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Abstract 

 

Point-of-Care (POC) analysis in recent years has driven the need for the 

miniaturization of chemistry instruments in the analytical field. One such instrument 

class involves chromatographic systems for the separation and detection of complex 

samples. From this need, micro Total Analytical Systems (microTAS) as well as Lab-

on-Chip (LOC) systems have been developed. These systems allow for the potential of 

cost reduction in manufacturing as well as on-site analysis. One method to obtain a 

significant size reduction in the instruments is to transition all liquid flow to a capillary-

based system. Within this dissertation we show that through the minimization of the 

liquid channels, new portable separation and detection systems can be developed. 

In the second chapter, we describe the development of a high- performance 

liquid chromatography (HPLC) capillary-based cartridge for complex separations. 

HPLC has traditionally required the need for high-pressure piston pumps that are 

inherently large in size. In order to mitigate this issue, we have developed and reported 

monolithic capillary-based electroosmotic pumps (EOPs) capable of producing an 

output pressure greater than 1200 bar. EOPs are proving to be a promising alternative 

to traditional piston pumps and can be applied to either capillary or chip-based systems. 

Within our HPLC cartridge, we develop a novel valve system capable of providing 

gradient elution and nanovolume injection (Figure 2-1). A two-loop system allowed dual 

EOP units to drive a gradient separation while refilling the second loop for subsequent 

column reconditioning. When the valve is switched and reconditioning begins, the 

gradient profile can be regenerated for the next separation.  
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In the third chapter, a narrow capillary benchtop laser induced fluorescence 

detector is developed. Currently, low- and sub-micrometer capillary systems capable of 

on-column detection are not commercially available. Through the development of this 

confocal LIF detector prototype, we were able to characterize its limitations including 

the limit of detection (LOD), linear dynamic range (LDR), and background drift through 

a flow injection analysis (FIA) system within a 2-um-i.d. capillary. We obtained a very 

low LOD of around ~70 fluorescein molecules (equating to a 12 yoctomole fluorescein 

LOD). A wide LDR was reported at three orders of magnitude while a 1.2-fold root-

mean-square (rms) noise was obtained. Following the characterization, a DNA ladder 

sample was separated by bare narrow capillary-hydrodynamic chromatography (BaNC-

HDC). Through this testing, we were able to further demonstrate the feasibility of the 

system by obtaining both well-resolved peaks as well as quantitative information for the 

DNA fragments. 

In the fourth chapter, we describe the development of a multiple channel UV/Vis 

optical fiber-based absorbance detector for high throughput screening of 

chromatographic separations. There has been increasing interest in online 

comprehensive two-dimensional liquid chromatography (2D-LC) systems. These 

systems allow for a high peak resolution of complex samples that traditional one-

dimensional liquid chromatography could not provide. However, current configurations 

of commercial 2D-LC systems involve two or more columns with two detectors and 

provide separation times in the tens of hours. In order to shorten the total separation 

time, a novel configuration for 2D-LC was developed and the detector for said system is 

presented here. The detector consists of four major components: a deuterium lighthouse; 
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an optical fiber module assembly; a 13-channel flow cell fitted with a 13-photodiode 

detection system; and a data acquisition and monitoring terminal. When characterizing 

the detector, we were able to obtain background noise level in the tens of µAU and a 

linear range of ~2.5 AU.  
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Chapter 1: Introduction 

Background 

Point-of-Care (POC) analysis is becoming an ever-popular necessity in the fields 

of medicine [1], forensics [2], homeland security [3], and biomedical analysis [4] to 

name a few. However, due to traditional drawbacks of LC including size, weight, cost, 

and instrument complexity, HPLC has not been widely implemented in the field. With 

continued improvements to the various LC components including the pumping systems, 

injectors, columns, and detectors through the use of new machining techniques, 

development of smaller electronics and breakthroughs in material science, truly 

miniaturized HPLC systems are a reality in the 21st century leading to an ever-

increasing possibility of applications. In this dissertation we present three benchtop 

capillary-based analytical instruments for chromatographic separation (HPLC cartridge) 

and detection (LIF detector and multiple channel absorbance detector) of peptides and 

proteins.  

Miniaturized capillary-based systems 

Miniaturized liquid chromatography systems lend themselves towards increased 

portability. In order to successfully construct a miniaturized and/or portable device, one 

must take into consideration the overall weight of the system, ability to provide both 

isocratic and gradient elution, a stable flow rate, and ease of operation. Advancements 

in pumping systems, columns, and detectors have driven the development of micro 

Total Analytical Systems (microTAS).  
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Electroosmotic pumps (EOP) 

The growing trend in micro analytical systems, including miniaturized HPLC 

systems, has allowed the prospect for electroosmotic pumps (EOPs) to be popularized 

in recent decades [5-7]. EOPs utilize electroosmosis through charged porous media 

(pumping elements) to generate pressure and flow. This porous media may either be 

positively or negatively charged based on the polarity of the high voltage power supply 

(HVPS) and the direction of the flow desired. Electroosmotic pumps offer a cost-

effective and simplistic method for producing the necessary flow rates and pressures 

required for liquid chromatographic systems while having several other inherent 

benefits. For example, this style of pump naturally creates pulse-free flows, unlike most 

traditional pump systems. The liquid profile of EOPs more resemble a plug rather than 

parabolic in shape with pressure driven systems. The rate and direction of flow is easily 

manipulated through a change in the voltage magnitude and polarity [8]. These pumps 

are readily miniaturized and integrated in both lab-on-chip and traditional systems, all 

the while reducing complexity due to no moving parts.  

Our group has developed different electroosmotic pump configurations for use 

in portable LC systems. With the advent of monolithic polymerized columns for 

electroosmotic pumping systems, step [9, 10], linear [11, 12] and programmable [13] 

gradients were all obtained. Pumps capable of generating 1200 bar [14] have been 

reported, however lower pressures (~120 bar) are more routinely used to drive 

separations at a flow rate of ~200 nL/min. Depending on the specifications of the pump 

required, one may choose to either put several of the same charged monolith in parallel 

to achieve additive flow and averaged pressure or combine positive and negatively 
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charged monoliths in series to create a Pressure Power Supply (PPS), which allows for 

additive pressure with averaged flow. This technique is often compared to how batteries 

work and sample configurations may be seen in Figure 1-1. Within the proposed HPLC 

cartridge presented within this dissertation, we utilize the first technique (parallel 

negatively charged EOPs) to generate a miniaturized high-pressure pump capable of 

pressures ~2500 psi and flow rates ~1 µL/min. Scanning electron microscope (SEM) 

images of the negatively charged monolithic EOPs utilized within this research can be 

seen in Figure 1-2. 
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Figure 1-1 Monolithic pump setup 

+HV – positive high voltage; GND – ground; EOP – electroosmotic pump; EOF – 

electroosmotic flow  

A: parallel EOP configuration; B: pressure pump system (PPS) (series EOP 

configuration)  
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Figure 1-2 SEM images of typical negative monoliths 

[Reprinted with permission from Zhou et al., Analytical Chemistry 86(24) 12214-

12219. Copyright (2014)  American Chemical Society.] 
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Although electroosmotic pumping systems are small in size and have low dwell 

volume compared to conventional pumping systems, limitations to EOP do exist. These 

may include pump-solution incompatibility with high organic contents, flow rate 

fluctuations due to condition variations at the pumping element surfaces, unstable 

voltage sources, and/or chemical breakdown within the pumping element itself. Each of 

these limitations lend to the fact that EOPs have never been commercialized in the 20 

years of their existence. Although EOP pressures and flow rates are approaching the 

workable range for LC separations and its size lends itself to a miniaturized HPLC 

system, further research is needed to provide stable flow rates and a reproducible and 

programmable gradient before they will ever reach the market.   

Capillary columns 

Since the early HPLC systems, it has been known that in order to increase 

resolution and decrease separation times, packing particle sizes and column dimensions 

need to be minimized. The advent of microcolumns (0.5-1.5-mm-i.d.) lead to the 

development of capillary-based columns (0.1-0.05-mm-i.d.) and then to microcapillary 

columns (50-200-µm-i.d.) [15] in the late 1970s. Tsuda et al. [16] as well as Jorgenson’s 

groups [17, 18] continued to pioneer columns with the further reduction of column 

diameter to 5-500-µm-i.d. . During this development of microcapillary columns, much 

research went into the slurry packing of fused silica particles in order to increase the 

columns homogeneity and thus improve its efficiency and reproducibility [17, 19-25]. 

Jorgenson, in one of these developments, decreased the particle diameter to 1.5 and 1-

µm-i.d. showing that extremely high efficiency columns (<200,000 plates/m) could be 

developed [26]. Through this decreased column size and particle diameter a new type of 
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liquid chromatography, ultrahigh-pressure liquid chromatography (UHPLC) where 

pressures may reach levels higher than 1100 bar [27], has been developed.                             

Researchers soon realized that although decreasing the packing particles size can 

lead to more than one million plates/m [28], very high pressure pumps were required to 

drive these separations. This requirement thus limited the application of these columns 

to miniaturized liquid chromatography systems. Monolithic capillary columns, 

conceived in the early 1990s, addressed this backpressure issue by replacing a packed 

slurry with polymerized monomers within the column [29-31]. To date, separation 

efficiencies with monolithic columns between 100,000 and 250,000 plate/m have been 

obtained [32-34] and with added functionalization including organic polymers [35, 36] 

and zwitterionic functionalization as well as incorporation of metallic nanoparticles, 

metal organic frameworks, and carbon-based nanomaterials, monolithic capillary-based 

columns continue being on the forefront of column research.  

Filled columns, whether they are packed or contain a monolith, represent one 

subclass of capillary-based columns. Open tubular capillary columns, in turn, represent 

the other. Open tubular capillary columns have only recently (last two decades) begun 

to make an impact on chromatographic separations compared to that of filled columns. 

Open tubular columns can exist as porous layer open tubular (PLOT) [37-41] or wall 

coated open tubular (WCOT) columns [42-44]. Improvements in coatings of open 

tubular capillary columns have allowed for an increase in column efficiency while 

taking advantage of a smaller inner diameter that minimizes the effect of dispersion 

compared to that of packed columns. However, generally speaking, the overall length of 

the open tubular column must be increased in order to create an equivalent separation to 
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that of a filled column. 

The projects presented within this dissertation incorporate a number of different 

capillary columns. Within Chapter 2, commercially available packed C18 reversed-

phase (RP) columns are used for trypsic digests of bovine serum albumin (BSA) and 

myoglobin. In Chapter 3, open tubular columns for bare narrow capillary-hydrodynamic 

chromatography (BaNC-HDC) are used to separate a 1 kb plus DNA ladder. Lastly, in 

Chapter 4, monolithic columns of both strong anion exchange (SCX) and RP modes are 

used for an E. Coli lysate separation.  

Detectors 

As the size of chromatographic systems continue to decrease, the stress is placed 

for the detection systems to complement the separations. Extensive amounts of research 

and review articles have gone into various detection methods including Raman 

Spectroscopy [2, 3, 45, 46], UV, Visible and NIR Spectroscopy [47-52], Laser and LED 

Induced Fluorescence [53-58], electrochemical detectors [59-64], X-ray fluorescence 

[65-67]. The majorities of these miniaturized detectors are designed around the 

detection of a specific class of compounds but may be adapted to supply the needs of 

others. The simplest class of detectors to miniaturize and thus integrate into an µHPLC 

system is absorbance detectors. Although absorbance can give a great detail of 

information, the researcher is limited to a specific subset of substances based on what 

wavelength of light he/she chooses. Mass spectrometry on the other hand can provide 

the researcher with a great deal of information both qualitatively and quantitatively. 

Miniature mass spectrometer development and commercialization are progressing 

rapidly [68] and many applications are anticipated as µHPLC and miniaturized mass 
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spectrometer are integrated with one another. 

Laser Induced Fluorescent (LIF) detection is a highly sensitive technique for 

analyzing native fluorescent and fluorescently tagged molecules. LIF detectors are 

highly suitable for miniaturized LC systems due to their low sample consumption, short 

testing time, high sensitivity, a relative low complexity of their components and are 

easily integrated into microfluidic chip-based systems. Compact LIF detectors continue 

to be developed throughout the academic community. Fang et al. [53] developed a 

handheld LIF detector with a 450 nm laser diode and tested the prototype with CE, flow 

cytometry, and droplet analysis. Novak et al. [69] developed a low-cost miniaturized 

LIF detector for lab-on-chip applications with sensitivities in the nanomolar region and 

incorporated lock-in amplification for measurements under ambient light. Although LIF 

detectors lend themselves to miniaturized LC systems with their high sensitivities and 

small size, the researcher is limited to applications based not only on the laser 

wavelength chosen but also the inherent need for a fluoraphore, whether that be native 

or labeled, to exist in the first place.  

Absorbance detectors have existed since the beginning of liquid 

chromatography. The first commercialized fixed wavelength detector was announced in 

1978 for use with HPLC [70]. Since then, advancements in electronics, light sources, 

and optics have lead to the decrease in detector sizes. One of the greatest breakthroughs 

in technology enabling the advancement in microsized detectors is the use of light 

emitting diodes (LEDs) as the light source. Within the last decade, numerous 

absorbance detectors have been developed, most integrating LEDs both in the visible 

and UV region, as their light sources [71-77].  
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Here two novel miniaturized detectors are presented for various real world 

applications. A benchtop laser induced fluorescence (LIF) with yoctomole limits of 

detection is presented in Chapter 3. In the following chapter, Chapter 4, a multiple-

channel ultraviolet (UV) absorbance detector is presented for its use in two-dimensional 

liquid chromatographic (2D-LC) separations.  

Techniques and instrumental development for microHPLC 

High Performance Liquid Chromatography (HPLC) has its roots back into the 

early 20th century. Martin and Synge [78] conducted initial studies in the early 1940s 

but advancement within the field did not take place until the 1960s when scientists 

realized that reducing the packing-particle diameter of the column while subsequently 

increasing the mobile phase velocity through an increased pressure could lead to 

dramatically improved separations [79-83]. It was during this time period that 

separation times decreased while resolutions increased showing that high performance 

liquid chromatography was here to stay. 

Leading chromatographers in the 1980s, Baram et al., constructed the first 

‘portable liquid chromatograph’ utilizing a multi-wavelength photometric detector and 

it weighed in at approximately 45 kg [84]. A few years later, Otagawa et al. published a 

paper documenting the use of another miniaturized HPLC for the analysis of primary 

aromatic amines in coal-derived materials [85]. Although no specific weight was given 

for the system, it was considerably smaller in size than the earlier model by Baram et al. 

In the late 1990s, Baram et al. [86], Tulchinsky [87], and a company by the name of 

ICON Scientific, Inc. [88] all released new miniaturized HPLCs with continued 

improvements to size, power, and overall separations. 
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The practicalities of miniaturized LC systems arise from the inherent benefits 

they provide. These may include but are not limited to a lower overall system solvent 

volume, smaller sample and mobile phase consumption, and the possible increased 

portability of the system. By reducing total system volume, a decrease in dwell and 

dead volume as well as extra-column volume is expected. The dwell volume, otherwise 

known as the volume difference between the systems delivery method and the front of 

the column, is impacted by the tubing (both internal diameter (I.D.) and length) as well 

as any valves/mixers that make up the total fluid path [89].  

Extra-column volume, or the volume from the injector to the detector, may 

consist of tubing connections, detector flow cells, preheaters, injection volume, as well 

as the column volume. Both dwell volume and extra-column volume effect the overall 

separation but in very different capacities. Dwell volume may impact the time as well as 

the gradient while extra-column volume impacts the peak width, efficiency, and 

resolution of the separation. Along the same lines but often confused, dead-volume, or 

the volume of they system that is unmoving or unswept through the chromatographic 

system, can be a serious problem for chromatographers leading to the tailing and 

broadening of peaks thus compromising peak separation and quantification and in turn 

resulting in an overall lower peak resolution [90]. By minimizing these unwanted 

volumes through the overall decrease in the systems size, one hopes to improve their 

overall separation. Several groups have coupled these microTAS/point-of-care systems 

with liquid chromatography to create portable devices as summarized in Table 1-1 

below. 
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Table 1-1 Miniaturized HPLC Systems 

Prototype and commercial based miniature HPLC systems 

 

 

 

 

 

 

Pump Type Weight 
(kg) 

Dimensions 
(cm) Injector Column Detector 

Electroosmotic      
Lynch 2017 

[11] 3 20 x 20 x 
17.5 

Stop-flow (60 
nL) Silica RP fixed-λ UV* 

Ishida 2015 
[91] 2 26 x 18 x 

21 
Continuous-flow 

(20 nL) 
Micro-chip 

RP Micro EDC 

Syringe Piston      
Sharma 2015 

[92] 4.5 31 x 18x 14 Stop-flow (60 
nL) Monolith fixed-λ UV 

Sharma 2014 
[93] 1.75 - Stop-flow (60 

nL) Monolith fixed-λ UV 

Boringa 1998 
[94] 10 28 x 43 x 

15 
Stop-flow 
(100 nL) AEX EDC  

Baram 1996 
[86] 14 53 x 20 x 

30 
Auto-stop-flow   

(1-100 uL) Silica RP multi-λ UV 

Dual-Piston      
Commercial 

[88] 3.5 12 x 19 Continuous-flow 
(20 nL) - fixed-λ UV 

Commercial 
[95] - - Continuous-flow 

(20 nL) - fixed-λ UV 

Tulchinsky [87] 9.5 41 x 25 x 23 Continuous-flow 
(20 nL) Silica RP fixed-λ UV 

Otagawa [85] - - Continuous-flow 
(20 nL) Silica RP EDC 
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Two groups have recently developed portable total HPLC systems. Sharma et al. 

characterized and reported two functioning portable LC systems in 2014 [93] and 2015. 

The first, an isocratic nanoflow pumping system was integrated with a fixed wavelength 

(254 nm) UV detector. The system was demonstrated through the isocratic separation of 

6 different benzene compounds over the course of 19 minutes.  It showed promising 

results; however, the limitation of isocratic gradient does not allow for complex sample 

analysis. Shortly after the publication of the first system, a modification to the pumping 

system from a single syringe pump to a dual syringe pump system allowed for 

programmable gradient elution shown in Figure 1-3 [92].  A total weight of ~4.5 kg for 

the system was realized. It was capable of generating up to 550 bar pumping pressure, a 

60 nL injection volume, and a maximum gradient loop capacity of 74 uL with a typical 

flow rate at 350 nL/min. Sharma et al. characterized the system using a three-

component pesticide mixture as well as a five phenol mixture.  

The last notable portable liquid chromatograph system within recent years was 

one developed by Ishida et al. [91] in 2015 and is shown in Figure 1-4. It consisted of a 

battery-operated system integrated with an electroosmotic pump and a microfluidic 

device containing an integrated column and electrochemical detector. The flow rate 

ranged from 0 to 10 µL/min with a high degree of precision due to the use of flow 

sensors. The overall weight of the system was 2 kg, proving to be one of the more 

lightweight systems ever developed and had an operating time of 24 h with dry 

batteries. The chip itself was designed to minimize the dead volume between the 

column end and the detector; limiting it to only 10 nL. The column was a packed ODS 

particle reverse-phase column and the system performance was tested using standards 
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of alkylphenols, catecholamine, catechin, and amino acids [91]. This is the first 

complete system integrating a microfluidic chip and shows a promising future for 

microfluidic HPLC systems. 
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Figure 1-3 Photograph of hand-portable gradient nanoflow pumping system 

Hand-portable HPLC system developed by Sharma et al.. It utilizes custom pumps 

developed by Vici to deliver a consistent flow rate and reproducible gradient. They 

utilize a miniaturized LED detector built in-house as their detector.   

[Reprinted with permission from Sharma et al., Analytical Chemistry 87(20) 10457-

10461. Copyright (2015)  American Chemical Society.] 
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Figure 1-4 Photograph of fully integrated microchip HPLC system 

Fully integrated microchip HPLC systems developed by Ishida et al.. Through the use 

of an electroosmotic pump and on-chip column and detector, this functional 

miniaturized HPLC system capable of flow rates into the uL/min range while utilizing 

an electrochemical detector to identify their analytes of interest. 

[Reprinted with permission from Ishida et al., Analytical Sciences 31(11) 1163-1169. 

Copyright (2015) The Japan Society for Analytical Chemistry 
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Laser-induced fluorescent (LIF) detectors for sub-pM detection 

The high specificity and sensitivity associated with LIF detectors make this a 

powerful technique for the detection of chromatographic separations. The speed 

at which these separations may occur as well as the wide assortment of 

applications including detection of pollutants, combustion products, proteins and 

DNA for cell analysis, food contaminants, and plasmas continue to make LIF 

detection a widely used analytical tool in research laboratories. Fluorescence 

may occur naturally from natively fluorescent compounds or can be induced 

through the labeling of analytes of interest.  

The basic principle of fluorescence (Figure 1-5) occurs when a fluorophore 

absorbs energy in the form of light or other electromagnetic radiation causing a 

photon to reach a higher energy state (excited state). This unstable excited state is 

then allowed to vibrationally relax to the lowest excited singlet state (S1) and 

eventually relax down to the ground state (S0) with the simultaneous emission of 

light. This light produced is know as the fluorescence and has a lifetime of 

approximately 10-5s to 10-10s [96]. Due to the vibrational relaxation of the excited 

state, the energy of the fluorescence is generally less than the energy of the 

absorbed photon. This difference causes a longer wavelength for the fluorescence 

than the excitation creating what is known as the Stokes shift. It is this 

fundamental characteristic of fluorescence that allows the emission light to be 

separated from that of the excitation light. 
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The common setup for fluorescence allows the signal to be collected against 

a dark background, lowering the overall noise of the signal and thus lending itself 

to the overall high sensitivity of the system. The utilization of a longer excitation 

wavelength and the removal of impurities through chemical (i.e. oxidation), 

adsorption (i.e. charcoal) [97], or photobleaching [98] are several additional 

approaches for reducing the background signal. Several factors such as pH, 

dissolved oxygen, concentration, solvent choice, and temperature may affect the 

fluorescence intensity [99] since the environment and electronic structure of the 

fluorophore determines the Stokes shift and overall intensity. By successfully 

optimizing these conditions and carefully choosing the correct laser/fluorophore 

combination, concentration detection limits of 10-13 to 10-17 M and mass detection 

limits of 10-19 to 10-23 are possible [100-103].  
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Figure 1-5 Jablonski diagrapm of a fluorescence molecule 
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Parallel HPLC instrumentation for high-throughput screening 

In order to increase the throughput of conventional sample separations, research 

into parallel HPLC systems arose in the late 1990s [104-106]. Early systems for 

analytical/preparative analysis offered automated parallel detection of just two columns 

and were later increased to eight. During the time of increasing drug discovery, these 

systems allowed for a much-needed increase in sample throughput. The fluidics 

associated with parallel HPLC systems was mitigated through novel valve design; 

however, the limitations of these systems arose in the form of the detectors. Early 

systems just dedicated a single UV absorbance detector to each column.  

 The first commercial system developed by Waters was developed to 

address the need for a dedicated stand-alone absorbance detector that allowed for 

parallel column analysis [107]. This system known as MUX (multiplexed) Technology 

enabled either four or eight channels to be ran in parallel and was able to purify almost 

4000 samples in 10 days. The detector, Waters 2488 Multi-channel UV/Vis Detector 

(Fig. 1-6) utilized a furcated fiber optic cable to split the light to each of the dedicated 

column channel flow cells. They also developed a multiple electrospray input for one of 

their quadruple mass spectrometers (Micromass’ Quattro Ultima). Other companies 

soon followed with parallel screening HPLC systems including Sepiatec’s 8x Screening 

HPLC system [108] and Dionex’s UltiMate x2 Dual HPLC system with UV detection 

[109].  
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Figure 1-6 Schematic of Waters 2488 multi-channel UV/Vis detector 

[Adapted with permission from Waters Corporation]  
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 Currently with the advent of two-dimensional HPLC (2D-LC), the need beyond 

just drug screening for such parallel systems exists. With only three commercial 

systems, each with their own limitations, 2D-LC systems have been designed around 

only utilizing one or two separation columns in the second dimension. These leads to 

increasingly lengthy separations as all of the fractions from the first dimension must be 

stored in collection loops until they can be ran using the detector. Agilent currently has 

two configuration modes for 2D-LC. The first and most widely used technique utilizes 

an eight-position valve with two storage units (Figure 1-7A). The second method, 

known as multiple heart-cutting LC (mLC-LC) allows for twelve fractions to be taken 

from the first dimension, stored, and subsequently analyzed using the second dimension 

column (Figure 1-7B). However, each of these systems utilize only a single UV detector 

and thus are either limited in the fraction size based on the overall 2nd-D separation time 

or can have smaller fraction sizes but the overall time to sequentially run each fraction 

is immense. In order to mitigate the downsides of each of these configurations, a 

multiple-channel detector could be used to run fractions concurrently. 
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Figure 1-7 Agilent’s commercialized 2D-LC valve setup 

(A) comprehensive LC (LCxLC) and (B) multiple heart-cutting LC (mLC-LC) 

[Adapted with permission from Agilent Technologies]  
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The materials in Chapter 1 are adapted from Talanta, (2018). 177:94-103. 

The copyright was obtained from Elsevier and the license number is 

4315050158423. For more details, please see Appendix A.  
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Chapter 2: High-performance liquid chromatographic 

cartridge with gradient elution capability coupled with an 

ultraviolet absorbance detector and mass spectrometer for 

protein and peptide analysis  

 
Abstract 

This work discusses the construction and performance of a HPLC cartridge we 

have developed that resulted from a culmination of previous research. We have recently 

developed an innovative approach to creating gradient elution’s through the use of dual 

electroosmotic pump units and a series of three valves. This approach proved to be the 

most reproducible and robust in producing gradients compared to our previously tested 

methods. Through the use of this approach, we have assembled an HPLC cartridge 

powered and controlled through a computer capable of separating complex protein 

samples. The prototype cartridge is 20 cm × 20 cm × 17.5 cm (L × W × H respectively) 

and weighs approximately 3 kilograms. We have successfully coupled the cartridge 

with a UV absorbance detector and a mass spectrometer for protein/peptide analyses. It 

is readily coupled with other detectors such as electrochemical detector and laser-

induced fluorescence detector. 
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Figure 2-1 Three-dimensional rendering of the HPLC cartridge  
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Introduction 

Miniaturizing high performance liquid chromatography (HPLC) has attracted 

increasing attention because it can reduce the instrument manufacturing costs and 

perform onsite analysis. In the late 1980s, the first portable, low-pressure LC system 

was developed by Otagawa et al., but problems existed with the system. The main 

problem was the flow rate irreproducibility leading to irreproducible separations. The 

other problem was that it produced only an isocratic gradient. Isocratic elution was not 

suitable for separating complex samples and it usually took too long for all analytes to 

be eluted out [110]. Since this early work, many other portable systems have been 

developed, but each lacking key features making its commercialization difficult [111]. 

In order to develop a miniaturized HPLC with little sample preparation, it needs to be 

able to separate a complex sample efficiently and quickly; thus a gradient elution is 

highly desired. 

Capillary and on-chip columns have allowed for nanoflow and low-volume 

separations. This leads to the elimination of large amounts of organic waste as well as 

low volumes of sample and solvents needed to perform the separation [34, 111, 112]. 

Electroosmotic pumps (EOPs) allow one to reduce pump size while still permitting for 

high-pressure separations. EOPs couple well with capillary system and have been 

widely studied throughout our lab. In recent years, breakthroughs in electrochemistry, 

lab-on-chip, as well as valve and pump design have allowed for miniaturized gradient 

systems to be developed at a faster rate. Sharma et al. is one group that has published 

“hand-portable” LC systems (gradient and isocratic) that utilizes cutting edge pump and 

valve design [92, 93, 113]. Their system is battery operated, but it is limited to a 
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gradient of 60 µL and its robustness and versatility are not yet fully tested.  

In this work, a novel approach to a low-cost HPLC cartridge is presented. This 

capillary-based cartridge incorporates the use of EOPs to drive its separation. Through 

stacking of pumps we have been able to generate pressures upwards of 1200 bar and 

flow rates in the microliter range [114, 115]; enabling packed column separation to take 

place. This cartridge utilizes a series of valves, a custom-built high-voltage power 

supply (HVPS), two EOP units with a custom built manifold, and a packed capillary 

column. The cartridge was controlled and powered by a computer via a USB port and 

data acquisition card (DAQ), while data was also collected and processed via the same 

DAQ and computer. The total weight of the cartridge is around 3 kg making it one of 

the lightest systems capable of gradient elution developed to date.  

The cartridge can be coupled with a variety of detectors such as absorbance and 

fluorescence detectors [77, 116-118]. For small inorganic and organic ionic compounds, 

a conductivity detector would also be an appropriate choice due to its compact size.  

Here we demonstrate the feasibility of coupling the cartridge with two of the most 

common utilized detectors (an UV absorbance detector and a mass spectrometer) for 

protein/peptide analyses.  

Experimental section 

Chemicals and materials 

Ethylene glycol dimethacrylate (EDMA, 98% w/w, hereinafter “%” indicates 

“% w/w” unless otherwise stated) and butyl methacrylate (BMA) were purchased 

from Alfa Aesar (Ward Hill, MA). 1-propanol and 2,2’-azobisiso-butyronitrile 

(AIBN, 98%) was bought from Aldrich (Steinheim, Germany). 
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Methacryloyloxypropyltrimethoxysilane (g-MAPS, 98%) was obtained from Acros 

(Fairlawn, NJ). Acrylamide, N,N
’
-Methylene bisacrylamide (bis), N,N,N’,N’ -

Tetramethylethylenediamine (TEMED) and ammonium persulfate (APS) were 

purchased from Bio-Rad Laboratories (Hercules, CA). 1,4-Butanediol (99%) was 

purchased from Emerald BioSystems (Bainbridge Island, WA).  Proteomics  grade  

modified trypsin was  obtained  from Promega  (Madison,  WI). LC-MS grade 

acetonitrile (ACN) was bought from Fisher Scientific (Fair Lawn, NJ). 2-Acrylamido-2-

methylpropane sulfonic acid (AMPS, 99%), BSA, myoglobin, sodium hydroxide, 

ammonium bicarbonate, and sodium acetate were purchased from Sigma-Aldrich (St. 

Louis, MO). Fused silica capillaries were obtained from Polymicro Technologies 

(Phoenix, AZ). Hydrochloric acid was obtained from EMD Millipore (Darmstadt, 

Germany). All solutions were prepared with ultra-pure water purified by a NANO pure 

infinity ultrapure water system (Barnstead, Newton, WA). 

Cartridge configuration 

Fig. 2-2 presents the configuration of the HPLC prototype cartridge. It consisted 

of two EOP units powered with a dual polarity high voltage power supply (HVPS), a 

12-port switching valve (V1, Valco Instruments, Houston, TX), a 10-port stream 

selector (V2, Valco Instruments), a 60-nL injection valve (V3, Valco Instruments), and 

a packed capillary column (100 Å, 3 mm, 75 mm _ 100 mm, Waters, Atlantis dc18 

NanoEase Column). Each EOP unit was composed of four parallel monolithic columns; 

these columns were connected in parallel via an in-house fabricated PEEK manifold. 

The prototype (Fig. 2-3) was 20 cm × 20 cm × 17.5 cm (l×w×h respectively) and 

weighed approximately three kilograms; most of the weight came from the clear lexan 
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material used to create the box for initial visual assistance. This weight will further be 

reduced with a different and lighter box material. 

Fig. 2-4 presents the construction of an EOP unit. It was comprised of an in-

house custom manifold that allowed for the connection of up to eight monolith 

capillaries to be connected in parallel; in this work only four monolith capillaries were 

utilized due to the flow rates required. When connected this way individual monolith 

pressures were averaged while flow rates were additive. High voltage was applied to the 

vial attached to the monolith capillaries whereas ground was applied to the vial 

connected to the bubbleless electrodes attached to the manifold 90 degrees to the 

monolithic columns. A common outlet out the top of the manifold allowed for the pump 

to either pull or push the downstream liquid depending on the polarity of the high 

voltage. One EOP unit (EOP-1 in Fig. 2-2) was employed to draw liquid in order to fill 

eluent loops and the other (EOP-2) to push and drive the liquid for sample separation. 

The protocols for preparing the bubbleless electrode and assembling the EOP were 

reported previously [119]. Each pump unit was capable of producing an unrestricted 

flow rate of approximately 800 nL/min with a pressure of 2000 psi at 5 kV. 

Fig. 2-5 presents the HVPS assembly. It consisted of a positive and negative 

polarity EMCO C80 8 kV power supply (EMCO High Voltage Corp. Sutter Creek, 

CA). A printed circuit board was designed in-house to control the HVPS and a custom 

LabView program regulated the two power supplies separately through the use of a data 

acquisition board 1408LS DAQ-USB (Measurement Computing Corporation, Norton, 

MA). This board powered the pump units of the HPLC as well as allowed the data 

acquisition via the detector to take place through a USB port of a computer. A Linear 
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UVIS 200 absorbance detector (Linear Instruments, Reno, NV) was used as the primary 

detector in this work for cartridge characterization and testing. The detector was set at 

214 nm for peptide and protein separations.   
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Figure 2-2 Schematic diagram of capillary-based HPLC cartridge 

Overall system diagram. V1, two‐position switching valve; GL, gradient loop (250 µm 

id × 50 cm length); RL, recondition loop (250 µm id × 50 cm length); MA, mobile 

phase A; V2, ten‐port selection valve; E1–E9, nine eluent solutions; V3, 60‐nL injection 

valve; D, linear UV‐VIS absorbance detector set at 214 nm; C, packed capillary column 

(100 Å, 3 µm, 75 µm × 100 mm, Waters, Atlantis dc18 NanoEase Column); and W: 

waste. The black dot in V1 indicates that port was blocked. 
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Figure 2-3 Overall integrated cartridge system 

(A) Three-dimensional rendering of the µHPLC system made within the laboratory. (C) 

Comprising an EOP system, high-voltage power supply, a 12-port two-position valve, a 

ten-port stream selector valve, a 60-nL injector, capillary column, and a UV detector. 
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Figure 2-4 EOP pump system 

(A) Three‐dimensional rendering and (B) actual image of the EOP pump system made 

within the laboratory. Comprising of four –EOP, four bubbleless electrodes, a pump 

manifold, and two buffer reservoirs. 
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Figure 2-5 HVPS system 

Three‐dimensional rendering of the HVPS system made within the laboratory. 

Comprising a custom enclosure, a custom printed circuit board (PCB), a National 

Instruments 1408LS DAQ, and two EMCO C80 HVPS. (A) The initial 3D design. (B) 

The finalized HVPS system used within the HPLC cartridge. 
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Monolith capillary preparation-EOP and bubbleless electrode 

The preparation protocol was similar to what we had described previously and 

can be viewed in depth in our previous literature [119] . An abridged version of the 

vinylization process was as followed. A capillary of approximately 150 cm (100-mm-i.d. 

x 360-mm-o.d.) was first flushed with acetone and 1.0 M NaOH, each for 10 min and 

then filled and sealed with 1.0 M NaOH where it was allowed to back in an oven at 

100°C for 2 h. Once the capillary was removed from the oven, it was flushed with 

water, 0.1 M HCl, and acetone in that order; each for 20 min. After the capillary was 

sufficiently dried with N2, the capillary was filled with 30% (v/v) g-MAPS in 

acetone, sealed, and placed back in the oven at 50°C for 14 h. The capillary at this 

point was rinsed with acetone and dried with N2 at 60 psi for 2 h where it was now 

successfully vinylized and ready for the monolith preparation. The vinylized capillary 

was then cut to 16-cm-long segments. After degassing with helium, a solution 

containing 10.0 mg AMPS, 230.0 mg BMA, 160.0 mg EDMA, 4.0 mg AIBN, 424.0 mg 

1-propanol, 116.0 mg 1,4-butanediol and 60.0 uL water was loaded into a capillary 

segment. A pressure supplied by a nitrogen cylinder was applied at a rate of 600 psi to 

the ends of the capillary and the capillary was placed in a water bath at 60°C for 20 h to 

allow complete polymerization to take place. After polymerization, approximately 2 cm 

of the capillary ends was trimmed and the monolithic column was flushed first with 

acetonitrile at 1500-2000 psi overnight and then with a 3.0 mM sodium acetate solution 

(pH 5.0) using an HPLC pump to remove unreacted monomers and other chemicals. 

Characterization of monoliths based on their voltage, flow rate, and output pressure can 

be seen in Fig. 2-6. 
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Figure 2-6 Characterization of -EOP 

(A) Maximum pressure output vs. applied voltage and (B) output pressure vs. flow rate. 

-EOP – 75-µm-i.d. ×15 cm, and pump solution – 3 mM sodium acetate at pH 5.0.  

[Modified from Chen et al., Analytica Chimica Acta 844 (2014) 90-98.. Copyright 

(2014) American Chemical Society. 
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To prepare the bubbleless electrode, a capillary with the dimensions of 150-µm-

i.d. (360 µm o.d.) and 20-cm long was cut and the inner wall was cleaned with NaOH 

(1.0 M) through the flushing of the capillary for 45 min, DI water for 15 min, and lastly 

acetonitrile for 15 min. Once the capillary was then sufficiently dried with nitrogen gas, 

the inner wall allowed to react with a solution containing 30% (v/v) g-MAPS in acetone 

at 50 ºC for 14 h. Then, the capillary was flushed again with acetonitrile and dried once 

more with nitrogen gas. Next, a degassed solution containing 9.0 %T (%T: the total 

weight concentration of acrylamide and bis in the solution), 3.0 %C (% C: bis 

concentration relative to acrylamide), 0.2% (v/v) TEMED, and 0.1% APS was 

pressurized into the capillary at 0 ºC overnight and then 4 ºC for another 24 h. After 

polymerization, 1-cm of the capillaries at both ends was trimmed off followed by a 50 

mM sodium tetraborate solution being electrophoretically driven through the 

polyacrylamide within the capillary until a stable current was obtained. Finally, the 

resulting capillary was cut into 2-cm pieces and thus creating a bubbleless electrode. 

Preparation of samples: peptide and protein 

Tryptic digests of BSA and myoglobin were used to evaluate the performance of 

the µHPLC cartridge. One milligram protein (BSA or myoglobin) was dissolved in 100 

µL of 25 mM ammonium bicarbonate (pH 8.25) to a concentration of 10 mg/mL, and 

0.2 µL of 1 M dithiothreitol was added into the solution. Trypsin at 1 µg/µl (Sequencing 

Grade Modified Trypsin, Frozen; Promega Cat# V5113) was then added into the 

solution at a ratio of 100:1 (protein:trypsin, w/w). After incubating in a water bath at 37 

°C for 8 hours, the solution was centrifuged at 8000 rpm/min for 5 min. The supernatant 

was passed through an ULTRAFREE-MC 5000 NMWL Filter Unit (Merck-Millipore, 
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Germany) to get rid of any undigested proteins. The tryptic digests were ready for use 

or for storage at -20 °C. 

Wild type and mutant myoglobin samples were obtained from Dr. Jun Yi [120]. 

In brief, a horse heart myoglobin gene with a single base mutation (hhMb, H64V) was 

engineered and expressed in E. coli. The lysed proteins from E. coli were concentrated 

by ammonium sulfate precipitation and the mutant myoglobin was purified by a DEAE-

Sepharose column. The wild type and mutant myoglobins were then mixed and diluted 

to a concentration of 10 mg/mL as a stock solution and stored at -20 °C. 

Gradient profile monitoring using C4D 

In order to monitor the profile of the generated gradient, the use of a capacitively  

coupled  contactless  conductivity  detector  (C4D), TraceDec, Innovative Sensor 

Technologies, Strasshof, Austria) was employed.  The C4D allowed the impedance to 

be measured through the variation in conductivity from the changing acetonitrile 

concentration of the eluent solution (Figure 2-7). The actual profile of the gradient was 

obtained by converting the signal acquired with a calibration curve (Figure 2-8).  

An Agilent 1200 HPLC system also utilized in order to produce performance 

comparisons for the linear gradient profiles. To produce low flow rates comparable to 

that of the µHPLC system, a micro-Tee (Upchurch Scientific) and a fused silica 

capillary (50-µm-i.d. × 360-µm-o.d. × 50 cm length) were used as a restrictor to 

generate desired backpressures for the separations.  
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Figure 2-7 C4D signal for acetonitrile volume fraction 

Solution: 0.1% (v/v) TFA + water + acetonitrile. TraceDec condition: frequency, 

high; voltage, -18 dB; gain, 50%; offset, 0. Capillary, 75 µm ID X 360 µm OD.  

[Reprinted with permission from Gu et al., Analytical Chemistry (2012). 84(21):9609- 

9614. Copyright (2012) American Chemical Society] 
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Figure 2-8 Reproducible gradient profiles 

Reproducible gradient profiles E1–E9 had compositions, respectively, of 60, 50, 40, 30, 

20, 15, 9, 6, and 3% acetonitrile in 0.1% TFA. This was to achieve a gradient from 0 to 

60%. A contactless conductivity detector was used to monitor the gradient change.
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Results and discussion 

Nano-flow gradient profile 

Referring to Fig. 2-2, one of the 10 ports of the selection valve (V2) was 

connected to waste (W), and the other nine eluents were connected 1 through 9 (E1 

through E9). A linear gradient was achieved using V2 and nine different eluent 

concentrations. As V2 was switched from E1 to E2, E2 to E3, … and E8 to E9 for 3 

minutes each while a voltage of -4kV was applied to EOP-2, E1 – E9 would be 

aspirated into the gradient loop (GL). In this work, the compositions of E1, E2, E3, E4, 

E5, E6, E7, E8 and E9 were respectively 60%, 50%, 40%, 30%, 20%, 15%, 9%, 6%, 

and 3% acetonitrile in 0.1% TFA. This was to achieve a gradient from 0-60%, which 

was the optimal range for separating both myoglobin and BSA digest as shown in our 

previous studies [119, 121, 122]. As stated above, the gradient consists of 3 minutes of 

each eluent leading to a gradient volume of ~15 uL. [Apparently, there were no 

constraints with regard to the volume of GL.] This volume gives a separation time of 80 

minutes using a column flow rate of 200 nL/min. Fig. 2-8 presents typical 

reproducibility results of a gradient profile. 

Operation consideration and recommendation 

From t = 0 to t = 10 min, a voltage of +4 kV was applied to EOP-2 to rinse the 

GL while V2 was connected to W. The pump rate under this condition was ~500 

nL/min. This ensured the GL was filled with buffer solution so as not to contaminate the 

pump monoliths when the eluents were drawn up. Higher voltage could be applied to 

increase flow rate but it was not necessary and also good for avoiding excessive Joule 

heating. Then the high voltage was switched to -4 kV and V2 was switched from E1 to 
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E2, E2 to E3, … and E8 to E9 for 3 minutes each. Once the -4 kV was turned off, nine 

eluent solutions resided inside GL. The total time for these operations was 25 min.  

At the same time, a voltage of +3 kV was applied to EOP-1; the pump rate at 

this voltage was ~150 nL/min. The EOP drove mobile phase A (composition 0% ACN 

in 0.1% TFA) in the recondition loop (RL) to equilibrate the column for sample 

injection. After t = 25 min, the sample injection valve (V3) was switched from “load” to 

“injection” to inject a sample into the column; proteins were stacked at the column head 

under mobile phase A conditions. [Note: A 60-nL injection valve was used at this time 

through a time-controlled injection scheme (8 s at a flow rate of ~150 nL/min) to inject 

~20 nL of a sample into the column for separation.] After sample injection, V3 was 

switched back to “load” position, V1 was switched to its second position and EOP-1 

drove the gradient eluent through the injector and column for chromatographic 

separation.  

During the separation, -4 kV was applied to EOP-2 for 20 min to refill RL with 

mobile phase A, and the high voltage was turned off. After the separation was complete, 

V1 was switched back to initiate a new run.  

Peptide separation 

We coupled the HPLC cartridge with a UV absorbance detector and performed 

separations of peptides (tryptic digests of bovine serum albumin and myoglobin). We 

compared the performance of our HPLC cartridge to an Agilent 1200 HPLC system. 

The tryptic digest separation results are presented in Fig. 2-9 for BSA and Fig. 2-10 for 

myoglobin. Comparable resolutions were obtained for the two systems. Although the 

chromatograms are visually different, these differences were attributed primarily to the 
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differences in gradient profiles for the two systems. It is also important to note that the 

delay time associated with our HPLC cartridge was roughly half of that of the Agilent 

1200 system due to the reduced connection capillary volumes.  
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Figure 2-9 Separation chromatogram. Sample-trypsin digest of BSA 

Chromatogram is for separation of BSA digests. Each separation contained a 20‐nL 

sample injection volume and was performed at a column flow rate of 150 nL/min. The 

gradient profile was measured at a position between V1 and V3. Sample concentration 

of 10 mg/mL. The absorbance signal was monitored at 214 nm. 
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Figure 2-10 Separation chromatogram. Sample-trypsin digest of myoglobin 

Chromatogram is for myoglobin digests separation contained a 20‐nL sample injection 

volume and was performed at a column flow rate of 150 nL/min. The gradient profile 

was measured at a position between V1 and V3. Sample concentration of 10 mg/mL. 

The absorbance signal was monitored at 214 nm. 

 

 

 

 

 

Real-world protein analysis 
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We incorporated the HPLC cartridge with a mass spectrometer and performed 

separations of a real-world protein sample. Fig. 2-11 presents the results. The goal was 

to distinguish normal proteins (“health status”) from abnormal ones (“disease status’). A 

single amino acid substitution in a protein may result in the loss of the protein functions 

and subsequently cause a disease [123]. It has been shown that myoglobin, as an oxygen 

carrier, plays a vital role in preventing the heart from injury [124, 125]. A single 

mutation of myoglobin, a histidine converted to valine at position 64 (hh Mb, H64V), 

increases the possibility of heart injury [120]. Peak A in Fig. 2-11 represents the wild 

type, whereas peak C represents the H64V myoglobin mutant and peak B is the mutant 

with an extra methionine at the N-terminus end. Addition of methionine to the mutant 

occurs only when the protein is expressed in the bioengineered E. coli [126]. The 

measured molecular weights for peaks A, B and C were 16951.36, 16912.79, and 

17045.73 Da, compared to the theoretical values of 16951.49, 16913.48, and 17044.67 

Da respectively.  

 



 
48 

 

Figure 2-11 ESI-MS data for coupled HPLC cartridge. Sample-mutated myoglobin 

(H64V) 

HPLC cartridge coupled with MS for protein analysis. Sample: a mixture of mutated 

myoglobin (H64V) and wild-type myoglobin (20 ng/mL each). Injection volume: 

∼20 nL with an injection time of 8 s. A linear gradient from 0– to 60% acetonitrile was 

applied to the separation column as described within the text. Column flow rate was 

∼150 nL/min, ESI voltage was set at 3.0 kV, and the MS was set as a full scanning 

mode with m/z range of 700–2000. Insets A–C are mass spectra of peaks A–C from the 

overall separation, respectively, with m/z.  
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Concluding remarks 

In this work, a HPLC cartridge capable of producing reproducible linear 

gradients was constructed. Through the use of electroosmotic pumps, high-pressure 

separations of complex protein samples were obtained. The creation of an innovative 

miniaturized dual polarity high voltage power supply as well as a specialized manifold 

for each eletroosmotic pump system allowed for the overall size to be small while still 

having comparable performances of that of a commercial system. This was the first 

prototype designed allowing for further optimization to decrease size and weight of the 

system. This work showed the capability of the cartridge when coupled with a UV 

absorption detector and a mass spectrometer. It is our hope to create an HPLC cartridge 

with interchangeable detectors depending on the analyte being identified. Work is 

currently being completed in our lab to provide miniaturized detectors for this cartridge. 
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The materials in Chapter 2 are adapted from. Lynch et al., Journal of 

Separation Science, 2017. 40(13):2752-2758. The copyright was obtained from John 

Wiley and Sons, and the license number is 4315041474845. For more details, please 

see Appendix B. 

One figure in Chapter 2 is adapted from Zhang et al., Journal of 

Chromatography A.1460: 68-73 (2016). The copyright was obtained from Elsevier and 

the license number is 4316591286765. For more details, please see Appendix C. 

One figure in Chapter 2 is adapted from Chen et al., Analytica Chimica Acta 

887 (2015) 230-236. The copyright was obtained from Elsevier and the license number 

is 4316600057156. For more details, please see Appendix D.  
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Chapter 3: Confocal laser-induced fluorescence detector for narrow 

capillary systems with yoctomole limit of detection 

 
Abstract 

Laser-induced fluorescence (LIF) detectors for low-micrometer and sub-

micrometer capillary on-column detection are not commercially available. In this work, 

we describe in details how to construct a confocal LIF detector to address this issue. We 

characterize the detector by determining its limit of detection (LOD), linear dynamic 

range (LDR) and background signal drift; a very low LOD (~70 fluorescein molecules 

or 12 yoctomole fluorescein), a wide LDR (greater than 3 orders of magnitude) and a 

small background signal drift (~1.2-fold of the root mean square noise) are obtained. 

For detecting analytes inside a low-micrometer and sub-micrometer capillary, proper 

alignment is essential. We present a simple protocol to align the capillary with the 

optical system and use the position-lock capability of a translation stage to fix the 

capillary in position during the experiment. To demonstrate the feasibility of using this 

detector for narrow capillary systems, we build a 2-µm-i.d. capillary flow injection 

analysis (FIA) system using the newly developed LIF prototype as a detector and obtain 

an FIA LOD of 14 zeptomole fluorescein. We also separate a DNA ladder sample by 

bare narrow capillary – hydrodynamic chromatography and use the LIF prototype to 

monitor the resolved DNA fragments. We obtain not only well-resolved peaks but also 

the quantitative information of all DNA fragments. 
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Figure 3-1 Three-dimensional rendering of the LIF detector 
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Introduction 

Laser-induce fluorescence (LIF) is one of the most sensitive techniques for 

molecular detection. It is widely used for monitoring compounds resolved by 

chromatography [1,2] and capillary electrophoresis (CE) [3,4] (including microfluidic 

chip-based analysis [5]). However, most of these instruments are either customer-made 

or specialized for particular utilizations. Only a few stand-alone LIF detectors are 

developed [6–10] and none is manufactured for low micrometer to sub-micrometer 

inner diameter (i.d.) capillary systems. 

Genes are pieces of DNA that carry the genetic instructions used in developing 

all living organisms. Separating and analyzing DNA fragments is usually the first step 

toward understanding and manipulating how DNA works. DNA separations are 

commonly performed suing slab-gel electrophoresis. To enhance the resolving power, 

reduce the separation time, and increase the throughput, researchers are now frequently 

using capillary gel electrophoresis or capillary array electrophoresis. All the above 

techniques utilize viscous gel sieving matrices (either cross-linked or linear polymers). 

As these matrices in capillaries need to be loaded and replenished after each run, 

loading/reloading viscous matrices into micrometer-bore capillaries is tedious and time-

consuming. 

We have recently developed an innovative separation technique for separating 

and sizing DNA without using sieving matrices [11–15]. Because the separation is 

preceded inside a Bare Narrow Capillary (BaNC) and the separation mechanism is 

based primarily on hydrodynamic chromatography (HDC) [16,17], we term this 

technique BaNC-HDC. DNA fragments from a few base pairs (bp) to more than one 
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hundred kilobase pairs (kbp) have been nicely resolved [15]. Similar work has also been 

performed in other labs [18,19]. Owing to the small diameter (a few hundreds of 

nanometers to a few micrometers) of the separation capillary, no detectors are 

commercially available for BaNC-HDC. Since narrow capillaries are commercially 

produced by Polymicro Technologies - a subsidiary of Molex, the lack of suitable LIF 

detectors has been a major barrier for other researchers to investigate and/or use BaNC-

HDC. In order to address this issue, here we describe how to construct a confocal LIF 

detector and how to use it for BaNC-HDC. With this detector we also build the first 2-

µm-tubing flow injection analysis (FIA) system. To our knowledge, this is the smallest 

tubing FIA system reported so far. Reduced tubing size will lead to decreased reagent 

consumptions and sample quantity requirements. Characterizations of the instrument are 

also discussed. 
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Experimental section 

Chemicals and materials 

Fused-silica capillaries were products of Polymicro Technologies (Phoenix, 

AZ). GeneRuler™ 1-kb plus DNA ladder (SM1331) was obtained from Fermentas Life 

Sciences Inc. (Glen Burnie, MD), and YOYO-1 was from Molecular Probes (Eugene, 

OR). Concentrated hydrochloric acid, ethylenediaminetetraacetic acid (EDTA), 

fluorescein, sodium hydroxide, and tris(hydroxymethyl)aminomethane (Tris) were 

purchased from Fisher Scientific (Fisher, PA). 

Preparation of DNA sample and solutions 

The stock solution of 100 ng/µL 1-kb plus DNA ladder was prepared by mixing 

39 µL of 10 mM TE buffer, 10 µL 500 ng/µL DNA, and 1 µL YOYO-1. Working 

standard DNA solutions were made by diluting the stock solution with DDI water at the 

ratio as needed. Eluent and DNA samples were stored at 4 °C. 

Running buffer, 10 mM TE buffer, was composed of 10 mM Tris–HCl and 

1.0 mM Na2EDTA at pH 8.0. It was prepared using DDI water from a NANO pure 

infinity ultrapure water system (Barnstead, Newton, WA). Before use, the running 

buffer was filtered through a 0.22-µm filter (VWR, TX) and vacuum-degassed. 1 mM 

fluorescein stock solution was prepared by dissolving the desired amount in 10 mM TE 

buffer and, when in use, diluted to the required concentration with additional 10 mM TE 

buffer. The stock solution of 100 ng/µL 1-kb plus DNA ladder was prepared by mixing 

39 µL 10 mM TE buffer, 10 µL 500 ng/µL DNA, and 1 µL YOYO-1. Working standard 

DNA solutions were made by diluting the stock solution with 10 mM TE buffer at the 

ratio as needed. Running buffer and samples were stored at 4 °C. 
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LIF Detector Construction 

Fig. 3-2 presents a schematic diagram of a BaNC-HDC system in which major 

components of the LIF detector are shown. A 488 nm solid-state laser module (Melles 

Griot, Rochester, NY) was used as the excitation light source. After passing through a 

488 nm laser cleanup filter (Melles Griot), the laser beam was reflected by a dichroic 

mirror (Semrock, Rochester, NY) with high reflectance below 491 nm and focused to 

the narrow capillary by an objective lens (0.32 NA, 16× magnification, Melles Griot). 

The same objective lens collected and collimated the emitted fluorescent light. After the 

collimated fluorescence passed through the same dichroic mirror, it was reflected by a 

mirror (Melles Griot), filtered by a 510 nm long-pass filter (Semrock, Rochester, NY), 

and focused by a lens (Melles Griot) through a 800 µm pinhole onto a photomultiplier 

tube (H5784-01, Hamamatsu, Shizuoka, Japan). The output signals was acquired by a 

USB data acquisition card (Measurement Computing, Norton, MA) and displayed on a 

computer running an in-lab LabView program. Fig. 3-3A presents a picture of the 

assembled LIF detector (note: the pressure chamber and the narrow capillary were not 

considered as part of the LIF detector), and Fig. 3-3 B-D presents the details of how all 

components are arranged and packed together. 

The backbone of the detector was a vertical support that was firmly attached to a 

base plate (see Fig. 1B). A laser holder and a PMT holder were bolted onto the vertical 

support. There was a leveling plate on the laser holder and it was used to perform some 

fine adjustments of the laser height and direction. An optical tube was also bolted onto 

the vertical support and aligned with the laser and PMT (see Fig. 3-3C). In order to 

show how optical components were arranged inside the optical tube, we made the tube 
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wall transparent (see Fig. 3-4). The objective was fixed to the top of the tube via 

threads. The dichroic mirror was fixed to backside of the tube. The reflector was fixed 

at the bottom of the tube and it could be adjusted via an Allen wrench to direct the 

fluorescence light properly to the pinhole in front of the PMT. Fig. 3-3D presents a 

view from the other side of the vertical support to which a waste reservoir holder was 

attached. A laser power supply was fixed to the base plate. An X-Z translation stage 

was bolted onto the back of the optical tube and a capillary holder was fixed to the 

translation stage. 
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Figure 3-2 Schematic for BaNC-HDC system and LIF detector 

Schematic configuration of BaNC-HDC system. The narrow capillary had a total length 

of 47 cm (41 cm effective), an i.d. of 2 µm and o.d. of 150 µm. RC had a length of 

6.5 cm an i.d. of 20 µm and an o.d. of 150 µm. 
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Figure 3-3 Assembled LIF detector and internal components 

(A) Picture of assembled LIF detector. (B) Detector backbone. (C) Arrangement of 

parts inside detector. (D) View from other side of vertical support. 
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Figure 3-4 Optical components of LIF system  

Optical component arrangement inside optical tube. 
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Alignment of the capillary with LIF detector 

A detection window was opened at ~41 cm from the sampling end of a narrow 

capillary (47-cm-long×2-µm-i.d.×150-µm-o.d.) by removing the polyimide coating with 

flame. The detection window was then fixed onto the capillary holder coarsely aligned 

with the objective lens using the X-Z translation stage. Then, a fluorescein solution 

(1 µM fluorescein in 10 mM TE buffer at pH ~8.0) was flow through the capillary at a 

constant flow rate and the fluorescence signal was monitored. The position of the 

detection window was adjusted via the X-Z translation stage until the maximum signal 

output was reached. At this time, the detection window was considered to be aligned 

with the LIF detector and the X and Z positions of the translation stage were locked. 

Flow injection analysis of fluorescein 

To prepare for flow injection analysis right after capillary alignment, the 

capillary was thoroughly washed with a carrier solution (10 mM TE buffer) until the 

fluorescence signal reached the background level. Referring to Fig. 3-2, as the carrier 

solution was driven through the 60-nL injection valve to the microfabricated Chip-T, it 

was split into two steams; one stream went to the narrow capillary while the other went 

through a restriction capillary (RC). When a sample was injected by the injection valve, 

only a small portion of the sample was injected into the narrow capillary. Under the 

indicated conditions and a chamber pressure of ~500 psi, the splitting ratio was about 

70,000:1; leading to an injection volume of ~0.85 pL. Five fluorescein solutions were 

injected from low concentration to high concentrations and each solution was injected 

five times at one-minute intervals. 
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BaNC-HDC separation of DNA ladder 
 

Referring to Fig. 3-2, 10 mM TE buffer at pH 8.0 was loaded in the reservoir 

inside the pressure chamber as eluent. During the separation, the eluent was constantly 

driven through the 60-nL injection valve to the microfabricated Chip-T; one small 

portion of eluent went to the narrow capillary. When a sample was injected by the 60-

nL injection valve, ~0.85 pL sample was injected into the narrow capillary. 

Fluorescence signal was continuously monitored by the LIF detector. After all the DNA 

fragments were eluted out, the next sample was injected for analysis. No column 

reconditioning was needed! 

Results and discussion 

Linear dynamic range and limit of detection 

Fig. 3-5A presents the fluorescence signal obtained when fluorescein solutions 

(0 nM, 5.3 nM, 10 nM, 53 nM, 0.1 µM, 0.53 µM, 1.0 µM and 5.3 µM in 10 mM TE 

buffer) were flushed through the narrow capillary. The inset presents a Y-axis-expanded 

version of the same results from 0 to 53 nM. Excluding the data point for 5.3 µM, good 

linear relationship existed between fluorescence intensity and fluorescein concentration 

(see Fig. 3-5B, R2=0.9993). Using the criterion for signal-to-noise ratio of 3, we 

determined the limit of detection (LOD) to be 0.8 nM. Therefore, the linear dynamic 

range of the detector was greater than 3 orders of magnitude. If we assume the laser 

spot on the narrow capillary had a diameter of ~50 µm, the volume of the solution that 

was illuminated was π×(1 µm)2×50 µm=1.6×10–22 L. That is to say, the LOD of the LIF 

detector was ~70 fluorescein molecules or 12 yoctomoles (10-21). 
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Fig. 3-6 presents the results of a drift test as 10 mM TE buffer was flushed 

through the capillary for an hour. As can be seen, the background signal was pretty 

stable; signal drift was 1.2 standard deviation of the background signal over an hour. To 

check whether the LIF detector worked properly, we injected a fluorescein sample 

(10 nM in 10 mM TE buffer) to see how it responded to it. The signal between ~100–

150 s was obtained when 10 nM fluorescein was flushed through the capillary. The 

signal was comparable to what we got in Fig. 3-5. 
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Figure 3-5 Fluorescence intensity as function of fluorescein concentration  

Fluorescence signals obtained as different fluorescein solutions were flushed through 

the narrow capillary (total length of 47 cm (41 cm effective), i.d. of 2 µm and o.d. of 

150 µm) under a pressure of 500 psi. (B) Calibration curve of fluorescein from 5.3 nM 

to 1.0 µM. 
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Figure 3-6 Drift and noise characterization  

Drift and noise characterization over 1 h. The experiment was performed by flushing 

10 mM TE buffer (pH=8.0) through the narrow capillary under 500 psi. The peak signal 

was obtained by flushing 10 nM fluorescein in 10 mM TE buffer through the narrow 

capillary under the same conditions. Dynamic drift of the background signal (relative 

fluorescence intensity) was calculated to be 4.0×10−4 per hour, while noise was 

calculated to be 3.4×10−4. 
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Flow injection analysis of fluorescein 

To demonstrate the performance of the newly developed LIF prototype, we 

performed a flow injection analysis of fluorescein using the system as presented in Fig. 

3-2. This is probably the smallest tubing flow injection system ever reported. Samples 

were injected via the injection valve at a rate of one injection per minute. Fig. 3-

7 presents the results; there were five fluorescein solutions, each was analyzed five 

times. A linear regression equation was established in the concentration range of 

50 nM–1 µM. The linear regression coefficient (R2) was 0.996. When we used the 

criteria of S/N=3, an LOD of ~17 nM fluorescein or 14 zeptomole (10-21) of fluorescein 

(17 nM×0.85 pL) was obtained. This also revealed the dispersion factor of this flow 

injection system was ~21. 
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Figure 3-7 Flow injection analysis of fluorescein 

Flow injection analysis of fluorescein. The capillary had a total length of 47 cm (41 cm 

effective), an i.d. of 2 µm, and an o.d. of 150 µm. The carrier solution was 10 mM TE 

buffer at pH ~8.0, and the fluorescein solutions were prepared with the carrier solution. 

The injection volume was estimated to be 0.85 pL. (A) FIA chromatogram. (B) Linear 

regression results. 
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Analysis of DNA ladder 

We coupled the developed LIF prototype to BaNC-HDC. Fig. 3-8 presents the 

chromatograms of separating a standard sample of 1 kb plus DNA ladder at five 

different concentrations, and Fig. 3-9 presents the calibration curves of all fifteen DNA 

fragments in the range of 0.075–20 kbp. The linear regression coefficients were in the 

range of 0.985–0.991. For large DNA fragments we could detect them at the zeptomole 

level. It should be noted that each DNA molecule was intercalated with many YOYO 

dye molecules. 
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Figure 3-8 Separation Cchromatogram. Sample-DNA ladder  

Using developed LIF detector for monitoring BaNC-HDC separation. Chromatograms. 

The total concentrations of 1-kbp plus DNA marker were indicated in the figure. 

Conditions: the capillary had a total length of 47 cm (41 cm effective), an i.d. of 2 µm, 

and an o.d. of 150 µm, the injection volume was estimated to be 0.85 pL, the eluent was 

10 mM TE buffer at pH 8.0, and the elution pressure was 500 psi.  
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Figure 3-9 Calibration curves for different DNA fragments 

The calibration curves for different DNA fragments. Relative peak areas at different 

concentrations were obtained from A. The trend-lines had linear regression coefficients 

of 0.985–0.991. 
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Concluding remarks 

We have built a prototype LIF detector for monitoring fluorescence signal 

within a narrow capillary. The component arrangement has been described in detail, 

which should be helpful if one wants to construct similar detector on his/her own. We 

have also characterized the detector. Using a 2-µm-i.d. capillary as a separation column, 

we have determined the limit of detection of the detector to be 0.8 nM fluorescein, 

which is corresponding to ~70 fluorescein molecules in the detection volume. We have 

also determined the linear dynamic range of the detector to be more than 3 orders of 

magnitude. To demonstrate the feasibility of using the prototype for monitoring 

resolved analytes in a narrow capillary, we used a 2-µm-i.d. capillary to separate a 1 kb 

plus DNA ladder by BaNC-HDC. The detector not only can monitor all the fifteen 

resolved DNA fragments but also can quantitate each fragment with good precision and 

accuracy. 
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The materials in Chapter 3 are adapted from Lynch et al., Talanta (2017) 

165:240-244. The copyright was obtained from Elsevier, and the license number is 

4315041314106. For more details, please see Appendix E. 
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Chapter 4: Multiple-channel ultraviolet absorbance detector for two-

dimensional chromatographic separations 

 
Abstract 

In recent years, much research has gone into developing online comprehensive 

two-dimensional liquid chromatographic systems allowing for high peak capacities in 

comparable separation times to that of one-dimensional liquid chromatographic 

systems. However, the speed requirements in the second dimension (2nd-D) still remain 

one challenge for complex biological samples due to the current configuration of two 

column/two detector systems. Utilization of multiple 2nd-D columns can mitigate this 

challenge. To adapt this approach, we need a multiple channel detector. Here we 

develop a versatile multichannel ultraviolet (UV) light absorbance detector that is 

capable of simultaneously monitoring separations in 12 columns. The detector consists 

of a deuterium lighthouse, a flow cell assembly (a 13-channel flow cell fitted with a 13-

photodiode-detection system), and a data acquisition and monitoring terminal. Through 

the use of a custom high optical quality furcated fiber and precise machining of a flow 

cell, the background noise level is measured in the tens of µAU. We obtain a linear 

dynamic range of three orders of magnitude (150 µAU to 150 mAU).  Compared to a 

commercialized multichannel UV light absorbance detector like the Waters 2488 

UV/Vis, our device provides up to an increase in channel detection while residing 

within the same noise region and linear range.  
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Figure 4-1 Three-dimensional rendering of the multiple-channel absorbance 

detector  
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Introduction 

In recent years, comprehensive two-dimensional (2D) high performance liquid 

chromatography (HPLC) has become an emerging research topic because it can achieve 

a high peak capacity within a comparable separation time to that of one-dimensional 

liquid chromatography [127]. Two-dimensional separations may be performed either 

online or offline [128] depending on the desired result and time allocated for the total 

separation. The first online 2D-HPLC system was designed by Erni and Frei in 1978 

[129] and utilized gel permeation chromatography (GPC) and reverse phase liquid 

chromatography (RPLC) in the first and second dimensions respectively. They 

separated Senna-glycoside with GPC over a course of 10 hours, collected and re-

injected alternatively seven fractions using two sample loops in an eight-port valve for 

RPLC. This laid the groundwork for 2D-HPLC. If online 2D-HPLC is desired in a 

reduced total separation time, the 2nd-D must include both the separation and re-

equilibration steps in the fraction-collection time of the 1st-D. In order to meet this 

requirement, setups have included two to four columns for use in the 2nd-D separation. 

Bushey and Jorgenson [130] developed the first online 2D-HPLC system in 1990 to 

implement this strategy. They employed cation exchange and size exclusion columns 

for their two separation dimensions to separate a protein sample. By doing so, they 

created the foundation for the next generation of 2D-LC systems to come.  

A good 2D-HPLC system should have two orthogonal separation dimensions. 

One can obtain improved orthogonality [131] by combining a variety of 

chromatographic modes of LC including ion-exchange chromatography (IEX) [132], 

size exclusion chromatography (SEC) [133], normal phase liquid chromatography 
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(NPLC) [134], reverse phase liquid chromatography [135], supercritical fluid 

chromatography (SFC) [136], hydrodynamic interaction liquid chromatography HILIC 

[137], etc. A first dimension (1st-D) of IEX has been combined with a second dimension 

(2nd-D) of RPLC in conventional 2D-HPLC schemes for peptide separation due to their 

relatively high orthogonality, fast re-equilibration time [138] and compatibility with 

mass spectrometry (MS) [139]. However, to this day, limited separation speed in the 

second separation dimension is still a major drawback for complex biological samples 

due to the current configuration of two-column/two-detector systems [140].  

Current commercial systems utilize a series of valves in order to collect and 

store samples for future separation while still configured with only one column [141, 

142]. This system, although robust and reproducible, does not address the issue of the 

limited separation speed in the 2nd-D separation since these systems still run a single 

second dimension column at a time. One way to address this issue is to run the 2nd-D 

columns in tandem in order to increase sample throughput, which in turn decreases the 

overall separation time. One such system has been recently developed in our research 

group. Zhu et al. [143] published this work showing continuous and comprehensive 

online analysis of intact proteins while obtaining over 500 protein peaks from an E. Coli 

lysate. This system re-equilibrated several 2nd-dimensional columns while running 

separations on the rest. However, the major hurdle proved to be the detection aspect of 

the system due to no commercial systems available to detect the tandem columns.  

Waters (Waters 2488) [144] offers a commercial multichannel UV/Vis detector, 

but there are only two channels. This system works in conjunction with common 2D-

HPLC systems that store fractions and may have a maximum of two separation columns 
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but would not accommodate our needs. Other multichannel/multiplexed detection 

systems have been developed over the years including several capillary electrophoresis 

(CE) coupled to laser induced fluorescence detectors (LIF) [145-148] but due to cost 

and other system requirements, these were not an option. A literature search into 

multichannel absorbance detection, our preferred method of detection, showed very few 

multichannel absorbance detectors to have been constructed due to the limited demand 

of such a detector. Until now, a seven channel [149] absorbance detector was reported 

by our group and a 96-channel detector was commercialized by now a disbanded 

company CombiSep. Both of these absorbance systems were paired with CE similar to 

the LIF systems listed above. 

In this work, we develop a 12-channel UV absorbance detector to meet this 

need. The detector consists of a deuterium lighthouse, a flow cell assembly (13 

individual flow cell channel fitted with a 13-photodiode-detection system), and a data 

acquisition and monitoring terminal. A UV light beam from a deuterium lamp is 

monochromated and focused to the entrance of an optical fiber and then split into 13 

beams (1 as reference and remaining 12 to the LC separation columns). Transmittance 

from each column is measured by a photodiode, converted to absorbance and acquired 

by the monitoring terminal. The detector has background noises at tens of µAU level 

and a linear range over three orders of magnitude. To demonstrate the feasibility and 

capabilities using this detector for 2D-HPLC, we construct an updated 2D-HPLC 

system using this detector and show the 2D separation results.  
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Experimental section 

Reagents and materials 

Fused-silica capillaries and the furcated-fiber optic cable were purchased from 

Polymicro Technologies Inc (Molex, Phoenix, AZ). Trifluoacetic acid, methanol and 

acetonitrile and other reagents used were obtained from EMD Chemicals, Inc. 

(Gibbstown, NJ). Water was purified by a NANO pure infinity ultrapure water system 

(Barnstead, Newton, WA). Ball lens and optical filters were purchased through Edmond 

Optics (Barrington, NJ). Printed circuit boards (PCB) were designed in house and 

manufactured by OSHPark (Portland, OR). The deuterium light source, an Apex 

Monochrometer Illuminator, was produced by Newport (Irvine, CA), while a 

comparative capillary-based absorbance detector (Linear UVis 200), was manufactured 

by Linear Instruments (Reno, NV). 

UV absorbance detector design 

The detector itself consists of a deuterium lighthouse, a flow cell assembly, a 

13-channel flow cell fitted with a 13-photodiode detection system, and a data 

acquisition and monitoring terminal as depicted by the three dimensional rendering 

(Fig. 4-1). The machined optical fiber assembly is shown in Fig. 4-1 including the flow 

cell, furcated fiber optic cable, and printed circuit board with its electrical components. 

The optical fiber assembly consists of a custom 13-furcated fiber integrated into a 

machined and anodized aluminum box with the 13 individual flow cells (one for each of 

the 12 columns and the last for reference signal detection) integrated into a single piece, 

which bolts to the top of the housing for the furcated optical fiber. Each individual flow 

cell comprised of two PEEK fittings, a ball lens and a custom PEEK ball lens holder. 
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The total dimensions of the system including the lighthouse are 30 cm×17.5 cm×50 cm 

(l×w×h respectively) while the machined optical fiber assembly dimensions are 20 

cm×5 cm×20 cm. 

Fig. 4-2 depicts the optical path and includes Apex Monochrometer Illuminator 

that was used throughout this research as the lighthouse. The light originates from a 

deuterium lamp in the lighthouse where it is collimated, travels through a bandpass 

filter, and is focused on the fiber optic bundle housed within the flow cell assembly. 

The light then travels through the furcated fiber where it is split and subsequently 

focused on each capillary through a ball lens housed in each of the ball lens holders of 

the individual flow cells.  
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Figure 4-2 Light path and components of absorbance detector 

The light path is shown from the Newport Apex Monochrometer Illuminator through 

the furcated fiber optic cable into each of the flow cells. The machined housing of the 

flow cell consisted of an aluminum shell that was powder coated black to eliminate light 

interference. (A) It housed a 13-furcated fiber optic cable and had a top flow cell piece 

comprising of 12 individual flow cells and a reference input. On top attached a printed 

circuit board integrating the photodiodes, amplification circuitry, and connections for 

source power and output signals. 
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Flow cell design 

A series of 13 individual flow cells, the schematic for each was taken from 

previously developed designs, were combined in tandem and integrated into the top of 

the absorbance detector (Fig. 4-3A). A slice of the total flow cell reveals each individual 

flow cell design as depicted by the three-dimensional rendering in Fig. 4-3B. Each of 

these individual flow cells were composed of two compression fittings (Vici Valco, 

Houston, TX), a 1.58 diameter sapphire ball lens and an in-house machined PEEK ball 

lens holder that is used to align the capillary window with the input light from the 

optical fiber. A capillary window is created as previously described and then inserted 

into the flow cell. In brief, we remove ~3 mm of the polyacrylamide coating at the 

center of a 10 cm capillary, insert the capillary into the flow cell, align the window with 

the center of the ball lens holder and secure the capillary using the compression fittings. 

A detailed image of the light path through each flow cell can be seen in the slice-view 

of Fig. 4-4. As light enters the flow cell through a leg of the furcated optical fiber, it is 

focused through a sapphire ball lens on the capillary where absorption can take place. 

Light then can be seen passing through the capillary and being collected on the 

photodiode sensor at the top of the image. 
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Figure 4-3 Flow cell design 

(A) The flow cell in its entirety. It is comprised of 13 individual flow cells (center) for 

the 12 column channels and reference channel. (B) depicts a 3D rendering of each 

individual flow cell. 
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Figure 4-4 Flow cell components and light path 

Each flow cell consists of the ball lens holder, a main component in each flow cell. 

Fabricated out of PEEK, the ball lens holder aligns a 1.58 mm diameter sapphire ball 

lens with a 360 µm OD (200 µm ID) capillary 
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Furcated-fiber 

A custom 13-leg furcated-fiber was designed and then purchased through 

Polymicro Technologies Inc (Molex, Phoenix, AZ). The overall length of the fiber 

bundle was 15 cm to accommodate the machined housing. A 2:1 reference:sample ratio 

of light intensity was tested prior to designing the furcated fiber and this ratio proved to 

have the best signal to noise ratio. Also, the fiber size was tested extensively prior to the 

furcated bundle design to find the most appropriate diameter fiber for our application. A 

300 µm fiber was chosen due to its S:N characteristics, flexibility, and overall fiber 

bundle size limitations. These tests can be seen in the supplementary data (Fig. 4-5). A 

total of 98 fibers were chosen for the fiber bundle to produce a splitting pattern. Each 

sample leg consisted of seven 300 µm deep UV silica core fibers while the reference leg 

comprised of 14 fibers to achieve the best packing density and 2:1 reference to signal 

light intensity. The overall splitting pattern for the common leg and each of the signal 

and reference legs can be seen in Fig. 4-6. 
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Figure 4-5 Fiber optic testing 

Early tests of varying fiber optic size. A reference fiber of 600 µm was used for each 

test. Acetone was used as the sample analyte for each fiber and peak height was 

measured for each injection. Chromatograms of the signal can be seen (A) and S:N was 

calculated for each fiber (B).
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Figure 4-6 Furcated fiber design 

Splitting and packing pattern of fibers in the custom furcated fiber. A 2:1 ratio of 

reference:signal strength yielded the best signal to noise ratio and the close hexagonal 

packing of 7 fibers dictated the fiber count for the column legs. 
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Electronic design 

The current detector design integrated a 4-channel operational amplifier 

(opa404) for the sample channels while integrating a single channel amplifier (opa602) 

for the reference channel. Photodiodes (S1226, Hamamatsu Photonics, Bridgewater, 

NJ) were mounted to an opaque surface (black acrylic) to properly align the 13 

photodiodes with the center of the flow cells. The holes for the photodiode legs were 

systematically laser cut using a 150 W Universal Laser System (Universal Laser 

Systems, Scottsdale, AZ). This acrylic/photodiode unit was then connected to a printed 

circuit board as shown in Fig. 4-8A. The output signals from the photodiodes were 

connected directly to the operational amplifiers through the circuit seen in Fig. 4-8B. 

Posts on the circuit board allow for selectable gains as well as to equilibrate the gains 

from each of the 13 channels through interchangeable resistors to assure equal gain for 

each channel. The output signal from each of the operational amplifiers is analog and is 

read through a data acquisition card (DAQ) (Measurement Computing, Norton, MA). 

The data is then processed and visualized using an in-house built LabView (National 

Instruments, Austin, TX) program. This program, visualized in Fig. 4-7, takes into 

consideration the dark current from each photodiode, converts signals to absorbance 

units using a sample to reference ratio, and can auto zero the channel outputs. 
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Figure 4-7 System’s labview program  

A sample image of the in-house Labview program to detect simultaneous 2nd-dimension 

separation channels. It takes the raw analog data from the output of each OPA and 

calculates absorbance in the units of mAU. There is an auto zero function as well as 

adjustment for individual dark currents.  
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Figure 4-8 Printed circuit board design 

(A) The circuit board contains the circuitry for the multichannel UV/Vis detector 

including the power inputs (bottom left), signal amplification (middle), photodiodes 

(underside), and data output (top-center). (B) The schematic for each of the photodiodes 

with their individual components. 
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Results and discussion 

Noise and S/N characteristics 

Table 4-1 shows the data for each of the channels for 100 µg/ml lysozyme at 

220 nm. Each channels noise, signal, and S/N ratio as well as limit of detection and 

quantification can be seen. Channels p-p noise level was observed to range between 0-

20 µAU. This is comparable to commercial based optical absorbance detectors. It is 

suggested that the variance in noise of the channels corresponds to the furcated-fiber 

legs not being symmetrically split. This phenomenon can be seen through the values 

associated with light intensity measured in volts for each specific channel. Note: these 

noise levels are raw signals with no data smoothing through averaging.  

As observed in Fig. 4-9, the drift for the detector was tested and recorded to be 

in the range of 0.3-0.9 µAU/min. Detector baseline drift is commonly associated with 

temperature variations within the laboratory. External noise of the laboratory was 

mitigated through the printed circuit board circuitry. When the electronics were tested 

using a breadboard and prototype boards, the noise increased by orders of magnitude. A 

makeshift shield further decreased externally created noise. This noise could be 

completely mitigated with a custom machined metal cover that is grounded to the 

device.  
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Channel Noise std 
(mAU) 

Signal 
(mAU) S/N Light 

Intensity (V) 
LOD 

(mAU) 
LOQ 

(mAU) 

Ch1 0.01050 11.9270 1135.90 1.698 0.0315 0.1050 

Ch2 0.00900 12.7521 1416.90 1.165 0.0270 0.0900 

Ch3 0.01050 10.4649 996.65 1.006 0.0315 0.1050 

Ch4 0.00930 11.2115 1205.54 1.591 0.0279 0.0930 

Ch5 0.00920 11.0836 1204.73 1.016 0.0276 0.0920 

Ch6 0.00960 13.0808 1362.58 1.513 0.0288 0.0960 

Ch7 0.01045 10.4822 1003.08 1.041 0.0314 0.1045 

Ch8 0.00840 12.2327 1456.27 1.321 0.0252 0.0840 

Ch9 0.00900 7.7345 859.39 1.381 0.0270 0.0900 

Ch10 0.00960 10.8098 1126.02 1.131 0.0288 0.0960 

Ch11 0.00920 11.5908 1259.87 1.465 0.0276 0.0920 

Ch12 0.00850 13.8357 1627.73 1.629 0.0255 0.0850 

ave. 0.00944 11.4338 1211.53 1.330 0.0283 0.0944 

 
Table 4-1 Raw individual channel data 

Data for each of the channels tested with a sample of 100 µg/ml lysozyme at 220 nm. 

Each channels noise, signal, and S/N ratio as well as limit of detection and 

quantification can be seen. Also recorded was the light intensity measured in volts for 

the specific channel.  
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Figure 4-9 Drift and linear dynamic range measurements 

 (A) drift ranges from −0.019 mAU/h to −0.052 mAU/h. A calibration plot (B) showing 

the linear dynamic range of lysozyme concentration at 220 nm. Absorbance was 

measured from 150 µAU to 135 mAU for lysozyme concentrations ranging from 

3 µg/ml to 1000 µg/ml respectively. The individual channels are shown above as well as 

the averaged values with their standard deviations shown in the inset.  
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Linearity studies 

Linearity over a range of several orders of magnitudes is a required 

characteristic for any analytical detector.  As shown previously, capillary-based 

absorbance detectors show a linear relationship between concentration and 

transmittance due to their low absorbance values. A calibration plot (Fig. 4-9B) 

showing the log of the averaged measured lysozyme concentration against the 

theoretical concentration was performed giving a linearity from 150 µAU to 135 mAU 

or 3 µg/ml to 1000 µg/ml of lysozyme respectively. Consistency between channels can 

be seen in Fig. 4-10 with all twelve channels absorbance tested with a sample of 

concentrations varying from 2-2000 µg/ml of lysozyme at 220 nm.   
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Figure 4-10 Channel reproducibility  

Consistency between channels can be seen above with all twelve channels absorbance 

tested with a sample of varying concentrations of lysozyme at 220 nm. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
95 

Two-dimensional LC application 

As described in the introduction, the purpose of this absorbance detector was to 

provide detection of our 12 2nd-D columns in order to allow for both fast fractionation 

of the 1st-D and an overall shortened separation time. New multi-position valves (V1 

and V2 in Fig. 4-11) were designed (Vici Valco) and implemented in our system. Six 

2nd-D columns are attached to each of these two valves and may be selected individually 

(see V1) or concurrently (see V2). In addition to valves V1 and V2 as well as the 12 2nd-

D columns, a four-port two-position switching valve (Vs) is utilized. This allows the 

first dimension (IEX) and second dimension (RP) to operate simultaneously, leading to 

six consecutive RP separations while six fractions are being loaded.  

A brief description of the protocol used is as followed. Once the gradient is 

started in the first dimension (t = 0 min), fractions from IEX column are loaded onto the 

six RP columns of V1 every 3.5 min. After 21 min, Vs is switched allowing the IEX 

fractions to be loaded onto the RP columns of V2 alternatively. At the same time, V1 is 

switched positions to elute all-ports. When this occurs, the first six fraction separations 

are performed from t = 21 min to t = 42 min (while fractions seven to twelve are loaded 

on V2). At 42 min, the three valves (V1, V2 and Vs) are switched. Fractions are now 

loaded onto V1 again while the separations from V2 are performed. Comprehensive 2D-

LC data of protein samples was obtained via the multichannel UV/Vis absorbance 

detector. The total analysis time was 4.2 hours. Within this time, E. Coli lysate was 

separated. Fig. 7 shows over 900 peaks that were able through the novel 2D-LC system 

in both raw chromatograms for all fractions (Fig. 4-12) and a 3D representation for the 

2nd-D separations (Fig. 4-13). A more in-depth look at this new multidimensional 2D-
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HPLC system will be published elsewhere. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
97 

 

Figure 4-11 2D-LC valve schematic 

The two-dimensional-HPLC system configuration can be seen above. It consists of one 

1st-D IEX column (250 µm I.D) and 12 2nd-D RP columns (250 µm I.D). These 

columns are connected through a series of four valves; two new custom-designed multi-

position valves (V1 and V2), a two-way four-port valve for switching between V1 and 

V2, and a 20-µL injection valve. All 2nd-D RP columns pass through the multichannel 

UV absorbance detector where data is collected using a Measurement Computing data 

acquisition card and analyzed within a custom LabView program. 
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Figure 4-12 2D-HPLC Separation Chromatogram. Sample-E. Coli lysate 

A visual representation of the individual raw chromatograms from the second-

dimension RP separations. A total of 72 fractions took place over a four-hour period 

with a 220-nm wavelength to monitor the protein separation.  
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Figure 4-13 3D-representation of 2nd-D separation 

A three dimensional representation for the second dimension E. Coli lysate separation 

based on the separation time. 
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Concluding remarks 

This detector, in conjunction with a novel online 2D separation configuration developed 

within our lab, allowed for the simultaneous detection of a complex real world protein 

sample. Compared to a commercialized multichannel UV/Vis detector like Waters 2488 

UV/Vis, our device is smaller, has fewer parts, and provides up to a 6 times increase in 

channel detection while residing within the same noise region and linear dynamic range.  

Through the use of a custom high quality furcated optical fiber, the precise machining 

of a flow cell, accurate capillary alignment to the source light, and high-performance 

operational amplifier; a versatile multi-absorbance detector was constructed for the 

application of a novel 2D-HPLC system. The background noise level drops down into 

tens of µAU and a linear range up to ~1.5 AU. This multichannel detector bears the 

features of high throughput sampling rate simultaneously, even though we currently are 

not at its current detection limit. The detector may be scaled up to further increase the 

throughput. Future improvements to the detector include the integration of a smaller 

lighthouse to decrease the overall detector size. Also, a change in the configuration of 

the 2D-HPLC system would allow for all 12 ports of the detector to be used 

simultaneously further either decreasing the overall separation time or increasing the 

resolving power by allowing for smaller fraction sizes to be taken.  
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The materials in Chapter 4 are adapted from Lynch et al., Talanta 181 (2018) 416-

421. The copyright was obtained from Elsevier and the license number is 

4315040872562. For more details, please see Appendix F. 
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Chapter 5: Overall Summary And Future Directions 

 
Overall summary 

 The work covered within this dissertation was devoted to making miniaturized 

chemistry systems for chromatographic separations and detection. The need for these 

systems arises from the recent trend in analytical systems for point-of-care analysis. For 

quick detection of diseases and contaminants in the field, more portable diagnostic tools 

are required. The most common system for doing detection of complex samples such as 

blood or saliva is HPLC. These systems combine a separation platform with a detection 

method. Commercial systems are generally large in size, have large power 

requirements, and lack the ability to provide onsite analysis. The work in this thesis 

addresses these issues within the previous three chapters.  

 Through previous work on gradient generation techniques within our lab along 

with creating EOPs capable of producing high pressure and adequate flow rates for 

HPLC separations, a prototype HPLC cartridge was designed and constructed as shown 

in Chapter 2. This system utilized a novel EOP manifold that combined four negatively 

charged EOP monoliths in parallel allowing for a separation pressure and flow rate of 

~2500 psi and ~200 nL/min (separation column flow rate) respectively. One of these 

pumps was used for the uptake a series of nine solutions of varying acetonitrile 

concentrations to generate the gradient profile required for the separation while a 

secondary pump system drove the eluent out and provided the separation. These two 

pumps were controlled using a dual 8-kV HVPS created in-house. The ability to change 

the concentration of the nine solutions and the volume of uptake for each one, it was 
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possible to configure the gradient profile according to the sample separation of interest. 

Trypsic BSA and myoglobin digests provided the complex samples required for proof 

of concept of the cartridge system and an absorbance detector as well as mass 

spectrometer was utilized to monitor the separations. 

 The next capillary-based prototype system developed was a bench top LIF 

system. LIF systems are notorious for their high level of sensitivity compared to that of 

absorbance detectors. Commercial systems as of right now have not been developed for 

capillary diameters in the low to sub-micron level. We addressed this deficiency in 

Chapter 3 through the presented narrow-capillary LIF prototype. The confocal laser 

system utilized a previously published method known as BaNC-HDC and was tested 

using a 2 µm-i.d. capillary and provided validation tests in the form of fluorescein 

and a DNA ladder. The detector had a LOD of 0.8 nM of fluorescein that 

corresponds to a yoctomole detection limit. The system had three orders of 

magnitude linear dynamic range. Lastly, a 1 kb DNA ladder was separated using 

BaNC-HDC and both qualitative and quantitative measurements were able to be 

made.  

 The third and last prototype discussed was a multiple-channel UV/Vis 

detector for high throughput chromatographic screening. A novel 2D-LC system 

developed within our lab increased the total number of simultaneous second 

dimension separation columns from the traditional one or two up to twelve. By 

doing so, separation times of complex samples could be greatly reduced. Since 

no commercial spectroscopic detector existed for this many columns, the 
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reduction of separation time could only be realized through the creation of the 

12-channel absorbance detector presented in Chapter 4. This detector consists of 

a deuterium lighthouse, a flow cell assembly (a 13-channel flow cell fitted with a 

13-photodiode-detection system), and a data acquisition and monitoring terminal. 

The flow cell assembly is further divided into the circuitry, 12 individual flow 

cells and a reference position, as well as a 13-furcated fiber optic cable all 

enclosed within a custom machined aluminum housing.  A Labview program 

provided the platform for data collection and visualization. This detection system 

allowed for the completion of the 2D-HPLC that was being designed in tandem. 

The system allowed for three orders of magnitude linear dynamic range with 

noise in the tens of µAU. When combined with a novel 2D-LC system within our 

lab to perform detection for a complex separation, over 900 peaks were able to 

be distinguished using E. Coli lysate as the sample. This detector allowed for an 

overall increase in channel detection compared to commercial systems while still 

retaining comparable performance.   

Future directions 

 Both the prototype of the HPLC cartridge and LIF detector represented the 

culmination of their respective projects. However, the possibility of optimizing the 

HPLC cartridge for its size and weight still exists. The current design was a proof-of-

concept and thus a form of acrylic known as lexan made the enclosure. This contributed 

significantly to the overall weight of the system and if constructed out of metal such as 

aluminum could greatly reduce the overall weight. As chip-based monolithic systems 
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are further optimized, integrating the pump system into a microfluidic platform would 

further reduce the overall size and weight. Also, the portable system as currently 

presented is fully powered by a USB port and has many unused ports on the DAQ card. 

That being said, building compatible detectors to the system such as a LED-based 

absorbance detector or a microLIF-detector for on-site analysis may not be out of the 

realm of possibilities. This system could also be adapted to work in conjunction with 

current miniature mass spectrometry systems that are being developed to provide 

additional information than the other spectroscopic techniques mentioned previously. 

The LIF prototypes produced are all perfectly working systems that continue to be 

utilized within our laboratory. An improvement to be made to future systems would 

include black anodizing the internal components of the system in order to reduce stray 

light.  

 The future of the multiple-channel UV/Vis detector is the most promising. A 

redesign of the valve system allows for the total number of columns to be doubled while 

still utilizing the same detector. This is because at any given moment, only six channels 

were collecting column separation data while the other six columns were being 

reconditioned. Improvements to the detector may include a better electronic shield to 

reduce environmental noise, a dedicated tunable wavelength light source, and an 

improved furcated-fiber that allows for a better randomization of the improved light 

source. Also, it is our hopes that as higher throughput, multiple-channel 2D-HPLC 

systems become more popular; direct integration into a mass spectrometer could be 

possible. For example, if each column terminated with an ESI probe, and all of the 

twelve probes were positioned in a conical shape focused on the inlet of the mass 
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spectrometer, each channel could be systematically switched on and off sequentially 

allowing for the sprays of each column to be connected by the mass spectrometer. The 

resulting singular data would then need to be separated out into the intervals and 

reconfigured into twelve different chromatograms representing the twelve ESI probes 

respective sprays.  
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