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(a) Vertical section AA’ intersecting the straight tabular-shape channel characterized by 
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waning cycles in which sand-prone facies, characterized by high amplitude reflectors, are 

deposited in the axis of the channel, while mud-prone facies, associated with low 

amplitude reflectors, are related to off-axis to marginal deposition. Also, upward and 

lateral migration of channel facies is seen (red arrow). Sheet sands are associated with a 

mixture of bright blue with yellow, red and purple seismic facies related to high amplitude 

with great lateral extension parallel reflectors. ............................................................... 51 

Figure 27. Geological interpretation of seismic facies using ICA RGB blending and 

principles of geomorphology of architectural elements in deep water channel complexes. 
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in the axis of the channel and are characterized by purple seismic facies associated with 

high amplitude continuous reflectors. Mud-prone facies deposit in off-axis to marginal 

deposition are related to green purple facies characterized by low amplitude reflectors. 

Finally, sheet sands are associated with bright blue seismic facies, mixed with yellow, red 

and purple seismic facies. (b)  Vertical section DD’ through the meandering leveed 

channel 2. Cut-and-fill architectures associated with waxing-waning cycles are 

interpreted. I hypothesize that during channel deposition related with a second waning-

waxing cycle, axial deposits from the previous waning-waxing cycle were eroded. Purple 

seismic facies represent high amplitude continuous reflectors, which based on 

geomorphology concepts, I believe are associated with sand-prone deposits along the axis 

of the channel. Green seismic facies are related to low amplitude reflectors and represent 

mud-prone facies associated with off-axis to marginal deposition. ............................... 52 

Figure 28. Geological interpretation of seismic facies using ICA RGB blending and 

principles of geomorphology of architectural elements in deep water channel complexes. 

Vertical section EE’ through meandering channel 3 at Horizon A + 248 ms. There is a 

lateral change in the amplitude thickness which is related to differential compaction 

(Chopra and Marfurt, 2012). Differential compaction is associated with lateral changes 

in lithologies. In this case, I interpret the positive relief as a channel filled with sand-

prone sediments related to purple seismic facies, that do not experience as much 

compaction as the mud-prone facies of the Moki B shale Formation, associated with green 

seismic facies, outside it. ................................................................................................ 53 

Figure 29. Validation of the interpretation, based on principles of geomorphology, of the 

seismic facies in the Moki A sands Formation using the Gamma Ray log from the Tui 
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SW-2 well. High gamma ray values associated with bathyal claystones of the Moki B 

shale Formation are associated with the green seismic facies (yellow arrow) which in my 

interpretation, I hypothesized were associated with mud-prone seismic facies. Small low 

gamma ray values (blue arrow) associated with calcareous sandstones are not seen in the 

seismic because they are under resolution. Intercalation of high and low gramma ray 

values associated with interbedded calcareous sandstone and claystones related to base 

of slope turbidites of the Moki A sands Formation are associated with red and blue 

seismic facies (green arrows), this correlate with my interpretation of sheet sands 

characterized by a mixture of blue, red and yellow seismic facies. The low gamma ray 

calcareous sandstone of thickness approximate to 30 m bracketed by high gamma ray 

values associated with bathyal claystones are related with mixed purple and green seismic 

facies (orange arrow). ..................................................................................................... 54 
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Abstract 

During the past two decades, the number of volumetric seismic attributes have 

increased to the point in which interpreters are overwhelmed and cannot analyze all the 

information available. Principal Component Analysis (PCA) is one of the best-known 

multivariate analysis technique, and decomposes the input data into lower statistics 

mathematically uncorrelated components. Unfortunately, while these components 

mathematically represent the information in the multiple input data volumes using a 

smaller number of volumes, they often mix rather than separate geologic features of 

interest. To address this issue, I implement and evaluate a relatively new unsupervised 

multi-attribute technique called Independent Component Analysis (ICA), which based on 

higher order statistics, separates multivariate data into independent subcomponents. I 

evaluate my algorithm to study the internal architecture of turbiditic channel complexes 

present in the Moki A sands Formation, Taranaki Basin, New Zealand. I input twelve 

spectral magnitude components ranging from 25 to 80 Hz into the ICA algorithm and plot 

three of the resulting independent components against an RGB color scheme to generate 

a single volume in which different colors correspond to different seismic facies. The 

results obtained using ICA proved to be superior to the obtained using PCA. Specifically, 

using ICA I obtain independent components that have better resolution and better 

separation between geologic features and noise compared to uncorrelated components 

obtained using PCA. Moreover, with ICA, I am able to geologically analyze the different 

seismic facies and relate them to sand-prone and mud-prone seismic facies associated 

with axial and off-axis deposition and cut-and-fill architectures.
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Chapter 1: Introduction 

During the past two decades, the number of volumetric seismic attributes have 

increased to the point in which interpreters are overwhelmed and cannot analyze all the 

information available. In addition to picking horizons, traditional interpretation includes 

the identification of geological features of interest such as faults, collapse features, 

channel complexes, salt domes, and mass transport deposits in 3D amplitude seismic data. 

Volumetric seismic attributes such as coherence, curvature, gray-level co-occurrence 

matrix (GLCM) texture attributes and spectral-decomposition analysis can both 

accelerate and facilitate this process, enhancing subtle features that may otherwise be 

overlooked. Depending on the seismic attributes interpreters select, different information 

is extracted (Infante-Paez and Marfurt, 2017; Infante-Paez, 2018). Therefore, relying 

solely in a single attribute can lead to an incomplete seismic interpretation in which 

important geological elements can be overlooked. 

Co-rendering using red-green-blue (RGB) or hue-lightness-saturation (HLS) 

color gamuts provide an efficient means of combining the information content of three 

volumes. For more than three volumes, one must project the higher dimensional data onto 

a lower dimensional space.  Principal Component Analysis (PCA) (Guo et al., 2009; 

Chopra and Marfurt, 2014; Zhao et al. 2015) decomposes multivariate data into linearly 

uncorrelated components using second order statistic based on the covariance matrix of 

the data. The first three components are either co-rendered using RGB or interpreted using 

crossplotting tools.  PCA is also widely used as the first iteration for clustering techniques 

in order to reduce dimensionality of the input data (Zhao et al. 2015; Sinha et al., 2016). 

The k-means algorithm (MacQueen,1967) is a clustering technique in which, after the 
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interpreter decide the number of desired clusters, the distance between the data point and 

the center of the clusters is measured using the Mahalanobis distance and each data point 

is associated with the closest cluster (Zhao et al., 2015). Generative Topographic Maps 

(GTM) generates a probabilistic representation of the data onto a lower dimensional 

manifold (Roy et al., 2014; Zhao et al., 2015). Perhaps the most widely used clustering 

technique is the Self-organizing Maps (SOM) in which based on topological relations the 

data is reorganized and projected onto a 2D manifold called the latent space (Kohonen 

1982; Zhao et al., 2015; Zhao et al., 2016).  

Spectral-decomposition analysis (Sinha et al., 2005; Chopra and Marfurt, 2016) 

decomposes the seismic volume into a suite of magnitude and phase components at 

different frequencies that allows the study of geologic features near the limits of seismic 

resolution, enabling the interpreter to map lateral changes in thickness, lithology, and 

porosity. A major drawback in spectral-decomposition analysis is that from one 3D 

amplitude volume is possible to generate up to 80 or more output volumes (Guo et al., 

2009), making the selection and visualization of the most important components a 

cumbersome task. Guo et al. (2009) applied Principal Component Analysis (PCA) to 

characterize channels draining an unconformity in the Central Basin Platform in Texas, 

Li et al., 2009 applied Independent Component Analysis (ICA) to a carbonate bank data 

volume in order to map spur and groove as well as shoaling features, and Zanardo 

Honorio et al., (2014) applied ICA to a fluviodeltaic system in order to map channels.   

Inspired by the Zanardo Honorio et al.’s (2014) work, I implemented my own ICA 

algorithm and applied it to deep water turbidite system in the Taranaki Basin, New 
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Zealand, and compared the results to both the features seen on the input data volumes, 

but also on the more commonly used co-rendered PCA volume. 

To illustrate ICA, I consider the popular cocktail-party problem, in which two 

people are speaking simultaneously in a room where two microphones record the 

combination of their voices (Figure 1). The recorded signals X={X1,X2} are linear mixture 

of the people’s voices P={P1,P2}, which can be written as: 

                                                                  𝐗 = 𝐀𝐏,                                                         (1) 

where A is an unknown matrix called the mixing matrix, whose parameters are a function 

of the distances between the microphones and the speakers.  

Although the goal is to estimate the people’s voices P1 and P2, the matrix A is 

unknown, such that P1 and P2 cannot be computed directly from X. ICA assumes that the 

components 𝐏𝒊 are statistically independent, allowing the computation of the matrix A 

and its inverse W (Hyvärinen and Oja, 2000): 

                                                                 𝐏 = 𝐖𝐗.                                                        (2) 

In this study, I begin with an explanation of the differences between Principal 

Component Analysis and Independent Component Analysis techniques. Using an ICA 

algorithm developed by Hyvärinen and Oja (2000) for feature extraction and signal 

separation as a guide, I implement an ICA algorithm that can work on a suite of large, 3D 

volumetric seismic attributes. The choice of attributes used depends on the geologic 

target. To study submarine turbidites in the Moki A sands of the Taranaki Basin, New 

Zealand, I use spectral magnitude components, which are routinely used to image both 

fluvial and deep water channel and canyon systems (e.g. Partyka et al., 1999; Marfurt and 

Kirlin, 2001; Lubo-Robles and Marfurt, 2017). I then analyze these spectral components 
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individually and as input to both PCA and ICA algorithms. I conclude with a discussion 

of the Independent Component Analysis over to the well-established Principal 

Component Analysis. Finally, I add an appendix with mathematical details explaining 

how the algorithm works.      
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Figure 1. Illustration of Independent Component Analysis (ICA) using the popular 

cocktail-party problem. The goal is to recover the individual signals P1 and P2 from the 

mixtures signals X1 and X2.                                                                                                                             
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Chapter 2: Theory 

 A principal component is a scalar value that represents the projection of a J-

dimensional sample vector, against a J-dimensional eigenvector. This technique is known 

as Principal Component Analysis (PCA) and, based on Gaussian statistics, decomposes 

the data into mathematically linearly uncorrelated components allowing the reduction of 

the dimensionality and redundancy of the input multivariate data, but may omit geological 

features associated with lower reflectivity (Guo et al., 2009). PCA is based on an 

assumption that the data are Gaussian, allowing the use of second order statistics to 

decompose the data into orthogonal components sorted based on their variability.  

In contrast to PCA, Independent Component Analysis (ICA) is a powerful 

technique that, based on higher order statistics, separates a multivariate signal into 

independent subcomponents, finding a linear representation of non-Gaussian data 

(Hyvärinen and Oja, 2000). The concept of “independence” provides a means to capture 

more interesting information from the multivariate data (Zanardo Honorio, et al., 2014). 

Moreover, independent components are not orthogonal and their order is undefined 

(Figure 2), i.e., the independent components cannot be ranked (Hyvärinen and Oja, 2000; 

Tibaduiza et al., 2012).  

The independent component algorithm that I propose (Figure 3) is based on the 

FastICA algorithm developed by Hyvärinen and Oja (2000), with modifications in order 

to implement it using volumetric seismic attributes. In my workflow, first I select the 

seismic attributes, 𝒂, based on the geological features of interest and compute their means 

𝛍 and standard deviations 𝝈 in order to apply Z-score normalization. I compute the 

correlation matrix 𝐂 from the scaled parameters and compute its eigenvectors and 
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eigenvalues. To be computationally efficient, I decimate the data in order to create a 

representative training data subset 𝒂𝒕𝒓 from which the unmixing matrix W is computed. 

After the training data are Z-normalized in order to avoid issues related to 

different units of the seismic attributes, the data are whitened and filtered using Principal 

Component Analysis (Stanford, 2018) whereby the eigenvalues retained just exceeding 

90% are considered to be signal, and the others to be noise.  

To initialize the algorithm, I must assume an initial guess for the unmixing matrix 

W. Instead of using a random initial guess, I generate an initial guess based on the 

eigenvectors and eigenvalues of the correlation matrix 𝐂 in order to guarantee exact 

repeatability of the process. 

Finally, the unmixing matrix W is estimated by maximizing the non-Gaussian 

behavior of the multivariate data measured by an approximation of negentropy 

(Hyvärinen and Oja, 2000). When convergence is reached, the independent components 

are computed by projecting the Z-normalized and whitened seismic attributes onto the 

final unmixing matrix, W, obtained from the algorithm. For more information on the 

mathematical details of the procedure, please refer to the appendix. 
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Figure 2. Differences between Principal Component Analysis (PCA) and Independent 

Component Analysis (ICA). Attributes 𝒂𝟏 and 𝒂𝟐 are scaled by their means and standard 

deviations. The first eigenvector 𝐯𝟏 is a line that least-squares fits the data cloud and best 

represent the variance of the data. PC1 is a projection of each data point onto 𝐯𝟏. The 

second eigenvector 𝐯𝟐 is a perpendicular to 𝐯𝟏 and for two dimensions these two 

eigenvectors best represents the data. In contrast, the independent components IC1 and 

IC2 are latent variables whose order is undefined and they are not orthogonal between 

each other (Hyv�̈�rinen and Oja, 2000; Tibaduiza et al., 2012). To compute the 

independent components, each data point is projected onto the whitened eigenvectors 𝐯𝟏 

and 𝐯𝟐, and then projected onto the unmixing matrix W. 
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Figure 3. Independent Component Analysis (ICA). The algorithm is a based on the 

FastICA algorithm developed by Hyv�̈�rinen and Oja (2000), but with modifications in 

order to implement it using volumetric seismic attributes.  
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Chapter 3: Geological Background 

The Taranaki Basin is a sedimentary basin located along the western side of the 

North Island, New Zealand (Palmer, 1985) (Figure 4). The eastern Taranaki Graben 

Complex and the Western Platform are the two main structural elements of the basin 

(Pilaar and Wakefield, 1984). 

The Western Platform, with a width of more than 100 km, is characterized by 

2,000 to 5,000 meters of Late Cretaceous-Recent sediments and represents the offshore 

part of the Taranaki Basin (Palmer, 1985). The Western Platform was affected by normal 

block faulting during the Late Cretaceous-Eocene, but during most of the Tertiary it 

remained relatively stable (Pilaar and Wakefield, 1984).  The Taranaki Graben structure 

is controlled by movement in the basement and faults developed during the Late 

Cretaceous – Eocene (Palmer, 1985) with its infill characterized by sedimentary and 

igneous rocks (Pilaar and Wakefield, 1984).  

The Taranaki Basin was initially formed by transcurrent rifting during the Late 

Cretaceous. Throughout this time, transgressive marine and terrestrial sedimentary rocks  

of the Pakawau Group were deposited (Thrasher, 1992). The Pakawu Group can be 

subdivided into the Rakopi and the North Cape Formations. An important characteristic 

of the Rakopi Formation is that it was deposited under fluvial-lacustrine conditions and 

has good hydrocarbon source potential (Figure 5)  (Dauzacker et al., 1996). 

The Paleocene to Lower Oligocene is characterized by the deposition of the 

Kapuni Group, a sequence of sandstones, coal and mudstones lithologies, that overlie the 

Pakawau Group after a period of transgression. Contrary to the Pakawau Group, the 
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Kapuni Group sedimentation is distributed across all the Taranaki Basin and is not 

confined only to the Cretaceous Grabens (De Bock, 1994). 

After the deposition of marine siltstones and mudstones related to the Turi 

Formation in the Eocene to Early Oligocene, the Tikorangi Limestone, a bioclastic 

limestone sequence, was deposited widely in the Taranaki Basin during the Oligocene, 

and according to De Bock (1994) represents a regional seismic marker.  

The Miocene deposits are characterized by detrital sedimentation associated with 

relative sea-level fluctuations and tectonism associated with deposition of sediments in 

the South Taranaki Graben during the Early Miocene and reverse faulting in the South 

Taranaki Graben during the Late Miocene (De Bock, 1994). Deposition started with deep 

water mudstones and siltstones represented by the Lower Manganui Formation. In the 

Early to Middle Miocene, deposition of submarine fans occurred associated with a major 

regression (De Bock, 1994). These submarine fans were deposited on the basin floor or 

at the base of continental slope (Dauzacker et al., 1996) and are represented by the Mt 

Messenger and Moki Formations (Figure 5). These sandstone turbidites are diachronous 

towards the North (Dauzacker et al., 1996). 

During the Middle to Late Miocene, the Moki Formation was buried by 

progradational deposits of the (Upper) Manganui Formation (Dauzacker et al., 1996). The 

end of the Miocene was characterized by a sea level falling stage, depositing a sequence 

of prograding strata known as the Giant Foresets Formation. Pliocene to present day 

sediments are associated with marine deposition (De Bock, 1994).  

The Moki Formation is a fine-grained turbidite sequence (Engbers, 2002) and is 

comprised of sandstones interbedded with siltstone, bathyal claystone and thin limestones 



 

12 

(Bussell, 1994). The Moki Formation can be subdivided into the Moki A sands, Moki B 

shale and the Moki B sands (Bussell, 1994). The Moki B sands form the lower unit in the 

Moki Formation and consist of turbidite sheet sands with large laterally extension which 

were deposited on a basin floor (Engbers, 2002). The Moki B shale represents a period 

of low sedimentation associated to deposition of  bathyal claystones (Engbers, 2002) and 

it tends to thicken to the East and Northeast (Bussell, 1994). The Moki A sands unit was 

deposited as a base of slope turbidite (Engbers, 2002) and is characterized by major 

submarine meandering channel complexes (Bussell, 1994) trending NW-SE (Yagci, 

2016). According to Bussell (1994), the Moki B sands has few channels while the Moki 

A sands is traced by sinusoidal channel complexes, consistent with a progradation of the 

slope model. The channel complexes present in the Moki A sands unit are the geological 

feature of interest in this study.  
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Figure 4. The Taranaki Basin can be divided in the Taranaki Graben Complex and the 

Western Platform (Pilaar and Wakefiled, 1984). The Tui3D seismic survey (orange star) 

is situated offshore Taranaki Basin, New Zealand. After King et al. (1993), King and 

Thrasher (1996), Thrasher et al. (2002) and Hansen and Kamp (2006).  
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Figure 5. Stratigraphic column of the Taranaki Basin, New Zealand. The Moki Formation 

(red rectangle) can be divided from lower to upper unit into the Moki B sands, Moki B 

shale and Moki A sands (Engbers, 2002). The Moki A sands unit is the zone of interest 

in this research and is characterized by base of slope turbidities and channel complexes 

(Engbers, 2002) trending NW-SE (Yagci, 2016). Picture after De Bock (1994).  
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Chapter 4: Dataset 

The Tui3D seismic survey is located offshore Taranaki Basin on the southwest 

coast of the North Island, New Zealand (Figure 4) and was acquired by Veritas DGC 

Australia Pty. Ltd from March 25, 2003 to May 10, 2003 (Veritas DGC, 2003). The 

Tui3D seismic volume provided by New Zealand Overseas Petroleum Limited (NZOP) 

has a surface area of  350.1 km2 with streamer separation of 150 m and source separation 

of 75 m. The migrated seismic volume consists of  1975 inlines and 2191 crosslines with 

a bin size of 12.5 by 12.5 m.   

The Tui3D seismic volume  data quality is good, but contaminated by acquisition 

footprint (Figure 6). A phase shift of 180o was applied to the volume resulting in a zero-

phase American polarity.  

In addition to the seismic volume, I use the Tui SW-2 well to validate my 

unsupervised seismic facies analysis. 

Seismic attributes and analysis interval 

Seismic attributes are powerful tools that quantitively measure properties 

including continuity, morphology and frequency, facilitating the identification of  

turbidites and channel complexes in this seismic data volume. Different attributes 

highlight different features of interest. Combining them using multi-attribute analysis 

techniques provide a means to better understand the underlying geological processes and 

to better characterize the reservoir. 

Marfurt (2018) summarizes some of the more commonly used multi-attribute data 

integration tools, including 3D co-rendering, principal component analysis, and self-
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organizing maps among other. In this paper, I evaluate the relatively new independent 

component analysis multi-attribute decomposition technique.  

In order to apply the independent component algorithm to make a facies analysis 

and study the geomorphology of the turbiditic channel complexes in the Moki A sands 

Formation, several seismic attributes must be used as input and the choice of these 

attributes is critical to obtain satisfactory results. Spectral components are sensitive to 

both impedance and thickness variations and are thus good candidates for turbidite 

analysis. I hypothesize that applying ICA to spectral magnitude components will reduce 

the dimensionality of the data, reject noise and extract the most valuable information 

components, thus accomplishing my goal of highlight the turbiditic channels and study 

their internal architecture and facies distribution. 

Spectral-decomposition analysis is a powerful technique for studying bed-

thickness, lateral changes in porosity, and the presence of hydrocarbons (Sinha et al. 

2005; Chopra and Marfurt, 2014) and the sequence stratigraphy and the deposition of a 

particular system (Marfurt and Kirlin, 2001). The method of choice in this study was the 

Continuous Wavelet Transform (CWT) decomposing the seismic volume into phase and 

magnitude components at different time-frequency samples, often improving the 

temporal and vertical resolution and allowing us to interpret geological features at 

different scales. These frequency components are similar to applying a bandpass filter to 

the volume and represent its information at a particular frequency (Chopra and Marfurt, 

2015; Chopra and Marfurt, 2016).  

Besides an appropriate choice of seismic attributes, another critical factor for 

multi-attribute facies analysis techniques, is the design of the analysis interval. The ideal 
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analysis interval encloses only the target formation thereby avoiding mixing adjacent 

facies that have little to do with the target turbidite facies and basin floor matrix. Fewer 

facies results in easier facies determination.  

In this study, the Moki A sands unit consists on strong continuous reflectors 

bypassed by discontinuous reflectors with variable reflectivity (Figure 7). For this reason, 

picking a consistent horizon through the Moki A sands Formation is a challenging task. 

Instead, I picked a horizon along the base of the Tikorangi Limestone, which is 

characterized by a strong continuous reflector and similar depositional trend than the 

Moki Formation, to create phantom horizons bracketing the top and bottom of the Moki 

A sands Formation resulting in an analysis interval of 300 ms. Although the ideal analysis 

interval should enclose only one target formation, to completely enclose the channel 

complexes present in the Moki A sands Formation, my analysis interval brackets the 

Moki A sands Formation, the Moki B shale and part of the Moki B sands and Upper 

Manganui Formations.  
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Figure 6. The Tui3D seismic volume is contaminated by acquisition footprint. (a) 

Acqusition footprint (red arrows) seen in the seismic amplitude at time slice 2136 ms (b) 

Acqusition footprint (red arrow) is enhanced using the coherence attribute in the Tui3D 

seismic data. 
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Chapter 5: Results 

Seismic geomorphology and facies analysis using spectral magnitude components 

as input in the independent component analysis 

In order to interpret the geomorphology and facies of the channel complexes 

present in the Moki A sands unit, each spectral magnitude component, independent 

component and principal component volumes are flattened against the upper analysis 

interval horizon (Horizon A) which is similar to extract them along phantom horizons 

inside the analysis interval (Figure 8). 

Spectral magnitude components can be plotted against a RGB color scheme for 

their interpretation (Li et al., 2018). If I plot different combinations of these spectral 

components along a phantom Horizon A + 196 ms, I note that the combination of 25-35-

45 Hz (Figure 9a) is similar that the combination of 40-50-60 Hz (Figure 9b), even though 

a small meandering channel (blue arrow) tends to be better resolved in the former. In 

addition, the combination of 60-70-80 Hz (Figure 9c) is contaminated by strong 

acquisition footprint (red rectangle) and it delineates thin beds inside the channels (yellow 

arrows). If I plot the 25-50-75 Hz (Figure 9d) I note that the infill of the channels tends 

to tune at the low frequencies while their flanks are more coherent at approximately 50 

Hz, also some thin beds tune at high frequencies of approximately 75 Hz. Analyzing the 

same combinations at Horizon A + 248 ms (Figure 10), I still observe that the infill of the 

channels tends to tune at low frequencies, the flanks, internal thin beds and acquisition 

footprint tune at higher frequencies.  

Besides the redundant data existing in the spectral component analysis, selection 

of which combination better represents the turbiditic channels in the Moki A sands 
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Formation can be cumbersome because there are many output components to choose 

from, thus manually scrolling and analysis of each component is necessary. For these 

reasons, in workflow #1 (Figure 11), I input the spectral magnitude components ranging 

from 25 to 80 Hz with intervals of 5 Hz in the ICA algorithm. The internal architecture 

of the channel complexes is poorly captured at 10, 15 and 20 Hz. Based on the retained 

variability criteria (Stanford, 2018), the algorithm automatically outputs four 

components, from which the independent components are computed, because they 

represent 94.04% of the variability of the data (Figure 12a). 

Workflow #1 can be considered as a 12D attribute space reduced to a 4D 

mathematical space, in which the data point is projected, first, against the whitened 

eigenvectors and second, onto the unmixing matrix W. Therefore, if I project the 

independent components against a RGB color scheme, voxels that are projected to similar 

colors can be considered as similar seismic facies. The results obtained from the 

independent component analysis are compared to the outputs given by principal 

components analysis.  

Principal components are sorted based on the energy represented by their 

eigenvalues. Thus the first principal component (PC1) is the strongest in these data and 

represents 63.52% of the variability (Figure 12a). The corresponding eigenspectrum is 

approximately flat (Figure 12b) because the spectral components were spectrally 

balanced during the CWT spectral decomposition. The second principal component 

(PC2) is orthogonal to PC1 and represents 16.66% of the data (Figure 12a). The spectrum 

monotonically decreases to the larger frequencies (Figure 12b) however, because of the 

ambiguity in the sign of eigenvectors, it could also monotonically increase. The third 
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principal component (PC3) represents 8.11% of the variance (Figure 12a), is orthogonal 

to PC1 and PC2 and its amplitude changes sign between 45 to 50 Hz (Figure 12b). Finally 

the fourth principal component (PC4) is orthogonal to PC1, PC2 and PC3 and captures 

only 5.74% of the variability of the input data (Figure 12a). Guo et al. (2009)  observed 

that because the principal components reside in a mathematical space, where the spectral 

components are represented as orthogonal uncorrelated components, little physical 

significance can be assigned to these spectra. 

In contrast, the order of the independent components is undefined because they 

have unit variance. Also, their order can be changed in the linear combination (Equation 

1) without affecting the mixtures.  As an attempt to sort the independent components, I 

compute their energy (Figure 13a) (mathematical details can be found in the appendix). 

All four components exhibit similar energy, as expected by the whitening preprocessing 

step. Independent component #3 (IC3) is the largest energy, capturing a 26.17% (Figure 

13a) and represents very low and moderate frequencies of the spectral components 

(Figure 13b). In contrast, independent component #1 (IC1) is the lowest and captures 

23.92% of the energy (Figure 13a). Also,  IC1 tends to represent lower frequency features 

(Figure 13b). Independent component #2 (IC2) has an energy of 25.5% (Figure 13a) and 

its amplitude is higher between 35 to 60 Hz (Figure 13b). Finally, independent component 

4 (IC4) has an energy of 24.41% (Figure 13a) and it monotonically changes from lower 

to higher frequencies (Figure 13b). Because the independent components reside in a space 

where the spectral components are represented as oblique projections in order to find 

independent signals, I believe that the ICA spectra has a more physical significance that 

the PCA eigenspectrum. In addition, because all independent components exhibit similar 
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energy and this is not clearly correlated to geology, I sort the independent components 

visually, based on the resolution of large and small scale geological features and noise 

reduction in each independent component.    

Comparing the variability of the principal components to the energy of the 

independent components (Figure 14), I observe that PCA tends to be dominated by 

principal component #1 (PC1), while the independent components exhibit almost the 

same energy, and thus they are equally important. 

In Figure 15, I compare the principal component 1 (PC1) (Figure 15a) to the 

independent component 1 (IC1) (Figure 15b) along Horizon A + 196 ms. Numbering is 

used to identify the different architectural elements and is not associated with time of 

deposition of the channel complexes.  On both pictures, I observe the confluence of two 

leveed meandering tributary channels with moderate sinuosity and a tabular shape 

channel with an architecture similar to a braided channel , the merging of these three late 

lowstand turbidite channel infill systems form a major turbidite channel towards the 

Northwest of the study area.  

In addition, I note that IC1 presents better footprint suppression (red rectangle) 

and a smoother; less noisy picture than PC1. Moreover, the large scale channels (green 

arrows) and  small scale features such as oxbow 1, oxbow 2, oxbow 3 (orange arrows) 

and a small abandoned meandering channel (blue arrow) are better delineated using IC1 

(Figure 15b).  

Analyzing the IC1 and PC1 at Horizon A + 248 ms (Figure 16), I notice that the 

result obtained from the ICA (Figure 16b) still provides better resolution, less random 

noise and better footprint suppression (red rectangle) than PC1 (Figure 16a). Furthermore, 
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while the leveed meandering channels (green arrows) are difficult to delineate in PC1, 

these are better resolved using IC1. In addition, the tabular shape channel bifurcates into 

two distributary channels towards the Northwest and it is being better delineated and 

internally resolved using IC1. The small scale oxbow 3 (orange arrow) is also better 

resolved by IC1.  

When comparing the PC2 and IC2 volumes at Horizon A + 196 ms (Figure 17), I 

still observe a smoother, less noisy with better footprint suppression image using ICA 

(Figure 17b). Moreover, the IC2 better exhibits than PC2 (Figure 17a) the large scale 

geological features such as the leveed meandering channels and the tabular shape channel 

(green arrows) and the small scale geological features such as oxbows (orange arrows) 

and the small abandoned channel (blue arrow).  

At Horizon A + 248 ms, IC2 provides a remarkable better result than PC2 (Figure 

18). The leveed meandering tributary channels (green arrows) that are difficult to 

delineate using PC2, are well resolved using IC2 (Figure 18b). In addition, the latter has 

less footprint (red rectangle) and less random noise than the former and similar to IC1, 

the small scale oxbow 3 (orange arrow) has better resolution in IC2 than in PC2 (Figure 

18a). 

Now, analyzing Figure 19,  I observe at Horizon A + 196 ms that the IC3 has still 

better footprint suppression than PC3 (red rectangle), even though it has more footprint 

and random noise than IC1 and IC2. The leveed meandering channels, the tabular shape 

and the subsequent merged main channels (green arrows), together with the small scale 

oxbows (orange arrows) are interpretable on both pictures (Figure 19a and Figure 19b). 
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On the other hand, the small abandoned channel that was not completely delineated in 

PC1 and PC2, is now visible in PC3, while in IC3 is barely resolved.  

At Horizon A + 248 ms (Figure 20), the leveed meandering tributary channel 1 

and 2 are still better delineated in IC3 (Figure 20b), but its resolution increased 

considerably in PC3 (Figure 20a) compared to PC1 and PC2. In addition, the meandering 

channels 3 and 4 are resolved on both pictures. Moreover, the oxbow 3 (orange arrow) is 

delineated on both pictures, but it looks better highlighted using PC3.  

PC4 at Horizon A + 196 ms (Figure 21a) and at Horizon A + 248 ms (Figure 22a), 

still presents footprint (red rectangle) and random noise as PC1, PC2 and PC3. Also, the 

geological deep water architectural elements analyzed before are not as well delineated 

as in the other principal components. In contrast, IC4 at Horizon A + 196 ms (Figure 21b) 

and at Horizon A + 248 ms (Figure 22b), is contaminated by strong acquisition footprint 

and random noise, also architectural elements are not highlighted as well as in ICA1, IC2 

and IC3. I believe this is because independent component analysis seeks for independence 

between different components inside the data, which provides better separation between 

geological features (IC1, IC2 and IC3) and noise signal (IC4), while principal component 

analysis looks and sort the components based on higher variability, thus it tends to mix 

geological features of interest with noise signal (PC1, PC2, PC3 and PC4). Because of 

this, ICA provides results with better resolution and preservation of large scale (late 

lowstand leveed meandering channels, tabular shape channel with an architecture similar 

to a braided channel and main channel complex) and small scale (oxbows and small 

abandoned channel) geological features of interest than principal component analysis. 
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In order to accomplish the goal of making an unsupervised seismic facies analysis, 

I plot the independent components IC1, IC2 and IC3 against a RGB color scheme. As 

stated before, similar seismic facies are voxels projected to similar colors. In addition, I 

compare the ICA RGB blending with the PCA RGB blending using PC1, PC2 and PC3.  

From Figure 23, I note that the RGB blending using independent components at 

Horizon A + 196 ms (Figure 23b) provides better resolution of geological features than 

the RGB blending of principal components (Figure 23a). Like in the individual 

components, the leveed meandering, the tabular shape and main channels (green arrows) 

and the small scale geological features such as the older abandoned channel and the 

oxbows are better delineated using ICA. I also notice, that the ICA RGB blending 

provides better contrast between distinct seismic facies. While the axis and off-axis of the 

leveed meandering channel (Posamentier and Kolla, 2003; McHargue et al., 2010; Fildani 

et al. 2012; Hubbard et al., 2014) are characterized by similar greenish colors in PCA 

RGB blending, they are characterized in the ICA RGB blending by a purple color for the 

axial deposition of the leveed meandering channels and a green color associated with the 

off-axis to marginal deposition. Moreover, I note that similar to a braided channel, the 

tabular shape tributary channel has a more variable internal architecture with 

predominantly purple seismic facies mixed with green and some blue seismic facies. In 

addition, the oxbows present different infill patterns. The oxbow 1 is filled with a blueish 

color facies, the oxbow 2 has a purple infill and the oxbow 3 is characterized by greenish 

seismic facies. Finally, the small abandoned channel is associated with a purple seismic 

facies infill. 
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At Horizon A + 248 ms (Figure 24), the leveed meandering channels 1 and 2 are 

much better delineated using ICA RGB blending (Figure 24b) than PCA RGB blending 

(Figure 24a) . The leveed meandering channel 1 is characterized predominantly by purple 

seismic facies intercalated with some blueish seismic facies, while the leveed meandering 

channels 2 consist in a green seismic facies. As at Horizon A + 196 ms, the tabular shape 

channel internal architecture is highly variable with a mix of different seismic facies and 

this variability is better captured using ICA. The distributary channel 1 is characterized 

by a predominant purple seismic facies, while now the distributary channel 2 looks like a 

prolongation of the tabular channel because they have the same variable internal 

architecture. The meandering channel 3 is characterized by only a purple seismic facies 

and the oxbow 3 and the meandering channel 4 are characterized by a greenish infill. 

In terms of random noise and footprint, the ICA blending (Figures 23b and 24b) 

provides a smoother picture with remarkable less footprint than PCA blending (Figures 

23a and 24a). Even though the acquisition footprint in ICA RGB blending increases at 

Horizon A + 196 ms, I hypothesize that it is associated with the independent component 

3 (IC3).  

ICA shows better results than PCA in terms of delineating geological deep water 

architectural elements of interest, reduces noise, and improve the contrast between 

different seismic facies. However, neither of these techniques can be used to predict 

thickness or porosity because the independent and principal components project the data 

onto a mathematical space. To study reflector thickness, I must use the original or 

reconstructed spectral components (Guo et al., 2009 ; Zanardo Honorio et al., 2014). 
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Geological interpretation of seismic facies using ICA RGB blending 

Following McHargue et al. (2010), channels associated with turbiditic deposits 

are a product of multiple waxing and waning flows. During a waxing cycle, high energy 

turbiditic flows produce erosion forming a channel conduit. In a waning cycle, turbiditic 

flows become less energetic, thus allowing filling of the channel conduit.  

Deposition of turbiditic facies in deep water channels can be divided into axis, 

off-axis and margin (Figure 25). In most cases, the axis represents the thickest part of the 

channel and is characterized by deposition of thick-bedded amalgamated sandstone 

facies. In contrast, off-axis to marginal deposition is associated with interbedded 

sandstone and mudstone facies, also known as heterolytic facies, implying a lower 

concentration of net sand compared to axis facies (McHargue et al., 2010; Fildani, et al., 

2012; Hubbard et al., 2014).  

Although the internal architecture of the channels present in the Moki A sands 

Formation is highly variable and complex, based on principles of geomorphology and 

following the model of deposition of turbiditic facies (McHargue et al., 2010; Fildani, et 

al., 2012; Hubbard et al., 2014) and cut-and-fill architecture (Posamentier and Kolla, 

2003) in channel complexes, I generate several vertical sections of seismic amplitude 

through the channels complexes, in order to correlate the different seismic facies obtained 

from the ICA RGB blending analysis with axis, off-axis and margin deposition and lateral 

and upward migration of facies.  

In Figure 26a, I generated a vertical section AA’ through the straight tabular shape 

channel that contains a more variable internal architecture of seismic facies with 

predominantly purple seismic facies mixed with some green and blue facies. I 
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hypothesize that this channel complex was developed as a deep cut associated with high 

energy turbiditic flows in which, during a waning cycle, weakly unconfined channels 

migrated inside the channel conduit. According to McHargue, et al. (2010), these weakly 

unconfined channels are characterized by a tabular shape and similar architecture to 

braided channels with predominant sand-rich facies. Also, in vertical section AA’, I 

observe the oxbow 3, with a predominant green seismic facies related to low amplitude 

reflectors, are enclosing the purple seismic facies associated with high amplitude, 

continuous reflectors.  

Making a vertical section BB’ (Figure 26b) through the meandering leveed 

channel 1, I observe that there is an asymmetrical configuration which, according to 

McHargue et al. (2010), I can find in sinusoidal channels. The fact that this channel 

complex is asymmetrical can be associated with cut-and-fill or waxing and waning cycles 

(Posamentier and Kolla, 2003). Cut-and-fill architectures can lead to upward and lateral 

migration of channel facies (Posamentier and Kolla, 2003). I hypothesize that in BB’ 

(Figure 26b) there was a first waxing and waning cycle in which sand-prone facies are 

deposit in the axis of the channel, while in the off-axis to margin of the channel, mud-

prone facies are deposit (Posamentier and Kola, 2003; McHargue et al., 2010). Then, a 

second waxing-waning cycle occurred, creating a cut-and-fill architecture in which facies 

migrated upward and laterally (red arrow). On both waxing and waning cycles, sand-

prone facies are deposited in the axis of the channel, while mud-prone facies are related 

to off-axis to marginal deposition. Also, in vertical section BB’, I note that axial facies 

associated with purple seismic facies are characterized by high amplitude, continuous 

reflectors with limited lateral extent, while green seismic facies, associated with off-axis 
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to marginal deposition are characterized by low amplitude reflectors. From Figure 26b, I 

note that the sheet sands of the Moki A sands Formation are represented by a mixture of 

bright blue with yellow, red and purple seismic facies associated with high amplitude 

with great lateral extension parallel reflectors. 

In Figure 27a, I make another vertical section CC’ through meandering leveed 

channel 1, but now the outer bend of the channel is facing to the opposite direction. In 

vertical section CC’, I note that there is lateral and upward migration of facies (red arrow), 

thus cut-and-fill architecture related with waxing and waning cycles is present. Like in 

vertical section BB’ (Figure 26b), I hypothesize that sand-prone facies are deposited in 

the axis of the channel and mud-prone facies deposit in off-axis to marginal deposition. 

Moreover, purple seismic facies are still associated with axial deposition and 

characterized by high amplitude continuous reflectors, while green purple facies with low 

amplitude reflectors represent off-axis to marginal deposits. Sheet sands are associated 

with bright blue seismic facies, mixed with yellow, red and purple seismic facies.  

Making a vertical section DD’ (Figure 27b) through meandering leveed channel 

2, I still observe cut-and-fill architecture associated with waxing-waning cycles. Also, I 

hypothesize that during channel deposition related with a second waning-waxing cycle, 

axial deposits from the previous waning-waxing cycle were eroded. Like in previous 

observations, purple seismic facies represent high amplitude continuous reflectors and I 

believe they are associated with sand-prone deposits along the axis of the channel. 

Furthermore, green seismic facies are still characterized by low amplitude reflectors and 

they represent mud-prone facies related with off-axis to marginal deposition.  
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In Figure 28, I make a vertical section EE’ through meandering channel 3 at 

Horizon A + 248 ms. Analyzing the channel at a vertical view, I note there is a lateral 

change in the amplitude thickness which I interpret is associated with differential 

compaction (Chopra and Marfurt, 2012). Differential compaction is related to lateral 

changes in lithologies. I interpret the positive relief in EE’ as a channel filled with sand-

prone sediments that do not experience as much compaction as the mud-prone facies 

outside it. In this case, the purple seismic facies are associated with sand-prone facies and 

high amplitude reflectors and the green facies are related to mud-prone sediments and 

lower amplitude reflectors associated with the Moki B shale Formation. 

Based on the observations made using vertical section through the channel 

complexes present in the Moki A sands Formation, I hypothesize that purple seismic 

facies, characterized by continuous high amplitude reflectors, are associated with sand-

prone facies related to axial deposition. In contrast, I believe that green seismic facies, 

characterized by low amplitude reflectors, are associated with mud-prone facies related 

to off-axis to marginal deposition in the meandering channel complexes. Finally, mixed 

blue, yellow and red facies represent sheet sands deposits, I hypothesize these seismic 

facies are associated with  higher concentration of sand-prone deposits.  

Validation of seismic facies using well data 

In order to validate my interpretation of  the seismic facies using principles of 

geomorphology and the ICA RGB blending to highlight the different architectural 

elements, I relate the seismic facies with lithologies analyzing the Gamma Ray log from 

the Tui SW-2 well. From Figure 29, I note that high gamma ray values associated with 

bathyal claystones of the Moki B shale Formation correlate with the green seismic facies 
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(yellow arrow) which I hypothesized were associated with mud-prone seismic facies. 

Also the small low gamma ray values (blue arrow) which are associated with calcareous 

sandstones, are not seen in the seismic because their thickness is approximately 5 m, thus 

they are under resolution. In addition, intercalation of high gramma ray with low gamma 

ray values associated with interbedded calcareous sandstone and claystones related to 

base of slope turbidites present in the Moki A sands Formation are characterized by red 

and blue seismic facies (green arrows), which is consistent with my interpretation of sheet 

sands characterized by a mixture of blue, red and yellow seismic facies. Finally,  the low 

gamma ray calcareous sandstone of approximate thickness of 30 m bracketed by high 

gamma ray claystone are associated with mixed purple and green seismic facies (orange 

arrow) in the Tui SW-2 well. Although the Tui SW2 well is not drilled through one of the 

channel complexes, I believe that the validation of the seismic facies using this well can 

be extrapolated to the other zones of the seismic volume. 
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Figure 11. Proposed workflow to highlight and study the internal architecture of the 

channel complexes present in the Moki A sands Formation. I use spectral magnitude 

components ranging from 25 to 80 Hz with intervals of 5 Hz because it allows to analyze 

the stratigraphy and depositional system of the target area. Using Independent 

Component Analysis (ICA) is possible to extract the most valuable information and 

reduce noise from the spectral magnitude components. Then, the independent 

components are sorted by visual inspection based on their geological insight. Because, 

using ICA, I am projecting the data onto a mathematical space, plotting the three more 

important independent components against a RGB color scheme, is possible to generate 

an unsupervised seismic facies analysis in which similar colors are associated with similar 

seismic facies. Finally, the results are compared to the obtained using Principal 

Components Analysis (PCA).  
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Figure 12. Variability retained. (a) Based on the percentage of variability retained 

(Stanford, 2018), the algorithm automatically outputs four components during the PCA 

whitening preprocessing step that represent 94.04% of the variability of the data, from 

these components the independent components are computed. Also, PC1 is the strongest 

and represent 63.52% of the variability (b) PC1 is characterized by a flat spectrum 

because the spectral components were spectrally balanced. PC2 monotonically changes 

from lower to higher frequencies and is orthogonal to PC1. PC3 is orthogonal to PC1 and 

PC2 and its spectrum changes sign between 45 to 50 Hz. PC4 captures 5.74% of the 

variability and is orthogonal to PC1, PC2 and PC3. Little physical significance can be 

assigned to the eigenspectrum because principal components reside in a mathematical 

space where spectral components are represented as orthogonal uncorrelated components.  

 



 

38 

 

Figure 13. ICA energy. (a) Independent components exhibit similar energy and this is 

not clearly correlated to geology, thus independent components are sorted based on visual 

inspection, seeking for better resolution of large and small scale geological features (b) 

IC1 captures 23.92% of the energy and tend to represent lower frequency geological 

features. IC2 amplitude is higher at frequencies from 30 to 60 Hz. IC3 captures the largest 

energy and its spectrum is associated with low to moderate frequencies. IC4 spectrum 

monotonically changes from lower to higher frequencies. Because independent 

components represent spectral components as oblique projections seeking for 

independence, the ICA spectra has more physical significance than the PCA 

eigenspectrum.   
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Figure 14. (a) Principal Component Analysis (PCA) tends to represent all the energy in 

principal component #1 (PC1), while the remaining variability is distributed among the 

other principal components. In contrast, the independent components exhibit similar 

energy, thus they are equally important. 
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Figure 15. Principal component 1 (PC1) vs. independent component 1 (IC1) along 

phantom Horizon A + 196 ms. (a) PC1 shows the confluence (red arrow) of two leveed 

meandering tributary channels with moderate sinuosity and a tabular shape channel with 

an architecture similar to a braided channel (green arrows). In addition, PC1 is 

contaminated by acquisition footprint (red rectangle) (b) IC1 shows a smoother, less noise 

picture with less acquisition footprint (red rectangle) than PC1. Also, in IC1 the large-

scale geological features (green arrows) and the small-scale geological features such as 

oxbows (orange arrows) and a small abandoned meandering channel (blue arrow) are 

better delineated than in PC1. Please, note that numbering is used to identify the different 

architectural elements and is not associated with time of deposition of the channel 

complexes.   
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Figure 16. Principal component 1 (PC1) vs. independent component 1 (IC1) along 

Horizon A + 248 ms. (a) The leveed meandering channel (green arrows) are difficult to 

delineate using PC1, also PC1 is still contaminated by acquisition footprint (red 

rectangle). (b) IC1 provides better resolution than PC1, thus the leveed meandering 

channels (green arrows) are better delineated using the former. In addition, IC1 has less 

footprint (red rectangle) than PC1 and the internal architecture of the tabular shape 

channel improves considerably. Finally, the small scale oxbow (orange arrow) that is not 

seen in PC1 can be interpreted using IC1. 
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Figure 17. Principal component 2 (PC2) vs. independent component 2 (IC2) along 

Horizon A + 196 ms. (a) PC2 is characterized by strong acquisition footprint (red 

rectangle), also the large scale leveed meandering and tabular channels (green arrows) 

and the small scale geological features such as oxbows (orange arrows) and the small 

abandoned channel (blue arrow) are difficult to interpret using PC2. (b) IC2 provides a 

remarkable increase in the resolution compared to PC2, thus the large scale (green arrows) 

and small scale geological features (orange arrows and blue arrows) are easier to delineate 

in IC2. In addition, the independent component 2 has less acquisition footprint (red 

rectangle) than the principal component 2. Similar to Figures 15 and 16, numbering is 

used to identify the different architectural elements and is not associated with time of 

deposition of the channel complexes.   
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Figure 18. Principal component 2 (PC2) vs. independent component 2 (IC2) at phantom 

Horizon A + 248 ms. (a) In PC2, the leveed meandering channels 1, 2 and 4 (green 

arrows) are difficult to interpret, also the principal component 2 is characterized by 

acquisition footprint (red rectangle) and random noise. (b) In contrast, IC2 provides a 

result with less acquisition footprint (red rectangle) and random noise compared to PC2. 

Moreover, the leveed meandering channels (green arrows) that were difficult to interpret 

in PC2 are better delineated using IC2. The small scale oxbow (orange arrow) is also 

better resolved in IC2. 
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Figure 19. Principal component 3 (PC3) vs. independent component 3 (IC3) at Horizon 

A + 196 ms. (a) From PC3 is possible to interpret the large scale geological features such 

as the leveed meandering channels and the subsequent merged main channel (green 

arrows) and the small scale oxbows (orange arrows). Also, the small abandoned 

meandering (blue arrow) channel that was not possible to delineate in PC1 and PC2 is 

now seen in PC3 (b) IC3 is characterized by less acquisition footprint (red rectangle) and 

smoother results than PC3. Also, the large scale (green arrows) and small scale (orange 

arrows) geological features are well delineated. However, the small abandoned 

meandering channel (blue arrow) was not completely delineated in IC3. Similar to the 

previous analysis, numbering is used to identify the different architectural elements and 

is not associated with time of deposition of the channel complexes.   
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Figure 20. Principal component 3 (PC3) vs. independent component 3 (IC3) along 

phantom Horizon A + 248 ms. (a) The resolution of the leveed meandering and the tabular 

channels (green arrows) increases considerably in PC3, thus is easier to interpret the 

geological features. Also, is possible to observe acquisition footprint (red rectangle) in 

PC3. (b) Although the resolution of the large geological features increased in PC3, they 

are still better delineated using IC3. Moreover, IC3 still provides a smoother picture with 

less acquisition footprint (red rectangle) than PC3. The small scale oxbow (orange arrow) 

can be interpreted on both pictures, but its resolution seems to be greater in PC3.   
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Figure 21. Principal component 4 (PC4) vs. independent component 4 (IC4) along 

Horizon A + 196 ms. (a) In PC4, geological deep water architectural elements can still be 

interpreted, but they are not as well delineated as in the other principal components. In 

addition, PC4 still presents acquisition footprint (red rectangle) and random noise as in 

PC1, PC2 and PC3. (b) IC4 is characterized by strong acquisition footprint and random 

noise. Architectural elements are difficult to delineate. 
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Figure 22. Principal component 4 (PC4) vs. independent component 4 (IC4) at phantom 

Horizon A + 248 ms. (a) PC4 is still contaminated by acquisition footprint (red arrow) 

and random noise, but large (green arrows) and small scale (orange and blue arrows) 

geological features are interpreted. (b) IC4 is still contaminated by strong acquisition 

footprint and random noise. Large and small scale geological features are difficult to 

interpret. I hypothesize that because independent component analysis looks for 

independence in the multivariate data, it provides better separation between geological 

features (IC1, IC2 and IC3) and noise signal (IC4) than PCA. Also, independent 

components provides better resolution of large and smaller scale geological features than 

principal component analysis, thus providing a mean of making a better seismic 

interpretation. 
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Figure 23. RGB blending of PC1, PC2 and PC3 vs. RGB blending of IC1, IC2 and IC3 

at phantom Horizon A + 196 ms, in which similar colors can be interpreted as similar 

seismic facies. (a) From PCA RGB blending is possible to analyze the large scale 

geological features (green arrows), and the small scale oxbows (orange arrows), but the 

small abandoned channel (blue arrow) is only partially delineated. PCA RGB blending is 

contaminated by acquisition footprint (red rectangle). Axis and off-axis seismic facies are 

characterized by similar greenish colors. (b)  From ICA RGB blending the large scale 

(green arrows) and small scale geological features such as oxbows (orange arrows) and 

the small abandoned channel (blue arrow) are better delineated than PCA RGB blending. 

In addition, the former presents lower acquisition footprint (red rectangle) and random 

noise than the latter. ICA RGB blending also provides a better contrast between different 

seismic facies, e.g., the axis of the channel is characterized with a purple seismic facies, 

while the off-axis of the channel is associated with a green seismic facies. Also, the 

tabular shape channel is characterized by a more variable internal architecture with 

predominant purple seismic facies mixed with blue and green seismic facies. Finally, the 

oxbows infill varies from purple to blue and green facies and the small abandoned channel 

is associated with purple seismic facies. 
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Figure 24. RGB blending of PC1, PC2 and PC3 vs. RGB blending of IC1, IC2 and IC3 

at phantom Horizon A + 248 ms, similar colors are associated with similar seismic facies. 

(a) From PCA RGB blending, the large scale meandering and tabular shape channels are 

well delineated but the resolution decreases compared to the ICA RGB blending. Also, 

the former presents more acquisition footprint than the latter. (b) The geological 

architectural elements are better resolved in ICA RGB blending than in PCA RGB 

blending. The leveed meandering channel 1 is characterized predominantly by purple 

seismic facies intercalated with some blueish seismic facies, and the leveed meandering 

channels 2 is associated with a green seismic facies. The tabular shape channel internal 

architecture is highly variable with a mix of different seismic facies. The distributary 

channel 1 is characterized by a predominant purple seismic facies and the distributary 

channel 2 looks like a prolongation of the tabular channel. Finally, the meandering 

channel 3 is characterized by only a purple seismic facies and the oxbow 3 and the 

meandering channel 4 are characterized by a greenish infill. 
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Figure 25. Following McHargue et al. (2010); Fildani, et al. (2012) and Hubbard et al., 

(2014), deposition of turbiditic facies in deep water channels can be divided into axis, 

off-axis and margin. In general, the axis of the channel represents the thickest part and is 

associated with deposition of thick-bedded amalgamated sandstone facies. Off-axis to 

marginal deposition is characterized by interbedded sandstone and mudstone facies 

(heterolytic facies), implying a lower concentration of net sand. Picture after McHargue 

et al. (2010) and Hubbard et al. (2014). 
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Chapter 6: Conclusions 

Applications to a 3D seismic data volume acquired in the Taranaki Basin show 

that Independent Components Analysis (ICA) proved to be a powerful technique to 

reduce dimensionality, extract valuable information from multiple seismic attributes and 

separate geological features from noise. ICA uses higher order statistics that found 

projections that were more geological and less mathematical than Principal Component 

Analysis (PCA), where PCs based on Gaussian statistics seems to mix multiple geologic 

features as well as noise. For this reason, ICA provided better resolution and better 

footprint reduction than PCA in interpreting the Taranaki Basin deep water turbidite 

systems. Small scale geological features characterized by lower reflectivity than large 

scale geological features are overlooked by the Principal Component Analysis, while in 

Independent Component Analysis geological features at all scales are well preserved. 

Specifically, small scale meandering and tabular shape tributary channels as well as 

abandoned meandering channels and oxbows are better delineated using ICA. Finally, 

ICA RGB blending provided better contrast between distinct seismic facies than PCA 

RGB blending. In ICA RGB blending, axial deposition associated with sand-prone facies 

is characterized by a distinct (in this case purple color) seismic facies related to high 

amplitude reflectors. In contrast, off-axis to marginal deposition of the channels is 

represented by a different (green color) seismic facies associated with mud-prone facies 

and characterized by low amplitude reflectors. Finally, sheet sand deposits are 

characterized by high amplitude continuous reflectors with greater lateral extent and are 

associated with a mixture of (purple, red and yellow) facies dominated by one (bright 

blue) seismic facies.  
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Appendix 

Preprocessing for ICA estimation 

Estimation of the independent components P={P1,P2} requires finding an 

unmixing matrix, W, such that its projection maximizes the independence or non-

Gaussianity between the components (Hyvärinen and Oja, 2000). Also, in ICA it is 

assumed that the data has non-Gaussian distribution. This assumption is valid in seismic 

data because according to Walden, (1985); Zanardo Honorio, (2014), seismic data can be 

considered as super-Gaussian distributions that are characterized by a positive kurtosis. 

I apply some preprocessing steps to better condition the problem. Hyvärinen and 

Oja (2000), suggest subtracting the mean vector �̅� of the data 𝐚, from the value at each 

voxel prior to estimating the independent components. However, unlike human voices 

and other ICA applications, each seismic attribute may have a different unit of 

measurement and range of values. For example, the seismic envelope may range between 

0  and +10000, while curvature may have value that range between -1 and +1 km-1. For 

this reason, I apply a Z-score normalization to the data, i.e., subtracting its mean but also 

dividing by its standard deviation:  

                                                  a𝑗
(norm)

=(aj - aj̅ )/𝜎(aj).                                              (A1) 

The next preprocessing step is to whiten the data. Whitening  guarantees that the 

data are uncorrelated (mathematically, its covariance matrix is the identity matrix). The 

correlation matrix, C, is constructed by comparing each sample vector to itself and all its 

neighbors and can be computed from K attribute volumes as: 

                       𝐶𝑘𝑙 =
1

𝑀
∑ a𝑚𝑘

(norm)
(𝑡𝑚, 𝑥𝑚, 𝑦𝑚)a𝑚𝑙

(norm)
(𝑡𝑚, 𝑥𝑚, 𝑦𝑚)𝑀

𝑚=1 ,                (A2) 

where M is number of voxels in the volume to be analyzed.  
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According to Hyvärinen and Oja (2000), uncorrelated data simplify the estimation 

of independent components because the mixing matrix A becomes an orthogonal matrix, 

thereby reducing the number of free parameters to be computed. 

Principal Component Analysis (PCA) is a common technique used for 

dimensionality and noise reduction. The kth principal component, P(k), at the mth voxel 

(tm,,xm,ym)  is a scalar that represents the projection of a J-dimensional sample vector, a, 

against the kth unit length, J-dimensional eigenvector, v(k): 

                              𝑃𝑗
(𝑘)

(𝑡𝑚, 𝑥𝑚,𝑦𝑚) = ∑ a𝑗
(norm)(𝑡𝑚, 𝑥𝑚,𝑦𝑚)𝑣𝑗

(𝑘)
.𝐽

𝑗=1                (A3) 

PCA can be used to whiten the data. Specifically, after computing the principal 

components, 𝐏𝐣, I rescaled them by j/1  thereby making each of the projections have 

unit variance: 

                                                  a𝑗
(𝑤)

=
𝑃𝑗

(𝑘)
(𝑡𝑚,𝑥𝑚,𝑦𝑚)

(𝜆𝑗+𝜀)
1

2⁄
 ,                                       (A4) 

where, 𝐚𝐣
(𝐰)

, represents the data after Z-score normalization and whitening, 𝜆𝑗 are the 

eigenvalues of the covariance matrix, and 𝜀 is a fraction of the largest eigenvalue 𝜆1 , to 

avoid division by zero. 

Using PCA whitening, I not only reduce the dimensionality of the data but I also 

reduce noise during the independent component estimation (Hyvärinen and Oja, 2000). 

To decide how many components I should preserve, I analyze the percentage of variance 

retained (Stanford, 2018). 

If I have N principal components whose eigenvalues are 𝜆1, 𝜆2, 𝜆3, … , 𝜆𝑁 where 

𝜆𝑛 ≥ 𝜆𝑛+1. For N attributes, Stanford (2018) suggests keeping the largest K components 
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whose sum just exceeds a user-defined percentage 𝛽, of the variability E of the data, 

where the remaining variability is considered to be noise:  

                                                               
∑ 𝜆𝑛

𝐾
𝑛=1

∑ 𝜆𝑛
𝐽
𝑛=1

≥ 𝛽,                                                   (A5) 

where I use a value 𝛽 = 0.9 to define the data from noise. 

The ICA algorithm 

Based on the Central Limit Theorem, Hyvärinen and Oja (2000), state that the 

distribution of two independent variables is less Gaussian than the distribution of the sum 

of the two variables. Therefore, by maximizing the non-Gaussianity of the preprocessed 

data, I can find the unmixing matrix, W, that maximizes the independence of the sources 

P1 and P2.  

Because a Gaussian variable has the largest entropy of all, Hyvärinen and Oja 

(2000), quantitatively measure non-Gaussianity based on an approximation of 

negentropy, which is a modified version of entropy that is always nonnegative and equal 

to zero for a Gaussian distribution.      

Assuming a random variable y=𝐖T𝐚(w) with zero mean and unit variance, 

Hyvärinen (1999) approximate the negentropy J as: 

                                               𝐽(𝑦) = {𝐸[𝐺(𝑦)] − 𝐸[𝐺(𝑣)]}2,                                    (A6) 

where G is a non-quadratic function called the contrast function, v is a centered and 

whitened Gaussian variable and E is the expected value operator. In practice, the 

expectation operator must be replaced by the sample means (Hyvärinen and Oja, 2000). 

To compute the independent components, Hyvärinen and Oja (2000), developed 

an algorithm called “FastICA”, where, the goal is to maximize the contrast function, G. 
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Any non-quadratic function can be used in the computations (Hyvärinen and Oja, 2000). 

I follow Zanardo Honorio et al. (2014), and use the contrast function: 

                                                              𝐺(𝑦) = −𝑒
−(

𝑦2

2
⁄ )

,                                         (A7)                                                                                                                                

which through empirical analysis appears to provide good resolution and delineation of 

the geological features.  

The independent components are computed simultaneously. To avoid 

convergence to the same maxima, the outputs are decorrelated after each iteration 

(Hyvärinen and Oja, 2000).  

Following Hyvärinen and Oja (2000), in each iteration of the algorithm, I update 

each row of the unmixing matrix, W, is updated by 

                             𝐖𝒋
+ = 𝐸 [a(𝑤) 𝜕𝐺

𝜕𝑦
(𝐖𝒋

𝑻𝐚(𝒘))] − 𝐸 [
𝜕2𝐺

𝜕2𝑦
(𝐖𝒋

𝑻𝐚(𝒘))] 𝑾𝒋,                  (A8) 

and normalized by:   

                                                              𝐖𝒋
+ =

𝐖𝒋
+

||𝐖𝒋
+||

⁄ ,                                         (A9) 

where W+ is the updated unmixing matrix Finally, the updated unmixing matrix, W+ , is 

decorrelated using Eigenvalue Decomposition (EVD) by 

                                                          𝐖decorr
+ = (𝐖𝐖𝐓)

−1
2⁄ 𝐖.                                      (A10) 

Convergence is reached when the dot-product between the old and new values of 

W is close to 1, indicating that they are parallel and unchanged. (Hyvärinen and Oja, 

2000).   

Finally, as a means to order the independent components, I compute their energy 

L. The energy of each independent component can be computed as the sum of the energy 

over all the voxels that fall in the target region: 
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𝐿𝑖 = ∑ 𝑦𝑖(𝑡𝑚, 𝑥𝑚,𝑦𝑚)
2

𝑀

𝑚=1

 

where, 𝑦𝑖(𝑡𝑚, 𝑥𝑚,𝑦𝑚) is the 𝑖th independent component at voxel m, and M is the number 

of voxels in the target area. 


