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Abstract

Each summer, the U.S. Southern Great Plains hosts a variety of ingredients (e.g.

moisture, shear, instability, and lift) critical to understanding the life-cycle of

deep, moist convection. Past studies have primarily shown that two ingredients

undergo substantial changes in the evening hours: shear and instability. While

increases in low-level static stability may act to inhibit deep convection, in-

creases in low-level shear may promote the maintenance of convective updrafts.

Consideration of only a subset of these ingredients presents an incomplete con-

ceptual model of local, low-level environmental changes that occur during the

Afternoon-to-Evening Transition (AET). As various studies of the SGP indicate

that the frequency of hazardous thunderstorms begins to increase in the evening

hours, consideration of how other ingredients evolve may facilitate additional

improvements to convective forecasts.

To improve this conceptual model, a new line of research aims to track the

spatiotemporal evolution of water vapor during the SGP AET and understand

the processes behind these changes. By using data produced by the Oklahoma

Mesonet and Atmospheric Radiation Measurement (ARM) programs, rapid in-

creases (1-4 g/kg) in moisture are found to occur near the SGP Winter Wheat

Belt (WWB). In some cases, these jumps in moisture can greatly reverse the

loss of conditional instability caused by the setting sun. By using a combined

observation and modeling strategy, this study helps clarify the relationships be-

tween decaying turbulence and moisture advection on moisture and conditional

xxi



instability. The results from this study lends support to a conceptual model that

in the summertime, the processes occurring during the AET initiate a westward

surge in moisture from the eastern boundary of the WWB that may intensify

deep, moist convection downstream.
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Chapter 1

Introduction

To atmospheric scientists, any mass within an atmosphere that can poten-

tially change phase presents a challenging problem. Thankfully, only one gas in

Earth’s atmosphere regularly changes phase: water. Although water sustains

life on Earth, it does so with a violent streak. Most notably, water facilitates the

rapid vertical exchange of air in the atmosphere we call thunderstorms. Water

plays a key role in this phenomenon. When ascending, the conversion of water

vapor into liquid water (or ice crystals) within the air may cause a stunning show

of lightning. When descending, the evaporation of water droplets can accelerate

air downwards, causing damaging winds at the surface. Regardless of whether

the air goes up or down, water is the driving force behind this exchange.

Thunderstorms have a significant impact upon human lives though a variety

of potential threats (e.g., high winds, hail, heavy rain, tornadoes, and lightning).

Without proper awareness and preparedness, thunderstorms can cause injuries

and fatalities, especially in places where the population density is high, such

as stadiums or amusement parks (Gratz and Noble 2006; Edwards and Lemon

2002). Thunderstorms can also make people sick. Allergists have found that

high winds produced by thunderstorms can loft fungi and pollen into the air

and cause asthma outbreaks (Nasser and Pulimood 2009). This vulnerability is

troubling as climate predictions suggest that the frequency of severe thunder-

storms will increase in the future in response to anthropogenic climate change
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(Diffenbaugh et al. 2013; Trapp et al. 2007; Brooks 2013). Because of future

projections and their societal relevance, it is imperative that scientists study

the origins and evolution of thunderstorms.

Observations by various atmospheric scientists and storm-chasers have noted

that the likelihood of thunderstorm formation and intensification increases near

sunset (Figure 1.1). Maddox (1993) wrote: “It is observed by storm chasers,

whose activities tend to be confined to the open spaces of the Plains states,

that poorly organized storms occasionally change markedly around sunset, with

supercell events developing during the evening to early nighttime hours.” This

phenomenon has colloquially been referred to as “6 o’clock magic.” The term

“6 o’clock magic” was first formally introduced to the scientific literature in

Bosart and Bluestein (2008) and Bluestein (2015). They have referred to this

phenomena as “the apparent increase in the likelihood of storm formation and

the formation of tornadoes beginning at 6 PM local time.”

Although the causes behind the 6 o’clock magic theory have not been proven

rigorously using observations (Bluestein et al. 2017), studies reinforce these

anecdotal observations. Hocker and Basara (2008) demonstrated in a 10-year

climatology that, supercells most commonly develop in Oklahoma around 23

UTC. Anderson-Frey et al. (2016) and Mead and Thompson (2011) further

demonstrate that the likelihood of significant tornadoes (EF2+) begins to in-

crease around sunset. In the Great Plains region of the United States, numerous

thunderstorm climatologies have indicated that the evening hours denote the

beginning of an increase in thunderstorm related hazards such as tornadoes,

lightning, and heavy precipitation (Means 1944; Wallace 1975; Orville 1981;

Balling Jr 1985; Mead and Thompson 2011).
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Figure 1.1: An isolated supercell thunderstorm in southwestern Oklahoma
around sunset on March 30, 2008. Throughout the supercell’s life cycle, the au-
thor observed a significant intensification of the storm’s inflow beginning around
sunset and continuing into the nighttime hours.

The name of the field of research that encompasses the time period around

sunset varies across the literature. Some papers refer to this period as the

AET (e.g. Busse and Knupp 2012; Wingo and Knupp 2015), while others refer

to it as the early-evening transition (EET, e.g. Bonin et al. 2013; Coffer and

Parker 2015). The exact time frame that these two acronyms define is difficult

to ascertain from the literature, and the measurements available in past studies

often dictate how to identify this time period. Lothon et al. (2014) formally

made the distinction between the afternoon transition (AT) and the evening

transition (ET) via the sensible heat flux. The former can be identified by
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Figure 1.2: The various time frames that encompass the afternoon-to-evening
transition time period applied to a time series of sensible heat flux obtained in
Northern Oklahoma at the ARM SGP Central Facility (36◦ 36′ 18′′ N, 97◦ 29′ 6′′

W). The figure starts at 2017-06-17 12 UTC and ends on 2017-06-18 05 UTC.
6 o’clock local time occurs at 23 UTC, at the beginning of the AET.

finding the time when the sensible heat flux is at a maximum during the day,

while the latter can be found by identifying the time in the evening when the

sensible heat flux sign reverses. In this research, the terms of AET, AT, and

ET defined in Wingo and Knupp (2015) and Lothon et al. (2014) are used, and

their definitions are illustrated in a time series of sensible heat flux in Figure 1.2.

The AET in this study is defined as a time period encompassing the ET, which

is roughly a six hour period centered on local, astronomical sunset. However

the name, the rapid changes within this time frame are challenging to study as

it is difficult to adequately sample the many atmospheric processes occurring.

As water vapor is a critical component to precipitation and thunderstorm de-

velopment, it is important to be able to understand its evolution throughout the

diurnal cycle. Given this fact and the results from previous studies describing

an increase in thunderstorm activity in the evening hours of the Great Plains, a

natural question arises. How does water vapor evolve during the evening hours

of the Great Plains? This question is the central focus of this dissertation. In
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the following chapter, past studies are discussed to help dissect this question

and past work that has been done to address it. This discussion summarizes the

current understanding of the various environmental changes that occur as the

sun sets. Attention is also paid towards the various techniques used to study

these changes and their impact on deep, moist convection. An understanding

of this past work is important to understand the scientific context, direction

taken, and results found during this study.
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Chapter 2

Background

A primary way of understanding the causes behind deep, moist convection

is through the lens of the “ingredients-based approach” (Doswell et al. 1996;

Brooks 2007). In this framework, the scientific approach to anticipating a phe-

nomena involves identifying the environmental ingredients for that phenomena

and then focusing on the processes that change the spatiotemporal distribution

of ingredients (Brooks 2007). In places where the ingredients are maximized, the

probability of the phenomenon in question increases. Ingredients-based thinking

forces the problem to be simplified to basic variables. For example, a primary

ingredient for snowfall is identifying air that is below freezing, and is therefore

linked to the variable of temperature (T ) (Wetzel and Martin 2001).

For the problem of severe, deep, moist convection, four ingredients have been

identified. Doswell et al. (1996) first proposed that the ingredients of moisture,

lift, and instability were essential to the development of deep, moist convection.

For the ingredients of moisture and lift, there must be 1.) enough moisture

within a rising parcel that when lifted, the parcel reaches a level of free convec-

tion (LFC) and 2.) enough lift that the parcel can reach its LFC. Per parcel the-

ory, the parcels lifted past their LFC can ascend due to temperature differences

between the parcel and the environment (Doswell III and Markowski 2004). For

the ingredient of instability, the environmental lapse rate (∂T/∂z) must support

the existence of conditionally unstable parcels. The final ingredient, shear, acts
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to organize and sustain convection (Brooks 2007). These four ingredients, lift,

moisture, instability, and shear can be used to identify where convective de-

velopment and intensification is more probable. Ingredients may be measured

by various parameters, such as water vapor mixing ratio, environmental lapse

rates, or storm-relative helicity. Although the individual ingredients may be

related to one another through other various ways (e.g., steep lapse rates fa-

cilitating stronger rising motion per quasi-geostrophic theory), analyzing data

for these ingredients is a useful first step towards diagnosing these relationships

(Bluestein 1992).

2.1 Overview of Ingredients Present during the AET

Previous research about the AET can be divided into which ingredients

they address and how those individual ingredients impact deep, moist convec-

tion (Table 2.1). A majority of the papers found during a literature search on

these topics discuss changes in shear during the AET. During the late 1950s and

most of the 1960s, scientists documented an increase in shear starting around

sunset due to development of the Nocturnal Low-Level Jet (NLLJ) (Bonner

1968). To explain the mechanisms behind the formation of the NLLJ, Black-

adar (1957) used dynamical equations to show how the loss of friction due to

rapidly decaying turbulent eddies can create an low-level inertial oscillation that

accelerates low-level winds. Holton (1967) also offered an explanation by demon-

strating how diurnal increases in the low-level wind shear could also be created

by imposing a diurnal heating cycle on sloped terrain. These two theories were

recently merged in Shapiro et al. (2016). In the early 90s, Maddox (1993) pub-

lished a paper making the connection between diurnal changes in shear due to
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the development of the NLLJ and storm intensity. When the NLLJ develops,

the hodograph enlarges, often in the shape of a sickle. This change, Maddox

(1993) argued, can increase the low-level storm relative helicity to levels where

tornadogenesis can become more likely. This hypothesis was further confirmed

in Coffer and Parker (2015) in numerical simulations of supercells where the

low-level wind shear was modified. These simulations showed how increases in

low-level wind shear may intensify the low-level updraft and near-ground ro-

tation strength despite increasing low-level static stability. The importance of

the NLLJ in increasing the likelihood of nocturnal tornadoes has also been con-

firmed in the proximity sounding studies performed by Kis and Straka (2010)

and Mead and Thompson (2011). Because the theories connecting low-level

wind shear to supercell evolution are well established, many atmospheric scien-

tists today widely attribute the changes storms undergo during the AET and

nighttime hours to NLLJ-related increases in shear.

While increases in the NLLJ have been shown to intensify storms, stabiliza-

tion of the boundary layer due to the loss of insolation can cause storm demise

(Markowski and Richardson 2011). This process typically reduces the presence

of near-surface, conditionally unstable parcels and studies have considered its

impacts on storms compared to the NLLJ on supercells. Coffer and Parker

(2015) showed that the NLLJ may prolong storm longevity despite low-level

stabilization. Nowotarski et al. (2011) found that although supercells may not

become elevated in statically stable layers, their near-surface circulations can

become greatly reduced. Because of this result, they suggested that similar to

Coffer and Parker (2015), the NLLJ may be essential for nocturnal tornadoes.

Ziegler et al. (2010) showed how spatial variations of low-level static stability can
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Table 2.1: Chronological list of studies found during the literature review on
deep, moist convection and the AET. Each study is categorized by which ingre-
dients for convection they focus on.

Paper Instability Moisture Lift Shear/NLLJ

Blackadar (1957) - - - X
Holton (1967) - - - X
Bonner (1968) - - - X
Blackadar (1979) - - - X
Fitzjarrald and Lala (1989) - X - -
Maddox (1993) - - - X
Mahrt et al. (1998) - X - -
Acevedo and Fitzjarrald (2001) X X - -
Jones and Bannon (2002) X X X -
Song et al. (2005) - - - X
Bosart and Bluestein (2008) X - - -
Kis and Straka (2010) X - - X
Mead and Thompson (2011) X X - X
Busse and Knupp (2012) X X - X
Parker (2014) X X - X
Coffer and Parker (2015) X - - X
Bluestein (2015) X - - X
Wingo and Knupp (2015) X X X X
Anderson-Frey et al. (2016) X - - X
Mahrt (2017) X - - -
Bluestein et al. (2017) - - - X
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lead to a slow decay of supercells as the increasing stabilization may cause them

to become more cold pool driven. Although most studies attribute stabilization

to storm decay, it can be argued that these cooling trends may increase the

chance of tornadogenesis, as increased boundary layer relative humidity may

reduce evaporative cooling within downdrafts (Markowski et al. 2014). Gen-

erally though, the impacts of the diurnal cycle on conditional instability and

boundary layer relative humidity are well understood (Ratnam et al. 2013).

Modeling stabilization during the AET often requires correctly represent-

ing the relative contributions of radiative and turbulent sensible heat flux di-

vergence. From observations of the AET in Belford, England, Grant (1997)

indicated that roughly half of the cooling in the low-levels can be attributed

to turbulent flux divergence, while the other half is generally due to radiative

flux divergence. While studies to improve radiative transfer calculations (e.g.

Clough and Brown 1994) have improved our modeling of radiative contribu-

tions to the AET evolution, improvements to models of turbulence during the

AET have been difficult to achieve. Blay-Carreras et al. (2014) and Jensen et al.

(2016) both established that counter-gradient fluxes can occur for 30-40 minutes

during the AET period, suggesting that using traditional flux-gradient relation-

ships (Monin and Obukhov 1954) when modeling the AET may lead to errors

in the timing of the transition. When constructing a generalized AET cooling

conceptual model (e.g., rapid cooling surrounded by two periods of slower cool-

ing), Mahrt (2017) suggested that variations in the speed of the cooling were

primarily controlled by changes in the turbulent flux divergence. This conclu-

sion is consistent with reasoning in Acevedo and Fitzjarrald (2001), a modeling

and observation study of temperature and moisture in the AET. These studies

show that while it is well-understood that stabilization of the boundary layer
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helps destroy deep, moist convection, an understanding of the different roles flux

divergence of radiation and turbulence play in stabilizing the boundary layer is

still lacking.

2.2 Studies on Moisture Changes During the AET

Although many of these studies have established that changes to the ingre-

dients of shear and instability during the AET contribute to changes in storm

properties, alternative hypotheses considering moisture and lift has been the fo-

cus of less investigation. Changes in low-level lift were discovered in Jones and

Bannon (2002), who used a mixed-layer model to simulate the dryline in the

SGP. Solutions to their model indicated that a drastic increase in the inversion

height east of the dryline develops at dusk due to entrainment and enhanced

low-level convergence. They noted that this increase also occurred around the

same time the dryline began to retreat westward. The hypothesis that the AET

may create a maximum in low-level convergence was also discussed in Wingo

and Knupp (2015). Their study documented steady increases in convergence

above the surface layer occurring throughout the AET, and later showed that

boundaries also exhibit an increase in convergence during the AET (Wingo

2015). These two studies lend support to the idea that increased lift could ex-

plain why convection initiation in the SGP tends to occur around sunset (Bosart

and Bluestein 2008; Bluestein 2015).

With respect to moisture, Mead and Thompson (2011) found that noctur-

nal supercells that produce tornadoes tended to occur in environments with in-

creasing planetary boundary layer (PBL) moisture that coincide with increases

in low-level wind shear. In these scenarios, increases in PBL moisture helps
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counteract the loss of CAPE and increase of CIN associated with the stabiliz-

ing boundary layer. In addition, increasing PBL moisture also serves to reduce

evaporation within downdrafts, reducing the strength of cold pools and increas-

ing the probability of tornadogenesis (Markowski et al. 2002; Markowski and

Richardson 2014). Although these scenarios have occurred in past Southern

Great Plains severe weather events (e.g. the Greensburg, KS nocturnal EF-5

tornado), there have been few studies investigating how rapid local increases in

water vapor occur and how they impact conditional instability.

The presence of rapid increases in moisture during the AET has been doc-

umented by other researchers, however the focus of this research has primarily

been outside the Southern Great Plains. Flower (1937) was the first to identify

a rapid increase in water vapor (qv) around sunset during a field experiment

in Egypt. Further knowledge of this phenomena was developed by Fitzjarrald

and Lala (1989) and Acevedo and Fitzjarrald (2001). They documented similar

jumps in the near-surface water vapor content of roughly 1-3 g/kg in the Hud-

son Valley and offered explanations of their origin using the Reynolds-averaged

water vapor tendency equation (Eq. 2.1). Using this framework, they primarily

considered the contributions by terms II and IV in Eq 2.1, the moisture advec-

tion by the horizontal wind ( ~Vh) and the turbulent moisture flux convergence

terms. The final term (Term III), the moisture advection due to vertical motion

(w), was implicitly neglected in their analysis. The absence of this term was

because their analysis only looked at the near-surface, where w is approximately

0.

∂qv
∂t︸︷︷︸
I

= − ~Vh · ∇hqv︸ ︷︷ ︸
II

−w∂qv
∂z︸ ︷︷ ︸
III

− ∂w
′qv ′

∂z︸ ︷︷ ︸
IV

(2.1)
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Fitzjarrald and Lala (1989) sought to understand the causes of qv jumps in

the context of radiation fog development. Their motivation was that increases in

qv decreased the time needed to reach saturation by radiative cooling within the

surface layer, therefore accelerating fog development. By analyzing time series

of vertical velocity variance (σw) and temperature, they deduced that the jumps

in moisture occur when σw decreases below a certain value and rapid cooling

occurs. In order to connect the decay of turbulence and cooling to the jump in qv,

they derived an equation illustrating how the second derivative of temperature

with respect to time can be related to temporal changes in the surface sensible

heat flux and net radiation. Their analysis also showed that during qv jumps,

an extended period of upward latent heat and downward sensible heat flux

occurred, suggesting that the turbulence moisture flux convergence term (Term

IV) primarily contributed to jumps in qv.

In a follow up paper, Acevedo and Fitzjarrald (2001) sought to understand

the spatial and temporal variability of moisture in the surface-layer during the

Hudson Valley AET. Using an idealized large eddy simulation (LES), they sim-

ulated the AET in sloped terrain and quantified contributions of horizontal

advection and flux divergence on the spatial and temporal distributions of tem-

perature and water vapor. They found that the contributions from flux diver-

gence primarily were responsible for jumps in qv and advective terms played

a role after the jump occurred. This was caused by their use of an idealized

LES run; their simulation was able to develop large gradients in moisture (∇qv)

due to the sloped terrain and the turbulent flux term. The knowledge gained

by their LES may be used to explain the behavior of qv during the AET when

elevation varies, and may not be applicable outside the Hudson Valley.
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Unmanned aerial system (UAS) observations presented in Bonin et al. (2013)

also suggest that the turbulent flux convergence term is the source for AET qv

jumps. In their study, Southern Great Plains AETs were sampled to obtain

vertical profiles of sensible and latent heat flux. During one clear sky, light

wind AET case, moisture rapidly increased near the surface. Because of the

weak winds, moisture and temperature advection was assumed to be negligible.

During this time period, the latent heat flux profile within the lowest 50-m

decayed rapidly with height at a rate of roughly 0.4 W/m2/m, suggesting that

the turbulent flux convergence term contributed to the observed rise in moisture.

More recently, qv changes during the AET have been studied in Huntsville,

AL. Busse and Knupp (2012) used a combination of vertical profiling and

surface-based instruments to argue that the definition of the ET (sensible heat

flux reversal) is too simplistic. By using cases from only the summer and au-

tumn months, Busse and Knupp (2012) found that changes occur aloft that are

not accounted for in this definition, such as changes in wind speed and turbu-

lence. They also documented surface qv increases occurring an hour before and

after sunset. Using the same set of instruments, Wingo and Knupp (2015) ex-

panded the number of AET cases and showed that qv increases typically began

80 minutes prior to sunset. They also found that increases in qv were largest

in the summer (1.3 g/kg) while during the spring and autumn increases were

between 0.7 and 1.1 g/kg. Inspection of individual AET cases showed that these

increases were often created by short-term jumps similar to the ones found in

Fitzjarrald and Lala (1989) and Acevedo and Fitzjarrald (2001). Wingo and

Knupp (2015) also suggested that these increases were due to the combination

of a reduction of vertical mixing and evapotranspiration throughout the AET

(term IV of Eq 2.1).
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2.3 Turbulence Decay during the AET

It is clear from a survey of current literature, that the contributions of verti-

cal flux divergence to changes in temperature and humidity cannot be neglected

during the AET. Because of this, many papers researching the AET have focused

on understanding how turbulence decays. These studies are complicated by the

fact that changes to the boundary layer during this transition are complex; tur-

bulence can be intermittent and anisotropic. Horizontal inhomogeneities may

also be present, and the combination of rapidly changing conditions and weak

surface forcing may also complicate studying the transition. These conditions

depart far from the continuous, homogeneous, and stationary conditions often

present in daytime convective boundary layers.

To better isolate these complicating factors, numerical simulations have been

used in studies of the AET. Various studies simulate the transition using sin-

gle column models (SCM), large eddy simulations (LES), and direct numerical

simulations (DNS). In one of the earliest studies of this type, Nieuwstadt and

Brost (1986) studied the decay of turbulence within the atmospheric convec-

tive mixed layer by suddenly shutting off the surface sensible heat flux. This

paper demonstrated that during the AET, turbulence in the form of larger ed-

dies tends to persist in the developing residual layer, while smaller eddies are

destroyed close to the surface. These results were confirmed in Sorbjan (1997),

who revisited this problem by using a more realistic evolution of the surface

sensible heat flux. By doing this, they showed that turbulence decays much

more slowly when the sensible heat flux decays gradually. Additional support

for these ideas was found in Shaw et al. (2009), who repeated Sorbjan (1997)

but with direct numerical simulations (DNS). In addition to a more realistic
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decaying sensible heat flux, Shaw et al. (2009) also showed that the presence of

a mean wind in the boundary layer also delays the collapse of turbulence that

occurs during the AET.

Many of the hypotheses supported by these simulations have been reinforced

by observations of the AET. Grant (1997) confirmed the aforementioned LES

results by showing how the peak of the vertical velocity spectra of the develop-

ing residual layer and the surface layer separate during the AET. Within the

surface layer, the spectra shifts to smaller length scales, while aloft the spectra

remains unchanged. Unfortunately, many of these observational studies have

been restricted to the surface layer, where instrumentation can be most easily

deployed. The comparisons between LES and SCM simulations to observations

in Beare et al. (2006) and Edwards et al. (2006) demonstrated that both numer-

ical simulation methods could reproduce many aspects of the transition (e.g.,

vertical stratification and the development of the nocturnal jet). Lothon et al.

(2014) highlighted that despite these capabilities, capturing the correct timing

of the transition remains a challenging problem.

Recently, many of the questions regarding boundary layer turbulence during

the AET were attacked through the Boundary Layer Late Afternoon and Sun-

set Turbulence (BLLAST) field project (Lothon et al. 2014). In their overview

paper, they laid out scientific questions towards understanding the evolution of

1.) turbulence kinetic energy (TKE) and 2.) characteristic length scales of tur-

bulence, both which are used in Mellor-Yamada-based PBL parameterization

schemes (Mellor and Yamada 1982) to describe turbulent eddies. In a two part

series of papers, Nilsson et al. (2016a,b) used the TKE budget equation to un-

derstand changes in TKE during the afternoon transition. Nilsson et al. (2016b)

also helped understand the behavior of the pre-residual layer, which begins in
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the later parts of the afternoon transition as a layer of reduced turbulence that

grows downward with time from the capping inversion towards the surface as a

result of a decaying surface sensible heat flux (Darbieu et al. 2015). Although

BLLAST documented near-surface moisture jumps similar to past studies, a

survey of the current literature does not show any studies using BLLAST data

on this topic.
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Chapter 3

Research Questions and Hypotheses

This dissertation adds to the current scientific knowledge in three ways.

First, this research improves our understanding of the vertical and horizontal

changes in moisture during the SGP AET. This geographic region has not been

investigated thoroughly in past work. For example, papers such as Fitzjarrald

and Lala (1989); Acevedo and Fitzjarrald (2001); Busse and Knupp (2012) and

Wingo and Knupp (2015) have only focused on AET surface moisture changes

in New York and Alabama. The BLLAST studies previously mentioned took

place in Southern France (Lothon et al. 2014). Prior to this work, only two cases

of qv increases in the lowest 100 m during the SGP AET have been documented

(Bonin et al. 2013). Because of this geographical bias in the literature, the AET

in northern Oklahoma at the ARM site is a key focus of this research.

Second, this research seeks to clarify how changes in moisture impact par-

cel conditional instability during the AET. As many scientists attribute deep,

moist convection changes to NLLJ-related increases in shear, a look at condi-

tional instability changes during the SGP AET may motivate future studies.

Such studies could better clarify the individual contributions of shear and mois-

ture to observed changes in storm properties during the AET. Although this

study does not directly illustrate how moistening parcels change storm proper-

ties (e.g. trajectories within the storm inflow), it does investigate changes to the

environment, which has been used to infer storm characteristics and evolution
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by many other investigators (e.g., Rasmussen and Blanchard (1998); Thompson

et al. (2003); Edwards et al. (2012); Thompson et al. (2012a)).

Lastly, while the literature has primarily argued that vertical flux divergence

plays an important role during the AET, a review of the literature has revealed

that moisture advection during the AET has not been fully controlled for in past

experiments. However, these studies have primarily considered only changes

in the near-surface water vapor. Because of this, this study will revisit this

problem and will use networks of remote sensors and numerical simulations that

can provide the evolution of water vapor throughout the decaying convective

boundary layer (CBL). By considering the depth of qv jumps, additional clues

about the processes driving these qv increases may be found (advection vs.

turbulent moisture flux convergence).

The science questions this dissertation seeks to answer are as follows:

1. What is the spatiotemporal evolution of water vapor (qv) in the Southern

Great Plains during the AET?

2. How do these jumps in moisture change the parcel conditional instability?

3. What processes facilitate these jumps in qv?

Throughout this dissertation three hypotheses will be tested in order to

answer the above questions:

H1: Increases in qv can be found where vegetation is present.

H2: AET jumps in qv may act to increase the conditional instability of

parcels within the changing PBL.

H3: Jumps in qv are caused by advection of qv rather than the turbulent

moisture flux convergence term discussed in past literature.
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Within this dissertation, these hypotheses will be tested using a combina-

tion of observations in the horizontal and vertical in Oklahoma, similar to the

methodologies used in Busse and Knupp (2012); Wingo and Knupp (2015). To

do so, datasets collected and developed for the ARM SGP site in northern Ok-

lahoma will be used (Sisterson et al. 2016). In the following two chapters, the

ARM instrumentation, processing, and simulations provided by the ARM pro-

gram are discussed at length. First, Chapter 4, describes the instruments used

and describes a method of combining ARM remote sensor data to produce high-

temporal resolution vertical profiles of temperature and humidity. At the end of

this chapter, the numerical simulations provided by the ARM program that are

used in this research are described. In Chapter 5, the thermodynamic profiles

retrieved from ARM observations will be compared against those obtained by

radiosondes. This comparison is achieved via direct comparison of the observed

profiles and convection indices derived from them. These two chapters (Chapter

4 and 5) generally reproduce the work described in Blumberg et al. (2015) and

Blumberg et al. (2017b), however with a focus on radiosondes released within

the AET time period.

With knowledge of some of the tools used in this study in hand, Chapters 6,

7, and 8 investigate the problem of the AET moisture increase. Within Chapter

6, two decades of data from the Oklahoma Mesonet are used in several tests

to understand if AET moisture jumps have a dependency on the land-surface

characteristics (H1). In Chapter 7, the analysis of how moisture evolves in the

horizontal is extended to the vertical dimension to understand the vertical depth

of AET moisture jumps. Throughout these two chapters, attention will be paid

towards testing the idea that the observed jumps in moisture can overcome the

loss of instability driven by reduced insolation (H2).
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∂qv
∂t︸︷︷︸
I

= − ~Vh · ∇hqv︸ ︷︷ ︸
II

−w∂qv
∂z︸ ︷︷ ︸
III

− ∂w
′qv ′

∂z︸ ︷︷ ︸
IV

(3.1)

In Chapter 8, this investigation shifts towards understanding the different

processes that control these jumps in moisture, restated again in Equation 3.1.

A combination of numerical simulations and observations are used to help dis-

tinguish which jumps in water vapor are due to advection (terms II and III

shown in Eq. 3.1) compared to turbulent flux divergence (term IV). Particular

attention will be paid to the depth of the moisture jump to help identify if jumps

are driven by advection or the collapse of turbulence (H3). In the final chapter

of this dissertation, results are summarized and ideas for future explorations of

this topic are discussed.
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Chapter 4

ARM Instrumentation, Algorithms, and Simulations

Because the ARM Central Facility site in northern Oklahoma hosts a wide

variety of instrument types, it is ideal for studying the SGP AET (Sisterson

et al. 2016). The datasets provided by the ARM program provide researchers

the ability to describe the surface energy balance, cloud properties, and the

various characteristics of the planetary boundary layer (PBL) over the diur-

nal cycle. Figure 4.1 illustrates the location of five of the instruments used

in this study and their location at the ARM SGP site. These five instruments

(eddy covariance system (ECOR), energy balance Bowen Ratio system (EBBR),

Raman lidar (RLID), Doppler lidar (DLID), and the Atmospheric Emitted Ra-

diance Interferometer (AERI)) are heavily used to characterize the evolving

PBL in this study. The details of the ARM instruments, their data processing

algorithms, and the numerical simulations ARM provides to compliment their

measurements are described in this chapter.

In the first section of this chapter, ARM surface in-situ observations are

discussed. These datasets are primarily used to understand the evolution of

the near-surface water vapor, sensible heat fluxes, and latent heat fluxes. As

these observations can help indicate the various segments of the diurnal cycle

(e.g., the evening transition), they are important to include in AET analyses

(Fitzjarrald and Lala 1989). These observations are also relevant to testing

H1, as they can be used to identify evapotranspiration from the Earth’s surface
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and are located near different land surface types (e.g., the ECOR is directly

north of winter wheat in the spring, EBBR over grasslands and pasture, Bagley

et al. (2017)). In the next section, the ARM instrumentation used for classi-

fying sky cover are also discussed. Cloud cover observations are important to

use when analyzing AET data, as many past studies have indicated that the

environmental changes characteristic of the AET (e.g., reduction of the surface

winds), are best observed when the sky is clear or the sky has scattered clouds

(Fitzjarrald and Lala 1989; Acevedo and Fitzjarrald 2001; Bonin et al. 2013;

Wingo and Knupp 2015). Overall, the datasets described in Section 4.1 provide

information on the exchange of energy between the sun, Earth’s surface, and

the atmosphere.

Next, Section 4.2 includes information about the various remote sensors

used to obtain high resolution soundings of the atmosphere. As this research

will look vertically into the boundary layer undergoing a transition between

convective and stable boundary layers, it is important to understand the capa-

bilities of each observing system. First, the individual instruments (microwave

radiometer (MWR), AERI, RLID, DLID) are discussed. Next, the algorithm

used to merge the data from these individual instruments is described. The

high-resolution soundings that are derived from this algorithm are compared to

co-located radiosonde launches in Chapter 5. Later, they are used to illustrate

the changes occurring in the vertical during the ARM AET (Chapter 7).

In the final section of this chapter, the configuration of the numerical simu-

lations used in this experiment are described (Section 4.3). These simulations

are used to derive diagnostics that can help better understand the evolving

atmosphere at the ARM SGP site. A discussion of the forcing datasets used
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to derive these simulations is included in this section. The results from these

simulations are discussed in Chapter 8.

24



1 2 3 4

5

1: ECOR
2: RLID
3: DLID
4: AERI
5: EBBR

70 m

Figure 4.1: A map of the ARM Central Facility site and the location of the key
ARM instruments used in this dissertation. Image provided by Dave Turner.
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4.1 Surface-Based In-Situ Observations

In the following subsections, the ARM surface meteorological (MET), ECOR,

EBBR datasets are discussed. After that, ARM instrumentation used to de-

scribe the cloud-cover near the ARM site is summarized. These surface-based,

in-situ measurements are listed in Table 4.1 to summarize the various properties

of each ARM dataset.

4.1.1 Surface MET

The MET dataset consists of typical surface meteorology observations such

as temperature, humidity, pressure, wind speed, and wind direction. These

observations are taken between 2 and 10-meters above ground level (AGL) at

a frequency of 1-minute. Recently, Kyrouac and Theisen (2017) revealed that

temperature observations taken by the MET instruments are cold biased in high-

humidity environments. Because water vapor mixing ratio (qv) was derived from

the MET data in this research and is dependent upon temperature, the MET

data underwent a bias correction prior to its use in this research. This bias

correction was performed by using the radiosondes launched four times daily

between 2016-2017 at the ARM SGP site (6-hour intervals at 0, 6, 12, 18 UTC)

to develop a new calibration curve for the biased observations.

4.1.2 ECOR and EBBR Systems

As previously mentioned, the ARM program offers observations that describe

the surface energy balance at the ARM SGP site. Inclusion of this data stream

is important to have as it is connected to the decay of turbulence within the PBL
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during the AET (e.g. Nieuwstadt and Brost (1986); Busse and Knupp (2012);

Jensen et al. (2016)). Importantly, past studies described observations where qv

increases seemed to be initiated by the beginning of the evening transition (ET)

(Fitzjarrald and Lala 1989; Acevedo and Fitzjarrald 2001). This result makes

identification of the evening transition in observations particularly important to

this study. During the analysis of the SGP AET cases, observations of surface

latent and sensible heat flux values are used to identify the ET and characterize

any evapotranspiration occurring during the AET.

ARM uses two different technologies to measure latent and sensible heat

fluxes: eddy covariance (ECOR, Cook (2016a)) and energy balance Bowen ra-

tio (EBBR, Cook (2016b)) systems. ECOR systems use Reynolds averaged

high-frequency observations (typically a frequency of 10 Hz) of momentum,

temperature, and trace gases (e.g., water vapor), and a variety of correction

algorithms to derive surface fluxes. However, when considered with measure-

ments of other fluxes (e.g., net radiation and soil heat), the fluxes derived from

the ECOR method may not close the surface energy budget. In comparison,

the EBBR uses measurements of net radiation and thermodynamic quantities at

two levels to derive the fluxes. This method enforces closure when deriving the

surface sensible and latent heat fluxes. Despite these differences, fluxes derived

from the EBBR and ECOR compare well. Fritschen et al. (1992) found that

the sensible heat fluxes between the two instruments were similar, however the

EBBR latent heat flux was 10-15% smaller than the ECOR. At the ARM site,

these two measurements are well correlated (Bagley et al. 2017).

At its most fundamental, the ECOR method consists of taking a time se-

ries of vertical velocity (w) and scalar measurements (e.g. qv) over a specified

time period (typically 30 minutes) and subtracting off a mean from each time
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series. Next, these new time series describing the perturbations of w and qv are

multiplied together and averaged over the entire length of the sampled time se-

ries. Although the algorithm is simple to perform, many preprocessing steps are

performed first to obtain a useful time series from imperfect observing systems.

Depending upon the instrumentation, additional corrections can be performed

on the derived fluxes.

ARM ECOR systems used in this research contain open-path infrared gas

analyzers (IRGA, model LI-7500) to sample the water vapor density and carbon

dioxide concentration and a fast-response three-dimensional sonic anemometer

(model WindMaster Pro) to obtain the three components of the wind (u, v, w).

Preprocessing steps for this system include procedures to remove spikes from

the dataset, quality control checks for each data point, apply corrections for

frequency attenuation, and account for sensor separation. These various steps

are summarized in Vickers and Mahrt (1997). Next, 2-D coordinate rotations

are applied to the sonic anemometer data to achieve a mean vertical wind speed

of zero, accounting for possible errors in instrument orientation. After these

preprocessing steps have been applied, vertical fluxes of sensible, latent, and

carbon dioxide are calculated from these rotated observations. As the IGRA

used is open-path, a final correction is made to the flux measurements to account

for density changes due to heat and water vapor (Webb et al. 1980). The final

output from this process produces observations of sensible heat (HECOR(t)) and

latent heat fluxes (EECOR(t)) every 30-minutes. Per Cook (2016a), the errors

in the derived fluxes are roughly 10% of their measured value.

The ARM EBBR systems used in this study also produce 30-minute fluxes.

Each station uses two aspirated Vaisala and PRTD temperature and relative

humidity probes, REBS-brand net radiometer and soil sensors, and Met One
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sensors to determine pressure and wind observations. To derive the fluxes, the

EBBR method uses the REBS sensors to constrain the net radiation and soil

fluxes. Next, the vertical gradients of temperature and vapor pressure (derived

from the instruments) are used to compute the Bowen ratio β (Gavilán and

Berengena 2007). An assumption in this step is that the eddy transfer coeffi-

cients for water vapor and heat are assumed to be equal. Although this method

works well during the daytime, near sunrise and sunset β can approach -1, of-

ten causing spikes in the derived sensible and latent fluxes. To handle these

erroneous data points, ARM data processing uses the EBBR instrumentation

to replace the surface flux values with those derived from Monin-Obukhov simi-

larity theory (Monin and Obukhov 1954). Similar to the ECOR measurements,

the values derived from the EBBR data generally exhibit a 10% error (Cook

2016b).

4.1.3 Sky Type Detection

Observations from the Vaisala CL31 ceilometer (Morris 2016), and Total

Sky Imager (TSI) are used to characterize the sky cover of each SGP AET.

While the ceilometer provides backscatter observations to help identify clouds

and precipitation overhead, cloud coverage over a larger portion of the sky can

be estimated by the TSI (Morris 2005). The TSI combines both regular photos

of the sky and an image processing algorithm to estimate the cloud fraction

of opaque and thin clouds. Although TSI retrievals of fractional sky cover are

only valid for solar elevation angles of 10 degrees or greater, this range enables

an estimate of the cloud cover in the hours prior to sunset. This system is

frequently monitored by the ARM instrument mentor to identify and correct for

issues with the algorithm. Together, both the ceilometer and TSI were used to
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identify cloud cover during the AETs occurring at the ARM SGP site. In some

cases, GOES visible satellite from the NCAR/UCAR Image Archive1 was used

to further understand relationships between EBBR and ECOR observations

(e.g., fields of cumulus clouds across northern Oklahoma disappearing when the

ECOR indicated the evening transition had begun.)

4.2 Remote Sensors

As the AET can be a rapid process, it is both expensive and impractical to

measure its evolution using radiosondes. Instead, remote sensors such as lidars

and passive radiometers deployed by the ARM site are used. These instruments

take advantage of the different ways radiation interacts with a medium to re-

trieve variables that describe the atmosphere (e.g., temperature, humidity, wind

speed). The radiative transfer equation (RTE) describes the factors that influ-

ence the path of photons as they are either transmitted or received by remote

sensors. This equation can be used to solve for the intensity of photons along a

path (Ω) due to transmission, absorption, and scattering:

dI(Ω)

dτ
= I(Ω)− (1− ω0)B(T )− ω0

4π

∫
4π

P (Ω
′
,Ω)I(Ω

′
)dΩ

′
(4.1)

The left hand side of Equation 4.1 describes the change of radiation intensity

dI along a path with respect to the change in optical depth (dτ) of the medium

the photons are passing through. The right hand side of the RTE describes the

current intensity along the path I(Ω), and the addition of photons due to emis-

sion along the current path by the medium being considered ((1 − ω0)B(T )).

The last term describes the scattering of photons from all solid angles (dΩ
′
)

1http://www2.mmm.ucar.edu/imagearchive/
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into the current path. The single scatter albedo, ω0, is the ratio of scattering

efficiency to total extinction efficiency by the medium. This parameter controls

the ratio of scattering to absorption performed by the medium; if ω0 = 1, no

absorption occurs in the medium. If the photon is scattered, the probability

of its new path being in the line of the current path can be computed via a

probability density function, P (Ω
′
,Ω). Whether a photon is absorbed, scat-

tered, or transmitted is a function of parameters such as the wavelength of the

photon, the angle of approach to a scatterer, the size of scattering particles

compared to the wavelength of the incoming photon, and the refractive index

of the medium it is passing through. By utilizing EM waves that interact with

the atmosphere in distinct ways, scientists can infer atmospheric structure and

composition from remote sensors.

There are two different methods remote sensors use to measure the atmo-

sphere. In the first, remote sensors measure photons naturally emitted (or

scattered) by the object being observed; these are called passive sensors. In-

struments that use the second method are called active sensors; they emit elec-

tromagnetic radiation and listen for a specific return signal. In this research,

both types are used. Table 4.2 summarizes some of the characteristics of the

remote sensors that are used in this paper, and each instrument is described in

more detail in the following sections.

4.2.1 Microwave Radiometers

Ground-based microwave radiometers (MWR) observe downwelling microwave

radiation emitted by the atmosphere. Thermodynamic profiling MWRs typi-

cally observe EM radiation along the edge of the 22.3 GHz H2O and 60 GHz O2
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bands. MWRs typically sample the atmosphere at a frequency of 1 Hz and can

perform elevation scanning to obtain additional data for profiling and calibra-

tion (Löhnert and Maier 2012). In order to identify instances where the signal

observed may not be from the atmosphere, quality control flags are typically set

if liquid water is present on the radome of the instrument due to precipitation

or fog. In some cases, a blower is attached to the MWR to help remove liquid

water from the radome.

MWRs maintain their calibration by three different calibration methods.

The first two methods are automated, while the third is manual. In the first

calibration routine, a blackbody kept within the instrument is observed by the

instrument with a known noise perturbation and without that perturbation

(Löhnert and Maier 2012; Küchler et al. 2016). This method produces two

points that can be used to regularly derive a calibration equation during the

instrument’s operation. In the second automated routine, elevation scans with

the MWR are performed. By using relationships between optical depth and

elevation angle, calibration of the instrument’s lower opacity channels (typically

22.3 to 31.2 GHz) can be performed. This second method is commonly referred

to as “tip-curve” calibrations (Cadeddu et al. 2013). In the final method, a

secondary blackbody target filled with liquid N2 is used to calibrate both the

noise perturbation and the instrument. This final method is commonly used

to calibrate all available MWR channels (Han and Westwater 2000; Maschwitz

et al. 2013).

Ground-based MWRs are often used to obtain precipitable water vapor

(PWV), liquid water path (LWP), and thermodynamic profiles. Various in-

vestigators have retrieved temperature and water vapor profiles from MWR
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observations by utilizing the information within the H2O and O2 bands (Hewi-

son 2007; Löhnert et al. 2009; Löhnert and Maier 2012; Blumberg et al. 2015).

These retrievals have been used to study bores and severe weather in the past

(Chan and Hon 2011; Cimini et al. 2015; Koch et al. 2016). Retrievals of LWP

and PWV (Turner 2007) (MWRRET) have been used as a reference point for

correcting dry biases that have been identified in certain radiosonde models

(Turner et al. 2004; Turner 2007).

4.2.2 The Atmospheric Emitted Radiance Interferometer

The AERI is a ground-based interferometer that receives downwelling, in-

frared radiation between the wavelengths of 3.0 and 19.2 microns (520 - 3300

cm−1) at a unapodized spectral resolution of 0.5 cm−1 (Knuteson et al. 2004).

AERIs typically sample the atmosphere every 20 seconds. AERI instruments

regularly perform a self calibration process by observing two blackbodies housed

within the instrument casing. The first is kept at 333 K; the second changes with

the ambient temperature. Through this calibration process, the AERI spectral

accuracy is kept at a level better than 1% of the ambient radiance. Although

the instrument can operate in both clear and cloudy conditions, precipitation

can harm the foreoptics of the instrument. Because of this risk, a precipitation

sensor has been mounted on the instrument and is used to determine when to

close the instrument’s hatch.

AERIs were originally developed to improve models of infrared spectroscopy

(Turner et al. 2016). Such studies are called closure studies, in which scientists

utilize a combination of instruments to identify and resolve inconsistencies be-

tween observations and numerical model output. In the case of AERI-related

closure studies, the goal is to improve the line-by-line radiative transfer model
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(LBLRTM) (Clough et al. 1992) by using co-located observations of AERI spec-

tra and radiosonde observations. Such studies are difficult, as many sources of

error must be controlled for in both the LBLRTM and observations. However,

several closure studies performed in varying climatic regimes have successfully

improved numerical modeling of the water vapor and carbon dioxide contin-

uum (Tobin et al. 1999; Turner et al. 2004; Delamere et al. 2010; Turner et al.

2012; Mlawer et al. 2012). By updating the spectroscopy of the LBLRTM

through these types of studies, both the accuracy of AERI-derived thermody-

namic profiles and fast radiative transfer models used in data assimilation can

be improved.

AERI-derived thermodynamic profiles have helped study various atmospheric

phenomenon and have helped understand of how such instruments could be used

in operational meteorology. Studies utilizing a network of 5 AERIs between

1999-2003 in the SGP documented several severe weather events and illustrated

how trends of AERI-derived convection indicies (e.g., CAPE and CIN) could be

used to anticipate severe weather and convection initiation (Feltz and Mecikalski

2002; Feltz et al. 2003; Wagner et al. 2008). Bonin et al. (2015) used thermo-

dynamic profiles derived from the AERI to identify static stability differences

in weakly stable and strongly stable SGP nocturnal boundary layers. This set

of research has shown that the AERI can be used in many applications.

4.2.3 Raman Lidar

RLID and differential absorption lidar (DIAL) utilize the properties of ex-

tinction (scattering and absorption) to obtain profiles of various atmospheric

variables. Both lidar types alternate between transmitting pulses of light and

recording the radiation backscattered to the instrument. The returned signal
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is recorded as a function of time and is used to derive the range of targets.

Both lidar systems can utilize the ratio of received backscatter at two different

wavelengths to derive atmospheric properties such as water vapor or tempera-

ture. However, the method and processes each instrument use to measure these

properties differ significantly.

DIALs transmit at two wavelengths (Spuler et al. 2015; Weckwerth et al.

2016) to measure atmospheric concentrations of trace gases. One transmitting

wavelength is set to the absorption line for a specific gas (the on-line frequency).

The second transmitting wavelength is set close to the first, where absorption

by the gas being measured is significantly smaller (the off-line frequency). Both

wavelengths used are within a portion of the electromagnetic spectrum where

molecular scattering is very weak, but scattering from the individual wave-

lengths are primarily a function of the profile of atmospheric aerosols. Using

the level of relative attenuation between the two lasers, the concentration of

the gas being measured can be calculated. As the system relies on absorption

by the gas being measured, DIAL systems require highly calibrated and precise

transmitters.

The ARM RLID at the SGP site, on the other hand, emits laser radiation

at only one wavelength (Turner and Goldsmith 1999; Turner et al. 2002). The

signal returned to the lidar by aerosols, clouds, and molecules in the atmosphere

contain both elastic (Rayleigh scattering) and inelastic (Raman scattering) scat-

tering components. Elastic scattering by photons (e.g. Rayleigh scattering)

conserves the frequency of the incoming photon. Inelastic scattering, however,

occurs when the frequency of the photon is shifted and the kinetic energy of the

incoming photon is not conserved. A majority of the scattering by photons that
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occurs in the atmosphere is elastic. Inelastic scattering is 3-4 orders of magni-

tude smaller than elastic scattering. Because of this, RLID systems require a

sensitive receiver.

Similar to the DIAL, ratios are calculated from signals received by the ARM

RLID to calculate thermodynamic profiles (Turner and Goldsmith 1999; New-

som et al. 2013). After transmitting at 355 nm (UV wavelength), receivers

record Raman scattering by H2O (λ = 408 nm) and N2 (λ = 387 nm) through

two fields-of-view: the high or narrow field of view (NFOV) and low or wide field

of view (WFOV). Because the signal of N2 and H2O backscatter approximates

the amount of dry and moist air with height, the ratio of these two channels

is calculated to derive the qv(z) profile (Turner and Goldsmith 1999). When

temperature is measured by the RLID, the rotational Raman (RR) technique is

applied by measuring the signal from the NFOV with two more receivers: one at

354.27 nm and another at 353.27 nm. These two channels are sensitive to the ro-

tational energy state transitions of atmospheric nitrogen and oxygen molecules.

Division of these two received signals results in a range-dependent quantity

that is dependent upon temperature within the scattering volume (Newsom

et al. 2013). By calculating ratios between the variety of signals received in the

NFOV and WFOV, temperature and water vapor profiles are derived.

The estimated temperature and water vapor profiles from this process un-

dergo several corrections typical for lidars (e.g., subtraction of the solar back-

ground, dead-time corrections; Turner and Goldsmith 1999; Newsom et al. 2013.

In the final steps of ARM RLID calibration process, a correction to compen-

sate for an incomplete overlap of the detector and transmitter is preformed.

This step typically uses co-located radiosonde launches to determine an overlap

function O(r). O(r) describes what fraction of the laser beam cross section at a
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given range will be imaged onto the detector. For the WFOV, complete overlap

(where O(r) = 1) typically occurs around 800 m, where as for the NFOV, it

occurs near 4 km. After the overlap is corrected for, the ARM RLID profiles are

calibrated to agree with radiosonde profiles. Due to the differences in where the

NFOV and WFOV best sample the atmosphere, calibrated water vapor profiles

from the two FOVs are merged via weighted averaging.

The ARM site has used the RLID to measure profiles of water vapor for

more than two decades (Sisterson et al. 2016). Because of this fact and its

applicability to the focus of this study, data collected by this RLID are used

to study the AET. This data was collected from March to August for 2 years

(2016 to 2017) and has a temporal spacing of 10 minutes. To illustrate the

accuracy of the RLID data calibrated by the aforementioned calibration process,

RLID profiles (below cloud base, if it exists) and co-located 23 UTC radiosonde

launches were compared. In these comparisons, the accuracy of both qv and T

profiles obtained from the RLID were assessed.

Figure 4.2 shows this assessment for both the RLID temperature and merged

qv profiles. The temperature profile is largely unbiased (below 0.5 C), except

for the profile below 500-m. For the T STD profile, the STD starts off near 3

°C at the surface and decreases to almost 2 °C just above 1 km. There, the

STD remains constant until 2 km where the STD begins to increase at a rate of

1 °C/km. These results suggest that these RLID T profiles are most accurate

between 1 km and 4 km, which is expected given that the NFOV is unable to

detect the temperature close to the RLID as well given the incomplete overlap

at these ranges.
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Figure 4.2: Bias (solid line) and 1-σ standard deviation (dashed line) of RLID
derived temperature (A, n=144) profiles and water vapor mixing ratio (B,
n=287) profiles.

However, Figure 4.2b shows that accuracy of the 23 UTC RLID qv profiles

is higher closer to the surface. The bias shown is close to 0 g/kg at 300-m

and aloft. The STD is less than 1 g/kg in the lowest 300-m. These improved

statistics closer to the surface compared to the T profile are due to the combined

profiles of the NFOV and WFOV channels. The channels used to deriving the

T profile however, are only from the NFOV. Such results suggest that the ARM

RLID qv profiles above the lowest few range bins are adequately calibrated.

4.2.4 Doppler Lidar

The Halo Doppler Lidar (DLID) is an active remote sensor that emits and

receives radiation within the near-IR portion of the EM spectrum (1.5 microns)

(Pearson et al. 2009; Newsom 2012). The radial wind V (r) at range r is mea-

sured by observing the Doppler shift of the returned signal from various targets

in the atmosphere. Within the PBL, DLID targets are primarily atmospheric

aerosols, which is useful as they can act as passive tracers of the wind. The ARM
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DLIDs have distinct differences from other DLIDs. Along each radial, the ARM

DLIDs observations have a Nyquist velocity of 19.4 m/s and a precision of less

than 10 cm/s (Newsom 2012). ARM DLIDs include a telescope that can change

in both azimuth (θ) and elevation (φ). By using various scan patterns, ARM

DLIDs provide profiles of wind direction and speed in the atmosphere.

Two different scan patterns are used by ARM DLIDs. The first is the plan

position indicator (PPI), where the DL telescope is rotated 360 degrees in az-

imuth at a constant elevation. From this scan pattern and the velocity azimuth

display (VAD) method, the 3D wind can be retrieved (Lhermitte 1961). In this

method, measurements of velocity by azimuth for a single range bin are plotted,

and a sine wave is fitted to the data to retrieve the wind speed and direction

with height. ARM VAD scans occur every 15 minutes to obtain the horizontal

wind at an elevation of 60 deg above the horizon. In this study, ARM DLID

wind profiles are used to understand how the wind evolves throughout the AET.

In between the PPI scans, the second scan pattern occurs. During this time,

vertical stares sample the atmosphere at a frequency of 1 Hz to obtain a time

series of w(z). From these time series, vertical velocity statistics can be produced

as various eddy sizes in the boundary layer can be resolved. In the ARM value

added product (VAP) scripts that process the DLID data, these statistics are

typically computed using a 30-minute window of w(z). This processing uses the

Lenschow et al. (2000) method to remove the contribution of instrument noise on

w statistics (e.g., variance). These statistics are computed every 10 minutes by

ARM and are used in this study to analyze the decay of convectively-generated

turbulence during the AET relative to changes in low-level water vapor.
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4.3 Retrieval Algorithms

Because scientists rarely measure the variables they wish to observe directly,

various algorithms must be used to obtain the variables they wish to measure

(e.g., profiles of T, qv from AERI infrared radiances). This class of problems are

referred to as inverse problems (Rodgers 2000). In inverse problem theory, the

measurements made by an instrument are collected into a vector y of length i,

called the measurement vector. The desired variables in the retrieval (where j is

the number of variables and are unknown), are contained in the state vector x.

The two are related by the forward model F , which describes the understanding

of the physics behind the measurement process to obtain y. While these two

vectors are directly related, in practice the observation generated by F (x) is

also perturbed by some error ε:

y = F (x) + ε (4.2)

The method by which x is obtained from y is called a retrieval. Although

theoretically this problem can be well-posed and over constrained, often in prac-

tice it is not. In some retrieval problems, forward models are highly non-linear,

creating a space where several different inputs may produce the same output

within the uncertainties of y.

There are two common strategies used to obtain x: statistical and phys-

ical retrieval algorithms (Blumberg 2013). With statistical algorithms, large

datasets containing predictors (e.g., radiance spectra) and predictands (e.g.,

temperature profiles) are related using statistical relationships or machine learn-

ing methods. With respect to instruments such as MWRs or AERIs, these
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datasets can be created by inserting a dataset of observations (e.g., clima-

tologies of radiosondes) into a forward model (a radiative transfer model) to

simulate radiometric observations and produce a training dataset. Statistical

retrievals are more computationally efficient compared to physical retrievals,

however when their retrieved variables are input into the forward model the

output may not match the observed spectra due to the fact that the function

being approximated is often not one-to-one.

Physical retrievals, on the other hand, seek to find a solution that minimizes

the difference between y and F (x). These retrievals are often iterative, which

increases their computational time. Physical retrievals have a set convergence

criteria that serves to act as a break to the iteration loop. Because a conver-

gence criteria is required, physical retrievals (as opposed to statistical retrievals)

may not always provide an answer to the retrieval problem. Even so, physical

retrievals tend to be noticeably more accurate than statistical retrievals as they

are directly constrained by the physics described in F .

4.3.1 Optimal Estimation

Optimal estimation (OE) is one such physical retrieval method used to pro-

duce profiles of T, qv from passive remote sensors (Rodgers 2000). Optimal

estimation uses the Bayesian framework to invert Equation 4.2. In the OE

retrieval method, the observations in y are used with the a priori, called Xa.

When solving for the variable x in Equation 4.2 with OE, the error covariance

matrices for the observations and a priori are used, (Se and Sa, respectively)

Inclusion of these error estimates in the retrieval has two benefits: 1.) it uses

the errors to weight the contributions from the observations and prior to the
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retrieval solution and 2.) it allows for the propagation of errors through the

retrieval.

In the OE-retrieval framework, the retrieved variables are contained in the

state vector X and the following equation is iterated n times until some set

convergence criteria is reached:

Xn+1 = Xa+(γSa
−1+KT

nSe
−1Kn)−1KnSe

−1[y−F (Xn)+Kn(Xn−Xa)]. (4.3)

During each iteration, the Jacobian:

Kn =
∂Fi
∂Xj

(4.4)

is updated, which describes the linear relationship between the ith observation

in y and the jth retrieved variable in X. Typically, values in Kn are solved for by

finite differencing. As this requires running the forward model multiple times,

the calculation of the Jacobian is often the most computationally expensive part

of the OE method.

In instances where the retrieval problem uses a very non-linear forward

model, the γ parameter can be used in the OE equation. By steadily decreasing

the γ parameter as the retrieval iterates, the weight of the a priori relative to

the observations can be controlled, effectively stabilizing the retrieval so conver-

gence can be achieved. This formulation of the OE equation has been used in

the past when retrieving thermodynamic profiles from infrared spectra collected

by polar-orbiting satellite (e.g., Masiello et al. (2012)).

With each iteration, an estimate of the retrieval error covariance matrix (S)

can be solved for using the equations:
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S = B−1(γ2Sa
−1 + KT

nSe
−1Kn)B−1 (4.5)

and,

B = (γSa
−1 + KT

nSe
−1Kn). (4.6)

In addition to the uncertainty of the retrieved profile, the OE method offers

an ability to quantify the information content within the observations. To do

this, the averaging kernel A is calculated:

A = B−1(KT
nSe

−1Kn) =
∂X̂

∂X
(4.7)

The averaging kernel describes the sensitivity of the retrieval solution X̂ to

perturbations in the truth state X. Values of 1 along the diagonal of A would

describe a perfect inverse method where the observations would provide perfect

information about every retrieved variable.

Two metrics derived from A can describe the information content of the

OE retrieval. The first is the degrees of freedom of signal (DFS) metric. This

metric is calculated by summing the values along the diagonal of A (Rodgers

2000). The second is the vertical resolution of the retrieval, which is calculated

by taking the inverse of the diagonal of A, and scaling it by the layer spacing

of the retrieval (Hewison 2007).

4.4 LASSO

To supplement the ARM observations at the SGP site, the ARM program

has begun to run LES models regularly (Gustafson Jr and Vogelmann 2015).
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LES utilizes low-pass filtered versions of the Navier-Stokes equations to elimi-

nate small-scale information from the simulation. Because these smaller-scale

motions are important to the solution provided by the LES, they are modeled

by sub-grid scale parameterizations. LES is a simplification of direct numerical

simulation (DNS). DNS uses unfiltered versions of the Navier-Stokes equations

to model the whole range of spatial and temporal scales turbulence can be

found. Because of this modeling strategy, DNS is very computationally expen-

sive and is difficult to use when simulating atmospheric flows. These flows often

have a much higher Reynolds and Rayleigh number compared to those found in

engineering problems (Ferziger et al. 2002).

These simulations, funded by the ARM program, are produced by the LASSO

project. LASSO seeks to supplement ARM’s various observing systems using a

regularly run, high-resolution modeling system. Although principal investiga-

tors aim to use LASSO to help answer a number of science questions, its current

configuration is oriented towards simulating shallow convection. Some of the

current goals of the LASSO project include reducing biases in global circulation

model (GCM)s, creating new methods of parameterizing convective clouds, and

better representing heterogeneties in land-surface effects in GCMs (Gustafson Jr

and Vogelmann 2015). This last category is directly relevant to the goals of this

dissertation.

Currently, the LASSO Alpha 2 release dataset consists of approximately 544

simulations of 14 cases in the SGP area. Although the diversity of the model

configurations used to create these runs is quite large, they are based off of

only two numerical models. The first is the Weather Research and Forecasting

(WRF) model version 3.8.1 (Skamarock and Klemp 2008). The second is the

SAM model version 6.10.8 (Khairoutdinov and Randall 2003). Two primary
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differences are apparent in these models. First, the set of equations used is

different between the two models. While the SAM model uses the anelastic set

of governing equations to simulate the atmosphere, the WRF uses the full, non-

hydrostatic governing equations. Second, the ability to specify the boundary

conditions for these two models differs. The WRF offers the ability to simulate

the atmosphere using nested grids, but the SAM can only operate using peri-

odic boundary conditions. In the future, the WRF will only be used as it has

more flexibility in its modeling configuration than the SAM (Gustafson Jr and

Vogelmann 2015).

Table 4.3 indicates the configuration and various settings that are used in

the LASSO runs. The LASSO domain is a 14.4 × 14.4 km horizontal grid with a

∆x of 100-meters and 226 vertical levels. LASSO runs are initialized from the 12

UTC radiosonde launched at the ARM site and are run for 15 hours to capture

the entire daytime evolution. Output from each model by their respective sta-

tistical packages occurs every 10-minutes. With respect to the parametrization

schemes used in LASSO, only the microphysics is varied; either the Morrison

(Morrison et al. 2005) or Thompson (Thompson et al. 2004) are used in the

provided simulations. All other schemes used are fixed across the runs. To sim-

ulate radiation, the Rapid Radiative Transfer Model GCM (RRTMG) is used,

which utilizes the correlated-k approach to efficiently calculate radiative terms

in GCM applications. The subgrid closure scheme used is based on the 1.5 order

turbulent kinetic energy (TKE) approach outlined in Deardorff (1980).

Initially, both WRF and SAM LES simulations in the LASSO dataset were

to be used to test the advection hypothesis (H3). Unfortunately, the initial

analysis process using the WRF data was found to have some artifacts that

have not yet been explained by the ARM LASSO team. Because of this, only

47



LES simulations from the SAM model are used in this dissertation. Future work

however, will include the WRF dataset in additional tests of H3.

4.4.1 Simulation Forcing Datasets

Table 4.3 lists the three different forcing datasets that were used to drive

the LASSO models. These forcing datasets provided estimates of the large-

scale temperature and water vapor advection as well as surface sensible and

latent heat fluxes at the bottom boundary of the LES. In addition, estimates

of the large-scale vertical velocity from these datasets were also used to include

the influence of large-scale subsidence or ascent on the LES domain. Each

forcing dataset provides an updated estimate of the large-scale conditions at

a frequency of one hour. Given that these three datasets provide estimates of

the forcing applied throughout the entire LES domain, they are important to

discuss at length. These three datasets, the VARANAL, the ECMWF, and the

multi-scale data assimilation (MS-DA) are discussed in more detail below.

The VARANAL program initially was used to merge observations collected

during ARM intensive operating periods (IOPs) and generate the large-scale

forcing for single column models (SCM) (Zhang et al. 2016). Because the ARM

program’s initial goals were to use observations to improve parameterizations

in general circulation models (GCMs, Li et al. 2015), it was important to con-

trol for the larger scale influences when diagnosing errors in parameterization

schemes (Zhang et al. 2001). Originally, VARANAL used a variational analysis

scheme and radiosondes released over a small number of stations located around

the C1 site (Zhang and Lin 1997) to derive profiles of temperature and water va-

por advection. The constraints in VARANAL seek to make small adjustments
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Table 4.3: The LASSO model suite configuration. In the large-scale forcing
and microphysics categories the various options for the runs are listed.

Model WRF SAM

Governing Equations Full, Compressible Anelastic

Solver 3rd/5th order Runge-Kutta 3rd-order Adams-Bashforth

Version 3.8.1 6.10.8

Reference Skamarock and Klemp (2008) Khairoutdinov and Randall (2003)

Boundary Conditions Doubly Periodic

Grid Spacing
∆x = ∆y = 100 m

∆z = 30 m, z > 5 km, ∆z = 300 m near top

Domain Size
14.4 km x 14.4 km

226 vertical levels (0 - 14.7 km)

Initial Conditions 12 UTC RAOB

Microphysics
Morrison (Morrison et al. 2005, 2009)

Thompson (Thompson et al. 2004, 2008)

Large-Scale Forcing
MSDA (Li et al. 2015, 2013; Feng et al. 2015)

ECMWF (Xie et al. 2003)

Surface Forcing
VARANAL (Xie et al. 2004; Zhang and Lin 1997; Zhang et al. 2001)

MSDA (Li et al. 2015, 2013; Feng et al. 2015)
ECMWF (Xie et al. 2003)

Radiation RRTMG (Clough et al. 2005; Iacono et al. 2008; Mlawer et al. 1997)

Subgrid Closure Deardorff (1980)

to the raw data and conserve column-integrated mass, moisture, energy, and

momentum. As many methods exist to derive the large-scale forcing, a paper

by Zhang et al. (2001) sought to understand the sensitivities of each method

(e.g., Barnes 1964). It was found that by adding constraints to the water and

energy budgets in the VARANAL method (e.g., weighting surface fluxes from

ECOR and EBBR and top of the atmosphere measurements from satellites),

the uncertainties of the derived forcing was significantly reduced. In Xie et al.

(2004), it was found that adding numerical weather prediction (NWP) data to

the VARANAL algorithm further improved the derived forcing fields, especially

in periods where precipitation is present.

The ECMWF forcing dataset uses physical and dynamic tendencies calcu-

lated directly from the ECMWF Integrated Forecast System (IFS) (Ahlgrimm

and Forbes 2014). A benefit of this method is that it more accurately closes

the moisture and energy budgets and can be considered over multiple spatial
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scales (Gustafson et al. 2017). In the ECMWF IFS, each grid box occupies a

16 km by 16 km box, and represents the tendencies at a single column of the

IFS. Comparisons between VARANAL and the ECMWF forcing in Xie et al.

(2003) showed that SCMs run using both forcing types produced similar re-

sults in non-precipitating periods. As the LASSO runs are also done during

non-precipitating periods, the simulations using the VARANAL and ECMWF

datasets may exhibit similar evolutions.

The final forcing method, the multi-scale data assimilation (MSDA), uses

large-scale forcing derived from a 2-km convection-permitting WRF simulation

that has been constrained using the MSDA assimilation strategy (Li et al. 2013).

Both reanalysis products and high resolution observations are used in the as-

similation step to produce regular, three-dimensional meteorological fields near

the ARM SGP site. By doing so, MSDA takes into account spatial features

such as land-surface types and elevation when producing forcing estimates. At

its foundation, the MSDA method uses the Community Gridpoint Statistical

Interpolation (GSI), which is based on the three dimensional variational data

assimilation (3DVAR) algorithm (Parrish and Derber 1992). Because data as-

similation can unnecessarily filter out small-scale structures when applied to

high-resolution models, a multi-scale data assimilation strategy is used instead.

In this method, 3DVAR is still used, but the cost function being minimized is

separated into large-scale and small-scale components. This reduces the amount

of filtering on small scales, therefore creating a better analysis than traditional

3DVAR methods. Li et al. (2015) illustrated this by using forcing derived from

the MSDA to run a SCM. Their results indicated that the SCMs forced using

MSDA compared well to those forced by VARANAL, suggesting that the MSDA
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method performed at least as well as VARANAL at capturing the large-scale

forcing.

A variety of observations are assimilated into the MSDA to create each

forcing dataset. Such observations include both ARM and conventional obser-

vations. The conventional observations assimilated encompass datasets such as

satellite radiances and NOAA operational observations (radiosondes, Oklahoma

Mesonet, etc.). Within the ARM category, ARM radiosondes and MET stations

across northern Oklahoma are assimilated. With this release of the LASSO data

however, the MSDA forcing dataset also includes wind profiles from four ARM

SGP radar wind profilers. One profiler is located at the Central Facility while

the other three are found 15 km away from the Central Facility.

These forcing datasets are applied to the LASSO models in similar ways.

For these models, the large-scale advection is specified as an additional ten-

dency term in the model moisture and thermodynamic tendency equations.

These additional terms are applied at every gridpoint within the LES domain

(Khairoutdinov and Randall 2003; Endo et al. 2015). For both models, compu-

tations of surface fluxes are bypassed; the surface fluxes are applied to all grid

points on the lowest atmospheric model level. These advective and surface flux

estimates are used in this study to quantify the individual contributions from

the moisture tendency equation (H3)
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Chapter 5

Verification of AERIoe Retrievals

To synthesize high-temporal resolution soundings from the aforementioned

thermodynamic profiling instruments, the OE retrieval algorithm AERIoe is

used (Turner and Löhnert 2014). AERIoe was developed to improve upon

AERIprof (Feltz et al. 1998; Smith and Feltz 1999; Feltz et al. 2003), the first

thermodynamic retrieval algorithm written for the AERI. AERIoe offers many

improvements over AERIprof. First, AERIoe uses the LBLRTM (Clough et al.

1992) to relate AERI observations to profiles of temperature and water vapor,

where as AERIprof used a forward model configured for the SGP with a fixed

carbon dioxide concentration. Second, AERIoe can converge in clear and cloudy

scenes even from a poor first guess, a capability that AERIprof struggled to

achieve. AERIoe’s ability to converge in cloudy scenes also enables estimates

of liquid water path (LWP) from the retrieval algorithm. Finally, AERIoe also

provides a full error covariance matrix with each retrieval, which is something

AERIprof did not offer.

Originally, AERIoe only used AERI spectral bands to perform retrievals of

temperature and humidity profiles. In version 2.0, AERIoe was upgraded to

allow for alternative data sources (e.g., RLID, NWP profiles) to be included in

the observation vector y. This allows AERIoe to utilize information that can

help to solve for the entire tropospheric thermodynamic profile, instead of just

the lowest 4 km (Löhnert et al. 2009; Turner and Löhnert 2014; Blumberg et al.
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2015). Later versions of AERIoe also include an adiabatic and supersaturation

constraint within the algorithm (Turner and Blumberg (2018), in review).

For this research, a combination of AERI spectra (Figure 5.1), RLID profiles,

surface observations, and numerical weather prediction (20 km Rapid Refresh

analyses; Benjamin et al. 2016) from the ARM SGP site (Sisterson et al. 2016)

are used in the AERIoe y vector. These observations are summarized in Table

5.1. Co-located radiosondes (Vaisala RS-92; Holdridge et al. 2011) launched at

23 UTC for the months of March-August 2016 and 2017 from the ARM SGP

site are used to verify the accuracy of the retrieval configuration. Filtering was

done to obtain cloud-free AERIoe retrievals (the retrieved threshold is LWP < 6

g/m2) that used all data sources (e.g., Raman lidar, RAP, met data). This left

182 retrievals available for comparison.

In the following sections, these retrievals are compared to the co-located

radiosondes in different ways. In Section 5.1, the accuracy of the retrievals are

assessed. In addition, the results from two metrics are discussed (degrees of

freedom of signal and vertical resolution). These metrics quantify the infor-

mation content of the observation vector and depicts where this information

is used in the retrieval. Next, the convection indices are calculated from the

AERIoe retrievals and radiosondes to compare their individual assessments of

conditional instability. The program used for making these calculations is dis-

cussed in Section 5.2.1. In the final section, the uncertainties from both the

radiosonde profiles and AERIoe retrievals are used quantify the uncertainties of

indices such as CAPE.
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Figure 5.1: Sample AERI spectra from Blumberg et al. (2017b) with portions of
the spectra used in the AERIoe retrieval highlighted in orange, green, and red
colors. (b) The residuals between the observed AERI spectra and the spectra
calculated using the LBLRTM for a sample retrieved profile. The red lines in
(b) indicate the AERI 1 − σ observational error assumed in AERIoe. Here, 1
RU = 1 mW / (m2 sr cm−1)

Table 5.1: Observations utilized in the AERIoe y vector for this study. The
noise values for the AERI channels are listed in (Turner and Löhnert 2014;
Blumberg et al. 2015). 1-σ errors for the Raman lidar are derived directly from
Poisson statistics from the detected photon counts.

AERI RLID MET RAP

538-588 cm−1

612-618 cm−1

624-660 cm−1

674-713 cm−1

713-722 cm−1

860.1-864.0 cm−1

872.2-877.5 cm−1

898.2-905.4 cm−1

T (z) (z=2-4 km)
qv(z) (z=0.3-3 km)

z=2 m AGL
σT = 5 K

σqv = 0.7 g/kg

z = 4-12 km AGL
σT = 1 °C
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5.1 Retrieval Accuracy and Information Content

The plots within Figure 5.2 provide a look at where in the vertical AERIoe

is able to use certain observation types. Two metrics are shown: the cumulative

DFS and the vertical resolution. On the left panel of Figure 5.2, the cumulative

DFS rapidly increases with height in the lowest 2 km for both the retrieved

temperature and water vapor profiles. The temperature cumulative DFS shows

the DFS is roughly 6 at 2 km AGL; above this point the slope of the median

line changes. There, the retrieval is able to add roughly 1-2 more pieces of

information from the observations to the retrieval in the 2-4 km layer, due to

the information provided by the RLID temperature profile. In contrast, the

water vapor cumulative DFS asymptotes at approximately 3 km AGL between

9-15 DFS, where the RLID water vapor profile is no longer provided as an

observation to AERIoe. This limit indicates that the observations used in these

retrievals have little to no information about the water vapor profile above 3 km,

which makes sense given the vertical extent the RLID qv data is used. However,

for the temperature profile, the cumulative DFS continues to increase past 4 km,

as AERIoe is provided the RAP temperature data to solve for the mid-to-upper

atmospheric temperature profile. Although the AERIoe can use RAP water

vapor profile data in a similar manner, it is not used in these experiments. This

is primarily because the area of interest for this study is in the PBL, where the

RLID data is being used.

The vertical resolution plot in Figure 5.2 also provides additional information

about where the data in the AERIoe observation vector (y) is used. Below 3-

km, the vertical resolution of the water vapor profile typically is on the order of

100-400 m, with a spike at 300-m where AERIoe begins to use the RLID qv data.
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Figure 5.2: Plots showing the cumulative degrees of freedom of signal (DFS)
on the left and the vertical resolution (right) from the AERIoe-retrievals. Blue
indicates the statistics for the water vapor profile, while the red indicates the
statistics for the temperature profile. The shaded area indicates the 25-75th per-
centile of the statistic, and the solid line represents the median value (n=182).

Above 3 km, the vertical resolution for the water vapor profile rapidly degrades.

This result is similar to the vertical resolution results in Blumberg et al. (2015),

but not in Turner and Löhnert (2014). This is due to the fact that the method

of calculating vertical resolution was changed between Blumberg et al. (2015)

and Turner and Löhnert (2014). For the temperature vertical resolution, three

distinct regimes show up that are separated by rapid changes in the vertical

resolution. Between the surface and 2 km, where the information within the

AERI spectra contributes most to the retrieved profile (Turner and Löhnert

2014), the vertical resolution increases from 0 to nearly 2 km. Above 2 km, the

resolution jumps back to 1 km and increases to 4 km. Here, as mentioned in the

previous paragraph, the Raman lidar temperature data is providing information.

Finally, a final jump back to nearly 1 km at 4 km indicates where the RAP

temperature information begins to be used in AERIoe.
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Figure 5.3: Bias (solid) and standard deviation (dashed; STD) for AERIoe-
retrieved temperature (red) and water vapor (blue) compared to the profiles
obtained from co-located radiosonde launches (n=182).

Figure 5.3 shows the bias and 1-sigma standard deviation (STD) of profiles

retrieved from AERIoe compared to their co-located radiosonde observations.

For the temperature profile, the bias of the entire profile does not exceed 0.5 °C

from the surface to 8 km. The only noticeable bias is a warm bias peaking at

approximately 1.2 km, which is consistent with past studies analyzing AERIoe

retrievals (Turner and Löhnert 2014). Likewise, above 1 km, the STD for tem-

perature increases to nearly 1 °C from roughly 0.3 °C. Above 3 km, the STD for

temperature reduces to 0.5 °C until the profile reaches 7 km AGL. Above this

point, the STD increases. For the water vapor profile retrieved from AERIoe,

the lowest 300-m of the atmosphere nearly exhibits a 1 g/kg moist bias. Above

300-m, the water vapor profile is generally unbiased. Similar to the pattern

indicated by the temperature STD profile, the water vapor STD profile exhibits

a maxima aloft. However, unlike temperature, this peak occurs just above 3

km AGL. Below this maxima, the water vapor STD is approximately 0.5 g/kg.

Above this maxima, the water vapor STD decreases with height.
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Figure 5.4: Bias (solid) and standard deviation (dashed) for profiles input into
AERIoe. The profiles included are the Raman lidar water vapor profile (green),
the Raman lidar temperature profile (red), and the RAP temperature profile
(magenta) (n=182).

Most of the statistics from Figure 5.3 can be explained by looking at the ac-

curacy of the profiles input into AERIoe. Figure 5.4 shows the bias and STD for

the Raman lidar water vapor profile, the Raman lidar temperature profile, and

the RAP temperature profile. Above 4 km, where the RAP temperature profile

is used in AERIoe, the AERIoe retrieval adopts a similar cold bias and STD

value. Similarly, as the Raman lidar water vapor profile is both largely unbi-

ased and the STD remains roughly around 0.7 g/kg, the AERIoe retrieval largely

adopts these characteristics within the 300-m to 3000-m AGL layer shown in

Figure 5.3. As the Raman lidar temperature data has such a small cold bias

and is used over only a 2 km layer, its bias does not appear as easily in the

AERIoe retrieval. Overall, the statistics shown in Figure 5.3 compare well to

those in Figure 4.2. These sources of data outside the traditional AERI spectra

strongly influence the AERIoe retrievals. The small biases such as those from
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Figure 5.5: A comparison between precipitable water vapor (PWV) derived
from radiosondes (PWVRAOB) and MWRRET PWVMWRRET . Plots A and B
are the difference and the percent error for the two PWV estimates, respectively.
Each point indicates a 23 UTC RAOB and MWRRET comparison. The x-
axis indicates the difference between the RAOB and MWRRET PWV values.
(n=350).

the Raman lidar data is beneficial to AERIoe as the OE framework assumes no

systematic errors in the observations and forward models.

However, there are characteristics within the AERIoe profiles that are not

attributable to the RLID or NWP data. Most obvious are the changes in the

sign of the AERIoe temperature biases in the lowest 100-m and the nearly

1 g/kg moisture bias in the lowest 300-m of the water vapor profile (Figure

5.3). Although AERIoe does identify superadiabatic layers correctly in the

temperature profile, the near-surface profiles just above these layers can display

shallow (approximately 30 m deep) isothermal features that are not present

within radiosonde observations of the mixed-layer. These features also were

apparent in some of the daytime profiles in AERIoe retrievals using older AERI

technology Blumberg et al. (2017b), however their presence did not impact

assessments of parcel instability compared to radiosondes. The low-level moist
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bias however, did not appear in the Blumberg et al. (2017b) profiles. These

biases instead may be attributable to spectroscopy errors within the LBLRTM

or incorrect modeling of AERI instrument characteristics.

An alternative hypothesis for the bias in qv is that it may be related to

systematic errors in the moisture sensor of the radiosondes. As radiosondes are

used as the calibration standard for the RLID qv profiles, systematic errors in

the radiosondes will be carried to the RLID qv profiles; fail to meet the as-

sumption in the OE-framework that observations are unbiased. To test for this,

precipitable water vapor (PWV) calculated from all 23 UTC radiosondes from

March-August 2016-2017 was compared to PWV retrievals from MWRRET,

an OE-type retrieval algorithm for microwave radiometers (Turner et al. 2004;

Turner 2007). The results from this comparison are shown in Figure 5.5.

Apparent in Figure 5.5 is that the RS-92 radiosondes exhibit a dry bias in

wet environments (PWV > 3.5 cm). This is roughly a 3-5% error. Given that

this means the RLID qv profile also exhibits a dry bias, it is possible that the

low-level moist bias in the AERIoe retrievals is an attempt by AERIoe to resolve

inconsistencies between precise, yet dry RLID profiles and AERI spectra that

suggests that the troposphere should contain more water vapor than the RLID

profiles would suggest. While further investigation and resolution of this bias

is possible, the research questions addressed in this dissertation do not require

it. Inspection of AERIoe retrievals during the AET suggest that this bias does

not change with time. Given this fact and that this study’s focus on the time

derivative of moisture suggests that this bias will not significantly impact the

conclusions of this research.
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Although the bias and standard deviation metrics can help characterize ran-

dom and systematic errors at each height in the profile, Taylor diagrams (Tay-

lor 2001) can help understand how well the AERIoe-retrieval profiles match

the thermodynamic structures inherent in radiosonde profiles. Taylor diagrams

show the correlation coefficient between the AERIoe and radiosonde profiles

on the y-axis and the ratio of the standard deviation from each profile on the

x-axis. Each point indicates an individual case where the AERIoe retrieval

and radiosonde profiles were present. An AERIoe retrieval that reproduces

the radiosonde structures within the lowest 2 km perfectly would be found on

the (1,1) point on the diagram. Taylor diagrams have been used in Blumberg

(2013),Turner and Löhnert (2014), and Blumberg et al. (2015) to assess the

quality of AERI retrievals.

Figure 5.6 shows the Taylor diagram for the AERIoe temperature and wa-

ter vapor profiles. The clustering of the points near the (1,1) point for the

temperature retrieval indicates that the AERIoe retrieval does an excellent job

of reproducing structures present in the lowest 2-km of the profile. The water

vapor profiles also cluster around the (1,1) point, but they do exhibit more scat-

ter than the temperature profiles. Part of this loss in skill is due to the moist

bias in the lowest 300-m of the profile. However, the inclusion of the RLID in

the AERIoe retrievals improves the Taylor diagram statistics for the qv profile

compared to those in past studies (Turner and Löhnert 2014; Blumberg et al.

2015).
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Figure 5.6: Taylor plots for the AERIoe-retrieved temperature (red) and wa-
ter vapor (blue) compared to the profiles obtained from co-located radiosonde
launches. Portions of the vertical profile used in this analysis are between the
surface and 2 km AGL (n=182).
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5.2 Verification of AERIoe Convection Indices

As the profiles retrieved from AERIoe will be used in assessing changes in

parcel stability throughout the evening transition to test H2, it is important

to compare how metrics of parcel stability compare to those from co-located

radiosondes. In order to perform this comparison, convection indicies derived

from the All AERIoe cloud-free AERIoe retrievals derived in the processing

steps explained in the last section are compared regardless of the availability of

data. The analysis performed in this section is similar to the one performed in

Blumberg et al. (2017b).

In this section, two comparisons of convection indices between radiosondes

and AERIoe profiles will be made. First, comparisons of deterministic con-

vection indices determined from each observation framework will be compared.

Second, the uncertainty of the indices from each observation type will be com-

pared. This test considers convection indices in a probabilistic sense (Moller

et al. 1994) and seeks to determine whether if AERIoe retrievals or radiosondes

offer more precise diagnoses of parcel stability. This will be accomplished by

using Monte-Carlo sampling profiles to generate 500 profiles that lie within the

error bounds of the each observation. The equation for calculating the Monte

Carlo sampled profile X̂:

X̂ = S1/2Z + X (5.1)

uses the profile’s error covariance matrix S, a normally distributed random

number vector Z, and the original profile X. Parcels are then lifted in each

Monte Carlo sampled profile using SHARPpy (Blumberg et al. 2017b), therefore

generating a distribution of convection indices.

63



For radiosondes, the covariance matrix S is generated by considering two

types of errors in RS-92 radiosonde observations: 1.) repeatability errors (ran-

dom errors: sRH = 1.41% RH, sT = 0.398 °C) and 2.) reproducibility errors

(systematic errors: sRH = 3% RH, sT = 0.28 °C ). Each radiosonde profile was

perturbed by adding one randomly chosen systematic error value and a ran-

dom noise profile. The perturbation chosen were applied independently to the

profiles of temperature and relative humidity. Once the set of perturbed T (z),

RH(z) profiles was computed, they were used to calculate perturbed profiles of

water vapor mixing ratio. Finally, a covariance matrix S was calculated using

the T (z) and new qv(z) profiles. This matrix contains off-diagonal values as the

assumed uncorrelated errors in T and RH create correlated errors when qv is

calculated given qv is dependent upon T and RH.

5.2.1 SHARPpy

SHARPpy, or the Sounding and Hodograph Analysis and Research Program

in Python, is an open-source, Python implementation of the historical sounding

analysis program called SHARP (Hart and Korotky 1991). The development

of SHARPpy was motivated by various investigations that revealed that when

sounding data is run using different sounding analysis programs, noticeable

differences in the results appear. For example, different sounding analysis pro-

grams may give different values of CAPE (Marsh and Hart 2012). A quick

search using Google Scholar reveals that the workstation manual for SHARP

has been cited over 150 times. While the below text summarizes the relevant

parts of the SHARPpy program for this research, more information can be found

in Halbert et al. (2015) and Blumberg et al. (2017a).
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SHARPpy takes in thermodynamic and kinematic profiles and can calculate

the properties of lifted parcels from them. Parcels that are lifted from locations

in the environmental profile are defined as having an origination height called

zi. Parcel properties, such as the initial parcel virtual temperature Tv,parcel(zi)

can be derived (Doswell and Rasmussen 1994). Three common parcel types

are used in this study, called the 100-mb mean-layer (ML), the surface-based

(SB), and the most-unstable (MU). The equations for CAPE, CIN , and LI5

calculated using SHARPpy are shown below:

CAPE =

∫ EL

zi

g

(
Tv,parcel(z)− Tv,env(z)

Tv,env(z)

)
dz (5.2)

CIN =

∫ LFC

zi

g

(
Tv,parcel(z)− Tv,env(z)

Tv,env(z)

)
dz (5.3)

LI5 = Tv,parcel(p = 500mb)− Tv,env(p = 500mb) (5.4)

Here, EL corresponds to the equilibrium level, LFC to the level of free con-

vection, and g to Earth’s gravitational constant (9.81 m/s2). In cases where no

level of free convection (LFC) exists, both CIN and CAPE are set to 0.

SHARPpy has also had the buoyancy minimum Bmin index added to its set

of indices (Trier et al. 2014a,b, 2015). Bmin is calculated by finding the location

where an ascending parcel reaches its global minimum in buoyancy:

Bmin = min(Tv,parcel(z)− Tv,env(z)), (5.5)

where Bmin provides similar information to CIN in that it estimates how resis-

tant the environmental profile will be to ascending parcels. In contrast to CIN ,
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Bmin can be computed even if a parcel does not have a level of free convection

(LFC).

Because repeated parcel lifting of the Monte Carlo sampled profiles can

become computationally expensive, a modification was made to SHARPpy to

both improve the accuracy and speed of pseudoadiabatic calculations. During

the course of this work, SHARPpy’s method of lifting saturated parcels was

upgraded using the method outlined in Davies-Jones (2008). In Davies-Jones

(2008), the wetbulb temperature is calculated through an accelerated iterative

algorithm that inverts the equation for equivalent potential temperature derived

in Bolton (1980). This newer method is more computationally efficient and more

accurate than the Wobus method that is currently used in SHARP/SHARPpy

(Doswell 1987). Figure 5.7 shows how the Davies-Jones (2008) method is faster

than the Wobus method yet still maintains similar CAPE and CIN values.

5.2.2 Comparison of Convection Indices

Figure 5.8 shows the comparison between the 23 UTC clear-sky AERI re-

trievals and the radiosondes for the indices: CAPE , CIN , Bmin, LI5, and

the location of the buoyancy minimum (BMINHGHT ). Table 5.2 lists statistics

relevant to understanding how well the AERI retrievals reproduce the indices

computed from the co-located radiosonde measurements. On average, AERIoe

CAPE measurements tend to be greater than radiosonde CAPE measurements

by roughly 200-300 J/kg. This overestimation in parcel instability is mirrored

in the roughly 1 C biases shown for the LI5 index. The random errors (de-

noted by the 1 − σ standard deviation or STD) of these CAPE measurements

range between 200-400 J/kg and between 1.1 and 1.5 °C for LI5. Per the bias
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and STD metrics for CAPE and LI5 in Table 5.2, the AERI ML parcel tends

to compare the most favorably with the radiosonde ML parcel. Although the

NSTD suggests that the AERI retrievals are more accurate at retrieving LI5

than CAPE (0.17-0.26 vs 0.26-0.31), AERIoe performs best at retrieving these

two indices.

Table 5.2 and Figure 5.8 reinforce the conclusion found in Blumberg et al.

(2017b): AERIoe compares more favorably to radiosondes when using the Bmin

index than the CIN index. For this dataset, AERIoe tends to exhibit parcels

that are slightly less restricted by negatively buoyant layers in the atmosphere.

This is evident by the positive biases in CIN and Bmin in Table 5.2. Blumberg

et al. (2017b) found biases (approx. 10 J/kg and 0.1-1 C) and STD (approx. 50

J/kg and 1-2 C) of the same order of magnitude as the statistics in Table 5.2.

Most notable Table 5.2 are the differences in NSTD between CIN and Bmin. For

both the SB and ML parcels, the NSTD between the two are roughly 0.57 and

0.17, respectively. For the MU parcel however, the NSTD for Bmin is slightly

greater than that for CIN.

The final index in this section, the BMINHGHT indicates the location of

where Bmin is found. Per Table 5.2, AERIoe struggles to reproducing the same

BMINHGHT location as the radiosonde. AERIoe BMINHGHT for all parcel types

is typically found nearly 1 km lower than the radiosonde. The STD is also

generally found to be 1 km, as well. These larger errors are partially due to

the fact that while two profiles may generally have identical shapes, subtle

differences in weakly capped environments (where Bmin 0) create large errors.

In these environments, one profile’s BMINHGHT to be found at the origination

height z0, while the other profile’s BMINHGHT may be found at the capping
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Table 5.2: The verification statistics for different median thermodynamic in-
dices: CIN (J/kg), CAPE (J/kg), Bmin (°C), LI5 (°C), and Bmin height (km).
Shown are the number of data points n, bias, STD of the error, and the Normal-
ized STD (NSTD). NSTD is the ratio of STD to the 1-sigma STD calculated
using all the radiosonde indices for that index. Only profiles where the ra-
diosonde parcel being evaluated had a CAPE > 100 J/kg and a CIN > −800
J/kg were used in the CIN comparisons to ensure that the radiosonde had a
nonzero value of CIN and CAPE. Caption is reproduced from Blumberg et al.
(2017b).

Index Name n Bias STD NSTD

SB CAPE 231 325.7 396.4 0.31

SB CIN 143 18.1 48.3 0.57

SB Bmin 231 0.9 1.3 0.33

SB LI5 231 -1.2 1.2 0.18

SB BMINHGHT 231 -0.8 0.9 0.65

ML CAPE 231 184.9 234.5 0.26

ML CIN 114 8.7 52.4 0.59

ML Bmin 231 0.6 1.3 0.32

ML LI5 231 -0.88 1.1 0.17

ML BMINHGHT 231 -0.9 0.9 0.70

MU CAPE 231 330.1 399.3 0.31

MU CIN 148 16.9 44.9 0.60

MU Bmin 231 0.7 1.9 0.68

MU LI5 231 -1.2 1.5 0.26

MU BMINHGHT 231 -0.7 1.1 0.74
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inversion. Some of these cases are found when the AERIoe BMINHGHT = 0 and

along the gray boundary in Figure 5.8. These errors suggest that profiles of

buoyancy from AERIoe may be more useful when identifying if AET moisture

jumps help parcels overcome any capping inversions.

5.2.3 Uncertainty of Convection Indices

The impact of random and systematic errors on the distribution of convec-

tion indices derived from AERIoe were also evaluated. As AERIoe retrievals

will be used to identify if increases in conditional instability coincide with AET

moisture jumps, understanding the error characteristics of the indices used to

assess conditional instability is important. To do this, the IQR was computed

using each distribution of convection indices generated via Monte Carlo sam-

pling. Uncertainties were also computed using the 23 UTC radiosondes to act

as a baseline comparison.

Figure 5.9 shows similar trends in the uncertainty of indices independent of

parcel type and instrument. First, trends in LI5 uncertainty across all parcels

are either small or non-existent. In contrast, the uncertainty in CIN and Bmin

decreases as CIN and Bmin increase. This signifies that there is less uncertainty

in capping-related metrics when AERIoe and the radiosondes observe weakly

capped environments than strong ones. This pattern is due to the presence of

a upper bound of 0 for both CIN and Bmin. This trend reverses for CAPE,

and CAPE uncertainty increases as CAPE grows. These increases, however, are

explained by considering how errors in qv(z) from each instrument are dependent

upon qv. For the SGP, large errors in qv generally transfer into large errors in

CAPE. For radiosondes, a 5% change in RH in an environment with high qv
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will create a much larger qv error than if the same RH error was applied in a low

qv environment. For the AERIoe retrievals, uncertainty in qv grows as PWV

increases. Compared to low PWV environments, AERI observations taken in

profiles with high PWV tend to be less transparent and therefore decrease the

overall degrees of freedom of signal (DFS). While this explains the behavior of

CAPE uncertainty trends, it does not explain all of the differences apparent in

Figure 5.9.

Figure 5.9 shows some interesting behavior of the ML parcel that was not

seen in Blumberg et al. (2017b). In these tests, all AERI-based indices derived

from the ML parcel tended to exhibit less uncertainty than those derived from

the SB or MU parcel. This pattern does not occur with indices derived from

radiosondes. These differences are explained through key differences in the er-

ror covariance matrices used in the Monte Carlo sampling step (Figure 5.10).

When creating the radiosonde error covariance matrix, the inclusion of system-

atic errors creates level-to-level correlated errors. In contrast, the inclusion of

RLID qv data in AERIoe results in retrievals with practically no correlated er-

rors between levels. When the 100-mb average is taken to construct the ML

parcel properties, the averaging suppresses errors in the AERIoe more effectively

than the radiosonde, as the AERIoe retrieval covariance matrix has less corre-

lated errors than the radiosonde. When computing the SB and MU parcel, no

modification is made to the uncertainties of the parcel’s initial properties (e.g.,

T (z0), qv(z0), p(z0)), and therefore there are no substantial differences in the un-

certainties of indices derived using these two parcel types. Because Blumberg

et al. (2017b) did not use RLID data in their retrievals, this overall behavior

was not seen.
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Figure 5.7: An example of the different lifting routines in SHARPpy. The profile
is from the ARM site and was launched on May 20th, 2013 at 11:31 UTC. Red
represents the temperature trace, green the dewpoint trace, and dashed red the
virtual temperature trace. In the legend are the different parcel traces (RDJ;
Davies-Jones (2008) and WOBUS; Doswell (1987)) along with the speed in
seconds.
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Figure 5.8: Error plots for thermodynamic indices (a, f, k) CAPE (J/kg), (b, g,
l) CIN (J/kg), (c, h, m) Bmin ( °C), (d, i, n) LI5 (°C), and (e, j, o) Bmin height
(km) for the (top) SB, (middle) ML, and (bottom) MU parcels. The y-axis
represents the difference between the AERI and radiosonde index, while the
x-axis represents AERI index value. Individual points indicate a single AERI-
radiosonde comparison. The light gray shading in these plots represents the
area where invalid bias values exist because of a lower or upper bound on the
range of valid index values (for example, CAPE is nonnegative) (n=231).
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Figure 5.9: The impact of instrument random error on the calculation of the
CAPE, CIN , Bmin, and LI5 indices using (a)–(d) AERI and (e)–(h) radiosonde
profiles with CAPE > 250 (J/kg). The IQR of the index distribution is on the
y axis, while the median value of the index is on the x axis. The points are
colored by the type of parcel used to calculate the index (MU parcel: blue;
ML parcel: red; SB parcel: yellow). Thick lines indicate the line of best fit to
qualitatively show the trends for illustration purposes. Caption and figure are
reproduced from Blumberg et al. (2017b).
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Chapter 6

Lateral Evolution of Moisture

This investigation into the spatiotemporal changes in moisture during the

SGP AET begins by using data from the Oklahoma Mesonet. Previous studies

including Fitzjarrald and Lala (1989) and Acevedo and Fitzjarrald (2001) both

established that during the AET, moisture tends to increase at a rate of 1

g/kg/hr around sunset, just as the temperature begins to rapidly fall. As the

presence of these moisture jumps have been established in New York (Fitzjarrald

and Lala 1989; Acevedo and Fitzjarrald 2001) and Alabama (Busse and Knupp

2012; Wingo and Knupp 2015) through the literature, a natural first step is to

see if similar increases occur in surface time series in the SGP. As mentioned

before, the number of published cases observing the SGP AET are few (Bonin

et al. 2013). To fill this knowledge gap, data collected over two decades by the

Oklahoma Mesonet is used.

After identifying if these jumps occur, it is necessary to see what sort of

dependence they have on season or location in the state of Oklahoma (H1). This

includes tests to see if the jumps are sensitive to the land surface, as has been

suggested by past studies. Finally, because these jumps manifest themselves as

maxima in water vapor prior to sunset, Mesonet data will be used to test the

idea that a maxima in water vapor can also create maxima in parcel instability

prior to sunset (H2). In this final section, the sensitivity of these extrema in qv

to environmental conditions (e.g., cloud cover, soil moisture) are tested.
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6.1 The Oklahoma Mesonet

The Oklahoma Mesonet is a network of 121 observing stations spread out

across the state of Oklahoma at a spacing that can observe mesoscale phenom-

ena. As of this writing, the Mesonet has been in operation for 26 years (since

1991) (Brock et al. 1995; McPherson et al. 2007). This network is currently

managed by Oklahoma State University, the University of Oklahoma, and the

Oklahoma Climatological Survey.

Each Mesonet station contains a variety of meteorological sensors located

either on a 10-meter tower or embedded within the soil nearby. Temperature,

relative humidity, and pressure sensors are located 1.5 m on the tower, while the

wind is measured at 10-m. Additional sensors include a pyranometer to measure

downwelling shortwave radiation, soil temperature, and moisture sensors. The

sensors relevant to this study are listed in Table 6.1. The above ground sensors

listed sample at a rate of one sample every three seconds (Brock et al. 1995;

McPherson et al. 2007).

For this portion of the study, two decades of Mesonet observations are used

(1994-2014) to analyze how moisture changes in Oklahoma during the AET.

Only data from the months of March through August are used in this study,

which results in a total of 3822 days/AET cases observed by the Oklahoma

Mesonet. At least 114 sites are available for analysis in each AET case. Broken

up by month, this data enables a little more than 600 cases available to analyze

the AET in each month. The distribution of cases available for analysis is

illustrated in Figure 6.1. Generally, data is available from all days in the two

decades considered. No environmental filtering was performed on the data (e.g.,

removal of fronts).
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Figure 6.1: Distribution of AET cases from the Oklahoma Mesonet between
1994-2014 (n=3822).

For each AET observed by each Mesonet station, two steps are performed to

prepare the data for analysis. In the first step, the time series from each Mesonet

site was interpolated to a 5-minute, 6-hour temporal grid centered around lo-

cal sunset. Local sunset in this study is defined as the time of astronomical

sunset, and is computed by PyEphem, a Python package that runs astronomi-

cal algorithms (Rhodes 2011). Second, to compare against each observed time

series of solar radiation, the expected incoming solar radiation for a cloud-free

sky was calculated using a simple model (Stull 1988). This model calculates

the downwelling shortwave radiation at the surface (K ↓s) where the net sky

transmissivity TK is 1 for clear sky, and S is the solar irradiance of -1370 W/m2

from Kyle et al. (1985):

K ↓s= S · TK · sin(Ψ). (6.1)

The local solar elevation angle Ψ is calculated using Equation 7 in Zhang and

Anthes (1982). For instances when Ψ is negative, the sun is below the horizon
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and therefore K ↓s is set to 0 W/m2. This model was used to develop a method

of classifying the cloud cover of each AET during the 3-hour period prior to

sunset so that the sensitivity of qv jumps to cloud cover could be analyzed.

The method of classifying the AET cloud cover is similar to the AERI cloud

detection algorithm described in Blumberg (2013). For each month, thirty ran-

domly drawn Mesonet AET cases were selected to develop thresholds to classify

the AET as clear sky, scattered clouds, or overcast. From each AET, all Mesonet

stations were used, resulting in approximately 3000 data points for each cloud

filter developed. For each AET time series, differences between the daytime

(3 hours before sunset) theoretical and observed insolation were analyzed, and

subjective thresholds based upon the variability of the differences (log(σSRAD))

and the average differences (AvgSRAD) were determined. Figure 6.2 shows the

result from this algorithm. AETs where AvgSRAD and log(σSRAD) were low

tended to be clear sky, whereas cases where the variability was high log(σSRAD),

tended to have scattered clouds. AETs where log(σSRAD) and AvgSRAD were

both high tended to be AETs with overcast clouds.

79



100 50 0 50 100 150 200 250 300

Avg. SRAD Diff [W/m2]

0

1

2

3

4

5

6

lo
g(
σ
S
R
A
D
) 

[u
n
it

le
ss

]

Month: Mar

100 50 0 50 100 150 200 250 300

Avg. SRAD Diff [W/m2]

0

1

2

3

4

5

6

lo
g(
σ
S
R
A
D
) 

[u
n
it

le
ss

]

Month: Apr

100 50 0 50 100 150 200 250 300

Avg. SRAD Diff [W/m2]

0

1

2

3

4

5

6

lo
g(
σ
S
R
A
D
) 

[u
n
it

le
ss

]

Month: May

100 50 0 50 100 150 200 250 300

Avg. SRAD Diff [W/m2]

0

1

2

3

4

5

6

lo
g(
σ
S
R
A
D
) 

[u
n
it

le
ss

]

Month: Jun

100 50 0 50 100 150 200 250 300

Avg. SRAD Diff [W/m2]

0

1

2

3

4

5

6

lo
g(
σ
S
R
A
D
) 

[u
n
it

le
ss

]

Month: Jul

100 50 0 50 100 150 200 250 300

Avg. SRAD Diff [W/m2]

0

1

2

3

4

5

6

lo
g(
σ
S
R
A
D
) 

[u
n
it

le
ss

]

CLEAR

SCATTERED

OVERCAST

Month: Aug

Figure 6.2: The AET cloud classification algorithm using the Oklahoma
Mesonet SRAD variable showing the thresholds for clear (blue), scattered
(green), and overcast (red) for the months of March-August. Average differ-
ence between the daytime theoretical and observed insolation is on the x-axis
while the natural logarithm of the standard deviation of those differences is on
the y-axis.

6.2 2D-VAR

To understand the spatial variability of moisture during the AET, Mesonet

observations were also analyzed to a rectilinear grid using a two-dimensional

variational analysis program (2D-VAR). The choice to use 2D-VAR was moti-

vated by the work done in Spencer et al. (2003); Spencer and Gao (2004), which

demonstrated that their 2D-VAR algorithm was able to more accurately ana-

lyze a scalar from observations better than multi-pass Barnes analysis schemes

(Barnes 1964; Koch et al. 1983; Barnes 1994). Their method attempts to ad-

here to the Barnes (1994) suggestion that analyses should be judged by not
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only how accurately they reproduce the scalar field, but also it’s derivatives.

By using derivative information contained in the observations, Spencer et al.

(2003) argued that the analysis can be improved.

2D-VAR generates an 2D analysis of a scalar variable Zv using observations

of the scalar Zo and “observations” of the gradient of the scalar ∂Zo

∂x
and ∂Zo

∂y
. The

2D-VAR algorithm minimizes a cost function J that seeks to find the analysis

that best fits both the scalar and gradient observations:

J =

∫ ∫ {
[H(Zv)− Zo]2+ψ

[
H

(
∂Zv
∂x

)
− ∂Zo
∂x

]2
+ψ

[
H

(
∂Zv
∂y

)
− ∂Zo
∂y

]2}
dxdy

(6.2)

where ψ is a weighting parameter that determines how much to weight the

gradient observations compared to the scalar observations when minimizing

J . H is a bilinear interpolation operator that acts to interpolate the analysis

variables to observation locations. While J is minimized, a two-dimensional

recursive filter is run in order to spread the information from each observation

to nearby grid points (Gao et al. 2004). The recursive filter simulates isotropic

Gaussian error correlations without requiring matrix inversion or development

of an error covariance matrix (Purser et al. 2003).

In Spencer and Gao (2004), simulated observations taken from a truth anal-

ysis field were used to calibrate the 2D-VAR algorithm. From the observations a

Delaunay triangulation was computed; this produces a tessellation of the obser-

vations. By using the set of triangles computed by the Delaunay triangulation

that did not have an angle less than 15 deg, observations of ∂Zo

∂x
and ∂Zo

∂y
were

calculated at the centroid of each triangle (the gradient observations). This

filter by angle was put into the algorithm to avoid problems associated with the
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Figure 6.3: A map of the Oklahoma Mesonet observations (black points), the
Delaunay triangulation using those data points (black lines), the gradient ob-
servations (blue dots), and the 2D-VAR grid (red lines) using a grid spacing of
∆x = 12 km.

possible co-linearity of the triangle vertices. From the set of scalar and gradient

observations, 2D-VAR was run several times, each time varying the ψ parame-

ter. By determining the value of ψ that enabled 2D-VAR to best reproduce the

truth analysis grid, they calibrated the 2D-VAR program.

For this study, 2D-VAR was calibrated in a similar way. In this calibration,

90 randomly selected 20 km Rapid Update Cycle (RUC, Benjamin et al. 2004)

analyses from April 2002 to October 2003 were used as truth grids. These 90

grids were interpolated to a 12 km grid used in the 2D-VAR analysis (Figure

6.3). From these truth grids, observations of T , RH, p, wind speed, and wind

direction at Mesonet sites were generated by bilinear interpolation. Mesonet

stations located outside of the grid were not included in the analysis process.

These observations were first perturbed by the 1− σ errors described in Table

6.1. The resulting observations were then converted into qv, u, and v. These

three variables were used in 2D-VAR in the calibration step.
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Figure 6.4 shows the results from calibrating 2D-VAR to optimize the accu-

racy of water vapor (qv) analyses from Mesonet observations. As the Ψ parame-

ter increases, the accuracy of the analysis changes very little until the parameter

is equal to 108. Here, the accuracy of 2D-VAR in reproducing both the truth

scalar field and its derivatives increases until Ψ reaches 1010. When Ψ is in-

creased further, the accuracy of the analyses stays constant with median errors

of roughly 0.12 g/kg and 0.0040 g/kg/km. The optimum value of Ψ for the

2D-VAR using the Mesonet data is best shown in the bottom plot of Figure 6.4.

There, the 2D-VAR analyses of water vapor advection are most accurate when

Ψ equals 1011, where the global minimum for the 1-σ standard deviation exists.

In future runs of 2D-VAR discussed in this dissertation, this value of Ψ is used.
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Figure 6.4: Figures showing the dependency of 2D-VAR accuracy on the Ψ
parameter. The accuracy is measured by computing the 1-sigma standard de-
viation using the difference between the truth grid and the analyzed 2D-VAR
grid. The top plot shows the accuracy for the qv scalar field, the middle plot for
the horizontal gradient of qv, and the bottom plot for the water vapor advection.
The thick line indicates the median standard deviation, while the thinner lines
indicates the 25th to 75th percentile of the standard deviation metric.
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6.3 Monthly Changes in Moisture

To test to see if jumps in moisture occurred in the Mesonet data, data were

binned into monthly categories for each Mesonet site. From this data, a time

series of changes to water vapor using the value occurring three hours prior to

local sunset (defined as ∆qv) were calculated using the 6-hour, 5-minute grid

time series centered on local sunset. From these time series, distributions of

this change were constructed, following the analysis performed by Wingo and

Knupp (2015).

Figure 6.5 shows results for this experiment using the Medford, OK Mesonet

site located in northern Oklahoma. For the months of March to August, the

surface qv begins to increase approximately one to two hours prior to sunset, as

evident by the shift of the median ∆qv towards positive values. More apparent

though, is the trend that the magnitude of these increases shift to larger values

as the year progresses. For example, the interquartile range of AET ∆qv shifts

from spanning between -0.25 to 0.5 g/kg in March to ranging nearly 0 to 2.25

g/kg in August. This also suggests that a primary trend is that changes to

qv during the AET at the Medford site are stronger in the summer than in

the spring. A final difference between these two seasons is that while both

seasons show an increase in qv prior to sunset, they differ on whether or not

that increase continues after sunset. In the spring season, qv tends to decrease

after sunset. However, in the summer season, ∆qv tends to continue to increase

in magnitude throughout the three hour period after sunset. Between the spring

and the summer season the typical rate of increase of qv during the AET can

be estimated to be anywhere between 0.5 g/kg/hr to 1.5 g/kg/hr, which is
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Figure 6.5: This distribution of changes of water vapor relative to the value
three hours prior to sunset (∆qv) for the Medford, OK Mesonet station. The
distribution is identified by the red lines (the median), the orange lines (the 25-
75 percentile) and the black lines (the 10-90th percentiles). Data is also broken
up by month to illustrate how the distribution changes with the season with
spring months in the left column and summer months on the right.

consistent with some of the more typical changes in qv described in Fitzjarrald

and Lala (1989) and Acevedo and Fitzjarrald (2001).

The results in Figure 6.5 have some key differences and similarities to find-

ings that explain how qv behaves during the northern Alabama AET (Busse

and Knupp 2012; Wingo and Knupp 2015). First, the time frame in which the

increases in qv occur is roughly the same; Wingo and Knupp (2015) found that

qv increases began roughly 80 minutes prior to sunset on average. Similar to

Wingo and Knupp (2015), this analysis found increases for qv typically occurred
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earlier in the day than the ones found in Busse and Knupp (2012) (90 minutes

vs. 30 minutes prior to sunset). Second, both this study and Wingo and Knupp

(2015) found that during the summertime months, both Alabama and Okla-

homa exhibited similar magnitude changes in qv (e.g., roughly a median change

of 1.2 g/kg two hours after sunset). In addition, the summertime increases in

both this study and Wingo and Knupp (2015) were the largest compared to

the rest of the year. Lastly, a primary difference is apparent in the qv changes

that occur after sunset. As mentioned previously, Figure 6.5 shows that in the

springtime, qv tends to increase prior to sunset, but then decrease after sunset.

This behavior was not observed in Wingo and Knupp (2015). Instead, their

data suggested that qv continues to increase after sunset, similar to the sum-

mertime trends visible in Figure 6.5. Wingo and Knupp (2015) attributed their

post-sunset upward trend primarily to evaporation, as plants would no longer be

transpiring due to photosynthesis. Although the general magnitude and timing

of AET qv increases seem consistent between northern Alabama and northern

Oklahoma, differences are most apparent in what happens after sunset. While

the water vapor stays stationary with time after sunset in northern Alabama,

it increases with time after sunset in northern Oklahoma.

6.4 Spatial Changes in Moisture

In the previous section, the temporal changes at a single Mesonet site was

analyzed to identify if changes in moisture occur during the AET and to build an

expectation of the kind of patterns that can be hypothesized to occur spatially.

In this section, the same method of analysis used in the previous section is

applied to analyses of qv generated using 2D-VAR. The data used is a subset
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of the overall Mesonet data from 1998-2014. Using this data, the hypothesis

that seasonal shifts in vegetation along the Great Plains Winter Wheat Belt

(WWB) affects the location and extrema of water vapor during the AET is

tested (Chapter 3, H1).

The land surface properties of the SGP evolve throughout the year in a

predictable cycle. Bagley et al. (2017) described the SGP as being made up of

42% grassland/pasture and 43% cropland, of which 30% is winter wheat. While

the grassland/pasture grows with the seasons, winter wheat grows in an opposite

pattern. The winter wheat is typically planted in the fall and is harvested in

late May and early June (McPherson et al. 2004; Haugland and Crawford 2005;

Bagley et al. 2017). Figure 6.6 illustrates this cycle of the health of the winter

wheat belt and the grasslands for the months of March through August. Because

of this typical harvest time, months in this analysis between March to May are

considered pre-winter wheat harvest months, while June through August are

post-winter wheat harvest months. These drastic shifts in vegetation offers the

ability to study how the land surface impacts AET moisture changes.

Figures 6.7, 6.8, and 6.9 show the distribution of the spatial change of qv

relative to the value three hours prior to sunset for the pre-harvest months.

Similar to the results in the previous section, the distribution of changes to qv

suggests that the near-surface moistens throughout the AET. In addition, the

distribution of the changes of moisture during the AET shifts in magnitude

towards higher values as the months progress. For March, the median changes

prior to sunset shifts from roughly 0.2 g/kg to 0.4 g/kg in April (Fig 6.7 and

Fig 6.8). In May, the median changes reach their maximum of 0.6 g/kg (Fig
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Figure 6.6: Monthly averages of MODIS-derived NDVI for Oklahoma and the
Texas Panhandle from 2007 for the months of March through August. Black
lines indicate the boundaries of the WWB from McPherson et al. (2004).

6.9). The 75th percentile changes also increase from March to May from 0.6 to

roughly 1 g/kg.

The location of the moisture changes also shifts during the pre-harvest

months. Prior to sunset, moisture tends to accumulate along the WWB. After

sunset, moisture increases occur west of the WWB. These increases are best

illustrated in the March and April figures (6.7 and 6.8), where the moisture

change distribution shifts towards moister values just west of the WWB bound-

ary one hour after sunset. However, east of the WWB, the magnitude of the

median pre-sunset moisture changes increase as the months shift from March

to May. In March, the median change is actually slightly negative east of the

WWB where the vegetation is not as active (Fig 6.6). In accordance with the

growth of vegetation east of the WWB in May and April, the median change

in water vapor during the AET increases. Given the changes in vegetation

apparent in Figure 6.6 for these months, these results suggest that there is a

dependence of AET moisture changes on vegetation location and health.
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Figure 6.7: Spatial changes in moisture relative to the moisture value 3-hours
prior to sunset using March 2D-VAR analyses (n=503; 1998-2014). Rows corre-
spond to the 25th, 50th, and 75th percentile changes of the water vapor, while
columns refer to the time of the map in sunset relative time (SRT). The black
lines indicate the outline of the winter wheat belt from McPherson et al. (2004).

These above descriptions suggest that AET moisture increases no longer

occur along the harvested WWB. In fact, Figures 6.10, 6.11, and 6.12 show

that summertime increases in qv do occur along the WWB, but they primarily

occur after sunset, similar to the summertime increases indicated in Figure

6.5. These post-sunset increases are quite apparent in June and July in the

northern portion of the WWB (Figures 6.10, 6.11). The timing of these post-

sunset increases suggests that processes other than the decay of turbulence may

be playing a role in changing the near-surface moisture properties of the WWB.

Regardless, these results support the idea that the evolution of moisture during

the AET is dependent upon the land surface properties, and more specifically,

the distribution and life-cycle of vegetation.
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Figure 6.8: Similar to Figure 6.7, but using April analyses (n=503; 1998-2014).

These results are consistent with two past studies that used Mesonet data

to understand how the WWB impacts the near-surface over the entire diurnal

cycle. McPherson et al. (2004) showed how during the growing season, surface

moisture increases during the daytime along the WWB. Although they used

a Barnes analysis method (Koch et al. 1983) instead of 2D-VAR, their March

27, 2000 case study illustrated an instance when dewpoint increased along the

WWB during the three hours prior to local sunset, similar to the trends shown

in Figure 6.7. These observed McPherson et al. (2004) trends were supported

in a later study by Haugland and Crawford (2005). While not a primary goal

of their study, Haugland and Crawford (2005) also showed pre-sunset increases

in dewpoint occur in Oklahoma Mesonet data. In their analysis of the June

Mesonet data, WWB increases in dewpoint continued after sunset while stations

surrounding the WWB only increased until sunset. In March, these contrasting

trends were reversed; only the stations surrounding the WWB exhibited post-

sunset increases in dewpoint. These changes are similar to the results in Figure
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Figure 6.9: Similar to Figure 6.7, but using May analyses (n=540; 1998-2014).

6.5 and Figures 6.10 - 6.12. This new analysis, focused on the sunset time

period, lends support to the results of these past two studies.

The trends shown in Figures 6.7 - 6.12 also tangentially lend some support

to discussion in Acevedo and Fitzjarrald (2001). The authors of this paper

illustrated how topographical and sheltering could impact the timing and mag-

nitude of processes in the AET. While the dependency of the AET on sheltering

due to wind fetch is not analyzed in this dissertation, Figures 6.7 - 6.12 also

suggest the magnitude of AET moisture changes has a dependency on topogra-

phy. This is most apparent in the summer months, where an evening maxima

in water vapor develops parallel to I-40 in the valley between the Ozark and

Ouachita Mountains in Eastern OK (Figure 6.10 - 6.12). While Acevedo and

Fitzjarrald (2001) did not look at the dependency of land use on the evening

transition, these results lend support to their larger hypothesis that in topog-

raphy, sheltering, and land use all play a role in controlling the timing of the

AET.
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Figure 6.10: Similar to Figure 6.7, but using June analyses (n=522; 1998-2014).
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Figure 6.11: Similar to Figure 6.7, but using July analyses (n=510; 1998-2014).
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Figure 6.12: Similar to Figure 6.7, but using August analyses (n=510; 1998-
2014).
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6.5 Analysis of AET qv Maxima

Further analysis showing the dependency of the AET qv jump on land surface

conditions was accomplished by analyzing data collected during the AET to

identify the time period where qv typically reaches its maximum value. The use

of a maximum in water vapor to identify this phenomenon was first suggested

in Fitzjarrald and Lala (1989); Acevedo and Fitzjarrald (2001) and is extended

in this study to include time series of virtual temperature Tv and surface-based

500-mb lifted index LI5. Doing so enables this dataset to also be used to test

the impact of the qv jumps on parcel instability (H2).

The availability of two decades of Mesonet data enabled the construction of

a stronger set of tests for H1 and H2. First, because of the results described

in the previous section (Section 6.4), Mesonet sites are grouped into categories

by their location relative to the WWB, similar to the methodology in McPher-

son et al. (2004) to analyze the dependency of thermodynamic properties on

the land-surface. Figure 6.13 shows the three groups used: the West Winter

Wheat Belt (W-WWB), East Winter Wheat Belt (E-WWB), and Winter Wheat

Belt (WWB) and the Mesonet sites contained within each group. Each group

contains roughly several thousand individual AET observations available for

analysis (Table 6.2). For each AET time series in the categories, the time of the

maximum qv and Tv were found. To identify maxima in conditional instability,

the minimum LI5 was identified (LI5 becomes more negative when instability

increases). LI5 was calculated using the surface properties from the Mesonet

station and an estimate of the 500-mb virtual temperature from the 3-hourly

North American Regional Reanalysis (NARR, Kalnay et al. 1996).
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Figure 6.13: Groups of Mesonet sites relative to the winter wheat belt (WWB)
used in McPherson et al. (2004). W-WWB and E-WWB refer to the sites west
(blue) and east (red) of the WWB (green). The outline of the WWB from
McPherson et al. (2004) is included in the map in the dark black outline.

After the identification of the time of extrema in the Mesonet time series, the

data in each WWB-relative group was re-sampled in order to generate uncer-

tainty estimates and test for statistical significance between the different groups.

During the re-sampling process, 500 AET cases wer e randomly drawn 1000

times in each group (with replacement). From each 500 samples, probability

distributions functions (PDFs) were estimated using a Gaussian kernel density

estimator (KDE) from the SciPy stats package (Jones et al. 2001). This package

uses Scott’s Rule to estimate the bandwidth of the KDE (Scott 2015). Overall,

this process created 1000 PDF estimates describing when extrema of Tv, qv, and

LI5 can be found during the AET time period. In the final step, the mean and

2-sigma errors for PDFs were calculated to test for statistical significance at the

95% confidence interval. After this process was completed, tests determining

the sensitivity of thermodynamic extrema to land-surface characteristics, time

of year, and environmental characteristics were performed.
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Figure 6.14 shows monthly bootstrapped PDFs for the qv time series from

this experiment. Peaks in the PDF represent time periods when a maxima in qv

is more likely to occur. As the wheat grows in the spring months, the probability

of a maximum in qv in the hour prior to sunset also increases (roughly from

0.0025 to 0.003). For March and April, the differences in the PDFs between

the WWB and the surrounding vegetation become statistically significant at

the 95% confidence interval an hour and a half prior to sunset. While a formal

statistical test is not performed here, statistical significance in this research is

met when the 95% confidence intervals do not overlap. Most notable in Figure

6.14, is that the surrounding areas (W-WWB and E-WWB) do not exhibit

signs of a pre-sunset max in qv. In May, the PDF for the E-WWB develops

statistically significant differences from the PDF of the W-WWB. Similar to past

results, the likelihood of a pre-sunset maximum in qv increases and coincides

with the growth of healthy vegetation east of the WWB in Figure 6.6. Compared

to the prior months, the W-WWB PDF does not change. In summary, May

tends to be the month when both the WWB and E-WWB are most likely to

exhibit maxima in qv in the 1.5 hours prior to sunset.

After the harvest of the WWB (June - August), the WWB PDFs in Figure

6.14 mirror the PDFs for the W-WWB region. In fact, their differences are

not statistically significant. In these cases, a maximum in qv tends to occur

after sunset more often, suggesting that moisture tends to increase after sunset

in these locations similar to the results found in Figure 6.5. Meanwhile, the

PDFs describing the E-WWB indicate that in the summer months, a pre-sunset

maximum in qv is more likely than in the spring months. However in August,
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there is even evidence that a post-sunset maxima in qv may be more likely in

the E-WWB than in other months.

Because a pre-sunset maxima in qv often appears in the Mesonet time se-

ries, a pre-sunset maxima in conditional instability may also be present. Figure

6.15 shows when maxima in conditional instability (indicated by a minimum

in SBLI5) are most likely to occur. For all months, a maximum in condi-

tional instability is most commonly found three to two hours prior to sunset.

A maximum in instability may also be found in the post-sunset hours, however

its probability is substantially less than those found in the pre-sunset hours.

However, in the time period approaching sunset, when the probability of a

maximum in qv begins increasing, the PDFs in Figure 6.15 begin to flatten, and

the relative probabilities coincide with those in Figure 6.14. For example, in the

months prior to the winter wheat harvest, the WWB is most likely to exhibit a

maximum in conditional instability compared to the surrounding regions. The

only exception is in May, when both the E-WWB and WWB regions are most

likely to show maxima in qv and SBLI5 prior to sunset. After the harvest, the

E-WWB is more likely to have a pre-sunset maxima in conditional instability

compared to the surrounding regions.

These differences in SBLI5 between WWB-regions are not as distinct as

those previously shown for qv. Statistical significance at the 95% confidence

interval between the WWB and E-WWB is only apparent in the March and

April months. In May, statistical significant differences between the W-WWB

sites and WWB occur only 40 minutes prior to sunset. After the harvest,

statistically significant differences at the same confidence level do not occur

between the various WWB regions. However, the presence of a maximum in

98



conditional instability prior to sunset that coincides with maxima in qv lends

support to H2 that such jumps in water vapor can increase parcel buoyancy.

An alternative hypothesis can be posed suggesting that minima in SBLI5

are attributable to maxima in temperature instead of qv. Figure 6.16 shows

when the maximum value of virtual temperature occurs during the AET. For

all months, the maximum of Tv is often found in the first hour of the AET time

period. When comparing Figures 6.15 and 6.16, the maximum in instability

that occurs one hour to sunset is not likely explained by a maxima in Tv, as

the probability for a maxima in Tv is nearly 0 in Figure 6.16. This conclusion

is supported also by the inspection of numerous individual Mesonet AET cases.

Many cases reject this hypothesis by showing jumps in instability in the hour

prior to sunset despite falling temperatures and loss of insolation. The sole

factor contributing to these pre-sunset jumps in instability are distinct jumps

in qv.

A natural question to regarding the pre-sunset jumps in qv follows: What

environmental factors make these jumps more likely? Past literature discussed

in the background section suggests these jumps may be a combination of three

factors: the strength of evapotranspiration (Wingo and Knupp 2015), the am-

bient wind speed (Acevedo and Fitzjarrald 2001), and the presence of cloud

cover (Acevedo and Fitzjarrald 2001). To test these hypotheses, Mesonet ob-

servations between 90 minutes prior to sunset and sunset were averaged and

used as independent variables to classify the environmental conditions present

during each AET timeseries. For dependent variables, PDFs were integrated

within the same time frame to produce probabilities of a pre-sunset maxima in
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qv during an AET. Bootstrapping of the AET cases were again used to assess

statistical significance between the different environmental factors.

The averaged independent variables used were the fractional water index

(FWI), 10-m wind speed, and the cloud cover classification. As the Mesonet

sites used in this study did not directly measure evapotranspiration, fractional

water index (FWI) is used as a proxy variable instead. FWI ranges between

0.0 (very dry) and 1.0 (very wet, soil at field capacity) and can be calculated

from the Mesonet soil moisture measurements (Illston et al. 2008). To test

for dependencies on FWI and surface wind speeds, datasets were split up by

the median values of each independent variable. For example, AET cases were

divided into two categories (FWI > 0.85 and FWI < 0.85), as the median

value of FWI within this dataset was roughly 0.85. This enabled AETs to be

categorized as having wet soil (FWI > 0.85) or dry soil (FWI < 0.85) or as

having fast wind speeds (> 5 m/s) or slower speeds (< 5 m/s).

Figure 6.17 shows the dependency of the pre-sunset qv maxima on soil mois-

ture. For most months out of the year and WWB-relative regions, increased

soil wetness (denoted as larger FWI) generally increases the probability of a

pre-sunset qv maxima by roughly 5-10%. For the W-WWB and WWB regions,

these differences between FWI amounts are statistically significant for most

months out of the year. While not exactly measuring the evapotranspiration

from the surface, the increase in likelihood of a pre-sunset maxima in surface qv

in conditions where wet soil is present hints that evapotranspiration might be

playing a role in increasing the surface qv during the pre-sunset period.

100



Experiments showing the sensitivity of the pre-sunset qv maxima to ambient

surface wind speeds are outlined in Figure 6.18. First, the probability of pre-

sunset W-WWB qv maxima does not show any strong sensitivity to surface wind

speed. However, for the WWB and E-WWB categories, AETs with slower wind

speeds exhibit a higher probability of a pre-sunset qv maxima than those with

higher wind speeds (generally a 10-15% difference). These differences are statis-

tically significant for the WWB in the spring months and in all months except

for March in the E-WWB category. Finally, it is apparent that the impact of

wind speed on the pre-sunset qv maxima is strongest when vegetation is present.

For example, the largest changes to the pre-sunset qv maxima probability occur

on the WWB prior to the harvest (spring months) and when vegetation found

east of the WWB is growing.

In a final experiment towards understanding how environmental conditions

impact the pre-sunset maxima in qv, bootstrapped PDFs of qv maxima were

produced for AETs with clear, scattered, and overcast skies. For the WWB

dataset, the PDFs for the clear and scattered skies for spring and summer

months are nearly identical (Figure 6.19). The primary exception is in AET

that occur in March, April, May and June, where the probability of a qv maxima

in the first hour of the AET is slightly greater when the sky has scattered clouds

than when the sky is clear. Regardless, the signal for the pre-sunset qv maxima

is apparent in the spring months for both clear and scattered skies, similar to

the patterns illustrated by Figure 6.14.

Figure 6.19 also shows that for AETs with overcast skies, the PDF for the qv

maxima generally becomes uniform. This shift from a highly structured PDF to

a uniform PDF is most apparent the months of May to August. In March and
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April, the maximum likelihood of a qv maxima is easily found in the first hour of

the AET. Overall, these results corroborate previous studies (e.g., Acevedo and

Fitzjarrald 2001) that overcast clouds diminish many of the signals indicative

of the AET.

The results discussed within this chapter provide insight into the evolution

of moisture during the SGP AET. First, increases in water vapor similar to

those found in past studies occur during the SGP AET. These increases ranged

between 1-3 g/kg and tend to begin in the hours preceding sunset. Second,

horizontal analyses created by the 2D-VAR program demonstrated that the

location of these moisture increases is dependent upon the placement and health

of vegetation. Further analysis in Section 6.5 reinforced this dependency and

generally confirms H1. This section showed that the probability of a pre-sunset

maximum in qv is largest along the WWB in the springtime and east of the

WWB in the summertime. Subsequent tests illustrated that this probability

also increases when surface wind speeds are small, the skies are not overcast,

and when the soil moisture is high. Finally, the Mesonet data analyzed shows

that H2 may also be accepted, as the pre-sunset maximum in moisture also

may generate a maximum in conditional instability. With the lateral evolution

of moisture in the SGP AET now better characterized, the following chapter

begins to incorporate the vertical dimension.
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Table 6.2: Total number of AET cases available for analysis in each WWB-
relative category.

Month W-WWB WWB E-WWB

March 3888 6607 7128

April 3768 6400 6908

May 3900 6623 7150

June 3780 6420 6930

July 3906 6634 7161

August 3780 6420 6930
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Figure 6.14: Bootstrapped probability density functions describing when qv
typically reaches a maxima in the AET time period. Individual panels show the
PDFs of WWB-relative group for the months of March through August. The
three thick lines indicate the mean PDFs for each group and follow the coloring
scheme outlined in Figure 6.13 where blue is W-WWB sites, red is E-WWB
sites, and green is WWB sites. Shading represents the 95% confidence intervals
calculated via bootstrapping.

104



180 120 60 0 60 120 180

Sunset Relative Time [min]

0.000

0.002

0.004

0.006

0.008

0.010

0.012

D
e
n
si

ty
 o

f 
S
B
L
I 5

 M
in

im
a

Month: Mar

180 120 60 0 60 120 180

Sunset Relative Time [min]

0.000

0.002

0.004

0.006

0.008

0.010

0.012

D
e
n
si

ty
 o

f 
S
B
L
I 5

 M
in

im
a

Month: Apr

180 120 60 0 60 120 180

Sunset Relative Time [min]

0.000

0.002

0.004

0.006

0.008

0.010

0.012

D
e
n
si

ty
 o

f 
S
B
L
I 5

 M
in

im
a

Month: May

180 120 60 0 60 120 180

Sunset Relative Time [min]

0.000

0.002

0.004

0.006

0.008

0.010

0.012
D

e
n
si

ty
 o

f 
S
B
L
I 5

 M
in

im
a

Month: Jun

180 120 60 0 60 120 180

Sunset Relative Time [min]

0.000

0.002

0.004

0.006

0.008

0.010

0.012

D
e
n
si

ty
 o

f 
S
B
L
I 5

 M
in

im
a

Month: Jul

180 120 60 0 60 120 180

Sunset Relative Time [min]

0.000

0.002

0.004

0.006

0.008

0.010

0.012

D
e
n
si

ty
 o

f 
S
B
L
I 5

 M
in

im
a

Month: Aug

Figure 6.15: Similar to Figure 6.14, but for the 500-mb lifted index LI5.
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Figure 6.16: Similar to Figure 6.14, but for the surface virtual temperature Tv.
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Figure 6.17: Plots illustrating how the probability of a qv maxima prior to sunset
is dependent upon fractional water index (FWI), time of year, and WWB-
region. Solid lines depict the probability of the qv maximum occurring within
an hour and a half prior to sunset. Each panel indicates a WWB-region and the
x-axis indicates each month. Blue indicates the category where the FWI > 0.85
while red indicates the category when FWI < 0.85. Error bars indicate the
95% confidence interval (CI) of those probabilities, computed by bootstrapping.
Green dots indicate months where differences between the two distributions are
statistically significant at the 95% CI. The dashed lines indicates the number of
samples available for bootstrapping, while the horizontal solid gray line indicates
the minimum number of samples for bootstrapping (500).
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Figure 6.18: Similar to Figure 6.17, but for the dependency on surface wind
instead of FWI. Red indicates cases where the average surface wind was less
than 5 m/s, while blue were cases when the average surface wind was greater
than 5 m/s.
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Figure 6.19: Similar to Figure 6.14, but with two exceptions. First, the PDFs
shown are only using AET cases from the WWB category. Second, instead
of WWB categories, the colors correspond to different cloud cover categories
from the cloud detection algorithm described in Section 6.1. For the different
PDFs, magenta indicates clear skies, orange indicates scattered skies, and green
indicates cloudy skies.
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Chapter 7

Vertical Evolution of Moisture

In the previous section, only surface observations were used to analyze the

characteristics of AET qv jumps across horizontal space. Now, the analysis

turns to the vertical dimension. To do this, observations of AETs collected at

the ARM SGP site are used. These observations are limited to only the sum-

mer months to investigate the environmental characteristics of the stronger qv

increases found in Chapter 6. Particularly, this chapter seeks to characterize

qv jumps in the vertical dimension. By expanding the analysis into the verti-

cal, the vertical extent of these increases in moisture are determined (Question

1, Chapter 3). In addition, questions regarding the environmental characteris-

tics present during these jumps and the impact of these jumps on conditional

instability (Question 2, Chapter 3) will be assessed using the wide variety of

instruments available at the ARM site.

This chapter consists of four sections. In the first section, the methodology

to select 31 cases from data collected at the ARM SGP site between 2016 and

2017 is discussed. In the following three sections, three different approaches

are taken to summarize the SGP AET data. First, the time denoting the start

of the evening transition (tET ) between the ECOR and EBBR instruments is

compared. Next, the six of the selected cases are shown in detail to illustrate

the range of variability in the evolution of the PBL during the AET. Finally,
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composite plots of these cases are analyzed to summarize the common features

appearing in observations taken at the ARM SGP site during the AET.

7.1 AET Cases from ARM Site

Up to this point, much of the data has been analyzed in a statistical frame-

work to generalize the various trends of water vapor and instability during the

AET. Due to the increase in variable types and independent variables (time and

height) available to analyze the AET at the ARM site, the analysis strategy in

this section was shifted towards analyzing individual AET cases with rises in

qv. To do this, an approach similar to Busse and Knupp (2012) was used to

analyze a subset (31 cases) of the AET cases from the ARM site. Attention was

paid to understanding common and atypical changes in moisture, wind speed

and direction, vertical velocity variance, and conditional instability during the

AET.

The 31 cases selected used criteria to account for synoptic influences and

cloud cover present at the ARM site. First, only cases with scattered clouds or

clear skies with increases in qv before and after sunset were chosen. This criteria

was chosen as Chapter 6 showed that increases in water vapor tended to occur

in the pre-sunset hours most often in cloud-free or scattered skies. Second, pri-

ority was given to cases with conditional instability (parcels with CAPE greater

than 0 J/kg) diagnosed from the AERIoe profiles. Doing so allowed a visual

assessment of the changes in conditional instability. Finally, only cases show-

ing consistent southerly winds throughout the AET were included to control

for synoptic scale boundaries (e.g., cold fronts). During case selection, it was

found that the cases that met these constraints of conditional instability, water
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Table 7.1: The 31 individual cases analyzed from data collected at the SGP
ARM site. ∆qv is the size of the jump over time in g/kg and was estimated
from the surface-met time series. The depth ∆z of the qv jump is listed in km
and was estimated from the AERIoe retrievals. The start time of the jump
(tstart), the end time (tend) and the ET time (tET ) are listed in hours relative
to local sunset. The last column represents the tendency in water vapor using
∆qv and ∆t = tend − tstart. The final rows represents the average (µ) and 1-σ
standard deviation of the data in the columns.

Case Date tET ∆qv tstart tend ∆z ∆qz/∆t

1 08-18-2016 -0.5 2.0 -0.9 -0.5 1.0 4.0
2 07-20-2016 -0.9 1.8 -1.8 -1.3 1.5 3.6
3 06-22-2017 -1.2 4.0 -3.5 0.0 1.0 2.0
4 06-16-2016 -1.8 5.0 -1.9 0.2 2.0 2.4
5 07-18-2017 -2.1 2.0 -0.8 0.5 1.0 1.5
6 07-20-2017 -1.1 2.0 -1.0 1.0 0.75 2.0
7 06-25-2016 -1.4 1.5 -3.5 3.0 1.2 0.2
8 06-28-2017 -1.1 2.0 -3.5 1.0 1.0 1.0
9 07-18-2017 -2.1 4.0 -3.0 1.0 1.0 1.0
10 07-19-2016 -1 4.0 -3.0 3.0 1.0 0.6
11 07-22-2016 -1.4 3.0 -1.0 3.0 0.25 0.8
12 07-31-2016 -2.4 4.0 -3.0 0.5 1.0 1.1
13 07-11-2017 -3 4.0 -1.0 2.0 1.0 1.3
14 07-12-2017 -2.2 2.5 -1.5 1.0 0.75 1.0
15 07-17-2017 -2.1 3.0 -3.0 1.0 1.0 0.8
16 08-03-2016 -2.2 2.5 -3.8 0.0 1.0 0.7
17 08-17-2016 -1.3 1.5 -1.8 0.5 1.0 0.7
18 08-04-2017 -0.7 1.7 -1.0 0.5 0.25 1.1
19 07-24-2016 -1.4 3.7 -3.5 3.0 0.75 0.5
20 06-20-2016 -1.6 2.0 -2.3 1.0 0.5 0.6
21 06-17-2016 -1.7 2.0 -2.5 0.5 1.5 0.7
22 06-15-2016 -1.6 4.2 -2.7 1.0 1.0 1.1
23 07-19-2016 -1 2.0 -3.0 2.0 0.75 0.4
24 07-19-2017 -1 4.0 -0.9 1.5 0.75 1.6
25 07-06-2017 -2.6 4.0 -1.5 0.0 0.5 2.7
26 08-01-2016 -2.5 3.0 -1.8 0.0 0.75 1.7
27 06-21-2016 -1.6 4.0 -1.0 3.0 0.5 1.0
28 07-23-2016 -1.2 3.5 -2.5 1.4 0.75 0.9
29 07-21-2016 -1.3 2.0 -1.5 1.0 1.0 0.8
30 07-04-2016 -2 3.5 -1.7 1.0 0.75 1.3
31 06-19-2016 -1.6 2.0 -1.0 0.0 0.75 2.0

µ: – -1.6 2.9 -2.1 1.0 0.9 1.3
1− σ: – 0.6 1.0 1.0 1.1 0.3 0.9
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vapor increases, mostly clear skies, and southerly winds are most often found

in the summertime months. This is not surprising, as Chapter 6 indicated that

northern Oklahoma experiences some of the largest increases in qv during the

AET after the harvest of the WWB. The filtering described in this section also

help investigate the large qv jumps and environmental characteristics that occur

near the eastern edge of the WWB even though the wheat has been harvested

(H1). This is also useful as two of the cases appearing in this dataset were also

simulated by the LASSO project (Chapter 8). Although there were cases that

had increases in qv, but were outside this set criteria (e.g., northerly winds prior

to the harvest), they are not considered at this time.

Table 7.1 lists these cases and the various characteristics of their evolution

in qv. To understand the evolution of turbulence relative to the surface-fluxes,

the time of the ET (tET ) from the ECOR was recorded. This variable was

calculated via linear interpolation as the temporal resolution of the data is

every 30-minutes. For each case, the beginning and ending times (tstart, tend) of

the qv jump and magnitude of the qv jump (∆qv) was estimated by analyzing the

RLID, AERIoe retrievals, and MET data. The depth of these jumps were also

estimated by visual inspection of the AERIoe retrievals for each case and were

found to occur over a 1 km depth on average. From these 31 cases, the average

magnitude of these jumps in water vapor are on the order of 2.9± 1 g/kg. The

average rate at which qv increases (1 g/kg/hr) in this data is similar to the rate

of jumps found in past literature (e.g., Acevedo and Fitzjarrald 2001).
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7.2 Identifying the Evening Transition

As the analysis of these cases uses the time of the evening transition as

a benchmark of the AET, the heat flux data from the EBBR and ECOR data

streams were compared. In this comparison, estimates of the time of the evening

transition (tET ) were derived from each dataset by using linear interpolation of

the sensible heat flux time series. This comparison is illustrated in Figure 7.1.

Quickly evident in this figure is the clustering of points around an hour and

half prior to sunset, which is around the time in which qv begins to increase per

Chapter 6. Although both the ECOR and EBBR instruments typically agree

on the general timeframe of the ET, the ECOR tends to place the ET earlier

in the evening than the EBBR (10 minutes on average).

These differences between the ECOR and EBBR may be due to several dif-

ferent reasons. First, both the ECOR and the EBBR instruments are sampling

different fields. While the ECOR primarily views contributions to the flux by

the field south of the ARM site used to grow winter wheat, the EBBR sees con-

tributions from grassland and pasture (Bagley et al. 2017). As many of the ETs

with a southerly wind component also had an easterly component, it is possible

that in these cases both the ECOR and EBBR were observing similar fetches

and effectively identifying the same ET times. Another reason may be due to

the differences in observing methods; the EBBR method enforces closure of the

energy budget, while the ECOR does not. Despite these slight differences, only

the ECOR is used in this chapter to determine the tET as Figure 7.1 suggests

that tET is mostly insensitive to surface energy balance observing methods (e.g.,

ECOR vs EBBR).
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Figure 7.1: A comparison of the times of the evening transition (ET) relative to
sunset observed by the ECOR and EBBR instruments for the 31 cases described
in Table 7.1. Individual points are colored by the value of the meridional wind
measured by the ECOR at the time of the ECOR’s ET.
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Figure 7.2: Time by height cross sections showing the evolution of water vapor
mixing ratio from the AERIoe retrievals of the first six cases in Table 7.1. The
vertical solid and dashed lines indicate the time of the ET and sunset, respec-
tively. The y-axis is height above ground level and the x-axis is in sunset relative
time, with 0 being the local sunset time (SRT). In the top left of each plot indi-
cates the time of the afternoon transition (AT) and the evening transition (ET)
in hours SRT.
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7.3 AET Example Cases

Figure 7.2 illustrates the evolution of the vertical profile of qv for the first

six AET cases in Table 7.1. In all cases, the boundary layer prior to the start

of the AET can be described as well-mixed, given the homogeneous profile of

qv. In Figure 7.2, the convective boundary layer (CBL) top is characterized

by a strong vertical gradient, where qv decreases approximately 3 g/kg over a

500-m layer. In Case 3 (Figure 7.2), this places the CBL top at approximately

1.4 km AGL 3-5 hours prior to sunset. For many of these cases (Cases 2 to

5), the increase in qv within the decaying CBL begins at the beginning of the

AET (starting 3 hours prior to sunset). The timing of these increases oppose

the conceptual model put forth by Fitzjarrald and Lala (1989) and Acevedo and

Fitzjarrald (2001), that suggests these increases in moisture begin after the sign

of the sensible heat flux has reversed. In these shown cases, only Cases 1 and 6

display increases in qv that begin at the evening transition. The behavior of qv

near the surface in these summertime cases is generally similar to the evolution

discussed in Chapter 6.

The cases in Figure 7.2 also display variability in the number of increases

in water vapor, the depth of the increases, and the rate of the increases. For

Cases 1, 3, and 6, the water vapor tends to increase at a constant rate prior

to sunset only once. However, Cases 4 and 5 tend to show instances in which

rapid increases in qv occur more than once. The magnitude of these increases are

similar to the near-surface evolution in Figure 6.5 during the pre-sunset hours

in the summer months. This is most apparent in Case 4, in which a 1.5 km

deep increase of 3 g/kg occurs starting approximately 4 hours prior to sunset,

and a subsequent increase of another 3 g/kg begins an hour and a half prior
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to sunset. For Cases 1, 2, 3, and 4, the increases in moisture prior to sunset

tend to occur over a layer 1 km in depth (see Table 7.1). Cases 4 and 6 show

increases over depths larger and smaller than 1 km (approximately 2 km and

0.5 km, respectively). Finally, some of the largest differences in the rate of the

qv increase can be seen in Cases 1 and 5. In Case 5, the increase in moisture

starting just before the evening transition increases at a rate of approximately

2 g/kg in 3 hours. However, Case 1 is more extreme. The increase in water

vapor starting just prior to the evening transition occurs at a rate of 3 g/kg in 1

hour. These six cases show qv increases at the SGP site may occur at different

speeds, depths, and number of times that they occur.

As these cases occur in a mostly cloud-free sky with a slowly decreasing

sensible heat flux, they have a somewhat general decay in turbulence within the

CBL. Figure 7.3 depicts the evolution of vertical velocity variance (w′2) for the

six cases analyzed. Prior to the AET, the DLID displays large w′2 throughout

the CBL. In Case 4, w′2 of more than 1 m2/s2 extends from the surface to

just above 2 km AGL, where the vertical gradient in qv reaches a maximum (-5

to -4 hr SRT). For Cases 1,2,4,5, and 6, w′2 in the top half of the boundary

layer undergoes a somewhat sharp reduction 1-2 hours prior to the evening

transition. In Case 4, this occurs just shy of two hours prior to sunset. This

decay in turbulence is similar to the downward trend observed using a radar

wind profiler (RWP) in Wingo and Knupp (2015). Their analysis only began 3

hours prior to sunset and was limited to the lowest 200 m AGL, which makes

a comparison between the cases here and their results complicated. However,

this type of evolution of the turbulence is somewhat seen in RWP observations

of AETs in northern Alabama (Busse and Knupp 2012). This rapid decay of
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w′2 in cases 2-5 may depict the development of the pre-residual layer defined in

Nilsson et al. (2016b) and Darbieu et al. (2015). Case 5 best shows this feature

an hour and a half prior to the start of the evening transition. At that time,

a 1 km layer of reduced turbulence develops downward below the CBL top. In

some cases, the pre-residual layer appears distinct in the observations within

the lower half of the CBL until the evening transition begins and w′2 becomes

small everywhere within the former CBL.

Figure 7.3 also suggests that at least at the SGP site, there appears to be a

time delay between the sharp reduction in turbulence and subsequent moisture

increases. For Cases 4, 5, and 6, the difference between the time of w′2 reduction

and the deep increase in moisture is approximately 1-2 hours. For Case 3, the

w′2 reduction occurs about 2.45 hours prior to sunset while the increase in

moisture over a depth of 750 meters occurs approximately 1.5 hours prior to

sunset. This time delay occurred in Case 4 as well, however only with the second

rapid increase in moisture starting about 1.5 hours prior to sunset. It should

be noted that this assessment is based upon common visual features within

these individual cases and can provide only a rough estimate of the time passed

between the quick changes in w′2 and any increases in qv. Thus, development of

alternative methods to quantify this time delay are needed to better understand

its variability.

However, the evolution of the low-level wind profile appears to have more

common changes across the 6 cases. Figure 7.4 describes the evolution of the

meridional component of the wind for these six cases. Southerly winds domi-

nate the CBL for the entire time period analyzed, and throughout the entire

period the v-wind tends to increase (∂v/∂t > 0). The increases in southerly
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wind speed in the lowest 1 km of the atmosphere are most apparent after the

evening transition occurs (Cases 1, 3, 4, 5 and 6). These accelerations in the

low-level winds have been extensively documented at the ARM site (e.g., Sten-

srud1996) and are likely attributable to the Holton (1967) and Blackadar (1957)

mechanisms creating nocturnal low-level wind maximums (Shapiro et al. 2016).

In Case 5, however, the acceleration of the low-level winds does not occur im-

mediately after the ET begins. Rather, the increase in low-level wind is more

apparent after sunset. For all six cases considered here, southerly winds persist

throughout the entire transitional period, as is expected from the case selection

criteria.

The evolution of the zonal wind component, however, exhibits substantially

more directional variation (Figure 7.5). For all six cases, the zonal wind com-

ponent in the lowest 1 km exhibits either a reversal of the sign of the u-wind or

an acceleration of the u-wind component towards the west. The timing of these

changes in wind varies between the six cases. In Cases 1 and 3, the sign of the

u-wind reverses prior to the evening transition and prior to the increases in qv.

For Case 1, this occurs about -2 hr SRT; for Case 3 this occurs approximately

-3 hr SRT. In Case 4, an acceleration towards the west also occurs within the

same time frame. Interestingly, these cases feature an acceleration of the wind

to the west also occurring after the water vapor increases. This acceleration is

most apparent in Cases 1, 2, 5, and 6. For example, the u-wind in the lowest

1 km of Case 1 increases to -5 m/s between -50 mins SRT to 60 minutes SRT.

From Figure 7.5, it appears that backing of the low-level winds at the ARM

SGP site may coincide with low-level increases in qv during the AET.

With respect to the impacts of the increase in qv on conditional instability,

in each case, the places undergoing moistening also exhibit an increase in CAPE
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with time (Figure 7.6). These increases generally occur on the order of 1000

J/kg with the more dramatic changes occurring in Case 5 with an increase

of 2000 J/kg over 1.5 hours. Case 4 has the most intense changes in CAPE;

parcels just above the surface nearly double to 5000 J/kg during the AET. These

increases in instability occur despite reducing insolation as sunset approaches.

However, the impacts of surface cooling and the development of the nocturnal

inversion do impact the CAPE, albeit in a very shallow near-surface layer after

sunset. This is best seen in the reduction of CAPE near the surface after sunset

in Cases 2, 3, and 5. Despite this, these increases in moisture during the AET

correlate strongly with increases in CAPE. This correlation strongly supports

H2.

An additional test was performed using the AERIoe retrievals to infer causal-

ity by quantifying the impact of the moisture increases on CAPE. In this test,

another set of calculations of CAPE were made using SHARPpy. This time, the

qv profile measured prior to the AET was assumed not to change with time. Fig-

ure 7.7 shows the difference in CAPE from this comparison. For these cases, the

changes in moisture contributes 1000-3000 J/kg to the overall CAPE change.

These tests suggest that these moisture increases do increase the conditional

instability (H2). Without the shown increases in qv cases, CAPE decreases

everywhere throughout the AET (not shown). Generally, the increases in mois-

ture that are far removed from the surface tend to retain their impact on CAPE

longer, as they are not impacted by the near-surface cooling occurring during

the AET.

A final test relevant to the impact of moisture on conditional instability was

performed to understand the relationship between CIN and qv changes at the
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ARM site. Figure 7.8 shows that the qv increases help improve the probability

that parcels may become positively buoyant should lift be present. For all cases,

the corresponding increases in moisture coincide with increases in CIN. This is

easily apparent in Case 5, as the two increases in qv (-3.5 hr SRT and -2 SRT)

that increase the CAPE also reduce the CIN of parcels above 1 km AGL to

nearly 0 J/kg. For Cases 1, 2, 4, and 6, these elevated increases in moisture

remove all negative buoyancy inhibiting the parcel. Similar to the CAPE, these

impacts of moisture are constrained to an elevated layer after sunset, due to

the radiative cooling near the surface reducing the parcel equivalent potential

temperature.
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Figure 7.3: As in Figure 7.2, but for vertical velocity variance (w′2) from the
DLID. The black contours indicate lines of constant mixing ratio (every 1 g/kg)
from AERIoe smoothed by a 2D Gaussian smoother (σ = 1.5) to illustrate the
moisture evolution relative to the turbulence decay. The topmost contour in

each plot indicates the 8 g/kg line. w′2 is only shown if the signal to noise ratio
is above 1 m2 s−2
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Figure 7.4: As in Figure 7.3, but for the meridional wind obtained from the
DLID.
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Figure 7.5: As in Figure 7.3, but for the zonal wind obtained from the DLID.
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Figure 7.6: As in Figure 7.3, but for CAPE computed by lifting the parcels from
every data point in the profile. Places where no contours exist (white) indicates
absolutely stable parcels.
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Figure 7.7: The difference between observed CAPE (Figure 7.6) and CAPE
computed holding the water vapor profile 5 hours prior to sunset constant
throughout the next 8 hours. Green indicates locations where changes in qv
contributed to an increase in CAPE despite changes to the temperature profile.
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Figure 7.8: As in Figure 7.6, but for CIN.
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7.4 Composite Plots and Discussion

To summarize the 31 cases analyzed, composite plots averaging the various

datasets were constructed. Figure 7.9 illustrates the average evolution of the

AET for several different variables. In Figure 7.9A, the evolution of the potential

temperature profile generally shows the break down of a surface-based mixed

layer about an hour prior to sunset and rises in qv starting about 2-3 hours

prior to sunset. However, AERIoe retrieves a thermodynamic profile in the

lowest 500-m of the atmosphere in the first 3 hours of the period shown that

deviates from a well-mixed layer. This difference is likely related to a known

issue associated with AERIoe-retrieved near-surface temperature profiles. This

bias was mentioned in Chapter 4 and was shown not to significantly impact the

quality of AERIoe retrievals or conditional instability estimates from them.

Figure 7.9B shows the average evolution of water vapor before and during the

AET. The lowest 500-m shows an increase in 3 g/kg, while aloft, the increase is

weaker. These weaker changes aloft appear to be a consequence of the averaging

acting to smooth the various depths of the observed moisture changes. However,

the changes in the lowest 500-m appear to begin about 3.5 hours before sunset,

while the changes aloft appear to occur two hours prior to sunset. The more

rapid changes occur in the lowest 500-m about -1 hour prior to sunset. Both

Figures 7.2 and 7.9 indicate that an upward bulge in qv often appears 1 to

2 hours prior to sunset. Additional analysis of this maximum in qv may be

analyzed in future work on this topic.

In the cases described in the last section, a backing of the low-level winds

(∂u/∂t < 0) coincident with accelerations of the meridional wind component
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appeared. Figures 7.9C,D illustrate this evolution further and suggest this back-

ing with time below 500-m between -2 hr SRT and 3 hr SRT occurs often in

the selected AET cases. The layer over which the u-wind sign reverses becomes

shallower with time after sunset. Figures 7.9E,F enable a consideration of how

the decaying turbulence relates to changes in the wind profile. Figure 7.9E show

the high values of vertical velocity variance at the beginning of the period and

its subsequent decay. Similar to the cases discussed in the previous section,

the average vertical velocity variance exhibits a similar decline in turbulence

between 1 and 2 km AGL at -3.5 hr SRT. A similar reduction in the vertical

velocity skewness (Figure 7.9F) appears later on (approaching 2 hours prior

to sunset), suggesting that upward transport by turbulent eddies is decreasing

with time. In the hours that turbulence is decaying (-4 to -2 hr SRT), the sign

of the u-winds steadily reverses.

The evolution of the low-level wind profiles have been discussed in both

Shapiro et al. (2016) and Bluestein et al. (2017). Similar to this study, Bluestein

et al. (2017) sought to understand the AET changes within the question of

the 6 o’clock magic phenomenon. In their study, they aimed to explain the

anomalous turning of the low-level winds around sunset as it may modify the

low-level wind shear to the point that storm characteristics change. Using WRF

simulations, they attributed the backing of the winds close to the surface to

changes in the momentum stress occurring throughout late afternoon (changes

in friction, vertical mixing, and surface drag per Bell and Bosart, 1988, and

Bluestein and Crawford, 1997). They also mentioned that a similar evolution

of the wind profile could be reproduced using the Shapiro et al. (2016) model

of the NLLJ. At first glance, the wind profiles in Figure 7.9C,D appear similar

to the developing NLLJ in Shapiro et al. (2016). However, the acceleration
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of the low-level winds shown in Figure 4 of Shapiro et al. (2016) beginning at

sunset do not occur at the same time as Figure 7.9. Instead, the observed low-

level accelerations begin on average about 2 hours prior to sunset. This timing

difference may be due to the use of a sawtooth and step function to describe

the evolution of buoyancy and turbulent diffusivity in the Shapiro et al. (2016)

model. Resolving these differences are outside the goals of this study.

Figure 7.9G illustrates the evolution of surface fluxes with time. The evolu-

tion of the surface fluxes suggest that during these AETs, a period exists that

while the sensible heat flux may be negative, the latent heat flux is still positive.

This result indicates that when considering surface fluxes, AETs in the SGP are

similar to those described in Fitzjarrald and Lala (1989) and Acevedo and Fitz-

jarrald (2001). However, similar to Busse and Knupp (2012), using only the

time of the evening transition to describe the evolution of the PBL is too sim-

plistic. Figure 7.9 and the cases discussed in Section 7.3 shows that prior to the

evening transition, turbulence has already undergone a noticeable decrease in

intensity, low-level winds have backed, and moistening throughout the PBL has

already begun. Because of this, the ET does not appear to be a threshold that

controls the evolution of the SGP AET. Instead, both the changes encompassing

the entire AET must be considered.

With respect to conditional instability, average plots of the 31 cases consid-

ered appear similar to the six cases shown in the last section. Figure 7.10A,B

shows the average evolution of CAPE and CIN throughout the AET. Most no-

table in these plots are a maximum in CAPE appearing in the first four hours

of the AET (-3 to 1 hr SRT). After sunset, a layer of parcels exhibiting large

CAPE (greater than 1500 J/kg) appears just above the surface. These times
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where CAPE is larger tends to also have CIN values closer to 0 J/kg. In Figure

7.10B, a layer of parcels with small CIN appears in the two hours prior to sun-

set above 500 m AGL. After sunset, parcels near the surface tend to undergo a

large increase in CIN. When moisture is considered not to change throughout

the 8 hour period depicted in Figure 7.10, CAPE undergoes a constant decrease

throughout the lowest 2 km AGL (Figure 7.10C). For CIN though, Figure 7.10D

suggests that prior to sunset, keeping qv constant generates parcels with even

less CIN than in Figure 7.10B. As these experiments have less moisture through-

out the profile, the virtual temperature at the capping inversion is cooler and

is therefore less resistant to lifted parcels. However, about an hour prior to

sunset, differences appear, and the impact of the additional moisture on CIN

throughout the former CBL is large (approximately a 150 J/kg difference).

These composite plots also offer a return to the primary motivation of this

work: the evolution of low-level wind shear relative to moisture during the

AET and its possible impact on storms. Figures 7.10 and 7.9 suggest that

these increases in water vapor between -3 and 1 hr SRT create increases in

CAPE and enable parcels to have smaller inhibition for a longer period of time

(CIN doesn’t decrease as rapidly). Both environmental changes are favorable

for storm intensification, likelihood for tornadogenesis, and increasing storm

longevity (Bunkers et al. 2006a,b; Ziegler et al. 2010; Thompson et al. 2003,

2012b; Markowski and Richardson 2014). Interestingly though, when the timing

of increases in low-level shear (Figure 7.9H) is compared to instability (Figure

7.10A,B), differences appear. While increases to CAPE/CIN and qv appear

between -3 hr to 1 hr SRT, rapid increases in the bulk wind difference between 0-

500 m occur later (between -1 to 2 hr SRT). The rapid increase in shear between
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-1 hr SRT (approx. 7:30 PM local time) and 2 hr SRT (approx. 9:30 PM local

time) appear similar to the changes in shear between 7 PM and 10 PM local time

modeled by Bluestein et al. (2017) (see their Figure 13). In addition, Figure

7.9H also suggests that when considering only shear, environments supportive

of tornadoes occur on average after sunset, as the 0-500 m BWD begins to

exceed 6 m/s (Esterheld and Giuliano 2008). While there is some temporal

overlap, these composite charts suggest that on average at the SGP site in the

summertime, increases in moisture precede increases in low-level shear during

the AET. These changes suggest that the environmental changes to convective

ingredients that favor the longevity and intensification of deep, moist convection

may exhibit a dependence on time. More research is needed to clarify this

temporal dependence.

In summary, this analysis of the data collected at the ARM SGP site in

northern Oklahoma adds additional considerations to H1 and H2. It is clear

that these increases in moisture occurring during the AET do increase con-

ditional instability, and in some cases, quite dramatically. However, in the

analysis with the RLID data at the beginning of this chapter, it is apparent

that H1 requires additional testing. The largest and deepest increases in wa-

ter vapor that were observed from the ARM SGP dataset were present only

after the winter wheat had been harvested. As of now, this lack of support for

H1 suggests additional investigation is needed to clarify why these rapid and

deep increases occur at the ARM site despite the harvested fields present in the

summer months.
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Figure 7.9: Composite plots showing the average evolution of variables during
the AET using the 31 AET cases listed in Table 7.1. A and B indicate the
potential temperature and qv profiles from the AERIoe retrievals. C and D show
the zonal and meridional winds from the DLID. E and F show the variance and
skewness of vertical velocity from the DLID. Skewness is reported as unitless
from the DLID. G and H show the average sensible and latent heat fluxes from
the ECOR dataset and the bulk wind difference (BWD) between 0 and 500-m
from the MET and DLID wind observations.
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Figure 7.10: Similar to Figure 7.9 but showing the average evolution of CAPE
and CIN (A, B), and the average evolution of CAPE and CIN assuming that
the water vapor profile at the beginning of the observed period (-5 hours prior
to sunset) did not change for the entire 8 hour period shown (C, D).

134



Chapter 8

Processes Affecting Moisture during the AET

With both the vertical and horizontal dimensions of qv jumps in the SGP

AET characterized, it remains to be answered as to the reasons why these jumps

occur at the ARM site. Although numerous other studies (Fitzjarrald and

Lala 1989; Acevedo and Fitzjarrald 2001; Bonin et al. 2013; Wingo and Knupp

2015) argue that qv jumps occur due to the turbulent moisture flux convergence

term, the vertical depth and density discontinuity-like nature (Margules 1906;

Margules et al. 2016) of these jumps warrant a reassessment of this hypothesis.

In order to quantify and assess the relative contributions of moisture advection

and turbulent moisture flux convergence on the moisture evolution during the

AET, the combination of an extended remote sensing network at the ARM SGP

and numerical simulations are used to analyze two cases from the last chapter

(7-20-2016 and 8-18-2016). These two cases are selected as they were included

in the composite analysis in the last chapter and were two cases provided in

the LASSO Alpha 2 release. These simulations and observations aim to build

upon the work of Acevedo and Fitzjarrald (2001) with the goal of using more

representative values of water vapor advection present in LES. Quantifying more

realistic values of water vapor advection present will enable better comparisons

between the contributions of advection and turbulent flux convergence on qv. In

this chapter, the hypothesis (H3) that advection is responsible for the increases

in qv at the ARM SGP site is tested.
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The data created in Chapter 6 strongly suggests that the ARM site is an ideal

location to study the transport of moisture gradients created by different land

surface properties during the AET. Composite maps using 2D-VAR analyses

(see Chapter 6) from before and after the WWB harvest indicates that moisture

advection and moisture gradients in the SGP AET are dependent upon the

timing of the WWB harvest (Figures 8.1 and 8.2). Prior to the harvest (Figure

8.1), the largest values of moisture advection and moisture gradients during the

AET tend to occur on the western edge of the WWB, far away from the ARM

site. After the harvest (Figure 8.2), moisture advection and moisture gradients

appear towards the eastern edge of the WWB. Because of this shift, a local

maximum in moisture advection now often occurs over the ARM site in the

hours around sunset. Although plots illustrating moisture advection from other

months are not shown in this dissertation, this shift in where moisture advection

occurs in the AET is quite distinct between the months before and after the

WWB harvest. Because of the location of the ARM site relative to this shift,

this analysis will focus only on AET cases occurring after the WWB harvest

(Chapter 7). This focus will seek to clarify why large, 1 km-deep qv increases

occur during the AET at the ARM site.

The following sections describe the method and results for the experiments

used to answer this question. In the first section, a network of sites hosting addi-

tional ARM remote sensors that spans across the eastern border of the WWB is

introduced. The processing steps used for this data are also summarized. Next,

this data is used to quantify the magnitude of water vapor advection across the

WWB. In addition, the data is used to also quantify the cross-WWB flow and

qv gradient. With an expectation of the magnitude of qv advection near the C1
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Figure 8.1: Composite 2D-VAR analyses from the Oklahoma Mesonet data
(Chapter 6) showing how the distribution of moisture advection and moisture
gradient magnitudes evolve throughout May AETs in Oklahoma. The top and
middle rows indicate the 75% and 25% percentiles of moisture advection, re-
spectively. The bottom row shows the median moisture gradient magnitude.
The columns indicate time in sunset relative time (SRT) and the bold black
lines denote the boundaries of the WWB.

site in hand, this study will turn towards analyzing the results from the LASSO

runs to understand the key processes (advection or turbulence moisture flux

convergence) that facilitate the 1-km deep increases in qv observed at the ARM

site. In the final section of this chapter, a conceptual model to explain these

rapid increases in qv at the ARM site is introduced that synthesizes the results

from the previous chapters.
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Figure 8.2: Similar to Figure 8.1, but for the month of June.

8.1 Experiment Setup and Methods

Figure 8.3 shows the location of the ARM SGP Central Facility (C1) site

in northern Oklahoma. The overlay in the image shows the MODIS NDVI 8-

Day Rolling average product from 31 May 2017 to illustrate the ARM site’s

location relative to the spatial differences in vegetation caused by the harvest

of the winter wheat belt (WWB). The sharp decrease in brightness of the green

pixels (NDVI is increasing) just southeast of the C1 site indicates this sharp

boundary in land surface properties. Visually, this boundary is approximately

15-20 km southeast of the C1 site and denotes the eastern edge of the WWB.

Although the MODIS NDVI product is from 2017, similar datasets and papers

(e.g., McPherson et al. 2004) suggest that this boundary has not significantly

changed and is applicable to 2016.

The ARM Extended Facilities (E32, E37, and E39) indicate locations where

ARM instrumentation similar to the C1 site (e.g., AERI, DLID, MET) is also

deployed. With the exception of the RLID data, similar processing steps to

138



those described in Chapter 4 and 5 were used on the AERI and DLID data

to obtain high-frequency boundary layer soundings. This exception is required

as RLIDs were not deployed to the extended facilities and therefore cannot be

included in AERIoe retrievals at the Extended Facilities (Turner and Blumberg,

2018, in review). Because of this, AERIoe retrievals only used AERI spectra,

surface MET data, and RAP profiles to obtain profiles of temperature and hu-

midity. While this reduced the vertical resolution of the retrievals and increased

the level-to-level correlation of the retrieval error covariance matrix compared to

those at the C1 facility, retrieval characteristics were similar to those described

in Blumberg et al. (2017b). Comparisons of the retrievals performed at Central

and Extended Facilities did not suggest that these differences in retrieval config-

uration created any spurious horizontal gradients in temperature or humidity,

suggesting that the AERIoe retrievals from the Extended Facilities produced

reasonable results that could be used for additional analysis.

The distribution of these sites with respect to the WWB enables a look at

the cross-WWB flow; the land-surface contrasts apparent in Figure 8.3 may en-

able the development of a vegetation breeze (Segal and Arritt 1992). Vegetation

breezes are similar to sea breezes, and both fall under the category of a nonclas-

sical mesoscale circulation (NCMC). NCMCs are primarily forced by diurnally

driven differences in the surface sensible heat flux. NCMCs have been shown to

assist in the development of convective clouds and storms (e.g., Anthes 1984;

Yan and Anthes 1988; Carleton et al. 2008; Wang et al. 2011). Past studies

of vegetation breezes have used both an observational and modeling strategy

(McPherson 2007). However, observations of vegetation breezes often do not

match the strength of those produced in idealized simulations (Garcia-Carreras

et al. 2011). Reconciling these differences are difficult as larger-scale flows may
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mask the circulation (Segal et al. 1988) and the land surface characteristics

may not compare well to those depicted in idealized simulations. Because the

scale of the WWB is on the order of 100-km wide and past work has shown

that this length scale is most effective to develop circulations that can develop

deep, moist convection, the presence of vegetation breezes during the AET is

important to consider (McPherson 2007).

Zhuojia and Xinyuan (1995) studied the evolution of vegetation breezes

over the diurnal cycle using numerical simulations of a wheat/arid land-surface

boundary. Their simulations indicated that during the daytime, a 1-km deep

horizontal gradient of temperature and water vapor developed along the land-

surface boundary. In addition, a mesoscale circulation developed, transport-

ing air from the wheat to the arid area. After sunset though, the circulation

rapidly decreased and eventually vanished. In another simulation performed by

the same authors, the circulation that developed in the daytime reversed after

sunset, creating a flow from the arid land-surface to the wheat. When applied

to the ARM site, these simulations indicate that a diurnal oscillation may be

present along the edge of the WWB in calm conditions.

The ARM site is equipped to analyze the presence of vegetation breezes along

the border of the WWB. Evidence of this circulation may be found by analyzing

the DLID winds at the C1 (harvested wheat) and the E39 (native vegetation)

sites. Given the diurnal oscillation of the low-level flow predicted by Zhuojia and

Xinyuan (1995), if a vegetation breeze is the dominant process across the eastern

WWB boundary, there should be a reversal of the low-level wind direction

from westerly to easterly as the PBL undergoes the AET. Consideration of how

vegetation breezes evolve along the WWB presents a possible extension of our

understanding of the processes ongoing during the ARM AET. Such changes
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in diurnal wind direction and may create an oscillation of moisture across the

land-surface boundary.
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Figure 8.3: Selected ARM observation sites used in understanding the processes
relevant to qv jumps occurring in the 2016-2017 SGP dataset analyzed in the
last chapter. C1 indicates the location of the ARM SGP Central Facility, while
E37, E32, and E39 are the ARM extended facilities surrounding the C1 site.
Black arrows and distances indicate the distances calculated between the dif-
ferent sites. These site locations are overlaid on the MODIS Rolling Average
8-Day NDVI dataset for May 31st, 2017 to illustrate the distribution of the sites
relative to healthy vegetation and the eastern WWB boundary. The boundaries
of the WWB can be roughly found in Figure 6.6.
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8.2 Gradients in qv and Momentum Across the WWB

Border

The first step in the tests to assess H3 was to estimate the water vapor

advection across the WWB from the DLID and AERIoe data generated at the

C1 and E39 sites. To do this, the AERIoe and DLID data were linearly interpo-

lated to a uniform height and time grid (about 0.2 to 1.0 km AGL, ∆z = 0.01

km and between -5 hr SRT and 3 hr SRT, ∆t = 5 min SRT). The C1 and

E39 DLID winds were then projected onto the C1-E39 cross section, which is

roughly a 20 degree angle relative to the east-west axis. Next, these projected

winds were averaged to illustrate the average cross-WWB flow (vC1−E39). After

that, the AERIoe profiles of qv from C1 and E39 were forward differenced to

calculate the horizontal qv gradient (∇hqv) between C1 and E39. Finally, esti-

mates of the ∇hqv and vC1−E39 were averaged across 33 cases during the summer

months. A majority of the cases included in this dataset overlapped with those

selected in Table 7.1, but not all of the cases used in the last chapter were able

to be used. This was due to missing AERI and DLID data in the surrounding

ARM Extended Facilities. Regardless, these two profiling sites show the average

summertime conditions along the eastern edge of the WWB.

Figure 8.5 shows the results from the averaging the AERIoe retrievals and

DLID observations. Negative values of vC1−E39 indicates a wind with a compo-

nent towards the harvested WWB (e.g., flowing towards the west) while positive

values indicates a component away from the WWB. On average, the wind across

the WWB is on the order of -5 to -6 m/s -5 to -2 hr prior to sunset. Approach-

ing 1 hour prior to sunset, the C1 wind begins to accelerate, reaching nearly
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Figure 8.4: The 850-mb wind speed and zonal component wind speed for the 33
summertime cases. Each point represents the wind observed from the 23 UTC
radiosonde launched during each case.

10-15 m/s after sunset. For the qv gradient (Figure 8.5, bottom), a positive

∇hqv indicates a gradient where qv increases towards the E39 site. For much

of the time before sunset, a moisture gradient between the C1 and E39 sites is

present. In some cases analyzed, this gradient is on the order of 3 g/kg across

the WWB boundary. The gradient in the hours prior to sunset occurs often in

this dataset, as the hatching in Figure 8.5 indicates places where the qv gradient

vector still points towards E39 if the 1 − σ perturbation is added to this plot.

In the hour prior to sunset, the moisture gradient tends to vanish in the lowest

500-m. Aloft, the ∇hqv vector still points east, but not as strongly as before.

These results suggest that on average, the ARM data does not depict condi-

tions similar to the vegetation breezes simulated in Zhuojia and Xinyuan (1995).

Although the expected daytime cross-WWB flow from the healthy vegetation to

the harvested WWB does occur, this flow does not reverse after sunset. How-

ever, an expected 1-km deep moisture gradient along the edge of the WWB

does develop during the daytime (Figure 8.5). This discrepancy may be due to
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the large-scale flow masking any circulations that do develop. Figure 8.4 shows

that while the 850-mb winds may be occasionally weak, most cases considered

in this chapter have a noticeable cross-WWB flow. Figure 8.4 indicates that

the zonal wind speeds at the ARM site are often outside of those specified in

the Zhuojia and Xinyuan (1995) simulations (e.g., weak geostrophic winds near

0 m/s). Given that the orientation of the WWB is not aligned perfectly along

a north-south axis, meridional winds also contribute to a stronger cross-WWB

flow. These observations suggest that for these cases, vegetation breezes at

the ARM site are unlikely, and cannot be determined with enough certainty in

these conditions. Additional research is needed to clarify if and how vegetation

breezes develop along the border of the WWB.

Next, the average conditions in Figure 8.5 are used to create an estimate

of the expected qv advection values. Figure 8.6 shows estimates of this term

by creating various combinations of the average cross-WWB winds with the

across WWB gradient of qv in Figure 8.5. Given the average orientation of

these vectors, the qv advection most often may be found to be moistening the

PBL as opposed to drying. The rate of moistening by advection in Figure 8.6

is anywhere between -0.8 to 1.6 g/kg/hr. These plots suggest that the moisture

advection term is on the order of 1 g/kg/hr.

Compared to Figures 8.1 and 8.2, the estimates in Figure 8.6 are slightly

larger. 2D-VAR indicates that the distribution of moisture advection is slightly

less than the estimates generated by the ARM network. This difference may

be due to the smoothing that occurs when the recursive filter is applied when

the 2D-VAR method is applied to the Oklahoma Mesonet data. This problem

145



is similar to the aforementioned issue of variational algorithms (e.g., 3D-VAR)

in filtering out the smaller-scale features from the data.

146



5 4 3 2 1 0 1 2 3
Sunset Relative Time at C1 [hr]

0.0

0.2

0.4

0.6

0.8

1.0

H
e
ig

h
t 

[k
m

 A
G

L]
Average C1 Wind Speed Along C1-E39

15.0
13.5
12.0
10.5
9.0
7.5
6.0
4.5
3.0
1.5

0.0

v
C

1
−

E
39

 [
m
/
s]

5 4 3 2 1 0 1 2 3
Sunset Relative Time at C1 [hr]

0.0

0.2

0.4

0.6

0.8

1.0

H
e
ig

h
t 

[k
m

 A
G

L]

Average qv Gradient Along C1-E39

6.0

4.5

3.0

1.5

0.0

1.5

3.0

4.5

6.0

∇
h
q v

 [
10

−
5
g
k
g
−

1
m
−

1
]

Figure 8.5: Two plots denoting the average wind and moisture conditions across
the WWB using 31 cases from the summertime. The top plot shows the average
C1 wind component tangent (vC1−E39) to the C1-E39 WWB cross section while
the bottom plot shows the average horizontal qv gradient (∇hqv). Hatching on
the lower plot indicates the times and heights when the 1 − σ ∇hqv indicates
a positive value across the WWB, suggesting that the distribution of ∇hqv is
shifted towards positive values at these times.
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Figure 8.6: Estimates of the water vapor advection term at the C1 site generated
by combining various average estimates of ∇qv and vC1−E39 from Figure 8.5.
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8.3 Profiles of qv Advection

Next, the profile of horizontal water vapor advection (V · ∇qv) was directly

calculated during the AET time period. This calculation used both AERIoe

retrievals and DLID VAD products from the C1, E37, and E39 sites. Advection

was calculated by using the equation from Michael (1994), which is a form of

Green’s theorem:

∫
V · ∇hqv da =

∮
qvV · n ds =

∑
qvi(Ui∆yi − Vi∆xi). (8.1)

Here, V is the height dependent 2-D horizontal wind vector derived from the

DLID VAD algorithm, and qv is the water vapor mixing ratio being advected

that was retrieved from AERIoe. n is the unit vector normal to the individual

line elements, ds, along the specified polygon (in this case a triangle). On the

right hand side is the equation used to calculate the area-averaged advection of

qv in discrete coordinates. Overbars indicate the arithmetic means along each

linear segment i of the polygon sides (e.g., qvi indicates the average value of qv

along segment i). U and V are the x and y components of the wind vector V.

∆xi and ∆yi are the projections of each polygon side on the x and y axes. To

isolate advection, the result on the right hand side of the equation is divided by

the area of the polygon, computed by
∫
da.

Prior to each calculation of water vapor advection, the AERIoe and DLID

data from each site was gridded to a uniform height grid (about 0.2 to 1.0

km AGL, ∆z = 0.01 km) and time grid (∆t = 5 min) using nearest neighbor

interpolation. This height grid was created to look at the qv advection between

approximately 0.25-1 km AGL as the moisture increases found in Chapter 7
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appeared at these depths. Because the elevation changes between the various

ARM sites, the height grid considered was not extended to the surface.

As both AERIoe and the DLID VAD algorithms provide estimates of the

1 − σ uncertainty of their temperature, water vapor, and wind products, the

uncertainties in these observations can be propagated through Equation 8.1. To

do this, a set of 500 water vapor advection profiles were created using Monte

Carlo sampling of the AERIoe and DLID data. The method used is similar

to the method of calculating the uncertainty of convection indices discussed in

Chapter 5. When cases are analyzed individually, the advection values com-

puted in this manner were found to be mostly noisy, and are not included for

this reason.

However, a signal is extracted by averaging the profiles of moisture advection

computed from these 33 cases. This provides both an estimate of the typical

depth and timing of changes to the moisture advection term. Immediately, it

is clear that the order of magnitude of advection calculated this way is similar

to that estimated by Figure 8.6. The layer of positive water vapor advection

that develops coincides well with the composite changes in qv in Chapter 7,

Figure 7.9b. The order of magnitude of qv advection is also the same order of

magnitude of the average estimates of the local tendency of water vapor (1.3

g/kg/hr) listed in Table 7.1. However, Figure 8.6 only suggests this layer of

moisture advection occurs over a depth of 500-m AGL while the average depth

of the observed qv increases is over 1 km. This is an artifact of the averaging to

create this Figure, and some individual cases suggest that the advection layer

reaches 1 km. While these experiments have not controlled for the turbulent

moisture flux convergence term, the similarities between the cases discussed in
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Figure 8.7: Average qv advection from the same 31 cases used in Figure 8.5.
Advection was calculated using the C1-E39-E37 triangle and Equation 8.1.

Chapter 7 and the estimates of qv advection so far suggest strong circumstantial

evidence that advection is the driving process behind the 1-km jumps in qv at

the ARM site after the wheat harvest.

8.4 LES Results

To compare advection to the turbulent moisture flux convergence term, two

AET cases (8-18-2016 and 7-20-2016) are analyzed using the LASSO dataset.

Because LASSO uses periodic boundary conditions and a homogeneous lower

boundary, these simulations are unable to simulate any circulation due to the

contrasting vegetation shown in Figure 8.3. Table 8.1 describes the various forc-

ing datasets, microphysics packages, and models that encompass the 12 member

LASSO ensemble used. For all members, the Morrison 2-moment microphysics

scheme is used. Ensemble diversity was primarily provided by a combination

of the MSDA, VARANAL, and ECMWF datasets. However, only MSDA or

ECMWF were used to specify the large-scale forcing for the ensemble. For 4 of
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the LASSO members, the ARM Radar Wind Profilers (RWP) data was assimi-

lated into MSDA. This configuration overall used 3 different types of advective

forcing: MSDA without RWP, MSDA with RWP, and ECWMF.

These three various forcing datasets represent the large-scale forcing at the

ARM site. Additional diversity was also included by considering different spatial

sizes of the forcing. These various sizes are depicted relative to the WWB and

the ARM Central Facility in Figure 8.8. The largest scale, 300 km × 300 km,

represents the domain of the VARANAL dataset. This spatial area encompasses

a significant area of the SGP relative to WWB (Figure 8.8). Due to its size, it

is not used in the LASSO runs as the large-scale forcing. Rather, it is only used

to provide forcing at the lower boundary of the domain. The smaller areas that

are used by the ECMWF (114 km × 114 km and 16 km × 16 km) and MSDA

(150 km × 150 km and 75 km × 75 km) better represent conditions along the

the eastern edge of the WWB. More importantly for future applications of the

LASSO and this study, the MSDA 75 km grid best encompasses the contrasting

land surface properties and the various Extended Facilities surrounding the

ARM site.

Because a 75 km grid encompasses the contrast in land-surface differences,

and the MSDA methodology considers the horizontal surface moisture gradients

present across this contrast, it is expected that the MSDA forcing datasets will

best represent the advection of moisture through the C1 site. This expectation

is also supported by the conclusions in Vogelmann et al. (2015). In this paper,

Vogelmann et al. (2015) used LASSO-prototype configurations, SCMs, and ob-

servations to study boundary layer cloud processes at the ARM SGP site. By
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Table 8.1: The configuration of each member of the 12-member SAM ensem-
ble used in analyzing the 8-18-2016 and 7-20-2016 cases. The columns indicate
the member ID number, the model core, the dataset for the large-scale forcing,
the scale of the large-scale forcing, the surface forcing dataset, and the micro-
physics package. Asterisks indicate the MSDA forcing dataset that included the
assimilation of the ARM RWP wind profiles.

ID No Model Large-Scale Scale Surface Microphysics

101 SAM ECMWF 16 km ECMWF Morrison 2-MOM
102 SAM ECMWF 114 km ECMWF Morrison 2-MOM
104 SAM MSDA 75 km MSDA Morrison 2-MOM
105 SAM MSDA 150 km MSDA Morrison 2-MOM
107 SAM ECMWF 16 km VARANAL Morrison 2-MOM
108 SAM ECMWF 114 km VARANAL Morrison 2-MOM
110 SAM MSDA 75 km VARANAL Morrison 2-MOM
111 SAM MSDA 150 km VARANAL Morrison 2-MOM
120 SAM MSDA* 75 km MSDA Morrison 2-MOM
121 SAM MSDA* 150 km MSDA Morrison 2-MOM
123 SAM MSDA* 75 km VARANAL Morrison 2-MOM
124 SAM MSDA* 150 km VARANAL Morrison 2-MOM

using this ensemble of “best estimate” forcing datasets, they found that out of

the three cases considered, the LES runs forced using MSDA better reproduced

the PBL evolution during the transitional periods (e.g., the AET), as they were

better able to reproduce the near-surface moisture advection.

The large-scale horizontal water vapor advection forcing in the LASSO en-

sembles are shown in Figures 8.9 and 8.10. In both cases, the four MSDA

forcing datasets show similar values in the water vapor advection and timing of

the advection. However, the larger-scale MSDA forcing data (150 km) shows

slightly smaller qv advection values than the 75 km MSDA data. In all MSDA

datasets, positive qv advection begins over a layer that extends between 1.0 to

1.5 km AGL two hours prior to sunset, somewhat similar to the composite qv

advection values in Figure 8.7. These values and depths in Figures 8.9 and 8.10

prior to sunset are on the same order of magnitude (0.6-1.0 g/kg/hr) as the

values in Figure 8.7.
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16 km x 16 km

75 km x 75 km

114 km x 114 km

150 km x 150 km

300 km x 300 km

counties

Figure 8.8: A map of the Southern Great Plains area with various sizes repre-
senting the large-scale forcing of the area. All forcing areas are centered around
the ARM SGP Central Facility site. Solid black contours denote the boundaries
of the WWB from McPherson et al. (2004).

In contrast, the ECMWF forcing is more inconsistent across forcing scales.

While the 114 km forcing is between -0.2 to -0.4 g/kg/hr, the 16 km forcing varies

strongly between -1 g/kg/hr and 1 g/kg/hr. Despite these discrepancies, values

of qv advection beginning an hour or two before sunset over 1 km are the correct

order of magnitude. Compared to the ECMWF, the advective forcing from the

MSDA seems more realistic in its timing, sign, depth, and order of magnitude

when compared to Figure 8.7. However, both the MSDA and ECMWF datasets

show similar magnitudes of advection to the values depicted in Figure 8.7 and

8.6. Despite the variability of the forcing datasets, if the turbulent moisture

flux convergence values within the LASSO simulations are less than the modeled

water vapor advection values, then H3 (advection is the cause) can be accepted.

Figure 8.11 illustrates the test of this conditional statement. In this figure,

the individual terms of the water vapor tendency equation computed from each
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Figure 8.9: Horizontal qv large-scale advection from the six forcing datasets
used in the LASSO ensemble. The forcing shown is for the 2016-08-18 LASSO
runs. The top two rows indicate the MSDA 150 and 75 km forcing with and
without the ARM RWP data assimilated. The bottom row is the ECMWF 114
and 16 km forcing.

SAM run are averaged together to depict the likely evolution of each term.

For both cases, the local changes to water vapor indicate drying throughout

the CBL during the first three hours of the period (Figure 8.11, top row).

The average magnitude of the drying is on the order of -0.3 g/kg/hr. As the

LASSO simulations approach two hours prior to sunset, the PBL begins rapidly

moistening at an increasing rate. For the 8-18-2016 case, the local tendency

of qv reaches nearly 0.4-0.6 g/kg/hr in the lowest 800-meters. In comparison,
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Figure 8.10: Similar to Figure 8.9, but for the 2016-07-20 case.

the 7-20-2016 case reaches a maximum of 0.4 g/kg/hr in the lowest 400-meters.

When the average contribution from qv advection (Figure 8.11, bottom row) is

considered, it is clear that the increases in qv over the lowest 1km are primarily

driven by advection (H3 is true).

So, where does the turbulent water vapor flux convergence term contribute

to the decaying CBL? The second row of Figure 8.11 suggests that this term

only plays a role in the lowest 100-m of the simulation. For both AET cases,

the sign of this term undergoes a reversal similar to the local tendency of qv

(top row, Figure 8.11), however the change to a positive value that begins on

average at -1 to -1.5 hr SRT does not extend deep enough into the PBL to
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account for the larger changes in water vapor aloft. Individual inspection of

the 12 LASSO runs also confirms this conclusion. Importantly, this term does

contribute positively to the increase in water vapor and may account for the

near-surface increases within the ARM data (0 to 100-m AGL). In addition,

the presence of a positive value for this term during this time period confirms

past research that has attributed AET moisture increases to this term (e.g.,

Fitzjarrald and Lala (1989); Acevedo and Fitzjarrald (2001); Busse and Knupp

(2012); Bonin et al. (2013); Wingo and Knupp (2015)). From these simulations

it is clear that the turbulent moisture flux convergence contributes to the lowest

100-m, but the deeper increases in qv are attributable to advection.

As it stands, the LASSO ensemble does not have the diversity in surface

forcing to help understand the relationship between evapotranspiration and the

turbulent moisture flux convergence term. This may be done in future experi-

ments by varying the surface forcing within the LASSO runs systematically to

reveal how this term may vary across different AETs. Regardless, the results

in Figure 8.11 indicate that H3 cannot be rejected; the increases in these sim-

ulations throughout the lowest 1 km are primarily due to horizontal advection

with some contributions by the turbulence moisture flux convergence term near

the surface.

When the local qv tendency (top row) and the contributions from large-scale

vertical velocity from the forcing datasets to vertical advection are considered

(bottom row), the impact of horizontal advection on qv on these simulations is

further emphasized (Figure 8.11). Vertical qv advection from these simulations

is small; only on the order of 0.2 g/kg/hr and cannot account for the 1-km deep

increases in moisture either. This further illustrates that horizontal qv advection
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is the primary cause of the 1-km deep moisture rise throughout the decay of

convectively generated turbulence in these LASSO simulations.
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Figure 8.11: Average contributions from the local tendency of water vapor (1st
row) the turbulent moisture flux convergence (2nd row), large-scale vertical
advection (3rd row), and large-scale horizontal advection (4th row) for the two
cases (08-18-2016, left) and (07-20-2016, right) using the SAM ensemble. The
local tendency of qv is computed by performing finite differencing on the 10-
minute qv output (forward and backwards near the edges, central everywhere
else.)
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8.5 SGP Summer AET Conceptual Model

From the combination of LASSO simulations and ARM observations, a basic

conceptual model can be constructed to tie together the spatiotemporal aspects

of the summertime AET SGP qv changes discussed in Chapter 6 and 7. In this

section, the results from the past few chapters are synthesized to generate a

conceptual model for the AET qv changes over the WWB after the WWB has

been harvested. This model is illustrated using the observations and LASSO

simulations discussed in this study.

As was mentioned in Chapter 6, increases in moisture persist over the WWB

in the summer months throughout the entire AET (before and after sunset). In

the cases analyzed at the ARM site in Chapter 7, it was established that these

increases in qv are not limited to the near-surface; these increases can occur

over depths of 1 km. It was also found that these qv increases tend to begin an

hour or two after the CBL turbulence begins to weaken. The decrease in the

surface sensible heat flux through the AET, which is due to the decrease in the

downwelling shortwave radiative flux, leads to a decay in the turbulent motions

in the CBL (Figure 7.9). Proof of causality of this relationship was not shown

in this research, but rather assumed via the consensus of numerous past work

and texts (e.g. Stull 1988; Sorbjan 1997).

This decay in turbulence also coincides with changes to the low-level wind

profile. In Chapter 7, wind profiles derived from the DLID demonstrated that

as the turbulence weakens, the winds in the lowest 500-m back with time, often

acquiring an easterly component (∂u/∂t < 0). The meridional winds during

this time also begin to accelerate (∂v/∂t > 0). Similarly, these changes in the

wind profile due to changes in turbulent mixing within the PBL during the
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AET have also been discussed in past literature (Blackadar 1957; Holton 1967;

Maddox 1993; Shapiro et al. 2016; Bluestein et al. 2017).

However, this research indicates that interaction of these changes during the

AET near the harvested WWB is important to the redistribution of moisture

and conditional instability in northern Oklahoma. As was shown in Figures

8.1, 8.2, and 8.5, two environmental conditions are commonly present during

summertime AETs: 1) a gradient in qv oriented across the eastern boundary of

the WWB and 2) flow across this gradient creating positive moisture advection.

For the 8-18-2016 case, this gradient shows a change of 3 g/kg between the

C1 and E39 sites prior to the surge of moisture westward (Figure 8.12, top

row). Development of this gradient is not new knowledge either; McPherson

et al. (2004) and McPherson and Stensrud (2005) used Oklahoma Mesonet data

and WRF simulations to identify and simulate the effects of the WWB on the

daytime mesoscale environment (e.g., different CBL top heights), albeit with a

focus on the WWB prior to its harvest.

Figure 8.13 summarizes what happens when the turbulence decays in the

presence of this gradient and describes how the moisture tendency equation

terms evolve with time prior to the AET period (-5 to -3 hr SRT) and during

the AET. Prior to the AET, qv advection is present due to low-level southerly

winds, and mixing at the capping inversion acts to dry the PBL. In the LASSO

runs, this mixing can act to balance or even reverse the contributions from ad-

vection. Prior to the AET, the conceptual model and dynamics of the CBL

can be utilized (Stull 1988). As the turbulence decays faster, two changes occur

that enable more effective transport of moisture over the WWB. First, modifi-

cations to the low-level wind profile (e.g., backing) orient the low level winds in

a direction more normal to the eastern WWB boundary. This reorientation of
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the winds acts to increase the advection of qv during the AET. Second, as iden-

tified from the LASSO runs (Figure 8.11, second row), the decay of turbulence

throughout the AET coincides with a reduction of entrainment of qv at the top

of the PBL. This acts to increase the turbulent moisture flux convergence term

in the positive direction and reduce drying within the PBL. On 8-18-2016, this

process acted to produce a rapid surge in moisture and instability westward

(Figure 8.12). Given the WWB’s orientation, both changes in advection and

turbulent qv flux convergence act in conjunction to increase the contribution of

qv advection to the PBL moisture increasing over the harvested WWB.

The results presented within this chapter help clarify the processes at work

that enable the observed increases in water vapor during summertime AETs.

Using the ARM network of AERI and DLID instruments, cross-WWB flow

towards the harvested wheat was found. In addition, a 1-km deep moisture

gradient was also found to be present along the eastern edge of the WWB.

Additional analysis revealed that this cross-WWB flow enables moisture ad-

vection over the lowest 1 km during the AET. When combined with LASSO

simulations, it becomes clear that the 500 to 1000-m increases of water vapor

depicted by the ARM observations are a consequence of water vapor advection.

These simulations also indicate that the turbulent moisture flux convergence

terms only contribute to the moistening of the lowest 100-meters. Prior to the

start of the AET, this term decays with time and reduces the amount of drying

within the PBL driven by mixing. From a closer look at the evolution of the

PBL presented by the LASSO runs, it appears that the decaying turbulence in

the hours prior to sunset enables water vapor advection to rapidly moisten the

lowest 1-km at the ARM site.
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Figure 8.12: The evolution of the horizontal cross section from the ARM E32-
C1-E39 sites for the 8-18-2016 case during the surge in moisture across the
WWB. The left column indicates the qv profile, while the right indicates the
CAPE profile. Arrows in the CAPE plot indicates the cross-WWB wind vector
at the C1 and E39 sites. From top to bottom the time of the cross sections
moves from 00:20 to 1:00 to 1:30 UTC. Black indicates the ground.
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Figure 8.13: An illustration showing the cross section along the WWB between
the ARM sites C1 and E39 and how turbulence, winds, and moisture change
before (left) and during the AET (right). The bottom table shows the sign of the
relevant terms of the moisture tendency equation and their second derivatives in
both stages. The blue circulation over the WWB represents the mixing ongoing
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the black arrow indicates the wind speed along the WWB cross section, which
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WWB per McPherson and Stensrud (2005).
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Chapter 9

Conclusions and Future Work

This dissertation began with a discussion of the four ingredients relevant to

deep, moist convection: instability, shear, lift, and moisture. From a survey of

past literature discussing the evolution of the PBL during the AET (e.g., Wingo

and Knupp 2015; Busse and Knupp 2012; Blackadar 1979; Mead and Thomp-

son 2011), it is clear that as the sun sets, the spatiotemporal distribution of

these ingredients is significantly modified as the PBL transitions from the CBL

to a stable boundary layer (SBL). To skillfully forecast precipitation systems

and meteorological hazards in the evening and at night, and in particular the

evolution of deep, moist convection, a solid scientific understanding of how the

AET modifies these ingredients is important.

When current literature is reviewed, several open questions appear regard-

ing how moisture evolves during the AET in the SGP. Although several pa-

pers have documented rapid rises in near-surface qv occurring during the AET,

many of these studies have focused on geographical regions outside the SGP

(e.g., northern Alabama, Busse and Knupp 2012, New York state Fitzjarrald

and Lala 1989). To date, only one study has documented these qv increases

in the vertical during the SGP AET (Bonin et al. 2013) and the number of

AET cases discussed in their study do not reach the levels needed to generalize

its conclusions to other instances in the SGP. However, many studies attribute

these increases in qv to the stratification of turbulence (turbulent moisture flux
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convergence becomes large) that occurs with the loss of insolation during the

AET. Considering the increased risk of harm to society by deep, moist convec-

tion in the evening and nighttime hours (e.g., Kis and Straka 2010; Mead and

Thompson 2011; Anderson-Frey et al. 2016) in the Southern Great Plains, it is

clear that improving our understanding of how moisture evolves during the AET

can be beneficial to a wide variety of scientific and non-scientific communities.

In an attempt to improve this understanding, this dissertation addressed the

following questions by testing three hypotheses:

1. What is the spatiotemporal evolution of water vapor (qv) in the Southern

Great Plains during the AET?

H1: AET increases in qv can be found where vegetation is present.

2. How do these jumps in moisture change the parcel conditional instability?

H2: Jumps in qv may act to increase the conditional instability of parcels

within the changing PBL.

3. What processes facilitate these jumps in qv?

H3: Jumps in qv are caused by advection of qv rather than the turbulent

moisture flux convergence term.

During the course of this study, hypotheses H2 and H3 were accepted.

However, tests of H1 required additional modifications to this hypothesis. In

some of the tests of H1, increases in water vapor similar to those found in

past literature (e.g., Acevedo and Fitzjarrald 2001) were found to occur over

vegetation and do manifest themselves as a maximum in qv in the hours prior

to sunset. This was primarily tested using Oklahoma Mesonet data and the

2D-VAR program (Spencer and Gao 2004). Monthly analyses primarily showed
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that qv increases prior to sunset are often focused along the SGP WWB, and

had a strong seasonal cycle. Such increases were also found to occur east of

the WWB, coinciding with the growth of vegetation between April and May.

However, H1 was not completely supported as the data collected showed that

surface qv increases occur along the WWB both before and after the harvest

of winter wheat. In fact, increases along the WWB after the harvest both are

significantly larger (1-4 g/kg) and occur over a depth of 1 km (Chapter 7). The

presence of strong and deep increases in qv over the AET, despite no vegetation

present, suggests that further investigation was needed to understand these

results (Chapter 8). The experiments attempting to answer this first question

indicate that the changes to qv during the AET displays a dependence upon

vegetation, environmental characteristics, and can impact the atmosphere far

above the surface layer.

During tests of H2, a maximum in conditional instability was found occur-

ring around sunset in both ARM and Oklahoma Mesonet observations. With

the Oklahoma Mesonet observations, a maximum in conditional instability was

found 1.5 hours prior to sunset at sites where vegetation was present. This max-

imum was attributed to increases in moisture as a significant majority of the Ok-

lahoma Mesonet stations analyzed indicated temperature was falling throughout

the AET and therefore cannot account for increases in conditional instability.

When analyzing the ARM profile data, the analysis of the 31 cases indicates

that over the harvested-WWB, this maximum in instability generally extends to

parcels throughout the lowest 1 km for several hours. In one case, the increases

in instability were rapid and dramatic, as the CAPE increased from 2000 J/kg

to nearly 5000 J/kg in 3 hours. In many of the tests performed, it was found
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that increases in qv play a significant role in modifying conditional instability

during the AET, therefore leading to an acceptance of H2.

In Chapter 8, the final question was addressed and H3 was tested. In these

tests, a combination of LES runs at the ARM SGP site and observations ob-

tained from a network of AERI and DLIDs deployed near the eastern edge of

the WWB were used. This combined observation and modeling strategy was

used to quantify the contributions of advection and turbulent moisture flux con-

vergence to the evolution of moisture after the wheat was harvested. Initially,

moisture advection across the eastern boundary of the WWB was estimated

from observations to be between 0.6 g/kg/hr to 3 g/kg/hr during the AET.

Additional observations indicate that this advection was facilitated by a mois-

ture gradient that develops during the daytime across the eastern edge of the

WWB. A subsequent evaluation of the various large-scale forcings specified in

the LES runs suggested that the forcing datasets replicate the observed changes

in the sign of water vapor advection but underestimated the observed magni-

tude of advection after sunset. Regardless, analysis of the LASSO model output

revealed that even with this underestimation, the turbulent moisture flux con-

vergence term neither provides the correct magnitude nor the correct depth to

account for the deep changes in qv occurring during the AET. Advection, how-

ever, as LES forcing and observational datasets demonstrated, does explain the

increases in qv over 1 km at the ARM site. This test using the LES, AERI, and

DLID observations suggests that at least for the two cases that were considered,

H3 can be accepted.

The results from this work suggests that in the SGP, the redistribution of

moisture and subsequent changes in conditional instability begins prior to sunset

as turbulence decays throughout the AET. In fact, the balance between the
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decay of turbulence and increasing advection accounts for the moisture changes

observed over the WWB, even when the wheat is not actively growing. This

reasoning explains why H1 is only valid for some of the experiments performed.

While this diurnal variation of the moisture across the SGP has been discussed

in past literature (Parsons et al. 1991; Sun and Wu 1992) in the context of the

dryline, this work extends this movement to other moisture gradients such as

those related to vegetation differences in the SGP. While these papers discuss

the regional variations of qv via the dryline, this work contributes to the current

knowledge by demonstrating the timing of the various atmospheric changes (e.g.,

decay of turbulence) that occur to modify moisture on the local scale.

9.1 Future Work

The results from this research indicate three possible directions in which

future studies could go. Between Chapters 6 and 7, the direction of this research

shifted to focus on the summer months. Instead, the analysis strategies used

in Chapter 7 and Chapter 8 could be also shifted to focus on explaining and

documenting the AET moisture changes over the WWB prior its harvest. Given

the reduced advection in the 2D-VAR analyses, this change will likely require a

more focused investigation on the turbulent moisture flux convergence term and

its relationship to evapotranspiration near the surface. Doing so will require

introducing a statement of causality to H1. This return to the near-surface

should also include a discussion of the impact recent precipitation may have on

qv jumps, as even barren, wet soil may contribute to an increase in latent heat

fluxes. Such a study was suggested back in Chapter 8 and could be performed

by systematically varying the surface fluxes specified to the LASSO runs.
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Next, future studies could explore if any of the results from this study can be

generalized to other locations and scenarios. As this study was concentrated in

Oklahoma, it is important to mention that these results are somewhat localized.

Given the wide geographical area of the WWB across the Great Plains (Figure

9.1), other field projects could deploy similar ARM-like remote sensors (e.g.,

Wagner et al. 2018, in review) to other states where moisture gradients develop

to test the ideas discussed in this study. While H3 passed the tests developed

in this study because the moisture gradients nearby were facilitated by land-

surface contrasts, the land-surface is not the only mechanism that can develop

such gradients in the atmosphere. Because of this reason, tests are needed to

see if the changes between the turbulent moisture flux convergence term and

advection in the decaying CBL are applicable to other horizontal gradients in

the atmosphere (e.g., fronts, drylines). Such tests could reveal various local

moisture sources, such as those found in Erlingis Lamers (2017). Considering

this line of thought and the results of Wingo (2015) and Jones and Bannon

(2002) suggesting low-level convergence increases during the AET near bound-

aries, it seems that the air near boundaries may regularly undergo a horizontal

contraction during the AET. This process may enable a zone where the various

ingredients (lift, moisture, and instability) become sufficient to develop deep,

moist convection and additionally explain why the development of deep, moist

convection tends to begin near sunset. Such tests should key in on the spatial

variability of surface fluxes, as prior work discussed describes how coupled the

surface is to PBL turbulence (e.g., Turner et al. (2018)).

Lastly, and relevant to the primary motivations of this work (6 o’clock

magic), future work could address the question of the impact of these mois-

ture jumps on pre-existing deep, moist convection. This study limited itself to
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describing only the environmental changes of the moisture and the impact on

conditional instability. While these environmental characteristics can be used

to infer storm properties (Thompson et al. 2012a), the environmental changes

shown in this research need to be observed and simulated in environments with

storms already present to directly understand their impact on deep, moist con-

vection. This line of inquiry may demonstrate that accurate modeling of the

release of moisture from the edge of the WWB may be critical to achieve skillful

forecasts of nighttime convection in the SGP. Future studies could include a field

project focused on observing or model changes to the environment upstream of

daytime convection during the AET. On the regional scale, hypothetical shifts

in the status and location of the WWB could also be simulated using the WRF

to help understand the impact the land-surface has on seasonal precipitation

patterns in the SGP.

Finally, the results from this study and the next steps discussed offer an

intriguing ethical and philosophical line of thought. It is clear from this and

past research that the choices by humans to modify the land surface properties

does create noticeable differences in the properties of the atmosphere. Should

causality be found between modifications of the land-surface and short-term

hazardous weather events, how does this change liability? For atmospheric

scientists, perhaps forecasting an atmosphere where every gas regularly changes

phase would be an easier problem to work through.
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Figure 9.1: Geographical locations of where winter wheat is grown in the United
States. Data used for this map is constructed using the National Agriculture
Statistics Service, and the map was constructed by the U.S. Department of
Agriculture. Image URL: https://www.usda.gov/media/blog/2013/03/7/usda-
releases-new-maps-identifying-major-crop-producing-areas-united-states
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Löhnert, U., D. D. Turner, and S. Crewell, 2009: Ground-Based Tempera-
ture and Humidity Profiling Using Spectral Infrared and Microwave Ob-
servations. Part : Simulated Retrieval Performance in Clear-Sky Condi-
tions. Journal of Applied Meteorology and Climatology , 48, 1017–1032,
doi:10.1175/2008JAMC2060.1.
URL http://journals.ametsoc.org/doi/abs/10.1175/2008JAMC2060.1

Lothon, M., F. Lohou, D. Pino, F. Couvreux, E. R. Pardyjak, J. Reuder,
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J. Groebner, F. Guichard, M. A. Jiménez, M. Jonassen, A. van den Kroo-
nenberg, V. Magliulo, S. Martin, D. Martinez, L. Mastrorillo, A. F. Moene,
F. Molinos, E. Moulin, H. P. Pietersen, B. Piguet, E. Pique, C. Román-
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Appendix: Glossary

AERI Atmospheric Emitted Radiance Interfereometer. xi–xiv, xvii, xviii, 23,
33, 35, 36, 42, 52–63, 66, 67, 69, 70, 72–74, 79, 110–112, 115, 120, 122,
128, 133, 139, 143, 149, 150, 162, 168

AET Afternoon to Evening Transition. xi–xvi, xviii, xxi, xxii, 3, 4, 7–16, 18–
20, 22, 23, 28, 30, 31, 39, 41, 60, 69, 75, 76, 78–80, 85–90, 92, 95, 96,
99–104, 108–110, 112, 113, 116, 117, 119, 120, 128–133, 135–137, 140,
149, 151, 153, 156, 157, 160–162, 165–168

ARM Atmospheric Radiation Measurement. xi–xiv, xviii–xx, 4, 18, 20, 22, 23,
25–31, 37–41, 45–48, 50, 51, 53, 71, 109–111, 113, 119, 121, 132, 135–138,
140, 142–145, 150–155, 157, 160, 162–164, 167, 168, 170

AT afternoon transition. xvii, 3, 4, 115

CAPE convective available potential energy. xi, xiv, xvii–xix, 12, 36, 53, 64,
66–70, 72, 110, 119–121, 125, 126, 130, 131, 134, 163, 167

CBL convective boundary layer. xx, 116, 118, 131, 155, 156, 160, 161, 164,
165, 170

CIN convective inhibition. xi, xiv, xviii, 12, 36, 66–68, 72, 120, 121, 130, 131,
134

DIAL differential absorption lidar. 36–38

DLID Doppler lidar. xvii, xviii, 23, 40, 41, 117, 122–124, 133, 139, 140, 143,
149, 150, 160, 162, 168

DNS direct numerical simulation. 46

EBBR energy balance Bowen Ratio system. 22, 23, 26, 28–31

ECMWF European Center for Mid-Range Forecasts. xix, 48–50, 151–155

ECOR eddy covariance system. 22, 23, 26, 28–31

ET evening transition. xii, xiv, xvii, xviii, 3, 4, 14, 28, 54, 59, 60, 109, 111–115,
119, 130, 133, 139

GCM global circulation model. 46
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LASSO LES ARM Symbiotic Simulation and Observation. xi, xix, 46–51, 135,
137, 151–155, 157, 158, 160–162, 168

LBLRTM line-by-line radiative transfer model. 35, 36

LES large eddy simulation. 13, 45, 46, 135, 168

LFC level of free convection. 6

LWP liquid water path. 34, 35

MET surface meteorological. 26, 27, 51

MODIS Moderate Resolution Imaging Spectroradiometer. xv, xviii, 89, 138,
142

MSDA multi-scale data assimilation. xii, xix, 49–51, 151–155

MWR microwave radiometer. 23, 32, 34, 42

NDVI Normalized Difference Vegetation Index. xv, xviii, 89, 138, 142

NFOV narrow field of view. 38–40

NLLJ Nocturnal Low-Level Jet. 7–9

OE Optimal estimation. 43–45

PBL planetary boundary layer. 11, 40, 55, 140, 145, 162, 165

PWV precipitable water vapor. 34, 35

RLID Raman lidar. xiii, 23, 36–40, 55, 112

RTE radiative transfer equation. 31

SAM System for Atmospheric Modeling. xii, xix, 46–49, 153, 155, 159

SBL stable boundary layer. 165

SGP Southern Great Plains. xii, xiii, xviii, xix, xxi, 4, 11, 18, 20, 22, 23, 26,
28, 30, 31, 36, 37, 45, 46, 50–53, 69, 75, 88, 102, 109–111, 117–119, 130,
132, 135, 136, 138, 142, 152, 154, 160, 165, 167–169, 171

SRT sunset relative time. xvii, 115, 117, 119, 121, 129–132, 156, 161

STD 1-σ standard deviation. xi, xiii, 39, 40, 57, 58, 66–68
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TSI Total Sky Imager. 30

VAD velocity azimuth display. 41, 149, 150

WFOV wide field of view. 38–40

WRF Weather Research and Forecasting. 46–50, 129, 161, 171

WWB Winter Wheat Belt. xii, xv, xvi, xviii–xx, 89–91, 95–98, 100–104, 107,
108, 112, 136–140, 142–145, 147, 152, 154, 160–164, 167–171
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