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Abstract 
 

This study addresses optimization modeling for recovery of a transportation 

system after a major disaster. In particular, a novel metric based on the shape of the 

recovery curve is introduced as the objective to minimize.  This metric is computed as 

the distance from the pre-disaster system performance at a time immediately before 

disruption to the two-dimensional location of the centroid point of the area beneath the 

recovery curve. The recovery trajectories derived from optimization models with this 

new metric are considered along with two other recovery goals from literature, i.e., 

minimizing the total recovery time and minimizing the skew of the recovery trajectory. 

A genetic algorithm is implemented to search for optimal restoration schedules under 

each objective and empirical analysis is used to evaluate the corresponding quality of 

the solutions. Additionally, a particle swarm optimization algorithm is employed as an 

alternative metaheuristic and the quality of the recovery schedules, as well as the 

observed computational efficiency is analyzed.
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Chapter 1: Introduction and Background 

Modern society is profoundly dependent on various infrastructure networks, 

including electric power, transportation, water supply, sewage handling, and 

communication and financial systems. To minimize the costs, infrastructure systems are 

frequently designed to work close to their capability with small margins of reserve 

capacity and little redundancy (Mattsson and Jenelius 2015). This renders them 

vulnerable to numerous incidents, such as technical failure, earthquake, extreme storm, 

flood, nuclear leak and intentional attack. In this paper, we focus on one vital 

infrastructure network — the road system. The transportation systems play an essential 

part in supporting the economic and social prosperity of a community. Society is not 

only dependent on the roadway system for daily commuting, business operation, and 

supply chain logistics, but also for first-responder, hospital and other critical care 

accessibility during disasters. Additionally, a functional transportation system is a key 

to the effective recovery of other infrastructure systems after a disruption, since they 

provide access for repair crews and equipment to be dispersed throughout the 

community as needed. Large-scale hazards can impact many roads and bridges in a 

transportation system. The loss that comes from this damage may be distinguished into 

two classes: initial direct loss and indirect loss (Zhang et al. 2017). Direct loss is the 

impact due to the immediate damage effects of the catastrophe. For instance, the direct 

damage would include the physical damage caused by high-velocity winds, flooding, or 

earthquake, etc. Indirect losses are the following or secondary outcomes of the 

preliminary disruption, such as taxes and revenue losses because of commercial 

enterprise interruption. The subsequent indirect loss may be equal to or greater even 
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than the initial direct loss. For example, the initial direct losses in the 2010 Haiti 

earthquake represents less than half of the total economic loss to-date (UNISDR, 2011). 

Resilience modeling has become a critical methodology representing a new way to 

recognize and manage system vulnerabilities and for analyzing the recovery problem of 

complex networks. Resilience has been explored in the literature in many areas of 

engineering (Filippini and Silva 2014; Cutter et al. 2010). A well-accepted definition of 

infrastructure network resilience is provided by Bruneau et al. (2003) as shown in 

Figure 1, where resilience is characterized by four dimensions: robustness, the capacity 

to minimize the direct loss after disruption; redundancy, the degree of which 

components and elements are substitutable in a system; resourcefulness, the ability of a 

system to provide appropriate measures in order to overcome the damage; rapidity, the 

speed at which the system can return to a specified level of functionality. Various 

techniques to measure resilience can be found in Bruneau et al. (2003), Chang and 

Shinozuka (2004), Barker et al. (2013), Cimellaro et al. (2006, 2010), Tamvakis and 

Xenidis (2013), and Sterbenz et al. (2013). Several studies have been focused on 

specific engineering areas, such as transportation systems (Zhang and Hooks 2015; 

Zhang and Wang 2016), supply chains (Ponomarov and Holcomb 2009; Raj et al. 

2015), airline system (Wang and Ip 2009), power grids (Shinozuka et al. 2003; Nan and 

Sansavini 2017) and water distribution systems (Odan et al. 2015; Zhang et al. 2017) 
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Figure 1. Illustration of Resilience Definition (Bruneau et al. 2003) 

Shinozuka et al. (2000) presented a statistical analysis of the structural fragility 

curve in a bridge system. Later, based on an examination of the seismic performance of 

the Los Angeles Department of Water and Power (LADWP) system after the Northridge 

earthquake, Shinozuka et al. (2003) used the fragility information of electrical power 

equipment to simulate the recovery process after earthquakes. Two dimensions of 

resilience, robustness and rapidity, are used to describe restoration process modeling. 

Çağnan et al. (2004) built a simulation model of a multi-lifeline restoration process in 

the LADWP electric power system. The advantage of their model is the ability to 

change the model flexibility in comparing the different restoration strategies by 

identifying restoration curves and simulating the relatively realistic model. 

Miles and Chang (2004) developed a comprehensive conceptual model of 

recovery and indicated the necessity to consider realistic factors during the recovery 

process. Their model establishes the essential relationships among the community’s 

lifeline networks, household’s businesses and neighborhoods. Davidson and Çağnan 
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(2004) discussed a post-earthquake recovery model for an electric power network. The 

model was built to reduce the restoration time and identify ways to enhance the 

systems’ performance in the future disaster. A study by Xu et al. (2006) produced a 

stochastic integer model to select the recovery plan to optimize the post-disaster 

restoration of the electric power network. Their model’s objective is to minimize the 

triangular area above the recovery curve, i.e., the “resilience triangle” from Bruneau et 

al. (2003). 

Frangopol and Bocchini (2011) developed a framework for evaluating the 

performance of road transportation systems considering the restoration process 

regarding resilience and economic cost. The performance of the networks is measured 

by the total travel time distance. In Bocchini and Frangopol (2012), the authors added 

two other objectives: the minimization of recovery time to satisfy a particular level of 

system functionality and the minimization of the total cost of restoration. Karamlou and 

Bocchini (2014) presented a methodology for scheduling the recovery sequence of road 

networks based on multi-objective combinatorial optimization using Genetic 

Algorithms. Their objective was to maximize the resilience and minimize the time 

required to connect the critical nodes of the network. More recently, Karamlou and 

Bocchini (2016) proposed an optimization technique called “Algorithm with Multiple-

Input Genetic Operators” for independent scheduling tasks considering resource and 

time constraints. 
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Numerous resilience analysis metrics have been developed and implemented for 

evaluating the post-disaster restoration process including the total travel time and 

distance, recovery time, financial loss, and the resilience triangle. Zhang et al. (2017) 

proposed a novel technique to analyze the efficiency of recovery schedule, based on the 

shape of the area below the restoration trajectory (resilience trapezoid). The authors 

gave an example as  

Figure 2. Different Recovery Trajectories 

showed in Figure 2 in which the four restoration trajectories have an equal total 

recovery time. Assuming equal quantity of community rebuilding funds, curve 1 

represents the most desirable recovery plan, whereas curve 4 is the least favorable 

among the options. Furthermore, curve 2 is arguably superior to both curves 3 and 4 

since its early-period restoration outperforms both. Rapid restoration in the early portion 

of the recovery horizon reduces the time at which the community must endure low 

levels of functionality. This performance in the early segment of rebuilding process 

could also aid the quick recovery of other critical infrastructures whose service 
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effectiveness notably rely on the capacity of transportation systems (e.g., emergency 

medical system, rescue operations following disaster events). To quantify the novel 

recovery process trajectory, Zhang et al. (2017) introduced a new metric, the skew of the 

recovery trajectory (SRT), for measuring the relative performances of various network 

recovery schedules. The SRT metric will be detailed in Chapter 3. 

To evaluate the efficiency of metrics, we build a stochastic restoration 

scheduling model. Several properties are set to be random in this model – in particular, 

we randomize the necessary restoration time for each road and the location of disaster 

center. We introduce a novel method for evaluating the recovery trajectory based on an 

enhancement of the SRT approach. The new metric is the centroid of the recovery 

trajectory distance (CRTd). A Genetic Algorithm (GA) is implemented to search for 

near-optimal schedules of the problem under various objectives. The three objectives 

are the minimization of TRT, SRT, and CRTd, respectively. The recovery schedules 

determined by minimizing these three metrics will be compared. At last, considering the 

lengthy computation time of GA, we will rebuild the model by Particle swarm 

optimization algorithm (PSO), then compare the performance of both algorithms by 

statistical analysis. 

The paper is organized as follows. In the following chapter, we propose the 

metric of calculating overall network performance used in this study. In Chapter 3, we 

define the three metrics for evaluating the efficiency of the recovery schedules, 

including the novel CRTd metric, and introduce the algorithms we used to build the 

optimization models. In Chapter 4, we empirically analyze network recovery trajectories 

based on the different objectives. Additionally, we compare the performance of two 
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metaheuristics approaches to identify near-optimal schedules.  Chapter 5 concludes the 

work.   
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Chapter 2: Performance Metric of Road Network 

The effective flow of people, commodities, and other measured items is often 

used to indicate the performance of networks such as the electricity grid, transportation 

system, and supply chains. For example, Harris and Ross (1955) first mentioned the 

maximum flow model in their study of Soviet Union railway traffic. Maximum flow 

analysis is used to identify the maximum feasible flow through a capacitated, single-

source, single-sink flow network (Schrijver 2002). Maximum network flow provides the 

fundamental metric used in the present work to measure system performance. In 

particular, if 𝑉𝑉 denotes the set of all vertices in a network, the all pairs max flow 

problem (APMF) is equal to the sum of the maximum flow from 𝑠𝑠 ∈ 𝑉𝑉 to 𝑡𝑡 ∈ 𝑉𝑉, for all 

(𝑠𝑠, 𝑡𝑡) pairs in 𝑉𝑉 × 𝑉𝑉, such that 𝑠𝑠 ≠ 𝑡𝑡. We use the APMF to indicate the performance 

level of the transportation network.  

There are many methods to compute maximum flow in a network, such as linear 

programming, the Ford-Fulkerson algorithm (Ford and Fulkerson 1956), the Edmonds-

Karp algorithm (Edmonds and Karp 1972) and the Push-relabel algorithm with dynamic 

trees algorithm (Goldberg and Tarjan 1988). For a large complex network, these 

methods may take a long time to calculate all pairs max-flow. For example, consider the 

LP approach. The mathematical formulation is adapted from Wang (2015). Let 𝐺𝐺 =

(𝑉𝑉, 𝐸𝐸) denote a network where 𝑉𝑉 is a set of 𝑛𝑛 vertices, and 𝐸𝐸 is a set of 𝑚𝑚 edges. The 

parameter 𝑐𝑐𝑖𝑖𝑖𝑖 denotes the capacity of edge (𝑖𝑖, 𝑗𝑗) ∈ 𝐸𝐸. The decision variable 𝑥𝑥𝑖𝑖𝑖𝑖 in the LP 

denotes the flow from node 𝑖𝑖 to node 𝑗𝑗 on edge (𝑖𝑖, 𝑗𝑗) ∈ 𝐸𝐸. The variable 𝑓𝑓𝑠𝑠𝑠𝑠 denotes the 

flow from 𝑠𝑠 to 𝑡𝑡 for a given source and sink node pair (𝑠𝑠, 𝑡𝑡) ∈ 𝑉𝑉 × 𝑉𝑉.  If 𝑠𝑠 = 𝑡𝑡, then 𝑓𝑓𝑠𝑠𝑠𝑠 

is equal to 0. An LP all pairs max flow optimization problem is formulated in Equations 
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(1)-(3): 

                                      Max 𝑓𝑓𝑠𝑠𝑠𝑠                                                    (1) 

                  s.t. ∑ 𝑥𝑥𝑖𝑖𝑖𝑖 − (𝑖𝑖,𝑗𝑗)∈𝐸𝐸 ∑ 𝑥𝑥𝑗𝑗𝑗𝑗 (𝑗𝑗,𝑖𝑖)∈𝐸𝐸 = 0, ∀ 𝑖𝑖 ∈ 𝑉𝑉\{𝑠𝑠, 𝑡𝑡}              (2) 

                                     0 ≤ 𝑥𝑥𝑖𝑖𝑖𝑖 ≤ 𝑐𝑐𝑖𝑖𝑖𝑖                                                    (3) 

Equation (1) is the objective function. Equation (2) reflects the flow-balance 

constraints in the network. Note that the flow-balance constraints are required for all 

nodes in the network, except for the source and sink nodes. Equation (3) ensures there is 

no negative or overloaded flow in the network. Let 𝑓𝑓𝑠𝑠𝑠𝑠
∗  denote the maximum flow from 

the solution to the APMF formulation described in Equations (1)-(3). The all pairs 

maximum flow can be calculated, 𝜑𝜑𝑎𝑎𝑎𝑎𝑎𝑎 = ∑ 𝑓𝑓𝑠𝑠𝑠𝑠
∗  ∀(𝑠𝑠,t)∈𝑉𝑉 𝑠𝑠 ≠ 𝑡𝑡. For a network with 𝑛𝑛 

nodes, the APMF optimization problem can be solved after 𝑛𝑛 (𝑛𝑛 − 1) times iterations: 

once for each distinct node pair. Note that, in the bi-directional and symmetric graphs, 

we know that 𝑓𝑓𝑠𝑠𝑠𝑠
∗ = 𝑓𝑓𝑡𝑡𝑡𝑡

∗ . Then, the quantity of all pairs max flow problems to be 

calculated is then 𝑛𝑛(𝑛𝑛−1)
2

. Practically speaking, the computation time may be very long 

due to the size of the network, even though we can reduce the total calculations by half. 

The time complexity of linear programming is 𝑂𝑂(𝑚𝑚𝑚𝑚2); for Ford-Fulkerson algorithm is 

𝑂𝑂(𝑚𝑚𝑚𝑚), where 𝐾𝐾 is defined as the maximum pairwise connectivity between any pair of 

vertices in the graph; for the Edmonds-Karp algorithm, the computational complexity is 

𝑂𝑂(𝑚𝑚2𝑛𝑛); and for the Push-relabel algorithm with dynamic trees algorithm it 

is 𝑂𝑂(𝑚𝑚𝑚𝑚 log𝑚𝑚 𝑛𝑛2)           (Edmonds and Karp 1972; Goldberg and Tsioutsiouliklis 

2001). The truth is, if we use the methods mentioned above, even a single calculation of 

 𝜑𝜑𝑎𝑎𝑎𝑎𝑎𝑎 in a complex network needs a long computing time, while we need to measure the 
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 𝜑𝜑𝑎𝑎𝑎𝑎𝑎𝑎 value during the whole process of recovery schedule searching. However, all 

above algorithms are not ideal choice of the problem take into consideration the 

application of selecting 𝑘𝑘 out of 𝑚𝑚 edges for restoration after disruption, where the set 

of 𝑘𝑘 edges is sequentially repaired, a complete evaluation would require �𝑚𝑚
𝑘𝑘 � 

computations of  𝜑𝜑𝑎𝑎𝑎𝑎𝑎𝑎. 

The Gomory-Hu trees algorithm uses minimum 𝑠𝑠 − 𝑡𝑡 cuts for computing all 

node pairs maximum flow (Hariharan et al. 2007). Gomory and Hu (1961) first 

confirmed that the edge connectivities of all pairs of vertices in an undirected graph 

could be evaluated using 𝑛𝑛 − 1 max-flow computations (instead of the naïve 

�𝑛𝑛
2� computations). Their algorithm computes a weighted cut tree 𝑇𝑇 called the Gomory-

Hu tree, on 𝑉𝑉, with the property that the edge connectivity between any two vertices 𝑠𝑠 

and 𝑡𝑡 in 𝑉𝑉 precisely equals the weight of the minimum weight edge on the unique 𝑠𝑠 − 𝑡𝑡 

path in 𝑇𝑇.  Furthermore, the partition of the vertices produced by removing this edge 

from 𝑇𝑇 is a minimum 𝑠𝑠 − 𝑡𝑡 cut in the graph. The time complexity of Gomory-Hu tree 

algorithm on undirected weighted graphs is 𝑂𝑂(𝑚𝑚𝑚𝑚). Hence we pick Gomory-Hu tree 

algorithm to compute the performance of road network. In this study, a transportation 

network is wholly recovered if the network performance 𝜑𝜑𝑎𝑎𝑎𝑎𝑎𝑎 returns to its pre-

disruption value.   



11  

Chapter 3: Optimization of Network Restoration Scheduling 

3.1 Evaluation Metrics for Network Recovery Plan 

In this chapter, three evaluation metrics for the post-disaster recovery schedule 

trajectory are described. The first metric is the total recovery time (TRT), starting from 

the beginning of restoration process and ending at the time when the network is fully 

recovered, i.e., the time when all edges are restored to their full capacity. As shown 

previously, Zhang et al. (2017) demonstrated that the TRT is not sufficient to evaluate a 

recovery plan. For instance, Figure 3 demonstrates two restoration schedules with 

nearly equal TRT (the performance of the network is measured by APMF).  The initial 

performance and immediately disrupted performance are indicated in Figure 3 as 𝑝𝑝0 and 

𝑝𝑝𝑑𝑑, respectively. It is apparent that while recovery curves 1 and 2 share similar total 

restoration time, curve 1 is superior to curve 2 due to the quick early recovery which 

will minimize cumulative losses throughout the restoration horizon. 

Consequently, another metric which used to compare the efficiency of network 

restoration strategies is the skew of recovery trajectory (SRT). This metric is equal to 

the centroid coordinate on time-axis of the region beneath the trajectory, i.e., from 𝑡𝑡0 to 

𝑡𝑡𝑙𝑙 (Zhang et al., 2017). 𝑆𝑆1 and 𝑆𝑆2 in Figure 3 denote the SRT values related to curve 1 

and 2, respectively. While the TRT is very close between two curves in Figure 3, 

clearly, 𝑆𝑆1 < 𝑆𝑆2. 

The third metric is a novel enhancement of the SRT which we introduce in this 

work. The metric, centroid of recovery trajectory distance (CRTd), is demonstrated in 

Figure 4, and represents the distance between the centroid point  
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Figure 3. Skew of Recovery Trajectory 

of the trapezoid area beneath the recovery trajectory and the initial point 𝐶𝐶0 representing 

the pre-disaster system performance. In Figure 4, the centroid point associated with 

schedule 1 and 2 are marked as 𝐶𝐶1 and 𝐶𝐶2, respectively. We hypothesize that by 

introducing the system performance dimension into the skew metric, optimizing with 

respect to the novel CRTd measure will produce distinct, and superior, recovery 

trajectories.    

In this thesis, 𝑇𝑇 =  {𝑡𝑡0, 𝑡𝑡1, 𝑡𝑡2 … 𝑡𝑡𝑟𝑟} are the time points during the restoration 

process. Each point means that there is a changing of network performance value 

occurring. Let 𝐸𝐸 =  {1, 2, 3 … 𝑚𝑚} denote the set of roads in network, and let 𝓆𝓆𝑒𝑒 denote 

the initial capacity of road 𝑒𝑒 before a disaster occurs.  The value 𝓆𝓆𝑒𝑒
𝑡𝑡  denotes the capacity 

of road 𝑒𝑒 ∈ 𝐸𝐸 at time point 𝑡𝑡 ∈ 𝑇𝑇  calculated by, 

                                              𝓆𝓆𝑒𝑒
𝑡𝑡 = 𝓆𝓆𝑒𝑒 ∙ 𝓆𝓆𝑒𝑒𝑒𝑒

𝑡𝑡                                            (4) 
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Figure 4. Centroid of Recovery Trajectory 

where 𝓆𝓆𝑒𝑒𝑒𝑒
𝑡𝑡  is the damage index of road 𝑒𝑒 at time 𝑡𝑡, defined on a five point scale from 0 

to 4.   If 𝓆𝓆𝑒𝑒𝑒𝑒
𝑡𝑡 = 0, there is no damage and the associated roadway is at full capacity.  For 

𝓆𝓆𝑒𝑒𝑒𝑒
𝑡𝑡  values 1 to 4, the disruption corresponds to roadway  capacities at 80%, 50%, 20%, 

and 0% of the original service level 𝓆𝓆𝑒𝑒, respectively.   Let 𝑝𝑝(𝑡𝑡) denote the APMF 

network performance at time 𝑡𝑡 based on the dynamic road capacities, i.e.,  

                            𝑝𝑝(𝑡𝑡) =  𝜑𝜑𝑎𝑎𝑎𝑎𝑎𝑎 (𝓆𝓆1
𝑡𝑡 , 𝓆𝓆2

𝑡𝑡 … 𝓆𝓆𝑚𝑚
𝑡𝑡 )                                     (5) 

 Let the set of damaged road segments be denoted by ℰ ⊆ 𝐸𝐸. Assume |ℰ| = 𝑘𝑘 ≤

𝑚𝑚.  Without loss of generality, let the set ℰ = {1, 2 … 𝑘𝑘}. Let 𝕩𝕩 =  {𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3 … 𝑥𝑥𝑘𝑘} 

denote the start times for initiating repair on the damaged roads. Additionally, let 𝐷𝐷ℰ 

denote the necessary restoration times for each of the damaged road in ℰ.  We assume 

restoration actions are non-preemptive. That is, once a roadway restoration action is 

initiated, it must be finished before the associated maintenance crew moves to repair 

another roadway segment. A disrupted road capacity remains at the initial damage level 
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𝓆𝓆𝑒𝑒𝑒𝑒
𝑡𝑡  until its restoration process is completed. The recovery TRT of schedule 𝕩𝕩 is 

denoted as 𝑡𝑡𝑟𝑟(𝕩𝕩), and defined in Equation (6), 

                        𝑡𝑡𝑟𝑟(𝕩𝕩) =  𝑀𝑀𝑀𝑀𝑀𝑀
𝑒𝑒∈ℰ (𝑥𝑥𝑒𝑒 + 𝐷𝐷𝑒𝑒) − 𝑡𝑡0                                   (6) 

Let 𝑡𝑡𝑙𝑙 denote a point in time which exceeds all conservative estimates for a 

system’s TRT. This value is used as a shared reference time for calculating SRT of 

distinct recovery strategies. The SRT corresponding to schedule 𝕩𝕩, 𝑠𝑠(𝕩𝕩) is: 

                                𝑠𝑠(𝕩𝕩) =  
∫ 𝑝𝑝(𝑡𝑡)∙(𝑡𝑡−𝑡𝑡0) 𝑑𝑑𝑑𝑑𝑡𝑡𝑙𝑙

𝑡𝑡0

∫ 𝑝𝑝(𝑡𝑡)𝑑𝑑𝑑𝑑𝑡𝑡𝑙𝑙
𝑡𝑡0

                                           (7) 

Let ∆𝑡𝑡 denote the time between sequential time points when the network 

performance is changed. Also, we set the 𝑡𝑡0 as 0, means that the beginning time of 

recovery process is 0. Then, the 𝑠𝑠(𝕩𝕩) can be approximated by 

                                  𝑠𝑠(𝕩𝕩) ≈  ∑ 𝑡𝑡𝑖𝑖𝑝𝑝(𝑡𝑡𝑖𝑖) ∆𝑡𝑡𝑙𝑙
𝑖𝑖=0

∑ 𝑝𝑝(𝑡𝑡𝑖𝑖) ∆𝑡𝑡𝑙𝑙
𝑖𝑖=0

                                              (8) 

The calculation of CRTd needs two coordinate points: the initial point 𝐶𝐶0 (as 

shown in Figure 4) and the centroid point. Let (𝑐𝑐(𝕩𝕩𝑡𝑡), 𝑐𝑐(𝕩𝕩𝑝𝑝)) denote the two 

dimeinsonal coordinate of centroid point of the resilience trapezoid with respect to the 

time-axis and performance-axis, respectively. Similarly to the calculating of 𝑠𝑠(𝕩𝕩), the 

𝑐𝑐(𝕩𝕩𝑡𝑡) and 𝑐𝑐(𝕩𝕩𝑝𝑝) associated with scheduling strategy 𝕩𝕩 can be approximated by 

Equations (8) and (9): 

                𝑐𝑐(𝕩𝕩𝑡𝑡) =  
∫ 𝑃𝑃(𝑡𝑡)∙(𝑡𝑡−𝑡𝑡0)𝑑𝑑𝑑𝑑𝑡𝑡𝑟𝑟

𝑡𝑡0

∫ 𝑃𝑃(𝑡𝑡)𝑑𝑑𝑑𝑑𝑡𝑡𝑟𝑟
𝑡𝑡0

≈ ∑ 𝑡𝑡𝑖𝑖𝑃𝑃(𝑡𝑡𝑖𝑖) ∆𝑡𝑡𝑟𝑟
𝑖𝑖=0

∑ 𝑃𝑃(𝑡𝑡𝑖𝑖) ∆𝑡𝑡𝑟𝑟
𝑖𝑖=0

                                 (9) 

                  𝑐𝑐(𝕩𝕩𝑝𝑝) =  
∫ [𝑡𝑡𝑝𝑝𝑡𝑡𝑟𝑟

−𝑡𝑡(𝑝𝑝)]∙(p−𝑝𝑝𝑡𝑡0)𝑑𝑑𝑑𝑑𝑝𝑝𝑡𝑡𝑟𝑟
𝑝𝑝𝑡𝑡0

∫ [𝑡𝑡𝑝𝑝𝑡𝑡𝑟𝑟
−𝑡𝑡(𝑝𝑝)]𝑑𝑑𝑑𝑑𝑝𝑝tr

𝑝𝑝𝑡𝑡0

≈
∑ [𝑡𝑡𝑝𝑝𝑡𝑡𝑟𝑟

−𝑡𝑡(𝑗𝑗)]∙(𝑝𝑝𝑗𝑗−𝑝𝑝𝑡𝑡0)∆𝑝𝑝
𝑝𝑝𝑡𝑡𝑟𝑟
𝑗𝑗=𝑝𝑝𝑡𝑡0

∑ [𝑡𝑡𝑝𝑝𝑡𝑡𝑟𝑟
−𝑡𝑡(𝑗𝑗)]∆𝑝𝑝

𝑝𝑝𝑡𝑡𝑟𝑟
𝑗𝑗=𝑝𝑝𝑡𝑡0

            (10) 

In the Equation (9, 10), 𝑡𝑡𝑟𝑟 set to be the specific total recovery time of each 
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reconstruction schedule. 𝑝𝑝𝑡𝑡0 is defined as the robustness of network which equals to the 

network performance at the beginning of reconstruction process, 𝑝𝑝𝑡𝑡𝑟𝑟 equals to the initial 

network performance before the hazard event occurs, also equals to the performance of 

network when then recovery is finished. Let 𝑁𝑁𝑡𝑡 denote the total number of roads which 

are under repair at time 𝑡𝑡. 𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚 is the maximum number of simultaneous repairing 

roads in the entire network, which is depending on the resources available for the 

recovery process after the disaster. The optimal recovery sequence for all damaged 

roads is obtained by minimizing TRT (as defined by Equation (6)) or SRT (as defined 

by Equation (8)) or CRTd (as defined by Equation (9, 10)). The optimization problems 

under investigation are summarized in Table 1.   

Additionally, we introduce a generic method to evaluate the quality of 

competing schedules which is not specifically tied to the formulations of the three 

optimization problems. The measure is based on the concept of the future value of an 

investment. More specifically, the system performance loss (see the upper left portion in 

Figure 5), is not necessarily equivalently valued throughout the recovery horizon. That 

is, the system loss is evaluated as the future value of the loss at the time point of the 

final recovery assuming a rate of return 𝜃𝜃 ≥ 0.  This loss function is presented in 

Equation (11): 

                        𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 =  ∫ (𝑝𝑝𝑡𝑡𝑟𝑟 − 𝑝𝑝𝑡𝑡) ∙ (1 + 𝜃𝜃)𝑡𝑡𝑟𝑟−𝑡𝑡𝑡𝑡𝑟𝑟
𝑡𝑡0

𝑑𝑑𝑑𝑑                        (11) 

Note that, each recovery schedule uses its particular 𝑡𝑡𝑟𝑟, the recovery processing 

time, to calculate the loss function. Since we are uncertain about the right value of 𝜃𝜃 

(which is more likely defined by authorities). In our study, we set 𝜃𝜃 = 0.01; a value 
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could demonstrate the importance of early-period restoration without exaggerated.   

 

 

Figure 5. Loss Function 
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Table 1. Summary of the Optimization Formulation 
Description: Equations:  Eq. No.: 
 Input Parameters Network topology: 𝐺𝐺 = (𝑉𝑉, 𝐸𝐸) 

Damage level of road: 
 𝓆𝓆𝑒𝑒𝑒𝑒

𝑡𝑡  ∈ {0, 1, 2, 3, 4} ∀ e ∈𝐸𝐸  
Road restoration duration: 𝐷𝐷ℰ  ℰ = 1, 2 … 𝑘𝑘 

 

Decision Variables                            𝕩𝕩 =  {𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3 … 𝑥𝑥𝑘𝑘}  
  
Global Objective 1 

 

min 𝑡𝑡𝑟𝑟(𝕩𝕩) =  
𝑀𝑀𝑀𝑀𝑀𝑀

ℰ = 1, 2 … 𝑘𝑘
(𝑥𝑥ℰ + 𝐷𝐷ℰ) − 𝑡𝑡0 

 
 
 
 

min 𝑠𝑠(𝕩𝕩) =
∑ 𝑡𝑡𝑖𝑖𝑃𝑃(𝑡𝑡𝑖𝑖) ∆𝑡𝑡𝑙𝑙

𝑖𝑖=0

∑ 𝑃𝑃(𝑡𝑡𝑖𝑖) ∆𝑡𝑡𝑙𝑙
𝑖𝑖=0

  

 
 
 
 

min �[𝑡𝑡0 − 𝑐𝑐(𝕩𝕩𝑡𝑡)]2 + [𝑝𝑝𝑡𝑡𝑟𝑟
− 𝑐𝑐�𝕩𝕩𝑝𝑝�]2 

 

𝑐𝑐(𝕩𝕩𝑡𝑡) =  
∑ 𝑡𝑡𝑖𝑖𝑃𝑃(𝑡𝑡𝑖𝑖) ∆𝑡𝑡𝑟𝑟

𝑖𝑖=0
∑ 𝑃𝑃(𝑡𝑡𝑖𝑖) ∆𝑡𝑡𝑟𝑟

𝑖𝑖=0
 

 

𝑐𝑐�𝕩𝕩𝑝𝑝� =  
∑ [𝑡𝑡𝑝𝑝𝑡𝑡𝑟𝑟

− 𝑡𝑡(𝑗𝑗)] ∙ (𝑝𝑝𝑗𝑗 − 𝑝𝑝𝑡𝑡0
)∆𝑝𝑝

𝑝𝑝𝑡𝑡𝑟𝑟
𝑗𝑗=𝑝𝑝𝑡𝑡0

∑ [𝑡𝑡𝑝𝑝𝑡𝑡𝑟𝑟
− 𝑡𝑡(𝑗𝑗)]∆𝑝𝑝

𝑝𝑝𝑡𝑡𝑟𝑟
𝑗𝑗=𝑝𝑝𝑡𝑡0

 

 

 
  Minimize total recovery time 
 
 
 
Global Objective 2 

 (6) 

  
   Minimize skew  
 
  
 
Global Objective 3 
  
  Minimize centroid distance 
 

 (8) 
 
 
 
 
 
 
 
 
 (9) 
 
 
(10) 
 

Constraint 1 
  Network performance at time t 
 
 
 
Constraint 2 
  Simultaneous restoration 
cannot exceed the maximum 
number 
 
 
Constraint 3 
  Complete recovery time 
 
 
Constraint 4  
  Variable interval 
 

𝑝𝑝(𝑡𝑡) =  𝜑𝜑𝑎𝑎𝑎𝑎𝑎𝑎 (𝓆𝓆1
𝑡𝑡 , 𝓆𝓆2

𝑡𝑡 … 𝓆𝓆𝑚𝑚
𝑡𝑡 ) ∀ 𝑡𝑡 ∈ 𝑇𝑇 

 
 
 

     𝑁𝑁𝑡𝑡 ≤ 𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚   ∀ 𝑡𝑡 ∈ 𝑇𝑇 
 
 

𝑡𝑡𝑐𝑐𝑐𝑐(𝑥𝑥) = 𝑥𝑥ℰ + 𝐷𝐷ℰ   ℰ = 1, 2 … 𝑘𝑘 
 
 
 

𝑥𝑥ℰ ≥ 0   ℰ = 1, 2 … 𝑘𝑘 

 (5) 
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3.2 Genetic Algorithms and Particle Swarm Optimization Algorithm 

The optimization model in this work is similar to the parallel machine 

scheduling problem, which has been widely studied in past decades and there are no 

known polynomially bound algorithms for this problem (Weng et al. 2001; Franca et al. 

1996; Guinet 1993). However, genetic algorithms (GA) are bio-inspired optimization 

methods that are commonly used to solve complex scheduling problems (Holland 1975; 

Goldberg 1989). The input of the GA is a set of solutions called the population of 

individuals that will be evaluated. As soon as the evaluation of individuals is achieved, 

parent solutions are selected and a crossover mechanism is implemented to achieve a 

brand new generation of individuals (offspring). Furthermore, the mutation technique is 

applied as a way to bring variety into the population. Additionally, the GA flowchart 

(Figure 6) described by Karamlou and Bocchini (2016) is modified to apply to this 

project. In this paper, we use the same GA parameters for all models: population size is 

40, the mutation rate is 0.2, and the cycle crossover operator is applied. The maximum 

number of iterations is 10000, and the early termination criterion is 50.  

Genetic algorithms often require a long computing time when applied a 

complicated network. As such we attempt to find a faster approach, the Particle swarm 

optimization (PSO) was proposed by Kennedy and Eberhart (1995) and is an algorithm 

inspired by the collective behavior of bird and fish. PSO is one of the latest evolutionary 

optimization techniques for optimizing continuous nonlinear functions (Kashan and 

Karimi 2009). The essential PSO flow diagram is depicted in Figure 7. PSO has many 

similarities to GA: both begin with a randomly generated population of solutions; both 

employ fitness values to iteratively guide modifications of the population; and both use 
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stochastic elements to approach to the optimum. However, PSO updates its population 

of solutions with the two best solutions’ (global and local) information, in GA, the 

individuals are updated by several best solutions.  In this paper, we build a swap 

operator based PSO model which was introduced by Wang et al. (2003). Set population 

size to be 40, and the alpha and beta swap parameter both equal to 2.05. Two 

metaheuristic features of PSO and GA are compared in this study: computing time and 

solution quality. 

 

Figure 6. Flowchart of GA 
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Figure 7. Flowchart of PSO 
 

 

 

 



21 

 

Chapter 4: Illustrative examples and empirical analysis 

4.1 Network Instance and Simulation Disruption  

To empirically evaluate the recovery trajectories based on optimizing TRT, 

SRT, and CRTd and, subsequently, two optimization algorithms (GA and PSO), we 

generate network instances using a random geometric graph algorithm. The edges of the 

network are non-directional and capacitated. The geometric graph algorithm generates 

the network by giving the number of nodes and edges, 𝑛𝑛 and 𝑚𝑚, respectively, and 

ensures no disconnected vertices exist. Each edge is then randomly assigned capacity 

and restoration time. For this study, we simulate four networks of different size and 

complexity as depicted in Figure 8. Fig. 8 (a) depicts a simple network with 20 nodes 

and 30 edges. Another simple network, which includes 30 nodes is shown in Fig. 8 (b). 

Fig. 8 (c) and (d) portray complex networks which contains 40 nodes and 60 edges.  

The simulated disruption affects the capacities of edges. This provides a simplistic 

approach to simulating disasters such as an earthquake. We build a five damage level 

model inspired by Nicholson et al. (2016) which decreases edge flow by 100%, 80%, 

50%, 20%, and 0%, respectively, based on distance from the epicenter.  The highest 

level of disruption occurs for those edges that intersect the circle closest to the 

epicenter. Any edge that cuts across one of these disruptive circles is set to be damaged, 

and the loss is defined by the smallest of the concentric circles intersected. Figure 9 

depicts the disruption area of network and show the number of damaged edges in each 

instance. Note that, Fig. 8 (c) and (d) show two networks share the same number of 

nodes and edges, but the random location of the nodes and the center of disaster create 

the different situation of damage edges. 
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Figure 8. Four Network Design Instances 

 
Figure 9. Four Network Instances After Disaster 
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4.2 Comparison of Measuring Metrics of Network Restoration 

In this paper, all models are coded in Sublime Text 2 and run on the laptop with 

Intel Core i7-7700HQ 2.80 GHz, 16 GB RAM, Windows 64 bits. In this section, we 

first compare the TRT and SRT metrics. Figure 10 illustrates the network recovery 

trajectory associated with the optimal schedule found by optimizing TRT and SRT 

metrics for the four instance networks. In each chart, the horizontal axis denotes the 

recovery time and the vertical axis represents the performance of network. In each 

simulation, the number of maximum concurrent repair jobs, 𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚, is set to three. As 

mentioned before, the area beneath the recovery trajectory could be considered as a 

method the measure the recovery schedule. In Figure 10, although the TRT solutions 

always finish the restoration process earlier than the SRT solutions, the area beneath the 

trajectory of the optimal TRT schedule is less than the SRT trajectory. This observation 

agrees with Zhang et al. (2017) and provides evidence that SRT is a better objective 

than TRT for post-disaster resilience analysis. When we search to optimize TRT alone, 

the recovery plan focuses on how to complete the job faster, not how to reduce the 

cumulative catastrophic impact.  

SRT and CRTd both consider the shape of the recovery trajectory. However, 

SRT considers only the time-axis, whereas CRTd considers both the time and 

performance axes. For a more precise result, we set the 𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚 = 1 in following 

experiments. In this way, we can make sure that the schedules searched by SRT and 

CRTd have same total recovery time, then we can compare two metrics more  
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Figure 10. TRT VS. SRT 

 
Figure 11. SRT VS. CRTd 

Skew of SRT: 4.663 
Skew of CRTd: 4.701 

Skew of SRT: 6.332 
Skew of CRTd: 6.376 

Skew of SRT: 9.870 
Skew of CRTd: 9.991 

Skew of SRT: 6.306 
Skew of CRTd: 6.335 
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clearly. The recovery trajectories determined by attempting to minimize SRT and CRTd 

for all four random graphs are depicted in Figure 11. Apparently, the SRT and CRTd 

derived recoveries distinct. The former has slightly improved skew values, however the 

areas under the restoration curves associated with CRTd are noticeably larger than those 

associated with the SRT metric. This provides evidence that the additional dimension 

relating directly to system performance provides a beneficial aspect to the optimization 

objective. 

Moreover, we generate 120 random networks and disruption scenarios and 

optimize the recovery schedule for each instance. These 120 networks are divided into 

12 groups; each group has 10 instances of networks; each network has different location 

of nodes and randomly location of disaster center. For each of the 120 scenarios, 𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚 

is set equal to 3. The average loss values (calculated based on Eq. 11 with theta = 0.01) 

and the computational time (in seconds) are recorded in Table 2 for the TRT, SRT, and 

CRTd derived recoveries. In Table 2, node and edge column depict the network size; 

damage column denotes the range of the damage edges after hazard event; loss shows 

the mean and standard deviation (SD) of loss values of various scenarios; time depicts 

the mean and standard deviation of computational time of different scenarios. As shown 

in Table 2, the computing time of TRT metric is always the shortest one, while the loss 

value of optimal TRT schedule is apparently higher than the loss value of schedules 

found by SRT and CRTd. Thus, the TRT is not a reasonable objective for searching the 

optimal reconstruction plan. Furthermore, the CRTd metric always can find the 

recovery trajectory with the lowest loss value among three metrics. For instance, in the 

case of node=30, edge=60, and damage edges range is (40, 50): the average TRT 
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computing time is around 170(s), while SRT and TRT average computational time are 

about 1850(s). Also, the average loss value of TRT is 73216; the SRT is 58838; and the 

lowest average loss value is gained by CRTd metric, which is 45217. Note that, the 

network size and the number of damage edges both have the influence on the 

computational time. When the network size is fixed, the calculation time will raise if the 

number of disrupted edges raise, and vice versa. For example, in the cases of network 

size is fixed on node=40, edge=80: the average computing time of SRT metric raises 

from 3195(s) to 6398(s) following the raising of the number of damage edges. One 

more truth is that when the network size is large, the SRT metric obviously needs longer 

time than the CRTd for finding the optimal schedule. In the last scenario, SRT average 

computing time is 21205 seconds while CRTd only needs 7842 seconds. Also, as shown 

in Table 2, the difference between loss of SRT and CRTd also become more greatly, 

from 1832 in the first scenario to 31931 in the last scenario.  

Table 2. Summary of Three Metrics Comparing (Loss and Time) 
Scenario 

 
 Node   Edge   Damage      

TRT SRT CRTd 
Loss Time(s) Loss Time(s) Loss Time(s) 

20 40 (10, 20) 12804±5734  40±3 8453±648 293±134 6621±332 215±19 

20 40 (20, 30) 19254±7284 47±5 13073±6010 518±289 10105±2436 385±122 

20 40 (30, 40) 53275±6271 78±5 34172±4129 946±239 30985±1951 848±340 

30 60 (20, 30) 27731±11215 124±13 20561±6264 1054±229 17458±4794 992±442 

30 60 (30, 40) 56085±29457 150±41 44711±10701 1205±469 35284±6857 1701±566 

30 60 (40, 50) 73216±38216 178±36 58838±23838 1804±714 45217±14261 1957±824 

40 80 (30, 40) 74863±26023 282±40 48639±25792 3195±955 32532±26185 2533±776 

40 80 (40, 50) 96564±48743 314±12 72412±38188 5095±1508 54410±31954 3049±1081 

40 80 (50, 60) 140142±34033 324±30 113701±24973 6398±791 72055±19461 3974±1047 

50 100 (40, 50) 117655±40550 451±21 90002±18718 8396±965 65796±14915 5794±3944 

50 100 (50, 60) 152817±85702 507±53 119167±50144 15355±2132 92504±35133 6816±1140 

50 100 (60, 70) 228965±81286 704±82 140205±42162 21205±1502 108274±40159 7842±2663 
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In Table 3, the R_time column denotes the mean and standard deviation of 

recovery time (in months); the skew column records the mean and standard deviation 

value of the skew of recovery trajectory searched by TRT, SRT, and CRTd metrics. 

Table 3 presents that the longer total recovery time which is searched by SRT and 

CRTd metrics is at most two months later than the TRT’s recovery time. Also, the skew 

value of the recovery schedule trajectory gained by SRT and CRTd metrics are very 

close. Compared to the apparent difference in loss value shown in Table 2, the 

similarity of skew values in Table 3 proves that only considering the SRT is not a 

valuable method to evaluate the post-disaster reconstruction schedule. For instance, in 

the case of node=40, edge=80, and damage edges range is (50, 60): the difference 

between the skew value of SRT and CRTd is only 0.147, but the loss value difference is 

41646. All these data demonstrate that, compared with TRT or SRT, the CRTd is the 

best metric for searching an ideal post-disaster reconstruction schedule. 

Table 3. Summary of Three Metrics Comparing (Recovery Time and Skew) 
Scenario 

 
 Node   Edge   Damage      

TRT SRT CRTd 

R_Time(m) Skew R_Time(m) Skew R_Time(m) Skew 

20 40 (10, 20) 8.29±2.12 4.385±0.812 9.84±2.21 4.30±0.739 9.08±2.25 4.331±0.811 

20 40 (20, 30) 10.50±2.82 5.360±1.919 11.91±2.52 5.216±1.857 11.73±2.61 5.259±1.649 

20 40 (30, 40) 16.94±3.41 8.724±2.784 18.45±4.12 8.353±2.876 18.27±3.60 8.458±2.681 

30 60 (20, 30) 14.33±2.36 7.041±1.866 15.94±2.44 6.920±1.853 15.53±2.58 6.962±2.191 

30 60 (30, 40) 16.76±3.28 8.135±2.392 18.31±3.12 7.942±2.496 17.92±3.49 8.025±2.243 

30 60 (40, 50) 19.75±4.26 10.329±3.138 21.64±3.99 9.744±2.967 21.10±4.41 9.874±2.895 

40 80 (30, 40) 17.84±2.60 8.545±2.564 19.94±2.31 8.454±2.628 19.38±2.37 8.486±2.542 

40 80 (40, 50) 20.65±3.52 9.735±2.675 22.45±3.83 9.435±2.817 21.51±4.12 9.527±2.474 

40 80 (50, 60) 25.03±4.49 12.068±3.016 26.10±4.93 11.626±2.975 25.57±4.63 11.773±2.882 

50 100 (40, 50) 21.55±3.76 10.493±2.524 
 
 

23.16±3.83 10.273±2.479 22.94±3.85 10.354±2.408 

50 100 (50, 60) 24.56±4.35 11.683±2.839 25.84±4.29 11.363±2.794 25.48±4.26 11.466±2.768 

50 100 (60, 70) 30.62±4.98 14.886±3.074 31.92±5.19 14.365±3.192 31.76±4.87 14.574±3.087 
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 4.3 Comparison of Algorithms 

First, we run two optimization models building by GA and PSO algorithms, and 

both use the CRTd metric on the four instance networks, set the 𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚 = 1, and equal 

population size (number of individuals of each generation) of two models. The optimal 

recovery schedules obtained by two models are presented in Figure 12. The trajectory 

searched by PSO is close to the schedule obtained by GA. 

Moreover, we run GA and PSO models in the 120 random networks scenarios 

described in Section 4.2. Additionally, for comparing the GA and PSO, we add a testing 

GA model which is stopping at the PSO computing time instead of completing the GA 

procedure. The results are summarized in Table 4; the GA_test column collects the data 

of the testing model. The loss and time columns in Table 4 also depict the mean and 

standard deviation of loss value and computing time (in seconds). Table 4 demonstrate 

that PSO can find a nearly optimal solution by spending much less time than GA. When 

the network size is small, the testing GA model which stops at the PSO computing time 

can gain a relative same answer with PSO, but if the network is large, the GA model 

cannot find an acceptable recovery plan by using PSO running time. For instance, in the 

first scenario: the average loss value of testing GA and PSO models are 7015 and 6994, 

both close to the average loss value of GA model. In the last scenario: the loss value of 

PSO is 137956 which is close to the average loss value of GA (considering the 

complexity of networks), while the testing GA has a larger loss value, 181382. Under 

the crisis of post-disaster, time is precious, PSO algorithm can help the decision maker 

choose a fast near-optimal solution. 
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Figure 12. GA VS. PSO 

 
Table 4. Summary of Two Algorithms Comparing 

Scenario 
 

 Node   Edge   Damage      

GA PSO GA_Test 
Loss Time(s) Loss Time(s) Time(s) Loss 

20 40 (10, 20) 6621±332 215±19 6994±854 67±1 7015±393 67±2 

20 40 (20, 30) 10105±2436 385±122 10332±2820 110±23 11364±4108 110±23 

20 40 (30, 40) 30985±1951 848±340 31075±1891 208±45 35014±1389 209±46 

30 60 (20, 30) 17458±4794 992±442 17804±4939 232±46 18229±5761 233±46 

30 60 (30, 40) 35284±6857 1701±566 35941±13878 380±177 39742±14102 381±177 

30 60 (40, 50) 45217±14261 1957±824 45831±16912 431±211 51865±18949 434±213 

40 80 (30, 40) 32532±26185 2533±776 33016±13515 590±68 35532±11903 591±68 

40 80 (40, 50) 54410±31954 3049±1081 56211±23262 984±255 58667±20916 988±149 

40 80 (50, 60) 72055±19461 3974±1047 76261±12425 1136±239 92739±16866 1141±242 

50 100 (40, 50) 65796±14915 5794±3944 68508±21669 1237±811 78634±14896 1242±817 

50 100 (50, 60) 92504±35133 6816±1140 98612±31941 1550±127 105806±44175 1553±132 

50 100 (60, 70) 108274±40159 8379±2663 137956±40950 2480±253 181382±38349 2491±256 
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Chapter 5: Conclusion 

This paper has presented a new metric to measure the reconstruction schedule of 

the post-disaster transportation network  ̶  centroid of recovery trajectory distance, 

CRTd. We compared the CRTd with two other metrics, the total recovery time (TRT) 

and the skew of recovery trajectory (SRT), by two dimensions, the loss value and 

computational time. The statistical analysis showed that even the TRT metric could find 

the answer most quickly, but the loss value of TRT is significantly larger than others. 

The data also proved that as the increasing of network size, the benefit of CRTd metric 

is more significant. It can detect the better recovery schedule which has less loss value 

and less computing time than SRT metric. The analysis established that CRTd is a more 

excellent metric for building the post-disaster transportation network reconstruction 

strategies optimization model. Moreover, we demonstrated that, compared with the 

Genetic Algorithm (GA), the Particle swarm optimization (PSO) could generate a 

nearly optimal solution with less computing time. Another statistical analysis contained 

the testing GA model, which is stopping at the PSO model computing time, 

demonstrated that the advantage in computational time of PSO is more obvious when 

the network is complicated and large. We think our analysis could give the decision 

maker two options: a time costing but idealized solution searched by GA or a quickly 

nearly optimized solution gained by PSO. 

For the future research, to begin with, the all pairs max flow method is not an 

ideal method to evaluate the performance of a reality post-disaster transportation 

network. We desire to develop a network model which could reflect the various levels 

of the importance of the roads, by considering the role of each road playing in the 
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functionality of the network. Second, in some discussions, PSO could reach the same 

optimize solution compared with GA. We wish that we could build a new optimization 

model by using improved PSO algorithm or more appropriate parameter, and this new 

PSO model could generate the equally best solution searched by GA.  
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