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Abstract 

Hydraulic fractures act as conduits connecting a wellbore to nanodarcy permeability 

unconventional reservoirs. Proppants are responsible for enhancing the fracture 

conductivity and help in maintaining high production rates. Laboratory testing of 

proppants can help in the systematic evaluation of different factors that can affect 

proppant performance. Field studies fail to control variables to allow evaluation of 

proppant performance. This study is focused on the measurement of long-term 

conductivity of proppant-packs at simulated reservoir temperature and pressure 

conditions. Various conductivity impairment mechanisms such as proppant crushing, 

fines migration, embedment, and diagenesis are investigated. 

 

Testing was done using a conductivity cell, which allows simultaneous measurement of 

fracture compaction and permeability. The proppant-pack performance during 

compression between metal and shale platens was compared. The proppant filled fracture 

(concentration: 0.75-3 lb/ft2) is subjected to axial load (5000 psi) to simulate closure 

stress. Brine (3% NaCl + 0.5% KCl) is flowed through the pack at a constant rate (3 

ml/min) at 250°F over an extended duration of time (10-60 days). In this study, Ottawa 

sand proppant was used between platen faces fabricated from Vaca Muerta and Eagle 

Ford shales. 
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In this study, effect of proppant size, time, rock mineralogy, fluid chemistry on proppant 

performance is evaluated. An attempt is made to decipher the contribution of different 

damage mechanisms in affecting proppant performance.  

 

Testing between metal platens indicated the reduction in permeability with 20/40 mesh 

Ottawa sand (~30% over 12 days) was less than that of 60/100 mesh Ottawa sand which 

suffered a 99% reduction in only 4 days.  

 

Measurements with 20/40 mesh Ottawa sand between shale platens were conducted at 

1.5 lb/ft2. Over a duration of 10 days, the Eagle Ford platens proppant-pack exhibits a 

greater reduction in permeability, in comparison to Vaca Muerta platens. The normalized 

compaction for Eagle Ford shale platens is 20% more than Vaca Muerta platens, owing 

to greater proppant embedment. Particle size analysis and SEM images verify proppant 

crushing, fines migration and embedment as dominant damage mechanisms. These 

factors are observed to be dependent on the shale being tested. The results suggest a 

substantial degradation of permeability during the initial 5 days of testing, after which the 

permeability appears to stabilize. Crushed proppant and dislodged shale surface particles 

contribute to the fines generated; a greater concentration of fines is observed downstream.  

 

Fracturing jobs involve maintaining a basic pH environment for optimal performance of 

fluid additives for better proppant placement via control on viscosity. Second study was 

conducted to compare performance on similar Eagle Ford shale by altering the fluid 

chemistry (pH: 10.5) to understand the impact on permeability and compaction over time. 
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Over a duration of 20 days, the permeability dropped from 120 darcy to 200 md. After 8 

days, the pH: 10 brine permeability was 10 times lower than pH: 7 brine permeability. 

After 18 days, the fracture width reduced by 90%, indicating a creep behavior. High silica 

content (>20 ppm) was observed in the outlet brine. The proppant and rock surface were 

studied under SEM to investigate the role of secondary mineral growth in the drastic 

reduction of permeability.
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Chapter 1: Introduction 

1.1. Synopsis 

This thesis is divided into four chapters. Chapter 1 provides a background of hydraulic 

fracturing in unconventional shale reservoirs, mechanisms affecting proppant 

conductivity, developments in proppant testing, and objectives of this research. Chapter 

2 discusses the experimental setup, procedure, and calibration. Chapter 3 provides a 

discussion and summarizes the results. Chapter 4 presents the conclusions and findings 

from this study. 

 

1.2. Unconventional shale reservoirs 

A conventional petroleum system typically consists of source rock, reservoir rock, and 

seal. Ideal conditions of pressure, temperature and time are imperative for the cycle of oil 

generation, migration and accumulation. Limited access to economic production of oil 

and gas from conventional reservoirs and the increasing demand for energy has paved the 

way for efforts to extract energy from unconventional reservoirs like coal bed methane, 

gas hydrates, and organic rich shale.  

 

Organic shale is a clastic sedimentary rock that possesses very fine grain rock texture 

(grain size varying <4 µm), exhibits hydrocarbon storage and flow characteristics 

attributed to nano-scale pore throat and pore size distribution (Friedman 2003; 

Sondergeld et al., 2010). Traditionally, shales were considered as seals for conventional 

reservoirs, due to their characteristic low porosity and nanodarcy range permeability. 

Growing energy demands necessitated the foray into unconventional shale reservoirs, 
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which act as combination of source, reservoir, and seal. Fig. 1 depicts the components of 

shale rock showing the co-existence of different fluids and pore systems (Dang et al., 

2017). The inorganic pores can be oil or water-wet, while organic pores are generally 

assumed oil-wet. The presence of clay and organics add complexity to the geological and 

petrophysical heterogeneity. The maturation of the organic part of the matrix leads to 

generation of hydrocarbons. The presence of clay and organics result in complex gas 

storage mechanisms, mechanical properties and transportability.  

 

Fig. 1: Bifurcation of shale rock matrix comprising of different fluids and pore 

systems. Inorganic pores can be oil or water-wet, while organic pores are generally 

assumed oil-wet (Dang et al., 2018). 

 

The developments in the shale gas and tight oil sector have helped establish 

unconventional resource plays as a major contributor to U.S. energy demands (see Fig. 

2) (EIA, 2017).  According to Annual Energy Outlook (EIA, 2018), oil and natural gas 

are seen as the primary fuels in energy consumption (Fig. 3). In the run-up to 2035, US 

shale is expected to contribute more than 40% to the gas supply growth (BP Energy 

Outlook, 2017). 
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Fig. 2: Contribution of production from shale gas and tight oil plays in the U.S. 

energy industry (EIA, 2017).  

 

 

Fig. 3: Oil and natural gas are projected to be the primary fuel for energy 

consumption while the renewables continue to develop (EIA, 2018). 

 

1.3. Role of hydraulic fracturing 

Hydraulic fracturing is a stimulation operation where a mixture of fluid and proppant is 

pumped into the formation, in order to fail the rock, initiating a fracture and extending it 

to create a conduit connecting the wellbore to the reservoir. The fluid is pumped in stages, 

starting with pad stage that generally does not contain any propping agent. Fluids in each 

stage can be different, while proppant size can vary from stage to stage. The energy from 
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the fracturing fluid is used to break the rock to create fracture, and the subsequent 

schedule of slurry helps advance the front of fracture. It is hoped that as the fracturing 

fluid diffuses into the formation, the proppant will keep the fracture propped open. This 

sequence is followed by flowback operation, wherein an attempt is made to retrieve the 

injected complex chemicals. Only a fraction of the injected fluid is recovered during 

flowback, while small concentrations of injected chemicals can be tracked over few 

weeks of hydrocarbon production.   

 

The first hydraulic fracturing operation was conducted in Houghton gas field in West 

Kansas in 1947. This unpropped frac operation was conducted using gasoline based frac 

fluid, and napalm as viscosifying agent (Howard and Fast, 1970; Clark, 1949). A need 

for laboratory measurements was warranted to better understand the fracturing process, 

to estimate hydraulically fractured network and to optimize the variables. Warpinski 

(2004) discussed that for shale reservoirs, the microseismic cloud is representative of the 

actual fracture network due to the diffusivity related limited movement of pore pressure 

away from the fracture planes.  

 

Organic richness displays a vertical variability (Bohacs, 1998; Bohacs et al., 2005) due 

to shale depositional system, sometimes over scales less than one meter. The advent of 

hydraulic fracturing and horizontal drilling have increased the stimulated reservoir 

volume (SRV), facilitating economic production of hydrocarbons from organic rich 

shales. Mayerhofer et al. (2010) have shown that larger SRVs, due to longer laterals and 

higher injected fluid volumes, have resulted in higher cumulative six-month production 
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of hydrocarbons. However, large stimulation operations involving huge amounts of 

proppant, fracturing fluid, surface equipment have resulted in increased drilling and 

completion costs. Also, shale plays differ vastly from each other; some shales have 

multiple producible layers that need to be stimulated at different depths within the same 

play. Also, factors like the presence of natural fractures, ash beds (which can act as 

fracturing barriers), differences in matrix quality, and compatibility of formation with 

fracturing fluid can be critical for optimization of variables like proppant size and type; 

fracturing fluid; well spacing; cluster and stage spacing. Considering the volumes of raw 

materials used in the stimulation technique, these can have huge economic implications 

on the overall cost of project, if not optimized.    

 

1.4. Proppant characterization 

Hydraulic fracturing creates the SRV, which is critical to hydrocarbon production. 

Proppant, if placed as designed, is instrumental in keeping the fracture propped open. Fig. 

4 shows hierarchy of major proppant types available. Transitioning from the bottom to 

the top, the proppant types (right) are arranged in the increasing order of proppant 

strength, conductivity, and cost. Ceramic proppants are expensive, but provide high 

conductivity. Ceramics find more application in tail-ins near the wellbore, as well as in 

deeper and high temperature formations. In contrast, sand is the cheapest option and finds 

major applications in low cost projects. 
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Fig. 4: Proppant hierarchy (Chapman, 2017) 

 

Fig. 5a illustrates the sand consumption across various shale plays, as of first quarter of 

2014 (Pacwest, 2014). Eagle Ford, Appalachia (including Marcellus and Utica), Permian 

and Bakken combined used 75% of the frac sand across North America. For most of the 

shale plays, frac sand occupied 90% of the share of total proppants used. Operators have 

been able to limit costs by introducing longer laterals, multi-pad drilling, higher intensity 

fracturing and reducing the use of premium proppants. Fig. 5b shows changing trends of 

using larger amounts of proppant, fluid and frac stages to drive up production 

performance over the years (EIA, 2016b). 

 

 

Fig. 5: a) Frac sand consumption by play (Pacwest, 2014); b) Trends in the use of 

proppant and water, and number of stages from 2006 to 2015. (EIA, 2016) 
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The demand for proppant has increased considerably; Fig. 6 shows the worldwide use of 

proppant (Palisch, 2016). More than 90% of worldwide proppant was used in operations 

in North America. The successful implementation of horizontal drilling and hydraulic 

fracturing enabled overcoming extremely low matrix permeability and allowed 

production directly from organic rich source rocks. From 2004 – 2009, development of 

Barnett shale play led to gradual increase in amount of proppant used per rig. Similar 

completion strategies were applied to other shale plays. Rapid increase in proppant use 

per rig is observed from 2010 – 2012, as seen in Fig. 6. However, 2012 onwards, the 

proppant use per rig increased exponentially, demonstrating that frac operations involving 

increased use of proppant were adopted. A completions design in 2013-2014 involved 

1000 lbs/ft proppant, 30 bbls/ft fluid, 60 ft cluster spacing, 240 ft stage spacing, and 5000 

ft average lateral length. Over the years, technological advancements have increased 

proppant concentration to 5000 lb/ft; 50 bbls/ft fluid; tighter 15 ft. cluster spacing; 100 ft. 

stage spacing; and 10,000 ft average lateral length. This can potentially increase the 

stimulation cost from $0.5 MM to more than $1 MM per well as compared to initial frac 

designs (Pioneer Investor Presentation-November, 2017). 
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Fig. 6: Worldwide proppant use (Palisch, 2016). Proppant (billion lb/year) (blue 

bars) and proppant per rig (MMlb/rig) (orange-triangles) have been plotted on the 

primary Y-axis.  Average annual US rig count (black-squares) is plotted on the 

secondary Y-axis. 

 

1.5. Use of fine mesh sand 

An operator uses the same proppant type, volumes and fluid chemistry concentrations, 

typically what has been used in the past, or in nearby wells. As a general practice, smaller 

mesh sand is used in the pad fluid tailed by larger sized proppant closer to the wellbore. 

Through such a strategy, it is hoped that finer, 100 mesh, proppant can prop open hairline 

and microfractures, and can be placed farther into the main fracture. On the other hand, 

tailing in with larger sized proppant keeps the larger fractures open (Thompson, 1977). It 

is thought that if the larger proppant is pumped first, bridging might limit or prevent 

contributions from microfractures, and can also possibly lead to screen-outs. However, 

in an attempt to limit the drilling and completions expense, a surge in the demand of 

cheaper smaller sized proppant has been observed (Epmag, 2014; PLG Consulting, 2014).  
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Attempts have been made to study the effect of completion parameters on well 

performance and expected ultimate recovery through statistical and reservoir modeling 

(Bandis et al., 1983; Sinha et al., 2016; Sinha et al., 2017). 

 

Interestingly, increasing use of even smaller proppants, called microproppants, has been 

implemented. Microproppants, composed of quartz grains, have been characterized as 

particles with broad size range, where the mean diameter is 300 mesh (or 50µm). Calvin 

et al. (2017) have conducted field trials of these finer proppants in the pad fluid. They 

discussed that for Woodford shale, an uplift of 10% in gas production and 25% in 

condensate production was observed. Dahl et al. (2015) conducted an 11-well field trial 

in Barnett shale, where microproppants were added at a concentration of 0.1 lbm/gal in 

the pad fluid. They reported normalized production increase of 30-40% in gas and 44-

53% in condensate over 210 days. It must be noted that production normalization can be 

complex due to nature of variables like lateral length, amount of proppant and fluid 

pumped, production history of the well, and toe-up or toe down well trajectory. Some of 

these variables cannot take proppant placement into account. These variables can possibly 

affect production at different scales, and are difficult to quantify, resulting in a skewed 

analysis of production results. The absolute impact of such proppants can be difficult to 

evaluate in field trial due to cost and time constraints. A well-planned experimental study 

can help answer some of these questions by limiting and precisely controlling the number 

of variables.  
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1.6. Fracture Conductivity 

Fracture conductivity is a critical input parameter for frac modeling. Dimensionless 

fracture conductivity (FCD) is the ratio of fracture conductivity or deliverability to 

reservoir deliverability: 

 

Where, 

kfracture  : fracture permeability, md 

kmatrix    : rock matrix permeability, md 

wfracture : fracture width, ft  

xfracture  : fracture half-length, ft 

 

1.7. Mechanisms affecting propped-fracture conductivity 

Extensive laboratory testing have been conducted to understand the type and extent of 

damage mechanisms affecting the performance of proppants, placed in the fractures. 

Based on types of testing (short-term and long-term), damage to proppants, formation, 

and flow properties are assessed. Fig. 7 broadly summarizes some of the critical damage 

mechanisms active in different phases of proppant testing due to mechanical and chemical 

degradation.  
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Fig. 7: Mechanical and chemical degradation of proppant conductivity (modified 

from Duenckel et al., 2011) 

 

Fig. 8 is a schematic representation of the grains in a proppant pack (modified from 

Yasuhara et al., 2003). Fig. 8a (top) shows grains of proppant, and interaction between 

two grains. As the stress is increased, the grains undergo a tighter packing, and point 

contacts are established between grains, forming high stress concentration (Fig. 8b). Over 

the short term, this mechanical impact can lead to generation of fines, both from crushing 

of proppant, as well as due to impact of proppant and fracturing (or spalling) on formation 

material (Fig. 8c).  

 

In the long term, based on the chemical potential difference in the system due to presence 

of formation material, proppant, and brine, the mechanism of pressure solution and 

precipitation (diagenesis) can lead to degradation of the proppant-pack system (Fig. 8d). 
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Fig. 8: Schematic of mechanisms affecting proppant conductivity (modified from 

Yasuhara et al., 2003) 

 

1.7.1. Fines generation and migration 

Fines can be generated either by failure of proppants or from impact of proppant on the 

rock platen. The API standards for crush tests determines the stress at which proppants 

fail. However, these are dry crush tests conducted at room temperature, and between 

sandstone platens, which are not a true representation of the sub-surface environment. 

Palisch et al. (2010) have discussed that different proppants fail differently at different 

closure stresses, thereby affecting proppant performance i.e. sands shatter like glass, 

while ceramics cleave along the failure plane. Kassis and Sondergeld (2010) conducted 

measurements for propped-fracture permeability as function of confining stress on 

Barnett shale samples. SEM images of the proppant-pack system after the experiment 

verify the differences in proppant failure.  
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Cutler et al. (1985) have stated that crush tests according to API standards should not be 

used solely to assess the conductivity of proppants. Schubarth and Milton-Tayler (2004) 

have discussed that crush percentage gives part of the picture. The dimensions and 

proportion of crushed proppant can possibly affect conductivity for different varieties of 

proppants. Fines generated, from proppant crushing and formation, can migrate in the 

direction of flow, plugging up the pore system between proppant grains leading to rapid 

reduction in permeability. Gidley et al. (1995) demonstrated that for testing of 20/40 sand, 

particles finer than 100 mesh were mobilized, affecting the proppant-pack permeability 

considerably.  

 

Ghosh et al. (2014) performed long-term measurements at reservoir temperature between 

shale platens. The experimental results confirmed the intuitive understanding that sand 

crushed to form smaller particles than ceramic proppants. These mechanical changes 

were observed to be the reason for over 90% decrease in permeability in ten days of 

testing. 
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1.7.2. Propped fracture closure 

The closure of propped fractures can be attributed to: 1) embedment, and 2) compaction 

of proppant-pack. The conductivity tests in accordance with API standards do not take 

into account the changing fracture width due to compaction of the proppant-pack. The 

limited understanding makes it difficult to accommodate closure of fracture as an 

independent variable in simulation studies.  

 

Walsh (1981) developed a model describing the pressure dependence of permeability 

between two rough surfaces. This model takes the roughness into account using root-

mean-square (RMS) asperity height (Walsh, 1981). Kassis and Sondergeld (2010) 

showed that monolayer propped fracture permeability agreed with the Walsh model 

(1981) at medium pressure ranges (approximately 1300 to 3500 psi). The disagreement 

at high-pressure regime was attributed to proppant embedment, confirmed through SEM 

imaging. 

 

The impact of closure stress and the presence of soft components like organics and clays 

in shale leads to enhanced embedment of proppant. The extent of embedment is a 

composite effect of rock mineralogy (or strength), proppant characteristics (shape, size, 

and strength), temperature, and fluid. Alramahi and Sundberg (2012) conducted short-

term embedment tests, and developed an analytical model relating fracture conductivity 

loss to embedment. However, this does not take the effect of fines migration, creep, and 

temperature into account. Also, clays can be sensitive to different fracturing fluids, adding 

more complexity. 
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1.7.3. Diagenesis 

In geological context, diagenesis is defined as “chemical, physical, or biological changes 

that a sediment undergoes after initial deposition, and during and after lithification,” 

excluding weathering and metamorphism. These changes can occur at relatively low 

temperature and pressure; resulting into changes in rock’s texture and mineralogy 

(Duenckel et al., 2011). There have been evidences that such reactions can occur at 

propped-fracture interface leading to crystalline precipitation and possibly associated loss 

of fracture conductivity. The extent and impact of diagenetic growth on production of 

hydrocarbons over the life of well remains an area of limited understanding. 

 

1.7.3.1. Pressure solution 

Yasuhara et al. (2003), through a mechanistic model backed by experimental evidence, 

have demonstrated that the process of dissolution, diffusion, and precipitation could be 

accelerated at high temperatures and pressures, also known as stress corrosion. This can 

potentially lead to rapid destruction of porosity over a short span of time. The model 

developed was simplistic because it assumed all particles are of similar size and 

composed of silica. However, it must be noted that in presence of a complex sub-surface 

environment, the kinetics of these mechanisms can be significantly influenced by the 

chemical potential energy differences in the system.  

 

Observations from Heald (1956) show that under favorable conditions, the presence of 

clays at quartz grain boundaries can accelerate pressure solution; clays are less 

susceptible to pressure solution than quartz. Thomson (1959) suggested that the release 
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of potassium into pore fluid results into high pH zones accelerating silica dissolution, and 

precipitation in areas with lower pH gradient. Growth of smectite clay due to presence of 

volcanic glass at elevated temperatures has also been observed by Mottl and Holland 

(1978). 

 

Quartz hydrolysis at ambient temperatures has been extensively studied in the past. 

Krauskpof (1959) demonstrated that solubility of amorphous silica can increase three-

fold with an increase in temperature from 25⁰C to 100⁰C. Knauss and Wolery (1988) 

observed increase in silica release rate from quartz into the solution on exposure to high 

pH fluids (from pH 7 to 12). Initiation of etch pits was observed through SEM imaging. 

Also, high temperature made the hydrolysis mechanism increasingly pH dependent. 

 

1.7.3.2. Proppant degradation 

Apart from the various mechanism impacting proppant performance discussed earlier, 

Weaver et al. (2005) discussed the possibility of proppant diagenesis as a potential source 

of degradation. They suggested that resin coated proppant helps decrease the rate of 

pressure dissolution and extent of proppant embedment. Weaver and Knox (1992) 

observed that alumina and zirconium based proppants exhibited analcite and other 

porosity filling crystalline overgrowths when exposed to fluid at high temperature over 

time. 

 

Weaver et al. (2007) performed static laboratory tests (no-flow) in a conductivity cell, 

where proppants were placed between sandstone cores in a simplistic system with 2% 
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KCl brine at 250⁰F and 10,000 psi closure stress for 140 hours. Electron dispersive X-ray 

(EDX) revealed crystal growths in ceramic proppants. They observed the Si/Al ratio of 

such overgrowths to be between that of formation and proppant. They suggested that 

coating proppant with surface modifying agents (SMA) tends to prevent this growth, at 

least over short time spans. It is therefore imperative to evaluate the impact of such 

overgrowths on proppant conductivity in the long term through dynamic testing.  

Weaver et al. (2008) conducted dynamic flow experiments to evaluate temperature-

promoted diagenetic growth. Deionized water was passed through crushed formation 

material to imitate synthetic formation water. This was flowed through proppant packs 

containing different proppants at 550⁰F. Over a duration of 7 days, crystalline growth 

was observed throughout sintered bauxite proppant, cementing multiple grains of 

proppant. Also, the authors performed single-grain mechanical crush tests. Based on an 

average of 30 measurements of each proppant type, 20-60% loss in crush strength of 

different bauxite proppants was attributed to stress corrosion and geochemical 

degradation after exposure to formation water at high temperature. The overgrowths were 

observed to be mordenite and clinoptilolite, different forms of zeolites (Duenckel et al., 

2011). However, these tests were conducted at zero closure stress. It is expected that 

proppant degradation, both mechanical and chemical, can be drastically accelerated in 

high pressure and temperature conditions (Arrhenius equation) (Brown et al., 2012).  

 

Static temperature and pressure testing was performed by LaFollette and Carman (2010) 

involving Haynesville shale; high pH borate cross-linked gelled water and ceramic 

proppant was used to imitate sub-surface conditions and evaluate diagenetic growth. For 
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static experiments spanning 60 days, they started to observe honeycomb structures on 

proppant grains. However, the elemental and mineral compositions of such overgrowths 

could not be identified because the thickness of precipitated overgrowths was insufficient 

for Energy-dispersive X-ray Spectroscopy (EDS) analysis. Water analysis showed an 

increase in sodium, calcium, potassium and Total Dissolved Solids (TDS) reached a peak 

at 60 days. Brinell hardness of shale samples exposed to fracturing fluids at elevated 

temperatures decreased by 60% over a span of 60 days, suggesting the possibility that 

proppant embedment could be a huge detrimental factor in proppant performance.     

 

Duenckel et al. (2011) evaluated the “dissolution and reprecipitation process,” and the 

possible conditions for such growth. As per Stim-Lab Proppant Conductivity Consortium 

findings (2008), most of the diagenetic growth has been associated with zeolites. Most of 

the transformation from volcanic glass to forms of zeolite (namely clinoptilolite, 

mordenite, and analcite) is expected to accelerate at high temperature and alkaline pH 

environment (Hawkins 1981). The continuous source of silicate over time is critical for 

zeolite crystallization. Duenckel et al. (2011) performed static tests at elevated 

temperature and pressure for a variety of proppant and formation material. They observed 

diagenetic growth within 15 days on all proppants when the formation material from 

Haynesville, Pinedale and Steamboat formations were present. Through SEM-EDS 

analysis, they observed these precipitates to be rich in silica. In a separate study, lower 

conductivity was observed when testing was performed between shale platens instead of 

sandstone platens. However, they did not observe any zeolite growth, and concluded that 

reprecipitation of dissolved formation can be difficult to simulate in flow-
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through/dynamic experiments. Through field observations, they cited that most of the 

sub-surface environment is acidic due to presence of CO2 and H2S. Based on the 

recovered proppants, they did not see any evidence of zeolite deposition. 

 

1.8. Motivation 

A typical fracture job can take 7-10 days and can take as much as a month before flowback 

is initiated. In all this time, the proppant and formation are exposed to alkaline/high pH 

environments from the chemicals associated with the fracturing fluid. Proppant grains 

collected during flowback represent a small fraction of injected proppant, closer to the 

wellbore, but away from the direct contact with the formation. Also, any diagenetic 

growth would cement the proppant grains due to the reprecipitation process. This would 

add complexity to retrieving the grains affected by diagenetic activity, as part of 

flowback.  

 

Most conventional laboratory testing involves the use of weathered sandstone cores, 

instead of shale platens; these are not a true representation of the sub-surface formations. 

Fresh surface of shales are exposed that have high potential energy and chemical affinity, 

during fracturing. An exposure to injected proppant and complex fracturing fluids 

containing combinations of biocides, friction reducers, scale inhibitors, crosslinkers, pH 

adjusting agents, surfactants; and can disturb the chemical equilibrium. The presence of 

high temperature and pressure can initiate and accelerate complex reactions at the 

chemically active formation face leading to drastic deterioration of proppant 

performance.  
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The role of high-ionic-strength fracturing fluids, particularly at high pH, in affecting 

proppant performance due to pressure solution and precipitation needs further evaluation.  

 

Laboratory proppant testing is generally conducted under simplistic conditions. To 

simulate some sub-surface environments (eg. Vaca Muerta), it is worthwhile to evaluate 

the influence of the presence of basalt. Studies by (Lejay et al., 2017) and (Calvin et al., 

2015) show bedded fractures filled ash beds across the Vaca Muerta, Niobrara and Eagle 

Ford formations. Based on XRD analysis, basalt consists of sodium-anorthite 

[(Ca,Na)(Si,Al)4O8], augite [Ca(Fe,Mg)Si2O6], and forsterite [Mg2SiO4]. Presence of 

silica and basalt, when exposed to high pH brine at elevated temperature, releases cations 

like sodium, potassium, magnesium and aluminum, which are conducive to the formation 

of clay minerals and zeolites. 

 

1.9. Developments in proppant testing 

The pioneering work in fracture conductivity measurement until 1970’s involved placing 

proppant between metal platens. These measurements were conducted at room 

temperature using nitrogen, oil, or water. Cooke (1973) demonstrated that tests conducted 

for longer duration at constant stress for 10/20 sand in 250⁰F brine exhibited continued 

decline in permeability over three weeks. A linear decrease in permeability with the 

logarithm of time was observed. Comparative experiment at room and high temperature 

(250℉) using glass beads showed significant reduction in porosity. Cooke observed 

higher breaking of glass beads when exposed to high temperature brines. Crushing and 

redistribution of fines in pore spaces was found to be an important factor. Cooke observed 
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that brine permeability was one-third oil permeability; and he performed experiments to 

study the non-darcy flow effects. Cooke (1973) stressed the need for long-term 

experiments to assess the impact of reservoir conditions on proppants. 

Absence of testing standards led to disparity in fracture conductivity values reported in 

literature. Some of these different testing conditions were identified as: a) short testing 

times, b) varying proppant size distribution within same mesh range, c) testing fluid 

composition, d) testing with steel versus rock platens and e) temperature and fluid effects. 

Finally, American Petroleum Institute (API) issued “Recommended Practices for 

Evaluating Proppant Conductivity”, in 1985. McDaniel (1986) followed these procedures 

to establish the impact of high closure stress and high temperature testing using brine for 

long durations of time. The tests involved maintaining pH in the range of 6.5-7.5 to 

minimize silica dissolution. The test fluid was prepared using deionized water and 2% 

KCl. A test at 75⁰F demonstrated that as much as 40% of fracture conductivity was lost 

over five days of testing. The conductivity loss due to temperature increase was 

irreversible, i.e. conductivity could not be regained after cooling the cell. Tests also 

showed that closure stress increased the adverse effects of temperature and brine on 

proppants. An experimental study was conducted to compare conductivity loss for test 

fluid with and without silica pre-saturation. They observed 15% additional conductivity 

loss for the fluid without silica pre-saturation, as compared to silica pre-saturation test. 

 

Apart from time, closure stress and temperature, it was critical to study the impact of 

embedment and fracturing fluid additives on conductivity and permeability. Penny (1987) 

performed short-term conductivity tests using steel platens to establish baseline 
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conductivity, where no embedment is expected. Higher permeability was observed 

between metal platens, as compared to Ohio sandstone patens. This was explained by the 

‘wall effect,’ i.e. it is expected that the area next to metal platens will exhibit higher 

conductivity than the bulk proppant-pack response. However, as compared to metals, this 

‘wall effect’ is minimized in sandstone cores due to embedment, leading to lower 

permeability.  

 

Considering sandstone is stiffer (89% quartz and feldspar) as compared to organic-rich 

shales, the effect of embedment and fracture closure on proppant-pack permeability in 

shales needs to be evaluated. Organic-rich shale possess complex mineralogy dominant 

with reactive clays and extreme heterogeneity. Mechanisms like proppant crushing, fines 

generation and migration, cyclic stress, and embedment have a direct dependence on the 

mechanical properties of the rock and strength of proppant. 
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1.10. Objectives 

• Evaluation of proppant performance after placement in the fracture. Long-term 

testing is designed to understand long-term degradation mechanisms that are 

masked in the outdated, but still currently practiced, 2-hour short tests (API 

standards).  

 

• To conduct experiments which more closely model in-situ conditions. To achieve 

this requires improvements in conductivity cell design, experimental procedure, 

and use of shale platens instead of sandstone platens at reservoir temperature and 

pressure conditions spanning 10-60 days. 

 

• To understand, quantify and isolate the contribution of mechanical and chemical 

degradation mechanisms such as proppant crushing, embedment, fines migration, 

diagenesis, and fracture closure affecting the proppant conductivity. 
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Chapter 2: Experimental setup and procedure 

2.1. Schematic of experimental setup 

The experimental setup for proppant conductivity testing is illustrated in Fig. 9. The solid 

green line represents fluid flow at elevated temperature, long-dashed blue line represents 

the communication between conductivity cell and differential gauge, dotted-orange line 

represents gas line to regulate back-pressure regulator, while the short-dashed black lines 

show the communication between instruments and computer. Details of each component 

are presented in Appendix A. 

 

 

Fig. 9: Schematic of experimental setup. Two syringe pumps are connected in 

parallel to maintain continuous brine supply throughout the duration of the 

experiment. Flow is regulated using a pump controller with flow accuracy of 0.01 

ml/min at a constant flow rate of 3 ml/min. The differential pressure gauge is 

calibrated for a range of 0-25 psi with an accuracy of ±0.01 psi. The temperature 

was set at 250℉ throughout the duration of the experiment. A closure stress of up 

to 10,000 psi can be applied on the proppant-pack.  
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2.2. Conductivity cell 

 

 

 

Fig. 10: Components of conductivity cell. a) Cross-section of the conductivity cell 

(Hastelloy C-276) consisting of upper and lower pistons, platens (steel or shale) and 

proppant. At mid-proppant level there are two ports to allow fluid flow through the 

pack. Two LVDTs are used to measure continuous changes in compaction. b) An 

expanded view of the platen-proppant pack assembly consisting of a sealed Hastelloy 

platen, rock and proppant. Hastelloy screens are placed at the inlet and outlet ports 

to contain the proppant. c) Top view showing the rock and Hastelloy-teflon seals. 
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Cross-section view of the conductivity cell is illustrated in Fig. 10. The proppant-pack is 

located at the center of conductivity cell such that brine can flow horizontally through the 

pack. An axial load, applied through the top and bottom pistons, simulates closure stress 

on the proppant-pack, as shown in Fig. 10a. 

 

All components of our modified conductivity cell are made of Hastelloy C-276, a nickel-

chromium-molybdenum alloy with 5% iron, which improves resistance to pitting and 

stress corrosion (Haynes 2016). Another critical feature of the modified conductivity cell 

is the ability to measure compaction. Compaction is recorded by two Linear Variable 

Differential Transformers (LVDTs) with a resolution of ±0.0001 inch (see vertical rods 

in Fig. 10a). 

 

Fig. 10b illustrates the expanded cross-section of the proppant-pack assembly. The 

proppant-pack is 2 inches long, and consists of Hastelloy platens with Teflon seals at the 

top and bottom, to prevent the fluid loss. The proppant is sandwiched between the top 

and bottom surface platens, which are machined from the rock of interest. The cell has 

been designed to accommodate rock or metal platens (2” long * 1.25” wide * 0.25” thick). 

The proppant concentration can be varied from 0.75 – 3 lb/ft2, giving a diverse range of 

expected field conditions. In addition, Hastelloy screens are used at the ends of proppant-

pack to contain the proppant within the pack. Fig. 10c shows the top view of the seal and 

rock platens with a Teflon sleeve on the perimeter. 
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2.3. Experimental Procedure 

2.3.1. Petrophysical characterization of rock 

The experimental procedure for determining rock mineralogy, porosity, TOC, static 

Young’s modulus using nanoindentation are discussed in Appendix B. 

 

2.3.2. Proppant conductivity testing  

2.3.2.1. Sample preparation  

The rock platens measuring 2” long * 1.25” wide * 0.25” thick were machined using 

diamond saw (see Fig. 10b and Fig. 10c). The platens were then sequentially polished 

with 300, 600, 1200 and 1500 grit paper for a total duration of 30 minutes, to obtain a 

smooth surface. The rock platen was then scanned using profilometer to measure 

roughness. Also, the formation material near the platen was used for petrophysical 

characterization of the rock (discussed in Appendix B). 

2.3.2.2. Brine preparation  

The brine was prepared using distilled water (total dissolved solids (TDS): 1.05±0.07 

ppm @ 23.8°C). The brine was composed of deionized water mixed with 3% NaCl and 

0.5% KCl, by weight. This corresponds to a TDS of 33,900 ppm @ 23.9°C. For the 

experiments dealing with pH 10 brine, 0.05 molar sodium carbonate was added to the 

brine. 
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2.4. LVDT calibration 

The linear voltage differential/displacement transformer (LVDT) was calibrated using 

MTS Calibrator Model 650.03 (see Fig. 11). The calibration was performed at room 

temperature. The rotation of micrometer head on the left provides a linear movement to 

the end of the fixture arm housing the LVDT core and shell.    

 

Fig. 11: MTS Calibrator Model 650.03 

 

The LVDT element is moved from one limit to the other, in small increments, and the 

corresponding change in voltage response is recorded. Responses for the two LVDTs are 

shown in Fig. 12. The relationship between distance and voltage is used to measure 

compaction of proppant-pack. 

 

Fig. 12: LVDT calibration using MTS calibrator for 2 LVDTs. A linear trend was 

observed across the range of LVDTs. 
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2.5. Profilometer  

2.5.1. Specifications 

A confocal microscope was used to measure the extent of embedment of proppant on the 

shale surface. The Keyence confocal microscope (VK-X200) is a non-contact laser 

microscope that can measure the roughness and profile of any surface. A 20x lens was 

used to acquire the surface profile, which has a resolution of 0.5 nm, an accuracy of 0.2+ 

(L/100) µm, and repeatability of 40 nm in the Z-direction. The lens enables of height 

measurement of up to 24.5 mm. The Keyence microscope acquires data at individual 

spots, and stitches blocks to form a 10x10 matrix (total area: 27 mm2 approximately). The 

surface of rock is scanned before and after the experiment to detect any change in 

roughness. 

 

Fig. 13: Schematic of the Keyence VK-X200 confocal microscope 
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2.5.2. Operating principle 

The Keyence optical microscope incorporates two light sources: 1) a white light for 

gathering color, and 2) a laser source for scanning the rock surface and acquiring height 

details. Fig. 13 shows a cut-away schematic of the device. White light, in combination 

with a laser light source, is used to scan a surface and acquire both an optical image and 

high-resolution surface profile information. Nanometer-level heights can be measured by 

analyzing the intensity of the returned laser light relative to the z-position of the laser 

source. At a spot, the laser is scanned in the X, Y, and Z orientations to acquire data 

throughout the range of the lens (Keyence User Manual, 2014). The measurement 

procedure and processing details are discussed in detail in Appendix C.  

 

Post completion of proppant-conductivity testing, the same rock platen scanned earlier is 

used. The embedded grains of proppant are carefully pulled apart using a tweezer, so that 

the shape and dimensions of the embedment are not altered. The broken fragments of the 

proppant can be cleaned by blowing air at a controlled pressure of 50 psi or less. The rock 

is then scanned under the confocal microscope. This measurement procedure is repeated 

on the post-experiment rock surface to accurately measure the embedment. The 

embedment depth, width, profile and surface roughness can be measured on an area of 

interest.  
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2.6. Laser Particle Size Analyzer 

2.6.1. Specifications 

A laser particle size analyzer (Beckman Coulter LS 13 320 with Tornado Dry Powder 

System) was used to characterize the particle size distribution of proppants before and 

after the experiment. The analyzer can resolve particles in the range of 0.4 µm - 2000 µm 

with a repeatability of 1% about the mean size. The particle size distribution is reported 

in volume percent (Beckman Coulter User Manual, 2011). 

 

2.6.2. Measurement and calibration 

The analyzer measures the signal with the laser off to subtract any noise due to ambient 

light. Also, background is measured without any sample, to eliminate signal due to light 

leakage or scattering from dust on lens or particulate presence in the optical path. For the 

measurement, 10-15 gram of dry proppant is loaded, and a vacuum is applied to draw the 

proppant into the instrument. The calibration of the analyzer was checked by scanning a 

standard powder sample. The particle size distribution was within the range: mean of 34.6 

± 1.5 µm. 
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2.7. Calibration of measurements using conductivity cell 

The calibration was performed using a machined platen of Berea sandstone (22.7% 

porosity). Fig. 14a is an illustration of the sandstone platen measuring 2” long, 1.25” 

wide, and 0.62” high. Hastelloy platens acted as top and bottom seals. A closure stress of 

2000 psi was applied on the rock through the hydraulic press. Dodecane was flowed 

through the sandstone at room temperature at a constant flow rate of 1 ml/min using the 

ISCO metering pump. The variation in differential pressure (∆P = Pinlet-Poutlet) over time, 

recorded at a frequency of 60 seconds is shown in Fig. 14b. 

 

Fig. 14: a) Schematic cross-section view of proppant-pack comprised of Hastelloy 

seals and Berea sandstone platens. This configuration was used as a “standard” for 

calibration; b) Variation in differential pressure (∆P), i.e. the difference between the 

inlet and outlet pressures across the Berea sandstone layer, as a function of time in 

hours. 

 

The differential pressure quickly stabilized to 1.4 psi in about 2 hours, and was constant 

for the next 20 hours. Applying Darcy’s Law, a permeability of 262 md was obtained. 

For the purpose of comparison, a pressure-pulse decay permeameter was used to measure 

permeability on a similar sandstone sample at a confining stress of 2000 psi. The 

Klinkenberg-corrected permeability value of 315 md was calculated. The permeability 

value using conductivity cell was within the 20% range of the permeability measured 

using pressure-pulse decay permeameter.  
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2.8. Experimental conditions 

All experiments are carried out at 5000 psi closure stress, pore-pressure of 300 psi, at 

250⁰F temperature. A proppant concentration of 1.5 lb/ft2 is used, except where noted. 

The closure stress is applied at a constant ramp-rate of approximately 100 psi/min. The 

brine is composed of distilled water mixed with 3% NaCl and 0.5% KCl (by weight), 

except where noted. The brine is flowed at a constant flow rate of 3 ml/min throughout 

the duration of the experiment. 
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Chapter 3: Results and Discussion 

3.1. Proppant Characteristics 

For all the experiments conducted in this study, 20/40, 40/70, and 60/100 mesh quartz 

proppant were used. The mean grain diameters for 20/40, 40/70 and 60/100 mesh 

proppants are 700 µm, 390 µm and 220 µm, respectively. The 2D surface of proppant 

grains was evaluated under SEM for roundness and circularity. A perfect spherical 

proppant grain would approach circularity and roundness value of one (Krumbein and 

Sloss, 1963). As illustrated in SEM images (Fig. 15), the 60/100 mesh proppant is angular 

relative to sub-rounded and circular 20/40 mesh proppant. 

 

Fig. 15: Secondary electron images of 20/40, 40/70 and 60/100 mesh Ottawa sand. 

Based on the 2-dimensional view of proppant through SEM images, roundness and 

circularity were calculated. Among the three sizes of proppants evaluated, 20/40 is 

the most rounded and circular; while 60/100 is the most angular. Calculations were 

performed on similar number of grains for consistency. 
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3.2. Repeatability Measurements 

To verify repeatability, measurements were conducted using 20/40 Ottawa sand between 

Hastelloy metal platens. Fig. 10b shows a schematic of the proppant-pack used in these 

tests. The tests were conducted for a duration of approximately 12 days. An axial load, 

simulating closure stress of 5000 psi was applied on the proppant-pack. Brine was 

continuously flowed at a constant flow rate of 3 ml/min. The temperature of the proppant-

pack system was maintained at 250ºF throughout the experiment. The permeability and 

compaction changes for the two experiments are illustrated in Fig. 16. 

 

Fig. 16: Proppant-pack brine permeability for 20/40 Ottawa sand between Hastelloy 

platens at a proppant concentration of 2 lb/ft2 (T= 250⁰F). Note there are two 

experimental curves, Test 2 is of longer duration than Test 1; however, over the 

same time interval there is good agreement. 

 

The brine permeability measured across a proppant-pack consisting of 20/40 Ottawa sand 

(concentration: 2 lb/ft2) between Hastelloy metal platens is illustrated (see Fig. 16, top). 
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The 20/40 sand suffered a loss in permeability of approximately 30 % over a span of 12 

days, finally degrading to a permeability of 5 darcy. Repeating the measurement under 

similar conditions of proppant, closure stress, and temperature, similar results of 

permeability were obtained. Although the tests are for different time intervals, it should 

be noted that the changes in compaction are in good agreement over the time interval (see 

Fig. 16, bottom). 

 

After the confidence in repeatability of permeability measurement was achieved, this 

study was extended to compare the performance of proppants of different sizes. 

 

3.3. Effect of Proppant Size on Propped-Fracture Permeability 

This study was conducted to understand the impact of proppant size on propped-fracture 

conductivity. For this purpose, three proppant sizes: 20/40, 40/70 and 60/100 mesh 

Ottawa sand were considered. The proppant characteristics, i.e. size and shape have been 

discussed in section 3.1 (also see Fig. 15).  

 

The data for differential pressure and compaction (using LVDTs) were recorded at a 

frequency of 60 seconds. The proppant-packs were loaded at a similar ramp-rate of 

approximately 100 psi/min and had a proppant concentration of 2 lb/ft2. All other 

conditions are mentioned in section 2.8. 
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Fig. 17 shows the normalized brine permeability for the three proppant sizes between 

metal platens, as a function of time. The brine permeability reduced by approximately 

30% for 20/40 sand (reducing to 5 darcy), and 56% for 40/70 sand over a duration of 12 

days. However, the 60/100 mesh sand experienced a drastic 99% drop in brine 

permeability, from 10 darcy to less than 30 md, within a much shorter duration of only 4 

days. This shows that proppant performance has a direct dependence on proppant size. 

The smaller the proppant size, the poorer the performance. 

 

To better understand the performance of different proppant sizes, the 40/70 and 60/100 

mesh sands were examined under SEM. SEM analysis before and after the experiment 

was used to qualitatively evaluate the extent of damage. Fig. 18 shows the SEM image 

of 40/70 sand, before and after the experiment. As a result of flow-through testing at 

elevated closure stress and temperature (5000 psi and 250⁰F), crushing of proppant can 

be observed.  

 

The native and post-experiment scans of 60/100 sand are shown in Fig. 19. The native 

sand grains are shown on the left. Post-experiment, proppant crushing can be observed in 

abundance, leading to generation of fines (Fig. 19, right). Magnified image at the bottom 

shows extensive fracturing across the grains throughout the proppant-pack. These minute-

sized fines are capable of blocking the pore space. 
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Fig. 17: Normalized brine permeability for 20/40, 40/70 and 60/100 mesh Ottawa 

sand tested between Hastelloy metal platens. The proppant (concentration: 2 lb/ft2) 

was loaded to 5000 psi at a rate of 100 psi/min. Temperature was regulated at 250⁰F. 

Brine was flowed continuously at flow rate of 3 ml/min for 12 days. Proppant size 

has a direct relationship with permeability. Larger proppants had better 

performance. The 60/100 mesh sand suffered the greatest and quickest permeability 

reduction under these conditions.  

 

Fig. 18: Scanning electron images of rounded 40/70 sand. The native 40/70 proppant 

(left) has an abraded surface with quartz overgrowth in C-crystallographic 

orientation attributed to friction during fluid transport. Long-term testing (12 days) 

at 5000 psi and 250⁰F between Hastelloy metal platens was performed. This resulted 

into considerable mechanical crushing of proppant (right), which resulted in 

generation of fines. 
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Fig. 19: Scanning electron images of very angular 60/100 sand. Abraded quartz 

surface of the native proppant can be observed (left). Long-term testing at 5000 psi 

and 250⁰F between Hastelloy metal platens resulted in extensive mechanical 

crushing of angular and irregular proppant (right). Generation of very minute-sized 

fines capable of blocking pores is observed. 

 

Particle size analysis of proppant grains was performed to quantify the extent of proppant 

crushing, and the impact on permeability reduction (see Fig. 20). Fig. 20a shows the 

distributions for initial 20/40 (blue-pattern) and 60/100 (orange-solid) mesh Ottawa 

sands. In accordance with API standards, both initial samples had less than 5% particles 

outside of the respective mesh sizes. Note that the smallest grains measured in initial 

proppant distribution are 122 µm. 

 

Post-experiment, Fig. 20b shows the distribution for each proppant due to crushing. Fig. 

20b shows grain diameter (dgr) range: 0-122 µm to demonstrate proppant crushing. 

Significant crushing can be observed in both 20/40 and 60/100 sands. However, 15% 
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particles of 20/40 sand (by volume) fall below 122 µm in comparison to approximately 

30% particles for 60/100 mesh sand. 

 

Fig. 20c shows the additional fines generated due to crushing of proppants. Note that this 

shows only those particles that were generated compared to initial sand of that particular 

size, and does not account for the proportion of particles that were already present in the 

initial sand. Fig. 20d shows the coarser grains that underwent crushing for both 20/40 and 

60/100 sands. These plots were obtained by subtracting the post-experiment particle 

distribution from the initial distribution. 

 

The particle size analysis helps answer why the permeability through 60/100 proppant-

pack between metal platens was considerably lower than 20/40 proppant-pack. The 

coarser 20/40 sand is expected to have larger pores compared to the finer 60/100 sand. In 

comparison to 20/40 sand, the presence of additional 15% finer crushed grains (by 

volume) of 60/100 sand are expected to plug the smaller pores in 60/100 mesh sand more 

rapidly leading to a quick and dramatic drop in permeability. 
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Fig. 20: Laser particle size analysis for 20/40 and 60/100 mesh sand performed a) 

before and b) after the experiment. Note that the graph for post experiment crushing 

between metal platens shows grain diameter below 122 µm. Significant crushing is 

observed in both 20/40 and 60/100 mesh sands. As compared to 20/40 sand, 15% 

additional grains of 60/100 mesh sand (by volume) fall below 122 µm. c) Additional 

fines generated in comparison to initial sand. d) Proportion of coarser grains that 

underwent crushing.   
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3.4. Evaluation of Fines Migration 

The fines generated because of proppant crushing in addition to formation fines can 

migrate in the direction of flow, plugging up the pore system between proppant grains, 

reducing permeability. Gidley et al. (1995) demonstrated that particles finer than 100 

mesh were mobilized, affecting the proppant-pack permeability considerably. Silica 

sands, having lower crush resistance, tend to experience greater fines migration, as 

compared to stronger ceramic or resin coated sands where generated fines are entrapped 

in the resin. 

 

An experiment was conducted to evaluate the extent of fines migration. This was done 

with a proppant-pack comprising of 20/40 sand and metal platens (proppant 

concentration: 2 lb/ft2). The permeability data was presented earlier (see Fig. 16). To 

quantify fines migration, particle size analysis was done on the proppant at the following 

three stages:  

1) initial sand; 

2) crushed at 5000 psi for 15 minutes; and  

3) post 12 days of exposure to continuous flow-through testing at 250⁰F and 5000 psi. 

 

Fig. 21 shows the particle size distribution on X-axis, and volume on Y-axis. The initial 

20/40 sand (blue-stripe pattern), in accordance with API standards, falls within the 20-40 

mesh range (marked by vertical red lines). After loading the proppant at 5000 psi closure 

stress for 15 minutes (orange-solid), crushing of coarser grains and generation of finer 

particles is observed; 15% particles (by volume) fall below the finer 40 mesh sieve.  
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Post completion of 12 days of flow-through testing between metal platens, the proppant-

pack was taken apart. The proppant grains were divided into those near the inlet and the 

outlet, and were analyzed with a laser particle size analyzer. The proppant size 

distributions at inlet and outlet are shown Fig. 21 (black-cross pattern) (see left for inlet, 

and right for outlet). Zero percentage of particles (by volume) were retained within the 

20/40 mesh range implying severe crushing at both the inlet and outlet. Note that between 

metal platens, fines are generated entirely from crushing of proppant. 

 

 

Fig. 21: Particle size analysis of the proppants collected at the inlet (left) and outlet 

(right). The native proppant lies in the 20/40 mesh range (blue). The proppants were 

crushed at 5000 psi for 15 minutes (orange). The proppant distribution after flow-

through testing for 12 days (at 5000 psi and 250⁰F) is shown in black. The changing 

distribution is representative of extensive crushing, and fines migration. Migration 

of 14% additional finer particles towards outlet can have detrimental effect on 

permeability. 

 

A greater proportion of the particles belonging to coarser grain sizes were measured at 

the inlet. Correspondingly, particles were crushed to much smaller mesh range at the 

outlet. As shown in Fig. 21 (right), the grains of proppant collected from outlet had 14% 

additional particles below 100 mesh size (or 149 µm), as compared to inlet. The migration 

of these additional crushed finer particles in the direction of flow can block pore spaces 

and obstruct flow, leading to drastic reductions in permeability. 
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3.5. Impact of Rock Mineralogy on Proppant Performance 

The measurements were extended to proppant-packs containing 20/40 Ottawa sand 

(concentration: 1.5 lb/ft2) and shale platens. For this study, shale platens were fabricated 

from Vaca Muerta and Eagle Ford shale.  

 

The shale mineralogy was measured using transmission Fourier Transform Infrared 

Spectroscopy (FTIR) (Sondergeld and Rai, 1993; Ballard, 2007). The Vaca Muerta 

sample consisted of 12 wt% quartz, 46 wt% carbonate, 19 wt% clay, 18% feldspar and 5 

wt% others. Meanwhile, the Eagle Ford sample had 41% carbonate, 58% clay and 1% 

others (Fig. 22). Eagle Ford sample has three times greater clay content than Vaca Muerta 

sample. FTIR has 5 wt% error associated with the measurement of clay. 

 

The Vaca Muerta and Eagle Ford samples had a crushed helium porosity of 3.9% and 

9.4%, and LECOTM TOC of 2.2 wt% and 5.1 wt%, respectively. Young’s modulus was 

measured through nanoindentation, on dry rock before starting the experiment. The Vaca 

Muerta and Eagle Ford samples had a Young’s modulus of 24.5±4 GPa and 15.9±2 GPa, 

respectively. 
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Fig. 22: The mineralogy of Vaca Muerta and Eagle Ford shale obtained by 

transmission FTIR. Eagle Ford sample has three times greater clay content than 

Vaca Muerta sample. Young’s modulus was determined using nanoindentation 

technique. 

 

The permeability for the proppant-packs with both Vaca Muerta and Eagle Ford shale 

platens started at 120 darcy and dropped precipitously. Within two days, the permeability 

dropped by approximately 50% for Vaca Muerta and 85% for Eagle Ford shale. 

Subsequently, even after eight days of continuous flow-through testing at similar 

conditions of 5000 psi and 250⁰F, the propped Vaca Muerta platens exhibited five times 

greater permeability as compared to propped Eagle Ford shale platens. Fracture 

conductivity, product of fracture permeability and propped width, is plotted as a function 

of time, in days (see Fig. 23).  

 

The difference in the initial conductivity is representative of the different compactions of 

the two rocks, primarily due to different mineralogy. After 8 days of testing, the fracture 
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conductivity achieved by Vaca Muerta proppant-pack (103.6 md-ft) is approximately 

eight times greater than the conductivity attained by Eagle Ford proppant-pack (12.8 md-

ft). 

 

Fig. 23: Fracture conductivity (md-ft) as a function of time for Vaca Muerta 

(orange) and Eagle Ford (blue) shale platens. The difference in initial conductivity 

is due to different compactions of the two rocks, primarily due to different 

mineralogy. Even after 8 days of testing, the fracture conductivity achieved by Vaca 

Muerta platens is approximately eight times greater than the conductivity attained 

by Eagle Ford platens. 

 

The LVDTs attached to the cell continuously record changes in proppant-pack thickness 

over time. The reduction in proppant-pack thickness, normalized to initial thickness, is 

shown in Fig. 24. The table (Fig. 24a) shows the step-wise procedure as the proppant-

pack is loaded. The proppant-pack is initially at zero axial load (or closure stress) and at 

room temperature (step 1). Compaction measurement is started after an initial contact has 

been established. Transitioning from step 1 to step 2, an axial load of 5000 psi is applied 

at 100 psi/min and temperature is raised to 250⁰F. The cell is left at standby for 12 hours 

for temperature to stabilize. Note that there is no brine flow at this stage. 

 

Fig. 24b illustrates the changes in compaction at different stages of the experiment for 

metal, Vaca Muerta, and Eagle Ford rock platens. Transitioning from step 1 to step 2, the 
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compaction of metal proppant-pack is representative of compaction only due to 

rearrangement and crushing of proppant grains. The proppant-pack thickness for Vaca 

Muerta shale reduced by 30%, as compared to approximately 55% for Eagle Ford shale 

(step 1 → step 2). This compaction resulted from the application of an axial load of 5000 

psi and heat and has mixed components of crushing and embedment over a period of 12 

hours.  

 

 

Fig. 24: Compaction measured through LVDTs for the metal (black-circle), Vaca 

Muerta (orange-square) and Eagle Ford (blue-triangle) tests. Table (top) describes 

the stress, temperature and flow conditions at different times during the experiment. 

The graph (bottom) shows the normalized reduction (%) in proppant-pack 

thickness at different steps. Any deviation from metal test is due to embedment. At 

the end of 8 days, 20% additional compaction is observed in Eagle Ford, as 

compared to Vaca Muerta. This is primarily due to different clay content. 
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Transitioning from step 2 to step 3 (Fig. 24b), the brine is flowed at 3 ml/min 

continuously. After 8 days, metal proppant-pack underwent 30% compaction. As 

compared to Vaca Muerta platens, the Eagle Ford proppant-pack thickness reduces by an 

additional 20%. Any deviation from metal platen response is most likely due to the 

embedment component. The fracture width closure (or proppant-pack thickness 

reduction) is continuous over time. We expect greater embedment in Eagle Ford platens, 

considering Eagle Ford shale has approximately three times greater clay content than 

Vaca Muerta shale. 

 

The proppant-pack system comprised of 20/40 Ottawa sand and Vaca Muerta shale 

platens was imaged with an SEM to study the intensity of proppant-pack damage. Fig. 25 

shows the surface of a grain of 20/40 Ottawa sand after exposure to the saline solution at 

250°F for 10 days; the grain has a locally pitted surface. The surface, partially corroded 

chemically by the fluid, has possibly weakened the proppant grains.  

 

A manifestation of the high temperature and pressure environment can be seen in the form 

of fractured proppant in Fig. 26. The stress applied by Vaca Muerta shale platen caused 

extensive proppant fracturing, observed uniformly across the proppant-pack. Also, 

abundant precipitation of chloride flakes/grains was observed. This precipitation was seen 

within the fractures, as well as on the surface of the proppant. 

 

In addition to the mechanical crushing, embedment of proppant into the shale surface was 

visible. Embedment, captured in compaction data (see Fig. 24b), does more damage than  
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Fig. 25: Scanning electron image of the 20/40 Ottawa sand proppant after exposure 

to saline environment (deionized water + 3% NaCl + 0.5% KCl, by weight) at an 

elevated temperature of 250⁰F between Vaca Muerta shale platens at an axial load 

of 5000 psi for a duration of 10 days. The quartz proppant surface suffers moderate 

corrosion by the fluid; this is evident from the locally pitted surface (right) of 

proppant grain. 

 

Fig. 26: Secondary electron image of the 20/40 Ottawa sand proppant from the Vaca 

Muerta shale experiment. Axial load of 5000 psi applied by Vaca Muerta shale 

platen has resulted into extensive fracturing of proppant grains (left), resulting into 

generation of fines. Significant mechanical crushing is observed uniformly across 

the entire proppant-pack. Abundant precipitation of chloride flakes/grains (right) 

is observed both within fractures, as well as on the surface of the proppant. The 

20/40 Ottawa sand (concentration: 2 lb/ft2) was loaded at a constant rate of 100 

psi/min. 
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expected. Apart from continuous closure of the fracture, even after 10 days, embedment 

leads to dislodging of additional fines from the formation surface (see Fig. 27). 

 

These shale shards dislodged from the rock surface and are of uneven shape and size. As 

they migrate towards the outlet, in the direction of flow, they possibly plug the pores 

hence leading to an increased reduction in permeability (Fig. 27). This coupled 

embedment generated fines migration was not observed in tests using metal platens, 

where fines observed are entirely from proppant crushing. 

 

Fines migration has been discussed earlier in proppant-packs consisting of 20/40 Ottawa 

sand and metal platens (Fig. 21). To qualitatively verify fines migrations in Vaca Muerta 

shale experiment, the proppant-pack was examined under SEM at three different 

locations moving downstream (Fig. 28). Observations from EDX in SEM confirm that 

majority proportion of fines were crushed proppant. Near inlet (left), extensive fractured 

quartz proppant grains can be observed. Moving towards the outlet (right), finer proppant 

crushed grains can be observed (note the changing scales moving from inlet to outlet). 

Apart from extensive proppant crushing, SEM images verify considerable proportion of 

finer particles blocking the pore space towards the outlet. Ghosh et al. (2014) conducted 

continuous flow-through testing using Ottawa sand and Barnett shale samples. They 

observed extensive breakage and pore blocking by crushed Ottawa sand. This was seen 

as the primary reason for rapid destruction of permeability, as compared to ceramic and 

resin coated proppants. 
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Fig. 27: Secondary electron images of the 20/40 Ottawa sand (concentration: 2 lb/ft2) 

and Vaca Muerta platen system (closure stress: 5000 psi). Apart from extensive 

proppant crushing, significant embedment of proppant into the shale surface is 

observed, leading to further reduction of fracture width (center). Additional fines 

(quartz shards) are generated from the dislodged rock surface due to embedment 

(left). These fines, owing to minute size and irregular shape, could be subject to 

migration possibly blocking pores downstream (right).  

 

Fig. 28: Secondary electron images of proppant from Vaca Muerta shale 

experiment. Images were captured at different locations moving from inlet (left) to 

outlet (right). Note the changing scale from inlet to outlet. Apart from crushed 

proppant, additional fine particles can be observed at the outlet. 20/40 Ottawa sand 

was used at 1.5 lb/ft2 concentration, closure stress of 5000 psi and 250⁰F 

temperature. 
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The grains of proppant were observed using optical microscope. The native 20/40 sand is 

shown in Fig. 29a. However, after a long-term experiment between Vaca Muerta platens 

over a duration of approximately 10 days, the proppant experienced significant crushing 

(Fig. 29c). Apart from crushed proppant, fines from the rock were also generated. This is 

evident in the dark colored fine particles seen in Fig. 29c. However, due to their minute 

size, it was not feasible to separate the formation fines from crushed proppant. 

 

Laser particle size analyzer was used to quantify the proportion of crushed grains. Fig. 

29b is a plot of the grain diameter, and volume. Particle size distribution of native 20/40 

sand (crimson), 20/40 sand after flow-through testing between Eagle Ford (blue), Vaca 

Muerta (orange) and metal (black) platens are shown. Any deviation from initial sand is 

representative of different amounts of proppant crushing. Particles as small as 2 µm could 

be observed, but X-axis has been clipped to 20 µm for simplicity. 

 

The volume crush %, i.e. particles falling below 40 mesh (by volume) for the 

corresponding Eagle Ford, Vaca Muerta and metal platens is shown in Fig. 29d. After 10 

days of flow-through testing, 38 % of the 20/40 proppant particles between Eagle Ford 

shale platens (blue), and 42% of the proppant particles between Vaca Muerta (orange) 

shale platen fell below 40 mesh size. As expected, most crushing was observed between 

metal platens. 
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Fig. 29: Optical image of 20/40 Ottawa sand a) before and c) after the long term 

testing between Vaca Muerta shale platen. b) Particle size analysis of the grain size 

distribution for native sand (crimson), post 10-day flow-through testing between 

Eagle Ford (blue), Vaca Muerta (orange) shale and metal (black) platens. d) This 

graph shows the volume of particles (%) below 40 mesh. 

 

The surface of the rock was examined for proppant embedment. The rock platen was 

originally polished to 1200 grit paper. The flat and polished surfaces of Vaca Muerta (see 

Fig. 30, left) and Eagle Ford (see Fig. 31, left) shale platens were then scanned using 

laser profilometer. The color scale shows the variation in depth in µm. The green color 

shows the reference average depth of the polished sample surface. 

 

The surface of shale was again scanned with the profilometer after approximately 10 days 

of continuous flow-through conditions at 250⁰F and 5000 psi stress. The brine was flowed 

through the proppant-pack consisting of 20/40 Ottawa sand (concentration: 1.5 lb/ft2). 
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The embedment of 20/40 sand on the shale surface is illustrated for Vaca Muerta (see 

Fig. 30, right) and Eagle Ford (see Fig. 31, right) shale platens. With reference to the 

polished surface (green), the cooler colors (or negative scale) depict the embedment of 

proppant, and red colors (or positive scale) represent the height due to either proppant or 

extruded rock around the embedded zone.  

 

Comparing the pre- and post- experiment profilometer scans, embedment as deep as 

approximately 140 µm were observed in Vaca Muerta shale, with extrusion of 

approximately 70 µm at some places (Fig. 30). However, in Eagle Ford platens, 

embedments as deep as 350 µm were measured, with little extrusion between grains (Fig. 

31). The proppant sticking on the rock surface was removed using a brush. But some of 

the proppant was so embedded that they could not be removed. At some locations, these 

show up as hills (or positive heights depicted by red color). Notice the red color in top 

left corner in Fig 31 (right) is associated with proppant that could not be removed.  

 

Laser profilometer is a direct measure of proppant embedment, and the observed 

difference seems primarily due to the respective rock mineralogy. Eagle Ford sample 

tested in this study had three times greater clay content than Vaca Muerta shale. 

Correspondingly, embedment (measured using profilometer) in Eagle Ford is 

approximately 2.5 times deeper than Vaca Muerta shale sample. This confirms the notion 

that a rock with greater proportion of soft components will undergo greater proppant 

embedment. Proppant embedment leads to a reduction of the fracture aperture, and can 

have significant impact on reduction of proppant-pack permeability.   



55 

 

Fig. 30: Laser profilometer scan of Vaca Muerta shale platen before (left) and after 

(right) the experiment. The platen was initially polished using 1200 grit. The color 

scale shows variation in depth in µm. The green color is the reference average depth 

for polished surface (left). After the experiment (right), the blue color represents 

embedment and red shows uplifted/extruded zones around the embedment. For 

Vaca Muerta shale platen, approximate embedment of around 140 µm can be 

observed. The embedment is from 20/40 Ottawa sand (concentration: 1.5 lb/ft2), 

5000 psi axial load and 250⁰F, when brine was flowed for a duration of 

approximately 10 days. 

 

 

Fig. 31: Laser profilometer scan of Eagle Ford shale platen before (left) and after 

(right) the experiment. The platen was initially polished using 1200 grit. The color 

scale shows variation in depth in microns. The green color is the reference average 

depth for polished surface (left). After the experiment (right), the blue color 

represents embedment and red shows uplifted/extruded zones around the 

embedment. For Eagle Ford shale platen, approximate embedment of around 350 

µm can be observed. Note that the red color in top-left corner represents proppants 

that could not be removed from the rock surface. Deeper embedment is expected 

owing to greater clay content, as compared to Vaca Muerta shale. 
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The root-mean-square roughness of the shale platen surface was measured using the laser 

profilometer before and after the experiment. For Vaca Muerta shale, a change from 2 

µm to 36 µm was observed, as compared to 68 µm for Eagle Ford sample (Table 1). 

Eagle Ford sample was approximately twice as rough due to deeper embedment. Also, 

based on profilometer scans, the embedment in Eagle Ford was equivalent to 40-85 % the 

grain size of 20/40 proppant, as compared to 15-30 % of the grain diameter of 20/40 sand 

for Vaca Muerta shale.  

TABLE 1 

    

Rock Pre-experiment Post-experiment (using Profilometer) 

Vaca Muerta  

(Clay: 19%) 
2 36 15-30 

Eagle Ford  

(Clay: 58%) 
2 68 40-85 

 

 

 

 

 

 

 

 

 

 

 

Embedment proportion of 
grain diameter (%) 

Surface Roughness (RMS), µm 
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3.6. Effect of Time  

A long-term (60-day) permeability measurement was conducted across a proppant-pack 

consisting of 20/40 mesh Ottawa sand (concentration: 2 lb/ft2) and Vaca Muerta shale at 

similar closure stress and temperature conditions (5000 psi, 250⁰F). Brine was prepared 

using deionized water mixed with 3% NaCl and 0.5% KCl (by weight) was used. For a 

long-term experiment, the permeability started at 80 darcy (Fig. 32); however, it dropped 

precipitously and seemed to stabilize at approximately 70 md after 15 days. The 

permeability continued to drop gradually, and reduced to approximately 35 md after 60 

days. 

 

Fig. 32: Comparison of brine permeability for Vaca Muerta shale and metal platens. 

20/40 Ottawa sand at 2 lb/ft2 concentration was used. Brine was flowed at 3 ml/min 

(0.027 bbl/D) while 5000 psi closure stress and 250⁰F temperature was maintained. 

The brine permeability for Vaca Muerta shale dropped precipitously to 35 md over 

a period of 60 days. 

 

The proppant-pack was imaged under the SEM and EDX performed. Fig. 33 illustrates 

pore space between the grains of 20/40 mesh Ottawa sand, blocked by fractured quartz 

remnants from the crushed proppant. The minute-sized fines generated from proppant and 

formation tend to be carried in the direction of flow. Over time, obstruction led to more 

than 99% reduction in brine permeability of proppant-pack. 
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Fig. 33: Secondary electron image of 20/40 Ottawa sand. The 20/40 sand (2 lb/ft2) 

was tested between Vaca Muerta shale platens at a closure stress of 5000 psi, 250⁰F 

temperature for 60-day experiment. Pore space between the grains of 20/40 sand 

blocked by crushed proppant (confirmed by EDX in SEM). 

 

Fig. 34 presents the highly fractured proppant grains embedded into the surface of the 

rock. The embedment has dislodged particles from the rock surface. Considerable 

proppant crushing, fines migration, closure of propped-fracture due to proppant 

embedment collectively have led to reduction in proppant-pack permeability by more 

than 99% in 60 days. However, for this experiment between a simplistic system of 

proppant and rock in 3% NaCl and 0.5% KCl (by weight), no growth of diagenetic 

minerals capable of affecting proppant-pack permeability was observed. 
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Fig. 34: Secondary electron image of 20/40 Ottawa sand embedding into the Vaca 

Muerta shale platen. The embedment has dislodged particles from the rock surface. 

Considerable damage from proppant crushing, fines migration, closure of propped-

fracture due to proppant embedment collectively have led to the reduction in 

proppant-pack permeability. However, no growth of diagenetic minerals capable of 

affecting proppant-pack permeability was observed in this simple rock-proppant-

brine system. 

 

During a long-term experiment, it is expected that crushing and rearrangement of 

proppant grains dominate the initial stage of the experiment, as the closure stress is 

applied. This is followed by embedment and fines migration. We suspect that at a later 

stage, pressure solution and diagenesis can happen, driven by the appropriate chemical 

environment, which is dependent on fluid and rock chemistry. Our experiments are such 

that we cannot determine the precise onset of any particular process. Breaks in slope 

observed in Fig. 32 are possibly representative of these mechanisms, and needs further 

evaluation. 
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3.7. Impact of Fluid Chemistry on Proppant Performance 

Hydraulic fracturing can involve the use of a cross-linked fluid system. For example, 

borate cross-linked gel fluids involve the use of borate ions to crosslink hydrated 

polymers (guar and hydroxypropyl guar-HPG) and provide increased viscosity. It is 

claimed that these jobs are efficient because the crosslinking action is reversible and helps 

achieve good performance due to efficient cleanup. The crosslinking action is triggered 

by altering the pH of the fluid system. Properties like effective clean-up, ability to pump 

higher proppant concentrations as well as large diameter proppants,  stable fluid rheology 

at temperatures as high as 300°F, and good transportability of proppant has led to 

extensive use of this technique in both low and high permeability formations (Halliburton, 

2013; Palisch et al., 2010). Although alkaline systems make the clean-up process 

efficient, the long-term effect on the proppant performance has not been evaluated.  

 

Dry crush tests were conducted to evaluate the effect of heat and brine treatment on 

proppant. To evaluate the impact of different alkalinity brines and heat treatment of 

proppants, the following procedure was adopted to perform dry crush tests. The 20/40 

Ottawa sand was exposed to two different brine systems (pH:7 and pH:10, described in 

Fig. 35c) at 200ºF in a sealed beaker as shown in schematic (Fig. 35a). The treatment 

was conducted for a period of 10 days, and silica concentration was measured through 

Inductively Coupled Plasma (ICP) test (Fig. 35d). Over 10 days, higher silica 

concentration was measured for alkaline (pH:10) brine treatment. The proppant grains 

were then subjected to uniaxial loading (5000 psi for 15 minutes) between Eagle Ford 

shale platens at a proppant concentration of 1.5 lb/ft2 (as shown in Fig. 35b).  
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Fig. 35: Procedure for heat and fluid treatment of 20/40 sand between Eagle Ford 

platens. a) Heated to 200ºF in a sealed beaker for 10 days. b) Uniaxial loading to 

5000 psi for 15 minutes (at a proppant concentration of 1.5 lb/ft2). c) Two different 

brine systems were used: pH:7 and pH:10. d) High silica dissolution was observed 

in pH:10 treatment (measured through ICP testing).  

 

The proppant was evaluated for particle size analysis to quantify proppant crushing. Fig. 

36 shows the particle size distribution with grain diameter on x-axis. The graph shows 

particle size distribution for a) initial 20/40 Ottawa sand proppant; b) initial 20/40 sand 

proppant crushed for 15 mins; c) 20/40 Ottawa sand treated with pH: 7 brine (at 200°F 

for 10 days); and d) 20/40 Ottawa sand treated with pH: 10 brine (at 200°F for 10 days). 

Generation of finer particles due to crushing can be observed for all crush tests.  

 

Most crushing is observed for proppants that underwent heat treatment with basic brine.  

The crush percentage is quantified in Fig. 37. Particles below 40 mesh are quantified as 
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proppant crush volume percent. The proppant treated with pH:10 brine registered 2.5 

times greater amount of crushed particle as compared to native and pH:7 treated brine. 

However, note that this evaluation is over a short span of 15 minutes between Eagle Ford 

shale platens at a concentration of 1.5 lb/ft2. Dynamic test would give a complete picture 

of performance over a relatively longer time.   

 

Fig. 36: Particle size distribution for dry crush test of heat and brine treated 

proppants. The dry crush test was conducted using 20/40 Ottawa sand at a 

concentration of 1.5 lb/ft2. Greater crush was observed for the proppant exposed to 

alkaline brine (pH:10) at 200°F over a duration of 10 days.   

 

 

Fig. 37: Proppant crush (volume percent) for particles falling below 40 mesh. pH:10 

and heat treated proppants registered a 2.5 times greater crush as compared to 

native and pH:7 treated proppant. The results are from a 15-minute dry crush test 

between Eagle Ford platens at a concentration of 1.5 lb/ft2. 
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Dry crush tests (at 5000 psi over 15-minutes) discussed earlier demonstrated that 

exposure to alkaline brine (pH: 10 at 200°F over 10 days) led to greater crushing of 20/40 

Ottawa proppant (see Fig. 37). A set of experiments was conducted to evaluate the effect 

of brine chemistries on proppant performance under dynamic conditions.  

 

For this study, similar Eagle Ford shale platens were used for all the three experiments. 

The petrophysical properties of the Eagle Ford shale have been discussed earlier (see Fig. 

22). 20/40 quartz proppant at a concentration of 1.5 lb/ft2 was used for this study. As 

shown in Fig. 38, three fluid systems were tested to simulate sub-surface fluid 

environment. Case 1 is a pH: 7 fluid system composed of distilled water mixed with 3% 

NaCl and 0.5% KCl, by weight. For case 2, the pH was raised to 10 by adding 0.05m 

Na2CO3. In case 3, apart from a similar pH: 10 system, basalt was added. Formations like 

Vaca Muerta, Niobrara, and Eagle Ford have been found to possess bedded fractures 

filled with volcanic ash (Calvin et al., 2015; Lejay et al., 2017). Basalt (surrogate for 

volcanic ash) was used to simulate propped-fracture system more representative of in-

situ conditions. Basalt (crushed and sieved to 20/40 mesh size, < 5 wt%) was added to 

the rock-proppant-brine system. 
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Fig. 38: Brine chemistry for the 3 fluid systems tested with Eagle Ford platens and 

20/40 Ottawa sand (concentration: 1.5 lb/ft2). The salts were added by weight 

percent. Sodium carbonate was used to raise the alkalinity to pH: 10. Basalt, 

surrogate for volcanic ash, was added to introduce cations like sodium, potassium, 

magnesium, and aluminum to closely imitate the subsurface environment. 

 

The comparison in permeability for the different cases is shown in Fig. 39. The 

permeability for 20/40 sand between metal platens with pH:7 brine (represented in black) 

is compared to the permeability between Eagle Ford platens between three different brine 

systems, keeping other parameters (like proppant type, concentration, temperature, flow 

rate, closure stress, etc.) consistent with section 2.8. Fig. 39a shows permeability 

variation for six days. The progress from six days onwards is shown in Fig. 39b. Note 

that the permeability in Fig. 39b is on a logarithmic scale for the purpose of comparison. 

Even after eight days of testing, the brine-permeability for metal is 3 times greater than 

the brine-permeability between Eagle Ford platens under a similar pH:7 brine system. 

The brine-permeability for Eagle Ford platens with the pH:10 brine systems (with basalt 

- green and without basalt - crimson) drops at a steeper rate than the pH:7 brine system. 

It is interesting to note that most permeability declines for both pH:10 systems are within 

the first-two days, and, as expected, follow a similar trend. After eight days of testing, 
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comparing the performance of Eagle Ford platens, the pH:10 brine-permeability is lower 

than pH:7 brine-permeability by a factor of 10. Also, the brine-permeability of pH:10-

Eagle Ford system is lower than pH:7-metal system by a factor of 30 (See Fig. 39b).  

 

 

 

 

 

 

 

 

Fig. 39: Permeability variation over time for the three brine systems, comparison 

between metal and Eagle Ford platens. Duration: a) 0-6 days, b) 6-12 days. 20/40 

Ottawa sand was used at a proppant concentration of 1.5 lb/ft2.  

  

To further understand the difference in permeabilities of these systems, the variations in 

compactions were compared. The compaction of fracture width (or proppant-pack) was 

computed using the LVDT data. The sequence of the experimental procedure involving 

changes in pressure, temperature, and flow conditions over different stages of the 

experiment have been presented in Fig. 40a. 

a) 

b) 
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The proppant-pack is initially at zero axial load (or closure stress) and at room 

temperature (step 1). Compaction measurement is started after an initial contact has been 

established. Transitioning from step 1 to step 2, an axial load of 5000 psi is applied at 100 

psi/min and temperature is raised to 250⁰F. The cell is left at standby for 12 hours for 

temperature to stabilize. Note that there is no brine flow at this stage. 

 

Fig. 40b illustrates the changes in compaction at different stages of the experiment for 

pH:7 (metal), pH:7, pH:10 and pH:10 + basalt between Eagle Ford platens. Transitioning 

from step 1 to step 2, the compaction of metal proppant-pack is representative of 

compaction only due to rearrangement and crushing of proppant grains. Transitioning 

from step 2 to step 3 (Fig. 40b), the brine is flowed at 3 ml/min (approximately 0.03 

bbl/D) continuously. After 8 days, metal proppant-pack underwent 32% compaction. As 

compared to metal platens, the Eagle Ford proppant-pack thickness reduces by an 

additional 29% approximately (for all brine systems). Any deviation from metal is most 

likely due to the embedment component.  

 

The transition from step 3 to step 4 is representative of time change, with all other 

pressure, temperature and flow conditions being constant. The fracture width closure (or 

proppant-pack thickness reduction) is continuous over time, validating the creep aspect 

of fracture width reduction. Over a period of 18 days, the pH:10 + basalt brine system 

underwent a gross compaction of 90% due to combined effects of proppant 

rearrangement, crushing, fines migration, and embedment.   
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The surface of the rock was scanned using laser profilometer to measure embedment 

craters on the rock surface leading to closure of proppant-pack. The Eagle Ford platens 

for both pH:7 and pH:10 experiments were polished to 2 µm RMS (Root mean square 

average) roughness before the experiment. Fig. 41 shows the embedment profiles after 

Fig. 40: Compaction measured through LVDTs for the metal-pH:7 (black-circle), 

Eagle Ford-pH:7 (blue-square), Eagle Ford-pH:10 (green-diamond), and Eagle 

Ford-pH:10+basalt (crimson-triangle) tests. 20/40 Ottawa sand (concentration: 1.5 

lb/ft2) was used between Eagle Ford platens. Table (top) describes the stress, 

temperature and flow conditions at different times during the experiment. The 

graph (bottom) shows the normalized compaction (%) in proppant-pack thickness 

at different steps. Any deviation from metal test is due to embedment component. 

At the end of 18 days, the propped fracture between Eagle Ford platens compacted 

by a staggering 90%. 
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the proppant-pack underwent a closure stress of 5000 psi with 20/40 sand at 1.5 lb/ft2, 

and 250⁰F. Fig. 41 (left) shows the embedment profile when the fluid system was pH:7. 

The green color (or zero on depth scale) is representative of the polished rock surface 

before experiment. After testing, the cooler colors (or negative scale) show embedments, 

and the hotter colors (or positive numbers on depth scale) show upliftments/extrusions. 

These can either be associated with uplifted rock surrounding the embedment (see central 

part of Fig. 38-left), or due to proppant that were still stuck to the surface and could not 

be separated from the rock (see top-left corner of Fig. 41-left).  

 

Fig. 41 (right) shows the embedment profile of the similar Eagle Ford platen which has 

undergone similar testing in a pH:10 fluid environment. Note that the embedments for 

pH:10 experiment (Fig. 38, right) are visibly wider than the ph:7 experiment (Fig. 38, 

left). This is due to the fact that pH:10 experiment ran for a longer duration than the pH:7 

experiment. Overall, a similar embedment depth of 350 µm was measured for both 

platens, which corresponds to approximately one grain diameter of the 20/40 Ottawa 

proppant. For both the cases, RMS roughness changed from 2 µm (initial polished 

surface) to 68 µm (post-experiment). 
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To understand the extreme drop in permeability for case C (Eagle Ford proppant-pack 

with pH:10 brine and basalt), and the similarity in compaction and embedment profiles, 

we examined the proppant under the SEM. Fig. 42a shows extensive crushing of proppant 

resulting into generation of fines, which upon migration could block the pore space 

between proppant grains destroying permeability. The closure stress of 5000 psi in high 

temperature environment has resulted in the development of fracture across the proppant 

grains (see Fig. 42b and 42c). Most of mechanical damage, like crushing, is expected to 

happen in the initial span of the proppant testing (or during a stimulation operation in the 

well). 

Parameter Pre-experiment Post-experiment 

Surface Roughness (RMS), µm 2 68 

𝐸𝑚𝑏𝑒𝑑𝑚𝑒𝑛𝑡 𝑑𝑒𝑝𝑡ℎ ≈ 1 𝑔𝑟𝑎𝑖𝑛 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟 

Fig. 41: Proppant embedment profiles for pH:7 (left) and pH:10 (right) brine 

systems. 20/40 Ottawa sand (concentration: 1.5 lb/ft2) was used between Eagle Ford 

platens. The color scale represents depth. Green color (or zero) shows reference 

surface of the polished rock before experiment. Cooler colors (negative scale) shows 

embedment of proppant into the rock surface. Hotter colors (positive scale) shows 

either extrusions around the embedded zones or upliftment due to proppant stuck 

on rock surface.  
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Fig. 42: SEM images of 20/40 Ottawa sand (concentration: 1.5 lb/ft2) after testing 

between Eagle Ford shale in presence of alkaline environment (pH:10) and basalt. 

a) Extensive crushing of proppant grains leading to generation of fines. b and c) 

Closure stress of 5000 psi resulted into development of fracture across the grains of 

proppant. 

 

 

Apart from mechanical damages reported earlier, the proppant-pack was also scanned for 

possible secondary growths that could lead to the reduced permeabilities. Fig. 43a shows 

a grain of the 20/40 sand with some coating. A closer scrutiny with EDX confirms the 

growth of incipient smectite clay coating (see Fig. 43b). Growth of extensive fracture 

networks across the proppant grains can be seen (note the red-dashed lines on proppant 

surface in Fig. 43c). The entire surface of the proppant seems to be covered with a coating 

of diagenetic smectite. The fracturing of proppant possibly exposes fresh silica surfaces. 

Under favorable chemical conditions and over long duration of time, an extensive 
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development of diagenetic smectite network with associated micro-pore development 

between clay platelets is observed (Fig. 43d).  

 

Fig. 43: SEM image of 20/40 Ottawa proppant (concentration: 1.5 lb/ft2) tested 

under alkaline environment (pH:10) between Eagle Ford platens at 5000 psi closure 

stress and 250°F. a) Clay coating is observed on surface. b) EDX confirms the 

smectite incipient growth along the surface of the proppant. c) Extensive mechanical 

damage of the proppant grains can be observed (note the red-dashed lines marking 

the fractures). This fracture exposes the fresh silica surfaces to the fluid system. d) 

Growth of diagenetic smectite is observed along with associated pore development 

between clay platelets across the proppant surface.   

 

Furthermore, at the surface of one of the proppant grains, zeolite-like crystal growths 

were observed (see Fig. 44a). At higher magnification, EDX was used to confirm the 

tubular diagenetic zeolite-like crystals (Fig. 44b and c). This growth is at an incipient 

stage during the relatively short-term test. However, over the life of the well, such growth 
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could intensify and plug-up the propped fractures, demanding an earlier need of re-

stimulation, hence adding to the well costs. 

 

Fig. 44: SEM image of 20/40 Ottawa proppant (concentration: 1.5 lb/ft2) tested 

under alkaline environment (pH:10) between Eagle Ford platens at 5000 psi closure 

stress and 250°F. a) Proppant surface with altered surface. b) and c) At higher 

magnification, tubular structures are observed. EDX confirms diagenetic zeolite-

like crystals at the surface. This growth is at an incipient stage in this relatively 

short-term test. 
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Another experiment was conducted between similar Vaca Muerta shale (rock properties 

discussed in Fig. 22) and 20/40 Ottawa sand (concentration: 2 lb/ft2) system at similar 

conditions of 250⁰F and 5000 psi. The alkalinity was raised to pH 10. Also, basalt 

(crushed and sieved to 20/40 mesh size, < 5 wt %) was added, to incorporate the presence 

of complex ions in the rock-proppant-brine system. The proppant-pack was observed 

under the SEM. As illustrated in Fig. 45, physical damage in the form of extensive 

fracturing of proppant grains can be observed. Also, although at an incipient stage, 

development of diagenetic smectite covering the proppant grains can be observed. 

 

Fig. 45: Secondary electron image of Vaca Muerta shale – 20/40 Ottawa sand system. 

An axial load (5000 psi), is applied to the proppant-pack (concentration: 2 lb/ft2) 

with basalt (crushed and sieved to 20/40 mesh). Brine, prepared using deionized 

water mixed with 3% NaCl and 0.5% KCl (by weight), was flowed at 3 ml/min. The 

environment was made basic (pH: 10) by mixing 0.05 m sodium carbonate. The 

temperature was maintained at 250⁰F. Extensive proppant crushing can be observed 

(left). Within a relatively short time span of approximately 10 days, growth of 

smectite clay at an incipient stage on the surface of the proppant grain can be 

observed. 
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Fig. 46 presents a similar minor development of diagenetic smectite in this experiment of 

relatively short time span of 10 days. Over longer periods of time, and under certain rock 

mineralogy environments, this intra-granular micro-pore development, and growth of 

microporous smectite clay can be accelerated. It can possibly lead to further weakening 

of proppant grains and further reduction of proppant-pack permeability. Ghosh et al. 

(2014) observed similar secondary growth of smectite for continuous flow-through 

testing (spanning 7-30 days; 225°F) for proppant-pack consisting of Barnett shale and 

20/40 Ottawa sand.  

 

Fig. 46: Secondary electron image of Vaca Muerta shale – 20/40 sand (with basalt) 

and pH: 10 brine. Proppant concentration: 2 lb/ft2. Development of diagenetic 

smectite clay and intra-granular microporosity was observed on proppant grain. 

Over a longer duration, and in certain chemical conditions, such growth could be 

accelerated, leading to further weakening of proppant grains and further reduction 

of permeability.  
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3.8. Effect of Proppant Size in Alkaline/High pH Environment 

This study was done to compare the performance of 20/40 and 60/100 Ottawa sand under 

a high alkalinity (pH:10) environment. The proppants were tested under similar 

concentration of 1.5 lb/ft2, 5000 psi closure stress and 250°F. Brine was prepared 

similarly with distilled water, 3% NaCl and 0.5% KCl (by weight), and 0.05 m Na2CO3 

to raise the pH to 10. Similar Eagle Ford platens as mentioned earlier were used (Fig. 22).   

 

The comparison of permeabilities for the two proppant sizes is shown in Fig. 47. The 

permeability for both sizes drops precipitously within the first two days (see Fig. 47-top). 

However, the reduction in permeability is much steeper for 60/100 Ottawa sand, and 

exhibits a dramatic drop within the first few hours of testing. It may seem like the 

permeabilities have stabilized at the end of days, but the decline in permeability is 

continuous even through 12 days of testing (Fig. 47-bottom). Note that the permeability 

in bottom graph is shown on a logarithmic scale to accommodate the large range of 

permeability variation, as well as capture the difference between the brine-permeabilities 

of the two proppant sizes. Even though the decline in permeability is continuous, the 

20/40 sand brine-permeability remains greater than the brine-permeability of 60/100 sand 

by a factor of 2 through the 12 days of testing. Overall, the permeability of both the 

proppant sizes drops by more than three orders of magnitude (from approximately 180 

darcy to less than 100 md), within a short span of 12 days. Considering the life of the 

well, such large declines in permeability can have huge ramifications on the performance 

of stimulation operations.  
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Fig. 47: Permeability variation over time for 20/40 and 60/100 Ottawa sand 

(concentration: 1.5 lb/ft2). The permeability for 60/100 sand drops at a steeper rate 

than 20/40 sand over the first two days (top). However, the permeability for both the 

sizes continue to degrade over the next 10 days, with 20/40 permeability greater than 

60/100 permeability by a factor of 2. Overall, the permeabilities drop by more than 

three orders of magnitude within a short span of 12 days of testing at 5000 psi closure 

stress between Eagle Ford platens and 250°F brine (pH:10). 

 

The LVDTs were used to compute the compaction throughout the duration of the 

experiment. Fig. 48 shows a step-wise extent of fracture closure that is a coupled product 

of proppant rearrangement, crushing, fines migration, and embedment over the duration 

of the experiment. The sequence of the experimental procedure involving changes in 

pressure, temperature, and flow conditions over different stages of the experiment have 
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been presented in Fig. 48a. The graph shows changes in compaction (normalized to initial 

thickness), for these different time steps as the proppant-pack is loaded, heated, and flow 

is started for the testing duration (Fig. 48b). The proppant-pack is initially at zero axial 

load (or closure stress) and at room temperature (step 1). Compaction measurement is 

started after an initial contact has been established. Transitioning from step 1 to step 2, 

an axial load of 5000 psi is applied at 100 psi/min and temperature is raised to 250⁰F. The 

cell is left at standby for 12 hours for temperature to stabilize. Note that there is no brine 

flow at this stage. 

 

Fig. 48 (bottom) illustrates the changes in compaction at different stages of the 

experiment for metal-20/40 sand, Eagle Ford rock- 20/40 and 60/100 sand combinations. 

Transitioning from step 1 to step 2, the compaction of metal proppant-pack is 

representative of compaction only due to rearrangement and crushing of proppant grains. 

The proppant-pack thickness for Eagle Ford shale reduced by 35%, for both 20/40 and 

60/100 sands (step 1 → step 2). This compaction resulted from the application of an axial 

load of 5000 psi and heat, and has mixed components of crushing and embedment over a 

period of 12 hours.  

 

Transitioning from step 2 to step 3 (Fig. 48-bottom), the brine is flowed at 3 ml/min 

continuously. After 8 days, metal proppant-pack underwent 35% compaction. For Eagle 

Ford platens, proppant-packs comprising each proppant size experienced thickness 

reduction of 65%. Any deviation from metal is most likely due to the embedment 

component. The fracture width closure (or proppant-pack thickness reduction) is 
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continuous over time. This difference in total compaction of 30% between metal and 

Eagle Ford platens can be attributed to the difference in clay content. No significant 

difference in compaction for proppant-packs consisting of 20/40 and 60/100 sands was 

observed. 

 

 

Fig. 48: Compaction measured through LVDTs for the metal (black-circle), 60/100 

sand-Eagle Ford platen (orange-triangle) and 20/40 sand-Eagle Ford platen (blue-

diamond) tests at a proppant concentration of 1.5 lb/ft2.Table (top) describes the 

stress, temperature and flow conditions at different times during the experiment. 

The graph (bottom) shows the normalized compaction (%) in proppant-pack 

thickness at different steps. Any deviation from metal test is due to embedment 

component. At the end of 8 days, 30% additional compaction is observed in Eagle 

Ford platens as compared to metal. This is primarily due to different clay content. 
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Both the proppant-packs were scanned under the SEM to gather information about the 

damage mechanisms. Fig. 49 (a-c) shows the grain of initial 20/40 Ottawa sand with 

slightly abraded surface. Fig. 49 (d-f) show the scan for a similar grain after the 

experiment. Corrosion of the quartz surface can be seen possibly due to the action of 

continuous flow alkaline brine at 250°F for an extended period of time. Also, EDX shows 

that precipitation of Na-K crystals from the brine can be observed (see Fig. 49f).   

 

 

Fig. 49: SEM image of initial 20/40 Ottawa sand (a-c). The abraded quartz surface 

of the proppant can be observed. Images (d-f) show the surface of 20/40 sand after 

testing in alkaline environment at 250°F and 5000 psi for extended period of time. 

The testing was conducted at a proppant concentration of 1.5 lb/ft2. Moderate 

corrosion of proppant surface due to the action of fluid can be observed (see image 

e). EDX confirms precipitation of Na-K crystals possibly from brine.    

 



80 

Broadly, Fig. 50 shows extensive mechanical damage. The action of closure stress has 

led to stress intensification at points of contact between proppant-proppant grains, as well 

as proppant-rock boundary. This has translated into crushing of proppant and generation 

of fines. The generated fines have a wide range of sizes from approximately 10-200 µm 

(see Fig. 50a). These remnant quartz particles can possibly disseminate and block the 

pore space, adding to the resistance for fluid to flow. The closure stress has led to 

development of stress-induced fracture along the proppant grains (Fig. 50b and c).   

 

 

Fig. 50: SEM image of the 20/40 Ottawa sand (concentration: 1.5 lb/ft2) after testing 

for extended period of time. a) Mechanical crushing leading to generation of fines 

capable of blocking pore space can be observed. b) The closure stress has resulted 

in generation of fracture across the grain of the proppant.  
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The impact of proppant on the rock platens led to embedment into the surface of rock 

(Fig. 51). Once the embedded proppant is carefully extracted from the rock, the ‘pock-

marked’ surface of the shale is visible (see Fig. 51a-center). Note that the boundary of 

the embedded zone is uplifted due to plunging of proppant into rock surface. The 

embedment of proppant leads to closure of the fracture, adding to the restriction of fluid 

flow. The extent of fracture closure due to embedment is critical, and is expected to be a 

function of rock mineralogy, proppant strength, size, and in-situ pressure and temperature 

conditions. The image also shows extensive mechanical damage that the proppants have 

undergone. The disintegrated grains have shattered into fines across the proppant-pack. 

 

 

Fig. 51: SEM image of 20/40 Ottawa sand (concentration: 1.5 lb/ft2) embedment in 

the Eagle Ford shale after long-term testing. The boundary of the embedded zone is 

uplifted due to the embedment action. Proppant grains have undergone extensive 

mechanical impact leading to dislodged fines across the proppant-pack.   
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Similar SEM imaging was done on the proppant-pack consisting of 60/100 Ottawa sand. 

Fig. 52 shows a comparison of proppant grains before (Fig. 52 a-c) and after (Fig. 52 d-

f) the long-term testing conditions. For the native 60/100 sand, abraded surface of the 

rock can be seen. However, as a result of the testing conditions, minute-sized fines can 

be observed (see Fig. 52d). Also, corrosion of proppant surface due to the action of fluid 

environment at high temperature and pressure can be observed (Fig. 52e and f). This 

action has smoothed the abraded surface of the native 60/100 proppant. 

 

 

Fig. 52: SEM image of native 60/100 Ottawa sand (a-c). The abraded quartz surface 

of the proppant can be observed. Images (d-f) show the surface of 60/100 sand 

(concentration: 1.5 lb/ft2) after testing in alkaline environment at 250°F and 5000 

psi for extended period of time. d) Fines generated by crushing of proppant can be 

observed. e and f) Moderate corrosion of proppant surface due to the action of fluid 

can be observed.   
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The proppant bed was also imaged with a SEM. Fig. 53 shows an image of the proppant 

bed of 60/100 sand on Eagle Ford platen after testing in high temperature and pressure 

conditions over extended duration. Note that the grains of proppant have undergone 

extensive disintegration (Fig. 53a). Mechanical and chemical alterations have led most 

proppant grains to shatter into fines of different shapes and sizes. Fig. 53b shows 

fractured remnants of the proppant at a higher magnification.  

 

 

Fig. 53: SEM image of the 60/100 Ottawa sand (concentration: 1.5 lb/ft2) after testing 

for an extended period of time. a) A major proportion of proppant grains seem to 

have undergone extensive shattering and disintegration. b) Mechanical damage 

resulting into fractured remnants of the 60/100 sand at a higher magnification. 
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The 60/100 Ottawa proppant grains were gently scrapped from the surface of the Eagle 

Ford platen. Fig. 54a shows the embedment on shale surface. The mechanical damage to 

the proppant can be observed. Fig. 54b shows the embedment on the shale surface at a 

higher magnification. The extent of embedment was quantified by scanning the rock 

surface using a laser profilometer. A study by Kassis and Sondergeld (2010) showed 

similar deformation of Barnett shale when tested with Ottawa sand. They observed 

microfracturing of the host rock associated with failure of Ottawa sand at 6000 psi closure 

stress. 

 

 

Fig. 54: SEM image of the proppant-pack consisting of 60/100 Ottawa sand 

(concentration: 1.5 lb/ft2) and Eagle Ford platens. Mechanical damage of crushed 

proppant and resulting embedment on the shale surface can be observed. b) An 

enlarged view of the proppant embedment. 
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The proppants, before and after experiment, were compared to understand the extent of 

crushing, and their possible effect on the steep permeability decline within a relatively 

short period of time. Fig. 55 (top) compares the optical image of 20/40 sand before and 

after the experiment. Fig. 55 (bottom) compares the 60/100 sand before and after the 

experiment. In the post-experiment images (Fig. 55-right), apart from severe crushing of 

proppant, fines from formation can also be observed. Note the dark colored formation 

fines generated as a result of impact of proppant with the Eagle Ford platens. It was not 

feasible to separate the formation fines due to their minute size. 

 

Fig. 55: Optical images of fines generated from proppant crushing. Images of 20/40 

sand before and after experiments are compared on top. The images at bottom 

compare the 60/100 sand before and after the experiment. The tests were conducted 

at a proppant concentration of 1.5 lb/ft2. Note the fines generated from proppant 

crushing as well as the formation (dark-colored particles). The formation fines could 

not be separated for analysis due to their minute size. 
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Particle size analysis was used to quantify proppant crushing for both sizes of proppant 

and examine impact on permeability reduction. Fig. 56a shows the distributions for native 

20/40 (blue-pattern) and 60/100 (orange-solid) mesh sands. In accordance with API 

standards, both the samples in native state had less than 5% particles outside of the 

respective mesh sizes. Note that the 60/100 mesh boundary has been marked in native 

proppant distribution (see dashed line in Fig. 56a). 

 

Post-experiment, Fig. 56b shows the distribution for both proppants (below 100 mesh) 

due to crushing. Significant crushing can be observed in both 20/40 and 60/100 sands. 

The testing was conducted at similar proppant concentration of 1.5 lb/ft2 for both the 

proppant sizes. However, 18% particles of 20/40 sand (by volume) fall below 100 mesh 

in comparison to 56% particles for 60/100 mesh sand. 60/100 sand experienced a higher 

percentage of finer particles than 20/40 Ottawa sand by a factor of 3. 

 

The particle size analysis helps answer why the brine-permeability through 60/100 

proppant-pack between Eagle Ford platens was considerably lower than 20/40 proppant-

pack. The finer 60/100 sand is expected to have smaller pores compared to the coarser 

20/40 sand. The coupled effect of presence of smaller pore space and presence of three 

times additional finer particles in 60/100 sand is expected to plug the permeability in 

60/100 mesh sand more rapidly leading to a quick and dramatic drop in permeability (as 

discussed in Fig. 47). 
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Fig. 56: Laser particle size analysis for 20/40 and 60/100 mesh sand (concentration: 

1.5 lb/ft2) performed a) before and b) after the experiment. The test was conducted 

between Eagle Ford platens in alkaline (pH:10) environment at 250°F and 5000 psi 

closure stress.  Significant crushing is observed in both 20/40 and 60/100 mesh sands. 

As compared to 20/40 sand, three times additional grains of 60/100 mesh sand (by 

volume) fall below 100 mesh.  

 

The surface of the rock was examined to quantify proppant embedment. Prior to starting 

the experiment, the rock platen was polished to 1200 grit paper. The flat and polished 

surface of Eagle Ford had a measured RMS roughness of 2 µm. The surface of shale was 

again scanned under profilometer after flow-through conditions at 250⁰F and 5000 psi 

stress. The brine was flowed through proppant-packs consisting of 20/40 and 60/100 

Ottawa sands (concentration: 1.5 lb/ft2). 

 

The embedment on Eagle Ford surface from 20/40 sand is shown in Fig. 57, left and that 

of 60/100 sand is shown in Fig. 57, right. With reference to the polished surface (green), 
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the cooler colors (or negative scale) depict the embedment of proppant, and red colors (or 

positive scale) represent the height due to either residual proppant or extruded rock 

around the embedded zone. 

 

Fig. 57: Laser profilometer scan of Eagle Ford shale platen with 20/40 sand (left) 

and 60/100 sand (right) after long-term testing. The platen was initially polished 

using 1200 grit. For Eagle Ford shale platen, an approximate embedment of around 

350 µm for 20/40 sand, and 150 µm for 60/100 sand can be observed. The embedment 

is from Ottawa sand (concentration: 1.5 lb/ft2), at 5000 psi axial load and 250⁰F, 

when alkaline brine (pH: 10) was flowed. 

 

Comparing the profilometer scans, embedment as deep as approximately 150 µm were 

observed for 60/100 sand (Fig. 57, right). However, for 20/40 sand, embedments as deep 

as 350 µm were measured (Fig. 57, left). Laser profilometer is a direct measure of 

proppant embedment, and the observed difference seems primarily due to the respective 

proppant size. For both 20/40 and 60/100 Ottawa sands, embedment of an entire grain 

diameter (approximately) was observed. Also, the roughness for 20/40 sand changed to 

96 µm for 20/40 sand, and 16 µm for 60/100 sand. Higher roughness is due to the deeper 

embedment. 
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3.9. Discussion of Results  

a) Standardization of testing protocols: The conventional procedure involved testing 

proppant between steel platens with 15 minutes of stress application at ambient 

temperature (API RP 61). Many improvements to these protocols have been 

suggested (ISO 13503-5, API 19D), but field observations show that permeabilities 

measured vary greatly due to pitfalls in the current standards (Penny, 1987; Duenckel 

et al., 2016). This study suggests and demonstrates that improvements (i.e. testing 

proppant between shale platens using brine at representative in-situ temperature and 

pressure conditions over extended testing times, capturing the contribution of 

different mechanisms) help capture the changes in proppant-pack brine-permeability 

in a systematic manner. These corroborate the large production declines observed in 

most shale wells (Baihly et al., 2010). This apparatus allows variation of proppant 

type, thickness, temperature, closure stress, and composition of pore fluid over long 

testing times. 

 

b) Impact of testing-time: In this study, tests were conducted for extended times 

(spanning 10-60 days). This study allows the study of effects of mechanical and 

chemical degradation on fracture conductivity. We have successfully separated the 

effects of crushing, fines migration, and embedment. The composition of the rock-

proppant-brine system and the permeability loss mechanism govern the recommended 

duration of testing time. Most of the damages associated with mechanical impact like 

fines generation (due to proppant crushing and formation fines), rearrangement, fines 

migration, and embedment seem to happen in the short testing times of 7-10 days.  
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c) Use of fine mesh sand: The use of finer mesh sand has increased primarily due to its 

lower cost. In addition, Thompson (1977) has suggested that placing smaller-sized 

60/100 mesh proppant helps reduce leak-off and prevents the loss of expensive 

chemicals into the formation during the initial stage of the treatment. However, this 

study demonstrates a considerable difference in brine permeability of different sized 

proppants (Fig. 17). The observed difference in permeability is in accordance with 

field observations. The operators using primarily fine mesh sand in the Eagle Ford 

formation had a higher one-month initial production; however, the cumulative 

production from larger sized proppants had a better performance in the long run (Fig. 

58) (Al-Tailji et al., 2016). The difference in initial cumulative production between 

coarse and fine proppant suggests that initial production with the fine mesh proppant 

is 30% better than with coarser proppant. However, extrapolating the data indicates 

that the breakeven point occurs after about 8 months, followed by considerable better 

performance of coarse proppant over the next 16 months. 

 

Field studies and laboratory results suggest use of fine mesh sand leads to lower 

cumulative production over the life of well. Lower fracture permeability of fine mesh 

sand can further lead to early remediation, adding to overall cost. With a breakeven 

time of 8 months, there is reason to re-evaluate completion strategies involving use 

of greater proportions of finer mesh sand. 
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Fig. 58: Cumulative difference in production for coarse mesh completions and 

other wells employing finer mesh completions for seven Eagle Ford operators 

producing from 2012 to 2014 (modified from Al-Tailji et al., 2016). A breakeven 

is achieved after 8 months; with ~30% better performance over 24 months with 

20/40 sand. 

 

d) Impact of proppant-pack chemistry on embedment: The measured fracture 

conductivity is a composite response of the proppant-rock-fluid system. The ability 

to accurately measure compaction demonstrates a continuous decrease in fracture 

width over time. The prolonged exposure to fluid at elevated temperature over a long 

period has a detrimental effect on rock. This work shows that based on the properties 

of rock, proppant, and brine, the fractures closed by as much as 90% over a duration 

of 18 days. Also, embedment of approximately an entire grain diameter were 

observed for 20/40 and 60/100 Ottawa sands, when tested between Eagle Ford platens 

at a concentration of 1.5 lb/ft2.  

 

A study by Akrad et al. (2011) showed that exposing Eagle Ford samples to brine 

reduced Young’s modulus by as much as 50% over time. Interestingly, at elevated 

temperature, the Young’s modulus is reduced by as much as 70% in a short time 

(Akrad et al., 2011). Wick (2015) used nanoindentation technique to measure a late-
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time creep exponent of approximately 2 for clay rich Marcellus and Bakken samples. 

For a hypothetical model assuming cubic relationship between permeability and 

fracture width, this late-time creep exponent translated into 12% reduction in 

permeability due to embedment effect (Wick, 2015). Creep can have ramifications in 

the form of increased proppant embedment over time, reduction of fracture width, and 

ultimately lower propped fracture permeability. These observations have a strong 

dependence on rock mineralogy. Deeper embedments are expected in rocks with 

greater clay content (Terracina et al., 2010; Alramahi and Sundberg, 2012; Zhang et 

al., 2014; and Ghanizadeh et al., 2016). 

 

e) Impact of fluid chemistry/diagenesis: Crosslink fracturing techniques require the 

use of alkaline/high pH environments to trigger the action of crosslinkers. The results 

in this study show that the permeability for pH:10 experiments is lower than pH:7 

experiments by a factor of 10, even after only 8 days of testing. Imitating sub-surface 

environment by introduction of basalt (surrogate for volcanic ash, commonly found 

in shale plays like Eagle Ford and Vaca Muerta), growth of diagenetic smectite and 

zeolite like crystals were observed. Mineral growths have also been observed in static 

tests by Weaver et al. (2007), LaFollette and Carman (2010), and Duenckel et al. 

(2011). In this study, such growths could be observed in dynamic conditions with the 

aid of electron microscopy. However, it should be noted that the diagenetic growth is 

driven by the chemical potential difference in the proppant-pack system, and is 

expected to be observed in the relatively long-term experiments. Note that over a 

duration of 10-day experiment, approximately 12 gallons of brine flowed through the 
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proppant-pack. According to Kondash et al. (2017), 10,000-90,000 bbl of fluid is 

recovered in a typical flowback operation from the well. Observation of diagenetic 

growth after exposure to a small fraction of actual operation could mean that the 

diagenetic growth could be affecting performance at a larger scale over the life of 

well.  

 

f) Permeability estimation from particle size: Attempts have been made to estimate 

the permeability of pore systems based on characteristics of spherical particles. Panda 

and Lake (1994) extended the Carman-Kozeny model to include statistics of the 

particle size distribution for permeability prediction. Also, Mirani et al. (2017) 

modified the Berg model (1970), which uses grain size and sorting to predict 

permeability in confined stress conditions. However, using the parameters for 20/40 

sand that underwent 12 days of testing between Eagle Ford platens, the predicted 

permeability is more than 4 orders of magnitude higher than the permeability 

measured though continuous flow-through experiments. The differences are possibly 

because the model underestimates the parameters needed to accommodate proppant-

thickness, proppant shape and sorting, etc. The Berg model (1970) uses proppant-

pack porosity based on grain diameter. However, proppant crushing has led to 

tremendous change in sorting and porosity of the proppant-pack. Also, the over-

estimation of predicted permeability through the model is higher for the finer 60/100 

mesh sand, probably due to lower than expected porosity of proppant-pack due to 

crushing of Ottawa sand.   
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g) Impact of fracture conductivity: 

Fracture modeling and simulation are important to understand the impact of 

implementing different stimulation techniques, proppant types and sizes, etc. 

According to a simulation study by Mayerhofer et al. (2006), increasing SRV by a 

factor of 2 almost doubles production. However, the increase in SRV by a factor of 3 

does not result into a proportional rise in cumulative gas production. They attributed 

this behavior to the low fracture conductivities creating large pressure drops within 

the network, adding complexity to the efforts to drain extended portion of the fracture 

network. For large fractures in Barnett shale, low fracture conductivity becomes a 

first-order problem that can lead to substantial loss in production of hydrocarbons in 

the early life of well (Fig. 59). The results show that a 20-fold lower fracture 

conductivity can lead to 4-fold lower production over 1000 days (Mayerhofer et al., 

2006).  

 

The current study demonstrates a large decrease in fracture conductivity measured 

through experiments at simulated reservoir conditions in a relatively short span of 10-

60 days. Over the life of well, the effect on production could be dramatic. Also, this 

study demonstrates that fractures close by as much as 90% due to mechanisms like 

rearrangement of grains, proppant crushing, and embedment, greatly affecting 

performance of propped-fracture network. However, most simulation studies do not 

take this into account, leading to very optimistic expectations. 
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Fig. 59: Cumulative gas production affected by fracture conductivity. Over 1000 

days of production, a 20-fold difference in fracture conductivity can lead to 4-

fold difference in production (Mayerhofer et al., 2006). 

 

h) Implications: Conventional proppant conductivity test involves testing for short 

times between sandstone or metal platens; which leads to overestimation of the 

proppant-pack permeability. Fig. 60 shows comparison of dimensionless fracture 

conductivity (FCD) from conventional lab tests versus the long-term tests conducted 

in this study.  FCD (discussed in section 1.6) was calculated using proppant 

conductivity of 1804 md-ft. for 5000 psi closure stress (20/40 Ottawa sand), and 

extrapolated on time scale (dotted lines, Fig. 60). This was done to demonstrate that 

according to API tests, the conductivity is assumed to be remain constant.  

 

The different markers show different fracture half-lengths assumed for comparison. 

The matrix permeability was adopted from measurements conducted on shale core 

samples (Mathur et al., 2016). 
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In contrast, the changing fracture conductivity for 20/40 Ottawa sand measured 

between Eagle Ford platens was used to calculate FCD (dashed lines, Fig. 60). These 

long-term measurements capture the dramatic drop of FCD below the optimal FCD 

(blue band, Fig. 60) within a relatively short span of 10 days. Over the life of well, 

the proppant performance could be drastically reduced and will require restimulation. 

   

 

 

Fig. 60: Comparison of dimensionless fracture conductivity computed from 

conventional API test (dotted lines) versus continuous flow-through test for 

20/40 Ottawa sand between Eagle Ford platens (dashed lines). The API test is a 

short duration test, and the numbers were extrapolated to demonstrate that the 

proppant conductivity is assumed to be constant as a function of time. The 

different markers are representative of fracture half-lengths used for 

comparison. The current study shows that proppant conductivity 

measurements at in-situ conditions between shale platens capture the drastic 

drop in FCD below the optimal FCD (blue band) within a short span of 10 days. 

 

This study deals with tests representing multiple layers of proppant that keep the 

fracture propped open. It should be noted that in the reservoir, monolayer of proppants 
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can be achieved, where individual grains can experience substantially higher effective 

stress. This can translate into higher crushing and embedment, especially at lower 

proppant concentrations. Also, factors like non-darcy flow, irreparable damage due 

to mudcake build-up, and uncertainties in mapping of proppant placement can 

drastically affect proppant performance.  
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Chapter 4: Conclusion and Recommendations 

Conclusions:  

Most of the standard proppant test practices (ISO 13503-5, API RP 19D) fail to simulate 

proppant performance under field conditions and measure optimistic values of 

permeability due to several shortcomings, i.e. testing between sandstone platens for short 

durations at ambient conditions, and not taking the changing fracture width into account. 

In many unconventional plays, clay content dominates the mineralogy and therefore adds 

a component of proppant embedment which is unaccounted for in standard tests. 

Additionally, embedment can enhance the production of fines which leads to additional 

permeability reduction. Dynamic measurements in the current study were conducted for 

extended periods of time (spanning 10-60 days) using brine. Our procedure allows 

variation of proppant type, thickness, temperature, closure stress, and composition of pore 

fluid over long testing times while also recording compaction.  

 

Note all conclusions are based on experiments carried out at 5000 psi closure stress, 250⁰F 

at a proppant concentration 1.5 lb/ft2 and the brine composed of deionized water mixed 

with 3% NaCl and 0.5% KCl, by weight, except where noted. The main conclusions 

drawn from this study are: 

 

1. Proppant size effect: We observe proppant performance has a direct dependence on 

proppant size. The smaller the proppant size, poorer the performance over longer 

times. In tests between metal platens for 12 days, the 20/40 mesh sand suffers a 32% 

permeability reduction as compared to 56% drop for 40/70 mesh sand. However, 
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permeability of the 60/100 mesh sand reduced by a staggering 99% in just 4 days. 

Tests with coarse (20/40 mesh) and fine (60/100 mesh) proppants suggest long term 

well productivity is significantly decreased with the use of fine proppants. 

 

2. Fines migration: In a 12-day test on 20/40 Ottawa sand between metal platens, we 

observe 14% additional crushed finer particles at the outlet, as compared to inlet. 

Fines created between metal platens are only due to crushed proppant. SEM images 

confirm similar observations in test between Vaca Muerta platens, however, when 

shale platens are used, additional fines from the formation are generated due to 

proppant embedment. 

 

3. Embedment: Experiments with steel and shale platens allow the separation of 

crushing and embedment components in assessing proppant performance. The 

compaction between metal plates is entirely from proppant crushing and 

rearrangement. However, when using shale platens, an additional component of 

embedment is introduced due to presence of soft components. Embedment 

(depending on clay content) has been observed to be critical in reducing fracture 

conductivity. SEM images suggest such differences are the result of extensive 

proppant crushing, fines generation and significant proppant embedment on rock 

surface. This can have enormous implications at lower proppant concentrations, 

which are expected in case of areas far from injection site. 
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4. Effect of rock mineralogy: Observations from Vaca Muerta and Eagle Ford shale 

experiments are as follows: 

a) Compaction data from LVDTs capture the effect of both proppant crushing and 

embedment. Proppant-pack thickness was observed to reduce as a function of time 

(creep). Over 8 days, the pack thickness for Eagle Ford reduced by 61% as 

compared to 41% for Vaca Muerta shale. Proppant rearrangement and crushing 

contributed roughly 32% to fracture closure (based on test between metal platens). 

Fracture closure due to embedment was observed to be 9% for Vaca Muerta, and 

29% for Eagle Ford. Note that the embedment effect was observed to be 

proportional to the clay content for these two rocks tested.  

b) Proppant embedment, measured using a laser profilometer, as expected, showed 

strong dependence on mineralogy. Embedment in Eagle Ford was 2.5 times the 

embedment observed in Vaca Muerta shale. 

c) Eagle Ford shale exhibited embedments of 350 µm or 40-85% of grain diameter 

of 20/40 proppant size, as compared to 140 µm or 15-30% grain diameter of 20/40 

proppant size for Vaca Muerta shale. 

d) After 8 days of flow-through testing, Vaca Muerta platens exhibited 5 times 

greater permeability and 8 times greater conductivity than Eagle Ford platens.   

e) Compaction data from LVDTs, SEM images and profilometer scans support the 

claim that proppant embedment has immense impact on reduction in permeability 

over time at 1.5 lb/ft2 proppant concentration.  
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5. Effect of time: A long term test consisting of Vaca Muerta platen and 20/40 Ottawa 

sand (concentration: 2 lb/ft2) was conducted. Over 60 days, permeability dropped 

from 80 darcy to 35 md. The metal platen permeability stabilized at 5 darcy, but the 

Vaca Muerta brine-permeability dropped by over three orders of magnitudes. SEM 

images suggest such differences are the result of extensive proppant crushing, fines 

generation and significant proppant embedment on the rock surface. However, no 

diagenetic/secondary mineral growth was observed. It is expected that crushing and 

rearrangement of proppant grains is prevalent in the initial stage of the experiment, 

followed by embedment and fines migration at a later stage. Observed breaks in slope 

are possibly representative of these mechanisms, and need further evaluation. 

 

6. Impact of fluid chemistry/diagenesis: Observations from experiments comparing 

the effect of alkaline (pH:10) and complex fluid chemistry on Eagle Ford shale – 

20/40 sand proppant-packs are as follows: 

a) The permeability for both pH:7 and pH:10 dropped precipitously over time. 

However, the brine-permeability for pH:10 experiment was 10 times lower than 

pH:7 experiment, after 8 days of testing. 

b) LVDTs showed similar compaction for both brines. The fracture width was 

observed to reduce continuously as a function of time (creep). Over 18 days, the 

fracture width reduced by 90%.  

c) Eagle Ford shale exhibited embedments of 350 µm or approximately one grain 

diameter of 20/40 proppant size. 
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d) The addition of basalt in the presence of pH: 10 brine at elevated pressure and 

temperature led to growth of diagenetic minerals (smectite and zeolite like 

crystals). Over the life of well, such diagenetic mineral growth could possibly 

exacerbate the deteriorating proppant performance. 

 

7. Proppant size effect in alkaline environment: The performance of 20/40 and 

60/100 sand were compared in pH:10 environment between Eagle Ford platens. 

a) Smaller proppants (60/100 sand) had a poorer performance as compared to 20/40 

sand by a factor of 2, with a steeper decline in permeability within initial few 

hours.  

b) The permeability for both proppants dropped by more than three orders of 

magnitude within 12 days of testing.  

c) Based on LVDT data, the fracture closed by 61% over 8 days. Proppant 

rearrangement and crushing contributed 32%, while the remaining 29% was due 

to embedment. 

d) 60/100 sand produced 3 times greater amount of finer particles as compared to 

20/40 sand. The combination of smaller pore space and presence of additional 

finer particles led to faster plugging of pore space in 60/100 sand. 
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Recommendations: 

• These results of fracture conductivity loss should be examined for other proppant 

types used in the industry. 

• This study involves testing at a proppant concentration of 1.5 lb/ft2. However, the 

performance at higher proppant concentration needs to be evaluated. 

• Vary the composition of the fluid to study the additives used in the field, such as 

friction reducer, cross-linker, etc. 

• Production decline curve analysis software should incorporate explicitly the effect 

of fracture conductivity reduction over time.  
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Appendix A: Details of Experimental Setup 

 

Individual details for each of the components are as follows: 

1. Metering pump and controller: Two ISCO 100DX syringe pumps are connected 

in parallel, to maintain a continuous supply of brine for an experiment ranging 

from 10-60 days. Brine flow is regulated using an integral pump controller with a 

flow accuracy of 0.01 ml/min at a constant flow rate of 3 ml/min. Each pump has 

a capacity of 103 ml. The controller is used to communicate pressure and volume 

data with the computer.   

 

2. Inlet reservoir: Sealed inlet brine reservoir hosts the brine for the experiment. 

The brine was prepared using distilled water mixed with 3% NaCl and 0.5% KCl 

(by weight). 

 

3. All the connections are made using 1/8th inch Hastelloy tubing to prevent rusting 

due to flow of saline fluid at elevated temperature. The tubing going to the 

conductivity cell is wrapped with a heating element, attached to a variac voltage 

regulator, to elevate the fluid temperature before it enters the conductivity cell. 

This is done for easier temperature maintenance. The tubing is also wrapped with 

a glass-wool insulation. 

 

4. Transfer vessel: A transfer vessel made of Peek is used to reduce the pulsations 

from the switching between two pumps while maintaining continuous flow.  
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5. Conductivity cell: The Hastelloy conductivity cell is used for measuring the 

proppant-pack performance. The cell has silicon covered heating tape attached to 

a variac voltage transformer, and glass-wool insulation. Temperature is regulated 

using a thermocouple attached to a heating system. The features of conductivity 

cell are discussed in detail in section 2.2. 

 

6. Differential pressure gauge: A differential pressure gauge is connected across 

the conductivity cell to measure pressure changes. The gauge is calibrated over a 

range of 0-25 psi with an accuracy of ±0.01 psi.  

 

7. Hydraulic Press: A servo hydraulic press is used to apply axial load, simulating 

closure stress on the conductivity cell. The press can apply as much as 10,000 psi 

closure stress on the proppant-pack, providing a dynamic pressure range to 

simulate sub-surface environments. An ISCO 100DX metering pump and 

controller are connected to the hydraulic press to accurately maintain axial load. 

The controller communicates the data to the computer. 

 

8. Back-pressure gauge: The brine will flow after it overcomes a 300 psi back-

pressure set by the back-pressure regulator. The back pressure keeps the fluid in 

single phase, and is used to simulate pore pressure in the propped-fracture system. 
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9. Outlet brine reservoir: After flowing through the proppant-pack, the brine is 

collected in a sealed reservoir. The brine can be retrieved for water chemistry 

testing.  

 

10. Computer: The software allows recording data from hydraulic press, continuous 

flow pump system, differential pressure gauge, compaction using LVDTs, and 

temperature in the conductivity cell using a thermocouple. For this study, the data 

has been recorded at a frequency of 60 seconds. 
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Appendix B: Petrophysical Characterization of Rocks 

 

 

 

 

 

 

 

 

The platens were cut from core. The platens were then polished with a sequence of grits 

(300, 600, 900, and 1200 grit sizes) for 15 minutes each. This was done to provide a 

reproducible flat surface before testing, and to emulate planar fractures. The remaining 

rock adjacent to retrieved platens was used to measure the following properties: 

 

1. Mineralogy:  

Mineralogy was estimated using transmission Fourier Transform Infrared 

Spectroscopy (FTIR) technique (Sondergeld and Rai, 1993; Ballard, 2007). Sixteen 

commonly found minerals are quantified using this technique. These minerals are 

quartz, calcite, dolomite, siderite, aragonite, illite, smectite, kaolinite, chlorite, mixed 

clay, oligoclase feldspar, orthoclase feldspar, albite, pyrite, apatite and anhydrite. The 

organic matter was removed using a low temperature plasma asher, prior to the 

determination of mineralogy (Kale, 2009). 

 

Platens 

Fig. 61: Schematic of core used to retrieve platens for conductivity testing. The 

surrounding rock material was used for petrophysical characterization of the 

platens.  
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2. Porosity 

The total porosity is measured with the technique of crushed helium porosity on 10-

14 g of rock sample. The bulk volume is measured by applying Archimedes principle 

to mercury immersion technique. Boyle’s Law is applied to determine grain volume, 

which is used to determine porosity. Katastathis (2007) proposed to shorten the long 

equilibration times that are required for shales by crushing the samples. Samples are 

handled with extreme care during the process of crushing so that the weight loss is 

minimized (<0.1% wt) (Kale, 2009). The grain volume is corrected for the mass of 

sample lost. 

 

3. TOC  

‘Total Organic Carbon’ or TOC gives the weight percent of organic matter (OM) in 

a rock sample. TOC is composed of three components: extractable organic matter 

(EOM), convertible carbon and residual carbon fraction (Jarvie, 1991). The rock is 

crushed up to 35 mesh (500 µm) particle size experiment, and treated with HCl to 

remove any inorganic carbonate. The sample is then placed in the Leco Carbon 

Analyzer, where the carbon in the sample is oxidized to carbon dioxide (by the 

combustion of organic carbon in a pure stream of oxygen). The gas stream passes 

through an infrared (IR) detector or thermal conductivity detector (TCD), which 

determines the amount of CO2 produced. TOC adds to the soft component of the rock. 
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4. Young’s modulus  

The Young’s modulus was determined through nanoindentation. This technique 

involves indenting the rock with a Berkovich indenter while measuring the 

displacement and force. This is used to calculate the Young’s modulus and hardness.  

The static/indentation Young’s modulus has been established to be in good agreement 

with dynamic modulus on shale samples from various unconventional plays (Kumar 

et al., 2012). The effect of mineralogy, TOC and porosity on mechanical properties 

have also been discussed in detail (Shukla et al., 2013). Acquiring core samples is 

difficult and costly; this technique produces calibrated results in agreement with 

conventional measurement techniques from readily available drill cuttings.  
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Appendix C: Profilometer Measurement Procedure and Processing 

Procedure: The rock platen (after polishing, as described in section 2.3.2.1) is placed on 

the observation stage, and the sample elevation is adjusted until a focused image of the 

sample surface is obtained in the laser observation window. The ‘fine focus knob’ is used 

to adjust sample elevation to a position between the deepest and highest point. A scan of 

the surrounding area is acquired. The deepest and the highest point must be within the 

limit of the lens selected. Under settings: ‘measurement profile,’ ‘resolution: super fine 

(2048*1536),’ ‘high accuracy,’ and ‘z-pitch: 0.5’ are selected. A 10x10 matrix is then 

specified for measurement. After the data are acquired, ‘adjust’ option is used to stitch 

individual blocks, and the data file is saved in VK4 format (proprietary format of 

Keyence).   

 

The image is trimmed to a perfect rectangle to ignore the irregular edges due to stitching. 

The trimmed image is checked for any noise correction, if needed. The surface of the rock 

might not be exactly horizontal, and needs to be corrected for tilt. The ‘tilt correction’ is 

performed in both the X and Y directions. The tilt of the sample can be chosen from 

different options: plane profile, 3-point, secondary curved surface, sphere, etc., as per 

requirements. Post tilt corrections, the sample can be viewed in the 3D window to view 

the elevation profile. Under ‘set intensity/height display’ option, a histogram of the 

elevation and density of the data can be obtained. The extremes of the color palette are 

assigned to the highest and deepest points of interest on the rock surface.  

 

 


