
   NORMALIZED DIFFERENCE VEGETATIVE INDEX 

BASED CROP YIELD PREDICTION MODELS TO 

MINIMIZE NITROGEN  

FERTILIZER APPLICATION  

 

      By 

   Alvin Dean Monroe, Jr 

   Bachelor of Science in Cartography  
   East Central University 

   Ada, Oklahoma 
   1999 

 
   Master of Science in Geography  

   Oklahoma State University 
   Stillwater, Oklahoma 

   2001 
 
 

 

   Submitted to the Faculty of the 
   Graduate College of the 

   Oklahoma State University 
   in partial fulfillment of 
   the requirements for 

   the Degree of 
   DOCTOR OF PHILOSOPHY  

   December 2008  



 ii

   NORMALIZED DIFFERENCE VEGETATIVE INDEX 

BASED CROP YIELD PREDICTION MODELS TO 

MINIMIZE NITROGEN  

FERTILIZER APPLICATION 

 
 
 
 

   Dissertation Approved: 
 

 
Dr. John Solie 

   Dissertation Adviser 
 

   Dr. William Raun 
 

   Dr. Paul Weckler 

 
Dr. Daniel Storm 

 

Dr. Jonathan Comer 

 
  Dr. A. Gordon Emslie 

   Dean of the Graduate College 
 
 
 
 
 
 



 iii  

ACKNOWLEDGMENTS 
 
 
 The author wishes to acknowledge the kind and ever helpful physical support 

received from the staff Oklahoma State University Department of Biological and 

Agricultural Engineering, particularly Mrs. Jana Moore, Mrs. Nancy Rogers, and Mr. 

Craig Trible.  The author also acknowledges the support of the Environmental Science 

Department, especially Mrs. Henderson, for her tireless efforts.  Much appreciation goes 

to Mr. Tim Raczkowski (Northern Oklahoma College, Department of Mathematics) for 

editing and insight on the first generation of response equations.  

 Special thanks and much appreciation goes to my wife, Dr. Sierra Howry (Angelo 

State University), for her assistance in editing first drafts, listening to ideas, and her ever-

helpful suggestions.  Most especially, I want to thank her for support and encouragement 

through this process. 

 Thanks to my committee for attending and participating in the process of this 

dissertation and for a critical review of the findings.  A special note of thanks to Dr. Jon 

Comer for enduring another of my committees.  

 A special thanks to Dr. John Solie for his mentorship as a researcher, patience as 

chair of my research committee, and encouragement as a friend.  I very much enjoyed my 

time working with Dr. Solie and hope to someday teach as much to another  as I learned 

from him.     

    



 iv

TABLE OF CONTENTS 
 

Chapter          Page 
 
I. INTRODUCTION ......................................................................................................1 
 
II. A CONTINUOUS FUNCTION TO PREDICT PLANT RESPONSE TO APPLIED 

NITROGEN .............................................................................................................6 
  
 Abstract ....................................................................................................................6 
 Introduction ..............................................................................................................7 
 Methods and Materials ...........................................................................................13 
 Results ....................................................................................................................15 
 Discussion ..............................................................................................................22 
 Conclusions ............................................................................................................24 
 References ..............................................................................................................26 
 
III. FORMULATION OF AN ANALYTICAL RELATIONSHIP BETWEEN NDVI, 

VARIANCE, AND FRACTIONAL VEGETATIVE COVER IN SUB-PLOT 
SAMPLING ...........................................................................................................29 

 
 Abstract ..................................................................................................................29 
 Introduction ............................................................................................................30 
 Methods and Materials ...........................................................................................34 
 Results ....................................................................................................................37 
 Discussion ..............................................................................................................47 
 Conclusions ............................................................................................................48 
 References ..............................................................................................................50 
 
 



 v

Chapter          Page 
 

IV. A SIGMOIDAL MODEL TO PREDICT YIELD POTENTIAL INCORPORATING 
CROP RESPONSE TO SUPPLEMENTAL NITROGEN ....................................52 

 
 Abstract ..................................................................................................................52 
 Introduction ............................................................................................................53 
 Methods and Materials ...........................................................................................56 
 Results and Discussion ..........................................................................................58 
 Conclusions ............................................................................................................65 
 References ..............................................................................................................66 
 
V.  CONCLUSION ......................................................................................................67 
 
 Chapter 2 ................................................................................................................67 
 Chapter 3 ................................................................................................................68 
 Chapter 4 ................................................................................................................68 
 General Findings ....................................................................................................69 
 Further Research ....................................................................................................70 
 
APPENDICES .............................................................................................................71 
 



 vi

LIST OF TABLES 
 
 

Table           Page 
 

      2.1: N Application Rate RINDVI Parameter Values ................................................24 

 2.2: Average Soil pH, NO3, STP, K, and EC Values for Wheat and Bermudagrass 
Plots........................................................................................................................24 

 
 3.1: Quadratic Regression Parameters for Spinach Dataset ...................................45 

 3.2: Standard Deviations for Levels of FVC .........................................................46 

 3.3: Quadratic Regression Parameters for Calibration Stamp Dataset ..................48 

 3.4: Linear Regression Parameters for Simulated NDVI and Vegetative Cover ...50 

 4.1: Parameter and Fit (RSS) Comparison between Sigmodial and Exponential  
 Models by Year ......................................................................................................64 
 
 4.2:  N Application Rate RINDVI Adjusted Curve Parameters ................................69 

 A1: Array Variable Names and Locations for IKONOS Imagery  ........................82 

 A2: Dataset Name, Species, Sampling Routine, and Location for Field Trials.....86 

 A3: Dataset Name, Sensing Date, Species, and Design for Field Trials ...............87 

 A4: Soil Test Parameters Used as Covariates to Determine Relative Increase in 
Prediction Potential ................................................................................................88 



 vii

LIST OF FIGURES 
 
 

Figure           Page 
 
      2.1: Change In Potential Yield of Wheat with Additional N Fertilizer .................11 

 2.2: Farmer Practice NDVI (FpNDVI) Versus Response Index (RINDVI) For Wheat, 
Bermudagrass, and Corn ........................................................................................17 

 
 2.3: Hyperbolic Cosine Regression Model of RINDVI as A Function Farmer Practice 

NDVI (FpNDVI) ....................................................................................................19 
 
 2.4: The Effect the Variable Bare Soil NDVI (Ns) Definition on the Response Index 

Curve ......................................................................................................................21 
 
 2.5: Model Fit By Species for RINDVI as A Function of Farmer Practice NDVI 

(FpNDVI) ...............................................................................................................22 
 
 2.6: N Fertilizer Treatment Level Response Curves For RINDVI under Calibration 

Stamp Design Assuming Ns =0 .............................................................................23 
 
 3.1: Simulated NDVI versus Standard Deviation of NDVI ...................................42 

 3.2: Simulated FVC(%) Versus Standard Deviation of NDVI  .............................43 

 3.3: Spinach Imagery NDVI versus Standard Deviation of NDVI with Quadratic 
Regression Fit ........................................................................................................44 

 
 3.4: FVC versus NDVI from Native Grass Vegetative Coverage Experiment ......46 

 3.5: NDVI versus Standard Deviation Of NDVI For Calibration Stamp Design     
With Quadratic Regression Fit...............................................................................47



 viii  

Figure           Page 
 

 3.6: Simulated NDVI Versus FVC(%) ..................................................................49 

 3.7: NDVI Versus FVC(%) From Native Grass Vegetative Cover Experiment With 
Linear Regression Fit .............................................................................................50 

 
 4.1: 1998 NDVI Verses Yield (Mg Ha-1) Data At 0 N Pre-Plant ..........................63 

 4.2: 1998 NDVI Verses Yield (Mg ha-1) for 0 N pre-plant with Sigmoidal and 
Variable RINDVI Adjusted Models Compared to Exponential and Constant RINDVI 
Adjusted Models. ...................................................................................................65 

 
 4.3: NDVI Verses the Variable RINDVI Adjusted Model in Yield (Mg ha-1) with 

Various NDVI Definitions of Bare Soil (Ns = 0, 0.05, 0.1, and 0.15).   ...............67 
 
 4.4: 1998 NDVI Verses Yield (Mg ha-1) for 0 N pre-plant, with RINDVI Curve 

(Equation 4.2) Adjusted to Varying Parameters Monroe et al. (2008)    ...............68 
 
 4.5: RINDVI Adjusted Curve for 22, 45, 67, 90, and 112 kg N ha-1 Application Rates

................................................................................................................................69 
 
 4.6: Yield Potential Gain Curve for 22, 45, 67, 90, and 112 kg N ha-1 Application 

Rates. ......................................................................................................................70 
 
 4.7: Yield Potential Gain Curve for 22, 45, 67, 90, and 112 kg N ha-1 Application 

Rates Assuming the NDVI of Bare Soil (Ns) = 0.15 (Equation 4.6) .....................72 
 
 A1: Pairwise Pixel Allocation for N-Rich Strip and Farmer Practice Strips In 

IKONOS Imagery ..................................................................................................81 
 
 A2: N Application Routine for Calibration Stamp Design ....................................82 

 A3: Average Variograms for the Six IKONOS Farm Sites ...................................84 

 A4: Maximum Offset Distance between Two Calibration Stamps .......................85 



 1

 
CHAPTER I 

 
 

INTRODUCTION 

 

Commercial nitrogen (N) plays a significant role in sustaining cropping systems 

as a primary replacement nutrient.  With each harvest, a portion of the native N is 

removed from the field and transported off-site reducing residual N for future crop use.  

Nitrogen, until recently, was a low cost supplement, which because of near universal 

limitation usually guarantees yield improvement over N depleted native stands.  Low cost 

and significant yield improvement led to the wide scale N fertilizer use in uniform, 

usually high application rates as growing season insurance.  However, application 

typically far exceeds necessity leading to vast quantities of residual N in the plant/soil 

matrix.  Nitrogen, in most of its forms, is highly mobile, and is, accordingly, prone to off-

site migration.  Consequently, many years of over-application has elevated nitrate 

concentration in surface and sub-surface water supplies.  

Nitrogen is a primary nutrient for algae; therefore, elevated N in water supplies 

can promote an elevated algal population, which over time builds detrital material, 

increases oxygen demand, and may prematurely age the water body.  However, N is not 

typically the principal limiting factor in algal populations because of its high mobility; 

therefore, environmental concern about N usually revolves around human health issues 

from contamination of potable water.  
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Methemoglobinemia (blue baby syndrome), and a speculated linkage to non-

Hodgkin’s Lymphoma and digestive tract cancers have been cited as primary concerns 

for N ingestion.  However, in many cases concentration of N in water supply is lower 

than regulatory standards, and has not risen to popular concern as demonstrated in a lack 

of literature citing direct causal effects; however, current research suggest that aqueous 

forms of N leaching into natural waterways can lead to aquatic fauna mortality.                                      

Off-site N migration is of particular concern economically because it represents 

lost opportunity to the farmer.  As petroleum prices increase, N fertilizer price, contingent 

on the price of natural gas, will commensurately increase.  Agricultural profitability, 

especially with competition on the world market and rising petroleum prices, is becoming 

a matter of cost reduction through efficient application.  Additionally, efficient N 

application to meet cost-reducing strategies has the potential of creating positive 

externalities for the environment without regulatory action.       

 To address need and maximize yield several issues must be considered in 

applying supplemental N.  At the individual plant level there must be enough fertilizer N 

to minimize the disparity between residual N in the plant/soil matrix and the optimum 

plant capacity for N uptake.  In conjunction with basic plant requirement, extraneous 

physical/chemical conditions may prohibit reserve N from being plant available, further 

compounding the definition of need.  It has been shown that N concentration, physical, 

and chemical parameters exhibit spatial variability.  Spatial variability, in this case, is the 

observable difference in growing environments continuously varying over space.  As a 

consequence N availability and potential uptake are subject to variance in soil conditions 

at the process scale in which soil conditions significantly vary.  Therefore, alignment 
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between process and measurement scale plays an important role in determining strategies 

for N application.  Current methodology in N management should be focused, not only in 

mass balance, but also should incorporate spatial variability and site-specific definitions 

of need.          

 Previous research suggests that plant response to supplemental N and biomass can 

predict yield and a yield based N recommendation can improve N use efficiency. Chapter 

2 of this study analyzes the current calculation of response index and defines a 

continuous response index (RI) function at the process scale.  This research is focused at 

understanding the relationship between residual N sufficiency and sufficiency reached 

through N supplementation.  Given reasonable stationarity in the field, examination of 

plant response in experimental conditions should indicate how likely the field would 

utilize supplemental N.   

Objectives of Chapter 2: 

• Clearly understand and quantify the relationship of N response to varying levels 

of plant stand as measured by NDVI. 

• Formulate application boundaries where supplemental N is most effective as 

measured by RI.  

• Incorporate agronomic boundary conditions in the framework of RI estimation. 

Chapter 3 promotes a combination of agricultural research with the 

GreenSeekerTM optical sensor and remote sensing methodology (spectral mixture models) 

to estimate fractional vegetative cover (FVC) per experimental unit.  Several experiments 

show that vegetative cover is correlated to the normalized difference vegetative index 

(NDVI), such that decreased NDVI variability implies high vegetative coverage.  From a 
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statistical standpoint, low variance should also exist for experimental units with low (≈0) 

NDVI (bare soil).  Thus, NDVI variability is a measure of plant stand homogeneity.  This 

ideology can be used to estimate spectral endmembers for use in a spectral mixture 

analysis (SMA) model.  Remote sensing literature shows that a linear two-endmember 

SMA model is often used in conjunction with NDVI images to estimate FVC.  Recent 

agricultural literature confirms that through a combination of digital imagery and/or the 

GreenSeekerTM sensor FVC is linearly related to NDVI.  The combination of these 

findings should produce a method of determining vegetative cover.  Accurate estimation 

of FVC may hold the promise of adding extra information to the yield prediction process. 

Objectives of Chapter 3: 

• Develop a clear spectral definition of bare soil and 100% vegetation cover. 

• Formulate a methodology of estimating vegetative coverage using spectral 

measurements from existing optical sensor technology. 

• Incorporate remote sensing methodology (spectral mixture models) with recent 

agricultural research.    

Long study of the NDVI - yield relationship has developed theoretical models that 

fit with field collected data.  Recent studies, however, have produced new information 

about a plant response to N.  Chapter 4 proposes a continuous sigmoidal yield potential 

prediction using agronomic boundary conditions.  Existing models do not estimate yield 

for low NDVI and uses a piece-wise exponential model to estimate yield increase until a 

biophysical cap is reached constraining further increase.  Conceptually, yield is low for 

low NDVI, increases exponentially through mid-range NDVI, and plateaus for high 

NDVI.  Given recent findings, conceptual constraints, and boundary conditions Chapter 4 
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further defines a continuous sigmoidal growth model to estimate yield potential (YP0) 

from NDVI using continuous plant response to N and defines a sigmoidal approach to 

yield potential under varying N application rates incorporating continuous RINDVI (YPN 

model).  In concert, these models can be used to estimate gain in yield potential, which 

forms the basis of an economic approach to conservative N application.    

Objectives of Chapter 4: 

• Incorporate agronomic boundary conditions and recent findings into a continuous 

yield prediction model. 

• Validate the consistency of a continuous yield model against empirical models. 

• Develop a strategy of utilizing the continuous RI model as a method of predicting 

the affect of supplemental N in improving yield.  

• Develop the basis of an economic method to determine financially optimal N 

application for variable rate technology.   

       The purpose of this dissertation is to develop management tools and theory 

that promote economically efficient N application, thereby creating positive externalities 

for environmental protection.  Because of limited risk to human health and environmental 

degradation N is allocated less public concern and will not likely be managed unless 

human risk is verified.   However, as fertilizer prices continue to rise, excessive N 

application presents a higher loss margin as loss in productivity.  It is likely that 

environmental concerns about excessive N application will be addressed secondary to 

profit margin maximization.  Nevertheless, it is likely that economically conservative 

management of N will produce fortuitous benefits for the environment.    

Objectives of the Dissertation: 
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• Develop robust models for yield and fertilizer response, which conform to 

agronomic and spectral theory.  

• Combine proposed models with existing theory to construct agronomic and 

economic optimal N rate application recommendations.  
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CHAPTER II 
 
 

A CONTINUOUS FUNCTION TO PREDICT PLANT RESPONSE TO APPLIED 

NITROGEN 

Abstract 

 Adequate estimation of plant response to applied nitrogen (N) is an essential step 

in predicting yield and increasing nitrogen use efficiency (NUE) in agronomic systems.  

Increasing NUE, by accurate estimation of residual N reserves, can serve as an economic 

and environmental net positive if set as a management goal.  Previous studies show N 

reserves can be gauged in-field without the use of extensive soil testing by remote 

sensing methods through the normalized vegetative index (NDVI).  The response index 

(RI), a measure of plant response to applied N given concentrations of residual N 

reserves, can be calculated as the ratio of the NDVI from N treated and non-treated plots.  

Current methodology assumes that RI is a field level constant disregarding process scale.  

This paper presents a non-linear regression methodology to predict plant response to 

applied N.  Further, work in this paper shows that a plant response to N prediction model 

is possible and is robust across wheat, bermudagrass, and corn cropping systems.  

Additionally, the model predicts the effect of varied N application rate and confirms 

previous work suggesting N has little effect if applied on high residual N plant stands (i.e. 

NDVI  > 0.73).  As a result of this functional relationship, prediction of plant response to 

applied N (RI) is improved.      
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Introduction 

It has long been realized that Nitrogen (N) application, when not fully utilized in-

field, results in environmental degradation and financial loss.  The National Research 

Council executive study in precision agriculture succinctly makes the point that 

“agricultural pollution comes from inputs that do not reach their target…” and “…inputs 

that contribute to pollution are thus wasted from a productivity point of view” (NRC 

1997: p85).  These statements outline the two basic interrelated problems in profitable 

industrialized agriculture –social cost through environmental degradation and 

profitability loss through lost opportunity and wasted inputs.     

Recently, it has been a goal of precision agricultural research to decrease the 

amount of wasted N through site-specific management and variable rate application 

addressing spatial and temporal scales. While estimates of N waste vary, Johnson and 

Raun (2003) show that N use efficiency (NUE), the amount of applied N recovered in 

cereal grain, is on average less than 33% globally.  In the typical case, the remaining 67% 

N not recovered in product either is bound in the plant/soil matrix or is, more likely, 

transported off-site by various modes of N migration.  Current research shows that a 20% 

increase in NUE could result in a near $11 billion savings world-wide (NUE, 2008).  

Implicitly, cost savings will likely become larger as petroleum based fertilizers increase 

in price. Recently the USDA reported that the cost to the farmer for ammonia-based 

fertilizer (Ammonium Nitrate) has increased 130% between 2000 and 2006 (Huang, 

2007) with demonstrable potential for further increase.  Fortunately, methods of reducing 

N waste to improve economic efficiency, by cutting costs, also creates a positive 

externality of reducing environmental damage.  
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The Environmental Protection Agency (EPA) contends that excess N in water 

supplies is linked with human health problems, such as methemoglobinemia (Blue Baby 

Syndrome) and non-Hodgkin’s Lymphoma.  Further, N liberated into the atmosphere 

may also contribute to quality of life issues, such as ozone indulgence increasing the 

number of ozone alert days directly affecting persons with respiratory problems.  

Additionally, excess N in surface runoff contributes to general surface water supply 

degradation, such as increased eutrophication (EPA1 2007) and aquatic fauna mortality 

(Hecnar 1995; Hatch et al. 2001).  Other researchers have linked N loadings to 

accelerated eutrophication and hypoxic conditions in larger waterways such as the “Dead 

Zone” at the mouth of the Mississippi River (Turner and Rabalais, 1994; Rabalais et al., 

1996; NOAA 2007).  Increased hypoxic conditions can have severe social economic 

implications for estuarial aquaculture and the dependent communities.  It is clear that, 

while exact social cost through degradation may not be fully realized, there is a potential 

for both human health and environmental issues on the horizon from excess N.   

Nitrogen application to areas of low plant N uptake increases plant-soil system 

reserve N and increases the potential for off-site migration.  To lower off-site migration 

potential, it is necessary to identify conditions contributing to low uptake and adjust N 

application accordingly overall increasing NUE.  Raun et al. (2005a) suggests that N 

application based on a combination of predicted yield and plant response to N can 

increase NUE by 15% over standard application practices, which verified earlier work by 

Johnson and Raun (2003) advocating the inclusion of plant response to N as a critical 

component in increasing NUE.  In general, NUE is decreased by supplementation above 

sufficient N levels, which can be recognized by low responsiveness.    
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Work by Johnson et al. (2000) proposed a response index (RIHarvest) to represent 

the plant response to supplemental N, which was based on the proportion of yield 

between N treated and non-treated plots.   

FieldRate

NRich
Harvest Yld

Yld
RI =         (2.1) 

where YldNRich is the average yield within a Nitrogen rich strip and YldFieldRate is the 

average yield in an adjacent non-fertilized strip.  This estimate, however accurate, is 

based on post-season measurements and fails to address in-season N application.  Earlier 

findings by Stone et al. (1996) showed that plant biomass could be measured by using 

optical sensor measurements of light reflection.  Mullen et al. (2003) later proposed the 

use of an in-season response index (RINDVI) based on a ratio of the normalized difference 

vegetative index (NDVI) between treated (NDVINRich) and non-treated (NDVIFieldRate) 

plots that reasonably correlated (r2 > 0.56) with post-season response (RIHarvest).   

FieldRate

NRich
NDVI NDVI

NDVI
RI =        (2.2) 

Raun et al. (2005a) demonstrated that while RINDVI tends to underestimate RIHarvest, it 

serves as a conservative estimate of yield increase with N supplementation.  They further 

proposed a methodology to calculate N fertilizer application rates from NDVI 

measurements. They enumerated three fundamental postulates necessary to calculate N 

rates:  1. Yield potential could be predicted accurately midway through the growing 

season with an exponential model of yield as a function of NDVI.  2.  The response to 

additional N fertilizer is a constant multiple of the yield potential.  3.  There exists a 

maximum yield for any location that is a function of all the agronomic and environmental 

factors for that location, and yield cannot exceed that limit for any N fertilizer rate of 
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additional fertilizer (Fig. 2.1).  Nitrogen fertilizer rate was a function of the difference 

between the yields with and without additional fertilizer multiplied by the percentage of 

N contained in the grain divided by the efficiency by which the plant absorbed applied N 

for grain production (Nitrogen Use Efficiency). 
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Figure 2.1.  Change in Potential Yield of Wheat with Additional N Fertilizer for a Response Index of 
RI = 1.5, a Maximum Potential Yield of 3.0 Mg Ha-1 and 120 Days After Planting (Raun et. al, 
2005a).  
 

Under this methodology yield potential is exponentially related to field rate NDVI given 

by: 

0Nfor  1  RI ;YPYP   :for  e)RI(aYP NDVIMaxN
)NDVI(b

NDVIN ==<=   (2.3) 

where yield potential (YPN) is a function of field rate NDVI and plant response due to N 

application rate (RINDVI) ranging between 0 kg N ha-1 N and sufficient concentrations.  

Obviously, 0-N application results in no complementary plant response (RI=1); however, 

RI is allowed to increase proportionate to increases in N application rate, which increases 

the overall function.  Overall yield increase is constrained under a constant biological 
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yield maximum obtainable from the field (YPmax).  As a result, N supplementation drives 

the relationship to YPMax quicker, in terms of field rate NDVI where RINDVI acts as a 

multiplier.  RINDVI based on yield potential can be defined as: 

















>→

≤≥

><

=

0.73NDVI and YPYPfor 1

0.73 NDVI and YPYP forYP

YP

0.25   NDVI and PYPY orfYP

YP

RI

Max0

MaxN0

Max

MaxN0

N

NDVI      (2.4)  

This definition of RINDVI combines the Johnson et al. (2000) RIHarvest and Mullen et al. 

(2003) RINDVI under yield potential.  Specifically, for this piecewise definition, RINDVI is 

a constant and is independent of non-fertilizer NDVI until YPMax ( )57.0NDVI ≈ is 

reached, after which it becomes inversely proportional to non-fertilizer NDVI until a 

biological maximum is reached at ( )73.0NDVI ≈ .  Additionally, meaningful yield 

potential is restricted to field rate NDVI values greater than 0.25, which represents the 

soil-crop divide and was derived by field observation (Raun et al. 2005a).  Overall, the 

method by which RINDVI is calculated relies on a ratio of average NDVI for treated and 

non-treated areas at the plot level, which neglects measurement scale effect.   

Solie et al. (1996) addressed the issue of measurement scale effect and advocated 

working at a fundamental field element where nutrient concentrations vary as a function 

of distance and were detectable.  Taylor et al. (1999) found that variation in yield 

decreased as plot size decreased, indicating a proportional relationship between variance 

and scale.   These studies indicate a process scale exists at which variation should be 
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treated to optimize nutrient management.  Raun et al. (1998) found that significant 

differences exist between soil tests at less than 1m separation distance.  Solie et al. 

(1999), using geostatistical methods, showed that the semivariogram range varied from 

1.04m to 6.70m, variable dependent, and that the integral scale (zone of high relatedness) 

was at the sub-meter to meter level.  These studies suggest a process scale at or below 1m 

and argue for adopting a commensurate measurement scale to accurately treat spatial 

variation.  Treatment of spatial variation at the process scale mitigates the effects of bias 

of small-scale variation aliased into larger variation (Journel and Huijbregts 1978; Russo 

and Jury 1987; and Western and Bloschl 1999). 

Fundamental work by Johnson et al. (2000) developed a measure to quantify the 

relationship between residual N and response due to N supplementation (RIHarvest) post-

season, which led to the concept that plant response to additional N is dependent on 

sufficiency of residual N in the plant-soil matrix (Johnson and Raun, 2003).    

Consequent to these findings, Mullen et al. (2003) proposed a methodology to calculate 

RI values directly from NDVI measurements (RINDVI) that worked mid-season.  Raun et 

al. (2005a) revised RINDVI as a combination of previous RI calculations, which is used in 

predicting yield potential mid-season. This method, however, uses a plot averaged RINDVI 

as a constant to adjust yield for overall plant response to N supplementation, and implies 

that RINDVI is constant until YPMax ( )57.0NDVI ≈  is reached, variable until a biological 

limit is reached( )73.0NDVI57.0 ≤≤ , and constant at RINDVI =1 after a biological limit is 

reached (NDVI > 0.73).  
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The purpose of this study is to quantitatively determine the relationship between 

RINDVI and non-fertilizer NDVI by method of paired comparison at finer (1m < 

experimental unit < 4m) than plot scale resolution.   

Methods and Materials 

 Data in this study represent five years (2002 – 2006) of collections on 19 sites in 

north-central Oklahoma producing 6,356 sample pairs across three species 

(bermudagrass, wheat, and corn).  Each sample pair consists of the normalized difference 

vegetative index (NDVI) for an N treated sample (SpNDVI) and a nearest neighbor non-

treated sample (FpNDVI).  Here FpNDVI represents the farmer practice or initial 

condition NDVI prior to N supplementation.  It is implied that FpNDVI is a measurement 

of plant stand health relying on previous nutrient reserves.  Subsequently, SpNDVI is a 

spectral measure of plant stand health based on existing soil nutrients plus supplemental 

N from fertilizer at an application rate great enough to remove N as a yield limiting 

factor.    

A response index (RI) value was calculated for each experimental pair, using the 

Mullen et al. (2003) expression for RINDVI calculated from mid-season measurements of 

NDVI where:  

FpNDVI

SpNDVI
RINDVI =           (2.5) 

RINDVI is a normalized estimate of plant response to supplemental N above previous 

practice and is related to the increase in plant biomasss.  For computational purposes 

NDVI values were constrained between [0, 1] where negative NDVI values were set to 0 

constraining RINDVI between[ )∞0, .  Since NDVI is a function of biological and physical 
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factors, indeterminate conditions where SpNDVI = FpNDVI = 0, RI was set to 1 by 

extension of L’Hopital’s Rule (Finney et al. 1994).                

All N treated experimental units received post planting topdress Urea-Ammonium 

Nitrate, UAN (solution 28% or 32%), while corresponding check plots did not receive 

supplemental N.  Treatment design and N level were varied over the 19 sites.   Five sites 

were sampled by calibration stamp design (Raun et al. 2004), which is a 3m x 3m matrix 

of 9 – 1m2 plots, consisting of four check plots and five incremental treatment plots. 

Application rates were 22, 45, 67, 90, and 112 kg N ha-1 (20, 40, 60, 80, and 100 lbs N 

acre-1) and were placed in wheat and bermudagrass in 2004.  Each calibration stamp was 

sensed at 1m2 resolution with the hand-held Greenseeker™ optical sensor (Ntech 

Industries, Ukiah CA.).  The plots were sampled four times at intervals of two weeks 

after N application and averaged together.  Thirteen sites contained an N-rich strip (Solie 

et al. 2002) design in which a top-dress nitrogen (112 kg N ha -1) transect was applied 

across an operative farm field, in wheat only.  Nitrogen rates were expected to be high 

enough so that N was a non-limiting nutrient.  Of the 13 sites, four fields were sampled in 

2003 at 0.81m - 1.2m resolution using a field scale GreenSeeker™ sensor/applicator 

array described in Solie et al. (2002), while the remaining nine sites were sampled during 

the growing seasons of 2002 and 2003 using IKONOS (Space Imaging LLC, 12076, 

Thorton, CO. 80241) 4m resolution satellite imagery.  The IKONOS imagery was 

geographically processed to identify nearest-neighbor sample pairs.   The early-season 

topdress UAN strip appeared in subsequent satellite imagery as a band of high NDVI 

pixels, which was selected and paired by image processing software to adjacent nearest 

spatial neighbor pixels not in the strip using a geographical first order search algorithm.  
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The last observation site is composed of average corn responses from twelve sites 

collected during 2002 – 2004 growing seasons (Teal et al. 2006 and Freeman et al. 2007).  

Experimental corn plots were arranged by randomized complete block design and varied 

in size (3.0 x 6.1m and 3.0 x 9.1m).  Linking averaged treatment plot NDVI to adjacent 

check plot NDVI created the sample pairs used in this dataset.       

 Once these data were compiled, it was necessary to filter unrealistic values.  The 

IKONOS dataset, due to spatial alignment, contained a minority of FpNDVI points at or 

close to zero paired with substantially higher SpNDVI points that resulted in extreme 

RINDVI values.  Specifically, large (4m) resolution compounded by misalignment between 

transect and image occasionally resulted in nearest neighbors greater than 12m apart.  

These dispersed neighbors had little spatial relationship, which when ratioed produced 

improbable RI values.  Solie et al. (1999) showed that distance dependence ranged 

between 1.04m and 6.70m for most soil test variables, which explains the value 

disconnect.   Therefore, a two-stage filter was designed to selectively remove RI values 

3.5 standard deviations from the mean sum and difference of SpNDVI and FpNDVI, 

respectively.  Data were filtered if above or below:  

( ) ( )FpNDVISpNDVIFpNDVISpNDVI S5.3Mean ±± ±      (2.6) 

The majority of pairs that were removed coincided with large (>12m) separation 

distances and all were from IKONOS imagery.      

Results 

 Analysis of the composite dataset shows that the relationship of plant response 

(RINDVI) is non-linear and inversely proportional to FpNDVI.  Figure 2.2 shows filtered 

FpNDVI plotted against RI for treatment at 112kg N Ha-1. 
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Figure 2.2: Farmer Practice NDVI (FpNDVI) Versus Response Index (RINDVI ) for All Species and 
Locations Filtered for Extreme Data. 
 

Data in Figure 2.2 identify an increasing independence between N treatment and plant 

response as FpNDVI increases.  In general, plant response to N supplementation (RINDVI) 

is less in healthy plants (high FpNDVI) than in areas of limited growth or erratic stands 

(low FpNDVI).  In healthy plant stands, near the biological maximum growth, where 

residual N is sufficient, additional N shows little effect on crop growth as evidenced by 

low values of RINDVI.  Conversely, increased plant response for lower FpNDVI 

demonstrates N limited conditions where supplementation produces high RINDVI.  

However, because the response index is proportionate to N supplementation and the 

denominator (FpNDVI) is small, poor stands, regardless of real increase in biomass, will 

demonstrate a nominally high N response.  Additionally, crops with low FpNDVI exhibit 
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considerable scatter, with some values falling below RINDVI = 1 while other sample pairs 

exceed RINDVI = 3.  This is likely due to a range of physical and chemical phenomena 

existing in the field.   However, there is some amount of certainty that responses with 

1RINDVI → (no response) indicate plant stands where N is a minor factor limiting 

treatment response.   

 Quantification of the inverse exponential relationship of RINDVI to FpNDVI 

requires a non-linear regression model that expresses a maximum response and allows RI 

to decrease at a decreasing rate until becoming asymptotically independent from 

supplemental N.  Additionally, it is necessary to enforce boundary conditions such that 

FpNDVI = 0 implies RINDVI = 1.  Given that FpNDVI = 0 implies bare soil, supplemental 

N should have no effect (SpNDVI = 0).  Assuming the FpNDVI and SpNDVI are 

spectral functions, L’Hopital’s Rule guarantees a value for RINDVI for the indeterminate 

condition 1RINDVI → .    

 The proposed model for predicting RINDVI is a peak function with regression 

parameters controlling maximum response and exponential decrease.  Several models 

were evaluated on the criteria of minimizing the residual sum of squares (RSS) with the 

fewest control parameters.  The coefficient of determination was not used in model 

selection because it cannot be insured that the sum of squares error plus the sum of 

squares from regression equal the total sum of squares (Neter et al. 1996). The best of 

these models, by minimization of RSS, was a two-parameter inverse hyperbolic cosine 

( )
1

FpNDVIAcosh

)FpNDVI(A
RI

1

0
NDVI +=       (2.7) 
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where A0 and A1 are regression parameters derived through a non-linear least squares 

estimation (Gauss – Newton Method).  Parameter A0 controls maximum response while 

parameter A1 controls the rate of decrease from maximum response to the asymptote. 

Figure 2.3 shows the visual fit of the model to these data.   

 
 
 
Figure 2.3: Hyperbolic Cosine Regression Model of RINDVI as a Function Farmer Practice NDVI. 
 
Results of the fit are visually acceptable (Figure 3) with the trend line passing through the 

center of the data distribution.  The function maximum shows that RINDVI is most likely 

to reach a maximum for low values of FpNDVI.  Maximum response occurred in areas 

where the plant stand was erratic or crop growth was greatly reduced compared with 

spatially related areas with sufficient N.  In these areas of sparse plant stands, even 

minimal increase in SpNDVI due to supplemental N is, by proportion, very large.  Raun 

et al. (2005a) concluded that the magnitude of the agronomic and economic benefits from 
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supplemental N were so small that N fertilizer should not be applied in regions where 

FpNDVI<0.25.   

The slope of the exponential curve declines from the maximum response to the 

RINDVI=1 asymptote as FpNDVI increases, defining the sensitivity of plant response to 

supplemental N per incremental increase in FpNDVI, after maximum response has been 

achieved.  Generally, a steeper transition slope indicates N sufficiency is reached at lower 

values of FpNDVI demonstrating that N is no longer the primary limiting factor. 

Shallower transition slopes indicate that additional N strongly influences crop response 

until independence is reached.  Plants near biological maximum growth, high FpNDVI, 

are N sufficient and independent of supplemental N.    

 The basic equation (Equation 2.7) to derive the model in Figure 2.3 assumes that 

the spectral definition of bare soil is FpNDVI = 0.  However, many cases in this research 

show that the FpNDVI definition of bare soil (Ns) may range 0 < FpNDVI < 0.15.  To 

correct this issue Figure 2.4 demonstrates a translation adjustment for the RINDVI curve.        
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Figure 2.4: The Effect The Variable Bare Soil NDVI (Ns) Definition on the Response Index Curve, 
where Bare Soil Ranges 0 < NDVI < 0.150.  
 
Figure 2.4 shows that as Ns increases the magnitude of maximum response decreases 

proportionately.  Additionally, for RINDVI to be continuous across the FpNDVI spectrum 

it is necessary to define RINDVI = 1 for 0 ≤ FpNDVI ≤ Ns, and RINDVI equal to the 

hyperbolic cosine model for FpNDVI > Ns.  Equation 2.8 describes the bare soil (Ns) 

offset in a piece-wise model  

  ( )
( )( )








>+
−

−

≤

=
Ns  NDVIFor           1

NsFpNDVIAcosh

NsFpNDVIA

NsNDVIFor                                                      1

RI

1

0NDVI   (2.8) 

In the general case where Ns = 0 the function reduces to Equation 2.7, which is useful for 

comparing curves in different plots where the NDVI of bare soil was not collected.   
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Across species, consistency of the model and the robustness of the relationship 

were classified by species receiving 112kg N Ha-1 (Fig. 2.5).   

 

 
 
Figure 2.5: Model Fit by Species for RINDVI  as a Function of Farmer Practice NDVI Assuming Ns = 0. 
Parameter for species A: Bermudagrass (A0 =12.940, A1= 7.528), B: Corn (A0 =8.474, A1= 6.449) and 
C: Wheat (A0 =28.604, A1= 12.297), and D: Relative Comparison of Curves. 
 
Figures 2.5 (A, B, and C) show that the same asymptotic response trend exists across 

species as 1FpNDVI→ .  Bermudagrass (Figure 2.5A) and corn (Figure 2.5B) 

experiments tend to be clustered at higher FpNDVI values because data were collected 

from a limited number of locations and these sites were experimentally controlled plots 

with a higher degree of environmental consistency and low plot variability whereas there 

was a large number of wheat (Figure 2.5C) trials, which occurred both in controlled plots 

and in farm fields and over several years.   



 23

 To assess different treatment levels, the model was reparameterized for each 

applied N rate:  22, 45, 67, 90, 112 kg N Ha-1 (Figure 2.6).  

 

Figure 2.6:  N Fertilizer Treatment Level Response Curves for RI NDVI  in Wheat (A) and 
Bermudagrass (B) Under Calibration Stamp Design Assuming Ns =0. 
 
Maximum response in wheat (Figure 2.6A) is much lower, overall, than bermudagrass 

(Figure 2.6B) collected under the same design structure.  Wheat sampled in the 

calibration stamp design was grown in experimental plots which received regulated N 

treatment in the previous growing season; bermudagrass, however, did not have N 

applied in the previous year.  This indicates that maximum response is highly dependent 

on residual N from previous treatments and/or pre-plant conditions.  Table 2.1 shows the 

modeling parameter shifts.   
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Table 2.1: N Application Rate RINDVI  Parameter Values 
N Rate (kg N ha-1) A0 A1 

112 4.84 5.71 
90 6.76 6.78 
67 3.36 5.78 
45 3.91 6.41 
22 4.37 10.33 
Table 2.1: N Application Rate in kg ha-1 Influenced Parameter Shifts.  
 

Regardless of previous management, it appears that limited N application inhibits 

maximum response.  Response to supplemental N is sensitive to application rate, in 

addition to N available from non-application sources.  In fact, wheat may be sensitive, at 

least at low NDVI, to over application.  Figure 2.6A shows that 112 kg N Ha-1 has a 

lower maximum response than 90 kg N Ha-1 application rate.  In comparison, 

bermudagrass (Figure 2.6B) exhibits strong response to N supplementation at lower 

values of FpNDVI, but transitions to N sufficiency quickly, whereas wheat, with a lower 

maximum response, transitions at a much slower rate.  This indicates that bermudagrass 

in this experiment had limited available N causing lower FpNDVI values, but 

transitioned into sufficiency very quickly due to limitations from other physical/chemical 

sources, primarily Phosphorus (Table 2.2).  Wheat had a higher non-fertilizer NO3 

concentration at low FpNDVI and supplemental N remains a primary factor in response 

(Table 2.2). 

Table 2.2: Average soil pH, NO3, STP, K, and EC values for Wheat 
and Bermudagrass Plots. 

Species pH 
NO3 

(kgha-1) 
STP 

(kgha-1) 
K 

(kgha-1) 
EC 

(mmhos/cm) 
Wheat 5.9 5 30 266 102 
Bermudagrass 5.7 2 17 173 39 
Table 2.2: pH, NO3 = Nitrate, STP = Soil Test Phosphorus, K = Potassium, EC = Electrical 
Conductivity Measured by Soluble Salt Content. 
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Figure 2.6 (A and B) show that RINDVI curves at high FpNDVI converge to RINDVI 

= 1.  Wheat, at the maximum application rate, declines to 10% response above no N rate 

(RINDVI =1.1) at FpNDVI ≈0.75 and bermudagrass at FpNDVI ≈  0.73.  At this level, the 

five application rates are relatively indistinguishable from each other (wheat =3.65% and 

bermudagrass = 4.25% difference in response across application rates).  Values greater 

than FpNDVI = 0.75 RINDVI continue to converge, and the difference between application 

rate curves becomes indistinguishable as 1.0RINDVI → .  

Discussion 

This experiment examined the relationship between RI and farmer practice NDVI 

using paired comparisons at or near the fundamental field element size suggested in Raun 

et al. (1998) and Solie et al. (1999) and found that RINDVI is highly related to residual N 

as measured by NDVI (FpNDVI) at the (< 4m) sensing level.  These data show a 

characteristic exponential decline in RINDVI as FpNDVI increases, which suggest an 

increasing independence between supplemental N and response.  Generally, areas of low 

NDVI, or low biomass, exhibited high sensitivity to N supplementation because N was 

likely the dominant limiting factor.  As biomass increases, indicated by increasing higher 

NDVI, residual N is more available, and these areas are less responsive to supplemental 

N.  Ultimately, at high levels of biomass, high NDVI, residual N nears sufficiency, and N 

supplementation produces little to no plant response. 

A non-linear peak function was developed to quantify the relationship dictated by 

the dataset. It was necessary to use a peak function because of imposed boundary 

conditions.  Conceptually, for extremely low NDVI, at or near bare soil, N 

supplementation should not cause a response in NDVI.  Similarly, N supplementation at 
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high NDVI, high biomass, should not result in response due to residual N sufficiency.  

While boundary conditions were established previous to the model, these data, by non-

linear regression techniques, were used to estimate the peak (maximum response) and the 

rate of decline (transition rate), the parameters for which are A0 and A1, respectively 

(Equation 2.7).  Additionally, since the hyperbolic peak function assumes FpNDVI = 0 

for bare soil, it was necessary to account for alternate NDVI definitions of bare soil.  This 

was accomplished by adding a bare soil NDVI translation parameter (Ns) to the 

hyperbolic peak model and specifying RINDVI = 1 for 0≤  FpNDVI ≤  Ns (Equation 2.8).  

There is constant (slope = 0) no response (RINDVI = 1) for bare soil completely devoid of 

plant material.  However, for a single instance of plant material RINDVI can increase with 

a variable slope potential described by the inverse hyperbolic cosine model.  

It should be noted that this study used an amalgamation of different datasets 

sampled at various growth stages of those respective plant stands.  It has been shown that 

spectral indices (NDVI), plant response to supplemental N, and stand variability are 

sensitive to growth stage (Sembiring et al. 2000 and Raun et al. 2005b).  Growth stage, 

time from planting to sensing, and time from fertilization to sensing were not considered 

in this research.  Specifically, Figures 2.2 and 2.3, by aggregation of data, represent a 

multiple field average response without consideration of growth stage and it is 

acknowledged that growth stage can alter the response model, specifically magnitude of 

maximum response.  Further research should be conducted to better understand the 

temporal aspects of response.       

It was necessary that the model be consistent across species (crops) for it to be 

useful as an agronomic tool.  The overall connection between RI and NDVI appears to be 
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standard across species, in that only parameter differences were detectable across 

bermudagrass, corn, and wheat.  Bermudagrass tended to have higher maximum response 

and a steeper transition; this is likely because bermudagrass calibration stamps were on 

locations with limited fertilizer management and tended to be compositely nutrient 

limited.  Wheat calibration stamps were placed in previously managed locations, had 

higher residual N concentrations, and were shown to be less nutrient limited.   High 

maximum response at low NDVI concurrent with steep transition slope shows that N is 

limiting for low NDVI but meets sufficiency quickly as limited by other minimum 

resources.   

 In conjunction with residual N, maximum response is proportionate to 

supplemental N application rate.  In general, as application rate decreases, maximum 

response decreases.  Notably, maximum response decreases as a result of decreased N 

application rate; the transition slope is gentler and constant, which indicates that 

supplemental N remains a primary factor in response limitation further across the range 

of NDVI.  Conversely, higher maximum response and steeper transition slope indicates 

that supplemental N, while being a primary factor for increasing NDVI, quickly 

transitions to a lesser role in response as NDVI increases. 

 The paired comparison methodology and fine resolution shows RI can be defined 

for NDVI <0.25 as opposed to the Raun et al. (2005a) yield potential model.  This 

research also shows RINDVI to be variable across the entire spectrum of NDVI whereas 

the yield potential model implies a constant relationship until YPMax is reached.  Both 

models agree that RINDVI exponentially decreases as NDVI increases although in different 

ranges.  Interestingly, Raun et al. (2005a) remarked that NDVI ≈  0.73 represented an 
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upper threshold where further N supplementation would not increase yield.  This 

experiment shows that NDVI ≈  0.73 only produced 10% growth, as measured by NDVI, 

better than no-response and that variable rate curves are within 5% of each other.  In 

short, the model predicts a 10% increase in RI if an optimum N application rate is used 

and that there is at most a 5% difference in RI between individual application rates.  

Hodgen et al. (2005) referred to RI < 1.10 as non-responsive where the farmer would not 

observe significant return from fertilizer expenditures. These findings confirm that little 

response is gained, regardless of N application, at high NDVI values (particularly NDVI 

> 0.73).  Further research should focus on marginal returns for application at high NDVI. 

 The findings in this research in conjunction with previous research suggests that 

supplemental N should be applied conservatively to extremes in the NDVI spectrum, 

specifically for FpNDVI less than maximum response (0 < FpNDVI < Max Response) 

and for extremely high FpNDVI (FpNDVI >0.73).  This research also suggests that 

supplemental N be applied proportionately to RINDVI between maximum response and 

sufficiency (FpNDVI ≈0.73).  However, these application intervals are not adjusted to 

yield return and fertilizer cost and cannot, therefore, be used as economic guidelines.  

Further research should be conducted to specify particular application intervals based on 

net returns.              

Conclusions  

 Findings from this research show that plant response to N supplementation is 

continuous and predictable at the sub-plot level and across species.  This relationship is 

quantifiable using an inverse hyperbolic model.  Specifically, this work shows that plant 

response is maximized for low FpNDVI because N is the primary limiting factor.  For 
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increasingly higher FpNDVI, N becomes less of a limiting factor and plant response to 

supplemental N decreases.  Further, plant response tends to be sensitive to N application 

rate, especially in low FpNDVI where N is the limiting factor.  A comparison of RINDVI 

curves from varied N application rates show plant response becomes negligible at 

FpNDVI > 0.73 regardless of application rate.  
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CHAPTER III 
 
 

FORMULATION OF AN ANALYTICAL RELATIONSHIP BETWEEN NDVI, 

VARIANCE, AND FRACTIONAL VEGETATIVE COVER IN SUB-PLOT 

SAMPLING 

Abstract 

 Accurate estimation of fractional vegetative cover (FVC) is difficult because of 

the coarse resolution of most imagery.  Spectral mixture analysis (SMA) is a common 

method of describing FVC that assumes each pixel, or sensing frame, is a linear 

combination of characteristic spectral types (e.g. soil, water, plant, shadow, etc.) called 

endmembers.  For SMA to accurately estimate FVC, it is essential that the endmembers 

be chosen correctly according to the depth and dimension of the imagery.  This paper 

shows that endmember selection can be performed using the relationship of sub-plot 

mean and variation of normalized difference vegetative index (NDVI) imagery.  This 

research found that a quadratic relationship (R2 >0.56) exists between mean plot NDVI 

and plot variance.  Since endmembers should have consistent homogeneity and low 

variance, the roots of the quadratic relationship provide endmember estimates of bare soil 

(Ns) and complete plant coverage (Nc).  This research further demonstrates analytically 

and empirically that FVC = 50% occurs at the vertex (highest variance) of the sub-plot 

mean NDVI and variance relationship.  This methodology demonstrates a simple and 

accurate in-field method of estimating FVC for sensors capable of sub-plot sampling.  
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Introduction    

 It has long been a goal of remote sensing to accurately estimate fractional 

vegetative cover (FVC) from spectral information.  Complete vegetative cover is the part 

of vegetative canopy where no bare soil is detected (Carlson and Ripley 1997).  

Commonly, transformations of the normalized difference vegetative index (NDVI) are 

used to estimate FVC. However, the coarse nature of most imagery precludes accurate 

estimates of FVC (Xiao and Moody 2005).  Commonly, spectral mixture analysis (SMA), 

a general linear additive model, is used to estimate FVC from multispectral imagery 

(Xiao and Moody 2005).  

Spectral mixture analysis is based on the assumption that a single image pixel is a 

combination of various spectral types, such as vegetation, soil, shadow, water, etc. 

multiplied by its fractional cover. Pixel reflectance, under the SMA assumption, is a 

linear combination of specific spectral types within the pixel called endmembers 

(Palaniswami 2006).   Tompkins et al. (1997) gives a general equation for SMA model 

assumptions.  SMA is a linear combination of endmembers and fractions of coverage  

∑
=

+=
m

1i
bibib ErfR         (3.1) 

where Rb is the aggregate pixel reflectance for band b for m endmembers, fi is the 

fractional abundance of endmember i, rib is pixel reflectance in band b of endmember i, 

and Eb is the error in band b.  This model is constrained by:  

∑
=

=
m
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i 1f             (3.2) 

where the sum of fractional coverage must equal 1. 
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The number of endmembers for SMA is dictated by the dimensionality (bands) of the 

image (Theseira et al. 2002) and should be equal to the number of independent bands 

(Small 2001; Theseira et al. 2002).  Dennison and Roberts (2003a) point out that it is 

critical for SMA’s accuracy that endmembers be chosen carefully.   

 Under SMA, each pixel in an image is composed of a combination of 

endmembers.  This requires endmembers be estimated from the image, measured in 

laboratory settings, or in field experiments (Dennison and Roberts 2003b, Gutman and 

Ignatov 1998; Qi et al. 2000).  This implies that endmembers are derived from samples of 

homogeneous pixel groups (e.g. forests, beaches, etc.).  Xiao and Moody (2005) offer a 

key to within-image endmember selection; endmembers should have negligible spectral 

variance.          

Arnall et al. (2006), based on previous research, suggested that coefficient of 

variation (CV) in combination with NDVI can improve prediction of plant density.  

Lukina et al (2000) found that the average CV of NDVI tends to decrease as vegetative 

coverage increases across a farm field.  Weisz et al. (2001) found that as plant stand 

increased, yield increased and field variation decreased.  These findings demonstrate that 

plant density (2-dimensional) is inversely proportional to variance and that a complete 

coverage endmember can be estimated from NDVI measurements of dense plant stands 

with low variance.  However, using variance to estimate endmembers necessitates the 

uncommon ability of the sensor to sample sub-pixel.     

 The GreenSeekerTM optical sensor (Ntech Industries, Ukiah CA.) developed by 

Oklahoma State University senses a 0.6m x 1cm area and is capable of sensing more than 

10 samples per 0.4m2 at 10 mph (Raun et al. 2005).  This sensor type is able to 
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compartmentalize individual sub-plot readings where mean and standard variance 

estimates are available for each plot.  Under this methodology a sensing plot is analogous 

to an image pixel.  This lends the ability to analyze spectral mixtures and estimate 

endmembers without relying on identifying contiguous pixel groups in multiple bands.   

 Carlson and Ripley (1997) offer a two-endmember model to predict FVC from the 

NDVI of bare soil and complete plant coverage: 

2

sc

s

NN

NN
FVC 









−

−
=             (3.3) 

where N is variable NDVI, Ns is NDVI of bare soil, and Nc is NDVI of complete plant 

coverage.  Gutman and Ignatov (1998), however, prove a simpler SMA model can be 

used to relate FVC and NDVI for non-dense vegetation (e.g. Kerr et al. 1992; Gillies and 

Carlson 1995; Wittich and Hansing 1995; Valor and Caselles 1996).  The SMA 

relationship shows NDVI to be a linear combination of bare soil (Ns) and complete 

coverage (Nc) with NDVI weighted by the percentage of vegetative cover (FVC), such 

that: 

( ) sc NFVC -1 )FVC(N  NDVI +=        (3.4) 

This SMA model assumes a linear form and can be easily transformed to estimate FVC 

by: 


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−
=

sc

s

NN

NN
FVC         (3.5) 

Where N is variable NDVI, Ns is bare soil and Nc is complete plant coverage. 

Both models assume that NDVI and FVC are related by two endmembers based on bands 

used to calculate NDVI (red and near infrared).  This major simplification allows FVC to 

be estimated directly from NDVI without multiple bands.  For additional simplification, 



 37

Gutman and Ignatov (1998) reflect numerous authors who have shown that a non-linear 

relationship was not detectable in varying plant densities.  The authors argued that a 

purely linear relationship did not significantly change the estimation error.       

Lukina et al. (1999), using red-green-blue (RGB) digital imagery, found that 

NDVI was significantly linearly correlated (R2>0.80) with vegetative coverage, such that 

NDVI was linearly regressed on percent vegetative cover (VC%):   

( )%VCNDVI 10 ββ +=          (3.6) 

Similar work by Jones et al. (2007) in spinach, using a multispectral imagery, found that 

biomass is related exponentially to NDVI (R2 = 0.94) and that vegetative coverage by 

percent (VC%) is logarithmically related to biomass (R2 = 0.91): 

cNDVIaeBiomass=         (3.7)  

)Biomassln(d%VC =        (3.8) 

where a, c, and d are constants of regression.   

 The objective of this research is to empirically validate the relationship between 

NDVI and FVC.  A review of the literature shows an inverse relationship between 

variance and NDVI collected in experimental plant stands, such that variance decreases 

as plant material increases.  Previous experimentation suggests a similar inverse 

relationship between percent soil coverage and NDVI, such that variance is low in 

complete bare soil and increases as plant material increases.  Taken in concert, these 

relationships imply a peak function where NDVI at minimum variance can be used as 

endmembers and maximum variance can be estimated at the vertex between bare soil and 

complete plant coverage.  
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 Current literature suggests that a linear relationship exists between NDVI and 

FVC.  The model supported by Gutman and Ignatov (1998) describes a method of 

estimating FVC using endmember bare soil (Ns) and complete plant coverage (Nc) as 

values derivable from the dataset.  Consequent to this model is the estimation of 50% 

vegetative coverage being midway between Ns and Nc. 

 Specifically, this paper will show a quadratic relationship exists between sample 

standard deviation (Stdev) and mean NDVI and that the roots of this relationship provide 

estimates for Ns and Nc in the SMA model, where  

cbNDVIaNDVI)NDVI(Stdev 2 ++=       (3.9) 

with endmembers at the upper and lower roots: 

c
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 Using Ns and Nc as constants in Equation 3.5 the vertex of the mean/variance 

relationship will occur at 50% vegetative cover, such that: 
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Methods and Materials 

Data compiled for this research consists of sensor-based calibration stamp 

samples, vegetative coverage samples, and camera based experimental spinach trials.  

The field dataset is used to validate the results of a simulated remote sensing experiment.  
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In this study, mean NDVI, standard deviation of the mean, and corresponding FVC serve 

as primary metrics.  Previous research suggests the use of the coefficient of variation 

(CV) because samples were being taken from different fields.  However, CV becomes 

insensitive for means approaching zero and should only be used on true ratio data (Zar 

1984).  It is debatable whether NDVI represents true ratio data.  For this reason Taylor et 

al. (1999) argued for the use of the mean square error (MSE) in preference to CV for 

instances where common units of measure were used in different treatments.  

Additionally, MSE, unlike CV, has the property of being the square of the experimental 

units – where the root mean square error (RMSE) is in comparable units.  It is unclear if 

MSE is preferable over customary variance estimates when no comparison of samples is 

being made (e.g. analysis of variance).  Conceptually, a simpler, more common method 

to determine variance in experimental units is preferable; for this reason the standard 

deviation is used in this study.    

Because samples in this experiment are from sensor and camera based 

experiments, it is essential that NDVI be demonstrably uniform across sensor type.  

Research in Jones et al. (2007) shows that NDVI derived from GreenSeekerTM sensors 

are highly linearly correlated (R2 = 0.97) with NDVI derived from the multispectral 

camera (DuncanTech MS3100) used in this experiment.  The similarity between sensors 

allows field collected samples to be validated by multispectral images.  

To understand the systematic relationship between variance and NDVI, a 10x10 

(100 element) value matrix was constructed in Splus 2000 (Insightful®) to simulate a 

typical plot sensing experiment. In each simulation run, elements in the matrix were 

uniform randomly assigned either complete plant coverage or bare soil binomial 
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identification (0 or 1) in accordance with FVC levels (0% - 100%) from Equation 3.4.  

The elements allocated to complete plant coverage (Nc) were assigned a random normal 

NDVI value with MeanNDVI = 0.85 and StDevNDVI = 0.01 and bare soil (Ns) MeanNDVI = 

0.16 and StDevNDVI = 0.02.  Complete plant coverage and bare soil NDVI mean and 

standard deviation values were derived from a continuous native grass experimental plot 

in another part of this study.  A simulation consisted of 1000 value matrices at each FVC 

ranging in whole values 0% - 100% producing 10 mean/standard deviation values for 

each FVC level, where each value matrix was averaged by element across each column, 

simulating a perpendicular single sensor scan and then by row to calculate plot mean 

NDVI and standard deviation.   

 To confirm the relationship between the mean and standard deviation of within 

sample NDVI, 16 multispectral images of spinach plots, described in Jones (et al. 2007), 

were analyzed.  The capture area for each image was constructed of 1.27cm (3/4in.) PVC 

pipe enclosing a 0.76m x 0.91m area.  Images were collected by a DuncanTech MS3100 

multispectral camera (Auburn, Cal.), sensing green, red, and near-infrared bands at 550, 

670, and 780nm (± 10nm), respectively.  The 3-band images were calibrated and 

converted to NDVI images with MatLab (MathWorks, Inc., Natick, Mass.) software, 

using the standard reflectance NDVI calculation.  However, because NDVI is 

theoretically bound between [-1,1], subsequent NDVI images with negative values were 

not set to zero as normal practice usually dictates in order to emphasize the distinction 

between bare soil and dense vegetation.  Further, images were resampled to lower 

resolution by averaging to aid computation and reduce background noise.  A 20 pixel 

kernel was used to decrease resolution because variogram analysis of these data showed a 
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30 - 50 maximum range indicating a 15 – 25 pixel zone of influence; thus half the 

maximum range was selected to minimize variance aliasing across scales (Russo and Jury 

1987; Western and Bloschl 1999).  From this aggregated image, a mean and standard 

deviation image was created by a 3 pixel square search kernel.      

To delineate the relationship between 50% FVC and variance, 30 plots were 

sensed with the hand-held GreenSeekerTM across five vegetative coverage levels in a 2m 

x 10m continuous native grass experimental plot.  The plot received 45 kg ha-1 pelleted 

10-20-10 commercial fertilizer previous to growing season and had consistent NDVI 

( 01.085.0NDVI Plant ±= ) at the time of sensing.    A wooden frame 61cm x 61cm was 

constructed as a sensing boundary.  An initial NDVI sensing represented 100% 

vegetative cover.   Then reflective panels ( )02.016.0NDVI Panel ±= , representing soil 

from the experimental area ( 0.013 0.159 = NDVI soil ± ), were placed in the frame and 

sensed to achieve 75%, 50%, 25%, and 0% vegetative coverage.  The mean and standard 

deviation of experimental sample were calculated.     

Validation at the field level was achieved by analyzing five sites sampled under a 

calibration stamp design (Raun et al. 2004), which is a 3m x 3m matrix of 9 – 1m2 plots, 

consisting of four check plots and five treatment level plots in wheat and bermudagrass.  

Each calibration stamp was sensed at 1m2 resolution with the hand-held GreenSeeker™ 

optical sensor. The sensor detects and records individual NDVI values every 0.6m x 1cm 

across the plot producing mean NDVI and standard deviations.     
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Results 

 Figure 3.1 demonstrates the simulated relationship between NDVI and standard 

deviation of NDVI with varied FVC and endmembers 02.016.0N s ±= and 

01.086.0N c ±= . 

 
 
Figure 3.1: Simulated NDVI Versus Standard Deviation of NDVI (10,000 Simulation Runs) with 
Maximum Variance Estimation Bounds from Equation 3.5.  NDVI = 0.86 and NDVI = 0.16 Used as 
Estimates of Complete Vegetative Coverage and Bare Soil, Respectively.  
 
The relationship, Figure 3.1, shows the simulated standard deviation of NDVI is 

quadratically related to simulated mean NDVI and that minimum variance occurs at bare 

soil ( 16.0≈ ) and complete plant coverage ( 86.0≈ ) values.  Conversely, maximum 

variance is centered between the endmembers and occurs within predicted bounds 

(0.495,0.525) from Equation 3.5.       
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 Figure 3.2 shows the simulated relationship between varied levels (0%-100%) of 

FVC and standard deviation of NDVI.   

 
 
Figure 3.2: Simulated FVC(%) Versus Standard Deviation of NDVI (10,000 Simulation Runs) Where 
Maximum Variance Occurs at 50% FVC. 
 
Figure 3.2 demonstrates that there is a predictable relationship between FVC and 

standard deviation.  Variance is highest at 50% FVC and is minimized at 0% and 100% 

FVC. Attenuated data near minimum variance is due to the levels of FVC being chosen 

as discrete whole numbers and not continuous.  

 Figures 3.1 and 3.2 show that FVC and NDVI are quadratically related to the 

standard deviation of NDVI, such that ( ) ( )NDVIg)NDVI(StdevFVCf == implying that 

the functions of FVC and NDVI are equal ( ) ( )NDVIgFVCf = .  Therefore, using the 
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FVC transformation (Equation 3.5) and the roots of NDVI relationship (Equations 3.10 & 

3.11) FVC and NDVI should have a linear relationship.          

Figure 3.3 shows an example plot derived from the multispectral spinach imagery 

and is representative of the data distribution from this experiment.  

 
 
Figure 3.3: Spinach Imagery NDVI versus Standard Deviation of NDVI with Quadratic Regression 
Fit (Parameters Described in Table 3.11: Plot 1). 
 
The relationship (Figure 3.3) demonstrates a quadratic response between mean NDVI and 

standard deviation confirming the initial assumptions made from simulation results. 

 Table 3.11 shows the parameters of a quadratic regression model used to estimate 

the relationship.  The values are model coefficients (a, b, and c: Equation 3.9), coefficient 

of determination (R2), coordinates of the maximum standard deviation (Xvert and Yvert), 

and the endmember estimates Ns (Lower Root) and Nc (Upper Root).     
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Table 3.1: Quadratic Regression Parameters for Spinach Dataset  

Plot a b c R2 Xvert Yvert  Lower Root Upper Root 
Plot 1 -1.036 0.739 0.076 0.567 0.357 0.207 -0.091 0.804 

Plot 2 -1.001 0.726 0.074 0.581 0.362 0.206 -0.091 0.815 

Plot 3 -0.989 0.77 0.042 0.626 0.389 0.192 -0.052 0.829 

Plot 4 -0.861 0.495 0.134 0.617 0.287 0.205 -0.201 0.775 

Plot 5 -0.91 0.557 0.117 0.593 0.306 0.203 -0.166 0.777 

Plot 6 -0.982 0.596 0.128 0.601 0.303 0.218 -0.168 0.775 

Plot 7 -1.08 0.525 0.174 0.66 0.243 0.237 -0.226 0.712 

Plot 8 -1.222 0.79 0.109 0.687 0.323 0.237 -0.117 0.763 

Plot 9 -1.061 0.723 0.096 0.614 0.34 0.219 -0.114 0.795 

Plot 10 -1.232 0.763 0.121 0.692 0.31 0.24 -0.131 0.75 

Plot 11 -0.878 0.591 0.098 0.573 0.337 0.197 -0.137 0.81 

Plot 12 -0.914 0.656 0.084 0.593 0.359 0.202 -0.111 0.829 

Plot 13 -1.105 0.707 0.12 0.641 0.32 0.233 -0.139 0.779 

Plot 14 -1.052 0.723 0.095 0.606 0.344 0.219 -0.113 0.8 

Plot 15 -1.151 0.861 0.057 0.597 0.374 0.218 -0.061 0.81 

Plot 16 -1.056 0.781 0.063 0.582 0.37 0.207 -0.073 0.813 
 
Table 3.1: Model coefficients (a, b, and c: Stdev(NDVI) =aNDVI 2 +bNDVI +c), Coefficient of  
Determination (R2), Coordinates of the Maximum Stdev(NDVI) (Xvert and Yvert), and Endmember 
Estimates Ns (Lower Root: Bare Soil) and Nc (Upper Root: Complete Vegetative Coverage).     
 
Each regression demonstrated in Table 3.1 was significant (P<0.01) and returned 

reasonably high R2 values (>0.56).  Interestingly, predictions of Ns (Lower Root: Bare 

Soil) are consistently less than 0 for the imagery, demonstrating an instance where CV is 

not an appropriate measure of variance in this study.  The extremely low bare soil NDVI 

values are likely due to a combination of extraneous factors such as soil texture, ambient 

moisture, and stark transition between plant material and bare soil.       

Figure 3.4 shows the results of the native grass vegetative cover experiments.  

Here NDVI samples were taken across five levels of FVC (0%, 25%, 50%, 75%, and 

100%). 
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Figure 3.4: FVC (%) Versus NDVI from Native Grass Vegetative Coverage Experiment. 

Figure 3.4 shows that NDVI is highly dispersed at FVC = 50% in comparison.  In 

addition, variance is small at 0% and 100% FVC.  Table 3.2 confirms that the standard 

deviation is highest at FVC= 50% and lowest at FVC = 0% & 100%.   

Table 3.2: Standard Deviations for Levels of FVC (%)  
FVC (%) 0 25 50 75 100 
Standard Deviation 0.0442 0.1839 0.2662 0.1995 0.0565 
 

This verifies complete bare soil and complete plant coverage should have fairly stable 

low variance (c.f. Xaio and Moody 2005) while equally mixed Ns and Nc should have 

maximum variance.    
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Figure 3.5 shows the results of field level research on calibration stamp plots, in 

wheat and bermudagrass where plot averaged NDVI is matched with corresponding 

variance.       

 

Figure 3.5: NDVI Versus Standard Deviation of NDVI for Calibration Stamp Design with Quadratic 
Regression Fit (see Table 3.3: Wheat and Bermudagrass “Combined”). 
 
Figure 3.5 shows a quadratic relationship between NDVI and standard deviation 

confirming previous findings.  Specifically, this experiment demonstrates NDVI and 

variance are related even at increasingly larger measurement scales. Table 3.3 shows the 

regression parameters associated with this trial. 
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Table 3.3: Quadratic Regression Parameters for Calibration Stamp Dataset  

Plot a b c R2 Xvert Yvert  Lower Root Upper Root 
Combined -0.602 0.686 -0.103 0.316 0.569 0.093 0.177 0.962 
Wheat -0.729 0.868 -0.159 0.511 0.595 0.099 0.226 0.964 
Bermuda -0.836 0.837 -0.114 0.53 0.5 0.095 0.163 0.838 
Table 3.3: Model coefficients (a, b, and c: Stdev(NDVI) =aNDVI 2 +bNDVI +c), Coefficient of 
Determination (R2), Coordinates of the Maximum Stdev(NDVI) (Xvert and Yvert), and Endmember 
Estimates Ns (Lower Root: Bare Soil) and Nc (Upper Root: Complete Vegetative Coverage).     
 
Regressions displayed in Table 3.3 were significant (P<0.01), but showed weak R2 when 

species were combined although R2 was improved when species were individually 

modeled.  This is an intuitive finding because wheat and bermudagrass have significantly 

different canopy patterns and will consequently exhibit different variances.  Dennison 

and Roberts (2003b) found that plant phenology contributed significant confusion in 

change detection using multiple endmember spectral mixture analysis (MESMA).   

Figure 3.6 shows the simulated relationship between NDVI and FVC for 

estimated endmembers ( 02.016.0N s ±= and 01.086.0N c ±= ). 
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Figure 3.6: Simulated NDVI Versus FVC(%) (10,000 Simulation Runs) with Linear Regression Fit 
(Parameters in Table 3.4: “Simulation”). 
 
The simulation (Figure 3.6) exhibits a linear relationship between NDVI and FVC.  

Similarly, (Figure 3.7) shows the relationship between NDVI and FVC from the 

vegetative cover experiments in native grass stands. 
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Figure 3.7: NDVI Versus FVC(%) from Native Grass Vegetative Cover Experiment with Linear 
Regression Fit (see Table4: “Field”). 
 
The linear nature of Figure 3.7 serves to validate the assumption of a linear relationship 

between NDVI and FVC. Table 3.4 shows the parameters and R2 for the linear 

relationship between NDVI and FVC.  

Table 3.4: Linear Regression Parameters for Simulated NDVI and Vegetative Cover 
Experiments. 

Model Intercept Slope R2 
Simulation -21.234 139.731 0.978 
Field -18.844 131.398 0.931 
 
Slope prediction was extended to experiments where FVC was not collected as a variable 

calculated by 

sc
FVC NN

100
slope

−
=           (3.13) 
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The spinach imagery has an average slope (109.483) and the calibration stamp 

experiments have an average slope (137.001).  Earlier work by Lukina et al. (1999) 

showed commensurate average slopes at (158.019).   

Discussion 

 Results from the simulation indicate a quadratic relationship between NDVI and 

plot variability.  This relationship appears to be a product of the FVC within the plot area.  

Given the nature of this relationship, NDVI of bare soil (Ns) and complete vegetative 

cover (Nc) will have low variation since these areas are uniform.  As uniformity decreases 

variance increases until a maximum is reached at a predicted equal mixture of Ns and Nc.   

 Multispectral imagery confirms a quadratic relationship for extremely fine 

resolution with relatively good correlation (R2 > 0.57).  Given this relationship, it is 

reasonable that Ns and Nc can be estimated by the roots (zeros) of the quadratic 

regression equation, albeit the bare soil estimates tended to be extremely low.   

 Selective vegetative cover experimentation in continuous native grass stands 

shows that variation of NDVI is highest at 50% FVC.  This experiment serves to confirm 

that maximum variance occurs at the vertex of the NDVI-variance relationship and 

validates the derivation of Equation 3.12 showing that FVC = 50% occurs at the vertex. 

 Results from the calibration stamp design show the characteristic quadratic 

relationship between NDVI and variance.  This finding suggests that the same overall 

relationship may exist at a field-level scales.  Further, this experimentation hints that 

species, by virtue of canopy structure, affect variance and ultimately estimates of bare 

soil and complete coverage.  This is confirmed with the spinach imagery where stark 

differences between soil and plant material resulted in negative NDVI estimates for bare 
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soil.  Additionally, the comparison of wheat and bermudagrass showed that canopy 

structure affects the variability.  Further research should be conducted to determine if the 

definitions of bare soil and complete vegetative coverage NDVI are site specific.   

 Lastly, both simulation and field research confirm the linear relation of NDVI to 

FVC found in the literature.  Subsequent application of this finding to experiments that 

did not capture FVC necessitated a slope function (Equation 3.13) and showed 

commensurate slopes across all data sets.  This result confirms the linear relationship 

between NDVI and FVC suggested in Gutman and Ignatov (1998: Equation 3.5) and 

Lukina et al. (1999: Equation 3.6).  Additionally, Jones et al. (2007) showed that biomass 

is exponentially related to NDVI (Equation 3.7) and that vegetative coverage is 

logarithmically related to biomass (Equation 3.8).  By combining these equations and 

solving for vegetative cover (VC%) in terms of NDVI an extrapolation of Jones et al. 

(2007) shows a linear relationship between VC% (FVC) and NDVI    

)aln(dcdNDVI%VC +=         (3.14) 

where a, c, and d are constants from regression (Equations 3.7 and 3.8).  In each of these 

cases the FVC line segment requires boundary values at FVC = 0 and FVC = 100, which 

can be derived from the roots of the standard deviation – NDVI relationship. 

Conclusion  

 Findings from this study show that mean NDVI and variation in NDVI are related 

by a quadratic relationship.  Further, this relationship can be used as a method of 

estimating NDVI of bare soil and complete vegetative cover endmembers (Ns and Nc) as 

the roots of the quadratic standard deviation-NDVI relationship.  This mathematical 

relationship allows quantification of FVC at various levels of NDVI provided the 
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variance of NDVI is known.  These findings, in concert with the spectral mixture analysis 

(SMA) model, show that FVC can be estimated in field by sub-sampling NDVI and 

calculating variance within plots.    
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CHAPTER IV 
 
 

A SIGMOIDAL MODEL TO PREDICT YIELD POTENTIAL INCORPORATING 

CROP RESPONSE TO SUPPLEMENTAL NITROGEN 

Abstract 

 Prediction of yield potential is central to Nitrogen (N) conservation efforts.  

Supplemental N applied in uniform blanket application neglects natural field variability 

demonstrated by varying plant response to supplemental N and idealistic yield goals 

assuming uniformity of return.  Continual over application compounds environmental 

degradation and, as N fertilizer price increases, contributes to decline in agricultural 

profitability.  However, recent advances in yield potential prediction and detection of 

plant N sensitivity offer improved management strategies.  This research proposes a 

sigmoidal approach to accepted exponential yield potential models by incorporating a 

continuous plant response parameter.  The sigmoid model, built from assumptions in 

current literature, is within 6% (for large samples) equitability with the current 

exponential model in reducing residual sum of squares.  However, the sigmoidal 

approach ensures agronomic assumptions are maintained without a piece-wise defined 

model.  This methodology translates supplemental N sensitivity to differential yield 

potential, especially for varied physical/chemical conditions and N application rate 

differences.  This methodology also opens the way for economic analysis of yield 

potential gain for a cost reduction based approach to variable rate application.                
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Introduction     

 For many years Nitrogen (N) has been applied in farm fields as a low cost, easy-

to-implement method to maximize yield.  Blanket application of uniform, usually high 

rate, N disregards field variability, over-treats areas at N sufficiency, and subsequently 

results in excess N entering the environment.   Agricultural pollution, especially lost N, 

besides being an aqueous pollutant, is borne by the farmer as a loss in productivity, and in 

concert with recent fertilizer price increases, 130% between 2000 and 2006 (Huang, 

2007), is exacerbating the cost of N loss and leading to an intractable future for cropping 

systems.  However, recent developments in variable rate theory and technology may stem 

future issues by matching application to in-field need.    

 Nitrogen use efficiency (NUE) provides an estimate of field N requirement by 

demonstrating the proportion of N returned in harvested product to N application.  

Therefore, the primary issue in increasing NUE centers on the effectiveness of 

supplemental N, since N contained in the harvest product is generally constant.  

Excessive N application, well above sufficiency, artificially lowers NUE.  NUE is, 

therefore, predicated on a combination of residual N in the plant/soil matrix and applied 

N.  To assess the effectiveness of N supplementation, given residual N concentrations, 

Johnson (2000) proposed the use of RIHarvest.  This index is the ratio of yield from N 

treated plots and untreated plots.  Later Mullen et al. (2003) proposed a ratio of 

normalized difference vegetative index (NDVI) values from N treated and untreated plots 

as a mid-season estimate of RIHarvest.  Raun et al. (2005) developed a method to calculate 

N application rates from NDVI based on yield potential using RINDVI as a constant 

multiplier to augment the relationship for N treated plots, which meant RINDVI could be 
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calculated from the ratio of N treated and non-treated potential yields.  Raun et al. (2005) 

further show that NDVI is exponentially related to yield potential within a specified 

interval of NDVI and increases with increasing NDVI until constrained under a 

maximum environmental cap (YPMax).  In this way, YPMax represents maximum yield 

obtainable given ambient physical and chemical field conditions.  Plant response to 

supplemental N (RINDVI) is, therefore, used as a constant multiplier to drive the Yield-

NDVI curve to YPMax quicker for low NDVI when plants show significant response 

(RI>1).  Under this methodology yield potential is exponentially related to field rate 

NDVI given by: 

0Nfor  1  RI ;YPYP   :for  e)RI(aYP NDVIMaxN
)NDVI(b

NDVIN ==<=   (4.1) 

where yield potential (YPN) is a function of field rate NDVI and plant response due to N 

application rate (RI) ranging between 0 kg N ha-1and sufficient concentrations.  

Obviously, 0-N application results in no complementary plant response (RI=1), however 

RI is allowed to increase proportionately to increases in N application rate, which 

increases the overall function.  Additionally, this function based methodology estimates 

YPMax as the maximum yield obtainable with N sufficiency and is not defined for values 

less than NDVI = 0.25, which Raun et al. (2005) describes as the soil/crop divide.  Plant 

response to supplemental N (RINDVI) can be found from the yield potential, where RINDVI 

is constant until YPMax, inverse exponential until NDVI = 0.73, and asymptotically to 

RINDVI →1 after NDVI = 0.73.  

 However, evaluating RI at smaller than average (1m) measurement scale, referred 

to as fundamental field element scale (Solie et al. 1996; Raun et al. 1998; Solie et 

al.1999), Monroe et al. (2008) found that RINDVI is a continuous function inversely 
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proportional to residual N, such that as residual N increases to sufficiency, evidenced by 

increasing NDVI, subsequent plant response (RINDVI) decreases.  They further found, by 

specifying asymptotic boundary conditions, that this process can be estimated as a two 

parameter inverse hyperbolic cosine model: 

( )
1

FpNDVIAcosh

)FpNDVI(A
RI

1

0
NDVI +=       (4.2) 

 where A0 determines maximum RINDVI and A1 is the rate at which plant sensitivity to N 

supplementation decreases as farmer practice NDVI (FpNDVI) increases.  Maximum 

response is achieved at low NDVI because N is the primary limiting nutrient; however, as 

NDVI increases (healthier plant stands) response to supplemental N decreases.  The rate 

of decreasing response, between maximum response and complete N sufficiency, 

determines the intensity of N limitation.  In context of the model, lower parameter values 

indicate plots where N is constantly a primary limiting factor, whereas higher parameter 

values indicate plots where N is a primary factor for extremely low NDVI but is 

subordinated quickly as NDVI increases.   

Raun et al. (2005) laid the groundwork by devising a yield potential (YP0) model 

to predict yield using NDVI readings and noted several axiomatic constraints, such as 

plant sensitivity to supplemental N, exponential increase, and asymptotic extremes.  

Furthermore, their work advocates a maximum yield boundary (YPMax), which has not 

been adopted in the YP0 model as a parameter.  Additionally, recent research suggests 

that RINDVI is a predicable continuous function as opposed to a piece-wise defined model.    

 The objective of this study is to construct a continuous yield potential (YP) model 

subject to constraints from recent findings and compliant with necessary boundary 

conditions to compare with field-collected data.   This work contends a sigmoidal model 
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approach can incorporate axioms from Raun et al. (2005) and continuous plant response 

to N (Monroe et al. 2008) into a single coherent model able to predict yield potential 

from mid-season measurements.  Benefits of such a model include economic decision 

making in treating with variable N application and marginal net benefits from treating 

intervals of NDVI.          

Methods and Materials 

 Raun et al. (2005) show that yield potential is asymptotic for upper and lower 

NDVI values, specifically for NDVI →NDVI at YPMax and NDVI < 0.25.  Additionally, 

they show field sampled NDVI is exponentially related to yield from those samples.  

Taken in concert, these findings imply a sigmoidal transition of asymptotically low yield 

for low NDVI, increasing exponentially through mid-range NDVI, and asymptotic yield 

at YPMax for NDVI →  1.   

 Sigmoidal models are prevalent in biological fields as models of constrained 

growth and decay.  Tsoularis and Wallace (2002) demonstrate that most sigmoidal 

models in use today are versions of the earlier Verhulst (1838) logistic model used to 

predict Malthusian growth.  Logistic models are characterized by an initial population 

(initial asymptotic value), transition zone, and a “saturation level” population (carrying 

capacity) (Tsoularis and Wallice 2002; pg. 22) such that: 

inf)x(ke1

c
y

−−+
=         (4.3) 

where c is the carrying capacity, k is a parameter of curvature, and inf is the point of 

inflection (center of transition). 

In the case of yield represented in the NDVI domain, NDVI = 0 should result in 

YP = 0 as an initial condition and NDVI = 1 should result in YP = YPMax at carrying 
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capacity.  Of the models present in the literature, a logistic appears to be the best for this 

application, because the numerator contains a carrying capacity parameter, the model can 

have a zero lower asymptote, and the inflection point (inf) can be directly estimated. 

 For the model to represent field conditions it must be sensitive to plant response 

to supplemental N.  Raun et al. (2005) verified that the model must transition to YPMax 

quicker under N supplementation.  Therefore, the exponent should comprise a measure of 

plant response (RI) to N supplementation for yield potential (YPN), such that: 

( )InfRI*NDVIk −−  where k is a regression estimated parameter of curvature, NDVI is 

the domain, RI is the variable measuring plant response to supplemental N, and Inf is the 

non-linear regression estimated inflection point.  If the plant stand is not N treated (YP0) 

then RI = 1 and the exponent reduces to( )InfNDVIk −− .  Thus yield potential is 

changed by N supplementation where N treated yield potential  

inf)RI*NDVI(k
Max

N e1

YP
YP

−−+
=        (4.4) 

 
is augmented by RINDVI and untreated stands are static at RINDVI =1 
 

inf)NDVI(k
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0 e1

YP
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−−+
=

        (4.5)  

 Data for this study came from six years (1998 – 2003) of yield monitoring in Hard 

Red Winter Wheat.  This dataset included 700 yield (Mg ha-1), pre-plant N rate (kg N ha-

1), and NDVI combinations across six years sensed at Feekes stage 4 – 6.  Only 0 kg N 

ha-1 pre-plant rates were included in this study to observe base level YP0 and to fit with 

parameters in the continuous RINDVI model (Monroe et al. 2008).  As pre-plant N rate 

increases, residual N in the plant-soil matrix at also increases; therefore response to 

further supplemental top-dress N decreases.  These data were evaluated separately by 
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year because RI is variable year to year (Raun et al. 2005) and yield is independent of 

previous years (Johnson and Raun 2003). 

 Response index (RINDVI) parameter values were taken from Monroe et al. (2008) 

and used to adjust the baseline yield curve.  Parameters from this source were a 

composite of several experimental areas and designs at various growth stages.  However, 

varied N rate application experiments in a calibration stamp design were specifically 

separated and analyzed for this study to show yield model adjustment for different N 

application rates.  The calibration stamp design (Raun et al. 2004) is a 3m x 3m matrix of 

9 – 1m2 plots, consisting of four check plots and five treatment level plots. Application 

rates were 22, 45, 67, 90, and 112 kg N ha-1 (20, 40, 60, 80, and 100 lbs N acre-1) in 

wheat and bermudagrass.  These experiments were conducted in 2004.  Each calibration 

stamp was sensed at 1m2 resolution with the hand-held Greenseeker™ optical sensor 

(Ntech Industries, Ukiah CA.) The plots were sampled four times at intervals of two 

weeks after N application and averaged together. 

Results and Discussion 

To assess fit the proposed sigmoidal model is compared against the exponential 

model used in Raun et al. (2005) and compared by reduction of residual sum of squares 

(RSS).  Figure 4.1 shows the comparison in model for 1998 yield values restricted to 0-N 

pre-plant application.  Since YPMax is an unknown saturation value describing the 

capacity of yield; it was first estimated as one standard deviation of yield plus maximum 

yield from the dataset.  After the sigmoidal model was regressed, YPMax was adjusted and 

the sigmoidal model was reparameterized iteratively until a minimum RSS was attained.   
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Figure 4.1: Regression Fit for1998 NDVI Verses Yield (Mg ha-1) at 0 N Pre-Plant. 
 
Figure 4.1 demonstrates that both models equitably pass through the main distribution of 

data.  However, the exponential model continues unbounded after YPMax is reached.  The 

sigmoidal model maintains the exponential nature of these data and offers asymptotic 

boundary conditions such that YP0 is obtained at NDVI = 0 and YPMax is obtained at 

NDVI = 1.  The sigmoidal model, a symmetric logistic, should reach the maximum value 

(YPMax) at NDVI = 1 unless constricted by fitted parameters from the dataset.  In this 

case, several trials show the sigmoidal model is overparameterized if YPMax is estimated 

in the model.  Therefore, YPMax was adjusted outside the regression fit to ensure the 

sigmoidal model reached YPMax at NDVI = 1.          



 64

 Table 4.1 shows the parameter estimates and residual sum of squares (RSS) for 

the sigmoid and exponential models by year derived through non-linear least squares 

regression (Gauss – Newton method).  

Table 4.1: Parameter and Fit (RSS) Comparison Between Sigmoidal and 
Exponential Model by Year.   
  Sigmoid (Equation 6) Exponential (Equation 1)  

Year k inf RSS a b RSS N samples 
1998 7.3141 0.5218 7.3734 0.3833 2.8063 7.8204 131 
1999 3.9520 0.6253 9.5752 0.4380 2.0269 9.6883 125 
2000 3.5853 0.5467 9.367 0.7409 1.6940 9.0453 128 
2001 3.8885 0.5118 11.3792 0.7528 2.0350 10.7915 145 
2002 1.8126 0.4744 49.2231 1.5349 0.9255 49.2367 144 
2003 7.0764 0.4909 1.8335 0.8440 2.2881 1.5348 27 

Table 4.1: Comparison of Model Parameters Between Sigmoidal and Exponential Non-Linear 
Regression Fitting by Year: k=Parameter of Curvature (Equation 6), inf = Inflection Point (Equation 
6), a = Exponential Parameter (Equation 1), b = Exponential Parameter (Equation 1), RSS = 
Residual Sum of Squares.  
 
Table 4.1 shows that there are consistently minor differences in RSS between models 

confirming fit equitability.  For 1998, 1999, and 2002 the sigmoidal model reduced the 

RSS, while 2000, 2001, and 2003 it increased RSS.  With the extremely small difference 

in RSS values (<6% for 1998 – 2002) it appears the sigmoidal model is reasonably well-

suited to fit the data distribution as the established exponential model.  The higher 

percent difference in RSS for the sigmoidal model in 2003 (20%) is likely due to the 

sample size (27).   

 Raun et al. (2005) describes and validates the process by which the yield potential 

curve is left shifted by implementation of constant response index (RINDVI).  In summary, 

yield potential is shifted to YPMax at lower NDVI by N supplementation.  Figure 4.2 

shows the inclusion of continuous RINDVI (c.f. Monroe et al. 2008) applied to the 

sigmoidal model. 
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Figure 4.2: 1998 NDVI Verses Yield (Mg ha-1) for 0 N pre-plant with Sigmoidal and Variable RINDVI  
Adjusted Models Compared to Exponential and Constant RI NDVI  Adjusted Models. 
 
Figure 4.2 illustrates, due to continuously variable RINDVI, that the model shift is not only 

a rescaling but also a reformulation of the curve.  To fit with preliminary assumptions, it 

is necessary that the RINDVI adjusted curve (YPN) is asymptotic and that it approaches the 

non-RINDVI adjusted curve (YP0) at extreme NDVI.  It is also necessary that YPN 

demonstrate variable response according to plant sensitivity to supplemental N. 

 Additionally, Figure 4.2 describes the marginal benefits of variable RINDVI 

adjustment of yield potential models.  The constant RINDVI YP model (Equation 4.1) 

shows that marginal benefit (slope of the curve) increases at an increasing rate until 

YPMax is reached and becomes zero thereafter.  This implies that additional yield benefit 

of treating the next higher NDVI unit increases until YPMax, but transitions to zero 

additional benefit after YPMax.  The variable RINDVI adjusted YP model (Equation 4.2) 
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shows that marginal benefits increase at an increasing rate until the inflection point is 

reached and continues to increase thereafter but at a decreasing rate until YPMax is 

reached.  The combination of sigmoidal transition and variable RINDVI show that N 

supplementation will always result in an increase in yield; however, after the inflection 

point has been reached the additional benefit of treating the next unit of NDVI is smaller.     

 It should be noted that the dataset used to model the baseline sigmoidal curve was 

sensed at Feekes 4 –6 growth stage, while the RINDVI adjustment was an average of 

readings without specific growth stage from Monroe et al. (2008).   Growth stage can 

influence the magnitude of maximum response, and will translate to the RINDVI adjusted 

yield model accordingly.          

 Monroe et al. (2008) also showed that differing definitions of bare soil NDVI (Ns) 

shift the response curve and can attenuate maximum response according to Equation 4.6 

 ( )
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where RINDVI is 1 for NDVI definitions of bare soil greater than NDVI = 0.  Figure 4.3 

demonstrates how bare soil offsets are translated in the RINDVI adjusted curve (YPN).   
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Figure 4.3: NDVI Verses the Variable RINDVI  Adjusted Model in Yield (Mg ha-1) with Various NDVI 
Definitions of Bare Soil (Ns = 0, 0.05, 0.1, and 0.15).   
 

Figure 4.3 shows that as the definition of bare soil increases N enhanced yield (YPN) 

remains equal to YP0 until Ns (RINDVI = 1) is reached.  After Ns is reached YPN diverges 

from YP0 according to the variable RINDVI model.   

Monroe et al. (2008) suggest that RINDVI modeling parameters indicate the relative 

plant sensitivity to N supplementation.  In general, for large RINDVI parameter values (A0 

and A1 : Equation 4.2) plants are highly sensitive to N application for lower NDVI given 

by A0 (maximum response); however, transition to sufficiency occurs at a much faster 

rate given by A1 (transition rate).  A high response to N for lower NDVI and a steep 

transition to sufficiency with increasing NDVI indicates that while N is a primary 

limiting factor for lower NDVI it is relegated to a subsidiary role as NDVI increases.  
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Conversely, lower parameter values generally indicate that N is consistently a main 

limiting factor.  Figure 4.4 shows the sensitivity of YPN shifted according variable RINDVI 

(Equation 4.2) parameters. 

 
 
Figure 4.4: 1998 NDVI Verses Yield (Mg ha-1) for 0 N pre-plant, with RI NDVI Curve (Equation 4.2) 
Adjusted to Varying Parameters Monroe et al. (2008)    
 
Figure 4.4 shows higher RINDVI parameters produce greater initial yield potential but 

quickly dissipate for higher NDVI.  In this case, low NDVI is responsive to N 

supplementation but becomes insensitive quickly because yield sensitivity is based on 

residual N reserves not N supplementation.  In these conditions, N is sufficient given 

physical/chemical limitations and denoted by steep transitions in RINDVI parameters.  

However, for lower RINDVI parameters (indicating consistent N sensitivity), onset yield 

potential is high and declines less across the NDVI spectrum.  In these conditions, N 
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remains a primary limiting nutrient for more of the NDVI spectrum, and yield potential is 

a result of sufficiency through N supplementation.  

 Monroe et al. (2008) demonstrated RINDVI was also sensitive to N application rate.  

Figure 4.5 shows YPN shifts for N applications of 22, 45, 67, 90, and 112 kg N ha-1 (20, 

40, 60, 80, and 100 lbs N acre-1) from the calibration stamp design using RINDVI 

parameter values shown in Table 4.2.  

Table 4.2: N Application Rate RINDVI  Adjusted Curve and Parameters. 
N Rate (kg N ha-1) A0 A1 

112 4.84 5.71 
90 6.76 6.78 
67 3.36 5.78 
45 3.91 6.41 
22 4.37 10.33 

 
 

 
 
Figure 4.5: RINDVI  Adjusted Curve for 22, 45, 67, 90, and 112 kg N ha-1 Application Rates. 
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Figure 4.5 demonstrates that reduced N application affects the YPN curve in a predictable 

manner.  As N application rate is reduced the net benefit (YPN) is also reduced.  This 

finding confirms Raun et al. (2005) statement that little yield is gained (net benefit of 

YPN = 0.32 Mg ha-1) from treatment above NDVI = 0.73 and findings in Monroe et al. 

(2008) showing that plant response to supplemental N is marginal (RI ≤  10%) above 

NDVI = 0.73.    

Subtracting baseline yield (YP0) from N enhanced yield (YPN) produces an 

estimate of yield gain due to N supplementation. Figure 4.6 shows the results of a 

methodology to derive net yield potential benefit from varied N application rates. 

 
 
Figure 4.6: Yield Potential Gain Curve for 22, 45, 67, 90, and 112 kg N ha-1 Application Rates on 
Calibration Stamp Design Data. 
 
Predictably, higher N application rates show greater yield potential gain across the NDVI 

spectrum.  However, gain subsides for extreme NDVI.  Figure 4.6 specifically shows the 
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interval of NDVI where yield is insignificantly altered due to increasing N application 

rates.  The non-uniformity in the peaks of these curves is due to multiple wheat trials 

included in this experiment.  Different fields have different responses to application rates 

of supplemental N.    

  Notably Raun et al. (2005) suggested, from empirical studies, that N application 

effects on yield gain would generally be unsubstantial for NDVI < 0.25, maximized 

between 0.25 ≤  NDVI ≤0.57, decreasing for 0.57  < NDVI ≤0.73, and insignificant for 

NDVI > 0.73.  Given the findings in Figure 4.6, these application intervals accurately 

describe this process.  Given dynamic price changes in wheat and fertilizer prices this 

process can determine the net benefit of treating at higher N application rates to establish 

NDVI / N application rates.   

Figure 4.7 demonstrates the effect of an alternate NDVI definition of bare soil 

(Ns) on yield gain (Equation 4.6).  Specifically, Figure 4.7 shows the yield gain offset for 

the NDVI bare soil definition (Ns = 0.15). 
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Figure 4.7: Yield Potential Gain Curve for 22, 45, 67, 90, and 112 kg N ha-1 Application Rates on 
Calibration Stamp Design Data Assuming the NDVI of Bare Soil (Ns) = 0.15 (Equation 4.6) 
  

Predictably, allowing the definition of bare soil (Ns) to increase causes yield gain through 

N supplementation to be insignificant until Ns is reached.  After Ns is reached differences 

in yield gain become apparent for each N application rate.  Conceptually, regardless of 

application rate, N applied to bare soil will not cause a gain in yield because of a lack in 

plant material.   

Conclusion  

  This research shows that a sigmoidal model estimates yield potential (YP0) with 

the same relative accuracy as the Raun et al. (2005) exponential, but satisfies necessary 

asymptotic boundary conditions, such as YP0 →0 for NDVI →  0 and YP0 →YPMax for 

NDVI →  1.  A sigmoidal approach is also capable of continuously shifting due to the 
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influence of variable plant response to N supplementation (RINDVI) and coalescences YPN 

and YP0 at NDVI extremes.   

This research also concluded a sigmoidal approach is capable of demonstrating 

variable physical/chemical conditions of plant sensitivity to N (RINDVI).  The sigmoid 

model, incorporating the continuous variable (RINDVI ) is able to adjust yield potential 

(YPN) in response to conditions where N may not be the primary limiting nutrient. 

Finally this study observed how YPN in the sigmoidal approach responds to varied 

N application rates and shows boundaries of efficacious N supplementation, which could 

be used as an economic determiner of optimal NDVI / N application rate intervals. 
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CHAPTER V 
 
 

CONCLUSIONS 

CHAPTER 2 

  The objective of Chapter 2 was to reexamine constant response index at fine 

resolution.  Chapter 2 demonstrates that plant response to supplemental N (RINDVI) is 

continuous, variable, and should be modeled using a peak function.  Predicting RINDVI in 

this manner fits the data distribution and conforms to necessary boundary conditions.  

Conceptually, plant response should not be observable for low NDVI because of the 

scarcity of plants.  Increasing NDVI (i.e. more plants) will exhibit greater response so 

long as N remains a limiting factor.  As residual N increases (with increasing NDVI) 

plant response to supplementation decreases, and finally as residual N reaches sufficiency 

plant response to supplementation becomes insignificant. 

 This study also showed that there is a necessity to modify initial boundary 

conditions (RINDVI =1 at NDVI =0) to account for the influence of bare soil NDVI on 

response.  This was accomplished by adding a bare soil NDVI (Ns) definition that adjusts 

the peak function. 

 The zone of maximum response to supplementation determines the interval and 

magnitude of the highest N limitation.  The rate of transition from maximum response to 

N sufficiency describes the relative importance of N as a limiting nutrient and is site- and 

species-specific. Complete N sufficiency is reached when supplementation no longer 

causes a significant response.   Using this information to optimize plant response N 

should be applied conservatively to extremes in NDVI, namely between 0 < FpNDVI < 
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maximum response and FpNDVI > N sufficiency. This research also suggests that N be 

applied proportionally on the interval maximum response < FpNDVI < N sufficiency.      

CHAPTER 3 

 The goal of Chapter 3 was to establish an equitable method of determining 

fraction of vegetative cover (FVC) using a combination of relationships found in the 

literature and sensor technology.  Chapter 3 shows that a combination of optical sensors 

capable of sub-sampling and spectral mixture analysis has the potential of accurately 

predicting FVC.  Sensors capable of sub-sampling within an experimental area (pixel or 

plot) are able to determine variance.  This research shows that within experimental area 

NDVI variance is quadratically related to mean NDVI, such that variance is low for pure 

regions (bare soil or complete vegetation).  This research also shows that within 

experimental area NDVI variance is maximized at 50% coverage, such that variance is 

greatest when there is a near equal mixture of bare soil and complete vegetative cover 

within a sub-sample.  This research concludes that a quadratic relationship exists between 

within experimental area variance and NDVI and within experimental area variance and 

FVC implying a predictable linear relationship exists between FVC and NDVI.  This 

linear relationship, albeit found by other methods, is confirmed in the literature. 

CHAPTER 4 

The goal of Chapter 4 was to incorporate variable plant response to N 

supplementation with findings from current research under imposed conceptual boundary 

conditions to predict yield potential.  Previous research in yield potential prediction found 

that yield was insignificant for low NDVI, increased exponentially through mid-range 

NDVI, and is constrained under a bio-physical cap for high NDVI.  It has also been 
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shown that yield for low NDVI could be shifted to the bio-physical cap quicker by N 

supplementation.  This shift is accounted for by a constant multiplier in the current yield 

potential prediction model.  Chapter 4 showed that current methodology could be 

improved using a sigmoidal model, which asymptotically predicts low yield for low 

NDVI, is exponentially related to yield through mid-range NDVI, and asymptotically 

converges to the bio-physical cap (YPMax) for high NDVI.  Chapter 4 further 

demonstrated a methodology for incorporating variable plant response to N, which 

dynamically shifts the yield prediction curve to the bio-physical cap in accordance with 

plant sensitivity.  This finding was then used to develop a method of determining yield 

gain under N application. 

GENERAL FINDINGS 

The object of this dissertation was to quantify supplemental N need and develop 

methodology to limit N application to areas not in need, thus minimizing over application 

and thereby creating a positive environmental externality.  The findings from this 

research show that continuously variable plant response to N can define need, given field 

variability.  Variable plant response in conjunction with a continuous sigmoidal yield 

potential relationship, which incorporates boundary conditions, can be used to predict 

economically optimal N application intervals on the normalized difference vegetative 

index (NDVI).  Further, this research proposes that sigmoidal yield prediction, sensitive 

to variable plant response, combined with economic methods should be able to determine 

maximum application rates within optimal NDVI intervals.  Thus Nitrogen 

supplementation to areas of need at economically optimized rates should produce 

environmentally responsible practices.       
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FURTHER RESEARCH 
 

1. The design structure, using calibration stamp methodology, in this dissertation 

was originally intended to determine the stationarity of variable RI across a farm 

field using stratified random sampling.  However, because distance dependency 

played little part in developing the variable RI relationship, no further work was 

completed in this area.  Further research should be conducted to determine if the 

variable RI relationship exhibits field level stationarity.   

2. This research found that fractional vegetative coverage (FVC) could be estimated 

using optical sensors capable of sub-sampling and provided a methodology 

relating NDVI to FVC.  Current research in the literature suggests that FVC is 

related to yield; however, this research did not find a useful relationship between 

FVC and yield potential, although a connection should intuitively exist.  Further 

experimentation may demonstrate FVC as providing ancillary information to aid 

in yield potential modeling.   

3. Chapter four used an iterative process along with non-linear regression to fit 

sigmoidal model parameters.  However, the bio-physical cap (YPMax) was 

iteratively fit outside the regression model, and specified such that the sigmoidal 

model reached YPMax at NDVI = 1.  Further research should be conducted to 

either: 1. Quantify a model describing YPMax from the biological or physical 

controlling factors, or 2. Derive a method of iteratively estimating YPMax from 

yield dataset.   
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APPENDICIES 

 The following sections describe data collection and processing, field 

methodology, and experimental designs use in this dissertation.  In addition, there is an 

equations section for the equations found in the literature and equations derived for this 

research.   

 Section A1 outlines the extraction of N-Rich strip data from IKONOS imagery, 

first order geographic search algorithm, and post-processing methods.  Section A2 

describes fieldwork and collected samples under the calibration stamp design.  

Additionally, there is an overview of variogram directed stratified random sampling used 

to maximize spatial relatedness between calibration stamps.  Section A3 lists the 

equations found in the literature and author names.  Section A4 lists the derived equations 

used in this study.  Not all derived equations were directly used in this dissertation; 

specifically the derivatives and anti-derivative of the continuous RINDVI model were used 

to test continuity and limits at boundary conditions but were not listed in those respective 

chapters.  They are listed here for future reference.  Section A5 contains secondary 

reference material useful to this dissertation, specifically derivation of equations and 

statistical design.  These references are included for further research.  
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A1: SATELLITE DATA ACQUISITION AND PROCESSING 

 

In the preliminary portion of this project six fields were selected from satellite 

imagery where Oklahoma State University Department of Plant and Soil Science placed 

non-limiting nitrogen (N-rich) strips in operative farm fields.  The six fields were covered 

in two successive IKONOS (4 m spatial resolution) images captured on June 25th 2002.  

One image contained five fields while the other field was part of the second image for the 

same acquisition date, thus minimizing inter-imagery differences in spectral resolution.  

The images were converted to normalized difference vegetative index (NDVI) images 

using the standard NDVI relationship 

dReNir

dReNir
NDVI

+
−

=            (A1) 

where Nir is the near-infared band (800 ± 50 nm) and Red is the red band (660 ± 40nm).  

All data inconsistencies, such as NDVI < 0, were reallocated to NDVI = 0 to maintain 

computation integrity.   

N-Rich strips were identified by higher ambient NDVI, masked from the general 

dataset, and held over in vector format for later processing.  Pixel allocation was 

constructed by drawing a line through the center of the N-Rich strip and extending a 

buffer zone 30 ft perpendicular to the direction of travel, which coincides with the 60 ft 

span of the applicator used to top-dress nitrogen.   
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This design is a pairwise NDVI comparison between elements in the strip 

(SpNDVI) and adjacent farmer practice elements (FpNDVI).  Figure A1 shows the 

allocation of spatial neighbors and comparisons for satellite data.   

 

  

Figure A1: Pairwise Pixel Allocation for N-Rich Strip and Farmer Practice Strips in IKONOS 
Imagery 
  

Figure A1 shows that idealized paired comparison allocation, where pixels within the 

strip are paired with immediate pixels outside the strip.  The number of pixels in the strip 

zone is a function of the strip width, spatial alignment of the satellite image to strip 

direction, and the image resolution.  The computational method of determining nearest 

neighbors was based on orthogonal first order choice algorithm, in which element pairs 

are chosen based on being aligned perpendicular to the direction of the N-rich strip and 

under a specified search radius.   
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 Table A1 shows the variable list as it processed by array name. 

Table A1: Array variable name and location for each IKONOS scanned farm.    
Array 
Name Name 
Set 1 Bens 
Set 2 Cassidy 
Set 3 Roberts 
Set 4 McCoy 
Set 5 Peter's Home 
Set 6 Spencer 
Combined All Data Sets 

 

A2: FIELD WORK AND CALIBRATION STAMP ALLOCATION 

 
The calibration stamp described in Raun et al (2005a) is a 9-square meter 

application of nitrogen (solution 32) over a 3 by 3 matrix of one-meter square elements.  

Figure A2, shows the basic outline and design of the calibration stamp.  

 

Figure A2: N Application Routine for Calibration Stamp Design.  Each Element is 1m2 in Area. 
        

Five elements receive progressive amounts of nitrogen 22, 45, 67, 90, and 112 kg N ha-1 

(20, 40, 60, 80, and 100 lbs N acre-1) denoted by (NA 20 – 100) and four elements that 

receive no nitrogen plot (FP 1 – 4).   
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The cell size of the calibration stamp is a compromise between work performed 

by Solie et al. (1999), where semivariance analysis showed effective ranges between 

1.04m and 6.70m for total extractable P,K, organic C, and pH and the dimensions that 

could reasonably be used based on equipment designed for this task.  The design of the 

calibration stamp therefore maximizes the within stamp spatial correlation.   

 Several calibration stamps (167) were placed on five fields in the Payne County, 

OK. on small non-committed plots at Oklahoma State University’s research stations 

across two plant species (winter wheat and bermudagrass).  Two calibration stamp 

experiments were applied to winter wheat in experimental areas. Three were placed in 

native bermudagrass stands.  Because of the mixture of species timing was factored out 

as a blocking variable.  Repeated measures were taken of the winter wheat to assess the 

best relationship between nitrogen application and NDVI.  Bermudagrass measures were 

preformed during the peak of the growing season. 

 It was necessary to distribute the stamps in field based on a stratified random 

sampling method to prevent preferential clustering of data.  In previous works, it has been 

observed that an autocorrelation relationship exists between samples (NDVI, soil, etc.) in 

close spatial proximity.  Work by Kerry and Oliver (2003) showed that soil samples 

could be allocated in strata and variation could be preserved when sample intervals were 

set at half the observed variogram range.  The variograms, in this case, were based aerial 

photography of the field.  Prior studies by McBratney and Pringle (1997, 1999) show that 

for fields with no recorded data, variograms could be constructed by taking the average 

of variograms; this was cited in Kerry and Oliver’s (2004) later studies.  It was 

determined to use prior information to direct the layout of the calibration stamp design.  
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The six IKONOS images were geostatistically analyzed and average NDVI semi-

variogram was constructed.  From this an effective range was detailed that would 

determine the spatial spread between calibration stamps.  Figure A3 shows the average 

semi-variogram structure. 
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Figure A3: Average Variograms for the Six IKONOS Farm Sites 
   

Figure A3 shows that approximately 90m-separation distance between samples tends to 

intersect with the average of the population variance (gamma ≈0.0152).  Spatial lags 

below this intersection point exhibit spatial dependence.    

The calibration stamps were distributed across the five field sites by constructing 

strata where the diagonal distance of the strata was set to one-half the average variogram 

range (45m) of the six fields captured with IKONOS imagery.   

Figure A4 shows an example layout for four successive strata.   
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Figure A4: Maximum Offset Distance Between Two Calibration Stamps.  Each Sampling Strata is 
16m x 16m. 
A calibration stamp was placed in each strata where the maximum distance between 

stamps of any two strata (s) is m45)s,s(Dm0 ji ≤≤ .  This allocation of rectangular strata 

was applied to each field.  This methodology neglected boundary or edge effects where 

strata arrangement may have overlapped field boundary.  Edge effects were removed by 

only selecting to apply calibration stamps in strata containing 240 m2 area.     

The location of the stamp within each stratum was determined by a random 

uniform coordinate generator that selected northing and easting coordinates 

independently.  The locations were then downloaded to GPS location device, marked in 

the field, and a stamp was applied.   

Since the calibration stamp configuration could not be randomized in-field and 

was always as described as in Figure A2, it was necessary to randomly assign travel 

direction to each calibration stamp location to remove directional bias.  A randomized 

value (0 – 3608) was determined by a random uniform generator and measured in-field 

by magnetic compass.  Additionally, two fields received a multi-stamp where three 

successive calibration stamps were placed end to end.  This modification in the 

experimental design was made to increase sample size and to better simulate an N-Rich 
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strip.  For this design it was more important to randomize direction of travel to remove 

preferential direction bias.   

 The calibration stamps were remotely sensed two weeks after application with the 

GreenseekerTM handheld optical crop sensor described in (Solie et al. 2002).  The 

GreenseekerTM is radiometric sensor that pulses red (660nm) and near infrared (780nm) 

light through a battery of light emitting diodes.  The pulsed light is detectable from 

background radiation, which eliminates the need for a secondary upward pointing sensor 

to distinguish between produced signal and ambient sunlight.  For this experiment the 

GreenseekerTM was used to calculate an average NDVI reading for each element of the 

calibration stamps place in field.   

Table A2: Data set name, species of plant, sampling routine, and location for each 
field trial.    
Name Species Samples Location 

Monroe Bermudagrass Repeated (2) East of Perkins 
Perkinst Bermudagrass Single Perkins Station 
Efaw Bermudagrass Single Efaw testing West of Stillwater 
Perkins Wheat Repeated (4) Perkins Station 
Black Wheat Repeated (3) Lake Carl Blackwell 
 

Sampling sessions were either temporal replicates or single replicates.  Three fields had 

repeated measures to determine the best time for sensing, while two fields had single 

sampling with extended calibration stamp application.   

The following table shows the sampling date of each temporally repeated measure 

at each site.   
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Table A3: Data set name, sensing date, species, and design for each of the field 
trials.    

Name Date Species Trial 
Blackwell 2/23/2004 Winter Wheat Temporal Reps 
Blackwell 3/21/2004Winter Wheat Temporal Reps 
Blackwell 3/28/2004Winter Wheat Temporal Reps 
Blackwell 4/4/2004Winter Wheat Temporal Reps 
Perkins 2/18/2004Winter Wheat Temporal Reps 
Perkins 3/21/2004Winter Wheat Temporal Reps 
Perkins 3/29/2004Winter Wheat Temporal Reps 
Monroe 7/14/2004Bermudagrass Temporal Reps 
Monroe 8/17/2004Bermudagrass Temporal Reps 
Perkstation 8/10/2004Bermudagrass Single Repeated 
Efaw 6/24/2004Bermudagrass Single Repeated 
 

Originally, Perkins (perk) was sampled a total of four times on or near the date  

Blackwell (black) was sampled.  However, issues with the data from this sample made it 

usable for this project.   

For each calibration stamp element soil samples were collected and analyzed.  

Nine soil cores per element were collect at approximately 15cm depth and composited.  

Chemical analysis was recorded for soil pH (pH), initial NO3 levels (NO3), phosphorus 

(P), potassium (K), and electro-conductivity (EC).  Table A4 shows the coefficient of 

determination for a regression model of NDVI at 112 kg N ha-1 (SpNDVI) on non-treated 

NDVI (FpNDVI) with chemical covariates.   
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Table A4: Soil test parameters used as covariates to determine relative increase in 
predication potential.  

Names Dates 
Standard 

pH NO3 P K EC Model 
monroe 7/14/2004 0.701 0.715 0.702 0.705 0.701 0.727 
monroe 8/17/2004 0.516 0.516 0.532 0.516 0.518 0.52
perkst 8/10/2004 0.45 0.47 0.45 0.463 0.458 0.451
efaw 6/24/2004 0.546 0.547 0.546 0.551 0.569 0.546
black 2/23/2004 0.728 0.728 0.728 0.731 0.755 0.73
black 3/21/2004 0.601 0.608 0.601  0.601 0.608 0.603
black 3/28/2004 0.763 0.764 0.783 0.772 0.798 0.766
black 4/4/2004 0.855 0.859 0.855 0.858 0.855 0.862
perk 2/18/2004 0.724 0.737 0.724 0.758 0.725 0.724
perk 3/21/2004 0.624 0.63 0.625 0.634 0.625 0.627
perk 3/29/2004 0.601 0.602 0.601 0.602 0.646 0.602
 

In Table A4 Standard Model is the R2 of the base model without covariates.  Table A4 

shows that there is little increase in explained variation by adding soil covariates.   

A3: EQUATIONS FROM LITERATURE 

 
Coefficient of Variation 

 





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FVC – Predicted percent vegetative cover (Gutman and Ignatov 1998) 

 
sc

s

NN

NN
)N(FVC

−
−
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N = observed NDVI 
Ns = NDVI of endmember for bare soil  
Nc = NDVI of endmember complete plant coverage 

 
NDVI – Normalized Difference Vegetative Index (Reflectance)  

 
dReNIR

dReNIR
NDVI

+
−

=   

 
RSS – Residual Sum of squares 

 ( )2
ŷyRSS ∑ −=  
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RIHarvest – Response Index Harvest  (Johnson et al. 2000) 

 
plot)(Check  ieldY
plot) (Treated ieldY

RIHarvest =    

 
RINDVI – Response Index from NDVI  (Mullen et al. 2003) 

 RINDVI = 
(check) NDVI

(Treated) NDVI
 

 
RINDVI –Equation from Yield Potential  (Raun et al. 2005b) 
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Yield Potential Model – (Raun et al. 2005b) 
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A4: DERIVED EQUATIONS 

Satellite data filter 
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RINDVI(FpNDVI) –RI prediction model 
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RINDVI(FpNDVI) –RI prediction model with bare soil NDVI (Ns) correction 
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RINDVI`(x) – First derivative of the RI model 
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RINDVI``(x) – Second derivative of the RI Model 
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∫ NDVIRI (x) = Anti-derivative of RI model 
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Sigmoidal Prediction Model: YP at 0 N application  
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Sigmoidal Prediction Model: YP with N application
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