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Abstract

Studies of human–associated microbial communities are increasingly inte-

grated into biological anthropology, allowing us to explore the role of mi-

croorganisms in aspects of human evolution, health, and disease. Despite

technological advances in the genomic characterization of microbial ecosys-

tems in both modern populations and in the past, specific challenges remain

in documenting the presence of taxa, functional potential, and interaction of

members of these dynamic ecosystems. In this dissertation, three studies

designed to address some of the challenges of metabarcoding and metage-

nomic studies of the modern human gut and ancient oral microbiome are pre-

sented. In chapter two, the eukaryotic component of the modern human gut

is assessed with a metabarcoding approach using the internal transcribed

spacer region. In chapter three, rare bacterial taxa are characterized us-

ing a joined serial filtration and metabarcoding approach. Finally, in chapter

four, the preservation of ancient DNA in archaeological dental calculus is dis-

cussed with particular attention to both the benefits of this substrate as a

reliable source of ancient DNA as well as the potential challenges associated

with DNA preservation in archaeological materials.

Dissertation Keywords: Gut microbiome, ancient DNA, dental calculus,

microeukaryotes, metabarcoding, metagenomics, Vampirovibrio, Blastocys-

tis.
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Chapter 1

Introduction

Studies of human–associated microbial communities—collectively known

as the human microbiome—using metagenomic (the sequencing of whole

genomes) and metabarcoding (profiling a community of organisms via tar-

geted amplicon sequencing) techniques have illuminated the role of microbes

in the maintenance of human health [90, 186, 24, 103, 59], the evolution

of the human immune system [82, 14, 104], as well as the potential use of

microbes as agents of global public health [109, 206, 119]. Studies of mi-

crobiome communities in modern human populations in non–industrial soci-

eties [131, 165, 34], and microbiomes sourced from archaeological remains

[182, 2, 194] document the evolution of these microecosystems and the hosts

in which they inhabit. While innovations in technologies designed to gen-

erate and analyze large biomolecular datasets have provided new ways to

characterize microbiome communities, understanding the activity and func-

tional potential of microbial organisms in these complex environments re-

mains challenging. Consider, for example, that while members of all high level

microbial lineages—both living (bacteria, archaea, eukaryota) and non–living
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(viruses)—are active in microbiome habitats, nearly all microbiome studies to

date focus exclusively on bacteria and, to a lesser extent, archaea, excluding

other ecologically important taxa. The reason for this omission is primarily

due to the relative technical difficulty of characterizing certain microbes from

genomic data, a paucity of available comparative databases, and the absence

of many of these taxa in industrialized groups, which were the focus of early

microbiome studies. The exclusion of non–bacterial microbes from studies of

human–associated microbial ecosystems is predicted to have consequences

for the interpretation of the function and composition of the total ecosystem

[9, 30]. As an example, consider that while micro– and macroeukaryotic or-

ganisms in the human gut are far outnumbered by bacterial cells, they may

serve as critical sources of microbial predation and resource competition

[71, 115, 102], not unlike large apex predators in macroecosystems [115].

Likewise, viruses, and in particular bacteriophages are abundant in the hu-

man gut and may make up much of the genomic “dark matter” [113] of which

cannot be assigned to any known organism [50]. Therefore, the interpretation

of variation in bacterial and archaeal community composition is incomplete

lacking data from the full ecosystem, including viruses and eukaryotes.

Though metagenomic and metabarcoding approaches to the study of

bacterial communities are well established in published literature, they too

are prone to specific technical biases and challenges. Metabarcoding ap-

proaches to profiling bacterial communities in microbial ecosystems typically

involve the high–throughput sequencing of one or a series of hyper–variable

regions of the 16S rRNA gene. The advantages to this approach include
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its near universality among bacteria and archaea, allowing for the design of

primers that cover a wide range of phylogenetically divergent microbes, as

well as its relatively deep taxonomic discrimination to the genus or species

level [44]. Moreover, as the 16S rRNA gene has been the gold standard

for bacterial systematics since its establishment as a phylogenetic marker by

Carl Woese and George Fox in the late 1970s [207], an abundance of data

for comparison is readily available in public genomic databases. Despite this,

it is well known that primers for variable regions of the 16S rRNA gene are not

truly universal across all possible bacterial groups and the choice of primer

set will impact the taxonomic resolution and inclusion of particular groups in

the resulting data [214]. Moreover, 16S rRNA copy number variation among

bacteria and archaea skews community representation estimates [114]. As

the number of copies of the 16S rRNA gene is inconsistent at high taxonomic

levels [189], correction for this bias is a difficult and ongoing challenge in

microbiome studies using a metabarcoding approach [114]. Even with the

full 16S rRNA gene, differentiation of bacterial organisms at low taxonomic

levels may not be feasible. As taxonomic categories (e.g., phylum, genus,

species, etc) are somewhat arbitrarily defined, the definition of standard-

ized threshold criteria for determining the taxonomic status of an organism

is complicated. Consider, for example, that although clustering reads at 97%

sequence identity is often cited to be an approximation of a “species” level

percent identity cut off for the 16S rRNA gene in many investigations of the

human microbiome [101], different levels of clustering identity have been pro-

posed [53, 129]. Studies of the 16S rRNA gene of bacterial and archaeal
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organisms have suggested that the optimal sequence similarity to differenti-

ate microbes at the species level is around 98.7% if the full gene is available

[125, 209]. Even if the full 16S rRNA gene is available, however, many closely

related, yet functionally distinct organisms cluster together at 97% sequence

identity, masking potentially important taxa or increasing the risk of false pos-

itives. In a study of full length reference sequences of the 16S rRNA gene

from clinically important bacteria it was found that many are similar to po-

tentially benign environmental taxa—meeting or exceeding the 97% identity

threshold which may lead to erroneous conclusions in microbiome studies

[197]. Thus, the determination of microbial species is better defined by mul-

tiple criteria and not the targeting of a single gene (or single gene region)

alone. While target–independent metagenomic studies are unhindered by

the primer biases inherent to metabarcoding approaches, metagenomic tech-

niques are not without similar challenges. Because metagenomic sequenc-

ing is untargeted and instead relies on the shredding of whole genomes after

which sequencing adapters are ligated, the probability of any single read de-

riving from a particular organism is heavily dependent on genome size, with

large genome organisms contributing more to the total genomic library than

those with smaller genomes [17]. While this is not an issue with the metage-

nomic sequencing of a single organism, genome size among currently known

bacteria is variable, ranging from approximately 140 kbp to 14 Mb [76] and

in communities of diverse microorganisms, extreme variation in genome size

is expected to skew community estimations in the same way that variation in

copy number of the 16S rRNA gene will with metabarcoding studies.
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Finally, while modern microbiome studies of diverse extant populations

provide insight into the evolution of human associated microbial communi-

ties, research involving preserved microbiome remains from archaeological

contexts augments these studies by directly sampling past populations. An-

cient DNA (aDNA) generated from archaeological materials is subject to its

own suite of challenges that are characteristic of the natural taphonomic

processes associated with highly degraded DNA. These include processes

that degrade the sugar–phosphate backbone and fragment the DNA, sponta-

neous chemical alterations to specific bases, and a higher risk of exogenous

contamination [81, 162, 39, 148, 77]. As authentic aDNA tends to be highly

fragmented, amplicon based studies targeting hyper–variable regions of the

16S rRNA gene are not recommended for community reconstruction [214]

and instead, metagenomic techniques to characterize ancient microbiomes

are typically used. Though the ability to generate and verify aDNA datasets

has improved, still much is needed to learn regarding the circumstances un-

der which aDNA preserves and whether there are particular organisms or ge-

nomic structures that are more or less amenable to preservation, producing

systematic taxonomic biases in data generated from archaeological sources.

This dissertation comprises three studies that use novel methodological

and analytical techniques designed to advance microbiome studies of both

modern and ancient populations and address some of the concerns raised

above. In particular, the goal of this dissertation is to outline experimental

methods to improve the taxonomic and community resolution of the mod-

ern human gut and ancient human oral microbiome. The first study: “Mi-
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croeukaryotic and dietary survey of the gut by internal transcribed spacer

metabarcoding” documents the microeukaryotic component of the gut mi-

crobiome in three human and two animal populations representative of di-

verse geographic, subsistence, and behavioral contexts by metabarcoding

sequencing of the internal transcribed spacer (ITS) region. The second study

of this dissertation: “Enrichment of non–dominant bacterial taxa in human

fecal samples through serial filtration” demonstrates the impact of cell and

genome size on bacterial community composition and introduces a poten-

tially viable method for targeting specific bacteria through the serial filtration

of human fecal samples and 16S rRNA metabarcoding. Finally, the third study

of this dissertation: “Differential preservation of endogenous human and mi-

crobial DNA in dental calculus and dentin” examines the prospect of ancient

dental calculus as a reliable source of metagenomic data for characterization

of the ancient human oral microbiome, as well as potential taxonomic biases

that may be due to natural taphonomic processes or induced during the han-

dling, preparation, or sequencing of archaeological microbiome materials.
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Chapter 2

Microeukaryotic and dietary survey of the gut by internal tran-

scribed spacer metabarcoding

2.1 Abstract

Public health initiatives, advancements in sewage and water treatment sys-

tems, and major overhauls to subsistence patterns in many parts of the world

have dramatically changed our relationships with micro– and macroeukary-

otic organisms that spend most or part of their life cycle in the human gut.

The consequence of this change on human health and the gut microbiome

is hypothesized to have had dramatic impacts on diseases common in indus-

trial societies. To understand the effects of this shifting relationship, docu-

menting the presence of microeukaryotic taxa in geographically distant hu-

man populations with diverse lifestyles is of paramount importance. By pro-

filing the microeukaryotic component of the human gut in industrialized and

non–industrialized populations, questions regarding the ancestral state of the

gut microbiome and potential interventions can be addressed. In this study,

hunter–gatherers and rural agriculturalist populations living in the first and

last regions of the world to be populated by Homo sapiens as well as indi-
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viduals living in urban–industrial settings are surveyed for microeukaryotic di-

versity and inferred diet via internal transcribed spacer (ITS) metabarcoding.

Findings indicate that non–industrial populations are more similar in terms

of microeukaryotic diversity to each other than individuals living in industrial

locales who are characterized by a stark depression of microeukaryotic di-

versity. In addition, the detection of the common protist genus Blastocystis in

all human groups documents the global rise of single–celled microeukaryotic

organisms in the human gut.

2.2 Introduction

An estimated 300 species of helminth (worm) and 100 single–celled mi-

croeukaryote (protist) parasites are known to infect humans, many of which

are the causative agents of diseases responsible for significant morbidity and

mortality worldwide [38]. Approximately 3.5 billion people are infected by at

least one microeukaryotic or helminth parasite globally, and an estimated 450

million, mostly children, are ill as a result [199]. Many parasitic eukaryotes

have expansive geographic scope and thus disproportionately contribute to

the overall burden of parasitic infections in human populations. For example,

the estimated global burden of human whipworm (Trichuris trichiura) is 429.6

to 508.0 million infected individuals while human hookworm (Ascaris lum-

bricoides) is estimated to currently infect 771.7 to 891.6 million individuals

world wide [152]. While many eukaryotic species that inhabit the vertebrate

gut are classified as parasites, others have a more controversial place in the

clinical sphere and may be better classified as commensals, symbionts, or
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opportunistic pathogens [64, 32, 20]. While public health initiatives and in-

tensive de–worming programs have dramatically reduced the prevalence of

soil–transmitted helminths in many parts of the world [43, 144], rising rates of

single–celled microeukaryotic infections including Giardia, Cryptosporidium,

Entamoeba, and Blastocystis may indicate that microeukaryotic parasites are

quickly filling this vacant ecological niche [144, 183] with unknown future con-

sequences.

Archaeological, genetic, and historical records of eukaryotic parasites

documents their antiquity and evolutionary importance to human populations

[11, 12, 69, 158, 61, 138, 38], yet the last 100 years of human history marks

a significant shift in our relationship with these organisms. The removal of

eukaryotic taxa from the human gut microbiome—defined as the totality of

commensal, mutualistic, or parasitic organisms living in the gastrointestinal

tract—is hypothesized to be an important component in the rise of atopic

diseases including food allergies, hay fever and asthma, irritable bowel syn-

drome, multiple sclerosis, lupus, and other purported “diseases of civilization”

[19, 15, 40, 184, 51, 208]. Anthropogenic forces including climate change, in-

creased urbanization, the globalization of agricultural and market goods trad-

ing, ecotourism, and political unrest continue to shift the distribution and fre-

quency of eukaryotic parasites in human and non–human populations alike

[25, 16, 203, 7, 145] which speaks to the need to rapidly identify potential par-

asitic eukaryotes and better understand their ecological significance in the gut

microbiome. Traditional methods for the detection of eukaryotes from fecal

samples include morphological identification of eggs, cysts, larvae, or adult
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specimens via simple light microscopy, yet the ability to reliably distinguish

between closely related organisms is notoriously difficult [65, 37, 29]. More-

over, morphological classification schemes for microeukaryotic species may

mask cryptic genetic diversity in otherwise visually indistinguishable organ-

isms. For example, members of the microeukaryotic genus Blastocystis are

remarkably simple morphologically speaking, resembling tiny soap bubbles

under the microscope. This morphological simplicity conceals an exceptional

genetic and clinical diversity with no fewer than 17 distinct subtypes isolated

from humans, other mammals, birds, and other animals [3, 4, 20, 32]. Con-

versely, the species status of morphologically distinct parasites is sometimes

contested [106]. Thus, morphology–independent methods for characterizing

microeukaryotic taxa in mixed microbial communities may clarify the pres-

ence and role of these organisms in the evolution of the human gut micro-

biome.

As organisms classified as eukaryotic parasites—and especially those

designated as “protists”—are not a natural phylogenetic group and instead

largely a label of convenience, choosing an appropriate genetic barcode for

their classification is challenging. Genomic studies of microeukaryotic diver-

sity in human–associated microbial ecosystems often target a single vari-

able region of the 18S rRNA gene [5, 202, 164, 141, 127] or to a lesser

extent, shotgun metagenomics [47]. While the 18S rRNA gene is highly con-

served across eukaryotes allowing the creation of near universal primers,

it has fewer hypervariable regions than its homologue in bacteria, the 16S

rRNA gene [166]. Moreover, the taxonomic resolution of the full 18S rRNA
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gene is relatively poor, generally only able to resolve to the genus level in

a limited number of taxa [168, 10]. An alternative well–described eukaryotic

barcode, the mitochondrial cytochrome oxidase complex, is ill suited to mixed

microeukaryotic systems as many lack the complex itself [201] or even mito-

chondria all together [166]. Metagenomic approaches are similarly problem-

atic as eukaryotic taxa in mixed–microbial ecosystems are often swamped

out by bacterial cell density, rendering their presence, and therefore influence

on these communities, obfuscated.

In the current study, an alternative target for the molecular characteriza-

tion of microeukaryotes in the human gastrointestinal tract, the internal tran-

scribed spacer (ITS) region which separate the eukaryotic ribosomal RNA

gene (rRNA) complex, is explored. The full eukaryotic rRNA complex con-

sists of the small subunit (SSU) 18S rRNA gene followed by internal tran-

scribed spacer one (ITS1), the 5.8S rRNA gene, internal transcribed spacer

two (ITS2) and finally the large subunit (LSU) 28S or 26S rRNA gene. The

total eukaryotic ITS region is defined as the 5.8S rRNA gene and two flanking

ITS regions [166]. Following transcription by RNA polymerase I the two ITS

regions are excised from the transcript to produce a mature ribosomal RNA

[166]. While both ITS1 and ITS2 are noncoding regions of the genome, the

ITS2 region is necessary for proper ribosome biogenesis [116], which may

account for the higher conservation of ITS2 as compared to ITS1 among eu-

karyotes, the latter of which evolves via length expansions through the incor-

poration of variable repeat units [191, 130, 187], though the higher variability

in ITS1 has been contested [190]. As a result, the ITS region is highly length
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variant across eukaryotic organisms [166]. The benefit of using the ITS re-

gion for phylogenetic studies of eukaryotic taxa includes high conservation of

the SSU, LSU, and 5.8S rRNA gene, allowing for the design of near–universal

primers as well as the loose functional constraint of the ITS1 and ITS2 regions

which allows for better taxonomic resolution even among closely related or-

ganisms [74, 83, 80]. Moreover, similar to the 16S rRNA gene in bacteria

[114], the ITS region is multicopy allowing for the detection of microeukary-

otes even if relatively few cells are present [80].

While the ITS region is recognized as an appropriate genetic barcode

for fungal organisms [89, 166] and is routinely used to characterize the “my-

cobiome” from a variety of human and environmental microbial ecosystems

[67, 48], it is rarely used to document non–fungal eukaryotic members of

microbial communities. This is in part due to the paucity of full ITS region

databases or references for non–fungal eukaryotes [168], especially consid-

ering the abundance of well–curated databases for other eukaryotic barcode

sequences like the 18S rRNA gene [153, 73]. Nevertheless, the ITS region

is argued to have better taxonomic resolution than other amplicon based de-

tection methods for microeukaryotes [168, 166] and due to its fundamental

role in the biogenesis of the mature eukaryotic ribosome, the region is con-

served across all eukaryotes, linking taxa as distant as microscopic fungi

and multicellular vertebrates [168]. Previous research targeting one or both

ITS regions have been used to document the phylogenetic diversity of a

variety of eukaryotes, revealing cryptic species that are otherwise morpho-

logically identical [74, 56], as well as tracing the anthropogenic dispersal of
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microeukaryotic parasites [203]. Due to its high conservation and relatively

sharp taxonomic resolution, the utility of ITS region metabarcoding in micro-

biome environments merits investigation.

In the current study, ITS1 and ITS2 were sequenced from 18 individu-

als spanning a geographic distance that encompasses the cradle of human-

ity through to the last subarctic landmass colonized by human populations.

Fecal samples collected from six rural agriculturalists living in the Kibale Na-

tional Park in Uganda, six hunter–gatherers from the Matses tribe living in the

Peruvian Amazon, and four urban–industrialized individuals living in Norman,

Oklahoma, USA as well as a single bovid and a single wild Ugandan Red

Colobus monkey serving as non–human controls were sequenced using a

metabarcoding approach to: (1) document the utility of the ITS1 and ITS2 re-

gions in characterizing a range of micro– and macroeukaryotic organisms in

human and non–human fecal samples, (2) demonstrate the predictive value

of microeukaryotic taxa for subsistence strategy, lifestyle, or environment and,

(3) evaluate the applicability of ITS metabarcoding for dietary reconstruction

from fecal samples. The results of this study suggest that while the ITS region

as a whole may provide high resolution taxonomic surveys of both dietary and

microeukaryotic organisms, the ITS1 and ITS2 region document overlapping,

but different taxonomic profiles. Additionally, we find that non–industrial pop-

ulations generally have a more diverse suite of microeukaryotes and have

more microeukaryotic taxa in common amongst themselves than between

industrialized and non–industrialized groups, the former of which has a rel-

atively depressed microeukaryotic diversity. Finally, results from this study
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demonstrate that microeukaryotes assigned to the genus Blastocystis are a

highly genetically diverse and cosmopolitan group, detected in all three hu-

man populations and the single bovid group. The results of this study add

to the growing literature of the role of microeukaryotic organisms in the hu-

man gut microbiome by providing an alternative method for their detection as

well as documentation that, like studies of bacterial diversity in non–industrial

human populations [131, 34, 182, 210], microeukaryotic diversity is similarly

linked to lifestyle with a sharply decreased diversity of microeukaryotes in the

gut of industrialized peoples which is strongly suggestive of a significant shift

from the ancestral state of this human–associated micro ecosystem.

2.3 Methods

2.3.1 Samples. Human and non–human fecal samples collected from ru-

ral agriculturalists (n=6), a domesticated bovid (Bos tarus, n=1), and a Ugan-

dan Red Colobus monkey (Procolobus tephrosceles, n=1) living in the Kibale

National Park in Western Uganda as well as previously collected fecal sam-

ples from the Matses hunter–gatherer population (n=6) and urban residents

of Norman Oklahoma (n=4) [131] were prepared for sequencing at the Lab-

oratories for Molecular Anthropology and Microbiome Research (LMAMR)

in Norman, Oklahoma, USA. The Matses, Norman, and Ugandan human

populations were chosen to represent a diversity of lifestyle and subsistence

strategies, a wide geographic range with variable environmental contexts,

and vastly different exposure to microeukaryotic acquisition (Figure 2.1). In-

dividuals from Norman have diets typical of urban–industrialized populations
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with regular consumption of processed food items [131]. Diet amongst the

Matses consists primarily of gathered plantains and starchy root vegetables

and local protein sources including wild game and fish [131]. The residents of

Kibale Park live in close proximity to livestock and wildlife [137] and consume

a diet primarily composed of maize, beans, bananas, and starchy root veg-

etables supplemented by wild foods found in the nearby wetlands and forests

[78]. The herbivorous ruminant bovid and folivorous Ugandan Red Colobus

monkey stand as a contrast to the omnivorous human populations included

in this study. Sample information including the geographic location, age, and

sex are provided in Table 2.1.

Table 2.1: Additional context and information for individuals contribut-
ing samples to this study. Sample name, geographic and organism origin,
age and sex for all individuals represented in this study.

Sample Location Genus Age Sex

HS2374 Uganda Homo 4 Male

HS2416 Uganda Homo 87 Male

HS2363 Uganda Homo 40 Male

HS2380 Uganda Homo 23 Female

HS2432 Uganda Homo 25 Male

HS2446 Uganda Homo 21 Male

SM05 Peru Homo 1 Male

SM29 Peru Homo 50 Female

SM01 Peru Homo 30 Male

SM02 Peru Homo 25 Female
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Table 2.1 continued from previous page

SM31 Peru Homo 30 Male

SM32 Peru Homo 21 Female

NO15 USA Homo 50 Female

NO16 USA Homo 47 Male

NO7 USA Homo 32 Female

NO20 USA Homo 26 Male

BO2072 Uganda Bos Adult Female

RC2109 Uganda Colobus Adult Male

2.3.2 DNA extraction and ITS amplification. Before extraction, raw

fecal samples were first homogenized into a slurry to ensure sam-

ple consistency. Homogenized fecal samples were extracted using the

Power Viral Environmental RNA/DNA kit (Qiagen: 28000-50) including

the optional bead–beating step. Extracted DNA was quantified us-

ing a Qubit fluorometer before being diluted to a 1:10 concentration.

The ITS1 and ITS2 targeted PCR reactions were performed separately.

The primers ITS1f (5’–GCTGCGTTCTTCATCGATGC–3’) and ITS2r (5’–

GCTGCGTTCTTCATCGATGC–3’) were used to target the ITS1 region

[204] while ITS3f (5’–GCATCGATGAAGAACGCAGC–3’) and ITS4r (5’–

TCCTCCGCTTATTGATATGC–3’) target the ITS2 region. Conditions for PCR

amplification of both ITS1 and ITS2 were identical. Each reaction included

4 µL of Phusion HF buffer (Thermo Scientific), 1 µL each of the forward and
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Figure 2.1: Geographic location of human and non–human animal indi-
viduals represented in the current study. (A) Residents of Norman, OK,
USA have access to food produced through industrial means and subsist pri-
marily on processed and pre–packaged foods. (B) The Matses population
living in the Peruvian Amazon primarily forage and hunt for food in the sur-
rounding rainforest. Illustrated is a Matses woman preparing a small sloth
for a meal (Modified from [131]). (C) People living in the Kibale National
Park in Uganda subsist on local agricultural products and live in close prox-
imity to livestock (image modified from: https://www.pexels.com). (D) Living
in close proximity to rural farmers in the Kibale National Park, the endan-
gered Ugandan Red Colobus monkey is folivorous, subsisting primarily of
leaves and bark of native and invasive plant species [198] (image modified
from:Charlesjsharp (Own work, from Sharp Photography, sharpphotography)
[CC BY-SA 4.0 (https://creativecommons.org/licenses/by-sa/4.0)], via Wiki-
media Commons.
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reverse primer, 0.4 µL of 10 nM dNTPs, 9.6 µL of nuclease free water, 0.2 µL

Physion HS II enzyme (Thermo Scientific), and 0.8 µL of BSA (2.5 mg/mL).

The PCR temperature profile included an initial amplification of 98◦ C for 30

seconds followed by 35 cycles of 98◦ C for 30 seconds, 52◦ C for 30 seconds,

and 72◦ C for one minute. Amplification was completed with a final elon-

gation step for 72◦ C for five minutes. PCR products were purified using a

4x bead cleanup (Sera-mag SpeedBeads) involving an initial incubation with

the beads for 15 minutes and two subsequent washes with 150 µL of 80%

ethanol. After drying, the beads were resuspended in 20 µL of EB buffer

and incubated for 15 minutes before the cleaned product was separated from

the beads and placed into a new tube. Cleaned PCR products were then

prepared for Illumina sequencing.

2.3.3 Illumina library preparation and sequencing. Separate ITS1 and

ITS2 libraries were constructed from cleaned PCR products using the Kappa

Hyper Prep Kit (Kapa Biosystems: KR0961). During end repair, samples

were diluted to a concentration between 50 and 100 ng of DNA in a 12.5

µL volume. To each sample, 1.75 µL of end repair buffer and 0.75 µL of

the end repair enzyme mix were added for a final reaction volume of 15 µL.

Thermocycler conditions for the end repair step were 20◦ C for 30 minutes

followed by 65◦ C for 30 minutes. Next, Illumina adapters were ligated to the

blunt–ended DNA in a reaction of 1.375 µL of 10 µM diluted adapters, 7.5 µL

of the ligation buffer, 2.5 µL of the ligation enzyme, and 1.125 µL of nuclease

free water per sample tube. Samples were incubated at 20◦ C for one hour
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after which they were immediately placed in a -20◦ C freezer overnight. The

indexing PCR was performed in triplicate using the Phusion Hot Start II kit.

For each library, 4 µL of Phusion Buffer (5X), 1 µL of BSA, 0.4 µL dNTPs,

0.3 µL of Phusion HS II enzyme, 6.4 µL nuclease free water, and 2 µL each

of unique i5 and i7 primers were added. After pooling, the indexed libraries

were purified using a 1.8X bead cleanup after which all samples were run

on a Fragment Analyzer to determine smear concentration before diluting

to 10 nM. Samples were then pooled into two separate equimolar libraries.

The first library pool was run through Pippen Prep (Sage Science) for size

selection at a target fragment length of 200 to 750 bp. To evaluate the impact

of ITS length variation, the second library was run through Pippen Prep at a

target fragment length of 200 to 900 bp. In both cases, both ITS1 and ITS2

libraries were pooled pre–size selection. Finally, samples were sequenced

on an Illumina MiSeq using a 2x250 paired–end chemistry.

2.3.4 Computational methods.

Denovo database construction

After demultiplexing, reads were split into ITS1 and ITS2 amplicons and as-

sessed for correct directionality using a custom python script (See Appendix

A). Reads were then merged and quality filtered using AdapterRemoval 2.0

with a minimum quality score of 30, a minimum alignment length of 10 bp,

and a minimum insert size length of 25 bp. Representative OTUs for both

ITS1 and ITS2 datasets were generated via denovo clustering of all sample
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reads at 97% identity using USEARCH [52] after first sorting by length and

dereplication (ITS1 n=1,679,647; ITS2 n=5,488,309). A total of 99.1% of all

ITS1 reads (n=1,664,881) were successfully clustered into 1,269 OTUs and

98.5% of all ITS2 reads (n=5407737) were successfully clustered into 1,474

OTUs. The taxonomy of the resulting representative sequences were pre-

dicted using BLAST against the full NCBI database with a minimum percent

identity of 80%, a minimum evalue of 1e-10, and a maximum of 1,000 hits

the output of which was imported into MEGAN to predict the lowest common

ancestor for each OTU. Of all OTUs generated for each dataset using the

methods described above, only 30.5% of the ITS1 and 52.4% were given

a eukaryotic taxonomic assignment. Those OTUs that were not assigned a

eukaryotic taxonomy were primarily bacterial in origin (ITS1: 14.9%, ITS2:

7.1%) or could not be assigned to any taxonomic group (ITS1: 54.8%, ITS2:

40.5%). Any OTUs that were assigned to a non–eukaryotic node in the NCBI

tree (i.e., bacteria, archaea, unassigned) were removed from the database

before downstream processing.

Sample taxonomic profile generation

Representative taxonomic profiles were generated for each sample by clus-

tering merged and quality filtered data (ITS1 x̄ read depth: 89,178 ±87,377.6;

ITS2 x̄ read depth: 148,130.3 ±117,844.0) A.2 against the eukaryotic–only

denovo database with a minimum percent identity set to 97% using the closed

reference OTU picking protocol implemented in QIIME [27] using the USE-

ARCH clustering algorithm [52]. Of all reads generated for each ITS region,
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51% of ITS1 reads were assigned to an OTU while 62% of ITS2 reads were

assigned to an OTU. Resulting taxonomic profiles were normalized to ac-

count for sequencing depth and number of representative eukaryotic taxa

in each sample by rarefying to the lowest non–industrial read count in each

respective dataset (ITS1: 850, ITS2: 840). A comparison of ITS1 and ITS2

profiles for each sample was performed by Procrustes analysis [70] to assess

intersample taxonomic differences.

Analysis of Blastocystis OTUs

Finally, a neighbor–joining tree of all OTUs assigned to Blastocystis as well

as all published Blastocystis ITS regions uploaded to the NCBI Nucleotide

database was constructed by first aligning all sequences using MAFFT [94]

after which the alignment was manually checked using the Geneious [95]

software package. Pairwise distance between all Blastocystis OTUs was cal-

culated using the Geneious [95] software. A cladogram of all Blastocystis

aligned OTUs was visualized using iTOL version 3 [107].

2.4 Results

2.4.1 Sequencing Results. An average of 97 thousand raw reads were

generated for all samples using the ITS1 marker while an average of 372

thousand raw reads were generated for ITS2. The rate of paired end merging

and quality retention of reads for both the ITS1 and ITS2 datasets is generally

high with the majority of samples retaining 70% or more of all raw reads

(Supplementary Table A.2). One notable exception to this is sample HS2446
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which had a retention rate of 58% for the ITS1 dataset and 68% for the ITS2

dataset. This low rate for the ITS1 dataset of HS2446 is attributed to the high

number of reads that were truncated before merging (31,350 reads) due to

poor quality scores at one or both ends of the paired reads [112]. For the

ITS2 data generated from the HS2446 individual, the relatively low merge

rate appears to be a combination of high levels of truncated reads (2,398

reads), as well as discarded singleton and paired reads (1,047 reads). Reads

that could not be merged were primarily bacterial in origin or could not be

assigned to a taxonomic node using the described methods. For the ITS1

dataset, 57.7% of all unmerged reads were unable to be assigned taxonomy

and 33.7% were assigned to a bacterial taxonomic group with the majority

(21.4%) assigned to the bacterial taxon Bifidobacterium bifidum. For the ITS2

dataset, 65.1% of all unmerged reads were unable to be assigned taxonomy

and 13.3% were assigned to a bacterial taxonomic group with the highest

observed species, Lactobacillus ruminis contributing 3.6% of all unmerged

reads. Overall, the majority of ITS amplicons for each sample were available

for use in downstream analyses.

2.4.2 Taxonomic profile differences between ITS1 and ITS2. A total of

387 unique OTUs could be taxonomically identified after clustering at 97% in

the ITS1 dataset while a total of 701 could be identified in the ITS2 dataset.

Of those that could be assigned a taxonomic identification, 205 ITS1

OTUs were assigned to the genus level or below (52.97%) while only 213

(30.39%) could be assigned to the genus level or below in the ITS2 dataset.
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Although many taxonomic groups are represented in both ITS1 and ITS2 rep-

resentative sets, 47 genus or below level taxonomic groups were only found

in the ITS1 data including important microeukaryotic and dietary sequences

(Blastocystis, Brassica, Sesamum, Zea). Similarly, 46 low–level taxonomic

groups were only detected in the ITS2 dataset including Schistosoma, Tetra-

trichomonas, and Spinachia) (Supplementary Table A.1).

After filtering out non–microeukaryotic OTUs (e.g., plants, animals), a Pro-

crustes analysis of paired ITS1 and ITS2 data in each samples illustrates dif-

ferent taxonomic profiles generated using either approach within the same

sample (Figure 2.2). The most extreme difference between datasets gener-

ated from the same sample is detected in samples NO15 and SM02 both

of which have relatively lower microeukaryotic OTU assignments than other

samples included in this dataset. Compounding the observed differences be-

tween the ITS1 and ITS2 data in these two samples, both are dominated by

Blastocystis in the ITS1 data. This implies that differences between datasets

will be more acute if information is already sparse in one or both ITS regions.

Interestingly, the dominant taxonomic group detected in the ITS2 dataset gen-

erated for sample SM02 is Chalara, a fungal endophyte of trees. While mem-

bers of Chalara have been found in the gut of wood eating beetles [213], is

not a typical fungus found in the gut of mammals and therefore it is unlikely

that the presence of this taxa in one of the Matses samples is a natural oc-

currence. Instead, as the OTU assigned to this taxonomy only is 93% similar

to its closest match (NCBI accession: JN604461.1), it is likely this represents

a unknown fungal species not currently characterized in the NCBI database.
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No host DNA was detected in the merged or unmerged data generated

in either ITS datasets. As the length of the ITS1 and ITS2 regions in mam-

mals are generally longer than most microeukaryotic taxa [35] (Homo sapiens

ITS1: 1069 bp ITS2: 1166 (NCBI accession: KY962518); Bos taurus ITS1:

1071 bp ITS2: 1037 bp (NCBI accession: DQ222453; Procolobus tephrosce-

les No data available), these results are consistent with the size selection

protocol used prior to sequencing and either were not amplified during the

initial PCR or were removed during size trimming after pooling for sequenc-

ing. By effectively removing the host from consideration, more sequencing

space is therefore available for microeukaryotic taxa.

2.4.3 Dietary results. Amplicons of potential dietary sources were de-

tected in both the ITS1 and ITS2 datasets (Table 2.2). Consistent with ex-

pectations based on food availability, dietary amplicons retrieved from the

Norman samples include a variety of plant derived food sources common

in industrialized societies including cilantro (Corandrium sativum), tomato

(Solanum lycopersicum), spinach (Spinacia oleracea), the Apiaceae family

which includes celery, parsley, cilantro, carrots and other vegetables and

herbs, members of the Brassica genus which include cabbage and its rel-

atives, Cucumis which includes cucumber, and the high level eukaryotic

taxonomic group Vaccinieae which may be attributed to the consumption

of berries including cranberry and blueberry. Inferred dietary reads from

the Matses includes Salmonidae, members of which include various bony

fishes and Myrteae which may be associated with fruit consumption. Poten-
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Figure 2.2: Procrustes plot illustrating differences between ITS1 and
ITS2 datasets. Each pair of dots connected by a line represents the mi-
croeukaryotic profile of a single sample via either the ITS1 or ITS2 dataset.
While many samples have similar taxonomic profiles, the microeukaryotic di-
versity summarized by the ITS1 and ITS2 region is clearly different. The
most extreme differences in ITS1 and ITS2 taxonomic profiles are found in
samples SM02 and NO15, both of which have relatively low numbers of mi-
croeukaryotic OTU assignments. Therefore, differences between ITS1 and
ITS2 datasets are intensified when information is sparse in one or both inter-
nal transcribed spacer regions.

tial dietary reads from Uganda include those for peanuts (Arachis hypogaea)

and other legumes and tubers (Ipomoea, Phaseolus), sesame (Sesamum

indicum), grains (Sorghum, Eleusine), and wild tomato (Solanum pennel-

lii). The pseudocereal genus Amaranthus is found in both the Matses and
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Uganda groups, as is Musa which includes bananas and plantains. In-

terestingly, corn (Zea mays) is present in all three human populations at

either the genus or species level reflecting the global reach of corn as

foodstuff. Among the non–human animals included in this study, grasses,

sedges, (Cynodon, Cyperaceae, Paspalum scrobiculatum), and other plants

(Desmodium/Desmodieae, Dichondra repens, Hydrocotyle, etc) predominate

the dietary reads found in the bovid. Dietary reads from the Procolobus

tephrosceles individual reflects its folivorous feeding behaviors and includes

species of trees (Ficus, Macaranga, Mimusops, Theobroma grandiflorum),

other plant taxa (Lauraceae, Moraceae, etc), and an insect species (Lepi-

docyrtus koreanus). Interestingly, while some dietary OTUs are detected in

either the ITS1 or ITS2 datasets, many are found in both, reinforcing their

presence in our samples.
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Table 2.2: Dietary OTUs observed in each sample group. Inferred dietary OTUs observed in ITS1 and ITS2
datasets.

Taxon Resolution Locus Source

Apiaceae Family Both Norman

Brassica Genus ITS1 Norman

Coriandrum sativum Species Both Norman

Cucumis Genus ITS1 Norman

Euphorbia Genus ITS2 Norman

Rubus Genus Both Norman

Solanum lycopersicum Species ITS1 Norman

Spinacia oleracea Species ITS2 Norman

Trifolieae Sub Family ITS1 Norman

Vaccinieae Tribe Both Norman

Cecropia Genus ITS2 Matses

Cecropia peltata Species ITS1 Matses

Maclura Genus ITS2 Matses
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Table 2.2 continued from previous page

Myrteae Tribe ITS1 Matses

Salmonidae Family ITS2 Matses

Arachis Genus Both Uganda

Arachis hypogaea Species ITS1 Uganda

Eleusine Genus Both Uganda

Ipomoea Genus ITS1 Uganda

Phaseolus Genus IGS1 Uganda

Sesamum indicum Species IGS1 Uganda

Solanum Genus IGS1 Uganda

Solanum pennellii Species ITS2 Uganda

Sorghum Genus Both Uganda

Amaranthus Genus Both Uganda & Matses

Musa Genus Both Uganda & Matses

Poaceae Family ITS2 Norman & Matses

Zea mays Species ITS1 Norman & Matses
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Table 2.2 continued from previous page

Zea Genus ITS1 All groups

Cynodon Genus ITS1 Bovid

Cypereae Tribe ITS1 Bovid

Desmodieae Tribe ITS2 Bovid

Desmodium Genus Both Bovid

Dichondra repens Species ITS1 Bovid

Hydrocotyle Genus ITS1 Bovid

Paspalum Genus ITS1 Bovid

Paspalum scrobiculatum Species ITS2 Bovid

Ficus Genus Both Colobus

Lauraceae Family ITS1 Colobus

Lepidocyrtus koreanus Species ITS2 Colobus

Macaranga Genus Both Colobus

Mimusops Genus ITS2 Colobus

Moraceae Family ITS1 Colobus
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Table 2.2 continued from previous page

Rauvolfioideae Sub Family ITS1 Colobus

Theobroma grandiflorum Species ITS2 Colobus

Urera Genus ITS1 Colobus

Vanguerieae Tribe ITS2 Colobus
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2.4.4 Microeukaryotic results. Microeukaryotic diversity, defined as the

number of unique OTUs attributed to a sample, is highest amongst the Ugan-

dan Red Colobus (RC2109) and Bovid (BO2072) samples in both the ITS1

and ITS2 datasets (Figure 2.3). Of the human samples in this study, the Mat-

ses and Ugandan samples share more taxa amongst each other than do the

Matses or Ugandan with Norman. As expected with an industrialized food

production source and water purification systems, the Norman samples have

the lowest total microeukaryotic diversity of all human samples. For Nor-

man sample NO7 and NO16 the number of ITS1 and ITS2 OTUs that could

be defined through closed reference clustering did not pass rarefaction lim-

itations, respectively, and were therefore unable to classify. Importantly, the

ITS1 dataset is driven by the presence of Blastocystis which was not detected

in our ITS2 data. Blastocystis was found in all human groups using the ITS1

marker, irrespective of diet or environment.

The predominant type of microeukaryotes in all samples is fungi. Other

microeukaryotes found in human derived samples include likely non–

pathogenic single–celled eukaryotic taxa including Blastocystis hominis and

Entamoeba dispar as well as eukaryotic parasites including Schistosoma

mansoni. While no parasites were detected in the Procolobus tephrosceles,

the Bovid sample was positive in the ITS2 dataset for a variety of high level

taxonomic groups that include potentially parasitic species including Dige-

nea a diverse class of flatworms in the Platyhelminthes phylum, and single–

celled parasites (Parabasalia, Simplicimonas sp., Tetratrichomonas sp., Blas-

tocystis). While members of the Parabasalid group include symbiotic mi-
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croeukaryotes in some insect groups, Tritrichomonas foetus, a member of

the Parabasalid group, is a sexually transmitted disease in cattle that can

cause spontaneous abortion [118] the control of which is of significant inter-

est to the global cattle industry [33]. Population based parasite results are

found in Table 2.3.

Figure 2.3: Microeukaryotic taxonomic profiles for all samples colored
by specificity to different groups. Taxonomic profile barcharts colored by
OTU specificity to each group.
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Table 2.3: Observed parasite and commensal microeukaryotic organ-
isms. Inferred microeukaryotic parasites and potential commensal organ-
isms detected in each study population. Most detected organisms in human
groups are suspected commensal organisms.

Taxon Level Locus Source

Entamoeba Genus ITS1
Uganda &

Matses

Entamoeba dispar Species ITS2 Uganda

Schistosoma mansoni Species ITS2 Uganda

Blastocystis hominis Species ITS1

Uganda,

Matses,

Norman &

Bovid

Digenea Class ITS2 Bovid

Parabasalia Phylum ITS2 Bovid

Simplicimonas Genus ITS2 Bovid

Simplicimonas sp. GABC1 Species ITS2 Bovid

Tetratrichomonas sp. IdnP1 Species ITS2 Bovid

2.4.5 Blastocystis. Consistent with previous studies of the microeukary-

otic diversity of the gut [180], Blastocystis hominis is the predominant non–

fungal eukaryote detected in the gut using the ITS1 dataset. Through phy-

logenetic analysis, Blastocystis hominis subtypes one through three are all

present in the human samples while an unknown subtype appears to be

found in the bovid sample (Figure 2.4 and Figure 2.5). While only detected
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using the ITS1 dataset, OTUs assigned to Blastocystis are highly diverse, re-

flecting the acute genetic diversity known to reside in this genus. Importantly,

Blastocystis is detected in all populations with subtypes one through three

found in the Uganda and Matses samples while two Norman samples (NO16

and NO15) were found positive for subtype three and potentially subtype one

or three, respectively.
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Figure 2.4: Pairwise distance and cladogram of all Blastocystis ITS1 re-
gions from this dataset and previously published Blastocystis ITS re-
gions. Cladogram and pairwise identity matrix of Blastocystis OTUs iden-
tified in the ITS1 dataset clustered with previously published Blastocystis
OTUs. Three subtypes of Blastocystis are present in the human groups rep-
resented in the current study with all three found in the Ugandan and Matses
samples while the two Norman samples test positive for Blastocystis OTUs
that are suspected subtype one varieties. The two Blastocystis OTUs de-
tected in the Norman samples are indicated by a A symbol. In addition to the
human Blastocystis lineages, a suspected bovid strain of the microeukaryote
was detected in the single bovid sample and is indicated by the F symbol.
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Figure 2.5: Neighbor–joining tree of all Blastocystis OTUs generated in
the current study and previously published Blastocystis ITS1 regions.
All three inferred subtypes of Blastocystis are found in the Matses and Ugan-
dan human samples while only subtype three is found in the Norman sam-
ples. In addition to those Blastocystis OTUs found in the human samples,
a separate lineage of Blastocystis is detected in the bovid sample and may
represent a non–human lineage of the organism. While basal branches of
the tree are relatively robust, bootstrap values of the terminal branches are
more variable, indicating that the ability of the ITS1 region to resolve subtype
variation is limited.

2.5 Discussion and Conclusions

2.5.1 Benefits and limitations of the internal transcribed spacer region

for eukaryotic surveys of the gut. The results of this study demonstrate

the utility of targeting both the ITS1 and ITS2 region for a more complete
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microeukaryotic and dietary survey of fecal samples. As the ITS1 and ITS2

region characterize different taxonomic groups at different levels of taxonomic

resolution, they are best used in tandem if the full ITS region is not a reason-

able target. For example, while 37 genus level OTUs were found in both the

ITS1 and ITS2 datasets, an additional 28 genera were only detected using

the ITS1 region and 36 were only detected in the ITS2 data. Though amplifi-

cation of the ITS region is the currently accepted barcode for studies of fungal

diversity in environmental or microbiome studies [166], the current study con-

firms its applicability to other microeukaryotic and dietary taxa. Currently, a

limiting factor for this type of targeted metabarcoding survey is the paucity

of data available for non–fungal eukaryotic organisms. A 2005 study of ITS2

regions in eukaryotes found that while more than 40% of fungal taxa in the

NCBI database had at least one representative region listed, less than 4%

of metazoa had similar annotations [168]. Those that do have representa-

tive ITS sequences are biased towards certain groups, for example flowering

plants, which may represent a historical basis for the characterization of ITS

among certain non–fungal groups [168]. While databases for the ITS1 and

ITS2 [88, 169, 100] regions are available, no current database exists for the

full ITS region for non–fungal organisms. Because the ITS region is charac-

terized by large insertions and deletions, a full database of eukaryotic organ-

isms may be useful for the design of research programs that target or omit

particular taxa. For example, in the current study, the taxa of interest, mi-

croeukaryotes, have an expected shorter ITS length than the host mammal

species [35]. Therefore, limiting the elongation time during PCR preparation
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effectively removes the host DNA from analysis, increasing the sequencing

space for microeukaryotes of interest.

2.5.2 Dietary DNA reflects industrial and non–industrial subsistence

strategies. Reads from suspected dietary sources are consistent with the

known subsistence patterns of the populations included in this study. Dietary

sources detected in the Norman individuals includes plant sources typical of

industrialized societies including tomatoes (Solanum lycopersicum), spinach

(Spinacia oleracea), members of the cabbage family (Brassica), and other

common fruits, vegetables, and herbs that can be easily purchased at grocery

stores within the United States. Fewer dietary sources were detected in the

Matses, but a diet rich in fish, plantains or bananas, and corn has previously

been documented in this population [131] which is confirmed in this study.

Other previously documented sources of food for the Matses including sloth,

species of new world monkey, and a variety of reptiles and birds [131], are not

represented in publicly available ITS databases. Because of this, the paucity

of dietary information for this population is perhaps unsurprising. Dietary data

generated in this study for rural agriculturalists living in Uganda are consistent

with the known diet of this area which is rich in legumes and grains [78].

Like dietary data generated for the human derived fecal samples, the im-

plied diet of the single bovid and Ugandan Red Colobus monkey are within

expectations of these two species. In particular, the Ugandan Red Colobus

monkey included reads assigned to the Ficus genus and Moraceae family,

both of which may represent one of the primary food sources of Red Colobus
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living in the Kibale National park, Ficus natalensis [198]. The provenience

of other potential dietary OTUs is less clear. For example, the plant genus

Euphorbia includes approximately 2,000 known species some of which are

used in traditional medicine [172, 128] as well as some applications in the

pharmaceutical or industrial food sciences field [173, 172] but the origin of

this taxa in the Norman population is unknown.

2.5.3 Microeukaryotic diversity and parasitic infection rates higher in

non–industrialized groups. Microeukaryotic diversity in the Matses and

Ugandan individuals are higher than that found in Norman which is com-

paratively depressed. Both phylogenetic diversity (PD) and the number of

observed OTUs as measures of α diversity in the ITS1 dataset are signifi-

cantly higher (Mann–Whitney U Test, ITS1: p = 0.02) in the Matses (ITS1:

PD: x̄5.1 ± 1.2; observed OTUs: x̄9.3 ± 5.0) and Ugandan individuals (ITS1:

PD: x̄7.3 ± 0.9; observed OTUs: x̄24.7 ± 12.0) as compared to the Nor-

man individuals (PD: x̄2.1 ± 0.8; observed OTUs: x̄1.7 ± 0.6). While both

measures of α diversity are significantly higher in the Ugandan individuals

(PD: x̄4.5 ± 0.9; observed OTUS: x̄18.3 ± 7.4) as compared to the Norman

population (PD: x̄2.3 ± 0.5; observed OTUs: x̄7.0 ± 2.6) in the ITS2 dataset

(Mann–Whitney U Test, PD: p = 0.02; observed OTUs: p = 0.3), compar-

isons of the Matses individuals (PD: x̄2.6 ± 1.1; observed OTUs: x̄9.0 ±

7.6) and Norman yielded no significant results. Importantly, the Matses and

Ugandan individuals share more microeukaryotic OTUs between them than

either share with the Norman samples, despite the geographic distance that

39



separate these two populations. This suggests patterns of microeukaryotic

diversity in human populations are strongly influenced by lifestyle and not

by environment. Consistent with previous studies, the most commonly de-

tected non–fungal microeukaryotic organisms found in this dataset include

the commensal or opportunistic pathogens Blastocystis hominis and Enta-

moeba dispar [180, 127, 164, 54, 202]. One individual from the Ugandan

population, however, tested positive for the blood fluke Schistosoma man-

soni, a pathogenic species responsible for schistosomiasis. Schistosomiasis

is one of the most widespread parasitic diseases in sub–Saharan Africa, only

surpassed by malaria [1]. Currently, an estimated 732 million people are vul-

nerable to the disease according to the WHO and in 2008 more than half of

all schistosomiasis cases were recorded in African nations [1].

2.5.4 Blastocystis is a cosmopolitan parasite found in all human

groups. Blastocystis is a genus of single–celled, requisite anaerobes found

in the Stramenopile phylum and is closely related to diatoms and algae [20].

Visually similar to soap or water bubbles under the microscope, Blastocys-

tis cells are immotile and are apparently the only genus of the Stramenopile

phylum to regularly infect humans [20]. Globally, Blastocystis is reported to

be the predominant non–fungal eukaryotic taxon recovered from human fe-

cal samples and is usually asymptomatic [75]. Dissemination of Blastocystis

is via the fecal–oral route [156], though it may be zoonotically transmitted

as well [3]. While morphologically ambiguous, members of the Blastocystis

genus are highly genetically diverse with no fewer than 17 documented sub-
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types currently described [3, 32]. Subtypes one through nine are regularly

found in humans with some geographic structuring in terms of relative fre-

quency of Blastocystis subtype distributions [8]. In addition to humans, Blas-

tocystis species have been characterized in non–human mammals, birds,

reptiles, amphibians, and insects [32] with no single subtype of Blastocys-

tis being specific to humans [20]. The degree of genetic diversity within

this genus is surprising with some suggestion that it should be taxonomi-

cally reevaluated [3]. Consider, for example, that those Blastocystis isolates

named Blastocystis hominis for their initial isolation source are as genetically

diverse as all known and sequenced members of the Cryptosporidium genus

[20].

From this dataset, three of the 17 known subtypes of Blastocystis were de-

tected. While other OTUs of Blastocystis generated in this study are sugges-

tive of different strains of each subtype, insufficient phylogenetic resolution is

available to definitively define separate clades of the organism (Figure 2.5).

Surprisingly, Blastocystis OTUs were detected in all three human groups and

a separate clade of Blastocystis was detected in the bovid sample. While

the risk of being a carrier for Blastocystis is elevated in geographic regions

with poor sanitation and higher risk of tainted food or water sources, direct

evidence of the mode of transmission for Blastocystis is inconclusive [4]. For

example, while estimated rates of human infections with Blastocystis are as

high as 45% in Columbia [156], in Japan they are predicted to be as low as

0.5% [164]. While the predicted rate of Blastocystis in human populations

living in the United States is relatively low (between 11 and 23% [6]), it is
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not uncommon for multiple subtypes of the genus to be found within a single

family unit [163]. In the current study, two otherwise healthy individuals from

the Norman cohort (NO16 and NO15) tested positive for Blastocystis, both of

which falls phylogenetically close to other published Blastocystis subtype 3

ITS1 sequences (Figure 2.5, Figure 2.4). All three subtypes are found in the

Matses and Ugandan samples with many individuals exhibiting co–infections

with distinct strains of Blastocystis. All three subtypes detected in this study

have been linked to chronic gastrointestinal disorders including irritable bowel

syndrome (IBS) either alone or as coinfections as well as in asymptomatic in-

fections [46, 20, 179].

2.5.5 Conclusions. The results from this study document the utility of the

internal transcribed region for characterizing microeukaryotic and dietary di-

versity of both human and non–human gut microbiomes. Comparative anal-

ysis of the presence or absence of specific eukaryotic taxa in human popula-

tions with diverse subsistence strategies, lifestyles, and environments docu-

ments that, like bacterial communities that live in the gut, the microeukaryotic

diversity of the human gut is strongly linked to lifestyle and not the external

environment. Specifically, the loss of microeukaryotic diversity in individuals

living in sanitized urban–industrialized regions of the world is suggestive of a

major shift in our relationship with these microorganisms. Despite this shift,

there are some microeukaryotes including Blastocystis that are present in all

human groups. Whether the global distribution of Blastocystis is in response

to the removal of soil–transmitted helminths [144] or if the organism repre-
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sents an ancestral heirloom microeukaryote in the human gut is beyond the

scope of this study. Understanding the natural distribution of microeukaryotes

in diverse human populations is the first step in understanding the ecological

importance and function of these diverse organisms in complex communities

of bacteria, archaea, viruses, and eukaryotes.
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Chapter 3

Enrichment of non–dominant bacterial taxa in human fecal

samples through serial filtration

3.1 Abstract

The human gut is a complex ecological system primarily inhabited by diverse

bacterial organisms. While current molecular techniques including metage-

nomic and metabarcoding sequencing are effective tools for characterizing

bacterial community composition, these methods are confounded by issues

of bacterial genome size and copy number variation in common marker genes

among different bacterial groups (e.g., 16S rRNA gene). These variations

may mask organisms that are present in low abundance or those with com-

paratively small genomes and therefore bias interpretations of whole commu-

nity structure. In this study, fecal samples representing two divergent human

groups were processed through a serial filtration protocol to enrich for un-

derrepresented taxa in the human gut. Results from this experiment indicate

that serial filtration of fecal samples and 16S rRNA metabarcoding may be an

appropriate screening tool to identify samples for which further investigations

including whole genome reconstruction and culturing of non–dominant taxa
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may be accomplished.

3.2 Introduction

Bacteria are the most diverse group of organisms on earth, profoundly eclips-

ing the diversity of Archaea or Eukaryota [85]. Testament to this diversity,

Bacteria can be found in every natural ecological niche, from marine sedi-

ments 11,000 meters deep at the bottom of the Mariana Trench [68], to 75◦

C alkaline hot springs in Yellow Stone National Park [42], to the harsh acidity

of the human stomach [192]. The diversity of Bacteria further manifests in

an astounding variety of cell size, structure, and form. The largest known

bacterium belongs to the group Thiomargarita; initially misclassified as a pro-

tist, a single Thiomargarita namibiensis cell is 0.1 to 0.3 mm in diameter—

approximately the same size as a Drosophila eye [108] or a single period

on this printed page. Comparing a single cell of Thiomargarita namibiensis

to one of the smallest known bacterial taxa, Candidatus actinomarinidae at

0.013µm [66] is like a grain of rice next to the Great Pyramid of Giza. The

genome size of large bacteria also tends to be quite substantial, with the

largest bacterial groups often exhibiting a high degree of polyploidy [108],

while small bacteria—and especially those that live as symbionts of other

microorganisms—tend to have a radically reduced genome size due to their

ability to assimilate the molecular mechanisms or metabolic resources of their

host [123]. For example, many members of the bacterial endosymbiont gen-

era Rickettsia, Mycoplasma, and Buchnera have eliminated genes involved

in energy metabolism required for free–living bacteria [126]. Consider, for

45



example, that while free–living bacteria have a predicted proteome typically

between 1,500 to 6,000 proteins, bacteria that rely on some aspect of a host

cell for their survival or reproduction may produce as few as 500 to 1,000

proteins [126].

This variation in genome size is a challenge for the characterization of

bacteria in mixed microbial ecosystems as organisms with larger genomes

will have an artificially inflated representation in metagenomic surveys [17],

masking the presence of taxa with smaller genome sizes and presumably

smaller cell sizes. Micro–filtration of environmental microbial communities

including soils [150, 149] and water sources [193] demonstrate the utility of

bacterial cell–size fractionation of mixed microbial communities for the en-

richment or detection of non–dominant taxa, yet to date no such analysis of

the human gut microbiome has been performed. The human gut microbiome

is a rich microbial ecosystem chiefly inhabited by bacterial organisms from

divergent lineages representing 12 phyla [86]. As a rich source of nutrients,

the gastrointestinal tract of certain vertebrates and invertebrates have been

found to be host to large bacterial species [108], which may indicate that

smaller cells with reduced genome size are underrepresented in molecular

characterizations of the gut microbiome. As bacteria that are classified as

epibionts (those that live on the surface of another organism) or endosym-

bionts (those that live within another host cell or organism) are difficult to

culture as compared to free–living bacteria due to their specialized host–

dependent life–cycles, the detection and functional characterization of these

reduced genome organisms [123] using molecular techniques is highly desir-
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able.

The purpose of the current study is to partition the bacterial community

of fecal samples collected from different dietary ecologies through serial fil-

tration steps to enrich for underrepresented bacterial taxa. Results from this

study suggest that serial filtration is an effective method for decreasing the

overall representation of dominant bacterial species and thereby increasing

the overall proportion of non–dominant under–characterized bacterial organ-

isms. Individuals from the non–industrial population in this study exhibited

higher than expected proportions of operational taxonomic units (OTUs) from

the phylum Cyanobacteria which were assigned to the order Vampirovib-

rio. These OTUs likely represent members of the candidate phylum or class

Melainabacteria [176, 45], a known group of gut symbionts that are to date

described only by their presence in metagenome datasets [45]. Therefore,

16S rRNA metabarcoding sequencing of serial filtered fecal samples may be

a cost–effective method of screening appropriate candidate samples for fur-

ther investigations including full genome reconstruction and culture isolation

of novel strains.

3.3 Methods

3.3.1 Samples. A total of six human fecal samples from hunter–gatherers

originating in the Peruvian Amazon (n=4) and residents of Norman, Okla-

homa, USA living a typical urban industrialized lifestyle (n=2) [131] were cho-

sen to maximize the expected taxonomic diversity and overall community

composition of bacterial taxa living in the gut of study participants. To test
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the impact of large eukaryotic parasite cells on the initial filtration tests, two

individuals from the hunter–gatherer group that had previously tested posi-

tive for microeukaryotic infection via microscopy were included. Descriptions

of individuals from which samples were collected in the current study can be

found in Table 3.1.

Table 3.1: Sample metadata. Sample ID, geographic location, age, and sex
for all samples included in the current study.

Sample ID Location Age Sex
Parasite

Status

SM01 Peru 30 M Negative

SM29 Peru 50 F Negative

SM31 Peru 30 M Positive

SM02 Peru 25 F Positive

NO7 USA 32 F Unknown

NO15 USA 50 F Unknown

3.3.2 Fecal cell size filtration. Sterile cell strainers at filter mesh sizes

200 µm, 60 µm, 20 µm, and 5 µm (pluriStrainer: 43-50200-03, 43-50060-

03, 43–50020–03, 43–50005–03) were selected to filter fecal slurry samples.

Beginning with the 200 µm filter, approximately 1.5 mL of homogenized fecal

slurry was added to the filter placed on top of a UV sterilized 50 mL falcon

tube. Loaded filters were covered tightly with parafilm before centrifuging for

two minutes at 4,000 rpm. If filters appeared wet or remaining liquid was
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observed post centrifugation, samples were centrifuged for an additional two

minutes at 4,000 rpm. Material that did not pass through the filter was lifted

by washing the filter with 1 mL of nuclease free water and aspirating up and

down with a 1200 µl pipette tip. All liquid from the upper portion of the filter

was then removed and placed in a clean 1.5 mL Eppindorf tube. Any sample

or water that passed through the filter into the 50 mL falcon tube was first

vortexed briefly before being passed through the next filtration stage. These

steps were repeated for all filter sizes in descending order from 200 µm to 5

µm. Parallel to sample filtration a single filter negative control was processed

using nuclease free water in place of fecal material. Finally, flow through from

the 5 µm filter was removed and placed into a clean 5 mL tube. All samples

were concentrated to approximately 200 µL of liquid sample in an Eppendorf

Vacufuge set to 30◦ C. In addition to fecal samples and the single filter neg-

ative control, approximately 1.5 µL pure cultured Escherichia coli suspended

in Tryptic Soy Broth (Sigma–Aldrich 43592-800ML) was processed in an iden-

tical manner to serve as a positive control. Quantitative PCR results targeting

the V4 region of the 16S rRNA gene for the E. coli control can be found in

Supplementary Table B.1.

3.3.3 DNA extraction and quantification. All samples were extracted

using a DNAeasy Power Soil Extraction Kit (Qiagen) following the man-

ufacturer’s protocol after an initial heat lysis step for 10 minutes at 60◦

C. The full volume of all samples (approximately 200 µL) was added

to bead beating tubes for extraction. Extractions were then quantified
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for total DNA yield using a Qubit fluorometric assay. Proportion of eu-

karyotic and bacterial DNA in each sample was estimated via quanti-

tative PCR assay using primers specific to the eukaryotic internal tran-

scribed spacer one region (ITS1f: 5’–TCCGTAGGTGAACCTGCGG–3’;

ITS2r: 5’–GCTGCGTTCTTCATCGATGC–3’) [204] and the bacterial 16S

rRNA gene, V4 region (F515: 5’-CACGGTCGKCGGCGCCATT-3’; R806: 5’-

GGACTACHVGGGTWTCTAAT-3’) [26] the results of which can be found in

Supplementary Figure B.2.

3.3.4 16S rRNA amplicon library preparation and sequencing. Before

sequencing, samples were grouped based on their quantitation cycle (Cq)

value as determined by qPCR and diluted so that all grouped samples would

amplify at the same number of cycles. Sample dilutions were then amplified

using unique Illumina specific barcoded 16S rRNA V4 primers. Each PCR

reaction consisted of 4 µL of Phusion HF buffer (Thermo Scientific), 1 µL of

the Illumina forward primer (10 µM), 2.0 µL of 10 nM dNTPs, 5.0 µL of nucle-

ase free water, 0.2 µL Phusion HS II enzyme (Thermo Scientific), and 0.8 µL

of BSA (2.5 mg/mL). Illumina barcoded reverse primers (2.5 µM) were added

separately to each reaction tube at a volume of 4.0 µl. 3.0 µl of DNA was

added to each reaction tube before placing in the thermocycler. The cycling

conditions for the 16S rRNA library build includes an initial amplification of

98◦ C for 30 seconds followed by 27 to 29 cycles of 98◦ C for 15 seconds,

54◦ C for 30 seconds, and 72◦ C for 30 seconds. Amplification was com-

pleted with a final elongation step for 72◦ C for five minutes. PCR for each
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sample was done in triplicate and checked for the V4 expected amplicon size

via gel electrophoresis. After confirming all PCR reactions were successful,

samples were pooled and run on a 1% agarose gel for 150 minutes at 70

volts to ensure adequate separation of the 100bp ladder and sample ampli-

con size. An equal volume (5 µL) of each sample was pooled together and 1

µL of each blank and standard was added to the pool. Pooled samples were

run through PippenPrep to select read sizes from 300 to 450 bp to remove

any dimer or residual high–molecular weight DNA prior to sequencing on an

Illumina MiSeq using a 2 x 250 chemistry.

3.3.5 Computational methods. Samples were demultiplexed and con-

verted from BCL to fastq files using the Illumina bcl2fastq conversion software

version 1.8.4. An average of 32,324 ± 8,544.1 reads were generated across

all samples (median = 32,017). Reads were merged using Pear (version

0.9.8) [212] with an average merge rate of 99.2% (range = 98.6% to 99.7%).

Merged reads were then quality filtered using Sickle version 1.33 [93] with a

quality filter of 30 and minimum read length of 100 bp. All reads were clus-

tered into OTUs at a 97% percent identity threshold using the Usearch version

10.0.240 denovo pipeline [52]. Taxonomy for each OTU was assigned using

the assign_taxonomy.py script as implemented in QIIME version 1.9 [27]

using the EzBioCloud 16S ribosomal RNA gene database as a reference

[211]. Quality filtered reads were then mapped onto the denovo reference

dataset using the -otutab option in Usearch version 10.0.240 [52]. A total

of 97.3% of all quality filtered reads mapped to OTUs in the denovo dataset.
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A QIIME formatted otu map was then generated from the resulting Usearch

OTU table and taxonomy assignments using a custom python script (see Ap-

pendix B) which was then made into a hdf5 formatted biom table using the

QIIME script make_otu_table.py [27]. Before downstream analysis, the

biom table was first rarefied to 8,000 sequences to maximize the inclusion

of reads from all true samples (Supplementary Figure B.1). Taxonomic sum-

maries for each sample were generated in R [155] using the ggplot2 library

[205]. Maximum likelihood trees were generated using RAxML version 8.2.11

[178].

3.4 Results

3.4.1 Bacterial and eukaryotic cell abundance at sequential filter lev-

els. To estimate the proportion of eukaryotic and bacterial cells captured at

each filter level, a quantitative PCR (qPCR) assay was performed targeting

the universal V4 hypervariable region of the 16S rRNA gene and the eukary-

otic targeted internal transcribed spacer one (ITS1) region of the eukaryotic

ribosomal RNA complex. Relative cell abundance is approximated from the

quantitation cycle (Cq) number in which fluorescence is detected from each

sample. A low Cq value indicates a higher copy number of the targeted gene

region while a high Cq value indicates a low copy number. Expectations of

the experimental design were that all filter levels would have low copy num-

ber for the V4 region of the 16S rRNA gene with a higher detected bacterial

presence in the flow through. Conversely, a higher copy number of the eu-

karyotic ITS1 targeted region was expected at the higher filter levels but not
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Table 3.2: Estimate of bacterial and eukaryotic abundance by quanti-
tative PCR. Quantitative PCR results indicate an overall low frequency of
eukaryotic cell density at any pore size with the highest estimated frequency
of ITS1 copy number at the 200 µm level. In contrast, the estimated cell den-
sity of bacteria as quantified by V4 copy number remains relatively consistent
across all pore sizes.

Filter Level V4 ITS1

200 µm 14.6 ± 0.6 26.4 ± 1.8
60 µm 16.7 ± 2.3 29.4 ± 2.3
20 µm 15.8 ± 1.9 28.7 ± 2.4
5 µm 15.5 ± 1.7 29.1 ± 2.1
Flow Through 16.8 ± 1.6 30.5 ± 1.3

in the flow through. Cq values for negative controls (blanks) including those

collected during extraction, PCR, and filter negatives are indicative of a con-

tamination controlled experiment, with an average V4 Cq value across all

negative controls of 32.4 ± 0.2. No amplification of any negative controls

was detected in the ITS1 assay. Cq values as measured by ITS1 amplifi-

cation across all samples are high (Supplemental Figure B.2), indicating a

lower than expected eukaryotic cell capture at any filter level. The highest

average Cq value for the ITS1 region was detected at the 200 µm filter (26.4

± 1.8) while the highest average Cq value could be found in the sample flow–

through (30.5 ± 1.3), consistent with expectation that large eukaryotic cells

will be trapped at higher pore sizes allowing bacterial cells to flow through.

Unexpectedly, a considerable amount of bacteria, as measured by low Cq

value, are captured at the higher pore size filters and the flow through is on

average the most diluted source of bacterial cells (Table 3.2).

As the diet of individuals in this study are highly fibrous and a fair amount
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of organic material is trapped at higher pore size filters, it is possible that

bacterial cells aggregated with this organic material accounts for the rela-

tively consistency of bacterial cell mass as estimated by qPCR. Alternatively,

larger conglomerations of bacterial cells may prevent individual cells from

passing through the filters even at high pore size. Interestingly, while bac-

terial cell density as estimated by qPCR fluorometry indicates a relatively

consistent distribution of bacteria across each filtration membrane level, the

median phylogenetic diversity and number of observed OTUs decrease with

each subsequent filter size, only to increase slightly in the flow through (Fig-

ure 3.1), demonstrating the impact of filtration on bacterial alpha diversity.

Figure 3.1: Measures of alpha diversity decrease with decreasing pore
sizes. Alpha diversity as measured by the observed phylogenetic diversity
and number of unique OTUs in each filter level among all samples. The
highest phylogenetic diversity and number of OTUs is detected at the 200
µm and 60 µm filtration level, which sharply decreases at the 20 µm and 5
µm level, only to recover slightly in the flow through.

3.4.2 Sample specific taxonomic shifts at small pore sizes. An in-

creased frequency of otherwise non–dominant bacterial phyla including
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Cyanobacteria and Verrucomicrobia are detected within certain samples at

small pore sizes with the highest increase evident in the flow through (Figure

3.2a). For example, in sample SM02 the proportion of Cyanobacteria recov-

ered from the unfiltered sample is 3.7% of the total bacterial community. This

proportion of Cyanobacteria increases nearly ten fold to 34.4% in the flow

through of the same sample (Figure 3.2b). Similarly, the phylum Verrucomi-

crobia increases in the unfiltered to flow through of sample NO15 and SM29

from 29.3% to 44.7% and 0.5% to 9.5% respectively.
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Figure 3.2: Observed phylum–level taxonomic shifts related to filtration level. (a) Sample–specific
phylum–level taxonomic shifts in unfiltered, 200 µm, 60 µm, 20 µm, 5 µm filtered, and flow through sam-
ples. (b) Changes in proportion of selected phyla in all samples over each filtration level. While the proportion
of most phyla is relatively consistent across larger pore size filters, frequencies of select phyla are increased
in the smaller size filter and flow through.
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Shifts in the frequency of particular OTUs was calculated among all OTUs

detected in at least two samples at a minimum proportion of 0.5% of the

entire sample the results of which can be found in Figure 3.3. The count

of each filtration level is normalized by the maximum observed count in the

within–sample series of filter levels so that Ynorm = Y−Xmin

Xmax−Xmin
, resulting in a

normalized score from one to zero. Results of this analysis support the in-

creased proportion of OTUs assigned to the Cyanobacteria phylum among

the Peruvian samples with more than one OTU driving this pattern, suggest-

ing it may be due to an intrinsic characteristic of these bacteria (e.g., small

cell size). Conversely, other OTUs, particularly in the Firmicutes phylum, are

found at higher frequencies in the non–filtered samples and decrease in the

filtered samples. The decreased frequency of this and other dominant phyla

in the filtered samples likely allows for the increased sensitivity in the ability

to detect non–dominant taxa.

3.4.3 Source of Cyanobacteria in fecal samples. OTUs assigned to the

Cyanobacteria phylum were assigned to various levels of taxonomic resolu-

tion to the under characterized bacterial order Vampirovibrio which includes a

variety of bacteria isolated from environmental sources as well as the mam-

malian gut (Figure 3.4, Figure 3.5). To determine whether potential Vam-

pirovibrio OTUs detected in this study are environmental contaminants, or

potentially incorporated into the gut through consumption of water, all Vam-

pirovibrio sequences in the EzBioCloud database [211] and OTUs defined in

this study were clustered at 97% sequence similarity and built into a Maxi-
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Figure 3.3: Bubble chart of OTU–level taxonomic shifts in each sample
at different filter levels. Phylogenetic tree of high–frequency OTUs present
across samples colored by phylum with corresponding change in frequency
in each sample. Bubble size and intensity indicates the filtration level in which
the highest and lowest proportion of the OTU is found.

mum Likelihood tree using RAxML [178]. Additionally, a pair–wise distance

matrix was generated to detect clusters of similar 16S rRNA V4 sequences

among taxa classified as Vampirovibrio (Figure 3.4). Of the 12 OTUs defined

as Vampirovibrio generated from this study, four are more than 97% different

in terms of sequence identity than any other Vampirovibrio in the EzBioCloud

database [211]. Of those that cluster with the published Vampirovibrio OTUs,
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isolation sources of clustered published sequences include the human gut

microbiome but also other mammals sources including pig, snub–nose mon-

key, bighorn sheep, sheep, hamadryas baboon, rat, and flying fox feces as

well as bovine rumen samples (NCBI Accession: HF996393, AB506276,

GU303703, GQ451200, EU474510, AB494937, GQ451255, FJ879341,

EU474538, EU464248, FR888536, HQ716357, EU466334, EU469690).

3.5 Discussion and Conclusions

3.5.1 Limitations to fecal filtering methods. Filtration methods de-

scribed in this study are markedly different from those described using filters

to select different bacterial cell sizes in environmental sources [149, 150, 193]

in that the high viscosity, presence of undigested fibrous material, and sample

volume limitations of fecal samples necessitates a higher filtration pore size

than those that may have a more precise separation of bacterial cells at sub–

micron levels. Despite this, preliminary testing of this filtration method using

a pure Escherichia coli culture illustrates that despite the relatively large pore

size of even the highest filtration levels, individual or clusters of bacterial cells

are easily trapped on the filter itself (Supplementary Table B.1). Because of

this, future filtration methods may require additional filtration steps at lower

pore sizes as well as a more efficient washing of the filter membrane to en-

hance the specificity of the filtration process. However, while the presence

of bacterial cells at each filtration level is expected based on our positive

control, results from this study indicate nevertheless that at small pore sizes

non–dominant taxa may become enriched, allowing for the targeted enrich-
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Figure 3.4: Position of OTUs assigned to the Vampirovibrio order in this
study relative to other published Vampirovibrio sequences. Maximum
likelihood tree of 97% identity clustered OTUs generated from all Vampirovib-
rio reference sequences found in the EzBioCloud database [211] as well
as OTUs from the current study designated as Vampirovibrio. Lines from
tree tips for each OTU are colored to represent “environmental”, “gut”, and
“other” isolation sources for each OTU as defined by the NCBI genbank entry.
Heatmap represents the pairwise similarity of OTUs to each other. All OTUs
in this study cluster with sequences isolated from mammalian gut sources.

ment of small cell sized bacterial organisms.

3.5.2 Enrichment of non–photosynthetic Cyanobacteria: Implications

for future research. The phylum Cyanobacteria is arguably the most impor-

tant bacterial groups in the genesis of multicellular life on earth. Early pho-

tosynthetic Cyanobacteria are thought to be major contributors to the fixation
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Figure 3.5: Maximum likelihood tree of environmental and gastrointesti-
nal Vampirovibrio. Alternative maximum likelihood tree of 97% identity clus-
tered OTUs generated from all Vampirovibrio reference sequences found in
the EzBioCloud database [211] as well as OTUs from the current study des-
ignated as Vampirovibrio. While bootstrap values across the tree are low,
clustering of OTUs by isolation source indicates the phylogeny represents
two distinct groups.

of oxygen in the Earth’s atmosphere [23] starting approximately 3.6 billion

years ago [28] eventually leading to what is known as the “Great Oxidation

Event” [177], the vanguard of multicellular life on Earth. Additionally, an early

endosymbiotic Cyanobacteria eventually lost the ability to live outside of its
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host cell and became the chloroplast organelle in plants [157], transmitting

photosynthesis to multicellular life. Despite the significance of this microbial

phylum, little is known about the early phylogenetic history of Cyanobacterium

[45]. Recently, however, a new group of bacteria, Melainabacteria has been

described as either a sister phylum of Cyanobacterium [45] or class within

the Cyanobacterium phylum [175] which may shed some light into the early

evolutionary history of these organisms. Members of Melainabacteria are

non–photosynthetic and appear to be prevalent in both the environment and

gastrointestinal tract of a variety of vertebrate taxa [45, 176, 175]. A valuable

finding from these filtration experiments is the enrichment of potential mem-

bers of this under–described bacterial group in filtered fecal samples from the

Peruvian, but not Norman, individuals in this study.

Twelve distinct OTUs assigned to the order Vampirovibrio from this study

are potentially uncultured members of the Melainabacterium group. The ear-

liest members of Vampirovibrio were isolated from natural aquatic environ-

ments [72, 55]. An interesting aspect of these environmental Vampirovibrio

are their predatory nature. Small, Gram–stain negative, and motile, Vam-

pirovibrio cells seek out and attach to their prey via a pad of spikes that

penetrate the prey cell membrane forming a T–type conjugation formation

through to the prey cell cytoplasm [176]. The Vampirovibrio group obtained

its name by the subsequent vampire–like resource acquisition by which the

predator cell ingests the prey’s cell contents through protease and other enzy-

matic activity [176]. Melainabacterium isolates from the gastrointestinal tract

of animals are generally thought to be obligately fermentative organisms [45]
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based on the partial reconstruction of five Melainabacterium genomes [45],

yet still much is needed to clarify the phylogenetic relationship and functional

potential of these organisms in environmental and host–associated microbial

ecosystems. Importantly for the purposes of this study, currently described

members of Melainabacterium meet requirements for potentially masked taxa

in mixed microbial ecosystems which may be better clarified by serial filtra-

tion as they (1) are small in size as compared to other free–living bacteria

[55] and, (2) have a highly reduced genome size, especially those found in

the gut [45].

3.5.3 Conclusion. This study demonstrates the utility of serial filtration

of fecal samples for the enrichment of otherwise undercharacterized taxa in

metagenomic or metabarcoding study of the gut microbiome. As many bac-

terial organisms that are potentially important residents of these communities

are under characterized, serial fecal filtration and 16S rRNA metabarcoding

may be a cost effective screening technique to identify samples for poten-

tial whole genome metagenomic sequencing of non–dominant taxa for which

whole genome assembly and functional annotation would advance under-

standing of the role of these taxa in microbiome habitats. In addition, these

screening techniques may identify samples for which culturing of these mi-

crobes may be accomplished. The application of novel experimental tech-

niques and the inclusion of non–industrial populations for the genomic char-

acterization of bacterial members of the gut microbiome is one avenue to at-

tempt to clarify the genomic “dark matter” that predominates in metagenomic
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studies of the human gastrointestinal tract.
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Chapter 4

Differential preservation of endogenous human and microbial

DNA in dental calculus and dentin

4.1 Abstract

Dental calculus (calcified dental plaque) is prevalent in archaeological skele-

tal collections, and a rich source of oral microbiome and host-derived ancient

biomolecules. Recently, it has been proposed that dental calculus may pro-

vide a more robust environment for DNA preservation than other skeletal re-

mains, but this has not been systematically tested. In this study, shotgun-

sequenced data from paired dental calculus and dentin samples from 48

globally distributed individuals are compared using a metagenomic approach.

Overall, we find that dental calculus is a consistently richer and less contam-

inated source of ancient DNA than dentin. The majority of DNA in dental

calculus is microbial and originates from the oral microbiome; however, a

small but consistent proportion of DNA (x̄0.08 ± 0.08%, range 0.007–0.47%)

derives from the host genome. Host DNA content within dentin is variable

(x̄13.70 ± 18.62%, range 0.003–70.14%), and for a subset of dentin sam-

ples (15.21%), oral bacteria contribute >20% of total DNA. Human DNA in

65



dental calculus is highly fragmented, and is consistently shorter than both

microbial DNA in dental calculus and human DNA in paired dentin samples.

Finally, we find that microbial DNA fragmentation patterns are associated with

guanine-cytosine (GC), content, but not aspects of cellular structure.

4.2 Introduction

Dental calculus is a mineralized form of dental plaque [204], a sequentially

generated microbial biofilm [120] that entraps microbial, dietary, host, and

ambient debris during spontaneous calcification events [196]. Unlike body

mucosal surfaces that have continual cell turnover, teeth do not remodel.

Consequently, they act as relatively stable environments for bacterial colo-

nization during biofilm development [121], making the formation of dental cal-

culus difficult to prevent without mechanical removal. As such, dental calculus

is prevalent in the archaeological record, and due to its excellent morphologi-

cal preservation, it has long been an attractive target for microscopic analysis

[13, 60, 79, 49, 97]. More recently, dental calculus has been explored as a

source of ancient DNA (aDNA), and it has been shown to retain an excel-

lent record of the human oral microbiome [2, 194], as well as serve as an

alternative source of endogenous host DNA [135].

Retrieving serviceable aDNA from archaeological sources, whether from

skeletal tissues (bone and dentin) or from microbiome remains (dental cal-

culus and paleofeces), poses several challenges because after death both

time and environmental factors begin to compromise the molecular stabil-

ity of DNA. These processes include oxidative and hydrolytic damage to in-
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dividual bases, hydrolytic lesions on the sugar–phosphate backbone, DNA

fragmentation due to nuclease activity, and general degradation by microor-

ganisms involved in the decomposition process [136, 39]. As a result, aDNA

accumulates predictable forms of damage characterized by DNA loss, ex-

treme DNA fragmentation, depurination, and high–levels of terminal cytosine

deamination [81, 162, 39]. In addition to damage, ancient samples can also

acquire exogenous contamination that may obscure any remaining endoge-

nous signal. Susceptibility to contamination appears to be tissue specific,

with petrous bone and tooth dentin generally exhibiting the highest propor-

tions of endogenous human DNA among archaeological skeletal and soft

tissues [62, 148, 77]. Recent studies have suggested that dental calculus

may be more resistant to environmental contamination than other sources of

aDNA, and higher overall DNA yields have been reported from dental cal-

culus than from any other archaeological source of aDNA [194, 135]. While

these patterns are compelling, they have been reported from a small number

of samples and are not controlled for variables such as temporal age, deposi-

tional context, or geographic location [194, 214, 135]. As such, the prospect

of ancient dental calculus as a dependable source of well–preserved, en-

dogenous aDNA has not yet been systematically tested.

In the present study, metagenomic sequencing data from paired dentin

and dental calculus samples from 48 individuals are compared to test

whether endogenous DNA exhibits a different degree of preservation in den-

tal calculus than in other skeletal tissues from the same individual. Individuals

included in this study represent seven archaeological sites spanning diverse
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geographic, environmental, and temporal ranges, providing control over indi-

vidual and group dynamics. Thirty–six paired samples were selected from a

single medieval cemetery in Kilteasheen, Ireland in order to examine intra–

site variation in preservation. Additionally, 12 paired samples from six differ-

ent archaeological sites on three continents spanning a broad temporal range

were selected to control for environment, burial context, time period, and indi-

vidual dynamics that may impact preservation quality (Figure 4.1). We com-

pare DNA preservation within archaeological dental calculus and dentin from

the same tooth, with a specific focus on four main measures: (1) DNA abun-

dance, (2) microbial community composition and contamination, (3) human

DNA content, and (4) DNA fragmentation and damage patterns. Our findings

confirm that calculus is a richer source of total DNA when compared to dentin,

with a low, albeit consistent, proportion of endogenous human DNA. Micro-

bial profiles of dental calculus suggest that it retains a robust signal of the hu-

man oral microbiome and is relatively resistant to exogenous contamination,

while dentin is typically dominated by environmental microbial sources. A

subset of dentin, however, contains DNA from oral bacteria (possibly deriving

from postmortem colonization during decomposition processes), indicating

that dentin may serve as an alternative source for DNA from individual oral

microbes in some cases. With respect to DNA degradation, we find that DNA

fragmentation patterns within dental calculus are associated with the genomic

source of the DNA (human vs. microbial) but not with cellular structure (e.g.,

microbial cell wall type or presence of a surface–layer). Additionally, human

DNA is consistently shorter in dental calculus than in paired dentin samples,

68



which may reflect differences in the manner by which human DNA is incorpo-

rated into each tissue. Finally, we observe a systematic loss of short AT–rich

DNA fragments that is particularly marked in bacteria with low to medium GC

content genomes.

Figure 4.1: Geographic locations and temporal periods of archaeologi-
cal teeth included in this study. (a) Camino del Molino, Spain; (b) Khovs-
gol, Mongolia; (c) Samdzong, Nepal; (d) Kilteasheen, Ireland; (e) Anse à la
Gourde, Guadeloupe; (f) Norris Farms, Illinois, USA; (g) Middenbeemster, the
Netherlands. For each site, representative teeth with dental calculus deposits
are shown in boxes. The number of teeth (dentin–calculus pairs) analyzed
per site is provided within the indicated circles, and corresponding letters on
the time line indicate the time period represented by each site.

4.3 Methods

4.3.1 Samples. Paired dental calculus and dentin samples were obtained

from seven geographically and temporally distinct sites: the 19th century site
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of Middenbeemster in the Netherlands (n=2, 1611–1866 CE), the Copper

Age site of Camino del Molino in Spain (n=2, 2340–2920 BCE), the Bronze

Age site of Samdzong in Nepal (n=2, 400–650 CE), the Iron Age site of Hov-

sgol in Mongolia (n=2, 930–1650 BCE), the Late Ceramic Age site Anse à

La Gourde in Guadeloupe (n=2, 975-1395 CE), the Mississippian site of Nor-

ris Farms, IL, USA (n=2, 1300 CE), and the Medieval site of Kilteasheen

in Ireland (n=36, 600-1300 CE). The first six sites were selected to represent

global patterns of DNA preservation across diverse environments, burial con-

texts, and time periods. Remains and data from this site are referred to as

the global dataset. A more extensive sampling of a single site in Kilteasheen,

Ireland was performed to account for regional DNA preservation between in-

dividuals with similar burial contexts across a time transect of approximately

six centuries. Remains and data from this site are referred to as the regional

dataset.

4.3.2 DNA Extraction.

Global Sample Set

Samples were prepared for sequencing in a dedicated ancient DNA labo-

ratory at the Laboratories of Molecular Anthropology and Microbiome Re-

search (LMAMR) in Norman, Oklahoma, USA. Teeth were first decontam-

inated with bleach, then the calculus was separated using a dental scaler.

The crown was separated from the root using a Dremel rotary tool. Parti-

tioned tooth roots and calculus were further decontaminated via exposure to
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UV irradiation. DNA extraction was performed as described by Warinner et

al. (2014). Approximately 10–20 mg of dental calculus and 100 mg of dentin

were crushed and then immersed in 1 ml of 0.5 EDTA for 15 minutes to re-

move any additional surface contaminates. Dental calculus samples were

demineralized in a solution of 0.45 M EDTA and 10% proteinase K (Qiagen,

the Netherlands) at 55◦ C for 8-12 hours. Dentin samples were demineralized

at room temperature. After 2 days, the EDTA supernatant was removed and

refreshed with new EDTA and 50 µl of protinase K (Qiagen, the Netherlands).

Dentin samples were then left to demineralize for an additional 3 days at room

temperature. Prior to demineralization, all samples were centrifuged and the

supernatant was used for DNA extraction using a phenol-chloroform-isoamy

alcohol (25:24:1) along with three blanks. Extracted DNA was isolated using

silica purification and quantified using a Qubit fluorometer.

Regional Sample Set

Samples were prepared and extracted in the paleogenetics clean room at

the Institute for Archaeological Sciences, University of Tubingen (INA). The

surface of the dedicated sampling hood was cleaned with HPLC water and

UV irradiated by an internal light source between uses. Any calculus was

removed from the surfaces of the teeth using dental scalers, which were

rinsed with bleach and HPLC water, then UV irradiated for 10 minutes be-

tween uses. Large calculus samples were pulverized with a tube pestle.

Teeth were then sectioned horizontally at the cementoenamel junction and

dentin was drilled from the pulp chamber using a dental drill. For calculus
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samples weighing over 20 mg, half the pulverized material was carried over

for extraction. For dentin samples over 70 mg, aliquots of approximately 50

mg were taken for extraction. Dentin and calculus samples were extracted

using a modified silica-based method according to Dabney et al. (2013).

Samples were submerged in a digestion buffer with final concentrations of

0.45 M EDTA and 0.25 mg/mL proteinase K and rotated overnight at 37◦ C.

After incubation, samples were centrifuged and the supernatant was purified

using a 5 M guanidine-hydrochloride binding buffer with High Pure Viral Nu-

cleic Acid Large Volume kits (Roche). The extracts were eluted in 100 µl of a

10 mM tris-hydrochloride, 1 mM EDTA (pH 8.0), and 0.005% tween-20 buffer

(TET). One extraction blank was prepared for every ten samples, and one

positive control of cave bear bone powder was processed alongside each ex-

traction batch to ensure efficiency. The extracts were quantified using a Qubit

fluorometer.

4.3.3 Illumina Library Preparation.

Global Sample Set

Approximately 100 ng of DNA was used for each Illumina shotgun library at

the LMAMR, Norman, Oklahoma using NEBNext DNA Library Prep Master

Set (E6076) and blunt–end modified Illumina adapters. Manufacturers in-

structions were followed with the exception of Nebulization. Blunt–end repair

was performed using 50 µl reactions with 30 µl of DNA extract for each sam-

ple which was then incubated for 20 min at 12◦ C and 15 min at 37◦ C and
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purified using Qiagen MinElute silica spin columns following the manufactur-

ers instructions. All samples were eluted in 30 µl. Prior to end–repair, Illumina

adapters were ligated in 50 µl reactions. Reactions were incubated for 15 min

at 20◦ C and purified using Qiagen QiaQuick columns before elution in 30 µl

EB. Samples were then incubated for 20 min at 37◦ C followed by 20 min at

80◦ C in a final volume of 50 µl for adapter fill–in. Libraries were amplified and

dual-indexed in a 50 µl PCR reaction using 15 µl template, 25 µl of a 2x KAPA

U+ master mix, 5.5 µl H2O, 1.5 µl DMSO, 1 µl BSA (20 mg/ml), and 1 µl of

each forward and reverse index (10 µl µM). Thermocycling conditions were 5

min at 98◦ C followed by 10–12 cycles of 15 seconds at 98◦ C, 20 seconds

at 60◦ C, and 20 seconds at 72◦ C, followed by a final elongation step for 1

minute at 72◦ C. Amplified libraries were then purified using Agencourt AM-

Pure XP beads and eluted in 30 µl EB. Samples were sent for sequencing on

an Illumina HiSeq 2500 using a paired-end, 2 x 100 bp, rapid-run chemistry.

Regional Sample Set

Double-stranded Illumina libraries were generated using 10 µl of extract for

each sample according to an established protocol [124]. Purification of the

blunt-end repair and adapter ligation steps was performed using Qiagen

MinElute columns. After the adapter fill-in step, the Bst polymerase was deac-

tivated with a 20 minute incubation at 80◦ C. A single library blank was used

for every ten samples. The libraries were then quantified using real–time

quantitative PCR (qPCR, Lightcycler 480 Roche). Each library was assigned

a unique pair of indices, added to the library over 2-15 indexing reactions
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per library. Libraries were indexed in 100 µl reactions using varied amounts

of template and H2O based on library richness, 10 µl PfuTurbo buffer, 1 µl

PfuTurbo (Agilent Technologies), 1 µl dNTP mix (25 mM), 1.5 µl BSA (10

mg/ml), and 2 µl of each indexing primer (10 µM). The reactions were puri-

fied, pooled, and eluted over MinElute columns in 50 µl TET. Efficiency of the

indexing reactions was evaluated using a qPCR assay. Approximately one–

third of each indexed library was amplified using 3–5 µl of template in 70 µl

reactions with Herculase II Fusion DNA Polymerase (Agilent Technologies).

Products for each sample were pooled and quantified using an Agilent Tape

Station D1000 Screen Tape kit. Amplified sample and blank libraries were

pooled into two 10 nM pools for shotgun sequencing. Samples and blanks

were sequenced separately on Illumina NextSeq 500 using single–end, 75–

cycle, high-output kits. Samples were sequenced to a depth of approximately

5 million reads per library, and blanks were sequenced to a depth of 100,000

to 300,000 reads. Additionally, thirteen individuals of the regional sample set

were re–sequenced using paired–end 150–cycle chemistry on an Illumina

NextSeq 500 so they could be included in fragment length analyses.

4.3.4 Computational Methods. Sequencing data from the global and

regional sample sets were computationally processed identically. Adapters

were removed, paired–end data merged, and reads quality filtered using

Clip & Merge [146] with a minimum base quality of 20 and a minimum

fragment length of 30. Processed reads were then taxonomically binned

using MALT (version 038) [185] and the NCBI full nucleotide database
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with an 85% identity threshold. Metagenomic profiles were analyzed

with MEGAN (community edition, v6.11.2) [87] and screened for specific

taxonomic levels for fragment length and damage pattern profiles using a

RMA file format parsing script [84]. Before downstream analysis, all reads

were normalized across samples to the lowest number of reads in the

full sample set using the default parameters in MEGAN using the option

Use Normalized Counts ignoring any reads that could not be assigned

to a taxonomic node. Mapping to the human genome (hg19) was performed

using BWA [110] as implemented in EAGER [146] with a mapping quality

score of 30. A species-level taxon table was exported from the bacterial and

archaeal sub-trees in MEGAN and used to generate a Bray-Curtis taxonomic

distance matrix in R using the vegan library (version 2.4–1) [133]. Principal

coordinates were generated using the R ape library [143] and visualized as a

PCoA plot using ggplot2 [205]. Potential source contribution to samples were

calculated from genus level bacterial and archaeal taxonomic frequency

tables using SourceTracker version 0.9.8 [98]. All source datasets were

computationally processed in a manner identical to the dental calculus and

dentin samples in this study. Source accession numbers: ERR1017187,

ERR1019366, ERR1022687, ERR1022692, ERR1034454, ERR1035437,

ERR1035438, ERR1035441, ERR1039457, ERR1039458, ERR1043165,

ERR1044071, ERR1044072, ERR1051325, SRR1631060, SRR1631061,

SRR1631063, SRR1631064, SRR1633008, SRR3184100, SRR3184876,

SRR3189411, SRR3189416, SRR3189418, SRS014107, SRS015650,

SRS018665, SRS018975, SRS019029, SRS019129, SRS019387,
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SRS023538, SRS063215, SRS077312.

Additionally, a nested classification scheme designed for this study,

adapted from [160], was used to classify species level proportions of en-

vironmental sources for a subset of the samples. This scheme divides

bacterial and archaeal species into likely isolation source according to a

species–by–species literature survey on PubMed. Pathobionts and oppor-

tunistic pathogens are designated as such when literature on the organism

consistently presented it as a health threat, though it also may be a natural

inhabitant of the human microbiome or soil. Assigned read counts for the

classified species were tabulated and visualized using the Krona Excel Tem-

plate [134]. This approach was used in conjunction with SourceTracker to

control for potential biases related to the modern samples used in the latter

and together present a layered representation of the types of microorganisms

typically found in ancient dental calculus and dentin. Fragment lengths and

damage pattern distributions were generated from MALT [185] results using a

RMA file format parsing script [84] and visualized using the ggplot2 [205] and

lattice [161] libraries in R. For all fragment length and damage rate analyses

only those samples that were paired end sequenced were used. Addition-

ally, only merged reads were considered to prevent artifacts brought on by

unmerged pairs, the maximum length of which is fixed. Finally, GC content

versus length profiles were generated using a custom python script (See Ap-

pendix C). When possible, analyses were run in parallel using GNU parallel

[181].
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4.4 Results

4.4.1 DNA abundance. The total amount of DNA recovered from archae-

ological dental calculus is substantially higher than from dentin as measured

by both fluorometric quantitation (Qubit) (Figure 4.2a) and quantitative PCR

(qPCR) (Figure 4.2b). Immediately following extraction, DNA yields from den-

tal calculus as measured by fluorometry ranged from 15.4 ng/mg to 214.4

ng/mg (x̄77.0 ng/mg ± 51.6), while dentin samples from the same individual

yielded 0.2 ng/mg to 14.3 ng/mg (x̄6.4 ng/mg ± 6.0). These measurements

are moderately correlated (Pearsons coefficient: 0.59; 95% CI: 0.43, 0.72)

to the average DNA copy number estimated after library construction using

qPCR. This fit accounts for 34% of the total variance using a linear regression

model (Figure 4.2b). Differences between the two methods may be related to

the fact that DNA library construction involves several silica-based purification

steps that are known to result in substantial, but stochastic, DNA loss [96].

While DNA abundance differences are not as stark in the qPCR results, the

overall amount of DNA recovered from dental calculus is consistently higher

than from dentin using both metrics.

4.4.2 Microbial community composition and contamination. Overall,

archaeological dental calculus and dentin contain microbial DNA from two

distinct communities. To explore these differences, shotgun-sequenced

reads from the 48 dentin and dental calculus pairs were taxonomically

binned using MALT [185], and the resulting assignments were analyzed using

MEGAN [87]. A species-level PCoA plot based on a Bray-Curtis dissimilar-
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Figure 4.2: Total DNA content of dental calculus is higher than dentin
as measured by both fluorescence and quantitative PCR (qPCR) tech-
niques. (a) Normalized DNA yield (log transformed nanograms DNA per mil-
ligram starting material) of DNA extracts obtained from dental calculus and
dentin as measured by a Qubit fluorometer using a High Sensitivity Assay
(p=3.911e-11, Wilcox signed-rank paired test). (b) Linear correlation between
normalized DNA yield (log(ng/mg)) and normalized DNA yield as measured
by qPCR after library preparation. The average number of copies per mil-
ligram was calculated from the mean of four technical replicates. In both
quantification metrics dental calculus has a higher DNA yield than dentin.

ity matrix demonstrates that dental calculus samples form a relatively tight

and cohesive group that is distinct from the more diffuse distribution of micro-

bial communities identified within dentin (Figure 4.3a). Importantly, microbial

communities from each material (dental calculus or dentin) are less similar

to their paired sample than they are to samples of the same material. This

pattern is consistent with expectations that the microbial taxa within dental

calculus represent a relatively well preserved biological community derived
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from dental plaque, while dentin—being sterile in life—is expected to harbor

a microbial community entirely composed of exogenous contaminant bacteria

acquired through stochastic postmortem processes.

Two additional approaches were used to further characterize the nature

and inferred sources of the microbial communities present within sample—

types. First, microbial species—level identifications were categorized accord-

ing to a nested scheme reflecting organism membership in one or more of the

following source categories: environmental, uncultured environmental, hu-

man microbiome, human oral, pathobiont, and opportunistic pathogen (Fig-

ure 4.3b), which were then visualized using the Krona Excel template [134].

Category membership was determined by species presence or absence in

the Human Oral Microbiome Database [31] as well as source and habitat de-

scriptions in the 20 most recent articles in PubMed using the species name

as the search keyword. Using this analysis, stark differences are observed

in the inferred microbial source contributions to archaeological dental calcu-

lus and dentin, whereby dental calculus is strongly dominated by human-

associated—and especially oral–associated—taxa, while dentin is primarily

composed of environmental taxa.

As a separate confirmation method, SourceTracker, a Bayesian source-

prediction tool [98], was used to estimate proportions of source similarity at

the genus level in dental calculus and dentin based on a set of modern ref-

erence microbial communities sequenced from human dental plaque [36],

human hand swabs [132], and top soil [91] (Figure 4.3c). While there are

some shared similarities between dental plaque and skin, skin is typically
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dominated by members of the genera Propionibacterium and Staphylococ-

cus while the oral cavity is predominantly colonized by members of the gen-

era Streptococcus. The bacterial community composition of soil is variable

[57] but is typically dominated by members of the phyla Acidobacteria and

Proteobacteria, distinguishing it from the microbial community found in hu-

man associated ecosystems. In agreement with the other methods presented

here, archaeological dental calculus is estimated to be composed primarily of

dental plaque-associated taxa, while dentin is dominated by genera associ-

ated with human skin and environmental sources (Appendix Table C.5). The

highest predicted contributions of skin and soil to dental calculus samples

are 7.9% and 14.0%, respectively, while the same predicted contributions for

dentin are 33.5% and 89.0%, respectively. Together, these analyses sug-

gest dental calculus is relatively robust to environmental contamination when

compared to dentin.

Although most dentin samples are strongly dominated by environmental

taxa, two dentin samples from the site of Norris Farms—NF47 and NF217—

cluster with dental calculus samples in the PCoA (Figure 4.3a) and are esti-

mated via SourceTracker analysis [98] to contain microbial DNA that is 56.2%

and 78.4% derived from dental plaque, respectively (Appendix C.1). Unlike

other teeth in this study, the Norris Farms teeth were obtained in a fragmented

state. Lacking the full intact teeth, the presence of carious lesions could not

be ruled out. For this reason, the Norris Farms samples were excluded from

further downstream analyses. In samples for which the tooth was intact, tooth

dentin is generally strongly dominated by environmental taxa; however, a sub-
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set of dentin samples exhibit a slight signal of the human oral microbiome,

ranging from 0.0% to 40.0%, with 7 of 46 dentin samples having a predicted

oral source contribution of 20.0% or more by SourceTracker analysis.

4.4.3 Human DNA content. Although typically higher than in dental calcu-

lus, the proportion of human endogenous DNA in dentin varies substantially,

ranging more than 4 orders of magnitude in this study, from 0.003% to 70.1%

of all reads (Figure 4.4a). By contrast, the proportion of human DNA in den-

tal calculus is relatively low, but consistent across all samples, differing by

less than 2 orders of magnitude, from 0.007% to 0.4%. To verify these reads

as authentic host DNA, and to mitigate the possibility that they represent

spurious mapping to the human genome or modern contamination, a sec-

ondary verification procedure was performed whereby only those reads that

met stringent mapping criteria, were assigned to the Homo sapiens node in

lowest common ancestor assignment by MALT, and displayed typical ancient

DNA damage profiles were included in a high confidence human dataset (see

Appendix). The number of human-assigned reads following strict mapping

decreased across all samples but was more severe among samples from the

Kilteasheen (regional) dataset. As the strict mapping parameters used allow

only one mismatch per 50 base pairs, this comparatively high loss of reads

in the regional dataset likely results from the fact that these samples were

sequenced using a single–end, 75 cycle sequencing strategy, rather than the

paired–end 2 x 100 cycle sequencing strategy employed for the global sam-

ple set.
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Of all originally designated human reads in the regional dataset, between

20.7% to 60.9% of the dental calculus reads and 0.6% to 67.1% of dentin

reads pass the initial strict mapping step. Within the global dataset, be-

tween 60.1% to 88.3% of dental calculus and 74.0% to 97.9% of dentin

reads pass. Reads passing strict mapping were next run through MALT

with the full NCBI nucleotide database as a reference to ensure proper as-

signment to Homo sapiens. Among all dental calculus samples, the pro-

portion of reads uniquely assigned to the Homo sapiens node ranges from

79.6% to 90.3%. Within all dentin samples the proportion of reads assigned

to Homo sapiens ranges from 81.1% to 92.7%. Finally, to ensure these

reads represent authentic ancient host DNA and not modern contamination,

rates of terminal cytosine deamination—chemical damage signals expected

of ancient DNA—were evaluated using mapDamage 2.0 [92]. While damage

rates were lower after these verification steps, all samples except one dentin

(KT05) present damage patterns consistent with authentic aDNA both pre–

and post–verification. Among dental calculus samples, the median change

in terminal damage between pre- and post-verification is a loss of 0.03% and

among dentin samples the median change is a loss of 0.04% (Appendix Table

C.2). Thus, although a small subset of reads may be erroneously assigned

to the human genome, for most of the samples included here the majority of

human assigned reads appear to be authentic ancient human DNA and not

contamination or misassignments.

Next, DNA fragmentation and damage patterns of human reads in paired

dentin and dental calculus samples were compared for a subset of the sam-
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ples for which paired-end DNA sequence data were generated, which in-

cludes the global sample set (n=10 individuals) and a subset of the regional

sample set (n=13 individuals). Overall, the median fragment lengths of total

DNA recovered from both dental calculus (56-88 bp, x̄ 72.8 bp) and dentin

(53–105 bp, x̄ 66.0 bp) are short and fall within a size range expected for

archaeological samples (Appendix Table C.3). For each dental calculus sam-

ple, the median fragment length of human reads was found to be 15.5 ± 4.2

bp shorter than the overall median fragment length of DNA in each sample,

which is primarily microbial in origin (Figure 4.4b). Dentin samples, however,

show no pattern with respect to human DNA fragment length compared to

overall DNA fragment length. Comparing human DNA in dental calculus and

dentin, we find that human DNA within dental calculus is generally more frag-

mented than human DNA in paired dentin samples, with the median length

of calculus–derived fragments being approximately 10.3 bp shorter than that

of dentin-derived fragments (Wilcoxon signed–rank test, p < 0.02); however,

this pattern is largely driven by the long human DNA fragment lengths in

dentin, and further work is needed to determine if this is an artifact of sample

preparation or a true biological pattern.

The relative degree of terminal cytosine deamination among human reads

is variable in dental calculus and dentin pairs from the same individual (Ap-

pendix C.5). Interestingly, most dental calculus samples from the global

dataset present lower initial terminal damage rates than their dentin pair. This

pattern is not, however, observed in the regional dataset, thus making it un-

clear if this is an artifact of sample preparation or a true biological pattern.
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4.4.4 Microbial DNA Fragmentation and Damage Patterns. We next in-

vestigated fragmentation and terminal cytosine damage patterns for a se-

lection of oral microbes preserved at high abundance within dental calculus

in order to determine the impact of cell wall or genomic structure on aDNA

preservation. It has been previously suggested that cell wall composition may

influence the preservation of microbial DNA in archaeological dental calculus

and dentin [167, 2]. Fifty oral bacteria were selected and categorized into

groups based on Gram stain status, the presence or absence of a surface

layer (S-layer), and overall genomic GC content (Figure 4.5a and 4.5c). Addi-

tionally, a subset of 20 highly abundant bacterial taxa was analyzed to exam-

ine species-level patterns of fragmentation (Figure 4.5b) and DNA damage

(Figure 4.5d).

We found no indication of a relationship between terminal cytosine dam-

age and microbial genomic source (Figure 4.5c and 4.5d) nor a relationship

between fragmentation and cell wall structure. However, we do see a small

decline in average DNA fragment length in taxa with higher genomic GC con-

tent (Figure 4.5a). This pattern is also reflected among the 20–species sub-

set of oral bacteria chosen for closer analysis, and reads assigned to Acti-

nomyces radicidentis , the species with the highest GC content, have the

largest displacement from the median fragment length of all selected taxa

(Figure 4.5b).

4.4.5 GC Content Shifts. Finally, the relationship between fragment

length and mean GC content was examined for five prevalent oral genera
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in dental calculus samples and a single prevalent soil genus in dentin sam-

ples to further evaluate the influence of genomic structure on microbial DNA

survival. Genera were chosen to maximize the range of GC content with

two genera each representing low, medium, and high expected genomic GC

content (Figure 4.6). Among all published genomes available in the NCBI

database, members of the genus Methanobrevibacter range in genomic GC

content from 24.2% in M. wolinii to 32.6% in M. ruminantium. The com-

mon oral methanogen M. oralis is expected to have a GC content of 27.9%.

Members of Fusobacterium also have low GC content, ranging from 26.0%

(F. perfoetens) to 35.1% (F. necrophorum). Among the medium GC content

genera, the GC content of Tannerella ranges from 37.7% (T. sp. CAG:118) to

56.5% (T. sp. oral taxon HOT-286), and Porphyromonas range from 42.7%

(P. gingivicanis) to 56.3% (P. bennonis). Finally, for high GC content gen-

era, Actinomyces ranges from 49.6% (A. coleocanis) to 73.1% (A. dentalis),

and Streptomyces ranges from 56.4% (S. sp. WAC00263) to 71.1% (S. sp.

NBRC110027 ). In comparing reads assigned to these genera in our sam-

ples, we detect an increase in GC content at shorter read lengths among all

chosen genera except for Streptomyces, where no shift was observed. Im-

portantly, this shift is greater for genera with moderate and low expected GC

content. For example, in Methanobrevibacter and Fusobacterium the length

at which the mean GC content begins to substantially shift (1 z score) is 39

bp and 48 bp, respectively (Appendix C.4). This shift occurs at longer lengths

for Tannerella and Porphyromonas at 59 bp and 58 bp, respectively, while

Actinomyces does not present a substantial shift until 35 bp. No shift is ob-
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served in Streptomyces, although this may occur in short fragments that are

below the length–filtering threshold (30 bp) used for this dataset.

4.5 Discussion and Conclusions

4.5.1 Dental calculus is a richer source of genetic material than dentin.

In agreement with the findings of previous studies [195, 135, 194], overall

DNA recovery from ancient dental calculus was found to be substantially

higher than from dentin, and this pattern is consistent through time and

across preservation contexts. This higher DNA content of archaeological

dental calculus compared to dentin likely reflects biological differences be-

tween the two substrates in cellular composition and structure during life, as

well as decomposition patterns after death.

Dental calculus is formed from dental plaque, a dense microbial biofilm

that has been estimated to contain more than 200 million cells per milligram

[174]. Approximately 70% of the dry weight of plaque consists of microbial

cells [122], and a large proportion of the biofilm matrix itself is composed

of extracellular bacterial DNA, which provides both structural support and

protection to its microbial inhabitants [139]. Furthermore, the mineralization

process that leads to dental calculus formation involves rapid inter– and in-

tracellular crystal formation by calcium phosphates, including hydroxyapatite,

which strongly bind DNA. The result is a dense crystalline structure that is

relatively inert and resistant to microbial attack, enzymatic action, and non–

acidic chemical alteration [195]. Although the surface of dental calculus re-

mains porous [171], penetration of substances towards the internal layers of
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the calculus matrix is restricted [200], which may account for its high DNA

preservation qualities. Calculus is not an entirely closed system, however.

It has been shown to disproportionately lose soluble small metabolites over

time [188], suggesting that the mineralized matrix allows some degree of wa-

ter movement.

In contrast to dental calculus, dental hard tissues are largely acellular, with

live cells in mature teeth being limited to a layer of odontoblasts lining the pulp

chamber wall, a sparse distribution of entrapped cementocytes within apical

cementum, and a layer of cementoblasts around the periodontal ligament

[111, 122, 105]. Most cells within teeth are instead found within the dental

pulp and consist of perivascular cells, blood cells, and pulpal blood vessels

[151, 122], all of which decompose readily after death through a combination

of necrosis and microbial invasion [195]. Thus, while the majority of cells

within dental calculus are found within a mineralized structure conducive to

preservation, the majority of cells within teeth are not, which may partially

explain the large differences in total DNA yield between the two substrates.

However, further studies of total DNA yields from freshly extracted teeth and

their component tissues are needed to fully understand these differences.

4.5.2 Dental calculus and dentin harbor distinct microbial communi-

ties. Microbial DNA obtained from dental calculus and dentin derive from

distinct communities. In agreement with previous studies [195, 194], the mi-

crobial community in dental calculus is dominated by human–associated oral

taxa, and DNA derived from these organisms greatly exceeds that originat-
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ing from environmental sources. The consistent preservation of a strong oral

microbiome signal in all 48 dental calculus samples in this study suggests

that this pattern is typical for archaeological dental calculus. By contrast, mi-

crobial DNA within dentin primarily derives from environmental sources. This

distinction between the two substrates is preserved across geography, burial

environment, and temporal period.

The tight clustering of all calculus samples included in this study, in con-

trast to with the diffuse distribution of dentin samples in the PCoA (Figure

4.3a), indicates that the oral microbiome signal is relatively uniform and stable

across diverse contexts, as expected for a preserved biological community.

In comparison, the diffuse distribution of dentin samples reflects the diverging

influences of different environmental microbes and the absence of a consis-

tent microbial composition. Despite the presence of DNA belonging to oral

microbes in some dentin samples, none of those included in this analysis join

the calculus cluster, indicating they are result of stochastic preservation of

particular oral microbes and do not retain a signal of a biological community.

4.5.3 Dentin is a source of oral microbial DNA. Interestingly, although

most microbial DNA within dentin is environmental in origin, we find that oral

bacteria contribute > 20% of total DNA in approximately one third of the

dentin samples (7 of 46) in this study. Notably, the teeth in this study were free

of oral pathology, such as caries, and with the exception of the two excluded

Norris Farms teeth, care was taken to avoid sampling the tooth surface. Thus,

dental infection and incomplete calculus removal are unlikely explanations for
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the presence of oral microbial DNA we observe in dentin. Our results agree

with data recently reported by [147], in which human–associated microbes

constituted 15% of the organisms identified in a metagenomic study of over

100 archaeological, root–derived dentin samples. These findings suggest

that members of the oral microbiome may also participate in postmortem den-

tal decomposition, although to a lesser extent than environmental microbes.

The presence of DNA from oral taxa in dentin has important implications

for the study of ancient commensal microbes and their evolution. Although

prevalent, dental calculus is not always present or preserved in archaeologi-

cal skeletal collections. Additionally, dental calculus may be absent or found

in low abundance in young individuals or for certain populations or time peri-

ods. If insufficient calculus is available for study, it may be possible to instead

access aspects of the oral microbiome through tooth dentin. Although the

stochastic processes of postmortem microbial growth would preclude oral

microbiome community–level analyses, genetic sequencing of dentin could

nevertheless provide access to the genomes of individual oral taxa for analy-

sis.

4.5.4 Dental calculus is a source of host DNA. Although dentin gener-

ally contains a higher proportion of human DNA than dental calculus, many

dental calculus samples in this study have comparable proportions of human

DNA to their dentin pair, with one dental calculus sample from the Nether-

lands (S454) having a higher proportion of DNA assigned to the human

genome than its paired dentin sample (Appendix Table C.2). This pattern is
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largely driven by the high variability of human DNA preservation within dentin.

Excepting in cases of infection [167], nearly all DNA in dentin should orig-

inate from the host genome at the time of death. However, archaeological

teeth typically contain much lower proportions of human DNA due to post-

mortem degradation and exogenous microbial growth. By contrast, the rel-

ative proportion of human DNA is uniformly low and relatively consistent in

dental calculus. When dentin is strongly degraded and the relative proportion

of host DNA in dentin is very low (< 0.1%), the absolute amount of human

DNA within dental calculus can exceed that of dentin. In such cases, the

genetic richness of dental calculus appears to compensate for its low relative

proportion of human DNA. Although obtaining host DNA from dental calcu-

lus using shotgun sequencing is generally inefficient given its low relative

abundance, dental calculus has been shown to be a valuable reservoir for

recovering host DNA using DNA capture methods [135].

4.5.5 Human DNA in dental calculus is highly fragmented. We find hu-

man DNA from dental calculus to be consistently shorter than the total DNA

from the same sample, and on average shorter than human DNA recovered

from the paired dentin sample. As a microbial biofilm, dental calculus is not a

human tissue and does not contain human cells. The mechanisms by which

human DNA is incorporated into dental calculus are not well understood but

are presumed to include passive adsorption of human DNA from oral fluids

and shed mucosal cells, as well as more active incorporation through host

inflammatory responses, including a kind of immune response mediated by
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neutrophils known as NETosis [194]. Neutrophils are an essential cell type of

the innate immune system that are recruited by macrophages during active

microbial infection [170]. Particularly important in the pathogenesis of peri-

odontal disease, neutrophils are recruited in high numbers into the gingival

crevice to attack dental plaque bacteria [159, 139]. Previous research has

found that most human proteins recovered from both modern and ancient

dental calculus are associated with the innate immune system, and specifi-

cally with neutrophils [194].

If host immune activity is a major contributor of human DNA to dental cal-

culus, the role of neutrophils in this activity may partially explain the higher

degree of human DNA fragmentation in dental calculus than in dentin. While

neutrophils and other immune cells are capable of phagocytizing individual or

small aggregates of microbial cells, large pathogens or those that can thwart

phagocytosis by forming biofilms stimulate the formation of neutrophilic extra-

celluar traps (NETs) [21, 99]. NETs are composed of decondensed chromatin

that is released from the nuclear membrane and mixed with disarticulated hi-

stones and granules containing antimicrobial proteins before being ejected

from the cell [170, 99, 117, 18]. The expelled chromatin traps the offending

microbes while simultaneously promoting destruction of the entrapped cells

[170]. Interestingly, along with the granular proteins, disarticulated histones

and short fragments of DNA (< 100 bp) are also potent antimicrobials, likely

increasing the antibiotic effect of NETs [22, 18].

Many bacteria have been shown in vitro to stimulate NETosis, includ-

ing the oral bacteria Porphyromonas gingivalis and Aggregatibacter actino-
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mycetemcomitans [140]. Moreover, certain bacteria subvert NETosis by pro-

ducing extracellular nucleases (DNases) which are either bound to the cell

membrane or secreted from the cell [41]. These nucleases free trapped bac-

teria by degrading the DNA backbone of the excreted NETs [170]. This ac-

tivity is particularly prevalent during periodontal disease, and a wide range of

oral bacteria including P. gingivalis, Tannerella forsythia, Fusobacterium nu-

cleatum, and Parvimonas micra are able to produce extracellular nucleases

[139].

If host DNA is incorporated into dental calculus in an acellular form—

either through NETosis or by another mechanism—the exposed DNA would

be vulnerable to a variety of damaging processes, including both hydrolysis

and extracellular nuclease activity. This may explain why human DNA within

dental calculus exhibits a high level of fragmentation that is poorly correlated

with that of oral microbes in the same sample [197].

4.5.6 Cell wall structure is not correlated with microbial DNA fragmen-

tation or damage. It has been previously proposed that certain microbial

cell wall attributes, such as the presence (Gram–positive) or absence (Gram–

negative) of a thick peptidoglycan layer, may influence the preservation of

microbial DNA and therefore contribute to biases in taxonomic analyses of

archaeological dental calculus [167, 2]. However, a subsequent investigation

of four dental calculus samples failed to find such a correlation [214]. In this

study, we test this hypothesis in 48 dental calculus samples and find no re-

lationship between attributes such as cell wall peptidoglycan structure or the
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presence of an S–layer and DNA fragmentation or terminal cytosine damage

patterns. This analysis does not preclude other aspects of cellular struc-

ture (e.g., spore formation or the presence of mycolic acids) that may impact

aDNA preservation but which were not tested in this study. Our analysis of

reads assigned to specific bacteria suggests that fragmentation and damage

patterns may be taxonomically structured. However, the consistency and bi-

ological basis of these patterns is beyond the scope of the data presented

here.

4.5.7 Loss of short AT–rich DNA fragments may contribute to taxo-

nomic skew. Analysis of the relationship between genomic GC content,

DNA fragment GC content, and DNA fragment length reveals an inverse rela-

tionship between DNA fragment length and GC content in taxa with low– and

medium–GC genomes, suggesting a systematic loss of short AT–rich frag-

ments. Short DNA fragments lack thermostability and are easily lost through

denaturation. The melting temperature of short DNA fragments is primarily

dependent on DNA sequence and length, in addition to environmental con-

ditions and additional factors [142], and in general sequences with longer

lengths and higher GC content have higher melting temperatures. Short

DNA fragments from taxa with lower GC content genomes are expected to

be more susceptible to loss through denaturation because their melting point

for a given fragment length will be lower, and this may contribute to taxo-

nomic skew. Interestingly, we found that high GC–content genera had slightly

shorter median fragment lengths, which is consistent with a higher retention
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rate of short DNA fragments.

Although we observe these patterns in archaeological dental calculus, it

is unclear if this is an artifact introduced during sequencing preparation or a

naturally occurring taphonomic process. Importantly, this effect is weaker or

absent from high genomic GC content genera, which include many soil bac-

teria [58]. If the loss of short AT–rich fragments is primarily taphonomic and

not methodological in nature, greater taxonomic skew may be expected in li-

braries generated using a single–stranded library preparation, which is known

to retain a higher proportion of shorter DNA fragments than the double–

stranded DNA library preparation method used in this study [63]. Documen-

tation of potential taxonomic–specific biases in recovery of DNA is critical as

they impact downstream interpretations of metagenomic data, affecting ac-

curate description of these ancient microbial ecosystems.

In this study, we use metagenomic sequence data to explore patterns of

preservation in microbial– and host–derived DNA in a large and diverse set

of paired archaeological dentin and dental calculus samples (n=48 individ-

uals, n=96 samples). We demonstrate that dental calculus is a rich source

of well–preserved oral microbiome DNA and a consistent source of highly

fragmented and low abundance human DNA. We find that cell wall structure

has no significant association with microbial DNA preservation, but that all

samples exhibit systematic loss of short AT–rich DNA fragments, a trend that

disproportionately affects taxa with low and moderate GC content genomes.

Finally, we show that approximately one third of teeth retain DNA from the

oral microbiome and thus tooth dentin may serve as an alternative source of
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oral bacterial DNA in the absence of preserved dental calculus deposits.
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Figure 4.3: Microbial communities represented in archaeological den-
tal calculus and dentin are distinct. (a) Principal Coordinates Analysis
(PCoA) of Bray–Curtis distances of all bacterial and archaeal species–level
assignments from dental calculus and dentin. Color indicates material type
and membership in global or regional dataset. Dentin samples marked with
an asterisk belong to individuals NF47 and NF217 in the global dataset, and
may represent the impact of carious lesions (Appendix C.1). (b) A subset of
four sample pairs were selected to further demonstrate differences in den-
tal calculus and dentin microbial communities. Species represented in the
MALT results were sorted into a layered classification scheme and the pro-
portions of reads assigned to each taxon were used to generate Krona plots.
(c) Stacked bar plots of Bayesian SourceTracker results for the four selected
pairs display estimated proportions of source contribution at the genus level,
using modern plaque, skin, and soil datasets as model sources. Both ap-
proaches show overwhelming abundance of environmental bacteria within
dentin samples, while most microbial DNA within the paired calculus sam-
ples are native to, and most likely derive from, the human microbiome.
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Figure 4.4: Human DNA in dental calculus shows consistent patterns of
low relative abundance and high fragmentation. (a) Relative percentage
of human DNA in all paired calculus and dentin samples calculated from de–
duplicated reads mapped to the hg19 human reference genome using BWA.
While the majority of dentin samples have an overall higher percentage hu-
man DNA, this value varies substantially by sample. Calculus is compara-
tively consistent between samples albeit on average lower than their paired
dentin sample. Sample pairs corresponding to those in Figure 3 are indicated
by numbered triangles: (1) S41, (2) H24b, (3) KT14, (4) KT13. (b) Median
fragment length of merged reads mapping to the human genome compared
to all merged reads in both dental calculus and dentin. Human assigned
reads in dental calculus are shorter than expected independent of age, lab-
oratory processing protocol, or sample preservation. Human mapped reads
in dental calculus and dentin were further verified for authenticity using strict
mapping parameters (Appendix Figure C.2, Appendix Table C.2).
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Figure 4.5: Fragment length and damage rates among bacterial taxa
within calculus. (a) Fragment length distribution of 50 high frequency
species–level bacteria among all dental calculus grouped into three meta-
data categories: gram status, the presence or absence of a surface layer (S–
layer), and the overall genomic GC content of the organism as documented
from the reference genome in the NCBI database. Input was normalized
to 400 randomly chosen reads per sample to mitigate the impact of sample
specific read length profiles. (b) Deviation of the median fragment length from
overall sample median fragment length of a subset of 20 oral bacteria in den-
tal calculus colored by dataset origin. (c) Terminal cytosine damage rates (C
to T substitution ratio at the first position of the 5 end of the molecule) among
50 bacterial species in dental calculus grouped by gram status, presence or
absence of an S–layer, and overall genomic GC content. (d) Terminal cyto-
sine damage rates (C to T substitution ratio at the first position of the 5 end
of the molecule) among 20 oral bacteria.
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Figure 4.6: Relationship of GC content to fragment length in five preva-
lent oral genera and one soil genus (Streptomyces). (a) Two low expected
GC content genera, Methanobrevibacter and Fusobacterium binned by read
lengths wherein each dot represents the mean GC content for all reads at that
length. (b) Two moderate expected GC content general, Tannerella and Por-
phyromonas binned by read lengths wherein each dot represents the mean
GC content for all reads at that length. (c) One high expected GC content oral
genus (Actinomyces) and one high expected GC content soil genus (Strep-
tomyces) binned by read lengths wherein each dot represents the mean GC
content for all reads at that length.
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Chapter 5

Conclusions

The purpose of this dissertation is to outline experimental techniques de-

signed to improve the taxonomic and community resolution of members of

the human microbiome. Specifically, three studies employing novel sam-

ple processing and analytical techniques were presented to address known

complications in characterizing the members of the human gut microbiome

in extant populations, as well as the ancient human oral microbiome, using

metabarcoding and metagenomic techniques.

In chapter two: “Microeukaryotic and dietary survey of the gut by internal

transcribed spacer metabarcoding”, the eukaryotic component of the human

gut microbiome was characterized in three human groups and two animal

species using the internal transcribed spacer regions one (ITS1) and two

(ITS2). Results of this study suggest that like bacterial diversity between

industrialized and non–industrialized populations [131, 34, 165, 210], mi-

croeukaryotic diversity is higher in non–industrialized populations with more

shared taxa among groups with more traditional subsistence strategies than

with industrialized groups. In addition, the presence of the protist genus
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Blastocystis was detected in all three human groups, regardless of geog-

raphy or subsistence strategy, which suggests that this microeukaryotic taxa

is widespread among human groups. Chapter three: “Enrichment of non–

dominant bacterial taxa in human fecal samples through serial filtration”

demonstrates the utility of serial cell–sized fractionation of fecal samples for

the enrichment of relatively small bacterial taxa that are to date under charac-

terized. In particular, the presence of putative non–photosynthetic bacterial

relatives of the phylum Cyanobacteria in filtered samples from non–industrial

populations illustrates the applicability of this method to screen for appropri-

ate samples for further investigation of undercharacterized taxa. As members

of this bacterial group have to–date only been characterized by their presence

in metagenomic samples and similarity to close relatives in the environment

[45, 176, 175], enrichment for these taxa may enable the further characteriza-

tion of these taxa using metagenomic techniques or the selection of samples

where culturing of these microbes may be possible. Finally, chapter four:

“Differential preservation of endogenous human and microbial DNA in den-

tal calculus and dentin” evaluates the preservation qualities of archaeological

dental calculus and finds that while dental calculus is a dependable source of

high yield ancient DNA and preserves a microbial signature consistent with

a human oral microbiome, the organism source may impact DNA preserva-

tion as measured by fragmentation profiles. Taxonomically structured biases,

therefore, may be intrinsic to this archaeological substrate, however, the im-

pact of these biases on the retrieval and interpretation of endogenous host

and microbial DNA requires further investigation.
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Future applications of the methods described here are hoped to further

clarify the interaction of under described taxa—including low frequency bac-

teria and eukaryotes—in the human gut microbiome with other community

members, as well as better characterize ancient human microbiome sources

by delineating expected taxonomic shifts by whether these are true repre-

sentations of the ancient microbiome state or if they are instead the result

of taphonomic or other natural or artificial preservational differences. The

omission of microbial eukaryotes as well as other low frequency or otherwise

under reported taxa is expected to have consequences for the interpreta-

tion of data generated for microbiome habitats [9, 115, 50]. Additionally, as

the inclusion of microbiome data generated from archaeological sources in-

cluding paleofeces [182] and dental calculus [194, 2, 214] are increasingly

used to understand the evolutionary history and ancestral state of a variety

of human–associated microbial ecosystems, a full appreciation of the po-

tential biases stemming from the characteristic degeneration associated with

ancient biomolecules including DNA is of paramount importance. Because

microbiome studies have the potential to inform on not only the evolution of

these diverse microbial communities, but also have the potential to inform on

aspects of modern human health and disease, understanding the human mi-

crobiome as a ecological system, holistically defined, will augment our ability

to predict the impact of dysbiosis and the presence or absence of specific

microbes on these ecological systems.
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Appendix A

Microeukaryotic and dietary survey of the gut by internal tran-

scribed spacer metabarcoding

Code

#!/usr/bin/python3

’’’Useage: python itsPrimerCheck.py input_R1.fastq input_R2.fastq

sampleName’’’↪→

import sys

import gzip

from Bio import SeqIO

from itertools import zip_longest

primer_its1f = "TCCGTAGGTGAACCTGCGG"

primer_its2r = "GCTGCGTTCTTCATCGATGC"

primer_its3f = "GCATCGATGAAGAACGCAGC"

primer_its4r = "TCCTCCGCTTATTGATATGC"

r1_its1 = []

r1_its2 = []
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r2_its1 = []

r2_its2 = []

readiter_R1 = SeqIO.parse(open(sys.argv[1]), "fastq")

readiter_R2 = SeqIO.parse(open(sys.argv[2]), "fastq")

for rec1, rec2 in zip_longest(readiter_R1, readiter_R2):

#check for normal configuration

if primer_its1f in rec1.seq[0:24] and primer_its2r in

rec2.seq[0:24]:↪→

r1_its1.append(rec1)

r2_its1.append(rec2)

if primer_its3f in rec1.seq[0:24] and primer_its4r in

rec2.seq[0:24]:↪→

r1_its2.append(rec1)

r2_its2.append(rec2)

#check for opposite configuration

if primer_its2r in rec1.seq[0:24] and primer_its1f in

rec2.seq[0:24]:↪→

r1_its1.append(rec2)

r2_its1.append(rec1)

if primer_its4r in rec1.seq[0:24] and primer_its3f in

rec2.seq[0:24]:↪→

r1_its2.append(rec2)

r2_its2.append(rec1)

#check for one of the seqs not having primer seq, keep both

if primer_its1f in rec1.seq[0:24] and primer_its2r not in

rec2.seq[0:24]:↪→

r1_its1.append(rec1)
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r2_its1.append(rec2)

if primer_its1f in rec2.seq[0:24] and primer_its2r not in

rec1.seq[0:24]:↪→

r1_its1.append(rec2)

r2_its1.append(rec1)

if primer_its3f in rec1.seq[0:24] and primer_its4r not in

rec2.seq[0:24]:↪→

r1_its2.append(rec1)

r2_its2.append(rec2)

if primer_its3f in rec2.seq[0:24] and primer_its4r not in

rec1.seq[0:24]:↪→

r1_its2.append(rec2)

r2_its2.append(rec1)

with open(’%s_ITS1_R1.fastq’ % sys.argv[3], "w") as outITS1_R1:

SeqIO.write(r1_its1, outITS1_R1, "fastq")

outITS1_R1.close()

with open("%s_ITS1_R2.fastq" % sys.argv[3], "w") as outITS1_R2:

SeqIO.write(r2_its1, outITS1_R2, "fastq")

outITS1_R2.close()

with open("%s_ITS2_R1.fastq" % sys.argv[3], "w") as outITS2_R1:

SeqIO.write(r1_its2, outITS2_R1, "fastq")

outITS2_R1.close()

with open("%s_ITS2_R2.fastq" % sys.argv[3], "w") as outITS2_R2:

SeqIO.write(r2_its2, outITS2_R2, "fastq")

outITS2_R2.close()
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Table A.1: Genera exclusively detected by ITS1 or ITS2

ITS1 ITS2

Genera Type Genera Type

Acremonium Fungi Anaeromyces Fungi

Blastocystis Heterokont Ascobolus Fungi

Brassica Plant Auricularia Fungi

Ceratobasidium Fungi Bensingtonia Fungi

Cercophora Fungi Brettanomyces Fungi

Cladosporium Fungi Caecomyces Fungi

Clavaria Fungi Chalara Fungi

Clavispora Fungi Chloroidium Algae

Cucumis Plant Coprinopsis Fungi

Cynodon Plant Cryptococcus Fungi

Cyrenella Fungi Cyphellophora Fungi

Devriesia Fungi Desmococcus Algae

Dichondra Plant Euphorbia Plant

Dicyma Fungi Fusariella Fungi

Edenia Fungi Lepidocyrtus Animal

Entomophthora Fungi Lepiota Fungi

Fusarium Fungi Leptogium Fungi

Glomus Fungi Maclura Plant

Heveochlorella Algae Mimusops Plant

Hydrocotyle Plant Neurospora Fungi

Ipomoea Plant Nigrospora Fungi
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Table A.1 continued from previous page

Lachancea Fungi Oontomyces Fungi

Microbotryum Fungi Orpinomyces Fungi

Microdochium Fungi Panama Fungi

Panaeolus Fungi Phallus Fungi

Parasympodiella Fungi Phoma Fungi

Penidiella Fungi Pichia Fungi

Phaeococcomyces Fungi Piromyces Fungi

Phaseolus Plant Podospora Fungi

Phlebia Fungi Psathyrella Fungi

Preussia Fungi Pseudoacremonium Fungi

Protomyces Fungi Pseudozyma Fungi

Pseudocercosporella Fungi Pyrenochaetopsis Fungi

Rauvolfioideae Plant Rhizopus Fungi

Readeriella Fungi Roussoella Fungi

Rhizophlyctis Fungi Sakaguchia Fungi

Saccharomycopsis Fungi Schistosoma Trematode

Septoria Fungi Schizosaccharomyces Fungi

Sesamum Plant Simplicimonas Parabasalid

Stagonospora Fungi Sphenophorus Animal

Stichococcus Algae Spinacia Plant

Tetracladium Fungi Sterigmatomyces Fungi

Tilletia Fungi Tetraplosphaeria Fungi

Trifolieae Plant Tetratrichomonas Parabasalid

126



Table A.1 continued from previous page

Tulasnella Fungi Theobroma Plant

Urera Plant Vanguerieae Plant

Zea Plant – –
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Table A.2: Sequencing results. The number of raw reads generated for each ITS target region, the number of
those reads that pass quality filtering and merging steps, and the percentage of raw reads that were useable
for downstream analysis.

Sample Raw ITS1 Raw ITS2 Merged ITS1 Merged ITS2
Proportion

Merged ITS1

Proportion

Merged ITS2

HS2374 46,985 134,711 33,164 99,034 0.71 0.74

HS2416 47,433 266,009 39,990 195,437 0.84 0.73

HS2363 6,880 7,738 5,190 5,700 0.75 0.74

HS2380 1,275 38,916 1,132 33,456 0.89 0.86

HS2432 5,572 48,181 4,901 41,356 0.88 0.86

HS2446 5,381 187,306 3,103 12,8028 0.58 0.68

SM05 86,869 459,960 84,268 447,912 0.97 0.97

SM29 103,736 272,961 100,366 258,119 0.97 0.95

SM01 288,580 192,036 275,909 184,591 0.96 0.96

SM02 283,089 191,180 250,605 187,681 0.89 0.98

SM31 110,603 255,617 108,282 249,198 0.98 0.97
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Table A.2 continued from previous page

SM32 191,162 117,135 177,101 114,212 0.93 0.98

NO7 191,162 117,135 177,101 114,212 0.93 0.98

NO15 110,603 255,617 108,282 249,198 0.98 0.97

NO16 6,880 7,738 5,190 5,700 0.75 0.74

NO20 1,275 38,916 1,132 33,456 0.89 0.86

BO2072 156,080 82,643 142,468 79,503 0.91 0.96

RC2109 94,102 51,610 87,030 49,597 0.92 0.96
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Appendix B

Enrichment of non–dominant bacterial taxa in human fecal

samples through serial filtration

Code

#!/usr/bin/python

import pandas as pd

otumap = pd.read_csv("map_otu97.txt", sep="\t")

grouped = otumap.groupby("OTU")["READ"].apply(lambda x: "%s" %

’,’.join(x))↪→

with open("otuMap.txt", "w") as outfile:

grouped.to_csv(outfile, sep="\t")
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Figure B.1: Rarefaction analysis at 8,000 read depth. Each line represents
a single true sample, vertical line represents a 8,000 rarefaction depth.
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Figure B.2: Cq value for each filter level in all samples as measured by
V4 and ITS1 targeted qPCR. A lower Cq value for either the ITS1 or V4
region indicates an earlier amplification and thus a higher frequency of the
targeted taxonomic group. * No ITS regions were amplified in the filter blank.

Table B.1: Cq value changes over filter levels with Escherichia coli stan-
dard. Cq value is lowest at 200µm but remains relatively consistent over
60µm and 20µm level filters indicating that although these filter sizes are
larger than an average bacterium, individual cells are trapped at higher than
expected filter levels.

Filter Level V4
200µm 19.97
60µm 14.70
20µm 14.65
5µm 17.77
Flow Through 17.56
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Figure B.3: Phylum level taxonomic distribution of each filter level. Il-
lustration of the filtering process with phylum–level taxonomic barcharts for
each sample at the corresponding filter level. Phyla remain consistent across
each filter level for an individual sample except for Cyanobacteria, Verrucomi-
crobia, and to a lesser extent, Tenericutes, which are enriched at lower filter
levels.
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Appendix C

Differential preservation of endogenous human and microbial

DNA in dental calculus and dentin

Code

#!/usr/bin/python

’’’Usage: python gcLenCorPlots.py -i <input fasta or fastq> [-m

<method> -r <range for heatmap> -t <trim maximum length> -s

<normalize to number> -ec <error bar color>]’’’

↪→

↪→

import pandas as pd

import matplotlib.pyplot as plt

import numpy as np

import argparse

import scipy

from Bio import SeqIO

from Bio.SeqUtils import GC

from scipy.stats import mannwhitneyu

from scipy.signal import resample
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parser = argparse.ArgumentParser()

parser.add_argument(’-i’, ’--input’, help=’either a fastq or fasta

file, must end with .fasta, .fna, .fa, .fastq, or .fq’)↪→

parser.add_argument(’-m’, ’--method’, help=’options: mean, median’,

default=’mean’)↪→

parser.add_argument(’-ec’, ’--errorbarColor’, help=’desired error

bar color in hex color, default is grey’, default=’grey’)↪→

parser.add_argument(’-r’, ’--range’, help=’Range setting for the

color bar. Accepted arguments: num, perc, max. Num colors by

the absolute number of reads ranging from 100 to 2k, perc

colors by percentage of total, max colors based on minimum and

maximum read counts’, default=’max’)

↪→

↪→

↪→

↪→

parser.add_argument(’-t’, ’--trim’, help=’Maximum length trim,

numeric’)↪→

parser.add_argument(’-s’, ’--shuffle’, help=’Randomly shuffle

results to a specific number’)↪→

args = parser.parse_args()

fastaEnds = (’.fasta’, ’.fna’, ’.fa’)

fastqEnds = (’.fastq’, ’.fq’)

if args.input.endswith(fastaEnds):

gcContent = [GC(rec.seq) for rec in SeqIO.parse(args.input,

"fasta")]↪→

lens = [len(rec) for rec in SeqIO.parse(args.input,

"fasta")]↪→

elif args.input.endswith(fastqEnds):

gcContent = [GC(rec.seq) for rec in SeqIO.parse(args.input,

"fastq")]↪→
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lens = [len(rec) for rec in SeqIO.parse(args.input,

"fastq")]↪→

else:

print("File extension not recognized, see help file")

print("Number of reads: %i" % len(gcContent))

df = pd.DataFrame({’length’: lens, ’gcContent’: gcContent})

#optional trimming/shuffle options

if args.trim is not None:

df = df.drop(df[df.length >

int(args.trim)].index).reset_index()↪→

print("Length trimmed to maximum %i" % int(args.trim))

print("Number of trimmed reads: %i" % len(df.gcContent))

if args.shuffle is not None:

df = df.sample(int(args.shuffle))

print("Number of reads normalized to %i" %

int(args.shuffle))↪→

#stats

print("Mean GC content: %.2f" % np.mean(df[’gcContent’]))

print("Median GC content: %.2f" % np.median(df[’gcContent’]))

print("Mean fragment length: %i" % np.mean(df[’length’]))

print("Median fragment length: %i" % np.median(df[’length’]))

print("Fragment length range: %i : %i" % (min(df[’length’]),

max(df[’length’])))↪→

print("GC content range: %.2f : %.2f" % (min(df[’gcContent’]),

max(df[’gcContent’])))↪→
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#grouped data

dfGrouped = df.groupby(by=’length’).agg([’count’, ’mean’, ’median’,

’std’]).reset_index()↪→

dfGrouped[’perc’] = dfGrouped[’gcContent’,

’count’]/dfGrouped[’gcContent’, ’count’].sum()↪→

#print out data

with open(’%s_data_out.txt’ % args.input, ’w’) as outfile:

dfGrouped.to_csv(outfile, sep="\t", index=False)

#calculate significance of each grouping, compared to overall

distribution↪→

dfLensGroup = df.groupby(by=’length’)

overall = df[’gcContent’]

lines = []

#limit options

plt.xlim(15, 90)

plt.ylim(20, 200)

plt.suptitle(args.input + "\n" + "n= " + str(dfGrouped[’gcContent’,

’count’].sum()))↪→

plt.xlabel(’GC content (%)’)

plt.ylabel(’Read length (bp)’)

#plot error bar

cm = plt.cm.get_cmap(’YlOrRd’)

plt.errorbar(dfGrouped[’gcContent’, args.method],

dfGrouped[’length’, ’’], xerr=dfGrouped[’gcContent’, ’std’],

linestyle="None", marker="None", color=args.errorbarColor)

↪→

↪→

137



#color range options

if args.range == ’num’:

#plot by number of reads, range from 1k to 10k

plt.scatter(dfGrouped[’gcContent’, args.method],

dfGrouped[’length’, ’’], c=list(dfGrouped[’gcContent’,

’count’]), cmap=cm, vmin=100, vmax=2000, marker=’o’,

edgecolors=’None’, s=25, zorder=2)

↪→

↪→

↪→

elif args.range == ’perc’:

#plot by percentage instead

plt.scatter(dfGrouped[’gcContent’, args.method],

dfGrouped[’length’, ’’], c=list(dfGrouped[’perc’]), cmap=cm,

vmin=0.0, vmax=1.0, marker=’o’, edgecolors=’None’, s=25,

zorder=2)

↪→

↪→

↪→

elif args.range == ’max’:

#plot by min to max count

plt.scatter(dfGrouped[’gcContent’, args.method],

dfGrouped[’length’, ’’], c=list(dfGrouped[’gcContent’,

’count’]), cmap=cm, vmin=min(dfGrouped[’gcContent’, ’count’]),

vmax=max(dfGrouped[’gcContent’, ’count’]), marker=’o’,

edgecolors=’None’, s=25, zorder=2)

↪→

↪→

↪→

↪→

plt.colorbar()

plt.draw()

plt.savefig(’%s_plot.pdf’ % args.input)

Human Read Validation Reads mapped to the hg19 human reference

genome using sensitive BWA [110] mapping parameters (-n 0.01, -l 1000,
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-q 30) were de–replicated using DeDup as implemented in EAGER version

1.92 [146]. Next, de–replicated bam files were converted to fastq format using

bedtools (bedtools bamtofastq) [154] and where necessary split into forward,

reverse, and merged reads. Three base pairs were trimmed from either side

of all merged reads using the FASTX–Toolkit (http://hannonlab.cshl.edu). For-

ward reads were trimmed of three base pairs exclusively on the 5 end of the

read while reverse pair reads were trimmed for three base pairs on the 3 end.

Trimmed reads were then remapped to the hg19 human reference genome

using BWA with a higher mismatch penalty and quality mapping threshold so

that approximately one mismatch would be allowed per 50 bases (-n 0.2, -l

1000, -q 37). The reads passing this quality threshold filter have a higher

level of confidence of their proper assignment to the human genome. To

further test the validity of these reads, they were then run through a lowest–

common–ancestor algorithm via MALT using the full NCBI NT database with

a percent identity threshold of 90%. Those reads that were assigned to the

Homo sapiens node are recorded in Appendix Table C.2. Finally, to test

whether these high confidence human reads are in fact ancient and not the

result of background contamination, the original reads pre-damage trimming

were pulled from the original fastq files, mapped to the hg19 human refer-

ence genome using BWA (-n 0.01, -l 1000, -q 30) and then assessed for

terminal cytosine deamination patterns using mapDamage version 2.0 [92].

For all calculus samples and most dentin samples, the percent endogenous

and damage patterns both pre and post strict map filtering are comparable,

confirming the observed pattern of a low but consistent human aDNA retrieval
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from calculus and a variable yield from dentin (Appendix C.2).

Bacterial Fragment Analyses Reads that mapped to the species node and

all higher resolution taxonomic nodes were extracted from the MALT results

for all bacteria of interest. To limit the impact of erroneous mapping only

those reads with damage at the terminus of the read were considered. For

all fragment length analyses, only merged reads were analyzed.

Figure C.1: Likely signal of carious lesions on two dentin samples (a) Bar
chart displaying Bayesian SourceTracker results of estimated genetic contri-
butions from human oral and environmental microbial sources. (c) Donut
plots constructed from nested classification of species-level MALT results.
The microbial communities in the Norris Farms dentin and calculus samples
have a high oral contribution, as demonstrated by both the SourceTracker bar
plots and the MALT classification donut plots.
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Figure C.2: Validation of ancient human DNA authenticity. (a) Terminal
cytosine deamination rates of reads mapped to the human genome from a
single calculus sample (KT14) before extra human validation steps. (b) Dam-
age rate of human reads from calculus sample KT14 after human validation.
While the damage rate of human reads post-validation drops, a clear damage
signal, consistent with authentic ancient DNA is still observed. (c-d) Terminal
cytosine deamination of a library build and extraction blank. Neither blanks
have an observed damage signal, consistent with modern DNA. (e) Propor-
tion human endogenous content for all paired samples both before and after
strict mapping (see Supplementary Methods). While in all cases the propor-
tion of human endogenous content drops after strict mapping, the effect is
minor for most samples. Major drops are detected in certain dentin samples.
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Figure C.3: Principal Coordinates Analysis (PCoA) of Bray-Curtis dis-
tances of all bacterial and archaeal species-level assignments from den-
tal calculus and dentin. Dental calculus is represented as circles and dentin
is represented as squares. Color indicates estimated contribution of oral taxa.
Black symbols are those samples that have a predicted proportion of oral
contribution of 20% or more, illustrating that some dentin samples have an
unexpectedly high oral signature, though most do not cluster with the dental
calculus samples, indicative of a non-biological community.
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Figure C.4: Fragment length deviation from expected mean GC content
for selected bacterial genera. Bacterial genera are organized by expected
genomic GC content wherein (a) are low genomic GC taxa, (b) are moderate
genomic GC taxa and, (c) are high genomic GC taxa. Each point represents a
single length bins mean deviation from the overall mean of all reads mapped
to the genus. Red points are those length bins that are one or more Z scores
deviated from the mean GC content. For each genus the read length bin at
which a major deviation can be seen (1 z score) is noted on the graph. For
low or medium genomic GC content genera, this length threshold occurs at a
higher fragment length than those with high genomic GC content.
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Figure C.5: Differences in damage patterns among paired dentin and
dental calculus is sample-specific. Cytosine damage patterns for a subset
of paired dentin (blue) and dental calculus (red) samples. While most dental
calculus samples have a lower intial deamination rate than their dentin pair
in the global dataset, this pattern is not consistently observed in the regional
dataset, possibly the result of differences in laboratory preparation.
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Table C.1: Sample metadata and sequencing statistics.

Country Site ID Type RawReads QualFilter AvLen AvCopiesPerUl ng/mg

Spain Camino del Molino C214 calculus 16562372 8688438 74.38 NA NA

Spain Camino del Molino cmol53 calculus 44932086 24214108 83.26 26072816294.12 53.98

Guadeloupe Anse a la Gourde F1948 calculus 18595784 9632823 78.97 115312571929.83 70.52

Guadeloupe Anse a la Gourde F349A calculus 22746512 11427674 66.73 NA NA

Mongolia Hovsgol H10b calculus 27888566 15530167 93.45 51369376363.64 70.97

Mongolia Hovsgol H24b calculus 23362848 12049868 80.08 24180983122.36 21.46

Ireland Kilteasheen KT01 calculus 4911010 4755715 58.63 3984942405.06 124.9

Ireland Kilteasheen KT01 calculus 5702580 5501834 63.85 10122933333.33 2.31

Ireland Kilteasheen KT02 calculus 4020488 3821086 53.19 151993633136.1 64.67

Ireland Kilteasheen KT03 calculus 3981083 3816316 57.98 144750000000 206.25

Ireland Kilteasheen KT04 calculus 4553768 4374085 55.57 118946233082.71 73.89

Ireland Kilteasheen KT05 calculus 4667356 4379057 51.39 32640000000 15.4

Ireland Kilteasheen KT06 calculus 5886164 5624929 56 38862670807.45 73.18

Ireland Kilteasheen KT07 calculus 5282583 5078760 56.38 21297238709.68 85.52

Ireland Kilteasheen KT08 calculus 4600075 4433489 61.13 21200200947.87 127.88
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Ireland Kilteasheen KT09 calculus 4707428 4501061 54.52 120493242553.19 53.71

Ireland Kilteasheen KT10 calculus 4859064 4617930 54.5 36647068965.52 18.81

Ireland Kilteasheen KT11 calculus 4542147 4316220 52.39 32461496815.29 24.15

Ireland Kilteasheen KT12 calculus 3807537 3638561 55.77 54585858490.57 21.74

Ireland Kilteasheen KT13 calculus 4178637 3979576 53.88 10902068965.52 4.94

Ireland Kilteasheen KT14 calculus 4825668 4646770 51.19 2056833333.33 28.7

Ireland Kilteasheen KT15 calculus 7618554 7301967 57.32 8705424150.94 73.61

Ireland Kilteasheen KT16 calculus 4005185 3818784 52.76 37812869767.44 23.89

Ireland Kilteasheen KT17 calculus 3659112 3495140 55.17 15081808609.27 43.77

Ireland Kilteasheen KT18 calculus 5737309 5494880 58.08 62621085937.5 53.33

Ireland Kilteasheen KT19 calculus 7054607 6799826 58.94 26244025000 104.35

Ireland Kilteasheen KT20 calculus 7403326 7082748 56.54 8806688294.93 98.64

Ireland Kilteasheen KT21 calculus 3936817 3772624 55.07 75454518260.87 54.76

Ireland Kilteasheen KT22 calculus 4605691 4410357 55.99 9995000000 20.6

Ireland Kilteasheen KT23 calculus 6802200 6461176 55.11 10344500000 24.2

Ireland Kilteasheen KT24 calculus 6478560 6196160 55.12 27390875921.91 214.42

Ireland Kilteasheen KT25 calculus 5428976 5219375 62.63 6854951458.33 132.73
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Ireland Kilteasheen KT26 calculus 5775371 5561060 57.25 1241075602.09 75.2

Ireland Kilteasheen KT27 calculus 4142968 3996320 61.21 12133675446.43 151.35

Ireland Kilteasheen KT28 calculus 5201864 5012681 56.36 2442698461.54 59.69

Ireland Kilteasheen KT29 calculus 6061552 5836482 59.3 44075813854.75 177.23

Ireland Kilteasheen KT30 calculus 4897216 4726141 58.52 2095413615.89 87.28

Ireland Kilteasheen KT31 calculus 9355963 9011366 60.37 22181513924.05 94.05

Ireland Kilteasheen KT32 calculus 5405125 5200487 57.31 17022138672.77 58.66

Ireland Kilteasheen KT33 calculus 6653276 6429041 59.74 44707812345.68 114.89

Ireland Kilteasheen KT34 calculus 5923944 5697691 57.99 11950376899.7 54.38

Ireland Kilteasheen KT35 calculus 4302295 4134490 59.7 10409058947.37 114.66

Ireland Kilteasheen KT36 calculus 5469103 5224291 58.13 6872992977.1 125.96

United States Norris Farms NF217 calculus 11561738 6141258 NA NA NA

United States Norris Farms NF47 calculus 11945018 6363413 NA NA NA

Netherlands Middenbeemster S108 calculus 13923962 7124982 75.52 NA NA

Nepal Samdzong S37 calculus 17293694 8837686 72.37 NA NA

Nepal Samdzong S41b calculus 19199306 11089749 94.44 131895158469.95 133.9

Netherlands Middenbeemster S454 calculus 14907918 7803710 76.72 NA NA
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Spain Camino del Molino C214 dentin 31732062 16090474 63.48 NA NA

Spain Camino del Molino cmol53 dentin 131971688 74127692 79.99 85658577.98 0.94

Guadeloupe Anse a la Gourde F1948 dentin 61151808 31757589 70.18 2243590145.99 1.67

Guadeloupe Anse a la Gourde F349A dentin 30558738 16566928 76.66 NA NA

Mongolia Hovsgol H10b dentin 61149106 34834067 90.85 6307049446.9 0.31

Mongolia Hovsgol H24b dentin 66607316 37629597 86.79 701265495.87 3.15

Ireland Kilteasheen KT01 dentin 5979713 5771580 58.9 NA NA

Ireland Kilteasheen KT02 dentin 4153951 4029632 59.13 519357717.39 5.21

Ireland Kilteasheen KT03 dentin 3670693 3553557 54.4 968759712.23 3.52

Ireland Kilteasheen KT04 dentin 4671204 4517813 56.4 1300396313.36 7.32

Ireland Kilteasheen KT05 dentin 3944620 3820087 49.95 575959448 35.71

Ireland Kilteasheen KT06 dentin 5674209 5542331 54.42 1379696067.42 3.01

Ireland Kilteasheen KT07 dentin 4078202 3939964 62.54 1696910139.86 4.13

Ireland Kilteasheen KT08 dentin 4830306 4656617 54.55 3361880620.16 2.47

Ireland Kilteasheen KT09 dentin 6612577 6429918 57.55 1047288385.83 6.95

Ireland Kilteasheen KT10 dentin 3238307 3122323 52.68 517163149.61 4.49

Ireland Kilteasheen KT11 dentin 4874064 4714739 44.99 2599155263.16 8.89
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Ireland Kilteasheen KT12 dentin 4888032 4749761 58.59 900163350.79 14.28

Ireland Kilteasheen KT13 dentin 5947000 5738015 57.26 954896397.06 10.84

Ireland Kilteasheen KT14 dentin 6173417 5905330 49.11 2565364077.67 1.47

Ireland Kilteasheen KT15 dentin 4507142 4349804 NF 6107454580.15 13.13

Ireland Kilteasheen KT16 dentin 4937769 4780420 58.4 4382678250 8.73

Ireland Kilteasheen KT17 dentin 6213480 6063041 55.68 3581822222.22 2.03

Ireland Kilteasheen KT18 dentin 4729610 4590927 54.48 1406499152.54 6.27

Ireland Kilteasheen KT20 dentin 4631119 4485429 62.3 3779428846.15 1.71

Ireland Kilteasheen KT21 dentin 4808710 4648332 57.95 2746567241.38 4.95

Ireland Kilteasheen KT22 dentin 3762440 3656881 53.44 1659647683.4 9.37

Ireland Kilteasheen KT23 dentin 4507686 4374541 52.15 1461548031.5 4.49

Ireland Kilteasheen KT24 dentin 5748119 5600847 57.76 12080000000 2.4

Ireland Kilteasheen KT25 dentin 4429591 4272549 49.69 23760699152.54 9.71

Ireland Kilteasheen KT26 dentin 5034345 4872126 NF 7336801242.24 1.5

Ireland Kilteasheen KT27 dentin 5703823 5519751 57.09 14034270833.33 4.75

Ireland Kilteasheen KT28 dentin 5387360 5235938 57.47 13018172185.43 2.92

Ireland Kilteasheen KT29 dentin 6729054 6545793 NF 8025619533.53 9.55
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Ireland Kilteasheen KT30 dentin 5027319 4878335 59.09 13381414110.43 7.87

Ireland Kilteasheen KT31 dentin 5168663 5017943 56.02 11038830645.16 4.9

Ireland Kilteasheen KT32 dentin 7313342 7119676 57.79 6487446864.69 9.34

Ireland Kilteasheen KT33 dentin 6549519 6372460 61.6 10088003257.33 9.81

Ireland Kilteasheen KT34 dentin 4745793 4552565 NF 3630243750 3.57

Ireland Kilteasheen KT35 dentin 5431255 5227859 54.09 18603957547.17 12.43

Ireland Kilteasheen KT36 dentin 5978692 5771519 63.28 10374055172.41 5.84

United States Norris Farms NF217 dentin 11248574 5803813 NA NA NA

United States Norris Farms NF47 dentin 15232364 7730991 NA NA NA

Netherlands Middenbeemster S108 dentin 54239912 32185296 97.76 NA NA

Nepal Samdzong S37 dentin 103351972 55597338 72.37 NA NA

Nepal Samdzong S41b dentin 32332152 20055715 109.9 55875367.65 0.19

Netherlands Middenbeemster S454 dentin 43246346 25547745 93.08 NA NA
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Table C.2: Human verification statistics

ID Type
Reads

Pre

Reads

Post

Endogenous

Pre

Endogenous

Post

Human

Node

Post

Damage

Pre

Damage

Post

Damage

Untrim

C214 calculus 730 439 0.01 0.01 358 0.12 0.00 0.15

cmol53 calculus 1779 1130 0.01 0.00 923 0.15 0.02 0.21

F1948 calculus 832 509 0.01 0.01 420 0.15 0.00 0.21

F349A calculus 2194 1330 0.02 0.01 1058 0.20 0.03 0.25

H10b calculus 5238 4053 0.03 0.03 3661 0.18 0.06 0.18

H24b calculus 1754 1100 0.01 0.01 948 0.25 0.09 0.29

KT01 calculus 8568 3800 0.16 0.07 3374 0.20 0.04 0.17

KT01 calculus 11844 5557 0.25 0.12 4919 0.22 0.04 0.17

KT02 calculus 2057 644 0.05 0.02 571 0.17 0.03 0.14

KT03 calculus 2356 958 0.06 0.03 846 0.17 0.02 0.14

KT04 calculus 6594 2916 0.15 0.07 2539 0.24 0.06 0.18

KT05 calculus 2771 724 0.06 0.02 634 0.17 0.01 0.17

KT06 calculus 19701 11998 0.35 0.21 10407 0.13 0.03 0.10
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KT07 calculus 6573 2893 0.13 0.06 2536 0.21 0.03 0.19

KT08 calculus 6238 2792 0.14 0.06 2455 0.19 0.04 0.15

KT09 calculus 6930 3381 0.15 0.08 2953 0.19 0.02 0.14

KT10 calculus 2828 897 0.06 0.02 788 0.03 0.02 0.01

KT11 calculus 4087 1530 0.09 0.04 1324 0.22 0.02 0.18

KT12 calculus 2246 705 0.06 0.02 616 0.08 0.01 0.06

KT13 calculus 3522 1467 0.09 0.04 1277 0.15 0.02 0.11

KT14 calculus 2378 493 0.05 0.01 424 0.17 0.04 0.14

KT15 calculus 21482 12568 0.29 0.17 11059 0.15 0.02 0.12

KT16 calculus 3247 1085 0.09 0.03 963 0.21 0.02 0.14

KT17 calculus 2985 1146 0.09 0.03 995 0.20 0.04 0.16

KT18 calculus 14420 8035 0.26 0.15 7100 0.17 0.03 0.14

KT19 calculus 19852 10900 0.29 0.16 9578 0.15 0.04 0.12

KT20 calculus 12241 6553 0.17 0.09 5772 0.14 0.03 0.12

KT21 calculus 4776 2134 0.13 0.06 1894 0.21 0.04 0.18

KT22 calculus 6243 2697 0.14 0.06 2381 0.25 0.04 0.20

KT23 calculus 5402 1924 0.08 0.03 1665 0.19 0.05 0.15
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KT24 calculus 7264 3043 0.12 0.05 2716 0.16 0.03 0.12

KT25 calculus 5239 2293 0.10 0.04 2057 0.18 0.03 0.16

KT26 calculus 4656 1414 0.08 0.03 1245 0.22 0.05 0.15

KT27 calculus 6325 2912 0.16 0.07 2578 0.23 0.04 0.18

KT28 calculus 6833 3253 0.14 0.06 2841 0.16 0.03 0.13

KT29 calculus 5343 2211 0.09 0.04 1969 0.19 0.03 0.15

KT30 calculus 4886 2276 0.10 0.05 2014 0.16 0.03 0.12

KT31 calculus 18973 9772 0.21 0.11 8602 0.15 0.04 0.12

KT32 calculus 5186 2114 0.10 0.04 1844 0.15 0.03 0.12

KT33 calculus 5439 2235 0.08 0.03 1981 0.18 0.05 0.13

KT34 calculus 4624 1587 0.08 0.03 1418 0.18 0.03 0.13

KT35 calculus 3602 1512 0.09 0.04 1335 0.15 0.02 0.13

KT36 calculus 24578 14924 0.47 0.29 13145 0.14 0.02 0.11

NF217 calculus 4712 3587 0.08 0.06 3028 0.07 0.02 0.08

NF47 calculus 3127 2101 0.05 0.03 1796 0.05 0.01 0.06

S108 calculus 1887 1435 0.03 0.02 1191 0.05 0.00 0.05

S37 calculus 2104 1505 0.02 0.02 1285 0.09 0.01 0.10
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S41b calculus 20086 17727 0.18 0.16 15983 0.02 0.02 0.02

S454 calculus 23888 21051 0.31 0.27 17692 0.04 0.00 0.04

C214 dentin 5621 4674 0.03 0.03 4217 0.32 0.07 0.34

cmol53 dentin 6506624 5824828 8.78 7.86 5233216 0.27 0.06 0.27

F1948 dentin 561545 498419 1.77 1.57 448899 0.29 0.08 0.29

F349A dentin 129335 115189 0.78 0.70 103171 0.26 0.07 0.26

H10b dentin 10413259 9800087 29.89 28.13 9003402 0.13 0.04 0.12

H24b dentin 2480085 2237287 6.59 5.95 2028196 0.24 0.06 0.24

KT01 dentin 1578342 1001384 27.35 17.35 880214 0.18 0.04 0.14

KT02 dentin 6060 1589 0.15 0.04 1425 0.35 0.04 0.29

KT03 dentin 672997 412331 18.94 11.60 358525 0.17 0.04 0.14

KT04 dentin 1317777 815218 29.17 18.04 717216 0.20 0.03 0.16

KT05 dentin 5288 33 0.14 0.00 27 0.00 0.00 0.00

KT06 dentin 1880891 1261317 33.94 22.76 1109933 0.14 0.03 0.12

KT07 dentin 8220 3073 0.21 0.08 2681 0.32 0.05 0.25

KT08 dentin 24697 12819 0.53 0.28 11022 0.19 0.05 0.15

KT09 dentin 1368665 744080 21.29 11.57 658020 0.28 0.07 0.22
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KT10 dentin 2246 315 0.07 0.01 278 0.26 0.05 0.22

KT11 dentin 4723 95 0.10 0.00 77 0.10 0.00 0.12

KT12 dentin 3684 476 0.08 0.01 433 0.28 0.05 0.22

KT13 dentin 9370 3376 0.16 0.06 2962 0.18 0.04 0.14

KT14 dentin 260852 147775 4.42 2.50 126063 0.21 0.03 0.15

KT15 dentin 1286855 108906 29.58 2.50 99009 0.16 0.11 0.11

KT16 dentin 291541 148005 6.10 3.10 130156 0.28 0.06 0.23

KT17 dentin 3122780 1860580 51.51 30.69 1639109 0.20 0.04 0.16

KT18 dentin 12348 6355 0.27 0.14 5588 0.20 0.04 0.15

KT20 dentin 8143 3389 0.18 0.08 2948 0.24 0.04 0.19

KT21 dentin 559996 314864 12.05 6.77 275779 0.20 0.04 0.16

KT22 dentin 9138 1403 0.25 0.04 1217 0.31 0.07 0.25

KT23 dentin 819546 471063 18.73 10.77 406680 0.20 0.03 0.16

KT24 dentin 2820962 1730557 50.37 30.90 1529031 0.21 0.04 0.17

KT25 dentin 5494 2251 0.13 0.05 1938 0.19 0.05 0.15

KT26 dentin 1910366 522444 39.21 10.72 479694 0.15 0.14 0.14

KT27 dentin 405669 222574 7.35 4.03 195869 0.23 0.05 0.18
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KT28 dentin 540135 328380 10.32 6.27 289285 0.21 0.05 0.17

KT29 dentin 4552576 783512 69.55 11.97 713991 0.18 0.12 0.12

KT30 dentin 6009 1243 0.12 0.03 1094 0.21 0.05 0.16

KT31 dentin 3662568 2262240 72.99 45.08 1971214 0.16 0.04 0.13

KT32 dentin 4345121 2675717 61.03 37.58 2371441 0.18 0.04 0.14

KT33 dentin 4437119 2929234 69.63 45.97 2609224 0.14 0.04 0.12

KT34 dentin 193388 33745 4.25 0.74 30961 0.23 0.13 0.13

KT35 dentin 75613 31630 1.45 0.61 27755 0.28 0.06 0.22

KT36 dentin 113771 58385 1.97 1.01 52137 0.23 0.05 0.18

NF217 dentin 6977 4887 0.12 0.08 4332 0.18 0.06 0.19

NF47 dentin 67885 50970 0.88 0.66 43583 0.14 0.04 0.14

S108 dentin 662104 631728 2.06 1.96 585485 0.09 0.03 0.08

S37 dentin 2587590 2199786 4.65 3.96 1960765 0.23 0.05 0.22

S41b dentin 12528010 12261919 62.47 61.14 11369788 0.05 0.02 0.05

S454 dentin 8601 6367 0.03 0.02 5598 0.17 0.07 0.17
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Table C.3: Length Statistics

ID Type

Overall

Median

Length

Overall

Mean

Length

Human

Median

Length

Human

Mean

Length

Difference

Median

Length

KT05 calculus 56 64.23 50.5 58.92 5.5

KT08 calculus 79 86.61 67 73.52 12

KT09 calculus 72 82.46 54 60.09 18

KT13 calculus 70 80.48 53 59.39 17

KT14 calculus 62 70.44 49 55.37 13

KT24 calculus 69 78.24 55 60.72 14

KT25 calculus 83 91.84 68 72.33 15

KT26 calculus 74 83.47 57 63.49 17

KT28 calculus 74 83.1 57 64.24 17

KT29 calculus 82 91.08 61 68.15 21

KT31 calculus 81 91.34 64 71.22 17

KT32 calculus 74 83.6 58 64.86 16

KT36 calculus 74 83.97 60 66.16 14

C214 calculus 66 74.38 47 51.61 19

CMOL53 calculus 77 83.26 56 59.56 21

F1948 calculus 73 78.97 50 53.8 23

F349A calculus 60 66.73 42 47.3 18

H10B calculus 88 93.45 72 75.86 16

H24B calculus 75 80.08 55 58.22 20
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S108 calculus 67 75.52 55 60.76 12

S37 calculus 63 72.37 51 56.66 12

S41B calculus 88 94.44 79 85.1 9

S454 calculus 67 76.72 57 63.34 10

KT08 dentin 53 60.53 54 59.14 -1

KT25 dentin 56 64.03 47 52.76 9

KT31 dentin 55 60.21 56 60.13 -1

KT29 dentin 60 66.76 60 64.5 0

KT14 dentin 54 65.64 46 52.14 8

KT36 dentin 55 65.64 71 79.35 -16

KT24 dentin 57 63.82 58 63.68 -1

KT28 dentin 55 63.58 58 63.17 -3

KT05 dentin 56 65.11 47 49.43 9

KT09 dentin 61 70.02 58 61.85 3

KT26 dentin 69 79.12 71 78.71 -2

KT32 dentin 58 64.72 59 63.26 -1

KT13 dentin 58 67.44 58 63.92 0

C214 dentin 57 63.48 74 80.23 -17

CMOL53 dentin 72 79.99 74 80.23 -2

F1948 dentin 63 70.18 72 78.89 -9

F349A dentin 69 76.66 69 75.46 0

H10B dentin 83 90.85 88 94.95 -5

H24B dentin 80 86.79 75 79.71 5
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S108 dentin 92 97.76 112 113.17 -20

S37 dentin 64 72.37 68 74.58 -4

S41B dentin 105 109.9 104 109.12 1

S454 dentin 85 93.08 75 84.88 10
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Table C.4: Extraction and library blanks

ID Type Dataset Reads

Post

Quality

Filter

Human

Reads
Endogenous Damage

AOB1 blank regional 288636 108306 49968 55.99 0.00

AOB10 blank regional 230240 45434 1629 4.29 0.00

AOB11 blank regional 841776 704107 1138 0.21 0.00

AOB12 blank regional 611553 500720 1106 0.26 0.00

AOB13 blank regional 186339 49932 1595 4.64 0.01

AOB14 blank regional 293398 108875 4741 6.94 0.01

AOB2 blank regional 282395 116275 756 0.75 0.02

AOB3 blank regional 258106 44562 1391 4.27 0.00

AOB4 blank regional 286467 115160 979 1.19 0.01

AOB5 blank regional 289450 84146 4261 6.71 0.01

AOB6 blank regional 244717 106687 3505 4.08 0.00

AOB7 blank regional 307136 122101 2146 2.29 0.00
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AOB8 blank regional 177851 64348 1693 3.13 0.00

AOB9 blank regional 288123 65004 4807 9.01 0.00

AOL1 blank regional 218354 27143 163 0.70 0.00

AOL10 blank regional 192157 37163 1381 4.56 0.00

AOL11 blank regional 163301 21101 747 3.98 0.00

AOL12 blank regional 240609 26856 1225 5.54 0.00

AOL13 blank regional 203469 21921 457 2.83 0.00

AOL14 blank regional 201882 27889 596 2.89 0.02

AOL15 blank regional 157109 24895 544 3.12 0.00

AOL16 blank regional 255675 70966 639 1.46 0.01

AOL2 blank regional 250738 18675 83 0.50 0.00

AOL3 blank regional 249849 20771 67 0.40 0.00

AOL4 blank regional 259283 16488 403 3.46 0.00

AOL5 blank regional 238344 7847 139 2.19 0.00

AOL6 blank regional 202055 48633 628 1.68 0.00
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AOL7 blank regional 186756 34664 416 1.49 0.00

AOL8 blank regional 194603 36563 614 2.19 0.00

AOL9 blank regional 164442 25076 459 2.31 0.01

LIB CONTROL blank global 956074 472124 5262 7.32 0.02

N1 blank global 649670 305725 3828 14.04 0.01

NEG S.G. blank global 453184 217466 841 16.23 0.00
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Table C.5: Source contribution estimates

ID Type Plaque Skin Soil Unknown

KT12 dentin 0 0.0912 0.6641 0.2447

KT08 dentin 0.2142 0.0722 0.5553 0.1583

KT25 dentin 7.00E-04 0.1423 0.8379 0.0191

KT01 dentin 0.1147 0.0244 0.7619 0.099

KT34 dentin 0.0286 0.1587 0.7012 0.1115

KT21 dentin 0.0436 0.1806 0.7424 0.0334

KT31 dentin 0.1948 0.0527 0.6909 0.0616

KT20 dentin 0 0.1318 0.7252 0.143

KT10 dentin 0 0.1227 0.6048 0.2725

KT03 dentin 0 0.1273 0.6921 0.1806

KT07 dentin 0 0.031 0.7957 0.1733

KT33 dentin 0.1124 0.0331 0.7968 0.0577

KT16 dentin 0.0791 0.0366 0.6285 0.2558

KT29 dentin 0.2145 0.0564 0.6031 0.126

KT14 dentin 0.1923 0.1704 0.4576 0.1797

KT30 dentin 0.0845 0.0231 0.5869 0.3055

KT36 dentin 0.0413 0.1148 0.6315 0.2124

KT06 dentin 0 0.0736 0.7895 0.1369

KT24 dentin 0.4083 0.0995 0.4308 0.0614

KT28 dentin 0.1213 0.0244 0.6485 0.2058

KT11 dentin 0 0.2235 0.5956 0.1809
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Table C.5 continued from previous page

KT05 dentin 0.001 0.0836 0.751 0.1644

KT15 dentin 0.1097 0.0534 0.6919 0.145

KT27 dentin 0.0698 0.0194 0.7284 0.1824

KT02 dentin 0 0.066 0.6759 0.2581

KT09 dentin 0.0035 0.0309 0.669 0.2966

KT26 dentin 0.2037 0.059 0.6548 0.0825

KT17 dentin 0.0041 0.1653 0.6706 0.16

KT22 dentin 0.0791 0.0899 0.6659 0.1651

KT23 dentin 0.3421 0.0037 0.4877 0.1665

KT04 dentin 0.035 0.094 0.719 0.152

KT35 dentin 0.1235 0.0907 0.6831 0.1027

KT01 calculus 0.9822 0.003 0 0.0148

KT01 calculus 0.9548 0 0.0093 0.0359

KT02 calculus 0.8284 0.1192 0.0032 0.0492

KT03 calculus 0.9282 0.0646 7.00E-04 0.0065

KT04 calculus 0.8933 7.00E-04 0.0016 0.1044

KT05 calculus 0.8152 0.0654 0.0681 0.0513

KT06 calculus 0.69 1.00E-04 0.0588 0.2511

KT07 calculus 0.7382 0.0415 0.085 0.1353

KT08 calculus 0.9812 0.0031 0.0119 0.0038

KT09 calculus 0.8526 0 0 0.1474

KT18 dentin 0 0.0772 0.8878 0.035

KT10 calculus 0.8097 1.00E-04 0.0549 0.1353
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Table C.5 continued from previous page

KT11 calculus 0.9542 0.0137 0.0036 0.0285

KT12 calculus 0.8557 0.028 0.0605 0.0558

KT13 calculus 0.8605 0.0428 0.0324 0.0643

KT14 calculus 0.9849 0 0 0.0151

KT15 calculus 0.7201 3.00E-04 0.049 0.2306

KT16 calculus 0.738 0.1374 0.0437 0.0809

KT17 calculus 0.8204 0 0.0716 0.108

KT18 calculus 0.752 0.001 0.064 0.183

KT19 calculus 0.8963 0.0864 0.0132 0.0041

KT32 dentin 0.2779 0.0938 0.5587 0.0696

KT20 calculus 0.8121 3.00E-04 0.0366 0.151

KT21 calculus 0.7438 0.1029 0.0444 0.1089

KT22 calculus 0.9228 0.0585 0.0068 0.0119

KT23 calculus 0.8998 0.0031 0.0312 0.0659

KT24 calculus 0.8336 0 0.0283 0.1381

KT25 calculus 0.8312 0 0.0238 0.145

KT26 calculus 0.8666 0 0.0518 0.0816

KT27 calculus 0.8876 0 0.0325 0.0799

KT28 calculus 0.8733 0 0 0.1267

KT29 calculus 0.9554 0 0.0127 0.0319

KT30 calculus 0.8129 0 0.0451 0.142

KT31 calculus 0.8956 0 0.0694 0.035

KT32 calculus 0.8907 0.0213 0.0324 0.0556
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KT33 calculus 0.8325 0.0522 0.0675 0.0478

KT34 calculus 0.8033 0.0633 0.0645 0.0689

KT35 calculus 0.8384 0 0.0302 0.1314

KT36 calculus 0.8529 0 0.0166 0.1305

KT13 dentin 0 0.0483 0.7716 0.1801

C214 calculus 0.9172 1.00E-04 0.0143 0.0684

C214 dentin 0 0.0965 0.6669 0.2366

cmol53 calculus 0.86 0 0 0.14

cmol53 dentin 2.00E-04 0.1157 0.7296 0.1545

F1948 calculus 0.9127 0.0403 0.0022 0.0448

F1948 dentin 0.3855 0.2293 0.2711 0.1141

F349A calculus 0.7264 1.00E-04 0.0121 0.2614

F349A dentin 0 0.1373 0.6238 0.2389

H10b calculus 0.8174 0 0.0157 0.1669

H10b dentin 3.00E-04 0.3351 0.5246 0.14

H24b calculus 0.8557 0 0.0139 0.1304

H24b dentin 0 0.2366 0.6974 0.066

NF217 calculus 0.7908 0.1447 0.0333 0.0312

NF217 dentin 0.7835 0.2059 3.00E-04 0.0103

NF47 calculus 0.5933 0.1399 0.1569 0.1099

NF47 dentin 0.5621 0.0877 0.1847 0.1655

S108 calculus 0.8572 0 0.0245 0.1183

S108 dentin 0 0.1393 0.7062 0.1545
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S37 calculus 0.8186 0.1213 0.0589 0.0012

S37 dentin 0 0.3125 0.5801 0.1074

S41b calculus 0.9389 0.0292 3.00E-04 0.0316

S41b dentin 0 0.2567 0.6776 0.0657

S454 calculus 0.756 0 0.1512 0.0928

S454 dentin 2.00E-04 0.1992 0.6631 0.1375
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