 107 rules primarily due to see and
avoid (SAA) criteria that exist in the Federal Aviation Regulations, in addition to
key UAS traffic management milestones. Several research questions are addressed
relevant to higher density, beyond visual line of sight, small UAS scenarios including
operational takeoff and landing procedures, separation, and avionics architecture.
Flight test architecture was developed to evaluate fixed wing small UAS autonomous
approach and landing. Modifications were developed for the command and control
software enabling point and click traffic pattern generation and real time performance
logging. The accuracy of multi-rotor auto landing capability with different sensor
configurations was also examined. Recommendations are formed from flight test
observations and provided for future small UAS operations in the national airspace
including a case study examining operation of small UAS from an existing general
aviation airport.

ADVISOR’S APPROVAL: Dr. Jamey Jacob

TABLE OF CONTENTS

Chapter Page

1 Introduction 1

1.1 Motivation . 1

1.2 Research Questions and Objectives 3

1.2.1 Objectives . 4

1.3 Outline . 5

2 Previous Work 6

2.1 Small UAS Part 107 and General Aviation Pilotage 6

2.2 UAS Integration into the National Airspace System 11

2.2.1 NASA UAS Traffic Management (UTM) 11

2.2.2 Small UAS Flight Tests . 13

2.2.3 Pixhawk IMU Characterization and Flight Test 16

3 Methodology 17

3.1 Autopilot Architecture and Ecosystem 17

3.1.1 ArduPilot . 19

3.1.2 PX4 Pixhawk . 19

3.2 Flight Test Technique . 22

3.2.1 Uncertainty and Error . 22

3.2.2 Taking the Human Out of the Loop 24

3.2.3 Command and Control, Auto Land Traffic Pattern Script . . . 25

3.3 UAS Platforms and Test Overview 47

iv

3.3.1 Nominal Flight Plan . 50

3.4 Autopilot Takeoff and Landing . 52

3.4.1 Critical Autopilot Parameters 52

3.4.2 Auto Land Logic . 56

4 Results 60

4.1 Fixed-Wing Flight Test . 60

4.2 Multi-Rotor Flight Test . 67

4.3 Wake Vortex Considerations . 68

5 Conclusions 72

5.1 Flight Test Conclusions . 72

5.2 General Aviation Infrastructure Case Study 74

5.2.1 Elements of Small UAS Operation at Stillwater Regional . . . 77

A Appendix 95

A.1 Autoland Traffic Pattern Script . 95

A.2 Operator Checklists . 106

A.3 Flight Time Log and Configuration Management 113

A.4 KSWO Preflight Briefing Outline . 116

BIBLIOGRAPHY 118

v

LIST OF FIGURES

Figure Page

2.1 Airspace Profile [5] . 8

2.2 Example Class E Airport UAS Facility Map [6] 9

2.3 Standard Left Hand Traffic Pattern [3] 10

2.4 Methods for Traffic Pattern Entry [3] 11

2.5 UTM Technical Capability Levels (TCL) [7] 13

2.6 Small UAS, General Aviation Encounter [13] 15

3.1 General UAS architecture [15] . 18

3.2 General Pixhawk v1 component info graphic [18] 21

3.3 Mission Planner Architecture, Adapted from [24] 27

3.4 Mission Planner Flight Data Overview 27

3.5 Nominal Left Hand Traffic Pattern 30

3.6 Traffic Pattern Landing Script State Flow 31

3.7 Mission Planner Status Page . 36

3.8 Horizontal Plane (North-East) Angular and Vector Relationships [31] 38

3.9 Auto Land Traffic Pattern Script Generated Right Hand Pattern . . . 46

3.10 RMRC Anaconda and Multi-Rotors with Approximate Relative Sizes 48

3.11 Anaconda SF11 Laser Altimeter Configuration 49

3.12 Landing Target View, DJI Mavic Camera 51

3.13 Landing Performance Definitions . 51

4.1 Wind Rose for Fixed Wing Landing Approaches, Vehicle Estimate at

Short Final . 60

vi

4.2 Anaconda Auto Land Performance, Wheel Stop Locations 61

4.3 Anaconda Auto Land Performance, EKF Height Estimate and Laser

Rangefinder State Time Trace [meters] 62

4.4 Anaconda Auto Land Performance, Trajectory 63

4.5 Anaconda Auto Land Performance, Pitch Desired/Actual Trace . . . 64

4.6 Anaconda Auto Land Performance, Roll Desired/Actual Trace 64

4.7 Anaconda Auto Land Performance, Flare Initiation 65

4.8 Anaconda Auto Land Performance, Short Final Airspeed Histogram . 65

4.9 Anaconda Auto Land Performance, Short Final Altitude Histogram . 66

4.10 Anaconda Auto Land Performance, Wheel Stop Target Cumulative

Probability . 66

4.11 Wake vortex encounter scenario [35] 69

4.12 Wake Avoidance ADS-B Concept . 71

5.1 Grand Sky UAS Business & Aviation Park [42] 75

5.2 Penguin-B [39] . 79

5.3 Pixhawk 2.1 Redundant Power Distribution Architecture, Mouch Elec-

tronic . 80

5.4 Elements of UAS CONOP, adapted from [12] 82

5.5 KSWO UA Flight Plan . 85

5.6 Flight Plan Card or Flight Test Card Sample 87

5.7 Before Landing Checklist, Anaconda 88

A.1 Anaconda Operator Checklist, Preflight Part 1 106

A.2 Anaconda Operator Checklist, Preflight Part 2 107

A.3 Anaconda Operator Checklist, Autopilot Configuration GPS Guided . 108

A.4 Anaconda Operator Checklist, Autopilot Configuration Takeoff and

Landing, Part 1 . 109

vii

A.5 Anaconda Operator Checklist, Autopilot Configuration Takeoff and

Landing, Part 2 . 110

A.6 Anaconda Operator Checklist, Before Takeoff 111

A.7 Anaconda Operator Checklist, Before Landing 112

A.8 Anaconda Flight Log . 113

A.9 Anaconda Configuration Tracking . 114

A.10 Anaconda Configuration Tracking, Detailed Entry Sample 115

A.11 KSWO Detailed Preflight Brief Outline, Adapted from OSU UAS Flight

Test and Certification Graduate Course, Part 1 116

A.12 KSWO Detailed Preflight Brief Outline, Adapted from OSU UAS Flight

Test and Certification Graduate Course, Part 2 117

viii

NOMENCLATURE

V
ned

Inertial velocity vector

V n North inertial velocity

V e East inertial velocity

V
ned

air Inertial relative airspeed vector

V
ned

w Inertial wind vector

V
n

w North inertial wind velocity

V
e

w East inertial wind velocity

ψ Euler yaw angle

θ Euler pitch angle

φ Euler roll angle

δ Magnetic declination

Nmag Magnetic north

Ψ True body yaw angle

β Aerodynamic side slip angle

χ Inertial velocity heading

χcrab Wind-induced crab angle

χw Wind heading

φlat Latitude

λlng,2 Longitude

θnav Navigation bearing

δ Angular distance

D Waypoint leg distance

i

R Radius of Earth

Γ Circulation strength

CLα 3D lift curve slope

U∞ Aircraft velocity

W Aircraft weight

b Aircraft wingspan

b′ Effective vortex span

c Wing chord

S Wing area

τ Flap effectiveness constant

δa Aileron deflection

Cl Roll moment coefficient

Clv Vortex induced roll moment coefficient

Clδa Roll control power, aileron

Clv/Clδaδa Roll control ratio

ii

CHAPTER 1

Introduction

1.1 Motivation

An exponential growth in the number of unmanned aircraft systems (UAS) operating

within U.S. national airspace is projected through the next two decades. Federal

Aviation Administration (FAA) Administrator Michael Huerta announced, in Febru-

ary 2016, that the total number of registered UAS operators eclipsed the number of

manned aircraft pilots. The FAA’s 2017-2037 Aerospace Forecast estimates as many

as 1.6 million commercial small UAS in the national airspace system (NAS) by 2021

[1]. The Teal Group, a contributor to the forecast, acknowledges a commercial UAS

forecast is volatile and highly dependent on market reaction to present and future

regulations. In fact, before the official small UAS Code of Federal Regulations (CFR)

Part 107 regulation was released, The Department of Transportation’s Volpe Center

released a 2013 report forecasting UAS demand from 2015-2035 [2]. Volpe estimated

175,000 commercial UAS by 2035. Four years later, with data from the FAA Part

107 database, 44,000 commercial small UAS were registered in 2016. 420,000 active

commercial small UAS are now expected to be operational as a baseline scenario by

2021 as shown in Table 1.1. Forecasts and market projections will continue to fluctu-

ate in the near term, but UAS operations will grow at a substantial rate within the

next two decades.

1

Table 1.1: Million Small UAS Units, FAA Baseline Commercial UAS Forecast [1]

2016 2017 2018 2019 2020 2021
Hobbyist 1.10 2.15 2.80 3.20 3.40 3.55
Commercial 0.042 0.108 0.167 0.242 0.327 0.422

At the time of this study, small UAS weighing under 55 pounds can operate in un-

controlled airspace below 400 feet as part of FAA Part 107 criteria. Small UAS will be

initially restricted from integrating with controlled air traffic primarily due to see and

avoid (SAA) criteria that exists in the Federal Aviation Regulations, in addition to

several key UAS traffic management milestones. Integration into controlled airspace

will follow once small and medium sized UAS reliably satisfy SAA criteria and are

coordinated through a robust traffic management system. The National Aeronautics

and Space Administration (NASA) has played a key role in researching and develop-

ing the crewed Next Generation Transportation System (NextGen) NAS architecture

in conjunction with the FAA. NASA Aeronautics must now apply decades of experi-

ence developing technology and procedures for crewed aircraft towards UAS Traffic

Management (UTM) concepts.

NASA UTM is a near term research initiative with several Technical Capability

Levels (TCL) defined over a five year period that are critical to far term UAS NAS

integration standards that could inform future implementation by the FAA. TCL

1 and 2 were completed in August 2015 and October 2016, respectively. Most re-

cently, TCL 2 focused on beyond visual line of sight enabling technologies in sparsely

populated areas and dynamic airspace contingencies. TCL 3 and 4 will leverage the

previous milestones and focus on developing technology necessary to integrate UAS

in high density, controlled airspace. A fundamental traffic management paradigm of

slow moving VFR and fast moving IFR aircraft is a robust set of procedural rules,

sequencing, and separation standards. UTM and the eventual FAA implementation

must include the same set of standards applied to UAS.

2

A key principle of any safe integrated air traffic control concept is that aircraft

must remain well clear of each other. As large numbers of UAS are integrated into the

NAS, this directive becomes more challenging. In addition to near misses and mid-

air collision, wake vortex encounters could pose a threat to UAS. Notwithstanding

vortex incidents, according to the current FAA Airplane Flying Handbook, 45% of

all general aviation accidents occur during the approach and landing phases, with

over 90% of these accidents caused by some pilot error—including loss of control [3].

Nonetheless, this introduction aims to provide relevant background and motivation

to support the investigation of several small UAS NAS integration research questions

relating to inevitable higher volume UAS operations.

1.2 Research Questions and Objectives

Answering the selected research questions will contribute towards the removal of

fundamental barriers preventing large scale UAS operations. It is important to note

that the questions represent a small part of the larger research gap to fill before a

large scale UTM system can be implemented. Basic takeoff and landing procedures,

sequencing and separation, avionics architecture, and overall concept of operation will

be the focus. There are limited airspace procedures and operational requirements for

small UAS, and examining existing airspace procedures is a first step that will quickly

highlight any deficiencies to be further examined. The selected research questions are

particularly applicable for higher volume, beyond visual line of sight scenarios. As

more operations are staged from a single point of departure and arrival, a set of

procedural rules, similar to general aviation, need to be implemented. Included in

the set of procedures is the basic structure of an autonomous takeoff, traffic pattern,

and landing maneuver.

1. What is relevant for small UAS operations regarding existing airspace departure

and arrival procedures, “rules of the sky”?

3

(a) What is the nominal approach procedure for both fixed-wing and rotary

small UAS?

(b) How are contingency situations handled? Missed approach, wave off, power

loss, lost communications, etc.

2. What is the minimum avionics architecture and equipage necessary to enable

precision departure and arrival of small UAS?

1.2.1 Objectives

Several objectives are listed below that complement the overall research questions.

1. Develop small UAS operational flight test technique and crew training resources:

(a) Flight test performance logging capability via an automated tool

(b) Aircraft hardware and software configuration management

(c) Flight and test planning quick reference documentation

(d) Systems checklists for relevant stages of flight: preflight, start, before take-

off, and before landing

2. Develop flight test architecture:

(a) Autopilot takeoff, navigation, and landing capability

(b) Instrumented aircraft equipped with following sensors: Global Navigation

Satellite System (GNSS), airspeed, Inertial Measurement Unit (IMU), laser

or sonar altimeter

3. Develop recommendations based on flight test conclusions for future small to

medium class UAS operations in the NAS

4

1.3 Outline

The following Chapter is a literature review of airspace rules, FAA regulations, UAS

integration into the NAS considerations and UTM, and relevant small to medium class

UAS studies. Chapter 3 will outline the methodology and flight test architecture. As

part of the Chapter 3, detailed operational procedures for small UAS command and

control are provided with the Pixhawk flight management unit and ArduPlane flight

stack used as the hardware and software in the UAS platform, respectively. Chapter

4 will detail results from flight test sessions and highlight potential small UAS wake

vortex hazards. The final chapter will summarize key flight test conclusions and dis-

cuss a local airport small UAS Concept of Operation (CONOP) as a recommendation

for future work.

5

CHAPTER 2

Previous Work

2.1 Small UAS Part 107 and General Aviation Pilotage

The United States National Airspace System (NAS) encompasses all infrastructure

and information necessary to facilitate air travel in the United States. It is one of the

world’s most complex and integrated airspaces that includes airports, navigational

aids, air traffic control services, aeronautical charts, technical information, rules, reg-

ulations, procedures, personnel, and a mix of commercial, military, general aviation,

agriculture, and sport aircraft. For the purpose of this study existing certification,

airspace rules, and operational flight procedures will be discussed. A pilot certifi-

cate is required to legally operate an aircraft within the NAS and there are seven

pilot certificates in order of increasing training requirements: remote, student, sport,

recreational, private, commercial, and airline transport. In certain circumstances, an

individual can operate an ultralight vehicle without any formal certification or train-

ing under CFR Part 103—Ultralight Vehicles. However, remote pilot, is the only

credential granted with no flight training component.

In June of 2016 the small UAS rule, commonly referred to as Part 107, was pub-

lished [4]. Small UAS are defined as weighing less than 55 pounds on takeoff and

operated without an ability to intervene from within or on the aircraft. The desig-

nated remote pilot-in-command (PIC) must maintain knowledge of, at all times, the

unmanned aircraft (UA) location, attitude, altitude, and direction of flight through

either direct line of sight or a visual observer. If a visual observer (VO) is used, direct

communication with the PIC is required. A single remote PIC can operate one vehi-

6

cle at time and only during daylight hours without a waiver. Additional operational

highlights are detailed as follows:

1. For an in-flight emergency requiring immediate action, a remote PIC may de-

viate from any rule in Part 107 necessary to meet that emergency

2. No operation in controlled airspace without prior authorization from FAA

3. No flight in a manner that interferes with operations and traffic patterns at any

airport, heliport, or seaplane base

4. Groundspeed may not exceed 87 knots (100 miles per hour)

5. Maximum altitude of 400 feet above ground level

6. Minimum flight visibility of 3 statute miles

7. No operation of a small UAS so close to another aircraft as to create a collision

hazard

(a) Yield right of way to all aircraft

8. No flight over people unless directly involved in operation

9. No operation from a moving aircraft or vehicle

(a) Operation from a land or sea borne vehicle allowed only over sparsely

populated areas

There are two categories of airspace in the NAS, regulatory and nonregulatory

(usually military). Within both categories are four types: controlled, uncontrolled,

special use, and other airspace. A top down hierarchy of regulatory airspace classi-

fication is used with Class A airspace being the most restrictive and Class G being

the least restrictive. FAA Air Traffic Control (ATC) has authority and responsi-

bility for controlled airspace (Class A-E) and pilots flying in uncontrolled airspace

7

Figure 2.1: Airspace Profile [5]

(Class G) must observe VFR minimums. Figure 2.1 shows a generic airspace profile.

Class B, C, and D airspace usually have individually configured areas. Prior autho-

rization through a waiver is required before operations in controlled airspace can be

conducted. The FAA has begun to streamline this process for operations near small

airports designated as surface class E airspace with designated UAS facility maps.

UA facility maps depict where the FAA may authorize Part 107 UAS operations

without additional safety analysis. The first set of published maps at the time of this

study are for Class E airports, although the FAA has indicated that it will publish

select maps for airports within more congested airspace such as Class D airports

[6]. See Figure 2.2 for an example of a Class E airport with specific locations and

altitudes where UA can potentially operate. The UA facility maps are designed to

speed up the current waiver process, but the FAA does grant UA specialized access

to higher density controlled airspace given enough justification and safety analysis.

It is important to note that operations immediately surrounding the airport are still

prohibited without a waiver.

A standard general aviation traffic pattern is typically flown at 1,000 feet above

runway elevation and consists of four legs: crosswind, downwind, base, and final.

Unless specifically noted for a particular airport, or an airport with parallel runways,

a nominal traffic pattern is left handed as shown in Figure 2.3. Standard procedure

8

Figure 2.2: Example Class E Airport UAS Facility Map [6]

to enter a traffic pattern involves crossing the midfield point at least 500 feet above

pattern altitude, descending to pattern altitude, and then entering the downwind leg

while maintaining a 45◦ intersection course. Helicopters fly the same traffic pattern,

unless directed by a control tower, but at a pattern altitude of 500 feet and turns

executed to the right to avoid the flow of fixed-wing traffic.

The standard entry procedure, along with an alternate method is shown graphi-

cally in Figure 2.4. The alternate method is not advisable when the pattern is busy.

Aircraft should yield to other traffic established for pattern entry or already on the

downwind leg. Pattern altitude should be maintained until the base leg. A gradual

descent is started during the base leg and the aircraft is set up to turn to final ap-

proach. A stabilized approach, a constant glide path to a targeted landing point, or

aim point is the objective. The aim point is beyond the runway threshold, but before

the first third of total runway distance. A stabilized approach requires a pilot to con-

stantly manage the aircraft configuration (airspeed, power, pitch) and utilize visual

references to maintain glide path to the aim point. The aircraft flares before impact-

9

Figure 2.3: Standard Left Hand Traffic Pattern [3]

ing the aim point, reducing descent rate and bleeding airspeed before touchdown. If

a landing can not be executed, a go-around should be initiated.

Go-arounds or rejected landings are not emergency procedures. It is a normal

maneuver that is also used during an emergency scenario. A landing approach can

be rejected for any number of reasons, but the most common reason for a go-around

is an unstable approach that is unlikely to hit the desired aim point. The unstable

approach can be due to pilot, environmental, or mechanical factors. A go-around is

not necessarily hazardous if executed properly. Indecisiveness leading up to or at the

instant of a go-around are hazardous. Maximum power must be applied smoothly

to execute a go-around and aircraft attitude should be maintained until sufficient

airspeed allows a climb. After airspeed has stabilized, a max power climb is initiated

to 500 feet above runway elevation to begin the traffic pattern.

10

Figure 2.4: Methods for Traffic Pattern Entry [3]

2.2 UAS Integration into the National Airspace System

2.2.1 NASA UAS Traffic Management (UTM)

NASA UAS Traffic Management (UTM) is a multi-year research program to identify

services, roles, responsibilities, architecture, infrastructure, and performance require-

ments to enable management of multiple, beyond visual line of sight (BVLOS) UAS

operations in low-altitude, uncontrolled airspace [7]. NASA’s UTM concept is not a

system for traditional air traffic controllers to actively “control” UAS. It is envisioned

as a system utilized by the FAA to monitor operations in real time and dynamically

issue clearances, advisories, constraints, and airspace corridors. Table 2.1 details the

fundamental principles and services provided by a UTM concept. Selected research

and development focal areas from a vehicle perspective include: tracking via ADS-

B or similar, reliability of the autopilot system, and safe, autonomous takeoff and

landing within the first/last 50 feet of a mission.

11

Table 2.1: NASA UTM Principles and Services [7]

Principles UAS Services
Operate in authenticated airspace Authorization/Authentication
UAS stay clear of other UAS Airspace config. and geofencing
UAS/manned aircraft stay clear Track and locate
UAS operator situational awareness Command and control (spectrum)
Public safety UAS have priority Weather and wind sensing, prediction

Conflict avoidance
Demand/capacity management
Large scale contingency management

UTM’s development and implementation road map is primarily driven by four

Technical Capability Levels (TCL), as seen in Figure 2.5. TCL 1 and 2 have been

completed at the time of this study. TCL 1 collected state data (conducted across

multiple states) for operations, weather conditions, and demonstrated the initial UTM

software framework to include scheduling and planning of authorized airspace. TCL 2

analysis is still ongoing, but several initial lessons learned have been formed. Overall

as the operational range (BVLOS) and density increased, it was apparent that an

altitude standard was needed. Also, wind and weather sensing factored in to the

ability to provide tasking and airspace for UAS to remain “well clear.” Overall, better

forecasting, or reporting of wind data would be beneficial. The concluding remark

was to “expect the unexpected” in reference to contingency management [7].

NASA UTM research, development, and testing not only provides validated re-

quirements to enable core TCL objectives, but also provides several key technology

transfer deliverables. At the conclusion of the TCL 4 milestone, NASA Aeronautics

plans to begin technology transfer of the UTM prototype, architecture of services,

and associated requirements over to the FAA. Near term objectives include a UTM

pilot program with FAA through 2019, after which the FAA will make operational

adjustments for a target implementation in the early 2020s.

12

Figure 2.5: UTM Technical Capability Levels (TCL) [7]

2.2.2 Small UAS Flight Tests

The majority of small UAS flight testing with respect to NAS integration has primar-

ily focused on maturing tracking and locating technology with low SWAP require-

ments. An emerging technology is low SWAP Automatic Dependent Surveillance

Broadcast (ADS-B) systems. ADS-B out, or ability to broadcast GNSS data, is re-

quired by January 2020 to fly in most controlled airspace in the United States, by

FAA mandate. If all aircraft, both manned and unmanned, operating in the NAS

utilized ADS-B, probability of conflict could be reduced. ADS-B technology has been

certified, implemented operationally, and maintains independence from other critical

safety systems such as Traffic Alert and Collision Avoidance Systems (TCAS). Thus,

it appears to be a logical solution for small UAS tracking and locating within the

NAS.

There are numerous successful case studies regarding ADS-B and small UAS, but

these studies were executed in operating environments that may or may not be similar

13

to an actual future airspace scenario. There is concern that ADS-B frequencies could

quickly become saturated based on the predicted numbers of small UAS operating

in low altitude airspace. MITRE Corporation staff performed simulations of varying

small UAS and general aviation densities, along with transmit power [8]. MITRE

concluded that existing legacy general aviation traffic densities have little impact on

frequency congestion, but small UAS density does. A balance of small UAS density

and transmit power is necessary to ensure safe and reliable coverage, but MITRE

acknowledged that it appears feasible.

Industry, military, and research institutions have all successfully utilized small

ADS-B equipment to fly UAS within the NAS. NASA Langley Research Center’s

subscale flight dynamics research aircraft recently completed several beyond visual

line of sight flights equipped with ADS-B [9]. NASA Langley’s flights were conducted

under a FAA certification of authorization (COA) and small SWAP ADS-B capability

was a key technology necessary to enable BVLOS flight. In addition to providing

basic separation confidence, ADS-B has been explored as a data source to other

alerting systems, such as a wake advisory system. Handley describes a framework for

generating wake turbulence advisory corridors using ADS-B [10]. Another example

of ADS-B use on small UAS is Utah State University’s AggieAir group. AggieAir has

flown a proprietary integrated UTM framework using commercial off the shelf small

SWAP ADS-B equipment, described in literature [11].

In addition to UTM development, AggieAir is also a proponent of developing ro-

bust flight operations, documentation, and certification standards necessary to con-

duct small UAS flights. A concept of operations (CONOPS) is referenced by AggieAir

[12]. It is still unknown what elements of a similar CONOPS will be regulated as part

of a future FAA UTM system that allows BVLOS flight. It is possible that operators

will be certified for BVLOS and required to keep an operation structured similar to

AggieAir[12]. A relevant objective of this thesis is to examine elements that fall under

14

the flight operations and operator certification focal points.

Oklahoma State University is also conducting concurrent research investigating

the visibility of small UA to general aviation pilots under visual meteorological con-

ditions (VMC) [13]. ADS-B was utilized by the safety pilot to monitor the target

UAS position with respect to the general aviation aircraft. The experimental flights

were executed with a general aviation aircraft on an intercept course with small UA

vertically separated (fixed-wing and multi-rotor) from the manned aircraft. The gen-

eral aviation aircraft pilot was made acutely aware of the presence of small UAS and

asked to detect the UA along the controlled intercept course. Even with warning,

a 40% detection rate (48 intercept runs) was observed. In summary, the fixed-wing

aircraft was easier to identify and based on distance at first contact, a manned aircraft

pilot should have time to avoid a conflict based on the FAA’s 12.5 second model for

conflict processing. However, it is unlikely that a conflict could be avoided with a

small multi-rotor. More recent tests on small rotary wing UA show a consistently low

rate of detection, less than 5%. Figure 2.6 shows an image of a fixed-wing encounter

from both the general aviation aircraft and ground perspective.

Figure 2.6: Small UAS, General Aviation Encounter [13]

15

2.2.3 Pixhawk IMU Characterization and Flight Test

The UAS flight test system architecture for this study includes Pixhawk autopilot

hardware and ArduPlane flight software. Hood performed a detailed characterization

of the Pixhawk during the development of an instrumentation package suitable for

small UAS flight test research [14]. Critical sensors including the Pixhawk’s inertial

measurement unit, barometer, temperature, and airspeed sensor were tested as part of

an aircraft system identification flight test campaign. Hood concluded that all critical

sensors were acceptable for research use. Each individual sensor and its representative

noise and error are shown in Table 2.2. Bias error is shown for sensors that were

quantifiable. An interesting note also made by Hood is the difficulty of executing

flight test maneuvers from a ground based, remote pilot perspective. Autonomous

flight test methodology was developed for this study to increase repeatability and

reduce variability in test data by removing the human pilot.

Table 2.2: Pixhawk Sensor Characterization

Sensor Random Noise Bias Error Total Error
Accelerometer ± 0.0145 m/s2 0.05 m/s2 ± 0.0545 m/s2

Gyroscope ± 0.0384 ◦/s 0.005 ◦/s ± 0.223 ◦/s
ADC ± 0.00115 V N/A ± 0.00115 V
Barometric Sensor, Temperature ± 0.0216 ◦C N/A ± 0.0388 ◦C
Barometric Sensor, Pressure ± 0.0760 hPa 2.49 hPa ± 1.32 hPa
Airspeed, IAS ± 0.0483 m/s N/A ± 0.318 m/s
Outside Air Temperature ± 0.156 ◦C 2.99 ◦C ± 1.65 ◦C

16

CHAPTER 3

Methodology

3.1 Autopilot Architecture and Ecosystem

UAS autopilot technology over the past decade has rapidly progressed due to hard-

ware size, weight, and power (SWAP) reduction in two critical areas—processing and

sensors. Microprocessors the size of coinage are now capable of executing real time

navigation code. However, the enabler of small UAS autopilot technology is undoubt-

edly the decrease in the SWAP of micro-electromechanical system (MEMS) sensors.

Accelerometers, gyroscopes, barometers, and magnetometers that make up the iner-

tial measurement unit (IMU) are now both cost effective and physically acceptable

for integration in UAS with an operating weight under 20 pounds. A decade ago UAS

were limited by the SWAP of the IMU, which translated directly back to cost. Au-

topilot solutions can be separated into three general categories: military, industrial,

and consumer grade. Today there are numerous non-military, commercially available

autopilot solutions. There are several open source options that are very conducive to

quick modification and customization.

Most commercially available solutions use a MEMS based IMU coupled with a

global navigation satellite system (GNSS) receiver to estimate the aircraft state. For

example, the open source ArduPilot software executes a full inertial navigation system

with GNSS and IMU measurements fused into an extended Kalman filter with the

appropriate external sensors. Fifteen years ago, GNSS augmented inertial navigation

existed only on large military UAS with costs over six figures. The aforementioned

capability can be applied to most any ground or air vehicle for under $500 USD using

17

open source hardware and software architecture, e.g. Pixhawk and ArduPlane, re-

spectively. A generalized UAS architecture block diagram is shown in Figure 3.1. The

three path diagram blocks, also referred to as the primary navigation subroutine, can

be executed entirely on-board the vehicle with no operator interaction or computed

off-line and sent remotely to the vehicle while in flight. The most common configura-

tion is an off-line graphical user interface (GUI) path planner and manager software

that an operator manipulates to send commands remotely to the on-board naviga-

tion subroutine—the path follower. The navigation subroutine executes along with

the state estimator and control loops on the same microprocessor. In this configura-

tion, the UAS flies solely based on given commands and restrictions. It is somewhat

of a misnomer to imply a UAS is completely autonomous because most do not possess

the ability to sense and avoid obstacles such as terrain, buildings, or other aircraft.

There are primitive failsafe systems and local look ahead terrain databases, but small

UAS still lack the robustness of the “human sensor.”

Figure 3.1: General UAS architecture [15]

18

3.1.1 ArduPilot

For the purpose of this study, ArduPilot provides all of the necessary flight features

with the ability to examine the underlying programming [16, 17]. It is an open source

platform that was created in 2007 for use on fixed-wing aircraft, multi-rotors, tradi-

tional helicopters, and ground vehicles. The original code was written for Arduino

based hardware using the Arduino programming language, hence the Ardu prefix.

The current releases are written in C++ and the project is officially called ArduPilot

and APM: Plane, Copter, or Rover distinguish between the different types of vehicles.

The APM source code is incorporated onto a hardware abstraction layer (HAL), a

driver, that communicates between the software and hardware. The HAL structure

allows users a flexible software solution that can be ported to many different hard-

ware options. There are currently 16 different hardware platforms supported by the

ArduPilot development team, although anyone can add support for custom hardware

via the HAL.

3.1.2 PX4 Pixhawk

The Pixhawk v1 is the hardware platform of choice for this study as it has been

throughly tested for thousands of hours by the open source community. The hardware

design was developed by the PX4 team who also produce their own flight stack soft-

ware similar to ArduPilot. The Pixhawk was manufactured by 3D Robotics through

a licensing agreement with the PX4 project. 3D Robotics has ended their agree-

ment with the PX4 project and the developers are now preparing the Pixhawk v2 for

manufacture with a different partner at the time of this study.

The Pixhawk v1 consists of two separate hardware components–the flight man-

agement unit or FMU and the input/output (IO) module. The IO module controls all

of the incoming and outgoing commands to the flight vehicle in addition to managing

power input and output, failsafe processes, servo outputs, and sensor inputs. The

19

IO module is mated to the FMU which houses the main microprocessor and IMU.

The IMU has redundant accelerometers and gyroscopes. The FMU also includes a

separate barometer and magnetometer. The specifications of the Pixhawk v1 are

shown in Table 3.1. The general peripheral layout is shown in Figure 3.2. Figure 3.2

is illustrated for a multi-rotor vehicle, but the general layout is functionally identi-

cal to a fixed-wing aircraft. Instead of servo rail outputs to multiple motors, there

are separate servo outputs for the various fixed-wing control surfaces in addition to

the propulsion motor. Relevant component layouts for the flight test UAS will be

discussed in Section 3.3.

Table 3.1: Pixhawk v1 general specifications

Processor
Primary 32-bit 168 Mhz ARM Cortex M4 with floating point unit
Failsafe 32-bit 24 Mhz ARM Cortex M3
256 kilobytes RAM, 2 MB flash storage
Sensors
Primary 16-bit 3D MEMS MPU6000 accelerometer and gyroscope
Failsafe 16-bit 3D MEMS L3DG20 gyroscope
Internal 14-bit 3D MEMS accelerometer and compass (magnetometer)
Internal MEMS MS5611 barometer
Power
Diode controller with automatic failover
Servo rail, 7 volt high power and high current ready
Outputs over current protected, all inputs ESC protected
Interfaces
5x UART serial ports, 1 high power capable, 2x with hardware flow control
Spektrum DSM/DSM2/DSM-X Satellite input
Futaba S.BUS input
PPM sum signal
RSSI (PWM or voltage) input
I2C, SPI, 2x CAN, USB
3.3 and 6.6 ADC inputs
Dimensions
Weight 1.3 oz (38 g)
Width 2 inches (50 mm)
Height 0.6 inches (15.5 mm)
Length 3.2 inches (81.5 mm)

20

Figure 3.2: General Pixhawk v1 component info graphic [18]

21

3.2 Flight Test Technique

3.2.1 Uncertainty and Error

Traditional manned aircraft flight testing is a long, arduous process that contributes

significantly to a program’s overall schedule and budget mainly due to the great

lengths taken to minimize uncertainty in test data. Error is defined by the standard

notion of a measured quantity’s deviation from the perceived true input, or value. The

definition of experimental uncertainty may also be taken as the possible value the error

may have–analogous to the error magnitude. Uncertainty and error magnitude are

used interchangeably, but uncertainty is separate from the general definition of error

as stated above. Unfortunately, aircraft flight testing encompasses nearly all potential

error sources relating to experimental methods. This realization makes the task of

determining the uncertainty much more challenging as the various error sources are

difficult to isolate.

Modern flight test programs primarily utilize sophisticated data acquisition sys-

tems and rely less on hand recording techniques. One of the more common hand

recording errors was due to indirect viewing perspective of a flight instrument, some-

times called parallax error. This has mostly been eliminated in modern glass avionics

cockpit and does not necessarily apply to small UAS either as the ground station

operator has digital displays. The embedded Pixhawk data acquisition system used

for this study is a digital device. Analog recording of dynamic responses like aircraft

flight are preferred, but even an analog sensor today has its output digitized by a data

acquisition system (DAS). There are analog to digital converters used on the Pixhawk

for external sensors that will be discussed in later sections. However, the advantages

of digital data acquisition far outweigh the disadvantages as the primary error due to

discretization of signals can be reduced by higher frequency data rates with modest

microprocessors. Also, most small UAS have some portion of active electromagnetic

22

interference (EMI) unless specifically characterized and shielded accordingly. Digital

equipment is preferred for such a scenario. Oklahoma State University has devel-

oped several small UAS flight test data acquisition systems; more recently a custom

Pixhawk solution as mentioned previously. It was concluded that the critical sensors

used by the Pixhawk are suitable for small UAS flight test research [14].

Significant sources of other error include systematic error from instrumentation,

random error from atmospheric conditions and pilot technique, gross blunder error

due to data recording technique, haphazard test planning, or pilot violation of es-

tablished techniques. Systematic error of a sensor can usually be accounted for by

closely characterizing bias and hysteresis. This characterization is relatively simple

to complete in a laboratory setting, but the physics of flight often complicate the

matter. Most instrumentation is sensitive to position error on the aircraft itself. For

example, the standard pitot-static system.

The perceived accuracy of a pitot-static system is greatly influenced by the loca-

tion of the static pressure port which is used in conjunction with the total pressure

port to determine dynamic pressure during flight. But, the location of the static port

is often determined by some sort of wind tunnel pressure distribution test—subject

to all the same uncertainty. Another, slightly different example is the placement of an

IMU. If the IMU is not mounted close enough to the center of gravity, the readings are

prone to error in each principal axis due to the offset distance. How is the acceptable

offset threshold determined? Usually by more tests.

There are also physical variations and uncertainties introduced due to the various

aircraft subsystems (propulsion or flight control). The tolerances are further exacer-

bated in small UAS, mainly in an effort reduce cost. Manufacturing inconsistency is

common for small internal combustion engines along with installation factors. As a

result, many small UA propulsion systems are over sized to account for these losses.

Unless significant effort (cost) is dedicated to ensuring servo torque, linkage geometry,

23

and control surface hinging remain consistent it is difficult to provide a single, global

autopilot gain set for a common type of UA. Instead, a conservative autopilot gain is

used across a fleet and UA must be individually tuned if additional responsiveness is

required.

Uncertainty due to pilot technique is the primary reason flight test is schedule

and budget intensive. Coupled with random atmospheric effects, and performance

becomes difficult to predict. From the United States Air Force (USAF) and United

States Navy (USN) flight test manuals, “It is neither possible nor practical to make

exact predictions or corrections of takeoff and landing data. It is only possible to

estimate the approximate capabilities of an aircraft within broad limits. Individual

pilot technique is probably the factor causing the greatest variation in takeoff [and

landing] data. It cannot be quantified and mathematical corrections are impossible.”

As this study is primarily focused on the takeoff and landing portions of flight,

the term “experiment” is avoided because the outcome is not a response with a given

confidence interval. Instead, rather broad operational guidelines will be developed

for small UAS based on flight test observations. The nominal approach involves the

combination of minimizing systematic uncertainty as much as possible with a series

of common sense criteria: consistency, theory, and correlation. This study is based

on traditional flight test techniques from several established references including the

USAF and USN flight test manuals, flight test engineering, and experimental methods

texts [19, 20, 21, 22]. However, small UAS present a unique platform where traditional

flight test techniques can be evaluated, adapted, or discarded.

3.2.2 Taking the Human Out of the Loop

Small UAS pilot technique is more variable when compared to manned aircraft pilot

technique. The most challenging aspect, and an obvious difference between the two,

is analogous to “parallax” error mentioned in the previous section. A UAS pilot is not

24

physically controlling the vehicle from the body frame of reference perspective, but

rather a stationary Earth, or inertial, frame of reference. The parallax error can be

compensated for by adding an on-board heads up display (HUD) video stream that

allows the pilot to control the vehicle from the body frame of reference perspective,

but even gimball stabilized full motion video does not compare to manned aircraft

situational awareness. NASA’s Ikhana (Predator-B/Reaper) UAS research test pilot,

Mark Pestana [23], aptly summarizes the experience of piloting UAS, “[It’s like trying

to fly] with only ONE of my five-senses. [The] view lacks three dimensions, depth

perception, and peripheral vision. In essence, the pilot has ONE eye, looking down a

pipe, allowing just a 30-degree field of view!”

Consider an example landing approach of a small UAS starting at a 200 foot

final approach fix altitude. The pilot must capture the final approach fix altitude,

maintain the required glide slope (typically 10◦ or less; manned aircraft usually fly a 3◦

glide slope), centerline heading, and speed until the flare point all while controlling

the vehicle from a stationary 800-1000 foot lateral separation point at the top of

the approach profile—usually under the distress of random wind gusts. This is the

necessary precision for any semblance of consistency during flight test, which is a core

objective of the study. Table 3.2 shows some of the typical factors influencing takeoff

and landing performance data. It is important to note that the parameters in Table

3.2 are all under the discretion of the pilot. Uncertainty cannot be eliminated in this

study, however it is possible to reduce uncertainty of factors that most significantly

affect takeoff and landing performance. Detailed autopilot operational procedures

were developed to transition the human operator to the backup, safety pilot role.

3.2.3 Command and Control, Auto Land Traffic Pattern Script

Mission Planner is the primary ground control software for the ArduPilot flight stack.

It supports each development of ArduPilot: Plane, Copter, and Rover. Mission Plan-

25

Table 3.2: Takeoff and Landing Pilot Uncertainties

Takeoff Approach and Landing

Nose wheel steering/rudder deflection Power handling
Number & amplitude of directional control inputs Altitude of flare initiation
Aileron & elevator position during acceleration Rate of rotation in flare
Airspeed at rotation Length of hold-off time
Pitch rate during rotation Touchdown speed
Angle of attack at liftoff Rate of braking

ner is open source, developed in C#, and runs only on the Windows operating sys-

tem. ArduPilot uses the MAVLink protocol for command and control of the vehicle.

Telemetry, configuration parameters, and navigation fixes can be transmitted real

time during flight. MAVLink is also an open source protocol and thus there are sev-

eral options for ground control software that can interface with ArduPilot. Examples

include QGroundControl, APM Planner, DroidPlanner, and MAVProxy. Mission

Planner is preferred for ArduPlane applications because it not only combines the real

time command and control of the vehicle, but is the most mature solution for setup

and configuration of ArduPlane augmented fixed wing UAS. A high level Mission

Planner/MAVLink architecture is shown in Figure 3.3. The user interacts with the

UAS through four primary displays within Mission Planner.

The flight data screen (example shown in Figure 3.4) overlays all current vehicle

status and information on the electronic flight instrumentation system and heads up

display. The flight data screen also allows the user to command single direct fly-to

waypoints, flight modes, and mission segments. The flight plan page is an interface

for real time creation and editing of navigation fixes. Different actions can also be

defined such as initiating takeoff or landing sequences, which will be discussed further.

Vehicle calibration and firmware installation is managed through the setup page with

detailed autopilot parameters configured within the tuning page. The Mission Planner

developer site and documentation describes features of the software [25].

26

Figure 3.3: Mission Planner Architecture, Adapted from [24]

Figure 3.4: Mission Planner Flight Data Overview

27

Mission Planner’s public release is a versatile, powerful application for small UAS,

but is designed to be fairly broad in function. However, since the software is open

source, functionality can be added to further enhance the command and control of

a small UAS. To facilitate the rapid development of additional features, Mission

Planner supports Python scripting and interfacing via an internal implementation of

IronPython. IronPython is designed to integrate tightly with .NET programming lan-

guages, including C#. IronPython supports most Python 2.7 libraries. At the time of

this study, the Mission Planner public release lacks real time point, click autonomous

approach and landing. There are commercial developments of Mission Planner that

implement this type of capability, but are configured to support a specific platform

[26]. Referring to Figure 3.1 again, these features are part of the top two blocks of a

small UAS architecture–path planning and path management. An autonomous traffic

pattern and landing script was developed to quickly allow the flight test engineer to

generate consistent landing approaches under varying flight conditions. Because the

Python script is modular and integrated with the path planner and manager, it can

be used for any fixed wing platform with ArduPlane executing the path following.

Several Mission Planner classes are exposed for direct interaction using Python

variables. These include Script, CurrentState, and MAVLink located within their

respective C# files, Script.cs, CurrentState.cs, and MAVLink.cs. The current

release of Mission Planner can be located under the ArduPilot repository on GitHub

[27]. The relevant excerpt of the Mission Planner class, Script, that generates the

Python variables is shown in Listing 1. A customized version of Mission Plan-

ner can be recompiled to add more classes for interaction with the Python script-

ing engine. For example, the syntax would be similar to lines 19-23 in Listing 1,

scope.SetVariable(PythonVariableName, MissionPlannerClassInstance). How-

ever, modifying Mission Planner source code and then recompiling the program for

28

use is much more complicated when compared to writing a Python script for the same

functionality. There are some dependencies that will be discussed, but installation

and use of the traffic pattern and landing script is relatively straight forward.

1 public Script(bool redirectOutput = false)
2 {
3 Dictionary<string, object> options = new

Dictionary<string, object>();↪→
4 options["Debug"] = true;
5

6 if (engine != null)
7 engine.Runtime.Shutdown();
8

9 engine = Python.CreateEngine(options);
10

11 var paths = engine.GetSearchPaths();
12 paths.Add(Settings.GetRunningDirectory() + "Lib.zip");
13 engine.SetSearchPaths(paths);
14

15 scope = engine.CreateScope();
16

17 var all =
System.Reflection.Assembly.GetExecutingAssembly();↪→

18 engine.Runtime.LoadAssembly(all);
19 scope.SetVariable("MAV", MainV2.comPort);
20 scope.SetVariable("cs", MainV2.comPort.MAV.cs);
21 scope.SetVariable("Script", this);
22 scope.SetVariable("mavutil", this);
23 scope.SetVariable("Joystick", MainV2.joystick);
24

25 engine.CreateScriptSourceFromString("print 'hello world
from python'").Execute(scope);↪→

26 engine.CreateScriptSourceFromString("print
cs.roll").Execute(scope);↪→

27 ...}

Listing 1: Mission Planner C# Script Class Code Excerpt

The traffic pattern used for the auto land script is similar to a standard manned

aircraft traffic pattern as shown in Figure 3.5. Four legs of the maneuver are pro-

grammed: downwind, base, final, short final. Each leg is assigned a distance based on

the aircraft type and required glide slope. The approach is generated after the script

estimates the wind direction and velocity. The user selects the touch down point or

landing zone. Short final, final, base, and the downwind legs are generated and popu-

lated on the mission flight plan screen in reverse succession starting from the landing

zone. The latitude of the downwind leg is extracted from the user’s desired landing

zone coordinate latitude in degrees. The script also generates a real time summary

of relevant approach data and has logic to re-check an existing approach for wind

29

direction and velocity. If the wind direction has changed significantly, the user will

be prompted to select another landing zone and the pattern will be adjusted for the

new wind direction. In addition to confirming the wind velocity and direction remain

suitable for the planned approach, the script detects a timely approach in progress

and will not prompt the user to re-select the landing zone and instead will proceed

directly into the logging mode.

Figure 3.5: Nominal Left Hand Traffic Pattern

A state flow diagram of the auto land traffic pattern script is shown in Figure

3.6. As the script initializes, all required Python modules are loaded. The only

external Python library that is required is Py AutoHotKey. PyAHK is used to au-

tomate tasks that cannot be directly programmed using publicly declared classes of

30

Mission Planner. PyAHK can be installed to a Python 2.7 distribution by entering

pip install pyahk into the Python command line. Continuum Analytics Python

2.7 distribution, Anaconda, is recommended [28]. To utilize PyAHK, a specialized

AutoHotKey .dll needs to be in the same folder as the PyAHK Python library. The

appropriate .dll depends on the system executing the script. Both the 32 bit and 64

bit AutoHotKey H .dll versions have been tested with success [29]. The script was

primarily developed and tested on a 64 bit machine with actual field use on a 32

bit ground control station laptop. The core features of the auto land traffic pattern

script are written using Python functions that are called during the execution of the

main conditional sections of the script. The functions are the boxed portions of Fig-

ure 3.6. Python is a scripting language, but by following simple programming best

practices with functions the code retains modularity and can be updated to include

additional features as necessary. The non function section of the script only amounts

to approximately 50 lines of code.

Figure 3.6: Traffic Pattern Landing Script State Flow

31

The conditional sections of the script will be briefly described in the following

listings. Listing 2 shows the first section of the “main” logic portion of the script.

Line 4 assigns the variable, dir_path, to the current working directory where the

script is executed. Next, the wind estimation function is called and the current

working directory is checked for any existing approach summary logs. Lines 9-12

initialize a count variable and loop through each file extension in the current working

directory. If any files are found with a .txt extension, the count is increased. Listing

2 and 3 are the primary conditional sections of the script. Lines 4-6 of Listing 3

search for the most recent log file to load into a memory mapped file object using the

Python library, mmap. The memory mapped file object is useful because it behaves

like a string in Python. The most recent log file contents are mapped to a string in

line 6 of Listing 3 and a trivial subset character search is performed immediately after

in lines 9 and 10.

1 #starting script
2

3 #getting file path for summary text file
output↪→

4 dir_path =
os.path.dirname(os.path.realpath(__file__))↪→

5

6 get_wind_estimate()
7

8 #checking for existing logs, counting number
of .txt log files↪→

9 log_count = 0
10 for file in os.listdir(dir_path):
11 if file.endswith(".txt"):
12 log_count = log_count + 1
13

14 print "Log Count: %d" % log_count

Listing 2: Auto Land Traffic Pattern Script “Main”, Log Check

The purpose of the log file string match is to determine the most recent type of

approach, a standard left or right hand traffic pattern. The conditional statements in

lines 11 and 17 of Listing 3 check the output of the wind estimate function for either

a left or right hand traffic pattern, respectively. If the most recent logged approach

pattern remains favorable with respect to current wind conditions, the script proceeds

32

into logging mode and uses the existing approach. IronPython’s implementation

in Mission Planner does not have a command prompt and thus all scripts execute

identically from run to run. Listings 2 and 3 highlight logic that the flight test

engineer can manipulate to some degree. By moving log files out of the current

working directory the script will run a full traffic pattern generation process—this is

interpreted as either the first approach of the testing session, or that the landing zone

needs to be changed.

1 #checking current approach for pattern validity
2 if log_count >= 1:
3 print 'Timely autoland approaches detected, checking latest

traffic pattern for wind correction'↪→
4 current_approach_log = max(glob.iglob(dir_path + "*.txt"),

key=os.path.getctime)↪→
5 current_approach_log_file = open(current_approach_log, 'r')
6 s = mmap.mmap(current_approach_log_file.fileno(), 0,

access=mmap.ACCESS_READ)↪→
7 print current_approach_log
8

9 match1 = s.find('Left')
10 match2 = s.find('Right')
11 if match1 != -1 and traffic_pattern_flag == 0:
12 print 'No wind correction needed, proceeding into

approach logging'↪→
13 LZ_lat =

MissionPlanner.MainV2.instance.FlightPlanner.pointlist[5].Lat↪→
14 LZ_lng =

MissionPlanner.MainV2.instance.FlightPlanner.pointlist[5].Lng↪→
15 approach_summary(LZ_lat,LZ_lng)
16 print 'done baby done'
17 elif match2 != -1 and traffic_pattern_flag == 1:
18 print 'No wind correction needed, proceeding into

approach logging'↪→
19 LZ_lat =

MissionPlanner.MainV2.instance.FlightPlanner.pointlist[5].Lat↪→
20 LZ_lng =

MissionPlanner.MainV2.instance.FlightPlanner.pointlist[5].Lng↪→
21 approach_summary(LZ_lat,LZ_lng)
22 print 'done baby done'
23 else:
24 print 'Traffic pattern update needed for changing wind

conditions, standby for LZ selection'↪→
25 select_LZ(traffic_pattern_flag)
26 print 'done baby done'
27 else:
28 print 'No timely autoland approaches detected, standby for

traffic pattern generation'↪→
29 select_LZ(traffic_pattern_flag)
30 print 'done baby done'

Listing 3: Auto Land Traffic Pattern Script “Main”, conditional logic

33

The first function that is called in the conditional section of the script is the wind

estimate function, get_wind_estimate, shown in Listing 4. As described above,

Mission Planner exposes several classes for direct interaction in Python. The Mission

Planner class, CurrentState.cs, allows for any parameter reported by the status

subpage on the main flight data screen (see Figure 3.7) to be accessed with the

Python variable, cs. Three variables of interest—cs.wind_dir, cs.wind_vel, and

cs.airspeed are initialized in lines 2-4. The function looks for a valid output with

a “not a number” check on line 5. If the check passes, the script records ten seconds

of the wind velocity and heading data reported to the ground control station by the

autopilot in lines 8-12. An average of the ten second data download is performed and

the conditional checks begin on line 19. The conditional statements assign a traffic

pattern flag, or approach type according to the reported wind heading. The script

avoids tail wind approach scenarios, but defaults to a left hand traffic pattern with a

large cross wind component.

34

1 def get_wind_estimate():
2 wind_dir = []
3 wind_vel = []
4 arspd = []
5 if math.isnan(cs.wind_vel) or

math.isnan(cs.wind_dir) == True:↪→
6 print 'No wind estimate available from

vehicle'↪→
7 else:
8 t_end = time.time() + 10
9 while time.time() < t_end:

10 wind_dir.append(cs.wind_dir)
11 wind_vel.append(cs.wind_vel)
12 arspd.append(cs.airspeed)
13

14 wind_dir_est = sum(wind_dir)/len(wind_dir)
15 wind_vel_est = sum(wind_vel)/len(wind_vel)
16 arspd_avg = sum(arspd)/len(arspd)
17 wind_dir_est_integer = int(wind_dir_est)
18

19 if wind_dir_est_integer in range(123,236):
20 print 'Left hand traffic pattern

recommended'↪→
21 traffic_pattern_flag = 0 #flag as left

hand pattern↪→
22 pattern = "Left"
23 elif wind_dir_est_integer in range(303,360) or

wind_dir_est_integer in range (0,65):↪→
24 print 'Right hand traffic pattern

recommended'↪→
25 traffic_pattern_flag = 1 #flag as right

hand pattern↪→
26 pattern = "Right"
27 else:
28 print 'Help me Tom Cruise'
29 traffic_pattern_flag = 0 #default to

left↪→
30 pattern = "Left"
31 print "Wind Direction Estimate [deg]: %d" %

wind_dir_est↪→
32 Script.Sleep(1000)
33 print "Wind Velocity Estimate [kts]: %d" %

wind_vel_est↪→
34 Script.Sleep(1000)
35 print "Average Airspeed Estimate [kts]: %d" %

arspd_avg↪→
36 return traffic_pattern_flag, pattern

Listing 4: Auto Land Traffic Pattern Script, get_wind_estimate Function

35

Figure 3.7: Mission Planner Status Page

36

ArduPlane estimates the real time, two dimensional wind vector using airspeed,

GNSS, and IMU measurements. The estimate is adequate for use in the auto land

traffic pattern script because pattern direction is based on conservative wind direc-

tion sectors. The wind vector is also recorded during the approach to characterize

performance with respect to the wind conditions. During automatic approach and

landing the 2D wind vector estimate is used to compensate for crosswind slide slip

angle and headwind airspeed adjustments. The 2D wind vector estimate is also fused

each time step by the Extended Kalman filter. The aircraft’s inertial velocity vector,

V
ned

, is the vector sum of the relative airspeed vector, V
ned

air , and the wind vector,

V
ned

w , as shown in Figure 3.8. The wind estimate in ArduPlane is three lines of code

shown first in Equations 3.1, 3.2, and 3.3.

|V ne
w | =

√
V 2
n + V 2

e − |V ne
air,pitot| (3.1)

V n
w = |V ne

w | · cosψ (3.2)

V e
w = |V ne

w | · sinψ (3.3)

The C++ implementation is shown in Listing 5, lines 6-8, respectively. Source

code can be found on the ArduPilot GitHub repository [17]. The magnitude of the

wind vector is inertial GNSS velocity magnitude subtracted from axial airspeed. Axial

airspeed is measured using a pitot-static system. Scalar quantities of the wind vector

are then calculated using the Euler yaw angle, ψ. ArduPlane converts the attitude

quaternion to Euler angles for this operation. The aircraft must be changing attitude

with the inertial GNSS velocity also changing. ArduPlane’s method of wind estimate

is rudimentary and is referenced as direct estimation in literature [30, 31]. However,

37

other methods for estimating the wind vector have been proposed, including a fusion

of the direct method and predictive methods [32].

Figure 3.8: Horizontal Plane (North-East) Angular and Vector Relationships [31]

38

1 if (yawAlignComplete && useAirspeed()) {
2 // if we have airspeed and a valid heading, set the wind states

to the reciprocal of the vehicle heading↪→
3 // which assumes the vehicle has launched into the wind
4 Vector3f tempEuler;
5 stateStruct.quat.to_euler(tempEuler.x, tempEuler.y,

tempEuler.z);↪→
6 float windSpeed = sqrtf(sq(stateStruct.velocity.x) +

sq(stateStruct.velocity.y)) - tasDataDelayed.tas;↪→
7 stateStruct.wind_vel.x = windSpeed * cosf(tempEuler.z);
8 stateStruct.wind_vel.y = windSpeed * sinf(tempEuler.z);
9 // set the wind sate variances to the measurement uncertainty

10 for (uint8_t index=22; index<=23; index++) {
11 P[index][index] =

sq(constrain_float(frontend->_easNoise, 0.5f, 5.0f)
* constrain_float(_ahrs->get_EAS2TAS(), 0.9f,
10.0f));

↪→
↪→
↪→

12 }
13 }

Listing 5: ArduPlane EKF2 Wind State Observation

The direction and magnitude of the 2D wind vector are sent to Mission Planner

via MAVLink Telemetry message as cs.wind_dir and cs.wind_vel, respectively.

Magnitude was shown previously in Equation 3.1 and Listing 5. The subset of code

in Listing 5 is called by the Attitude and Heading Reference System (AHRS) during

each predictor, update time step of the Kalman filter. Wind heading, χw, is expressed

as the inverse tangent of the scalar components of the wind vector in Equation 3.4.

Wind heading as reported to Mission Planner, cs.wind_dir, is shown implemented

in the GCS library of ArduPlane (see Listing 6).

χw = arctan

(
V e
w

V n
w

)
(3.4)

1 void Plane::send_wind(mavlink_channel_t chan)
2 {
3 Vector3f wind = ahrs.wind_estimate();
4 mavlink_msg_wind_send(
5 chan,
6 degrees(atan2f(-wind.y, -wind.x)), // use negative, to

give↪→
7 // direction wind is

coming from↪→
8 wind.length(),
9 wind.z);

10 }

Listing 6: ArduPlane GCS MAVLink Wind Estimate Output

39

Returning to Listing 3, after the wind estimate function is used to determine if

the approach pattern needs to be adjusted for current wind conditions, the script

goes into logging mode or generates a new approach. Before the logging mode is

discussed, the process for generating an approach will be covered. The function call

for select_LZ, first shown in line 25 of Listing 3, contains the logic for generating

a traffic pattern on the Mission Planner flight plan screen based on the flight test

engineer’s desired landing point. The function, select_LZ, is shown in Listing 7.

Line 3 of select_LZ calls for a separate function, clear_flight_plan_active, to

execute a series of AutoHotKey commands within Python to switch to the flight plan

screen and clear any existing missions and waypoints.

After the flight plan is cleared, the flight test engineer has seven seconds to select

the desired landing point. The conditional statement on line 8 of Listing 7 checks

if the flight test engineer has selected a landing point before proceeding, if not, the

script aborts on line 27. Line 8 accesses the number of waypoints that are currently

populated on the Mission Planner flight plan screen. Although the statement in line 8

is not directly supported with a Python variable through the Mission Planner Script

class, any publicly declared functionality elsewhere in the Mission Planner source code

can be accessed with the correct syntax. The FlightPlanner.cs C# source code file

contains all of the functionality for Mission Planner’s flight plan screen [27]. Most of

the FlightPlanner class is privately declared, but there are several key features that

are publicly declared. If these features were not publicly declared, the C# source

code would probably have to be modified to include the desired functionality.

The latitude and longitude of the landing point on the flight plan screen are ac-

cessed with the syntax FlightPlanner.pointlist[1].Lat/Lng and assigned to the

Python variables, LZ_lat and LZ_lng in lines 10 and 11 of Listing 7. After the land-

ing point coordinates are assigned to their respective variables, the landing point is

cleared from the display with the another series of AutoHotKey Python commands in

40

the function, clear_flight_plan_user_LZ. Once the flight plan screen is cleared, the

function compares the traffic_pattern_flag and calls for the respective approach

pattern function in lines 19-22.

1 def select_LZ(traffic_pattern_flag):
2 #clearing active flight plan
3 clear_flight_plan_active()
4 print 'Select the LZ'
5 #user has 7 seconds to select a landing point
6 Script.Sleep(7000)
7 #make sure LZ is selected, explicitly checking if a waypoint

was added on the flight plan map--the desired "LZ",
reason > 1 is because home counts as 0, but does not
appear as an entry on the datagrid

↪→
↪→
↪→

8 if
MissionPlanner.MainV2.instance.FlightPlanner.pointlist.Count
> 1:

↪→
↪→

9 print 'Received LZ, generating approach'
10 LZ_lat =

MissionPlanner.MainV2.instance.FlightPlanner.pointlist[1].Lat↪→
11 LZ_lng =

MissionPlanner.MainV2.instance.FlightPlanner.pointlist[1].Lng↪→
12 Script.Sleep(1000)
13 print "LZ Lat: %f" % LZ_lat
14 Script.Sleep(1000)
15 print "LZ Lng: %f" % LZ_lng
16 # #clearing LZ selection, prep for approach pattern
17 clear_flight_plan_user_LZ()
18 # generating traffic pattern based on wind estimate
19 if traffic_pattern_flag == 1:
20 right_hand_traffic_pattern(LZ_lat,LZ_lng)
21 elif traffic_pattern_flag == 0:
22 left_hand_traffic_pattern(LZ_lat,LZ_lng)
23 else:
24 print 'Help me Tom Cruise'
25 approach_summary(LZ_lat,LZ_lng)
26 else:
27 sys.exit("LZ not selected, aborting approach")

Listing 7: Auto Land Traffic Pattern Script, select_LZ Function

There are two approach traffic pattern functions, a standard left and right hand

pattern. The logic is the same between the two, but the calculation of each leg of the

approach pattern is different. The left hand traffic pattern function is shown in Listing

9. The arguments for the function are the coordinates of the desired landing point.

Pattern legs are generated in reverse succession starting from the desired landing

point, short final, final, base, and the downwind or initial approach fix. The function,

newpos, calculates a new set of latitude and longitude coordinates on a great circle

path given a distance and bearing from the initial point. Equations 3.5 and 3.6

41

φlat,2 = arcsin (sinφlat,1 · cos δ + cosφlat,1 · sin δ · cos θnav) (3.5)

λlng,2 = λlng,1 + arctan

(
sin θnav · sin δ · cosφlat,1

cos δ − sinφlat,1 · sinφlat,2

)
(3.6)

are derived from the spherical law of cosines where φ is latitude, λ is longitude,

θ is bearing, and δ is angular distance, D
R

. D is the desired distance between the

two locations and R is the Earth’s radius. The implementation of these formulae in

Python are shown in Listing 8. Python maps floating-point calculations to IEEE-

754 standard, commonly known as doubles. IEEE-754 “doubles” contain 53 bits

of precision which makes Equations 3.5 and 3.6 reasonably accurate down to offset

distances as small as a few meters. The smallest offset distance demanded in the

nominal traffic pattern is 200 meters. As will be shown in the sample approach

patterns, subjectively, floating-point error does not manifest as problematic.

1 def newpos(bearing,distance,lat,lng):
2 lat1 = math.radians(lat)
3 lon1 = math.radians(lng)
4 brng = math.radians(bearing)
5 dr = distance / 6378100.0 # / radius of earth in

meters↪→
6

7 lat2 = math.asin(math.sin(lat1) * math.cos(dr) +
math.cos(lat1) * math.sin(dr) *
math.cos(brng))

↪→
↪→

8 lon2 = lon1 + math.atan2(math.sin(brng) *
math.sin(dr) * math.cos(lat1), math.cos(dr) -
math.sin(lat1) * math.sin(lat2))

↪→
↪→

9

10 lat_out = math.degrees(lat2)
11 lng_out = math.degrees(lon2)
12 return lat_out,lng_out

Listing 8: Auto Land Traffic Pattern Script, newpos Function

The left hand traffic pattern approach legs are each generated with newpos in lines

7-13 of Listing 9. For example, short final on line 7 is bearing 0◦, 255 meters from

the desired landing point, LZ_lat/LZ_lng. Each successive leg is generated with a

Python tuple element output from newpos that contains the latitude and longitude

of the previous approach leg as an argument. Each approach leg is populated on the

42

flight plan display with the syntax, FlightPlanner.InsertCommand on lines 17-25.

The full command with the prefix MissionPlanner.MainV2.instance is shortened

for formatting in Listing 9. The C# method in the FlightPlanner.cs source code

is shown in Listing 10. As mentioned previously, this method is usable in the Mission

Planner Python script engine because it is declared public. The argument structure

follows standard MAVLink protocol of seven parameter, command fields. A common

list of MAVLink commands and command field structure for fixed wing aircraft can

be found on the ArduPlane documentation website [33].

1 #generate the left hand traffic pattern from LZ selection
2 def left_hand_traffic_pattern(LZ_lat,LZ_lng):
3

4 # 0 - lat, 1 - lng
5 #left hand traffic pattern
6 #short final
7 short_final = newpos(0,255,LZ_lat,LZ_lng)
8 #final
9 final = newpos(0,200,short_final[0],short_final[1])

10 #base
11 base = newpos(90,200,final[0],final[1])
12 #downwind/IAF
13 downwind = newpos(180,445,base[0],base[1])
14

15 #adding to FP - distance argument is in units as selected on
MP↪→

16 #downwind/IAF
17 ...FlightPlanner.InsertCommand(1,MAVLink.MAV_CMD.WAYPOINT

,0,0,0,0,downwind[1],downwind[0],200)↪→
18 #base
19 ...FlightPlanner.InsertCommand(2,MAVLink.MAV_CMD.WAYPOINT

,0,0,0,0,base[1],base[0],150)↪→
20 #final
21 ...FlightPlanner.InsertCommand(3,MAVLink.MAV_CMD.WAYPOINT

,0,0,0,0,final[1],final[0],125)↪→
22 #short final
23 ...FlightPlanner.InsertCommand(4,MAVLink.MAV_CMD.WAYPOINT

,0,0,0,0,short_final[1],short_final[0],80)↪→
24 #LZ
25 ...FlightPlanner.InsertCommand(5,MAVLink.MAV_CMD.LAND

,50,0,0,0,LZ_lng,LZ_lat,0)↪→
26 ...FlightPlanner.InsertCommand(6,MAVLink.MAV_CMD.CONTINUE_AND_CHANGE_ALT

,1,0,0,0,0,0,75)↪→
27 ...FlightPlanner.InsertCommand(7,MAVLink.MAV_CMD.DO_JUMP

,1,-1,0,0,0,0,0)↪→

Listing 9: Auto Land Traffic Pattern Script, left_hand_traffic_pattern Function

43

1 public void InsertCommand(int rowIndex, MAVLink.MAV_CMD cmd,
double p1, double p2, double p3, double p4, double x,
double y,

↪→
↪→

2 double z, object tag = null)
3 {
4 if (Commands.Rows.Count <= rowIndex)
5 {
6 AddCommand(cmd, p1, p2, p3, p4, x, y, z, tag);
7 return;
8 }
9

10 Commands.Rows.Insert(rowIndex);
11

12 this.selectedrow = rowIndex;
13

14 FillCommand(this.selectedrow, cmd, p1, p2, p3, p4,
x, y, z, tag);↪→

15

16 writeKML();
17 }

Listing 10: Mission Planner InsertCommand Method, FlightPlanner.cs

Four MAVLink commands are used in the traffic pattern: MAV_CMD.WAYPOINT,

MAV_CMD.LAND, MAV_CMD.CONTINUE_AND_CHANGE_ALT, and MAV_CMD.DO_JUMP. In List-

ing 10, the first two arguments are the mission command index and the name of the

MAVLink command. The remaining seven arguments, or command fields, are spe-

cific to the MAVLink command that is desired. MAV_CMD.WAYPOINT has four usable

command fields—two, five, six, and seven. The command fields specify waypoint

radius, target longitude, target latitude, and target altitude, respectively. All other

fields are ignored by ArduPlane. MAV_CMD.LAND has three usable command fields.

Field one specifies the abort altitude to climb to if the approach is waved off. Fields

five and six are the target longitude and latitude of the landing point. During an

approach, the flight test engineer has three options to trigger a go around or wave

off once the terminal landing sequence command, MAV_CMD.LAND is initiated. If the

manual transmitter throttle is raised above 90%, a flight mode change, or an abort

command is initiated from the GCS, the wave off logic will execute. The default

wave off logic does not require any pre-planning and will follow the same protocol—

maximum throttle climb out at 10◦ pitch up to a specified target altitude, or default

to 100 feet. If MAV_CMD.LAND is followed by a MAV_CMD.CONTINUE_AND_CHANGE_ALT

44

command, the mission index will increment to execute any additional altitude change.

MAV_CMD.CONTINUE_AND_CHANGE_ALT can be followed by any mission command be-

havior, but MAV_CMD.DO_JUMP is used to reset the mission index to the downwind, or

initial approach fix, to attempt another landing.

Once the traffic pattern is generated and populated, the flight test engineer up-

loads and executes the approach when ready. A sample right hand traffic pattern

output is shown in Figure 3.9. The script pauses for a set time and proceeds into

a logging mode. Returning to Listing 3 and the “main” conditional section of the

auto land traffic pattern script, the only remaining function is approach_summary.

The approach_summary function outputs .txt log files that characterize the real time

performance of the approach and landing. ArduPlane and Pixhawk’s on-board SD

card dataflash log files are notoriously difficult to post process. In recent releases

of Mission Planner, options have been added to convert dataflash logs to MATLAB

.mat files which are useful for examining higher frequency IMU data. However, for

general GNSS, altitude, and attitude performance; logging the real time telemetry

stream is ideal. It is less time intensive than exporting dataflash logs, exporting to

MATLAB, and post-processing. The real time telemetry logging also gives the flight

test engineer instant feedback on the approach performance and promotes efficiency

during a flight test session.

The structure of the approach_summary function is a series of comparator state-

ments inside a while loop. The while loop executes continuously as long as the flight

mode remains in “auto.” Short final to touchdown and subsequently roll out are of

interest. There are five comparator statements; four of which are associated with a

discrete event during the approach. Each statement is scanning for a specific teleme-

try condition and generating .txt logs when satisfied. Access to relevant telemetry

is done by calling the Python variable cs. The approach_summary function can be

found in Appendix A as part of the full code block.

45

Figure 3.9: Auto Land Traffic Pattern Script Generated Right Hand Pattern

46

3.3 UAS Platforms and Test Overview

The platforms used for this study can be classified as either a fixed-wing or multi-

rotor vehicle. The fixed-wing platforms are under 55 pounds gross takeoff weight

(GTOW) and the multi-rotor vehicles do not exceed 5 pounds GTOW. Multi-rotors

were included in the study because these types of vehicles have not only proliferated

into the mainstream population, but also provide certain utility that can be applied

to many commercial operational scenarios. Primary fixed-wing flight test was con-

ducted using the ReadyMadeRC Anaconda—a medium sized group one UAS (DoD

definition) with a GTOW less than 15 pounds. Multi-rotor flight test was performed

using the 3DR Solo and DJI Mavic. The basic specifications for each platform can

be found in Table 3.3 and Figure 3.10 shows the approximate relative sizes of each

vehicle.

Table 3.3: UAS Platform General Specifications

Parameter RMRC Anaconda 3DR Solo DJI Mavic
Vehicle Type [F-W or M-R] F-W M-R M-R
GTOW [lbs] 10 3.9 1.6
Wing Span [ft] 6 2 1
Length [ft] 5 2 1
Payload Capacity [lbs] 3 0.6 N/A
Propulsion Electric Electric Electric
Autopilot ArduPlane ArduCopter DJI
Max Speed [kts] 60 30 35
Loiter Speed [kts] 30 0-10 0-10
Endurance [hrs] 0.5-0.75 0.15-0.2 0.5

The vehicle subsystems for the RMRC Anaconda include structure, propulsion

and power, avionics and control, and external sensors. The Anaconda has two main

gear wheels fixed to a 0.25 inch thick aluminum landing strut. The steerable nose

gear wheel is attached to a torsion spring strut. The primary lifting surfaces were

reinforced with rectangular carbon fiber rods. The propulsion system includes an 800

47

Figure 3.10: RMRC Anaconda and Multi-Rotors with Approximate Relative Sizes

kV brushless outrunner electric motor and a 15x4E pusher propeller. Two, four cell

lithium polymer batteries wired in parallel provide 13,200 milli-amp hour through an

80 amp electronic speed controller. Electrical power is distributed to external sensors

and flight control servos via the Pixhawk’s power module and servo rail. Standard

external sensors include a uBlox GPS GNSS module and a Measurement Specialties

4525DO differential pressure pitot-static system. A LightWare SF11-C laser altimeter

is mounted near the main landing gear. The laser altimeter is activated only when

the aircraft crosses the short final reference altitude and waypoint. Table 3.4 contains

specifications for the SF11-C laser altimeter and Figure 3.11 details the installation

on the fixed-wing aircraft.

Table 3.4: SF-11C Specifications

Parameter
Weight 35 [g]
Dimensions 30 x 56.5 x 50 [mm]
Range 0.1-120 [m]
Resolution 1 [cm]
Accuracy ±0.1 [m]
Outputs Serial, I2C, Analog
Supply Voltage 5.0 [VDC]
Supply Current 200 [mA] max
Laser Power 20 [W] peak, 15 [mW] average
Optical Aperture 51 [mm]
Beam Divergence 0.2◦

48

The Anaconda uses the ArduPlane 3.7.1 flight stack on the PX4 Pixhawk v1

with command and control on the 915 Mhz frequency. The 3DR Solo is configured

with a PX4 Pixhawk v2. PX4 firmware is Solo specific; version 1.3.1 Sensors include

GPS GNSS and compass module. Power is provided by one three cell 5100 mAH

battery. The Solo was in factory hardware configuration. Command and control

hardware includes WiFi RC transmitter and a ground station laptop running Mission

Planner. The DJI Mavic was in the factory hardware and software configurations and

is equipped with several additional sensors in comparison to the 3DR Solo. Dual band

GNSS (GPS/GLONASS) is standard on the Mavic with a downward facing sonar and

computer vision array. DJI claims that these systems increase the horizontal accuracy

to ±1 foot when landing. 2.4 Ghz and 5.8 Ghz are used for both command and control

and full motion video through the Mavic’s integrated camera gimbal.

Figure 3.11: Anaconda SF11 Laser Altimeter Configuration

49

3.3.1 Nominal Flight Plan

Two test plans were executed for both the fixed wing and multi-rotor. The overall

goal for both test plans was to characterize the performance of each vehicle’s au-

tonomous landing capability in regards to external sensor equipage. Future higher

density operations scenarios will not have operators directly controlling vehicles. For

example, one multi-rotor (3DR Solo) was only equipped with barometric altitude and

GPS GNSS for position while the Mavic has dual band GNSS and a computer vision

system (landing target in Figure 3.12). A notional multi-rotor test plan is also shown

in Figure 3.12. The fixed wing aircraft test plan was to fly a standard traffic pattern

based on wind conditions, as previously in Figure 3.5.

Landing definitions are adapted from the USN Test Pilot School flight test manual

[20]. Landing final approach reference altitude is usually 50 feet, but for this study

the altitude is increased to 80 feet. Landing performance, Figure 3.13, is broken

into two phases, air phase and ground phase. The air phase, S3, is taken to be the

distance from short final at 80 feet AGL to touchdown. After touchdown, landing roll

out begins. The total distance to wheel stop after touchdown is defined as the ground

phase, S4. Airspeed at the 80 foot reference altitude and touchdown are V80 and VTD,

respectively. Real time telemetry based logging of the relevant landing performance

data was developed as part of a traffic pattern generation script.

50

Figure 3.12: Landing Target View, DJI Mavic Camera

Figure 3.13: Landing Performance Definitions

51

3.4 Autopilot Takeoff and Landing

3.4.1 Critical Autopilot Parameters

ArduPlane fixed-wing parameters necessary for GNSS guided waypoint flight, auto

takeoff and landing will be briefly discussed. GNSS augmented inertial navigation

capability is critical to waypoint guided flight modes in small UAS COTS autopilot

systems as the MEMS IMU does not have low enough position drift error sufficient

for navigation. ArduPlane has a Extended Kalman Filter (EKF) that when combined

with the MEMS IMU can only reliably provide navigation quality position estimates

for 1-2 minutes if GNSS capability is completely lost. GNSS coverage degradation

is common, but a complete loss can be caused by hardware failure or signal interfer-

ence. ArduPlane also supports redundant GNSS hardware configurations to guard

against hardware failure. Benchmark performance for current ArduPlane compati-

ble GNSS hardware is dual band constellation capability, differential correction at

ground level, with a horizontal dilution of precision (HDOP) below 1.0. Parameters

in Table 3.5 are critical to GNSS flight. ARMING CHECK initializes all pre-arm

checks of all flight critical sensors including IMU, GNSS, airspeed, magnetometer, and

barometer. AHRS GPS USE ensures that the Attitude Heading Reference System

(AHRS) utilizes GNSS position estimates. EK2 ENABLE and AHRS EKF TYPE

enable the latest version of the EKF and its use in the AHRS. The final parameter,

INITIAL MODE, boots the autopilot in a manual mode. The boot mode can be

modified if configured to fly in an auto flight mode without a manual RC transmitter.

Table 3.6 lists parameters necessary for auto takeoff capability. There are no

parameter values listed as they are variable depending on aircraft. ArduPlane uti-

lizes the common Proportional, Integral, Derivative (PID) controller for flight control

response. There is a separate ground steering PID controller that is active during

52

Table 3.5: ArduPlane GNSS Critical Parameters

Parameter Value
ARMING CHECK 1
AHRS GPS USE 1
EK2 ENABLE 1
AHRS EKF TYPE 2
INITIAL MODE 0

auto takeoff. The first five parameters listed in Table 3.6 tune the ground steering

PID gains. STEER2SRV MINSPD is the minimum ground speed before the ground

steering control loop is activated. This value is dependent on a reliable GNSS ground

speed estimate. More capable GNSS hardware allows this value to be set lower and

thus achieve better low speed ground handling performance during the initial stages

of auto takeoff. TKOFF THR SLEW and TKOFF THR MAX set the rate at which

throttle is applied and maximum available throttle during auto takeoff, respectively.

Throttle slew rate should be conservative as too much throttle input quickly can cause

small vehicles to oscillate and torque during initial ground roll. Maximum available

throttle during takeoff is dependent on aircraft capability. Aircraft with significant ex-

cess power due to propulsion system or payload will most likely be configured to limit

power or throttle in normal flight (not have 100% available). This prevents unneces-

sary throttle surging to maximum and increases endurance. In these scenarios, choos-

ing a TKOFF THR MAX slightly higher than normal throttle limits is recommended

for auto takeoff. TKOFF ROTATE SPD and TECS PITCH MAX set the initial ro-

tate airspeed and maximum pitch angle during takeoff, respectively. These parameters

are aircraft dependent. For example, the RMRC Anaconda has a large propeller in

a pusher configuration. Thus, lower pitch angles are required during take off and

landing to prevent propeller strikes. The final parameter, GROUND STEER ALT

sets the altitude threshold when the ground steering loop terminates or activates.

Table 3.7 details parameters for auto landing. A well executed auto land is

highly dependent on a stabilized approach, as discussed in Chapter 2. The same

53

Table 3.6: ArduPlane Auto Takeoff Parameters

Parameter
STEER2SRV P
STEER2SRV I
STEER2SRV D
STEER2SRV IMAX
STEER2SRV TCONST
STEER2SRV MINSPD
TKOFF THR SLEW
TKOFF THR MAX
TKOFF ROTATE SPD
TECS PITCH MAX
GROUND STEER ALT

general concepts that apply to large commercial aircraft Category III auto land

systems apply to small UAS. Management of the glide path and thus airspeed,

power, and pitch are critical to hitting a consistent aim point, flare, and touch-

down. TECS LAND ARSPD and TECS LAND SPDWGT control the approach

airspeed and error weighting with respect to airspeed and altitude. Both parame-

ters are aircraft dependent. TECS LAND ARSPD should be above stall speed, but

low enough that the aircraft can maintain the desired glide path to the aim point.

TECS LAND SPDWGT manages the error priority of airspeed and altitude. For

example, the default value of 1.0 places equal emphasis on maintaining airspeed and

altitude targets and generally results in a stabilized approach for a variety of weather

and approach conditions. A value closer to 2.0 gives airspeed priority over altitude

and could be applicable for an approach close to stall speed. TECS LAND SPDWGT

can be set to the special value of -1 for a well tuned aircraft. Error will be scaled

during approach so that airspeed is maintained at top of the approach and traded

for altitude closer to the aim point, if necessary, to ensure an accurate flare and

touchdown. In practice, TECS LAND SPDWGT = -1 is highly dependent on the

performance of the flight control loops and Total Energy Control System (TECS).

Using TECS LAND SPDWGT = -1 without first tuning the aircraft for a broad

54

spectrum of flight conditions will result in oscillation and unstable approaches as the

aircraft tries to dynamically correct deviations during approach.

Table 3.7: ArduPlane Auto Land Parameters

Parameter
TECS LAND ARSPD
TECS LAND SPDWGT
LAND FLARE SEC
LAND FLARE ALT
TECS LAND SINK
LAND PITCH CD
TECS PITCH MAX
LEVEL ROLL LIMIT
THR MIN
TECS LAND DAMP
LAND ABORT THR
LAND DISARMDELAY

LAND FLARE SEC sets the flare point as a function of vertical speed, or sink

rate. For example, LAND FLARE SEC = 1.5 sets the flare point 1.5 seconds be-

fore impact at the current vertical speed. This parameter allows the aircraft to

flare early or late depending on sink rate and achieve the desired vertical speed

at touchdown, TECS LAND SINK. LAND FLARE ALT is the secondary parame-

ter setting an altitude threshold at which the aircraft flares, regardless of vertical

speed. LAND PITCH CD is the minimum pitch angle during flare. This is gener-

ally a smaller value, but lower than TECS PITCH MAX. LAND PITCH CD and

TECS PITCH MAX are aircraft dependent. The RMRC Anaconda has conserva-

tive flare settings that generally result in a three point landing to prevent propeller

strikes due to excessive pitch angles and hold off during flare. A configuration with

no propulsion clearance limitations can flare more aggressively closer to the sur-

face and achieve touchdown on rear main landing gear. ArduPlane also supports

non conventional landing configurations such as VTOL, belly land/skid, or deep

stall. LEVEL ROLL LIMIT locks the roll limit during flare to prevent wing strikes.

55

LAND ABORT THR is the power or throttle setting applied during a go around or

aborted landing and LAND DISARMDELAY is a timer to disarm the aircraft once

ground speed reaches a certain threshold. It is important to note that for larger UAS

that land conventionally with higher ground speed, the ground steering loop will be

active during roll out to maintain a straight heading projected from the desired land-

ing location. Table 3.8 details settings for adding a rangefinder. These settings are

specific to the type of rangefinder used, but RNGFND LANDING globally enables a

rangefinder for use during approach and landing. Specifics for supported rangefinders

and also further background on parameters discussed in this section can be found

within ArduPlane documentation [34].

Table 3.8: ArduPlane Rangefinder Parameters

Parameter
RNGFND LANDING
RNGFND MAX CM
RNGFND PIN
RNGFND SCALING
RNGFND TYPE
RNGFND RMETRIC

3.4.2 Auto Land Logic

Edited code excerpts are shown in the following listings describing one iteration of

ArduPlane’s auto land loop. As the approach and landing are dependent on GNSS in-

ertial position estimates and altitude estimates, the auto land logic is part of the main

navigation loop which runs at 10 Hz. The C++ source code for ArduPlane’s auto land

logic can be found on the development GitHub repository under the path: ardupi-

lot/libraries/AP Landing/ [17]. The two source files discussed are AP_Landing.cpp

and AP_Landing_Slope.cpp, the landing and glide slope logic handlers, respectively.

The main landing logic handler begins by first checking for a land mission command,

initializing glide slope, and verifying initial approach conditions. Listing 11 shows a

56

portion of the verify_land boolean which is called upon initial approach and also

during final flare. Waypoint targets, current position, altitude, vertical speed, and a

series of checks are called–including verification that the rangefinder is within opera-

tional altitude limits. The verify_land boolean never returns as true, or complete.

It is used to constantly monitor and adjust the current action, i.e. approach and

landing, unless a GCS command is initiated. Line 4 in Listing 11 is the standard

glide slope case and line 5 calls type_slope_verify_land, part of the glide slope

logic handler, AP_Landing_Slope.cpp.

1 bool AP_Landing::verify_land(...)
2 {
3 ...
4 case TYPE_STANDARD_GLIDE_SLOPE:
5 success = type_slope_verify_land(prev_WP_loc,

next_WP_loc, current_loc,↪→
6 height, sink_rate, wp_proportion,

last_flying_ms, is_armed, is_flying,
rangefinder_state_in_range);

↪→
↪→

7 break;
8 ...
9 }

Listing 11: AP_Landing.cpp boolean, verify_land

Although not explicitly referenced in this section, type_slope_verify_land is

constantly calculating the stage of approach and landing with each iteration of the

loop. There are four stages: normal, approach, preflare, and final. Normal stage is be-

fore the aircraft crosses the waypoint before the terminal landing waypoint. Approach

stage is activated when the aircraft is lined up on heading and altitude is below the

previous waypoint at the top of the glide path. When the final stage is activated, the

flare is triggered under three scenarios: altitude within LAND FLARE ALT, vertical

speed within LAND FLARE SEC, or flying past landing target without rangefinder

data. Preflare stage is active if configured via operator and prompts the aircraft to

bleed excess speed and slow closer to stall before flare. Type_slope_verify_land

also keeps the current L1 navigation waypoint 200 meters ahead of the aircraft to

prevent sudden changes in direction if the landing target is overshot.

57

After verification of initial approach stage, setup_landing_glide_slope(...) is

called. The following listings are edited to show relevant portions of the algorithm and

its process for generating the glide slope. First, total horizontal distance is calculated

using the landing target waypoint and the preceding waypoint in line 2 of Listing

12. Next, total altitude delta to the landing target altitude is computed in line 4.

Using total horizontal distance and current ground speed, time to descend to landing

target altitude in calculated line 9. Vertical speed necessary for approach and landing

is then calculated in line 13. Aim altitude for flare is calculated by multiplying the

desired flare time (LAND FLARE SEC) by current vertical speed, shown in line 14.

The first glide slope is then calculated in the following operation, line 18.

1 {...
2 float total_distance = get_distance(prev_WP_loc,

next_WP_loc);↪→
3 }
4 float sink_height = (prev_WP_loc.alt -

next_WP_loc.alt)*0.01f;↪→
5 float groundspeed = ahrs.groundspeed();
6 if (groundspeed < 0.5f) {
7 groundspeed = 0.5f;
8 }
9 float sink_time = total_distance / groundspeed;

10 if (sink_time < 0.5f) {
11 sink_time = 0.5f;
12 }
13 float sink_rate = sink_height / sink_time;
14 float aim_height = flare_sec * sink_rate;
15 if (aim_height <= 0) {
16 aim_height = flare_alt;
17 bool is_first_calc = is_zero(slope);
18 slope = (sink_height - aim_height) / total_distance;
19 if (is_first_calc) {
20 GCS_MAVLINK::send_statustext_all(MAV_SEVERITY_INFO,

"Landing glide slope data...",);↪→
21 }
22 ... }

Listing 12: AP_Landing_Slope.cpp, type_slope_setup_landing_glide_slope,
part 1

After the first iteration of the glide slope calculation, time before flare is calculated

using the target aim altitude and landing sinking rate, line 2 in Listing 13. Horizontal

distance remaining to flare is calculated by multiplying ground speed and time before

flare, line 3. During approach and landing only, the algorithm generates a target

projected through the desired landing point. Erratic pitch behavior is prevented

58

using this method as the aircraft approaches the landing target and ground plane.

This can be visualized by taking the calculated linear glide slope and projecting it

through the ground plane some additional distance. The flare aim height remains the

same and additional sections of code are in place to anticipate the flare, limit roll

angle, and reduce throttle.

1 {...
2 float flare_time = aim_height /

SpdHgt_Controller->get_land_sinkrate();↪→
3 float flare_distance = groundspeed * flare_time;
4 if (flare_distance > total_distance/2) {
5 flare_distance = total_distance/2;
6 }
7 ...
8 ...}

Listing 13: AP_Landing_Slope.cpp, type_slope_setup_landing_glide_slope,
part 2

Excess altitude offset due to barometer drift is also accounted for by comparing

the initial glide slope calculation to a glide slope estimate utilizing the rangefinder

correction. If the glide slope difference crosses a certain threshold, the glide slope will

be recalculated to account for the barometer drift. If the glide slope error passes an

operator defined parameter, the landing will abort, store the barometer offset, and

execute go around procedures to line up for another approach. This logic is handled by

a separate function, type_slope_adjust_landing_slope_for_rangefinder_bump.

The remaining logic within AP_Landing.cpp and AP_Landing_Slope.cpp manages

airspeed targets, heading adjustments for wind compensation, abort and restart of

the landing sequence, and disarming of the aircraft.

59

CHAPTER 4

Results

4.1 Fixed-Wing Flight Test

System characterization flights were executed with the RMRC Anaconda to evaluate

auto land capability. Approaches were generated and logged using the auto land

traffic pattern script. A total of 45 approaches and landings were recorded across

five test sessions. A wind rose plot is shown in Figure 4.1 for all recorded approach

and landings. Maximum estimated wind speed was 16 knots and the maximum

demonstrated crosswind component was 9 knots.

Figure 4.1: Wind Rose for Fixed Wing Landing Approaches, Vehicle Estimate at
Short Final

60

A visualization of the wheel stop location, zero ground speed, for all recorded

landings is shown in Figure 4.2. No target landing locations are shown in Figure

4.2, but distinct grouping can be observed for several desired landing points. Each

approach and landing was logged by the auto land script for several parameters,

including the wheel stop distance with respect to distance from the desired landing

point. All landings were performed with a GNSS module capable of receiving only

US GPS satellite signals. All 45 approach and landings had active differential GPS

correction at the runway threshold. Mean self reported horizontal dilution of precision

(HDOP) was 0.81 ± 0.18. At two standard deviations, HDOP was 0.99, excellent for

a single constellation GNSS setup.

-96.837 -96.8365 -96.836 -96.8355 -96.835 -96.8345
Longitude

36.161

36.1612

36.1614

36.1616

36.1618

36.162

36.1622

36.1624

36.1626

36.1628

36.163

La
ti
tu
de

Figure 4.2: Anaconda Auto Land Performance, Wheel Stop Locations

Figure 4.3 and Figure 4.4 represent two approach trajectory trends. At short final

the laser altimeter consistently reported higher altitude than barometric altitude as

shown in Figure 4.3. The green trace in Figure 4.3 is the laser altimeter measurement

61

and the red trace is the EKF altitude state estimate. The step jump is the point

when the laser altimeter is activated. The EKF altitude state snaps to the laser

altimeter measurement because the filter innovation (difference between predicted

and measured value) is nearly zero throughout the approach.

Figure 4.3: Anaconda Auto Land Performance, EKF Height Estimate and Laser
Rangefinder State Time Trace [meters]

Once landed, barometer drift was typically less than 5 feet. The difference is

likely due to a gradual decrease in elevation at the short final waypoint with respect

to the ramp staging area where the barometer was armed. The two trajectories are

either stabilized with only a few minor deviations (Figure 4.3) or exhibited oscilla-

tory behavior as shown in Figure 4.4. Figure 4.4 is data from the auto land script

and the 5.1◦ line represents the initial barometric altitude based glide slope. These

larger bumps are primarily due to the parameter controlling weighting between air-

speed and altitude error along the approach. TECS LAND SPDWGT was set to

the default value of 1 for all approaches, which prioritizes the errors equally. At

TECS LAND SPDWGT = 1 the autopilot can correct airspeed errors using pitch.

Setting TECS LAND SPDWGT to a value closer to zero would prompt the autopilot

to primarily maintain airspeed target using throttle and could stabilize the glide slope

more.

62

0100200300400500600700800900
Distance to Landing Target [ft]

0

20

40

60

80

100

La
se

r
A

lt
im

et
er

 A
lt
it
ud

e
[ft

]

Auto Land Data
5.1° Trajectory

Figure 4.4: Anaconda Auto Land Performance, Trajectory

Attitude response during approach and landing is shown in Figure 4.5 and Figure4.6.

In both Figures, the green trace is the desired attitude and the red trace is the mea-

sured attitude. Pitch and roll response in general is acceptable, but pitch overshoot

was common was near the end of the approach as shown in Figure 4.5. In nor-

mal flight, the primary flight control PID gains performed outstanding considering

the amount of time spent tuning gains. ArduPlane features an auto tune capabil-

ity where the flight controller “learns” the response of the aircraft and adjusts PID

gains by monitoring pilot input versus attitude response. Over the course of a 10-15

minute auto tune session most fixed wing aircraft have an 80-85% gain solution that

facilitates GNSS guided waypoint flight in most flight conditions. Auto tune is one of

ArduPlane’s most impressive features and eliminates a notoriously difficult aspect of

setting up a new aircraft. However, a precision approach and landing could benefit

from the extra 10-15% response performance that manual tuning can accomplish.

63

Figure 4.5: Anaconda Auto Land Performance, Pitch Desired/Actual Trace

Figure 4.6: Anaconda Auto Land Performance, Roll Desired/Actual Trace

Consistent flare initiation at the aim point produced repeatable wheel stop loca-

tions as shown in Figure 4.7. On the majority of approaches flare is initiated con-

sistently between 200 and 150 feet to the landing target. The consistent flare at the

desired aim point resulted in the greatest number of wheel stop distances within 50

feet. Factors discussed above such as reducing airspeed correction via pitch input and

further tuning of autopilot gains could increase trajectory tracking consistency to the

aim point. Figures 4.8 and 4.9 are histograms of airspeed and altitude performance

at short final. The target for all runs was 28 knots and 80 feet, respectively.

In summary, despite variability and off condition airspeed or altitude (Figures

4.8 and 4.9), the aircraft still consistently lands adequately. A cumulative probability

function was generated using recorded wheel stop distances with respect to the desired

landing point and is shown in Figure 4.10. The dashed lines represent the 95%

confidence bounds. Conservatively, using the lower 95% confidence bound, there is

an 80% probability that the fixed wing aircraft will stop within 100 feet of the desired

point.

64

050100150200250300
Flare Initiation, Distance to Landing Target [ft]

0

50

100

150

200

W
he

el
 S

to
p,

 D
is

ta
nc

e
to

 L
an

di
ng

 T
ar

ge
t

[ft
]

Figure 4.7: Anaconda Auto Land Performance, Flare Initiation

0
0

2

50 32

Fr
eq

ue
nc

y 4

Wheelstop from Target [ft]

30100

Short Final Airspeed [kts]

6

28150
26

Figure 4.8: Anaconda Auto Land Performance, Short Final Airspeed Histogram

65

0
0

2

50

Fr
eq

ue
nc

y

90

4

Wheelstop from Target [ft]

100 85

Short Final Altitude [ft]

6

80150 75
70

Figure 4.9: Anaconda Auto Land Performance, Short Final Altitude Histogram

20 40 60 80 100 120 140 160 180 200
Wheel Stop Distance From Desired Landing Point [ft]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ro

ba
bi

lit
y

Figure 4.10: Anaconda Auto Land Performance, Wheel Stop Target Cumulative
Probability

66

4.2 Multi-Rotor Flight Test

The multi-rotor test plan was executed six times for each vehicle. Figure 4.1 and

Figure 4.2 show results for the DJI Mavic and 3DR Solo, respectively. Measurements

were made after landing with respect to initial launch position. Measurements were

made with a hand tape from the approximate center of mass of each vehicle. Wind

conditions were 5 knots and 6 knots, SSE, over a 10 minute average for the Solo

and Mavic tests, respectively. The 3DR Solo average accuracy with respect to initial

launch position was 35 inches with a standard deviation of 11 inches. The DJI Mavic

performed better, as expected, with its additional sensors. Average error from launch

point was 5 inches with a standard deviation of 3 inches.

Table 4.1: Mavic Precision Landing Tests

Target Lat Target Lng Reported Lat Reported Lng Target Delta [in]
36.16217 -96.83567 36.16217 -96.83567 9
36.16217 -96.83567 36.16217 -96.83567 2
36.16215 -96.83567 36.16215 -96.83567 7
36.16215 -96.83567 36.16215 -96.83567 5
36.16214 -96.83567 36.16214 -96.83567 4
36.16214 -96.83567 36.16214 -96.83567 3

Table 4.2: Solo Precision Landing Tests

Target Lat Target Lng Reported Lat Reported Lng Target Delta [in]
36.16217 -96.83566 36.16217 -96.83566 24
36.16217 -96.83565 36.16217 -96.83566 48
36.16217 -96.83565 36.16217 -96.83565 38
36.16217 -96.83566 36.16217 -96.83565 48
36.16217 -96.83566 36.16217 -96.83566 27
36.16216 -96.83565 36.16216 -96.83565 24

67

4.3 Wake Vortex Considerations

A key motivator to maintain “well clear” of other aircraft is not only to avoid a

collison, but also to prevent wake vortex encounters and subsequently, hazardous

effects. As lift varies across an aircraft wingspan, circulation is shed as a vortex

sheet that starts at the trailing edge and progresses downstream. The vortex wake

formation begins as the initial high-pressure swirl from the lower surface of the wing

creates the tip vortex which then sucks in more of the trailing edge vortex sheet

further downstream in a process commonly referred to as vortex rollup. The result

is a well-defined pair of oppositely signed vortices—usually completely and distinctly

formed several wingspans downstream. Aircraft wings normally have finite length

discontinuities throughout the span like flaps and ailerons. These surfaces also create

varying strength tip vortices and sheets where each distinct cross-section of vorticity

distorts over time combining into the final vortex wake structure downstream.

A primary objective of early wake vortex research was to formulate analytical

closed form solutions to quantify worst case scenarios for a wake vortex encounter.

A common result of intercepting a strong wake vortex is an induced roll moment

that could exceed available roll control. Other effects depend on the orientation of

the following aircraft and the wake vortex. For example, flying perpendicularly into

a vortex core will impart large structural loads that could excite aero-elastic modes

resulting in failure of the structure. A more common scenario is simply flying into

the downwash area before full vortex wake rollup. These scenarios are shown in

Figure 4.11.

Rossow presents several early closed form solutions, but many are based on knowl-

edge of the vortex geometry with respect to the aircraft wing [35]. In most cases,

the vortex core radius and orientation is unknown and must be assumed. Hallock

presents a simplified metric based on the roll moment coefficient, Cl, induced by a

point vortex located at the center of a wing (fuselage), see Equation 4.1 [36].

68

Figure 4.11: Wake vortex encounter scenario [35]

Cl =
CLαΓ

2πU∞b
(4.1)

CLα is the 3-D lift curve slope, Γ is vortex circulation, U∞ is aircraft speed, and

b is the aircraft wingspan. Zheng and Ash also state that the maximum roll moment

coefficient occurs when the following wing center is located at the vortex core [37].

Although not experimentally tested in this study, a brief analysis of potential

wake vortex hazards was performed using conservative calculation methods. Induced

roll is typically a hazard for aircraft in a leader follower formation. Normally, an

incremental change in roll moment is provided via an aileron or similar control surface

that modifies the spanwise lift distribution of a wing. Roll control power, Clδa , can be

approximated using a strip integration method as shown in Equation 4.2. The same

method can be used to calculate roll moment coefficient due to a vortex encounter

[36, 38]. An expression for the strength of the vortex can be calculated assuming

an elliptic lift distribution for a generating aircraft, shown in Equation 4.3, where

W is the weight, U∞ is the flight speed, and b′ is the effective span of the vortices

(π
4
b). The expression for roll moment coefficient induced by a vortex in Equation 4.4

assumes a point vortex at the center of a wing with no diffusion or decay. CLαw in

both expressions is the 3D lift curve slope corrected for aspect ratio (AR = b2/S)

where y is the control surface dimension.

69

Clδa =
2CLαwτ

Sb

∫ y2

y1

cy dy (4.2)

Γ =
W

ρU∞b′
(4.3)

Clv =
CLαwΓ

2πU∞b
(4.4)

Assume an Anaconda encounters another similarly sized aircraft and then a vehicle

similar to the Penguin-B, which is on the larger side of the small UAS spectrum [39].

For the first scenario, the following Anaconda has approximately 70% available roll

control after a direct encounter with a similarly sized vehicle. The RMRC Anaconda

used in this study has rectangular wing planform with large aileron surfaces capable

of large deflections. For the second scenario, an Anaconda encountering a Penguin-B

sized vehicle, about 50% roll control remains for counter control. This assumes roll is

input instantaneously and that the circulation strength of the vortex does not decay.

Although the method is conservative, similar approaches are used in conjunction with

LIDAR measurements to provide vortex circulation estimates of generating aircraft

and characterization of potential roll hazards.

A popular concept for an active system to prevent wake vortex encounters utilizes

ADS-B out data from surrounding traffic to create a fast time wake vortex model [10].

The predicted hazard corridor is compared to the predicted UA flight path. If there

is a potential conflict, an avoidance maneuver is commanded. The general concept

block diagram is shown in Figure 4.12. Another method for avoiding multi-rotor

downwash is presented by Yeo, et. al. [40]. Yeo details an active pressure sensing

probe system mounted on a multi-rotor vehicle coupled with a estimation algorithm

that detects, localizes, and avoids a vertical disturbance via a path planner.

70

Table 4.3: Small UAS Vortex Encounter Scenarios

Anaconda/Anaconda Scenario
Lead Aircraft Flight Speed 40 [ft/s]
Lead Aircraft Weight 10 [lb]
Lead Aircraft Vortex Circulation 20 [ft2/s]
Following Aircraft Flight Speed 40 [ft/s]
Following Aircraft Roll Control Power, Clδa 0.5 [rad−1]
Following Aircraft Induced Vortex Roll Coefficient, Clv 0.06
Following Aircraft Roll Control Ratio, (Clv/Clδaδa) 0.26
Penguin-B/Anaconda Scenario
Lead Aircraft Flight Speed 55 [ft/s]
Lead Aircraft Weight 45 [lb]
Lead Aircraft Vortex Circulation 41 [ft2/s]
Following Aircraft Flight Speed 40 [ft/s]
Following Aircraft Roll Control Power, Clδa 0.5 [rad−1]
Following Aircraft Induced Vortex Roll Coefficient, Clv 0.12
Following Aircraft Roll Control Ratio, (Clv/Clδaδa) 0.53

Figure 4.12: Wake Avoidance ADS-B Concept
.

71

CHAPTER 5

Conclusions

5.1 Flight Test Conclusions

An autonomous traffic pattern landing script was developed and tested in conjunction

with auto land capable fixed wing small UAS. The script allows the operator to select

a desired touchdown point and generate a traffic pattern based on wind conditions.

This flight planning and command and control capability is recommended for all fixed

wing aircraft in the cases when landing approaches must be adjusted quickly. The

ability of the fixed wing UAS to report a real time estimate of wind speed and direction

enabled the pattern to be flown with respect to standard procedure of landing into

the wind.

The Autopilot is able to compensate target airspeed for the estimated head winds

and crosswinds. Auto landing performance was demonstrated in winds as high as

16 knots, with maximum crosswind components approaching 10 knots. The wind

estimate from the vehicle is not necessarily meteorological grade, but is more than

sufficient to provide these basic functions to augment fixed wing landing performance

and increase operator situational awareness. As discussed in Chapter ?? wind and

weather sensing were highlighted as areas to improve upon for large scale airspace and

trajectory planning in an eventual UTM system. Most small UAS, even multi-rotors,

can estimate a 2D wind vector with reasonable accuracy. A rich wind vector data set

could be available to more complex, stochastic models within a UTM framework that

can receive estimates from all connected vehicles in real time; similar to the method

proposed by Salazar et. al [32].

72

50 plus approaches (45 landings for record) were conducted during the flight test

campaign with no mishaps. A single landing was waved off due to an unstable ap-

proach, but the autopilot triggered a go-around at its pre-determined glide path error

threshold and successfully rejoined the traffic pattern to land during the next at-

tempt, autonomously. Performance was sufficient for a 600 foot long runway surface,

specifically for the fixed wing aircraft. Flight test data showed an 80% likelihood

of landing within 100 feet of the desired point. Consistent flare initiation resulted

in best landing performance. Further tuning of autopilot gains and autopilot prior-

itization of throttle control for airspeed correction would likely increase trajectory

tracking consistency to the aim point. Demonstrated fixed wing landing performance

appears to agree with the general rule of thumb of general aviation approach and

landing technique: aim for the first third of the runway, allow the second two thirds

for flare and roll out. A 3,000 foot runway should accommodate all small UAS up to

55 pounds.

Given a maximum altitude of 400 feet AGL dictated by part 107 regulations, a

standard small UAS fixed wing traffic pattern should be flown starting at 200 feet

AGL downwind. A loiter transition down to pattern altitude is preferred. Glide

slope is dependent on obstacle height along the intended approach path. A short

final waypoint fix, to engage the precision portion of the approach, can be added

to allow the vehicle to stabilize once clear of obstacles. However, a short final fix

too close to the runway threshold can introduce excess barometer/laser altimeter

error that requires the vehicle to readjust glide path too quickly with respect to the

landing target. Additionally, the navigation waypoint radius threshold should be

dynamically adjusted based on wind conditions to ensure stable cross track during

each maneuver leg of the traffic pattern. Finally, multi-rotor aircraft should fly traffic

patterns opposite of fixed wing traffic at 100 feet AGL, similar to existing general

aviation best practice. For example, if a fixed wing aircraft is entering the left hand

73

pattern at 200 ft AGL, a multi-rotor should execute a right hand pattern at 100 ft

AGL to remain well clear of the fixed wing traffic.

In conclusion, hardware and software are currently available with acceptable

SWAP that enable precision approach and landing of both fixed-wing and multi-

rotor vehicles. The systems characterized in this paper are on the smaller side of

the 55 pound small UAS category, but are inherently scalable. ArduPlane provides

a robust software architecture, advanced flight features, and adaptability suited to

larger UAS via intuitive tuning and configuration. Hardware wise, fixed-wing single

constellation GNSS module HDOP values less than 1.0 at 2 standard deviations were

observed and all flight test landings fell within the 55 foot wide boundaries of the

runway surface. Redundant dual band GNSS capability should virtually eliminate

concerns of hardware failure or coverage dropout. Precision range finding devices on

both fixed-wing and multi-rotor vehicles are critical. Laser altimeters provide high

quality measurements at altitudes necessary for fixed wing precision approaches and

landings while vision or sonar based systems drastically improve multi-rotor precision

landing capabilities.

5.2 General Aviation Infrastructure Case Study

Initial concepts and development of higher volume UAS facilities are co-located at

the regional airport scale and below. This includes local airports that account for

38% of all National Plan of Integrated Airport Systems (NPIAS) Airports. NPIAS

Airports have been deemed important to the national airspace system by the FAA and

thus eligible for federal funding under the Airport Improvement Program (AIP). The

FAA defines regional airports as non-primary airports (some have commercial service)

serving a metropolitan urban core population of at least 50,000 or a micropolitan

urban core population of 10,000 to 50,000 [41]. Regional airports have high levels of

activity and support both multi-engine and jet operations. Local airports support

74

mainly piston aircraft and are located near larger population areas, but not always as

part of a metro or micropolitan demographic. One of the first planned higher volume

UAS facilities is the Grand Sky UAS Business & Aviation Park in North Dakota.

The facility is attached to Grand Forks Air Force Base with direct runway access.

Figure 5.1 shows the conceptual layout of the facility. As of April 2017 the facility

began operating flights beyond visual line of sight within a 60 nautical mile radius

under FAA waiver.

Figure 5.1: Grand Sky UAS Business & Aviation Park [42]

Grand Sky is intended to be a UAS research, testing, and training facility capa-

ble of supporting high altitude, long endurance UAS operations. However, a similar

approach of using existing regional and local airport infrastructure to stage higher

volume UAS operations will continue across the United States. Small UAS, as cur-

rently defined by the FAA, have a maximum takeoff weight of 55 pounds; the same as

the Department of Defense (DoD) definition of Group II tactical UAS. Commercial

off the shelf (COTS) internal combustion powered fixed wing UAS in this category

are capable of flight times exceeding 12 hours depending on payload configuration

[39]. Assuming UAS operators will mimic existing general aviation aircraft missions

with capable fixed wing small UAS operating beyond visual line of sight (BVLOS), a

back of the envelope expectation of flight hours can be estimated using FAA general

aviation survey data.

75

The FAA collects annual data on aircraft use cases, type, and flight hours [43].

Instructional, aerial agriculture/application, and aerial observation are three use cases

from the general aviation survey with a strong likelihood of being augmented via

UAS operations. For a conservative lower bound estimate, UAS flight hours are

assumed to be a percentage of general aviation flight hours in each category. Using

this heuristic approach and 2015 survey data—523,000 annual UAS flight hours are

expected as shown in Table 5.1, about 1% of total GA flight hours. Similar to general

aviation, instructional flight markets and businesses will develop for UAS operations

as BVLOS training requirements are mandated. Aerial agriculture typically includes

application of fertilizers and pesticides, but the payload capacity of small UAS will

reduce adoption of the mission set in the United States under limited circumstances,

considering the 55 pound weight limit.

Table 5.1: UAS Flight Hour Estimate (rounded to nearest thousand) from 2015 FAA
General Aviation (GA) Survey [43]

Instructional Aerial Agriculture Aerial Observation
GA Hours 4,648,000 941,000 1,412,000
UAS hours 232,000 (5%) 9,000 (1%) 282,000 (20%)

Total 523,000 UAS Flight Hours

Excluding spraying and application, precision agriculture missions still include

surveying, mapping fields, and livestock monitoring. These missions are likely to be

based out of local airport scale infrastructure or separate rural staging. The remote

sensing portion of precision agriculture falls within the third category, along with

majority of potential use cases for small UAS, aerial observation. In 2015, 13% of

total general aviation flight hours were flown by public use aircraft [43]. Nearly all

search and rescue operations, disaster relief, homeland security, and law enforcement

missions are performed by public use aircraft and fall under the aerial observation

category. In addition, aerial observation encompasses industrial inspection and mon-

itoring of national infrastructure—manufacturing facilities, pipelines, electrical grids,

76

roads, dams, bridges, etc. The aforementioned mission sets are rather diverse and

well suited for capable small UAS operations based out of existing general aviation

scale infrastructure, which was designed to support a variety of use cases.

The time horizon for 500,000 UAS flight hours staged at the regional and local

airport scale is unknown. Continuing the heuristic discussion, several regulatory issues

need be addressed, primarily BVLOS. The time line for BVLOS is also uncertain,

but it is conservative to expect regulations within the next 10 years. Flight hours

are assumed to accumulate rather quickly once in place. For comparison, the 500,000

small UAS flight hour milestone could be easily be exceeded within the first year of

FAA Part 107 operations if each commercially registered UAS flew slightly more than

10 hours annually. There are no direct source methods for gathering Part 107 UAS

operational flight hour data unless the FAA begins to conduct surveys, similar to GA.

Current operations fall under established Part 107 rules and primarily are conducted

within visual line of sight, point launch and recovery. However, over 6,800 Part 107

waivers for operations in controlled airspace were granted in a 2016; along with 20%

of total waivers requesting operations beyond visual line of sight [1].

5.2.1 Elements of Small UAS Operation at Stillwater Regional

Stillwater Regional Airport (KSWO) is a public use city owned airport located in

Stillwater, Oklahoma. The airport has two runways that are 7,401 feet and 5,004 feet

in length. During tower service hours, 0800-2000, KSWO is Class D airspace. In 2016,

American Airlines began daily scheduled service to Dallas Fort Worth International

Airport using a 50-75 seat class commuter jet. KSWO sees a mix of traffic, mostly

general aviation. Oklahoma State University operates a FAA part 141 flight school out

of KSWO. Larger narrow body, single aisle class aircraft are chartered by Oklahoma

State University during athletic seasons and the airport also services military traffic

typically consisting of student pilots training at nearby Vance Air Force Base. KSWO

77

fits the demographic described in the previous section and is a potential candidate to

stage small UAS operations serving the local economy. A concept of operation working

towards a KSWO flight demo is presented that focuses on a systematic crawl, walk,

run test method. Considerations and recommendations for limited KSWO small UAS

operation complying with FAA Part 107 waiver guidelines are presented in conclusion.

Operating Rules and Equipment For Controlled Airspace Entry

There are five operating rules and requirements for Class D airspace [5]. First, there

are no specific manned pilot certifications required for operation in Class D airspace.

However, the UAS pilot in command (PIC) will, at a minimum, posses a commercial

pilot certificate. This ensures that the PIC has experience with all aspects of normal

operations and radio communication. No transponder is required for operation in

Class D airspace, but two way radio contact is required. Arrival and entry rules for

Class D airspace state radio contact before entering the airspace. Since all operations

will be conducted within KSWO Class D airspace, PIC will comply with standard

ground and tower radio procedures—clearance for taxi, hold for takeoff, clear for

takeoff, depart heading, etc.

Aircraft speed must be below 200 knots and there are no separation services

provided to VFR aircraft. The distinction between VFR or IFR UAS should be

avoided unless it is clear that the PIC will be filing an instrument flight plan and

receiving radar vector instructions from regional ATC centers. A current UAS IFR

scenario is typically reserved for high altitude long endurance UAS, like NASA’s

Ikhana. For KSWO UAS operations, the PIC is ultimately responsible for utilizing all

information available via telemetry and observers (ground visual and tower controller)

to maintain safe separation and flight, a pseudo UAS VFR condition.

78

UAS Configuration and Equipment

The recommended UA for KSWO operations is the UAV Factory Penguin-B shown

in Figure 5.2. Penguin-B is a aerodynamic and structurally efficient “small” UA

platform with a wing span of 11 ft and maximum take off weight approaching 50 lbs.

It can be equipped with an internal combustion engine capable of providing more

than enough endurance for the KSWO UAS demo. In the base configuration, a 28cc

engine provides multiple hours of flight. For reference, Penguin-B UAS have flight

proven 20 hour endurance with electronic fuel injection.

Figure 5.2: Penguin-B [39]

Avionics hardware and software architecture is recommended to be similar to

this study, but components added for safety and redundancy. Pixhawk 2.1 offers a

triple redundant, vibration isolated IMUs, dual redundant GNSS, and dual redundant

power distribution. Dual GNSS is supported through both hardware, two physical

receivers, and software, via EKF position blending. Pixhawk 2.1 supports redundant

power distribution architecture as shown in Figure 5.3. Not only does the architec-

79

ture protect against a single point of failure from a battery or electrical hardware

component, but a high quality power distribution board will also passively reduce

risk by supporting much greater power demand from heated IMUs, 2x GNSS, flight

servos, engine ignition, high power telemetry radios, navigation lights, laser altimeter,

ADS-B, etc.

Figure 5.3: Pixhawk 2.1 Redundant Power Distribution Architecture, Mouch Elec-
tronic

The standard for small UAS ADS-B capability is uAvionix’s Ping 2020 transceiver.

The Ping2020 is ADS-B in/out capable, direct integrates with Pixhawk, ArduPlane,

and Mission Planner and is similar in size to a SD card. Nominal transmit power is

20W, which is more than sufficient to broadcast ADS-B out messages to surrounding

KSWO traffic. uAvionix has also released ADS-B in capability integrated with general

aviation electronic flight bag applications for a mere $199. Laser altimeters from

LightWare remain the quality standard for small UAS with respect to size, weight,

80

power, and performance. A laser altimeter provides critical auto landing capability

demonstrated in this study. To increase visibility, beacon and navigation strobe lights

are recommended.

Taxi will be controlled by the PIC, but all flight plans will be autopilot from

takeoff to landing roll out. A manual override and flight control is available to the PIC

via a high power 1W transmitter system. HD full motion video capability provides

increased PIC situational awareness during taxi maneuvers and flight. HD video

transmission range in excess of 2 nautical miles can be achieved by the compact

DJI LightBridge system, the standard for cost effective long distance small UAS

HD video transmission. Upgraded command and control data links are necessary

to ensure reliable communication with the aircraft at further ranges. RFDesign Pty

Ltd offers off the shelf encrypted Pixhawk/ArduPlane compatible telemetry radios

with an effective range exceeding 3 nautical miles with moderate radio line of sight.

Performance is greatly increased by adding directional antenna tracking capability,

which ArduPlane and Mission Planner support natively. An antenna tracker setup

can also incorporate directional video antennas. Table 5.2 summarizes recommended

avionics components.

Table 5.2: KSWO Penguin-B Avionics Components

Component Model or Vendor
Autopilot Hardware and Software Pixhawk 2.1, ArduPlane
GNSS 2x Pixhawk 2.1 Here GNSS modules
Air Data MRobotics Pixhawk 2.1 NextGen Airspeed Sensor
Integrated fuel flow sensor Aero Telemetry SS-FFS-350 or similar
Power Distribution System Mouch Electronic Pixhawk 2.1 Power Cube
Navigation Lights North American Survival Systems DS-30 or similar
Telemetry C2 RFD 900x Encrypted MAVLink Radios
Directional Antenna Tracker Pan-tilt directional mount, various vendors or custom
OR an Antenna Mast Blue Sky Mast
PIC Radio Control DragonLink V3
Laser Altimeter LightWare SF20
ADS-B In/Out uAvionix Ping2020
Full Motion Video DJI Lightbridge 2

81

Concept of Operations

The concept of operations proposed for limited small UAS operation at KSWO is

a systematic craw, walk, run approach. UA platform and avionics architecture are

proposed for performance standards and redundancy. Thorough initial flight testing

and checkout of UA and rehearsal of all planned KSWO operations is conducted in

uncontrolled airspace under normal Part 107 rules before even scheduling KSWO

operations. There are several elements to successful UAS operations first discussed

in Chapter 2, but shown here for convenience in Figure 5.4. This proposal aims

to adhere to key operational elements including UA airworthiness and safety, flight

operations best practices, and robust operator experience, training, and certification.

Figure 5.4: Elements of UAS CONOP, adapted from [12]

The following outline provides recommendations for personnel and responsibilities:

1. UA Pilot-in-Command

(a) Ultimately responsible for UA during operations and sole individual com-

municating on KSWO tower control radio frequency

2. 2x UA Flight Test Engineers

(a) Primarily responsible for generating and maintaining data compendium

detailing airworthiness and performance capability of UA throughout test

program

82

(b) Responsible for autopilot configuration, monitoring UA status, commu-

nicating status to flight crew and PIC, and initiation of autopilot flight

maneuvers during operations

3. UA Crew Chief

(a) Responsible for UA platform logistics and configuration, ramp start pro-

cedures and checks, and taxi marshalling

4. 3x Visual Observers

(a) Responsible for relying available visual status of UAS when prompted by

any flight crew member, also monitors KSWO tower frequency and alerts

flight crew to any visually spotted traffic not previously identified as co-

operative

5. KSWO Tower Operator

(a) Considered “flight director” with the ultimate authority to terminate oper-

ations if necessary (unexpected traffic conditions/workload/weather/etc.)

(b) Provides guidance to any potential manned aircraft in vicinity and also

gives direction and clearance to UA for flight maneuvers

UA PIC, one Flight Test Engineer, and the UA Crew Chief will be co-located at

the main ramp staging area and ground control station. One Flight Test Engineer

will be located in the KSWO Control Tower with tower operations personnel. The

remote Flight Test Engineer will have a remote ground control station configured to

receive multi-point capable telemetry (same data stream as primary control station)

from the UA in flight and also a real time full motion video slave receiver. This

will allow tower operators to monitor UA status in real time. Three visual observers

will be placed in sectors promoting greatest visual coverage of intended UA flight

83

area and surrounding airspace. Communication hierarchy is simple. PIC, Flight

Test Engineers, Crew Chief, and Visual Observers are all communicating on a Multi-

Use Radio Service (MURS) UHF channel. PIC, Flight Test Engineers, and Visual

observers are also monitoring KSWO frequencies, but only PIC is communicating on

KSWO frequencies. Although the hierarchy is simple, flawless communication is one

of the most critical aspects of operation and must be practiced.

As previously mentioned a full autonomous takeoff, traffic pattern, and landing

approach is well into the “run” phase of the demonstration. It is essential to rehearse

all logistics, communication, UA setup, configuration, start up, and ground handling

first. Progression to full flight is also relatively simple in theory, but not in prac-

tice. As mentioned above all procedures in this section are first drilled extensively

under normal Part 107 rules at an acceptable facility. First, every ground maneuver

procedure is rehearsed multiple times: UA configuration and ramp start, ramp taxi,

and runway taxi. Once initial ground handling tests and communication strategy is

practiced, high speed taxi tests can be conducted. These tests are conducted under

full manual PIC control and allow the flight crew and KSWO tower operators to ad-

just to an increasing UA operational tempo. Once high speed taxi is complete, final

feedback from flight crew and KSWO personnel is used to prepare and plan for flight.

It can not be stressed enough that actual flight is the final step in a long workup

process. Invaluable experience and lessons learned are gained working through the

initial stages previously outlined. The proposed flight plan is shown in Figure 5.5.

The red polygon boundary is the GNSS geofence designed to keep the UA inside

an intended flight area away from people and structures. The geofence boundary is

approximately 2 nautical miles from the ramp location at its furthest point. The re-

quired geofence boundary to keep the UA flight path away from people and structures

makes approach and landing viable using only runway 17. Conditions must be favor-

able for a right hand traffic pattern to runway 17. The traffic pattern is exactly the

84

same as demonstrated in this study. Initial pattern altitude is 200 feet when crossing

the transition to final over an approach corridor free of obstacles. A 3◦ glide slope is

recommended to the desired landing target. PIC has necessary tools and telemetry to

determine if the approach needs to be modified on first attempt via methods similar

to the auto land traffic pattern script developed and demonstrated as part of this

study. The purple waypoints in Figure 5.5 are example common rally points that can

be used by any member of the flight crew to quickly reference instructions. Each rally

point is assigned a phonetic call sign, i.e. Alpha, Bravo, etc. For example, KSWO

tower could then provide instructions for PIC to hold at rally point Alpha to allow

fixed wing traffic to pass or land. The boxed blue areas in Figure 5.5 are locations

of the remote visual observers. Examples of nominal operational procedural flow is

shown in the next paragraph.

Figure 5.5: KSWO UA Flight Plan

85

The nominal procedural flow developed for small UAS flight operations is a de-

tail oriented, collaborative effort modeled and adapted from existing manned aircraft

flight operations. Flight logs and configuration management of both hardware and

software is necessary to document airworthiness and incremental changes of the pro-

posed Penguin-B UA as its test program progresses towards KSWO operations. For

each configuration entry, a separate document should contain details as to how and

why the change was performed, its intended impact on the system, and the change

authority.

A detailed day of operations preparatory briefing is outlined in the Appendix, this

is mandatory before any operations, even for the first electrical and data connection

test of the UA at KSWO. The flight or test card should be briefed by the PIC to the

flight crew or test director prior to takeoff. A flight/test card is a one to two page

document that organizes all relevant information pertaining to the flight session. Test

objectives should be listed along with current weather conditions, flight limits or go,

no go criteria, aircraft configuration, weight and balance, and test procedure. A

sample test card is shown in Figure 5.6.

After the test card is briefed, the flight crew moves to all necessary preflight

setup and checklists. Five operating checklists were developed for the Anaconda in

this study: preflight, autopilot configuration, after start, before takeoff, and before

landing. The checklists are modeled after call and response crewed aircraft check-

lists. This style requires the operators to “be in the loop” at all times and promotes

cross checking of critical actions prior to key stages of the flight. For example, the

before landing checklist is shown in Figure 5.7. Sample Anaconda documentation

shown in the Appendix is suitable as a baseline for Penguin-B KSWO documentation

development.

86

Figure 5.6: Flight Plan Card or Flight Test Card Sample

87

Figure 5.7: Before Landing Checklist, Anaconda

88

FAA Part 107 Waivers

Under current FAA Part 107 Small UAS rules, operation in Class D airspace is pro-

hibited without a relevant waiver exempting the controlled airspace restriction. As

mentioned in Chapter 2, UAS facility maps will be published surrounding certain low

volume controlled airspace. However, these facility maps are intended to quickly ap-

prove low altitude operations that maintain a stand off radius from an active airport

facility. Several UTM commercial partners have also announced direct integration

with FAA and airports to grant real time low altitude airspace authorization [44, 45].

The KSWO UAS demo involves direct use on ramps, taxiways, runways, and flight

within the traffic pattern. Consequently, much more risk reduction, justification, and

planning will be necessary to facilitate two Part 107 waivers for operation at KSWO.

There are explicit FAA guidelines for each waiverable section of Part 107 that

provide recommendations for applicants [46]. The methodology outlined in this pro-

posal is specifically designed to increase UAS flight safety and decrease operational

risk. Close coordination between small UAS operators, KSWO airport management,

and tower controllers is essential to proving the concept. Flight operations will not be

conducted without detailed planning, feedback, and endorsement from KSWO. Part

§107.41 and §107.31 are aggressive measures designed to reduce risk for small UAS

operations. Section §107.41 prohibits flight in controlled airspace. Section §107.31

specifies that an operator or visual observer must maintain unaided visual line of

sight of the small UAS and determine its altitude, heading, and attitude. Operations

will be in compliance with all other provisions of Part 107. The specific waiver guide-

lines are described below and addressed with proposed justification and mitigation

strategy.

89

1. §107.31 Visual line of sight aircraft operation

(a) Provide the method by which the remote pilot will be able to continuously

know and determine the position, altitude, attitude, and movement of

their small unmanned aircraft and ensure the aircraft remains in the area

of intended operation without exceeding the performance capabilities of

the command and control link.

i. UAS will return to a predetermined rally point inside flight

area if geofence boundary is breached

ii. Telemetry command and control data link has demonstrated

additional performance margin 2 nautical miles beyond in-

tended geofence flight area

iii. If telemetry command and control data link is lost, aircraft

will return to a predetermined rally point inside intended

flight area

iv. If manual override command and control data link is lost,

UA will return to a predetermined rally point inside intended

flight area

v. If both telemetry and manual override data links are lost,

UA will automatically enter traffic pattern and land

vi. ADS-B also provides position data as a backup, but is pri-

marily used to avoid conflict with manned aircraft traffic

vii. Visual observers will be placed along the anticipated traffic

pattern flight plan for risk reduction and contingency, but

are not primary method for determining aircraft altitude,

heading, and attitude.

(b) Provide a method for the remote pilot to avoid other aircraft, flying over/into

90

people on the ground, and ground-based structures and obstacles at all

times.

i. Geofence flight area avoids ground based structures and peo-

ple

ii. UA flight operations conducted during pre-arranged low traf-

fic density windows for complete cooperation of KSWO man-

agement and tower controllers

iii. KSWO Class D airspace NOTAM for limited UAS opera-

tional windows

iv. KSWO tower will periodocally broadcast countdown alerts

on control frequency before commencing and at conclusion

of UAS operations

v. KSWO tower will alert traffic of UAS operational status upon

initial radio contact

vi. UAS PIC will acknowledge KSWO tower instructions over

frequency per standard procedure and will also announce

flight intentions and position over frequency when possible

(avoid radio clutter)

vii. UAS broadcasts ADS-B out messages well beyond KSWO

Class D airspace boundary

viii. UAS ADS-B In and automatic avoidance capability

ix. KSWO tower controllers manage control frequency and pro-

vide instructions to vector UA and any manned traffic

x. Ground based visual observers can also alert PIC to traffic

(c) Provide a method to increase conspicuity of the small unmanned aircraft

to be seen at a distance of at least 3 statute miles unless a system is in

91

place that can avoid all non-participating aircraft.

i. Class D airspace requires radio contact prior to entry

ii. UA operations conducted with tower control staffing

iii. UAS ADS-B In/Out and automatic avoidance capability

iv. UAS equipped with daytime navigation and strobe lights vis-

ible to 3 statute miles

(d) Provide a method by which the remote pilot is alerted of a degraded small

unmanned aircraft system function.

i. PIC and flight team monitor telemetry alerts regarding flight

critical systems such as engine fuel flow, battery voltages, and

autopilot status

ii. Ground based visual observers and KSWO tower spotters can

alert PIC to degraded system function, i.e. engine loss

(e) Provide a method to assure all required persons participating in the opera-

tion have relevant knowledge of all aspects of operating a small unmanned

aircraft that is not in visual line of sight of the remote pilot.

i. PIC is a commercially rated manned aircraft pilot with XX.XX

number of flight hours and XX.XX number of UAS flight

hours

ii. Flight test engineers specialize in UAS systems engineering,

have remote pilot certificates, and XX.XX number of UAS

operational flight hours

iii. UA Crew Chief specializes in UAS systems engineering, has

remote pilot certificate, and XX.XX number of UAS opera-

tional flight hours

92

iv. Ground based visual observers have at a minimum, remote pi-

lot certificates and XX.XX number of UAS operational flight

hours

v. KSWO Control Tower Operators hold Control Tower Oper-

ator Certificates

2. §107.41 Operation in certain airspace

(a) Provide a method to ensure the small unmanned aircraft will operate safely

and efficiently within the specified controlled airspace without obtaining

prior authorization from Air Traffic Control.

i. Overall plan and strategy designed to mitigate risk as much

as possible and facilitate safe and efficient flight, but is only

conducted under direct guidance from KSWO Tower Control.

(b) Provide contact instructions for ATC in case the operation needs to be

terminated.

i. KSWO control tower has authority to terminate operations

at any time for any reason

ii. UAS PIC and KSWO control tower in constant two way radio

communication

93

94

APPENDIX A

Appendix

A.1 Autoland Traffic Pattern Script

1 # -*- coding: utf-8 -*-

2 """

3 Created on July 5 13:21 2017

4

5 @author: Notsure

6 """

7

8 import os

9 import datetime

10 import socket

11 import sys

12 import math

13

14 from math import sqrt

15 import clr

16 import time

17 import re, string

18 import MissionPlanner

19 clr.AddReference("MissionPlanner.Utilities") #includes the Utilities class

20 clr.AddReference("MAVLink") # includes the Utilities class

21 import MAVLink

22 from MissionPlanner.Utilities import Locationwp

23 from MissionPlanner.Utilities import PointLatLngAlt

24 from MissionPlanner.GCSViews import FlightPlanner

25 #adding external library locations

26 #RH workstation

27 #sys.path.append("C:\Anaconda\Lib\site-packages")

28

29 #notsure

30 sys.path.append("D:\Anaconda2\Lib\site-packages")

31 #AutoHotKey for the functionality behind private classes that cannot be

accessed by Python↪→

32 import ahk

33 import csv

34 import glob

95

35 import mmap

36

37 #getting file path for summary text file output

38 dir_path = os.path.dirname(os.path.realpath(__file__))

39

40

41

42

43 #functions ==

44

45

46 #extrapolate latitude/longitude given a heading and distance

47 #http://www.movable-type.co.uk/scripts/latlong.html

48 def newpos(bearing,distance,lat,lng):

49 lat1 = math.radians(lat)

50 lon1 = math.radians(lng)

51 brng = math.radians(bearing)

52 dr = distance / 6378100.0 # / radius of earth in meters

53

54 lat2 = math.asin(math.sin(lat1) * math.cos(dr) + math.cos(lat1) *

math.sin(dr) * math.cos(brng))↪→

55 lon2 = lon1 + math.atan2(math.sin(brng) * math.sin(dr) *

math.cos(lat1), math.cos(dr) - math.sin(lat1) * math.sin(lat2))↪→

56

57 lat_out = math.degrees(lat2)

58 lng_out = math.degrees(lon2)

59 return lat_out,lng_out

60

61 #clear active flight plan -using AHK

62 def clear_flight_plan_active():

63 MissionPlanner.MainV2.instance.FlightPlanner.Activate() y

64 print 'Start approach procedure, clearing flight plan screen'

65 Script.Sleep(3000) #sleep in ms

66

67 #ahk call to clear flight plan

68 #initialize the ahk script thread

69 autohotkey_script = ahk.Script()

70 #activating mission planner window

71 autohotkey_script.click()

72 Script.Sleep(350)

73 #switching to flight plan screen

74 autohotkey_script.send("{F3}","Send")

75

76 Script.Sleep(350)

77 #right click flight plan map

78 autohotkey_script.click("right",1,889,147)

79 Script.Sleep(350)

80 #clear flight plan

96

81 autohotkey_script.click("",1,971,356)

82 Script.Sleep(350)

83

84 MissionPlanner.MainV2.instance.FlightPlanner.fullpointlist.Clear()

85

86 #clearing user LZ selection

87 def clear_flight_plan_user_LZ():

88

89 autohotkey_script = ahk.Script()

90 #right click flight plan map

91 autohotkey_script.click("right",1,889,147)

92 Script.Sleep(500)

93 #clear flight plan

94 autohotkey_script.click("",1,971,356)

95 Script.Sleep(500)

96

97 #generate the left hand traffic pattern from LZ selection

98 def left_hand_traffic_pattern(LZ_lat,LZ_lng):

99

100 # 0 - lat, 1 - lng

101 #left hand traffic pattern

102 #short final

103 short_final = newpos(0,255,LZ_lat,LZ_lng)

104 #final

105 final = newpos(0,200,short_final[0],short_final[1])

106 #basegen

107 base = newpos(90,200,final[0],final[1])

108 #downwind/IAF

109 downwind = newpos(180,445,base[0],base[1])

110

111 #adding to FP - distance argument is in units as selected on MP

112 #use feet because no one uses meters in aviation/aeronautics...

113 #downwind/IAF

114 #Syntax is shortened for inclusion into appendix

115 #As follows:

MissionPlanner.MainV2.instance.FlightPlanner.InsertCommand↪→

116 InsertCommand(1,MAVLink.MAV_CMD.WAYPOINT,0,0,0,0,downwind[1],downwind[0],200)

117 #base

118 InsertCommand(2,MAVLink.MAV_CMD.WAYPOINT,0,0,0,0,base[1],base[0],150)

119 #final

120 InsertCommand(3,MAVLink.MAV_CMD.WAYPOINT,0,0,0,0,final[1],final[0],125)

121 #short final

122 InsertCommand(4,MAVLink.MAV_CMD.WAYPOINT,0,0,0,0,short_final[1],short_final[0],80)

123 #LZ

124 InsertCommand(5,MAVLink.MAV_CMD.LAND,0,0,0,0,LZ_lng,LZ_lat,0)

125 InsertCommand(6,MAVLink.MAV_CMD.CONTINUE_AND_CHANGE_ALT,1,0,0,0,0,0,100)

126 InsertCommand(7,MAVLink.MAV_CMD.DO_JUMP,1,-1,0,0,0,0,0)

127

97

128 #generate the right hand traffic pattern from LZ selection

129 def right_hand_traffic_pattern(LZ_lat,LZ_lng):

130

131 # 0 - lat, 1 - lng

132 #right hand traffic pattern

133 #short final

134 short_final = newpos(180,255,LZ_lat,LZ_lng)

135 #final

136 final = newpos(180,200,short_final[0],short_final[1])

137 #base

138 base = newpos(90,200,final[0],final[1])

139 #downwind/IAF

140 downwind = newpos(0,445,base[0],base[1])

141

142 #adding to FP - distance argument is in units as selected on MP

143 #use feet because no one uses meters in aviation/aeronautics...

144 #downwind/IAF

145 #Syntax is shortened for inclusion into appendix

146 #As follows:

MissionPlanner.MainV2.instance.FlightPlanner.InsertCommand↪→

147 InsertCommand(1,MAVLink.MAV_CMD.WAYPOINT,0,0,0,0,downwind[1],downwind[0],200)

148 #base

149 InsertCommand(2,MAVLink.MAV_CMD.WAYPOINT,0,0,0,0,base[1],base[0],150)

150 #final

151 InsertCommand(3,MAVLink.MAV_CMD.WAYPOINT,0,0,0,0,final[1],final[0],125)

152 #short final

153 InsertCommand(4,MAVLink.MAV_CMD.WAYPOINT,0,0,0,0,short_final[1],short_final[0],80)

154 #LZ

155 InsertCommand(5,MAVLink.MAV_CMD.LAND,0,0,0,0,LZ_lng,LZ_lat,0)

156 InsertCommand(6,MAVLink.MAV_CMD.CONTINUE_AND_CHANGE_ALT,1,0,0,0,0,0,100)

157 InsertCommand(7,MAVLink.MAV_CMD.DO_JUMP,1,-1,0,0,0,0,0)

158

159 #generate comprehensive approach summary data

160 def approach_summary(LZ_lat,LZ_lng):

161 #getting file path for summary text file output

162 #dir_path = os.path.dirname(os.path.realpath(__file__))

163 #start approach summary

164 Script.Sleep(8000)

165 count = 0

166 count2 = 0

167 count3 = 0

168 count4 = 0

169 glide_sys_time = datetime.datetime.now().strftime("Autoland

glideslope log %Y %m %d %H %M %S")↪→

170 glide_file_path = "%s\%s.txt" % (dir_path,glide_sys_time)

171 glide_file = open(glide_file_path,"w")

172 glide_file.write("Traffic Pattern, %s" % pattern)

173 glide_file.write("\n")

98

174 glide_file.close()

175 #glide_target_alt = []

176 #glide_alt = []

177 #glide_sonarrange = []

178 while cs.mode == 'Auto':

179 if cs.wpno == 5:

180 glide_file = open(glide_file_path,"a")

181 glide_file.write("WP_dist, %d," % cs.wp_dist)

182 glide_file.write("Laser_alt, %d," % cs.sonarrange)

183 glide_file.write("Baro_alt, %d" % cs.alt)

184 glide_file.write("\n")

185 glide_file.close()

186 #glide_target_alt.append(cs.targetalt)

187 #glide_alt.append(cs.alt)

188 #glide_sonarrange.append(cs.sonarrange)

189

190

191 if cs.wpno == 5 and count == 0:

192 count = count + 1

193 sys_time =

datetime.datetime.now().strftime("Autoland log

%Y %m %d %H %M %S")

↪→

↪→

194 gpstime_short_final = cs.gpstime

195 alt_short_final = cs.alt

196

197 #getting target wp's for summary

198 short_final_target_lat =

MissionPlanner.MainV2.instance.FlightPlanner.pointlist[4].Lat↪→

199 short_final_target_lng =

MissionPlanner.MainV2.instance.FlightPlanner.pointlist[4].Lng↪→

200 short_final_actual_lat = cs.lat

201 short_final_actual_lng = cs.lng

202

203 short_final_wind_dir = cs.wind_dir

204 short_final_wind_vel = cs.wind_vel

205 #gpstime_short_final = cs.gpstime

206 file_path = "%s\%s.txt" % (dir_path,sys_time)

207 f = open(file_path, "w")

208 f.write("GPS Time Short Final, %s" %

gpstime_short_final)↪→

209 f.write("\n")

210 f.write("Traffic Pattern Type, %s" % pattern)

211 f.write("\n")

212 f.write("Target Lat Short Final, %f" %

short_final_target_lat)↪→

213 f.write("\n")

214 f.write("Target Lng Short Final, %f" %

short_final_target_lng)↪→

99

215 f.write("\n")

216 f.write("Actual Lat Short Final, %f" %

short_final_actual_lat)↪→

217 f.write("\n")

218 f.write("Actual Lng Short Final, %f" %

short_final_actual_lng)↪→

219 f.write("\n")

220 f.write("Altitude Short Final, %d" %

alt_short_final)↪→

221 f.write("\n")

222 f.write("Wind Direction Short Final, %d" %

short_final_wind_dir)↪→

223 f.write("\n")

224 f.write("Wind Velocity Short Final, %d" %

short_final_wind_vel)↪→

225 f.close()

226

227 if cs.ch3percent <= 5 and count2 == 0 and cs.wpno == 5 and

cs.sonarrange <= 5 and cs.alt <= 5:↪→

228 count2 = count2 + 1

229 arspd_flare_target = cs.targetairspeed

230 arspd_flare_actual = cs.airspeed

231 flare_wind_dir = cs.wind_dir

232 flare_wind_vel = cs.wind_vel

233 sink_rate_flare = cs.verticalspeed

234 alt_flare = cs.alt

235 throttle_flare = cs.ch3percent

236 alt_flare_laser = cs.sonarrange

237 LZ_flare_lat = cs.lat

238 LZ_flare_lng = cs.lng

239 gpstime_flare = cs.gpstime

240 flare_stats = cs.messageHigh

241 f2 = open(file_path, "a")

242 f2.write("\n")

243 f2.write("\n")

244 f2.write("GPS Time Flare, %s" % gpstime_flare)

245 f2.write("\n")

246 f2.write("Flare Baro Alt, %d" % alt_flare)

247 f2.write("\n")

248 f2.write("Flare Laser Alt, %d" % alt_flare_laser)

249 f2.write("\n")

250 f2.write("Throttle percent flare, %d" %

throttle_flare)↪→

251 f2.write("\n")

252 f2.write("Flare Lat, %f" % LZ_flare_lat)

253 f2.write("\n")

254 f2.write("Flare Lng, %f" % LZ_flare_lng)

255 f2.write("\n")

100

256 f2.write("Flare Target Airspeed, %d" %

arspd_flare_target)↪→

257 f2.write("\n")

258 f2.write("Flare Actual Airspeed, %d" %

arspd_flare_actual)↪→

259 f2.write("\n")

260 f2.write("Flare Wind Direction, %d" %

flare_wind_dir)↪→

261 f2.write("\n")

262 f2.write("Flare Wind Velocity, %d" %

flare_wind_vel)↪→

263 f2.write("\n")

264 f2.write("Sink Rate, %d" % sink_rate_flare)

265 f2.write("\n")

266 f2.write("ArduPlane returned landing stats, %s" %

flare_stats)↪→

267 f2.close()

268

269 if cs.sonarrange <= 1.5 and cs.wpno == 5 and count3 == 0:

270 count3 = count3 + 1

271 gpstime_LZ = cs.gpstime

272 arspd_lz_target = cs.targetairspeed

273 arspd_lz_actual = cs.airspeed

274 LZ_sinkrate = cs.verticalspeed

275 LZ_actual_lat = cs.lat

276 LZ_actual_lng = cs.lng

277 LZ_laser_alt = cs.sonarrange

278 LZ_alt = cs.alt

279 LZ_vibez = cs.vibez

280 f3 = open(file_path, "a")

281 f3.write("\n")

282 f3.write("\n")

283 f3.write("GPS Time Touchdown, %s" % gpstime_LZ)

284 f3.write("\n")

285 f3.write("Touchdown Lat, %f" % LZ_actual_lat)

286 f3.write("\n")

287 f3.write("Touchdown Lng, %f" % LZ_actual_lng)

288 f3.write("\n")

289 f3.write("Target Lat, %f" % LZ_lat)

290 f3.write("\n")

291 f3.write("Target Lng, %f" % LZ_lng)

292 f3.write("\n")

293 f3.write("Laser Alt, %d" % LZ_laser_alt)

294 f3.write("\n")

295 f3.write("Baro Alt, %d" % LZ_alt)

296 f3.write("\n")

297 f3.write("VibeZ, %d" % LZ_vibez)

298 f3.write("\n")

101

299 f3.write("Airspeed Target, %d" % arspd_lz_target)

300 f3.write("\n")

301 f3.write("Airspeed Touchdown, %d" %

arspd_lz_actual)↪→

302 f3.write("\n")

303 f3.write("Sink rate at Touchdown, %d" %

LZ_sinkrate)↪→

304 f3.close()

305

306 if cs.landed == 'True' and cs.groundspeed <= 0.2 and count4

== 0:↪→

307 count4 = count4 + 1

308 gpstime_rollout = cs.gpstime

309 LZ_groundspeed = cs.groundspeed

310 Rollout_lat = cs.lat

311 Rollout_lng = cs.lng

312 f4 = open(file_path, "a")

313 f4.write("\n")

314 f4.write("\n")

315 f4.write("GPS Time Wheelstop, %s" %

gpstime_rollout)↪→

316 f4.write("\n")

317 f4.write("Groundspeed at Wheelstop, %d" %

LZ_groundspeed)↪→

318 f4.write("\n")

319 f4.write("Lat Wheelstop, %f" % Rollout_lat)

320 f4.write("\n")

321 f4.write("Lng Wheelstop, %f" % Rollout_lng)

322 f4.close()

323

324 def select_LZ(traffic_pattern_flag):

325 #clearing active flight plan

326 clear_flight_plan_active()

327 print 'Select the LZ'

328 Script.Sleep(7000)

329 #make sure LZ is selected, explicitly checking if a waypoint was

added on the flight plan map↪→

330 #the desired "LZ", reason > 1 is because home counts as 0, but does

not appear as an entry on the datagrid↪→

331 if MissionPlanner.MainV2.instance.FlightPlanner.pointlist.Count >

1:↪→

332 print 'Reading LZ, generating approach'

333 LZ_lat =

MissionPlanner.MainV2.instance.FlightPlanner.pointlist[1].Lat↪→

334 LZ_lng =

MissionPlanner.MainV2.instance.FlightPlanner.pointlist[1].Lng↪→

335 Script.Sleep(1000)

336 print "LZ Lat: %f" % LZ_lat

102

337 Script.Sleep(1000)

338 print "LZ Lng: %f" % LZ_lng

339 # #clearing LZ selection, prep for approach pattern

340 clear_flight_plan_user_LZ()

341 # generating traffic pattern based on wind estimate

342 if traffic_pattern_flag == 1:

343 right_hand_traffic_pattern(LZ_lat,LZ_lng)

344 elif traffic_pattern_flag == 0:

345 left_hand_traffic_pattern(LZ_lat,LZ_lng)

346 else:

347 print 'Help me Tom Cruise'

348 approach_summary(LZ_lat,LZ_lng)

349 else:

350 sys.exit("LZ not selected, aborting approach")

351

352

353

354 # end functions ===

355 #starting script

356 #wind vector estimate from vehicle, 30 second average

357 print 'Start script, downloading wind estimate from vehicle'

358 #get_wind_estimate()

359 wind_dir = []

360 wind_vel = []

361 arspd = []

362 if math.isnan(cs.wind_vel) or math.isnan(cs.wind_dir) == True:

363 print 'No wind estimate available from vehicle'

364 else:

365 t_end = time.time() + 10

366 while time.time() < t_end:

367 wind_dir.append(cs.wind_dir)

368 wind_vel.append(cs.wind_vel)

369 arspd.append(cs.airspeed)

370

371 wind_dir_est = sum(wind_dir)/len(wind_dir)

372 wind_vel_est = sum(wind_vel)/len(wind_vel)

373 arspd_avg = sum(arspd)/len(arspd)

374 wind_dir_est_integer = int(wind_dir_est)

375

376 if wind_dir_est_integer in range(123,236):

377 print 'Left hand traffic pattern recommended'

378 traffic_pattern_flag = 0 #flag as left hand pattern

379 pattern = "Left"

380 elif wind_dir_est_integer in range(303,360) or wind_dir_est_integer in

range (0,65):↪→

381 print 'Right hand traffic pattern recommended'

382 traffic_pattern_flag = 1 #flag as right hand pattern

383 pattern = "Right"

103

384 else:

385 print 'Help me Tom Cruise'

386 traffic_pattern_flag = 0 #default to left

387 pattern = "Left"

388

389 print "Wind Direction Estimate [deg]: %d" % wind_dir_est

390 Script.Sleep(1000)

391 print "Wind Velocity Estimate [kts]: %d" % wind_vel_est

392 Script.Sleep(1000)

393 print "Average Airspeed Estimate [kts]: %d" % arspd_avg

394

395 txt_count = 0

396 for file in os.listdir(dir_path):

397 if file.endswith(".txt"):

398 txt_count = txt_count + 1

399

400 print "Log Count: %d" % txt_count

401

402 if txt_count >= 1:

403 print 'Timely autoland approaches detected, checking latest traffic

pattern for wind correction'↪→

404 current_approach_log = max(glob.iglob(dir_path + "*.txt"),

key=os.path.getctime)↪→

405 current_approach_log_file = open(current_approach_log, 'r')

406 s = mmap.mmap(current_approach_log_file.fileno(), 0,

access=mmap.ACCESS_READ)↪→

407 print current_approach_log

408 match1 = s.find('Left')

409 match2 = s.find('Right')

410 if match1 != -1 and traffic_pattern_flag == 0:

411 print 'No wind correction needed, proceeding into approach

logging'↪→

412 LZ_lat =

MissionPlanner.MainV2.instance.FlightPlanner.pointlist[5].Lat↪→

413 LZ_lng =

MissionPlanner.MainV2.instance.FlightPlanner.pointlist[5].Lng↪→

414 approach_summary(LZ_lat,LZ_lng)

415 print 'done baby done'

416 elif match2 != -1 and traffic_pattern_flag == 1:

417 print 'No wind correction needed, proceeding into approach

logging'↪→

418 LZ_lat =

MissionPlanner.MainV2.instance.FlightPlanner.pointlist[5].Lat↪→

419 LZ_lng =

MissionPlanner.MainV2.instance.FlightPlanner.pointlist[5].Lng↪→

420 approach_summary(LZ_lat,LZ_lng)

421 print 'done baby done'

422 else:

104

423 print 'Traffic pattern update needed for changing wind

conditions, standby for LZ selection'↪→

424 select_LZ(traffic_pattern_flag)

425 print 'done baby done'

426 else:

427 print 'No timely autoland approaches detected, standby for traffic

pattern generation'↪→

428 select_LZ(traffic_pattern_flag)

429 print 'done baby done'

430

431 # done baby done

105

A.2 Operator Checklists

Figure A.1: Anaconda Operator Checklist, Preflight Part 1

106

Figure A.2: Anaconda Operator Checklist, Preflight Part 2

107

Figure A.3: Anaconda Operator Checklist, Autopilot Configuration GPS Guided

108

Figure A.4: Anaconda Operator Checklist, Autopilot Configuration Takeoff and
Landing, Part 1

109

Figure A.5: Anaconda Operator Checklist, Autopilot Configuration Takeoff and
Landing, Part 2

110

Figure A.6: Anaconda Operator Checklist, Before Takeoff

111

Figure A.7: Anaconda Operator Checklist, Before Landing

112

A.3 Flight Time Log and Configuration Management

Figure A.8: Anaconda Flight Log

113

Figure A.9: Anaconda Configuration Tracking

114

Figure A.10: Anaconda Configuration Tracking, Detailed Entry Sample

115

A.4 KSWO Preflight Briefing Outline

Figure A.11: KSWO Detailed Preflight Brief Outline, Adapted from OSU UAS Flight
Test and Certification Graduate Course, Part 1

116

Figure A.12: KSWO Detailed Preflight Brief Outline, Adapted from OSU UAS Flight
Test and Certification Graduate Course, Part 2

117

BIBLIOGRAPHY

[1] Federal Aviation Administration Forecasts and Performance Analysis Division

(APO-100), “FAA Aerospace Forecast Fiscal Year 2017-2037,” TC17-0002, 2017.

[2] U.S. Department of Transportation, John A. Volpe National Transportation Sys-

tems Center, “Unmanned Aircraft System (UAS) Service Demand 2015-2035:

Literature Review and Projections of Future Usage,” DOT-VNTSC-DoD-13-01,

2013.

[3] Federal Aviation Administration, “Airplane Flying Handbook,” FAA-H-8083-

3B, 2016.

[4] U.S. Department of Transportation, Federal Aviation Administration, “Part

107—Small Unmanned Aircraft Systems,” Code of Federal Regulations, vol. Title

14, Chapter I, Subchapter F, 2017.

[5] U.S. Department of Transportation, Federal Aviation Administration, “Aeronau-

tical Information Manual, Official Guide to Basic Flight Information and ATC

Procedures,” 2017.

[6] Federal Aviation Administration, “UAS Facility Maps.” https://www.faa.gov/

uas/request_waiver/uas_facility_maps/, April 2017.

[7] P. H. Kopardekar, “Unmanned Aircraft Systems Traffic Management Safely En-

abling UAS Operations in Low-Altitude Airspace,” NASA Technical Reports

Document ID 20170001573, 2017.

118

[8] M. Guterres, S. Jones, G. Orrell, and R. Strain, “ADS-B Surveillance System

Performance with Small UAS at Low Altitudes,” in AIAA SciTech Forum, AIAA,

2017.

[9] K. Cunningham, D. E. Cox, J. V. Foster, S. E. Riddick, and S. A. Laughter, “Air

STAR Beyond Visual Range UAS Description and Preliminary Test Results,”

NASA Technical Reports Document ID 20160010790, 2016.

[10] W. A. Handley, “Two NextGen Air Safety Tools: An ADS-B Equipped UAV

and a Wake Turbulence Estimator,” Master’s thesis, University of Washington,

2016.

[11] C. Coopmans, N. V. Hoffer, A. M. Jensen, and D. J. Robinson, “AggieAir Un-

manned Aerial System Traffic Integration Management: A Case Study with

ADS-B Out,” in Digital Avionics Systems Conference (DASC), IEEE/AIAA,

2016.

[12] B. Stark, C. Coopmans, and Y. Chen, “Concept of Operations for Personal

Remote Sensing Unmanned Aerial Systems,” Journal of Intelligent and Robotic

Systems, vol. 69, no. 1, pp. 5–20, 2013.

[13] J. M. Loffi, R. J. Wallace, J. D. Jacob, and J. C. Dunlap, “Seeing the Threat: Pi-

lot Visual Detection of Small Unmanned Aircraft Systems in Visual Meteorolog-

ical Conditions,” International Journal of Aviation, Aeronautics, and Aerospace,

vol. 3, no. 3, 2016.

[14] S. R. Hood, “Development of a flight data acquisition system for small unmanned

aircraft,” Master’s thesis, Oklahoma State University, 2014.

[15] R. W. Beard and T. W. McLain, Small Unmanned Aircraft, Theory and Practice,

pp. 3–5. Princeton University Press, 2012.

119

[16] ArduPilot Development Team, “ArduPilot Development Site.” http://

ardupilot.org/ardupilot/, October 2016.

[17] ArduPilot Development Team, “GitHub - ArduPilot/ardupilot: ArduPlane,

ArduCopter, ArduRover source.” https://github.com/ArduPilot/ardupilot,

July 2017.

[18] J. Hazelhurst, “Advanced Pixhawk Quadcopter

Wiring Chart.” http://ardupilot.org/copter/docs/

advanced-pixhawk-quadcopter-wiring-chart.html, March 2016.

[19] USAF Test Pilot School, Edwards AFB, California, Volume I, Performance

Phase, 1993.

[20] G. L. Gallagher, L. B. Higgins, L. A. Khinoo, and P. W. Pierce, U.S. Naval Test

Pilot School Flight Test Manual, 1992.

[21] J. Holman, Experimental Methods for Engineers. McGraw-Hill, 2012.

[22] R. D. Kimberlin, Flight Testing of Fixed-Wing Aircraft. AIAA, 2003.

[23] M. E. Pestana, “Flying Unmanned Aircraft: A Pilots Perspective,” in In-

fotech@Aerospace 2011, AIAA, 2011.

[24] L. Meier, A. Tridgell, and J. Goppert, “MAVLink Onboard Integration Tu-

torial.” http://qgroundcontrol.org/dev/mavlink_onboard_integration_

tutorial, July 2017.

[25] Mission Planner Development Team, “Mission Planner Development Site.”

http://ardupilot.org/planner/docs/mission-planner-overview.html,

October 2016.

[26] Event 38 Unmanned Systems, “E386 Mapping Drone.” https://event38.com/

fixed-wing/e386-mapping-drone/, October 2016.

120

[27] Michael Oborne, “GitHub - ArduPilot/MissionPlanner: Mission Plan-

ner Ground Control Station (c# .net).” https://github.com/ArduPilot/

MissionPlanner/, October 2016.

[28] Continuum Analytics, “Anaconda Python 2.7 Distribution.” https://www.

continuum.io/downloads, October 2016.

[29] Steve Gray, Chris Mallet, and AutoIt Team, “AutoHotkey H v1 download pack-

age.” http://hotkeyit.github.io/v2/, November 2016.

[30] J. W. Langelaan, N. Alley, and J. Neidhoefer, “Wind Field Estimation for

Small Unmanned Aerial Vehicles,” Journal of Guidance, Control, and Dynamics,

vol. 34, no. 4, pp. 1016–1030, 2011.

[31] J. D. Barton, “Fundamentals of Small Unmanned Aircraft Flight,” Johns Hop-

kins APL Technical Digest, vol. 31, no. 2, pp. 132–149, 2012.

[32] L. R. Salazar, J. A. Cobano, and A. Ollero, “Small UAS-Based Wind Feature

Identification System Part 1: Integration and Validation,” Sensors, vol. 17, no. 1,

2017.

[33] ArduPilot Development Team, “MAVLink Mission Commands MAV

CMD — Plane Documentation.” http://ardupilot.org/plane/docs/

common-mavlink-mission-command-messages-mav_cmd.html, November

2016.

[34] ArduPilot Development Team, “Automatic Landing – Plane Documentation.”

http://ardupilot.org/plane/docs/automatic-landing.html, July 2017.

[35] V. J. Rossow, “Lift-generated vortex wakes of subsonic transport aircraft,”

Progress in Aerospace Sciences, vol. 35, pp. 507–660, 1999.

121

[36] J. N. Hallock, G. C. Greene, J. A. Tittsworth, P. D. Strande, and F. Y. Wang,

“Use of Simple Models to Determine Wake Vortex Categories for New Aircraft,”

in AIAA Aviation, AIAA, 2015.

[37] Z. C. Zheng and R. L. Ash, “Study of Aircraft Wake Vortex Behavior Near the

Ground,” AIAA Journal, vol. 34, no. 3, pp. 580–589, 1996.

[38] R. C. Nelson, Flight Stability and Automatic Control, pp. 81–95. McGraw Hill,

1998.

[39] UAV Factory, “UAV Factory Unmanned Platforms and Subsystems — Penguin

B.” http://www.uavfactory.com/product/46, April 2017.

[40] D. W. Yeo, N. Sydney, D. A. Paley, and D. Sofge, “Downwash Detection and

Avoidance with Small Quadrotor Helicopters,” Journal of Guidance, Control,

and Dynamics, vol. 40, no. 3, pp. 692–701, 2017.

[41] U.S. Department of Transportation, Federal Aviation Administration, “National

Plan of Integrated Airport Systems (NPIAS) 2017-2021,” 2016.

[42] Grand Sky Development Company, “America’s First UAS Business & Aviation

Park — Grand Sky.” http://grandskynd.com/, April 2017.

[43] U.S. Department of Transportation, Federal Aviation Administration, “General

Aviation and Part 135 Activity Surveys - CY 2015,” 2015 GA Survey Chapter 3

Tables 16SEP2016V2, 2016.

[44] F. A. Administration, “Request to Operate in Controlled Airspace.”

https://www.faa.gov/uas/request_waiver/request_operate_controlled_

airspace/, July 2017.

[45] AirMap, “Automated Airspace Authorization at U.S. Airports.” https://www.

airmap.com/50-airports-airspace-authorization-laanc/, July 2017.

122

[46] F. A. Administration, “Waiver Safety Explanation Guidelines for Part 107

Waiver Applications.” https://www.faa.gov/uas/request_waiver/waiver_

safety_explanation_guidelines/, July 2017.

123

VITA

Zachary P. Barbeau

Candidate for the Degree of

Master of Science

Thesis: SMALL UNMANNED AIRCRAFT SYSTEMS OPERATIONAL AND
TRAFFIC MANAGEMENT CONSIDERATIONS

Major Field: Mechanical and Aerospace Engineering

Biographical:

Received B.S. degree from Oklahoma State University, Stillwater, OK, 2014, in
Aerospace Engineering. Completed the requirements for the degree of Master of
Science with a major in Mechanical and Aerospace Engineering at Oklahoma State
University in July 2017.

