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Abstract 

In the context of learning a dynamic task involving cognitive and perceptual-motor 

demands, this laboratory study contributed to a multilevel perspective of goal 

orientation and performance by examining adaptation to a novel and unforeseen change. 

Repeated measures and discontinuous mixed-effects growth modeling were used to 

disentangle within- from between-person effects of mastery-approach, mastery-

avoidance, performance-approach, and performance-avoidance goal orientation 

dimensions on performance. At the within-person level, this study failed to replicate 

previous findings of goal orientation effects corresponding to resource allocation 

theory. At the between-person level, results were consistent with prior research such 

that mastery-approach and performance-approach facilitated performance, whereas 

performance-avoidance hindered it. A positive effect of mastery-avoidance on 

performance was also found. There were no interactions between goal orientation and 

adaptation trajectories, suggesting that main effects of goal orientation are stable across 

changes in task demand. This research contributes toward theories of self-regulation and 

active learning, and questions the extent to which a dynamic approach for 

understanding the effects of goal orientation is necessary.
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Introduction 

The nature of work is becoming increasingly complex due to accelerated 

technological, economic, and social change (Baard, Rench, & Kozlowski, 2014; 

Pulakos, Arad, Donovan, & Plamondon, 2000). To compete in increasingly volatile 

environments, organizations need to continuously adapt—a challenge often delegated to 

its human resources (Reeves & Deimler, 2011). Now more than ever, people are 

expected to adapt their knowledge and skills to unforeseen changes in the workplace. 

The time and costs of developing formal training make it difficult for organizations to 

implement programs that keep pace with the rate of change (LePine, Colquitt, & Erez, 

2000). As such, it often falls on the individual to be responsible for their own learning 

and development (Noe, Clarke, & Klein, 2014). For these reasons, research has moved 

beyond traditional approaches of training toward those that emphasize the 

generalization and adaptation of skills and knowledge (Bell & Kozlowski, 2008). 

 Traditionally, research on skill acquisition and training has emphasized the 

proceduralization of routine tasks. This is effective for stable, low variability conditions, 

but often ineffective or even detrimental in dynamic environments (Paas & van 

Merriënboer, 1994). One proposed solution is active learning, an approach to 

instructional design in which learners are proactively engaged in the learning process 

rather than receiving information passively (Bell & Kozlowski, 2008). Its fundamental 

tenets are (1) that individuals possess significant control over their learning and (2) that 

learning is an inductive process. Learners are responsible for developing self-regulatory 

strategies that accompany the skill being learned. What separates active learning from 

other constructivist approaches (e.g., discovery learning) is its emphasis on formal 
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training elements that support learners’ self-regulation as they engage training materials 

and practice to-be-learned skills. 

Self-regulation refers to how individuals modulate their cognition, behavior, and 

affect toward accomplishing goals (Karoly, 1993). There are several theories of self-

regulated learning (e.g., Carver & Scheier, 1981; Pintrich, 2000; Zimmerman, 1990), 

but one principle shared by all of them is that goals initiate self-regulatory processes 

(Sitzmann & Ely, 2011). Goals focus attention on relevant activities, which result in 

increased effort, persistence, and discovery and use of task-relevant knowledge and 

strategies (Locke & Latham, 2002). Goal orientation (GO) theory has been offered as a 

potentially useful overarching framework for understanding self-regulated learning in 

terms of how individuals might simultaneously pursue a variety of goals. 

Theoretical frameworks of GO distinguish between motivation toward mastering 

a task and demonstrating competence (Payne, Youngcourt, & Beaubien, 2007). 

Research suggests that GO dimensions lead to relatively unique, adaptive or 

maladaptive outcomes, but there is disagreement regarding what those effects are and 

under which contingencies they operate (Hulleman, Schrager, Bodmann, & 

Harackiewicz, 2010). Part of the challenge in understanding these effects is that 

research on GO has predominantly taken a trait-based approach and has not adequately 

examined the state-based nature of GO. Self-regulated learning is a within-person 

phenomenon, such that cognition, motivation, and affect are subject to within-person 

fluctuations as individuals engage a task. Accordingly, it is vital that research specify 

and empirically disentangle such within- and between-person effects.  
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Indeed, recent research that has disentangled between- and within-person GO 

effects has not only demonstrated that within-person GO-performance relationships 

meaningfully differ from between-person relationships (Beck & Schmidt, 2013; Yeo, 

Loft, Xiao, & Kiewitz, 2009), but also that within-person effects can be dynamic over 

the course of skill acquisition in relation to the effective allocation of cognitive 

resources (Converse et al., 2013; Yeo et al., 2009).      

Given the scarcity of research that has disentangled within- from between-

person GO effects, the purpose of the following study was to (1) replicate findings of 

this nascent empirical literature, particularly Yeo et al. (2009) in the context of skill 

acquisition, and (2) extend this line of research by examining relationships with 

adaptation to unforeseen changes in task demands. Specifically, this research used a 

task-change paradigm in which participants learned a complex task prior to being 

confronted with unforeseen changes in task demands that required adaptive behavior 

(Lang & Bliese, 2009). Repeated measures of objective performance and self-reports of 

GO were taken during both skill acquisition and adaptation. Discontinuous mixed-

effects growth modeling was used to test hypotheses based on resource allocation 

theory (Kanfer & Ackerman, 1989) that distinguish within- from between-person GO 

effects and adaptation from acquisition. In this vein, the following research clarifies the 

effects of GO in a manner that can inform the practice of training that better supports 

self-regulated learning and performance adaptability. 

Adaptation and the Task-change Paradigm 

Given the increased need for individuals who can adjust to changing 

environments, there has been a surge of research on adaptation in recent years. 
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Adaptation is generally described as the modification of cognition and behavior in 

response to change, though its precise conceptualization and operationalization has 

varied across studies (Baard, Rench, & Kozlowski, 2014; Jundt, Schoss, & Huang, 

2015). In the context of skill acquisition, adaptation is best conceptualized as a process 

that unfolds over time. Individuals who encounter an unexpected change in task 

demands employ self-regulatory mechanisms for effectively allocating attention toward 

meeting achievement goals. These processes can either hinder or facilitate performance 

depending on the cognitive demands of the task at a given moment (Kanfer & 

Ackerman, 1989). Relationships between self-regulation and performance across 

acquisition and adaptation can be modeled using a repeated measures design with a 

task-change manipulation (Lang & Bliese, 2009). 

  Given that acquisition and adaptation are both operationalized in terms of task 

performance, it is necessary to distinguish between the two processes. Research on the 

former suggests that skill acquisition consists of three stages (Kanfer & Ackerman, 

1989; Tenison & Anderson, 2016). In the first (i.e., cognitive) stage, learners devote 

most, if not all their attention to understanding the task. It is during this phase that the 

task imposes the highest cognitive load on the learner, given a lack of prior experience 

from which to draw strategies. As effort is allocated toward encoding task elements and 

relationships between them, the learner enters a second (i.e., associative) stage in which 

specific procedures are consolidated into a smaller set of task strategies. Attentional 

demands imposed by the task decrease as strategies are further consolidated via 

repeated retrieval and revision in response to errors. With continued practice, task 

strategies become automated, thus indicating transition into the third (i.e., autonomous) 
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stage of skill acquisition. It is at this point that task strategies become routine and can be 

executed with minimum demands imposed on the learner’s cognitive resources.  

 The process of skill acquisition is illustrated by modeling performance over time 

and across individuals. Following a logarithmic growth curve, initial gains in task 

performance are represented by a steeper slope at the beginning, whereas automated 

processing of the task occurs as the curve approaches an asymptote (Fitts & Posner, 

1967; Newell & Rosenbloom, 1981). The observation that performance gains diminish 

rather than steadily increasing is due to limits imposed by task and learner 

characteristics (Kanfer & Ackerman, 1989). In instances where the task is either too 

difficult or easy, increasing effort has no additional effect on the level of performance. 

Otherwise, performance gains are constrained by differences in ability (i.e., cognitive 

resource capacity) and willingness to exert effort. Thus, complete automation of a task 

beyond a subset of strategies is unlikely for complex tasks due to a confluence of task 

and learner characteristics. Individuals often settle on reasonably effective, but 

suboptimal solutions in complex environments (Dörner, 1980). This contrasts with 

continually monitoring performance, exploring alternatives, and deciding on whether to 

use existing strategies, modify them, or adopt new ones. These actions are important for 

attaining exceptional levels of skill in complex domains, and especially for adapting to 

change. 

 Typically, an event that demands adaptation involves a shift in the complexity of 

the task environment. Complexity in this sense consists of the number of task elements, 

the relationships among the elements, and variation in these quantities and interrelations 

over time (Wood, 1986). In a laboratory setting where participants are learning and 
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performing a task over multiple trials, such a shift can be implemented by changing the 

task characteristics mid-protocol (Lang & Bliese, 2009). Strategies used prior to the 

change are likely to be less effective in the post-change environment, leading to an 

immediate decrease in performance. This is accounted for in a model of skill acquisition 

by adding a spline for discontinuous growth, allowing for the intercepts and slopes of 

performance over time to be compared relative to the task-change (Bliese & Lang, 

2016). In the trial immediately following the manipulation—a phase termed transition 

adaptation—a lower value represents a lesser decrement in performance, thus indicating 

more successful generalization of skill to the novel environment. Adaptation is not an 

isolated event, however. Much of the self-regulation and cognitive processing that 

constitutes adaptation is observed in reacquisition of pre-change performance levels in 

the trials that follow. 

 Reacquisition adaptation is like initial acquisition in that it is also modeled as a 

logarithmic growth curve of performance over time (Lang & Bliese, 2009). It is thought 

to follow a similar trajectory as well, with cognitive demands being highest at the 

intercept (i.e., immediately following a change), and diminishing across repeated trials. 

The key difference between adaptation and initial acquisition is the possession of 

preexisting routines at the intercept change. Once a change is detected, an individual 

must identify task strategies that are no longer as effective and modify their 

representations of the task to compile new or modified strategies. Diagnosing 

discrepancies may involve unlearning one’s mental model of the task characteristics 

(Klein & Baxter, 2006). Adaptation in this sense can be described as the rate of 
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performance gains over time, with higher slopes demonstrating faster reacquisition and 

automatization of effective routines in the post-change environment. 

  While the aggregate models of acquisition and adaptation follow a stable 

growth curve, a single individual’s trajectory is much more variable (Donner & Hardy, 

2015). Performance may fluctuate from one trial to another as learners explore new 

strategies, diagnose errors, or become distracted by off-task thoughts. The advantage of 

a longitudinal design is that fluctuations in self-regulatory variables can be analyzed 

alongside trial-to-trial increases and decreases in performance relative to the average 

change over time. Previous research has used this approach to make inferences about 

the causal effects of motivation on the process of skill acquisition (Yeo et al., 2009; Yeo 

& Neal, 2004), but this it yet to be done in the context of adaptation. The following 

study utilizes a repeated measures design to test effects of a set of motivational 

states―goal orientations—on both skill acquisition and adaptation, and discontinuous 

mixed-effects growth modeling to distinguish how these effects differ across the two 

processes. 

Goal Orientation 

Goal orientation (GO) refers to the mindsets of individuals in achievement 

contexts such as school, sports, or work (Elliot, 2005). Since its original 

conceptualization, GO has been demonstrated to account for variability in self-regulated 

learning (Pintrich, 2000) and performance (Payne, Youngcourt, & Beauben, 2007). 

Although scholars tend to agree on the importance of GO for understanding motivation 

in achievement settings, there are several inconsistencies regarding its conceptualization 

and operationalization (DeShon & Gillespie, 2005; Hulleman, Schrager, Bodmann, & 
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Harackiewicz, 2010). The 2 × 2 framework (Elliot & McGregor, 2001) serves as a 

foundation for distinguishing between GO dimensions via the definition and valence of 

competence (Elliot, 2005). Research has also begun to resolve conceptual discrepancies 

by addressing the stability of GO dimension across contexts.  

Historically, most of the research on GO has emphasized the distinction between 

mastery and performance goals (Ames & Archer, 1988; Dweck, 1986; Nicholls, 1984). 

Mastery GO is striving toward learning a given task, whereas performance GO is 

striving toward demonstrating competence (Elliot, 2005). Both have been shown to 

have differential effects on the allocation of cognitive resources during learning (e.g., 

Fisher & Ford, 1998). Learners with a high mastery GO are inclined to exert effort 

toward exploration and learning task strategies. Learners with high performance GO 

might also devote attention to on-task activities, but are likely preoccupied with off-task 

thoughts concerning how their competence compares to others. Although older 

conceptualizations of GO described the mastery and performance dimensions as 

opposite ends on the same continuum, current research distinguishes them as relatively 

independent constructs (Button, Mathieu, & Zajac, 1996; Hulleman et al., 2010; Payne 

et al., 2007). 

Greater conceptual clarity was provided by incorporating approach and 

avoidance motivation into GO theory (Elliot & MacGregor 2001; Day, Yeo, & 

Radosevich, 2003). To account for mixed empirical findings regarding performance 

GO, it was bifurcated into approach and avoidance dimensions (Elliot & Harackiewicz, 

1994; VandeWalle, 1997). Performance-approach (PAp) refers to striving toward higher 

levels of competence relative to others, whereas performance-avoidance (PAv) refers to 
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the desire to avoid appearing incompetent. PAv is associated with fear of failure and 

distraction, in addition to off-task thoughts regarding interpersonal comparison, which 

are also associated with PAp. Approach and avoidance were eventually incorporated in 

mastery GO, thus renaming mastery GO to mastery-approach (MAp) and adding 

mastery-avoidance (MAv) to the framework (Elliot & McGregor, 2001). Described as 

“avoiding task-based or intrapersonal incompetence” (Elliot & Murayama, 2008, p. 

614), it is unclear whether MAv is a useful addition to GO theory (Baranik, Stanley, 

Bynym, & Lance, 2010; DeShon & Gillespie, 2005). 

Scholars have also debated on whether GO is better defined as a stable 

disposition or domain-specific state (DeShon & Gillespie, 2005). Button et al. (1996) 

described it as a “somewhat stable individual difference factor that may be influenced 

by situational characteristics” (p. 28). The malleability of GO is apparent given that 

studies have effectively manipulated it (Van Yperen, Blaga, & Postmes, 2015). In 

addition, research comparing GO measures has revealed stronger relationships of GO 

with criteria when it was operationalized as a task-specific construct versus a 

disposition (e.g., Day, Stokes, & Fein, 2002). Although individuals can maintain 

general GO tendencies (Payne et al., 2007), the unique effects of variability in GO 

across time and situations should not be ignored. 

With GO being thought to influence the allocation of cognitive resources, the 

magnitude and direction of its effects are expected to vary across different stages of 

skill acquisition and adaptation. Throughout both processes, multiple fluctuations in 

performance occur (Lang & Bliese, 2009). Although some of these fluctuations are due 

to practice errors, some of the variability is likely reflected by the learner’s motivational 
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state. Shifts in attention between on- and off-task thoughts influence performance, such 

as when learners decide to explore the task environment, focus more on outperforming 

others, or consider more carefully how to avoid making mistakes. Determining how 

fluctuations in learner states relate to performance across multiple trials can be 

examined by statistically disentangling within- and between-person effects of GO on 

performance. 

Goal Orientation and Performance 

Only recently has research begun to disentangle the between- and within-person 

effects of GO on performance (e.g., Beck & Schmidt, 2013; Converse et al., 2013; Yeo 

et al., 2009). Yeo et al.’s (2009) Study 1 using an air traffic control simulation is 

especially relevant, being the only one that investigated both levels of GO during 

complex skill acquisition. Distinct effects of GO were found at the between- and within-

person levels, indicating that both individual differences in GO and deviations from an 

individual’s average GO level matter. In addition, Yeo et al. (2009) found that effects 

were moderated by task practice, such that the magnitude and direction of GO effects 

change over the duration of skill acquisition. These results were explained via resource 

allocation theory, which states that goals influence the allocation of limited cognitive 

resources (Kanfer & Ackerman, 1989). MAp, PAp, and PAv are thought to 

differentially influence attention to self-regulatory activities and off-task thoughts, 

which in turn influence task performance. Drawing on resource allocation theory, I 

expected to replicate Yeo and colleagues’ (2009) findings and further apply this 

reasoning to the effects of GO during adaptation to unforeseen change. 
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 Mastery-approach 

MAp reflects striving toward learning and developing competence relative to a 

self-relevant or task-relevant standard (Elliot, 2005). Due to its positive associations 

with variables that facilitate performance (e.g., effort, persistence, and feedback 

seeking; Elliot, Shell, Henry, & Maier, 2005; Payne et al., 2007), MAp is often 

considered to be ubiquitously beneficial. However, its observed relationships with 

performance have been mixed between positive (e.g., Fisher & Ford, 1998; Grant & 

Dweck, 2003) and null (e.g., Cury, Elliot, Da Fonseca, & Moller, 2006; Payne et al., 

2007). One explanation for this discrepancy is that past studies have confounded effects 

at the within- and between-person levels (Yeo et al., 2009). MAp might be expected to 

operate differently with respect to variation in one’s own performance compared to 

performance relative to others. 

When disentangling the multilevel effects of MAp on performance, Yeo et al. 

(2009) found a positive effect at the within-person level, but a negligible effect at the 

between-person level. Moreover, they found the within-person effect to be consistent 

across skill acquisition. These findings support the argument that GO effects on 

performance vary at different levels of analysis, and corroborate explanations of how 

MAp is theorized to direct attention. High levels of striving toward mastery are 

associated with acquiring more advanced task strategies and raising intrapersonal 

standards. This is expected to translate into increased performance relative to one’s 

previous performance over time, but not necessarily relative to that of others. As such, I 

expected to replicate the findings of Yeo et al. (2009) regarding the within- and 

between-person effects of MAp on performance. 
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Hypothesis 1: At the within-person level, there will be a positive relationship 

between MAp and performance.  

 

Following a change in task demands, the interaction between the learner and 

task environment resembles that at the beginning of skill acquisition. However, given 

that new task demands must be learned, task strategies developed prior to the change 

are no longer as effective (Bröder & Schiffer, 2006). Due to having constructed a 

mental model of the task prior to the change, the benefits of having automated routines 

are no longer as apparent (Betsch, Haberstroh, Glöckner, Haar, & Fiedler, 2001). 

Learners need to undergo fundamental shifts in their understanding of the task toward 

more complex mental models. To achieve performance gains, one must direct cognitive 

resources toward exploring the post-change environment with objectives of modifying 

existing strategies and discovering new ones. By focusing attention on these objectives, 

MAp is expected to buffer the increased cognitive demands imposed on the learner by 

changes in task demands. I expected that striving toward mastery would be especially 

important following change. Thus, I expected to find a moderating effect of transition 

adaptation on the positive relationship between MAp and performance at the within-

person level. 

Hypothesis 2: At the within-person level, there will be an interaction between MAp 

and transition adaptation, such that the positive effect of MAp on performance will 

be stronger during post-change versus pre-change trials. 

 

Performance-approach 

PAp is composed of elements that are both facilitative and detrimental to 

learning, which has made it a topic of debate among scholars (Senko, Hulleman, & 

Harackiewicz, 2011). While the element of approach motivation links PAp to greater 

effort and persistence (Elliot & McGregor, 2001), performance orientation is also 
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associated with off-task thoughts about demonstrating competence relative to others. 

Some argue that the interaction of these elements is beneficial to performance (Elliot & 

McGregor, 2001; Senko et al., 2011), while others posit that consequences outweigh 

any benefits (Brophy 2005; Midgley, Kaplan, & Middleton, 2001). Evidence is mixed, 

with meta-analyses reporting both null (Payne et al., 2007) and positive effects of PAp 

on performance (Day et al., 2003; Hulleman et al., 2010). Yeo et al. (2009) found that 

the relationship at the between-person level was positive, suggesting that on average, 

those who attend more to demonstrating competence tend to perform better. 

Furthermore, Yeo et al. (2009) found a dynamic within-person effect throughout skill 

acquisition, suggesting that the relationship between PAp and performance is rather 

nuanced. 

 The complicated relationship between PAp and performance can be understood 

in terms of how cognitive demands change across the stages of skill acquisition. In the 

beginning of skill acquisition, cognitive demands imposed on the learner are high. The 

learner must devote the entirety of their attention toward understanding task elements 

and their relationships. Focusing on interpersonal comparison during this phase steals 

from limited cognitive resources that are needed to understand task fundamentals. As 

task strategies become automated with practice, tasks can then be performed with a 

reserve of attention (Kanfer & Ackerman, 1989). Striving toward outperforming others 

becomes beneficial by focusing attention on sustaining high levels of performance. 

Indeed, Yeo et al. (2009) found an interaction with the linear trajectory of skill 

acquisition, such that PAp had a negative effect on performance in early trials, but a 

positive effect in later trials. In contrast to the positive effect of PAp at the between-
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person level, within-person effects of PAp correspond to demands placed on the 

learner’s cognitive resources. Accordingly, I expected to replicate the findings of Yeo et 

al. (2009) at both levels. 

Hypothesis 3: At the between-person level, there will be a positive relationship 

between PAp and performance. 

 

Hypothesis 4: At the within-person level, the effect of PAp on performance will be 

dynamic, such that it will be negative early in skill acquisition, but become positive 

in later trials. 

 

Following an unforeseen change in task demands, PAp can hinder performance 

by directing attention toward off-task thoughts related to demonstrating competence. 

This consumes cognitive resources that are needed for modifying and discovering task 

strategies (Avery & Simille, 2013; Avery, Simille, & de Fockert, 2013). In addition, 

reliance on pre-existing routines can interfere with learning (Betsch et al., 2001; Bröder 

& Schiffer, 2006). Learners focused on interpersonal comparison may be more likely to 

rely on existing strategies and their underlying mental models. Attention to changed 

task demands is vital for appropriately unlearning old ways and modifying existing 

schemas. As such, PAp was expected to be detrimental in adaptation compared to skill 

acquisition. 

Hypothesis 5: At the between-person level, there will be an interaction between PAp 

and transition adaptation, such that individuals with higher PAp will experience a 

larger decrement in performance following change in task demand. 

 

Hypothesis 6: At the within-person level, there will be an interaction between PAp 

and transition adaptation, such that the effect of PAp on performance will be more 

negative during post-change versus pre-change trials. 

 

As with the initial skill acquisition process, however, cognitive resources 

become increasingly available as individuals compile new or modified task strategies 

for the post-change environment. With a reserve of cognitive resources becoming 
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available as new and modified task strategies become automated, PAp goals become 

less distracting and more facilitative of reaching higher levels of performance. Although 

the within-person PAp effect has been shown to shift from negative to positive during 

skill acquisition (Yeo et al., 2009), an interaction of this degree will probably not occur 

during adaptation due to the increased cognitive demands associated with the 

interference of previously automated task strategies to discovering and understanding 

changes in the task environment.   

Hypothesis 7: At the within-person level, the relationship between PAp and 

performance will be dynamic, such that it will be negative early in reacquisition 

adaptation, but will be less negative in later trials. 

 

Performance-avoidance 

Defined as avoiding demonstrations of incompetence (Elliot & McGregor, 

2001), PAv is generally thought to hinder performance (Payne et al. 2007). This 

negative relationship is primarily driven by the avoidance dimension, which is related to 

anxiety and self-doubt (Elliot et al., 2005; Eysenck & Calvo, 1992). Meta-analytic 

reviews have shown that PAv yields negative effects on performance (Payne et al., 

2007, Van Yperen et al., 2015). Indeed, Yeo et al. (2009) found a negative between-

person effect of PAv on performance, but not at the within-person level. Their 

explanation for this finding was based on how self-regulatory processes are 

hierarchically organized (see Carver and Scheier, 1998), and specifically that within-

person effects of PAv can be overridden by those for PAp such that striving to 

outperform others subsumes avoiding demonstrations of incompetence. This could 

partially explain why PAp and PAv are so closely related (Hulleman et al., 2010; 

Linnenbrink-Garcia et al., 2012). Parsing out the relationship likely involves additional 
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moderators (e.g., Law et al., 2012) and is beyond the scope of this study. As such, I 

expected to replicate the finding of Yeo et al. (2009). 

Hypothesis 8: At the between-person level, there is a negative relationship between 

PAv and performance. 

 

 Like what is expected from PAp, the effects of PAv are expected to be stronger 

during adaptation compared to skill acquisition. Cognitive resources consumed by 

interpersonal comparison and negative affect interfere with the ability to make sense of 

new task demands and modify existing task strategies (Crouzevialle & Butera, 2012; 

Eysenck & Calvo, 1992). Learners occupied with off-task thoughts are less likely to 

devote the attention required to revise their mental models. As such, they may rely on 

routines developed prior to the change, which are suboptimal for meeting post-change 

task demands. Thus, I expected that PAv is more detrimental to performance during 

adaptation when aggregated across trials. 

Hypothesis 9: At the between-person level, there will be an interaction between PAv 

and transition adaptation, such that individuals with higher PAv will experience a 

larger decrement in performance following a change in task demand. 

 

Mastery-avoidance 

Despite Elliot and McGregor’s (2001) assertion to include MAv in frameworks 

of GO, many scholars choose to exclude it (DeShon & Gillespie, 2009). Even Elliot and 

McGregor (2001) acknowledge the counterintuitive nature of MAv, which corresponds 

to striving toward avoiding incompetence. The conflicting combination of 

absolute/intrapersonal standards and negative valence makes it difficult to anticipate 

how MAv is associated with performance. Furthermore, the little research on MAv and 

performance has produced mixed results (Baranik, Lau, Stanley, Barron, & Lance, 

2013; Elliot & Murayama, 2008). MAv might possess limited relevance for specific 
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contexts, such as among experts (DeShon & Gillespie, 2009) or individuals with 

declining skill via aging (Senko & Freund, 2015). Baranik, Stanley, Bynum and Lance 

(2010) suggested that it might be especially relevant for dynamic environments. 

Individuals who are challenged to frequently acquire new skills in novel situations 

might adopt MAv just to “get by” (Baranik et al., 2010, p. 267). 

 Whereas MAv is expected to facilitate skill acquisition via on-task attention 

directed toward meeting intrapersonal standards, it is also expected to hinder it via 

negative affect. Like PAv, individuals with high MAv might struggle with effectively 

allocating cognitive resources. MAv is associated with increased anxiety (Elliot & 

McGregor, 2001), maladaptive task strategies (Howell & Watson, 2007), and disinterest 

(Baranik et al., 2010). MAv is also thought to reflect perfectionism, which can either 

facilitate or hinder performance via perfectionistic strivings or concerns (Kaye, Conroy, 

& Fifer, 2008; Stoeber, Stoll, Pescheck, & Otto, 2008). Whereas MAv is self-referent at 

a within-person level, avoidance motivation is thought to propagate at the between-

person level (Yeo et al., 2009). To investigate these contrasts, I tested effects of MAv 

on performance at within- and between-person levels during skill acquisition and 

adaptation. 

Research question: How does MAv relate to performance during skill acquisition 

and adaptation to change? 

 

Method 

Participants 

288 undergraduate students at the University of Oklahoma completed the 

present study in exchange for credit toward a psychology course and entries into a gift 

card drawing contingent on task performance. Data were excluded for 12 participants 
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who experienced technical difficulties and 6 who failed to follow instructions. An 

additional 17 participants were removed for careless responding, which was detected 

via long string analysis (Meade & Craig, 2012). The final sample consisted of 253 

participants, 85 of whom were female (Mage = 19, SDage = 1.55, Range = 18–30). 169 

reported their ethnicity as White, 14 as Black, 25 as Asian, 16 as Hispanic, 8 as Native 

American, 4 as Middle Eastern, 11 as Multiple, and 6 as Other. 

Performance Task 

The performance task used in this study was Unreal Tournament 2004 (UT2004; 

Epic Games, 2004), a commercially available first-person shooter computer game used 

in previous research on complex skill acquisition (e.g., Hardy et al., 2014; Hughes et al., 

2013). The objective of UT2004 was to destroy computer-controlled opponents while 

minimizing the destruction of one’s own character. Participants had opportunities to 

collect weapons or resources (i.e., power-ups) during each trial to increase their 

character’s offensive and defensive capabilities. When a participant’s character or 

opponent was destroyed, it reappeared in a random location with the default weapons 

and capabilities. The game was “every character for him- or herself,” meaning that the 

computer-controlled characters were in competition with each other as well as the 

participant. Performance on UT2004 involves a high degree of cognitive and 

psychomotor demands. Participants simultaneously used a mouse and keyboard to 

control their character, all the while learning the strengths and weaknesses of different 

weapons and strategies, and quickly deciding which to use given the situation. 
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Procedure 

Participants were told that the purpose of the study was to investigate how 

people learn to play a dynamic and complex videogame. They completed an informed 

consent document followed by a battery of individual difference measures to serve as 

control variables. Participants were told that they were entered in a lottery to win one of 

five, $25 gift cards for each trial in which their score was in the top 50% of all study 

participants for that given trial. Participants watched a 15 min presentation on UT2004 

explaining the basic game controls, rules, and power-ups, followed by a 1 min practice 

trial for becoming familiar with the controls, display, and game environment without 

any opponents.  

Participants completed 14 sessions, each consisting of two 4 min trials. Prior to 

each session, participants completed self-report measures of state GO. For the first 

seven sessions, participants competed against two computer-controlled opponents at a 

difficulty setting of 5 on a 1-to-8 scale. Following the 7th session (i.e., 14th pre-change 

trial), several task elements changed without warning, corresponding to an increase in 

task complexity (Hughes et al., 2013). Players then competed against nine computer-

controlled opponents at a difficulty setting of 6 on a 1-to-8 scale. The game 

environment (i.e., map) was much larger, with open spaces, multiple levels of 

platforms, and edges over which characters could fall to their destruction. Task 

characteristics for the pre- and post-change trials were the same as those used by 

Jorgensen (2017). Participants were debriefed following the 14th session (i.e., 28th 

post-change trial). 
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Measures 

Control variables. Self-reported ACT scores (M = 26.91, SD = 4.25) were used 

as a proxy of general mental ability (GMA). A 4-item scale was used to measure prior 

video game experience, which served as an index of pre-training videogame knowledge 

(Hardy et al., 2014; Jorgensen, 2017). For the first two items, participants responded 

using a 5-point Likert scale (1 = not at all, 2 = rarely, just a few times, 3 = monthly, 4 = 

weekly, 5 = daily) to the following questions: “Over the last 12 months, how frequently 

have you typically played video games?” (M = 2.97, SD = 1.40) and “Over the last 12 

months, how frequently have you typically played first-person shooter video games 

(e.g., Call of Duty, Half-Life, Halo, Unreal Tournament)?” (M = 2.26, SD = 1.25). For 

the second two items, participants indicated how many hours per week they typically 

play video games (M = 4.37, SD = 6.89) and more specifically, first-person shooter 

video games (M = 1.74, SD = 3.76). Scores for these items were standardized and then 

averaged into a prior videogame experience score (α = .86). 

Goal orientation. Task-specific MAp, PAp, and PAv were measured using 

items adapted from Yeo et al. (2009). These were modified to refer to UT2004 instead 

of air traffic control. Participants responded to each item using a 7-point scale (1 = 

strongly disagree, 7 = strongly agree), and each item was prefixed with “At the 

moment.” The MAp items were “The opportunity to extend the range of my abilities 

during this game is important to me,” and “The opportunity to learn new things during 

this game is important to me.” The PAp items were “It is important for me to perform 

better at UT2004 than others,” and “I want others to recognize that I am one of the best 

at this game.” The PAv items were “I want to hide from others that they are better than 
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me at this game,” and “I aim to avoid discovering that others are better than me at this 

game.” MAv was measured using 2 items adapted from Elliot & Murayama’s (2008) 

Achievement Goal Questionnaire–Revised: “My aim is to avoid learning less than I 

possibly could in this game,” and “My goal is to avoid learning less than it is possible to 

learn in this game.” Across the 14 sessions, the average Cronbach’s alpha was .90 (min. 

= .85, max. = .94) for MAp, .87 (min. = .82, max. = .90) for PAp, .75 (min. = .69, max. 

= .79) for PAv, and .91 (min. = .78, max. = .94) for MAv. 

Task performance. Task performance scores for each trial were calculated 

using the index described in Hardy et al. (2014): player kills (i.e., number of times a 

participant destroyed an opponent) divided by the quantity of kills plus deaths (i.e., 

number of kills plus the number of times a participant’s own character was destroyed) 

plus player rank (i.e., the participant’s rank relative to the computer opponents in that 

trial). Scores were multiplied by one-hundred to aid interpretability. Performance for 

each session was calculated to be the average score for both trials in that session. 

Analysis 

Performance and GO trajectories were modeled as discontinuous mixed-effects 

growth models, which take advantage of multiple time variables to model change across 

measurement occasions and in relation to the task change (Lang & Bliese, 2009). This 

allowed for the modeling of skill acquisition, transition adaptation, and reacquisition 

adaptation, each of which were coded following the relative coding scheme described 

by Bliese and Lang (2016; Table 1). The slope of the linear trend (SA) represents the 

rate of skill acquisition prior to the task change. Transition adaptation is modeled using 

a dummy coded variable (TA), which accounts for discontinuity by marking time before 
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and after the task change. Reacquisition adaptation (RA) is the slope of the linear trend 

for the post-change trials relative to that of the pre-change trials. In addition, a quadratic 

term for skill acquisition (SA2) was included in the model to account for curvilinear 

change (Lang & Bliese, 2009). Analyses were conducted using restricted maximum 

likelihood (REML) estimation and the nlme package in R (Pinheiro, Bates, DebRoy, & 

Sarkar, 2016; R Development Core Team, 2016). 

Results 

Means, standard deviations, and correlations between study variables are 

reported in Table 2. The intraclass correlation coefficient (ICC1; Bliese, 2000) was 

computed for performance and each GO to determine the relative proportion of variance 

at the between- and within-person levels. Analyses revealed that ICC1 = .71 for 

performance, indicating that 71% of the variability in performance was at the between-

person level. The ICC1s for MAp, MAv, PAp, and PAv were .58, .53, .71, and .67 

respectively, indicating substantial proportions of GO variability within and between 

individuals. 

 Trends in self-reported GO across the performance sessions are displayed in 

Figure 1. Discontinuous mixed-effects growth models were tested to analyze GO trends 

across time and following the task manipulation. Parameters for the mastery GO 

dimensions are displayed in Table 3, and parameters for the performance GO 

dimensions in Table 4. MAp decreased over time (β10 = –0.09, t(3286) = –5.49, p < 

.001), the rate of which remained the same following the task change (β30 = 0.03, 

t(3286) = 1.18, p = .238). In contrast, MAv remained constant during pre-change trials 

(β10 = 0.02, t(3286) = 1.25, p = .213), but decreased during post-change trials (β30 = –



23 

0.10, t(3286) = –3.54, p < .001). Neither levels of MAp (β20 = 0.00, t(3286) = 0.01, p = 

.992) nor MAv (β20 = 0.00, t(3286) = –0.05, p = .959) changed immediately after the 

task change. Both PAp (β10 = –0.13, t(3286) = –7.62, p < .001) and PAv (β10 = –0.03, 

t(3286) = –2.29, p = .022) decreased over time. The rate of change of PAp decreased 

following the task change (β30 = 0.09, t(3286) = 4.02, p < .001), whereas that of PAv 

remained the same (β30 = 0.02, t(3286) = 0.84, p = .399). Neither PAp (β20 = 0.09, 

t(3286) = 1.49, p = .137) nor PAv (β20 = 0.00, t(3286) = 0.05, p = .959) changed 

immediately after the task change (Table 4).  

Modeling Performance Change 

An unconditional model of performance change was built using the series of 

steps recommended by Bliese and Lang (2016). The coefficient for skill acquisition was 

positive (β10 = 5.22, t(3285) = 14.76, p < .001), indicating that performance increased 

over time. Transition and reacquisition adaptation were coded such that coefficients 

were interpreted relative to the skill acquisition trajectory. The coefficient for transition 

adaptation (β20 = –17.91, t(3285) = –22.36, p < .001) indicated a decrease in 

performance relative to the value predicted by skill acquisition immediately following 

the task change. The coefficient for reacquisition acquisition (β30 = –4.64, t(3285) = –

12.34, p < .001) indicated a decrease in the rate of performance change during the post-

change trials relative to the pre-change trials. A quadratic trend was observed for skill 

acquisition (β40 = –0.53, t(3285) = –9.60, p < .001), but not for reacquisition adaptation 

(β50 = –0.08, t(3284) = –1.25, p = .209). Analyses revealed significant variability in skill 

acquisition: 𝜒𝑑𝑖𝑓𝑓
2 (2) = 229.23, p < .001, transition adaptation: 𝜒𝑑𝑖𝑓𝑓

2 (4) = 137.90, p < 

.001, and reacquisition adaptation: 𝜒𝑑𝑖𝑓𝑓
2 (4) = 70.59, p < .001, but not quadratic skill 
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acquisition: 𝜒𝑑𝑖𝑓𝑓
2 (5) = 4.92, p = .426. Table 5 displays the results for the unconditional 

model, which was specified by the following set of equations: 

Level 1:  Yti = π0i + π1iSAti + π2iTAti + π3iRAti + π4i𝑆𝐴𝑡𝑖
2  + eti 

Level 2:  π0i = β00 + r0i 

   π1i = β10 + r1i 

   π2i = β20 + r2i 

   π3i = β30 + r3i 

   π4i = β40 

 Gender, GMA, and videogame experience were grand-mean centered and added 

to the model as control variables. GMA (β02 = 0.52, t(249) = 3.51, p < .001) and 

videogame experience (β03 = 8.08, t(249) = 10.03, p < .001) were positively related to 

performance, and males tended to outperform females (β01 = –14.42, t(249) = –8.33, p < 

.001). Building on this model, I simultaneously tested interaction effects for each of 

these variables with skill acquisition, transition adaptation, and reacquisition. 

Significant interaction effects were only found for gender with transition adaptation (β21 

= 3.20, t(3283) = 2.61, p = .008) and videogame experience with transition adaptation 

(β22 = –1.40, t(3283) = –2.45, p = .014). Males and individuals with more videogame 

experience had larger decrements in performance following the task change. Only 

statistically significant effects were retained in the conditional model (Table 5), which 

was specified by the following set of equations: 

Level 1:  Yti = π0i + π1iSAti + π2iTAti + π3iRAti + π4i𝑆𝐴𝑡𝑖
2   + eti 

Level 2:  π0i = β00 + β01(𝑆𝐸𝑋𝑖 − 𝑆𝐸𝑋̅̅ ̅̅ ̅̅ ) + β02(𝐺𝑀𝐴𝑖 − 𝐺𝑀𝐴̅̅ ̅̅ ̅̅ ̅) + β03(𝑉𝐺𝐸𝑖 − 𝑉𝐺𝐸̅̅ ̅̅ ̅̅ ) + r0i 

   π1i = β10 + r1i 
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   π2i = β20 + β21(𝑆𝐸𝑋𝑖 − 𝑆𝐸𝑋̅̅ ̅̅ ̅̅ ) + β22(𝑉𝐺𝐸𝑖 − 𝑉𝐺𝐸̅̅ ̅̅ ̅̅ ) + r2i 

   π3i = β30 + r3i 

   π4i = β40 

Testing Goal Orientation Effects 

Following specification of the conditional model of performance change, I 

tested a series of models that added effects of within- and between-person GO. Due to 

limited degrees of freedom via the 14 repeated measures (i.e., sessions), it was not 

possible to add main effects of the within-person GO dimensions and their interactions 

with each of the performance trajectories simultaneously. Therefore, the following 

model building steps were carried out for each GO independently. Model 1 tested the 

main effect of person-mean centered GO at the within-person level, which is the 

relationship between within-person fluctuations of GO and task performance across all 

sessions on average. Within-person GO interactions with SA, TA, and RA were added 

in Model 2. Between-person GO, operationalized as the mean of within-person GO 

scores across trials, was grand-mean centered and included in Model 3. Between-person 

GO interactions with SA, TA, and RA were added in Model 4. Each step in the model 

building process maintained the coefficients in the previous model. 

Model parameters for MAp are displayed in Table 6. There was no statistically 

significant effect of within-person MAp (β50 = 0.05, t(3282) = 0.30, p = .762), which 

failed to support Hypothesis 1. Hypothesis 2 predicted an interaction between MAp and 

TA, in which the effect of MAp on performance would be stronger following the task 

change. Model 2 indicated no evidence for the interaction with TA (β70 = –0.25, t(3279) 

= –0.40, p = .690), nor for interactions between MAp and SA (β60 = 0.02, t(3282) = 
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0.14, p = .886) or RA (β80 = 0.07, t(3282) = 0.48, p = .628). At the between-person 

level, there was a positive main effect of MAp (β04 = 1.76, t(248) = 3.88, p < .001), but 

no statistically significant interactions with SA (β60 = 0.11, t(3276) = 1.19, p = .234), 

TA (β70 = –0.09, t(3276) = –0.16, p = .873), or RA (β80 = 0.03, t(3276) = 0.21, p = 

.833). 

Model parameters for PAp are displayed in Table 7. There was a significant 

positive effect of between-person PAp (β04 = 0.88, t(248) = 2.17, p = .031), which 

supported Hypothesis 3. Hypothesis 5 predicted an interaction between PAp and TA at 

the between-person level, such that learners with higher PAp experience a larger 

decrement in performance following the task change. This was not supported (β70 = –

0.31, t(3276) = –0.65, p = .514). Hypothesis 4 predicted a dynamic effect of PAp, such 

that its effect switches from negative to positive during later trials of skill acquisition. 

However, there was no main effect of within-person PAp (β50 = –0.02, t(3282) = –0.12, 

p = .904), nor was there an interaction with SA (β60 = –0.07, t(3279) = –0.65, p = .517). 

There was also no interaction between PAp and TA at the within-person level (β70 = 

0.01, t(3279) = 0.01, p = .990), which failed to support Hypothesis 6. There was an 

interaction between PAp and RA (β80 = 0.41, t(3279) = 2.42, p = .016), supporting 

Hypothesis 7, such that the effect of PAp became less negative throughout the post-

change trials.  

Model parameters for PAv are displayed in Table 8. In support of Hypothesis 8, 

a negative effect of PAv on performance was found at the between-person level (β04 = –

1.31, t(248) = –2.66, p = .008). Hypothesis 9 proposed an interaction between PAv and 

transition adaptation at the between-person level, such that the negative effect of PAv 
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would be stronger during the post-change trials. This was not supported (β70 = 0.92, 

t(3276) = 1.50, p = .134). 

Model parameters for MAv are displayed in Table 9. The extent to which MAv 

was related to performance during skill acquisition and adaptation was investigated as a 

research question. There was no effect of MAv at the within-person level (β50 = –0.11, 

t(3282) = –0.89, p = .375), or for its interactions with SA (β60 = –0.09, t(3279) = –1.04, 

p = .297), TA(β70 = 0.16, t(3279) = 0.30, p = .767) or RA (β80 = 0.18, t(3279) = 1.42, p 

= .157). As with MAp, there was a positive effect of MAv at the between-person level 

(β04 = 1.36, t(248) = 2.96, p = .003), but no interactions with SA (β60 = 0.00, t(3276) = 

0.00, p = .999), TA (β70 = –0.14, t(3276) = –0.25, p = .801), or RA (β80 = 0.23, t(3276) 

= 1.74, p = .083). 

Ancillary Analysis 

A substantial proportion of variance is shared between GO dimensions, 

particularly within each of the mastery and performance dimensions (Elliot & 

MacGregor, 2001; Payne et al., 2007). A series of post-hoc analyses compared the 

relative effects of multiple GO dimensions on performance when included in the same 

model (Table 10). When both mastery GO dimensions were modeled together, there 

was a significant main effect of MAp (β = 1.44, t(247) = 2.66, p = .008), but not MAv 

(β = 0.55, t(247) = 1.01, p = .312). When the performance GO dimensions were 

modeled together, PAp (β = 1.42, t(247) = 3.44, p < .001) and PAv (β = –1.94, t(247) = 

–3.77, p < .001) had significant positive and negative effects on performance 

respectively. Lastly, I tested a third model that simultaneously included all four GO 

dimensions. There was a significant, negative effect of PAv (β = –1.94, t(245) = –3.81, 
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p = .009), but no significant effects of MAp (β = 1.11, t(245) = 1.85, p = .066), MAv (β 

= 0.79, t(245) = 1.48, p = .141), or PAp (β = 0.74, t(245) = 1.53, p = .127). 

Discussion 

The present study contributed toward a dynamic process perspective of skill 

acquisition and adaptation by disentangling the within- and between-person effects of 

GO on performance. Guided by Yeo et al. (2009) and resource allocation theory 

(Kanfer & Ackerman 1989), I hypothesized differential effects of MAp, PAp, and PAv 

corresponding to their relationships with self-regulatory activities. Discontinuous 

mixed-effects growth modeling was used to further distinguish between phases of skill 

acquisition and adaptation. Overall, the present study failed to replicate the within-

person effects reported by Yeo et al. (2009). Individuals’ deviations from their average 

level of GO were unrelated to changes in performance. However, significant GO effects 

were identified at the between-person level, which were consistent with patterns of 

results commonly reported in prior research (see Payne et al., 2007). Individuals with 

higher levels of MAp, MAv, PAp, and lower levels of PAv tended to achieve higher 

levels of performance relative to others. There were no interactions with skill 

acquisition or adaptation trajectories, indicating GO effects are consistent across phases 

of learning. These findings have several implications for theory and practice, which are 

discussed in the following sections. 

On the Multilevel Perspective of Goal Orientation 

 Testing the effects of GO on performance at multiple levels of analysis has been 

proposed for resolving discrepancies in the GO literature (DeShon & Gillespie, 2009). 

Among these discrepancies are mixed results corresponding to the relationship between 
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MAp and performance (Hulleman et al., 2010; Payne et al., 2007). Yeo et al. (2009) 

offered a multilevel perspective as an explanation by demonstrating MAp effects to be 

positive at the within-person level, yet null at the between-person level. Because MAp 

reflects the motivation to develop competence relative to oneself, it makes sense for it 

to relate to gains in performance relative to oneself instead of others. However, the 

present study found the opposite pattern: MAp effects were null at the within-person 

level, yet positive at the between-person level. This relationship between MAp and 

performance appears to depend on more than just the level of analysis. 

Although MAp is expected to facilitate performance via increased focus on 

developing practicing task-relevant strategies, there are reasons why this might not be 

reflected at the within-person level. MAp states correspond to exploratory behavior, 

which enables learners to discover new and alternative ways of performing the task. 

Exploration can lead to immediate performance gains (Hardy et al., 2014), but its 

effects might be more distal in dynamic environments (Hardy, Day, & Arthur, 2018). 

Exploration might involve a greater number of errors, leading to momentary decreases 

in performance. Learning from error and building a diverse repertoire of task strategies 

is expected to pay off over extended periods of time, which might explain the positive 

effect of MAp at the between-person level. It is worth noting that between-person MAp 

was operationalized as individuals’ average levels of MAp throughout the study, as 

opposed to a trait inventory. Interestingly, between-person MAv was also positively 

related to performance. However, this effect of MAv disappeared when including both 

mastery GO dimensions in the ancillary analysis, which indicates that it can be 

attributed to variance in MAv reflecting MAp. 
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In contrast to Yeo et al. (2009), the present study lacked support for dynamic, 

within-person effects of PAp. These predictions were based resource allocation theory, 

which suggests that limited cognitive resources become increasingly available with task 

practice (Kanfer & Ackerman, 1989). Given that PAp directs attention toward off-task 

thoughts (Avery & Simille, 2013; Avery, Simille, & de Fockert, 2013), it was expected 

to be detrimental in the beginning of skill acquisition and immediately following 

change. As individuals became familiar with the task environment, off-task thoughts 

were expected to be less detrimental. Instead, focusing on outperforming others was 

expected to facilitate performance via increased engagement. The latter prediction was 

supported in part, such that effect of PAp became positive in later trials of reacquisition 

adaptation. However, this was the only statistically significant interaction involving 

within-person GO out of the twelve that were tested, thus this interaction may be 

spurious. The present evidence suggests that PAp is consistently facilitative of 

performance, but at the between-person level. This finding is consistent with Yeo et al., 

(2009), who wrote that motivation to outperform others should relate to higher task 

engagement, and thus higher performance on average. 

Also consistent with Yeo and colleagues’ (2009) findings at the between-person 

level, the present study found that individuals with higher levels of PAv tended to 

perform worse on average. This negative effect of PAv is thought to be due to anxiety 

involving worries about appearing incompetent (Elliot & McGregor, 2001). According 

to resource allocation theory, off-task thoughts such as worries about incompetence 

might be expected to become less detrimental with practice. However, neither the 

present study nor Yeo et al. (2009) found within-person effects of PAv, let alone 
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dynamic effects. Yeo et al. (2009) suggested that formal, computational models may be 

required to understand how avoidance motivation is related to feedback loops across 

levels of analysis (see Carver & Scheier, 1989). Given the overall lack of within-person 

effects in the present study, this might be necessary for GO in general, as opposed to 

just PAv. Given that GO effects are already quite small at the between-person level 

(Payne et al., 2007), the within-person effects might also be negligible or dependent on 

specific boundary conditions. 

On the Dynamic Process Perspective of Adaptation 

 Surprisingly, none of the GO dimensions were shown to be more or less 

facilitative of performance following an unforeseen change in task demands. This 

contrasted with the expectation that GO dimensions would be especially relevant for 

modulating the allocation of cognitive resources in response to increased task 

complexity. Rather, the main effects of between-person GO were consistent across each 

phase. These main effects align with recent findings suggesting that adaptation is 

largely a function of pre-existing knowledge, skills, and abilities (Frank & Kluge, 2017; 

Huck, Day, Lin, Jorgensen, Westlin, & Hardy, 2018). According to this research, the 

strongest predictors of performance immediately following change and the subsequent 

rate of reacquisition are the initial performance and rate of learning prior to the change. 

For example, Huck et al. (2018) found that GMA and other predictors of skill 

acquisition had negligible effects on adaptive performance after controlling for the main 

effect of pre-change performance. If GO does facilitate adaptation, these effects could 

be largely mediated by its influence on initial learning.  
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Further research is needed to determine the extent to which self-regulatory 

processes during adaptation are different from those of skill acquisition. Although the 

present study suggested off-task attention and affect as mediating variables for 

justifying the hypothesized effects of GO on performance, these were not explicitly 

modeled. Differences between self-regulatory processes in skill acquisition and 

adaptation may require computational modeling of systems of variables (see Hardy, 

Day, & Arthur, 2018; Weinhardt & Vancouver, 2012). For example, MAp effects 

during adaptation might be contingent on levels of negative affect, which in turn is a 

function of an individual’s emotion regulation ability. Furthermore, a computational 

modeling approach might require emphasis on specific task components and problem-

solving strategies that differ between pre- and post-change task environments. In doing 

so, it might be worthwhile to model the effects of specific self-regulation processes in 

relation to different types of adaptation requirements (Jundt et al., 2015). 

Limitations and Future Directions 

 There are several limitations to be considered while interpreting and 

generalizing these findings. First, the performance task used in this study differs from 

those typically encountered in procedural learning environments. UT2004 is a dynamic, 

fast-paced task involving cognitive and psychomotor demands, which contrasts with 

classroom-based, instructional settings. Aside from initial training on basic elements, 

participants learned UT2004 without explicit instructions or guidance. This is 

representative of technology-based, active-learning environments in which learners are 

required to develop their own self-regulatory strategies (Bell & Kozlowski, 2008). 

However, this can also induce stress and high workload perceptions. Given that 
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participants performed for several hours with little time between sessions, there was 

also little opportunity for reflection (cf. Yang, Zhang, & Yang, 2017). This study 

contributed toward an understanding of how people learn complex tasks in a dynamic, 

fast-paced environment, yet more research is needed to generalize across diverse 

populations and contexts. 

Consideration of the task environment is especially important for understanding 

self-regulated learning, especially given how the present results contradicted those of 

Yeo et al. (2009). Both UT2004 and air traffic control are complex tasks, yet the 

former, which was used in the present study, involves greater perceptual-motor 

demands in a fast-paced environment. One explanation for the lack of within-person 

GO effects observed in the present study is that UT2004 skills are acquired via a higher 

ratio of implicit to explicit learning. Research on complex skill acquisition has shown 

that training design elements, like goal setting, that trigger explicit self-regulatory 

processes can have negligible or detrimental effects on learning for tasks that better lend 

themselves to implicit learning (DeShon & Alexander, 1996; DeShon, Brown, & 

Greenis, 1996). The extent to which within-person GO effects are dependent upon task 

demands that relate to the implicit-explicit learning distinction is an issue worth future 

investigation. For instance, it is unclear if within-person fluctuations in GO compete for 

individuals’ limited pool of attentional resources.  

 Related to the implicit-explicit learning distinction, under conditions of 

uncertainty, research has shown that heuristic strategies are often superior to explicit 

processing of optimal decisions (Cokely & Kelley, 2009). Numeracy, defined as the 

ability to use mathematics in context, is among the best predictors of decision making 
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under uncertainty (Cokely, Galesic, Schulz, Ghazal, & Garcia-Retamero, 2012; Cokely 

et al., 2018). Having an intuitive sense of probability and numerical operations is 

thought to translate into better metacognition. That is, highly numerate learners are 

better able to discern performance outcomes associated with different decisions and 

make accurate judgments of confidence (Ghazal, Cokely, & Garcia-Retamero, 2014). 

As such, it may be that individual differences in numeracy serve as a boundary 

condition for the effects of motivational aspects of self-regulation like goal setting or 

GO, especially with respect to the uncertainty in deciding which performance strategies 

should be abandoned or modified when facing unexpected changes in task demands. 

 Because this research was in part a replication of Yeo et al. (2009), I adapted the 

GO measure used in the original study. This strengthens comparisons between Yeo et 

al. (2009) and the present replication, but neglects recent work on developing more 

precise measures of GO. Hulleman et al.’s (2010) meta-analysis of GO measures found 

that relationships between GO and other variables are substantially influenced by item 

content. For example, measures of performance GO tend to conflate social comparison 

(e.g., outperforming others) with social validation (e.g., appearing competent to others) 

motives. Whether PAp is positively or negatively related to performance has been 

attributed to the relative number of items corresponding to each of these components 

(Hulleman et al., 2010). Indeed, the PAp measure used in this study contained items 

tapping social comparison (i.e., “It is important for me to perform better at this game 

than others,”) and social validation (i.e., “I want others to recognize that I am one of 

the best at this game.”). Between the MAp and PAv measures, each pair of items were 

consistent, corresponding to self-improvement (e.g., “The opportunity to extend the 
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range of my abilities during this game is important to me,”) and social validation (e.g., 

“I prefer to avoid discovering that others are better than me at this game,”) 

respectively.  

This echoes a broader set of concerns about defining GO and its role among 

other motivational constructs (DeShon & Gillespie, 2005). Definitions have varied 

substantially across studies, with scholars referring to GO as goals, reasons, beliefs, or 

combinations of these (Senko & Tropiano, 2016; Sommet & Elliot, 2017). Adopting the 

perspective of industrial-organizational psychology, the present study viewed GO as 

“goal preferences in achievement situations,” (Payne et al., 2007, p. 128), which 

encompass a variety of specific goals (DeShon & Gillespie, 2005). One explanation for 

the lack within-person GO effects is the higher-order nature of the construct. The 2 × 2 

framework effectively categorizes achievement goals into dimensions, but 

understanding the dynamic, self-regulatory nature of GO may require further unpacking 

(Elliot, Murayama, & Pekrun, 2011). One approach has been to decompose GO into 

specific goals and reasons (e.g., “my goal is to learn because I find this a challenging 

goal;” Sommet & Elliot, 2017, p. 1143). Future research ought to investigate the effects 

of achievement goals when the reasons for pursuing them are intrinsically or 

extrinsically motivated. 

Practical Implications 

 Despite a lack of support for most hypotheses, these results have implications 

for training and development in organizations. Individuals working in dynamic 

environments are likely to benefit from higher MAp and lower PAv, which focuses 

attention on learning and diverts it from worries about performance relative to others. 
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PAp is also potentially beneficial, but research suggests that its utility is small compared 

to MAp (e.g., Brophy, 2005). GO dimensions are indeed malleable (Van Yperen, Blaga, 

& Postmes, 2015). Practitioners ought to include design elements in training that 

encourage MAp and discourage PAv. Facilitating GO adoption can be accomplished by 

prompting self-regulation (e.g., “Have I spent enough time reviewing to remember the 

information?”) or setting goals that correspond to desired GO dimensions (Sitzmann & 

Ely, 2010). In the latter case, it would be important to ensure that goal content is aligned 

with goal framing and proximity (see Kozlowski & Bell, 2006). 

These recommendations are more straightforward than what has previously been 

suggested in research on active learning, which often assumes technology-based 

training interventions in which learners’ cognitive and motivational states are 

continuously tracked and manipulated (e.g., Bell & Kozlowski, 2002). If GO states have 

differential effects on learning throughout the training process, then models could be 

used to “optimize” goal setting interventions. However, the lack of within-person and 

dynamic effects in the present study suggests that GO effects are relatively stable across 

skill acquisition and adaptation. In contrast to prior recommendations to adopt hands-on 

approaches for optimizing goal interventions across time (e.g., Yeo et al., 2009), 

consistent endorsement of MAp and discouragement of PAv might be more effective. 

Further research is required to understand the extent to which GO effects are present 

under varying task conditions. Until the nuances of self-regulation are better 

understood, managers ought to be cautious about “pulling the right levers at the right 

time” (Hackman, 2012, p. 434). Encouraging individuals to achieve mastery and worry 



37 

less about interpersonal comparison during training can be simple, yet robust means of 

improving performance. 

Conclusion 

 In summary, this study disentangled the within- and between-person effects of 

GO on complex skill acquisition and adaptation to unforeseen change. Results indicated 

that momentary fluctuations in GO are unlikely to correspond to performance dynamics. 

Rather, GO effects on performance occur primarily at the between-person level. 

Individuals maintaining higher levels of MAp and PAp tend to perform better, whereas 

those with higher levels of PAv tend to perform worse. Furthermore, GO effects appear 

to be consistent whether an individual is learning initially or adapting pre-existing 

knowledge and skill to unforeseen changes in task demand. Future studies ought to 

investigate possible moderators of these relationships and elaborate on the multilevel 

nature of self-regulation. This research provides insight into the self-regulatory 

processes that facilitate learning in dynamic environments. 
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Appendix A: Tables 

Table 1. Coding of Change Variables in Discontinuous Mixed-Effects Growth 

Models 
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Table 2. Means, Standard Deviations, and Correlations of Study Variables 
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Table 3. Discontinuous Mixed-Effects Growth Models of Mastery Goal Orientation 
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Table 4. Discontinuous Mixed-Effects Growth Models of Performance Goal 

Orientation 
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Table 5. Discontinuous Mixed-Effects Growth Models of Performance Trajectories 
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Table 6. Discontinuous Mixed-Effects Growth Models of Mastery-approach Goal 

Orientation and Performance 
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Table 7. Discontinuous Mixed-Effects Growth Models of Performance-approach 

Goal Orientation and Performance 
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Table 8. Discontinuous Mixed-Effects Growth Models of Performance-avoidance 

Goal Orientation 
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Table 9. Discontinuous Mixed-Effects Growth Models of Mastery-avoidance Goal 

Orientation 
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Table 10. Ancillary Analysis of Multiple Goal Orientations and Performance at the 

Between-person Level 
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Appendix B: Figures 

 

Figure 1. Trends in average levels of goal orientation 

(1-7 = pre-change; 8-14 = post-change). MAp = mastery-approach; MAv = mastery 

avoidance; PAp = performance-approach; PAv = performance-avoidance. 
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Figure 2. Performance means across sessions for each quartile of session 1 

performance 


