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Abstract 

This dissertation aims to advance the conventional tertiary oil recovery method, 

surfactant flooding process. Via injecting a finite slug of surfactant-only or mixture of 

surfactant/polymer solution into reservoir, surfactants are capable to dramatically reduce 

the residual oil/water interfacial tension (IFT) thus mobilize trapped oil. Despite the 

technical viability of surfactant flooding, this approach has some difficulties to be realized 

at large field scale, such as substantial adsorption loss, and unfavorable sweep efficiency 

of surfactant-only slug.  

This dissertation examined the feasibility of using carbonaceous nanoparticles, 

multiwalled carbon nanotube (MWNT), and carbon black as potential surfactant carriers 

in enhanced oil recovery. Stability of MWNT dispersion at high temperature high salinity 

levels, typical encountered in reservoir, as well as transport and fate of these stable nano-

fluids in porous medium were first examined as a prerequisite for any field applications. 

MWNTs exhibited exceptional stability in 10 wt% brine by dispersing them with 

nonionic surfactant such as alkylphenol polyethoxylates with a large number of ethylene 

oxide (EO) groups. In the sandpack column test, a binary surfactant formulation, which 

consisted of a nonionic surfactant and an anionic surfactant in the proper ratios, exhibited 

an excellent capability to propagate MWNT, with 96% of the injected nanotubes 

recovered in the effluent. Chapter 2 presents the details of MWNT stability and transport 

in porous medium, which was previously published on Energy & Fuels.  

A successful surfactant delivery agent requires that surfactant ought to be released from 

the carriers once contact the target oil. In Chapter 3, batch adsorption tests indicated that 

competitive adsorption of surfactant on nanoparticles was beneficial to decrease 
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adsorptive loss on Ottawa sand at equilibrium concentration below critical micelle 

concentration; microemulsions phase behavior proved spontaneous release of loaded 

surfactants from the treated MWNTs surfaces to oil/water interface; sand pack column 

tests carried out for an optimum surfactant formulation affirmed the advantage of adding 

nanoparticles into surfactant slug, as injection of MWNT-surfactant blend achieved faster 

and higher tertiary recovery than surfactant-only formulation. Chapter 3 was previously 

published on Fuel. 

An episode in the research of stable carbonaceous nanoparticles dispersion, reversed 

binary micellar interactions between anionic surfactant alpha olefin sulfonate (AOS) and 

nonionic surfactant nonylphenol polyethylene glycol ether (NPEs) were observed 

depending on the addition of electrolytes. In the absence of additional electrolytes, NPEs 

exhibited substantially higher activity in micelles than bulk solution; with growth of EO 

groups, shrinkage on the scale of synergistic interaction was evidenced. In contrary, with 

swamping amount of electrolytes, synergistic interactions enlarged with the rise of EO 

groups, and AOS activity in mixed micelles was found depending on both EO length and 

bulk mole fraction (𝛼𝐴). These findings are summarized in Chapter 4 and have been 

published on Colloids and Surfaces A: Physicochemical and Engineering Aspects. 

Chapter 5 discovered an oil-induced viscoelastic wormlike micellar solution. Wormlike 

micellar solution blends are important for industrial products where the high viscosity 

and elastic properties are exploited. However, wormlike surfactant micelles are extremely 

susceptible to oils; solubilization of paraffinic oils inside the micelle core leads to a 

disruption of wormlike micelles and loss of viscoelasticity. Oil-induced viscoelastic 

micellar fluid system is promising for various reservoir applications, such as proppant 
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carrying fluids in hydraulic fracturing, and chemical slugs with built-in viscosity control 

in enhanced oil recovery. 

Chapter 6 presents some concluding remarks of this work and recommendations for the 

future studies.
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Chapter 1 Overview 

1.1 Fundamentals of enhanced oil recovery 

Along the production history of a hydrocarbon reservoir, the stages of production can be 

categorized into primary recovery, secondary recovery, and tertiary recovery. First two 

stages, also known as conventional recovery, basically rely on the natural drive 

mechanism and artificial reservoir pressure maintenance, respectively. Conventional 

ultimate oil recovery is about 35%.1 Any techniques applied after secondary stage to 

produce oil unrecoverable by conventional means is classified tertiary recovery, also 

known as enhanced oil recovery (EOR).Three basic EOR process are thermal recovery, 

including steam flood, in-situ combustion, and steam assisted gravity drainage; solvent 

method including injection of miscible CO2, hydrocarbon, nitrogen, and immiscible 

gases; and chemical flood, such as surfactant, polymer, and alkaline flood. EOR can 

achieve another 5% to 15% OOIP in a reservoir depending on the methods used.2 

1.1.1 Oil recovery efficiency 

Total oil recovery efficiency ER, is the amount of the oil displaced divided by the initial 

oil in place in the swept portion of the reservoir. It is expressed as: 

 𝐸𝑅 = 𝐸𝐷 × 𝐸𝑉 (1.1) 

Where EV is macroscopic displacement efficiency, and ED is microscopic displacement 

efficiency. The former one is defined as the fraction of the reservoir volume swept by the 

displacing fluid. EV is expressed as the product of areal sweep efficiency EA, and vertical 

sweep efficiency Ez, 
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 𝐸𝑉 = 𝐸𝐴 × 𝐸𝑍 (1.2) 

ED is defined as the volume of oil displaced from the invaded region divided by the 

volume of the oil initially in place in the invaded region as,3 

 𝐸𝐷 = 1 −
𝑆𝑜𝑟

𝑆𝑜𝑖
 (1.3) 

Where Sor is the residual oil saturation in the swept region, and Soi is the initial oil 

saturation in the swept region. Clearly, increasing either EV or ED is beneficial to give rise 

to a higher ultimate oil recovery, and these are two principal mechanisms behind chemical 

flood. Higher EV is achievable via polymer flooding to provide favorable mobility 

control, while higher ED can be attained by injecting surfactants or alkali to reduce oil 

water interfacial tension (IFT).  

1.1.2 Mobility and mobility ratio 

The mobility of a fluid, λ, is defined as the ratio of its effective permeability to its 

viscosity, expressed as: 

 λ𝑖 =
k𝑖

μ𝑖
 (1.4) 

Where ki is the effective permeability of the fluid, and μ𝑖 is viscosity. Mobility ratio, M, 

is simply the ratio of the mobility of the displacing phase to the mobility of the displaced 

phase. For water displacing oil in water flooding, it is given by: 

 M =
λ𝑤

λ𝑜
=

k𝑤

k𝑜
∗

μ𝑜

μ𝑤
 (1.5) 

Where the notation w, and o indicates water and oil phase respectively. From the 

definition, the displacement process is favorable if M ≤ 1, i.e., the displaced fluid is more 

mobile than the displacing fluid. And the process is considered unfavorable if M > 1, i.e., 
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the displaced fluid is less mobile than the displacing fluid. High mobility ratio could lead 

to viscous fingering, which can bypass a significant amount of oil.4  

1.1.3 Capillary pressure and capillary number 

Capillary pressure, pc, is the difference in pressure of the non-wetting phase and the 

pressure of the wetting phase. This is represented as: 

 𝑝𝑐 = 𝑝𝑛𝑤 − 𝑝𝑤 =
2𝜎 ∗ cos 𝜃

𝑟
 (1.6) 

Where pnw, and pw are the pressure of non-wetting and wetting phase, respectively. 𝜎 is 

the water and oil interfacial tension, 𝜃 is the contact angle, and r is the effective radius of 

the interface. Consider a water wetting reservoir, capillary pressure could increase 

significantly at the pore neck, where the effective radius is extremely small, therefore, 

stop the oil drop from passing through the pore neck. When ultralow IFT (<0.001mN/m) 

is achieved, e.g., via using surfactant, the capillary pressure can reduce to a sufficient low 

level (four to five orders of magnitudes lower) to allow oil drop to deform then pass 

through the pore neck.1   

Capillary number is defined as the ratio of viscous force (mobilizes oil) to capillary force 

(traps oil) by, 

 N𝑐 =
𝑣 ∗ 𝜇

𝜎
 (1.7) 

Where v is interstitial velocity, µ is viscosity of displacing fluid, and 𝜎 is the IFT between 

water and oil. Capillary number can be increased by either increasing the viscous forces 

or decreasing the IFT using surfactants, the latter one being a more effective and practical 

way to increase the capillary number by several orders of magnitude. 
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1.2 Surfactants, micelles, and microemulsions 

Surfactants are substance, which consists of a hydrophobic hydrocarbon tail and a 

hydrophilic head, thus they are soluble in both oil and water phase. Surfactant has the 

propensity to adsorb onto the surfaces or interfaces of the system and reduce the surface 

or interfacial free energies of those surfaces or interfaces.5 

Depends on the charge of head groups, surfactants are classified as anionic, cationic, 

nonionic, and zwitterionic. In chemical EOR, anionic surfactants are most widely used 

because they exhibit relatively low adsorption at neutral to high pH on both sandstones 

and carbonates, can be tailored to a wide range of conditions, and are widely available at 

relative low cost. Nonionic surfactants are used as cosurfactants to improve the behavior 

of surfactant system due to their excellent tolerance to salinity and hardness brine.4 

1.2.1 Micelles and packing parameter 

In the surfactant solution, once the concentration is sufficiently high, surfactant molecules 

will form aggregates called micelles. The concentration of surfactants above which 

micelles form is called the critical micelle concentration (CMC); above CMC all 

additional surfactants added to the system go to micelles.  

 



5 

Figure 1.1. Surfactant monomer (left) and micelle (right) 

Figure 1.1 shows a normal micelle, which forms in water solution, with hydrophobic 

hydrocarbon groups in the interior and hydrophilic head groups exposed to the external 

aqueous solution. Reverse micelles form in nonpolar solvents, with hydrophilic head 

groups oriented in the interior, and hydrophobic hydrocarbon groups exposed to the 

similar groups of the surrounding solvent.  

Based upon the geometry of various micellar shapes and the space occupied by the 

hydrophilic and hydrophobic groups of the surfactant molecules, the micelle shape can 

be estimated by critical packing parameter (CP),6 

 CP =
𝑉

𝑎𝑜 ∗ 𝑙𝑐
 (1.8) 

Where V is the volume occupied by the hydrophobic groups in the micellar core, lc is the 

length of the hydrophobic group in the core, and ao is the cross-sectional area occupied 

by the hydrophilic group at the micelle–solution interface. The major types of micelles 

appear to be (1) relatively small spherical structures (0 < CP < 1/3), (2) elongated 

cylindrical, rodlike micelles (1/3 < CP < 1/2), (3) large, flat lamellar micelles (1/2 <

CP < 1), and (4) reverse micelles in nonpolar phase (CP > 1). 

Micelle structure could be tuned via altering the electrolyte content, temperature, pH, and 

the presence of additives in the solution. For instance, increase electrolyte content of an 

ionic surfactant solution will lead to a reduced a0 due to compression of the electrical 

double layer. The reduction of a0 will promote change in the shape of the micelle from 

spherical to cylindrical. For polyoxyethylene (POE) nonionic surfactants, an increase in 

temperature also cause a change in shape due to increased dehydration of the POE chain. 
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1.2.2 Microemulsions 

To effectively displace the oil in the capillaries of reservoir rocks, IFT of 10-3 mN/m is 

generally required,7 and microemulsion phase behavior is often conducted to design 

surfactant formulations with such ultralow IFT. Microemulsion is an isotropic liquid 

mixture of oil, water and surfactant, in thermodynamically equilibrium. Dependent on 

types and concentrations of surfactants and co-surfactants, species of oil, salinity and 

hardness of water, and temperature, different type of microemulsions may form among 

oil/water/surfactant system.  

Winsor I microemulsions are oil in water microemulsions, in that oil is solubilized in 

normal micelles in the water phase; Winsor II microemulsions are water in oil 

microemulsion, in that water is solubilized in reverse micelles in the oil phase. And 

Winsor III microemulsions, also known as middle phase microemulsions, are 

characterized by a bi-continuous structure containing most of the surfactant in 

equilibrium with both excess water and excess oil phase. Winsor III microemulsions 

solubilize equal amount of oil and brine.8, 9 

R ratio is a criterion to estimate the interaction of the adsorbed surfactant at the interface 

with the neighboring oil and water molecules by,8  

 R =
𝐴𝐶𝑂 − 𝐴𝑜𝑂

𝐴𝐶𝑤 − 𝐴𝑤𝑤
 (1.9) 

where ACO and ACW are the interaction of surfactant molecules per unit area at the 

interface with oil and water, respectively; AOO the interaction between two oil molecules; 

and AWW the interaction between two water molecules. R<1, R = 1 and R>1 correspond 

to Winsor I, Winsor III, and Winsor II microemulsion, respectively. Via increasing 

salinity in ionic surfactants or temperature in nonionic surfactants, the microemulsion 
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system changes from Winsor I, to Winsor III and to Winsor II and the oil/water IFT goes 

through a minimum value at optimal condition where R = 1.  

1.2.3 Hydrophilic-Lipophilic Deviation  

Phase behavior of water, oil and surfactant is one of the most important factors that 

determine the efficiency of chemical flood using surfactants.10 In order to describe the 

behavior of surfactant induced microemulsions, Salager proposed a model called 

hydrophilic–lipophilic deviation (HLD) model to measure the departure from optimum 

formulation.7 For ionic surfactants, HLD is written as: 

 HLD = lnS − K ∗ EACN − f(A) + Cc − αTΔT (1.10) 

Where 𝑆 is the salinity of the system in grams of electrolyte per 100 ml, 𝑘 is an empirical 

constant, 𝐸𝐴𝐶𝑁 is the equivalent alkane carbon number of the oil phase, 𝐶𝑐 is a constant 

characterizing the hydrophilicity/lipophilicity of the surfactant, 𝑓(𝐴) is a function of 

added alcohol, 𝛼𝑇 is an empirical constant, and Δ(𝑇) is the temperature deviation from a 

reference temperature of 25 °C. Negative, zero, or positive HLD values indicate the 

formation of Winsor I, Winsor III or Winsor II microemulsions, respectively. 

1.3 Objectives of this dissertation 

Surfactant flooding was proven for decades a technically viable method from extensive 

laboratory efforts and numerous pilot tests, however, large field scale implementations 

have yet been realized due to the complexity of chemical flooding design and in many 

instances excessive adsorption of surfactant on formation rocks which adversely 

challenges economic viability of the projects. The adsorption of surfactant onto reservoir 

rock materials is a complex function of surfactant type, equivalent weight, and 
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concentration; in-situ mineral composition, and clay content; reservoir temperature; and 

flow rate of the solution.4 Mechanisms of anionic surfactants adsorb onto the solid 

substrates from aqueous solution can in general be categorized as: ion exchange, ion 

pairing, hydrophobic bonding, adsorption by polarization of  electrons, and adsorption 

by dispersion forces.11 

Large volume of literature has documented that surfactant adsorption onto reservoir rock 

material can vary from 0.2 mg/g to as high as 1.0 mg/g (mass of surfactant per mass of 

rock).11, 12 Substantial adsorption loss of surfactants onto mineral surface could drastically 

worsen the required ultralow IFT and lead to a huge wastage on chemicals as well as 

manpower. Thus, a proper control of adsorption of surfactant in chemical flooding is of 

great importance to achieve a successful recovery operation.  

Besides, surfactant is seldomly used alone in chemical flooding. Typically, a combination 

of a surfactant slug and a subsequent polymer slug (SP) are injected inside oil reservoir 

to provide both microscopic displacement efficiency as well as macroscopic sweep 

efficiency. However, operation with multiple slugs inevitably add the technical 

complexity, such as formulation compatibility with high salinity brine, e.g. TDS > 

150,000 ppm in Texas and Oklahoma area, as well as huge chemical costs. Thus, a single-

step process via injecting displacing agent that offers both the ultra-low interfacial tension 

and highly favorable mobility characteristic shall be of great interest for oilfield 

applications.  

This dissertation aims to provide alternatives in reducing surfactant adsorption loss and 

improving sweep efficiency in conventional surfactant flooding process.  
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Carbonaceous nanoparticles, i.e., carbon nanotubes and carbon blacks were exploited as 

surfactant carriers in tertiary oil recovery. Carbon nanotube is allotrope of carbon with a 

cylindrical nanostructure, whereas carbon black is a form of paracrystalline carbon that 

generally produced by the incomplete combustion of heavy petroleum products. These 

nanosized particles are very promising material that could be applied in oil industry due 

to their outstanding physical and chemical properties. The superior characteristics of 

carbonaceous nanoparticles involve that other hydrophobic compounds or the 

hydrophobic moiety of an amphiphilic molecule, e.g. long surfactant tail, will strongly 

attract to these nanoparticle surfaces because of the entropy-driven hydrophobic 

interactions. Besides, enormous specific surface area of these nanoparticles (close to 250 

m2/g for nanotubes in this study) could afford substantial amount of hydrophobic 

molecules to be loaded onto their surfaces thus being delivered to target zone. 

A single slug of oil-induced viscoelastic formulation reformed form Winsor III 

microemulsion was investigated as potential alternative in surfactant flooding process. 

Contrary to typical oleo-responsive wormlike micelles, that worms break with addition 

of oil, solubilized oil is capable to give rise to an exceptional viscoelastic behavior in oil-

induced wormlike micellar solution. This unique formulation has the potential to 

drastically improve both the volumetric sweep efficiency and microscopic displacement 

efficiency. Injection of a single viscoelastic slug instead of multiple slugs as in traditional 

SP flooding has the potential of saving both operating time and chemical expenses for 

tertiary oil recovery operations, thus is of great significance in oilfield applications.  
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Chapter 2 Surfactant-Only Stabilized Dispersions of Multiwalled 

Carbon Nanotubes in High-Electrolyte-Concentration Brines 

 

Abstract 

Multiwalled carbon nanotubes (MWNTs) exhibit promising properties for potential 

applications in oil production. Because of their substantial surface area, they could be 

used as carriers for catalysts or chemicals into subsurface oil and gas zones to change the 

properties of reservoir fluids or rock. A prerequisite for utilizing the MWNT in reservoir 

applications is to generate stable aqueous-phase dispersions that are well-dispersed and 

able to propagate successfully through the reservoir medium. In this study, different types 

of surfactants were investigated for their ability to disperse MWNTs in high-ionic-

strength solutions typical of oil reservoirs up to 10% American Petroleum Institute (API) 

brine (8 wt% NaCl and 2 wt% CaCl2). Stable nanotube dispersions in deionized water 

were achieved with the anionic surfactants evaluated. Compression of the electrical 

double layer, however, at high ionic strength, e.g., > 3 wt% electrolytes, led to rapid 

aggregation of the anionic surfactant-aided nanotube dispersion. This study showed that 

by dispersing nanotubes in nonionic surfactant such as alkylphenol polyethoxylates with 

a large number of ethylene oxide (EO) groups, stable MWNT dispersions were obtained 

in 10 wt% brine. In the sandpack column test, a binary surfactant formulation, which 

consisted of a nonionic surfactant and an anionic surfactant in the proper ratios, exhibited 

an excellent capability to propagate MWNT, with 96% of the injected nanotubes 

recovered in the effluent. The adsorption density of surfactants onto MWNT was 

determined to be 9 molecules/nm2 from the shift of the CMC value in the surface tension 
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measurement. This study reveals that steric repulsion between the nanotubes could 

eliminate the aggregation of dispersed MWNT under the high-electrolyte-concentration 

condition, whereas nanotube-nanotube, and nanotube-sand surface electrical repulsion 

could assist in the transport of the MWNT dispersion through porous media. 

2.1 Introduction 

Multiwalled carbon nanotubes (MWNTs) are a very promising material that could be 

utilized in many applications due to their outstanding physical and chemical properties.1 

One attractive characteristic of nanoparticles, an application of which we explore in this 

paper, is their high specific surface area (220-300 m2/g for the MWNTs used in this 

study).  

Stable dispersions of nanotubes using a wide range of surfactants has been achieved 

previously in deionized water.2-10 The mechanisms to stabilize suspended nanotubes rely 

on either electrostatic repulsion induced by adsorbed ionic surfactants or steric repulsion 

by nonionic surfactants, to overcome the van der Waals attraction between nanotubes.3, 7-

10 In general, surfactants disperse the nanotubes if  they contain alkyl chains equal to and 

longer than a decyl group, regardless of the functionality of their hydrophilic heads.2 

Among ionic surfactants, sodium dodecylbenzene sulfonate (SDBS) is reported to exhibit 

a high dispersive efficiency.4, 5 A detailed investigation of SDBS in dispersing nanotubes 

revealed that, at saturation, surfactants form a monolayer covering the nanotube surface 

with the tails oriented perpendicular to the surface. In addition, the presence of micelles 

was suggested not to be a requirement to form nanotube suspension.6 For nonionic 

surfactants, it was reported that surfactants with higher molecular weight could suspend 

more nanotubes because of improved steric stabilization.5 Study of Triton X-series 
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surfactants found that the quantity of nanotubes suspended in water were positively 

related to the adsorption capacities of the surfactants, but negatively with the hydrophilic 

fraction ratio of surfactants.7  

Although a number of papers have shown stable nanotube dispersions created in 

deionized water with surfactants, to our knowledge, no study examined dispersion 

stability at elevated salinity conditions. 

This work focuses on generating stable MWNT dispersions using surfactants at high 

electrolyte concentration that mimic common oil reservoir conditions. Both ionic and 

nonionic surfactant were examined under high ionic strength, up to 10 wt% American 

Petroleum Institute (API) brine (8 wt% NaCl and 2 wt% CaCl2). Effects of the surfactant 

head group on dispersion stability were studied with several anionic surfactants 

possessing similar alkyl chains, approximately a dodecyl group. Extended surfactants 

with different propylene oxide (PO) lengths and internal olefin sulfonate (IOS) were used 

to compare the effect of hydrophobic tail. A series of nonionic surfactants acquired with 

the same hydrophobic group (4-(2,4-dimethylheptan-3-yl)phenol), but different lengths 

of hydrophilic polyethoxyl chain (10 EO, 20 EO, 30 EO, and 40 EO) were selected to 

investigate the effect of ethoxylate (EO) groups on dispersion stability in API brine.  

In the surfactant solution, once the concentration is sufficiently high, surfactant molecules 

will form aggregates called micelles. The micelles are in an equilibrium state where 

surfactant molecules existing as monomers; components of the micelles are exchanging 

with each other and the monomers at the timescale of microseconds.11 In the presence of 

MWNTs, one more equilibrium is introduced: exchange between surfactants adsorbed 

onto MWNTs. Since both equilibria would occur in the solution with MWNT and 
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micelles present simultaneously, the apparent critical micelle concentration (CMC) 

should be altered by the amount of surfactant adsorbed on the MWNT;6 surfactant 

adsorbed on the MWNT does not contribute to the monomer concentration in solution. In 

this study, the adsorption capacity of the MWNT is estimated by measuring the change 

in the apparent CMC of the surfactant solution in the presence of the MWNT. 

Once stable dispersions of MWNT in high electrolyte concentration solutions were 

realized, propagation studies using sand packs were conducted to explore the transport 

behavior of the dispersed MWNT. The main limitations for transport of carbon nanotubes 

in water-saturated porous media are surface retention and physical trapping12, 13 which 

could be controlled by properties of MWNTs, such as material shape, size,14, 15 and 

surface coating,16, 17 as well as various physicochemical and hydrogeological parameters 

of the porous media, such as the solution ionic strength,15, 18 pore water velocity,19, 20 grain 

size,21, 22 and grain roughness.23, 24  

Early studies on the transport of nanotubes agreed that physical straining played an 

important role in the retention of these nanomaterials in porous media, where less 

mobility was observed for larger size nanotubes or in less permeable porous media.14, 15, 

21 Study found that nanotubes longer than 8 m were preferentially retained in 40-50 

mesh quartz sand.14 However, the opposite phenomenon has also been reported, where 

smaller MWNT were retained to a greater extent in porous media than larger MWNT. A 

suggested possible reason of this unusual observation was increase in Brownian motion 

leading to more MWNT collisions with the porous media with decreasing size.25  

It is well known that increasing concentrations of ions in solution facilitate deposition of 

mobilized colloids onto mineral surfaces due to compression the electric double layer.26-
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28 Studies on carbon nanotubes dispersion, using both covalent and non-covalent 

approaches, also revealed that solution chemistry is a dominant factor controlling 

nanotube mobility in porous media.15, 29-31 Research on carboxyl-functionalized single-

walled carbon nanotubes (SWNT) suggested that deposition of nanomaterials onto porous 

medium surfaces is a key process controlling their transport in aquatic systems, with 

increasing solution ionic strength resulting in higher SWNT retention.18 Divalent cations 

have been proved to be more effective in increasing SWNT retention than monovalent 

cations, where the deposition rate coefficient basically did not change appreciably above 

0.1 mM CaCl2 or 0.3 mM KCl.15 SDBS coated carbon nanotubes showed excellent 

mobility in quartz sand pack due to increased electrostatic repulsion between nanotubes 

and porous media;17, 32-34 however, when solution Ca2+ concentration increased from 0 to 

0.88 mM, the retention of SDBS dispersed MWNTs drastically increased from 20% to 

64% in quartz sand packs.29 A recent study from our group proposed a mixed polymer 

system for stabilizing MWNT at high ionic strength and minimizing adsorption on the 

sand surfaces during propagation. In this study it was concluded that the primary 

dispersant, a low molecular weight polyvinyl pyrrolidone, helps disaggregation by 

effectively wrapping individual nanotubes, while the secondary dispersant, hydroxyethyl 

cellulose, inhibits the reaggregation in saline solutions35 by introducing steric repulsion 

between the dispersed tubes.  

Although numerous studies have shown functionalized or surfactant assisted nanotubes 

are highly mobile in the columns under DI water conditions, it should be anticipated that 

a slight increase of solution ionic strength to 10 mM could dramatically reduce mobility. 
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It has also been shown that in most cases MWNT attachment to the porous media was 

irreversible.15, 29 

Using a procedure developed previously, MWNT dispersions used in this study are first 

dispersed by sonication in a solution of the primary dispersant, centrifuged, and then 

filtered through a one-micron glass fiber filter.35 Only the resultant dispersion was 

injected into the sand pack. This procedure removes any undispersed nanotubes that can 

become trapped in pore throats due to physical straining, which effectively creates a filter 

cake at the pore throat, trapping any nanotubes subsequently reaching that location, and 

preventing propagation of the nanotubes. Once physical trapping has been eliminated by 

this preparation procedure, the dominant remaining limitations for effective MWNT 

propagation would be surface retention/adsorption of nanotubes onto mineral surfaces. 

Coating nanotubes with a physically adsorbed surfactant layer provides them with surface 

hydrophilicity and enables them to be dispersed in aqueous solution; additionally, steric 

and electrostatic repulsion of the adsorbed surfactant layer from the mineral surface 

prevents excessive nanotube retention.  Hence, to a large extent, the retention and 

adsorption of MWNT in reservoir rock depends on the dispersant added to stabilize 

MWNT. 

This work evaluates the performance of a series of surfactant-dispersed MWNTs, while 

varying ionic surfactant, nonionic surfactant, and anionic-nonionic surfactant mixture 

ratios, in terms of their ability to transport MWNTs through a porous medium in one-

dimensional column tests. It will be shown that stable MWNT dispersions using binary 

surfactant systems exhibit a robust ability to propagate through porous media under 

conditions of high electrolyte concentration. The surfactant system includes a nonionic 
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surfactant possessing certain EO groups, together with an associated anionic surfactant, 

kept at a proper ratio. Our hypothesis is that the polyethoxylated nonionic surfactant 

provides steric repulsion between the nanotubes that eliminates coagulation of dispersed 

nanotubes in high electrolyte concentration condition, while anionic surfactant, with 

negatively charged head group, promote tube-tube, and tube-sand surface electrical 

repulsion, and hence ensures the MWNT dispersion transport in porous media. 

2.2 Experiments 

2.2.1 Materials 

i. Nanomaterials 

MWNTs used in this study were provided by SouthWest Nanotechnologies Inc. 

(SWeNT), Norman OK. In the manufacturing process nanotube growth is controlled to 

the desired length of approximately 1 micron (m) with an average outer diameter of 

approximately 10 nanometers (nm) (SWeNT product SMW100). Transmission electron 

microscopy (TEM) images of the nanotube has been shown elsewhere.36 

ii. Surfactants 

Two sodium laureth sulfates (C12EOSO4Na, C12(EO)3SO4Na), were manufactured and 

provided by Stepan Company (Northfield, IL) as 25.3 wt%, and 60 wt% active solutions 

respectively. Sodium dodecyl diphenyloxide disulfonate (SDDPDS; 

C12PhOPh(SO3)2Na2) exhibits very high solubility in water, including in high salinity 

brine. SDDPDS was purchased from Pilot Chemical Company (Cincinnati, OH) and 

received as 45 wt% active in solution. Alkyl propoxy sulfates (or so called extended 

surfactants), C12,13(PO)4SO4Na and C12,13(PO)8SO4Na, contain alkyl chain of 12-13 
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carbons, with 4 and 8 propylene oxide units (PO), respectively. Both were provided by 

Sasol North America Inc. (Lake Charles, LA) as 86 wt% active solutions. One internal 

olefin sulfonate (IOS) surfactant,37 with an average alkyl chain length of 19-23 carbons, 

was provided by Shell (Houston, TX) as 26.8 wt% active solution in water. Three 

nonylphenol polyethoxylates (NP10EO, NP20EO, and NP30EO) were provided by 

Huntsman (Salt Lake City, UT) as 100% active, having 10, 20, and 30 ethoxylate (EO) 

groups, respectively. Another nonylphenol ethoxylate with 40 EO’s, NP40EO, was also 

provided by Huntsman and received as 70% active solution in water. A linear alcohol 

ethoxylate (LA41EO), with 40 EOs, was provided by Dow Chemical (Midland, MI) as 

100% active. The structures for the surfactants are shown in Table A1 (Appendix A). 

Sodium chloride (NaCl) and calcium chloride dihydrate (CaCl2•2H2O) were purchased 

from Sigma Aldrich.  

iii. Porous media 

For the sand pack tests, Ottawa sand and crushed Berea sandstone were used. Ottawa 

sand (F-95) was purchased from U.S. Silica. Ottawa sand size distribution is between 75 

μm and 300 μm with d50 at 145 μm.38 Crushed Berea was provided by Stim-Lab (Duncan, 

OK) with particle size ranging between 75 μm and 250 μm. The mean grain diameter of 

Berea sand is measured to be 147 μm. Both sands were used without any treatment. 

2.2.2 Experimental Methods 

i. Dispersion of MWNT 

Stock solutions for each surfactant were prepared at 1 wt% in deionized water (DI) at 

room temperature. After diluting stock solutions to the target concentration, MWNTs 
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were added into  each samples, followed by 1 hour sonication with a horn sonicator (9-

12W, 20 kHz). The dispersion was then diluted with DI water or/and 20 wt% API brine 

to bring the MWNT concentration of 100 mg/L at the target electrolyte concentration 

levels (the ratio between NaCl and CaCl2 was kept constant at 4:1). A stirring bar was 

subsequently added into the vials and the sample was placed on a stirrer for 1 hour to mix 

it homogeneously, followed by centrifugation at 2000 rpm for 1 hour, to allow any 

remaining non-dispersed nanotube aggregates to be separated from the stable, suspended 

nanotubes. Finally, the dispersion was filtered through a one micron glass fiber filter to 

remove aggregates that were not removed by the centrifugation process. The 

concentration of nanotubes in the dispersion was measured using an ultraviolet−visible 

(UV−Vis) spectrophotometer (Thermoscientific, Genesys10s) at 800 nm29 and compared 

to calibration standards of known concentrations.  

ii. Surfactant adsorption on MWNT  

MWNT were added at a concentration of 10 mg/L into surfactant solutions of varying 

concentration in API brine. The suspension was then sonicated and poured into a glass 

beaker. The surface tension was measured by a dynamic contact angle analyzer DCA-

322 (Cahn Instruments, USA) utilizing a technique based on the Wilhelmy plate 

principle. Details of the procedure have been mentioned elsewhere.6 

iii. Sand pack test 

Crushed Berea sandstone or Ottawa sand were dry packed into glass chromatography 

columns purchased from Kimble Chase®. Most experiments were run in a 1 in. (L) × 1 

in. (D) sand pack at room temperature, unless otherwise stated. Porosity and permeability 



20 

of Berea sand columns were determined in our laboratory as 35% and 2.0 Darcy 

respectively. For the Ottawa sand packs the porosity and permeability were measured as 

37.5% and 4.0 Darcy respectively. 

After dry packing the columns, DI water or saline solution was injected using a 

Masterflex® peristaltic pump purchased from Cole Parmer®; at least 10 pore volumes 

(PVs) were injected through the columns from the bottom to ensure the homogeneous 

compaction of the sand pack. Thereafter, various surfactants suspended nanotube 

dispersions was injected into the column for a fixed number of PVs, followed by post-

water flush at the same ionic strength, which was continued until no MWNT were 

detected in the effluent. Usually in these experiments an undetectable concentration of 

nanotube is achieved following 3 PV of water flooding. As described earlier, the injected 

dispersion was pre-filtered through 1 micron size glass fiber filter to eliminate any 

residual aggregates which may cause filter cake to form at the sand face in the column 

test. The experimental fluids were injected into the sand packs at a flow rate of 0.3 

mL/min (pore velocity 2.8×10-3 cm/s). Effluent samples from the column were collected 

by a fraction collector at specific time intervals. They were then analyzed by a UV-Vis 

spectrophotometer at 800 nm wavelength. The normalized MWNT concentrations in the 

effluent and cumulative recovery of carbon nanotubes were plotted versus pore volumes 

injected.  
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2.3 Results and discussions  

2.3.1 Dispersion of MWNT 

We investigated the effectiveness of various surfactants to stabilize dispersions of 

MWNT under saline conditions without the presence of a water soluble polymer. 

Dispersants are categorized as anionic surfactant, nonionic surfactant, and anionic-

nonionic binary surfactant mixtures.  

i. Anionic surfactant 

Preliminary screening shows that SDBS exhibited good performance to create stable, 

homogeneous MWNT dispersions in DI water. Eighty percent of nanotubes remain stably 

dispersed in the filtrate after the centrifugation and filtration steps described above, when 

the nanotube feed concentration was 100 mg/L. This indicates a dodecyl chain is 

sufficient to coat MWNTs surfaces and stabilize the dispersion properly; however, a 0.1 

wt% API brine solution destabilized the SDBS nanotube dispersion. 

(a) Effect of functionalized head group 

Properly functionalized surfactant head groups can improve waters solubility and salinity 

tolerance to drastically enhance the performance of nanotube dispersions at elevated ionic 

strength.  Four surfactants, a disulfonate, SDDPDS, a propoxysulfate, C12,13(PO)4SO4Na, 

an ethoxysulfate, C12EOSO4Na, and an ethoxysulfate with a longer EO moiety, 

C12(EO)3SO4Na, clearly illustrate the positive effects of the more electrolyte tolerant head 

groups on the stable dispersion of nanotubes in brine. They not only show better aqueous 

solubility in electrolyte than the SDBS -- up to 5 wt % electrolyte concentration -- these 

surfactants also possess the same dodecyl chains as the SDBS, so that the distinction in 
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dispersion stability at elevated ionic strength lies in the more electrolyte tolerant head 

groups. 

 

Figure 2.1. Stability of MWNT dispersions at different electrolyte concentration 

(NaCl : CaCl2 = 4:1)  a. with 4 mM anionic surfactants SDDPDS, C12,13(PO)4SO4Na, 

C12EOSO4Na, and C12(EO)3SO4Na; b. 8 mM anionic surfactant SDDPDS, 

C12,13(PO)4SO4Na, C12EOSO4Na, and C12(EO)3SO4Na; c. C12,13(PO)8SO4Na and 

C12(EO)3SO4Na at ratio of 3:1, with total surfactant concentration 4 mM, 8 mM, and 

16 mM (solid lines); C12,13(PO)4SO4Na and C12(EO)3SO4Na at ratio of 3:1, with total 

concentration 4 mM and 8 mM (dashed lines); d. IOS and C12(EO)3SO4Na at ratio 

of 3:1; e. 1 mM NPE surfactants; f. 2 mM NPE surfactants 
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Figure 2.1a shows dispersed MWNTs concentrations in the filtrate with a 4 mM 

surfactant concentration at different ionic strength. All of these surfactants created stable 

dispersions in DI water. At 1 wt % brine, the concentration of MWNTs in C12(EO)3SO4Na 

solution dropped slightly, with a remarkable reduction in C12EOSO4Na from 65mg/L to 

49mg/L, while in C12,13(PO)4SO4Na and SDDPDS solutions, MWNTs concentrations 

were both drastically reduced to below 20 mg/L. The dispersed nanotubes with 

C12(EO)3SO4Na decreased linearly beyond 1 wt% electrolyte concentration, whereas in 

C12,13(PO)4SO4Na and SDDPDS solution, nearly all MWNTs sedimented at 2 wt % API 

brine. 

Figure 2.2 shows the appearance of dispersed MWNTs in 4 mM C12,13(PO)4SO4Na at 

increasing electrolyte concentrations after filtration. The filtered samples turn from dark 

black, to light black, to translucent, and then to transparent at increasing ionic strength.   

 

Figure 2.2. MWNT dispersion with 4 mM C12,13(PO)4SO4Na at electrolyte 

concentration from 0-3%. 

In DI water, surfactant tails adsorb onto nanotube surfaces due to hydrophobic attraction, 

with hydrophilic heads directed toward aqueous solution.3, 6, 7 The ionic head creates 

charged layers on the nanotubes, which exert repulsive force to prevent similarly charged 

nanotubes from moving close enough to each other to become flocculated by van der 

 1% 2% 3% DI 
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Waals attraction.8-10 The addition of electrolyte, however, compresses the electrical 

double layer around the nanotubes, allowing the nanotubes to approach closely enough 

to aggregate. 

Compared to the other anionic surfactants (C12,13(PO)4SO4Na and SDDPDS), the ionic 

head group (SO4 
-) of sodium laureth sulfates (SLES EO1 and EO3) is attached to 

hydrophilic EO groups separating the head group from the alkyl chain; this is known to 

improve the hardness and salinity tolerance of anionic surfactants. Improved dispersion 

stability with the laureth sulfates was observed with SLES’s at 1 wt % and 2 wt % 

electrolyte concentration. It is obvious that the 3 EO groups in C12(EO)3SO4Na are more 

effective to enhance dispersion stability than the single EO in C12EOSO4Na. It is 

suggested that under low electrolyte concentration conditions, although the electrostatic 

repulsive force between nanotubes due to the adsorbed sulfate groups is reduced as a 

result of compression of the electrical double layer, the EO groups with less salt 

sensitivity could still extend sufficiently into the aqueous phase to produce a steric barrier 

to prevent the close approach of nanotubes. However, at higher electrolyte 

concentrations, the steric contribution becomes inadequate to stop close approach of the 

surfactant coated nanotubes, due to further reduction in repulsive forces, which results in 

the attractive van der Waals force becoming dominant, as predicted by DLVO theory. 

Dispersion stability in increased surfactant concentrations (8 mM) is shown in Figure 

2.1b. It is clear that doubling the concentration of surfactants used did not improve 

stability of MWNT dispersion significantly. This is consistent with the distribution of 

surfactant between a monomer phase in solution, micellar pseudophase that does not 

contribute to additional adsorption of surfactant on the nanotubes, and an adsorbed 



25 

surfactant layer on surface of the nanotubes: surfactant micelles do not increase the 

surfactant adsorption density on the nanotubes and do not contribute to the repulsive 

forces between the surfactant-coated nanotubes. 

(b) Effect of hydrophobic tail 

Surfactant is believed to adsorb onto the nanotube surface because of strong hydrophobic 

interactions; therefore, an increase in the hydrophobe size of the surfactant should 

increase the magnitude of adsorption39 and is expected to improve nanotube dispersion 

stability. C12,13(PO)8SO4Na and IOS were selected to study the effects of hydrophobe size 

on dispersion stability. Since the solubility of surfactant monomers decreases with 

increase in length of the hydrophobic tail, C12(EO)3SO4Na is used as solubilizer at a molar 

ratio of 1:3 to the main surfactant. The total surfactant concentrations were varied at 4 

mM, 8 mM, and 16 mM. C12,13(PO)4SO4Na and C12(EO)3SO4Na-only solution was used 

as a base case with the same molar ratio. 

At 4 mM total surfactant concentration, C12,13(PO)8SO4Na exhibited a steady decrease in 

the concentration of suspended MWNTs from 0 to 3 wt% electrolyte. At 8 mM surfactant 

concentration, more MWNTs were dispersed due to increasing surfactants available in 

the solution. However, further increase of surfactant concentration up to 16 mM did not 

show obvious benefit compared to the 8 mM concentration. It is possible that the larger 

PO moiety present in C12,13(PO)8SO4Na creates better hydrophobic bonding with 

nanotube surfaces, consequently, better stability is observed compared to 

C12,13(PO)4SO4Na, as displayed by the dashed lines in Figure 2.1c. 

Figure 2.1d illustrates the stability of IOS dispersed MWNTs over a wider electrolyte 

concentration range up to 10 wt%. Better performance with IOS in brine conditions is 
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possibly due to a twin-tail structure of IOS which maybe have higher hydrophobic 

interaction with nanotube surfaces than a single alkyl chain surfactant does. The plateau 

region appearing at high electrolyte concentration is likely due to a balance achieved 

between electrostatic repulsive and van der Waals attractive interaction among the 

dispersed nanotubes. The addition of counterions (Na+, Ca2+) can compress the electrical 

double layer surrounding the ionic heads of adsorbed surfactants; as a result, there will 

be a reduction in repulsion between the surfactants, which allows more surfactants to be 

adsorbed. Higher adsorbed surfactant density has two effects: a. increasing the van der 

Waals attractive force between individual dispersed nanotubes; b. enhancing the 

electrostatic repulsive force due to increased electrical charge on the nanotube. If the 

increase of repulsive force is greater than that of the attractive force, the net repulsion 

will prevent aggregation of the nanotubes. Better stability was observed at 16 mM 

surfactant concentration, which also implied higher adsorption occurred.  

ii. Nonionic surfactant 

SLESs exhibited better suspendability of MWNT compared to other anionic surfactants 

in low electrolyte concentration. It is believed that the hydrated EO groups in SLES 

extend into the aqueous phase and thus present a steric barrier to inhibit the close 

approach of individually dispersed nanotubes to each other. To further analyze the effect 

of EO groups on the stability of nanotubes dispersions, a series of nonionic nonylphenol 

ethoxylates (NPE) surfactants with EOs between 10 to 40, NP10EO, NP20EO, NP30EO, 

and NP40EO, were studied.  

(a) Effect of EO groups 
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Figure 2.1e and Figure 2.1f display results for stability tests with 1 mM, and 2 mM 

concentrations of various NPE’s, respectively. As can be seen, all the surfactants tested 

created stable dispersion in DI water. It is interesting to note that the concentration of 

suspended MWNTs decreased significantly at an electrolyte concentration of 2.5 wt% for 

all four surfactants but recovered at higher ionic strength. While we have not tried to 

verify the mechanism for this phenomenon, one possible explanation is the presence of 

impurities in these highly ethoxylated surfactants. At electrolyte concentration of 10 wt%, 

NP40EO suspended more than 60 mg/L of MWNTs in the filtrate. It is believed that 

strong steric barriers were created when 40 ethoxylates groups in NP40EO extend into 

the aqueous phase, which inhibited the dispersed nanotubes from flocculating. Doubling 

the surfactant concentration gave similar stability performance for NP40EO, but 

significant enhancement for NP20EO and NP30EO was observed by increasing the 

surfactant concentration. The levels of dispersed nanotubes concentrations improved 

from 23 mg/L to 54 mg/L for NP20EO, and 36 mg/L to 57 mg/L for NP30EO, 

respectively, when surfactant concentration increased from 1 mM to 2 mM at 10 wt% 

brine. 

A stock solution with 1 mM NP40EO and 100 mg/L MWNT was prepared in 10 wt% 

API brine and split into two vials. One was left in room temperature, the other one was 

kept in a 50 oC oven. Their stabilities were monitored over a one month period. As seen 

in Figure 2.3, the stability for both samples are well maintained during the observation 

period, which demonstrates the longevity of NP40EO stabilized MWNT dispersions. 
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Figure 2.3. 30 days’ stability of NP40EO-MWNT dispersion at room temperature 

and 50 oC 

(b) Suspendability MWNT at varying NP40EO concentrations 

It is obvious that NP40EO has excellent performance to stabilize MWNTs dispersion at 

high ionic strength conditions. As a dispersant, the lower concentration of NP40EO 

required to stabilize nanotubes means better suspendability, and also means more 

economically viable in field application. Hence, how much NP40EO is necessary to 

suspend carbon nanotubes in API brine is important.  

Table 2.1. Suspendability of NP40EO with MWNT dispersion in API brine 

NP40EO, mM 0.1 0.25 0.5 1.0 1.25 

MWNT, mg/L 1.7 47.0 56.6 68.4 73.4 

 

Five scenarios were designed; in each of them, 100 mg/L MWNTs were prepared with 

different amount of NP40EO, varying at 0.1, 0.25, 0.5, 1.0, and 1.25 mM. Concentration 

of MWNTs in the filtrate were measured after high speed centrifuge to assess their 

suspendability. As shown in Table 2.1, at the lowest concentration of 0.1 mM NP40EO, 

hardly any nanotubes survived at 10% API brine. While with only 0.25 mM NP40EO, 

nearly half of MWNTs remained in stable dispersion. More nanotubes were detected in 
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the filtrate by increasing the amount of NP40EO used. A total of 1.25 mM is adequate to 

suspend more than 70% of MWNTs introduced. 

iii. Binary anionic-nonionic surfactant formulations 

Ionic surfactants stabilize the dispersed tubes mainly by electrostatic repulsion, whereas 

the stabilization mechanism of nonionic surfactant-coated tubes is mainly achieved by 

steric repulsion.3, 7-9 Unfortunately, the ionic surfactants can hardly suspend nanotubes at 

ionic strength greater than 3 wt% API brine due to compression of electrical double layer. 

With nonionic surfactant, steric repulsion is not as susceptible to ionic strength change as 

electrical repulsion, therefore carbon nanotubes are highly stabilized even at high 

electrolyte solution. It is expected, however, that the adsorption density of the highly 

ethoxylated nonionic surfactants on the nanotube surfaces is likely much lower than that 

of ionic surfactants due to steric repulsion between the large headgroups of the nonionics. 

This suggests that a combination of ionic and nonionic surfactants might produce a 

superior dispersion of nanotubes in brines. 

Stability of binary nonionic-ionic surfactant mixture were investigated with two binary 

systems. Both samples consisted of 1 mM NP40EO, while one contained 6 mM IOS, and 

the other included 6 mM C12,13(PO)8SO4Na. 75% of the original charge of MWNTs was 

suspended in the sample with IOS/NP40EO, while 80% remain suspended in 

C12,13(PO)8SO4Na /NP40EO after filtration. By introducing small amounts of nonionic 

surfactant NP40EO, anionic surfactant could also achieve stable nanotube dispersions in 

10 wt% API brine.  

In a separate test, two more samples were made to observe synergistic effects in binary 

systems of anionic and nonionic surfactants. Both samples contained 0.25 mM NP40EO, 
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but differed in C12,13(PO)8SO4Na concentration, one having 0.67 mM and the other one 

with 1.33 mM. The base case was a dispersion stabilized by only 0.25 mM NP40EO in 

API brine, which gave 47 mg/L MWNT suspended in the filtrate as shown in Table 2.1. 

With 0.67 mM C12,13(PO)8SO4Na, 19% more (56 mg/L) nanotubes were suspended, 

which indicated the improvement by mixing anionic surfactant with nonionic surfactant 

to form the MWNT dispersion. When the C12,13(PO)8SO4Na concentration was increased 

to 1.33 mM, only 7.7% more nanotubes (60.3 mg/L) were suspended as compared to 0.67 

mM C12,13(PO)8SO4Na. In this nonionic-anionic surfactant stabilized MWNT dispersion, 

nanotubes are believed to be coated by both anionic and nonionic surfactants, but the 

steric repulsion is considered as the dominant force to prevent coagulation of dispersed 

nanotubes in brine condition, the anionic surfactants serving primarily to increase the 

adsorption density on the surface of the nanotubes. 

iv. Surfactant adsorption density onto MWNTs 

The CMC of a binary surfactant mixture, alkyl propoxy sulfate C12,13(PO)4SO4Na and 

linear alcohol ethoxylates LA41EO, was measured at constant molar ratio of 1:4 in API 

brine in the absence and the presence of MWNT (10 mg/L). This was the maximum 

concentration of MWNT that could be suspended at concentrations of surfactant near the 

CMC of the surfactant mixture. The result is depicted in Figure 2.4. It is obvious that the 

10 mg/L concentration of MWNT affects an apparent increase of the CMC of the mixed 

surfactant by approximately 46 mg/L, which is a 77% increase of the CMC without 

MWNT added.  

The surfactant adsorption density onto MWNT surface is calculated by: 
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𝐴𝐷 =

(𝐶𝑀𝐶2 − 𝐶𝑀𝐶1)
𝑀𝑊𝑎𝑣𝑔

∗ 𝑁𝐴

1018 ∗ 𝐶𝑀𝑊𝑁𝑇 ∗ 𝑆𝐴
 

(2.1) 

Where 𝐴𝐷  is surfactant adsorption density in molecules/nm2, 𝐶𝑀𝐶2, 𝐶𝑀𝐶1 are critical 

micelle concentration in mg/L of surfactants with and without nanotubes respectively, 

𝐶𝑀𝑊𝑁𝑇 is the concentration of nanotube in mg/L, 𝑀𝑊𝑎𝑣𝑔is average molecular weight of 

surfactant mixture in g/mol, 𝑁𝐴 is Avogadro’s number, SA is specific surface area of 

MWNT in m2/g.  

The calculated adsorption density of surfactant on CNT surface is 9 molecules/nm2. As a 

comparison, a typical head area of an anionic surfactant residing at the gas/liquid interface 

is about 0.5/ nm2,11 in other words, a unit surface area of 1 nm2 is occupied by 2 surfactant 

molecules at monolayer saturation. For nonionic surfactants the typic adsorption density 

at the air/water interface is approximately 1 molecule per square nanometer. Obviously, 

adsorption density of surfactant on CNT surface is much higher than that which occurs at 

the gas/liquid interface. The approximate cross sectional area of a methylene chain is 

about 0.2 nm2.11 For 1 nm2 area on nanotube surface, a maximum packing number in a 

monolayer is 5 molecules, allowing for the alkyl chains to be packed perpendicular to the 

MWNT surface. Thus, for an adsorption density of 9 molecules/nm2, it is anticipated that 

multilayer adsorption would have to occur on the nanotube surface. A physical 

mechanism by which this could occur is not obvious, though perhaps there is some affect 

from the curvature of the nanotube surface. 
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Figure 2.4. Surface tension measurement, CMC w/o MWNT = 0.0654 mM (60 mg/L), 

and CMC with MWNT =0.1103 mM (106 mg/L) 

2.3.2 Sand pack tests – nanotube propagation 

Previously, in the use of a non-covalent methodology for stabilizing nanotubes 

dispersions in brine, various polymers have been reported to disperse carbon nanotubes 

and propagate the dispersion through porous media.35, 40, 41 The adsorption of nanotubes 

onto pore walls has been revealed as the primary barrier for effective tube propagation, 

once a stable dispersion has been achieved and all aggregates capable of blocking pore 

throats have been removed. In the non-covalent approach, MWNTs are covered by 

polymers or surfactants; hence, the retention and adsorption of MWNT in reservoir rock 

mainly depends on the effectiveness of dispersant used to stabilize them, as long as the 

dispersants themselves are not strongly adsorbed by the mineral surfaces. 

i. Column test with anionic surfactant stabilized carbon nanotubes 

Anionic surfactant IOS showed excellent suspendability for carbon nanotubes in DI water 

in the forementioned tests. Thus, transport of IOS suspended MWNTs in porous media 
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was firstly investigated under both DI water and saline solution conditions. The base run 

was Test 101, where the dispersion was made with 6 mM IOS and 2.4 mM 

C12(EO)3SO4Na in DI water. A 2’’ dry-packed Ottawa sand was flushed by DI water for 

10 PVs, then 5 pore volumes (PVs) of MWNT dispersion were injected, which is 

represented by the shaded area in Figure 2.5. Finally, water flooding was conducted to 

propagate the MWNT dispersions through the sand pack. In Test 102, the dispersion was 

made in a 5 wt% API brine, and the surfactant concentration was doubled in order to 

improve stability as illustrated in the previous section’s stability test.  

Figure 2.5a presents results for two column runs by showing plots of normalized carbon 

nanotubes concentration in the effluent against the pore volumes injected. The 

breakthrough of MWNT for both tests occurred at 1.3 PV. In the DI condition, effluent 

concentration quickly reached a plateau of 95% of the injected concentration at second 

PV. In the 5 wt% brine, the normalized concentration continued to increase from 1.3 PV 

to 2.0 PV, followed by a slight increase until 1 PV after water flooding. A similar 

breakthrough curve in quartz sand has been observed for functionalized MWNT at 10 

mM ionic strength as well as for SDBS coated MWNT at 0.5 mM CaCl2.
20, 29 The lower 

effluent concentration in Test 102 plus absence of a concentration plateau demonstrated 

that MWNT retention occurred at a much higher level in the brine, indicating deposition 

in porous media had not reached equilibrium,20 despite the stability of the suspension in 

brine. The cumulative recovery for DI system and 5 wt% brine case were shown in Figure 

A1 (Appendix A) as 97% and 65%, respectively. The sand pack was carefully evacuated 

from the column after the test. Clean sand face in Test 101 also confirmed that barely any 

nanotubes were retained in the sand pack by mechanical trapping, indicating that 



34 

surfactant dispersed MWNTs in DI were highly mobile in the porous media. However, at 

5 wt% brine, the sand face appeared dark due to nanotube adsorption losses, and 

correspondingly, the cumulative recovery of MWNT was much less than that in DI. The 

results for the tests are summarized in Table 2.2. 

ii. Column test with nonionic surfactants stabilized carbon nanotubes 

Nonionic surfactant NP40EO exhibited excellent suspendability for carbon nanotubes in 

aqueous solution at high electrolyte concentration conditions, due to the large 

polyethoxylate groups (EO = 40) in its hydrophilic head providing steric repulsion in 

aqueous solution. Test 201 was conducted with stable MWNT dispersion with 1.25 mM 

NP40EO in API brine.  

As seen in Figure 2.5b, the nanotubes breakthrough occurred at the 2nd PV of dispersion 

injected, and normalized concentration displayed an upward trend until 1 PV post-water 

flood was initiated, revealing that equilibrium adsorption was not achieved in this run. 

The maximum effluent normalized concentration and cumulative recovery were 0.51 and 

35%, respectively. Visual observation verified that the sand face as well as a cross section 

at 0.5’’ behind sand face turned dark during the run, indicating adsorption occurred 

evenly in the porous media, thus eliminating trapping and filtration as mechanisms. The 

high adsorption of MWNT is believed to be on account of strong hydrophilic interaction 

between EO groups of NP40EO with the hydrophilic adsorbent,39 such as the silica that 

is the principal component of the Ottawa sand. Polyethoxylated nonionic surfactants are 

known to exhibit high adsorption densities on silica surfaces. 
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iii. Column test with binary anionic-nonionic surfactant-stabilized carbon 

nanotubes 

A stable binary surfactant dispersion of MWNT’s was prepared with 6 mM IOS and 1.25 

mM NP40EO in API brine. Test 301 was conducted in 1’’ Ottawa sand pack, while Test 

302 was in a 1’’ crushed Berea sand pack.  

 

Figure 2.5. Normalized concentration vs. pore volumes (shaded area is dispersion 

injection period) a. Test 101 (95 mg/L MWNT with 6 mM IOS, 2.4 mM 

C12(EO)3SO4Na in DI) and Test 102 (37 mg/L MWNT with 12 mM IOS, 4.8 mM 

C12(EO)3SO4Na in 5 wt% brine) in 2’’ Ottawa sand packs; b. Test 201 (75 mg/L 

MWNT with 1.25 mM NP40EO in API brine) in 1’’ Ottawa sand pack; c. Test 301 

in 1’’ Ottawa sand pack and Test 302 in 1’’ Berea sand pack (77 mg/L MWNT with 

6 mM IOS and 1.25 mM NP40EO in API brine); d. Test 303-306 in 1’’ Ottawa sand 

packs (MWNT concentration was 72, 73, 73, and 75 mg/L respectively; surfactants 

were 1 mM NP40EO with 2, 4, 6, and 8 mM C12,13(PO)8SO4Na respectively in API 

brine) 
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Figure 2.5c shows the results for the two column tests. The breakthrough of MWNTs in 

Test 301 occurred at the 1st PV, whereas in test 302 during the 2nd PV. The delay in 

propagation through the crushed Berea sand might be due to its complex composition 

(e.g., Berea contains significant amounts of clay minerals) causing stronger tube-sand 

interactions. The lower height of the concentration plateau observed in crushed Berea 

Sand implies higher nanotube retention due to heterogeneity of the media. It has been 

demonstrated that the mobility of MWNTs in porous media is positively correlated to 

porous media sand content while inversely correlated to clay content, e.g., 20% (v/v) of 

clay in the sand pack could retained 50-90 % of MWNTs.42 The cumulative recoveries 

for Test 301 and Test 302 were 91% and 71% respectively.  

Table 2.2. Summary of sand pack column tests. All tests were conducted at 25oC, 

with flow rate of 0.3 mL/min (pore velocity 2.8×10-3 cm/s) 

 

Test 
Electrolytes, 

wt% 

Surfactant 

formulation 

Total 

surfactant 

concentration, 

wt% 

Injected 

MWNT, 

mg/L 

MWNT 

recovery, % 

Porous 

media 

101 DI 
6 mM IOS, 2.4 mM 

C12(EO)3SO4Na 
0.35 95 97 2’’ Ottawa 

102 5 
12mM IOS, 4.8 mM 

C12(EO)3SO4Na 
0.7 37 65 2’’ Ottawa 

201 10 1.25 mM NP40EO 0.25 75 35 1’’ Ottawa 

301 10 
1.25 mM NP40EO, 

6mM IOS  
0.5 77 91 1’’ Ottawa 

302 10 
1.25 mM NP40EO, 

6mM IOS 
0.5 77 71 1’’ Berea 

303 10 

1mM NP40EO, 

2mM 

C12,13(PO)8SO4Na 

0.35 72 76.7 1’’ Ottawa 

304 10 

1mM NP40EO, 

4mM 

C12,13(PO)8SO4Na 

0.5 73 97.1 1’’ Ottawa 

305 10 

1mM NP40EO, 

6mM 

C12,13(PO)8SO4Na 

0.65 73 96.3 1’’ Ottawa 

306 10 

1mM NP40EO, 

8mM 

C12,13(PO)8SO4Na 

0.8 75 96.1 1’’ Ottawa 
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In the binary nonionic-anionic surfactant mixture, nanotubes are coated by both nonionic 

and anionic surfactants. The nonionic offers steric repulsion to prevent coagulation of 

dispersed nanotubes in saline conditions, while the anionic one, with negatively charged 

head group, exhibits tube-tube, and tube-sand surface electrical repulsion, and allows 

greater adsorption densities than with the nonionic surfactant alone, and hence facilitates 

the MWNT transport in porous media. Since both electrical repulsive force and steric 

repulsion are crucial for stable nanotubes dispersion, it is anticipated that a combination 

of any anionic surfactant and nonionic surfactant with high of EO numbers, in proper 

proportion, should achieve stable dispersions in salinity conditions and exhibit successful 

propagation through porous media. 

To confirm this hypothesis, the anionic surfactant C12,13(PO)8SO4Na was selected to 

create a MWNT dispersion with nonionic surfactant NP40EO in Tests 303-306. In each 

test, NP40EO was used at a concentration of 1 mM, while the concentration for 

C12,13(PO)8SO4Na was varied at 2 mM, 4 mM, 6 mM, and 8 mM, respectively.  

Figure 2.5d illustrates the results for these column tests. As clearly seen, apart from Test 

303, all other tests achieve improved propagation, with cumulative recovery greater than 

96%. In Test 303, the recovery of MWNT in effluent reached 76.7%, however, no plateau 

was seen in the effluent concentration, which means the carbon nanotube adsorption onto 

the sand surface did not reach equilibrium. In tests 304-306 a plateau attained at the 3rd 

PV lasted until water flooding, with normalized concentrations as high as 98% of the 

injected concentration. The high adsorption loss in Test 303 caused the sand face to 

become darkened while in the remaining cases the sand faces are relatively cleaner. In 

Figure 2.5d, the normalized concentration curves are overlapped with each other for Test 
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304-306, which indicates surfactant ratios at 1:4, 1:6, 1:8 are viable for propagating 

carbon nanotubes dispersion in porous media. 

2.4 Conclusions 

This study explored the performance of various surfactant systems, in terms of their 

ability to stabilize MWNT dispersions and propagate them through porous media. 

Anionic surfactants are able to stabilize MWNTs and propagate them through a sand pack 

in DI water, but in brine solutions, stability and propagation are highly impaired because 

of the compression of the electrical double layer around the adsorbed anionic surfactants. 

Nonionic nonylphenol polyethoxyalte surfactants exhibit excellent performance to 

stabilize MWNT dispersions in API brine; however, high adsorption losses onto Ottawa 

sand are observed as a result of the strong interaction between NP40EO and the sand 

surface. Mixtures of anionic surfactant and polyethoxylated nonionic surfactant in the 

proper proportion can obtain stability under high electrolyte concentration conditions and 

also achieve successful propagation through porous media. Anionic-nonionic surfactant 

stabilized MWNT dispersions have both steric and electrostatic repulsion between 

nanotubes and the negatively charged sand surface, even in 10% API brine; as a result, 

this enables the nanotube dispersion to propagate through the porous media. In an 

anionic/nonionic mixture surfactant-based MWNT dispersion, the surfactant adsorption 

density on the MWNT surface is on the order of 9 molecules/nm2. This number implies 

that multilayer adsorption would likely occur on the nanotube surface; however, there is 

no obvious physical mechanism that would lead to the development of a multilayer of 

surfactant on the hydrophobic surface of the nanotubes. The authors are unaware of any 

similar situation on hydrophobic surfaces. 
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To our knowledge, this is the first time that stable surfactant-only nanotube dispersions 

have been propagated through porous media under conditions of high electrolyte 

concentration (10 wt% API brine). Nonionic surfactant NP40EO shows excellent 

performance as a dispersant for nanotubes in API brine. One potential application is 

proposed, in which a stable nanotube dispersion can be utilized to deliver surfactants to 

subsurface reservoir to enhance crude oil recovery. 
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Chapter 3 Using Carbonaceous Nanoparticles as Surfactant Carrier 

in Enhanced Oil Recovery: A Laboratory Study 

Graphical abstract 

 

Abstract 

Carbonaceous nanoparticles multi-walled carbon nanotubes (MWNTs) and carbon blacks 

(CBs) exhibit promising properties for potential applications in crude oil production. The 

combination of large specific surface area and the strong affinity toward surfactants of 

nanoparticles mark their candidacy for delivering surfactant deep inside the reservoir. 

This study is aimed to assess the feasibility of surfactant carriers in tertiary oil recovery. 

Stable dispersions of aqueous-phase MWNTs or CBs that are formulated and able to 

propagate through the reservoir medium (3 wt% brine and 60 oC) were first examined as 

a prerequisite for reservoir application. Competitive adsorption of surfactant on 

nanoparticles was beneficial to decrease adsorptive loss on Ottawa sand at equilibrium 

concentration below critical micelle concentration (CMC). As a proof of concept, phase 

behavior of a ternary surfactant microemulsion system confirmed that the chosen 

nanoparticles (100 mg/L) successfully delivered surfactants and spontaneously released 
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them to the O/W interface. The observed phenomenon is in accordance with calculation 

of the Gibbs free energy associated with oil/water/surfactant system. Besides, surfactants 

carried by nanoparticles achieved equilibrium ultralow interfacial tension between excess 

oil and aqueous phase similar to the value of surfactant-only formulation (0.007-0.009 

mN/m). In one-dimensional sand pack tests, injection of MWNT-surfactant blend 

achieved faster and higher tertiary recovery than surfactant-only formulation, with 

cumulative tertiary oil recovery of 42.7% versus 38.1%. It has been noticed that once 

surfactant been released, destabilization of nanoparticle dispersion occurred and thus 

increased their retention in porous medium. In case of tight formations, further 

improvements may be addressed by applying functionalized carbonaceous nanoparticles 

to assure their transport in porous media after release of surfactant. 

3.1 Introduction 

Surfactant flooding is an enhanced oil recovery (EOR) technique, which mobilizes 

trapped oil by injecting finite slug of surfactant-only or mixture of surfactant/polymer 

solution into reservoir mainly to dramatically reduce the residual oil/water interfacial 

tension (IFT) [1-3]. Surfactant flooding was proven for decades a technically viable 

method from extensive laboratory efforts and numerous pilot tests, however, large field 

scale implementations have yet been realized due to the complexity of chemical flooding 

design and in many instances excessive adsorption of surfactant on formation rocks which 

adversely challenges economic viability of the projects [2, 4].  

The controlling mechanisms of adsorptive losses onto rock surfaces are complex 

phenomena depending on various parameters, including surfactant characteristics, e.g. 

type of surfactant, functional group, alkyl chain length, molecular weight; 
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physicochemical properties of solution, such as solution pH, electrolytes concentration, 

divalent ions level, reservoir temperature; as well as formation mineral composition and 

clay content [1, 5-9]. Among these, the dominant mechanisms governing surfactants 

adsorption onto formation rocks from aqueous solution include ion exchange, ion pairing, 

hydrophobic bonding, adsorption by polarization of  electrons, and adsorption by 

dispersion forces [10, 11]. Thus, a proper control of surfactant adsorption over the course 

of chemical flooding is of great essence of successful recovery operations. 

Normally surfactants with same charge as formation rocks are preferred owing to the 

electrostatic repulsion between surfactant head and rock surface which would mitigate 

the surfactant adsorption, for instance, anionic surfactants are preferably used in 

negatively charged sandstones formations at neutral pH [5, 12]. In reality, however, it is 

impossible to completely eliminate surfactant adsorptive loss by changing the type or 

electrical property of surfactants [13], simply due to the inherent heterogeneity of 

formation rocks. The complex mineral compositions and their organic contents allow 

their surface properties to be altered along with sudden changes in dissolved constituents, 

pH of the solution, as well as advance or recession of wetting phase, therefore leave 

behind patchy surfactant adsorption. 

Addition of polyelectrolytes, e.g. sodium polyacrylate, polystyrene sulfonate, have been 

considered serving as sacrificial agents for their capability to reduce adsorption of 

surfactants in reservoirs rocks [12-14]. These high-molecular weight sacrificial agents are 

believed to irreversibly occupy adsorptive sites on the substrate thus render a competition 

against surfactant molecules. Nevertheless, a typical preflush pattern of sacrificial agent 

may require similar injected volume as a chemical slug, which not only offset potential 
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cost savings on surfactants but also drag field operations up to months, leading to less 

viability in a full-scale field project. 

Recently, nanotechnology have gained increasing attention in the petroleum industry. 

Successful applications of nanotechnology have been reported in reservoir 

characterization, drilling and completion, hydraulic fracturing, and acid diversion [15-

20]. Oil and gas researchers are also exploring use of nanotechnology for solving some 

EOR challenges more effectively. Nyankson et al. [21] studied halloysite clay nanotubes 

loading with different surfactants for remediation of crude oil spill. It was stated that 

controlled release of surfactant from the lumen of the halloysite nanomaterial could 

reduce the amount of chemical wastes and cost associated with the cleanup efforts. Neves 

Libório De Avila et al. [22] used crosslinked polystyrene nanoparticles as surfactant 

carriers by trapping surfactant molecules in the nanoparticles’ microstructure. Once in 

contact with oil phase, swelling of these nanoparticles occurred, as a result, surfactants 

were released into the medium before partitioning at oil/water interface. Romero-Zerón 

and Kittisrisawai [23] developed a sugar-based complexation formulation with 

surfactant/-cyclodextrin to prevent surfactant adsorption onto porous media. A total of 

61% reduction of surfactant dynamic adsorption onto sand/kaolin blend media was 

evidenced for an equimolar surfactant/-cyclodextrin inclusion complex.  

Carbonaceous nanoparticles e.g. carbon nanotubes (CNTs), fullerene, carbon blacks 

(CBs) are potential candidates for various applications in petroleum industry. For 

instance, Berlin et al. [24] explored the application of engineered CBs as carriers of 

hydrophobic compound (2,2’,5,5’-tetrachlorobiphenyl) in detecting presence of 

hydrocarbons in oil reservoirs. Drexler et al. [25] reported that amphiphilic nanohybrids 
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of CNT/silica and CNT/alumina can simultaneously act as emulsion stabilizers as well as 

carriers for catalysts. The superior characteristics of carbonaceous nanoparticle involve 

that other hydrophobic compounds or the hydrophobic moiety of an amphiphilic 

molecule, e.g. long surfactant tail, will strongly attract to these nanoparticle surfaces 

because of the entropy-driven hydrophobic interactions. Besides, enormous specific 

surface area of these nanoparticles (close to 250 m2/g for nanotubes in this study) could 

afford substantial amount of hydrophobic molecules to be loaded onto their surfaces. 

Previously, Matarredona et al. [26] documented the net adsorption of sodium dodecyl 

benzene sulfonate (SDBS) on single-walled nanotube (SWNT) surface reaching as high 

as 11.6 molecules per nm2. 

Based on our prior studies [27], we focused on two carbonaceous nanomaterials, multi-

walled nanotubes (MWNTs) and CBs to investigate their potential serving as surfactant 

carriers, in particular covering three aspects in dealing with the feasibility in EOR 

applications. First, the influence of MWNT in surfactant adsorption was quantified 

through the batch adsorption tests of anionic surfactant alpha olefin sulfonate (AOS) on 

Ottawa sand. Second, example of ultralow-IFT microemulsions phase behavior as well 

as Gibbs free energy change associated with oil/water/surfactant system were examined 

to affirm whether the loaded surfactants could be released from the treated MWNTs 

surfaces to oil/water interface once met the oil phase. Third, sand pack column tests were 

carried out to compare the extent of oil recovery for an optimum surfactant formulation 

between cases of presence and absence of nanoparticles added. Moreover, stability of 

nanoparticle dispersion under mimic reservoir conditions (3 wt% brine and 60 oC) as well 
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as transport and fate of these stable nano-fluids in porous medium were first examined as 

a prerequisite for any field applications. 

3.2 Experimental 

3.2.1 Materials 

i. Nanomaterials 

The MWNTs samples used in this study were purchased from US Research 

Nanomaterials, Inc (Houston, TX). The nanotube length is approximately 0.5-2 micron 

(m) with an average outer diameter (OD) of approximately 5-15 nanometers (nm). The 

selected CBs nanoparticles were provided by Cabot Corporation (Billerica, MA) with 

primary particle size around 24 nm, and specific surface area (SSA) around 110 m2/g. 

Examples of electron microscopy images of these MWNTs as well as CBs have been 

reported previously by others [28, 29].  

ii. Surfactants 

Three anionic EOR surfactants were used in this study. Alpha olefin sulfonate (C14-

16SO3Na, AOS) was manufactured and provided by Stepan Company (Northfield, IL) as 

39 wt% active aqueous solution. Internal olefin sulfonate (IOS) with an average alkyl 

chain length of 19-23 carbons, was received from Shell Chemicals (Houston, TX) as 26.8 

wt% active solution. Dioctyl sodium sulfosuccinate (AOT) was supplied by Fisher 

Scientific (Hampton, NH) as 99 wt% active wax. Among nonionic surfactant dispersants 

used, nonylphenol polyethoxylates with 30, and 40 ethylene oxide (EO) groups 

(NP30EO, and NP40EO, respectively) were both provided by Huntsman (Salt Lake City, 

UT) as 100% active. Linear alcohol ethoxylates with 40 ethoxylate groups (LA40EO) 
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was provided by Dow Chemical Company (Midland, MI) as 100% active. All surfactants 

were used as received without further purification. Sodium chloride (NaCl) and calcium 

chloride dihydrate (CaCl2∙2H2O) were purchased from Sigma Aldrich. 

iii. Porous medium 

Ottawa sand (F-95) was purchased from U.S. Silica. The size distribution of Ottawa sand 

is between 75 μm and 300 μm with d50 at 145 μm [30]. For sand pack tests, Ottawa sand 

were used without any treatment. For surfactant adsorption analysis, Ottawa sand were 

thoroughly washed and rinsed in deionized water (DI) to remove any soluble impurities 

which may affect conductivity measurement, then completely air-dried overnight in oven 

of 80 °C. The resulted supernatant separated from the washed Ottawa sand (served as 

sample blank in adsorption tests) exhibited the conductivity readings mostly < 4 μS/cm, 

which was negligible compared to conductivities of surfactant solutions. 

3.2.2 Methods 

i. Preparation of nanoparticle dispersion 

Stock solutions for individual surfactant were prepared at 1wt% in DI at room 

temperature (22 ± 1 °C). After diluting stock solutions to the target concentration at 

electrolytes level of either DI or 3 wt% brine (2.4 wt% NaCl and 0.6 wt% CaCl2), 

MWNTs or CBs were added to each sample, followed by 30 minutes of sonication with 

a horn sonicator (20 W, 20 kHz). The resulting nano dispersions were centrifuged at 2000 

rpm for 1 hour, to allow any remaining non-dispersed nanoparticles/aggregates to be 

easily separated from the stable, suspended nanoparticles. The supernatant was then 

carefully decanted and collected for further tests. Concentration of MWNTs or CBs in 
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the stable dispersion was measured using an ultraviolet−visible (UV−Vis) 

spectrophotometer (Thermoscientific, Genesys10s) at 800 nm as described previously 

[27] and compared to  a group of calibration standards of known concentrations.  

ii. Surfactant adsorption on nanoparticles 

MWNTs and CBs were added at concentration of 370 mg/L and 450 mg/L, respectively, 

into AOS solutions of varying concentration prepared in DI. The suspension was then 

sonicated and poured into a glass beaker. The surface tension of surfactant nano mixed 

solution was measured by a dynamic contact angle analyzer DCA-322 (Cahn Instruments, 

USA) utilizing a technique based on the Wilhelmy plate principle. Details of the 

procedure have been mentioned elsewhere.[26] The critical micelle concentration (CMC) 

values were determined from the break point in the curve of surface tension versus the 

logarithm of surfactant concentration. And the amount of surfactant adsorbed on 

nanoparticles could be interpreted from the increment of CMC values. 

iii. Surfactant adsorption on sand 

A total of 4 grams of washed Ottawa sands were introduced with 12 mL of surfactant-

only in DI or MWNTs amended surfactant solution in 40 mL glass reactors. A horizontal 

movement shaker was used to carry out the tests by steadily shaking the reactors at 300 

rpm for 24 hours at 22oC, which is normally sufficient to reach the adsorption equilibrium 

[12]. After equilibration, samples were centrifuged at 2000 rpm, and supernatants were 

carefully extracted for conductivity measurements using a Mettler Toledo S230 

SevenCompact Conductivity Meter (Columbus, OH). The detecting cell used is Cond 

probe InLab 731-ISM-2m with cell constant of 0.57 cm-. Errors of the measured 
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conductivity values were within ± 0.5%. It has been observed that applying this method 

for surfactant adsorption measurement offer advantage of the solution conductivity 

readings being rather independent of MWNT concentrations used. The measured 

conductivity and the surfactant levels were quantified against the calibrated standards of 

known concentration.   

iv. Phase behavior of microemulsions  

Phase behavior test was performed in flat-bottom glass vials with Teflon-lined screw 

caps. A synthetic isoparaffinic hydrocarbon solvent, IsoparTM -L (>98% C11-C13) was 

used as representative oil phase. In control group, after preheated surfactant solution (0.68 

wt% surfactants in 3 wt% brine) and oil at 50 oC, equal volume of surfactant solution and 

oil (5 mL each) were added into the vial. In experimental groups, 100 mg/L of MWNTs 

or CBs dispersion prepared with same surfactant formulation used in the control group 

were studied for their influence on microemulsion phase behaviors. All test tubes were 

first gently hand-shaken for 20 seconds, and subsequently kept in an oven setting at 50 

oC to allow equilibration and visual observations. After the systems reached equilibrium, 

the resulted interfacial tension (IFT) between the excess water and excess oil phases of 

microemulsions was measured at 50 oC with a M6500 Spinning Drop Tensiometer (Grace 

Instrument, Houston, TX). The detailed method has been documented by 

Witthayapanyanon et al [31].  

v. One-dimensional sand pack test 

The Ottawa sand medium was dry packed into a chromatographic glass column purchased 

from Kimble Chase. Experiments were run in a 6 in. (L) × 1 in. (D) sand pack dimension 
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with water circulating inside the column glass jacket to maintain operating temperature 

at 50 oC. Average porosity and permeability of the sand packs were measured as 37.5% 

and 4.0 Darcy, respectively. 

In general, after dry packing the column, a house build vacuum was first applied to 

remove air trapped in the sand pack, followed by steady injection of 3 wt% brine in an 

up-flow mode using a Masterflex peristaltic pump (Cole Parmer, IL); at least 10 pore 

volumes (PVs) of brine were injected through the columns to ensure the homogeneous 

compaction of the sand pack without residual air pockets. A conservative tracer test using 

5 PVs 10 wt% brine (8 wt% NaCl and 2 wt% CaCl2) was carried out immediately after 

completed saturation of the sand pack. The details of the tracer test has been reported 

before [32]. Prior to injection of nanoparticles/surfactant mixture, the flushing fluid was 

switched back to original 3 wt% brine for another 10 PVs.  

Surfactants loaded MWNT or CB dispersions were injected into the column for 5 PVs, 

followed by post-brine flush (3 wt%), which was last until no nanoparticles were detected 

in the effluents. Typically, over the course of these experiments an undetectable 

concentration of nanoparticle is realized shortly following 3 PV of post-brine flooding. 

The flushing fluids were delivered into the sand packs at a constant flow rate of 0.3 

mL/min (corresponding to a pore water velocity of 2.6×10-3 cm/s). All column effluents 

were collected by a fraction collector at pre-set time intervals. The nanoparticle 

concentrations in the collected samples were analyzed by the UV-Vis spectrophotometer 

(800 nm wavelength) as described previously. The normalized nanoparticle 

concentrations (based on the injected concentration) in the effluent were plotted against 

total PVs injected.  



54 

vi. Oil recovery test 

After vacuumed down dry sand pack columns, 2 PVs (ca. 57 mL) of IsoparTM -L oil were 

introduced into the column in similar up-flow mode at a flow rate of 0.3 mL/min. The 

displacing fluid was subsequently switched to 3 wt% brine kept at same flow rate to 

displace most mobile oil until the oil-cut in effluent approached < 1%, typically after 5 

PVs of water flooding is delivered. The slug of chemical flooding was then initiated via 

injecting 3 PVs either surfactant-only formulation or MWNT-amended surfactant 

solution (the developed 0.1wt% ultralow IFT formulation), and was immediately 

followed by 5 PVs post-brine flush. Effluent samples were collected in graduated burettes 

to estimate the cumulative tertiary oil recovery. 

3.3 Results 

3.3.1 Thermal stability of nanoparticle dispersion 

Previously in this group, we have developed surfactant stabilized MWNT dispersion 

formulations under harsh saline conditions (10 wt% brine containing 8 wt% NaCl and 2 

wt% CaCl2) [27]. The binary surfactant system, which consists of one nonionic surfactant 

with certain high EO numbers (> 30) and another salt-tolerant anionic surfactant, offered 

exceptional performance of propagating MWNT dispersions through the porous medium. 

It is believed that, surfactant tails are anchored on the nanotubes hydrophobic surface due 

to non-covalent hydrophobic interactions, while surfactant hydrophilic head groups are 

oriented toward the aqueous solution, enabling nanotubes to be well dispersed in the 

solution owing to dominant electrostatic repulsion or steric repulsion among the head 

groups of surfactant [33, 34]. However, the EO groups of nonionic surfactant are well 
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known dehydrated as temperature approaching cloud point of nonionic surfactant. Shikata 

et al. [35] revealed that EO units bear dual groups of hydrated water molecules, where 

the primary ones directly hydrated the oxygen atom of the EO unit, while secondary 

hydrated water molecules hydrated to the primary water molecules. At elevated 

temperatures, the group of secondary hydrated water molecules would dehydrate more 

readily than the group of primary ones, hence weakening the steric repulsive forces 

between bulky ethylene oxides. With the presence of electrolytes, the salting out effects 

could further deteriorate the extent of dehydration, leading to sudden agglomeration of 

dispersed nanoparticles, e.g. clouds points of NP30EO and NP40EO are 114 and 114.5 

oC, respectively in DI [36]; 91 and 93 oC, respectively in 3 wt% brine. Thus, the thermal 

stability of nanoparticle dispersion is carefully scrutinized at elevated temperatures as a 

prerequisite for its field applications. 

Table 3.1. Thermal stability (UV-Vis absorbance data) of 100 mg/L MWNT or CB 

with different surfactant formulation in DI and brine. Formulation 1. 1000 mg/L 

NP30EO, 2. 1000 mg/L NP30EO with 1000 mg/L AOS, 3. 1000 mg/L NP40EO, 4. 

1000 mg/L NP40EO with 1000 mg/L AOS. 
Batch Day 0 3 7 15 30 0 3 7 15 30 

MWN

T 

Formulation  DI (80 oC) 3 wt% brine (50 oC) 

1 1.561 1.559 1.553 1.564 1.549 1.521 1.492 1.441 1.392 1.361 

2 1.507 1.511 1.504 1.499 1.51 1.469 0.201 - - - 

3 1.574 1.571 1.569 1.579 1.577 1.587 1.591 1.576 1.545 1.529 

4 1.639 1.641 1.639 1.636 1.629 1.572 1.526 1.489 1.321 1.065 

CB 

Formulation DI (80 oC) 3 wt% brine (60 oC) 

1 5.532 5.509 5.524 5.551 5.546 5.375 5.076 4.931 4.804 4.607 

2 5.654 5.646 5.671 5.633 5.639 5.363 4.894 4.653 4.214 3.889 

3 5.631 5.643 5.647 5.657 5.651 5.617 5.609 5.595 5.577 5.545 

4 5.466 5.452 5.469 5.435 5.447 5.264 5.245 5.207 5.192 5.171 

 

MWNTs and CBs exhibited excellent thermal stability (80 oC) in DI with all formulations 

tested because of strong electrostatic repulsion and/or steric repulsion. Addition of 3 wt% 

brine, electrostatic repulsion was largely shielded due to compression of electrical double 
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layer; on the other hand, steric repulsion was independent of the electrolytes 

concentration. Good stability has been maintained through a 30-day period for both 

MWNT and CB with pure nonionic surfactants system (formulation 1 and 3 in Table 3.1). 

Ionic surfactant AOS in formulation 2 and 4 occupied some portions of nanoparticle 

surface which would otherwise be taken by ethoxylated alcohol, therefore decreased the 

steric repulsive force exerted by nonionic surfactant. This was manifested by weakening 

stability of MWNT dispersion after adding 1000 mg/L AOS along NP30EO at 50 oC. 

With a longer EO chain, NP40EO, better dispersion stability was observed as a result of 

enhancement of steric repulsion between the bulkier head groups as compared to 

NP30EO. Overall, CB exhibited superior stability than MWNT using similar dispersants. 

This may result from smaller particle size of CB than MWNT (average hydrodynamic 

diameter of 124 nm vs. 164 nm by dynamic light scattering, details in Table B1 in 

Appendix B).  

3.3.2 Propagation of nanoparticles 

Mobility of stable dispersion of MWNTs as well as CBs through porous media were 

examined in Ottawa sand pack with aforementioned formulation 4. 6’’ Ottawa sand was 

packed in a jacked chromatography glass column with heated water circulation to 

maintain constant temperature of 50 oC. 
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Figure 3.1. Breakthrough curves for MWNTs and CBs with formulation 4 (1000 

mg/L NP40EO with 1000 mg/L AOS) in 6’’ Ottawa sand pack at 50 oC. Nanoparticle 

input concentration = 100 mg/L in 3 wt% brine. Pressure drop is differential 

pressure across the sand pack during injection of MWNT. Shaded area is the 

dispersion injection period. Peclet number 𝑷𝒆 for tracer is 195 (𝑷𝒆 = 𝒗𝑳/𝑫𝑯, 𝒗 is 

pore velocity, L is column height, and 𝑫𝑯 is hydrodynamic dispersion coefficient, 

data obtained from Ref 32 as 𝟐. 𝟏𝟓 × 𝟏𝟎−𝟒𝒄𝒎𝟐/𝒔). 

 

The breakthrough of CB occurred coincidentally with the migration of conservative 

tracer, while MWNT breakthrough was observed shortly after 1 PV of fluid injection. In 

the case of CB, the eluted concentration quickly reached plateau of 97% of the injected 

concentration at 1.5 PV, and MWNT scenario achieved effluent plateau slightly later 

approximate at 2 PV with normalized concentrations close to 95% of the injected 

concentration. The differences in transport behavior between CB and MWNT may be 

related to their distinct morphologies and characters. It is suspected that cylindrical 

MWNT (aspect ratio as high as 200) was more involved with physical straining in the 

porous media [37, 38], and in this study visual inspection of the dismantled sand column 

after the test revealed most retention of MWNT mainly occurred at the inlet sand face. 

Nevertheless, pressure drop across the sand pack was stable during the whole flow test, 
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indicating negligible change on permeability resulting from deposition of MWNTs. 

While transport of CBs, associated with their smaller sizes and predominant sphere shape, 

was likely controlled by mostly advection in sand pack, consequently the resulting 

breakthrough curve largely overlapped with that of conservative tracer. A 3 wt% brine 

solution was injected as the chasing fluid after 5 PVs of dispersed fluid. Cumulative 

particle recovered in the effluent were 88% versus 95% for MWNT and CB, respectively. 

The particle retention of MWNT and CB onto Ottawa sand were 0.011 mg/g and 0.004 

mg/g, respectively. Such adsorption value is amazingly low as compared to typical 

surfactant adsorption loss in the sands, 0.5 mg/g to 1.0 mg/g [8]. 

3.3.3 Decrease of surfactant adsorption in sand 

 

Figure 3.2. Surface tension measurement. CMC of AOS = 500 mg/L, with 370 mg/L 

MWNT CMC = 820 mg/L, with 450 mg/L CB CMC = 720 mg/L. 
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approximately 320 mg/L, that is the amount adsorbed on the nanotube surface. And CMC 

shifted by 220 mg/L for the case with 450 mg/L CB. The mass ratio between loaded 

surfactant and carrier were 0.86 and 0.49 for MWNT and CB, respectively. In contrast, 

in the study of Romero-Zerón and Kittisrisawai [23], surfactant carrier -cyclodextrin 

demonstrated an equimolar stoichiometric ratio to the loaded surfactant, yielding a mass 

ratio of 0.28 assuming AOS being used. Obviously, MWNT exhibited highest efficiency 

in carrying same amount of surfactants among these candidates. Given specific surface 

area values of MWNT and CB are approximately 250 m2/g and 110 m2/g, respectively, 

the adsorption density of AOS was calculated as 6.2 molecules/nm2 on MWNT and 7.8 

molecules/nm2 on CB. The slight difference is possibly related to the curvature of the 

nanoparticle surfaces [27]. In contrast, AOS adsorption density at gas/water interface 

estimated by Gibbs adsorption isotherm was only 1.5 molecules/ nm2. Clearly, surfactant 

adsorption at MWNT or CB surface is around 4 - 5 times denser than that occurred at 

gas/water interface.  

   

Figure 3.3. Adsorption isotherm of AOS on washed Ottawa sand. 
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Surfactant adsorption on formation rocks typically attained the maximum level once 

equilibrium concentration of surfactant reaches CMC in the solution. With presence of 

nanoparticle carriers, competitive adsorption of surfactant on particle surface will bring 

down available surfactant molecules in the solution. If the newly established equilibrium 

concentration is below CMC, a net reduction of surfactant adsorption on reservoir rocks 

can be anticipated. This has been confirmed by the adsorption of AOS on Ottawa sand. 

As depicted in Figure 3.3, below the CMC of AOS (820 mg/L with MWNT), the 

competitive adsorption of AOS on the nanotubes led to less available monomers in the 

solution, thus decrease of AOS adsorption onto sand was observed, e.g. adsorption was 

reduced from 0.4 mg/g to 0.33 mg/g at initial AOS of 800 mg/L. While above the CMC, 

as nanotube surfaces being saturated by surfactants, surfactant adsorption on sands was 

no longer influenced by nanotubes, therefore adsorption leveled off at plateau region with 

a similar level as that in the absence of MWNTs.  

The principle behind this modified delivery system is to apply nanoparticle carrying 

surfactant at concentration under CMC, which would be close to or above CMC in the 

absence of nanoparticle, such that the surfactant adsorption on reservoir rocks can be 

reduced substantially. By adjusting surface properties of nanoparticle, EOR surfactants 

can be controlled to preferentially adsorb onto nanoparticles instead of rock surfaces, 

therefore alleviate large amount of surfactant adsorption loss in reservoir. 

3.3.4 Release surfactant to oil/water interface 

Carbonaceous nanoparticles have exhibited exceptional ability to load surfactants on their 

surface. Serving as surfactant carriers, nanoparticles are required to release surfactants 

once reach the targeted zone (presence of residual oil) so that the released surfactants can 
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partition at the oil/water interface to lower the IFT and mobilize the residual oil. In order 

to better understand the feasibility of surfactant carriers, we take the next step on 

considering the Gibbs free energy associated 

with the change of surfactants’ states in a MWNT-water-oil system. 

 

Figure 3.4. Sketch of surfactant released from MWNT surface to oil/water interface. 

Left. surfactants adsorb at MWNT surface; Right. Surfactants partition at oil/water 

interface.  

Given a system as illustrated in Figure 3.4, comprised of three phases, water phase 1, 

residual oil phase 2, and solid MWNT phase 3; and two interfaces, MWNT/water 

interface α and oil/water interface β. The total Gibbs energy of this system is: 

 𝐺 = 𝐺1 + 𝐺2 + 𝐺3 + 𝐺𝛼 + 𝐺𝛽 (3.1) 

For the bulk phases, the Gibbs energy can be expressed as: 

 𝐺1,2,3 = 𝑈 + 𝑃𝑉 − 𝑇𝑆 + ∑𝑢𝑖𝑛𝑖 (3.2) 

Then,  

 𝑑𝐺1,2,3 = 𝑉𝑑𝑝 − 𝑆𝑑𝑇 + ∑𝑢𝑖𝑑𝑛𝑖 (3.3) 

Where U is the internal energy, P is pressure, V is volume, T is temperature, S is the 

entropy, 𝑢𝑖 is the chemical potential of the ith component, and 𝑛𝑖 is the number of the 

particles composing ith chemical component. 
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And for the MWNT/W and O/W interfaces, we have, 

 𝐺𝛼,𝛽 = 𝑈 + 𝑃𝑉 − 𝑇𝑆 + ∑𝑢𝑖𝑛𝑖 + 𝛿𝐴 (3.4) 

then, 

 𝑑𝐺𝛼,𝛽 = 𝑉𝑑𝑝 − 𝑆𝑑𝑇 + ∑𝑢𝑖𝑑𝑛𝑖 + 𝛿𝑑𝐴 + 𝐴𝑑𝛿 (3.5) 

Where 𝛿 is the interfacial tension, and A is the interface area. 

Assuming constant temperature and pressure encountered in reservoir, the fisrt two terms 

in equation 3.3, and 3.5 can be eliminated. At adsorption equilibrium, the chemical 

potential of component, 𝑢𝑖 , is equal in phases 1, 2, 3 and at interfaces α, and β; also 

considering mass conservation of each component, thus,  

 ∑ 𝑢𝑖𝑑𝑛𝑖

1,2,3,𝛼,𝛽

= 0 (3.6) 

We can also assume the interface areas 𝐴𝛼 , 𝐴𝛽  are constants. This is true for 

MWNT/water interface. While for oil droplets trapped in pore throats, surfactants would 

organize themselves at oil/water interface to lower IFT, hence trapped oil can easily 

deform to pass thorough pore throats. During which process, interface areas will increase. 

Nevertheless, we can still safely assume a constant area of oil/water interface at the very 

moment surfactants are just desorbed from MWNT surfaces to partition at O/W interface. 

Hence, derivative term 𝛿𝑑𝐴 = 0, and change of Gibbs free energy for the system is 

reduced to,  

 𝑑𝐺 = 𝐴𝛼𝑑𝛿𝛼 + 𝐴𝛽𝑑𝛿𝛽 (3.7) 

Consider a complete release of surfactants from MWNT surface as depicted inFigure 3.4, 

then Equation 3.7 can be integrated, 
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 𝛥𝐺 = 𝐴𝛼 ∗ (𝛿𝛼 − 𝛿𝛼_𝑠𝑢𝑟𝑓) + 𝐴𝛽 ∗ (𝛿𝛽_𝑠𝑢𝑟𝑓 − 𝛿𝛽) (3.8) 

IFTs in the second bracket are easily detected from experiments. In the first bracket, 𝛿𝛼 

can be estimated from Young’s equation if contact angle and surface tensions are known. 

While the value of 𝛿𝛼_𝑠𝑢𝑟𝑓 is hardly known because it depends on the type and quantity 

of adsorbed surfactants on MWNT surface. 

Pristine carbonaceous particles like MWNT are extremely hydrophobic materials. A 

typical contact angle, θ is reported around 155o - 165o [40, 41], and surface energy of 

MWNT, 𝛿𝑆𝐺  is about 40-45 mJ/m2 [42]. With Young's equation [11], 

 𝑐𝑜𝑠 θ =
𝛿𝑆𝐺 − 𝛿𝑆𝐿

𝛿𝐿𝐺
 (3.9) 

𝛿𝑆𝐿 between MWNT and water is determined as 113 mN/m. A typical value of crude 

oil/water IFT, 𝛿o/w is about 30 mN/m, and with surfactant, it is typically less than 1 

mN/m, which could be ignored in the calculation. With obtained values, 

 𝛥𝐺 = 𝐴𝛼 ∗ (113 − 𝛿𝛼𝑠𝑢𝑟𝑓
) − 𝐴𝛽 ∗ 30 (3.10) 

Assume surfactant at oil/water interface bear a monolayer adsorption, with same 

adsorption density as that at gas/water interface. Also consider a monolayer surfactant 

structure on MWNT surface. Thus, we have mass balance of surfactants,  

 𝐴𝛼𝜌𝛼 = 𝐴𝛽𝜌𝛽 (3.11) 

Where 𝜌𝛼, 𝜌𝛽 are surfactant density at interfaces α, and β, respectively. 𝐴𝛽 is governed 

by the density of surfactant adsorbed at oil/water and MWNT/water interfaces. In 

previous section, surfactant adsorption at MWNT surface is determined about 4 times 
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higher than that at gas/water interface, in turn, 𝐴𝛽 is 4 times larger than 𝐴𝛼, then Equation 

3.10 reduce to, 

 𝛥G = 𝐴𝛼 ∗ (113 − 120 − 𝛿𝛼𝑠𝑢𝑟𝑓
) < 0 (3.12) 

This indicates that surfactant desorbing from MWNT surface to partition at oil/water 

interface should be a spontaneous process.  

The assumption that surfactants completely released from MWNT surface is imprecise. 

In reality, we should have incomplete desorption of surfactant from MWNT surface, 

otherwise super hydrophobic pristine MWNT surface would be surrounded by a highly 

structured “ice-cage” water molecules [43]. The formation of “ice-cage” would decrease 

entropy of water molecules substantially, thus not favored by the MWNT-water-oil 

system. With incomplete release of surfactants, thermodynamic consideration could be 

more complicated. Instead, the observed phase behavior phenomena could give a quick 

hint.   
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Figure 3.5. Phase behavior of synthetic oil IsoparTM -L and ternary surfactant 

formulation (0.2 wt% LA40EO, 0.31 wt% AOT, and 0.17 wt% IOS) in 3 wt% brine 

at 50 oC. Sample 1. Surfactant only system; 2. Surfactant with 100 mg/L MWNT; 3. 

Surfactant with 100 mg/L CB. Panel A. 5 mL of oil and 5 mL of aqueous solution 

before shake; B. Right after shake; C. 5 minutes after shake; D. Equilibrium 

reached 2 hours after shake. Dashed line indicates initial oil/water interface. 

Figure 3.5 shows phase behavior of a ternary surfactant system LAE-AOT-IOS with 

synthetic oil IsoparTM -L at 50 oC. Control group adopted surfactant-only solution as the 

aqueous phase, while in experimental groups 100 mg/L MWNT or CB was introduced. 

Coalescence rates were fast for all tested samples. In Figure 3.5c, opaque middle phase 

appeared between the excess oil and aqueous phases just 5 minutes after shake. In the 

MWNT sample, distinct black aqueous phase, the original appearance of nanoparticle 

dispersion as shown in Figure 3.5a, faded away meanwhile MWNT quickly enriched in 

middle phase. Equilibrium was reached as seen in Figure 3.5d after 2 hours, translucent 

middle phase existed with clear transparent excess oil and aqueous phases in all samples. 

For samples with MWNT and CB, nanoparticles were seen enriched in the lower portion 

of middle phase and formed a thin black layer. Equilibrium IFTs between excess oil and 

excess aqueous phase of microemulsions were measured as 0.007, 0.009, 0.008 mN/m 

for surfactant-only, MWNT, and CB samples, respectively. Zargartalebi et al. [44] 

studied the effect of silica nanoparticle on IFT of kerosene and sodium dodecyl sulfate 

(SDS) solution, and they observed that nanoparticle-amended surfactant solution could 

achieve even lower IFT in comparison to surfactant-only solution. Note that the range of 

IFT values observed in Zargartalebi study were higher than the ultra-low values of this 

work. While for MWNTs and CBs, which were not surface active, the authors believe 

that the ultralow IFTs attained were only attributed to surfactants partitioning at oil/water 

interface and nanoparticles had hardly any effects on the IFTs. Phase behavior and IFT 
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were in accordance with the calculation of Gibbs free energy, thus further confirmed that 

surfactants were spontaneously released from nanoparticles surface to oil/water interface 

once dispersed particles contact oil.  

3.3.5 Impact of oil recovery 

Ternary surfactants LAE-AOT-IOS exhibited ultralow IFT with oil IsoparTM -L, which 

was considered as a good candidate in chemical EOR. As a proof of concept, this 

formulation was adopted here to illustrate the effect of addition of MWNTs in surfactant 

chemical flooding. In the base case, 3PV optimum surfactant slug at 0.1wt% (maintaining 

same ratio as in 0.68 wt% solution, CMC = 0.03 wt%) was injected in chemical flooding, 

while in experimental nano carrier case, injected formulation also contained 100 mg/L 

MWNT with identical surfactants of 0.1 wt%. The viscosities of both formula were 1.2 

cP, slightly higher than that of water. Oil breakthrough occurred simultaneously in both 

tests. Result of MWNT case was characterized by a sharp rise in oil cut right after oil 

breakthrough, with a maximum of 10.4% reached at 1.3 PV, while the oil cut in 

surfactant-only case slowly increased until a maximum of 5.2% attained at 2.7 PV. 

Cumulative oil recovery was 42.7% in the MWNT case versus 38.1% in base case. Apart 

from the higher tertiary oil recovery achieved with addition of MWNTs, a speedy oil 

recovery pattern further manifested surfactant carrier’s superiority. For instance, oil 

recovery was 35% versus 14% after 2 PV chemical slug injection; and was 42% versus 

30% after 3 PV chemical slug injection. The addition of MWNTs has essentially no effect 

on the solution viscosity (Figure B1 in Appendix B). Thus, the faster oil recovery is likely 

an important benefit of managing surfactant supply for any field project, as a result of the 

competitive adsorption on MWNTs has alleviated the surfactant loss in the sand pack.  
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Figure 3.6. Tertiary oil recovery after injection of 3 PVs chemical slug (shaded area) 

in 3 wt% brine at 50 oC. a, Surfactant-only slug at concentration of 0.1 wt%, initial 

Sor was 31.1%, and cumulative oil recovery was 38.1%; b, 0.1 wt% surfactant slug 

with 100 mg/L MWNT, initial Sor was 35.6%, and cumulative oil recovery was 

42.7% 
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3.4 Discussion 

Previously, SDBS adsorption density on SWNTs surface was determined by Matarredona 

et al. [26] as 11.6 molecules/nm2, around twofold higher than AOS adsorption on MWNT 

calculated in this study (6.2 molecules/nm2). Such distinction possibly resulted from 

dissimilar packing of surfactants on nanotubes surface due to dissimilar curvatures and 

specific surface areas of these two types of nanotubes, e.g. SWNT has a OD of 0.8 nm, 

and SSA 500 m2/g, versus MWNT with OD 5-15 nm, SSA 250 m2/g. Besides, high 

concentration of MWNT (370 mg/L) may cause agglomeration of nanotubes into small 

bundles in the solution, while at lower concentration (170 mg/L) in the study of 

Matarredona et al., SWNT were more likely to be individually dispersed. The impact of 

bundling could reduce the available surface area of nanotubes considerably thus led to a 

less efficiency on carrying surfactants. This has been confirmed by Sa and Kornev [39] 

in an extensive study on the adsorption of SDS on dispersed SWNTs at various levels of 

nanotube loading. Considering a hexagonal packing geometry of nanotube aggregates, Sa 

and Kornev determined the surface area of the aggregates was only 43% of that possessed 

by same amount of individually dispersed nanotubes. The growth of nanotube aggregates 

was also revealed by a disproportional relationship between the quantity of dispersed 

nanotubes and the uptake of surfactants. For instance, 750 mg/L SWNT was able to load 

0.75 mM SDS, while double concentration of SWNT to 1500 mg/L only adsorbed 1 mM 

SDS.  

In the oil recovery test, the retention of MWNT on Ottawa sand was 0.05 mg/g, 

approximately five folds higher than that occurred in absence of oil (0.011mg/g). Release 

of surfactants from MWNTs surface facilitated agglomeration of the dispersed nanotubes, 
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like MWNTs aggregated at the interface shown in Figure 3.5d, thus impeded transport of 

MWNT in the sand pack. Although significant pressure rise was not observed in Figure 

3.6b for sand pack with high permeability of 4.0 Darcy, retention of nanoparticles may 

block pore throats in low permeable rocks and cause injectivity issue. On the other hand, 

working fluid would prefer to flow through the larger pores due to lower flow resistance. 

Once the nanotubes deposit on the large pore throat surface after detachment of surfactant, 

it is possible that fluid is diverted to the smaller pores therefore to increase the sweep 

efficiency. Similar high retention has also been observed in oil recovery test with CBs 

(Figure B2 in Appendix B).  

Using pristine MWNTs or CB as surfactant carriers may be not practically feasible for 

various reservoir conditions. Further improvements can be made by tailoring the surface 

of nanoparticle with functional groups, such as hydroxyl groups, which should be able to 

provide stability for dispersed nanoparticles after surfactants are released from their 

surface, thus to ensure the transport of nanoparticles, especially in tight rock matrix. 

Recovered functionalized nanoparticles could be recycled to re-load surfactants before 

re-injection. Besides, surface functionalized groups have been reported to improve 

colloidal stability of nanotubes in aqueous media by dispersing them in individual form 

[45, 46], as a result, higher surface utilization and efficiency is also expected.  

3.5 Conclusions 

This study explored the feasibility of using carbonaceous nanoparticles MWNTs and CBs 

as surfactants carriers in enhanced crude oil recovery. Stability of the well-dispersed 

nanoparticles and their transport in porous media were examined in mimic reservoir 

condition. Particles retention was found as low as 0.004-0.011 mg/g in Ottawa sand. The 
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strong affinity to surfactant hydrophobic tails plus substantial surface area, enable 

MWNTs and CBs to load high density of surfactants. Competitive adsorption of AOS on 

MWNT surface against Ottawa sand was beneficial to reduce AOS adsorption loss on 

Ottawa sand at equilibrium concentration below CMC. Results of microemulsion phase 

behavior confirmed that nanoparticles successfully delivered surfactants and 

spontaneously released them to the oil/water interfaces once contacted oil. Presence of 

nanoparticles did not influence the ultralow IFT values between excess oil and aqueous 

phase, as measured around 0.007-0.009 mN/m. Nanoparticles-amended surfactant 

formulations achieved faster and higher tertiary oil recovery than surfactant-only 

formulation, however, release of surfactant led to nanoparticle instability thus retained in 

the reservoir medium. Further research effort is required to inspect occurrence of potential 

formation damages caused by severe retention of nanoparticles and offer any 

modifications on using functionalized carbonaceous nanoparticles to guarantee their fate 

and transport in porous medium after release of surfactant.  
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Sulfonate and Nonylphenol Polyethylene Glycol Ethers: Length 
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Abstract 

The micellization behavior of binary surfactant mixtures constituted by an anionic 

surfactant, alpha olefin sulfonate (AOS), and a nonionic surfactant nonylphenol 

polyethylene glycol ether (NPE) with different numbers of ethylene oxide (EO), namely, 

NP10EO, NP20EO, NP30EO, and NP40EO was comprehensively investigated by 

surface tensiometer, conductometer, cloud point measurement, and dynamic light 

scattering. Theoretical treatments were carried out to explain molecular interaction in the 

mixed micelles based on regular solution theory of Rubingh, micellization 

thermodynamics of Molyneux et al. and Maeda, and molecular thermodynamic theory of 
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Pavvada and Blankschtein. Results indicate non-ideal mixing behavior in all AOS-NPE 

mixtures, where nonionic surfactant EO chain length was found to play critical roles. In 

the absence of additional electrolytes, NPEs exhibited substantially higher activity in 

micelles than bulk solution; with growth of EO groups, shrinkage on the scale of 

synergistic interaction was evidenced. In contrary, with swamping amount of electrolytes, 

synergistic interactions enlarged with the rise of EO groups, and AOS activity in mixed 

micelles was found depending on both EO length and bulk mole fraction (𝛼𝐴). These 

findings are of great significance in mixed surfactant formulation design/optimization to 

maximize the synergistic efficiency of the system thus to minimize the chemical 

consumption and cost. 

Keywords 

Micellar interaction, anionic-nonionic mixture, alpha olefin sulfonate, ethylene oxide, 

electrolytes, synergism  

4.1 Introduction 

Surfactant mixtures are of great interest in a variety of practical applications because their 

mixed micellar aggregates exhibiting excellent properties compared to individual 

surfactant component, viz. synergism. Synergistic interactions in mixed surfactant system 

are highly favorable since they are associated with stronger surface/interfacial activity, 

lower critical micelle concentration (CMC), higher solubilizing power, better dispersion 

stability, and most importantly for routine industrial applications, less chemical 

consumptions and project costs [1-7]. Binary surfactant systems of anionic-nonionic 

mixtures are important from both fundamental and application point of views as addition 

of nonionic surfactant to ionic surfactant micelle can reduce the electrostatic repulsion 
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between the charged surfactant heads therefore greatly facilitate mixed micelle formation 

[2, 8-10]. In recent years, considerable investigations on the interfacial and bulk 

properties of mixtures containing anionic and nonionic surfactants have been carried out 

in fields such as detergency, cosmetic products, drug delivery, soil remediation, and 

enhanced oil recovery [11-15]. A thorough understanding of the physicochemical 

properties of non-ideal mixing behaviors of mixed micellar solution, such as surface 

excess, counterion binding and thermodynamics of micelle formation, has great 

importance for practical formulation design/optimization to control the behavior of mixed 

surfactants with desired properties [16].  

Among anionic-nonionic surfactant mixtures, ionic surfactant, sodium dodecyl sulfate 

(SDS) or sodium dodecyl benzenesulfonate (SDBS), associated with nonionic, either 

alkyl polyethylene glycol ether (CmEn) or alkylphenol polyethylene glycol ether are the 

most extensively studied system, because they are widely applied in chemical, 

pharmaceutical, and industrial fields [4, 5, 8, 17, 18]. Varying the ethylene oxide (EO) 

number (i.e., hydrophilic lipophilic balance) of nonionic surfactant leads to substantial 

change in molecular interaction as well as mixture properties. Chen et al. [19] showed 

that anionic-nonionic surfactant mixtures containing nonionic surfactant with 40 EO 

groups exhibited outstanding dispersion stability of multi walled carbon nanotubes at 

harsh salinity conditions (10 wt% brine) than those with low EO numbers of 10-20. Zhou 

and Rosen examined the interactions between the mixtures of sodium dodecyl sulfonate 

(C12SO3Na) and C12En with n = 4 to 8 EO groups, and observed slightly more negative 

values of interaction parameter () with larger EO number [3]. Stronger synergistic 

interactions (i.e., larger net ) with longer EO chain was confirmed by Joshi et al. [4] in 
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mixtures of SDS and C12En (12, and 15 EOs). However, studies by Sahu et al. [18] on the 

mixture of SDBS with C13-15En (7, 9, and 12 EOs) and by Ren et al. [17] on interaction 

between amphoteric surfactant (alkyl amino sulfonate, C12AS) with octylphenol 

polyethoxylates (4, 7, and 10 EOs) under the influence of 0.25 M different species of 

inorganic cations failed to show a distinct impact of EO length on those interaction or 

thermodynamic parameters involved. Despite widespread applications of anionic-

nonionic mixed surfactant systems, their interactions had not been well understood at a 

fundamental molecular level [9, 20]. Thus, a systematic analysis on the effect of EO 

length on binary mixed micellar interactions is of great importance to pave the way of 

developing superior performance formulations. 

This work deals with a detailed investigation on the physicochemical characterization of 

alpha olefin sulfonate (AOS) and nonylphenol polyethylene glycol ether, also known as 

nonylphenol ethoxylates (NPE), and their binary mixtures in aqueous solution. Due to its 

unique molecular structure, AOS is an effective emulsifier and outstanding detergent, 

which has high compatibility with hard water (superior than SDBS and SDS) as well as 

good wetting, foaming, and thermal stability properties [21, 22]. All these features 

combined with low adsorption on sandstone [22] enabling  AOS to be an excellent 

candidate as foam booster in enhanced oil recovery. The counterpart nonionic, NPE is a 

popular surfactant which has been used in many fields, including detergency, textile and 

paper processing, paints and coatings, and oil and gas recovery. The values of CMC, 

counterion binding constant, cloud point, micellar hydrodynamic size, and adsorption 

properties of the individual and mixed surfactant systems have been determined at both 

DI and 0.5 M NaCl solution. In this work, a wide range of EO numbers (10-40) is used 
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to illustrate impact of EO length on the mixed micellar behaviors. The composition of the 

mixed micelles (X), activity coefficient (fA, fN), interaction parameter between two 

surfactants (), Gibbs energy of micellization (Gm), and excess energy of micellization 

(Gex) are evaluated from Rubingh’s regular solution theory (RST) [23, 24] as well as 

Maeda’s thermodynamic approach [25]. Molecular thermodynamic theory [26, 27] of 

Pavvada and Blankschtein (PB theory) is also applied to capture the evolution of 

electrostatic and steric free energy in micellization. Results of this study is instrumental 

in understanding aggregation behavior of ionic-nonionic surfactant mixtures, and 

therefore facilitating design/optimization of synergistically interacted surfactant 

formulations for soil remediation, foam booster, and enhanced oil recovery. 

4.2 Experimental 

4.2.1 Materials 

Alpha olefin sulfonate (C14-16SO3Na, AOS) was manufactured and provided by Stepan 

Company (Northfield, IL) as 39 wt% active water solution. Nonylphenol polyethoxylates 

with 10, 20, 30, and 40 ethylene oxide (EO) groups (NP10EO, NP20EO, NP30EO, and 

NP40EO, respectively) were all provided by Huntsman (Salt Lake City, UT) as 100% 

active. All surfactants were used as received without further purification. Sodium chloride 

(NaCl) was purchased from Sigma Aldrich. 

4.2.2 Surface Tension Measurements  

Measurements were conducted at 25 oC by a dynamic contact angle analyzer DCA-322 

(Cahn Instruments, USA) utilizing a technique based on the Wilhelmy plate principle. 

The equipment was calibrated by double distilled water at 25 oC (72.0±0.5 mN/m) each 
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day before experiments. Glass plate was thoroughly cleaned then flame-dried before each 

measurement. Measurements were duplicated and the mean value was recorded. The 

critical micelle concentration (CMC) values were determined from the break point in the 

curve of surface tension versus the logarithm of surfactant concentration. 

4.2.3 Conductivity Measurements 

Conductivity measurements were carried out for AOS and AOS-NPE mixtures in 

deionized water (DI) at 25 oC using a Mettler Toledo S230 SevenCompact Conductivity 

Meter (Columbus, OH). The cell used is Cond probe InLab 731-ISM-2m with cell 

constant of 0.57 cm-1. Errors of the measured conductivity values were within ± 0.5%. 

4.2.4 Cloud Point Measurements 

Cloud point was determined by controlled heating in a constant temperature oven 

DKN402C (Yamato Scientific, Japan). Fixed concentration of NPE (1 wt%) adjusted with 

different concentrations of AOS in DI or 0.5 M NaCl solution was taken in a sealed 10 

mL Pyrex pressure vessel to maintain the vapor pressure developed inside the reactors. 

The heating rate for the samples was controlled at 1oC/min. The first appearance of 

turbidity (and verified by the cooling cycle and disappearance of cloudiness) was taken 

as the cloud point and reproducibility of the measurement was found to be within ± 

0.5oC.  

4.2.5 Dynamic Light Scattering  

Micellar size distribution for various surfactant samples were determined by dynamic 

light scattering (DLS) using ZetaPALS (Brookhaven Instruments, Holtsville, NY) with a 
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wavelength of 659 nm. The scattering angle was fixed at 90°. All correlation spectra were 

recorded at 25 oC and analyzed with the installed particle solution software provided by 

Brookhaven. Results were reported as the average from triplicates of DLS measurements 

of individual sample. 

4.3 Results and Discussion 

4.3.1 Surface Tension 

Representative surface tension versus surfactant molar concentration plots for individual 

surfactants and their binary mixtures are shown in Figure C1 (Appendix C). The break 

point where the surface tension begins to level off implies the forming of micelles. The 

measured CMC of AOS in DI is 1.602 mM. In comparison, all nonionic NPEs tested 

exhibit much lower CMC values (0.066-0.180 mM in DI), reflecting less repulsion 

between their head groups opposing micellization, and among NPEs an evident rise in 

their surface tensions at CMC, CMC, was observed with increase of EO groups. Based on 

surface tension isotherms, surface excess concentration, Γ, in mol/m2 and minimum area 

per surfactant molecule, Amin, in nm2 at the air/liquid interface can be estimated 

graphically using the Gibbs adsorption equation [1],  

 Γ = −
1

2.303𝑛𝑅𝑇
(

𝜕𝛾

𝜕𝑙𝑜𝑔𝐶
)𝑇 (4.1) 

 𝐴𝑚𝑖𝑛 =
1021

𝑁𝐴Γ
 (4.2) 

where n is the number of species of ions that arise from dissociation of surfactant, and its 

value largely depends on electrolytes, e.g. n is 1 for nonionic surfactant or monomeric 

surfactant in the presence of a swamping (elevated) amount of electrolytes. n is taken as 
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2 represents for monomeric surfactant without extra electrolytes. R is the universal gas 

constant, T is absolute temperature, 𝛾 is surface tension, C is surfactant concentration, 

and 𝑁𝐴 is Avogardo’s number. Data of CMC, CMC, Γ, and Amin are summarized in Table 

4.1.  

Table 4.1. Interfacial parameters for individual surfactant 

NaCl, M Surfactant CMC, mM CMC, mN/m 106 , mol/m2  
Amin, 

nm2/molecule 

0 

AOS 1.602 (3.1a) 34.5 2.65 0.627 

NP10EO 0.066 (0.075b) 32.0 (31b) 3.56 0.467 

NP20EO 0.133 (0.14b) 39.5 (38b) 2.08 0.797 

NP30EO 0.162 (0.185b) 42.0 (41b) 2.06 0.804 

NP40EO 0.180 44.2 1.66 0.998 

0.5 

AOS 0.201 28.4 5.81 0.286 

NP10EO 0.057 32.7 4.02 0.413 

NP20EO 0.101 39.5 2.66 0.625 

NP30EO 0.106 43.6 1.86 0.894 

NP40EO 0.162 46.4 1.66 0.999 
a Reference [22]. b Reference [28] 

It has been observed that, the values of Amin, CMC as well as CMC increased with increase 

in ethoxylation of nonionic surfactants (larger EO numbers). As the EO chain grows 

bigger, much larger steric repulsive interactions among hydrophilic head groups lead to 

greater energy barrier for nonylphenol tails to accumulate at surface, thus high EO 

surfactants molecules exhibited less surface activity [3, 6]. Besides, addition of 0.5 M 

NaCl resulted in a drastic reduction on the CMC of AOS to 0.201 mM vs. 1.602 mM in 

DI, accompanied with a decrease on CMC from 34.5 mN/m to 28.4 mN/m. The 

electrostatic repulsion between negatively charged AOS head groups are largely shielded 

by a swamping amount of counterions, so that monomers can easily form micelles in 

elevated salt condition and accumulate (adsorb) densely at interface. In contrast, adding 

salt has less significant influence on micelle formation of NPEs. The resulted CMC values 
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of various binary systems (discussed later in section 3.6, Table 4.3 and Table 4.4) in DI 

condition likely fell between those of individual surfactants, while mixed CMC in 0.5 M 

NaCl could achieve even lower values compared to that of single surfactant.  

4.3.2 Counterion Binding 

Conductivity measurements allow associated counterions to be evaluated in ionic 

surfactant-only micelle as well as in ionic-nonionic mixed micelles in the solution. The 

degree of counterion dissociation is interpreted from the ratio of supra-cmc and sub-cmc 

slopes corresponding to the linear approximation plots of solution conductivity [9], as 

depicted in Figure C2 (Appendix C). The degree of counterion binding, B, is simply 

calculated by subtracting the counterion dissociation from unity. Results for counterion 

binding is presented in Table 4.3 and discussed in details later. For the AOS-NPE 

mixtures, two apparent trends were noticed: first, with the rise in (mole) fraction of 

nonionic surfactant in the mixture, the ion binding, B, gradually decreased due to a 

dilution of surface charge in mixed micelles; second, for a fixed fraction of AOS in 

different binary mixtures, the B values increased with growing EO numbers of nonionic 

surfactant, e.g. for same AOS mole fraction of 0.8, the B values are 0.060, 0.074, 0.098, 

and 0.169 for mixture with NP-10, 20, 30, and 40 EOs, respectively. The rise in B may 

be a result of much stronger ion-dipole interactions associated with larger EO numbers in 

turn dissociation of counterion is brought down. 

4.3.3 Cloud Point  

The cloud point is an important property for nonionic surfactants above which 

homogeneous solution appears to separate into an almost micelle-free dilute phase of 
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surfactant and a surfactant-rich micellar phase [1]. Upon heating the nonionic surfactant 

solution, ethoxylated group in hydrophilic head starts to dehydrate, resulting in an 

increase in the aggregation number and decrease in inter-micellar repulsion [29, 30]. 

Eventually, it leads to distinct phase separation of solution. Results of cloud points for 

different NPEs and nonionic-anionic mixtures depending on the AOS concentrations are 

depicted in Figure 4.1. The value of cloud point largely depends on the EO numbers as 

well as introducing such additives as electrolytes in these mixed micellar systems. In DI, 

NP10EO has cloud point at 66 oC. With additional 10 EO groups, the cloud point for 

NP20EO soared to 112 oC. In general, with identical hydrophobic group, the larger the 

oxyethylene length exist in the head group, the higher the cloud point is [1]. Beyond 20 

EOs in the surfactant molecule, however, further increase in EO numbers did not generate 

much difference on cloud points. With presence of 0.5 M NaCl, The values of cloud point 

for NP10EO and NP20EO dropped to 55 oC and 96 oC, respectively, attributed mainly to 

the salting out effects of the hydrophobic groups by the addition of electrolytes [31, 32].  
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Figure 4.1. Cloud point of 1 wt% NPE with 10-40 EOs in DI (opened symbols) or 0.5 

M NaCl solution (filled symbols) as a function of AOS concentration. 

It is notable that adding anionic AOS improves cloud points (to higher temperatures) for 

all NPE-AOS mixtures tested. For instance, cloud point for NP10EO in DI drastically 

increased from 66 oC to 102 oC with merely 1 mM AOS added. Addition of extra 5 mM 

AOS could further enhance cloud point to temperature greater than 130 oC. It is 

anticipated that incorporation of ionic surfactants into the nonionics would build up 

electrical charges on mixed micelles surface. Increasing electrostatic repulsion presented 

between mixed micelles thus effectively hinder their aggregation and other phase 

separation behaviors, like coacervation, consequently cloud point is raised. In Figure 4.1, 

solid curves represent cloud points in DI, charaterized by a much steeper slope compared 

to that of dashed curves for presence of NaCl cases. Presence of swamping electrolytes 

causes significant compression of the electrical double layer of mixed micelles and, thus, 

largely reduces electrostatic repulsion betweeen micelles. On the other hand, 

incorporation of anionic surfactants in mixed micelles could decrease the fraction of 

nonionic surfactant in micelle, which in turn alleviates the extent of dehydration of EO 

groups. Therefore, increasing mole fraction of AOS shows positive effects on raising the 

cloud points of NPEs in the 0.5 M NaCl cases, but not as significant as what has been 

observed in DI. For NPE-20EOs or greater, with modest AOS added (< 2mM), cloud 

points in 0.5 M NaCl are in the sequence NP20EO < NP30EO < NP40EO, while with 

greater amount of AOS (> 2mM), eventually, a reverse sequence of cloud points is 

noticed that NP20EO > NP30EO > NP40EO. The reason for such inversion is unclear, 

and further investigation of the detailed mechanisms involved is beyond the scope of this 

work. 
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4.3.4 Micelle Aggregation  

Micelle size distributions were examined by DLS in both DI and 0.5 M salt solution. 

Hydrodynamic diameter of micelle is given by Stokes-Einstein equation, dH =

kT/3πηD. Where k is the Boltzmann constant, η is the viscosity of solvent, and D is 

diffusion coefficient. Molecular weight of micelle is estimated by MHS relation, D =

KMHS ∗ MWaMHS . Where KMHS, and aMHS are a pair of constants corresponding to the 

solvent properties analyzed, taking as 7.89 × 10−5  and -0.43, respectively. The 

aggregation number of surfactant micelle can be determined with molecular weight of 

aggregate and surfactants, NAgg = MWagg/MWavg. Once aggregation number is known, 

the area per surfactant at micelle core/water interface can be easily computed by a =

πdH
2 /NAgg.  

Table 4.2. Mean hydrodynamic diameter and micelle aggregation number for 

surfactants in DI and 0.5 M NaCl solution. 

NaCl, 

M 
Surfactant 𝑑𝐻, nm Polydispersity Agg MW Agg Number a, nm2 

0 

AOS 3.64 0.097 1.24E+04 40 1.05 

NP10EO 10.81 0.073 1.60E+05 242 (276a) 1.51 

NP20EO 8.35 0.132 8.80E+04 80 (62a) 2.74 

NP30EO 9.06 0.108 9.60E+04 62 (44a) 4.14 

NP40EO 8.91 0.096 1.03E+05 52 4.79 

0.5 

AOS 7.17 0.054 6.20E+04 199 0.81 

NP10EO 10.07 0.098 1.38E+05 209 1.52 

NP20EO 8.04 0.148 8.40E+04 76 2.66 

NP30EO 8.90 0.088 1.03E+05 67 3.72 

NP40EO 9.97 0.138 1.34E+05 68 4.61 
             a Reference [33] 

Example of unimodal distribution plot for AOS and NP10EO is shown in Figure C3 

(Appendix C). In the DI water, AOS possesses a mean hydrodynamic diameter of 3.64 

nm, which agrees well with the literature value of 3.8 nm [21]. With presence of 0.5 M 
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salt, size distribution curve shifts toward the right side, leading to a larger dH of 7.17 nm. 

AOS micelles swell due to the shielding electrostatic repulsion between head groups 

resulted in a larger aggregate. For NP10EO a hydrodynamic diamter of 10.81 nm was 

recorded in DI, versus a slightly smaller dH of 10.07 nm for 0.5 M salt scenario. Results 

of mean hydrodynamic diameters with micelle aggregation number data are summarized 

in Table 4.2 for individual surfactants. 

The variations in aggregation behavior of different AOS-NPE mixtures were further 

analyzed at various mole fractions of the AOS, 𝛼𝐴, and different solution conditions (DI 

and 0.5M NaCl). Since the surfactant concentration used at measuring the dH of the AOS-

NPE mixed micelles (10 mM) was much higher than the CMC’s of these surfactant 

mixtures, therefore, we can safely assumed that the micelle composition, XA is the same 

as the solution composition, such that X𝐴 = 𝛼𝐴  [34, 35]. Figure 4.2 displays 3 

representative curves for variation of hydrodynamic diameter against the composition 

change in mixture system. For AOS-NP10EO system in DI, a sharp drop on dH from 

10.81 nm to 3.16 nm was noticed with as little as 0.1 mole fraction of AOS added in the 

mixture. This reflects a strong head-head repulsion once anionic molecule penetrated in 

the nonionic surfactant micelles. Further addition of AOS did not generate significant 

change on micelle size. A relatively stable diameter distribution around 3.25 nm (standard 

deviation = 0.36 nm) was recorded for 𝛼𝐴 from 0.1 to 1.0. For AOS-NP10EO system in 

0.5 M NaCl, along with rise in the AOS fraction in the mixture, a growth on mielle size 

was seen when 𝛼𝐴 ≤ 0.2; at 𝛼𝐴 = 0.2, dH reached a peak value of 12.03 nm; when 𝛼𝐴 > 

0.2, a steady reduction occurred as micelle size gradually gets close to the diameter of 

pure AOS micelle in 0.5 M salt, 7.17 nm. Similar variation on micelle size has also been 
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reported previously for tetradecyltrimethylammonium bromide with C12E23 mixtures, and 

the peak size was believed to coincide with the least headgroup-headgroup repulsion in 

the mixed micelles [36]. For AOS-NP30EO system in 0.5 M NaCl, increase in 𝛼𝐴 causes 

a steadily monotonic decrease in mixture micelle size from 8.9 to 7.17 nm. It is in 

agreement with smooth change of activity coefficients for both AOS and NP30EO, 

implying relatively stable interaction between them [4].  

 

Figure 4.2. Variation of hydrodynamic diameter of mixture systems with mole 

fraction of AOS for AOS-NP10EO, in DI, and AOS-NP10EO, AOS-NP30EO in 0.5 

M NaCl solution. 

4.3.5 Mixed Micelles Theory 

Rubingh (1979) proposed the well-known regular solution theory (RST) to conveniently 

predict the CMC of any mixtures of dual surfactants based on  the CMC values of the 

individual surfactants and one or more mixtures of them [23, 24]. RST has been proven 

as a robust basis for evaluating the non-ideality of binary mixed systems, primarily 

because it offered a rather simple but effective quantitative tool-interaction parameter () 
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to describe common surfactant synergistic and antagonistic phenomena. According to 

RST, the mixed CMC of anionic and nonionic surfactants can be evaluated by [23]: 

 
1

CMCM
=

αA

fACMCA
+

1 − αA

fNCMCN
 (4.3) 

where αA is the mole fraction of anionic surfactant in the total mixed solution; fA , fN are 

the activity coefficients of anionic and nonionic surfactant in mixed micelles; CMCA, 

CMCN, CMCM are the CMC of anionic, nonionic, and mixture surfactant, respectively. 

As for ideal mixing behavior, fA = fN = 1, hence above equation can be reduced to the 

form of Clint equation [37]: 

 
1

CMCM
=

αA

CMCA
+

1 − αA

CMCN
 (4.4) 

Interaction parameter, β is a quantitative indicator for the nature and strength of the 

interactions between the two components (A, N) in the mixed surfactants system [23]. A 

negative value of β implies the synergistic interactions, while a positive value suggests 

antagonistic interactions. A zero value of β indicates ideal mixing. Following relationship 

is suggested by Rubingh [23] to estimate the micellar composition for non-ideal mixing 

systems: 

 
(XA)2ln[(αACMCM/XACMCA)]

(1 − XA)2ln[(1 − αA)CMCM/(1 − XA)CMCN]
= 1 (4.5) 

where 𝑋𝐴 is the mole fraction of anionic surfactant in the mixed micelle. This equation 

needs to be solved by iteration, then interaction parameter and activity coefficients can 

be obtained conveniently with:  

 β =
ln[(αACMCM/XACMCA)]

(1−XA)2
    (4.6) 

 fA = exp [β(1 − XA)2] (4.7) 
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  fN = exp (βXA
2) (4.8) 

Data obtained for mixture systems in DI are reported in Table 4.3. Apart from 𝛼𝐴 = 0.9 

in AOS-NP30EO and AOS-NP40EO mixtures, β values for all the systems are negative, 

which manifested synergism prevailing in mixed AOS-NPE surfactants. In the DI water, 

anionic surfactant needs to overcome the electrostatic repulsion between ionic head 

groups to form micelle. With addition of nonionic surfactants, ethylene oxide chain of the 

nonionic surfactant mostly coils around the charged head group of the anionic surfactant. 

This helps dramatically reduce electrostatic repulsion between anionic-anionic head 

groups, and generate an ion-dipole attraction between two different hydrophilic head 

groups [3, 6]. 

Moreover, with greater ethoxylation of nonionic surfactant, average interaction 

parameter, β𝑎𝑣𝑔 became less negative, from -1.99, -1.37, -0.80, to -0.49 for 10, 20, 30, 

and 40 EOs, respectively, which signifies a weakened synergistic interaction between 

A/N surfactants with longer EO chain. This is possibly associated with a bulkier NPE 

head group with higher steric repulsion found itself harder to accommodate into a 

relatively small AOS micelle (dH = 3.64 nm). Hu et al. [6] noticed similar variations in 

absolute value of β with increase in EO length in their investigation of C12En and cationic 

gemini surfactant mixtures. They evidenced that the polyethylene lauryl ether C12E42, 

which possesses longest 42 EO groups, resulted in the least CMC change among three 

binary surfactant systems tested. A series of curves of micelle mole fraction 𝑋𝐴 against 

bulk mole fraction 𝛼𝐴 are shown in Figure 4.3a for mixed micelles in DI, and Figure 4.3b 

in NaCl case. The dashed line represents the mixtures, which has equal 𝑋𝐴 and 𝛼𝐴. The 

trends for all these anionic-nonionic mixtures are more or less the same. In DI, they all 
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exhibit lower mole fraction of AOS in the mixed micelle than that in bulk mixture 

solution, implying less transfer of AOS from the solution to the micellar phase while more 

nonionic surfactants dominant in the mixed micelles.  

 

 

Figure 4.3. Mole fraction of AOS in mixed micelles (𝑿𝑨) vs mole fraction in bulk 

solution (𝜶𝑨 ). The dashed line represents similar composition in both bulk and 

mixed micelles (𝑿𝑨 = 𝜶𝑨) 

For AOS with NP10EO and NP30EO systems, low activity coefficient of the anionic 

surfactant, 𝑓𝐴 , occurs along with low 𝛼𝐴. This reveals a very weak interaction between 

the anionic and nonionic surfactant in the micelle, which is in harmony with the small 

value of 𝑋𝐴 (see Table 4.3). At higher 𝛼𝐴 , a rise in both 𝑋𝐴 and 𝑓𝐴  indicates stronger 

interactions between two species of surfactants. In contrast, activity coefficient of the 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.0 0.2 0.4 0.6 0.8 1.0

X
A

aA

AOS-NP10EO

AOS-NP20EO

AOS-NP30EO

AOS-NP40EO

DI

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.0 0.2 0.4 0.6 0.8 1.0

X
A

aA

AOS-NP10EO

AOS-NP20EO

AOS-NP30EO

AOS-NP40EO

0.5 M NaCl



92 

nonionic surfactant, 𝑓𝑁 is pretty stable and close to unity regardless of the change in bulk 

composition. Joshi and co-workers [4] have observed such behavior of activity 

coefficients in SDS-C12En mixtures, and they attributed the difference to that nonionic 

surfactant has reached its standard state while the anionic one has not yet. 

Data obtained for mixture systems in 0.5 M NaCl solution are reported in Table 4.4. 

Synergistic interaction can be affirmed as 𝛽 values for all systems are negative. Contrary 

to DI cases, β𝑎𝑣𝑔 in salt solution appears to be slightly more negative with increase in EO 

groups of NPEs, -1.51 ± 0.02 for 10/20 EOs, to -2.10 ± 0.08 for 30/40 EOs. A decreasing 

trend of 𝛽 suggests greater synergistic interactions in AOS mixed with longer ethylene 

oxide chain. The geometry restriction on mixture micelles diminishes in 0.5 M salt 

solution since hydrodynamic diameters of AOS and NPEs micelles are about the similar 

size, 7-10 nm. A possible factor that dominates AOS-NPE interactions may rely on the 

attraction/repulsion between monomers during micellization. As suggested by Zhou and 

Rosen [3], polyethylene oxide chains could acquire some positive charges in the presence 

of anionic surfactant in mixed micelles, which the amount of positive charge obtained 

increases with growth of EO length. Therefore, a greater electrical attraction between 

AOS and NPE headgroups is expected when the length of EO groups is increased. This 

is consistent with the excess free energy of micellization (Gex) listed in Table 4.4, where 

NP40EO shows largest reduction on excess energy among four NPE surfactants in 0.5 M 

NaCl solution as further details discussed in later paragraph.   

On the other hand, for AOS with NP30EO and NP40EO systems, 𝑓𝐴 exhibits evident 

growing trend with increase 𝛼𝐴 . In accordance with the growing value of 𝑋𝐴 , an 

enhancement in the interaction between the anionic and nonionic surfactant is affirmed. 
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In contrast to DI cases (identical  𝑓𝑁 ), 𝑓𝑁 in salt cases also grows with increase in 

nonionic bulk composition (1 - XA). Figure 4.3Error! Reference source not found.b d

epicts plot of 𝑋𝐴  versus 𝛼𝐴  in 0.5 M salt condition. In AOS-NP10EO system, 𝑋𝐴  is 

consistently less than 𝛼𝐴 across compositions, 0 – 1 of 𝛼𝐴, reflecting lower activity of 

AOS in micelles than in bulk solution. In the other 3 cases of NPEs, depending on length 

of EO group, mixed micelles composition is observed identical to bulk composition 

(𝑋𝐴 = 𝛼𝐴) at different bulk ratio, e.g. 𝛼𝐴 is around 0.25, 0.30, and 0.40 for NP20EO, 

NP30EO, and NP40EO, respectively. For 𝛼𝐴  lower than reflection points, AOS 

molecules are highly enriched in mixture micelles rather than bulk solution. On the other 

hand, above these values, the micelles contain more share of nonionic surfactants than in 

bulk solution.  

4.3.6 Thermodynamic Parameters 

RST was criticized on some of the fundamental assumptions, for example, that entropy 

of mixing was approximated zero [20, 24], and  value only explained the head-head 

interactions, not encompassed the chain-chain interactions between the hydrophobic 

segments of the surfactant molecules, particularly when the chains were of dissimilar 

lengths [36].  

Therefore, based on the pseudo-phase separation model, Maeda [25] developed a 

thermodynamic approach, which considered both (hydrophobic) chain-chain and 

headgroup-headgroup contributions to the stability and formation of mixed micelles, to 

describe free energy of micellization, (Δ𝐺𝑀𝑎):  

 Δ𝐺𝑀𝑎 = 𝑅𝑇(𝐵0 + 𝐵1𝑋1 + 𝐵2𝑋1
2)  (4.9) 

where B0 is related to the CMC of nonionic surfactant,  
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 𝐵0 = 𝑙𝑛𝐶𝑀𝐶N (4.10) 

B1 represents for the chain-chain interaction, that contributes to the stability of micelle, 

and it can be obtained by: 

 𝐵1 + 𝐵2 = 𝑙𝑛
𝐶𝑀𝐶A

𝐶𝑀𝐶N
 (4.11) 

And 

 𝐵2 = −𝛽 (4.12) 

Where β is interaction parameter as described previously.  

For surfactants systems in DI, Gibbs energy change of micellization (GM) can be 

approximately calculated by the relationship proposed by Molyneux et al. [9, 38]:  

 Δ𝐺𝑀 = (1 + 𝐵)𝑅𝑇(ln𝐶𝑀𝐶 − lnω) (4.13) 

where B is the degree of counterion binding, ω is the molar concentration of water (55.3 

at 25 oC), and CMC represents CMCM in the case of mixed micelle. 

The calculated values of B1, B2, and Gibbs energy change of micellization, both Δ𝐺𝑀𝑎 

and GM are listed in Table 4.3. It is evident that the free energy change values calculated 

from Molyneux’s model matched with Maeda’s approach reasonably well (within ±5% 

difference). This suggests that the fraction of counterion bound to the mixed micelle is 

negligible, which agrees well with measured values of B, otherwise significant deviation 

would be seen between these two approaches [36]. It is worthy to note that for a certain 

fraction of anionic surfactant in the mixture, absolute value of Δ𝐺𝑀𝑎  decreases with 

growth of the EO groups. For instance, at 𝛼𝐴 = 0.5, the values of Δ𝐺𝑀𝑎 are -33.25, -

31.54, -31.00, and -30.70 KJ/mol for systems with NP10EO, NP20EO, NP30EO, and 

NP40EO, respectively, clearly revealing that the interaction is strongest with shortest EO 



95 

length. The weakening of synergism with increase of EO groups is in accordance with 

the variation of  value observed from our experimental data.  

Moreover, the excess energy of mixing (between monomeric and micellar state) can be 

calculated from the activity coefficients data [36, 39]: 

 Δ𝐺𝑒𝑥 = 𝑅𝑇[𝑋1ln𝑓1 + (1 − 𝑋1)ln𝑓2)]  (4.14) 

In this study, the calculated Δ𝐺𝑒𝑥 values along with B1, and Δ𝐺𝑀𝑎 are presented in Table 

4.4 for 0.5 M NaCl cases. Apparently, all calculated Δ𝐺𝑒𝑥 values are negative suggesting 

relatively more stable mixed micelles. It is notable that for a lower 𝛼𝐴 in AOS-NP10EO, 

B1 exhibits positive value. While at 𝛼𝐴 > 0.33, B1 becomes negative. A positive value of 

B1 indicates that head-head repulsions are dominant in the mixed micelle, which opposes 

formation of mixed micelles. On the other hand, a negative B1 implies that the chain-

chain hydrophobic interactions are favorable for stability of mixed micelles [36, 40]. This 

is coherent with a lower magnitude of Δ𝐺𝑒𝑥 at 𝛼𝐴 ≤ 0.33, while more negative Δ𝐺𝑒𝑥 at 

𝛼𝐴 > 0.33, implying that synergism between AOS and NP10EO becomes more evident 

with growth in AOS bulk fraction. For a particular 𝛼𝐴, the variation trend of B1 value 

versus EO groups agrees well with the variation of β, e.g. at 𝛼𝐴 = 0.5, B1 is -0.08, -0.14, 

-1.72, and -2.09 for binary mixture with NP10EO, NP20EO, NP30EO, and NP40EO, 

respectively. This observation again confirmed the enhancement of synergistic 

interaction by increasing EO numbers. On the contrary, Hu and co-workers reported that 

cationic-nonionic binary system containing longer PEO chains showed less negative 

Δ𝐺𝑒𝑥  values than that with shorter PEO chains [6]. One plausible reason for such 

difference is that our samples contain a swamping amount of salt (0.5M NaCl) but Hu’s 

study was conducted in DI.     
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Table 4.3. Interaction parameters and free energy of AOS-NPE mixture 

micellization in DI. Mixture CMC, mole fraction of AOS in bulk (𝜶𝑨), and in mixed 

micelle (𝑿𝑨), interaction parameter (𝜷), activity coefficients (𝒇𝑨 , 𝒇𝑵), degree of 

counterion binding (B), Gibbs energy of micellization by Molyneux’s (Gm) and 

Maeda’s (Gma) approach.   

Mixture a 
CMC, 

mM 
XA  (−) fA fN 

Gm, 

KJ mol
-1 B B0 B1 

Gma, 

KJ mol
-1 

AOS-
NP10EO 

1.00 1.602 1.00       -33.87 0.308       

0.90 0.320 0.37 -1.85 0.48 0.77 -31.76 0.063 -13.64 1.34 -31.92 

0.80 0.230 0.25 -1.33 0.47 0.92 -32.54 0.060 -13.64 1.86 -32.46 

0.67 0.140 0.22 -2.15 0.27 0.90 -33.40 0.046 -13.64 1.04 -32.98 

0.50 0.110 0.14 -1.86 0.25 0.97 -33.69 - -13.64 1.33 -33.25 

0.33 0.076 0.16 -3.31 0.10 0.92 -34.24 - -13.64 -0.13 -33.63 

0.20 0.094 0.05 -1.60 0.24 1.00 -33.38 - -13.64 1.58 -33.58 

0.10 0.120 0.04 -1.82 0.19 1.00 -32.54 - -13.64 1.37 -33.65 

0.00 0.066 0    -33.79 0    

Avg     -1.99               

AOS-
NP20EO 

0.90 0.510 0.46 -1.57 0.63 0.72 -31.57 0.099 -12.96 0.94 -30.24 

0.80 0.310 0.37 -2.13 0.42 0.75 -32.17 0.074 -12.96 0.38 -31.06 

0.67 0.250 0.27 -1.79 0.39 0.88 -32.35 0.061 -12.96 0.72 -31.30 

0.50 0.210 0.16 -1.31 0.40 0.97 -32.44 0.049 -12.96 1.20 -31.54 

0.33 0.150 0.17 -2.49 0.18 0.93 -32.77 - -12.96 0.02 -31.92 

0.20 0.160 0.03 -0.23 0.80 1.00 -32.18 - -12.96 2.28 -31.97 

0.10 0.150 0.01 -0.07 0.94 1.00 -32.02 - -12.96 2.44 -32.05 

0.00 0.133 0 
   -32.11 0    

Avg     -1.37               

AOS-
NP30EO 

0.90 0.960 0.46 0.53 1.16 1.12 -30.72 0.131 -12.75 2.83 -28.62 

0.80 0.560 0.29 -0.10 0.95 0.99 -31.29 0.098 -12.75 2.20 -29.97 

0.67 0.380 0.20 -0.35 0.80 0.99 -31.49 0.069 -12.75 1.95 -30.60 

0.50 0.260 0.16 -1.01 0.49 0.97 -32.29 0.062 -12.75 1.29 -31.00 

0.33 0.240 0.11 -0.97 0.46 0.99 -31.81 - -12.75 1.34 -31.21 

0.20 0.150 0.10 -2.03 0.19 0.98 -32.46 - -12.75 0.27 -31.48 

0.10 0.180 0.05 -1.65 0.23 1.00 -31.58 - -12.75 0.65 -31.51 

0.00 0.162 0    -31.60 0    

Avg     -0.80               

AOS-
NP40EO 

0.90 1.450 0.54 1.92 1.49 1.76 -30.97 0.185 -12.64 4.11 -27.18 

0.80 0.560 0.34 -0.48 0.81 0.95 -33.31 0.169 -12.64 1.71 -29.71 

0.67 0.510 0.26 -0.35 0.83 0.98 -32.34 0.126 -12.64 1.84 -30.08 

0.50 0.290 0.17 -0.95 0.52 0.97 -33.17 0.101 -12.64 1.24 -30.70 

0.33 0.280 0.12 -0.94 0.48 0.99 -32.23 0.067 -12.64 1.25 -30.90 

0.20 0.220 0.02 -0.23 0.80 1.00 -32.02 - -12.64 1.96 -31.20 

0.10 0.180 0.08 -2.42 0.13 0.98 -31.89 - -12.64 -0.23 -31.31 

0.00 0.180 0    -31.30 0    

Avg     -0.49               

 



97 

Table 4.4. Interaction parameters and free energy of AOS-NPE mixture 

micellization in 0.5 M NaCl solution. Mixture CMC, mole fraction of AOS in bulk 

(𝜶𝑨), in mixed micelle (𝑿𝑨), interaction parameter (𝜷), activity coefficients (𝒇𝑨 , 𝒇𝑵), 

excess free energy (Gex) and Gibbs energy of micellization by Maeda’s (Gma) 

approach.  

Mixture a 
CMC, 

mM 
XA  (−) fA fN 

Gex, 

KJ mol
-1 B0 B1 

Gma, KJ 

mol
-1 

AOS-
NP10EO 

1.00 0.201 1         

0.90 0.072 0.59 -3.46 0.55 0.31 -2.08 -13.79 -2.20 -34.31 

0.80 0.073 0.51 -2.41 0.57 0.53 -1.49 -13.79 -1.15 -34.04 

0.67 0.070 0.43 -1.84 0.55 0.71 -1.12 -13.79 -0.59 -33.94 

0.50 0.068 0.32 -1.34 0.54 0.87 -0.72 -13.79 -0.08 -33.89 

0.33 0.071 0.16 -0.43 0.74 0.99 -0.14 -13.79 0.83 -33.80 

0.20 0.067 0.10 -0.55 0.64 0.99 -0.13 -13.79 0.71 -33.96 

0.10 0.054 0.05 -0.68 0.54 1.00 -0.08 -13.79 0.57 -34.08 

0.00 0.057 0         

Avg     -1.53             

AOS-
NP20EO 

0.90 0.130 0.69 -1.79 0.84 0.42 -0.94 -13.22 -1.10 -32.52 

0.80 0.089 0.57 -2.64 0.62 0.42 -1.60 -13.22 -1.95 -33.37 

0.67 0.120 0.50 -0.89 0.80 0.80 -0.55 -13.22 -0.20 -32.46 

0.50 0.110 0.38 -0.84 0.72 0.89 -0.49 -13.22 -0.14 -32.60 

0.33 0.091 0.31 -1.45 0.50 0.87 -0.76 -13.22 -0.76 -33.00 

0.20 0.082 0.25 -2.02 0.32 0.88 -0.95 -13.22 -1.33 -33.27 

0.10 0.100 0.09 -0.77 0.53 0.99 -0.16 -13.22 -0.08 -32.76 

0.00 0.101 0         

Avg     -1.49             

AOS-
NP30EO 

0.90 0.110 0.67 -2.64 0.74 0.31 -1.46 -13.16 -2.01 -33.03 

0.80 0.120 0.61 -1.53 0.79 0.57 -0.90 -13.16 -0.90 -32.57 

0.67 0.110 0.51 -1.39 0.72 0.70 -0.86 -13.16 -0.75 -32.67 

0.50 0.079 0.43 -2.35 0.46 0.65 -1.43 -13.16 -1.72 -33.37 

0.33 0.087 0.33 -1.84 0.44 0.82 -1.01 -13.16 -1.21 -33.11 

0.20 0.084 0.27 -2.18 0.31 0.85 -1.06 -13.16 -1.55 -33.26 

0.10 0.088 0.20 -2.31 0.22 0.92 -0.90 -13.16 -1.67 -33.21 

0.00 0.106 0         

Avg     -2.03             

AOS-
NP40EO 

0.90 0.150 0.75 -1.72 0.90 0.38 -0.80 -12.75 -1.50 -31.98 

0.80 0.130 0.65 -1.82 0.80 0.46 -1.02 -12.75 -1.59 -32.26 

0.67 0.120 0.56 -1.77 0.71 0.57 -1.08 -12.75 -1.55 -32.37 

0.50 0.100 0.47 -2.31 0.53 0.59 -1.43 -12.75 -2.09 -32.76 

0.33 0.106 0.39 -2.13 0.45 0.72 -1.25 -12.75 -1.90 -32.63 

0.20 0.099 0.33 -2.71 0.30 0.74 -1.49 -12.75 -2.49 -32.90 

0.10 0.110 0.26 -2.79 0.21 0.83 -1.32 -12.75 -2.56 -32.77 

0.00 0.162 0         

Avg     -2.18             
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4.3.7 The PB theory 

A great advancement in modeling the surfactant mixtures was brought by Puvvada and 

Blankschtein [26, 27] with their molecular thermodynamic theory (PB theory). The PB 

models accounted for micellar mixing nonidealities resulting from different molecular 

contributions, such as electrostatic and steric interactions between the surfactant 

hydrophilic head groups, and from the packing of surfactant hydrophobic tails of unequal 

length in the micellar core to predict properties for binary mixture surfactants [34, 35].  

According to the PB theory, the total free energy of mixed micellization is the sum of free 

energy contribution of follows [26, 34, 35], 

 gmic = gtr + gint + gpack + gelec + gst (4.15) 

The first three terms on the right ( gtr , gint , gpack)  are transferring free energy, 

interfacial free energy, and packing free energy, respectively. They involve free energy 

contributions only from the hydrophobic tails. And the last two terms (gelec, gst) are 

electrostatic free energy, and steric free energy, associated with free energy contributions 

only from surfactant heads [34]. In this study, we mainly focus on the effect of different 

hydrophilic head groups, thus, only gelec, and gst are analyzed. And steric free energy in 

micellization is given by [26], 

 gst = −kT[XA ln (1 −
ahA

a
) + (1 − XA)ln (1 −

ahB

a
)] (4.16) 

Where 𝑎ℎ𝐴 and 𝑎ℎ𝐵 are head cross-sectional area of surfactants A and B, respectively. 

They are obtained from Gibbs adsorption isotherm. And a is the area per surfactant 

molecule at the micellar core/water interface, which can be estimated from micelle 

aggregation number Nagg and hydrodynamic diameter dH obtained from dynamic light 

scattering.  
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An approximate analytical solution of Poisson-Boltzmann equation is used to calculate 

gelec of pure ionic surfactant [41, 42], 

 

gelec = 2kT
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(4.17) 

 

where s =
4𝜋𝑍𝑒2

𝜖𝑎𝑘𝑇𝜅
  and κ = (

8𝜋𝐶𝑜𝑒2𝑍2

𝜖𝑘𝑇
)1/2. 

k is the Boltzmann constant, T is the absolute temperature, s is a convenient dimensionless 

parameter, κ−1 is the Debye screening length, R is the radius of spherical surface, Z is the 

valence of ionic surfactant, e is the electronic charge, 𝜖 is the solvent dielectric constant, 

and  𝐶𝑜 is the bulk ionic concentration.  

A representative steric and electrostatic free energy result for AOS-NP30EO is illustrated 

in Figure 4.4. As we can see, electrostatic energy, gelec, in DI was close to 0 when αA < 

0.5. This is because that AOS micellar composition, XA, is basically negligible at low 

AOS bulk composition (αA). At αA > 0.5, more AOS molecules were present in the mixed 

micelles. Thus, larger electrostatic repulsion between charged head groups were expected 

from 0.06 kT at αA = 0.5 to 1.07 kT at αA = 0.9. A sharp increase of gelec was observed at 

αA = 1.0, resulted from strong electrostatic energy of a pure ionic AOS micelle. In 

contrast, gelec increased constantly in 0.5 M NaCl solution with rise in αA. This is 

consistent with the monotonic increase of AOS composition in the mixed micelle and 
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proved that AOS molecules are more active to participate in mixed micelles at salt 

condition than in DI.  

 

 

Figure 4.4. Calculated steric free energy, gst, and electrostatic free energy, gelec, as a 

function of AOS bulk composition for AOS-NP30EO micelle in DI as well as in 0.5 

M NaCl solution at the mixture CMC. 

The steric contribution, gst, exhibited a slight rising trend with increase in α. Surprisingly, 

higher NP30EO composition in the micelle, which occupies a relatively larger head group 

compared to AOS, did not bring much greater steric contribution. The reason is that the 

area per surfactant molecule at the micellar core/water interface, a, increased drastically 

with rise in NP30EO micelle composition, as a result, the fraction of free area per 

surfactant at interface, 1-ah/a, approached to a constant value, thus little change of steric 
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free energy was seen at low AOS composition. While at higher α, more AOS were present 

in mixture micelle, and the contrast between two different head groups resulted in much 

stronger steric contribution.  

For ideal surfactant mixture, the free energy of micellization is: 

 g𝑚𝑖𝑐
𝑖𝑑𝑒𝑎𝑙 = 𝑋𝐴g𝑚𝑖𝑐

𝐴 + (1 − 𝑋𝐴)g𝑚𝑖𝑐
𝐵 + kT[𝑋𝐴ln𝑋𝐴 + (1 − 𝑋𝐴)ln (1 − 𝑋𝐴)] (4.18) 

Which considers a linear interpolation between micellization energy of two species of 

surfactants (A & B) and an ideal entropy of mixing. According to the PB theory, 

nonideality of surfactant mixture originates from any deviations of gmic from gmic
ideal. And 

the difference between gmic and gmic
ideal is connected with Rugbingh’s RST [27, 35],  

 ΔGmic = XA(1 − XA)βPB (4.19) 

Where βPB is the interaction parameter, unlike β in RST, the PB theory provides a direct 

tool to actually predict β instead of fitting it to experimental CMC data. 

Sarmoria et al. [42] simplified PB models for ionic-nonionic surfactants mixtures by 

accounting only electrostatic contribution among mixture head groups. As suggested by 

Sarmoria et al., βPB  reflects mainly two free energy contributions in the mixture 

micellization,  

 βPB ≈ gcore
AB + gelec

AB  (4.20) 

Where, gcore
AB  is associated with interaction between the hydrophobic moieties of 

surfactants A and B in the micellar core, and  gelec
AB  is associated with electrostatic 

interactions between the charged hydrophilic moieties of surfactants A and B. gcore
AB  is 

typically 0 for a mixture of two hydrocarbon-based surfactants, thus for monovalent-

nonionic mixture, above equation is reduced to [7], 
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 βPB ≈ gelec
AB = −Kelec (4.21) 

Where Kelec is a numerical prefactor that can be evaluated from electrostatic theory, 

 gelec = Kelec(α
∗)2 (4.22) 

α∗is the optimal micellar composition, where the free energy of micellization attains its 

minimum value. By equating the Equations 4.17 and 4.22 at α∗ = 1 for pure ionic 

surfactant, Kelec  can be computed, and βPB  is also determined. Once βPB  is known, 

following relations could be used to predict the CMC of mixtures, 

 
βPB

kT
(1 − 2α∗) + ln (

α∗

1 − α∗
) = ln (

α

1 − α

CMCN

CMCA
) (4.23) 

 

 fA = exp [
βPB

kT
(1 − α∗)2] (4.24) 

 

  fN = exp (
βPB

kT
(α∗)2) (4.25) 

 
1

CMCM
=

αA

fACMCA
+

1 − αA

fNCMCN
 (4.26) 

Similar as Rubingh’s RST, with CMCM known from experimental data, βPB can also be 

determined from above equations with iteration. βopt represents the optimal value of βPB 

that best fits the experimental CMCM versus α data in a least-squares fit sense, 

 F = ∑[(CMCM
exp

)
i
− (

α

fACMCA
+

1 − α

fNCMCN
)−1]2 (4.27) 

Here we compare the experimentally-deduced optimal βopt with predicted value of βPB, 

denoting as βpre, for all AOS-NPE surfactant mixtures. Results are summarized in Table 

4.5 with βavg obtained from the RST model. 
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Table 4.5. Values of 𝛃𝐨𝐩𝐭 , 𝛃𝐨𝐩𝐭  calculated from PB theory, and 𝛃𝐚𝐯𝐠  from regular 

solution theory 

NaCl, M Mixture β𝑝𝑟𝑒 β𝑜𝑝𝑡 β𝑎𝑣𝑔 

0 

AOS-NP10EO 

-4.97 

-1.75 -1.99 

AOS-NP20EO -1.72 -1.37 

AOS-NP30EO -0.20 -0.80 

AOS-NP40EO -0.18 -0.49 

0.5 

AOS-NP10EO 

-1.75 

-2.30 -1.53 

AOS-NP20EO -1.58 -1.49 

AOS-NP30EO -1.96 -2.03 

AOS-NP40EO -2.11 -2.18 

 

Obviously, with consideration of only electrostatic free energy in mixed micelles, 

predicted βpre failed to capture any change resulted from the variation of ethylene oxides 

groups. In DI, βpre  also overestimated the synergistic interaction between AOS-NPE 

mixtures. In one example, Sarmoria et al. [42] analyzed the SDS-NPE mixtures based on 

simplified PB theory and the predicted interaction parameter was -4.1 with EO groups 

ranging from 5 to 20. Compared to their result, β𝑝𝑟𝑒of -4.97 in this work appears a 

reasonable value for AOS-NPE mixtures considering only gelec. Hence, it is safe to say 

that the overestimation of βpre  comes from the nonideality due to mixture steric free 

energy and maybe free energy associated with hydrophobic tails. The best fitted βopt in 

DI decreased from -1.74±0.02 for mixture with NPE-10, 20 EO to -0.19±0.01 with NPE-

30, 40 EO. Although an order magnitude drop of βopt was seen at 20/30 EO rather than 

a stepwise reduction, the trend is coherent with what have been observed in RST, that 

synergism between AOS-NPE decrease with rise in ethylene oxide length. In the 0.5 M 

NaCl solution, predicted βpre is in harmony with the range of βopt, -1.99±0.31, as well 

as the range of βavg , -1.99±0.35. The validity of these results is also convinced by 

exceptional agreement between the predicted mixed CMCM from PB theory and those 
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from surface tension measurements. The variations of β in salt condition are subtle, 

however, both βopt and βavg exhibited a slight increase with the growth of EO number 

from 20 to 40. We may assume βopt constitutes of two components, contributions from 

electrostatic free energy βelec = βpre, and from steric free energy βst, thus the difference 

between βopt and βpre reflect the steric contribution in mixture interaction. The resulted 

values of βst are 0.17, -0.21, and -0.36 for mixture with 20, 30, and 40 EO, respectively. 

Hydrophilic head area for AOS (𝑎ℎ𝐴) is 0.286 nm2, and for NPEs (𝑎ℎ𝑁) with 20, 30, and 

40 EO are 0.625, 0.894, and 0.999 nm2, respectively. It is clear that enlarging the 

difference between AOS/NPE head area, a much greater steric contribution is envisioned, 

thus the synergism between AOS-NPE mixture becomes stronger. 

 

Figure 4.5. CMC vs mole fraction of AOS, 𝜶𝑨 , for binary mixed systems in DI. 

Dashed lines represent ideal mixing values, solid lines represent CMC predicted 

from PB theory with 𝛃𝒑𝒓𝒆𝒅 = −𝟒. 𝟗𝟕, and symbols represent experimental values 
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Figure 4.5, and Figure 4.6 present the CMC variation as a function of 𝛼𝐴 in DI as well in 

0.5 M NaCl solution. In DI cases, CMC predicted from PB theory is noticeable off from 

the measured data, likely due to overestimation of interaction parameter. In comparison, 

ideal model provides a fairly reasonable prediction, especially in the mixture of AOS-

NP30EO, where the best fitted βopt is close to zero. It is obvious that nonionic surfactant 

plays an important role in mixed micelles. For instance, in AOS-NP10EO system, only 

0.1 mole fraction of NP10EO in the mixture rendered a drastic reduction on CMC from 

1.602 mM to 0.320 mM. Nevertheless, The CMCM values for all binary mixture systems 

did not exceedingly drop below those exhibited by the pure NPE surfactants alone. 

Compared to DI cases, PB theory presented a better prediction on mixture CMC in 0.5 M 

salt solution than ideal model. The measured CMC values for all binary systems with salt 

added are pronounced lower than those estimated from ideal mixing rule, clearly 

revealing the synergistic interactions. The synergism between AOS and NPE is more 

evident in respect to mixed micelle formation [43], e.g. in AOS-NP40EO scenario, CMC 

of all binary systems are lower than that of either individual AOS or NP40EO.  
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Figure 4.6. CMC vs mole fraction of AOS, 𝜶𝑨 for binary mixed systems in 0.5 M 

NaCl solution. Dashed lines represent ideal values, solid lines represent CMC 

predicted from PB theory with 𝛃𝒑𝒓𝒆𝒅 = −𝟏.𝟕𝟓, and symbols represent experimental 

values. 

4.4 Conclusions  

Binary anionic-nonionic surfactant mixtures are of great interest due to their excellent 

properties in reducing CMC, improving surface/interface activity, strengthening oil 

solubilizing ability, and cutting chemical costs. In this study, binary mixtures of alpha 

olefin sulfonate (AOS) and nonylphenol polyethylene glycol ethers (NPE) with a wide 

range of EO chain length were examined comprehensively by various experimental 

methods as well as different theoretical treatments. We have observed that CMC values 

of all binary systems fall between those of the pure constituent surfactants without 

additional electrolytes. However, with presence of swamping amount of electrolytes, 

CMC could be lower than that of single nonionic surfactant, indicating strong synergistic 
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interaction. Addition of AOS increases cloud points for all NPE surfactants tested in both 

DI and 0.5 M NaCl solutions. Mixture micelle size exhibited complex change depending 

on the salt concentration, EO chain length and mixture composition.  

Based on regular solution theory of Rubingh, and molecular thermodynamic theory of 

Pavvada and Blankschtein, interaction parameter 𝛽 calculated for all binary systems are 

negative, which further confirmed synergistic interaction prevailing in mixed AOS-NPE 

surfactants. In DI, NPEs are dominant in the mixed micelles as lower micelle fraction of 

AOS, 𝑋𝐴, against bulk fraction, 𝛼𝐴, has been observed for all AOS-NPE mixtures; with 

rise in EO numbers, a reduction on synergistic interaction was inferred from decrease in 

both absolute value of Gibbs energy of micellization Δ𝐺𝑀𝑎  and average interaction 

parameter β𝑎𝑣𝑔 . On the other hand, β𝑎𝑣𝑔  become more negative with increase in 

surfactant EO groups in elevated salt presence, suggesting rise in synergistic interactions. 

With swamping amount of salt, AOS shows lower activity in AOS-NP10EO mixture 

micelles than in bulk solution; while with longer EO chains, AOS are enriched in mixture 

micelles rather than bulk solution at lower 𝛼𝐴, but exhibit greater activity in bulk solution 

than in micelles at higher 𝛼𝐴.  

This work revealed the impacts of EO length on binary surfactants mixtures, especially, 

contrary contribution on the scale of synergistic interaction at different electrolytes 

conditions has been observed for the first time, which is of great significance in 

understanding the aggregation behavior of mixed surfactants, and therefore facilitating 

development of superior surfactant formulation with maximized synergistic efficiency for 

enhanced oil recovery at high salinity reservoirs. 
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Chapter 5 Oil-induced highly viscoelastic wormlike micellar solutions 

of extended surfactant sodium alkyl alkoxy sulfate 

Abstract 

In this study the rheological properties of an extended surfactant, a sodium alkyl alkoxy 

sulfate (C8–(PO)4–(EO)1–SO4Na) are extensively investigated as a function of the 

presence of various paraffinic oils and under a range of salt conditions. The addition of 

as small as 3 vol% alkane into the surfactant formulations (2 wt%) promotes a sudden 

shift in viscoelastic behaviors, e.g. solution viscosity jumps 5 orders of magnitude. 

Oscillatory-shear (frequency sweep) measurements are performed on the viscoelastic 

samples and solid-like behaviors (G’ > G’’) are observed for all solubilized oil samples in 

the entire frequency region (0.01-100 rad/s). Commonly, alkanes are believed to be 

encapsulated in the core of micelles, leading to a radial growth of the cylindrical part of 

the wormlike micelle resulting in a drop in end-cap energy(EC) and micelle length; in this 

study, however, the high zero-shear viscosity and plateau G’ reveal that solubilized oil 

induces the axial growth of wormlike micelle, consistent with the long relaxation time 

observed for solubilized oil samples (G’, G’’ cross over is not obtained within a frequency 

region of 0.01-100 rad/s). The viscosity of oil solubilized samples eventually decreases 

with an increase of incorporated oil volume. When the volume of solubilized oil is held 

constant, (6 vol%), the viscosity increases when the counterions concentration rises but 

the formulation stays within the Winsor Type III region. We hypothesize that this 

“abnormal oleo-responsive” viscoelastic behavior is related to a spacer of intermediate 

hydrophilicity, i.e., polypropylene oxide segment, being inserted between the C8 
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hydrophobic tail and hydrophilic head (the ethoxylated sulfate segment) of the extended 

surfactant. The addition of oil extends the PO groups and enlarges the tail length, which 

would result in an increasing end cap energy of worms, thus give rise to a favorable 

longitudinal growth of wormlike micelles. 

5.1 Introduction 

Wormlike micelles are elongated, semi-flexible surfactant aggregates which exhibit 

remarkable rheological properties. Above a critical concentration c*, wormlike micelles 

entangle into a transient network and become viscoelastic, similar to a solution of flexible 

polymers.1, 2 In contrast to polymers, wormlike micelles are dynamic systems that 

constantly break and recombine, therefore they are often referred to as “living polymers”. 

For wormlike micelles, the spontaneous curvature of the end caps is higher than the 

curvature along the cylindrical body. The growth is therefore a consequence of the system 

minimizing the excess free energy by reducing the number of end caps. Over the past few 

decades, Wormlike micelles have drawn considerable interest both from a theoretical 

viewpoint as well as for industrial and technological applications. Understanding the 

viscoelasticity of wormlike micelles is important for the design and the development of 

industrial products where the high viscosity and elastic properties are exploited, such as 

fracture fluids in oil fields, drag reduction agents, home care, personal care and cosmetic 

products. 

Wormlike micelles are highly responsive to multiple factors, such as light, temperature, 

pH, CO2, hydrocarbons, etc.3 For oilfield application, the responsiveness to hydrocarbons 

is of particular importance because that large amounts of hydrocarbons will lead to a drop 

of viscosity of wormlike micellar solutions by several orders of magnitude and a complete 
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loss of viscoelastic properties.4 Typically, addition of oil influences the growth of 

wormlike micelles differently dependent on the type of oils being added. Aromatic 

hydrocarbons are often solubilized at or near the micellar corona, as a result induces the 

growth of wormlike micelles in length and, hence, the viscosity enhancement.4, 5 On the 

opposite, alkane oil are normally solubilized inside the micellar cores, instead of 

contribute to the entangled worms, they lead to a disruption of wormlike micelles and 

their transition to microemulsion droplets.6 As seen before, 0.5 wt% dodecane is able to 

render a drastic drop in viscosity of wormlike micellar solution up to 5 orders of 

magnitude.7 Increasing the alkyl chain of ester oils has seen worsen the longitudinal 

micellar growth into worms.8 Reservoir hydrocarbon typically contains a large portion of 

paraffinic oils, to generate wormlike micelles resistant to paraffins therefore is of great 

significance for reservoir applications.  

Extended surfactants are a class of surfactants containing intermediate polarity molecules, 

such as polypropylene oxides (POs) and/or polyethylene oxides (EOs), which are inserted 

between the hydrocarbon tail and hydrophilic head. Benefited from their unique structure, 

extended surfactants will extend the length of the surfactant tail further into the oil phase 

without losing water solubility, thereby providing a smoother transition between oil and 

water phases and leading to a thickening interfacial region.9, 10 It has been observed, 

extended surfactants could form much larger middle phase (Winsor III microemulsion) 

compared to conventional surfactant without PO and EO groups.11 

In this work, the rheological property of a micellar solution consisting of extended 

surfactant C8–(PO)4–(EO)1–SO4Na (C8P4E1) was extensively studied. Wormlike 

micelles were evidenced at salt level above 15 wt%, and at C8P4E1 concentration above 
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4 wt%. Impact of paraffinic oil was then investigated by solubilizing certain concentration 

of oils into the 2 wt% C8P4E1 solution at Winsor III region, the oil-free solution behaves 

like Newtonian fluid with viscosity of 0.005 Pa.s. Contrary to common oleo-responsive 

wormlike micelles, addition of oil could drastically increase the viscosity as well as 

elasticity of C8P4E1 solution. Impact of the oil volume, counterion type, and counterion 

concentration were also examined. Our hypothesis is that, incorporating oil to the spacer 

layer where PO groups reside can extend the PO groups and enlarge the tail length. This 

would result in an increasing end cap energy of worms, thus give rise to a favorable 

longitudinal growth of wormlike micelles. This paper, to the best of our knowledge, is 

the first work that extensively studied the rheological property of extended surfactant, 

also the first work that evidenced the abnormal paraffinic oil-induced growth of wormlike 

micelles. 

5.2 Experiments 

5.2.1 Materials 

The extended surfactant C8–(PO)4–(EO)1–SO4Na (C8P4E1) used in this study was 

provided by Sasol North America Inc., Lake Charles, LA as a 32.3% active solution. A 

synthetic isoparaffinic hydrocarbon solvent, IsoparTM -L (>98% C11-C13) was provided 

by ExxonMobil Chemical Company, Houston, TX. Octane (>99.5%), decane (>98%), 

dodecane (>99%), sodium chloride, potassium chloride, magnesium chloride, and 

calcium chloride dihydrate (CaCl2∙2H2O) were purchased from Sigma Aldrich. All the 

chemicals were used as received.  
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5.2.2 Phase behavior of microemulsions  

Phase behavior test was performed in flat-bottom glass vials with Teflon-lined screw 

caps. Equal volume of 2 wt% surfactant solution and oil (5 mL each) were added into the 

vial with different electrolytes concentration. All test tubes were first gently hand-shaken 

for 20 seconds, and subsequently kept in a water bath at 25 oC to allow equilibration. 

After the systems reached equilibrium, the resulted interfacial tension between the excess 

water and excess oil phases of microemulsions was measured at 25 oC with a M6500 

Spinning Drop Tensiometer (Grace Instrument, Houston, TX). The detailed method has 

been documented by Witthayapanyanon et al 10. 

5.2.3 Rheological measurements 

Rheological measurements were performed on a Discovery Hybrid Rheometer (DHR-2, 

TA Instruments) with a temperature-controlling Peltier unit and a sample cover to 

minimize evaporation. For highly viscous and viscoelastic samples, a cone− plate 

geometry with 40 mm diameter and 2° cone angle was used, whereas for low-viscous 

samples, the experiments were performed with concentric cylinders (bob diameter 27.98 

mm, cup diameter 30.33 mm). Samples for rheological measurements were vortex mixed 

and equilibrated for 10 minutes in the measurement cell prior to investigation. Two types 

of rheological measurements were performed: steady shear-rate viscosity measurements 

and oscillatory shear measurements. In oscillatory shear measurements, the stress 

amplitude was chosen in the linear viscoelastic regime as determined by dynamic stress 

sweep measurements to ensure that the storage modulus (G′) and the loss modulus (G

″) are independent of the applied stress. Measurements were carried out in duplicates or 
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triplicates for each sample, with very good reproducibility. The results reported here are 

examples of typical data obtained, not averages.  

5.3 Results and discussions 

5.3.1 Rheology of oil-free C8P4E1 surfactant solution 

 

Figure 5.1. Steady shear viscosity as a function of shear rate for (a) 10 wt% C8P4E1 

solution at various concentration of salt, (b) various concentration of C8P4E1 

solution with 15 wt% salt. Variation of storage modulus G’ (filled symbols) and loss 

modulus G’’ (open symbols) as a function of oscillatory shear frequency for (c) 

solutions of 10 wt% C8P4E1 at various concentration of salt, (d) various 

concentration of C8P4E1 solution with 15 wt% salt.  

It is well known that wormlike micelles entangle into a transient network, imparting 

remarkable viscoelastic properties to the surfactant solutions once the surfactant is above 

a system-dependent concentration, referred to as the overlap concentration. The growth 

of wormlike micelles can also be promoted by the addition of co-surfactants or other low-
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molecular weight additives, such as short chain alcohols, counterions, salts and oppositely 

charged surfactants.8 Firstly, we investigated the impact of salt on the rheology of 

surfactant solutions at a constant C8P4E1 concentration of 10 wt%.  

Flow curves were fitted to the Carreau-Yasuda model, 

 η(𝛾̇) = η∞ + (η0 − η∞)[1 + (𝜆𝛾̇)𝑎]
𝑛−1
𝑎  (5.1) 

where η0 is the zero-shear-rate viscosity and η∞ the infinite-shear rate viscosity. λ is the 

relaxation time, i.e., the reciprocal of critical shear rate γ𝑐̇. For 𝛾̇ <  λ−1, the Carreau–

Yasuda fluid exhibits, essentially, a Newtonian behavior with the viscosity η0, while for 

higher shear rates its viscosity drops to η∞ < η0. The Carreau– Yasuda model contains 

two constants: the power-law index n < 1 that characterizes the degree of shear-thinning 

of the model and the constant a that sets the size and curvature of the crossover region 

between the Newtonian and shear-thinning behavior. 

As can be seen in Figure 5.1.a, at salinity of 7.5 wt%, C8P4E1 solution behaves like 

Newtonian fluid; viscosity is 0.009 Pa.s independent of the shear rate. With 10 wt% and 

12.5 wt% salt, C8P4E1 solutions exhibited rise in viscosity with reducing of shear rate 

when 100 s-1 > 𝛾̇ > 0.1 s-1, but maximum viscosities only around 0.1 Pa.s at 𝛾̇ < 0.1 s-1 

suggesting the absence of entangled wormlike micelles; for 𝛾̇ > 100 s-1, viscosity leveled 

off again at 0.009 Pa.s. At higher salt concentration of 15 wt%, the zero-shear viscosity 

η0 (determined by Carreau-Yasuda model) reached 480 Pa.s, almost five orders of 

magnitude higher than that of the 7.5 wt% scenario, undoubtedly manifested the change 

in the microstructure of the C8P4E1 solution. Above a critical shear rate γ𝑐̇ of 0.001 s-1, 

the rheological behavior then becomes shear-thinning, as a consequence of alignment of 

the wormlike chains in the shear flow.12 
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At no or low salt condition, electrostatic repulsive force between identically charged 

surfactant head groups stop them from approaching each other too closely at the 

micelle/water interface. As a result, the micelle maintained a relatively rigid 

configuration, e.g., spherical packing structure. The micelle geometry can be estimated 

by critical packing parameter, CP, which is defined as v/(a𝑠l𝑐),13 where v is the volume 

of the lipophilic chain having maximum effective length lc, and as is the effective area per 

molecule at the surfactant–water interface. For CP < 1/3, spherical aggregates are 

expected; for 1/3 < CP < 1/2, surfactants would assemble into rodlike (or wormlike) 

micelles; whereas for CP > 1/2, lamellar structures should form spontaneously. PO groups 

reside between hydrophobic tail and hydrophilic head group of C8–(PO)4–(EO)1–SO4Na 

molecule; the insertion of such functional groups led to a remarkably bulkier effective 

head area. For instance, head area of surfactant C12–EO–SO4Na is reported as 0.44 nm2 

in 0.1 M (0.58 wt%) NaCl solution,14 while from Gibbs adsorption isotherm (Figure D1 

in Appendix D), effective head area of C8–(PO)4–(EO)1–SO4Na was determined as 1.39 

nm2 in deionized water, and 0.68 nm2 in 5 wt% NaCl solution, undoubtedly manifesting 

the contribution from PO groups. Compare PO and EO, the former one behaves more 

lipophilic,10 attributed more to the tail rather than the surfactant head. The total number 

of carbon atoms in the tail chain is 20 (C8-(PO)4). There are only 4 oxygen atoms in the 

tail (compared to 20 carbon atoms), therefore in terms of tail geometry, we can safely 

ignore the impact of oxygen atoms. Tail volume is then approximated by v =  27.4 +

 26.9n Ȧ3, and tail length by l𝑐 ≤  1.5 + 1.265n Ȧ,14 where n is the number of carbon 

atoms of the chain embedded in the micellar core, i.e., 20 in C8P4E1. Calculated result is 

summarized in Table 5.1. 
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Table 5.1. C8P4E1 head area and critical packing parameter at different NaCl 

concentrations 

NaCl, wt% as, nm2 CP 

0 1.392 0.15 

5 0.681 0.31 

10 0.531 0.39 

15 0.479 0.44 

 

CP of C8P4E1 falls into the spherical micelle region at salt concentration ≤ 5 wt%. While 

with increase of additional electrolytes to 10 wt%, electrostatic repulsion was largely 

screened due to compression of electrical double layer. A consequent smaller head area 

thus led to a larger packing parameter, and rodlike micelle formed in this region. While 

maximum solution viscosity was only 0.1 Pa.s at 10 wt%, as observed in Figure 5.1.a, 

which indicates that rodlike micelles were not able to entangle into a transient network 

due to unfavorable length growth. With further increase of salt to 15 wt%, micelles then 

grew into ‘polymer-like’ elongated and flexible aggregates, namely wormlike micelles. 

In this region, the spontaneous curvature of the end caps is higher than the curvature along 

the cylindrical body, such length growth is favored for the system to minimize the excess 

free energy by reducing the number of end caps.1 

Evolution of microstructure in the solution was also supported by the change of storage 

modulus (G’) and loss modulus (G’’) in oscillatory frequency measurement. As shown in 

Figure 5.1.c, liquid-like behavior (G′ < G′′) was observed at salt concentration of 10 wt%; 

with increase of salt level to 12.5 wt%, C8P4E1 solution shows liquid like behavior in the 

low-frequency region ( < 0.1 rad/s), whereas solid-like behavior (G′ > G′′) in the high-

frequency region ( > 0.1 rad/s); with further increase salt to 15 wt%, solid-like behavior 

was dominant for the whole range of frequency measured. Besides, G’ at 15 wt% salt 



121 

shows weak dependence on frequency, only slightly changing from 2.5 Pa to 7.2 Pa across 

three decades, further confirmed the buildup of microstructure.  

At constant salt concentration of 15 wt%, effect of C8P4E1 concentration was further 

investigated. As shown in Figure 5.1.b, Newtonian behavior was observed with a 

viscosity of 0.005 Pa.s at low C8P4E1 concentration of 2 wt%. At C8P4E1 ≥ 4 wt%, shear 

viscosities exhibited three sections, a high plateau in low shear rate region (𝛾̇ < 0.005 s-

1), a shear thinning behavior at intermediate shear rate (200 s-1 > 𝛾̇ > 0.005 s-1), and a 

second low viscosity plateau at 𝛾̇ > 200 s-1. The zero-shear viscosity is summarized in 

Table 5.2. With increase in C8P4E1 concentration, a rise in zero-shear viscosity reflected 

the one-dimensional micellar growth. Figure 5.1.d depicts the variation of G′ and G′′ as a 

function of shear frequency. Solid-like behavior (G′ > G′′) was observed for C8P4E1 

concentrations between 4-10 wt% in the entire frequency measured.  

Table 5.2. Zero-shear viscosity of C8P4E1 solution at 15 wt% salinity 

C8P4E1 

concentration 
η0 

wt % Pa.s 

2 0.005 

4 4.5 

6 52 

8 320 

10 480 

 

According to Cates model,15 stress relaxation in the entangled wormlike micellar 

solutions is governed by two main processes, 1) reptation, i.e., reptilelike motion of the 

micelle along a tube, and 2) reversible chain scission, i.e., micelle breaking and 

recombination through exchange of monomers with other micelles. The relaxation time 

thus depends on two characteristic time parameters, reptation time τrep and breaking time 
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τbr. For a sufficiently entangled system, where reptation is much slower than breaking (τbr 

≪ τrep), also known as fast breaking limit, several scission and recombination events take 

place within the reptation time scale. The viscoelastic behavior of such system follows 

the Maxwell model of viscoelastic fluids with a single relaxation time, τR. For a typical 

Maxwellian viscoelastic fluid, G’’ is symmetric near its peak and G’ crosses G’’ at this 

peak. The reciprocal of the crossover frequency is τR, which is given mathematically by 

τR = (τbrτrep)
1/2. 

However, in Figure 5.1.c and d, it is evident that G’ and G’’ responses do not follow that 

of a Maxwell fluid, i.e., the sample does not have a single relaxation time, but instead has 

a spectrum of relaxation times.16 Besides, according to scaling law,15 dependence of 

viscosity on surfactant concentration in fast breaking regime obeys η0~𝐶3.7. While take 

the zero-shear viscosity in Figure 5.1.b as an example, the dependence obeys η0~𝐶5.4, 

which is more consistent with scaling parameter for “unbreakable” regime, that η0~𝐶5.7. 

The “unbreakable” regime, namely, reptation occurs fast enough, so that the micelles do 

not break and recombine many times during τrep. Therefore, reptation is the principal 

mechanism of stress relaxation. Since reptation time scales with micellar length, τrep ~ L3, 

low τrep indicates insufficient contour length of worms. 

5.3.2 Microemulsion phase behavior 

A microemulsion is a thermodynamically stable dispersion of oil-in-water (Winsor I) or 

water-in-oil (Winsor II), in contrast to a regular or macroemulsion, which is a kinetically 

stabilized, non-equilibrium dispersion. The Winsor III microemulsion contains roughly 

equal volumes of oil and water, where a bilayer or planar microstructure is assumed. The 

semi-empirical model, hydrophilic-lipophilic deviation (HLD), correlates the effect of 



123 

formulation variables such as surfactant type, oil type, temperature and added electrolyte 

on formation of a Winsor III microemulsion. Negative, zero, or positive HLD values 

suggest the formation of Winsor Type I, Type III or Type II microemulsions, respectively. 

10, 17, 18 

For ionic surfactants, the HLD equation is 

 𝐻𝐿𝐷 = ln(𝑆) − 𝑘 ∙ 𝐸𝐴𝐶𝑁 + 𝐶𝑐 − 𝑓(𝐴) − 𝛼𝑇Δ(𝑇) (5.2) 

where 𝑆 is the salinity of the system in grams of electrolyte per 100 ml, 𝐸𝐴𝐶𝑁 is the 

equivalent alkane carbon number of the oil phase, 𝑘 is an empirical constant, and 𝐶𝑐 is a 

constant characterizing the hydrophilicity/lipophilicity of the surfactant. Values of 𝑘 and 

𝐶𝑐  for C8P4E1 are previously reported as 0.053, and -2.47, respectively.18 𝑓(𝐴)  is a 

function of added alcohol, 𝛼𝑇  is an empirical constant, and Δ(𝑇) is the temperature 

deviation from a reference temperature of 25 °C. At our experimental condition, 25 oC, 

without addition of alcohol, the HLD equation can be simplified as,  

 𝐻𝐿𝐷 =  ln(𝑆) − 𝑘 ∙ 𝐸𝐴𝐶𝑁 + 𝐶𝑐 (5.3) 

Optimum salinity 𝑆∗, is the salt level where by definition 𝐻𝐿𝐷 = 0 and an optimum Type 

III microemulsion (𝑉𝑜 = 𝑉𝑤) is realized. 𝑉𝑜 is the volume of oil in the microemulsion and 

𝑉𝑤 is the volume of water. Solubilization parameter is defined as the maximum amount 

of oil (water) solubilized in the microemulsion per unit amount of surfactant, SPo = Voil 

/ mS (SPw = Vwater / mS).  

Salinity scan was carried out for 2 wt% C8P4E1 solutions with different oils and 

electrolytes. Figure 5.2 shows representative Winsor III microemulsions of C8P4E1 and 

oil Isopar at different NaCl levels. As can be seen, translucent middle phase 



124 

microemulsions are in equilibrium with clear excess oil and water phases. Optimum 

salinity S*, of C8P4E1/Isopar/NaCl system was determined by interfacial tension 

measurement. For instance, in Figure 5.3, a minimum interfacial tension of 0.003 mN/m 

was obtained between excess oil and water at 19.0 wt% salinity, in line with identical 

solubilization parameters of oil and water in microemulsion phase. Optimum salinity of 

C8P4E1/NaCl solutions with different paraffinic oil or C8P4E1/Isopar systems with various 

type of electrolytes are summarized in Table 5.3. 

 

Figure 5.2. Winsor III microemulsion of 2 wt% C8P4E1/Isopar at NaCl 

concentration from 18.4 - 19.9 wt% 
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Figure 5.3. Solubilization parameter and interfacial tension between excess oil and 

water phases for C8P4E1/Isopar/NaCl formulation. Optimum salinity is 19.0 wt% 

Table 5.3. Optimum salinity (S*)  

C8P4E1/NaCl C8P4E1/Isopar 

Oil EACN S* (wt%) Electrolyte S* (wt%) 

Octane 8 16.3 NaCl 19.0 

Decane 10 18.4 KCl 17.7 

Dodecane 12 19.3 CaCl2 20.0 

Isopar 11.4* 19 MgCl2 21.7 

*EACN of Isopar: calculated based on HLD equation 

5.3.3 Rheology of C8P4E1 surfactant solution with oil 

It is interesting to note, vortex mixing 2 wt% C8P4E1 saline solution with a fraction of oil, 

which formed Winsor III microemulsion at 1:1 volume ratio, can promote a highly 

viscous solution as shown in Figure 5.4. The homogeneous soft-gel like solution is 

apparently different from common microemulsion systems, which typically have 

viscosity ranging from few cP to tens of cP.19 The viscous solution could be formed with 

oil of wide volume fraction and at different NaCl concentrations, but only within the 

Winsor III range. Rheology measurements were carried out to further understand these 

viscous formulations. 

 

Figure 5.4. Viscous emulsion formed by 3 vol% of Isopar with 2 wt% C8P4E1 

solution at 19 wt% NaCl.  

As seen in Figure 5.5.a, oil-free C8P4E1 solution (2 wt%) exhibited a typical Newtonian 

fluid behavior with viscosity of 0.005 Pa.s. Addition of oil Isopar has dramatic 
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enhancement in viscosity of the C8P4E1 solutions. As mere as 3 vol% Isopar added could 

induce a highly viscous network and performance. The viscosity approaches a plateau at 

low shear rate; zero-shear viscosity of 2373 Pa.s is obtained using the Carreau-Yasuda 

model. The resulted C8P4E1 solution behaved shear thinning above a critical shear rate 

around 0.001 s-1. The viscosity curve seems plateau at shear rate above 100 s-1 but a small 

leap was also seen for some cases before the onset of second plateau. The reason of the 

viscosity disturbance is believed due to shear banding. Shear banding is a transition 

between a homogeneous and a non-homogeneous state of flow, the latter being 

characterized by a “ separation”of the fluid into macroscopic regions (bands) of 

different shear rates.20, 21 Shear banding transition has been widely observed for wormlike 

micellar solutions, which is associated with a plateau in the stress versus shear rate curve, 

as seen in Figure D2 (Appendix D). With increasing solubilized oil volume in the C8P4E1 

solution, a slow decrease on the steady shear viscosity was seen. Nevertheless, the zero-

shear viscosity (ηo) of the oil-induced wormlike micellar solutions has increased at least 

4 orders of magnitude (260 Pa.s in 24 vol% oil) compared to the oil-free   C8P4E1 solution. 
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Figure 5.5. Steady shear viscosity as a function of shear rate for (a) 2 wt% C8P4E1 

solution with various volume of Isopar at optimum salinity of 19 wt% salt, (b) 2 wt% 

C8P4E1 solution with 6 vol% of Isopar at different salinity. Carreau-Yasuda model 

fit only show in 24 vol% Isopar and 18.4 wt% salt scenarios to present data with 

clarity. Variation of storage modulus G’ (filled symbols) and loss modulus G’’ (open 

symbols) as a function of oscillatory shear frequency for (c and d) solutions of 2 wt% 

C8P4E1 at 19 wt% salt with various volume of Isopar, (e and f) solutions of 2 wt% 

C8P4E1 with 6 vol% of Isopar at different salt concentration. 

Figure 5.5.b shows the influence of the salinity change on the viscosity of oil solubilized 

C8P4E1 solutions (6 vol% oil). It should be note that all the salinities presented in Figure 

5.5.b are still within the Winsor III microemulsion range. Three segments were observed, 

a viscosity plateau at low shear rate; shear thinning behavior at intermediate shear rate; 

and a second viscosity plateau at high shear rate. The viscosity behavior is similar to a 

typical shear viscosity curve of a polymer melt, as polymers undergoes entanglement, 
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disentanglement, and eventually orientate along the flow direction with increase of shear 

rate.22 With salinity increase from 18.4 to 19.6 wt%, the zero-shear viscosity goes up from 

527 to 2737 Pa.s. While at 19.9 wt% salinity, viscosity has slightly dropped to 2509 Pa.s. 

Figure 5.5.c, d exhibit the variation of G′ and G′′ as a function of shear frequency for 

C8P4E1 solutions with oil concentration between 3 vol% and 24 vol%. G’ exhibited clear 

plateaus among all the scenarios tested, while G’’ showed a funnel shape with minimum 

between 1 rad/s and 10 rad/s. For instance, in C8P4E1 solution with 3 vol% oil, plateau 

modulus, G0, was 20 Pa, with Gmin
′′  of 0.36 Pa occurred at 1.58 rad/s. No cross-over point 

for G’ and G’’ was seen in the frequency range investigated, i.e., 0.01-100 rad/s. Solution 

with 4 vol% oil behaves as stiff as the solution with 3 vol% oil, with same plateau G0 

recorded at 20 Pa. A decrease in G0 was seen with increase of solubilized oil concentration 

> 4 vol% into the C8P4E1 solution. Nevertheless, solid-like behaviors (G′ > G′′) were 

observed for all oil concentrations examined. The rather high viscosities (>200 Pa.s), and 

distinct plateaus of G’ indicated the entangled networks of wormlike micelles. Figure 

5.5.e, f exhibit the variation of dynamic shear moduli at various salinity levels. Similarly, 

solid-like behaviors (G′ > G′′) were observed for all salt concentrations examined without 

a cross-over point between 0.01-100 rad/s. With rise in the salt concentration from 18.4 

to 19.9 wt%, a growth in G0 is observed from 7.0 to 25.7 Pa.  

The dominance of G′ over G′′ implied unique elasticity of oil-solubilized C8P4E1 

solutions. While contrary to a typical elastic gel system, which in essence does not relax, 

i.e., its relaxation time tR (and in turn, its zero-shear viscosity ηo) is infinite,16 the authors 

believe the relaxation time of oil solubilized C8P4E1 solution should be a finite, yet quite 

high value. In the rheology measurement, oil solubilized solution did not show a yield 
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stress, which is a characteristic of typical gels and the reason for their infinite viscosity at 

stagnant situation. Instead, a finite zero-shear viscosity was recorded. Also observing the 

trend of G’ and G’’ in the oscillatory graph, G’’ is believed to rise with further reduction 

in shear frequency, and eventually give rise to a cross between G’ and G’’ at frequency 

< 0.01 rad/s. In turn, an extremely high (> 100s) rather than infinite relaxation time is 

expected for such gel-like solutions.  

As suggested by Dreiss, the inverse of the critical shear rate γc gives an estimate of the 

longest micellar structural relaxation time τR.1 In oil solubilized C8P4E1 solution, the shear 

thinning did not appear until shear rate around 4 - 6 ×10-4 s-1, which in turn gives τR 

around 2000 s, obviously exceeding the range of measurements; in the oil-free solution, 

γc is observed around 1-2 ×10-3 s-1, resulting in τR around 500 - 1000 s. In comparison, a 

typical relaxation time has been reported around 0.1-10 s,2, 4 of wormlike micellar 

solution such as sodium laury ether sulfate (SLES), and potassium oleate. 

For typical wormlike micellar solutions conforming to Maxwell model, e.g., 

cetylpyridinium chloride, and hexadecyltrimethylammonium bromide (CTAB), breaking 

time τbr has been measured around 0.01-0.1s.23, 24 τbr > 10 s was reported for highly 

viscoelastic (gel-like) wormlike micellar solution, typically formed with surfactant 

acquiring an overall tail length of C22 (erucyl tail) or longer.25 Rheological properties of 

erucyl tail surfactant has been previously investigated with erucyl bis(hydroxyethyl) 

methylammonium chloride (EHAC), erucyl dimethyl amidopropyl betaine (EDAB), and 

3-(-Nerucamidopropyl-N,N-dimethyl ammonium) propane sulfonate (EDAS).25-27 It is 

common that G’ shows a plateau extending up to ω ~ 0.01 rad/s at the low end, and G’ > 

G’’ at entire frequency range by a factor of 10 or more. The long C22 tail was believed 
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to increase hydrophobicity of surfactant dramatically, so that it is unfavorable for C22 

surfactant to diffuse through water, either out of a micelle or into another one, therefore 

leading to several orders of magnitude higher τbr. The extended tail of C8P4E1 has in total 

20 carbon atoms, though it is smaller than a C22 tail, the breaking of C8P4E1 micelles 

would be a relatively unfavorable process compared to shorter alkyl chain wormlike 

micelle, e.g., CTAB, thus we can safely assume a τbr = 10 s for C8P4E1, similar as erucyl 

tail surfactant.  

Reptation time τrep of entangled worms have been estimated from 103 to 105 s.16, 25 We 

assume τrep of 104 s for C8P4E1, and according to τR = (τbrτrep)
1/2 in Maxwell model, τR is 

therefore calculated around 316 s. This calculated value is close to the τR of EDAB 

observed in dynamic rheological test, around 200-300 s.25 Compared to a typical 

relaxation time of 10 s encountered in wormlike micellar solution, the high relaxation 

time of EDAB was attributed to a rather long contour length and consequent long 

reptation time (as τrep ~ L3), as well as a larger breaking time.16  

Study indicated EDAB micellar solutions are, however, extremely oleo-responsive;28 as 

little as 0.1% toluene could result in a significant disruption of the network and a decrease 

in zero-shear viscosity of around 100-fold. Effect of alkane was inspected for wormlike 

micellar solution of EHAC. Addition of hexane above 0.6 wt% (70 mM) was able to 

disrupt the plateau modulus, indicating the breaking of the wormlike structure.29 

Compare 3 vol% oil solubilized C8P4E1 solution and oil-free solution, higher zero-shear 

viscosity (2373 Pa.s vs. 0.005 Pa.s) and plateau modulus G0 (20 Pa) unquestionably 

indicates that solubilized oil induces the growth of wormlike micelle. The primary 

composition of Isoapr L is essentially a synthetic isoparaffinic hydrocarbon, which 
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contains very low levels of aromatic composition. The equivalent alkane carbon number 

(EACN) of Isoapr L was determined about 11.4, in other words, it behaves approximate 

hendecane and dodecane. As opposed to typical alkane oils, which were reportedly 

solubilized in the core of surfactants micelles thus to shorten the wormlike micelle, the 

authors believe Isopar oil may be solubilized at the spacer layer where PO groups reside. 

Presence of POs provide a smooth transition zone between the extremely hydrophilic 

sulfate headgroup and extremely lipophilic alkyl tail in the interface.  

In the Winsor III regime, the surfactant has approximately equal affinity to both water 

and oil. As seen in Figure 5.3, 1:1 ratio of oil and water were solubilized by C8P4E1 at 

optimum salinity therefore lead to a planar (bilayer) structure. Our hypothesis is that, in 

the oil solubilized wormlike micellar formulation, C8P4E1 micelle may incorporate 

insufficient oil into the core, thus solubilized oil was not able to swell the micelle core, 

and lead to a planar structure, i.e., reduce curvature to 0. Instead, oil probably bond to the 

spacer layer where PO groups reside. Incorporating of oil into PO groups reveals two-

fold impacts, first, fully extend the length of PO groups thus enlarge the tail length; 

second, truncate the cross-section area of head group, because agglomerated PO groups 

would otherwise contribute to a bulkier head group, as seen in Gibbs adsorption 

calculation. Since increase in tail length and decrease in head area would oppose each 

other in the denominator term in critical packing parameter, 𝐶𝑃 = 𝑣/(𝑎𝑠𝑙𝑐), a net effect 

of these two may have trivial change on packing factor, which is approximate to that of 

oil-free micelles between 1/3 to 1/2.  
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On the other hand, the change in formation energy of end caps can provide an alternative 

to evaluate the micelle evolution. As suggested by May and Ben-Shaul,30 the free energy 

per surfactant can be expressed by, 

 𝑓 = 𝛾𝑎 (1 −
𝑎0

𝑎
)
2

+ 𝑓𝑐 (5.4) 

where γ  is the effective surface tension between the hydrophobic core and the 

surrounding solution, which is often approximated by the water-alkane surface tension 

γ ≈ 0.12 𝑘𝐵𝑇/𝐴2̇ ; a is the surface area per surfactant molecule; 𝑎0  is the optimum 

headgroup area which resulted in a minimum packing free energy;13 and 𝑓𝑐 is the chain 

contribution to the molecular packing free energy, which is a constant, independent of the 

aggregation geometry according to the convention that hydrophobic core of amphiphilic 

aggregates is liquidlike. 

For a semi-spherical end cap, 𝑎𝑠𝑝ℎ = 3v/l𝑐, the number of surfactant molecules in one 

end cap can be approximated by, 

 𝑁 =
2𝜋𝑙𝑐

2

𝑎𝑠𝑝ℎ
 (5.5) 

The excess energy per molecule in the end cap is suggested by Shibaev,7  

 Δ𝑓 = 𝑓𝑠𝑝ℎ − 𝑓𝑐𝑦𝑙 ≈ 𝛾𝑎𝑠𝑝ℎ (1 −
𝑎0

𝑎𝑠𝑝ℎ
)

2

 (5.6) 

Then the energy cost Ec of a single end cap (half of scission energy) is expressed as, 

 𝐸𝑐 = 𝑁Δ𝑓 ≈ 2𝜋𝛾𝑙𝑐
2 (1 −

𝑎0

𝑎𝑠𝑝ℎ
)

2

 (5.7) 

We assume here, solubilizing small volume of oil into the PO groups only extends the 

length of PO groups therefore length of the tail but does not change the volume of the 
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hydrophobic tail, in other words, solubilized oil takes the empty space previously 

inaccessible to alkyl chain due to steric hindrance resulted from bulk PO groups, i.e., 𝑣 =

𝑎𝑠𝑝ℎ𝑙𝑐

3
= 𝑐𝑜𝑛𝑠𝑡. Above equation is therefore rewritten as, 

 𝐸𝑐 ≈ 2𝜋𝛾𝑙𝑐
2 (1 −

𝑎0𝑙𝑐
3𝑣

)
2

 (5.8) 

In forming spherical micelle in the end cap, 𝑎0 satisfies the condition, 𝑎0 > 3𝑣/𝑙𝑐; in 

turn, 𝑙𝑐 > 3𝑣/𝑎0. Differentiate above equation, 

 𝑑𝐸𝑐/𝑑𝑙𝑐 = 4𝜋𝛾𝑙𝑐(1 −
𝑎0𝑙𝑐
3𝑣

)(1 −
2𝑎0𝑙𝑐
3𝑣

) (5.9) 

Obviously, when 𝑙𝑐 > 3𝑣/𝑎0, we have, 

 {
1 −

𝑎0𝑙𝑐
3𝑣

< 0

1 −
2𝑎0𝑙𝑐
3𝑣

< 0

 (5.10) 

Thus, 𝑑𝐸𝑐/𝑑𝑙𝑐 > 0 , indicating that 𝐸𝑐  is monotonically rising with increase in 𝑙𝑐 . 

According to mean-field theory,15 the average contour length L̅ is related to surfactant 

volume fraction C, end cap energy 𝐸𝑐, as well as temperature T by, 

 L̅ ~ 𝐶0.5𝑒𝑥𝑝(𝐸𝑐/𝑘𝐵𝑇) (5.11) 

Obviously, higher end cap energy would lead to a longer contour length. In other words, 

solubilizing even smaller volume of oil in PO groups, would effectively enlarge the length 

of surfactant tail, truncate the headgroup area, and lead to a greater end cap excess energy, 

thus growth of wormlike micelle is favored. 

It is necessary to iterate here, above estimation of 𝐸𝑐 is only viable for solubilizing small 

volume of oil. With larger volume of solubilized oil, however, a hydrocarbon core (sphere 

droplet) would form inside the micelle and lead to a swelling end cap. The calculation of 
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𝐸𝑐 of a swelling end cap can be found elsewhere.7 In short, swelling of end cap would 

decrease interfacial curvature of micelles and lead to the reduction of the scission energy 

2𝐸𝑐, therefore growth of wormlike micelle would be restrained.  

 

Figure 5.6. Fluorescence image of oil solubilized wormlike micellar solution of 2 wt% 

C8P4E1 with 4 vol% Isopar at 19 wt% salinity. Isopar was dyed by Nile red, as 

illustrated by magenta color in the image. Giant oil droplets are seen with size 

ranging from 2-4 m. 

Figure 5.6 is a fluorescence image obtained from confocal microscopy for 2 wt% C8P4E1 

with 4 vol% Isopar at 19 wt% salinity. Isopar was dyed by Nile Red as indicated by the 

magenta color in the image. It is needed to be note, resolution of confocal microscopy is 

limited around 100 nm scales, thus it is unable to differentiate the wormlike structure of 

the sample. Nevertheless, it is effective to visualize the giant oil droplets may evolve in 

the solution. Some oil droplets are seen sparsely distributed in Figure 5.6, with size 

ranging from 2-4 m. The presence of oil droplets indicates that reduced end cap energy 

(due to incorporating oil into the core) eventually lead to giant oil in water dispersion, 

which obviously impeded the rise of viscosity, also may be a probable reason for the shear 

banding observed in steady shear viscosity. Fu et al.31 observed that large oil droplets 
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embedded in the three-dimensional droplet network leading to apparent viscoelasticity 

enhancement, when blend 10 vol% tetradecyl trimethyl ammonium laurate solution with 

90 vol% of  paraffin oil at intermediate salt concentration. Obviously in our study, the 

volume of introduced oil was too low to logjam a densely packed three-dimensional 

network.  

As mentioned previously, the wormlike C8P4E1 solution was only induced by solubilized 

oil in Winsor III regime. What does this indicate? In the system other than Winsor III 

microemulsion, surfactant molecule has unbalanced affinity between oil and water phase. 

For instance, in Winsor I region, surfactant has stronger water-surfactant interaction than 

oil-surfactant interaction. Water molecules hydrated to the head groups (-EO-SO4Na) are 

sufficient to maintain a rigid micellar interface with a positive curvature. On the other 

hand, oil-surfactant interaction is relatively weaker. PO groups therefore behaves less 

lipophilic compared to that in Winsor III region, and agglomerated POs would assume 

rather than extended structure. Instead of contributing to an enlarged tail, solubilized oil 

would be directly incorporated into micelle core, thus growing of wormlike micelle is not 

anticipated. From dynamic light scattering (Figure D3 in Appendix D), hydrodynamic 

diameter of oil swollen micelle was determined around 30-50 nm in Winsor I 

microemulsion, (octane solubilized by 2 wt% C8P4E1 at 13.3-14.4 wt% NaCl), which is 

obviously larger than twice of fully extended surfactant length (approximate 3 nm) of 

C8P4E1 molecule assuming a tail to tail spherical micelle.  

In Figure 5.5.c-f, it is evident, plateau modulus 𝐺0 decreases with increase in solubilized 

oil volume, while increases with rise in the salt concentration in the Winsor III region. In 
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terms of worm structure, 𝐺0 is related to the network mesh size of the entangled wormlike 

micelle ξ by, 

 𝐺0 =
𝑘𝐵𝑇

𝜉3
 (5.12) 

A rise in 𝐺0  indicates the decrease in ξ, in other words, network structure becomes 

increasingly tighter. This is consistent with the observation of zero-shear viscosity, that 

ηo reduces with rise in solubilized oil volume but increases with growth of salinity. ξ is 

related to the persistence length of the micelles, 𝑙𝑝, and the entanglement length 𝑙𝑒, the 

average distance along the micelles between two entanglement points in the micellar 

networks by, 

 𝑙𝑒 =
𝜉5/3

𝑙𝑝
2/3

 (5.13) 

The persistence length, 𝑙𝑝, typically ranges from 20 to 50 nm as determined through 

scattering techniques.1 Shibaev et al.7 observed that 𝑙𝑝  is almost independent of 

solubilized oil volume, and Oelschlaeger et al.32 stated that 𝑙𝑝 is rather independent over 

the change of ionic strength. Thus, we can safely assume 𝑙𝑝 is a constant, 30 nm, in our 

oil solubilized C8P4E1 wormlike micelles. The change in the average contour length L̅ 

relative to entanglement length 𝑙𝑒 is estimated directly from the rheological data using,15 

 
L̅  

𝑙𝑒
≈  

𝐺0

𝐺𝑚𝑖𝑛
′′  (5.14) 
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where 𝐺𝑚𝑖𝑛
′′  is the value of the loss modulus at the high frequency minimum. The ratio 

L̅  

𝑙𝑒
 defines the average number of entanglements per micelle. ξ, 𝑙𝑒, and L̅ are calculated 

based on the measured rheological data. 

 

Figure 5.7. Dependence of the network mesh size ξ, entanglement length 𝒍𝒆, and 

average contour length of micelles 𝐋̅  on a. Isopar concentration (constant salt 

concentration 19 wt%) and b. salt concentration (constant oil concentration 6 vol%) 

for 2 wt% C8P4E1 solution at 25 oC. 

As can be seen in Figure 5.7, with rise in the concentration of solubilized oil above 3 

vol%, both network mesh size ξ, and entanglement length 𝑙𝑒 increased, indicating less 

frequency for worms to get entangled. A reduction on contour length of wormlike micelle 

from 5.1 to 1.3 m is seen with oil volume growing from 3 to 24 vol%. While with rise 

in the salt concentration in the micellar solution, both network mesh size ξ, and 

entanglement length 𝑙𝑒  decreased, which means the network structure becomes 

increasingly stiffer. The change in contour length was less obvious, slightly fluctuating 

within 4.6 and 3.1 m. It is needed to note, the contour length of C8P4E1 solution was 

estimated as high as 5 m, which is around an order of magnitude higher than a typical 

value of 100-500 nm, being reported for wormlike micelles, such as sodium dodecyl 
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sulfate (SDS), SLES, and CTAB.1, 2, 32 Details of the characteristic parameters for 

wormlike micelles are summarized in Table 5.4. 

Table 5.4. Characteristic parameters obtained from rheological measurements. 

Group A varying NaCl concentration in 2 wt% C8P4E1 solution with 6 vol% Isopar; 

Group B varying concentration of Isopar in 2 wt% C8P4E1 solution with 19 wt% 

NaCl; Group C varying concentration of C8P4E1 with 6 vol% Isopar and 19 wt% 

NaCl; Group D varying cations (at respective optimum concentration) in 2 wt% 

C8P4E1 solution with 6 vol% Isopar; Group E varying oils (6 vol%) in 2 wt% 

C8P4E1 solution with NaCl at respective optimum salinity. 

Group NaCl, wt% G0, Pa η0, Pa.s G''min L/le ξ, nm le, nm L, um 

A 

18.4 7.0 527 0.28 25 84 166 4.2 

18.7 8.4 986 0.27 31 79 150 4.7 

19 14.3 1895 0.44 33 66 112 3.6 

19.3 20.7 2026 0.44 47 58 91 4.3 

19.6 21.7 2737 0.51 43 57 89 3.8 

19.9 25.7 2509 0.66 39 54 81 3.1 

  

Isopar, 

vol% G0, Pa η0, Pa.s G''min L/le ξ, nm le, nm L, um 

B 

3 20.0 2373 0.36 55.6 59 93 5.1 

4 20.8 1663 0.44 47.3 58 91 4.3 

6 14.3 1895 0.44 32.5 66 112 3.6 

10 8.0 1309 0.46 17.4 80 154 2.7 

16 3.5 532 0.24 14.6 106 244 3.6 

24 3.2 272 0.61 5.2 109 256 1.3 

  

C8P4E1, 

wt% G0, Pa η0, Pa.s G''min L/le ξ, nm le, nm L, um 

C 

1.5 11.5 1154 0.31 37 71 126 4.7 

2 14.3 1895 0.44 33 66 112 3.6 

3 24.9 3625 0.63 40 55 82 3.2 

4 19.6 4262 0.7 28 59 94 2.6 

6 22.2 3198 0.94 24 57 87 2.1 

  cation G0, Pa η0, Pa.s G''min L/le ξ, nm le, nm L, um 

D 

K+ 3.2 336 0.15 21 109 256 5.5 

Na+ 14.3 1895 0.44 33 66 112 3.6 

Ca2+ 8.8 678 0.28 31 78 146 4.6 

Mg2+ 11.5 2443 0.27 43 71 126 5.4 

  oil G0, Pa η0, Pa.s G''min L/le ξ, nm le, nm L, um 

E 

octane 5.0 420 0.24 21 94 200 4.2 

decane 12.2 2337 0.31 39 70 122 4.8 

Isopar 14.3 1895 0.44 33 66 112 3.6 

dodecane 7.8 1016 0.18 43 81 156 6.8 
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Our hypothesis that formation of wormlike micelles in oil solubilized C8P4E1 solution is 

due to the extending of PO groups at optimum Winsor III condition, in essence it is a 

characteristic of surfactant itself. External physical conditions, such as cations species 

(impact on head), and solubilized oil (impact on alkyl tail) are not the critical factors 

governing the formation of wormlike micelles, as long as the packing geometry stands, 

and oil-surfactant-water interaction is balanced (optimum Winsor III microemulsion). 

The steady shear viscosity, and dynamic shear moduli of 2 wt% C8P4E1 solution with 

constant concentration of various oils (6 vol%), namely, octane, decane, Isopar, and 

dodecane; and the effect of different cations, such as Na+, K+, Ca2+, and Mg2+, as well as 

the impact of C8P4E1 concentration on the rheological behavior are thus examined. The 

results are shown in Figure D4 (Appendix D), with critical rheological and structural 

parameters listed in Table 5.4. 

Divalent cations, Mg2+ (2.28 mol/kg) and Ca2+ (1.8 mol/kg) are more effective to create 

Winsor III microemulsions of C8P4E1 compared to monovalent cations Na+ (3.25 mol/kg) 

and K+ (2.38 mol/kg). Three segments were also observed in shear viscosity for C8P4E1 

wormlike solutions with different cations. Increase in zero-shear viscosity (both absolute 

increment as well as increase per mole of cation) was seen following K+ < Ca2+ < Na+ < 

Mg2. For K+, the viscosity is at relatively lower level compared to other three cations, 

with a zero-shear viscosity of 336 Pa.s.  Addition of Mg2+ exhibited the highest viscosity, 

leveled off at 2443 Pa.s. Cation radii follows a reverse trend, K+ (133 pm) > Ca2+ (99 pm) 

> Na+ (95 pm) > Mg2+ (65 pm). The change on viscosity is attributed to the strength of 

interaction between surfactant headgroups and metal cations, that the cation with smaller 

radius may not only be adsorbed in the interface of the micelles, but also embed around 
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the headgroups. Therefore, smaller cations will compress the area of surfactant 

headgroups to a great extent and enhance micellar growth.33 

Among the 4 species of oils, octane induced C8P4E1 wormlike solutions exhibits 

apparently lower viscosity compared to other three oils. The shear viscosity as well as the 

plateau modulus follows octane < dodecane < Isopar ≈  decane. In terms of shear 

viscosity and G’, Isopar and decane almost overlap with each other, except that Isopar 

reached a plateau in the low shear rate with a viscosity about 1895 Pa.s, whereas decane 

has not yet leveled off at the shear rate as low as 0.0001 s-1 (the zero-shear viscosity of 

decane is simply obtained by averaging last 3 data points in the low shear rate). In the 

microemulsion phase behavior (not shown), octane generates thicker middle phase 

compared to other three oil, implying stronger oil-C8P4E1 interaction. In comparison with 

other oils tested, molecular structure of octane is identical to the alkyl chain of C8P4E1. 

This will lead to a favorable interaction (miscible) between tail of C8P4E1 and octane, 

thus octane molecules are more likely to diffuse to the interior of the micelle instead of 

bonding to the POs, and less tail extension is understandable.   

Fixing the amount of solubilized oil (6 vol% Isopar) by varying the concentration of 

C8P4E1 is helpful to figure out the optimum ratio of oil/surfactant, where the highest 

viscosity and modulus may occur. As C8P4E1 concentration increase from 1.5 wt% to 3.0 

wt%, rise in both η0 and G0 manifest a stiffer network of wormlike micelles. While 

increase C8P4E1 concentration from 4 wt% to 6 wt%, both η0 and G0 show reduction. The 

optimum ratio of oil/surfactant is thus calculated around 1.3-1.7 mL/g (3.0-4.1 molecules 

of Isopar per molecule of C8P4E1), which is obviously less than the optimum 

solubilization parameter in Winsor III microemulsion, 4.8 mL/g. Again, this confirms 
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insufficient solubilized oil may only bond to POs thus give rise to the growth of wormlike 

micelles rather than swell the core. At C8P4E1 concentration < 3 wt%, a higher ratio 2.6-

3.4 mL/g indicating more oil may be solubilized into core therefore reduce the end cap 

energy and impede the build-up of viscosity and storage modulus. With 6 wt% C8P4E1, 

ratio of oil/surfactant is lower, 0.9 mL/g. In this case, oil was fully solubilized into POs 

to achieve maximum number of extended POs, i.e., maximum worms. The decrease of 

viscosity is possible due to the branching of worms at high concentration. The branches 

provide intermicellar junctions, which can effectively slide along the micellar body thus 

serve as stress-release points. The resulting multi-connected network therefore displays a 

reduced viscosity compared to entangled micelles.1, 2, 34, 35  

5.3.4 Implications in reservoir application 

Oil-induced (or oleo-resistant) viscoelastic behavior are of great importance for oilfield 

applications, such as fracking fluid, and surfactant slug in tertiary recovery. In terms of 

the fracking fluid, adopting surfactant-based viscoelastic fluid have some priorities over 

traditional polymer-based viscoelastic fluid, 1. avoid the use of crosslink breaker which 

is typically needed to degrade polymer gels; 2. ease pore blocking normally occurred in 

polymer gels due to their gigantic molecular structure; 3. the most important advantage 

of our oil-induced viscoelastic fluid, because it is reformed from Winsor III 

microemulsion, collapse of worms would improve the microscopic displacing efficiency 

due to ultralow interfacial tension between oil and water phase.  
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Figure 5.8. Proppant carrying performance of viscoelastic fluid. a. 3 pounds per 

gallon (0.36 g/mL) of ceramic proppants in 2 wt% C8P4E1 solution right after 

agitation, specific gravity of proppant in left cylinder (black) is 3.2, in right cylinder 

(gray) is 2.5, both proppants are 20/40 mesh size; b-d, 3 pounds per gallon (0.36 

g/mL) of ceramic proppants in viscoelastic fluid (2 wt% C8P4E1 with 3.0 vol% oil) 

right after agitation, after 12 hours of heating at 50 oC, and after 24 hours of heating 

at 50 oC, respectively.  

Figure 5.8 illustrated the proppant carrying performance of viscoelastic fluid. Ceramic 

proppants (3 pounds per gallon, specific gravity 2.5-3.2) settled down right after agitation 

in the oil-free C8P4E1 solution. While in the oil-induced viscoelastic fluid, proppants were 

suspended homogeneously after agitation, and good suspendability was maintained after 

24 hours of heating at 50 oC. Besides, oil-induced viscoelastic fluid could also be used in 

other areas where fine particles need to be suspended, for instance, in stabilizing and 

transporting zero valent iron (ZVI) particles in environmental remediation work. Figure 
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5.9 compared the suspendability of ZVI in both C8P4E1 solution and C8P4E1 viscoelastic 

fluid. Samples become completely black after mixing 4 grams of ZVI with 10 mL of 

dispersant solution (yielding mass concentration of ZVI 26 wt%). To facilitate 

sedimentation of particles, samples were centrifuged at 537 relative centrifugal force 

(RCF) for 10 minutes. It can be seen in Figure 5.9 b, in oil-free C8P4E1 solution (0.005 

Pa.s) ZVI precipitated at the bottom of the vial completely. While in oil-induced 

viscoelastic fluid, ZVI were well suspended after centrifugation because of high viscosity 

originated from entangled worms network. It is needed to be note, the viscoelastic fluid 

in Figure 5.8 andFigure 5.9 contains only 2 wt% C8P4E1 and 3 vol% oil. To achieve the 

best suspendability, the concentration of C8P4E1 as well as ratio between C8P4E1 and oil 

could be optimized as shown in previous section.     

 

Figure 5.9. Suspendability of zero valent iron particles (2 m) by viscoelastic fluid. 

a. samples right after vortex mixing; b, samples after 10 minutes of centrifugation 

at 537 relative centrifugal force (RCF). Left vial, 26 wt% of zero valent iron in 2 wt% 

C8P4E1 solution; right vial, 26 wt% of zero valent iron in viscoelastic fluid (2 wt% 

C8P4E1 with 3.0 vol% oil).  

As for the tertiary recovery chemical slug, the oil-induced viscoelastic fluid provides not 

only exceptional microscopic displacing efficiency but also favorable macroscopic sweep 
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efficiency, compared to typical surfactant-only slug. In this endeavor, we tested the 

potential serving of oil-induced viscoelastic fluid as tertiary recovery surfactant slug via 

laboratory sand pack experiments. Figure 5.10 compares the efficiency of viscoelastic 

fluid (2 wt% C8P4E1 with 5.6 vol% oil) versus surfactant-only slug (2 wt% C8P4E1) in 

residual oil recovery. 0.25 PV viscoelastic slug was able to recover 80% of residual oil, 

as compared to 48% of oil recovery made by the surfactant-only system without polymer 

injection. With improving both the volumetric sweep efficiency and microscopic 

displacement efficiency, viscoelastic fluid gave rise to a faster oil breakthrough and larger 

oil cut in comparison to surfactant-only slug. At 1 PV after chemical slug injected, the oil 

recovery is 77% with viscoelastic recipe vs. 10 % in surfactant-only case. The detailed 

comparison of injection scenarios with different slug size and solubilized oil 

concentrations can be found in Figure D5 (Appendix D). In general, the advantage of the 

viscoelastic formulation is a single-step process offering both the ultra-low interfacial 

tension and highly favorable rheological characteristic of the displacing agent, thus, it has 

potential in providing a better alternative over the existing surfactant/polymer or 

micellar/polymer process.  
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Figure 5.10. Residual oil recovery profile of injecting 0.25 PV oil-induced 

viscoelastic fluid versus surfactant-only slug. Oil-induced viscoelastic fluid contains 

5.6 vol% of oil, i.e., 35 vol% of oil solubilized in the middle phase microemulsion. 

Shaded area indicates the injection of chemical slug. 

5.4 Conclusion 

In this work, the rheological property of a micellar solution consisting of extended 

surfactant C8–(PO)4–(EO)1–SO4Na (C8P4E1) was extensively studied. Addition of as 

small as 3 vol% alkane into the C8P4E1 formulations (2 wt%) promotes a sudden rise in 

viscoelastic behaviors, e.g. solution viscosity jumps 5 orders of magnitude. Oscillatory-

shear (frequency sweep) measurements were performed on the viscoelastic samples and 
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solid-like behaviors (G’ > G’’) were observed in the entire frequency region (0.01-100 

rad/s). Highly viscoelastic fluids were able to be formed via varying oil volume, type of 

counterion, and counterion concentration. Contrary to common oleo-responsive 

wormlike micelles, addition of paraffinic oil into C8P4E1 solution within Type III system 

apparently give rise to a favorable longitudinal growth of wormlike micelles. Our 

hypothesis is that, incorporating oil to the spacer layer where PO groups reside can extend 

the PO groups and enlarge the tail length, thus result in an increasing end cap energy and 

promote longitudinal growth of worms. This paper, to the best of our knowledge, is the 

first work that extensively studied the rheological property of extended surfactant, also 

the first work that evidenced the phenomena of paraffinic oil-induced growth of wormlike 

micelles. The discovery of this “abnormal oleo-responsive” viscoelastic behavior is of 

great significance in practical applications, such as oilfield fracking fluids, home care 

products, cosmetics, and drug delivery agents. Last but not least, this oil-induced 

viscoelastic behavior is not unique for C8P4E1, we have observed such behavior in other 

surfactants as well. A detailed study on oil-induced wormlike micelles in respect to the 

impacts of surfactant alkyl tail length, PO size, as well as the head types, i.e., cationic, 

anionic, and nonionic surfactants, will be documented in a separate paper soon.  
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Chapter 6 Conclusions and recommendations 

Overall, this dissertation examined potential alternatives in conventional surfactant 

flooding process, via injecting nanoparticle-surfactant blends or single slug surfactant-

based viscoelastic slug to improve ultimate oil recovery.  

Chapter 2 and 3 proposed of using carbonaceous nanoparticles, e.g., multiwalled carbon 

nanotubes (MWNTs) and carbon blacks as surfactant carriers in reservoir applications. 

Competitive adsorption of surfactant on nanoparticles was seen beneficial to decrease 

adsorptive loss on porous medium at equilibrium concentration below critical micelle 

concentration (CMC). Binary anionic-nonionic surfactants mixture at a proper ratio were 

proved exceptional disperse agent for nanoparticles and their transport in porous media 

in mimic reservoir condition. Microemulsion phase behavior confirmed the spontaneous 

release of surfactants from carrier surface to oil/water interface. Nanoparticles-amended 

surfactant formulations achieved faster and higher tertiary oil recovery than surfactant-

only formulation. Chapter 4 illuminated the reversed binary micellar interactions between 

anionic surfactant alpha olefin sulfonate (AOS) and nonionic surfactant nonylphenol 

polyethylene glycol ether (NPEs) with/without the addition of electrolytes. In the absence 

of additional electrolytes, NPEs exhibited substantially higher activity in micelles than 

bulk solution; with growth of EO groups, shrinkage on the scale of synergistic interaction 

was evidenced. In contrary, with swamping amount of electrolytes, synergistic 

interactions enlarged with the rise of EO groups, and AOS activity in mixed micelles was 

found depending on both EO length and bulk mole fraction (𝛼𝐴). Chapter 5 discovered 

an oil-induced viscoelastic wormlike micellar solution of an extended surfactant. 

Contrary to typical oleo-responsive wormlike micelles, that worms break with addition 
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of oil, solubilized oil was seen able to shift the oil-free Newtonian micellar solution to an 

exceptional viscoelastic fluid. This unique formulation was reformed form Winsor III 

microemulsion, which acquired capacity in improving both the volumetric sweep 

efficiency and microscopic displacement efficiency. Residual oil recovery test proved its 

potential of serving as an alternative in surfactant flooding process. 

Advantages of nanoparticles-amended surfactant formulations as well as surfactant-based 

viscoelastic fluid over conventional surfactant slug were well demonstrated in this work. 

Here some future studies are recommended to better understand the mechanisms behind 

these advanced technologies as well as to pave the way for potential field applications. 

1. So far, stability of MWNT dispersions are largely dependent on laboratory phase 

behavior studies. A quantitative tool that describes the interaction between these 

cylindrical nanosized particles is of critical importance to predict the colloidal 

stability in aqueous media. The future work is suggested to improve the current 

mathematical model DLVO theory, by incorporating particles geometry 

consideration, i.e., cylindrical structure, thus to assist in designing a well-

dispersed colloidal system. 

2. It has been observed, that release of surfactants from nano-carrier surface may 

worsen the stability of nano-carrier, and lead to possible formation damage. Thus, 

later study is aimed to tailor the surface of carbonaceous nanoparticle by 

introducing functional groups to improve colloidal stability of nanoparticles in 

aqueous media. These groups should be able to provide stability for dispersed 

nanoparticles after surfactants are released from their surface, thus to ensure the 

transport of nanoparticles, especially in tight rock matrix.  
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3. The interfacial interaction of binary surfactant mixtures, e.g., air/water interface, 

are of great significance in designing a successful foam flooding pattern, in that 

synergistic interactions in mixed surfactants would lead to less chemical 

consumptions and project costs. Although micellar interaction between binary 

components are well studied both theoretically and experimentally, a profound 

understanding of interfacial interaction is somewhat neglected. Based on 

Rubingh’s regular solution theory, Rosen and coworkers modified this simple 

model to describe the interfacial interactions of a binary system. However, this 

modified model failed to capture the variation of interaction between NPE-AOS 

mixtures with respect to the size of EO groups (not documented in this 

dissertation). It is thus suggested to advance understanding of the mechanism of 

interfacial interactions under the impact of surfactants structure, and to develop a 

simple model in the future to assist in designing/optimizing the foam flooding 

formula.  

4. Oil-induced (oil-resistant) wormlike micellar solution has potential serving in 

reservoirs applications. The future work is recommended to comprehensively 

examine the feasibility of using oil-induced viscoelastic fluid as fracking fluids. 

Besides, it is suggested to study the impact of adding other surfactants on the 

rheological behavior of viscoelastic fluids. A synergistic system would be 

beneficial to reduce the chemical consumptions and project costs. 
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Appendix A 

Table A1. Structures of surfactants 
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Figure A1. Cumulative recovery vs. pore volumes (shaded area is dispersion 

injection period) a. Test 101(95 mg/L MWNT with 6 mM IOS, 2.4 mM 

C12(EO)3SO4Na in DI) and Test 102 (37 mg/L MWNT with 12 mM IOS, 4.8 mM 

C12(EO)3SO4Na in 5 wt% brine) in 2’’ Ottawa sand packs; b. Test 201 (75 mg/L 

MWNT with 1.25 mM NP40EO in API brine) in 1’’ Ottawa sand pack; c. Test 301 

in 1’’ Ottawa sand pack and Test 302 in 1’’ Berea sand pack (77 mg/L MWNT with 

6 mM IOS and 1.25 mM NP40EO in API brine); d. Test 303-306 in 1’’ Ottawa sand 

packs (MWNT concentration was 72, 73, 73, and 75 mg/L respectively; surfactants 

were 1 mM NP40EO with 2, 4, 6, and 8 mM C12,13(PO)8SO4Na respectively in API 

brine) 
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Appendix B 

Table B1. Hydrodynamic diameter of dispersed MWNT and CB with different 

surfactant formulations in 3 wt% brine by dynamic light scattering (DLS). 

Formulation 1. 1000 mg/L NP30EO, 2. 1000 mg/L NP30EO with 1000 mg/L AOS, 3. 

1000 mg/L NP40EO, 4. 1000 mg/L NP40EO with 1000 mg/L AOS. 

Batch   Diameter, nm Polydispersity Diameter, nm Polydispersity 

MWNT 

Formulation Initial Day 3 (50 oC) 

1 162 0.196 217 0.211 

2 229 0.214 421 0.290 

3 165 0.172 175 0.200 

4 190 0.213 254 0.251 

CB 

Formulation Initial Day 3 (60 oC) 

1 124 0.142 124 0.153 

2 124 0.110 129 0.137 

3 121 0.166 127 0.186 

4 126 0.129 128 0.108 

 

 

 

Figure B1. Viscosity of surfactant only and MWNT-surfactant formulation as a 

function of shear rate. 
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Figure B2. Tertiary oil recovery after injection of 3 PVs chemical slug (shaded area) 

in 0.1 wt% NaCl solution at 25 oC. Top, Surfactant-only NP10EO slug at 

concentration of 0.1 wt%, initial Sor was 31.9%, and cumulative oil recovery was 

27.9%; Bottom, 0.1 wt% NP10EO slug with 200 mg/L CB, initial Sor was 31.1%, 

and cumulative oil recovery was 32.1% 
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Appendix C  

 

 

Figure C1. Surface tension vs surfactant concentration at 25oC (a) individual 

surfactant in DI; (b) binary mixture of AOS and NP30EO in 0.5 M NaCl with legend 

indicating fraction of AOS. 
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Figure C2. Conductivity vs surfactant concentration at 25oC in DI. 

0

50

100

150

200

250

0

50

100

150

200

250

300

350

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

C
o

n
d

u
ct

iv
it

y
, 

u
S

/c
m

C
o

n
d

u
ct

iv
it

y
, 

u
S

/c
m

Concentration, mM

AOS AOS:NP40EO (9:1)

0

20

40

60

80

100

120

140

0

25

50

75

100

125

150

175

200

0 0.5 1 1.5 2 2.5 3

C
o

n
d

u
ct

iv
it

y
, 

u
S

/c
m

C
o

n
d

u
ct

iv
it

y
, 

u
S

/c
m

Concentration, mM

AOS:NP40EO (8:2) AOS:NP40EO (6.67:3.33)



159 

 

Figure C3. Size distribution by intensity of individual surfactant AOS, NP10EO in 

DI and 0.5 M NaCl solution. 
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Appendix D 

The surfactant head area is estimated graphically from a plot of Gibbs adsorption isotherm 

using Gibbs adsorption equation,  

Γ = −
1

2.303𝑛𝑅𝑇
(

𝜕𝛾

𝜕𝑙𝑜𝑔𝐶
)𝑇 

a𝑠 =
1021

𝑁𝐴Γ
 

where Γ is surface excess concentration in mM/m2, R, universal gas constant 8.314J/mol-

K, T temperature in K, 𝛾 surface tension in mN/m, C is surfactant concentration in mol/L, 

a𝑠 is area per molecule at the interface in nm2, and 𝑁𝐴 is Avogardo’s number. n is the 

number of species of ions that arise from dissociation of surfactant, and its value largely 

depends on electrolytes, e.g. n is 1 for monomeric surfactant in the presence of a 

swamping (elevated) amount of electrolytes; n is taken as 2 represents for monomeric 

surfactant without extra electrolytes. 

 

Figure D1. Variation of surface tension with respect to concentration of C8P4E1 

solution at different salinities. 
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Figure D2. Shear stress as a function of shear rate for 2 wt% C8P4E1 solution with 

3-6 vol% of Isopar at optimum salinity of 19 wt% salt.  

 

 

Figure D3. Dynamic light scattering hydrodynamic diameter of Winsor I 

microemulsion, octane in 2 wt% C8P4E1 solution at salt level 13.3 wt% (left), and 

14.4 wt% (right).  
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Figure D4. Steady shear viscosity as a function of shear rate for (a) 2 wt% C8P4E1 

solution with 6 vol% of Isopar and different salt at their optimum salinities (NaCl 

19.0 wt%, KCl 17.7 wt%, CaCl2 20.0 wt%, MgCl2 21.7 wt%), (c) 2 wt% C8P4E1 

solution with 6 vol% of various oil at their optimum salinities (octane 16.3 wt%, 

decane 18.4 wt%, Isopar 19.0 wt%, dodecane 19.3 wt%), (e) various concentration 

of C8P4E1 solution with 6 vol% of Isopar at 19 wt% salt. Variation of storage 

modulus G’ (filled symbols) and loss modulus G’’ (open symbols) as a function of 

oscillatory shear frequency for (b) 2 wt% C8P4E1 solution with 6 vol% of Isopar and 

different salt at their optimum salinities, (d) 2 wt% C8P4E1 solution with 6 vol% of 
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various oil at their optimum salinities, (f) various concentration of C8P4E1 solution 

with 6 vol% of Isopar at 19 wt% salt. 
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Figure D5. Impact of chemical slug size and solubilized oil concentration in 

viscoelastic fluid on residual oil recovery. Surf for 2 wt% C8P4E1 surfactant-only 

slug, and Vis for 2 wt% C8P4E1 viscoelastic fluid slug. 
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