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Abstract 

It has been shown that blood flow restriction (BFR) exercise provides similar 

physiological muscular adaptations to traditional high intensity resistance exercise; 

however, there is still ambiguity about whether males and females respond similarly to 

BFR exercise. PURPOSE: The purpose of this study was to evaluate the acute 

physiological responses between males and females following a bout of practical BFR, 

controlled BFR, low intensity resistance exercise and traditional high intensity 

resistance exercise by observing lactate, hematocrit, muscle swelling and 

electromyography before and after exercise. METHODS: Recreationally trained men 

(n=14) and women (n=15) aged between 18-30 years participated in a randomized 

crossover design. Subjects visited the lab on 6 occasions. The first 2 visits consisted of 

paperwork, finding occlusion pressure and 1 repetition maximum for leg press and knee 

extension, ankle-brachial index, blood pressure and familiarization of exercises. The 

last 4 visits were the randomized exercise protocols: controlled BFR (cBFR), practical 

BFR (pBFR), high intensity (HI) and low intensity (LI) resistance exercise. Each visit 

involved a leg press exercise followed by a knee extension exercise with cBFR, which 

consisted of an inflated cuff, pBFR consisted of an elastic cuff, HI was a traditional 

high-intensity exercise and LI was a low-intensity resistance exercise day. Each subject 

attempted 4 sets of 30-15-15-15 repetitions for cBFR, pBFR and LI, while the HI 

condition consisted of 3 sets of 8-10 repetitions, with a minute of rest between each set. 

Lactate, hematocrit, thigh circumference, muscle thickness and electromyography were 

collected before exercise, immediately post-exercise, 5-minutes post-exercise and 15-

minutes post-exercise. There was a wash-out period of at least 3 days between 
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conditions. RESULTS: Through this investigation, males typically had significantly 

larger responses to all of the testing conditions for thigh circumference, lactate, 

hematocrit, and muscle activation. However, there was no gender difference for muscle 

thickness for any of the conditions. Typically, the HI and cBFR conditions produced 

similar physiological responses. Additionally, males typically reported higher RPE and 

discomfort ratings, which corresponds to greater muscle activation for males during 

cBFR and HI exercise conditions. CONCLUSION: This study concluded that cBFR 

and pBFR for males and females do not produce the same physiological responses, but 

HI and cBFR produced similar physiological responses.
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Chapter I: Introduction 

Skeletal muscle responds to mechanical stress by mediating muscle hypertrophy 

and atrophy in order to maintain homeostasis. It has been shown that skeletal muscle 

hypertrophy occurs at training intensities of at least 70% of one’s 1 repetition maximum 

(1RM) (ACSM, 2009). Training below this intensity primarily causes improved 

muscular endurance without a significant increase in muscle size or strength, unless 

there is a large increase in exercise volume. A consequence of high intensity exercise 

are micro tears of the myofibers. This may lead to an immune response that may cause 

delayed onset muscle soreness (DOMS) and a plasma volume shift causing muscle cell 

swelling (Freitas et al., 2017). Increased intracellular fluid is one of the ways that has 

been shown to induce skeletal muscle hypertrophy through the stimulation of protein 

synthesis.  

Blood flow restriction (BFR) exercise is a relatively new method of resistance 

exercise training that provides similar physiological adaptations as traditional high 

intensity resistance exercise, including increased intracellular fluid (Loenneke et al., 

2012). This type of restriction is performed with an inflatable cuff or BFR strap and is 

combined with low intensity (20-50% 1RM) resistance exercise. This method has been 

reported to initiate significant muscle swelling leading to muscle hypertrophy similar to 

traditional high intensity resistance training. BFR training can be beneficial to 

populations that are not able to endure the heavy mechanical stress on their joints that 

traditional high-intensity exercise may cause, including the elderly, diseased or injured 

(Loenneke et al., 2012; Lowery et al., 2014). Furthermore, it is difficult to use an 

inflatable cuff in certain settings, such as a gym, for exercise. Therefore, it is also 



2 

important to evaluate the benefits from a practical BFR cuff. Wilson et al. (2013) 

demonstrated that practical BFR (pBFR) effects muscle swelling and muscle activation 

more than a workload match revealing that a bout of low-intensity pBFR exercise may 

be effective in stimulating muscle hypertrophy by cell swelling. 

Considering acute responses observed post-BFR exercise, muscle cell swelling 

is known to inhibit catabolism and affect metabolism by promoting lipolysis and protein 

sparing for muscle hypertrophy. BFR exercise may also increase muscle protein 

synthesis through muscle cell swelling through the activation of mammalian target of 

rapamycin complex 1 (mTORC1) signaling (Fry et al., 2009). Additionally, Freitas et 

al. (2017) determined that muscle swelling lasted up to 75-mintues post BFR exercise, 

which was shown to be similar to high-intensity exercise responses. Muscle swelling 

may also happen without BFR, as found by Howell et al. (1992). This study concluded 

that muscle swelling increased by 3% immediately post resistance exercise without 

occlusion as assessed by ultrasound measurements. BFR in the absence of exercise has 

also been shown to induce cell swelling effects, which may be beneficial to limited 

populations (Loenneke et al., 2012). Furthermore, Yasuda et al. (2015) concluded that 

thigh muscle cross-sectional area (CSA) and muscle strength increased in women after 

BFR training, which could be further researched in men to provide information on the 

mechanisms of BFR-induced muscle hypertrophy. 

Several studies have been conducted regarding physiological responses to 

traditional high intensity resistance training between men and women. After a 9-week 

training period of unilateral knee extension exercises, Ivey and colleagues (2000) found 

that men had a significantly greater increase in muscle volume than women. Another 
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study evaluated older men and women after a training period of 26 weeks. The subjects 

were asked to perform knee extensor exercises 3 days a week at 65-80% of their 1RM. 

Vastus lateralis biopsies later showed that training led to greater myofiber hypertrophy 

in men compared to women (Bamman et al., 2003). The intracellular swelling that 

occurs during exercise may be caused by a plasma shift, which stimulates muscle 

hypertrophy by increasing protein synthesis (Yasuda et al., 2015).  

An additional mechanism by which BFR induces muscle hypertrophy occurs 

when the restricted limb begins to accumulate metabolites, including lactate. Lactate 

accumulation causes the intramuscular environment to become acidic, which may 

stimulate sympathetic nerve activity through intramuscular chemoreceptors and afferent 

fibers. This mechanism may be related to the stimulation and secretion of growth 

hormone (GH) (Loenneke et al., 2010). Moreover, GH stimulates synthesis and 

secretion of insulin-like growth factor-1 (IGF-1), which is known to be critical for 

mediating the growth of skeletal muscle (Kawada et al., 2005). BFR creates a unique 

muscular environment which has also been shown to cause an increase in type II muscle 

fiber recruitment because of the metabolite accumulation and a lack of oxygen supply to 

the working muscle (Loenneke et al., 2014; Wilson et al., 2013). Similar physiological 

responses can be found in traditional high intensity resistance exercise (Borst et al., 

2001; Kraemer et al., 1998). For example, Linnamo et al. (2005) evaluated blood lactate 

concentrations, GH and testosterone responses in men and women after high intensity 

resistance exercise with no occlusion and found that all three variables increased more 

in men than in women. These responses based on gender may be similar to BFR 
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training; however, there is a gap in the literature regarding gender differences with BFR 

exercise. 

 BFR exercise may also induce an increase in muscle activation, which is 

important for sustaining typical daily physical activities. Studies show that there are 

metabolic changes caused by restricted blood flow, but also can happen through 

changes in venous blood oxygen saturation and accumulation of lactic acid (Yasuda et 

al., 2008; Wernbom et al., 2009). Reduced oxygen combined with an accumulation of 

metabolites causes an increase in high threshold fiber recruitment by stimulating groups 

III and IV afferents causing alpha motorneurons communicating with slow twitch fibers 

to be inhibited. This mechanism induces an increase in fast twitch fiber recruitment in 

order to maintain force and avoid conduction failure (Loenneke et al., 2011). 

Additionally, muscle activation was shown to increase during repetitive low-intensity 

resistance exercise without BFR by Moritani et al. (1992), revealing that resistance 

exercise without restriction also benefits muscular strength and size. Recent studies 

have concluded that low-intensity training with BFR leads to an increase in muscle 

activation comparable to high-intensity resistance exercise training (Abe et al., 2005). 

Additionally, Yasuda et al. (2008) studied varying levels of external limb compression 

in ten healthy young males. They determined that muscle activation increased 

progressively throughout each contraction bout at each level of restriction, including no 

restriction. However, the greatest increase was during the 147 mmHg protocol, which 

was the highest restriction pressure they tested.  

All of the mechanisms responsible for the physiological responses to BFR 

training are still not completely known. There is no established protocol for the use of 
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BFR exercises and the incorrect use of it may have negative effects, such as numbness 

or bruising. Currently, the safest way to apply this technique is to follow the directions 

based on scientific protocols and instructions (Fahs et al., 2012). The literature 

regarding physiological responses among men and women to controlled and practical 

BFR is scarce, therefore it is important continue researching BFR and optimize training 

programs among different populations.  

Purpose of the Study 

 The purpose of this study was to determine if men and women respond 

differently to a single acute bout of low-intensity resistance exercise with controlled 

BFR (cBFR) or practical BFR (pBFR), as well as low and high intesntiy resistance 

exercise without BFR regarding measures of muscle activation, muscle swelling, thigh 

circumferences, blood lactate and hematocrit concentrations. 

Research Questions 

1. Do the four different conditions (pBFR, cBFR, HI and LI) elicit the same or 

differing physiological responses in lactate, hematocrit, muscle swelling or muscle 

activation? 

2. Will the physiological responses in lactate, hematocrit, muscle swelling and muscle 

activation (regardless of condition) be similar or different for males and females? 

Research Sub-Questions 

1. Do the four different conditions (pBFR, cBFR, HI and LI) elicit the same or 

differing physiological responses in lactate levels? 

2. Do the four different conditions (pBFR, cBFR, HI and LI) elicit the same or 

differing physiological responses in hematocrit levels? 
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3. Do the four different conditions (pBFR, cBFR, HI and LI) elicit the same or 

differing physiological responses in muscle swelling? 

4. Do the four different conditions (pBFR, cBFR, HI and LI) elicit the same or 

differing physiological responses in muscle activation? 

5. Will the physiological responses in lactate levels (regardless of condition) be similar 

or different for males and females? 

6. Will the physiological responses in hematocrit levels (regardless of condition) be 

similar or different for males and females? 

7. Will the physiological responses in muscle swelling (regardless of condition) be 

similar or different for males and females? 

8. Will the physiological responses in muscle activation (regardless of condition) be 

similar or different for males and females? 

Research Hypotheses 

1. Men will exhibit greater physiological responses than women for all four conditions 

based on traditional high intensity resistance exercise literature. 

2. cBFR and high-intensity (HI) resistance exercise will promote the greatest increases 

in muscle activation, muscle swelling, lactate and hematocrit levels compared to 

pBFR resistance exercise and low-intensity (LI) resistance exercise. 

Research Sub-Hypotheses 

1. Men will exhibit greater lactate responses compared to women for each of the four 

exercise conditions. 

2. Men will exhibit greater hematocrit responses compared to women for each of the 

four exercise conditions. 
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3. Men will exhibit greater muscle swelling responses compared to women for each of 

the four exercise conditions. 

4. Men will exhibit greater muscle activation responses compared to women for each 

of the four exercise conditions. 

5. cBFR and HI resistance exercise will promote the greatest increases in lactate 

responses compared to pBFR and LI resistance exercise, regardless of gender. 

6. cBFR and HI resistance exercise will promote the greatest increases in hematocrit 

responses compared to pBFR and LI resistance exercise, regardless of gender. 

7. cBFR and HI resistance exercise will promote the greatest increases in muscle 

swelling responses compared to pBFR and low-intensity resistance exercise, 

regardless of gender. 

8. cBFR and HI resistance exercise will promote the greatest increases in muscle 

activation responses compared to pBFR and low-intensity resistance exercise, 

regardless of gender. 

Significance of the Study 

 Traditional HI resistance exercises are proven to stimulate muscle hypertrophy; 

however, not all populations are capable of performing such exercises, especially at 

higher loads. Examples of people who would not be able to perform exercises at high 

loads include the elderly, injured or diseased populations. In order to optimize BFR 

exercises, it is essential to also analyze physiological effects between cuff types, which 

Lonnoeke et al. (2013) determined there was no difference between practical BFR and 

controlled BFR. There is also little research done to date regarding BFR exercises 
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between males and females, however, some research assessing traditional resistance 

exercise that may provide insight for BFR training. 

For example, Linnamo et al. (2005) concluded that blood lactate concentrations 

showed a larger increase in men than in women after maximal heavy resistance 

exercise. This difference in blood lactate levels may occur similarly during BFR 

exercises. Furthermore, Gibala et al. (1995) evaluated changes in human skeletal muscle 

after acute resistance exercises in men by analyzing EMG data. They found that men 

showed a significantly greater average EMG activity during concentric contractions 

compared to eccentric contractions during arm curls. However, there is little evidence 

providing information on female muscle activation response to resistive exercises.  

Additionally, resistance exercise causes muscle swelling due to plasma volume 

shifts which increases muscle protein synthesis. Yasuda et al. (2011) determined that 

the triceps brachii and pectoralis major cross-sectional area (CSA) increased by 8.8% 

and 15.8% during high intensity resistance training. Nevertheless, there is a lack of 

literature regarding muscle swelling with BFR exercises between males and females. 

This gap in knowledge provides researchers incentive to seek out answers in regard to 

BFR exercises which will further allow researchers to optimize exercise programs, 

especially gender specific programs. 

Delimitations 

The delimitations of this study include: 

1. The subjects included healthy males and females between the ages of 18-30 years. 

2. Subjects included in this study were recreationally trained. 

3. Subjects were excluded if their Body Mass Index (BMI) ≥ 30 kg/ m². 



9 

4. Subjects were excluded if their Ankle-Brachial Index (ABI) ≤ 0.9 or ≥ 1.4. 

5. Subjects were excluded if they have a knee or hip injury or a cardiovascular disease 

that may affect the study. 

6. Females that were pregnant or planned to become pregnant during the duration of 

the study were excluded from this study. 

7. Females that were taking hormonal contraceptives to account for hormone variation 

during the menstrual cycle. 

Limitations 

The limitations for this study include: 

1. Normal daily diet was not be controlled for in this study, however, subjects were 

asked to maintain their usual diet throughout the duration of this study. 

2. Training status and age were not assessed in this study and may affect the outcome 

variables. 

3. These findings cannot be extended to older populations. 

Assumptions 

1. Subjects gave maximal effort during leg press and knee extension 1RM. 

2. Subjects gave their best effort when completing the exercises. 

3. Subjects gave honest answers when completing health questionnaires. 

4. All subjects maintained their usual diet throughout the study. 

5. Subjects avoided performing lower body resistance exercises prior to testing 

sessions. 

6. The ultrasound is a valid and reliable method for determining muscle thickness. 
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7. The Lactate Plus Analyzer is a valid and reliable method for determining blood 

lactate levels. 

Operational Definitions 

BFR: Blood flow restriction; occlude venous outflow and restrict arterial inflow 

(Loenneke et al., 2012). 

Practical BFR (pBFR): Type of blood flow restriction done with an elastic cuff 

(Loenneke et al., 2013). 

Controlled BFR (cBFR): Type of blood flow restriction done with an inflatable cuff 

(Loenneke et al., 2013). 

Hematocrit (Hct): Percentage of red blood cells in the blood (Plowman et al., 2014). 

Lactate: Byproduct of glycolysis; represents cellular glucose metabolism (Plowman et 

al., 2014). 

One Repetition Maximum (1RM): Largest load an individual can lift for one 

repetition (Plowman et al., 2014). 

Electromyography (EMG): System used to record the electrical activity in working 

muscles (Plowman et al., 2014). 

Muscle thickness: The distance from the adipose tissue-muscle interface to the inter-

muscular interface (Loenneke et al., 2012). 
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Chapter II: Literature Review 

Introduction 

The primary purpose of this study was to evaluate the acute physiological 

responses between males and females following a bout of practical and controlled blood 

flow restriction (BFR) exercise. Previously, BFR exercise has been reported to induce 

similar muscular adaptations as traditional high intensity resistance exercise. The 

comparable adaptations could be meaningful in populations that cannot withstand high 

mechanical stress, such as the elderly, or those recovering from an injury. The benefits 

from BFR training may vary based on methodology, such as cuff type or occlusion 

pressure (Loenneke et al., 2013). An abundant amount of literature suggests positive 

muscular adaptations can occur in response to BFR exercise, however, some literature 

has suggested that BFR exercise does not induce muscular adaptations (Loenneke et al., 

2013; Burgomaster et al., 2003). Furthermore, since a predominant amount of research 

has been examined using male subjects, it is difficult to extrapolate information and 

apply the findings for females. Therefore, it may be useful to consider these gender 

differences and how they may be applied to BFR training research. Specifically the 

aims of this investigation are to determine lactate and hematocrit concentration, muscle 

swelling and muscle activation in response to a bout of controlled (cBFR) or practical 

(pBFR) BFR when compared to a bout of traditional high-intensity exercise. 

Skeletal Muscle Hypertrophy 

 Skeletal muscle is a plastic tissue that is constantly responding to loading and 

unloading. Progressive overload causes skeletal muscle to synthesize more contractile 

proteins causing muscle hypertrophy, whereas muscular inactivity causes a decrease in 
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protein synthesis leading to muscle atrophy (Loenneke et al., 2012). It is recommended 

that exercise training occurs at intensities of at least 70% of one’s 1RM for muscle 

hypertrophy (ACSM, 2009). There is previous literature based on traditional high-

intensity exercise examining gender differences based on muscular hypertrophy and 

strength development. For example, testosterone has been commonly attributed to 

muscle tissue hypertrophy in males, yet females have been shown to demonstrate 

similar relative exercise adaptations despite their lower levels of testosterone (Kraemer 

et al., 1990). Although the role of testosterone is not entirely understood, it could 

function similarly to GH by increasing muscle hypertrophy (Weiss et al., 1983). Along 

with an ideal hormone balance for optimal muscle hypertrophy, there may be gender 

differences in neural activation, myostatin gene expression, muscle swelling, metabolite 

accumulation and activation of anabolic molecular pathways during resistance exercise 

(Hakkinen et al., 1995; Kraemer et al., 1990, Freitas et al., 2017; Laurentino et al., 

2012; Manini et al., 2012).     

As a relatively new method of exercise training, BFR has been shown to 

stimulate muscle hypertrophy similar to high intensity resistance training when 

combined with low intensity exercise (20% of 1RM) (Loenneke et al., 2010). It has 

been suggested that BFR exercise provides comparable muscular adaptations to high-

intensity resistance exercise; however the precise mechanisms causing those adaptations 

in BFR remain unclear. BFR training adaptations have been observed to increase 

muscle cross sectional area (CSA) and strength by fully occluding venous outflow and 

restricting arterial blood inflow (Wilson et al., 2013).  
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Metabolite Accumulation and Endocrine Responses 

 BFR training leads to an accumulation of metabolites, such as lactate. A study 

done by Loenneke et al. (2010) recruited twelve men and women to perform leg 

extensions with and without blood flow restriction. The authors observed no differences 

in lactate concentration between the occlusion group and the control group, however, a 

trend was observed for higher lactate levels in the occlusion group. Gender differences 

were not reported in this study. It has also been shown that BFR in the absence of 

exercise may also produce small increases in intracellular lactate due to reduced oxygen 

availability. However, this is not enough to detect with a whole blood lactate 

measurement (Loenneke et al., 2012). Lactate accumulation creates an acidic 

intramuscular environment which stimulates the release of growth hormone (GH). In 

turn, GH stimulates the synthesis and secretion of insulin-like growth factor 1 (IGF-1) 

from the liver and skeletal muscle (Kawada et al., 2005; Loenneke et al., 2010). The 

GH/IGF-1 pathway is an important mediator for skeletal muscle growth in resistance 

training. Abe et al. (2006) investigated the effects of BFR training twice a day for two 

weeks in nine young men for squat and leg curls. They measured muscle CSA and 

volume with magnetic resonance imaging at baseline and 3 days after the final training 

session. This study found an increase in circulating IGF-1 and muscle CSA in the BFR 

training group but not in the non-BFR group. Therefore, IGF-1 increase is an indication 

of possible muscle hypertrophy and protein synthesis. 

 Traditional high-intensity resistance exercise has been shown to elicit metabolite 

accumulation in the blood, including lactate. Lactate concentrations are shown to 

increase significantly after high-intensity training, but may increase more in men than in 
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women, which is due to fast glycolysis and men generally having more muscle mass 

than women (Kraemer et al., 1991, Linnamo et al., 2005, Loenneke et al., 2016). 

However, additional studies have reported that lactate concentrations increase following 

high intensity resistance exercise, but do not differ between men and women (Kraemer 

et al., 1997; Hakkinen et al., 1993). Furthermore, Kraemer et al. (1991) evaluated 

endocrine responses in men and women after a 10 RM and 5RM based workout and a 1-

minute and 3-minute rest period, respectively, between sets for different leg and arm 

exercises. The study consisted of 8 males and 8 females who were healthy and had 

previous resistance training experience and found that whole blood lactate 

concentrations had significantly increased for both genders, with men displaying higher 

values. 

Additionally, previous studies conclude that GH increases in both men and 

women after high-intensity exercise (Kraemer et al., 1991, Hakkinen et al., 1995); 

however, no significant differences between men and women in GH changes are 

observed (Kraemer et al., 1997). Since GH and IGF-1 work in conjunction, there are 

several proposed mechanisms to support their role in muscle hypertrophy and strength 

gains. As previously stated, training leads to higher GH secretion which causes an 

increase in hepatic IGF-1 secretion. This results in elevated levels of IGF-1 in the blood 

causing muscle IGF type I receptors to be stimulated influencing an increase in protein 

synthesis. Another possible mechanism is that resistance exercise increases GH 

secretion which directly stimulates endogenous muscle production of IGF-1. Lastly, De 

Vol et al., (1990) proposed a mechanism using a rat model and suggested that exercise 
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increases muscular production of IGF-1 independently of GH or IGF-1 circulating in 

the blood.  

Several studies have also evaluated the effects of exercise on circulating 

testosterone. Testosterone, along with GH, is an anabolic hormone important for 

muscular hypertrophy which can be increased through resistance exercise. It has been 

shown that acute testosterone responses to traditional resistance exercise are generally 

higher in men than in women since women do not activate muscles as quickly or 

forcefully as men (Linnamo et al., 2005, Weiss et al., 1983, Kraemer et al., 1991). The 

effects of testosterone are seen in the absence of exercise; however, its actions are 

augmented by mechanical loading. Testosterone may also act indirectly by stimulating 

the release of GH or by stimulating satellite cell replication and activation. Resistance 

exercise also upregulates androgen receptor content which increases the chances for 

testosterone binding and uptake into target tissues. Significant correlations between 

testosterone increases and muscle CSA have been determined, suggesting that 

testosterone may induce muscle fiber hypertrophy. However, acute testosterone 

responses to resistance exercise are reduced in women, attenuating muscle hypertrophy 

(Schoenfeld et al., 2010). In contrast, Fujita et al. (2007) found that there was no change 

in free testosterone concentration following a bout of resistance exercise in the six 

young male subjects studied. There is disagreement in the literature regarding endocrine 

responses to an acute bout of resistance exercise as well as an acute bout of BFR 

exercise which provides incentive for researchers to further study these methods of 

exercise. 
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Muscle Swelling 

Traditional high-intensity resistance exercise may cause delayed onset muscle 

soreness (DOMS), which causes an inflammatory response and leads to a fluid shift into 

the cell leading to swelling. An increase in intracellular fluid is associated with protein 

synthesis resulting in muscle hypertrophy (Freitas et al., 2017). Metabolite 

accumulation caused by high-intensity resistance exercise also leads to an increase in 

intracellular osmolality in active muscles. This then leads to fluid fluxes from the 

interstitial space to the intracellular space as well as from vascular to interstitial spaces 

affecting plasma volume (Linnamo et al., 2005). Cell swelling has been shown to inhibit 

muscular catabolism and promote anabolism. It also has been shown to positively affect 

metabolism through protein sparing and increasing lipolysis (Loenneke et al., 2011).  

BFR with low-intensity resistance exercise is known to induce significant 

muscle swelling, although the mechanisms are not entirely understood (Freitas et al., 

2017, Loenneke et al., 2012). It has been suggested that the blood pooling caused by 

BFR alone may be adequate to promote shifts of intracellular and extracellular water 

balance. BFR may increase the hydrostatic pressure gradient which leads to the 

intracellular water flux. Another suggested mechanism is that BFR causes an increase in 

venous carbon dioxide from a decrease in intracellular pH which elevates the 

production of hydrogen ions. pH-regulating transporters have shown to mediate cell 

volume changes (Loenneke et al., 2011). Additionally, Loenneke et al. (2012) suggested 

that BFR mimics an ischemic environment which increases serum- and glucocorticoid-

inducible kinase-1 (SGK1). Furthermore, muscular adaptations from BFR may cause 

muscle cell swelling through the activation of mammalian target of rapamycin (mTOR) 
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and mitogen-activated protein-kinase (MAPK) pathways. Signaling modules associated 

with the MAPK pathway (extracellular signal-regulated kinases (ERK 1/2), p38 MAPK, 

and c-JUN NH2-terminal kinase (JNK)) are associated with muscular adaptations in 

response to exercise. Extracellular signal-regulated kinase has also been shown to 

increase with BFR exercise, which is responsible for osmosensing (Loenneke et al., 

2012). Along with MAPK activation, BFR exercise has been shown to activate the 

mTOR signaling pathway, which is involved in cellular growth (Deldicque et al., 2005). 

These mechanisms may be responsible in regulating muscle cell volume and muscle 

hypertrophy (Lang et al., 2006). 

Howell et al. (2012) assessed muscle swelling in six young men and six young 

women at the arm with an ultrasound. The exercise protocol consisted of preacher curls 

at 90% of their 1RM until fatigue followed by 2-minutes of rest. Then, a second and 

third bout of exercise was performed to fatigue at lesser loads. Arm circumference was 

immediately increased post-exercise by 3%, but had subsided 6 hours after. During the 

next 3 days, arm circumference increased again by 6-9% above control values. This 

study demonstrates that BFR with low-intensity exercise does induce muscle swelling, 

which is important for muscle fiber hypertrophy. BFR training has also been reported to 

attenuate both muscle atrophy and declines in strength through an acute plasma fluid 

shift induced by an increase in muscle size. Initial increases in muscle thickness may be 

due to venous pooling followed by an increase in muscle thickness due to the fluid shift 

into the muscle cells. This can be supported by significant decreases in plasma volume 

along with an increase in skeletal muscle size that remains even after the BFR cuffs are 

removed (Loenneke et al., 2012). Additionally, Freitas et al. (2017) measured muscle 
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swelling in ten young males following low-intensity BFR exercise as well as traditional 

high-intensity resistance exercise and observed that BFR exercise produces similar 

muscle swelling results as high-intensity exercises. This response found in males may 

be applied to females as well, however, more research is needed to fully understand 

BFR exercise responses between both genders. 

Muscle Activation 

 Muscle activation is important for performing daily physical activities. Force 

and speed of contraction are not the only variables that may affect muscle activation, 

but oxygen availability may affect it as well. Type II fibers are recruited more during an 

ischemic state, which could have an effect on muscle activation (Moritani et al., 1992). 

Loenneke et al. (2014) suggest that metabolite accumulation along with a hypoxic 

environment caused by BFR increases the recruitment of higher threshold fibers 

through the stimulation of group III and IV afferent fibers. Type II muscle fibers have a 

larger capacity for muscle fiber hypertrophy than type I fibers, therefore it is important 

to recruit these muscle fibers to induce muscular hypertrophy. High-intensity resistance 

exercise recruits large motor units as well as type II muscle fibers (Kawada 2005). It has 

been shown that muscle activation increases with BFR training in type II fibers, which 

could be due to the early fatigue of slow-twitch muscle fibers via a reduction in oxygen 

availability from BFR exercise as well as an early recruitment of fast-twitch muscle 

fibers due to an increased in sympathetic response and an increase in norepinephrine. 

Norepinephrine stimulates adrenergic β2 receptors, which leads to hypertrophy of type 

II muscle fibers (Freitas et al., 2017; Loenneke et al., 2012).  
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 The size principle suggests that small motor units for type I fibers are recruited 

at lower levels of muscular activity, while larger motor units for type II fibers are 

recruited with an increase in force. Takarada et al. (2000) had five men perform elbow 

flexion exercises with restriction pressures between 0 and 100 mmHg. Acute responses 

were recorded, including electromyography (EMG), vascular resistive index and plasma 

lactate concentrations were measured. EMG, post-exercise hyperemia and lactate levels 

were increased with the increase in restriction pressure at low-intensity exercise, but 

were unchanged with the increase in restriction pressure at high-intensity exercise. 

Furthermore, this study included the investigation of the long-term effects of low-

intensity exercise with restriction in 24 women for 16 weeks of training. There was an 

increase in CSA and strength of the elbow flexor muscles after low-intensity exercise 

with occlusion similar to the high-intensity exercise without restriction. On the other 

hand, Cook et al. (2013) concluded that low-intensity knee extension exercise with BFR 

produced less EMG activity than the high-intensity knee extension exercise protocol in 

eight active male subjects. Further research is needed to amend these conflicting results. 

 Muscular force production after acute high-intensity exercise is determined by 

fiber type of the muscle being tested, the type of muscle action being performed, the 

duration, and intensity of the contraction. Some studies suggest that a decrease in force 

during maximal contractions is due to central fatigue, which is the decrease in voluntary 

activation of muscle during exercise by motoneuronal, spinal and supraspinal factors 

(Hartman et al. 2011). Studies have shown that EMG activity decreased throughout a 

high-intensity exercise bout (Hartman et al., 2011; Babault et al., 2005). Moreover, 

during continued submaximal contractions without BFR, fatigue is supplemented with 
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an increase in EMG amplitude (Potvin 1997). Semmler et al. (2007) recruited seven 

men and three women for their study involving submaximal elbow flexor exercises. 

They performed two tasks involving isometric contractions at the elbow flexor muscles 

including maximal voluntary contractions (MVC) as well as constant-force submaximal 

contractions at 5%, 20%, 35% and 50% MVC. They concluded that there was an 

increase in EMG activity in all elbow flexor muscles at low forces as well as an increase 

in coactivation of the triceps brachii muscle. Therefore, it is known that skeletal muscle 

hypertrophy can be caused by an increase in muscle activation (Freitas et al. 2017). This 

can be done through high-intensity exercise or through BFR combined with low-

intensity exercise. However, more research should be conducted to determine the 

hypertrophic adaptations between males and females attributed to an increase in muscle 

activation caused by BFR. 

Cuff Type 

 Although there are studies that demonstrate similar skeletal muscle adaptations 

between traditional high-intensity resistance exercise and low-intensity exercise with 

BFR, there are some that suggest that there are no benefits from BFR training 

(Burgomaster et al., 2003). The conflicting results may be explained by the 

methodology used. Cuff size and material may affect vascular occlusion and may 

potentially alter results between studies. It has been reported that wide nylon cuffs (13.5 

cm) create a much lower pressure for arterial occlusion than narrow elastic cuffs (5 cm), 

which shows that reporting cuff size in BFR studies is crucial (Loenneke et al., 2013). 

Some cuffs can have their pressures regulated, which can potentially affect the results of 

a study. It has been shown that the initial pressure of BFR is important in regulating 
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because different initial pressures have revealed different acute responses to BFR 

(Karabulut et al., 2011). 

 Loenneke et al. (2013) conducted a study evaluating the effects of cuff type on 

fatigue and perceptual responses to resistance exercise. This study involved sixteen 

recreationally active males and females who were asked to perform knee extension 

exercises to fatigue wearing either an elastic or nylon cuff of the same width. In 

addition, ratings of perceived exertion (RPE) were recorded. This study did not find any 

significant differences between cuff types and they also did not find any gender 

differences with respect to repetitions to fatigue. However, the results suggest that mean 

and percentile differences between genders become more apparent toward the end of the 

exercise protocol. The females in this study may have been completing more repetitions 

than the males as exercise duration increased which could be explained by the higher 

load the males exercised with. Higher exercise loads lead to an increase in 

intramuscular pressure, which causes an increase in fatigue due to the reduced blood 

flow and metabolite accumulation. BFR training can cause an increase in intramuscular 

inorganic phosphate concentration, which results in muscular fatigue. BFR may also 

cause a decrease in the amplitude of the calcium transient and may inhibit the cross-

bridge cycle. The results from this study provide an explanation for the mechanisms 

behind skeletal muscle hypertrophy and will allow future researchers to directly 

compare results from many different studies 

 The present study evaluated the gender differences on lactate and hematocrit 

concentration, muscle thickness and muscle activation between two types of cuffs: an 



22 

inflatable Hokanson nylon cuff that is 13 cm wide used for the cBFR protocol and an 

elastic cuff about 5 cm wide for the pBFR protocol. 
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Chapter III: Methodology 

The purpose of this study was to determine gender differences in the 

physiological responses to an acute pBFR and cBFR exercise session as opposed to low 

and high intensity resistance exercise. Physiological responses include hematocrit 

levels, lactate levels, EMG activity and muscle swelling as determined by 

circumference and ultrasound. There are few studies that explain physiological 

responses to acute resistance exercise between genders and there is even less regarding 

BFR exercises. 

Participants 

 G-power (version 3.1.9.2) was used to determine that a sample size of 15 males 

and 15 females would result in an expected statistical power of 0.80 and an effect size 

of 0.04, therefore, the study was designed to recruit up to 20 males and 20 females 

between the ages of 18 and 30 years to allow for possible dropouts (Loenneke et al., 

2015, Loenneke et al., 2013, Kraemer et al., 1997). However, 17 males were recruited 

and 14 completed the study, while 16 females were recruited and 15 of the females 

completed the study. There were four testing conditions involving two lower body 

exercises (leg press and knee extension) that subjects performed in randomized order. 

These conditions included: 1) controlled blood flow restriction (50% occlusion) 

exercise at 30% of 1RM for four sets of 30-15-15-15 repetitions and a minute of rest in 

between each set; 2) practical blood flow restriction exercise at a 7 on a scale of 0-10 on 

the perceived pressure scale at 30% 1RM for four sets of 30-15-15-15 repetitions and a 

minute of rest in between each set; 3) high intensity at 80% of 1RM with no occlusion 

for three sets of 8 to 10 repetitions with a minute of rest in between each set; and 4) 
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low-intensity which consisted of four sets of 30-15-15-15 repetitions at 30% of 1RM 

with no occlusion and a minute of rest in between each set. There was also about a 3-

minute rest period in between each exercise. The last four visits were randomized 

through a generator online (random.org).  

Inclusion Criteria 

1. Ankle brachial index > 0.9 and < 1.4. 

2. Recreationally active males and females between the ages of 18-30 years. 

3. Female participants taking hormonal contraceptives. 

4. Female subjects with a normal menstrual cycle between 28 and 30 days. 

5. Normotensive. 

6. Healthy subjects who are willing to participate in the study in accordance with the 

consent forms and questionnaires. 

Exclusion Criteria 

1. Subjects who are not recreationally trained. 

2. Subjects with uncontrolled high blood pressure (>140/90 mmHg). 

3. Subjects with any cardiovascular or metabolic diseases. 

4. Subjects who have had a hip or knee injury in the last 6 months. 

5. Subjects with a BMI over 30 kg/m². 

6. Females who are pregnant or intend to become pregnant. 

7. Ankle brachial index < 0.9 or > 1.4. 

Research Design 

 This study recruited 17 men and 16 women who were recreationally active, 

however, only 14 men and 15 women completed the study. In a randomized crossover 
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design, subjects performed each of the 4 conditions in randomized order with at least 3 

days between each condition as a wash-out period. The four exercise conditions 

included: 1) controlled blood flow restriction (50% occlusion) exercise at 30% of 1RM 

for four sets of 30-15-15-15 repetitions and a minute of rest in between each set 

(cBFR); 2) practical blood flow restriction exercise at a 7 on a scale of 0-10 on the 

pressure pain scale for four sets of 30-15-15-15 repetitions and a minute of rest in 

between each set (pBFR); 3) high-intensity at 80% of 1RM with no occlusion for three 

sets of 8 to 10 repetitions with a minute of rest in between each set (HI); and 4) low-

intensity which consisted of four sets of 30-15-15-15 repetitions at 30% of 1RM with no 

occlusion and a minute of rest in between each set (LI). There was also about a 3-

minute rest period in between each exercise. 

 There were 6 total visits for this study for each participant. During the first visit, 

the subjects completed a consent form, health insurance portability and accountability 

act (HIPAA) form, physical activity readiness questionnaire (PAR-Q), health status 

questionnaire and a menstrual questionnaire (women only). The first visit (1.5 hours) 

also included height, weight, brachial blood pressure, ankle-brachial index 

measurements and familiarization for the knee extension and leg press 1RM 

determination protocols. The second visit (1.5 hours) determined the total occlusion 

pressure of each participant as well as 1 repetition max (1RM) for leg press and knee 

extension (Cybex International Inc., Medway, MA, USA). The subjects were also 

familiarized with wearing BFR cuffs while exercising by completing 2 sets of 10 

repetitions for leg press and 2 sets and 5 repetitions for knee extension. Before the last 

four visits, the subjects were asked to refrain from alcohol and heavy exercise 24 hours 
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prior to testing as well as abstaining from caffeine ingestion 6 hours prior to testing. The 

last four visits (visits 3, 4, 5 and 6) lasted about 1.5 hours each and were done in 

randomized order. The last four visits included a bout of resistance exercise with cBFR, 

pBFR, high-intensity with no occlusion and low-intensity with no occlusion. Each of 

the last 4 sessions began by marking the sites for EMG electrode placement and 

ultrasound muscle thickness sites. Then the participants rested for 5-minutes to allow 

the researchers to obtain baseline measurements for lactate, hematocrit, muscle 

thickness and thigh circumference. Subjects then continued with 8-10 repetitions of 

50% of their 1RM on leg press followed by a single repetition of the previously found 

1RM load on the leg press in order to provide a reference EMG signal that will be used 

to normalize EMG activity. The same was then done for the knee extension machine. 

For cBFR and pBFR sessions, the BFR cuffs was placed high up on the thigh and 

subjects will perform 4 sets of 30-15-15-15 repetitions at 30% of their 1RM for both the 

leg press and knee extension exercises. The cBFR protocol was set at 50% of the 

subject’s total occlusion pressure and the pBFR protocol will be at a 7 on the perceived 

pressure scale. Each set had a minute of rest in between each set and about 3-minutes of 

rest between the leg press and knee extension exercises. For the session without BFR, 

the high intensity conditions included 3 sets of 8 to 10 repetitions at 80% of the 

subject’s 1RM. The LI day was at an intensity of 30% of 1RM with 4 sets of 30-15-15-

15 repetitions without any occlusion. Immediately post exercise, 5-minutes post 

exercise and 15-minutes post exercise the measurements for muscle thickness, thigh 

circumference, hematocrit and blood lactate were assessed. EMG activity was recorded 

during each set of all of the exercise protocols. Muscle activity of the vastus lateralis 
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(VL) for both legs were included in the EMG recordings. For each variable measured, 

only the dominant leg was used for statistical analyses. Each subject had at least 3 days 

between each visit to provide time for recovery and for a wash-out period. 

Height and Weight 

 To obtain a height measurement, each subject was asked to stand straight against 

the stadiometer (Novel Products, Inc., Rockton, IL) with their arms hanging straight 

down and their feet together. Body weight was measured with a standard scale (Tanita, 

Model BWB-800A, Japan). Each measurement was recorded to the nearest 0.5 cm and 

1 kg. 

Brachial Blood Pressure 

 After resting for a period of 5 minutes in a supine position, blood pressure was 

measured with an automatic blood pressure cuff (Omron Healthcare Inc. Vernon Hills, 

IL Model HEM-773). Two blood pressure measurements were taken and a third was 

taken if the previous two measurements were more than 5 mmHg different. 

Ankle Brachial Index 

 Ankle brachial index (ABI), which is the ratio of the highest blood pressure in 

the ankle and the highest blood pressure in the arm, was measured after a 5-minute rest 

period (Loenneke et al., 2013). Each subject was asked to rest in a supine position 

before ABI was assessed. In order to assess brachial blood pressure, a MV10 segmental 

cuff was used with a hand held bidirectional Doppler (MD4, Hokanson, Bellevue, WA). 

A cuff was placed on each arm and the doppler was also be placed on each arm at about 

a 45 to 60-degree angle on the surface of the brachial artery. The doppler picked up the 

sound given off by the brachial artery and the cuff was inflated until the sound 



28 

disappears. The cuff was slowly be deflated until the first sound is heard again which 

gave the systolic blood pressure. Ankle systolic blood pressure was assessed by placing 

the cuff about 2 centimeters above the malleoli and the doppler was placed on the 

posterior tibial artery. This was done on each leg separately. Finally, ABI was 

calculated by dividing the systolic pressure of the ankles by the highest systolic pressure 

of the arms (Xu et al., 2013). 

Arterial Occlusion Pressure 

 Arterial occlusion pressure was determined at both legs on the anterior tibial 

artery using the Hokanson (13.5 cm x 84 cm Hokanson, SC12, Bellevue, WA) with a 

doppler probe. A cuff was placed at the most proximal location of the thigh and was 

inflated until blood flow is no longer sensed by the doppler probe. The initial inflation 

of the cuff began at 50 mmHg and continued for 30 seconds until it was deflated for 10 

seconds. The pressure values were displayed on a screen and the next inflation of the 

cuff was the subject’s systolic pressure. The pressure of the cuff increased by 40 mmHg 

every 30 seconds, with 10 seconds of rest in between, until total occlusion was reached. 

Once there was no sound coming from the doppler, the pressure was then lowered to the 

nearest 10 mmHg until the sound came back. Total arterial occlusion was set as the 

lowest pressure as soon as the pulse of the blood vessel is no longer detected. For the 

safety of the subjects, occlusion pressure did not exceed 300 mmHg, even if the blood 

vessel was not completed occluded (Loenneke et al., 2015). During the controlled BFR 

exercise condition, pressure was set at 50% of the occlusion pressure for each subject. 
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One Repetition Maximum 

 Before performing a 1RM test, subjects were asked to warm-up on leg press and 

knee extension at 50% of their 1RM that can be easily performed for 8 to 10 repetitions. 

The subject was then given 1-minute of rest while the researcher asked the subject how 

difficult the warm-up was on a scale of 1-10 (1 being easiest, 10 being most difficult). If 

the subject found the load to be easy, the researcher then increased the load based on 

how difficult the load was. This was followed by 3 to 5 repetitions of leg press or knee 

extension and a rest period of 2-minutes. After another perceived exertion rating, the 

load may have been increased or decreased. The researcher would then estimate a near 

maximal load that would allow the subject to perform 2 or 3 repetitions followed by a 

period of 2-4 minutes of rest. After another rating on the exertion scale, 1RM would be 

estimated (Clayton et al., 2015). 

Resistance Exercise 

 The four exercise conditions were performed in randomized order consisting of: 

1) cBFR (50% occlusion) exercise at 30% of 1RM for four sets of 30-15-15-15 

repetitions and a minute of rest in between each set; 2) pBFR exercise at a 7 on a scale 

of 0-10 on the pressure pain scale at 30% of 1RM for four sets of 30-15-15-15 

repetitions and a minute of rest in between each set; 3) HI at 80% of 1RM with no 

occlusion for three sets of 8 to 10 repetitions with a minute of rest in between each set; 

and 4) LI  which consisted of four sets of 30-15-15-15 repetitions at 30% of 1RM with 

no occlusion and a minute of rest in between each set. There was also about a 3-minute 

rest period between each exercise. After 8-10 repetitions at 50% of 1RM on leg press as 

a warm-up and the 1RM reference replication, repeated again on the knee extension, the 



30 

leg press and knee extension exercises took place. If the subject was unable to replicate 

their 1RM, then half to a full plate was taken off and the subject was allowed to rest for 

a minute before trying to replicate their 1RM again. Each session had a minute of rest in 

between sets. To maintain consistency for the EMG measurements, a metronome 

(SEIKO DM-11) was used to allow subjects to maintain a cadence of 1.5 seconds for 

each portion of the exercise (concentric and eccentric). Each variable measured post-

exercise was done with the subject standing for majority of the time up to 15-minutes 

post-exercise to avoid variability in posture. Subjects were allowed to sit after the 

immediately post-exercise measurements up until the 5-minutes post-exercise 

measurements. 

Thigh Circumference 

 Baseline thigh circumference was assessed after the subject had rested for 5-

minutes in a seated position. Measurements were taken at the halfway point of the 

length of the femur after rest, immediately post exercise without the BFR cuff and 5 and 

15-minutes post-exercise without the BFR cuff. The femur was measured from the 

greater trochanter to the femoral condyle with a standard measuring tape and marked 

with a permanent marker. 

Muscle Swelling 

Muscle swelling was determined by assessing muscle thickness with an 

ultrasound (Fukuda Denshi UF-4500, Tokyo, Japan). Muscle thickness was measured 

after the subject rested in a seated position for 5-minutes, immediately post exercise 

without the BFR cuff on and 5 and 15-minutes post exercise without the BFR cuff. 

While the subject was in a standing position, muscle thickness was measured at both 
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legs at the halfway mark of the length of the femur. Transmission gel was placed on a 5 

MHz linear probe and the probe was then placed perpendicular to the skin surface. The 

distance given by the ultrasound between the tissue and muscle as well as muscle to 

bone will give muscle thickness in centimeters. The diagnostic ultrasound is a reliable 

and inexpensive method for assessing muscle thickness (CV% between 3.5 and 6.7%) 

(Bemben et al., 2002). 

Lactate and Hematocrit 

 Lactate was measured using the Lactate Plus Analyzer (Nova Biomedical 

Corporation Waltham, MA 02454, USA), which was found to be reliable and valid by 

Hart et al. (2013). The analyzer was first calibrated against two controls (a high and low 

control). Calibration was repeated until the controls match the specified ranges on the 

label. Once calibration was set, the subject’s finger middle or ring finger was cleaned 

with an alcohol wipe by the researcher, which allowed the area to dry and then the 

researcher pricked the finger with a lancet. The first drop of blood was removed in case 

of contamination, and the second drop was brought to the lactate strip. The strip was 

then inserted into the lactate analyzer for lactate measurements. The drop of blood 

should not be wiped off in case the analyzer could not read the initial drop of blood. The 

subject was then given a paper towel to place pressure on the finger prick with once the 

lactate reading was made.  

Lactate and hematocrit measurements were taken while standing for baseline 

measurements at immediately post exercise, 5-minutes and 15-minutes post exercise 

without the BFR device after 5-minutes of seated rest. The blood sample was then 

collected at the same site as the lactate finger prick. The blood samples were collected 
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in duplicate into two capillary tubes. The CritSpin (CritSpin Micro-Hematocrit 

Centrifuge, StatSpin, Inc., Norwood, MA 02062) then centrifuged the capillary tubes 

for 2-minutes and was then transferred to the hematocrit reader (DAMON/IEC 

DIVISION, 300 Second Ave. Needham HTS MASS 02194). Plasma volume change 

was found with the formula found below (Van Beaumont et al., 1972):  

% change plasma volume = (100/(100 – Hct pre)) * 100 ((Hct pre – Hct post)/Hct post). 

Electromyography 

 Muscle activity was measured from the VL of both legs using EMG. Bipolar 

electrodes were placed on the surface of the skin above the VL 20 millimeters apart. 

The distance between the anterior superior iliac spine and the lateral side of the patella 

was measured, and the electrodes were placed about 2/3 below the anterior superior 

iliac spine. A ground electrode was placed on the patella and all of the sites were 

marked with a permanent marker to maintain consistency and avoid variability. The 

electrodes were connected to an amplifier and digitized (Biopac System, Inc. Goleta, 

CA). The EMG signals were collected with AcqKnowledge Software (version 3.8.1) 

from both legs continuously during each set of the leg press and knee extension. EMG 

amplitude (room mean square, RMS) and mean power frequency (MPF) were analyzed 

for each set of each exercise during the last three concentric contractions and the signal 

was filtered (low-pass filter 500 Hz, high-pass filter 10Hz, amplified 1000x and 

sampled at a rate of 1KHz). During the 1RM test, the largest EMG value within 0.5 

seconds was used as a reference for maximal voluntary contraction (MVC). Muscle 

activation was expressed compared to the largest RMS signal for both leg press and 

knee extension (%MVC). 
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Perceived Pressure Scale, OMNI-Resistance Exercise Scale and Borg Discomfort 

Scale 

 The Perceived Pressure Scale (PPS) was used to gauge how tight the pBFR 

group placed the strap on their thighs. The scale ranges from 0, meaning no pressure or 

pain, to 10 meaning extreme pressure with pain. The strap was tightened to about a 7 on 

the PPS, meaning moderate pressure with no pain (Wilson et al., 2013).  

 The OMNI-Resistance Exercise Scale (RES) was used to measure perceived 

intensity of each exercise condition (Colado et al., 2012). The scale ranges from 0, 

meaning extremely easy, to 10, meaning extremely difficult. This scale was used before 

the exercise and after each exercise set. 

 The Borg Discomfort Scale (DS) was used to assess discomfort the subject 

experiences. The scale ranges from 0, meaning no discomfort, to 10, described as the 

worst discomfort ever experienced by the participant (Loenneke et al., 2013). The DS 

was used before exercising and after each exercise set performed. 

Data Analyses 

 A mixed model 3-way repeated measures analysis of variance (ANOVA) 

[gender (male and female) x time (pre, immediately, 5 and 15-minutes post) x condition 

(cBFR, pBFR, HI, LI)] was used to test for significant main effects and interactions 

using IBM SPSS 23 (SPSS, Chicago, IL). If there were significant gender by time or 

gender by condition interactions, the model was decomposed, and separate two-way 

repeated measures ANOVA with Bonferroni post hoc procedures were used to test the 

simple effects. One-way repeated measures ANOVA were used whenever significant 

condition by time interactions were observed. If there were significant gender by 
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condition by time interactions, gender was separated and then two one-way repeated 

measures ANOVA’s were used with condition being averaged across time and time 

being averaged across each condition. Descriptive statistics were also analyzed using 

independent t-tests to compare to mean difference between males and females. 

Friedman’s non-parametric test was used to analyze the effort and discomfort responses 

across condition and time. Paired Wilcoxon non-parametric tests with a Bonferroni 

correction were used for pairwise comparisons. The alpha level was set at p ≤ 0.05 and 

data are presented as mean ± standard deviation, unless otherwise indicated. 
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Chapter IV: Results and Discussion 

 The purpose of this study was to determine if men and women respond 

differently to a single bout of low-intensity resistance exercise with cBFR or pBFR, as 

well as low and high-intensity resistance exercise without BFR in terms of acute 

physiological responses in muscle activation, muscle swelling, thigh circumference, 

blood lactate and hematocrit concentrations. 

Subjects 

A total of 33 participants were enrolled for this study, however, 3 males and 1 

female were not able to complete the study. Therefore, a total of 29 participants (14 

men and 15 women) completed each testing visit and were included in the statistical 

analyses. The subjects were aged between 18 and 29 years (men = 23.57 ± 2.65 years, 

women = 20.33 ± 1.63 years). Subjects did not have hip or knee injuries, nor did they 

have known cardiovascular disease. Subjects were not included if their body mass index 

(BMI) was ³ 30 kg/m2, if their blood pressure was < 140/90 mmHg, or had an ankle 

brachial index (ABI) of > 0.9 and < 1.4. Female subjects who were not on a hormonal 

contraceptive were excluded from the study. Further characteristics of all of the 

participants, as well as each gender, are shown in Table 1. Males had significantly 

greater values for age, weight, height and systolic blood pressure (SBP) than females (p 

< 0.001). Each subject had their 1 repetition maximum (1RM) evaluated during the 

second visit for leg press and knee extension and values are listed in Table 2. Males had 

significantly higher 1RM values for leg press and knee extension than females (p < 

0.001). 
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Table 1. Participant characteristics by gender (mean ± SD) 
Variable Total (n = 29) Male (n = 14) Female (n = 15) 

**Age (years) 21.9 ± 2.70 23.57 ± 2.65 20.33 ± 1.63 
**Weight (kg) 71.97 ± 12.30 80.86 ± 10.07 63.67 ± 7.45 
**Height (cm) 1.71 ± 0.10 1.78 ± 0.06 1.65 ± 0.07 
BMI (kg/m2)  24.34 ± 2.73 25.34 ± 3.11 23.41 ± 1.99 
**SBP (mmHg) 120.45 ± 10.82 127.71 ± 3.12 113.67 ± 8.77 
DBP (mmHg) 72.19 ± 7.22 73.89 ± 7.74 70.60 ± 7.25 
ABI 1.09 ± 0.08 1.07 ± .08 1.12 ± 0.07 
TOP (mmHg) 139.16 ± 14.30 143.61 ± 13.09 135.00 ± 14.55 
50% TOP (mmHg) 69.76 ± 7.17 71.93 ± 6.56 67.73 ± 7.34 
Abbreviations as follows: BMI - Body mass index; SBP - Systolic blood pressure; DBP - 
diastolic blood pressure; ABI - Ankle brachial index; TOP - Average of the total occlusion 
pressure of both legs; 50% TOP - Half of the total occlusion pressure; Symbols: **Males 
significantly greater than females (p < 0.001). 

 

 

 

 

 

 

 

 

 

 

Thigh Circumference 

As presented in Tables 3 and 4, there were no significant gender (p = 0.109) or 

condition (p = 0.217) main effects, but there was a significant time main effect (p < 

0.001), with post hoc analysis indicating that IP, 5P and 15P were significantly larger 

than pre-circumference values (p < 0.001). Additionally, IP was significantly greater 

 
Table 2. Gender differences in 1RM (mean ± SD) 

  
 

  
    
Intensity   

Exercise 1RM (kg) 30% 1RM 80% 1RM 

M
al

e **Leg Press 173.51 ± 32.32 52.05 ± 9.70 138.81 ± 25.86 

**Knee Extension 107.61 ± 21.29 32.28 ± 6.39 86.08 ± 17.03 

Fe
m

al
e 

 Leg Press 117.29 ± 23.22 35.19 ± 6.97 93.83 ± 18.57 

Knee Extension 64.19 ± 12.80 19.26 ± 3.83 51.35 ± 10.23 
Abbreviations as follows: 1RM - 1 repetition maximum in kilograms; 30% 1RM - 30% of the 
subject’s 1RM; 80% 1RM - 80% of the subject’s 1RM; Symbols:  **Males significantly 
greater than females (p < 0.001). 
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than 5P and 15P, and 5P was significantly greater than 15P (p < 0.001). There were 

also no gender by condition (p = 0.459), condition by time (p = 0.186) or gender by 

time by condition (p = 0.109) interactions, but there was a significant gender by time 

interaction significant difference (p = 0.046) for thigh circumference. Figure 1 

illustrates the trend for thigh circumference. Even though a significant gender by time 

interaction was observed, post hoc analysis did not detect such an interaction for both 

variables (p > 0.05). 

 

Table 3. Thigh circumference (cm; mean ± SD) 

    Pre IPa 5Pa,b 15Pa,b,c 

M
al

es
 cBFR 55.86 ± 5.49 57.82 ± 4.39 57.62 ± 4.36 57.77 ± 4.47 

pBFR 56.62 ± 4.31 57.64 ± 4.33 57.50 ± 4.33 56.94 ± 4.67 
HI 56.93 ± 4.34 58.01 ± 4.46 57.74 ± 4.35 57.54 ± 4.28 
LI 56.41 ± 4.34 57.37 ± 4.41 57.21 ± 4.35 56.97 ± 4.38 

Fe
m

al
es

 cBFR 54.03 ± 4.40 54.90 ± 4.47 54.69 ± 4.33 54.38 ± 4.31 
pBFR 54.21 ± 4.67 54.90 ± 4.74 54.90 ± 4.74 54.57 ± 3.92 
HI 54.16 ± 3.92 54.84 ± 4.08 54.84 ± 4.08 54.55 ± 4.02 
LI 54.13 ± 4.07 56.97 ± 4.38 54.71 ± 4.14 54.39 ± 4.23 

Abbreviations as follows: Pre - pre-exercise; IP - immediately post-exercise; 5P - 5-min post-
exercise; 15P - 15-min post-exercise; cBFR - controlled blood flow restriction (BFR); pBFR - 
practical BFR; HI - High intensity; LI - Low intensity. Significance as follows: a p ≤ 0.01 vs pre, b p 
≤ 0.01 vs IP, c p ≤ 0.01 vs 5P. 
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Figure 1. Thigh circumference across time and condition for each gender 

 

Abbreviations as follows: IP – immediately post-exercise, 5P – 5-min post-exercise, 15P – 15-min post-
exercise. cBFR - controlled blood flow restriction, pBFR – practical blood flow restriction, HI – high 
intensity, LI – low intensity. 

 

Muscle Thickness 

Ultrasound measurements of thigh muscle thickness (Figure 2) revealed 

significant gender (p = 0.001) and time (p < 0.001) main effects, but no significant 

condition (p = 0.184) main effect, as presented in Table 5 and 6. Post hoc analysis 

revealed that males were significantly greater than females (p = 0.001), and regarding 

Table 4. Main Effects and Interactions for Thigh Circumference 
Variable F p η2 Power 

Gender 2.747 0.109 0.092 0.359 
Condition 1.513 0.217 0.053 0.386 
**Time 56.393 <0.001 0.676 1.000 
Gender by Condition 0.872 0.459 0.031 0.232 
*Gender by Time 3.557 0.046 0.116 0.572 
Condition by Time 1.794 0.186 0.062 0.307 
Gender by Condition by Time 1.622 0.109 0.057 0.748 
Abbreviations as follows: F – Ratio of the mean squares; p – Probability, p < 0.05 for 
statistical significance; η2 – Effect size. Significance as follows: *p ≤ 0.05, ** p ≤ 0.01. 
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time, baseline measures were significantly less than IP, 5P, and 15P (p < 0.001). 

Additionally, IP was significantly greater (p < 0.001) than 5P and 15P, and 5P was 

significantly (p < 0.001) greater than 15P. There was a significant gender by time 

interaction (p < 0.001), but no gender by condition (p = 0.461), condition by time (p = 

0.677) or gender by time by condition (p = 0.849) interactions. Further analysis of the 

gender by time interaction revealed that males showed significantly larger muscle 

thickness than women at baseline (p = 0.002), immediately post, 5-min and 15-min 

post-exercise (p ≤ 0.001).  

 

Table 5. Muscle thickness (cm; mean ± SD) 

    Pre IPa 5Pa,b,c 15Pa,b 

M
al

es
*  

cBFR 5.850 ± 0.806 6.336 ± 0.834 5.807 ± 0.795 6.179 ± 0.825 
pBFR 5.807 ± 0.795 6.286 ± 0.818 6.207 ± 0.819 6.143 ± 0.833 
HI 5.821 ± 0.728 6.279 ± 0.813 6.257 ± 0.765 6.200 ± 0.783 
LI 5.779 ± 0.812 6.250 ± 0.916 6.171 ± 0.897 6.071 ± 0.894 

Fe
m

al
es

 cBFR 4.900 ± 0.655 4.893 ± 0.677 5.107 ± 0.669 5.073 ± 0.665 
pBFR 4.893 ± 0.669 5.173 ± 0.657 5.120 ± 0.651 5.040 ± 0.645 
HI 5.013 ± 0.811 5.333 ± 0.795 5.260 ± 0.832 5.107 ± 0.636 
LI 4.873 ± 0.639 5.167 ± 0.659 5.107 ± 0.636 5.027 ± 0.617 

Abbreviations: Pre - pre-exercise; IP - immediately post-exercise; 5P - 5-min post-exercise; 15P - 
15-min post-exercise; cBFR - controlled blood flow restriction (BFR); pBFR - practical BFR; HI - 
High intensity; LI - Low intensity. Significance as follows: *Males significantly greater than 
females (p ≤ 0.01). a p ≤ 0.01 vs Pre, b p ≤ 0.01 vs IP, c p ≤ 0.01 vs 15P. 
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Table 6. Main effects and interactions for muscle thickness 
Variable F p η2 Power 
**Gender 14.112 0.001 0.343 0.952 
Condition 1.812 0.184 0.063 0.306 
**Time 135.885 < 0.001 0.834 1.000 
Gender by Condition 0.869 0.461 0.031 0.232 
**Gender by Time 9.6 < 0.001 0.262 0.997 
Condition by Time 0.633 0.677 0.023 0.227 
Gender by Condition by Time 0.535 0.849 0.019 0.261 
Abbreviations as follows: F – Ratio of the mean squares; p – Probability, p ≤ 0.05 for 
statistical significance; η2 – Effect size. Significance as follows: ** p ≤ 0.001. 

 

 

Figure 2. Muscle thickness across time and condition for each gender 

 

Abbreviations as follows: Pre – Pre-exercise, IP – immediately post-exercise, 5P – 5-min post-exercise, 
15P – 15-min post-exercise. cBFR - controlled blood flow restriction, pBFR – practical blood flow 
restriction, HI – high intensity, LI – low intensity. Significance as follows: †Males significantly greater 
than females for each time point (p ≤ 0.05). 
 

Lactate 

For lactate values presented in Table 7 and Table 8, there was a significant 

gender (p = 0.006) main effect with males displaying greater lactate levels than females. 

There was also a significant condition (p ≤ 0.001) and time (p ≤ 0.001) main effect. For 
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the condition main effect, HI was significantly larger than all the other testing 

conditions (p < 0.001). For the time main effect, IP, 5P and 15P was significantly 

greater than pre (p < 0.001). Additionally, IP was significantly greater than 5P and 15P 

(p ≤ 0.05), and 5P was significantly greater than 15P (p < 0.001).  

Further analysis revealed that there was a gender by time interaction (p < 0.001). 

Results showed that males did not have significantly different lactate levels from 

females at baseline measures (p > 0.05); however, males did show higher lactate levels 

than females for every other time point (p ≤ 0.05). There was also a condition by time 

interaction (p < 0.001) which revealed that for each testing condition, IP, 5P and 15P 

were all significantly greater than baseline lactate values (p < 0.001). Additionally, IP 

and 5P were significantly greater than 15P (p < 0.001). Furthermore, looking at the 

condition by time interaction, baseline lactate values showed no significant difference 

across conditions (p > 0.05), but at IP, 5P and 15P, the HI condition had significantly 

larger lactate levels than every other condition (p ≤ 0.001). Lactate illustrated in Figure 

3. 

 

 

 

 

 

 

 

 



42 

Table 7. Lactate (mmol/L; mean ± SD) 
    Pre IPab† 5Pac† 15Pa† 

M
al

es
*  

cBFR 1.34 ± 0.63 7.95 ± 2.30§# 7.76 ± 2.28§# 5.21 ±1.96§ 
pBFR 1.21 ± 0.69 7.39 ± 2.01§# 7.32 ± 2.20§# 4.86 ± 1.80§ 
HIβ	 1.11 ± 0.49 9.96 ± 2.94‡§# 9.97 ± 3.00‡§# 7.06 ± 2.65‡§ 

LI 1.29 ± 0.52 7.64 ± 2.43§# 7.57 ± 2.44§# 5.06 ± 2.41§ 

Fe
m

al
es

 cBFR 1.45 ± 0.50 5.93 ± 1.70§# 5.54 ± 1.81§# 3.39 ± 1.21§ 
pBFR 1.52 ± 0.74 5.62 ± 1.97§# 4.96 ± 2.31§# 3.12 ± 1.36§ 
HIβ 1.24 ± 0.39 7.74 ± 1.99‡§# 7.25 ± 1.96‡§# 4.85 ± 1.56‡§ 

LI 1.33 ± 0.50 5.85 ± 1.36§# 5.19 ± 1.67§# 3.15 ± 1.11§ 
Abbreviations as follows: Pre - pre-exercise; IP - immediately post-exercise; 5P - 5-min post-
exercise; 15P - 15-min post-exercise; cBFR - controlled blood flow restriction (BFR); pBFR - 
practical BFR; HI - High intensity; LI - Low intensity. Significance as follows: * Males 
significantly greater than females (p ≤ 0.05). β p ≤ 0.01 vs all conditions. a p ≤ 0.01 vs Pre, b p ≤ 0.05 
vs 5P, 15P, c p ≤ 0.01 vs 15P. † p ≤ 0.01 males > females. ‡ p ≤ 0.01 vs all conditions, § p ≤ 0.01 vs 
pre, # p ≤ 0.01 vs 15P. 

 

 

Table 8. Main effects and interactions for lactate 
Variable F p η2 Power 
*Gender 8.937 0.006 0.249 0.822 
**Condition 28.641 < 0.001 0.515 1.000 
**Time 229.054 < 0.001 0.895 1.000 
Gender by Condition 0.308 0.819 0.011 0.107 
**Gender by Time 9.925 < 0.001 0.269 0.997 
**Condition by Time 23.444 < 0.001 117.547 1.000 
Gender by Condition by Time 0.296 0.975 0.011 0.152 
Abbreviations as follows: F – Ratio of the mean squares; p – Probability, p ≤ 0.05 for 
statistical significance; η2 – Effect size. Significance as follows: * p ≤ 0.01, ** p ≤ 0.001. 
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Figure 3. Lactate values across time and condition for each gender 

 

Abbreviations as follows: Pre - pre-exercise, IP - immediately post-exercise; 5P - 15-min post-exercise. 
cBFR - controlled blood flow restriction (BFR), pBFR - practical BFR; HI - High intensity, LI - Low 
intensity. Significance as follows: †Males significantly greater than females for each time point (p ≤ 
0.01).  
 

Hematocrit 

There were significant gender and time (p < 0.001) main effects, but no 

condition (p = 0.101) main effect for hematocrit values. Males had significantly larger 

hematocrit values than females (p < 0.001) regardless of exercise condition or time 

point. Furthermore, baseline (p = 0.018), IP levels (p < 0.001) and 5P (p < 0.001) were 

significantly larger than 15P. Additionally, IP (p = 0.012) and 5P (p = 0.018) were 

significantly larger than baseline measures. Hematocrit values also showed a condition 

by time interaction (p = 0.010). Means and standard deviations are presented on Table 9 

and main effect and interaction values are presented on Table 10. 

The condition by time interaction observed for hematocrit revealed that IP and 

5P were significantly larger than baseline and 15P (p ≤ 0.05) for both cBFR and HI 

conditions (Figure 4). For pBFR, IP was significantly larger than both baseline and 15P 
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hematocrit values (p ≤ 0.05). Lastly, LI exhibited significantly greater (p < 0.001) 15P 

hematocrit values when compared to alternative time points (baseline, IP and 5P). 

Additionally, there were no significant differences were observed across conditions at 

baseline, IP, and 15P (p > 0.05). For the 5P time point, cBFR and HI displayed 

significantly greater hematocrit values than pBFR (p ≤ 0.05). 

 

Table 9. Hematocrit values (%; mean ± SD) 

    Prea IPa,b 5Pa,b 15P 

M
al

es
* 

cBFR 46.18 ± 2.83 47.93 ± 2.13§ 47.93 ± 2.50‡§ 45.75 ± 2.35 
pBFR 45.32 ± 2.09 46.64 ± 2.08§ 46.50 ± 2.70§ 45.29 ± 2.01 
HI	 45.82 ± 2.28 47.29 ± 2.38§ 47.46 ± 2.73‡§ 45.89 ± 2.03 

LI 46.32 ± 3.38# 46.86 ± 3.09# 46.39 ± 3.50# 45.07 ± 2.79 

Fe
m

al
es

 cBFR 42.62 ± 2.11 43.08 ± 2.75§ 43.19 ± 2.18‡§ 41.15 ± 2.59 
pBFR 41.62 ± 2.62 42.31 ± 2.05§ 42.12 ± 2.59§ 41.54 ± 2.29 
HI 42.35 ± 2.90 43.19 ± 2.95§ 43.62 ± 2.98‡§ 41.89 ± 3.06 

LI 42.69 ± 4.11# 41.89 ± 3.47# 42.69 ± 3.41# 41.12 ± 3.11 

Abbreviations: Pre - pre-exercise; IP - immediately post-exercise; 5P - 5-min post-exercise; 15P - 15-
min post-exercise; cBFR - controlled blood flow restriction (BFR); pBFR - practical BFR; HI - High 
intensity; LI - Low intensity. Significance as follows: *Males significantly greater than females (p ≤ 
0.05). ap ≤ 0.01 vs 15P, bp ≤ 0.01 vs Pre. ‡ p ≤ 0.05 vs pBFR, § p ≤ 0.01 vs Pre and 15P, # p ≤ 0.01 vs 
15P. 

 

Table 10. Main effects and interactions for hematocrit values 
Variable F p η2 Power 

**Gender 22.99 < 0.001 0.479 0.996 

Condition 2.154 0.101 0.079 0.528 

**Time 25.383 < 0.001 0.504 1.000 

Gender by Condition 0.158 0.924 0.006 0.078 

Gender by Time 1.762 0.162 0.066 0.442 

*Condition by Time 2.916 0.010 0.104 0.889 
Gender by Condition by Time 0.613 0.785 0.024 0.299 
Abbreviations as follows: F – Ratio of the mean squares; p – Probability, p < 0.05 for statistical 
significance; η2 – Effect size. * p ≤ 0.05, ** p ≤ 0.001, †Males significantly greater than females for 
each time point (p ≤ 0.01). 
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Figure 4. Hematocrit values across time and condition for each gender 

 

Abbreviations as follows: Pre - pre-exercise; IP - immediately post-exercise; 5P - 5-min post-exercise; 
15P - 15-min post-exercise; cBFR - controlled blood flow restriction (BFR); pBFR - practical BFR; HI - 
High intensity; LI - Low intensity. Symbols as follows: †Males significantly greater than females for each 
time point (p ≤ 0.01). 

 

The significant main effects for percent plasma volume change revealed 

condition (p = 0.002) and time (p < 0.001) main effects, but no gender main effect (p = 

0.086). Further analysis revealed that, for the condition main effect, LI was significantly 

greater than pBFR (p = 0.028) and HI (p = 0.004). Additionally, post hoc analysis 

indicated that for the time main effect, 15P was significantly greater than IP and 5P (p < 

0.001), displayed in Figure 5. There were no significant interactions for percent plasma 

volume change (%PVD) (p > 0.05). Means and SD, as well as main effects and 

interactions are presented on Table 11 and Table 12, respectively. 
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Table 11. Percent plasma volume change (mean ± SD) 
    IPa 5Pa 15P 

M
al

es
 cBFR -5.53 ± 8.51 -6.46 ± 8.39 2.08 ± 8.76 

pBFRβ -5.00 ± 6.08 -4.08 ± 10.63 0.40 ± 7.43 
HIβ 	 -5.54 ± 6.12 -6.13 ± 7.18 0.04 ± 8.31 

LI -1.98 ± 5.86 -0.06 ± 6.83 5.34 ± 6.28 

Fe
m

al
es

 cBFR	 -1.70 ± 5.31 -2.17 ± 6.03 6.49 ± 7.81 
pBFRβ -2.62 ± 6.56 -1.65 ± 8.86 0.66 ± 9.32 
HI β  -3.27 ± 5.53 -4.89 ± 5.92 2.08 ± 5.93 

LI 3.47 ± 5.56 0.09 ± 5.54 6.89 ± 7.48 
Abbreviations as follows: Pre - pre-exercise; IP - immediately post-exercise; 5P - 5-
min post-exercise; 15P - 15-min post-exercise; cBFR - controlled blood flow 
restriction (BFR); pBFR - practical BFR; HI - High intensity; LI - Low intensity. 
Significance as follows: a p ≤ 0.01 vs 15P, β p ≤ 0.05 vs LI. 

 

 

Table 12. Main effects and interactions for percent change plasma volume 
values 
Variable F p η2 Power 

Gender 2.358 .137 0.086 0.315 

*Condition 5.229 0.002 0.173 0.915 

**Time 54.993 < 0.001 0.687 1.000 

Gender by Condition 0.323 0.808 0.013 0.110 

Gender by Time 0.793 0.458 0.031 0.178 

Condition by Time 1.719 0.148 0.064 0.525 
Gender by Condition by Time 0.752 0.609 0.029 0.292 
Abbreviations as follows: F – Ratio of the mean squares; p – Probability, p < 0.05 for statistical 
significance; η2 – Effect size. * p ≤ 0.05, ** p ≤ 0.001. 
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Figure 5. Percent change in plasma volume across time and condition for each 
gender 

 

Abbreviations as follows: Pre - pre-exercise; IP - immediately post-exercise; 5P - 5-min post-exercise; 
15P - 15-min post-exercise; cBFR - controlled blood flow restriction (BFR); pBFR - practical BFR; HI - 
High intensity; LI - Low intensity.  

 

Electromyography 

Electromyography (EMG) for both leg press and knee extension exercises was 

analyzed in two separate ways: the first analysis included the first 3 sets for each 

protocol and second analysis included all 4 sets for cBFR, pBFR and LI. This was done 

since the HI condition only consisted of 3 total sets for each exercise while, the other 

conditions involved 4 sets for each exercise. 

Leg Press – 3 Sets 

Beginning with the analysis of the first 3 sets of the leg press for all testing 

conditions, there was a significant condition (p < 0.001) and time (p = 0.024) main 

effect, but not a gender main effect (p = 0.095). For the condition main effect, it was 

revealed that the HI condition showed significantly larger EMG values than cBFR, 

pBFR and LI (p < 0.001). The time main effect indicated that set 1 had significantly 
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larger muscle activation values than set 2 (p = 0.011). It was further revealed that there 

were significant gender by condition (p = 0.018) and gender by time (p = 0.030) 

interactions, but no significant condition by time (p = 0.604) or gender by condition by 

time interactions (p = 0.086). In the gender by condition interaction, it was further 

revealed that no actual gender difference existed for any of the sets (Figure 6). Lastly, in 

the condition by gender interaction, only cBFR and LI conditions showed males had 

significantly larger muscle activation than females (p ≤ 0.05) and pBFR and HI did not 

have any significant differences among gender (p > 0.05). Leg press values are 

presented on Table 13 and Table 14. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 13. Muscle activation (% max RMS) for leg press (3 sets) for 
both genders (mean ± SD) 
    Set 1 Set 2a Set 3 

M
al

es
 cBFR#

 
 41.95 ± 13.70 42.06 ± 14.88 42.59 ± 16.06 

pBFR 39.38 ± 11.19 37.98 ± 11.78 39.27 ± 12.94 
HIβ	 87.18 ± 21.58 85.69 ± 20.24 91.14 ± 25.29 

LI# 45.11 ± 17.64 43.06 ± 17.56 43.52 ± 15.35 

Fe
m

al
es

 cBFR#	 33.18 ± 9.14 31.12 ± 10.63 28.78 ± 10.36 
pBFR 33.04 ± 8.54 30.21 ± 8.87 30.96 ± 9.58 
HIβ 93.89 ± 19.58 90.90 ± 19.84 89.66 ± 16.70 
LI# 31.36 ± 9.79 29.71 ± 8.15 31.25 ± 8.88 

Abbreviations: RMS – root mean square, Pre - pre-exercise; IP - immediately post-
exercise; 5P - 5-min post-exercise; 15P - 15-min post-exercise; cBFR - controlled blood 
flow restriction (BFR); pBFR - practical BFR; HI - High intensity; LI - Low intensity. 
Significance as follows: β p ≤ 0.01 vs cBFR, pBFR and LI.  ap ≤ 0.01 vs Set 2. # p ≤ 0.05 
vs females. 
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Table 14. Main effects and interactions for leg press EMG values (3 sets) 
Variable F p η2 Power 

Gender 2.992 0.095 0.100 0.385 

**Condition 185.087 < 0.001 0.873 1.000 

*Time 3.980 0.024 7.960 0.689 

Gender by Condition 3.568 0.018 0.117 0.770 

*Gender by Time 3.736 0.030 0.122 0.660 

Condition by Time 0.616 0.604 0.022 0.172 

Gender by Condition by Time 1.888 0.086 0.065 0.689 
Abbreviations as follows: F – Ratio of the mean squares; p – Probability, p < 0.05 for statistical 
significance; η2 – Effect size. * p ≤ 0.05, ** p ≤ 0.001. 

 

Leg Press – 4 Sets 

As aforementioned, a separate analysis was performed for the 4 sets of leg press 

(cBFR, pBFR and LI), without including the HI condition. Values for leg press (4 sets) 

are mentioned in Table 15 and Table 16. For this analysis, it was observed a significant 

gender (p = 0.005) and significant time main effect (p = 0.023), but no significant 

condition main effect (p = 0.599). For the gender main effect, males showed 

significantly larger muscle activation than for females (p = 0.005). Regarding the time 

main effect, it was revealed that set 1 was significantly larger than set 2 (p = 0.009). 

Further analysis revealed that there was no significant gender by time (p = 0.150), 

gender by condition (p = 0.418) or condition by time (p = 0.625) interactions, but there 

was a significant gender by condition by time (p = 0.021). Follow up analysis of this 

interaction showed that there were no significant differences in muscle activation across 

conditions for both males and females during set 1, set 2, set 3 or set 4 (p > 0.05). In the 

comparison across time, significant differences in muscle activation were observed for 

females (p = 0.007), in which set 4 was significantly greater than set 1 for the cBFR 
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condition, but no significant differences were observed for males (p > 0.05). For pBFR, 

no significant differences were observed for males (p = 0.190) and, even though a 

significant difference was detected for females (p = 0.023), pairwise comparisons 

revealed that such difference does not actually exist (p > 0.05). Finally, no significant 

differences across time were observed for males or females during LI (p > 0.05). 

 

 

Table 16. Main effects and interactions for leg press EMG values (4 sets) 
Variable F p η2 Power 

*Gender 9.332 0.005 0.257 0.838 

Condition 0.517 0.599 0.019 0.131 

**Time 3.829 0.023 0.124 0.713 

Gender by Condition 0.887 0.418 0.032 0.195 

Gender by Time 1.823 0.150 0.063 0.457 

Condition by Time 0.732 0.625 0.026 0.285 

*Gender by Condition by Time 2.560 0.021 0.087 0.837 
Abbreviations as follows: F – Ratio of the mean squares; p – Probability, p < 0.05 for statistical 
significance; η2 – Effect size. * p ≤ 0.05, ** p ≤ 0.001. 

Table 15. Muscle activation (% max RMS) for leg press (4 sets) for both genders 
(mean ± SD) 
    Set 1 Set 2a Set 3 Set 4 

M
al

es
*  

cBFR 41.95 ± 13.70 42.06 ± 14.88 42.59 ± 16.06 44.08 ± 17.23‡ 
pBFR 39.38 ± 11.19 37.98 ± 11.78 39.27 ± 12.94 38.04 ± 12.63 
HIβ	 87.18 ± 21.58 85.69 ± 20.24 91.14 ± 25.29 N/A 

LI 45.11 ± 17.64 43.06 ± 17.56 43.52 ± 15.35 43.88 ± 17.12 

Fe
m

al
es

 cBFR	 33.18 ± 9.14 31.12 ± 10.63 28.78 ± 10.36 28.90 ± 10.0 
pBFR 33.04 ± 8.54 30.21 ± 8.87 30.96 ± 9.58 30.95 ± 8.50 
HIβ 93.89 ± 19.58 90.90 ± 19.84 89.66 ± 16.70 N/A 

LI 31.36 ± 9.79 29.71 ± 8.15 31.25 ± 8.88 30.47 ± 7.67 
Abbreviations: RMS – root mean square, Pre - pre-exercise; IP - immediately post-exercise; 5P - 5-
min post-exercise; 15P - 15-min post-exercise; cBFR - controlled blood flow restriction (BFR); 
pBFR - practical BFR; HI - High intensity; LI - Low intensity. Significance as follows: *Males 
significantly greater than females (p ≤ 0.05); β p ≤ 0.01 vs cBFR, pBFR and LI.  ap ≤ 0.01 vs Set 2. ‡ 

p ≤ 0.05 vs Set 1. 
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Figure 6. EMG values across time and condition for leg press 

 

Abbreviations as follows: Pre - pre-exercise; IP - immediately post-exercise; 5P - 5-min post-exercise; 
15P - 15-min post-exercise; cBFR - controlled blood flow restriction (BFR); pBFR - practical BFR; HI - 
High intensity; LI - Low intensity.  
 

Knee Extension – 3 Sets 

When comparing the first 3 sets of the knee extension exercise, there was a 

significant condition main effect (p < 0.001), but no gender (p = 0.069) or time main 

effects (p = 0.069). For the condition main effect, HI was significantly greater than all 

conditions (p < 0.001) and cBFR was significantly greater than LI (p = 0.017). 

Additionally, there was a significant gender by time interaction (p = 0.043) as well as a 

gender by time by condition interaction (p = 0.040). However, for the first 3 sets of 

knee extension, additional gender by time interaction decomposition indicated that no 

significant difference was observed between males and females during set 1 (p = 
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0.795), set 2 (p = 0.222), or set 3 (p = 0.160). Knee extension values are presented on 

Table 17 and Table 18. 

Decomposing the 3-way interaction for the first 3 sets for knee extension muscle 

activation, looking across time within condition, cBFR and pBFR showed significantly 

greater EMG values for males at set 2 (p ≤ 0.05) and set 3 (p ≤ 0.05) when compared to 

set 1. Additionally, cBFR showed significantly larger EMG values for set 3 compared 

to set 2 (p = 0.042) for females. No significance was found for either gender across sets 

for the HI. For the LI condition, males had greater muscle activation at set 3 in 

comparison to set 1 (p = 0.011). Furthermore, comparing the 3-way interaction across 

conditions within time, both males and females showed significantly larger EMG values 

for HI compared to cBFR and LI (p ≤ 0.001) for set 1 and set 2. Lastly, at set 3, males 

also showed significantly larger muscle activation at HI compared to all the other 

conditions (p ≤ 0.001). Females showed significantly larger EMG values for cBFR 

compared to pBFR and LI (p <0.001), and HI revealed significantly larger EMG values 

for females than cBFR, pBFR and LI (p ≤ 0.001).  
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Table 18. Main effects and interactions for knee extension EMG values (3 
sets) 
Variable F p η2 Power 

Gender 1.022 0.321 0.036 0.164 

**Condition 52.478 < 0.001 0.660 1.000 

Time 2.805 0.069 0.094 0.529 

Gender by Condition 0.542 0.655 0.020 0.157 

*Gender by Time 3.536 0.036 0.116 0.634 

Condition by Time 2.023 0.101 0.070 0.567 

Gender by Condition by Time 2.672 0.017 0.090 0.855 
Abbreviations as follows: F – Ratio of the mean squares; p – Probability, p < 0.05 for statistical 
significance; η2 – Effect size. * p ≤ 0.05, ** p ≤ 0.001. 
 

Knee Extension – 4 Sets 

An additional analysis was run for knee extension (4 sets) and revealed a 

significant condition (p = 0.011) and time (p < 0.001) main effect, but no significant 

gender main effect (p = 0.169), as shown in Table 19 and Table 20. There was also a 

significant gender by time interaction (p = 0.001), but no gender by condition (p = 

Table 17. Muscle activation (% max RMS) for knee extension (3 sets) for 
both genders (mean ± SD) 
    Set 1a Set 2a Set 3 

M
al

es
 cBFR# 65.34 ± 21.31 72.23 ± 23.49 75.49 ± 24.93 

pBFR 62.67 ± 18.89 68.97 ± 22.66 71.19 ± 20.57 
HI β	 107.10 ± 27.18 100.50 ± 21.75 104.76 ± 24.70 
LI#  62.29 ± 12.93 65.97 ± 14.87 69.79 ± 14.87 

Fe
m

al
es

 cBFR#	 68.93 ± 20.90 63.31 ± 13.00 70.22 ± 15.73 
pBFR 60.48 ± 15.46  58.23 ± 14.63 61.99 ± 16.62 
HI β 104.25 ± 30.45 104.49 ± 27.03 102.04 ± 23.22 
LI # 57.84 ± 14.91 56.48 ± 11.37 54.93 ± 10.91 

Abbreviations: RMS – root mean square, Pre - pre-exercise; IP - immediately post-
exercise; 5P - 5-min post-exercise; 15P - 15-min post-exercise; cBFR - controlled blood 
flow restriction (BFR); pBFR - practical BFR; HI - High intensity; LI - Low intensity. 
Significance as follows: β p ≤ 0.01 vs cBFR.  ap ≤ 0.01 vs Set 3.  
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0.442), condition by time (p = 0.402) or gender by condition by time (p = 0.403) 

interactions. For the condition main effect, only the cBFR condition was significantly 

greater than the pBFR condition (p = 0.004). Additionally, the time main effect 

revealed that set 3 was significantly larger than set 1 (p = 0.032) and set 2 (p = 0.020). 

Additionally, set 4 was significantly larger than set 1 (p < 0.001), set 2 (p < 0.001) and 

set 3 (p < 0.001) for knee extension. Further analysis of the gender by time interaction 

revealed no actual gender difference during any set for cBFR, pBFR or LI (p > 0.05). 

Values illustrated in Figure 7. 

 

 

 

 

 

 

 

 

 

Table 19. Muscle activation (% max RMS) for knee extension (4 sets) for both 
genders (mean ± SD) 
    Set 1ab Set 2ab Set 3b Set 4 

M
al

es
 cBFR β 65.34 ± 21.31 72.23 ± 23.49 75.49 ± 24.93 78.77 ± 24.04 

pBFR 62.67 ± 18.89 68.97 ± 22.66 71.19 ± 20.57 76.28 ± 21.97 
LI  62.29 ± 12.93 65.97 ± 14.87 69.79 ± 14.87 72.89 ± 17.68 

Fe
m

al
e

s 

cBFR β	 68.93 ± 20.90 63.31 ± 13.00 70.22 ± 15.73 75.26 ± 16.95 
pBFR 60.48 ± 15.46  58.23 ± 14.63 61.99 ± 16.62 65.01 ± 18.22 
LI  57.84 ± 14.91 56.48 ± 11.37 54.93 ± 10.91 59.05 ± 10.93 

Abbreviations: RMS – root mean square, Pre - pre-exercise; IP - immediately post-exercise; 5P - 5-
min post-exercise; 15P - 15-min post-exercise; cBFR - controlled blood flow restriction (BFR); 
pBFR - practical BFR; HI - High intensity; LI - Low intensity. Significance as follows: β p ≤ 0.01 
vs cBFR.  ap ≤ 0.01 vs Set 3.  bp ≤ 0.01 vs Set 4. HI not represented. 
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Table 20. Main effects and interactions for knee extension EMG values (4 sets) 
Variable F p η2 Power 

Gender 1.996 0.169 0.069 0.276 

*Condition 4.959 0.011 0.155 0.789 

Time 16.667 < 0.001 0.382 0.999 

Gender by Condition 0.829 0.442 0.30 0.185 

**Gender by Time 5.750 0.001 0.176 0.940 

*Condition by Time 1.038 0.402 0.037 0.403 

*Gender by Condition by Time 1.038 0.403 0.037 0.402 
Abbreviations as follows: F – Ratio of the mean squares; p – Probability, p < 0.05 for statistical 
significance; η2 – Effect size. * p ≤ 0.05, ** p ≤ 0.001. 
 

 

Figure 7. EMG values across time and condition for knee extension 

 

Abbreviations as follows: Pre - pre-exercise; IP - immediately post-exercise; 5P - 5-min post-exercise; 
15P - 15-min post-exercise; cBFR - controlled blood flow restriction (BFR); pBFR - practical BFR; HI - 
High intensity; LI - Low intensity.  
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Perceptual Response 

Rating of perceived exertion (RPE) leg press and knee extension as well as 

ratings of discomfort were recorded before the beginning of exercise and after each set 

for leg press and knee extension. The Friedman’s non-parametric test indicated that 

RPE for leg press significantly (p ≤ 0.05) increased across time, for all conditions and 

for both males and females. As displayed in Table 21, no significant difference was 

observed across conditions at rest for both males and females (p > 0.05). No significant 

difference was observed across sets 1 to 4 for either BFR conditions for both genders (p 

> 0.05). Similar RPE values were observed between men and women for both cBFR 

and pBFR. Finally, the LI condition displayed the lowest RPE for both genders. 

 

Table 21. Ratings of perceived exertion for leg press across the different 
testing conditions and time points 

Males (n = 14) 
 Rest Set 1 Set 2 Set 3 Set 4 

cBFR 0.0 ± 0.0 4.3 ± 1.9 a 5.4 ± 1.7a# 6.1 ± 2.1 a,b,* 6.4 ± 2.3ab* 
pBFR 0.1 ± 0.5 3.1 ± 1.3a 3.4 ±1.4a  3.7 ± 1.4 a 4.1 ± 1.6a 

HI 0.0 ± 0.0 5.3 ± 1.8a* 6.9 ± 1.7a b# 7.6 ± 1.6 a bc* N/A  
LI 0.0 ± 0.0 2.9 ± 1.7a 2.8 ± 1.7a 3.3 ± 1.6 a 3.7 ± 1.6a 

Females (n = 15) 
 Rest Set 1 Set 2 Set 3 Set 4 

cBFR 0.0 ± 0.0 3.8 ± 1.6a# 4.9 ± 1.6ab# 5.3 ± 1.7a b* 5.6 ± 1.8ab* 
pBFR 0.0 ± 0.0 3.0 ± 1.2a 3.0 ± 1.0a 3.3 ± 1.3a 3.6 ± 1.8a 

HI 0.0 ± 0.0 5.1 ± 1.8a* 6.0 ± 1.3 a b# 6.9 ± 1.2abc*# N/A 
LI 0.0 ± 0.0 2.1 ± 0.9a 2.1 ± 1.2 a 2.3 ± 1.2a 2.4 ± 1.2 a 

Abbreviations as follows: cBFR - Control blood flow restriction (BFR); pBFR - Practical 
BFR; HI - High intensity; LI - Low intensity; Pre - Baseline measures; IP - Immediately post-
exercise; 5P - 5-min post-exercise; 15P - 15-min post-exercise. Symbols as follows: a p ≤ 0.01 
vs Pre, b p ≤ 0.01 vs set 1, c p ≤ 0.01 vs set 2, * p ≤ 0.01 vs LI, pBFR, # p ≤ 0.01 vs LI, $ p ≤ 
0.01 vs cBFR. 
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The Friedman’s non-parametric test indicated that rate RPE for knee extension 

showed no significant difference between males or females when performing either 

BFR conditions (p > 0.05). RPE showed a significant (p ≤ 0.05) increase across time, 

for all conditions and for both males and females. Similar results showed for the LI 

condition for males at each time point significantly (p ≤ 0.05) increased across time, for 

all conditions and for both males and females, as illustrated in Table 22. Furthermore, 

HI showed similar responses in RPE as cBFR and pBFR also showed no significant 

difference compared to LI (p > 0.05).  

 

Table 22. Ratings of perceived exertion for knee extension across the 
different testing conditions and time points 

Males (n = 14) 
 Set 1 Set 2 Set 3 Set 4 

cBFR 7.21 ± 1.89* 7.86 ± 1.79  8.50 ± 1.95 b c # 8.86 ± 1.79b c 

pBFR 5.79 ± 2.15$ 6.57 ± 2.02 7.57 ± 2.24 b c 8.00 ± 2.42b c 

HI 5.29 ± 1.82* 6.92 ± 1.69 b * 7.64 ± 1.59b c* N/A 
LI 2.86 ± 1.70 2.78 ± 1.67 3.29 ± 1.64c d 3.71 ± 1.64b c 

Females (n = 15) 
 Set 1 Set 2 Set 3 Set 4 

cBFR 5.93 ± 1.83 6.37 ± 1.82 6.67 ± 1.95 7.13 ± 2.26 
pBFR 5.53 ± 1.85 5.63 ± 1.91  5.93 ± 2.09 6.33 ± 2.23 

HI 5.07 ± 1.79* 6.00 ± 1.25*$ 6.93 ± 1.22*# N/A 
LI 2.13 ± 0.92 2.13 ± 1.19 2.33 ± 1.18 2.40 ± 1.24 

Abbreviations as follows: cBFR - Control blood flow restriction (BFR); pBFR - Practical 
BFR; HI - High intensity; LI - Low intensity; Pre - Baseline measures; IP - Immediately post-
exercise; 5P - 5-min post-exercise; 15P - 15-min post-exercise. Symbols as follows: b p ≤ 0.01 
vs set 1, c p ≤ 0.01 vs set 2, d p ≤ 0.01 vs set 4. * p ≤ 0.01 vs LI, pBFR, # p ≤ 0.01 vs LI, $ p ≤ 
0.01 vs cBFR. 

 

 The discomfort scale for leg press as analyzed by the Freidman’s non-parametric 

test revealed that across time, males and females were very similar for the cBFR and HI 

conditions, as shown in Table 23. Additionally, discomfort during the HI condition was 
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similar among males and females. Sets 2, 3 and 4 were also significantly greater than 

set 1 for the cBFR condition (p > 0.05). Furthermore, males and females showed 

significantly higher discomfort values for cBFR than pBFR during set 2 (p ≤ 0.004). 

Also, for set 2, females showed significantly larger values for cBFR (p = 0.001), pBFR 

(p = 0.006) and HI compared to LI (p = 0.005). Additionally, males and females showed 

significantly higher discomfort measures from cBFR compared to pBFR as well as from 

cBFR to LI and HI compared to LI (p > 0.05). Both genders also revealed larger cBFR 

discomfort values from cBFR compared to LI (p ≤ 0.010).  

 

Table 23. Ratings of discomfort for leg press across the different testing conditions 
and time points 

Males (n = 14) 
 Rest Set 1 Set 2 Set 3 Set 4 

cBFR 0.52 ± 0.61 2.24 ± 1.94 a 3.30 ± 2.25 a b* 4.19 ± 2.52 a b* 4.96 ± 3.02a b* 

pBFR 0.39 ± 0.57 1.39 ± 0.74 a 1.64 ± 0.84 a 2.00 ± 1.09 a 2.18 ± 1.17 a 

HI 0.07 ± 0.18 1.85 ± 1.15 a 3.25 ± 1.91 a b 4.79 ± 2.72 a b c* N/A 
LI 0.20 ± 0.37 1.42 ± 1.71 a 1.42 ± 1.59 a 1.64 ± 1.58a 2.00 ± 2.01 a 

Females (n = 15) 
 Rest Set 1 Set 2 Set 3 Set 4 

cBFR 0.73 ± 0.75# 2.13 ± 1.23 a 3.09 ± 1.57 a b# 3.78 ± 2.02 a b* 4.39 ± 2.26 a b c* 

pBFR 0.49 ± 0.70 1.44 ± 0.87 a 1.32 ± 1.02 a# 1.71 ± 1.32 a# 2.01 ± 1.59 a# 

HI 0.00 ± 0.00$ 1.73 ± 2.06 a 2.47 ± 2.10 a b# 3.22 ± 2.38 a b c* N/A 
LI 0.00 ± 0.00 0.62 ± 0.53 a 0.63 ± 0.51 a$ 0.73 ± 0.68 a 0.86 ± 0.94 a 

Abbreviations as follows: cBFR - Control blood flow restriction (BFR); pBFR - Practical BFR; HI - High 
intensity; LI - Low intensity; Pre - Baseline measures; IP - Immediately post-exercise; 5P - 5-min post-
exercise; 15P - 15-min post-exercise. Symbols as follows: a p ≤ 0.01 vs Pre, b p ≤ 0.01 vs set 1, c p ≤ 0.01 
vs set 2, * p ≤ 0.01 vs LI, pBFR, # p ≤ 0.01 vs LI, $ p ≤ 0.01 vs cBFR. 

 

 For the discomfort scale for knee extension, set 4 was significantly smaller than 

set 1 (p = 0.002), set 2 (p = 0.003) and set 3 (p = 0.008) for cBFR. For pBFR, males 

showed higher discomfort values at set 3 compared to set 1 and set 4 compared to set 1 

(p = 0.007). Furthermore, for pBFR, males and females revealed significantly higher 
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discomfort values for set 3 (p = 0.006) and 4 (p = 0.005) compared to set 2. The HI 

condition revealed significantly higher values for both genders for set 2 and set 3 

compared to set 1 (p < 0.05) as well as set 3 compared to set 2 (p < 0.05). There were no 

significant differences for females for the LI condition. However, males showed higher 

discomfort values for set 3 and 4 compared to set 1 as well as set 3 and set 4 compared 

to set 2 (p < 0.05). Additionally, there were no significant differences for females at set 

1 across conditions (p > 0.05). However, males had a significantly larger value for cBFR 

compared to pBFR (p = 0.006). For set 2, males and females had significantly larger 

cBFR values than pBFR values (p ≤ 0.002). Values presented in Table 24. 

 

Table 24. Ratings of discomfort for knee extension across the 
different testing conditions and time points 

Males (n = 14) 
 Set 1 Set 2 Set 3 Set 4 

cBFR 6.00 ± 2.88 d 6.82 ± 2.87 d 7.50 ± 3.18 d 8.29 ± 3.52 

pBFR 4.35 ± 2.26 d$ 4.84 ± 2.83 c 5.85 ± 3.36 c 6.09 ± 3.62c$ 

HI 5.21 ± 3.05 6.50 ± 3.01 7.64 ± 3.43 N/A 
LI 4.71 ± 2.58 5.10 ± 2.73 6.21 ± 3.09 b c 6.89 ± 3.41 b c 

Females (n = 15) 
 Set 1 Set 2 Set 3 Set 4 

cBFR 4.09 ± 2.42 4.75 ± 2.45* 4.95 ± 2.51 5.62 ± 2.86* 
pBFR 3.07 ± 1.56 3.20 ± 1.97 d$ 3.77 ± 2.37 b 4.17 ± 2.81c 

HI 2.92 ± 2.54 4.10 ± 2.92 b 4.89 ± 2.99 b c N/A 
LI 2.87 ± 1.50 2.69 ± 1.34 3.14 ± 1.88  3.47 ± 2.34 

Abbreviations as follows: cBFR - Control blood flow restriction (BFR); pBFR - Practical 
BFR; HI - High intensity; LI - Low intensity; Pre - Baseline measures; IP - Immediately 
post-exercise; 5P - 5-min post-exercise; 15P - 15-min post-exercise. Symbols as follows: 
b p ≤ 0.01 vs set 1, c p ≤ 0.01 vs set 2, d p ≤ 0.01 vs set 4. * p ≤ 0.01 vs LI, pBFR, # p ≤ 
0.01 vs LI, $ p ≤ 0.01 vs cBFR. 
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Discussion 

The purpose of this study was to determine whether or not men and women 

respond differently to a single bout of resistance exercise between 4 different protocols: 

cBFR, pBFR, HI and LI (or our control) by evaluating changes in muscle activation, 

muscle swelling, thigh circumference, blood lactate and hematocrit concentrations.  

Muscle Swelling 

Changes in thigh circumference and muscle thickness were evaluated to 

determine if muscle swelling occurred during each of the exercise interventions. It has 

been speculated that muscle swelling may play a role in the adaptive response to BFR 

exercise, ultimately leading to increases in muscle hypertrophy and strength (Loenneke 

et al., 2012). The main finding in this study showed that muscle swelling, as assessed by 

ultrasound, occurred post-exercise and remained elevated at IP, 5P and 15P. This 

finding was consistent with Freitas et al. (2017), in which thigh circumference increased 

after both HI and BFR exercise conditions. BFR exercise is known for inducing 

metabolite accumulation within the working muscle due to reduced arterial blood flow 

and venous pooling (Suga et al., 2009). Therefore, it is very likely that the acute muscle 

swelling observed in the current study in both HI and BFR conditions was due to a 

plasma fluid shift into the intracellular space of the quadriceps muscles. Additionally, 

Loenneke et al. (2012) established that even in the absence of exercise, BFR still 

provides benefits to muscle hypertrophy. The authors explained that a fluid shift from 

the plasma into the muscle and venous pooling due to BFR are probable causes for the 

accumulation of metabolites, which might be responsible for stimulating protein 

synthesis and activating the mTOR pathway, promoting muscle hypertrophy. 
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This study also found that males had significantly larger muscle thickness 

values, as measured by ultrasound, than females at each time point (baseline, IP, 5P, 

15P) despite the condition. Males in general have larger leg muscle mass, which would 

explain the gender difference. Additionally, females had a smaller load to exercise with, 

which could also explain why no significant differences were found among males and 

females.  

Furthermore, muscle thickness increased after exercise, similar to thigh 

circumference. According to a study completed by Freitas et al. (2017), BFR and HI 

conditions had significantly greater IP and 30-minutes post-exercise muscle thickness 

values when compared to their control. This finding is similar to the results found in this 

study, which states that thigh circumference and muscle thickness were significantly 

greater after exercise for each condition (cBFR, pBFR, HI, and LI). However, Freitas et 

al. (2017) also concluded that the BFR protocol had significantly greater muscle 

thickness measurements than HI immediately post-exercise. This particular finding does 

not agree with the findings from the study, which states that each condition revealed 

similar trends for muscle thickness. Additionally, Yasuda et al. (2016) did not perform a 

gender comparison, however, they concluded that the BFR exercise group had larger 

muscle thickness values than the medium to high intensity exercise group without BFR 

immediately post-exercise.  

Muscle thickness may have increased for similar reasons as thigh circumference 

as suggested by Loenneke et al. (2011), which suggested that muscle swelling post BFR 

exercise can occur through decreased oxygen availability in the muscle as well as an 

accumulation of metabolites due to the BFR cuffs. This muscular swelling can 
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eventually lead to muscle hypertrophy through inhibition of catabolism, protein sparing 

and promotion of lipolysis (Loenneke et al., 2012). There were no significant 

differences between conditions for thigh circumference or muscle thickness in this 

study. However, muscle swelling might have happened for different reasons, where HI 

resistance exercise is more likely to induce muscle damage, causing an inflammatory 

response, BFR induced accumulation of metabolites and lack of oxygen in the muscle 

(Freitas et al., 2017).  Furthermore, this study involved high-volume BFR exercises, 

which could also be a reason for the significant increase in muscle thickness and thigh 

circumference from baseline for cBFR, pBFR and LI. 

Lactate 

This study observed that lactate measurements were significantly higher for 

males than for females after exercising. Males are typically able to lift larger loads and 

usually have larger muscle mass than females, which could potentially explain the 

gender difference for lactate since skeletal muscle is a major source for lactate 

production during exercise (Zhang et al., 2016). Considering that lactate is a metabolite 

produced in the muscle, greater amounts of muscle mass would potentially generate 

greater production and release of lactate (Ferguson et al., 2018). However, lactate levels 

in the blood are also dependent on the removal of lactate by the liver, heart muscle and 

skeletal muscle. The accumulation of lactate is also dependent on the increase in 

glycolytic pathways dependence for energy during exercise, which in turn induces a 

faster rate of lactate diffusion into the blood as opposed to the removal. Generally, in 

addition to larger muscle mass, men have more blood volume and a higher VO2 max 
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compared to women. These differences among gender may lead to varying lactate 

responses to strenuous exercise as well as removal during recovery. 

Additionally, this study revealed that the HI condition had larger lactate values 

than any other condition after exercise. However, this finding was not supported by 

Loenneke et al. (2010), who reported that lactate increased regardless of testing 

condition (BFR or no BFR). Moreover, other studies, such as Gentil et al. (2006) and 

Takarada et al. (2000a, 2000b), conclude that lactate typically increases more with BFR 

exercise conditions compared to non-BFR exercises. Reasons for the disparity may 

include total exercise load or the intermittent inflation of the cuffs for this study. This 

study released the pressure of the cuff in between leg press and knee extension 

exercises, whereas other studies may have maintained restrictive pressure throughout 

the entire duration of the study and was not explained in their methods. Furthermore, 

the HI condition did not have occlusion, which could have allowed better diffusion of 

lactate into the blood. Additionally, BFR could have caused a slower diffusion rate of 

lactate out of the muscle and into the blood (Loenneke et al., 2010). Metabolites, 

including lactate, accumulate in the blood due to exercise, which causes the stimulation 

of GH synthesis and secretion into the bloodstream, which then causes the synthesis and 

secretion of IGF-1. These factors together promote muscle hypertrophy. 

Hematocrit and Plasma Volume Change 

For this study, hematocrit values increased after exercise and returned to 

baseline values after exercise, up to 15P. This finding is consistent with Freitas et al. 

(2017) and Yasuda et al. (2015), which demonstrated that hematocrit increased 

significantly after BFR exercise. Additionally, this study observed that %PVD  



64 

decreased significantly due to exercise in this study. This is consistent with shifts in 

hematocrit values due to exercise – as hematocrit values increase, %PVD  should 

correspondingly decrease because as water leaves the plasma, blood becomes more 

hemoconcentrated. This study also found that %PVD returned back to baseline at 15P 

for each condition. Furthermore, this study found no significant difference between 

exercise conditions for hematocrit and %PVD, which means that the BFR protocols and 

HI produced similar hematocrit changes. This result possibly occurred because both 

BFR and HI conditions induced the same metabolic stress. This finding is congruent 

with Freitas et al. (2017) and Yasuda et al. (2017), which also found that BFR and HI 

exercises induce similar hematocrit and plasma volume changes. 

Lastly, this study revealed that hematocrit values for males were larger than 

females at each time point and condition. A possible explanation to this response is 

related to the fact that men generally present greater amounts of muscle mass in 

comparison to women. Thus, men have more tissue capable of absorbing water from the 

blood and therefore inducing greater decreases in plasma volume. Additionally, if men 

have greater muscle mass, then the exercise would possibly induce greater production 

and accumulation of metabolites within the muscle, such as lactate, hydrogen ions, 

inorganic phosphate and others, which would increase osmotic pressure and then cause 

water absorption (Zhang et al., 2017). Additionally, males have greater testosterone 

levels than females. Testosterone has been shown to stimulate erythropoietin, a 

hormone that is produced by the kidneys and promotes the synthesis of red blood cells 

in the bone marrow. Therefore, since males have higher testosterone levels than 



65 

females, males have a greater capacity to produce red blood cells, which allows for 

greater decreases in plasma volume after exercise (Bachman et al., 2014). 

Electromyography 

The results from this study indicate that for the first 3 sets of leg press, the HI 

condition was significantly greater than all other conditions. The exercise intensity for 

HI was at 80% of the subject’s 1RM and the intensity for all of the other protocols was 

just at 30%. Studies (Takarada et al., 2000, Wernbom et al., 2009, Yasuda et al., 2008) 

have shown that BFR and non-BFR exercises both induce an increase in EMG 

amplitude, however, perhaps the metabolic overload (decrease in intramuscular pH and 

decline of phosphocreatine availability) was more extreme than in the BFR conditions. 

The first 3 sets of leg press also showed that set 1 had larger muscle activation than set 

2. This may be due to the fact that set 1 involved more repetitions than the other sets, 

however, this does not apply for the HI protocol since it only involved 3 sets of 8-10 

repetitions. A mismatch in energy supply and demand could potentially alter the 

metabolic stress induced on skeletal muscle (Yasuda et a., 2014). For males at the first 3 

sets for leg press, it was shown that they had larger EMG values for cBFR and LI 

compared to females. A potential reason for this could be that lactate build up in women 

could have caused an early drop of fiber recruitment (Ferguson et al., 2018). Females 

also have less muscle mass, which could explain their smaller muscle activation values 

compared to men. 

Moving onto the 4 sets for leg press, it was revealed that set 1 had greater EMG 

values than set 2. Again, this may be due to the fact that the first set had higher 

repetitions than the second set. Additionally, only females showed greater EMG values 
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at set 4 compared to set 1 for the cBFR protocol. Compared to the first 3 sets of leg 

press, perhaps the extra set for leg press caused an increase in EMG for females from 

the initial sets. The results from the first 3 sets of knee extension also revealed that HI 

had significantly greater muscle activation than all other conditions. As mentioned 

before, HI was at a higher intensity than the other conditions, which could have caused 

greater metabolic stress on the skeletal muscle. It is clear that the knee extension 

protocol caused higher muscle activation than the leg press and for the cBFR and pBFR 

conditions, males had larger EMG values at sets 2 and 3 than set 1. Increases in EMG 

values could be explained by the increase in motor unit recruitment and synchronization 

(Potvin, 1997). 

Moving onto the 4 sets of knee extension, it was revealed that cBFR had larger 

muscle activation than pBFR, but not other differences were shown. The cBFR 

condition could have potentially had a higher pressure than the pBFR condition, and in 

turn could have caused greater metabolic accumulation and more ischemic 

environment. Furthermore, this could have resulted in an increase in type II fiber 

recruitment through the stimulation of group III and IV afferent fibers (Loenneke et al., 

2014). The 4 sets for knee extension additionally revealed the last set of knee extension 

showed the highest muscle activation compared to all other sets regardless of condition. 

The last set probably correlates to the most skeletal muscle fatigue, which may also 

cause an increase in motor unit recruitment and synchronization in order to compensate 

for some of the fatigued muscle fibers (Potvin, 1997). Set 4 was highest despite the 

condition, which shows that each condition for knee extension produced similar EMG 

values. 
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Perceptual Responses 

The RPE and discomfort scales are non-parametric data and were analyzed to 

show that in general, knee extension caused higher RPE and discomfort for both men 

and women than leg press. This matches with EMG data, because there is greater 

muscle activation for men and women for knee extension compared to leg press. 

Greater muscle activation causes higher metabolic stress in the skeletal muscle which 

then causes a higher lactate release into the blood stream (greater metabolic response), 

which may cause a higher perception of discomfort (Loenneke et al., 2010). 

Limitations 

Several limitations exist in this study. Although participants were asked to 

refrain from heavy lower body exercise 24 hr prior, avoid caffeine 6 hr prior, and avoid 

alcohol prior to the study, it is not certain all participants did so. Another limitation of 

the study is that participants may not have given their true effort during the 1RM 

strength test, which would have affected EMG data. Additionally, this study involved 

leg press and knee extension exercises, which are seated or supine exercises, whereas 

all of the variables taken were done while the subject was standing. Posture may have 

affected some of the variables we were collecting. Lastly, some subjects were not able 

to follow the metronome for their contraction times perfectly, which could have 

affected some of the skeletal muscular responses. 
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Chapter V: Conclusion 

The purpose of this study was to determine if men and women respond 

differently to a single acute bout of low-intensity resistance exercise with cBFR or 

pBFR, as well as low and high intensity resistance exercise without BFR regarding 

measures of muscle activation, muscle swelling, thigh circumferences, blood lactate and 

hematocrit concentrations. 

Through this investigation, it was concluded that males typically had 

significantly larger responses to all of the testing conditions for thigh circumference, 

lactate, hematocrit and muscle activation. However, there was no gender difference for 

muscle thickness for any of the conditions. Typically, the HI and cBFR conditions 

produced similar physiological responses. Additionally, males typically reported higher 

RPE and discomfort ratings, which corresponds to greater muscle activation for cBFR 

and HI. This study concluded that cBFR and pBFR for males and females do not 

produce the same physiological responses, but HI and cBFR produced similar 

physiological responses. 

First Research Question 

Do the four different conditions (pBFR, cBFR, HI and LI) elicit the same or 

differing physiological responses in lactate, hematocrit, muscle swelling or muscle 

activation? 

 With the exception of thigh circumference and muscle thickness, the four 

conditions elicited different acute physiological responses. Lactate, hematocrit, and 

muscle activation responded differently with regard to condition, with cBFR and HI 

showing greater responses. 
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First Hypothesis 

cBFR and high-intensity (HI) resistance exercise will promote the greatest 

increases in muscle activation, muscle swelling, lactate and hematocrit levels 

compared to pBFR resistance exercise and low-intensity (LI) resistance exercise. 

 Aside from thigh circumference and muscle swelling, HI and cBFR typically 

resulted in greater responses with the variables chosen. Therefore, this hypothesis was 

partially accepted. 

Second Research Question 

Will the physiological responses in lactate, hematocrit, muscle swelling and muscle 

activation (regardless of condition) be similar or different for males and females? 

 Males typically had higher responses to exercise compared to females. However, 

males and females showed similar responses for thigh circumference. 

Second Hypothesis 

Men will exhibit greater physiological responses than women for all four 

conditions based on traditional high intensity resistance exercise literature. 

 Men did show greater physiological responses for all variables, except thigh 

circumference. Therefore, this hypothesis was partially supported by the study. 

First Sub-Question 

Do the four different conditions (pBFR, cBFR, HI and LI) elicit the same or 

differing physiological responses in lactate levels? 
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 Lactate levels responded differently between protocols. The HI condition 

elicited higher lactate values than any other condition. 

First Sub-Hypothesis 

cBFR and HI resistance exercise will promote the greatest increases in lactate 

responses compared to pBFR and LI resistance exercise, regardless of gender. 

 HI showed the greatest response in lactate compared to all other conditions. 

Therefore, this study partially accepts this hypothesis. 

Second Sub-Question 

Do the four different conditions (pBFR, cBFR, HI and LI) elicit the same or 

differing physiological responses in hematocrit levels? 

The four conditions elicited similar hematocrit responses, however, there was a 

dependence on the time point.  

Second Sub-Hypothesis 

cBFR and HI resistance exercise will promote the greatest increases in hematocrit 

responses compared to pBFR and LI resistance exercise, regardless of gender. 

 All protocols produced similar responses in hematocrit, however, there was a 

dependence on the time point. Therefore, this hypothesis was partially accepted. 
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Third Sub-Question 

Do the four different conditions (pBFR, cBFR, HI and LI) elicit the same or 

differing physiological responses in muscle swelling? 

Thigh circumference and muscle thickness responded similarly across conditions, 

however, there is also a time dependency for muscle swelling values to consider. 

Third Sub-Hypothesis 

cBFR and HI resistance exercise will promote the greatest increases in muscle 

swelling responses compared to pBFR and LI resistance exercise, regardless of 

gender. 

 Thigh circumference was similar across all conditions and muscle thickness had 

time difference across conditions, therefore this hypothesis was partially accepted. 

Fourth Sub-Question 

Do the four different conditions (pBFR, cBFR, HI and LI) elicit the same or 

differing physiological responses in muscle activation? 

 For the 3 sets of leg press, HI had greater muscle activation values than all other 

conditions. For leg press 4 sets, there was no difference between conditions for muscle 

activation. For knee extension 3 sets, HI was greater than all other conditions and cBFR 

was greater than the LI condition. For knee extension 4 sets, cBFR showed greater 

muscle activation values. 
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Fourth Sub-Hypothesis 

cBFR and HI resistance exercise will promote the greatest increases in muscle 

activation responses compared to pBFR and low-intensity resistance exercise, 

regardless of gender. 

 cBFR and HI showed greater muscle activation values for different exercises 

and sets, therefore, this hypothesis was partially accepted. 

Fifth Sub-Question 

Will the physiological responses in lactate levels (regardless of condition) be 

similar or different for males and females? 

 Males had greater lactate responses than females across conditions. 

Fifth Sub-Hypothesis 

Men will exhibit greater lactate responses compared to women for each of the four 

exercise conditions. 

 Men did exhibit higher lactate levels than females across conditions. Therefore, 

this hypothesis was supported by this study.  

Sixth Sub-Question 

Will the physiological responses in hematocrit levels (regardless of condition) be 

similar or different for males and females? 

 Males had greater hematocrit responses than females across conditions. 
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Sixth Sub-Hypothesis 

Men will exhibit greater hematocrit responses compared to women for each of the 

four exercise conditions. 

Men exhibited greater responses in hematocrit than females across conditions. 

Therefore, this hypothesis was accepted. 

Seventh Sub-Question 

Will the physiological responses in muscle swelling (regardless of condition) be 

similar or different for males and females? 

 Males had greater muscle thickness responses than females, but no difference 

was observed for thigh circumference. 

Seventh Sub-Hypothesis 

Men will exhibit greater muscle swelling responses compared to women for each of 

the four exercise conditions. 

There was no gender difference for thigh circumference, but males did have a greater 

muscle thickness response compared to females across conditions. Therefore, this 

hypothesis was partially accepted. 

Eighth Sub-Question 

Will the physiological responses in muscle activation (regardless of condition) be 

similar or different for males and females? 
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 Depending on the set and condition, males typically had greater muscle 

activation than females. 

Eighth Sub-Hypothesis 

Men will exhibit greater muscle activation responses compared to women for each 

of the four exercise conditions. 

 Males typically had higher responses than females for muscle activation. Since 

there was a dependency on which set and which exercise and exercise condition, this 

hypothesis was partially accepted.  

Practical Significance 

Traditional HI resistance exercise possesses the ability to stimulate muscle 

hypertrophy; however, not all populations are capable of performing resistance 

exercises with heavy loads. BFR exercise provides similar muscular adaptations as 

traditional HI resistance exercise in the absence of heavy loads, thus making BFR a 

possible modality for therapeutic intervention. However, in order to optimize BFR 

exercise, it is imperative to analyze the acute physiological responses between cuff type 

and between gender. Although the acute responses of traditional HI resistance exercise 

differ between males and females, there is currently an insufficiency of literature 

examining the potential gender or cuff type differences in response to BFR exercise. 

Therefore, examining the influence of gender and cuff type on acute BFR exercise 

responses may progress the development of BFR training, thereby improving 

therapeutic intervention for restricted populations.  
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For example, this study concluded that men and women showed similar lactate 

values at baseline, but after exercise, men had a greater response in lactate compared to 

women. Men also generally showed higher RPE and discomfort throughout the 

exercises compared to women, which corresponds with the increase in lactate in men. 

Lactate accumulation causes greater perceptual discomfort, therefore if males had 

greater lactate accumulation, it’s important to optimize a BFR training protocol that 

minimizes RPE and perceived discomfort. Furthermore, this study found that cBFR 

generally elicited greater physiological responses to exercise compared to pBFR, 

therefore it may be more beneficial for people to exercise with cBFR versus pBFR. 

However, more research should be done regarding cuff types and gender differences 

with BFR exercise in order to improve and create the safest and most beneficial BFR 

training program. 

Future Research Directions 

Future research should attempt to replicate this study while using older, diseased 

or injured participants. For example, the study could compare traditional rehabilitation 

methods while using BFR to enhance rehabilitation programs. Additionally, future 

research should attempt to investigate a training study comparing the chronic 

physiological adaptations between pBFR and cBFR. Lastly, future studies could analyze 

additional variables that are indicators for muscle hypertrophy during BFR exercise, 

such the hormones testosterone or GH, or markers that inhibit muscle hypertrophy, such 

as the protein myostatin. 
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