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CHAPTER |

INTRODUCTION

Commercial nitrogen (N) plays a significant role in sustaining croppingregst
as a primary replacement nutrient. With each harvest, a portion of the native N is
removed from the field and transported off-site reducing residual N for future @op us
Nitrogen, until recently, was a low cost supplement, which because of near universal
limitation usually guarantees yield improvement over N depleted nativésstd.ow cost
and significant yield improvement led to the wide scale N fertilizer use faromi
usually high application rates as growing season insurance. However, tapplica
typically far exceeds necessity leading to vast quantities of residnahi plant/soil
matrix. Nitrogen, in most of its forms, is highly mobile, and is, accordingly, prone-to off
site migration. Consequently, many years of over-application has elevatde nit
concentration in surface and sub-surface water supplies.

Nitrogen is a primary nutrient for algae; therefore, elevated N in wapgties
can promote an elevated algal population, which over time builds detrital materia
increases oxygen demand, and may prematurely age the water body. However, N is not
typically the principal limiting factor in algal populations because of it mgbility;
therefore, environmental concern about N usually revolves around human health issues

from contamination of potable water.



Methemoglobinemia (blue baby syndrome), and a speculated linkage to non-
Hodgkin’s Lymphoma and digestive tract cancers have been cited as primagynsonc
for N ingestion. However, in many cases concentration of N in water supplyes |
than regulatory standards, and has not risen to popular concern as demonstrated in a lack
of literature citing direct causal effects; however, current resesarggest that aqueous
forms of N leaching into natural waterways can lead to aquatic fauna nyortalit

Off-site N migration is of particular concern economically becauseriesents
lost opportunity to the farmer. As petroleum prices increase, N fertilizas, montingent
on the price of natural gas, will commensurately increase. Agriculturidibibty,
especially with competition on the world market and rising petroleum prices;ambey
a matter of cost reduction through efficient application. Additionallyiefit N
application to meet cost-reducing strategies has the potential of grpasitive
externalities for the environment without regulatory action.

To address need and maximize yield several issues must be considered in
applying supplemental N. At the individual plant level there must be enough éerliz
to minimize the disparity between residual N in the plant/soil matrix and thmewpt
plant capacity for N uptake. In conjunction with basic plant requirement, extraneous
physical/chemical conditions may prohibit reserve N from being plant bisgikarther
compounding the definition of need. It has been shown that N concentration, physical,
and chemical parameters exhibit spatial variability. Spatial vatighil this case, is the
observable difference in growing environments continuously varying over space. A
consequence N availability and potential uptake are subject to variance in sdiboendi

at the process scale in which soil conditions significantly vary. Therefiigament



between process and measurement scale plays an important role in determaita@gopst
for N application. Current methodology in N management should be focused, not only in
mass balance, but also should incorporate spatial variability and site<sgedffitions
of need.
Previous research suggests that plant response to supplemental N and biomass can
predict yield and a yield based N recommendation can improve N use efficienpyeiCha
2 of this study analyzes the current calculation of response index and defines a
continuous response index (RI) function at the process scale. This reseaccisesl fat
understanding the relationship between residual N sufficiency and sufficeadyed
through N supplementation. Given reasonable stationarity in the field, examination of
plant response in experimental conditions should indicate how likely the field would
utilize supplemental N.
Objectives of Chapter 2:
e Clearly understand and quantify the relationship of N response to varyiig leve
of plant stand as measured by NDVI.
e Formulate application boundaries where supplemental N is most effective as
measured by RI.
e Incorporate agronomic boundary conditions in the framework of RI estimation.
Chapter 3 promotes a combination of agricultural research with the
GreenSeekél optical sensor and remote sensing methodology (spectral mixture models)
to estimate fractional vegetative cover (FVC) per experimental unit.ré&exgeriments
show that vegetative cover is correlated to the normalized difference wegetdex

(NDVI), such that decreased NDVI variability implies high vegetative mme From a



statistical standpoint, low variance should also exist for experimental uthtfowi (~0)
NDVI (bare soil). Thus, NDVI variability is a measure of plant stand homotyenEis
ideology can be used to estimate spectral endmembers for use in a speatral mixt
analysis (SMA) model. Remote sensing literature shows that a lineantivwember
SMA model is often used in conjunction with NDVI images to estimate FVC. Recent
agricultural literature confirms that through a combination of digital imyaged/or the
GreenSeekél sensor FVC is linearly related to NDVI. The combination of these
findings should produce a method of determining vegetative cover. Accurate estimati
of FVC may hold the promise of adding extra information to the yield prediction groces
Objectives of Chapter 3:
e Develop a clear spectral definition of bare soil and 100% vegetation cover.
e Formulate a methodology of estimating vegetative coverage using spectral
measurements from existing optical sensor technology.
¢ Incorporate remote sensing methodology (spectral mixture models) with recent
agricultural research.
Long study of the NDVI - yield relationship has developed theoretical mdlaizt
fit with field collected data. Recent studies, however, have produced new information
about a plant response to N. Chapter 4 proposes a continuous sigmoidal yield potential
prediction using agronomic boundary conditions. Existing models do not estimate yield
for low NDVI and uses a piece-wise exponential model to estimate yielcgscumtil a
biophysical cap is reached constraining further increase. Conceptudtlyisyiewy for
low NDVI, increases exponentially through mid-range NDVI, and plateaus for high

NDVI. Given recent findings, conceptual constraints, and boundary conditions Chapter 4



further defines a continuous sigmoidal growth model to estimate yield pot&fRil (
from NDVI using continuous plant response to N and defines a sigmoidal approach to
yield potential under varying N application rates incorporating continugus/ Rl Py
model). In concert, these models can be used to estimate gain in yield potémntial, w
forms the basis of an economic approach to conservative N application.
Objectives of Chapter 4:
e Incorporate agronomic boundary conditions and recent findings into a continuous
yield prediction model.
e Validate the consistency of a continuous yield model against empirical snodel
e Develop a strategy of utilizing the continuous Rl model as a method of predicting
the affect of supplemental N in improving yield.
e Develop the basis of an economic method to determine financially optimal N
application for variable rate technology.
The purpose of this dissertation is to develop management tools and theory
that promote economically efficient N application, thereby creatingip®sixternalities
for environmental protection. Because of limited risk to human health and environmental
degradation N is allocated less public concern and will not likely be managed unless
human risk is verified. However, as fertilizer prices continue to rise, @Exeds
application presents a higher loss margin as loss in productivity. It is Ilialy t
environmental concerns about excessive N application will be addressed secondary to
profit margin maximization. Nevertheless, it is likely that econonycahservative
management of N will produce fortuitous benefits for the environment.

Objectives of the Dissertation:



Develop robust models for yield and fertilizer response, which conform to
agronomic and spectral theory.
Combine proposed models with existing theory to construct agronomic and

economic optimal N rate application recommendations.



CHAPTER Il

A CONTINUOUS FUNCTION TO PREDICT PLANT RESPONSE TO APPLIED

NITROGEN

Abstract

Adequate estimation of plant response to applied nitrogen (N) is an essteptial
in predicting yield and increasing nitrogen use efficiency (NUE) in agransystems.
Increasing NUE, by accurate estimation of residual N reserves, m@nasean economic
and environmental net positive if set as a management goal. Previous studies show N
reserves can be gauged in-field without the use of extensive soil testiagnbote
sensing methods through the normalized vegetative index (NDVI). The response index
(RI), a measure of plant response to applied N given concentrations of residual N
reserves, can be calculated as the ratio of the NDVI from N treated anctatadplots.
Current methodology assumes that Rl is a field level constant disregardingsmocaies
This paper presents a non-linear regression methodology to predict plant response t
applied N. Further, work in this paper shows that a plant response to N prediction model
is possible and is robust across wheat, bermudagrass, and corn cropping systems.
Additionally, the model predicts the effect of varied N application rate and ienfir
previous work suggesting N has little effect if applied on high residual N stiamds (i.e.
NDVI > 0.73). As a result of this functional relationship, prediction of plant response to

applied N (RI) is improved.



Introduction

It has long been realized that Nitrogen (N) application, when not fully utiiize
field, results in environmental degradation and financial loss. The NationarBlese
Council executive study in precision agriculture succinctly makes the paint tha
“agricultural pollution comes from inputs that do not reach their target...” and “...inputs
that contribute to pollution are thus wasted from a productivity point of view” (NRC
1997: p85). These statements outline the two basic interrelated problems in profitable
industrialized agriculture —social cost through environmental degradaiion a
profitability loss through lost opportunity and wasted inputs.

Recently, it has been a goal of precision agricultural research to dettrease
amount of wasted N through site-specific management and variable pataitam
addressing spatial and temporal scales. While estimates of N wasteoagord and
Raun (2003) show that N use efficiency (NUE), the amount of applied N recovered in
cereal grain, is on average less than 33% globally. In the typical casantiaing 67%

N not recovered in product either is bound in the plant/soil matrix or is, more likely,
transported off-site by various modes of N migration. Current research show2®8at a
increase in NUE could result in a near $11 billion savings world-wide (NUE, 2008).
Implicitly, cost savings will likely become larger as petroleuneddertilizers increase

in price. Recently the USDA reported that the cost to the farmer for aminasea-
fertilizer (Ammonium Nitrate) has increased 130% between 2000 and 2006 (Huang,
2007) with demonstrable potential for further increase. Fortunately, methods ahgeduc
N waste to improve economic efficiency, by cutting costs, also createstae

externality of reducing environmental damage.



The Environmental Protection Agency (EPA) contends that excess N in water
supplies is linked with human health problems, such as methemoglobinemia (Blue Baby
Syndrome) and non-Hodgkin’s Lymphoma. Further, N liberated into the atmosphere
may also contribute to quality of life issues, such as ozone indulgence ingrines
number of ozone alert days directly affecting persons with respiratoryeprsbl
Additionally, excess N in surface runoff contributes to general surface suaaply
degradation, such as increased eutrophication (EPA1 2007) and aquatic fauna mortality
(Hecnar 1995; Hatch et al. 2001). Other researchers have linked N loadings to
accelerated eutrophication and hypoxic conditions in larger waterways such'edbe
Zone” at the mouth of the Mississippi River (Turner and Rabalais, 1994; Rabalhjs et
1996; NOAA 2007). Increased hypoxic conditions can have severe social economic
implications for estuarial aquaculture and the dependent communities. efghat,
while exact social cost through degradation may not be fully realized, sheeggotential
for both human health and environmental issues on the horizon from excess N.

Nitrogen application to areas of low plant N uptake increases plant-soisyste
reserve N and increases the potential for off-site migration. To lowet®ffagration
potential, it is necessary to identify conditions contributing to low uptake and adjust N
application accordingly overall increasing NUE. Raun et al. (2005a) sugjgaisié
application based on a combination of predicted yield and plant response to N can
increase NUE by 15% over standard application practices, which verifiest @ark by
Johnson and Raun (2003) advocating the inclusion of plant response to N as a critical
component in increasing NUE. In general, NUE is decreased by suppleareatsive

sufficient N levels, which can be recognized by low responsiveness.



Work by Johnson et al. (2000) proposed a response indegx/(§Ito represent
the plant response to supplemental N, which was based on the proportion of yield
between N treated and non-treated plots.

Yld NRich

Harvest —
Yld FieldRate

RI (2.1)

where Yldirich is the average yield within a Nitrogen rich stipd YldkiegratelS the
average yield in an adjacent non-fertilized strifis estimate, however accurate, is
based on post-season measurements and fails tesaddrseason N application. Earlier
findings by Stone et al. (1996) showed that plaotiass could be measured by using
optical sensor measurements of light reflection.ll&uet al. (2003) later proposed the
use of an in-season response indexfiR) based on a ratio of the normalized difference
vegetative index (NDVI) between treated (NR¥l,) and non-treated (NDVikigratd

plots that reasonably correlatedXr0.56) with post-season response-{Rls).

NDVI NRich

(2.2)
NDVI FieldRate

RINDVI =

Raun et al. (2005a) demonstrated that whilgRRItends to underestimate Rles; it
serves as a conservative estimate of yield incre@beN supplementation. They further
proposed a methodology to calculate N fertilizguleation rates from NDVI
measurements. They enumerated three fundamentalaies necessary to calculate N
rates: 1. Yield potential could be predicted aately midway through the growing
season with an exponential model of yield as atfanof NDVI. 2. The response to
additional N fertilizer is a constant multiple bktyield potential. 3. There exists a
maximum Yyield for any location that is a functidnatl the agronomic and environmental

factors for that location, and yield cannot excted limit for any N fertilizer rate of

10



additional fertilizer (Fig. 2.1). Nitrogen fertzler rate was a function of the difference
between the yields with and without additionalifemr multiplied by the percentage of
N contained in the grain divided by the efficiermyywhich the plant absorbed applied N

for grain production (Nitrogen Use Efficiency).

3.5 1

Yield w ith additional N A
predicted by Response Index -, |
” |

|

|

Yield increase w ith
additional N limited to the
maximum potential yield

—mmme e

Y PO
------- YPN = RINDV1Y PO
' — — — - YPN = YPmax

| — - —--SoillCrop Divide

| s RY/Y Pmax Divide
[

Potential Yield, Mg ha 1
o = N
o (6)] = (6] N (6)] w
[ [ [ [ [

0.4 0.6 0.8 1
Field Rate NDVI

o
o
(N

Figure 2.1. Change in Potential Yield of Wheat withAdditional N Fertilizer for a Response Index of
RI = 1.5, a Maximum Potential Yield of 3.0 Mg H&" and 120 Days After Planting (Raun et. al,
2005a).

Under this methodology yield potential is exponahtirelated to field rate NDVI given
by:

YP, = a(Rlypy )" for 1 YP, < YPyui Rlyoy =1for N =0 (2.3)
where yield potential (Y is a function of field rate NDVI and plant resgerdue to N
application rate (Ribvi) ranging between 0 kg N i\l and sufficient concentrations.
Obviously, 0-N application results in no complenagntplant response (R1=1); however,
Rl is allowed to increase proportionate to increaneN application rate, which increases

the overall function. Overall yield increase isistrained under a constant biological

11



yield maximum obtainable from the field (%R). As a result, N supplementation drives
the relationship to Y« quicker, in terms of field rate NDVI where R\, acts as a

multiplier. Rkpvi based on yield potential can be defined as:

YP,
YR, forYP, <YP

andNDVI >0.25

Max

Rl gy = | P (2.4)
YP, forYP, > YP,, andNDVI <0.73

Max

1  forYR, - YBR,, andNDVI >0.73

Max

This definition of Ripyi combines the Johnson et al. (2000).Rdsand Mullen et al.
(2003) Rkpvi under yield potential. Specifically, for this peavise definition, Rlpy, is
a constant and is independent of non-fertilizer NDhtil YPyax (NDVI ~ 057)is
reached, after which it becomes inversely propodido non-fertilizer NDVI until a
biological maximum is reached BXDVI ~ 073). Additionally, meaningful yield

potential is restricted to field rate NDVI valueegter than 0.25, which represents the
soil-crop divide and was derived by field obsemat{Raun et al. 2005a). Overall, the
method by which Ripy, is calculated relies on a ratio of average NDVltfeated and
non-treated areas at the plot level, which negleetasurement scale effect.

Solie et al. (1996) addressed the issue of measumtesoale effect and advocated
working at a fundamental field element where natreoncentrations vary as a function
of distance and were detectable. Taylor et aB9)®und that variation in yield
decreased as plot size decreased, indicating aiamal relationship between variance

and scale. These studies indicate a processesaats at which variation should be

12



treated to optimize nutrient management. Rauh é1298) found that significant
differences exist between soil tests at less timasdparation distance. Solie et al.
(1999), using geostatistical methods, showed treasémivariogram range varied from
1.04m to 6.70m, variable dependent, and that tiegial scale (zone of high relatedness)
was at the sub-meter to meter level. These stsdiggest a process scale at or below 1m
and argue for adopting a commensurate measureedatte accurately treat spatial
variation. Treatment of spatial variation at tlegess scale mitigates the effects of bias
of small-scale variation aliased into larger vaoiat(Journel and Huijbregts 1978; Russo
and Jury 1987; and Western and Bloschl 1999).

Fundamental work by Johnson et al. (2000) develep@@asure to quantify the
relationship between residual N and response dbestagpplementation (Rires) pOst-
season, which led to the concept that plant resgptnadditional N is dependent on
sufficiency of residual N in the plant-soil mat{Bohnson and Raun, 2003).

Consequent to these findings, Mullen et al. (2G@#8posed a methodology to calculate
RI values directly from NDVI measurements (R};) that worked mid-season. Raun et
al. (2005a) revised Rbvi as a combination of previous RI calculations, Wwhecused in
predicting yield potential mid-season. This methualyever, uses a plot averageq/

as a constant to adjust yield for overall planpogse to N supplementation, and implies

that Rhpv is constant until YRax (NDVI ~ 057) is reached, variable until a biological
limit is reache057 < NDVI < 073), and constant at Rdv =1 after a biological limit is

reached (NDVI > 0.73).
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The purpose of this study is to quantitatively deiaee the relationship between
RiInovi and non-fertilizer NDVI by method of paired comgan at finer (1m <

experimental unit < 4m) than plot scale resolution.

Methods and Materials

Data in this study represent five years (2002 0620f collections on 19 sites in
north-central Oklahoma producing 6,356 sample [@iress three species
(bermudagrass, wheat, and corn). Each samplegasists of the normalized difference
vegetative index (NDVI) for an N treated sampleNB¥1) and a nearest neighbor non-
treated sample (FpNDVI). Here FpNDVI represenesfirmer practice or initial
condition NDVI prior to N supplementation. It implied that FpNDVI is a measurement
of plant stand health relying on previous nutri@serves. Subsequently, SpNDVI is a
spectral measure of plant stand health based stirexsoil nutrients plus supplemental
N from fertilizer at an application rate great egbuo remove N as a yield limiting
factor.

A response index (RI) value was calculated for eagierimental pair, using the
Mullen et al. (2003) expression for\gl; calculated from mid-season measurements of
NDVI where:

_ SpNDVI
NPV EpNDVI

(2.5)
RiInpvi is @ normalized estimate of plant response tolsupgntal N above previous
practice and is related to the increase in plamnbisss. For computational purposes

NDVI values were constrained between [0, 1] whexgative NDVI values were setto 0

constraining Ripvi betweer0,.0). Since NDVI is a function of biological and el

14



factors, indeterminate conditions where SpNDVI NBYI = 0, Rl was set to 1 by
extension of L'Hopital’'s Rule (Finney et al. 1994).

All N treated experimental units received post plaptopdress Urea-Ammonium
Nitrate, UAN (solution 28% or 32%), while corresplamg check plots did not receive
supplemental N. Treatment design and N level wareed over the 19 sites. Five sites
were sampled by calibration stamp design (Rauh 084), which is a 3m x 3m matrix
of 9 — 1nf plots, consisting of four check plots and fivergroental treatment plots.
Application rates were 22, 45, 67, 90, and 112 Kegli(20, 40, 60, 80, and 100 |bs N
acre®) and were placed in wheat and bermudagrass in. 2B¢h calibration stamp was
sensed at 1Aresolution with the hand-held Greenseeker™ opsieakor (Ntech
Industries, Ukiah CA.). The plots were sampled fitmes at intervals of two weeks
after N application and averaged together. Thirtes contained an N-rich strip (Solie
et al. 2002) design in which a top-dress nitrogei?(kg N ha') transect was applied
across an operative farm field, in wheat only.rdgjen rates were expected to be high
enough so that N was a non-limiting nutrient. 1@ 1.3 sites, four fields were sampled in
2003 at 0.81m - 1.2m resolution using a field s€eenSeeker™ sensor/applicator
array described in Solie et al. (2002), while thenaining nine sites were sampled during
the growing seasons of 2002 and 2003 using IKON&a¢e Imaging LLC, 12076,
Thorton, CO. 802414mresolution satellite imagery. The IKONOS imagegsw
geographically processed to identify nearest-neagsbmple pairs. The early-season
topdress UAN strip appeared in subsequent satetiigery as a band of high NDVI
pixels, which was selected and paired by imagegasing software to adjacent nearest

spatial neighbor pixels not in the strip using agraphical first order search algorithm.
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The last observation site is composed of averageresponses from twelve sites
collected during 2002 — 2004 growing seasons (éeal. 2006 and Freeman et al. 2007).
Experimental corn plots were arranged by randomizedplete block design and varied
in size (3.0 x 6.1m and 3.0 x 9.1m). Linking awma treatment plot NDVI to adjacent
check plot NDVI created the sample pairs usedimdhtaset.

Once these data were compiled, it was necessditietaunrealistic values. The
IKONOS dataset, due to spatial alignment, contaamednority of FpNDVI points at or
close to zero paired with substantially higher Sppoints that resulted in extreme
RlInovi values. Specifically, large (4m) resolution compded by misalignment between
transect and image occasionally resulted in neasghbors greater than 12m apart.
These dispersed neighbors had little spatial melahip, which when ratioed produced
improbable RI values. Solie et al. (1999) showed tistance dependence ranged
between 1.04m and 6.70m for most soil test vargbidich explains the value
disconnect. Therefore, a two-stage filter wasgihesl to selectively remove RI values
3.5 standard deviations from the mean sum andrdifte of SpNDVI and FpNDV/I,

respectively. Data were filtered if above or below

Mean(SpNDV&FpNDw) * 3'5S(SpNDVItFpNDVI) (2-6)
The majority of pairs that were removed coincidethwarge (>12m) separation

distances and all were from IKONOS imagery.

Results

Analysis of the composite dataset shows thateleionship of plant response
(RInpwi) is non-linear and inversely proportional to FpNIDWigure 2.2 shows filtered

FpNDVI plotted against Rl for treatment at 112kddbi’.

16



3.0
[ ]

2.5

2.0

RI
1.5
]

1.0

0.5

0.0 0.2 04 0.6 0.8 1.0
FpNDVI

Figure 2.2: Farmer Practice NDVI (FpNDVI) Versus Response Index (Ripv,) for All Species and
Locations Filtered for Extreme Data.

Data in Figure 2.2 identify an increasing indepemaebetween N treatment and plant
response as FpNDVI increases. In general, plaporese to N supplementation (Rh)

is less in healthy plants (high FpNDVI) than inag@f limited growth or erratic stands
(low FpNDVI). In healthy plant stands, near thelbgical maximum growth, where
residual N is sufficient, additional N shows litd&fect on crop growth as evidenced by
low values of Ripvi. Conversely, increased plant response for love&VI
demonstrates N limited conditions where supplentemtagroduces high Rbv.

However, because the response index is proporédodtl supplementation and the
denominator (FpNDVI) is small, poor stands, regesdlof real increase in biomass, will

demonstrate a nominally high N response. Additignarops with low FpNDVI exhibit
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considerable scatter, with some values falling Wweliypy, = 1 while other sample pairs
exceed Rlpy; = 3. This is likely due to a range of physicadl @memical phenomena
existing in the field. However, there is some antf certainty that responses with

Rl o —1(no response) indicate plant stands where N isn@mfiactor limiting

treatment response.

Quantification of the inverse exponential relasibip of R\pyvi to FpNDVI
requires a non-linear regression model that expsegsnaximum response and allows RI
to decrease at a decreasing rate until becomingsyically independent from
supplemental N. Additionally, it is necessary tdoece boundary conditions such that
FpNDVI = 0 implies Ripvi = 1. Given that FpNDVI = 0 implies bare soil, sigmpental
N should have no effect (SpNDVI = 0). Assuming BpNDVI and SpNDVI are
spectral functions, L'Hopital’s Rule guaranteesatue for Ripy, for the indeterminate

conditionRl ,,, = 1

The proposed model for predictingJdy is a peak function with regression
parameters controlling maximum response and expiahelecrease. Several models
were evaluated on the criteria of minimizing theideal sum of squares (RSS) with the
fewest control parameters. The coefficient of deteation was not used in model
selection because it cannot be insured that thecdwauares error plus the sum of
squares from regression equal the total sum ofregyaleter et al. 1996). The best of
these models, by minimization of RSS, was a twaipater inverse hyperbolic cosine

A, (FpPNDVI)

2.7
cosHA,FpNDVI) @7

RINDVI =
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whereA, andA; are regression parameters derived through a neaslieast squares
estimation (Gauss — Newton Method). Param&ieontrols maximum response while
parameteA; controls the rate of decrease from maximum resptmthe asymptote.

Figure 2.3 shows the visual fit of the model tosthdata.

o L]
m_

27.427(FpNDVD)
cosh(12.078FpNDVI)

3 RI=

2.0 2.5
1

RI
1.5
]

1.0

0.5

0.0 0.2 0.4 0.6 0.8 1.0
FpNDVI

Figure 2.3: Hyperbolic Cosine Regression Model of Rpy; as a Function Farmer Practice NDVI.
Results of the fit are visually acceptable (FigByevith the trend line passing through the
center of the data distribution. The function nmaxm shows that Rby, is most likely

to reach a maximum for low values of FpNDVI. Maxim response occurred in areas
where the plant stand was erratic or crop growtk graatly reduced compared with
spatially related areas with sufficient N. In theseas of sparse plant stands, even
minimal increase in SpNDVI due to supplemental Nbisproportion, very large. Raun

et al. (2005a) concluded that the magnitude ohtirenomic and economic benefits from
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supplemental N were so small that N fertilizer ddaoot be applied in regions where
FPNDVI<0.25.

The slope of the exponential curve declines froenttaximum response to the
RlInovi=1 asymptote as FpNDVI increases, defining theiseitg of plant response to
supplemental N per incremental increase in FpNRYter maximum response has been
achieved. Generally, a steeper transition slogeates N sufficiency is reached at lower
values of FpNDVI demonstrating that N is no lontjer primary limiting factor.
Shallower transition slopes indicate that additidiatrongly influences crop response
until independence is reached. Plants near bicdbgnaximum growth, high FpNDVI,
are N sufficient and independent of supplemental N.

The basic equation (Equation 2.7) to derive theehm Figure 2.3 assumes that
the spectral definition of bare soil is FpNDVI = Blowever, many cases in this research
show that the FpNDV!I definition of bare soil (Nsayrange 0 < FpNDVI < 0.15. To

correct this issue Figure 2.4 demonstrates a &dosladjustment for the Ry curve.

20



=
<
1 For NDVI< Ns
RI = -
- NDVI AyEPNDVINS) o NDvTs Ns
N cosh(A, (FpNDVI-Ns))
[
S -
Z -
<
\W_J Ns=0
v Variable Definition mmmmmme NS =0.05
< 7| ofBare Soil (Ns) .
—— o - NS — 01
—ammss Ns=0.150
o
S -
1 I I I I I
0.0 0.2 04 0.6 0.8 1.0
FpNDVI

Figure 2.4: The Effect The Variable Bare Soil NDVI(Ns) Definition on the Response Index Curve,
where Bare Soil Ranges 0 < NDVI < 0.150.

Figure 2.4 shows that as Ns increases the magrafuti@ximum response decreases
proportionately. Additionally, for Rbv to be continuous across the FpNDVI spectrum
it is necessary to define iRl = 1 for 0< FpNDVI < Ns, and Ripyi equal to the
hyperbolic cosine model for FpNDVI > Ns. Equatid8 describes the bare soil (Ns)
offset in a piece-wise model

1 ForNDVI < Ns
Rlyow =1 A,(FPNDVI - Ns)
cosHA ,(FpNDVI — Ns))

2.
+1 ForNDVI > Ns (2.8)

In the general case where Ns = 0 the function reslt Equation 2.7, which is useful for

comparing curves in different plots where the N@¥bare soil was not collected.
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Across species, consistency of the model and thestoess of the relationship

were classified by species receiving 112kg N'kg. 2.5).
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Figure 2.5: Model Fit by Species for Rlpy, as a Function of Farmer Practice NDVI Assuming Ns 0.
Parameter for species A: Bermudagrass (#=12.940, A= 7.528), B: Corn (& =8.474, A= 6.449) and
C: Wheat (Ag =28.604, A= 12.297), and D: Relative Comparison of Curves.

Figures 2.5 (A, B, and C) show that the same asytigpiesponse trend exists across
species a$pNDVI—1. Bermudagrass (Figure 2.5A) and corn (Figure 2.5B
experiments tend to be clustered at higher FpNDAlies because data were collected
from a limited number of locations and these sitese experimentally controlled plots
with a higher degree of environmental consistemzy/law plot variability whereas there
was a large number of wheat (Figure 2.5C) trialsictvoccurred both in controlled plots

and in farm fields and over several years.
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To assess different treatment levels, the modslrejparameterized for each

applied N rate: 22, 45, 67, 90, 112 kg N'H&igure 2.6).
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Figure 2.6: N Fertilizer Treatment Level Respons€urves for Rl ypy, in Wheat (A) and
Bermudagrass (B) Under Calibration Stamp Design Assming Ns =0.

0.8 1.0

Maximum response in wheat (Figure 2.6A) is muchdgwverall, than bermudagrass

(Figure 2.6B) collected under the same design streic Wheat sampled in the

calibration stamp design was grown in experimepitatls which received regulated N

treatment in the previous growing season; bermuadgaghowever, did not have N

applied in the previous year. This indicates thakimum response is highly dependent

on residual N from previous treatments and/or pagtpconditions. Table 2.1 shows the

modeling parameter shifts.
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Table 2.1: N Application Rate Rkpy, Parameter Values

N Rate (kg N ha') Ag A,
112 4.84 5.71
90 6.76 6.78
67 3.36 5.78
45 3.91 6.41
22 4.37 10.33

Table 2.1: N Application Rate in kg ha Influenced Parameter Shifts.

Regardless of previous management, it appeardriitgd N application inhibits
maximum response. Response to supplemental Ms#ise to application rate, in
addition to N available from non-application sow.cén fact, wheat may be sensitive, at
least at low NDVI, to over application. Figure &.6hows that 112 kg N Hahas a
lower maximum response than 90 kg N'Hpplication rate. In comparison,
bermudagrass (Figure 2.6B) exhibits strong resptmBesupplementation at lower
values of FpNDVI, but transitions to N sufficiengyickly, whereas wheat, with a lower
maximum response, transitions at a much slower rBitgs indicates that bermudagrass
in this experiment had limited available N caudmger FpNDVI values, but
transitioned into sufficiency very quickly due tmitations from other physical/chemical
sources, primarily Phosphorus (Table 2.2). Whadtdhigher non-fertilizer N
concentration at low FpNDVI and supplemental N rerma primary factor in response
(Table 2.2).

Table 2.2: Average soil pH, N@Q, STP, K, and EC values for Wheat
and Bermudagrass Plots.

NO3 STP K EC
Species pH (kgha®) (kgha®) (kgha®) (mmhos/cm)
Wheat 5.9 5 30 266 102
Bermudagrass 5.7 2 17 173 39

Table 2.2: pH, NG; = Nitrate, STP = Soil Test Phosphorus, K = Potassin, EC = Electrical
Conductivity Measured by Soluble Salt Content.
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Figure 2.6 (A and B) show that @k, curves at high FpNDVI converge toNg{
=1. Wheat, at the maximum application rate, aedlito 10% response above no N rate
(RInpyi =1.1) at FpNDVI=0.75 and bermudagrass at FpNDVI0.73. At this level, the
five application rates are relatively indistingiadte from each other (wheat =3.65% and
bermudagrass = 4.25% difference in response aappikation rates). Values greater
than FpNDVI = 0.75 Ripv continue to converge, and the difference betweehaation

rate curves becomes indistinguishabl®ks,, > . 1.0

Discussion

This experiment examined the relationship betwelean farmer practice NDVI
using paired comparisons at or near the fundamaéekadlelement size suggested in Raun
et al. (1998) and Solie et al. (1999) and found Rigoy, is highly related to residual N
as measured by NDVI (FpNDVI) at the (< 4m) sendewvgl. These data show a
characteristic exponential decline inyRh as FpNDVI increases, which suggest an
increasing independence between supplemental Meapdnse. Generally, areas of low
NDVI, or low biomass, exhibited high sensitivity kbsupplementation because N was
likely the dominant limiting factor. As biomassmeases, indicated by increasing higher
NDVI, residual N is more available, and these asradess responsive to supplemental
N. Ultimately, at high levels of biomass, high NDYesidual N nears sufficiency, and N
supplementation produces little to no plant respons

A non-linear peak function was developed to qugrhé relationship dictated by
the dataset. It was necessary to use a peak farfmicause of imposed boundary
conditions. Conceptually, for extremely low ND\&L, or near bare soil, N

supplementation should not cause a response in NBwhilarly, N supplementation at
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high NDVI, high biomass, should not result in rasg@due to residual N sufficiency.
While boundary conditions were established previoute model, these data, by non-
linear regression techniques, were used to estithatpeak (maximum response) and the
rate of decline (transition rate), the parametersvhich areA, andA;, respectively
(Equation 2.7). Additionally, since the hyperbgleak function assumes FpNDVI = 0
for bare soll, it was necessary to account foradtee NDVI definitions of bare soil. This
was accomplished by adding a bare soil NDVI traitgparameter (Ns) to the
hyperbolic peak model and specifyingyRl = 1 for 0< FpNDVI < Ns (Equation 2.8).
There is constant (slope = 0) no responsgdiRE 1) for bare soil completely devoid of
plant material. However, for a single instancglaht material Rlpy, can increase with
a variable slope potential described by the invhggeerbolic cosine model.

It should be noted that this study used an amalgamaf different datasets
sampled at various growth stages of those resgeptant stands. It has been shown that
spectral indices (NDVI), plant response to suppletadeN, and stand variability are
sensitive to growth stage (Sembiring et al. 200 Raun et al. 2005b). Growth stage,
time from planting to sensing, and time from fezéition to sensing were not considered
in this research. Specifically, Figures 2.2 ar8] By aggregation of data, represent a
multiple field average response without consideratf growth stage and it is
acknowledged that growth stage can alter the resporodel, specifically magnitude of
maximum response. Further research should be ctedtito better understand the
temporal aspects of response.

It was necessary that the model be consistentaspesies (crops) for it to be

useful as an agronomic tool. The overall connedbetween Rl and NDVI appears to be
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standard across species, in that only parameferelices were detectable across
bermudagrass, corn, and wheat. Bermudagrass téméeste higher maximum response
and a steeper transition; this is likely becausenbdagrass calibration stamps were on
locations with limited fertilizer management andded to be compositely nutrient
limited. Wheat calibration stamps were placedrevpusly managed locations, had
higher residual N concentrations, and were shovwbettess nutrient limited. High
maximum response at low NDVI concurrent with sterapsition slope shows that N is
limiting for low NDVI but meets sufficiency quicklgs limited by other minimum
resources.

In conjunction with residual N, maximum resporseroportionate to
supplemental N application rate. In general, gdiegtion rate decreases, maximum
response decreases. Notably, maximum responseadesras a result of decreased N
application rate; the transition slope is gentlet aonstant, which indicates that
supplemental N remains a primary factor in respdinséation further across the range
of NDVI. Conversely, higher maximum response aeéser transition slope indicates
that supplemental N, while being a primary factarihcreasing NDVI, quickly
transitions to a lesser role in response as NDtfieiases.

The paired comparison methodology and fine regwiighows RI can be defined
for NDVI <0.25 as opposed to the Raun et al. (20@td potential model. This
research also shows Rl to be variable across the entire spectrum of NDNéreas
the yield potential model implies a constant relaship until YRy« is reached. Both
models agree that Ry exponentially decreases as NDVI increases althaudiiferent

ranges. Interestingly, Raun et al. (2005a) renthtkat NDVI ~ 0.73 represented an
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upper threshold where further N supplementationlévaot increase yield. This
experiment shows that NDW 0.73 only produced 10% growth, as measured by NDVI
better than no-response and that variable rateesuake within 5% of each other. In
short, the model predicts a 10% increase in Rhibptimum N application rate is used
and that there is at most a 5% difference in Rivbeh individual application rates.
Hodgen et al. (2005) referred to Rl < 1.10 as responsive where the farmer would not
observe significant return from fertilizer expendés. These findings confirm that little
response is gained, regardless of N applicatiohigat NDVI1 values (particularly NDVI
> 0.73). Further research should focus on margetalns for application at high NDVI.
The findings in this research in conjunction wotlevious research suggests that
supplemental N should be applied conservativegxtoemes in the NDVI spectrum,
specifically for FpNDVI less than maximum respof@e& FpNDVI < Max Response)
and for extremely high FpNDVI (FpNDVI >0.73). Thissearch also suggests that
supplemental N be applied proportionately tQdgl between maximum response and
sufficiency (FpPNDVI~0.73). However, these application intervals areagjusted to
yield return and fertilizer cost and cannot, theref be used as economic guidelines.
Further research should be conducted to specificpkar application intervals based on

net returns.

Conclusions

Findings from this research show that plant respda N supplementation is
continuous and predictable at the sub-plot levdlaaross species. This relationship is
guantifiable using an inverse hyperbolic modele&jically, this work shows that plant

response is maximized for low FpNDVI because Mesgrimary limiting factor. For

28



increasingly higher FpNDVI, N becomes less of atlimy factor and plant response to
supplemental N decreases. Further, plant resgends to be sensitive to N application
rate, especially in low FpNDVI where N is the limg factor. A comparison of Ry
curves from varied N application rates show plasponse becomes negligible at

FpNDVI > 0.73 regardless of application rate.
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CHAPTER Il

FORMULATION OF AN ANALYTICAL RELATIONSHIP BETWEEN NDVI,
VARIANCE, AND FRACTIONAL VEGETATIVE COVER IN SUB-PIOT

SAMPLING

Abstract

Accurate estimation of fractional vegetative coffevC) is difficult because of
the coarse resolution of most imagery. Spectrature analysis (SMA) is a common
method of describing FVC that assumes each pixaesing frame, is a linear
combination of characteristic spectral types (gag, water, plant, shadow, etc.) called
endmembers. For SMA to accurately estimate FV(S,assential that the endmembers
be chosen correctly according to the depth and mkioa of the imagery. This paper
shows that endmember selection can be performed tis relationship of sub-plot
mean and variation of normalized difference vegetahdex (NDVI) imagery. This
research found that a quadratic relationshiX®&®56) exists between mean plot NDVI
and plot variance. Since endmembers should havastent homogeneity and low
variance, the roots of the quadratic relationshgvige endmember estimates of bare soil
(Ns) and complete plant coverageJNThis research further demonstrates analytically
and empirically that FVC = 50% occurs at the veftaghest variance) of the sub-plot
mean NDVI and variance relationship. This methodgldemonstrates a simple and

accurate in-field method of estimating FVC for sesapable of sub-plot sampling.
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Introduction

It has long been a goal of remote sensing to atelyrestimate fractional
vegetative cover (FVC) from spectral informatiddomplete vegetative cover is the part
of vegetative canopy where no bare solil is dete@@adison and Ripley 1997).
Commonly, transformations of the normalized differe vegetative index (NDVI) are
used to estimate FVC. However, the coarse natungost imagery precludes accurate
estimates of FVC (Xiao and Moody 2005). Commoapgectral mixture analysis (SMA),
a general linear additive model, is used to eseC from multispectral imagery
(Xiao and Moody 2005).

Spectral mixture analysis is based on the assumfiat a single image pixel is a
combination of various spectral types, such as asiget soil, shadow, water, etc.
multiplied by its fractional cover. Pixel reflecta under the SMA assumption, is a
linear combination of specific spectral types witthe pixel called endmembers
(Palaniswami 2006). Tompkins et al. (1997) giaegeneral equation for SMA model

assumptions. SMA is a linear combination of endimens and fractions of coverage

R, =Y fir, +E, (3.1)
i=1

where R is the aggregate pixel reflectance for baridr m endmembers; fs the
fractional abundance of endmemhbat;, is pixel reflectance in barwof endmembet,

and E is the error in bantd. This model is constrained by:

Zm:fi -1 (3.2)

i=1

where the sum of fractional coverage must equal 1.
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The number of endmembers for SMA is dictated bydihgensionality (bands) of the
image (Theseira et al. 2002) and should be equaketaumber of independent bands
(Small 2001; Theseira et al. 2002). Dennison aolkdeRs (2003a) point out that it is
critical for SMA’s accuracy that endmembers be eimosarefully.

Under SMA, each pixel in an image is composed ajrabination of
endmembers. This requires endmembers be estirftatedhe image, measured in
laboratory settings, or in field experiments (Desom and Roberts 2003b, Gutman and
Ignatov 1998; Qi et al. 2000). This implies thatlemembers are derived from samples of
homogeneous pixel groups (e.qg. forests, beache}, ¥tao and Moody (2005) offer a
key to within-image endmember selection; endmeméleosild have negligible spectral
variance.

Arnall et al. (2006), based on previous reseanatpgasted that coefficient of
variation (CV) in combination with NDVI can improyeediction of plant density.

Lukina et al (2000) found that the average CV of\Nlilends to decrease as vegetative
coverage increases across a farm field. Weiskz @@01) found that as plant stand
increased, yield increased and field variation é@sed. These findings demonstrate that
plant density (2-dimensional) is inversely propmml to variance and that a complete
coverage endmember can be estimated from NDVI mea&nts of dense plant stands
with low variance. However, using variance torastie endmembers necessitates the
uncommon ability of the sensor to sample sub-pixel.

The GreenSeekBf optical sensor (Ntech Industries, Ukiah Cde)eloped by
Oklahoma State University senses a 0.6m x 1lcmareas capable of sensing more than

10 samples per 0.4mat 10 mph (Raun et al. 2005). This sensor tyjdls to
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compartmentalize individual sub-plot readings whaean and standard variance
estimates are available for each plot. Underrttethodology a sensing plot is analogous
to an image pixel. This lends the ability to azalgpectral mixtures and estimate
endmembers without relying on identifying contigaqaixel groups in multiple bands.
Carlson and Ripley (1997) offer a two-endmembedehto predict FVC from the

NDVI of bare soil and complete plant coverage:

FVC:{ N_NS} (3.3)

Nc - Ns

where N is variable NDVI, Nis NDVI of bare soil, and Nis NDVI of complete plant
coverage. Gutman and Ignatov (1998), however,gpeosimpler SMA model can be
used to relate FVC and NDVI for non-dense vegetatog. Kerr et al. 1992; Gillies and
Carlson 1995; Wittich and Hansing 1995; Valor arasélles 1996). The SMA
relationship shows NDVI to be a linear combinatudribare soil (N) and complete
coverage (N with NDVI weighted by the percentage of vegetattover (FVC), such
that:

NDVI =FVC(N,) +(1- FVC)N, (3.4)
This SMA model assumes a linear form and can bigygeensformed to estimate FVC

by:

FVC:{&} (3.5)
Nc - Ns

Where N is variable NDVI, Nis bare soil and Ns complete plant coverage.
Both models assume that NDVI and FVC are relatetihloyendmembers based on bands
used to calculate NDVI (red and near infrared)isThajor simplification allows FVC to

be estimated directly from NDVI without multipletds. For additional simplification,
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Gutman and Ignatov (1998) reflect numerous autivis have shown that a non-linear
relationship was not detectable in varying plamtsitees. The authors argued that a
purely linear relationship did not significantlyarige the estimation error.

Lukina et al. (1999), using red-green-blue (RGRjitdi imagery, found that
NDVI was significantly linearly correlated R0.80) with vegetative coverage, such that
NDVI was linearly regressed on percent vegetatoxgec (VC%):

NDVI =B, +B,(VC%) (3.6)

Similar work by Jones et al. (2007) in spinachngsa multispectral imagery, found that
biomass is related exponentially to NDVI?@R0.94) and that vegetative coverage by

percent (VC%) is logarithmically related to biom&Ré= 0.91):

Biomass= ag™"" (3.7)

VC%=dIn(Biomas$ (3.8)
where a, ¢, and d are constants of regression.

The objective of this research is to empiricallyidate the relationship between
NDVI and FVC. A review of the literature showsiamerse relationship between
variance and NDVI collected in experimental plalansls, such that variance decreases
as plant material increases. Previous experimentatiggests a similar inverse
relationship between percent soil coverage and NBMth that variance is low in
complete bare soil and increases as plant mateciases. Taken in concert, these
relationships imply a peak function where NDVI ahimum variance can be used as
endmembers and maximum variance can be estimatied aertex between bare soil and

complete plant coverage.
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Current literature suggests that a linear relatigmexists between NDVI and
FVC. The model supported by Gutman and Ignato98) @escribes a method of
estimating FVC using endmember bare sod @hd complete plant coverage.lds
values derivable from the dataset. Consequetigariodel is the estimation of 50%
vegetative coverage being midway betweegmam N.

Specifically, this paper will show a quadraticatednship exists between sample

standard deviation (Stdev) and mean NDVI and timatrdoots of this relationship provide

estimates for Nand N in the SMA model, where
StdeNDVI) = aNDVI®> + bNDVI + ¢ (3.9)

with endmembers at the upper and lower roots:

— — 2_ ~
b “22 BC_R. (3.10)

NDVI =
— 2 — ~
NDvI = —RHVPT e g (3.11)
2a
Using N, and N as constants in Equation 3.5 the vertex of the fmadance
relationship will occur at 50% vegetative covewlsthat:
(_V ) ~b++/b* - 4dac
o)
Fvcl-b/ )= 2 - 05 (3.12)

—b-vb?—&c —b+b?—dc

2a 2a

Methods and Materials

Data compiled for this research consists of sebhased calibration stamp

samples, vegetative coverage samples, and canmszd bgperimental spinach trials.

The field dataset is used to validate the resdilsssmulated remote sensing experiment.
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In this study, mean NDVI, standard deviation of thean, and corresponding FVC serve
as primary metrics. Previous research suggestssinef the coefficient of variation
(CV) because samples were being taken from diftdreldls. However, CV becomes
insensitive for means approaching zero and shauldl® used on true ratio data (Zar
1984). It is debatable whether NDVI represents tatio data. For this reason Taylor et
al. (1999) argued for the use of the mean squaoe @MSE) in preference to CV for
instances where common units of measure were ansditferent treatments.
Additionally, MSE, unlike CV, has the property adibg the square of the experimental
units — where the root mean square error (RMSH) ¢®@mparable units. It is unclear if
MSE is preferable over customary variance estimatesn no comparison of samples is
being made (e.g. analysis of variance). Concelgtumbkimpler, more common method
to determine variance in experimental units isquadfle; for this reason the standard
deviation is used in this study.

Because samples in this experiment are from semgbcamera based
experiments, it is essential that NDVI be demotyraniform across sensor type.
Research in Jones et al. (2007) shows that ND\iveléfrom GreenSeekBt sensors
are highly linearly correlated (R 0.97) with NDVI derived from the multispectral
camera (DuncanTech MS3100) used in this experiméné similarity between sensors
allows field collected samples to be validated hytispectral images.

To understand the systematic relationship betwaeiance and NDVI, a 10x10
(100 element) value matrix was constructed in SPAGO (Insightful®) to simulate a
typical plot sensing experiment. In each simulatiom, elements in the matrix were

uniform randomly assigned either complete plantcage or bare soil binomial
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identification (0 or 1) in accordance with FVC lé&/€0% - 100%) from Equation 3.4.
The elements allocated to complete plant coverdgenere assigned a random normal
NDVI value with MeaRpy, = 0.85 and StDegyy, = 0.01 and bare soil (NMeanypy, =
0.16 and StDewy, = 0.02. Complete plant coverage and bare soil ND¥an and
standard deviation values were derived from a oootis native grass experimental plot
in another part of this study. A simulation coteisof 1000 value matrices at each FVC
ranging in whole values 0% - 100% producing 10 nstandard deviation values for
each FVC level, where each value matrix was averbgeslement across each column,
simulating a perpendicular single sensor scan laga by row to calculate plot mean
NDVI and standard deviation.

To confirm the relationship between the mean aaddard deviation of within
sample NDVI, 16 multispectral images of spinachtgldescribed in Jones (et al. 2007),
were analyzed. The capture area for each imageevesdructed of 1.27cm (3/4in.) PVC
pipe enclosing a 0.76m x 0.91m area. Images walected by a DuncanTech MS3100
multispectral camera (Auburn, Cal.), sensing greet, and near-infrared bands at 550,
670, and 780nm# 10nm), respectively. The 3-band images were chiorand
converted to NDVI images with MatLab (MathWorks¢InNatick, Mass.) software,
using the standard reflectance NDVI calculatiorowdver, because NDVI is
theoretically bound between [-1,1], subsequent NIDVdges with negative values were
not set to zero as normal practice usually dictaesder to emphasize the distinction
between bare soil and dense vegetation. Furtinages were resampled to lower
resolution by averaging to aid computation and cedeackground noise. A 20 pixel

kernel was used to decrease resolution becaussvam analysis of these data showed a
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30 - 50 maximum range indicating a 15 — 25 pixelezof influence; thus half the
maximum range was selected to minimize varian@sialg across scales (Russo and Jury
1987; Western and Bloschl 1999). From this agdgesbenage, a mean and standard
deviation image was created by a 3 pixel squaneiksdarnel.

To delineate the relationship between 50% FVC arduce, 30 plots were
sensed with the hand-held GreenSeBkecross five vegetative coverage levels in a 2m
x 10m continuous native grass experimental pldte plot received 45 kg Hepelleted
10-20-10 commercial fertilizer previous to growsgason and had consistent NDVI

(NDVI = 085+ 001) at the time of sensing. A wooden frame 61c6iem was

constructed as a sensing boundary. An initial NB&fising represented 100%

vegetative cover. Then reflective panaDVI = 016+ 002 , representing soll

Panel

from the experimental aredNDVI_, =0.159+ 0.013vere placed in the frame and

soil
sensed to achieve 75%, 50%, 25%, and 0% vegetaiixarage. The mean and standard
deviation of experimental sample were calculated.

Validation at the field level was achieved by amaly five sites sampled under a
calibration stamp design (Raun et al. 2004), wigch 3m x 3m matrix of 9 — 1plots,
consisting of four check plots and five treatmewel plots in wheat and bermudagrass.
Each calibration stamp was sensed at fsolution with the hand-held GreenSeeker™
optical sensor. The sensor detects and recordadndi NDVI values every 0.6m x 1cm

across the plot producing mean NDVI and standaviatiens.
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Results

Figure 3.1 demonstrates the simulated relationséipveen NDVI and standard

deviation of NDVI with varied FVC and endmembé¥s = 016+ 0. ab2

N. = 086+ 001.
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Figure 3.1: Simulated NDVI Versus Standard Deviatia of NDVI (10,000 Simulation Runs) with
Maximum Variance Estimation Bounds from Equation 35. NDVI = 0.86 and NDVI = 0.16 Used as
Estimates of Complete Vegetative Coverage and BaBoil, Respectively.

The relationship, Figure 3.1, shows the simulataddard deviation of NDVI is
guadratically related to simulated mean NDVI arat thinimum variance occurs at bare
soil (= 016) and complete plant coverage 086) values. Conversely, maximum
variance is centered between the endmembers andsosithin predicted bounds

(0.495,0.525) from Equation 3.5.
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Figure 3.2 shows the simulated relationship betwegied levels (0%-100%) of

FVC and standard deviation of NDVI.

Standard Deviation of NDVI
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Figure 3.2: Simulated FVC(%) Versus Standard Deviatin of NDVI (10,000 Simulation Runs) Where
Maximum Variance Occurs at 50% FVC.

Figure 3.2 demonstrates that there is a predictatddonship between FVC and
standard deviation. Variance is highest at 50% Y@ is minimized at 0% and 100%
FVC. Attenuated data near minimum variance is duée levels of FVC being chosen
as discrete whole numbers and not continuous.

Figures 3.1 and 3.2 show that FVC and NDVI aredcatécally related to the

standard deviation of NDVI, such th&{FVC) = StdeyNDVI) = g(NDVI )implying that

the functions of FVC and NDVI are equiFVC) = g(NDVI). Therefore, using the
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FVC transformation (Equation 3.5) and the rootsIBNVI relationship (Equations 3.10 &
3.11) FVC and NDVI should have a linear relatiopshi
Figure 3.3 shows an example plot derived from thétispectral spinach imagery

and is representative of the data distribution ftbre experiment.

< o
S o
Q:)o o
o

]
2
z -
[
=}
=
28
i
=
2 o
Q ()
~
j
«
<
=
8
v

=

o

<

1 I 1 1 1 I
0.0 0.2 0.4 0.6 0.8 1.0
NDVI

Figure 3.3: Spinach Imagery NDVI versus Standard Deation of NDVI with Quadratic Regression
Fit (Parameters Described in Table 3.11: Plot 1).

The relationship (Figure 3.3) demonstrates a quiadesponse between mean NDVI and
standard deviation confirming the initial assumpsionade from simulation results.

Table 3.11 shows the parameters of a quadratiessigpn model used to estimate
the relationship. The values are model coeffigéat b, and c: Equation 3.9), coefficient
of determination (B, coordinates of the maximum standard deviatiovefkand Yvert),

and the endmember estimategDbwer Root) and NUpper Root).
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Table 3.1: Quadratic Regression Parameters for Spinach Dataset

Plot a b C R Xvert Yvert Lower Root Upper Root

Plot1 -1.0360.7390.0760.567 0.357 0.207 -0.091 0.804
Plot2 -1.0010.7260.0740.581 0.362 0.206 -0.091 0.815
Plot3 -0.989 0.770.0420.626 0.389 0.192 -0.052 0.829
Plot4 -0.8610.4950.1340.617 0.287 0.205 -0.201 0.775
Plot5 -0.910.5570.1170.593 0.306 0.203 -0.166 0.777
Plot6 -0.9820.5960.1280.601 0.303 0.218 -0.168 0.775
Plot7 -1.080.5250.174 0.66 0.243 0.237 -0.226 0.712
Plot8 -1.222 0.790.1090.687 0.323 0.237 -0.117 0.763
Plot9 -1.0610.7230.0960.614 0.34 0.219 -0.114 0.795
Plot 10 -1.2320.7630.1210.692 0.31 0.24 -0.131 0.75
Plot 11 -0.8780.5910.0980.573 0.337 0.197 -0.137 0.81
Plot 12 -0.9140.6560.0840.593 0.359 0.202 -0.111 0.829
Plot 13 -1.1050.707 0.120.641 0.32 0.233 -0.139 0.779
Plot 14 -1.0520.7230.0950.606 0.344 0.219 -0.113 0.8
Plot 15 -1.1510.8610.0570.597 0.374 0.218 -0.061 0.81
Plot 16 -1.0560.7810.0630.582 0.37 0.207 -0.073 0.813

Table 3.1: Model coefficients (a, b, and c¢: Stdev{®VI) =aNDVI ? +bNDVI +c), Coefficient of
Determination (R?), Coordinates of the Maximum Stdev(NDVI) (Xvert ard Yvert), and Endmember
Estimates N (Lower Root: Bare Soil) and N (Upper Root: Complete Vegetative Coverage).

Each regression demonstrated in Table 3.1 wasfisigmi (P<0.01) and returned
reasonably high Rvalues (>0.56). Interestingly, predictions af(Nower Root: Bare
Soil) are consistently less than 0O for the imagdemonstrating an instance where CV is
not an appropriate measure of variance in thisysttdhe extremely low bare soil NDVI
values are likely due to a combination of extrarsefaators such as soil texture, ambient
moisture, and stark transition between plant matand bare soil.

Figure 3.4 shows the results of the native gragstative cover experiments.
Here NDVI samples were taken across five leveB\GE (0%, 25%, 50%, 75%, and

100%).
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Figure 3.4: FVC (%) Versus NDVI from Native Grass Veetative Coverage Experiment.

Figure 3.4 shows that NDVI is highly dispersed ¥CF= 50% in comparison. In
addition, variance is small at 0% and 100% FVCbl@&.2 confirms that the standard
deviation is highest at FVC= 50% and lowest at /@ & 100%.

Table 3.2: Standard Deviations for Levels of FVC (%)
FVC (%) 0 25 50 75 100
Standard Deviation 0.04420.18390.26620.19950.0565

This verifies complete bare soil and complete ptamvierage should have fairly stable
low variance (c.f. Xaio and Moody 2005) while edyahixed N; and N should have

maximum variance.
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Figure 3.5 shows the results of field level reskant calibration stamp plots, in
wheat and bermudagrass where plot averaged NDatshed with corresponding

variance.

Standard Deviation of NDVI
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Figure 3.5: NDVI Versus Standard Deviation of NDVIfor Calibration Stamp Design with Quadratic
Regression Fit (see Table 3.3: Wheat and Bermudagia8Combined”).

Figure 3.5 shows a quadratic relationship betweBlNand standard deviation
confirming previous findings. Specifically, thiggeriment demonstrates NDVI and
variance are related even at increasingly largersomement scales. Table 3.3 shows the

regression parameters associated with this trial.
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Table 3.3: Quadratic Regression Parameters for Calibration Stamp Dataset

Plot a b C R Xvert Yvert Lower Root Upper Root
Combined -0.6020.686 -0.103 0.316 0.569 0.093 0.177 0.962
Wheat -0.729 0.868 -0.159 0.511 0.595 0.099 0.226 0.964
Bermuda -0.8360.837 -0.114 0.53 0.5 0.095 0.163 0.838

Table 3.3: Model coefficients (a, b, and c¢: Stdev®VI) =aNDVI > +bNDVI +c), Coefficient of
Determination (R?), Coordinates of the Maximum Stdev(NDVI) (Xvert ard Yvert), and Endmember
Estimates N (Lower Root: Bare Soil) and N (Upper Root: Complete Vegetative Coverage).

Regressions displayed in Table 3.3 were signifi¢Br0.01), but showed weak Rhen
species were combined althoughvRas improved when species were individually
modeled. This is an intuitive finding because vilaeal bermudagrass have significantly
different canopy patterns and will consequentlyileiidifferent variances. Dennison
and Roberts (2003b) found that plant phenologyrdmutted significant confusion in
change detection using multiple endmember spetisalire analysis (MESMA).

Figure 3.6 shows the simulated relationship betwé¢egN| and FVC for

estimated endmembersi( = 016+  0&2d N, = 086+ 00).

48



100

FVC(%)=139.73INDVI-21.234

FVC(%)
60 80

40

20

0.0 0.2 0.4 0.6 0.8 1.0
NDVI

Figure 3.6: Simulated NDVI Versus FVC(%) (10,000 Simlation Runs) with Linear Regression Fit
(Parameters in Table 3.4: “Simulation”).

The simulation (Figure 3.6) exhibits a linear riglaship between NDVI and FVC.
Similarly, (Figure 3.7) shows the relationship beén NDVI and FVC from the

vegetative cover experiments in native grass stands
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Figure 3.7: NDVI Versus FVC(%) from Native Grass Vegtative Cover Experiment with Linear
Regression Fit (see Table4: “Field”).

The linear nature of Figure 3.7 serves to validlageassumption of a linear relationship
between NDVI and FVC. Table 3.4 shows the pararseted R for the linear
relationship between NDVI and FVC.

Table 3.4: Linear Regression Parameters for Simulated NDVI and Vegetatived@er
Experiments.

Model Intercept Slope R
Simulation 51 534 139.731 0.978
Field -18.844 131.398 0.931

Slope prediction was extended to experiments wh¥f@ was not collected as a variable
calculated by

100
-N

(3.13)

slope.c =

Cc S
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The spinach imagery has an average slope (1094f3he calibration stamp
experiments have an average slope (137.001). eEartirk by Lukina et al. (1999)

showed commensurate average slopes at (158.019).

Discussion

Results from the simulation indicate a quadratlatronship between NDVI and
plot variability. This relationship appears todproduct of the FVC within the plot area.
Given the nature of this relationship, NDVI of bagl (Ns) and complete vegetative
cover (N) will have low variation since these areas aréanm. As uniformity decreases
variance increases until a maximum is reachedpatdicted equal mixture ofnd N.

Multispectral imagery confirms a quadratic relaship for extremely fine
resolution with relatively good correlation{R 0.57). Given this relationship, it is
reasonable thatand N can be estimated by the roots (zeros) of the aguiadr
regression equation, albeit the bare soil estintataded to be extremely low.

Selective vegetative cover experimentation in iomaius native grass stands
shows that variation of NDVI is highest at 50% FVThis experiment serves to confirm
that maximum variance occurs at the vertex of tBd&/Nvariance relationship and
validates the derivation of Equation 3.12 showimat FVC = 50% occurs at the vertex.

Results from the calibration stamp design showcttegacteristic quadratic
relationship between NDVI and variance. This fiigdsuggests that the same overall
relationship may exist at a field-level scalesrtlker, this experimentation hints that
species, by virtue of canopy structure, affectarace and ultimately estimates of bare
soil and complete coverage. This is confirmed wh#hspinach imagery where stark

differences between soil and plant material redultenegative NDVI estimates for bare
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soil. Additionally, the comparison of wheat andrbadagrass showed that canopy
structure affects the variability. Further resbahbould be conducted to determine if the
definitions of bare soil and complete vegetativeetage NDVI are site specific.

Lastly, both simulation and field research conftima linear relation of NDVI to
FVC found in the literature. Subsequent applicabbthis finding to experiments that
did not capture FVC necessitated a slope functmuétion 3.13) and showed
commensurate slopes across all data sets. Thils cesfirms the linear relationship
between NDVI and FVC suggested in Gutman and Ign@i®98: Equation 3.5) and
Lukina et al. (1999: Equation 3.6). Additionallgnes et al. (2007) showed that biomass
is exponentially related to NDVI (Equation 3.7) ahdt vegetative coverage is
logarithmically related to biomass (Equation 3.By combining these equations and
solving for vegetative cover (VC%) in terms of ND&th extrapolation of Jones et al.
(2007) shows a linear relationship between VC% (F&i@ NDVI

VC% = cdNDVI +dIn(a) (3.14)

where a, ¢, and d are constants from regressiomafieos 3.7 and 3.8). In each of these
cases the FVC line segment requires boundary valuegC = 0 and FVC = 100, which

can be derived from the roots of the standard dievia- NDVI1 relationship.

Conclusion

Findings from this study show that mean NDVI aadation in NDVI are related
by a quadratic relationship. Further, this relaginp can be used as a method of
estimating NDVI of bare soil and complete vegettiover endmembers {lind N) as
the roots of the quadratic standard deviation-NBakhtionship. This mathematical

relationship allows quantification of FVC at varglevels of NDVI provided the
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variance of NDVI is known. These findings, in certavith the spectral mixture analysis
(SMA) model, show that FVC can be estimated irdfi®y sub-sampling NDVI and

calculating variance within plots.
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CHAPTER IV

A SIGMOIDAL MODEL TO PREDICT YIELD POTENTIAL INCORPRATING

CROP RESPONSE TO SUPPLEMENTAL NITROGEN

Abstract

Prediction of yield potential is central to Niterg(N) conservation efforts.
Supplemental N applied in uniform blanket applicatheglects natural field variability
demonstrated by varying plant response to suppleahiEnand idealistic yield goals
assuming uniformity of return. Continual over apaiion compounds environmental
degradation and, as N fertilizer price increasestrdoutes to decline in agricultural
profitability. However, recent advances in yielotgntial prediction and detection of
plant N sensitivity offer improved management siméds. This research proposes a
sigmoidal approach to accepted exponential yietdng@l models by incorporating a
continuous plant response parameter. The sigmoakmbuilt from assumptions in
current literature, is within 6% (for large samplegquitability with the current
exponential model in reducing residual sum of sgslaHowever, the sigmoidal
approach ensures agronomic assumptions are madtaithout a piece-wise defined
model. This methodology translates supplements¢msitivity to differential yield
potential, especially for varied physical/chemicahditions and N application rate
differences. This methodology also opens the wagtonomic analysis of yield

potential gain for a cost reduction based approacfariable rate application.
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Introduction

For many years Nitrogen (N) has been appliedrim fiéelds as a low cost, easy-
to-implement method to maximize yield. Blanket laggiion of uniform, usually high
rate, N disregards field variability, over-treateas at N sufficiency, and subsequently
results in excess N entering the environment. ioctjural pollution, especially lost N,
besides being an aqueous pollutant, is borne bfathger as a loss in productivity, and in
concert with recent fertilizer price increases, %30etween 2000 and 2006 (Huang,
2007), is exacerbating the cost of N loss and teath an intractable future for cropping
systems. However, recent developments in variadéetheory and technology may stem
future issues by matching application to in-fietsked.

Nitrogen use efficiency (NUE) provides an estinaftéeld N requirement by
demonstrating the proportion of N returned in hated product to N application.
Therefore, the primary issue in increasing NUE eenon the effectiveness of
supplemental N, since N contained in the harvesdymt is generally constant.
Excessive N application, well above sufficiencyifiially lowers NUE. NUE is,
therefore, predicated on a combination of resi¢iuad the plant/soil matrix and applied
N. To assess the effectiveness of N supplementaiiven residual N concentrations,
Johnson (2000) proposed the use ¢f,Rds: This index is the ratio of yield from N
treated plots and untreated plots. Later Mulleal ef2003) proposed a ratio of
normalized difference vegetative index (NDVI) vadeom N treated and untreated plots
as a mid-season estimate ofiRks: Raun et al. (2005) developed a method to cdkeula
N application rates from NDVI based on yield poignising Rkpyi as a constant

multiplier to augment the relationship for N tresafgots, which meant Ry, could be
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calculated from the ratio of N treated and nontge@gotential yields. Raun et al. (2005)
further show that NDVI is exponentially relatedyield potential within a specified
interval of NDVI and increases with increasing NDfitil constrained under a
maximum environmental cap (Yi&). In this way, YRaxrepresents maximum yield
obtainable given ambient physical and chemicatlfeenditions. Plant response to
supplemental N (Rbv)) is, therefore, used as a constant multiplierrbeecthe Yield-
NDVI curve to YRuax quicker for low NDVI when plants show significamisponse
(RI>1). Under this methodology yield potentiakigponentially related to field rate
NDVI given by:

YP, = a(Rl g, )" for : YP, < YP,..; Rlyoy =1for N =0 (4.1)

where yield potential (Y@ is a function of field rate NDVI and plant resgerdue to N
application rate (RI) ranging between 0 kg Nt@iad sufficient concentrations.
Obviously, 0-N application results in no complenaentplant response (RI=1), however
Rl is allowed to increase proportionately to insesin N application rate, which
increases the overall function. Additionally, thisiction based methodology estimates
YPumax as the maximum yield obtainable with N sufficierand is not defined for values
less than NDVI = 0.25, which Raun et al. (2005)cdiégs as the soil/crop divide. Plant
response to supplemental N {(R}) can be found from the yield potential, whergd/
is constant until YRax, inverse exponential until NDVI = 0.73, and asyatigially to
Rinpyi — 1 after NDVI = 0.73.

However, evaluating RI at smaller than average) (hmasurement scale, referred
to as fundamental field element scale (Solie €1296; Raun et al. 1998; Solie et

al.1999), Monroe et al. (2008) found thatRJ) is a continuous function inversely
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proportional to residual N, such that as residuaiddeases to sufficiency, evidenced by
increasing NDVI, subsequent plant respons@f®) decreases. They further found, by
specifying asymptotic boundary conditions, thas fiiocess can be estimated as a two
parameter inverse hyperbolic cosine model:

A,(FpNDVI)

4.2
cosHA,FpNDVI) (42)

RINDV| =

whereA, determines maximum Rdy, andA; is the rate at which plant sensitivity to N
supplementation decreases as farmer practice NBANDVI) increases. Maximum
response is achieved at low NDVI because N is timegoy limiting nutrient; however, as
NDVI increases (healthier plant stands) responseipplemental N decreases. The rate
of decreasing response, between maximum respodssoanplete N sufficiency,
determines the intensity of N limitation. In coxttef the model, lower parameter values
indicate plots where N is constantly a primary ting factor, whereas higher parameter
values indicate plots where N is a primary factrdxtremely low NDVI but is
subordinated quickly as NDVI increases.
Raun et al. (2005) laid the groundwork by devisaangeld potential (YE) model
to predict yield using NDVI readings and noted salaxiomatic constraints, such as
plant sensitivity to supplemental N, exponentiagr@ase, and asymptotic extremes.
Furthermore, their work advocates a maximum yieldnaary (YRiax), which has not
been adopted in the Yodel as a parameter. Additionally, recent redeauggests
that R\pv, is a predicable continuous function as opposediiece-wise defined model.
The objective of this study is to construct a camtus yield potential (YP) model
subject to constraints from recent findings and jgleent with necessary boundary

conditions to compare with field-collected dat&his work contends a sigmoidal model
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approach can incorporate axioms from Raun et @05pand continuous plant response
to N (Monroe et al. 2008) into a single coherentiei@ble to predict yield potential
from mid-season measurements. Benefits of suchdehinclude economic decision
making in treating with variable N application amarginal net benefits from treating

intervals of NDVI.

Methods and Materials

Raun et al. (2005) show that yield potential ignastotic for upper and lower
NDVI values, specifically for NDVI—>NDVI at YPyax and NDVI < 0.25. Additionally,
they show field sampled NDVI is exponentially relato yield from those samples.
Taken in concert, these findings imply a sigmotdahsition of asymptotically low yield
for low NDVI, increasing exponentially through midnge NDVI, and asymptotic yield
at YRyax for NDVI — 1.

Sigmoidal models are prevalent in biological feelts models of constrained
growth and decay. Tsoularis and Wallace (2002)atestnate that most sigmoidal
models in use today are versions of the earliehiMet (1838) logistic model used to
predict Malthusian growth. Logistic models arerelcterized by an initial population
(initial asymptotic value), transition zone, antsaturation level” population (carrying
capacity) (Tsoularis and Wallice 2002; pg. 22) stint:

c

y= 1+ @ KO

wherec is the carrying capacitkis a parameter of curvature, anélis the point of

(4.3)

inflection (center of transition).
In the case of yield represented in the NDVI domBiDVI = 0 should result in

YP =0 as an initial condition and NDVI = 1 showédult in YP = YR at carrying
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capacity. Of the models present in the literatar®gistic appears to be the best for this
application, because the numerator contains aingroapacity parameter, the model can
have a zero lower asymptote, and the inflectiomtp@if) can be directly estimated.

For the model to represent field conditions it trhessensitive to plant response
to supplemental N. Raun et al. (2005) verified tha model must transition to Y&
quicker under N supplementation. Therefore, th@arnt should comprise a measure of
plant response (RI) to N supplementation for ymdtential (YR), such that:

—k(NDVI* RI-Inf) wherek is a regression estimated parameter of curvab¥/! is
the domain, Rl is the variable measuring plantoasp to supplemental N, ahd is the
non-linear regression estimated inflection poifithe plant stand is not N treated ()P
then RI = 1 and the exponent reducesk(JNDVI - Inf). Thus yield potential is
changed by N supplementation where N treated yietdntial

P (4.4)

—K(NDVI*RI—inf)

YPy

:1+e
is augmented by Rbv and untreated stands are static abR1=1

YPMax

YP, = .
0 1+ e—k(NDVI—lnf)

(4.5)
Data for this study came from six years (1998 83 ®f yield monitoring in Hard
Red Winter Wheat. This dataset included 700 y(kld ha), pre-plant N rate (kg N ha
1), and NDVI combinations across six years sensé@ekes stage 4 — 6. Only 0 kg N
ha' pre-plant rates were included in this study tceobs base level Yfand to fit with
parameters in the continuousyRh model (Monroe et al. 2008). As pre-plant N rate
increases, residual N in the plant-soil matrixlsb éncreases; therefore response to

further supplemental top-dress N decreases. Tdesevere evaluated separately by
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year because RI is variable year to year (Rauh 2085) and yield is independent of
previous years (Johnson and Raun 2003).

Response index (Rdvi) parameter values were taken from Monroe et 8D&?
and used to adjust the baseline yield curve. PRetemfrom this source were a
composite of several experimental areas and deaigrexious growth stages. However,
varied N rate application experiments in a calibrastamp design were specifically
separated and analyzed for this study to show yeldel adjustment for different N
application rates. The calibration stamp desigauRet al. 2004) is a 3m x 3m matrix of
9 — 1nf plots, consisting of four check plots and fiveatraent level plots. Application
rates were 22, 45, 67, 90, and 112 kg N (28, 40, 60, 80, and 100 Ibs N atyén
wheat and bermudagrass. These experiments wedeaed in 2004. Each calibration
stamp was sensed at 4rasolution with the hand-held Greenseeker™ optieakor
(Ntech Industries, Ukiah CA.) The plots were samgfar times at intervals of two

weeks after N application and averaged together.

Results and Discussion

To assess fit the proposed sigmoidal model is compagainst the exponential
model used in Raun et al. (2005) and compareddyctesn of residual sum of squares
(RSS). Figure 4.1 shows the comparison in model 998 yield values restricted to 0-N
pre-plant application. Since Y is an unknown saturation value describing the
capacity of yield; it was first estimated as orandard deviation of yield plus maximum
yield from the dataset. After the sigmoidal modek regressed, XRx was adjusted and

the sigmoidal model was reparameterized iterativalyl a minimum RSS was attained.
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Figure 4.1: Regression Fit for1998 NDVI Verses Yidl(Mg ha™) at 0 N Pre-Plant.

Figure 4.1 demonstrates that both models equitaddg through the main distribution of
data. However, the exponential model continue®unbed after YR.x is reached. The
sigmoidal model maintains the exponential naturhe$e data and offers asymptotic
boundary conditions such that B obtained at NDVI = 0 and ¥Xfx is obtained at

NDVI = 1. The sigmoidal model, a symmetric logisshould reach the maximum value
(YPumax) at NDVI = 1 unless constricted by fitted paramefeom the dataset. In this
case, several trials show the sigmoidal model &smarameterized if )R is estimated

in the model. Therefore, XRBx was adjusted outside the regression fit to erthigre

sigmoidal model reached Y& at NDVI = 1.
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Table 4.1 shows the parameter estimates and e¢sidmn of squares (RSS) for
the sigmoid and exponential models by year deriliealigh non-linear least squares
regression (Gauss — Newton method).

Table 4.1: Parameter and Fit (RSS) Comparison Between Sigmoidal and
Exponential Model by Year.
Sigmoid (Equation 6) Exponential (Equation 1)

Year k inf RSS a b RSS N samples
1998 7.3141 0.5218 7.3734 0.3833 2.8063 7.8204 131
1999 3.9520 0.6253 9.5752 0.4380 2.0269 9.6883 125
2000 3.5853 0.5467 9.367| 0.7409 1.6940 9.0453 128
2001 3.8885 0.5118 11.3792 0.7528 2.0350 10.7915 145
2002 1.8126 0.4744 49.2231 1.5349 0.9255 49.2367 144
2003 7.0764 0.4909 1.8335 0.8440 2.2881 1.5348 27

Table 4.1: Comparison of Model Parameters Betweenid@noidal and Exponential Non-Linear
Regression Fitting by Year: k=Parameter of Curvature (Equation 6), inf = Inflection Point (Equation
6), a = Exponential Parameter (Equation 1), b = Expnential Parameter (Equation 1), RSS =
Residual Sum of Squares.

Table 4.1 shows that there are consistently miifterdnces in RSS between models
confirming fit equitability. For 1998, 1999, an@@ the sigmoidal model reduced the
RSS, while 2000, 2001, and 2003 it increased R8Bh the extremely small difference
in RSS values (<6% for 1998 — 2002) it appearsitp@oidal model is reasonably well-
suited to fit the data distribution as the estdlgltsexponential model. The higher
percent difference in RSS for the sigmoidal mod&2003 (20%) is likely due to the
sample size (27).

Raun et al. (2005) describes and validates theegroby which the yield potential
curve is left shifted by implementation of consteegponse index (Rbvi). In summary,
yield potential is shifted to Y\« at lower NDVI by N supplementation. Figure 4.2
shows the inclusion of continuousyg (c.f. Monroe et al. 2008) applied to the

sigmoidal model.
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Figure 4.2: 1998 NDVI Verses Yield (Mg ha) for 0 N pre-plant with Sigmoidal and Variable Rlypv,
Adjusted Models Compared to Exponential and ConstanRlI ypy; Adjusted Models.

Figure 4.2 illustrates, due to continuously vaeaBkpy, that the model shift is not only

a rescaling but also a reformulation of the curVe.fit with preliminary assumptions, it

is necessary that the {3l adjusted curve (B is asymptotic and that it approaches the

non-R\py, adjusted curve (Y§p at extreme NDVI. It is also necessary thaiYP

demonstrate variable response according to plasitsaty to supplemental N.
Additionally, Figure 4.2 describes the marginahéfes of variable Rlpv,

adjustment of yield potential models. The consRinty YP model (Equation 4.1)

shows that marginal benefit (slope of the curvejaases at an increasing rate until

YPuax iS reached and becomes zero thereafter. Thisaablat additional yield benefit

of treating the next higher NDVI unit increasesiluriP yax, but transitions to zero

additional benefit after Y§2x. The variable Rlpv, adjusted YP model (Equation 4.2)
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shows that marginal benefits increase at an incrgaate until the inflection point is
reached and continues to increase thereafter lautletreasing rate until Y is
reached. The combination of sigmoidal transitiod gariable Ripv show that N
supplementation will always result in an increasgield; however, after the inflection
point has been reached the additional benefiteattiing the next unit of NDVI is smaller.

It should be noted that the dataset used to nbdddaseline sigmoidal curve was
sensed at Feekes 4 —6 growth stage, while thg/RAdjustment was an average of
readings without specific growth stage from Monebal. (2008). Growth stage can
influence the magnitude of maximum response, atidranslate to the Rby, adjusted
yield model accordingly.

Monroe et al. (2008) also showed that differin§rdéons of bare soil NDVI (Ns)

shift the response curve and can attenuate maxiresponse according to Equation 4.6

1 ForNDVI < Ns
Rlyow =1 A, (FPNDVI-Ns)
coshA,(FpNDVI - Ns))

+1 For NDVI > Ns (4.6)

where Ry, is 1 for NDVI definitions of bare soil greater thBIDVI = 0. Figure 4.3

demonstrates how bare soil offsets are translatéuki Ripy, adjusted curve (.
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0 1 For NDVI< Ns

Rlypy = A, (FpNDVI _ NS) For NDVI > Ns

cosh(A, (FpNDVI- Ns))+

Yield Mg ha!

0.0 0.2 0.4 0.6 0.8 1.0
NDVI

Figure 4.3: NDVI Verses the Variable Ripy Adjusted Model in Yield (Mg ha™) with Various NDVI
Definitions of Bare Soil (Ns =0, 0.05, 0.1, andi®).

Figure 4.3 shows that as the definition of baréisoreases N enhanced yield )P
remains equal to YRuntil Ns (Rkpvi = 1) is reached. After Ns is reachedyYtverges
from YP, according to the variable gy model.

Monroe et al. (2008) suggest thatyRl modeling parameters indicate the relative
plant sensitivity to N supplementation. In gengi@i large Ripyi parameter valueg\§
andA; : Equation 4.2) plants are highly sensitive to Idlegation for lower NDVI given
by Ap (maximum response); however, transition to sidficy occurs at a much faster
rate given byA; (transition rate). A high response to N for lowVI and a steep
transition to sufficiency with increasing NDVI irddites that while N is a primary

limiting factor for lower NDVI it is relegated tosubsidiary role as NDVI increases.
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Conversely, lower parameter values generally inditigat N is consistently a main
limiting factor. Figure 4.4 shows the sensitivatlyY Py shifted according variable Ry,

(Equation 4.2) parameters.

A,(FpNDVI)

Rl = — 2
MY cosh(A,FpNDVI)
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Figure 4.4: 1998 NDVI Verses Yield (Mg ha) for 0 N pre-plant, with Rl ypy Curve (Equation 4.2)
Adjusted to Varying Parameters Monroe et al. (2008)

Figure 4.4 shows higher iy, parameters produce greater initial yield poteitoul
quickly dissipate for higher NDVI. In this caseyw NDVI is responsive to N
supplementation but becomes insensitive quicklyabse yield sensitivity is based on
residual N reserves not N supplementation. Inelesditions, N is sufficient given
physical/chemical limitations and denoted by steapsitions in Ripy parameters.
However, for lower Rlpyi parameters (indicating consistent N sensitivityiset yield

potential is high and declines less across the Népéctrum. In these conditions, N
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remains a primary limiting nutrient for more of tN®VI spectrum, and yield potential is
a result of sufficiency through N supplementation.

Monroe et al. (2008) demonstrated,iR4 was also sensitive to N application rate.
Figure 4.5 shows YPshifts for N applications of 22, 45, 67, 90, ari@ kg N h& (20,
40, 60, 80, and 100 Ibs N ad)erom the calibration stamp design using|
parameter values shown in Table 4.2.

Table 4.2: N Application Rate Rkpvi Adjusted Curve and Parameters.
N Rate (kg N ha') Ag A,
112 4.84 5.71
90 6.76 6.78
67 3.36 5.78
45 3.91 6.41
22 437 10.33

Yield Mg ha™!
4

........ 122 kg ha’
----- 90 kgha'
— — 67 kgha'
— - =45 kgha'

S 22 kgha’l
0 kgha'

0.0 0.2 0.4 0.6 0.8 1.0
NDVI

Figure 4.5: Rlypvi Adjusted Curve for 22, 45, 67, 90, and 112 kg N Happlication Rates.
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Figure 4.5 demonstrates that reduced N applicatfii@tts the YR curve in a predictable
manner. As N application rate is reduced the aeeht (YR)) is also reduced. This
finding confirms Raun et al. (2005) statement tite yield is gained (net benefit of
YPy = 0.32 Mg h#) from treatment above NDVI = 0.73 and findingsvionroe et al.
(2008) showing that plant response to suppleméhtalmarginal (RI< 10%) above
NDVI = 0.73.

Subtracting baseline yield (¥Pfrom N enhanced yield (Y produces an
estimate of yield gain due to N supplementatiogufé 4.6 shows the results of a

methodology to derive net yield potential benefitrh varied N application rates.

| _ _v: . .
=1 - 122 kg ha’ ) . Yp — Yp, = Yield Potential Gain
- — s k§ hZ“ '.:' s 1+ ¢ KONDVIRI=ind | ~k(NDVI=in)
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Figure 4.6: Yield Potential Gain Curve for 22, 4567, 90, and 112 kg N hdApplication Rates on
Calibration Stamp Design Data.

Predictably, higher N application rates show gregtdd potential gain across the NDVI

spectrum. However, gain subsides for extreme NCRiure 4.6 specifically shows the
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interval of NDVI where yield is insignificantly @&ted due to increasing N application
rates. The non-uniformity in the peaks of theswesiis due to multiple wheat trials
included in this experiment. Different fields hadiéferent responses to application rates
of supplemental N.

Notably Raun et al. (2005) suggested, from emgistudies, that N application
effects on yield gain would generally be unsubsthfdr NDVI < 0.25, maximized
between 0.25% NDVI <£0.57, decreasing for 0.57 < NDWO0.73, and insignificant for
NDVI > 0.73. Given the findings in Figure 4.6, sieeapplication intervals accurately
describe this process. Given dynamic price chamgesieat and fertilizer prices this
process can determine the net benefit of treatiligaer N application rates to establish
NDVI/ N application rates.

Figure 4.7 demonstrates the effect of an alterN&&| definition of bare soil
(Ns) on yield gain (Equation 4.6). Specificallyglire 4.7 shows the yield gain offset for

the NDVI bare soil definition (Ns = 0.15).
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Figure 4.7: Yield Potential Gain Curve for 22, 4567, 90, and 112 kg N hadApplication Rates on
Calibration Stamp Design Data Assuming the NDVI oBare Soil (Ns) = 0.15 (Equation 4.6)

Predictably, allowing the definition of bare sdllg) to increase causes yield gain through

N supplementation to be insignificant until Nsesched. After Ns is reached differences

in yield gain become apparent for each N applicatate. Conceptually, regardless of

application rate, N applied to bare soil will nause a gain in yield because of a lack in

plant material.

Conclusion

This research shows that a sigmoidal model etsnaeld potential (Y§) with

the same relative accuracy as the Raun et al. [20@®nential, but satisfies necessary

asymptotic boundary conditions, such ag Y0 for NDVI — 0 and YB — YPwax for

NDVI — 1. A sigmoidal approach is also capable of carttrsly shifting due to the
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influence of variable plant response to N supplaatem (Rkpvi) and coalescences YP
and YR at NDVI extremes.

This research also concluded a sigmoidal appraacagable of demonstrating
variable physical/chemical conditions of plant s&visy to N (RInpyvi). The sigmoid
model, incorporating the continuous variabley@l ) is able to adjust yield potential
(YPy) in response to conditions where N may not beptivaary limiting nutrient.

Finally this study observed how Y/ the sigmoidal approach responds to varied
N application rates and shows boundaries of efificscN supplementation, which could

be used as an economic determiner of optimal NOWbpplication rate intervals.
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CHAPTER V

CONCLUSIONS
CHAPTER 2

The objective of Chapter 2 was to reexamine @misesponse index at fine
resolution. Chapter 2 demonstrates that planorespto supplemental N (@) is
continuous, variable, and should be modeled uspep& function. Predicting Ry in
this manner fits the data distribution and confotmsecessary boundary conditions.
Conceptually, plant response should not be obskrvablow NDVI because of the
scarcity of plants. Increasing NDVI (i.e. morengl will exhibit greater response so
long as N remains a limiting factor. As residuaihireases (with increasing NDVI)
plant response to supplementation decreases, raadty fas residual N reaches sufficiency
plant response to supplementation becomes ingignii

This study also showed that there is a necessityadify initial boundary
conditions (Ripvi =1 at NDVI =0) to account for the influence of éaoil NDVI on
response. This was accomplished by adding a bdrdBVI (Ns) definition that adjusts
the peak function.

The zone of maximum response to supplementatiterrdanes the interval and
magnitude of the highest N limitation. The ratd@rahsition from maximum response to
N sufficiency describes the relative importanc&las a limiting nutrient and is site- and
species-specific. Complete N sufficiency is reacledn supplementation no longer
causes a significant response. Using this infdondo optimize plant response N

should be applied conservatively to extremes in ND¥mely between 0 < FpNDVI <
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maximum response and FpNDVI > N sufficiency. Tleésaarch also suggests that N be
applied proportionally on the interval maximum respe < FpNDVI < N sufficiency.
CHAPTER 3

The goal of Chapter 3 was to establish an eqeitadgthod of determining
fraction of vegetative cover (FVC) using a combimabf relationships found in the
literature and sensor technology. Chapter 3 shbatsa combination of optical sensors
capable of sub-sampling and spectral mixture arsahgs the potential of accurately
predicting FVC. Sensors capable of sub-samplirijizvan experimental area (pixel or
plot) are able to determine variance. This resesgihows that within experimental area
NDVI variance is quadratically related to mean NDMich that variance is low for pure
regions (bare soil or complete vegetation). Tagearch also shows that within
experimental area NDVI variance is maximized at Sf@erage, such that variance is
greatest when there is a near equal mixture of $Eland complete vegetative cover
within a sub-sample. This research concludesatlugiadratic relationship exists between
within experimental area variance and NDVI and imigxperimental area variance and
FVC implying a predictable linear relationship egibetween FVC and NDVI. This

linear relationship, albeit found by other methadssonfirmed in the literature.

CHAPTER 4

The goal of Chapter 4 was to incorporate varialdaetpesponse to N
supplementation with findings from current researter imposed conceptual boundary
conditions to predict yield potential. Previouseaarch in yield potential prediction found
that yield was insignificant for low NDVI, increasexponentially through mid-range

NDVI, and is constrained under a bio-physical aaphigh NDVI. It has also been
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shown that yield for low NDVI could be shifted twetbio-physical cap quicker by N
supplementation. This shift is accounted for lwpastant multiplier in the current yield
potential prediction model. Chapter 4 showed thatent methodology could be
improved using a sigmoidal model, which asymptdigaredicts low yield for low
NDVI, is exponentially related to yield through mighge NDVI, and asymptotically
converges to the bio-physical cap (k) for high NDVI. Chapter 4 further
demonstrated a methodology for incorporating véeigkant response to N, which
dynamically shifts the yield prediction curve t@ thio-physical cap in accordance with
plant sensitivity. This finding was then used &velop a method of determining yield
gain under N application.
GENERAL FINDINGS

The object of this dissertation was to quantifymamental N need and develop
methodology to limit N application to areas noheed, thus minimizing over application
and thereby creating a positive environmental exléy. The findings from this
research show that continuously variable plantarese to N can define need, given field
variability. Variable plant response in conjunatiwith a continuous sigmoidal yield
potential relationship, which incorporates boundamgditions, can be used to predict
economically optimal N application intervals on tiegmalized difference vegetative
index (NDVI). Further, this research proposes #iiginoidal yield prediction, sensitive
to variable plant response, combined with econangthods should be able to determine
maximum application rates within optimal NDVI intais. Thus Nitrogen
supplementation to areas of need at economicatlynged rates should produce

environmentally responsible practices.
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FURTHER RESEARCH

1. The design structure, using calibration stamp nulugy, in this dissertation
was originally intended to determine the statidyasf variable Rl across a farm
field using stratified random sampling. Howevescause distance dependency
played little part in developing the variable Rt®nship, no further work was
completed in this area. Further research shoutwbhducted to determine if the
variable RI relationship exhibits field level statarity.

2. This research found that fractional vegetative cage (FVC) could be estimated
using optical sensors capable of sub-sampling amvded a methodology
relating NDVI to FVC. Current research in thergttire suggests that FVC is
related to yield; however, this research did ned f useful relationship between
FVC and yield potential, although a connection $thantuitively exist. Further
experimentation may demonstrate FVC as providirgjlary information to aid
in yield potential modeling.

3. Chapter four used an iterative process along vatilmear regression to fit
sigmoidal model parameters. However, the bio-paysiap (YRiax) was
iteratively fit outside the regression model, apddfied such that the sigmoidal
model reached Y\2x at NDVI = 1. Further research should be condutded
either: 1. Quantify a model describing w4 from the biological or physical
controlling factors, or 2. Derive a method of iteraly estimating YRax from

yield dataset.
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APPENDICIES

The following sections describe data collectiod processing, field
methodology, and experimental designs use in iegedation. In addition, there is an
equations section for the equations found in tieedture and equations derived for this
research.

Section Al outlines the extraction of N-Rich stlgta from IKONOS imagery,
first order geographic search algorithm, and postgssing methods. Section A2
describes fieldwork and collected samples undecdfibration stamp design.
Additionally, there is an overview of variogramaetited stratified random sampling used
to maximize spatial relatedness between calibratiamps. Section A3 lists the
equations found in the literature and author nan@estion A4 lists the derived equations
used in this study. Not all derived equations whrectly used in this dissertation;
specifically the derivatives and anti-derivativetloé continuous Rbyi model were used
to test continuity and limits at boundary conditgdyut were not listed in those respective
chapters. They are listed here for future refezerf8ection A5 contains secondary
reference material useful to this dissertationcgipally derivation of equations and

statistical design. These references are inclémieirther research.
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Al: SATELLITE DATA ACQUISITION AND PROCESSING

In the preliminary portion of this project six fill were selected from satellite
imagery where Oklahoma State University DepartméRiant and Soil Science placed
non-limiting nitrogen (N-rich) strips in operativam fields. The six fields were covered
in two successive IKONOS (4 m spatial resolutiondges captured on Juneé"2802.

One image contained five fields while the otheldfias part of the second image for the
same acquisition date, thus minimizing inter-imgg#fferences in spectral resolution.
The images were converted to normalized differemgetative index (NDVI) images
using the standard NDV!I relationship

NDv| = NIr -~ Red (A1)
Nir + Red

where Nir is the near-infared band (880 nm) and Red is the red band (6680nm).
All data inconsistencies, such as NDVI < 0, werdlogated to NDVI = 0 to maintain
computation integrity.

N-Rich strips were identified by higher ambient NDmasked from the general
dataset, and held over in vector format for latecpssing. Pixel allocation was
constructed by drawing a line through the centehefN-Rich strip and extending a
buffer zone 30 ft perpendicular to the directionrafel, which coincides with the 60 ft

span of the applicator used to top-dress nitrogen.
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This design is a pairwise NDVI comparison betwdements in the strip
(SpNDVI) and adjacent farmer practice elements (BgN. Figure Al shows the

allocation of spatial neighbors and comparisonsé#bellite data.

N-Rich Strip
Farmer Farmer
Practice Practice

A 4 A 4 l ‘ A 4 A A4

Figure Al: Pairwise Pixel Allocation for N-Rich Strip and Farmer Practice Strips in IKONOS
Imagery

Figure Al shows that idealized paired comparistocation, where pixels within the
strip are paired with immediate pixels outsidegtrgp. The number of pixels in the strip
zone is a function of the strip width, spatial ahgent of the satellite image to strip
direction, and the image resolution. The compoiteti method of determining nearest
neighbors was based on orthogonal first order enaligorithm, in which element pairs
are chosen based on being aligned perpendicutbaetdirection of the N-rich strip and

under a specified search radius.
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Table Al shows the variable list as it processedrbay name.

Table Al: Array variable name and location for each IKONOS scanned farm.
Array

Name Name

Setl Bens

Set 2 Cassidy

Set 3 Roberts

Set4 McCoy

Set5 Peter's Home

Set 6 Spencer

CombinedAll Data Sets

A2: FIELD WORK AND CALIBRATION STAMP ALLOCATION

The calibration stamp described in Raun et al (2D@&5a 9-square meter
application of nitrogen (solution 32) over a 3 bgnatrix of one-meter square elements.

Figure A2, shows the basic outline and design efctdibration stamp.

FP 1 NA 40 FP 4

NA20 | NA100 | NA60

FP2 | NASO FP3

Figure A2: N Application Routine for Calibration Stamp Design. Each Element is 1frin Area.

Five elements receive progressive amounts of eti@&®, 45, 67, 90, and 112 kg N'ha
(20, 40, 60, 80, and 100 Ibs N atyelenoted by (NA 20 — 100) and four elements that

receive no nitrogen plot (FP 1 — 4).

82



The cell size of the calibration stamp is a compserbetween work performed
by Solie et al. (1999), where semivariance analistmved effective ranges between
1.04m and 6.70m for total extractable P,K, org&hiand pH and the dimensions that
could reasonably be used based on equipment dddignthis task. The design of the
calibration stamp therefore maximizes the withangb spatial correlation.

Several calibration stamps (167) were placedanffelds in the Payne County,
OK. on small non-committed plots at Oklahoma Stateversity’s research stations
across two plant species (winter wheat and berntada Two calibration stamp
experiments were applied to winter wheat in expental areas. Three were placed in
native bermudagrass stands. Because of the modsgecies timing was factored out
as a blocking variable. Repeated measures weea tafkthe winter wheat to assess the
best relationship between nitrogen applicationdB¥I. Bermudagrass measures were
preformed during the peak of the growing season.

It was necessary to distribute the stamps in fialsked on a stratified random
sampling method to prevent preferential clustedhdata. In previous works, it has been
observed that an autocorrelation relationship sexistween samples (NDVI, soil, etc.) in
close spatial proximity. Work by Kerry and Oliy@003) showed that soil samples
could be allocated in strata and variation coulgtsserved when sample intervals were
set at half the observed variogram range. Thegeaims, in this case, were based aerial
photography of the field. Prior studies by McBetrand Pringle (1997, 1999) show that
for fields with no recorded data, variograms cdagdconstructed by taking the average
of variograms; this was cited in Kerry and Olivg{2904) later studies. It was

determined to use prior information to direct tagdut of the calibration stamp design.
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The six IKONOS images were geostatistically analyaed average NDVI semi-
variogram was constructed. From this an effeativeye was detailed that would
determine the spatial spread between calibrateomzs. Figure A3 shows the average

semi-variogram structure.

Average Variogram for Six Ikonos Farm Sites

0.015
|

Gamma
0.010
|

0.005
|

T T T T T
0 50 100 150 200

Lag in meters

Figure A3: Average Variograms for the Six IKONOS Fam Sites

Figure A3 shows that approximately 90m-separatistadce between samples tends to
intersect with the average of the population vargafyammax0.0152). Spatial lags
below this intersection point exhibit spatial degemce.

The calibration stamps were distributed acrosdiviedfield sites by constructing
strata where the diagonal distance of the stratasetato one-half the average variogram
range (45m) of the six fields captured with IKON@&gery.

Figure A4 shows an example layout for four suceessirata.
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45m

16m

Figure A4: Maximum Offset Distance Between Two Caliration Stamps. Each Sampling Strata is
16m x 16m.

A calibration stamp was placed in each strata wtiereénaximum distance between

stamps of any two strata (sPm < D(s; ,s;) <45m. This allocation of rectangular strata

was applied to each field. This methodology negl@boundary or edge effects where
strata arrangement may have overlapped field bayndédge effects were removed by
only selecting to apply calibration stamps in straintaining 240 frarea.

The location of the stamp within each stratum weteminined by a random
uniform coordinate generator that selected northimd easting coordinates
independently. The locations were then downloadealPS location device, marked in
the field, and a stamp was applied.

Since the calibration stamp configuration could b®tandomized in-field and
was always as described as in Figure A2, it wasssry to randomly assign travel
direction to each calibration stamp location to egmdirectional bias. A randomized
value (0 — 368) was determined by a random uniform generatoma@asured in-field
by magnetic compass. Additionally, two fields iged a multi-stamp where three
successive calibration stamps were placed enddo €his modification in the

experimental design was made to increase sam@esitto better simulate an N-Rich
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strip. For this design it was more important tod@mize direction of travel to remove
preferential direction bias.

The calibration stamps were remotely sensed tweksvafter application with the
Greenseeké!' handheld optical crop sensor described in (Soli#. €002). The
Greenseeké!' is radiometric sensor that pulses red (660nm)naad infrared (780nm)
light through a battery of light emitting diodeghe pulsed light is detectable from
background radiation, which eliminates the needaifeecondary upward pointing sensor
to distinguish between produced signal and amisienlight. For this experiment the
Greenseeké!' was used to calculate an average NDVI readingdch element of the
calibration stamps place in field.

Table A2: Data set name, species of plant, sampling routine, and location for éac
field trial.

Name Species Samples Location

MonroeBermudagrasRepeated (2) East of Perkins
PerkinsBermudagrassSingle Perkins Station

Efaw BermudagrassSingle Efaw testing West of Stillwater
PerkinsWheat Repeated (4) Perkins Station

Black Wheat Repeated (3) Lake Carl Blackwell

Sampling sessions were either temporal replicatesigle replicates. Three fields had
repeated measures to determine the best timeriemgg while two fields had single
sampling with extended calibration stamp applicatio

The following table shows the sampling date of é¢aamporally repeated measure

at each site.
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Table A3: Data set name, sensing date, species, and design for each of the fie
trials.

Name Date Species Trial
Blackwell 2/23/2004Ninter WheaiTemporal Reps
Blackwell 3/21/2004Winter Whediemporal Reps
Blackwell 3/28/2004Winter Whediemporal Reps
Blackwell 4/4/2004Winter Whediemporal Reps
Perkins  2/18/2004Winter Whebd¢émporal Reps
Perkins  3/21/2004Winter Wheémporal Reps
Perkins  3/29/2004Winter Whe¢mporal Reps
Monroe  7/14/2004Bermudagrdssmporal Reps
Monroe  8/17/2004Bermudagrdssmporal Reps
Perkstatior8/10/2004BermudagraSingle Repeated
Efaw 6/24/2004BermudagraSmgle Repeated

Originally, Perkins (perk) was sampled a total@ifrftimes on or near the date
Blackwell (black) was sampled. However, issue$ e data from this sample made it
usable for this project.

For each calibration stamp element soil samples weltected and analyzed.
Nine soil cores per element were collect at appnakely 15cm depth and composited.
Chemical analysis was recorded for soil pH (pH}iahNOs levels (NQ), phosphorus
(P), potassium (K), and electro-conductivity (EQable A4 shows the coefficient of
determination for a regression model of NDVI at kfy2N ha' (SpNDVI) on non-treated

NDVI (FpNDVI) with chemical covariates.
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Table A4: Soil test parameters used as covariates to determine relativecrease in
predication potential.
Standard

Names Dates Model pH NO3 P K EC
monroe 7/14/2004 0.701 0.715 0.702 0.705 0.701 0.727
monroe 8/17/200- 0.516 0516 0.532 0516 0.518 0.52
perkst  8/10/200« 0.45 0.47 045 0463 0458 0451
efaw 6/24/200- 0.546 0547 0546 0551 0569 0.546
black  2/23/200- 0.728 0.728 0.728 0.731  0.755 0.73
black  3/21/200- 0.601 0.608 0.601 0.601 0.608 0.603
black  3/28/200- 0.763 0.764 0.783 0.772 0.798 0.766
black 4/4/200¢ 0.855 0.859 0.855 0.858 0.855 0.862
perk 2/18/200- 0.724 0.737 0.724 0.758 0.725 0.724
perk 3/21/200  0.624 0.63 0.625 0.634 0.625 0.627
perk 3/29/200- 0.601 0.602 0.601 0.602 0.646 0.602

In Table A4 Standard Model is thé Bf the base model without covariates. Table A4

shows that there is little increase in explainedai@n by adding soil covariates.

A3: EQUATIONS FROM LITERATURE

Coefficient of Variation

cv-104 % |
X

FVC — Predicted percent vegetative cover (Gutmahigmatov 1998)
FVC(N) = N=N,
Nc - Ns
N = observed NDVI

s = NDVI of endmember for bare soil
N.= NDVI of endmember complete plant coverage

NDVI — Normalized Difference Vegetative Index (Reflance)
Dy - NIR —Red

NIR + Red

RSS — Residual Sum of squares
RSS=Y(y-9)
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Rlpanvest— Response Index Harvest (Johnson et al. 2000)
Yield (Treatedplot)

Havest ™ “Yield (Checkplot)

RlInpvi — Response Index from NDVI (Mullen et al. 2003)
_ NDVI (Treated)

| =
NPV TNDVI (check)

RiInpvi —Equation from Yield Potential (Raun et al. 2005b

YP,
YR, forYP, <YP,, andNDVI >0.25

YR,

Max

RINDVl Bl —
YP0 for YPN >YP,. andNDVI <£0.73

Max

1  forYR,—> YPR,, andNDVI >0.73

Spectral Mixture model (SMA) — (Gutman and Ignat®28)
NDVI =FVC(N,) +(1- FVC)N,

Yield Potential Model — (Raun et al. 2005b)
YP, = a(Rlg, """ for: YP, < YP,, Rl =1for N =0

A4: DERIVED EQUATIONS

Satellite data filter
Mean(SpNDVItFpNDVI) * S'SS(SpNDVItFpNDVI)

RInovi(FPNDVI) —RI prediction model
A,(FpNDVI)
cosHA,FpNDVI)

RINDVI =

Rinovi(FPNDVI) —RI prediction model with bare soil NDMIN§) correction
1 ForNDVI < Ns
Rlyow =1 A,(FPNDVI-Ns)

+1 ForNDVI > Ns
coshA,(FpNDVI - Ns))

Rinpvi (X) — First derivative of the RI model
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1 AX sinh@x)j: L(cosh(Ax)—Ax sinh@x)j

Rla(x)= L(cosh(é\x)  cost(Ax) cosH (Ax)

Rinpovi (X) — Second derivative of the Rl Model
2A*x sinh?(Ax) — A?x cosit Ax — 2A sinh(Ax) cosh@x)
Rl () =L
cosi? (Ax)

J'RIND\,I (x) = Anti-derivative of Rl model
L tan* €™
leNDVI :++ X
Sigmoidal Prediction Model: YP at O N application
YP,(NDVI) = n YR

Max
+ e—k(NDVI —inf)

Sigmoidal Prediction Model: YP with N application
YP,(NDVI) = i
1+

Max
e—k(NDVI*RI—inf)
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