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Abstract 

How a single ancestral species can give rise to new, separate species remains a 

major outstanding question in evolutionary biology.  Understanding speciation 

requires identifying how reproductive isolation (RI) is initiated and maintained in the 

early stages of population divergence.  External male reproductive structures have 

received considerable attention as an early-acting cause of RI, because the 

morphology of these structures often evolves rapidly between populations.  My 

dissertation research used a pair of recently diverged damselfly species in the genus 

Enallagma (Odonata: Coenagrionidae) to understand the role of divergent genital 

morphologies in causing RI at early stages of the speciation process. Specifically, I 

investigated the mechanisms by which species-specific morphologies limit gene flow 

between species, and then explored the relationships between morphological 

differentiation and overall genomic differentiation between species.  My research 

focused on Enallagma anna and E. carunculatum, two damselfly species that diverged 

within the past ~250,000 years and differ conspicuously in their reproductive structure 

morphology, yet currently hybridize in at least one sympatric region.  In chapter 1, I 

tested the importance of mechanical and tactile incompatibilities in RI between E. 

anna and E. carunculatum by quantifying 19 potential prezygotic and postzygotic RI 

barriers, using both naturally occurring and lab-reared damselflies.  I found that 

mechanical incompatibilities between heterospecific male and female reproductive 

structures limit but do not completely prevent heterospecific mating attempts.   
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However, females were significantly less likely to mate with hybrid or heterospecific 

males compared to conspecific males, which suggests that tactile incompatibility 

between male and female morphologies forms an additional mechanism to limits gene 

flow between these species.  Postmating RI barriers appeared weak or nonexistent, 

which indicates that premating isolation, mediated by divergence in genital 

morphologies, was the first type of reproductive barrier to evolve in this group.  These 

results highlight the potential for rapidly evolving genitalia to cause RI via tactile 

mechanisms, which may be a more widespread RI mechanism than we are currently 

aware of.  In chapter 2, I more closely examined the female structures presumed to be 

important in evaluating male tactile signals during premating contact and influencing 

Enallagma female mating decisions.  I quantified and compared several 

mechanosensory sensilla phenotypes on the female thorax among multiple sympatric 

and allopatric populations to test for evidence of reproductive character displacement, 

which would indicate that sensilla phenotypes are important in species recognition.  

My results suggest that species-specific placement of female mechanoreceptors is 

sufficient for species recognition, but mechanosensor variation among females within 

species may be important for mate choice within species.  This hypothesis requires 

additional study to test the relationships between female sensilla phenotypes and 

behavior.  This experiment reveals Enallagma’s potential as a study system for 

elucidating the neurobiological basis of female mating decisions.  In chapter 3, I 

explored the relationships between morphological divergence and genomic 
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differentiation during speciation.  Persistent gene flow between species as they 

diverge can homogenize some regions of the genome and make differentiated regions 

stand out in comparison.  Some of these highly divergent loci are predicted to harbor 

genes responsible for reproductive isolation.  However, patterns of genome 

diversification at this stage remain poorly understood, such as how such loci are 

arranged across the genome and whether such loci commonly contribute to 

reproductive isolation or are simply less subject to recombination.  I generated a set of 

genome-wide variant loci in a large collection of samples from multiple populations, 

including both natural and lab-reared hybrids.  I used these loci to quantify 

introgression patterns in nature, identify divergent loci, and test for associations 

between genomic ancestry and species-specific phenotypic variation.  The results 

suggest ongoing gene flow between E. anna and E. carunculatum in nature, but also 

demonstrate the challenge of differentiating shared ancestral polymorphism from 

recent admixture when studying young species.  Additionally, the results revealed that 

estimated ancestry proportions in hybrids were a reliable predictor of hybrid 

reproductive structure phenotype in most cases – but some individuals appeared to 

have a genome that mostly resembled one parental species, yet morphology more 

similar to that of the other parental species.  Clarifying the relationships between 

genotypes and phenotypes will likely require more fine-scale genomic sequencing 

efforts than this study obtained.  My dissertation research integrated behavioral 

studies in the field and lab with quantitative trait comparisons and genomics to 
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investigate the importance of rapid evolution of reproductive structures in 

reproductive isolation.  This work enhances our understanding of how morphological 

divergence affects mating behavior to cause RI, and in turn how RI and behavior shape 

differentiation of genomes.   Together, these experiments contribute to our 

understanding of how biodiversity is generated and strengthen the role of damselflies 

as models for understanding evolution. 
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Introduction 

How a single ancestral species can give rise to new, separate species remains a 

major outstanding question in evolutionary biology.  Charles Darwin (1859) raised the 

question of how new species originate, but, as multiple scholars have pointed out, The 

Origin of Species focused on how individual species change over time, but not how 

new species emerge (Huxley 1958; Coyne and Orr 2004).   

 The approaches researchers use to understand the origin of new species how 

they choose to define species.  Although various criteria exist for delineating species, 

one of the most commonly used is the Biological Species Concept (BSC; Mayr 1942).  

Mayr defined separate species as “groups of interbreeding natural populations that 

are reproductively isolated from other such groups.”  Under this definition, separate 

species cannot interbreed to produce viable, fertile offspring.  Like all species 

concepts, the BSC has limitations – it does not apply, for example, to asexual 

organisms – but it nonetheless provides a practical framework for studying the process 

of speciation in sexual organisms as the study of how RI evolves (Coyne and Orr 2004). 

The progression from divergent lineages to completely isolated, separate 

species involves the evolution of phenotypic differences that ultimately reduce gene 

flow.  As multiple reproductive barriers build up over time, lineages progress through 

intermediate stages in the speciation process, during which reproductive barriers are 

permeable despite the existence of some reduction in gene flow between populations 

(Coyne and Orr 2004).   These intermediate stages provide the possibility to distinguish 
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the reproductive barrier(s) that initiated speciation from those that evolved after 

speciation was complete.  Hybridization and speciation in the face of gene flow is more 

widespread than originally thought (reviewed in Abbott et al. 2013; Harrison 1990; Via 

2012; Nadeau et al. 2011; Martin et al. 2013; Larson et al. 2014).  To accommodate this 

knowledge and the utility of studying divergent but incompletely reproductively 

isolated groups, Coyne and Orr (2004) broadened Mayr’s (1942) species definition 

slightly, allowing for “substantial but not necessarily complete” reproductive isolation 

(RI).   

Reproductive isolating barriers take many forms that act at various times 

throughout an individual’s life history, beginning with the initial encounter between a 

male and female.  From this point, many possibilities exist that can facilitate or 

prohibit genetic exchange. For example, do separate species encounter one another in 

the same habitats or at the same times of the day or year?  If so, do they recognize 

one another as potential mates?  Can they copulate successfully?  Does the male 

inseminate the female, and do his sperm successfully fertilize her eggs?  If the female 

remates with a conspecific male, does this reduce the fertilization success of the 

heterospecific male’s sperm?  If a heterospecific mating produces offspring, do the 

hybrids survive to reproduce themselves?  Breaking down RI into its various 

mechanisms in this manner demonstrates the myriad ways that species can become 

reproductively isolated and provides a starting point for asking questions about the 

process of speciation:  How does the process begin?  Does one type of RI typically 
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evolve earlier in the process than others?  Is one type of RI particularly important or 

common (Coyne and Orr 2004; Butlin et al. 2012)?  Once one form of RI has 

developed, how do additional barriers accumulate between two species?  Do certain 

types of RI share similar underlying genetic causes?  When two species begin to 

diverge in isolation and then come into contact, does RI between them become 

stronger or weaker? (Abbott et al. 2013).   

Over the past several decades, evidence has accumulated in support of some 

broad trends in speciation.  Prezygotic RI (e.g., ecological and sexual isolation) tends to 

evolve earlier than postzygotic RI (hybrid sterility and inviability (e.g., Grant 1992; 

McMillan et al. 1997; Price and Bouvier 2002; Mendelson and Wallis 2003; Ramsey et 

al. 2003; Husband and Sabara 2004; Kay 2006; Dopman et al. 2010; Sánchez-Guillén et 

al. 2012; Williams and Mendelson 2014; Castillo et al. 2015).  Hybrid sterility typically 

evolves faster than hybrid inviability (Coyne and Orr 1997; Sasa et al. 1998; Jiggins et 

al. 2001; Presgraves 2002; Price and Bouvier 2002; Mendelson 2003; Russell 2003), 

and multiple genetic mechanisms for postzygotic RI accumulate over time (Orr 1995).  

The heterogametic sex is typically more susceptible to hybrid sterility or infertility, and 

sex chromosomes tend to accumulate disproportionate numbers of loci that cause RI 

(Haldane’s rule; Haldane 1922; Coyne and Orr 1989; Coyne 1992; Wu and Davis 1993; 

Laurie 1997; Naisbit et al. 2002; Price and Bouvier 2002; Payseur et al. 2004; Masly and 

Presgraves 2007; Delph and Demuth 2016).  Despite these advances, much remains to 



4 

 

be learned about how divergence within lineages gives rise to new lineages.  One 

major goal of speciation research is identifying traits that diverge to cause RI. 

Because sexual/behavioral barriers act early in the mating sequence, they have 

more opportunity to prevent interbreeding than later-acting barriers and are therefore 

often considered more important causes of RI (e.g., Jiggins et al. 2001; Kirkpatrick and 

Ravigne 2002).  Animal genitalia are one set of sexual traits that have been scrutinized 

for a potential role in RI.  Genitalia are among the fastest evolving external 

morphological traits and it has been suggested that divergent genital morphologies 

can prevent heterospecific matings and cause RI (Eberhard 1985).  Dufour (1844) 

proposed that mechanical incompatibilities between the genitalia of different species 

caused RI, based on his observations that many closely related insect species were 

distinguishable only by their genitalia.  However, empirical studies have largely 

discredited this idea, because few studies have demonstrated mechanical 

incompatibilities between male and female genitalia resulting in RI.  However, genital 

divergence may cause a sensory RI mechanism in which male genitalia stimulate the 

female in a species-specific manner, and RI results from female behavioral or 

physiological responses to the male stimulation (Eberhard 1985; Masly 2012). These 

observations raise several questions that will help us understand how new species 

form:  

1. How important is divergence of genital morphologies in causing RI at early 

stages of the speciation process?   
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2. Does between-species divergence in male genitalia and the threat of 

hybridizing cause divergence in female sensory traits when two species co-occur? 

3. What is the relationship between rapid divergence in genital traits and 

overall genomic differentiation?   

My dissertation research uses a pair of closely-related Enallagma damselfly 

species (Odonata: Coenagrionidae) to address each of these questions. 

 

The study system 

Enallagma, the most speciose damselfly genus in North America contains 17 

species that radiated within the past 250,000 years.  Many of these species differ 

primarily in their reproductive structures while remaining similar in overall external 

morphology and ecology, and many Enallagma species have overlapping distributions 

(Turgeon et al. 2005; McPeek et al. 2011).  Both sexes possess evolutionarily 

correlated, species-specific reproductive structures  (McPeek et al. 2009) that are 

considered secondary genitalia: they are not involved in sperm transfer but are 

integral in mating, and show the same pattern of rapid and divergent evolution as 

primary genitalia (Eberhard 1985).  When a male damselfly attempts copulation, his 

terminal abdominal claspers grasp the female thorax to form a “tandem” position.  

Most heterospecific tandems are prevented due to structural incompatibilities of male 

cerci and female plates among species, creating prezygotic RI among most species.  

However, some heterospecific pairs can form tandems (e.g., Paulson 1974; Bick and 
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Bick 1981).  In these cases, females typically refuse to mate with heterospecific males.  

Females are also unlikely to mate with conspecific males whose cerci have been 

surgically altered (Robertson and Paterson 1982).  These two observations suggest that 

a tactile component influences females’ decisions about which males are appropriate 

mates.  

Two species, E. anna and E. carunculatum, appear to hybridize in nature 

despite possessing striking differences in the size and shapes of both the mesostigmal 

plates on the female thorax and the superior male claspers, the cerci (Miller and Ivie 

1995; Donnelly 2008; Johnson 2009).  Because these species can produce viable 

hybrids, they are an ideal study system for (1) identifying which forms of RI arose in 

the early stages of speciation and (2) dissecting the genetic basis of species-specific 

morphological variation.  My dissertation research integrates behavioral and 

morphological experiments with genomic study of multiple populations of these 

species to understand the role of rapidly diverging genitalia in speciation. 

 

Is reproductive structure divergence an important cause of RI at early stages of 

speciation?   

 Measuring the relative strengths of different reproductive isolating barriers can 

help identify which barriers were important early in divergence.  One common 

approach to revealing the barriers that initiated the speciation process is to quantify 
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current pre- and postzygotic reproductive barriers in taxa with incomplete RI (e.g. 

Ramsey et al. 2003; Kay 2006; Dopman et al. 2010; Sánchez-Guillén et al. 2012).  

Determining which barriers do and do not currently exist between a species pair 

indicates which barriers likely evolved first – if a barrier is weak or nonexistent, it 

cannot have contributed to speciation (Coyne and Orr 2004).   

 In Chapter 1, I quantified 19 potential barriers to gene flow between E. anna 

and E. carunculatum.  I found that divergent genitalia are a major cause of 

reproductive isolation, via both mechanical and tactile mechanisms. Heterospecific 

tandems were possible in both directions, although the strength of mechanical 

incompatibility was asymmetric.  However, when females were taken in tandem by a 

heterospecific or a hybrid male, they displayed greater resistance and refusal to mate 

with hybrid or heterospecific males compared to conspecific males.  This finding 

suggests that tactile incompatibilities involving male reproductive structures can 

influence female mating decisions and form a strong isolating barrier between species. 

 

Characterizing female phenotypes involved in tactile differentiation of males 

One of the major findings from Chapter 1 is that male tactile signals appear to 

mediate species recognition in Enallagma damselflies.  Chapter 2 builds on this finding 

by characterizing a female phenotype that is presumed to facilitate female evaluation 

of tactile signals from the male genitalia.  Although visual, auditory, and chemical 

communication between the sexes have are well-studied, we know relatively little 
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about the importance of tactile signals in mating decisions (Coleman 2008).  In this 

study, I quantified the number and distribution patterns of mechanoreceptors 

(sensilla) on the female mesosgtigmal plates in multiple sympatric and allopatric 

populations of E. anna and E. carunculatum.  I predicted that selection to avoid 

hybridization when both species co-occur would lead to increased divergence in these 

traits between the species when they are sympatric compared to allopatric 

(reproductive character displacement; Brown and Wilson 1956; Howard 1993; Pfennig 

and Pfennig 2009).  Contrary to this prediction, I did not find strong evidence of 

reproductive character displacement among the sensilla traits I measured.  I did, 

however, identify species-specific differences in sensilla locations within the thoracic 

plates, which suggests that sensilla phenotypes may be sufficiently different between 

species that species recognition is strong enough to preclude selection on further 

divergence.  Additionally, I observed substantial variation of sensilla phenotypes within 

populations of both species.  This intriguing result suggests that intraspecific female 

variation in sensilla traits may play a role mate choice and sexual selection.   

 

Investigating the relationships between morphological divergence, gene flow, and 

genomic divergence 

Dissecting the genetic basis of reproductive barriers is also important in 

determining how genetic changes can give rise to new species, (e.g., Coyne 1993; Price 

and Bouvier 2002; Presgraves et al. 2003; Chamberlain et al. 2009; Ellison et al. 2011).  
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Whereas Chapters 1 and 2 address external phenotypes such as morphology, behavior, 

and life history traits, Chapter 3 examines how whole genomes diverge during 

speciation with gene flow.  The incomplete RI between E. anna and E. carunculatum 

allows analysis of gene flow in sympatry, plus creation of hybrid genotypes for 

dissecting the genetic basis of morphological differences between species.  I used a 

restriction enzyme-based reduced-representation genomic approach to genotype a 

collection of both field-caught and lab-reared hybrid damselflies to identify regions of 

the genome that are (1) associated with variation in male and female reproductive 

structure morphologies (2), highly divergent between species, and (3) less subject to 

gene flow than other regions.  Because we know that divergent genitalia are a primary 

cause of RI between E. anna and E. carunculatum, loci responsible for variation in 

genitalia are predicted to be less freely exchanged between species than other 

genomic regions unrelated to RI.  Therefore, they are also expected to be more highly 

divergent than the surrounding regions.   

In the beginning stages of speciation, divergent regions are expected to be 

small, and ongoing gene flow can result in these infrequently exchanged genomic 

regions standing out like “islands” against the majority of the genome, which remains 

undifferentiated (Barton and Bengtsson 1986; Noor and Bennett 2009; Payseur 2010; 

Yeaman and Whitlock   2011).Understanding the direction and extent of gene flow 

between these species and how ongoing gene flow affects genome-wide divergence 

patterns sheds light on the genetic basis of speciation with gene flow, such as how loci 
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related to RI are distributed throughout the genome and which selective forces act on 

those loci (Via 2009; Feder and Nosil 2010; Feder et al. 2012; Nosil and Feder 2012).  In 

this final chapter, I characterized patterns of gene flow and genomic divergence 

between E. anna and E. carunculatum, quantified introgression patterns in natural 

populations of the parental species, and demonstrated asymmetric gene flow between 

the species, with wild hybrids appearing to possess an excess of alleles inherited from 

E. anna.  I identified several unmapped loci that show elevated levels of divergence 

between phenotypic extremes in both sexes of E. anna and E. carunculatum.  The 

results of this study also illustrate the difficulty of studying the genomes of young 

species, due to the challenge of discerning patterns left by recent gene flow from 

patterns due to incomplete lineage sorting and ancestral polymorphisms. 

 

 My dissertation research has approached the study of speciation from several 

directions, by investigating the evolutionary interplay between males and females and 

how behavior, morphology, genetics, and gene flow interact to strengthen or weaken 

species boundaries.  Together, these projects enhance our understanding of speciation 

in several ways.  The study of speciation in Enallagma damselflies occurs within a well-

understood ecological context, and studying species that hybridize in nature augment 

what we have learned from laboratory studies of speciation (e.g., Coyne and Orr 1989, 

1997).  Damselflies have benefited from decades of ecological, behavioral, and 
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phylogenetic studies (Córdoba-Aguilar 2008), and this work strengthens Enallagma’s 

role as an emerging system for evolutionary and ecological studies. 
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CHAPTER 1: Mechanical and tactile incompatibilities cause reproductive 
isolation between two young damselfly species 

 
 

This chapter is published, with minor modifications, as Barnard, A. A., O. M. Fincke, M. 
A. McPeek, and J. P. Masly. 2017. Mechanical and tactile incompatibilities cause 

reproductive isolation between two young damselfly species. Evolution 71(10):2410–
2427. 
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Abstract 

External male reproductive structures have received considerable attention as a cause 

of reproductive isolation (RI), because the morphology of these structures often 

evolves rapidly between populations. This rapid evolution presents the potential for 

mechanical incompatibilities with heterospecific female structures during mating and 

could thus prevent interbreeding between nascent species. Although such mechanical 

incompatibilities have received little empirical support as a common cause of RI, the 

potential for mismatch of reproductive structures to cause RI due to incompatible 

species-specific tactile cues has not been tested.  We tested the importance of 

mechanical and tactile incompatibilities in RI between Enallagma anna and E. 

carunculatum, two damselfly species that diverged within the past ~250,000 years and 

currently hybridize in a sympatric region. We quantified 19 prezygotic 

and postzygotic RI barriers using both naturally occurring and laboratory-reared 

damselflies.  We found incomplete mechanical isolation between the two pure species 

and between hybrid males and pure species females. Interestingly, in mating pairs for 

which mechanical isolation was incomplete, females showed greater resistance and 

refusal to mate with hybrid or heterospecific males compared to conspecific males. 

This observation suggests that tactile incompatibilities involving male reproductive 

structures can influence female mating decisions and form a strong barrier to gene 

flow in early stages of speciation. 
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Introduction 

Understanding speciation requires identifying how reproductive isolation (RI) is 

initiated and maintained in the early stages of population divergence (Coyne and Orr 

2004; Butlin et al. 2012).  Over the past century, speciation researchers have used a 

variety of experimental and comparative approaches to identify which barriers appear 

most important in causing RI early in the speciation process.  These efforts have 

revealed that sexual isolation and ecological divergence tend to evolve earlier than 

hybrid sterility and inviability in both plants (e.g., Grant 1992; Ramsey et al. 2003; 

Husband and Sabara 2004; Kay 2006) and in animals (e.g., McMillan et al. 1997; Price 

and Bouvier 2002; Mendelson and Wallis 2003; Dopman et al. 2010; Sánchez-Guillén et 

al. 2012; Williams and Mendelson 2014; Castillo et al. 2015).  Prezygotic isolation also 

typically evolves faster in sympatry than in allopatry, and hybrid sterility typically 

evolves faster than hybrid inviability (Coyne and Orr 1997; Presgraves 2002; Price and 

Bouvier 2002; Russell 2003).  Identifying the traits that diverge to cause RI underlying 

these broad patterns is a major goal of speciation research.  

One set of traits that has received much attention because of their rapid rates 

of evolutionary change is external reproductive structures.  In internally fertilizing 

animals, male intromittent genitalia are among the fastest-evolving external 

morphological traits, and genital morphological variation can affect reproductive 

fitness within species (Eberhard 1985; Otronen 1998; Danielsson and Askenmo 1999; 

House and Simmons 2003; Rodriguez et al. 2004; Bertin and Fairbairn 2005; Simmons 
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et al. 2009).  Likewise, non-intromittent contact or grasping structures often show 

similar patterns of rapid, divergent evolution, and divergence in these structures can 

also affect reproductive success within species (Arnqvist 1989; Bergsten et al. 2001; 

Wojcieszek and Simmons 2012).   

Rapid divergence of reproductive structures between populations has been 

hypothesized to cause RI via two different mechanisms.  The first is mechanical 

incompatibility (Dufour 1844), in which structural incompatibilities between male and 

female genitalia of different species prevent successful copulation and reproduction.  

Mechanical incompatibilities have been documented in some animal species pairs 

(Jordan 1896; Standfuss 1896; Federley 1932; Schick 1965; Paulson 1974; Sota and 

Kubota 1998; Tanabe and Sota 2008; Kamimura and Mitsumoto 2012; Sánchez-Guillén 

et al. 2012; Wojcieszek and Simmons 2013; Sánchez-Guillén et al. 2014; Anderson and 

Langerhans 2015), although this mechanism of RI has not received broad support as a 

common mechanism of RI between young species (Shapiro and Porter 1989; Masly 

2012; Simmons 2014).   

The second proposed mechanism is tactile incompatibility (de Wilde 1964; 

Eberhard 1992), in which mismatch between male and female genitalia of different 

species prevents or reduces the success of mating and reproduction because one or 

both sexes fail to stimulate the other in the proper species-specific manner.  The 

essence of this idea is that female reproductive decisions are based on the pattern of 

tactile stimuli transmitted by the male, and improper stimulation can result in female 
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refusal to mate, early termination of mating, or lowered postcopulatory fitness, 

including reduced reproductive fitness in hybrid offspring (Eberhard 2010).  Tactile 

isolation likely operates in a similar manner as other sensory modalities involved in 

mate choice and species recognition such as auditory or chemical signals, in which 

quantitative variation exists in male traits and female preferences (Ryan and 

Wilczynski 1991; Shaw 1996; Tregenza and Wedell 1997; Singer 1998; Johansson and 

Jones 2007).  If females discriminate among the mating structures of conspecific 

mates, female discrimination against heterospecific males can arise as a byproduct of 

sexual selection within species (reviewed in Panhuis et al. 2001; Turelli et al. 2001; 

Simmons 2014).  Thus, any mismatch between male morphology and female response 

to stimulation from a particular morphology could result in reduced reproductive 

success when females mate with a heterospecific male or an interspecific hybrid male.  

The importance of tactile incompatibilities remains unknown, although there is good 

reason to expect that these incompatibilities may occur frequently (Simmons 2014), 

and therefore have the potential to play a significant role in the evolution of RI.   

Because identifying the effects of tactile incompatibilities requires carefully 

quantifying mating behavior and physiology, these incompatibilities have often been 

overlooked in tests of RI involving divergence of reproductive structures (Masly 2012).  

Nonetheless, some evidence for tactile incompatibility in the absence of mechanical 

incompatibilities exists in butterflies (Lorkovic 1953, 1958), scarab beetles (Eberhard 

1992), Drosophila (Coyne 1993; Price et al. 2001; Frazee and Masly 2015 – but see 
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LeVasseur-Viens et al. 2015), and sepsid flies (Eberhard 2001).  Notably, damselflies 

(Odonata, suborder Zygoptera) are often touted as a prime example of the importance 

of both mechanical and tactile incompatibilities in RI among closely related species.  

The potential for either mechanism to cause RI has been particularly well described in 

the families Lestidae and Coenagrionidae, whose males do not engage in premating 

courtship or visual displays (Williamson 1906; Krieger and Krieger-Loibl 1958; Loibl 

1958; Paulson 1974; Tennessen 1975; Robertson and Paterson 1982; Hilton 1983; 

Battin 1993; Sánchez-Guillén et al. 2012; Sánchez-Guillén et al. 2014).  Male 

damselflies have two sets of paired grasping organs at the end of their abdomen (Fig 

1).  A male initiates the mating sequence by grasping the female’s thorax with these 

appendages to form the “tandem” position. The species-specific male appendages and 

female thoracic structures engage such that structural mismatch appears to prevent 

many heterospecific tandems from forming (Paulson 1974).  Mechanical isolation 

appears to be a major cause of RI in Ischnura (Krieger and Krieger-Loibl 1958; Sánchez-

Guillén et al. 2014).  For Ischnura species pairs with incomplete mechanical isolation, 

tactile isolation has been suggested to contribute to RI (Sánchez-Guillén et al. 2012; 

Wellenreuther and Sánchez-Guillén 2016), although this idea has not been tested 

quantitatively.  

Mechanical isolation also appears to prevent many heterospecific tandems in 

Enallagma, the most speciose North American genus (Paulson 1974; Miller and Fincke 

2004; Fincke et al. 2007).  Divergence in reproductive structure morphology is 
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associated with a relatively recent Enallagma radiation (250,000-15,000 years ago; 

McPeek et al. 2008).  Importantly, the rapid morphological diversification was not 

accompanied by marked ecological divergence among many Enallagma species 

(Siepielski et al. 2010).  Although male cerci (superior terminal appendages) and 

female thoracic plates show a pattern of correlated evolution within Enallagma 

species (McPeek et al. 2009), species-specific divergence in these structures does not 

always cause strong mechanical incompatibilities, and interspecific tandems are 

occasionally observed (Paulson 1974; Tennessen 1975; Bick and Bick 1981; Forbes 

1991; Miller and Fincke 2004; Fincke et al. 2007).  After tandem formation, female 

Enallagma control whether or not copulation occurs and they typically refuse to mate 

with heterospecifics or males whose cercus morphology has been manipulated 

(Robertson and Paterson 1982).  Enallagma mesostigmal plates contain 

mechanoreceptors in species-specific locations that appear to be contacted by the 

male cerci during tandem, which may allow female assessment of a male’s cercus 

morphology (Robertson and Paterson 1982).   

Although prezygotic isolating barriers appear to evolve earlier than postzygotic 

barriers in damselflies (Sánchez-Guillén et al. 2012; Sánchez-Guillén et al. 2014), the 

relative importance of mechanical and sensory mechanisms of prezygotic RI remains 

unclear for two reasons.  First, it can be difficult to distinguish between mechanical 

and tactile mechanisms experimentally: if a male-female pair fails to form a tandem, it 

is often unclear whether the incompatibility is purely mechanical or whether it 
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involves tactile or behavioral cues that cause one sex to reject the other (Tennessen 

1975; Robertson and Paterson 1982; Shapiro and Porter 1989).  Second, mechanical 

isolation or male-female “fit” is not always defined in a way that makes quantifying 

variation in these phenotypes straightforward (Masly 2012).  This lack of clarity over 

what constitutes mechanical incompatibility has led to conflation of mechanical RI (i.e., 

failure of male and female parts to engage) in damselflies with mechanisms that might 

be better described as tactile (Tennessen 1982).  

Distinguishing mechanical from tactile mechanisms requires performing 

detailed mating observations among males and females that possess interspecific 

variation in reproductive structures and identifying specific features of reproductive 

morphology that prevent mating or reduce mating success using high-resolution 

phenotypic data.  Here, we take advantage of a large collection of naturally occurring 

interspecific hybrids and lab-generated hybrids to test the hypothesis that divergence 

in reproductive structural morphology causes RI at the early stages of speciation in 

damselflies.  We measure 19 potential pre- and postzygotic isolating barriers between 

Enallagma anna and E. carunculatum, two species that diverged from a common 

ancestor sometime in the last ~250,000 generations (McPeek et al. 2008; Callahan and 

McPeek 2016) and co-occur over much of the western United States (Westfall and May 

2006).  Both species have identical ecologies and overall morphologies (Turgeon et al. 

2005; McPeek et al. 2009), but display conspicuous differences in the size and shape of 

the male cerci and female mesostigmal plates (Fig 1).  We quantify variation in male 



20 

 

and female reproductive structure morphologies, distinguish mechanical and tactile 

premating incompatibilities, estimate the cumulative strengths of multiple 

reproductive barriers, and independently test predictions of mechanical and tactile 

isolation hypotheses (Richards and Robson 1926; Shapiro and Porter 1989).  If 

mechanical incompatibilities occur, male E. anna  E. carunculatum hybrids that 

possess intermediate cercus morphologies will have less success at forming tandems 

compared to conspecific males.  If tactile incompatibilities occur, males will be able to 

achieve tandem regardless of their cercus morphology, but females will refuse to mate 

with males whose morphologies deviate significantly from the conspecific mean 

phenotype.   

 

Materials and Methods 

Damselfly cerci and mesostigmal plates are non-intromittent sexual structures 

that are not directly involved in the transfer of gametes from male to female.  

However, terminal appendages of male insects and the female structures they contact 

during mating are often referred to as secondary genital structures.  We thus include 

them as genital traits, consistent with previous definitions (Eberhard 1985; Arnqvist 

and Rowe 2005; Eberhard 2010; Simmons 2014; Brennan 2016) and refer to them 

generally as “genitalia” in the presentation of our results. 

  

Natural population sampling 
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We studied wild populations of E. anna and E. carunculatum in July and August 

2013 at a site on the Whitefish River (Montana, U.S.A.; 48°22'15"N 114°18'09"W), 

where putative interspecific hybrids have been reported (Miller and Ivie 1995; Westfall 

and May 2006).  To estimate relative frequencies of each species, we collected solitary 

males and tandem/copulating male-female pairs during peak activity between 1030-

1600 hr.  We initially assigned species identity after inspecting cercus and mesostigmal 

plate morphology with a hand lens or dissecting microscope, respectively.  Males and 

females with morphologies that appeared intermediate were initially designated as 

hybrids. We reassessed these assignments in the lab after 3-D morphometric analysis 

(see below).  We calculated the proportions of E. anna, E. carunculatum and hybrid 

males from all sampling bouts and used these male frequencies to estimate the 

expected frequencies of each type of male-female pair under random mating.   

We attempted to cross virgin E. anna and E. carunculatum to measure 

postzygotic RI between pure species, but we did not obtain heterospecific copulations 

in either cross direction.  Instead, we established laboratory populations of hybrids 

and parental species by collecting eggs from mated pairs captured in the field.  

Offspring of field-caught pairs are hereafter referred to as “lab generation 1.”  Mated 

females oviposited on moist filter paper, which was kept submerged in 2-4 cm of 

water until larvae hatched.  We obtained embryos from 24 E. anna pure species 

crosses, 32 E. carunculatum pure species crosses, and 8 mixed crosses: 1 E. 

carunculatum female  E. anna male, 1 E. anna female  E. carunculatum male, 1 E. 
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carunculatum female  hybrid male, and 5 hybrid female  E. anna male (“hybrid” 

refers to damselflies with intermediate cercus or mesostigmal plate morphologies).  

After sampling, egg collection, and behavioral observation, we stored adult damselflies 

in 95% ethanol for subsequent morphometric analyses. 

 

Laboratory rearing 

We transported embryos from the field site to the University of Oklahoma 

Aquatic Research Facility where the larvae hatched and were reared to adulthood in 

individual 140 ml cups.  These lab generation 1 larvae were provided with Artemia, 

Daphnia, or Lumbriculus as food sources and experienced a natural photoperiod and 

daily water temperatures that averaged 20.0 + 0.19 °C.  We housed adults in mesh 

cages (30.5 cm3; BioQuip), segregated by sex until sexual maturity and provided with 

adult Drosophila as a food source ad libitum.  We used lab generation 1 virgin adults to 

quantify prezygotic barriers, plus additional postzygotic barriers that we could not 

measure in the field.  We mated 24 adult pairs from this first lab generation: 11 E. 

anna, 2 E. anna female  hybrid male, 2 E. carunculatum female  hybrid male, 6 

hybrid female  E. anna male and 4 hybrid female  hybrid male and raised them 

under the conditions described above.  Embryos from these crosses (hereafter, “lab 

generation 2”) contributed fecundity, fertility, and hatch rate data but were not raised 

to adulthood due to difficulties with rearing them.  Mated adults were stored in 95% 
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ethanol after mating (males) or after oviposition (females).  Unmated damselflies were 

maintained to calculate captive lifespan, then preserved in 95% ethanol.   

 

Morphometric analysis  

We photographed ethanol-preserved adults using a Nikon D5100 camera (16.2 

MP; Nikon Corporation, Tokyo, Japan) and measured abdomen length (abdominal 

segments 1-10, excluding terminal appendages) as a proxy for body size using ImageJ 

(Abramoff et al. 2004) for 175 males and 171 females.  To reduce measurement error, 

we measured each abdomen twice, then used the mean length in subsequent analyses 

after confirming that repeatability was high for the separate measurements (r = 0.97).  

We obtained 3-D digital reconstructions of male cerci and female mesostigmal plates 

by scanning 140 male terminal segments and 162 female thoraces in a SkyScan 1172 

micro-computed tomography scanner (Bruker microCT, Kontich, Belgium).  Male 

structures were scanned at a voxel resolution of 2.36 or 2.53 um, and female thoraces 

at 2.78 or 3.88 um, and the scan data were converted to image stacks using NRecon 

version 1.4.4 (Bruker microCT).  

To quantify cercus shape, we digitally segmented the right cercus from each 

male’s image stack and converted it to a solid surface object using Avizo Fire software 

(FEI Software; Hillsboro, Oregon) as described in McPeek et al. (2008).  We measured 

the volume of each cercus object as a proxy for cercus size, using Avizo’s volume 

measurement tool.  To quantify and compare their shapes, each cercus was 
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represented by a mesh of 20,000 triangles with 10,002 vertices, each defined by 

distinct (x, y, z) coordinates (Fig S1).  We placed 7 landmarks on common points on 

each cercus, then used these landmarks to register all digitized cerci in identical 

orientations within the coordinate plane.  To ensure that only shape and not size was 

compared in the analysis, all objects were standardized to have the same centroid size.  

Next, we performed spherical harmonic analysis (Shen et al. 2009), which represents 

the shape of a closed surface in terms of the sum of 3-D sines and cosines on a sphere. 

We performed the analysis using 18 degrees of spherical harmonic representation, 

which captures relevant surface detail without introducing excess noise (Shen et al. 

2009).  The analysis generated 1,083 coefficients to describe the shape of each cercus, 

which we reduced into the primary axes of shape differentiation using principal 

component analysis.  

 Because female mesostigmal plates are relatively flat structures, we 

represented plate morphology using 3-D geometric morphometrics.  For each female 

plate we assigned 11 fixed landmarks and 248 sliding semi-landmarks to the right 

anterior thorax of each female (Fig S2) using Landmark software (Wiley et al. 2005).  

We imported landmark coordinates into R and used the Geomorph package (version 

2.1.7; Adams and Otarola-Castillo 2013) to assign 79 landmarks as “curve sliders” on 

the medial thorax and around the plate periphery, and 169 “surface sliders” evenly 

spaced across the plate.  We obtained 3-D shape variables for these representations 

using general Procrustes analysis superimposition (Rohlf 1999), then obtained a 
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smaller set of plate shape variables from the Procrustes-superimposed coordinates 

using principal component analysis.   

 

Measuring pre- and postzygotic reproductive isolating barriers 

 To measure the strength of RI barriers between E. anna and E. carunculatum, 

we quantified 19 potential pre- and postzygotic isolating mechanisms that act from the 

beginning of the mating sequence through an individual’s life history.  Table 1 

summarizes these RI measures and describes the equations used to estimate the 

absolute strength of each (Sobel and Chen 2014).  Although it is often preferable to 

quantify RI using only reciprocal F1 hybrids, the rarity of heterospecific crosses and our 

small sample of F1 individuals made this impractical for estimating the strength of 

postzygotic RI barriers.  Thus, to measure postzygotic barriers, we pooled all hybrid 

damselflies, including presumed F1s from both cross directions and offspring from 

field-caught hybrids for which the exact genotypes were unknown. 

 

Mate discrimination 

We measured males’ visual discrimination of potential mates by restraining 

individual field-caught E. anna and E. carunculatum females on wooden dowels near 

the water at the Whitefish River site and measuring the frequencies of each type of 

male that attempted tandem with them.  We attached live females of each species by 

their legs to wooden dowels using Duco cement (ITW Devcon, Glenview, IL, USA; Miller 
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and Fincke 1999) and placed individual dowels level with surrounding vegetation 

within 5 m of the water’s edge.  Over 20-minute intervals, we captured each male that 

either attempted or achieved tandem with a restrained female and assigned them to 

species by examining the cerci with a hand lens.  Males were held in paper envelopes 

until the end of the observation period to prevent the possibility of a second 

encounter with the restrained female and were then released.  

 

Mating assays 

 We measured several premating RI barriers using mating experiments in which 

females were placed in mesh cages with either heterospecific, hybrid, or conspecific 

males.  We used both field-caught and lab-reared damselflies, and used only virgin 

females in each mating assay.  To obtain virgins in the field, we captured newly 

emerged females, identified by their pale teneral coloration. We assigned species 

identity as described above, then housed virgin females in cages until they reached 

sexual maturity (~10 days post-emergence).  We placed 2-5 individuals of each sex in a 

cage under partial shade in the grass and observed behaviors between 1000-1600 hr.   

 We quantified precopulatory mechanical RI by measuring the frequency of 

tandem attempts in which the male was unable to securely grasp a female for longer 

than five seconds.  A secure hold was confirmed by observing the male flying while 

engaged with the female, or attempting to fly without losing contact while the female 

remained perched.  We measured copulatory mechanical RI as the proportion of 
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copulation attempts in which the male and female failed to achieve genital coupling.  

This estimates mechanical incompatibility between male grasping appendages and 

female thoracic plates and excludes the possibility of male loss of interest, because 

males were often observed repeatedly attempting tandem on the same female despite 

being unable to grasp her.   

 We quantified two types of precopulatory tactile incompatibilities using pairs 

that formed tandems.  First, we recorded whether each female showed resistance 

behaviors during tandem (e.g., head shaking, wing flapping, dorsal abdominal 

extension, or body repositioning) (Tennessen 1975; Xu and Fincke 2011).  Second, we 

recorded whether females in tandem cooperated in copulation or refused to mate. 

  

Postzygotic isolation 

We quantified several postmating RI barriers using both lab generations.  We 

measured oviposition success as the proportion of females from each cross type that 

oviposited.  When females failed to oviposit within three days post-mating, we 

checked their male partners for motile sperm by anesthetizing them with CO2, 

immediately dissecting out the seminal vesicle, gently squashing it under a coverslip, 

and examining the contents under a Zeiss Axio Imager 2 stereomicroscope (100 total 

magnification).  We dissected females that failed to oviposit to check the oviduct for 

mature eggs and the bursa copulatrix for sperm. 
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We calculated fecundity by counting all eggs laid by each mated female within 

three days of mating.  The date of egg hatch was recorded as the first day that larvae 

were observed.  We calculated the proportion of eggs that hatched from each clutch 

by counting the number of unhatched eggs that remained in the filter paper seven 

days after first hatch.  We calculated fertility of lab-reared matings by counting the 

number of fertilized eggs, as indicated by a dark spot that develops on the apical end 

of the egg (Corbet 1999).  We calculated embryo development time as days from 

oviposition to egg hatch, larval maturation as days from egg hatch to adult emergence, 

larval survivorship as the proportion of hatched larvae that emerged as adults, and 

adult sex ratio and total adult lifespan.  

 

Strength of RI barriers 

We estimated the absolute strength of each individual RI barrier using the 

following general equation (Sobel and Chen 2014): 

 

              𝑅𝐼 = 1 − 2 × (
𝐻

𝐻+𝐶
) 

 

where H and C denote the frequency of heterospecific and conspecific interactions, 

respectively (prezygotic barriers), or fitness of hybrid or conspecific matings or 

offspring, respectively (postzygotic barriers; Table 1). This equation yields values 

between -1 and 1 in which 0 indicates no barrier to gene flow, 1 indicates complete RI, 
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and -1 indicates complete hybrid advantage.  In essence, the term 
𝐻

𝐻+𝐶
 describes the 

probability of gene flow between species.  Larger values of the parameters H and C are 

typically associated with higher fitness in this equation.  However, for duration of 

copulation interruptions, a larger value represents lower fitness.  We therefore 

modified this equation by using the inverse of H and C values when calculating the 

contribution of copulation interruptions to RI. We estimated total RI between E. anna 

and E. carunculatum as described in Sobel and Chen (2014) for sympatric populations 

as: 

 

𝑅𝐼𝑡𝑜𝑡𝑎𝑙 =  1 − 2 × (
∏ 𝑃(𝐻)𝑖

𝑛
𝑖=1

∏ 𝑃(𝐻)𝑖
𝑛
𝑖=1 + ∏ 𝑃(𝐶)𝑖

𝑛
𝑖=1

) 

 

We also used this same general equation to calculate cumulative RI for each barrier in 

the sequence, which yields each barrier’s absolute contribution (AC). Finally, we used 

both of these values to calculate each barrier’s relative contribution (RC) to total RI 

(ACi / RItotal).   

 

Statistical analyses  

We compared males’ sexual approaches toward con- and heterospecific 

females, observed vs. expected frequency of heterospecific pairs, and adult sex ratios 

using binomial tests.  We compared presence or absence of female resistance 

behaviors, female mating refusal or cooperation, frequency of copulation 
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interruptions, and oviposition success among parental species and hybrid pairs using 

Fisher Exact tests. We examined the relationship between male abdomen length and 

cercus size using linear regression.  We compared copulation and copulation 

interruption durations between conspecific and non-conspecific matings using t-tests.  

We compared abdomen length, fecundity, fertility, proportion eggs hatched, 

developmental timing, and adult lifespan among E. anna, E. carunculatum, and hybrids 

using analysis of variance (ANOVA), after arcsin-transformation of proportion data.  

When an ANOVA indicated a significant difference existed among the three groups for 

any measure, we conducted Tukey post-hoc tests to identify the differences among 

groups.  For both forms of premating tactile isolation data, we omitted all cross types 

with sample size < 6 from statistical analyses. When possible, we combined data (field 

and lab, or lab generations 1 and 2) to increase statistical power, after confirming with 

ANOVA that measurements not differ significantly between the two groups. All 

analyses were conducted in R version 3.1.1 (R Core Team 2015).  Means are reported 

as + 1 SEM.   

 

Results and Discussion 

Males mate indiscriminately and hybridization occurs at low frequency in nature 

At the Whitefish River site, E. anna males outnumbered E. carunculatum males 

by a factor of ~1.5.  This was observed for both solitary males (E. anna: n = 165, E. 

carunculatum: n = 108, over 8 sampling days) and male-female pairs (E. anna: n = 44, 
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E. carunculatum: n = 28, over 9 sampling days).  E. anna males attempted tandem with 

E. carunculatum females (46.3%, 19 of 41) as frequently as they did with E. anna 

females (53.7%, 22 of 41; 𝒳1
2= 0.010, P = 0.76; Fig 2).  E. carunculatum males also 

attempted tandem with females of both species equally (50.0%, 8 of 16 each; 𝒳1
2 = 

0.00, P = 1.0; Fig 2).  These results show that premating interactions between E. anna 

and E. carunculatum are random, similar to observations from other Enallagma 

(Paulson 1974; Fincke et al. 2007; Xu and Fincke 2011) and Ischnura species (Sánchez-

Guillén et al. 2012; Sánchez-Guillén et al. 2014).  

Despite this lack of habitat and visual isolation in sympatry, heterospecific pairs 

were rarely captured in the field.  In more than one month at the field site, we 

captured only two heterospecific male-female pairs, one in each cross direction.  

Based on the relative frequencies of each pure species, heterospecific pairs occur 

significantly less often than expected under random mating between E. anna and E. 

carunculatum (𝒳3
2 = 65.40, P < 1  10-5). This suggests that although males may 

frequently initiate tandems with heterospecific females, such pairs likely remain in 

tandem only briefly.  However, even the rare occurrence of both types of 

heterospecific tandems suggests that pure species may interbreed at low frequencies 

in the wild, and our collection of field-caught individuals supports this notion: 41 of 

630 males and 7 of 547 females we collected possessed intermediate reproductive 

structure morphologies that were visibly different from either pure species.  
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Hybrids are morphologically distinct from either parental species  

Among males, the first 5 principal component (PC) scores explained >77% of 

the cercus shape variance.  PC1 (60.05%) distinguished pure species and represented 

differences in overall cercus length, from short (E. carunculatum) to long (E. anna), 

with hybrids showing a range of intermediate scores (Fig 3A).  PC2 (7.50%) represented 

a difference in the relative angles of the upper and lower projections of the cercus, 

with many hybrids occupying a different space along this axis than parental species.  

Most field-caught males we identified as hybrids had distinctly intermediate cercus 

morphologies, whereas the lab-reared males from heterospecific or backcross pairs 

possessed morphologies that spanned the entire range of variation between E. anna 

and E. carunculatum males (Fig 3A).   

Among females, the first 6 principal components scores accounted for >42% of 

the variance in mesostigmal plate shape.  E. anna and E. carunculatum specimens 

formed separate clusters along PC1 (17.9%), but there was considerable overlap 

between hybrids and E. anna on PC1 (Fig 3B).  This overlap might reflect limitations of 

the resolving power of our morphometric approach to distinguish intraspecific 

variation from intermediate hybrid morphology of these complex female structures.  

Additional PC axes indicated that parental species and hybrid plate shapes showed 

similar levels of variation in several features, including the angle of the plate’s anterior 

edge relative to the thorax (PC2; 6.0%), curvatures of the plate’s lateral edge (PC3; 

5.5%) and plate surface (PC5; 4.6%), and dimensions of the space between the 
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bilateral plates (PC4; 5.3%).  Because slight variation in the manual placement of the 

fixed landmarks on each female has the potential to contribute to this apparent 

overlap between E. anna and the hybrid females, we repeated the entire analysis 

beginning with placement of landmarks on a subset of 157 plates selected at random.  

Repeatability was high among landmark coordinates in both sets (r > 0.99) and both 

replicate analyses produced similar results (Fig S3).   

Our behavioral, rearing, and morphometric data confirm that individuals with 

intermediate reproductive structure morphologies are hybrids between E. anna and E. 

carunculatum and not a separate species as originally suggested (Miller and Ivie 1995).  

Interestingly, the collection of lab-reared hybrids (both F1 and backcross) included 

cercus and plate phenotypes not observed in the field-caught samples (Fig 3).  Some 

lab-reared hybrid morphologies were even indistinguishable from those of the 

parental species, which could be the result of collecting eggs in the field from mated 

females that may have been storing sperm from previous conspecific matings.  

Alternatively, some field-caught adult damselflies that we designated as pure species 

may in fact have been hybrids that maintained “phenotypic integrity” with one 

parental species despite having highly admixed genomes (Poelstra et al. 2014).  

Despite this possibility of occasional misidentification, the majority of field-caught 

individuals we identified as hybrid possess morphologies that fall well outside of the 

distributions of either pure species.  This is particularly true for cercus shape, which 

has pronounced differences between E. anna and E. carunculatum.   
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The distributions of the field-caught versus lab-reared hybrids also suggest that 

hybrid genital morphology may be under selection in the wild.  In particular, the 

distribution of male morphologies shows that some lab-reared backcross hybrid males 

possess cercus morphologies rarely observed among field-caught males.  This result 

suggests that although interspecific mating occurs in the field, F1 hybrids either rarely 

backcross with parental species or backcross hybrids rarely survive to reproductive 

age.  Our lab-rearing data show that hybrids can in fact backcross with parental species 

and advanced backcross individuals are viable and fertile (see below).  However, future 

genomic studies will be needed to reveal the direction and genomic extent of 

introgression and the frequency of F1 versus advanced-generation hybrids in the wild. 

 

Mechanical incompatibilities cause substantial, asymmetric reproductive isolation 

  Between pure species, precopulatory mechanical RI was incomplete in both 

directions of interspecific cross, and RI appears asymmetric: 25% (7/28) of E. anna 

males achieved tandems with E. carunculatum females, whereas 66.7% (6/9) of E. 

carunculatum males achieved tandems with E. anna females (Fig 4A).  These data 

show that mechanical isolation is relatively weak between E. carunculatum males and 

E. anna females, which presents the opportunity for interspecific matings.  Mechanical 

isolation due to males’ inability to grasp heterospecific females is frequently evoked as 

the major contributor to RI in coenagrionid damselflies (Paulson 1974; Robertson and 

Paterson 1982; Fincke et al. 2007; Bourret et al. 2012; Wellenreuther and Sánchez-
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Guillén 2016), although several exceptions exist (Paulson 1974; Tennessen 1975; Bick 

and Bick 1981; Forbes 1991; Miller and Fincke 2004).  Our results suggest that 

mechanical incompatibilities are not sufficiently strong enough to completely exclude 

the possibility of hybridization in Enallagma.  Additionally, it has been suggested that 

species with longer cerci are better at grasping females of other species (Paulson 

1974), but our data show that E. anna males, whose cerci are roughly twice as long as 

E. carunculatum cerci, were less capable of grasping heterospecific females compared 

to E. carunculatum males.  

The existence of incomplete precopulatory mechanical incompatibilities 

between E. anna and E. carunculatum suggests that the intermediate cercus 

morphology of hybrid males might reduce their ability to form tandems with pure 

species females.  Eighty-six percent (30/35) of hybrid males we tested achieved 

tandem with E. anna females, and 63.6% (7/11) achieved tandem with E. 

carunculatum females (Fig 4A).  Thus, male hybrids achieved tandem with both pure 

species more frequently than males of either pure species achieved tandem with 

heterospecific females.  These results show that although hybrid males were less 

successful at forming tandems with females than conspecific males, they were more 

successful than heterospecific males.   

Mechanical incompatibility involving the primary genitalia (intromittent organs) 

may also cause RI.  No heterospecific matings occurred during our behavioral 

observations, so we could not directly measure copulatory mechanical RI between E. 
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anna and E. carunculatum.  However, among the tandem pairs involving hybrids in 

which the female initiated copulation (2 E. anna, 2 E. carunculatum, and 3 hybrid 

females), all 7 pairs achieved genital coupling.  Although this sample size is modest, 

this result suggests that no copulatory mechanical incompatibility exists between 

hybrids and parental species.  This is not unexpected, as E. anna and E. carunculatum 

penes have similar morphologies (Kennedy 1919).  Taken together, the results from 

these mating assays show that as the morphological mismatch between interacting 

male and female mating structures increases, the possibility of forming tandem and 

mating decreases. 

 

Tactile incompatibilities cause substantial RI when mechanical isolation is 

incomplete 

A significantly greater proportion of lab-reared E. anna females (12/22) 

engaged in resistance behaviors during conspecific tandems than did field-caught E. 

anna females (1/13, Fisher exact test, P = 0.01).  For this reason, we analyzed 

presence/absence of female resistance during tandem separately for field-caught and 

lab-reared populations.  In the field, E. anna females were significantly more likely to 

resist during tandems with heterospecific males (67%; 4 of 6) or hybrid males (50%; 9 

of 18) than with conspecific males (7.7%; 1 of 13; Fisher exact tests, Pheterospecific = 0.02, 

Phybrid = 0.02; Fig 4B).  Additionally, 71.4% (5/7) of E. carunculatum females displayed 
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resistance behaviors during tandem with E. anna males in the field, which was 

significantly greater than 7.7% of E. anna females (P = 0.007; Fig 4B).  

Surprisingly, lab-reared E. anna females resisted during tandems with 

conspecific males as frequently as they resisted during tandems with hybrid males 

(54.5%, 12 of 22 vs. 81.8%, 9 of 11, respectively; P = 0.25; Fig S4).  E. anna and hybrid 

females also showed similar levels of resistance during tandem with E. anna males 

(14.3%, 1 of 7 of hybrid females resisted; P = 0.09; Fig S4).  A comparison of the two 

reciprocal E. anna  hybrid crosses, however, showed that E. anna females were 

significantly more likely to resist during tandem with hybrid males (81.8%) than were 

hybrid females (14.3%; P = 0.01; Fig S4).  Female resistance during tandem with a 

conspecific male is not unusual (Tennessen 1975; Fincke 2015), but because the field-

caught and lab-reared E. anna populations behaved so differently, and the field data 

reflects behavior in a natural setting, we used the field-caught female data to calculate 

this form of tactile isolation (Table 1). 

Field-caught and lab-reared females showed similar copulatory refusal rates: 

94.7% (18/19) field-caught and 81.8% (9/11) lab-reared E. anna females refused hybrid 

males (Fisher exact test, P = 0.54), and 69.2% (9/13) field-caught and 51.9% (12/25) 

lab-reared E. anna females refused conspecific males (P = 0.31).  We therefore pooled 

field-caught and lab-reared data to analyze female copulation refusal or acceptance.  

Ninety percent (27/30) of E. anna females taken in tandem by hybrid males refused to 

copulate, which was significantly greater than the 55.3% (21/38) of E. anna females 
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that refused conspecific males (P = 0.003; Fig 4C).  All six E. anna females observed in 

tandem with E. carunculatum males refused to copulate, although this level of refusal 

was not statistically different from the conspecific refusal rate (P = 0.07; Fig 4C).  This is 

likely due to the low number of heterospecific pairs we could observe.  E. 

carunculatum females, in contrast, were significantly more likely to refuse an E. anna 

male (100%, 7 of 7) than a conspecific male (16.7%, 1 of 6; P = 0.005; Fig 4C).  E. anna 

females also refused to mate with E. carunculatum males more frequently than did E. 

carunculatum females (P = 0.015).  We obtained a similar result for the reciprocal 

cross, where more female E. carunculatum females refused E. anna males than did E. 

anna females (P = 0.03; Fig 4C).   

Females’ behavioral responses to different types of males reveal strong 

assortative mating between E. anna and E. carunculatum when premating mechanical 

isolation fails.  Tactile isolation also predicts that pure species females should refuse to 

mate with hybrid males because intermediate cerci fail to relay the proper tactile 

species recognition signal to the female.  Our behavioral data support this prediction 

for E. anna females, which mated with hybrid males less frequently than with 

conspecific males.  The finding that some E. anna females mated with hybrid males, 

but none mated with E. carunculatum males suggests that females display some 

latitude in their preferences and are more likely to refuse males whose cercus 

morphology greatly deviates from a conspecific phenotype.  Although incomplete 

mechanical isolation has been documented in several Enallagma species pairs, few 
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cases of hybridization are known, based on morphological or genetic evidence (Catling 

2001; Turgeon et al. 2005; Donnelly 2008).  This suggests that even with incomplete 

mechanical isolation, tactile isolation might prevent interbreeding among most 

Enallagma species.  A full understanding of tactile isolation will require quantitative 

study of the mechanoreceptors on female plates to understand how patterns of 

phenotypic variation might contribute to RI.   

The relative sizes of male and female reproductive structures may influence 

both mechanical and tactile mechanisms of RI.  Larger males tended to have larger 

cerci, as indicated by regressing cercus volume on abdomen length (E. anna: F1, 26 = 

18.80, R2 = 0.397, P = 0.0002; E. carunculatum: F1, 17 = 7.744, R2 = 0.273, P = 0.013).  

Hybrids, however, showed a weaker relationship between body size and cercus size, 

because hybrids display more variation in cercus morphology than either parental 

species (F1,55 = 6.70, R2 = 0.092, P = 0.01).  A size mismatch in male and female 

structures either within or between species may contribute to mechanical 

incompatibilities, although our current data do not allow us to examine that 

relationship robustly.  

 

Postmating barriers contribute little to reproductive isolation 

Compared to the strong premating RI caused by mechanical and tactile 

incompatibilities of male and female reproductive structures, we found relatively weak 

RI from postmating barriers.  Copulation duration was similar among conspecific 
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mating pairs and pairs including at least one hybrid partner (t25 = -0.028, P = 0.98; Fig 

5A).  Sixty percent (6/10) of E. anna matings experienced interruptions, which was not 

significantly different from the hybrid matings (61.5%, 8 of 13; Fisher exact test, P = 

1.0; no data on E. carunculatum interruptions).  The total duration of these 

interruptions was also not significantly different between E. anna or hybrid pairs 

(t13.26= -1.51, P = 0.15; Fig 5B).  Although it has been suggested that Lepidoptera 

(Lorkovic 1958) and Ischnura (Córdoba-Aguilar and Cordero-Rivera 2008) use 

copulatory morphology or stimulation to identify conspecifics, our results indicate that 

this type of tactile discrimination during copula does not occur in Enallagma.  

Similar proportions of E. anna (94.3%; 33 of 35) and hybrid females (76.9%, 10 

of 13) oviposited after mating with E. anna males (Fisher exact test, P = 0.81).  Two E. 

anna females mated with hybrid males, but neither laid any eggs.  In contrast, two E. 

carunculatum females mated with hybrid males and both oviposited.  Two of the three 

hybrid females that mated with hybrid males also oviposited.  Dissections of females 

that failed to oviposit confirmed that they had been inseminated and possessed 

mature eggs, and dissections of hybrid males in these matings confirmed that hybrid 

males produce motile sperm.  E. anna, E. carunculatum, and hybrid parings also 

produced comparable numbers of eggs (F2,80 = 0.79, P = 0.46; Fig 5C).  Although there 

appears to be a trend towards smaller clutches or complete failure to oviposit in 

females mated to hybrids, small samples prevent us from drawing strong conclusions 
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about whether tactile incompatibilities might contribute to postcopulatory isolating 

mechanisms.  

Lab generation 2  consisted solely of E. anna and advanced generation hybrid 

clutches, because in generation 1, E. carunculatum adults emerged earliest and few 

were available for crosses with E. anna or hybrids. In generation 2, E. anna and hybrid 

clutches had similar fertilization rates (F1, 17 = 0.51, P = 0.49).  In generation 1, E. anna, 

E. carunculatum, and hybrid clutches had similar proportions of hatched eggs (Kruskal-

Wallis 𝒳2
2= 1.3385, P = 0.51; Fig 5C).  In generation 2, E. anna, and hybrid clutches had 

similar proportions of hatched eggs (t17.97= 0.49404, P = 0.63, Fig S6).  Oviposition date 

had a significant effect on hatch timing in generation 1 (F1,41 = 49.1, P = 1.6  10-8), but 

not in generation 2 (F1,41 = 2.96, P = 0.11). We therefore analyzed hatch timing 

separately for each generation.  In generation 1, E. carunculatum larvae hatched 

earlier (15.4 + 0.9 days, n =19 families) than E. anna (19.2 + 0.7 days, n =17 families) 

and hybrid larvae (20.0 + 1.3 days, n =7 families; ANCOVA with oviposition date as 

covariate, F2, 39 = 10.8, P = 2  10-4).  In generation 2, E. anna and hybrid hatch rates did 

not differ significantly (t11.92= -1.22, P = 0.25; Fig 5D).  If E. carunculatum larvae develop 

at a faster rate in the wild as they did in the lab, this could contribute to RI via seasonal 

temporal isolation, in which early-emerging E. carunculatum adults are less likely to 

encounter, and thus potentially interbreed with, E. anna adults.  Detecting and 

measuring this potential temporal barrier will require regular sampling throughout the 

breeding season. 
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An anomalous water quality problem at the Aquatic Research Facility where 

larvae were housed caused substantial larval mortality of generation 2, so we analyzed 

larval development timing for generation 1 only (Fig 5F).  An ANCOVA with oviposition 

date as a covariate and Tukey post-hoc tests indicated that hybrids and parental 

species spent significantly different lengths of time in the larval stage (F2, 29 = 97.3, P < 

1.4  10-13).  E. carunculatum (n =13 families) larvae reached adulthood an average of 

58.6 + 2.5 days earlier than E. anna (n =14 families; P < 1  10-5) and 18.2 + 7.3 days 

earlier than hybrids (n =6 families; P = 0.056).  Hybrid larvae also developed 

significantly faster than E. anna (P = 3  10-5).  Although E. carunculatum larvae 

developed faster than E. anna and hybrid larvae in the lab, mean adult abdomen 

length was similar among all three groups for both males (F2, 19 = 0.334, P = 0.72) and 

females (F2, 21 = 3.30, P = 0.57; Fig S5).  These results suggest that hybrid development 

was not affected by intrinsic genetic incompatibilities.   

Larval survivorship in the lab was similar for both parental species’ and hybrid 

clutches (Kruskal-Wallis 𝒳2
2= 4.4, P = 0.1; Fig 5G).  Of those individuals that reached 

adulthood, adult lifespans under laboratory conditions did not differ significantly 

(ANCOVA with emergence date as covariate, F2, 48 = 1.35, P = 0.29; Fig 5H). Finally, 

adult sex ratios were not significantly different from the expected 1:1 ratio for any 

group (Fig 5I), which shows that among pure species and hybrids, both sexes had 

similar viability.  The combination of our postmating isolation results demonstrate that 
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neither strong intrinsic nor extrinsic (e.g., ecological selection against hybrids in the 

field) postzygotic barriers exist between E. anna and E. carunculatum.   

Because heterospecific and hybrid matings were rare, we pooled the data 

obtained from reciprocal F1s and advanced generation hybrid individuals to calculate 

postzygotic isolation.  Although pooling these data could weaken the estimate of F1 

fitness loss, our field collection, behavior, and rearing data together suggest that the 

strength of intrinsic postzygotic RI between E. anna and E. carunculatum is minor 

compared to the strength of RI caused by intermediate reproductive structure 

morphologies. 

 

Divergent reproductive structures cause reproductive isolation early during 

speciation 

Figure 6 shows the cumulative strength of RI barriers measured for each 

reciprocal cross.  Premating mechanical and tactile incompatibilities form the most 

substantial barriers to gene flow between E. anna and E. carunculatum, whereas later-

acting barriers contribute little to total RI.  Our results thus unequivocally demonstrate 

the potential of divergent mating structures to cause RI in the early stages of 

speciation via mechanical and tactile mechanisms.  These incompatibilities also appear 

to provide particularly strong barriers to gene flow, as they act as both a premating 

barrier between pure species and also as a postzygotic barrier that reduces hybrid 

male mating success.  Such incompatibilities represent a potent barrier to gene flow 
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and may be a common characteristic of traits that are under sexual selection within 

species (Stratton and Uetz 1986; Naisbit et al. 2001; Höbel et al. 2003; Svedin et al. 

2008; Van Der Sluijs et al. 2008). 

Our results also show that premating barriers appear to have evolved first in 

Enallagma.  Because E. anna  E. carunculatum hybrids appear to survive as well as 

parental species and suffer no intrinsic fertility deficits, the primary factor likely to 

affect their fitness is with whom they can mate.  We observed that E. anna females 

often refuse to mate with conspecific males, indicating strong intraspecific 

discrimination.  If the male cerci are under sexual selection similar to non-intromittent 

mating structures in other taxa (reviewed in Simmons 2014), and if females rely on the 

same tactile cues for both intraspecific mate choice and species discrimination, then 

female discrimination among conspecific males could extend to discrimination of 

heterospecific males.  Prezygotic RI has been shown to evolve rapidly under laboratory 

settings due to assortative mating, independent of local adaptation (Castillo et al. 

2015), which supports the plausibility of rapid evolution of RI driven by sexual 

selection in the wild.  Female discrimination against males with intermediate cerci also 

provides an opportunity for reinforcement to strengthen premating isolation between 

E. anna and E. carunculatum— a potential example of sexual selection rather than 

natural selection driving reinforcement (Naisbit et al. 2001).  Reinforcement could 

result in shifting or narrowing of female preferences (Ritchie 1996) or an increase in 

female discrimination in regions of sympatry (Noor 1999), two ideas that deserve 
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further study in these species. Alternatively, evolution of cercus morphology may be 

driven by sexual conflict over mating rate, in which selection favors females that are 

less easily grasped by males (Fincke et al. 2007). 

Many researchers have dismissed genital mechanical incompatibilities as 

having an important role in RI and speciation (reviewed in Shapiro and Porter 1989; 

Eberhard 2010), primarily because of the small number of convincing cases that show 

strict support for it.  We might be better equipped to investigate the reproductive 

consequences of the widespread pattern of rapid, divergent evolution of male 

genitalia if we broaden our scope to include explicitly tactile mechanisms.  This may 

require dropping the genital “lock-and-key” imagery – which often evokes an “all or 

nothing” scenario in causing RI – in favor of a framework that allows for more 

variation, similar to our understanding of auditory, visual, and chemical 

communication signals.  Indeed, our data show that mechanical isolation can be strong 

yet incomplete, and that tactile isolation can form a strong subsequent mating barrier.  

A full understanding of the contribution of mechanical incompatibilities in RI will 

require detailed morphological study to understand how male and female structures 

interact (e.g., Willkommen et al. 2015) and which features cause morphological 

mismatch.  A deeper understanding of tactile RI mechanisms will require detailed 

studies of sensory mechanisms and the neurobiological basis of female reproductive 

decisions, all of which are admittedly challenging to investigate.  Where females 

discriminate against heterospecific reproductive structures (e.g., Bath et al. 2012), the 
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female nervous system poses a potentially more complex spectrum of 

incompatibilities compared to genitalia.  Taxa such as damselflies or stick insects 

(Myers et al. 2016) provide ideal systems to begin to tease apart mechanical and 

tactile contributions to RI.  Neural circuits that integrate olfactory and auditory cues 

with internal physiological processes to influence female mating decisions are being 

mapped in Drosophila (Bussell et al. 2014; Feng et al. 2014; Zhou et al. 2014), paving 

the way for similar mechanistic understanding of sensory modalities in emerging 

model systems.  Although odonates have a unique mode of mating that presents 

multiple opportunities for both mechanical and tactile mismatch, our results highlight 

the potential contribution of tactile signals involving the genitalia to RI among 

internally fertilizing animals. 

  



47 

 

Chapter 1 – Tables 

Table 1.  Reproductive isolation formulas 

Barrier RI formula 

Prezygotic  
 Visual 1 – (number heterospecific tandem attempts / conspecific 

tandem attempts) 
 Precopulatory 

mechanical 
1 – (number heterospecific tandems / number 
heterospecific tandem attempts) 

 Tactile I (female 
resistance) 

1 – (proportion heterospecific tandems without resistance 
/ proportion conspecific tandems without resistance) 

 Tactile II (female 
refusal) 

1 – (proportion heterospecific matings / proportion 
conspecific matings) 

Postzygotic  
 Hybrid mechanical I 

(tandem) 
1 – (number hybrid tandems / number hybrid tandem 
attempts) 

 Hybrid mechanical II 
(intromission) 

1 – (number hybrid copulations / number hybrid 
intromission attempts) 

 Hybrid tactile I (female 
resistance) 

1 – (proportion hybrid tandems without resistance / 
proportion conspecific tandems without resistance) 

 Hybrid tactile II (female 
refusal) 

1 – (proportion hybrid matings / proportion conspecific 
matings) 

 Hybrid copulation 
duration 

1 – (mean hybrid copulation duration / mean conspecific 
copulation duration) 

 Hybrid copulation 
interruption duration 

1 – (mean conspecific copulation interruption duration / 
mean hybrid copulation interruption duration)  

 Hybrid oviposition 1 – (proportion females oviposited, hybrid matings / 
proportion females oviposited, conspecific matings) 

 Fecundity 1 – (mean number eggs, hybrid clutch / mean number 
eggs, conspecific clutch) 

Formulas for the absolute strength of each reproductive isolating barrier measured, 
listed in the order in which they act during the mating sequence and subsequent life 
history of an individual.  In the postzygotic barrier formulas, “heterospecific” includes 
male-female pairs composed of both pure species and any male-female pair involving 
at least one hybrid partner.  
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Table 2.  Contributions  of individual barriers to total reproductive isolation 

  
A♀C♂ C♀A♂ 

Barrier AS SS RC AS SS RC 

Prezygotic 

 
Visual 0.000 0.000 0.000 0.000 0.000 0.000 

 
Tandem 0.333 0.333 0.334 0.750 0.750 0.752 

 
Resistance 0.639 0.426 0.427 0.643 0.161 0.161 

 
Refusal 0.721 0.173 0.174 0.829 0.074 0.074 

Postzygotic (hybrid vs conspecific) 

 
Hybrid Tandem 0.098 0.007 0.007 0.364 0.006 0.006 

 
Hybrid resistance 0.458 0.028 0.028 0.583 0.006 0.006 

 
Hybrid refusal 0.776 0.026 0.026 0.520 0.002 0.002 

 
Hybrid Intromission 0.000 0.000 0.000 0.000 0.000 0.000 

 
Hybrid copulation duration -0.101 -0.001 -0.001 -0.126 0.000 0.000 

 
Hybrid copulation interruption 0.542 0.004 0.004 na na na 

 
Hybrid oviposition 0.222 0.001 0.001 na na na 

 
Hybrid fecundity 0.180 0.001 0.001 0.230 0.001 0.001 

 
Hybrid fertility 0.033 0.000 0.000 na na na 

 
Egg hatching -0.065 0.000 0.000 -0.065 0.000 0.000 

 
Embryo development 0.041 0.000 0.000 0.206 0.000 0.000 

 
Larval maturation -0.176 0.000 0.000 0.079 0.000 0.000 

 
Larval survivorship -0.053 0.000 0.000 -0.714 -0.001 -0.001 

 
Adult sex ratio 0.004 0.000 0.000 -0.067 0.000 0.000 

Prezygotic RI total 
 

0.933 
  

0.985 
 

Postzygotic RI total 
 

0.064 
  

0.013 
 

Total RI 
 

0.997 
  

0.998 
 Estimated absolute strength (AS), sequential strength (SS), and relative contribution 

(RC) to total reproductive isolation of each potential barrier in sympatric populations 
of Enallagma anna and E. carunculatum.  Equations for AS, SS, and RC are described in 
Dopman et al. (2010).  “na” indicates values that could not be calculated due to a lack 
of data for E. carunculatum conspecific crosses. A = E. anna, C = E. carunculatum.  
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Chapter 1 – Figure legends 

Figure1.  Male grasping appendages and female mesostigmal plate morphology.  The 

right cercus on each male is shaded yellow.  

 

Figure 2. Overview of spherical harmonic (SPHARM) analysis of male cercus shape. 

(A) Digital volume rendering of right male cercus after CT scanning and digital 

segmentation from surrounding tissue. (B) Cercus represention as a solid surface 

comprised of 20,000 triangles; SPHARM produces coeffients that describe the shape of 

the triangular mesh. (C) Spherical harmonic model constructed using the coefficients 

recreates the shape of original model. 

 

Figure 3. Female geometric morphometric landmarks.  (A) Locations of single 

landmarks (points), curves (lines), and patch (closed outline and dotted lines) on a 

digitized 3-D surface of the right female mesostigmal plate and nearby thoracic 

structures. (B) Fixed and sliding semilandmark locations within the XYZ coordinate 

system. Red points indicate fixed landmarks, blue points indicate sliding 

semilandmarks designated as “curve sliders” in Geomorph, yellow points indicate 

sliding semilandmarks designed as “surface sliders” in Geomorph. Note that although 

not all semilandmarks appear evenly spaced when shown in two dimensions, they are 

spaced evenly across the 3-D surface. 
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Figure 4. Male visual isolation.  Number of male tandem attempts on conspecific and 

heterospecific females at the Whitefish River site. 

 

Figure 5. Variation in E. anna, E. carunculatum, and hybrid male and female 

reproductive structure morphologies.  (A) Distribution of the first two principal 

components (PC) that represent variation in male cercus shape.  Cercus 

representations above the plot show the range of hybrid male variation across the PC1 

axis and representations below the plot show parental species morphologies. (B) 

Distribution of the first two principal components (PC) that represent variation in 

female mesostigmal plate shape. Examples of representative parental species and 

hybrid morphologies are shown below the plot (left: E. anna, middle: hybrid, right: E. 

carunculatum).  The percentage of variation explained by each PC axis is shown in 

parentheses.  Open symbols represent lab-reared individuals, filled symbols represent 

field-caught individuals. 

 

Figure 6. PCA results of replicate 3-D geometric morphometric analysis of female 

mesostigmal plate shape. The percentage of variation explained by each PC axis is 

shown in parentheses. Open symbols represent lab-reared females, filled symbols 

represent field-caught females. 
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Figure 7.  Sequentially-acting mechanisms of prezygotic reproductive isolation.  (A) 

Mechanical isolation.  (B) Proportion of tandems in which females displayed resistance 

behaviors (field-caught only).  (C) Proportion of tandems in which females refused to 

copulate (field-caught and lab-reared data).  Crosses shown on the x-axis list female 

first.  A: E. anna, C: E. carunculatum, H: hybrid.  Numbers at the base of the bars in 

panels A-C show the numbers of female-male pairs that were measured. “nd” refers to 

cross types for which no data were collected.  Error bars represent the upper and 

lower bounds of 95% binomial confidence intervals.  For proportions of 0 or 1, bars 

represent one-sided 97.5% confidence intervals. 

 

Figure 8. Presence/absence of female resistance behaviors during mating 

observations with lab-reared damselflies. A = E. anna, C = E. carunculatum, and H = 

hybrid. 

 

Figure 9. Sequentially-acting mechanisms of postmating reproductive isolation. (A) 

Copulation duration.  (B) Length of copulation interruptions.  (C) Fecundity (field-

caught and lab-reared data).  (D) Proportion hatched eggs per clutch.  (E) Embryonic 

development timing.  (F) Larval maturation timing.  (G) Larval survivorship.  (H) Adult 

lifespan.  (I) Adult sex ratios.  In panels A and B, each point represents one male-

female pair.  “nd” denotes no data.  In panels C-G, each point represents one clutch.  

Within each panel, letters indicate homogeneous groups assigned at the statistical 
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cutoff at α = 0.05.  Boxplots show the interquartile range.  The line within the box 

shows the median and whiskers extend to the most extreme observation within ±1.5 

times the interquartile range. Each open circle represents one mating pair (A, B), one 

clutch (C-E, G), or the clutch mean (F, H). 

 

Figure 10. Adult Enallagma abdomen length measurements. Within each panel, 

letters indicate homogeneous groups as indicated by Tukey post-hoc tests at the 

statistical cutoff α = 0.05. Boxplots show the interquartile range. The line within the 

box shows the median and whiskers extend to the most extreme observation within 

1.5 times the interquartile range. Each open circle represents one individual damselfly 

and each closed circle represents the mean for individuals within a lab-reared family. 

 

Figure 11. Proportion of hatched eggs in lab generation 2.  Boxplots show the 

interquartile range.  The line within the box shows the median and whiskers extend to 

the most extreme observation within ±1.5 times the interquartile range. Each open 

circle represents one clutch. 

 

Figure 12.  Sequential strength of reproductive isolating barriers, beginning with 

male-female encounter and proceeding through the reproductive sequence and life 

history. Estimates of the strength of the first four barriers were obtained from 

conspecific and heterospecific crosses only, and estimates of the remaining barriers 
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also include crosses involving hybrid individuals.  Estimates for the values of the 

strength of two barriers from the E. carunculatum female  hybrid male cross 

(copulation interruption duration and fertility) are represented by the best-fit line at 

these barriers. 
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Figure 1.  Male grasping appendages and female mesostigmal plate morphology 
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Figure 2. Overview of spherical harmonic analysis of male cercus shape 
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Figure 3. Female geometric morphometric landmarks 
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Figure 4. Male visual isolation 
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Figure 5. Variation reproductive structure morphologies 
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Figure 6. PCA results of replicate 3-D geometric morphometric analysis of female 
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Figure 7. Sequentially-acting mechanisms of prezygotic reproductive isolation 
 

 

 

  



61 

 

Figure 8   Female resistance behaviors during mating observations  
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Figure 9. Sequentially-acting mechanisms of postmating reproductive isolation 
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Figure 10. Adult Enallagma abdomen length measurements 

 

  



64 

 

Figure 11. Proportion of hatched eggs in lab generation 2 
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Figure 12. Sequential strength of reproductive isolating barriers 
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CHAPTER 2: Quantitative variation in female sensory structures supports 
species recognition and intraspecific mate choice functions in 
damselflies 
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Abstract 

Males and females exchange signals prior to mating that convey information such as 

sex, species identity, or individual condition.  Tactile signals relayed during physical 

contact between males and females before and during mating appear to be important 

for mate choice and reproductive isolation in some animals.  However, compared to 

our understanding of visual, auditory, and chemical signals, we know little about the 

importance of tactile signals in mating decisions.  Among North American damselflies 

in the genus Enallagma (Odonata: Coenagrionidae) species-specific tactile stimulation 

contributes to reproductive isolation between species and may also be important for 

intraspecific mate choice.  We quantified several mechanosensory sensilla phenotypes 

on the female thorax among multiple sympatric and allopatric populations of two 

Enallagma species that occasionally interbreed in nature.  Although each species 

differed in features of sensilla distribution within the thoracic plates, we found no 

strong evidence of reproductive character displacement among the sensilla traits we 

measured in regions of sympatry.  However, substantial variation of sensilla traits was 

observed within populations of both species.  Our results suggest that species-specific 

placement of female mechanoreceptors appears sufficient for species recognition, but 

mechanosensor variation among females within species may be important for mate 

choice.    
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Introduction 

For sexual species, maintenance of species boundaries relies on reproductive 

isolation (RI) between recently diverged species (Mayr 1942).  Premating reproductive 

isolating barriers, including behavioral or sexual isolation, often evolve earlier in the 

speciation process than postmating barriers in a variety of animal taxa (e.g., McMillan 

et al. 1997; Price and Bouvier 2002; Mendelson and Wallis 2003; Dopman et al. 2010; 

Sánchez-Guillén et al. 2012; Williams and Mendelson 2014; Castillo et al. 2015; 

Barnard et al. 2017).  Behavioral isolation requires that mate recognition signals 

and/or preferences diverge between populations, which ultimately results in the 

ability for individuals to discriminate conspecifics from heterospecifics.  Species 

recognition signals may rely on a variety of sensory modalities such as color (Wiernasz 

and Kingsolver 1992; Sætre et al. 1997; Jiggins et al. 2001; Boughman et al. 2005; 

Kronforst et al. 2006; Williams and Mendelson 2014), courtship behavior (Stratton and 

Uetz 1986), sound/vibration (Ewing and Bennet-Clark 1968; Wells and Henry 1998; 

Shaw 2000; Gerhardt and Huber 2002; Arthur et al. 2013), and volatile chemicals 

(Coyne et al. 1994; Noor and Coyne 1996; Trabalon et al. 1997; Rafferty and Boughman 

2006).  Often, multiple signals act in concert to affect species recognition (e.g., 

Costanzo and Monteiro 2007; Girard et al. 2015).   

 Although much is known about the importance of visual, chemical, and 

auditory signals and responses in sexual communication and species recognition, we 

know relatively little about other sensory modalities that may have strong effects on 
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individual mating decisions.  Tactile signals have been hypothesized as a likely 

contributor to mating decisions (Mendelson and Shaw 2012), but it is unclear whether 

touch could represent a primary species recognition signal, given that visual and 

auditory cues usually act earlier during the mating sequence.  Research on the 

prevalence of tactile signals in mating decisions is limited (Coleman 2008) because of 

the experimental challenge it poses: whereas other sensory modalities present male 

signals to a focal female from a distance, studying female preference for tactile cues 

requires contact between males and females, which is not always easily achieved or 

quantified under controlled conditions. 

Despite this challenge, the role of tactile signals along the continuum between 

intraspecific mate choice and interspecific RI deserves attention because it broadens 

our understanding of the causes and consequences of a common pattern in nature— 

the rapid divergence of male genital morphology between species.  It has been 

suggested that rapid genital differentiation can cause RI (Dufour 1844), although 

mechanical incompatibilities between heterospecific male and female genitalia do not 

appear to be a common cause of RI (Shapiro and Porter 1989; Masly 2012; Simmons 

2014).  However, observations both within (Eberhard 1994; Edvardsson and Göran 

2000; Briceño and Eberhard 2009a; Briceño and Eberhard 2009b; Frazee and Masly 

2015) and between species (Patterson and Thaeler Jr 1982; Robertson and Paterson 

1982; Eberhard 1992; Coyne 1993) suggest that male genitalia may convey tactile 

information to females that affects their subsequent behavior and/or physiology.  
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Although female genital structures often appear invariant among closely related 

species (Shapiro and Porter 1989), subtle morphological differences (e.g., Kamimura 

and Mitsumoto 2011; Yassin and Orgogozo 2013) could enable females to detect 

variation among males’ genital morphology.  This variation could occur in signal 

processing at the level of neurons and neural networks and/or in the distribution and 

morphology of sensory structures that receive male tactile signals. 

 Female sensory structures that reside in body regions that contact species-

specific male structures during mating have been documented in several arthropods, 

including flies (Eberhard 2001; Ingram et al. 2008) and damselflies (Cordoba-Aguilar 

2005; Robertson and Paterson 1982).  Other studies have demonstrated that tactile 

cues from male grasping organs influence female mating responses, either via 

experimental manipulation of male structures and/or desensitization of females 

(Eberhard 2002; Briceño et al. 2007; Briceño and Eberhard 2009a; Eberhard 2010; 

Myers et al. 2016) or comparison of female behavior when grasped by males with 

varying genital morphologies (Sánchez-Guillén et al. 2012; Sánchez-Guillén et al. 2014; 

Barnard et al. 2017).  Premating tactile isolation may also be important in vision-

limited vertebrates.  For example, contact cues via the lateral line system may 

influence female mate choice in a cavefish (Plath et al. 2004; but see Rüschenbaum 

and Schlupp 2013).  

Tactile signals appear to be a significant cause of RI in Zygoptera, the damselfly 

suborder of Odonata (Krieger and Krieger-Loibl 1958; Loibl 1958; Robertson and 
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Paterson 1982; Corbet 1999).  Concentrations of cuticular mechanoreceptors (sensilla) 

on the female thorax have been described in several coenagrionid damselfly genera.  

These sensilla reside in areas where male grasping appendages contact the female 

thorax before and during mating, which has led to speculation that they allow females 

to evaluate male morphologies and identify conspecifics (Jurzitza 1974, 1975; 

Tennessen 1975; Robertson and Paterson 1982; Battin 1993a,b).  Each 

mechanoreceptor is associated with a single sensory neuron (McIver 1975; Kiel 1997).  

The thoracic sensilla thus represent a spatial matrix that can transmit signals to the 

female central nervous system based on the pattern in which the sensilla are 

stimulated.  Greater numbers of these receptors enhance a female’s sensory 

resolution by increasing the combinatorial complexity of tactile signals that a female 

can perceive.  For example, if a female possesses 25 sensilla, and each sensillum has 

two response states (“on” if contacted and “off” if not contacted), then the number of 

unique tactile patterns that the female could distinguish is 225 = 3.4 × 107.  A female 

that possesses just one additional sensillum would be able to distinguish among 

roughly twice as many patterns (226 = 6.7 × 107).  Should individual sensilla respond to 

quantitative variation in touch (rather than a binary response), this would dramatically 

increase the number of response states and therefore further enhance tactile acuity 

(Gaffin and Brayfield 2017).  Female damselfly thoracic sensilla thus present an 

external, quantifiable phenotype to investigate the mechanistic basis of tactile stimuli 

and female mating decisions.   
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The North American damselfly genus Enallagma includes several recently 

diverged species that often co-occur in the same habitats (Johnson and Crowley 1980; 

McPeek 1998), and do not engage in premating courtship  (Fincke et al. 2007; Barnard 

et al. 2017) or use chemical cues for mate selection (Rebora et al. 2018).  A female’s 

first opportunity to assess a potential mate occurs when the male uses his terminal 

appendages to grasp the mesostigmal plates on the female’s thorax to form tandem, 

the premating position.  The males’ superior appendages (cerci) have species-specific 

morphologies, and differences in genital morphology are the primary cause of RI in this 

genus (Paulson 1974; Barnard et al. 2017).  Two species, E. anna and E. carunculatum, 

occasionally hybridize in nature to produce males and females with morphologies that 

are intermediate to each of the pure species (Donnelly 2008; Johnson 2009; Barnard et 

al. 2017).  Females of both pure species discriminate strongly against both 

heterospecific and interspecific hybrid males that take them in tandem, which shows 

that not only can E. anna and E. carunculatum females detect large differences in male 

cercus morphologies, but also more subtle differences such as those between 

conspecific and hybrid males (Barnard et al. 2017).   

Because it appears that mesostigmal sensilla are used to mediate species 

recognition, they might be expected to show signs of reproductive character 

displacement (RCD) in regions where species co-occur (Brown and Wilson 1956; 

Howard 1993; Pfennig and Pfennig 2009).  RCD can evolve via direct selection on adult 

prezygotic phenotypes or via reinforcement, in which direct selection against 
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interspecific hybrids gives rise to selection for enhanced premating isolation between 

species (Dobzhansky 1937).  Enallagma anna and E. carunculatum can interbreed, but 

these species produce hybrids with significantly reduced fitness (Barnard et al. 2017).  

This suggests that species-specific sensilla phenotypes might show patterns consistent 

with RCD in regions of sympatry, where females are known to experience frequent 

mating attempts from heterospecific males (Paulson 1974; Fincke et al. 2007; Barnard 

et al. 2017).  Here, we test the hypothesis that variation in female sensilla phenotypes 

supports a function in species recognition.  We test this hypothesis by quantifying 

sensilla number, density, and location phenotypes on the mesostigmal plates of a large 

set of E. anna and E. carunculatum females from multiple populations across the 

western United States and comparing phenotypes of each pure species from sympatric 

and allopatric populations to identify patterns consistent with RCD.   

 

Methods 

Population sampling 

We measured the sensilla traits of 29 E. anna females across 13 populations, 

and 74 E. carunculatum females across 19 populations (Figure 13, Table 3).  We 

classified each population as either allopatric, locally allopatric, or sympatric.  

Sympatric populations are those where E. anna and E. carunculatum co-occur 

temporally as well as spatially.  Because E. anna’s geographic range falls completely 

within E. carunculatum’s range, only E. carunculatum has completely allopatric 
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populations.  We designated populations that exist at sites within the area of range 

overlap, but where only one species is known to occur, as locally allopatric.  Some 

specimens were collected as early as 1945, but the majority of samples (82 of 103) we 

studied were collected between 2012 and 2016. 

 

Trait imaging and quantification 

  We photographed each damselfly using a Nikon D5100 camera (16.2 MP; Nikon 

Corporation, Tokyo, Japan).  We dissected the ventral thoracic cuticle from each 

female using forceps and imaged the mesostigmal plates using scanning electron 

microscopy.  Specimens were mounted on aluminum stubs with carbon tape, sputter-

coated with gold-palladium, and imaged at 200X magnification and 3kV using a Zeiss 

NEON scanning electron microscope.   

 To avoid any potential bias during measurements, we blind-coded image files 

before measuring traits.  We measured abdomen length (abdominal segments 1-10, 

excluding terminal appendages) on the full-body photos as a proxy for body size using 

the segmented line tool in ImageJ (Abramoff et al. 2004).  We quantified sensilla traits 

on the right mesostigmal plate of each female damselfly unless the right plate was 

dirty or damaged, in which case we quantified the left plate.  Sensilla counts on a 

subset of 57 females showed that left plate and right plate sensilla counts are highly 

correlated (r = 0.85).  In cases where we quantified the left plate, we flipped the image 

horizontally, so it was in the same orientation as a right plate.  We standardized the 
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position of the mesostigmal plate in each image by cropping and rotating so that the 

lower medial corner of the plate was in line with the lower left corner of each image.  

We counted sensilla and obtained their x and y coordinates in ImageJ using the multi-

point selection tool.  We traced an outline around the plate image, excluding the 

lateral carina (Figure 14), using a Wacom Cintiq 12WX tablet and stylus (Wacom, 

Saitama, Japan) and the freehand selection tool in ImageJ.  This procedure provided x 

and y coordinates that describe the plate outline.  We performed all measurements 

twice for each specimen.  Measurements across the two technical replicates were 

highly correlated (rabdomen = 0.96, n = 155; rcount = 0.97, n = 183; rplate area = 0.98, n = 

157), so we used the mean trait values of the two replicates in subsequent analyses.  

 

Sensilla trait analyses 

We conducted all morphometric and statistical analyses using R v. 3.4.1 (R Core 

Team 2015).  We used the plate outline coordinates to calculate each plate’s two-

dimensional area.  

To calculate the area of the sensilla-covered region of each plate, we generated a 

polygon connecting the coordinates of the outermost sensilla and calculated the area 

within this outline.  We determined the proportion of each plate that is covered by 

sensilla by dividing the sensilla area by total plate area.  We calculated sensilla density 

in two ways.  First, we divided sensilla number by the area of the sensilla-covered 

region.  This measures the number of sensilla that occur in a particular area but does 
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not capture the relative arrangement of sensilla within that area.  Second, we 

computed the nearest neighbor distances among all sensilla within each plate based 

on their x and y coordinates and then calculated the mean and median nearest 

neighbor distances between the sensilla for each female.  Nearest neighbor mean and 

median distances were highly correlated (rE. carunculatum = 0.83; rE. anna = 0.88), so we 

report only the analyses using the mean values.   

To determine whether larger females possess more sensilla, we regressed 

sensilla number against abdomen length.  We found no significant relationship 

between these traits in either species (E. anna: R2
adj = -0.02, F1,43 = 0.13, P = 0.73; E. 

carunculatum: R2
adj = 0.005, F1,65 = 1.35, P = 0.25).  We thus present the results that 

compare sensilla counts without correcting for differences in body size.    

  

Sensilla spatial analyses 

To quantify sensilla distributions within each plate, we generated kernel 

density estimates (KDEs) for populations with at least four sampled individuals (two E. 

anna and six E. carunculatum populations) using the R package ks (Duong 2016).  First, 

we randomly selected one of the two replicate sets of sensilla and plate outline 

coordinates for each female.  To prepare the coordinate data for KDE analyses, we 

concatenated the sensilla and plate coordinates for each female and adjusted all plate 

outlines to have an area of one.  This standardized each set of sensilla coordinates for 

size while maintaining their relative positions within each plate.  Next, we translated 
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each set of coordinates to place the origin of the coordinate system at the plate 

outline’s centroid.  We concatenated sensilla coordinates for all females sampled 

within each population to compute a representative KDE for each population.    

Within each species, we conducted pairwise tests to compare each 

population’s KDE against every other population using the function kde.test() with the 

default settings.  This test returns a P-value that reflects the probability of generating 

the two sets of from the same distribution of points.  Because we performed multiple 

pairwise tests among E. carunculatum populations, we adjusted the resulting P-values 

using the false discovery rate (Benjamini and Hochberg 1995). 

We generated an average plate outline for each population on which to 

visualize the KDEs.  The total number of coordinates that describe each plate outline 

varied among females, ranging from 647-1078 for E. anna and 688-1028 for E. 

carunculatum.  We standardized the number of coordinates representing each plate by 

retaining the points for each of the upper and lower medial corners and randomly 

sampled 198 points in between.  We then treated each of these 200 points as 

landmarks (the corners represented fixed landmarks and the remaining points were 

designated as sliding semilandmarks) and used the R package geomorph (Adams and 

Otarola-Castillo 2013) to perform general Procrustes analysis (Rohlf 1999) and obtain 

an average two-dimensional plate shape for each population.     

 

Statistical analyses 
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Some populations were well-sampled and other populations were represented 

by a single female (Table 3).  To avoid psedoreplication, for each population with N > 1, 

our analyses used population means of trait values, so that each population was 

represented by a single measurement.  We arcsin transformed proportion data prior to 

analysis.  We pooled data for locally allopatric and fully allopatric E. carunculatum after 

t-tests showed that these groups did not significantly differ with respect to sensilla 

number (t2.7 = 0.80, P = 0.49), sensilla density (t9.2 = -1.62, P = 0.13), or the proportion 

of the plate that contained sensilla (t10 = 0.06, P = 0.95).  To compare traits between 

sympatric and allopatric populations of each species, we used t-tests or Wilcoxon rank 

sum tests.  We combined data for the two locally allopatric E. carunculatum 

populations with the data from completely allopatric populations, after determining 

that these data were similar enough to pool (sensilla number: t2.1 = -0.91, P = 0.46; 

proportion plate with sensilla: t11 = -1.24, P = 0.24; sensilla density: t5.8 = 0.51, P = 

0.63).  To understand the relationships between sensilla number, sensilla density, and 

the area of the plate occupied by sensilla, we performed linear regressions between 

pairs of these traits.   

 

Results 

E. anna and E. carunculatum females possess distinct sensilla traits  

Enallagma anna females possessed significantly more sensilla per plate (x̅ = 

46.2 + 1.4) than E. carunculatum females (x̅ = 28.7 + 0.6; t19.4 = 7.37, P = 4.9 × 10-7; 
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Figure 15A).  Enallagma anna females also had sensilla distributed over a larger 

proportion of each plate (W = 240, P = 2.6 × 10-7; Figure 15B), and larger mean 

distances between sensilla (t30 = 5.2, P = 1.3 × 10-5; Figure 15C), which made E. anna’s 

overall sensilla distributions less dense than E. carunculatum’s (W = 239.5, P = 9.2.× 10-

6; Figure 15D).  The sensilla occurred in different locations on the mesostigmal plates 

of each species: they were more medial in E. anna and more lateral in E. carunculatum 

(Figures 3, S2).   

Both species showed a strong positive relationship between sensilla number 

and the absolute area of the plate occupied by sensilla (E. anna: R2
adj = 0.33, F1,27 = 

14.71, P < 0.0007; E. carunculatum: R2
adj = 0.33, F 1,72 = 37.68, P = 4.1 × 10-8).  

Consistent with this result, linear regressions also revealed that females with more 

sensilla also had a larger proportion of the plate occupied by sensilla (E. anna: R2
adj = 

0.26, F1, 27 = 10.65, P = 0.003; E. carunculatum:  R2
adj = 0.20, F1, 65 = 18.93, P = 4.4 × 10-

5).  Females with more sensilla had smaller mean distances between neighboring 

sensilla (E. anna: R2
adj = 0.11, F1, 27 4.34, P = 0.046; E. carunculatum: R2

adj = 0.09, F 1,72 = 

3.80, P = 0.01).  Overall, these results showed that a greater number of sensilla was 

more strongly associated with a sensilla distribution that covers a larger area of the 

mesostigmal plate rather a greater concentration sensilla within in a smaller area.   

 

E. carunculatum sensilla traits do not show a strong pattern of reproductive 

character displacement  



80 

 

We made several non-mutually exclusive predictions expected under RCD for 

sensilla traits in sympatric populations relative to allopatric populations.  In particular, 

we predicted to observe at least one of the following phenotypic differences in 

sympatric females relative to allopatric females: (1) more numerous sensilla (2) denser 

sensilla, (3) sensilla concentrated in different regions of the mesostigmal plates.  We 

did not find significant differences in any of these traits between sympatric and locally 

allopatric E. anna females (Table 4).  However, because our E. anna samples included 

only four females from three locally allopatric populations, we could not perform a 

robust comparison of E. anna sensilla traits between populations that do, or do not 

encounter E. carunculatum.  We thus focus our analysis on comparisons between 

sympatric and allopatric E. carunculatum populations, for which we had larger sample 

sizes. 

Sympatric E. carunculatum populations did not differ significantly from 

allopatric populations in sensilla number (t16.3 = 0.98, P = 0.35), proportion of the 

mesostigmal plate covered by sensilla (t16.8 = 1.33, P = 0.20), or sensilla density (overall 

density: t9.7 = -0.26, P = 0.80; mean distance between sensilla: t18 = -1.31, P = 0.21).  In 

addition to divergence of mean trait values, RCD can also result in reduced trait 

variance in sympatry without affecting the mean (Pfennig and Pfennig 2009).  

Sympatric E. carunculatum populations displayed less variance in both sensilla number 

(Figure 15A) and the proportion of the plate covered by sensilla (Figure 15B).  

However, these trends were not statistically significant (sensilla number with locally 
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allopatric outlier removed: Bartlett's K2
1 = 0.75, P = 0.39; proportion of plate covered 

by sensilla: Bartlett's K2
1 = 2.5, P = 0.11).  KDE comparisons also did not reveal 

significant differences in sensilla distributions between sympatric and allopatric E. 

carunculatum populations (Table 5).  However, the analysis revealed significant 

differences in sensilla distributions between several pairs of populations that are not 

sympatric with E. anna (Figure 16E).  This result is consistent with those described 

above that indicated higher variance in sensilla traits among allopatric populations 

compared to sympatric populations. 

Interestingly, although mean trait values did not differ significantly between 

sympatric and allopatric populations, sensilla traits displayed considerable variation 

within the populations we sampled.  For example, within a single population, a 

particular female might have twice as many sensilla than another female (Figure 17).  

This pattern was also observed in the E. anna populations we studied.   

 

Discussion 

Enallagma anna and E. carunculatum females possessed different numbers of 

sensilla in species-specific distributions on their mesostigmal plates.  This result 

supports the idea that receptors that receive male stimuli will occur in patterns that 

correspond to the male organs during contact (Eberhard 2010).  An association 

between male morphology and female sensilla has been described for African 

Enallagma species (Robertson and Paterson 1982), and our results show a similar 
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pattern.  Enallagma anna male cerci are considerably larger than E. carunculatum 

cerci, and the observation that E. anna females had a larger number of sensilla 

compared to E. carunculatum females is consistent with the difference in species-

specific male genital morphology.   

When species make secondary contact after initial divergence in allopatry, the 

possible outcomes are increased species divergence (e.g., Sætre et al. 1997; Noor 

2000; Naisbit et al. 2001; Yukilevich 2012; Dyer et al. 2014), decreased divergence 

(e.g., Ritchie et al. 1989; Shurtliff et al. 2013; Yang et al. 2016), one species goes locally 

extinct due to reproductive exclusion (Hochkirch et al. 2007, Groning and Hochkirch 

2008), or no change in either direction (Abbott et al. 2013).  Because E. anna and E. 

carunculatum produce reproductively disadvantaged hybrids (Barnard et al. 2017), 

selection is expected to favor increased premating isolation.  Within each species, we 

predicted that female sensilla traits would show character displacement in sympatric 

populations, which could indicate a shift in female preferences to avoid mating with 

heterospecifics.  Contrary to this prediction, E. carunculatum sympatric and allopatric 

populations were not significantly different in mean sensilla trait values (Figure 15) or 

sensilla density distributions (Figure 16E).  Although we observed a trend toward more 

sensilla in sympatric E. anna populations relative to allopatric populations (Figure 15A), 

it is difficult to conduct a robust comparison for this species because (1) E. anna’s 

entire geographic range overlaps with E. carunculatum’s range and (2) E. anna are 

often relatively rare (Acorn 2004; A. Barnard, personal obs.).  It was therefore difficult 
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to collect sufficient E. anna samples from populations that do not co-occur with E. 

carunculatum.  We do, however, expect a stronger pattern of RCD in sympatric E. anna 

females because E. carunculatum males can take them in tandem relatively easily, 

whereas E. anna males are typically unsuccessful at taking E. carunculatum females in 

tandem (Barnard et al. 2017).  This means that E. anna females may have more 

opportunities for mating mistakes than E. carunculatum females, which can result in 

stronger asymmetric RCD (Lemmon 2009; Pfennig and Pfennig 2009). 

There are at least four potential explanations for the absence of RCD in the 

form of significant differences in the sensilla traits we measured between sympatric 

and allopatric populations of E. carunculatum.  First, species-specific sensilla 

distributions may be sufficiently different to allow females to recognize when they are 

taken in tandem by heterospecific or conspecific males.  If this is true, small degrees of 

variation within the overall species pattern among females might not affect females’ 

species-recognition abilities.  RCD is most easily facilitated when the trait under 

selection already differs between species (Pfennig and Pfennig 2009).  However, these 

traits may have already diverged enough sufficiently to preclude strong selection for 

further divergence.  

Second, it is possible that the external sensilla phenotypes we measured are 

not representative of proximate female sensory traits, and the important variation lies 

deeper within the female nervous system.  For example, individual sensilla might differ 

in response rate or ability to distinguish different levels of pressure applied by the 
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cerci, and grasping pressure might differ between males of each species.  The direction 

of mechanosensor deflection is also important for stimulus detection (Keil 1997), and 

different species’ cercus morphologies may contact sensilla from different angles.  

Female mate preferences may also be influenced by male exposure and sexual 

experience (Svensson et al. 2014).   

Third, the thoracic sensilla may not be a target of strong selection.  For 

example, earlier acting forms of RI may prevent most heterospecific interactions in the 

sympatric populations we sampled.  In one region where E. anna and E. carunculatum 

co-occur, habitat and temporal isolation were close to zero (Barnard et al. 2017), but 

the strength of these isolating barriers may vary geographically. 

Finally, although we did not detect a statistically significant difference between 

group means, the small differences we observed may still have biological relevance.  If 

gaining just one additional mechanosensor can (at least) double a female’s tactile 

discriminatory power (Gaffin and Brayfield 2017), then females in a population with a 

seemingly minor upward shift in sensilla number could gain a remarkable increase in 

their ability to detect and avoid mating with heterospecifics.  Similarly, it is difficult to 

determine the features of sensilla density distributions that may influence female 

preference solely by conducting statistical tests between KDEs.  The human eye can 

visually detect differences in the KDE plots shown in Figure 16, and it is thus possible 

that these spatial differences reflect salient variation in the way females might receive 

tactile stimuli.  
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These possible explanations highlight the interesting avenues that female 

damselfly sensilla provide for investigating how females evaluate male tactile signals to 

make mating decisions.  The ability to quantify the number and locations of female 

mechanoreceptors in a region contacted by male reproductive structures 

complements our understanding of patterns of variation in male morphologies 

(McPeek et al. 2008; McPeek et al. 2009; McPeek et al. 2011; Barnard et al. 2017).  

Females of both species display substantial intrapopulation variation in sensilla traits 

(Figure 17) and this variation may play a role in sexual selection and female 

preferences within species.  Behavioral studies will be crucial to link mechanoreceptor 

phenotypes to female mating decisions and clarify how sensilla traits influence both 

species recognition and sexual selection.  For example, do females with more sensilla 

make fewer mating mistakes than females with fewer sensilla (Lemmon 2009)?  

Another outstanding question of this system is how the cerci stimulate individual 

sensilla during tandem.  This might be determined by flash-freezing male-female 

tandem pairs and using micro-CT scanning to understand how the male and female 

structures interact, similar to a recent approach used in seed beetles (Dougherty and 

Simmons 2017).  Once we understand how cerci contact the sensilla, functional tests 

of sensilla electrophysiology could reveal how individual sensilla respond to 

stimulation and indicate whether certain sensilla make greater contributions to 

reproductive decision-making than others. 
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Female preference can drive sexual selection, promote trait divergence, and 

cause RI between species (Ritchie 1996).  A longstanding presumption in the literature 

on genital evolution and speciation has been that female reproductive morphologies 

are less variant or species-specific than male genitalia (Shapiro and Porter 1989).  

However, recent studies of variation in female reproductive structures suggest that 

variation does exist among individuals and species (Ah-King et al. 2014), and our data 

support the need to look beyond the visible external morphologies.  When male 

genital morphologies are obviously divergent, but female morphologies are not, 

females may possess important variation at neurophysiological levels that affects how 

they evaluate male tactile signals, similar to the way females evaluate signals in other 

sensory modalities.   
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Chapter 2 - Tables 

Table 3.  Sampling sites for E. anna and E. carunculatum sensilla analyses   
 

Type Site (site number) 
 

Species Year 
collected 

N Source 

Sympatric Big Spring, UT (1) E. anna 
E. carunculatum 

2016 10 
4 

AB 

 Big Sandy Creek, MT (2)  E. carunculatum 2015 1 AB 
 Creston, MT (3) E. anna 1972 1 BM 
 Dry Sheep Creek, NE (4) E. anna 2012 1 BM 

 Fish Springs Run, CA (5)  E. anna 1998 2 BM 
 Grace Coolidge Creek, SD 

(6)  
E. anna 1969 1 BM 

 Horseshoe Springs, UT (7) E. anna 
E. carunculatum 

2016 1 
1 

AB 

 Long Valley Creek, CA (8) E. anna 1973 5 DP 
 Murray Creek, NV (9) E. anna 2001 1  
 Malad River, UT (10) E. carunculatum 1983 2 BM 
 Niwot Ditch, CO (11) E. anna 

E. carunculatum 
2015 2 

1 
AB 

 Pondera Coulee, MT (12) E. anna 
E. carunculatum 

2015 1 
1 

AB 

Locally  Beaver Creek, WY (13) E. anna 2015 1 AB 

allopatric Indian Road Camp, MT (14) E. carunculatum 2015 4 AB 
 Jackson, WY (15) E. anna 1971 2 BM 
 Muddy Creek, MT (16) E. anna 2015 1 AB 
 Strawberry River, UT (17) E. carunculatum 2016 1 AB 
 West Greenbelt, CO (18) E. carunculatum 2014 9 AB 

Allopatric Bull Lake, MT (19) E. carunculatum 2015 1 AB 

 Crab Creek, WA (20) E. carunculatum 2016 20 DP 
 Clear Lake, IN (21) E. carunculatum 1945 1 BM 
 Columbia River, WA (22) E. carunculatum 1952 2 BM 
 Douglas Lake, MI (23) E. carunculatum 2016 17 OF 
 Flathead River, MT (24) E. carunculatum 2015 4 AB 
 Home Lake, CO (25) E. carunculatum 2015 1 AB 
 Little Lake, CA (26) E. carunculatum 1967 1 DP  
 Drumond Island, MI (27) E. carunculatum 2002 1 BM 
 Snake River, ID (28) E. carunculatum 1983 2 BM 

N refers to the number of females that were imaged and measured for this study.  
Sources: A. Barnard (AB), Ola Fincke (OF), Bill Mauffray (BM), and Dennis Paulson (DP). 
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Table 4. Results of E. anna sensilla trait comparisons in allopatry and sympatry 
 
 Mean + SE   

Trait Allopatry (N = 
3) 

Sympatry (N = 
10) 

    t    P  

Sensilla number       39.8 + 3.8        48.5 + 2.3 -1.93 0.13 
Proportion plate containing 
sensilla 

      0.39 + 0.04        0.41 + 0.09 -0.25 0.82 

Sensilla density (sensilla/mm2)         1.5 + 0.2          1.6 + 0.1 -0.43 0.70 
Mean distance (µm) between 
sensilla pairs 

      20.0 + 1.0        19.3 + 0.5  0.64 0.53 

N = number of populations. 
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Table 5.  E. carunculatum sensilla kernel density estimate comparisons 
 

  
BS 

 
CC 

 
DL 

 
FR 

 
GB 

 
N 

Population 
type 

BS 1     4 sympatric 

CC  1    20 allopatric 

DL 0.263 2.53e-10 1   17 allopatric 

FR 1 0.0103 0.263 1  4 allopatric 

GB 1 0.0625 0.384 0.502 1 4 Locally 
allopatric 

IR 1 1 0.0103 0.0625 0.3115 4 Locally 
allopatric 

False discovery rate-adjusted P-values are reported.  Bold values indicate P < 0.05.  N 
indicates the number of females whose sensilla coordinates were used to calculate 
KDE.  Population abbreviations: Big Springs, UT (BS), Crab Creek, WA (CC), Douglas 
Lake, MI (DL), Flathead River, MT (FR), West Greenbelt, CO (GB), Indian River, MT (IR) 
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Chapter 2 – Figure legends 

Figure 13. Sampling sites and species ranges.  Enallagma anna‘s geographic range 

(red) occurs within E. carunculatum’s geographic range (orange).  Names of sites 

associated with each number are described in Table 3.  Symbol color indicates the 

species sampled and symbol shape indicates the population type. (Species ranges 

adapted from Johnson 2009; Paulson 2009, 2011). 

 

Figure 14.  Obtaining XY coordinates of plate outline and individual sensilla from SEM 

images.  The orange line shows how we traced the boundaries of the mesostigmal 

plate.  Yellow dots indicate individual sensilla.  The yellow line around them shows the 

polygon generated by connecting the outermost sensilla. 

 

Figure 15. E. anna and E. carunculatum sensilla traits by population type.  (A) The 

number of sensilla on one mesostigmal plate.  (B) Proportion of the plate that contains 

sensilla.  (C) Mean nearest neighbor distances between sensilla.  (D) Sensilla density in 

the region of the plate that contains sensilla.  Within each panel, each open circle 

represents the mean of one population. Boxplots show the interquartile range. The 

line within the box shows the median and whiskers extend to the most extreme 

observation within 1.5 times the interquartile range.  

 

Figure 16. Sensilla locations.  (A) White box indicates the location of right mesostigmal 
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plate on the thorax.  (B) Ultrastructural details of individual sensilla.  Scale bar 

represents 10 m.  (C, D) Scanning electron micrographs show the locations of sensilla 

(yellow) on the mesostigmal plates of E. anna (C) and E. carunculatum (D).  Scale bars 

represent 100 m.  (E, F) Population kernel density estimates for E. carunculatum (E) 

and E. anna (F) sensilla.  The shading indicates different regions of sensilla density: red 

represents the 75-99th percentile, orange represents the 50-74th percentile of sensilla 

density, and yellow represents the 25th-49th percentile.  Each outline represents the 

average mesostigmal plate shape for the population.  Asterisks indicate E. 

carunculatum populations whose KDEs were determined to be significantly different (* 

indicates P < 0.05, *** P < 0.001). 

 

Figure 17.  Individual trait values for sensilla number (A), sensilla density (B), and 

proportion of plate containing sensilla (C).  Each symbol represents a single female, 

separated by population along the y-axis.  Horizontal lines indicate the mean value for 

each population type (completely allopatric, locally allopatric, or sympatric), calculated 

from population means.  Populations are described in Table 3. 

  



92 

 

Figure 13. Sampling sites and species ranges 
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Figure 14. Obtaining XY coordinates of plate outline and individual sensilla from SEM 
images 
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Figure 15. E. anna and E. carunculatum sensilla traits by population type 
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Figure 16. Sensilla locations 
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Figure 17. Individual trait values 
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CHAPTER 3:  Using RADseq to characterize gene flow and genomic 
divergence between two hybridizing damselfly species 
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Abstract 

As species diverge, their genomes accumulate differences.  Persistent gene flow 

between species as they diverge can homogenize some regions of the genome and 

make highly differentiated regions stand out in contrast.  Some of these highly 

divergent loci are predicted to harbor genes responsible for reproductive isolation.  

However, common patterns of genome diversification at this stage remain poorly 

understood, such as how these divergent loci are arranged across the genome and 

whether these loci commonly contribute to reproductive isolation or are simply less 

subject to recombination.  Here, I characterized patterns of gene flow and genomic 

divergence between E. anna and E. carunculatum, a pair of hybridizing damselfly 

species that shared a common ancestor within the past 250,000 years.  I performed a 

de novo assembly of a set of genome-wide variant loci in a large collection of samples 

from 9 populations spanning a hybrid zone.  I quantified patterns of introgression 

between E. anna and E. carunculatum in nature, identified loci with elevated 

divergence between the two species, and tested for associations between genomic 

ancestry and species-specific phenotypic variation in male and female hybrids.  My 

results revealed that E. anna and E. carunculatum genomes are largely 

undifferentiated, which is consistent with ongoing gene flow but also with a relatively 

short divergence time and incomplete lineage sorting of shared ancestral 

polymorphism.  Additionally, the results show that the proportion of the genome 

inherited from E. anna is a strong predictor of quantitative variation in reproductive 
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structure morphology in most hybrid individuals.  Finally, the results demonstrate the 

need for higher-resolution sequencing to identify loci strongly associated with 

variation in male and female reproductive structure morphologies.  

 

 

Introduction 

Hybrid zones have historically been studied to understand speciation dynamics (Barton 

and Hewitt 1989; Harrison 1990; Harrison 1993; Matute 2010; Good et al. 2015; 

Payseur and Rieseberg 2016).  Gene flow between species provides opportunities to 

dissect the evolution of individual reproductive isolating barriers (e.g., McMillan et al. 

1997; Kay 2006; Sánchez-Guillén et al. 2012), understand the ecological and 

evolutionary forces that shape reproductive isolation (e.g., Rand and Harrison 1989; 

Via et al. 2000; Nosil et al. 2005; Pfennig et al. 2007), discover genes that are 

important in local adaptation (e.g., Payseur 2010; Harrison and Larson 2016), and 

reveal patterns of how whole genomes differentiate during different stages of the 

speciation process (e.g., Jiggins et al. 2001; Roux et al. 2016). 

 It is now recognized that speciation can proceed despite ongoing gene flow 

between diverging lineages and that different regions of the genome diverge between 

species at different rates (Harrison 1990; Via 2012; Martin et al. 2013; Larson et al. 

2014).  When two species have diverged relatively recently from a common ancestor, 

they are likely to share many loci that neither cause reproductive isolation (RI) directly 
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nor are physically linked to loci that cause RI.  These neutral loci are likely to be freely 

exchanged between species, giving rise to genomes that are largely homogeneous 

between species.  Within this undifferentiated background, genomes of separate 

species should contain small regions that display high differentiation (Barton and 

Bengtsson 1986; Payseur 2010; Yeaman and Whitlock 2011).  Such divergent sections 

of the genome may experience lower gene flow relative to other regions, either due to 

reduced recombination or selection, which may or may not be associated with RI.   

Genomic analyses of hybrid zones have revealed certain regions of the genome 

that commonly play a role in RI and experience reduced levels of introgression. For 

example, genes associated with hybrid sterility and hybrid inviability are often 

concentrated on the X (or Z) chromosome (Masly and Presgraves 2007), and genes on 

these sex chromosomes often experience less gene flow than autosomal genes (e.g., 

Payseur et al. 2004; Macholán et al. 2007; Garrigan et al. 2012; Carneiro et al. 2013; 

Maroja et al. 2015).  However, although several decades of research have been 

dedicated to understanding individual traits and genes responsible for RI and the 

selective forces that act on them (e.g. Wittbrodt et al. 1989; Ting et al. 1998; 

Presgraves et al. 2003; Orr et al. 2004; Brideau et al. 2006; Masly et al. 2006; Phadnis 

and Orr 2009), we still lack a comprehensive understanding of how highly 

differentiated loci are positioned within the genome, how genomes diverge as 

mechanisms of RI build up over time (Nosil and Feder 2012), or how the relationships 
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between and placement of divergent loci influence the speciation process (Feder et al. 

2012). 

One approach to begin to answer these questions is to identify loci associated 

with traits known to cause RI and determine how resistant to gene flow these loci are 

compared to other genomic regions.  For example, multiple species of interbreeding 

Heliconius butterfly initially diverged primarily in genomic regions associated with wing 

patterning (Nadeau et al. 2012; Kronforst et al. 2013), a set of traits known to cause 

premating isolation (e.g., Jiggins et al. 2001; Kronforst et al. 2006; Chamberlain et al. 

2009).  Similarly, in Lycaeides butterflies, a set of loci associated with either male 

genital morphology or female oviposition preference showed exceptionally high levels 

of genomic differentiation between L. idas and L. melissa, which suggests that these 

traits reduce hybrid fitness and are therefore less subject to gene flow than other 

regions (Gompert et al. 2012).   

Loci associated with divergent genital traits may be expected to show high 

levels of differentiation between species, especially among insects.  Many insects are 

characterized by striking morphological differences in the male genitalia among 

closely-related species (Dufour 1844; Eberhard 1985; Shapiro and Porter 1989).  Sexual 

selection is thought to be the primary force driving rapid genital divergence, but how 

strongly this morphological divergence contributes to speciation is not well 

understood.  To help understand the connections between genital evolution, genome 

differentiation, and RI, I estimated levels of gene flow between Enallagma anna and E. 
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carunculatum, two damselfly species that diverged within the past 250,000 years 

(McPeek et al. 2008) and possess conspicuously divergent male and female 

reproductive structures (McPeek et al. 2009; Barnard et al. 2017).   

Specifically, the cerci (the upper terminal abdominal appendages on the male) 

and mesostigmal plates (structures on the female thorax that are clasped during 

mating by the male appendages) have distinctive species-specific morphologies, while 

many Enallagma species share similar overall morphologies and ecological niche use 

(Siepielski et al. 2010). E. anna and E. carunculatum are commonly sympatric (Paulson 

2009) and possess divergent genital morphologies that are the primary cause of 

premating RI.  However, these species can interbreed to produce viable, fertile 

offspring with intermediate cerci and mesostigmal plate morphologies (Miller and Ivie 

1993; Donnelly 2008; Johnson 2009; Barnard et al. 2017).  This morphological variation 

in hybrids, which has been quantified and described elsewhere (Barnard et al. 2017), 

facilitates dissection of the genetic basis of species-specific male and female 

morphologies.   

Intrinsic postzygotic isolating barriers appear negligible between these species, 

possibly because they have not had sufficient time since divergence to accumulate 

genetic incompatibilities that would cause hybrid sterility or inviability (Turgeon et al. 

2005; Bourret et al. 2012; Barnard et al. 2017).  Because these young species also show 

no obvious divergence in ecology or non-reproductive morphological traits, I predicted 

that their genomes would possess small differentiated regions within a relatively 



103 

 

homogeneous background.  I further predicted that the most differentiated and least 

introgressed loci would be those associated with genital morphologies.   

To characterize the genetic architecture of morphological divergence between 

E. anna and E. carunculatum, I generated a set of genome-wide single nucleotide 

polymorphisms (SNPs) using restriction-site associated DNA sequencing (RADseq; Etter 

et al. 2012).  I then took advantage of interspecific hybrid genomes to search for loci 

associated with variation in male and female reproductive structure morphologies.  I 

further identified genomic regions of reduced gene flow and regions with elevated 

sequence divergence; the former are implicated in RI and the latter are likely targets of 

directional selection (Gompert and Alex Buerkle 2010; Nadeau et al. 2012).  My goal 

was to test whether loci associated with genital morphological variation comprise the 

majority of highly differentiated and infrequently exchanged regions between the two 

focal species.  If a large number of loci unrelated to genital morphologies also show 

low introgression, this could implicate either strong RI that prohibits all but very low 

levels of gene flow, or additional forces besides genital divergence in speciation, such 

as ecological factors.   

 

Methods 

Population sampling 

I sampled damselflies from several Montana populations spanning a known 

hybrid zone.  Most samples came from the Whitefish River, Montana, USA, where E. 
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anna and E. carunculatum display strong positive assortative mating based on 

morphology but occasionally interbreed (Barnard et al. 2017), although the 

directionality of backcrossing is currently unclear.  I reared two consecutive 

generations of E. anna, E. carunculatum, and their hybrids in the lab (methods 

described in Barnard et al. 2017).  Because gene flow between E. anna and E. 

carunculatum in Whitefish may complicate the identification of species-diagnostic 

SNPs, I collected each parental species from three additional sites beyond the known 

hybrid zone to aid in identifying species-specific alleles (Table 6, Figure 18).  Samples 

were placed in ethanol upon capture and stored this way prior to DNA extraction. 

 

Phenotyping 

To quantify morphological differences between hybrids and parental species, I 

produced high-resolution 3-D digital reconstructions of male cerci and female 

mesostigmal plates using micro-computed tomography (micro-CT) as described in 

(Barnard et al. 2017).  Briefly, I quantified the 3-D surfaces of male cerci using spherical 

harmonics (SPHARM; Shen et al. 2009, McPeek et al. 2008).  SPHARM is an extension 

of 2-D Fourier techniques that describes a 3-D shape in terms of the sum of 3-D sines 

and cosines on a sphere, resulting in a large set of coefficients that reconstruct the 

shape of the original object.  The analysis produced 2,883 coefficients to describe each 

cercus, which I condensed into the major modes of shape difference using principal 
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component analysis (PCA).  I quantified female plate mesostigma plate shape using 3-D 

geometric morphometrics (Barnard et al. 2017) and reduced the data using PCA.   

 

Genomic library preparation and sequencing 

 I prepared genomic sequencing libraries for 134 E. anna (from 4 populations) 

116 E. carunculatum (from 4 populations), and 136 presumed hybrids (all from the 

Whitefish River site; Table 6, Figure 18).  I isolated genomic DNA from each damselfly 

using Qiagen’s Gentra Puregene DNA Tissue Kit (Qiagen Inc., Valencia, CA, USA).  I 

generated reduced complexity genomic sequencing libraries for each sample using 

restriction site associated DNA sequencing (RADseq; Etter et al. 2011).  Briefly, I 

digested ~1ug of genomic DNA from each individual using the restriction enzyme 

BbvCI, then ligated to double-stranded adapters containing a unique 5-nucleotide 

sequence to barcode each individual.  Each barcode contained at least 2 mismatches 

from all other barcode sequences to ensure the data could be de-multiplexed after 

sequencing even with low levels of sequencing error.  The DNA for up to 48 individuals 

with different barcodes was equimolarly pooled, then sheared using a Bioruptor 

(Diagenode, NJ, USA) to produce fragments with the adapter at one end and a 

randomly sheared site at the other end.  A custom adapter containing an index to 

identify each pool was ligated at this randomly sheared end and fragments were size-

selected between 300 and 600 bp using a MinElute Gel Extraction Kit (Qiagen).  Sample 

placement was randomized during library preparation to prevent potential bias from 
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location in 96-well plates, gels, or sequencing lanes.  I pooled ~150 samples per 

sequencing lane to allow an estimated 30X mean sequencing coverage per sample.  

Libraries were sequenced to 150 bp read lengths on three separate lanes of an Illumina 

HiSeq 3000, which generated ~702 million reads.   

  

Genotyping 

I processed the raw reads using Stacks (v1.48) software (Catchen et al. 2011; 

Catchen et al. 2013), following the protocol outlined in Rochette and Catchen (2017).  I 

first filtered out low-quality reads and those without a correct barcode.  Of the original 

386 samples, 303 passed the initial quality filtering.  These samples possessed a total 

of ~387 million reads with an average of 16x coverage per individual.   I aligned the raw 

forward reads with each other in a de novo assembly using the following parameters: 

minimum stack depth (m) = 5, minimum distance allowed between stacks (M) =6, 

maximum distance to align secondary reads to primary stacks (n) = 6, and default 

values for all other parameters.  These parameters were selected based on the 

optimization procedures described in Paris et al. (2017).  I used the populations 

module in Stacks to filter out loci found in fewer than 55% of samples within each 

population and selected 1 SNP per locus. This filtering resulted in a set of 556 SNPs 

present in all populations as well as a set of 647 SNPs for only the Whitefish samples.  

Each of these datasets was used in subsequent analyses.   
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Measuring genome-wide and per-locus FST  

To quantify population‐level genetic differentiation, I used Stacks’ populations 

module to calculate genome‐wide FST among all possible population pairs.  To identify 

highly differentiated loci between E. anna and E. carunculatum – which may 

potentially be associated with species-specific reproductive structure morphologies – I 

calculated per-locus FST, pooling all individuals of each field-caught parental species, 

regardless of locality.   

I conducted a similar analysis using only individuals with phenotypic data from 

Barnard et al. (2017), to identify loci with elevated differentiation between phenotypic 

extremes.  I assigned each hybrid a morphological hybrid index by dividing them into 5 

separate bins based on where they fell along PC1 from the morphometric analyses of 

cercus or mesostigmal plate shape.  Males and females with morphology most similar 

to E. carunculatum received a hybrid index of 1, whereas individuals with morphology 

most similar to E. anna received a hybrid index of 5.  I calculated FST between these 

extreme individuals within each sex and included parental species with morphological 

data in the analysis to increase the likelihood of capturing genotypes associated with 

species-specific morphologies.  I then identified loci with significantly high FST values 

from each group, based on analyses of molecular variance (AMOVA), Bonferroni-

corrected for multiple comparisons.   

 

Genetic ancestry and admixture analyses   
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To investigate populations’ genetic structure and admixture between E. anna 

and E. carunculatum in Whitefish, I used STRUCTURE v2.3.4 (Pritchard et al. 2000; 

Falush et al. 2003) to cluster individuals based on their likely ancestry at each locus.  I 

conducted three separate analyses in STRUCTURE to analyze different groupings of 

individuals using the same set of model parameters for each.  The first analysis 

included all field-caught damselflies, grouped by sampling location.  The second 

analysis included field-caught damselflies from only the Whitefish River site.  The third 

analysis used all Whitefish damselflies, including those reared in the lab.  The goal of 

the separate analyses of Whitefish individuals was to compare admixture patterns in 

nature compared to all known hybrid individuals. 

I conducted the STRUCTURE analysis using the admixture model with 

independent allele frequencies and sampling location as a prior.  I ran 10 iterations 

with a 10,000 replicate burn-in followed by 20,000 Markov chain Monte Carlo (MCMC) 

repetitions.  Because morphology and previous phylogenetic analyses indicate that E. 

anna and E. carunculatum are two distinct lineages (Turgeon et al. 2005, Callahan and 

McPeek 2017) and damselflies with intermediate morphologies are hybrids (Barnard et 

al. 2017) – and because my primary goal was to examine admixture between E. anna 

and E. carunculatum – I set the number of genetic clusters (K) = 2.  However, in the 

analysis of all sampled populations, I also ran iterations with K ranging from 3 to 9 to 

reflect the full range of possible genetic clusters (4 populations of each parental 

species and one group of putative hybrids). 
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I also examined inheritance patterns across loci in hybrid damselflies using the 

R package introgress (Gompert and Buerkle 2010).  The program estimates ancestry of 

alleles in hybrids based on parental species’ allele frequencies to calculate a genome-

wide hybrid index, or the proportion of an individual’s genome that was inherited from 

one of the parental species (here, E. anna).  I used all Whitefish samples (lab and field) 

to estimate hybrid index values.  To determine locus-specific levels of introgression 

and identify loci that were introgressed less frequently than the background level, I 

used introgress to calculate maximum likelihood estimates of hybrid index at each 

individual locus, then compare these individual locus estimates to the genome-wide 

hybrid index.  To produce a genomic cline for each locus, I plotted the per-locus hybrid 

index values against allele frequency at each locus.  A steep genomic cline for an 

individual locus indicates that it is exchanged less frequently than other loci.  To allow 

testing for significantly steep clines, the genomic cline for each locus is evaluated for 

deviations from a neutral distribution.  I ran 1000 permutations to estimate this 

neutral distribution. 

 

Analysis of association between morphology and genotype  

For each hybrid, I compared the admixture proportion estimated in STRUCTURE 

with the hybrid index estimated in introgress.  To determine whether either of these 

measures showed a relationship between genotype and phenotype, I conducted linear 

regressions of cercus and mesostigmal plate PC1 values (described in Barnard et al. 
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2017) against STRUCTURE estimates and conducted Kruskal-Wallis tests to examine 

relationships between the rarely-introgressed loci and either cercus or mesostigmal 

plate morphology.  Additional PCs captured negligible morphological variance and I 

therefore did not expect them to show a noticeable relationship with allele 

frequencies.  I also tested for associations between cercus and mesostigmal plate 

phenotype and genotype in 122 males and 123 females for 130 and 132 loci, 

respectively, identified as divergent by the AMOVA-FST analysis, adjusting the 

significance threshold for multiple tests using Bonferroni correction.  Unless otherwise 

noted, analyses were conducted in R version 3.3.1 (R Core Team 2013).  

 

Results 

FST  estimates between all population pairs indicated that individual E. anna and 

E. carunculatum populations were more differentiated from each other than they 

were from other conspecific populations (Table 7).  FST values between E. anna and E. 

carunculatum in Whitefish were lower than they were between other pairs of E. anna 

and E. carunculatum populations, indicating gene flow between the species in 

Whitefish.  Finally, FST between Whitefish and other populations was relatively low 

compared to FST between heterospecific populations. 

 Heterozygosity was higher in Whitefish than in other populations (Figure 19A), 

consistent with the expectation for hybrid zones.  Nucleotide diversity varied among 

populations but was overall lower for each species in Whitefish than for other 
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populations of either parental species (Figure 19B).  Similarly, inbreeding coefficient 

values (FIS) were high across separate E. anna and E. carunculatum populations, but in 

Whitefish showed remarkable variation among individuals and covered the entire 

range of possible values (Figure 19C). 

 I identified 15 loci with significantly elevated FST between species (Figure 19D).  

Three of these loci were also identified as FST outliers in the analysis of males with long 

versus short cerci (Figure 19E), and an additional two were identified as FST outliers in 

the analysis of females with E. anna-type versus E. carunculatum-type mesostigmal 

plate morphologies (Figure 19F).  There was no overlap of loci with elevated FST 

between males and females with variant morphology. 

 

Admixture analyses suggested high levels of gene flow between E. anna and E. 

carunculatum  

 The admixture analysis of field-caught and lab-reared damselflies originating in 

Whitefish indicated a high level of admixture between E. anna and E. carunculatum, 

with an overall pattern in hybrids indicating roughly similar genomic contributions 

from each parental species rather than an excess of alleles from one parental species 

that would indicate asymmetric hybridization (Figure 20A).  Patterns for the two 

parental species show small proportions of each genome assigned to the 

heterospecific cluster, but overall each species is distinguishable from the other.  

However, ongoing admixture at the Whitefish River site could complicate the 
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identification of species-diagnostic alleles.  For this reason, I also analyzed admixture 

using the additional E. anna and E. carunculatum populations.   

 Results of this analysis show a lack of distinct clustering by species or by 

population, with many E. anna individuals assigned primarily to the E. carunculatum 

genetic cluster, or vice versa (Figure 20C).  Additionally, this analysis indicated higher 

variability among hybrids in the proportions of their genome associated with each 

parental species, compared to the Whitefish-only analysis.  

 Results of the admixture analysis with higher K values yielded similar overall 

results: high variability in genetic clusters assigned to individuals in several of the 

separate E. anna and E. carunculatum populations and shared alleles among Whitefish 

damselflies, although hybrids were clearly intermediate between the parental species 

clusters (Figure 21).   

 

Admixture proportion predicted phenotype in each sex 

  There was little agreement between the STRUCTURE and introgress estimates of 

proportion of each hybrid’s genome associated with each parental species (R2
adj =         

-0.005, F1, 108 = 0.49, P = 0.48; Figure 23A).  Admixture proportion estimated in 

STRUCTURE (Figure 20B) was a strong predictor of trait values in both sexes (males: 

R2
adj = 0.46, F1,106 = 92.2, P = 4.4 x 10 -16; females: R2

adj = 0.47, F1,65 = 59.2, P = 1.0 x 10 -

10; Figure 23), but hybrid index estimates from structure showed no relationship with 

morphology (males: F1,58 =2.75, P = 0.10, R2
adj = 0.029; females: F1,29 = 2.75, P = 0.19, 
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R2
adj= 0.026).  Accordingly, Kruskal-Wallis tests did not reveal associations of any of the 

rarely-introgressR2
adjd loci with either with male cercus morphology (PC1 or PC2; 37 

males, all P > 0.01; Figure 22B) or female mesostigmal plate morphology (PCs 1-4; all P 

> 0.01). 

 

Discussion 

 This study aimed to identify regions of the genome that are (1) highly 

divergent between E. anna and E. carunculatum, (2) less subject to gene flow than 

other regions, and (3) associated with species-specific variation in male and female 

reproductive structure morphology.  I predicted that the genomes of E. anna and E. 

carunculatum would be largely undifferentiated, but punctuated by small, highly 

divergent regions.  I further predicted that these highly differentiated regions would 

also show relatively low levels of introgression and would primarily be associated with 

variation in male and female reproductive structure morphologies.   

 My genotyping results yielded high variation in locus representation across 

individuals, which resulted in a smaller than anticipated set of variant loci with which 

to make inferences about genomic divergence as well as lower than expected 

coverage, which may limit genotyping accuracy.  However, I did identify loci that met 

each of my criteria and gained an overview of gene flow between these species. 

 

Asymmetric gene flow 
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Both admixture and introgression analyses showed a pattern of hybridization 

between E. anna and E. carunculatum in nature and indicated that wild hybrids 

possessed roughly similar genomic contributions from either parental species.  I 

previously showed that asymmetric premating RI makes matings between E. anna 

females and E. carunculatum males more likely than the reciprocal (Barnard et al. 

2017), which leads to an expectation of asymmetric gene flow, but the present study’s 

results do not support that prediction.  The cause of this apparently symmetric gene 

flow is still not understood.  Most of the hybrids included in the analysis do not appear 

to be F1s, based on their morphology and their low heterozygosity at most loci, as 

revealed by the genomic clines analysis.  This finding of low heterozygosity is 

consistent with a prediction of underdominance and selection against heterozygotes 

(Payseur 2010).  One potential explanation for this observation of low heterozygosity is 

that intermediate genital morphology puts male hybrids at a reproductive 

disadvantage (Barnard et al. 2017).  More research is needed to identify loci with 

biased introgression patterns and clarify their effects on RI. 

Additionally, the genomic cline analysis results must be interpreted cautiously.  

A somewhat surprising result is that although STRUCTURE and introgress both 

estimated that natural hybrids possessed alleles inherited from both parental species, 

these relationship between the estimates were inconsistent when examined on an 

individual basis (Figure 22B).  The results of both analyses must be considered 

carefully, because both included samples categorized as pure species but with 
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unknown levels of admixture in their own genomes.  Additionally, the recent 

divergence time of these species makes it difficult to distinguish recent admixture from 

incomplete lineage sorting of shared ancestral polymorphisms.  Both processes result 

in a similar pattern that make it difficult to distinguish either species at many loci (e.g., 

Mason et al. 2015). 

 

Phenotypic and genotypic divergence 

 I identified several loci with elevated sequence differentiation between E. anna 

and E. carunculatum, several of which were identified in both a species-level analysis 

and an analysis based on sex- and species-specific morphology).  This finding alone 

does not indicate whether any of these loci are responsible for morphological 

variation, but it does suggest a starting point for a deeper examination of genes that 

may specify male or female morphologies.  To complement this approach, I also 

examined whether any of the infrequently introgressed loci I identified were 

implicated in RI by testing for associations with male and female morphological 

variation.  This analysis did not reveal any significant connections, probably due in 

large part to the relatively low number of variant loci included in the analyses.  

It is highly likely that the loci analyzed in the present study did not cover a 

sufficient portion of the genome to capture highly divergent areas associated with 

divergent phenotypes in E. anna and E. carunculatum.  Early in divergence, 

differentiated regions may be quite small, and the loci I identified in this study may not 
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be sufficiently dense to detect small regions of genomic divergence (Ellison et al. 2011; 

Nadeau et al. 2012; Kronforst et al. 2013).  E. anna and E. carunculatum shared a 

common ancestor within the last 250,000 – 15,000 years (McPeek et al. 2008).   

Incomplete lineage sorting among E. anna and E. carunculatum populations within the 

past 15,000-250,000 generations has likely resulted in many shared ancestral 

polymorphisms and few species diagnostic markers, similar to findings in the closely 

related species E. hageni and E. ebrium (Bourret et al. 2012).  Indeed, my admixture 

analysis suggests high ancestral polymorphism in populations of both species (Figure 

19C).   

Moreover, RI appears to often be caused by many loci with small individual 

effects, which are more difficult to detect in the sparser sets of loci obtained by 

reduced representation genome sequencing (Szymura and Barton 1986; Janoušek et 

al. 2012; Payseur and Rieseberg 2016).  High levels of gene flow can further exacerbate 

the difficulty of pinpointing divergent areas of the genome, and morphologically 

distinct groups may not be easily distinguished at a large number of molecular markers 

(e.g., (Poelstra et al. 2014; Mason and Taylor 2015; Toews et al. 2016).  A noteworthy 

recent example of this phenomenon comes from a whole genome comparison of blue- 

and golden-winged warblers, which showed that these species’ genomes show high 

differentiation at only six small regions – regions that had gone unnoticed by multiple 

other genotyping methods that covered less of the genome, including RADseq (Toews 

et al. 2017).   



117 

 

 

Conclusion  

Divergence in genital morphologies appears to have been a major driving force 

in Enallagma speciation (McPeek et al. 2008, 2009; Barnard et al. 2017).  Loci linked to 

male and female genital morphologies are expected to show reduced levels of 

introgression relative to other genomic regions, and should also be among loci that 

display high levels of between-species divergence.  Along with a de novo transcriptome 

assembly in E. hageni (Shanku et al. 2013), the present study is among the first 

attempt to characterize the Enallagma genome.  My results revealed discordance 

between various methods of investigating patterns of genomic divergence and 

searching for divergent loci related to morphological divergence and RI.  Additional 

sequencing efforts to cover a higher proportion of the genome in a smaller set of 

individuals may be necessary to confidently determine whether E. anna and E. 

carunculatum genomes show elevated divergence and reduced introgression primarily 

at loci that specify genital morphologies.   

 

  



118 

 

Chapter 3 - Tables 

Table 6.  Sampling sites for genomic analyses 
 

Population (abbrev) Species N  Latitude Longitude 

Bull Lake, MT (BL) E. carunculatum 13 48.226272 -115.84045 

Eyraud Lakes, MT (EL) E. carunculatum 13 48.014084 -111.97501 

Flathead River, MT (FR) E. carunculatum 14 47.367827 -114.57759 

Muddy Creek, MT (MC) E. anna 12 47.97961 -112.15654 

Pondera Coulee, MT (PC) E. anna 5 48.189244 -111.3268 

Willow Creek, MT (WC) E. anna 11 48.658064 -112.75906 

Whitefish River, MT (WF) E. carunculatum  

E. anna  

hybrids 

40 

45 

30 

48.371231 -114.30252 

Lab-reared progeny from 

WF populations 

E. carunculatum  

E. anna  

hybrids 

18 

48 

97 

-- -- 

N denotes the number of damselflies for which genomic sequence data were obtained.   

 

  

javascript:void(0)
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Table 7.  Pairwise population FST estimates 
 

  E. anna E. carunculatum Hybrids 

Population MC PC WC WF BL EL FR WF 

E. anna WF  0.046 0.120 0.056 0.157 0.166 0.188 0.138 0.106 

 MC 

 

0.251 0.122 0.183 0.307 0.329 0.272 0.152 

 PC 

  

0.257 0.120 0.253 0.251 0.306 0.101 

 WC 

   

0.159 0.225 0.295 0.206 0.099 

E. carunculatum WF 

    

0.080 0.083 0.093 0.102 

 BL 

     

0.176 0.255 0.113 

 EL 

      

0.273 0.152 

 FR 

       

0.147 

Estimates are based on a set of 5 loci found in all populations.  Only field-caught 
damselflies were included in the analysis.  Population abbreviations are described in 
Table 6.  
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Chapter 3 - Figure captions 

Figure 18.  Sampling locations of E. anna, E. carunculatum, and admixed damselflies 

(gray triangle).  Shading indicates regions where both species’ ranges overlap (adapted 

from Johnson 2009; Paulson 2009, 2011). 

 

Figure 19.  Summary population genetic statistics for E. anna, E. carunculatum (car), 

and admixed populations. (A) Heterozygosity. (B) Nucleotide diversity.  (C) Inbreeding 

coefficient FIS).  (D-F) Per-locus (corrected AMOVA) FST between E. anna and E. 

carunculatum (D), females with extremes of mesostigmal plate shape (E), and males 

with extremes in cercus shape (F).   In panels A-C, each point represents the 

population mean, and bars indicate standard error.  Population abbreviations are 

described in Table 6.  In panels D-F, shaded points indicate loci with significantly 

elevated FST.  In D, points with hatches indicate outlier loci also identified in FST 

calculations between males with extremes of cercus shape (E), and black points 

indicate outlier loci also identified in FST calculations between females with extremes 

of mesostigmal plate shape (F).   

 

Figure 20.  Bayesian estimation of admixture proportions in the program STRUCTURE 

with the number of genetic clusters to assign samples to (K) = 2.  Each vertical bar 

represents one individual.  The y-axis values represent the assignment probability to 

either the E. anna (gray) or E. carunculatum (black) genetic cluster, respectively.  (A) 
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Estimation from 272 damselflies from two generations from the Whitefish River site 

(generation 1 field-caught, generation 2 lab-reared).  (B) Estimation from 127 field-

caught damselflies from Whitefish River.  (C) Estimation from 200 damselflies from 4 

natural populations of each species, including Whitefish River. White lines separate 

each group: species (A and B) or species and site (C). 

 

Figure 21.  Bayesian estimation of admixture proportions in multiple STRUCTURE 

analyses with the number of genetic clusters to assign samples to (K) set between 3 

and 9.  The genotype data are the same as those in Figure 20C (2356 loci in 200 

damselflies from 4 natural populations of each species).  Each vertical bar represents 

one individual.  The proportion of each color within a vertical bar represents the 

proportion of the genome assigned to 1of K clusters.  Black lines separate each 

population. 

 

Figure 22. Results of introgression analysis.  (A) Genomic hybrid index estimates.  Each 

gray bar represents the estimated proportion of alleles inherited from E. anna for a 

single individual.  Blue bars represent 95% confidence limits of ancestry estimates.  (B) 

Lack of agreement between ancestry estimates ancestry for each hybrid in STRUCTURE 

vs introgress.   
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Figure 23. Relationships between admixture estimates and morphology.  Hybrid 

index is the proportion of the genome associated with the E. anna genetic cluster by 

STRUCTURE.  PC1 values for male cerci and female mesostigmal plates come from 

Barnard et al. 2017.  Each point represents one individual.  Illustrations on the y-axes 

represent cercus and plate phenotypes associated with each parental species.   

 

 

  



123 

 

Figure 18. Sampling locations  
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Figure 19. Summary population genetic statistics 
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Figure 20. Bayesian estimation of admixture proportions in STRUCTURE (K = 2) 
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Figure 21. Bayesian estimation of admixture proportions in multiple STRUCTURE 
analyses with K set between 3 and 9 
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Figure 22. Results of introgression analysis 
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Figure 23. Relationships between admixture estimates and morphology 
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