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Abstract

Cerebral Palsy (CP) is a physical disability that affects approximately 17 mil-
lion individuals globally. CP can severely impact the development of motor,
cognitive, and social skills. Recent research efforts in this domain have led to
the development of a series of assistive robot systems designed for crawling-age
infants (aged 4-11 months) who are at risk for CP and related motor disor-
ders. These robot systems provide early intervention to mitigate the effects of
the above motor disorders. The robot systems capture and interpret infant limb
motion in 3D and physically move an infant in response to meaningful crawling-
like limb motion. Inertial measurement units (IMUs) are used for the motion
capture (mocap) process. IMUs are highly sensitive to electromagnetic fields.
Consequently, the presence of electromagnetic interference (EMI) sources in the
surroundings causes the assistive robots to malfunction.

Thus the research problem is posed as follows. There is a need for the de-
velopment of a new mocap approach to replace or augment the existing mocap
system for infants. The key requirements are that crawling motions of infants
should be captured and the approach must not be sensitive to EMI. The re-
search scope is limited to tracking motion in 3D and does not include methods
for automatic gesture recognition or classification. There are two research ques-

tions: 1) What are the requirements for capturing crawling motions of infants?

x1



2) To what extent does a mocap system not subject to EMI, meet the above
requirements?

The contributions of this research are as follows. Quantitative data on in-
fant crawling motion from past works have been collected and presented in a
form useful for the design of mocap systems. A novel approach for mocap based
on planar pattern vision markers has been developed. The effects of changing
various design parameters on the tracking accuracy has been documented on
the basis of physical tests. A performance model has been developed to pre-
dict tracking accuracy based on the various design parameters and to allow for
comparison with other systems based on tracking planar pattern vision markers.

Key conclusions of this research are as follows. The magnitude of the small-
est meaningful crawling motion that an infant can make is 74.6 mm. The
worst-case tracking error for the developed system is 19.9 mm. Further evalua-
tion needs to be done to determine whether this is practical for existing gesture

recognition and filtering methods.
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Chapter 1

Introduction

1.1 Background

The work presented in this dissertation is part of a broader effort to develop a
new intervention for medical conditions that result in reduced muscle function
and control in infantss. Cerebral Palsy (CP) is a major example of such a
medical condition. CP is a life-long physical disability caused by damage to
the brain at or around the time of birth. It adversely affects muscle function
and postural control. It is the most common physical disability in childhood
[29]. According to the Cerebral Palsy International Research Foundation, 17
million individuals around the world have CP [6]. Of these, 50 % live in chronic
pain, 33 % are unable to walk, and 20 % are unable to talk. The financial
implications are staggering. The US Centers for Disease Control and Prevention
has estimated that the cost to care for an individual with CP over their lifetime
is nearly $1 million [29].

Unfortunately, there is no known cure for CP. It stays with a person for life.

Children with CP learn to walk independently late in life, if at all. There exist



Figure 1.1: SIPPC-3, the latest generation of early intervention robotic devices
for infants with CP. Image source: Sooner Magazine/Hugh Scott.

interventions such as physical therapy, medication, and surgery to improve an
individual’s capabilities. Generally, the earlier the treatment is administered,
the better the chances for improvement [14].

There is another cost associated with CP: cognitive development. Crawling
is the first form of locomotion available to a child. The most important loco-
motor experiences are known to be produced by a child’s own actions, because
self-generated experiences lead to behavior and skill development (Bertenthal
et al. [11]). Thus, independent crawling contributes to early cognitive devel-
opment. For example, an exercise in locating a toy, planning how to get to
it, and then physically getting to it helps develop problem-solving and spatial
skills. Interaction with other individuals at will helps develop social skills. If
a child does not crawl at the appropriate age, then he or she does not experi-
ence this exploration phase. As a result, the associated milestones of cognitive
development are delayed or even missed.

In conventional medical practice, CP is diagnosed at 18 to 30 months of age[l

'For conventional screening practices, 9 months is another age for diagnosis but mild cases
are less likely to be detected [31].



at which time it is clear that a child has not learned how to crawl and walk on
their own (Centers for Disease Control and Prevention [31]). For interventions
starting after this age, it can take years before a child can learn to crawl and then
walk independently. From a child development perspective, this is a significant
delay. The need to mitigate this has spurred research in developing new tests
to diagnose CP in younger children. One such research effort has led to the
development of a special test for motor disabilities in infants This is the Test
of Infant Motor Performance (TIMP) which was developed for use by physical
therapists and occupational therapists (Campbell et al. [I7], and Campbell et
al. [18]). TIMP assesses functional motor performance and is applicable to
infants from 32 weeks post conceptional age up to 4 months of corrected age (4

months of age for infants born at term).

1.1.1 A Device for Early Intervention for CP

After the development of a test for early identification of infants at risk of CP
[17, 18], the next step was research on early intervention for improvement in
their quality of life. The hypothesif?] is that these infants can benefit from
receiving physical assistance during the crawling age. At a minimum, this can
enable them to explore the world and continue with their cognitive development.
At best, their motor functions can develop at the same pace as that of their
typically developing peers. Research in this domain has resulted in a series of
experimental assistive devices such as the one described in Pidcoe et al. [69]. To
maximize effectiveness, these devices have been designed to be portable enough
for home use.

The latest generation of these assistive devices is a robotic mobility device

2This is a hypothesis of the intervention and not of this dissertation.



IMU-based kinematic suit (strapped
to the infant’s back)

* 12 sensors mounted in suit

* Real-time reconstruction of body
posture

* Recognition of crawling-like

actions -> trigger robot move _ Back sensor

Lowerleg Thigh and central
processor

Figure 1.2: Southerland’s suit gesture recognition system for the SIPPC robotic
devices. It recognizes crawling-like gestures and commands the robot to drive,
enabling infants with CP to locomote. The picture on the left shows Souther-
land’s system being used on the SIPPC2, an older generation robotic device.
On the right, the details of the suit are outlined. Image source: Southerland

[80], Miller et al. [47]

called Self-Initiated Prone Progression Crawler 3 (SIPPC-3), described in Ghazi
et al. [35], and shown in Fig. [1.1] Designed primarily for crawling-age infants
with CP, it can be used for mobility as well as physical therapy. A major
component of its interface is a gesture recognition system by Southerland [80]
(see Fig. . This system captures infant limb motions in 3D and recognizes
the crawling-like gestures made. Each individual gesture prompts the robot
to drive in a specific short path. Therefore, by making crawling-like gestures,
infants can propel themselves along the floor.

The gesture recognition system consists of a “onesie suit” with 12 inertial
measurement units (IMUs) sewed into it. The motion capture (commonly re-
ferred to as MoCap or mocap) processing is done on a small embedded computer
within the “suit.” This embedded computer is about the size of a matchbox
(53 x 36 x 12 mm). The gesture recognition processing is done on a separate
computer (about the size of a smartphone). The use of these small computers
is necessary to make the system portable. The only other things required for

the system are a battery for power and a Wi-Fi hub for communications. In



operation, the suit system remains tethered to the battery and Wi-Fi hub by a

power cable and a data cable.

1.1.2 Southerland’s IMU Suit System

Southerland’s IMU suit is a mocap system developed for infants. Mocap sys-
tems to capture human motion in 3D are not generally designed for infant
applications. Usually, mocap systems designed for adults are adapted for use
with infants, e.g. as done by Freedland and Bertenthal [33], Fetters et al. [20],
and Wu et al. [93]. Each of these adapted infrared point marker systems that
were primarily designed to capture the motion for adults walking upright. Even
when adapted, the mocap sessions are constrained. Infants may be restricted
to crawl along very specific paths, such as in Freedland and Bertenthal [33].
Alternatively, infants may be immobilized with only the limbs allowed to move
freely, such as in Fetters et al. [26], Wu et al. [93], and Olsen et al. [52]. Olsen
et al. [52] used a model-based mocap system. In contrast, Southerland’s mocap
system was designed from the ground up for crawling infants.

Southerland’s IMU system was developed for use onboard a mobile robot.
This is an important distinction when compared to conventional mocap systems.
Generally, mocap systems are not designed for use on mobile platforms. For
example, the type of mocap systems used by Freedland et al. [33] and Olsen
et al. [52] typically comprise sensors, tripods, computer workstations, and AC
power supplies. This can add up to a significant quantity of weight and volume
to carry around. Hence, this can make the mocap system much heavier and
larger compared to an unencumbered infant. In contrast, Southerland’s IMU

system requires only the wearable sensors, a Wi-Fi hub and a battery, which



are reasonable payloads for a compact robot carrying a crawling-age baby. The
wearable sensors are compact and light enough for an infant to wear comfortably,
without being a distraction or a hindrance.

Another novel feature of Southerland’s system is the type of gestures in-
volved. Traditionally, limb gesture recognition is focused on the gestures made
by individuals who can be upright and make controlled, deliberate movements.
For example, the Microsoft Kinect sensor (Zhang [98]) is designed to recog-
nize arm and leg gestures for people standing upright. Breaking away from
this trend, Southerland’s IMU system was developed to track and recognize

exploratory limb motions made by infants learning how to crawl.

1.2 Motivation and Problem Statement

This section outlines the motivating factors for this dissertation and identifies

the problem that needs to be solved.

1.2.1 Limitation of Southerland’s IMU System

Although Southerland’s IMU system [80] is generally reliable, its motion cap-
ture process is susceptible to electromagnetic interference (EMI). This is due
to the use of microelectromechanical system (MEMS) IMU sensors. A MEMS
IMU sensor consists of a MEMS accelerometer, gyroscope, and a magnetome-
ter. Angular rates from the gyroscope are integrated over time to compute 3D
orientation in an inertial frame of reference. The accelerometer and magne-
tometer are used to correct for accumulated error. EMI introduces bias in the
magnetometer readings of the MEMS IMUs. This, in turn, introduces errors in

the pose estimate of the body.
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Figure 1.3: Bottom left, kinematic pose estimate as a result of electromagnetic
interference (EMI). Bottom right, post-process reconstruction of the actual pose.
Image source: Wilson [40].

When pose estimation is inaccurate, the process of interpreting the motion
begins to break down. Crawling movements are misinterpreted. The SIPPC-3
robot begins to ignore some crawling movements. It may also respond to the
wrong movements. For best results, the SIPPC-3 robot should respond to the
desirable crawling movements 100 % of the time. This erratic behavior in the
presence of EMI can be confusing for an infant who is trying to learn how to
crawl. This limits the utility of the robotic devices in areas with EMI.

EMI can be caused by electrical wiring and ferrous materials in the sur-
roundings. This interference can severely degrade the accuracy of the pose
estimation. Fig. depicts one such case. Currently, the only solution for deal-
ing with EMI is to avoid areas with power wires and ferrous materials. With
this system, there is no reliable way to detect EMI interference other than scan-
ning an area using specialized instruments. Scanning is required because ferrous
building structures and electrical wiring are typically hidden under the floor in

large buildings so their presence cannot be visually detected. This is not so



much of an issue in homes with wooden structures. But, care must be taken to
avoid sources of EMI in homes, e.g., refrigerators and large speakers.
EMI-induced errors in body pose estimation limit the utility of the SIPPC-
3 robotic devices. Different locations may have different sources of EMI at
different points. To better utilize these robots, the effects of EMI on the motion

capture process must be mitigated.

1.2.2 Need for an Alternate Approach

To mitigate the effects of EMI on the mocap process, two approaches are pos-
sible. Either Southerland’s IMU system [80] can be modified, or a different
mocap system can be developed. Wilson [40] developed an approach to improve
the body pose estimate from Southerland’s IMU system [80]. The approach
uses anatomical joint angle limits to apply corrections to the pose estimate.
Although Wilson’s implementation is offline, it has the potential to be applied
online while the motion data are being captured. Essentially, Wilson’s work is a
step towards modifying Southerland’s IMU system. Therefore this dissertation

will pursue the other approach, i.e., to develop a different mocap system.

1.3 Problem Definition for Dissertation

The problem that this dissertation seeks to address exists in the context of
a series of robotic devices. The context is as follows. Robotic devices were
developed to provide early intervention for crawling-age infants (4-11 months).
This intervention is intended for use not just in labs and clinics, but also in

homes and apartmentsﬂ Part of the intervention is the 3D motion capture

3An apartment can be located within a large building with a steel frame.



(mocap) of crawling-like motions made by the infants. The current mocap
system uses MEMS based IMUs strapped onto different parts of the body. The
IMUs consist of accelerometers, gyroscopes, and magnetometers. A limitation of
this setup is that electromagnetic interference (EMI) results in biased readings
from the magnetometers, which in turn introduces error in the mocap system.
These errors can be significant enough to cause the gesture recognition process
to malfunction, which causes the robotic intervention devices to malfunction.
The most common sources of EMI include ferrous metal support structures and
electrical wiring under the floor, which are usually hidden from view. Since they
are usually hidden, sources of EMI can be difficult to map out and isolate. This
limits the utility of this robotic intervention.

In the above context, the problem is defined as follows. A new mocap
system must be developed to replace or augment the existing mocap system.
A key requirement for the new system is that it must not be susceptible to
EMI. In the context of this dissertation, mocap is defined as capturing 3D
limb movement. It does not include the process of automatic recognition and

classification of those movements.

1.4 Research Questions

The research questions for this dissertation are defined in the context of the

development of a new mocap system for capturing infant crawling motions.

1.4.1 Research Question 1

R 1. What are the requirements for capturing crawling motions of infants?



Figure 1.4: Smallest useful crawling motion. The action is somewhat analogous
to the stance phase in upright walking. The magnitude of motion is comparable
to stride length in upright walking. This motion propels the body. A trained
observer is able to detect these from video. A mocap system must be able to
detect such motions. Left, arm propulsion. Right, leg propulsion. Source for
infant stills: 2016 Rice Baby Race [1].

Motion capture involves tracking points moving in 3D. To develop a new
mocap system, design requirements for the motion must be identified. How do
the relevant points on an infant’s body move when they are making crawling
motions? What is the magnitude of the smallest useful crawling motion? Ex-
amples of this smallest motion are illustrated in Fig. The smallest crawling
motion is analogous to the stance phase in upright walking. The magnitude of
motion is comparable to stride length in upright walking. This motion is used
to propel the body in a desired direction. Such motion can be visually detected
by a human observer trained to recognize and classify crawling motion. The
accuracy of a mocap system must be sufficient to detect comparable crawling

movement. How fast are the motions? Every sensor system has a dynamic

10



limit which dictates the fastest possible rate of change of a quantity at which
it is able to reliably measure that quantity. A mocap system should be able to
detect crawling movement even when an infant is moving at its fastest. In this
context, the fastest possible crawling movement needs to be identified. What
are the sources of data on infant crawling motions? What is the format of the
available data? Ideally, trajectories of points should be available in terms of 3D
Cartesian coordinates. If trajectories are available in terms of joint angles, then
what other data are required to convert those to trajectories in 3D Cartesian
coordinates? The crawling development phase usually begins at 4 months of age
and typically ends at 11 months. At 11 months, infants’ bodies are larger. Are
the more stringent mocap design requirements dictated by the smaller 4-month

old infants or the larger 11-month old infants?

1.4.2 Research Question 2

R 2. To what extent does a mocap system, not subject to electromagnetic inter-

ference (EMI), meet the above requirements?

What type of mocap system can be developed such that it is free from EMI?
How well can it meet the above mocap requirements? The tracking accuracy
must be better than the smallest possible crawling motions (see Fig. . For
example, if the amplitude of the smallest possible crawling motion is  mm, then
the mocap system should be able to track within +5 mm. If the mocap system
has any dynamic limitations, then the fastest possible crawling motion must
be within these limitations. A number of experiments may be required to test
the performance against the design requirements. The number of experiments

depends on the number of different conditions that can affect performance.
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This also raises the question of whether it is feasible to physically test for all
the different conditions. It might be more feasible to develop a model to predict

performance of the mocap system.

1.5 Research Plan

The research plan is as follows. First, the design requirements for a new motion
capture system will be identified. For the application described above, this also
includes identifying the kinematics of crawling motions for infants aged 4-11
months. Based on these requirements, a new mocap system will be developed
and its performance will be measured. Finally, these performance results will
be compared with the kinematics of crawling motions. Evaluation consists of
two main criteria. The 3D position tracking accuracy of the system must be
better than the smallest crawling motion that an infant can make (detectable by
a trained observer, analogous to stride length in upright walking, see Fig. .
The system must be fast enough to capture the fastest crawling motions of an

infant.
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Chapter 2

Design Requirements: Capturing

Infant Kinematics

Prior to developing a new mocap system, the design requirements must be
identified. This chapter presents these requirements, both in terms of relevant
system features, and in terms of infant kinematics. The emphasis is on kine-
matics.

In Section some desirable system features are identified. These are not
necessarily applicable to kinematics, but should still be considered when design-
ing the new mocap system. Section outlines some guidelines for deriving
kinematic requirements based on crawling motion. It also illustrates why in-
fant size data is important in deriving motion data. Section covers the
derivation of infant sizes. Section derives the infant motion data. Finally,
Section summarizes the key kinematics requirements necessary for the new

mocap system.
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2.1 Overview of Desirable System Features

For the application discussed in the previous chapter, the new mocap system
must be compact enough to be installed on a mobile robot. Setup and calibra-
tion steps should be limited to a few minutes, or it should be possible to perform
them in advance. The intervention time with infants using the SIPPC-3 assis-
tive robots is a maximum of 3 consecutive trials with a duration of 5 minutes
eachl] After this time, the infants are likely to disengage, become uncooperative
or even distressed.

It is also desirable that the system should not discourage infants from inter-
acting with toys. The act of holding a toy should not compromise the perfor-
mance of the system. Part of the intervention process is to motivate infants to

reach out and play with toys.

2.2 Guidelines for Kinematic Requirements

As discussed in the previous chapter, an infant onboard the SIPPC-3 assistive
robot moves its arms and legs. If crawling-like movements are detected, then
the robot physically moves the infant in a short path in that direction. The
crawling motions for the SIPPC-3 are discussed in detail in Section 2.4.4] A
brief description of crawling motion is as follows. For typically developing in-
fants, crawling involves two major components. One is the arm movement for
forward or lateral propulsion (see second and third image, Fig . The other
component is leg movement for forward propulsion (see second and third image,
Fig . Backward propulsion is not desirable for therapeutic purposes, so it

will not be considered. Some crawling movements may be constrained when an

4This is the dosage for 1 day. There are 2-3 dosages per week.
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Figure 2.1: Typical crawling cycle for forward propulsion. One and a half cycle
is shown. Forward propulsion using the right arm is shown in (a). Forward
propulsion using the right leg is shown in (b). For both (a) and (b), the propul-
sive movement starts at the second image and ends at the third image. Image
source: 2016 Rice Baby Race [1].

infant is onboard the SIPPC-3 robot.

The key kinematic requirement is the motion capture system must be able
to capture the crawling movements of an infant (the smallestﬂ and fastest move-
ments). The crawling motions can be identified by the ankle and wrist move-
ments relative to the hips and upper back, respectively. There are two parts
to capturing this motion. First, to detect all the possible crawling motions,
the smallest crawling motion serves as the requirement. If the tracking error
is sufficient for detecting the smallest possible motion, then it should generally
be sufficient for detecting larger motions. The second part of capturing mo-
tion is the dynamics. The system must be fast enough to capture motion at
all the different body part speeds that are possible. In this case, the fastest
possible motion dictates the requirement. If motion can be detected when the

body is moving at the fastest possible speed, then motion can also be detected

SDetectable by a trained observer, analogous to stride length in walking (Fig. .
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at slower speed. Thus, the new mocap system should be able to capture the
smallest movements, and should be able to continue detecting movements at
fastest speed.

It is desirable that the kinematics data be available in Cartesian space. How-
ever, for human motion, kinematics is often reported in terms of joint trajecto-
ries. Forward kinematics of the body can be used to convert joint trajectories
to 3D Cartesian coordinates. To compute forward kinematics, the sizes of the
different body parts need to be identified or derived. Specifically, these are the
lengths of the different limb segments.

Using forward kinematics to derive motion data from joint trajectories raises
an interesting question. If infant age is not identified for joint trajectories,
then what age should be used to select sizing data? Body size increases as
an infant grows older. For a given joint trajectory, the older the infant, the
greater the range of movement in 3D Cartesian coordinates. Given that the
mocap system must be designed for the smallest significant movement (Fig|1.4]
2.1), the sizing data for the youngest infants should be used when computing
forward kinematics. On the other hand, if the joint trajectories are to be used
for deriving speed, then the sizing data for the oldest infants should be used.
This is because for the same joint angle trajectory, a larger body will result in
faster speeds for hands and feet.

Infant size data are a prerequisite for computing forward kinematics in case
only joint angle trajectories are available. Therefore, these are derived in Sec-

tion [2.3] After this, the kinematics requirements are identified in Section [2.4]
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2.3 Infant Size Data

If motion data are available in terms of joint angles rather than 3D Cartesian
coordinates, then those data may be converted to 3D Cartesian coordinates by
using forward kinematics. To compute forward kinematics using joint angles,
infant sizing data are required. Crawling skills are generally developed between
4-11 months of age. Therefore, this is the age group that will be considered for

sizing information.

2.3.1 Survey of Infant Size Data

shoulder breadth
— >
head breadth
<>
head height$
shoulder-elbow
shoulder-rump length
length )
Ielbow-wrlst
length
rump-knee ne
length
knee-ankle
length
>
hip/waist
breadth

Figure 2.2: Sizing information needed for a simple kinematic model.

Detailed sizing data for 4-11 month old infants do not seem to be well-
documented. Details in this context refer to sufficient information to construct
a rudimentary kinematic skeleton as illustrated in Fig.[2.2] Child growth stan-

dards by the World Health Organization [7] provide only height, arm circum-
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ference and head circumference for this age group. Clinical growth charts by
the US Centers for Disease Control [30] provide only height and head circumfer-
ence. Anthropometric reference data by the US Centers for Disease Control [32]
provide height, head circumference, and upper arm length. The most detailed
source of information seems to be anthropometric data compiled in Snyder et

al. [79]. Therefore, these data were used as a reference for infant sizes.

2.3.2 Derivation of Infant Size Data

Figure 2.3: Head length measurement. Head height is assumed to be the same
as head length. Reproduced from Snyder et al. [79)].

For a simplified kinematic skeleton that excludes the hand and feet, 9 mea-
surements are required. These are listed below and are illustrated in Fig. 2.2
Some of them are available in Snyder et al. [79]. The remainder must be derived

from other measurements recorded in Snyder et al. [79).

1. head height
2. head breadth (available)
3. shoulder-rump length

4. shoulder breadth (available)
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5. shoulder-elbow length (available)
6. elbow-wrist length

7. hip/waist width

8. rump-knee length

9. knee-ankle length

23

31

2 ] { 3
|

Figure 2.4: Measurements used for deriving shoulder-rump length: crown-sole
length (2), crown-rump length (3), and rump-sole length (23). Note that the
rump measurements overlap, so the sum is greater than the crown-sole length.
Reproduced from Snyder et al. [79].

For lack of any other information, the head height is assumed to be the same
as the head length. The head length is illustrated in Fig

To derive the shoulder-rump length, three measurements are required (see
Fig. 2.4): 1) crown-sole length, 2) crown-rump length, 3) rump-sole length.

Ideally, shoulder-rump length should be the difference between the crown-
rump length and head length. Unfortunately, the crown-rump length and rump-
sole length are overestimates as seen in Fig. [2.4] Both measurements include
all of the rump. This can also be verified by checking the sum of crown-rump
length and rump-sole length. The sum is greater than the height, or crown-sole

length. This overlapping measurement is given by:
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Orump = crown-rump length + rump-sole length — crown-sole length (2.1)

This overlapping meausrement can be divided between shoulder-rump length
and an adjusted rump-sole length. Assuming it is equally divided between the

two, we have:

£l

f
AT

Figure 2.5: Measurements used for deriving elbow-wrist length: elbow-hand
length (10) and hand length (13). Reproduced from Snyder et al. [79].

6rum
shoulder-rump length = crown-rump length — head length — Tp (2.2)

57"’um
adjusted rump-sole length = rump-sole length — Tp (2.3)

To derive elbow-wrist length, elbow-hand length and hand length are required.
These are illustrated in Fig. [2.5] Although this is an overestimate based on the

elbow joint, no further measurements are available to deduce the overestimate.

Therefore:
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Figure 2.6: Measurements used for deriving the hip/waist breadth hip breadth
(26) and waist breadth (22). Reproduced from Snyder et al.

o

Figure 2.7: Measurements used for deriving the adjusted rump-knee length:
rump-knee length (24) and knee-sole length (29). Note that there is an overlap
at the rump as well as the knee. Reproduced from Snyder et al. [79].

elbow-wrist length = elbow-hand length — hand length (2.4)

The hip/waist breadth can be based on the larger of the hip breadth and waist
breadth (see Fig. [2.6). The hip breadth is always the larger of the two.
The rump-knee length is an overestimate based on the rump and knee joints

as illustrated in Fig. 2.7 The adjusted rump-knee length is given by:
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5knee 5rump
- — 2.5
5 5 (2.5)

adjusted rump-knee length = rump-knee length —

The overestimate dj,ee, based on the knee joint, is based on the following

equation, where adjusted rump-sole length is derived in above:

Figure 2.8: Deriving knee-ankle length. Assuming the ankle-sole length is equal
to the ankle breadth (32). Reproduced from Snyder et al. [79)].

rump

Oknee = (rump-knee length+ knee-sole length—T)—adjusted rump-sole length
(2.6)

In terms of the measurements available, this becomes:
Opnee = rump-knee length + knee-sole length — rump-sole length (2.7)

The last item is the knee-ankle length, which can be derived from the knee-

sole length (29, Fig. , ankle-sole length, and adjusted for the overestimate
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based on the knee joint. Ideally:

)
adjusted knee-ankle length = knee-sole length — ankle-sole length — k;ee (2.8)

The ankle-sole length measurement is not available. Based on the available

measurements, one possible assumption is that it is equal to the ankle breadth

(Fig. [2.8). Therefore:

o
adjusted knee-ankle length = knee-sole length — ankle breadth — % (2.9)

Wrist and ankle diameters can be derived from the wrist circumference (12,
Fig. and ankle circumference (31, Fig. . The assumption here is that
the wrist and ankle have circular cross-sections.

The resultant sizing data are summarized in Table These data will be
used to compute forward kinematics where infant limb motion data are available

in terms of joint angles.

2.4 Infant Motion Data

The next step is to identify infant motion data. There are two parts to it:
speed and range of motion. Speed data are related to dynamic limitations of a
mocap system. Range of motion data are related to the 3D position estimation
error of a mocap system. Ideally, these data should be available in the form
of Cartesian coordinates. Alternatively, if joint angle trajectories are available,

then the Cartesian coordinates may be derived by using joint angle data, infant
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Table 2.1: Infant sizes derived for forward kinematics. Mean, 5th percentile, and
95th percentile are presented. These data are derived from Snyder et al. [79].
Sizes marked with “*” are direct measurements that did not have to be derived.

size (mm)
3-5 months 6-8 months 9-11 months
pn | 5th | 95th | p | 5th | 95th | p | 5th | 95th
head height 146 | 137 | 156 | 155 | 143 | 164 | 160 | 147 | 168

head breadth* 114 | 105 | 122 | 118 | 111 | 124 | 122 | 114 | 129
shoulder-rump 247 | 215 | 263 | 267 | 261 | 280 | 274 | 263 | 274

shoulder 187 | 165 | 204 | 201 | 180 | 220 | 211 | 193 | 231
breadth*

shoulder-elbow* | 123 | 107 | 138 | 131 | 108 147 | 145 | 123 156
elbow-wrist 92 80 102 | 100 | 87 109 | 107 | 92 119
hip/waist width | 143 | 115 | 167 | 159 | 140 | 175 | 166 | 135 | 184
rump-knee 101 | &4 114 | 111 | 99 112 | 124 | 107 | 130
knee-ankle 103 | 99 112 | 117 | 109 126 | 134 | 114 159

wrist diameter 32 27 35 33 30 36 34 31 38
ankle diameter 37 31 41 39 35 44 41 36 46

sizing data, and computing forward kinematics.

2.4.1 Swurvey of Motion Data

Data on ankle and wrist movements for 4-11 month old infants do not seem to
be readily available in the literature. For this age group, most studies of infant
kinematics seem to focus on qualitative results. Freedland and Bertenthal [33]
conducted some experiments with crawling infants, but the data they presented
were about the cyclic features and patterns of crawling motion. They did not
provide quantitative data on limb trajectories. Xiong et al. [95] conducted a
study with crawling infants to analyze kinematics and muscle activity. But they,
too, published their data in terms of crawling cycles rather than any absolute

motions. Righetti et al. [72] published some quantitative data on joint angle
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Figure 2.9: Illustration of trajectory data provided by Righetti et al. [72].

trajectories of crawling infants. Other than that, data from Southerland’s suit
system are available. Kolobe [42] has defined some joint angle movements for

crawling infants. These can be detected by trained visual observers.

2.4.2 Speed: Proficient Crawling

Righetti et al. [72] compiled some joint angle trajectories for 7 infants aged 9-11
months. For each infant, they compiled joint angle trajectories for both arms
and both legs. Fig. 2.9 illustrates a sample joint angle trajectory of a limb, as
provided by Righetti et al. [72]. Note that these data are in terms of joint angles.
To derive 3D Cartesian coordinates from the joint angles, forward kinematics
using the limb lengths from Table must be used. Details on computing
forward kinematics are provided in Section [5.3.2]

Righetti et al. [T2] presented the trajectories as a percentage of gait cycle
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Table 2.2: Infant speeds based on joint trajectories of proficient crawlers from
Righetti et al. [72]. Overestimated values are based on the shortest trajectory
times. Underestimated values are based on the longest trajectory times. Quoted
speeds are 95th percentile.

wrist speed (m/s) | ankle speed (m/s)
overestimate 1.30 0.789
underestimate 0.749 0.434

rather than time. They also quoted shortest and longest median times for the
swing and stance phases. To deduce design requirements, the percentage cycle
and median time data from Righetti et al. [T2] were used to compute the fastest
and slowest time series trajectories for all of the joint angles. Infant size data
for 9-11 month infants were used to compute Cartesian time series trajectories
of the wrist and ankle (using forward kinematics). Speed was computed for
each data point in time, and the results are presented in Fig. and Fig. 2.11]
One is an overestimate (fastest estimate) based on the shortest times, and the
other is an underestimate (slowest estimate) based on the longest times. The

95th percentile speeds are presented in Table

2.4.3 Speed: Infants Onboard Assistive Robot

Wrist and ankle speeds were obtained from motion capture data of typically
developing infants onboard the SIPPC-3 assistive robot. These were collected
using Southerland’s IMU system [80]. Data for 10 infants were used. For each
infant, data for 3 sessions were used, resulting in a total sample of 30 sessions
for the 10 infants.

The sessions were selected as follows: one at the start of the trial period

(week 2), one around the middle of the trial period, and one towards the end
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Figure 2.10: Histogram of wrist and ankle motion speeds obtained from Righetti
et al. [72]. This is an overestimate of speeds because the shortest times were
used.
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Figure 2.11: Histograms of wrist and ankle motion speeds obtained from
Righetti et al. [72]. This is an underestimate of speeds because the longest
times were used.
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Figure 2.13: Axes used for the figures illustrating range of motion (see Fig.[2.14]).

of the trial period. At the start of the trial period, infants had no crawling
skills. At the end of the trial period, infants had developed crawling skills.
Depending on the pace of development, the middle and end trial week numbers
were different for different infants. The shortest middle and end week numbers
were 5 and 10 weeks, and the longest were 8 and 16 weeks.

Each session lasted 300 seconds. Data were sampled at 50 Hz, giving
15000 samples per session. Of these, many data points represented no motion.
Based on analyses performed by Shotande [77], thresholds of 0.0493 m/s and
0.0427 m/s were used for the wrist and ankle motion respectively. Shotande [77]
used a Kolomogrov-Smirnov (KS) distance technique, comparing two distribu-
tions, one being of the local maxima speeds and the other of the local minima
speeds. This distance computation stems from the KS test, which is a hypothe-
sis test used to determine whether two distributions are similar. The thresholds
are the speed at which the distance between the distributions of the maxima
and minima is greatest for each limb. These thresholds were used as minimum
cut-off values in compiling the speed histograms from the SIPPC-3 data. Essen-
tially, they filtered out data points that did not represent any motion. Inclusion

of those data points would have skewed the histograms.
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Only peak speeds at these threshold or above were considered to represent
motion. Histograms for the wrist and ankle speeds obtained are represented in
Fig. and Fig. The 95th percentiles for the wrist and ankle were

0.304 m/s and 0.198 m/s respectively.

2.4.4 Range of Motion

When infants crawl, they propel themselves by using their legs and/or arms.
Based on extensive observations of crawling-age infants, Kolobe [42] has defined
a set of minimum range of motions. These definitions are used as guidelines for
trained human observers to detect crawling motions from videos (e.g. from
Fig. [1.4] 2.1). Range of motion is defined in terms of joint angles. It is the
minimum movement of one or more joints that is considered to be a deliberate
propulsive crawling motion. Given the range of motion in joint angles, the
minimum displacement in Cartesian coordinates can be derived by using forward
kinematics.

For forward kinematics, the sizing data of the youngest infant age group, i.e.,
3-5 months will be used. The rationale for this choice is that the displacement
of the wrists and ankles is proportional to limb lengths. The shortest limb
lengths will give the smallest displacement, or range of motion, in 3D Cartesian
coordinates. When defining mocap system requirements, the smallest range of
motion is the worst case. If the tracking accuracy is sufficient to detect the
smallest range of motion, then it is also sufficient for the larger motions. For
reference, the sizing data are summarized in Table 2.1]

The remainder of this section covers the range of motion for the legs and

arms during crawling. For consistency, only the movements of the wrist and
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ankle joints are considered. These joints are assumed to be points in space, and
their position is defined in Cartesian space. The reference axes are illustrated
in Fig. 2.13

Typical forward propulsion using leg motion is defined as follows. Refer to
Fig.[2.14a] The hip-thigh angle starts at < 85 degrees and ends at > 150 degrees.
The knee-thigh angle changes such that the lower leg is kept approximately
horizontal during the motion.

When an infant is onboard an assistive robot, the leg motion is constrained
because of the support under the torso (see Fig. [1.2). Therefore, a modified
definition of propulsive leg motion is used (see Fig. . At the start of the
motion, the hip-thigh angle is < 110 degrees, and the knee-thigh angle is 150
degrees. At the end of the motion, the hip-thigh angle is > 150 degrees, and
the knee-thigh angle remains constant at 150 degrees.

Forward propulsion using arm motion involves the angle of the wrist with
the shoulder joint changing from > +10 degrees to < —10 degrees. The elbow
angle remains constant at 175 degrees. This is illustrated in Fig. 2.14d

Sideways propulsion using arm motion involves the angle of the wrist with
the shoulder joint changing from > 420 degrees to < —20 degrees. This is
illustrated in Fig.

From the above, given the same joint angle movements, the smallest signifi-
cant motions are those made by the infant with the shortest limbs, i.e., the 3-5
months age group. Using the mean limb sizes obtained earlier in this chapter,
computed wrist and ankle displacements are provided in Table|2.3, The smallest

derived displacement was 74.6 mm.
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Table 2.3: Minimum wrist and ankle displacements computed using forward
kinematics. Based on range of motion illustrated in Fig. and sizing data
for the youngest age group of 3-5 months (Table [2.1)).

type of motion displacement (mm)
ankle (unconstrained) 108.5
ankle (constrained) 134.8
wrist (forward propulsion) 74.6
wrist (sideways propulsion) 147.1

2.5 Summary of Kinematic Requirements

Based on the compiled and derived results in Sections 2.4.3] and 2.4.4] a

summary of the kinematics requirements is as follows. The magnitude of the
smallest possible crawling motion made by an infant is 74.6 mm (wrist movement
for forward propulsion). The fastest movement for proficient crawlers is the
wrist speed, which can be taken to lie between and 0.749 m/s and 1.30 m/s
(based on a single test for each subject at 9-11 months). The fastest possible
speed for infants developing crawling skills on the SIPPC-3 robot is also the
wrist speed, which is 0.304 m/s (95th percentile, based on 2-3 tests per week
for up to 16 weeks). Given that the mocap system to be developed is for infants
learning how to crawl, 0.304 m/s is the more appropriate design requirement.
When the infants become proficient crawlers and begin moving their limbs at
higher speeds, they do not need to be using the SIPPC-3 robot. They should be
crawling independently of the robot. All motion must be faster than 0.0427 m/s,
which is the threshold for velocity peaks based on ankle movement data from
the SIPPC-3 robot.

Therefore, to sum up, the magnitude of the smallest motion to be detected

is 74.6 mm. This motion must be detected at speeds ranging from 42.7 mm/s to
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304 mm/s. In case the movements exceed the capabilities of the mocap system,
ideally, there should be some way of detecting such an event. This does not

have to be a requirement but definitely a very desirable feature.
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Chapter 3

Developing a New Motion

Capture System

From Chapter [I} it follows that an alternative system of motion capture needs
to be developed in the context of infant crawling motions. The requirements for
capturing these crawling motions were identified in Chapter [2 For the scope of
this dissertation, mocap does not include gesture recognition algorithms.

This chapter focuses on the development of a new mocap system and is or-
ganized as follows. In Section [3.I} an overview of existing mocap technologies
is presented. Section covers the selection of the most suitable mocap tech-
nology for crawling infants. In Section [3.3] the design of the new mocap system

is presented. Finally, a design summary is presented in Section [3.4]

3.1 Types of Systems

Motion capture systems can be divided into two catgories: 1) Inertial systems

use IMUs placed on different parts of the body to capture the pose of the
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Figure 3.1: Inertial mocap uses IMUs mounted to the body. The IMUs provide
orientation which can be used to derive joint angles. Forward kinematics are
used to compute full body pose. Image source: [13]

body. 2) Vision-based motion capture systems use cameras to track motion.
Although other motion capture systems have been proposed, these two are the
most common techniques. Over the years, they have consistently proven to be
feasible.

Inertial mocap systems use inertial measurement units (IMUs) placed on the
body (see Fig. . These are almost exclusively based on microelectromechan-
ical systems (MEMS) IMUs. An IMU consists of an accelerometer, a gyroscope,
and a magnetometer. Angular rates from the gyroscope are integrated over time
to compute 3D orientation (roll, pitch, yaw). The other two sensors are used to
correct for drift. MEMS IMUs can be packaged into very small form factors, e.g.,
the InvenSense MPU-9250 is embedded into a chip that is sized only 3 x 3 x 1
mm [38]. Small form factors of MEMS IMUs allow for relatively unobtrusive
placement on the body. A single IMU mounted on a single body part, e.g.,
the upper arm, measures the 3D orientation of that part. By mounting IMUs
to multiple body parts, relative joint angles can be computed (see Fig. [3.1)).
Given the lengths of the different body parts, forward kinematics can be used

to track the position of different parts of the body. The above description is
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Figure 3.2: Model-based mocap systems capture 3D points and surfaces. Left:
predefined body models are used to detect and track the human body. Right:
when parts of the body are occluded, detection is unreliable. Image source:
Delachaux et al. [22].

greatly simplified, and practical algorithms for IMU mocap are generally much
more sophisticated. But, regardless of the implementation, magnetometers are
an integral part of an IMU mocap system.

Vision-based motion capture systems can be categorized into 4 distinct
types. 1) Model-based systems use cameras to capture the three dimensional
shape of the body and infer the underlying skeleton pose. 2) Infrared point-
marker systems use cameras to track single-point infrared markers placed on the
body. 3) Color marker systems use color-coded markers for tracking. 4) Planar
pattern marker systems use specially coded patterns for tracking.

Model-based mocap systems use intelligent algorithms to track the body.
Typically, they consist of an infrared projector and an infrared camera (e.g.,
Microsoft Kinect [98] and Orbbec Astra S [67]). Together, they are used to
compute special images called depth images, in which each pixel has an asso-
ciated 3D location in space. In other words, they capture all the 3D points
and surfaces within view of the projector-camera system. Other methods may
be used to obtain depth images as well, e.g., the OrganicMotion system [49],

which uses multiple color cameras. After a depth image is obtained, clusters
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Figure 3.3: The typical approach to tracking infrared point markers or color
markers. Multiple cameras are used to track markers in 3D. Each camera pro-
vides a line of sight to the marker. The intersection of multiple lines of sight
marks the 3D location of the marker.

of pixels representing different parts of the body are identified using predefined
body models. Finally, the joint locations are derived from the different body
parts (see left, Fig. [3.2)).

Model-based mocap systems have some limitations. Since they are vision-
based, tracking depends on the body parts being visible to the cameras. If parts
of the body disappear from view, then tracking fails. This is known as occlu-
sionﬂ When parts of the body go out of view, the scene no longer contains a
complete body which matches predefined body models. Generally, model-based
systems assume that a full body, i.e., torso, head, and 4 limbs are in view. If
a body part is missing from view, then either the system will fail to detect the
body, or it will incorrectly fit the body model to the available depth image (see
right, Fig. . This can happen when one body part is hidden by another body
part, e.g., when a person with their back to the camera crosses their arms across

their chest. Another issue with matching predefined body models to the depth

6Loss of tracking data when the marker or body segment being tracked goes out of view.
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image is that clusters of pixels (i.e., objects) connected to the body are consid-
ered parts of the body, e.g., a person holding a large object in their hand. A
model-based system will either fail to detect the human body because it does not
match the predefined body model or it will try to fit a body model by assuming
that the large object in the hand is an extension of the body. Both cases are un-
desirable. Therefore, generally, model-based systems are not reliable when the
human body is in contact with other objects or structures. Finally, model-based
systems use computationally intensive searching and matching algorithms.

Infrared point marker mocap systems track point markersﬂ that are placed
on the body. Each marker is associated with a specific point on the body.
Hence points on the body are tracked by the use of the markers placed on those
points. Markers are made of materials that reflect light very well. Infrared light
is flashed at the body and multiple infrared cameras are used to capture the
scene. An alternative to reflective markers is to use markers that emit infrared
light. Regardless of the approach used, the infrared point markers show up as
very bright spots in the infrared camera images. Given the camera pose, a single
camera can only be used to compute a line of sight to a marker. Essentially, this
is a 3D line originating at the camera and continuing to infinity. To pinpoint
the 3D location of the marker, multiple cameras are used. Multiple lines of sight
for the same marker intersect at the location of the marker. This concept of
using multiple cameras to track a marker is illustrated in Fig. |3.3|

Infrared point marker mocap systems have their limitations, as well. Since
they are vision-based, they suffer from occlusion. Tracking depends on the
markers being visible to multiple cameras. A single point marker needs to be in

the view of at least two cameras to be tracked. If the view of the point marker

"These markers are so small that they appear as points in the camera view.
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is blocked, then it can not be tracked. Appropriate lighting is also required.
Generally, this means that other sources of infrared light are not present and
that there are no highly reflective points or surfaces near the markers. Typically,
the presence of sunlight interferes with such systems.

Color marker systems use color coded patches for tracking. These are es-
sentially clusters of different colors. Their position can be tracked in 3D in the
same manner as infrared point markers, i.e., by using multiple cameras. But
they have the additional benefit of the markers being individually identifiable
due to their color combination. For example in a marker system with dual colors
(two colors for each marker) one marker could be colored red and blue, while
a different marker could be colored red and green. Since colored patches are
tracked, the markers tend to be a little larger than infrared markers to ensure
reliable tracking.

Color marker systems have similar limitations as infrared point marker sys-
tems. They suffer from occlusion. If colors are only used for detection, i.e.,
similar to how infared point markers are used, then the entire marker must be
visible to at least two high resolution cameras for 3D tracking. Alternatively,
they can be printed as planar shapes with well-defined geometries, in which case
a single camera is required for 3D tracking. Appropriate lighting conditions are
required. Color marker tracking systems are sensitive to lighting conditions.
They must be calibrated for the lighting condition before the tracking process.
If the lighting condition changes during tracking, then reliable tracking of colors
can become an issue.

Planar pattern marker systems use unique patterns for tracking. Detection
is done with the help of grayscale images, so color does not matter, as long as

there are two sharply contrasting colors. Usually they are black and white. The
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Table 3.1: Motion capture (mocap) technologies that have been proven to be

practical.

Type

Working Principle

Limitations

inertial mea-
surement unit

(IMU)

sensor elements that detect
motion directly, placed on
the body, e.g., [06] [R0]

prone to sensor drift and
electromagnetic interference

(EMI)

model-based,
vision

camera, detecting 3D sur-
faces and using a predefined
body model, e.g., [98], [49]

requires appropriate lighting
conditions, suffers from oc-
clusion, needs isolated body
view, computationally in-
tensive

infrared point
marker, vision

multiple cameras, infrared
markers placed on the body,
eg. [8, [21]

requires appropriate lighting
conditions, suffers from oc-
clusion

color marker,
vision

single or multiple cameras,
track uniquely colored pla-
nar geometries or patches

requires appropriate light-
ing, suffers from occlusion,
color detection sensitive to
lighting

planar  pat-
tern marker,
vision

single camera, track unique
grayscale patterns

requires appropriate light-
ing, suffers from occlusion,
detection sensitive to blur-
ring

patterns are printed on planar surfaces. Since different patterns can be defined
and detected, individual markers can be uniquely identified. Tracking in 3D is
slightly different from infrared point marker systems. Since the markers have
well-defined geometries, a single camera can be used to compute the 3D position
and orientation of a planar pattern marker.

The limitations of planar pattern markers are similar to the limitations of the
other marker systems. Appropriate lighting conditions are required. Occlusion

is an issue, though somewhat less since only a single camera is required for
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tracking. Motion blur is an issue because if the blurring effects are significant,
then the pattern can not be detected reliably. Finally, the marker must be
placed on a planar surface for best results.

Table summarizes the mocap technologies described above, along with
their limitations. For details on these mocap technologies, see Zhou and Hu
[99]. As discussed previously, inertial mocap technology has been used in the
Southerland’s suit system. It has been problematic with its tendency to drift

and its susceptibility to EMI.

3.1.1 Survey of Mocap Systems Used for Infants

Limited work has been done for capturing limb movements of crawling infants
(see Fig. . Typically, infant motion has been captured by adapting mo-
tion capture systems that were developed primarily for adults. Freedland and
Bertenthal [33] analyzed changes in crawling limb movement patterns with de-
velopment (see Fig. [3.4a]). Observations began at the age when infants first
moved in the prond position (mean age 33.5 + 2.5 wecks). Xiong et al. [95)]
studied muscle activation between upper and lower limbs in crawling infants
(ages 8-14 months). Righetti et al. [72] compared crawling movements of infants
with quadruped mammals (see Fig. . The infant ages were 9-11 months.
All three of the above used infrared point marker motion capture systems to
record limb kinematics of crawling infants.

In comparison to crawling motion, more work has been done on analyzing
motion in other stages of child development. Again, there has been a trend to
adapt mocap systems designed mainly for adults. Jeng et al. [39], conducted

a comparison study of kicking movements of pre-term and full-term infants in

8Lying face down.
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(d) Smith et al. [78]

Figure 3.4: Some examples of mocap systems designed for adults adapted for
capturing infant limb motion.
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the supin&ﬂ position. Infants were in the age range of 2-4 months. They used
an infrared point marker motion capture system. Meinecke et al. [45] studied
head, trunk, and leg movements of pre-term and full-term infants in the supine
position (see Fig. . Infant ages were up to 4 weeks. They used an infrared
point marker system to capture movement. Fetters et al. [20] performed a
comparison study of kicking movements of pre-term and full-term infants in the
supine position. All infants in the study were 5 months old. They used an
infrared point marker system to capture motion for this study. Rocha et al. [73]
studied reaching movements of infants sitting in a baby chair. Infant ages were
38-41 weeks. Movement data were collected by using an infrared point marker
mocap system. Smith et al. [78] analyzed leg movements of infants before they
learned how to walk independently (see Fig. . Starting ages of the infants
ranged from 1-8 months. An inertial system was used to capture the motions.
Wu et al. [93] studied arm, leg, and head movements of infants as they made
reaching attempts in the supine position. Motion was recorded using an infrared
point marker mocap system.

In contrast to the above approaches, some have developed new systems
specifically for capturing infant motions. Olsen et al. [51] developed a model-
based motion capture system for infants in the supine position (see Fig. |3.5a).
Chen et al. [I9] developed a planar pattern marker system for infant foot move-
ments in the prone position (see Fig. . Finally, as discussed in Chapter ,
Southerland [80] developed an inertial system to capture crawling motions of

infants, i.e., in the prone position (see Fig. [1.2)).

9Lying face up.
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(a) Olsen et al. [51] (b) Chen et al. [19]

Figure 3.5: Mocap systems designed specifically for infants.
3.2 Narrowing Selection Pool: Vision Marker

The previous section discussed the types of motion capture technologies avail-
able, i.e., inertial, model-based vision, infrared point marker vision, color marker
vision, and planar pattern marker vision. This section marks the start of the
design process of the new system by selecting the type of motion capture tech-
nology to be used.

Inertial systems and model-based vision systems can both be ruled out. The
objective of this work is to complement the limitations of an inertial motion
capture system. Therefore, an inertial system will not be considered for the
new design. Model-based vision systems search for predefined body shapes and
poses, so parts of the body going out of view is an issue (see right, Fig. .
Furthermore, commercially available systems do not appear to include models of
crawling infants. Even if a custom system based on crawling infant body shapes
is developed, infant interaction with toys would cause errors and even failure.
This is because a model-based system detects 3D surfaces in space. Connected
surfaces will generally appear to be part of the same body. Different bodies

in the scene are compared against predefined human body models. Without
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information about the geometry of every single object to be touched by an
infant, it is challenging to distinguish between an infant’s hand and a toy, in
real-time. The toy will appear as an extension of the infant’s body. Either the
predefined human body model will be incorrectly matched to this apparently
abnormal body, or the body will not be detected at all. This issue will be
compounded if the infant’s hand should touch any part of the SIPPC-3 robot:
a large structure that is within reach of the infant (see Fig.[L.1)). Although Olsen
et al. [51] have developed a model-based system for infant motion capture, in
their case, the only 3D body visible to the system was that of the infant to
be tracked (see Fig. . There were no other bodies, such as toys or robot
structures, that could interfere with detection. Therefore, the remaining choices
are infrared point marker vision, color marker vision, and planar pattern marker

vision systems.

3.2.1 Initial Selection: Color Marker Vision

As mentioned above, the choices have been narrowed down to marker-based
vision approaches (infrared point, color, and planar pattern). The next step is
to identify the specific approach to use. By far the most popular type of system
is the infrared point marker vision system (e.g., the Vicon system [8]). A large
selection of such systems is commercially available (see Table . An infrared
point marker vision system can be somewhat limiting in the context of capturing
infant crawling motion of infants, where markers may have to be applied and
calibrated within minutes, and where the entire system must fit onto a portable
robot not much larger than an infant. A significant amount of skill and time is

required for infrared point marker application and system calibration. Infrared
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point marker systems are also unsuitable for use on a mobile robot because they
operate on the assumption that the cameras are fixed relative to one another.
While this is a reasonable assumption for cameras mounted to distant external
structures, it cannot be assumed for cameras mounted on multiple mobile robot
masts. These cameras can be knocked around, either during transport, or by
infants during operation.

In an attempt to find an infrared point marker system that does not require
bulky support equipment, a number of commercially available systems were sur-
veyed. Table lists the surveyed infrared point marker camera systems. With
the exception of the OptiTrack Slim 3U [64] and Advanced Realtime Track-
ing SMARTTRACK [4], all systems require bulky support electronics. The
OptiTrack Slim 3U camera has some onboard vision processing and has devel-
opment tools available, apparently for use with any computer running Windows
OS. This opens up the potential for use with a portable, small form factor,
embedded computer using Windows OS. However, it still has the other limi-
tations described above, i.e., it requires a significant amount of time and skill
to apply the markers and calibrate the system. It also assumes that cameras
remain undisturbed once the system has been calibrated. The Advanced Re-
altime Tracking SMARTTRACK camera system [4] is somewhat compact and
portable. Two cameras along with support electronics are all built into a single
housing of size 410 x 90 x 60 mm. Its limitations are that it is not scalable
to multiple units and is limited to tracking a maximum of 4 markers.

While infrared point marker systems dominate the commercially available
mocap systems, these are not the only type of marker that can be used for
tracking. As mentioned in Section [3.1] other types of markers include colored

markers and planar patterns. Colored markers have been popular with tracking
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Table 3.2: List of commercially available infrared point marker motion capture
camera systems. Generally, they are too bulky for use on a portable mobile
robot like the SIPPC-3.

Company Product
Vantage [91]
Vero [90]
Miqus [70]
Oqus [71]
Prime 41 [62]
Prime 17W [61]
Prime 13 [59]
Prime 13W [60]
Flex 13 [57]
Flex 3 [58]
STim 13E [63]
STim 3U [64]
V120 Duo [65]
V120 Trio [66]
PhaseSpace Impulse X2 [6§]
Codamotion 3D Motion Analysis System [21]
VisualEyez I1I [87]
Phoenix Technologies Inc. VZ4050 []9]
VZ4000v [88]
SMART-DX 100
SMART-DX 400
BTS Bioengineering [12] SMART-DX 700
SMART-DX 6000
SMART-DX 7000
ARTTRACKS [2]
Advanced Realtime Tracking ARTTRACK5/C [3]
TRACKPACK/E [5|
SMARTTRACK {4
Xcitex ProCapture [94]
MaxPRO 3D System [83]
MaxTRAQ 3D System 60/120 fps [85]
InnoVision Systems Inc. MaxTRAQ 3D System 160/500 fps [84]
Max100 Mocap System [81]
Max300 Mocap System [82]

Vicon

Qualisys

OptiTrack
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Figure 3.6: Mocap with color markers: (a) shirt with colored patches by Wang
et al. [92], (b) initial marker design using dual-color bands at each limb, (c)
tracking orange color from the bands.
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applications. Planar patterns have been used primarily for detecting pose in
augmented reality applications. Detecting colored markers is relatively less
computationally intensive than tracking planar markers, which require pattern
detection algorithms.

The sole commercially available color marker system seems to be the CMU-
camb Pixy [20]. This consists of a camera with an onboard processor that can be
calibrated to detect multicolor markers (uniquely identifiable clusters of colors).
This is a detection system only. It detects markers in the camera image.

Several applications have used colored markers but under constrained con-
ditions. Sargent et al. [75] described a system for tracking soccer playing micro-
robots; this system used a fixed camera, planar color markers on each robot and
stable lighting covering the entire field. Miller et al. [48] used similar tracking
hardware to compute position and orientation using a 3D colored marker in
the domain of spacecraft docking. Miller et al. [48] assumed smoothly changing
lighting. Breitenmoser et al. [16] used a colored marker system for robot local-
ization. This system was also designed for fixed background color and lighting
conditions. A colored marker system to be tracked on a cell phone was devel-
oped by Bagherinia et al. [I0]. The underlying assumption was that the colors
on the markers are uniformly illuminated, i.e., with no shadows on the colors.
It was also assumed that the marker was not rotated by more than 40 degrees
from the expected orientation. A system to detect joint locations in color im-
ages was implemented by Nergui et al. [50]. They used colored bands at the
joints. Meyer [46] developed a color marker tracking system for controlling the
yaw and altitude of a toy helicopter. The color marker was a ring divided into
3 segments of 3 different colors. This system was reliable under even lighting

conditions.
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Wang et al. [92] developed perhaps the most feasible color marker system
in the context of tracking human body motion. They developed an upper body
motion capture system based on a specially designed shirt with colored patches
(see Fig. [3.6a)). The system used a geometric model of the body wearing the
shirt. The accuracy of the system depended on how similar the wearer’s body
was to the internal model. Although Wang et al. [92] demonstrated that their
system could deal with changing white balance, in practice, they only had to deal
with changes due to the subject moving around in the image. The background
and, one can argue, a large part of the image, remained constant. In the case of
a mobile robot with onboard cameras, the background is constantly changing as
the robot drives around, so the white balance can change significantly. A major
limitation of this system, with respect to the mobile robot, is of the amount of
effort required in reconfiguring the system. If the color pattern on the shirt in
Wang et al. [92] is changed slightly, then the precomputed 80,000 color textured
body model poses would have to be recomputed.

Given the apparent successes of previous attempts in tracking colored mark-
ers, colored markers were initially selected for the new system. A known issue
with infrared point markers is occlusion resulting from limb rotation: for in-
frared point markers placed on a limb, the markers go out of view when the
limb is rotated away from the camera. To avoid this issue with color tracking,
colored bands were designed instead of individual markers. Fig. [3.6b| and
illustrate this approach. A band worn on the wrist or ankle would be visible
from all directions. Nergui et al. [50] used colored bands in their tracking sys-
tem, most likely for the same reason. To reduce the number of false positives,
and to increase the number of uniquely identifiable markers, dual-color bands

were used. The number of uniquely identifiable markers can be increased as fol-
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lows. If there are n possible colors that can be tracked, then there can only be n
uniquely identifiable single-color bands. But for dual-color bands, n x (n —1)

color combinations or uniquely identifiable bands are possible.

3.2.2 Abandoning Color Marker Vision

As mentioned above, the color marker vision approach was initially selected for
this research. This decision was motivated by the apparent success and relia-
bility of previous works that used color markers (these works were described in
Section [3.2.1)). Unfortunately, preliminary testing with color markers demon-
strated otherwise. The important role of relatively fixed lighting and white
balance in previous works using color markers became apparent. From testing,
it was clear that color marker detection is not very robust to changing lighting
(brightness and color) and background color conditions. Therefore, the color
marker vision approach was abandoned.

Various color spaceq'”| were used but color markers could only be tracked
under relatively fixed lighting conditions. The color spaces used for testing
were RGB, HSV, and CIE Lab. A custom space with 3 channels defined as
R-G, G-B, and B-R was also used. This was inspired by the YCrCb color
space.

A major challenge in tracking colors consistently under changing lighting
conditions is that existing color spaces were developed for colors on planar
surfaces, e.g., print media and electronic displays. They were not designed to
capture the effects of surface curvature and texture. These effects exacerbate

the apparent change in color due to changes in lighting.

10A color space is a coordinate system that defines a color.
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Figure 3.7: Example of planar pattern markers used for mocap. Image source:
Bonnet et al. [15].

3.2.3 Revised Selection: Planar Pattern Marker

In contrast to colored markers, planar pattern markers are very robust to
changes in illumination, background color, and shadows. Another advantage
that they offer is that a single camera can be used to track planar pattern
markers in 3D. This includes not just 3D position, but 3D orientation as well.
As is the case with color markers, planar pattern markers can be uniquely iden-
tified. These features have been discussed in Section B.Il These markers have
been popular in Augmented Reality (AR) applications but have been relatively
unheard of in motion capture. Chen et al. [I9] and Bonnet et al. [I5] are two
examples of use of planar markers for human motion capture (see Fig.|3.5bland
Fig. [3.7). Bonnet et a. [15] did not use AR techniques to track the markers,
however. They used markers only as textures to be tracked in a 2D image and
used kinematics to compute the positions of the markers.

The general working principle to track a planar patterned marker in 3D is
as follows: 1) a planar marker with a unique pattern is detected in a gray-
scale image, and, 2) the marker position and orientation are computed by using

control points on the marker image, knowledge of the geometry of those points,
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and applying principles of projective geometry. A limitation of this approach is
that marker patterns are being detected, and there is a limit to how far patterns
can be from the camera and still be recognized. A marker must cover sufficient
pixels in the image for the pattern to be resolved reliably.

A new motion capture system based on planar pattern markers will be devel-
oped. A number of planar pattern markers have been developed for augmented
reality (AR) applications over the years, e.g. ARToolKit [41], ARTag [27], and
AprilTag [53]. The new Monocular Vision-Based Tracking (MoViT) motion
capture system will be based on a relatively recent planar marker system called
ArUco [34]. ArUco markers have error correction built into their pattern. The
ArUco system defines fewer permutations of marker codes than are mathemati-
cally possible in order to maximize the distinction between the different marker
codes. ArUco marker tracking is available as a contributed module for the Open

Source Computer Vision (OpenCV) library version 3.1.0 [55].

3.3 System Design

In the previous section, a planar pattern marker-based approach was selected
for the new motion capture system called MoViT (Monocular Vision-Based
Tracking). The MoViT system will be based on a planar pattern marker called
ArUco [34]. Unlike conventional infrared point marker systems which require
multiple cameras for tracking, planar pattern markers can be tracked using a
single camera. Hence the name. Based on these design choices, this section
presents the design of the MoViT motion capture system. First, the locations
for the markers on the body are identified. Then a marker bracelet concept and

marker border modification (MoViT marker) is presented. This is followed by
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) ARToolKit [41] b) ARTag [27]
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c) AprilTag [53]
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Figure 3.8: Examples of planar pattern markers. For the new motion capture
system, a relatively recent planar pattern marker system called ArUco has been
selected. Image source for (a) is Fiala [27].
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Figure 3.9: Single marker (top) which is useful for augmented reality applica-
tions, compared to the marker bracelet design (bottom) which is more practical
for motion capture. A single marker (top left) can go out of view when rotated
(top right). But with the MoViT bracelet design (bottom left) there is always
at least one marker visible after any rotation (bottom right). The height of the
bracelet is h and the width of each face is w.

the geometrical design of the marker bracelet. Finally, dynamic design consid-

erations are presented.

3.3.1 Marker Placement on Body

The first step in designing a marker-based motion capture system is to identify
where the markers will be placed on the body. As discussed in Chapter [2 the
wrist and ankle locations can be used to detect crawling motions. Therefore,
the most convenient locations for marker placement are just before the wrist
and ankle joints. Reference markers to transform tracked coordinates to the

infant body frame of reference can be placed on the back and/or hips. This is

illustrated in Fig. [3.10]
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Figure 3.10: Illustration of the locations on which the marker bracelet may be

worn by a crawling infant. A reference MoViT marker is attached at the lower
back.

The coordinates of a target marker in the infant body frame of reference,
i.e., in the frame of reference of the reference marker, are equivalent to the

translation vector below:

REFT‘)M/REF = REFRC'CT;M/REFa (31)

where BEF fM/ rer is the target marker translation vector relative to the ref-
erence marker, defined in the reference marker frame, ¥ R¢ is the rotation
of the camera frame relative to the reference marker frame, and CfM/REF is
the target marker translation vector relative to the reference marker, defined in
the camera frame. Typically, in planar pattern marker tracking, or, M/rEF and
REF R are not directly available. Rather, all translation vectors and rotations
are computed relative to the camera, and in the camera frame of reference.

cva/ rer can be derived as follows:

“Tryrer = Tajo — “Trerjo, (3.2)
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Figure 3.11: Hlustration of how the ArUco marker’s outline can become indis-
tinguishable from a dark object in the background, or from the outline of an
adjacent marker. All four edges are required for detection. To deal with this
issue a white border has been added. This is the MoViT marker (right). Note
that this reduces the size of the marker that is detected by the ArUco library.

where CfM/C is the target marker translation vector relative to the camera,
defined in the camera frame of reference, and CfREF/C is the reference marker
translation vector relative to the camera, defined in the camera frame of refer-

ence. "PF Ry can be derived as follows:

REF R = (°Rrer) ™ = (“Rper)’, (3.3)

where ¢ Rppr is the rotation of the reference marker frame relative to the camera
frame. Its inverse is equivalent to "FF Re. If © Rppp is a rotation matrix, then

the inverse (“ Rppr)~! is equivalent to the transpose (¢ Rrpr)?.

3.3.2 Bracelet to Increase Visibility

The second step of the design is to determine how to place the markers on the
body. A novel marker design in the form of a bracelet is presented here (see
Fig. . As mentioned previously, this is not the first approach to use planar
patterned markers for motion capture of infants. Chen et al. [I9] used planar

patterned markers from the AR system called ARToolKit [41] for capturing
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Figure 3.12: The MoViT marker is an 8 x 8 grid of black and white squares.
The outermost squares are white. The squares inside them form a black border.
The inner 4 x 4 grid of black and white squares encode the marker’s unique
identity. The marker size is s where s = x = y. The size of each small square

is q.

infant kicking motion. They mounted one marker to each ankle (see Fig. [3.5b]).
A single marker is sufficient for the back and hips, but not for the wrists or
ankles. This is because a marker could disappear from view when rotated away
from the camera. Hence the proposed marker bracelet design, with planar
markers all around the periphery (Fig. [3.9). If there is any rotation about
the axis of the bracelet, then at least one marker will always be visible. This
concept is similar to the dual-color marker band approach presented at the end
of Section [3.2.1] (Fig. 3.6). Fig. illustrates an infant model wearing bracelet
markers at the wrists and ankles, with a single reference marker at the lower

back.

3.3.3 Contrasting White Marker Border

Traditionally, planar pattern markers for AR applications, including the ArUco

marker, have been designed with the expectation that markers will be printed
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Figure 3.13: Best and worst case geometry views. The MoViT marker geometry
is defined by an n-sided polygon with an inscribed circle of diameter D.

on a light background which will provide a contrast against the dark marker
borders. Designers of such markers also expect that clusters of markers printed
together will have spacing between them. Detection of marker borders with the
aid of these color-contrasting edges is a prerequisite for planar pattern marker
detection. Since a marker border is defined by four color-contrasting edges, all
four edges must be detected in order to successfully detect a marker border.

The prerequisite of detecting a marker border introduces two challenges
in using planar pattern markers for the motion capture system. First, the
background of the marker may not necessarily be a light color and any marker
borders in front of such a background may not be distinguishable. Secondly,
adjacent markers on the bracelet will have no distinguishable border between
them. The absence of detectable borders in both these cases is illustrated in
Fig. 3.11]

To guarantee the marker border detection on all four sides, the ArUco marker
has been modified to create the MoViT marker. This has been done by intro-
ducing a white border around the original ArUco design (see Fig. and
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Fig. |3.12)). For a fixed area, this reduces the size of the marker detected by
ArUco detection software. But it improves the chances of detection for the mo-
tion capture application. This improvement is quantified by an experiment in
Section M.l

The white border has been defined to be as wide as the black border. This
way, as long as the black border is visible, the white border that distinguishes
it from the surroundings will also be visible. The white border has been incor-

porated in the illustration of the bracelet design in Fig. [3.9]

3.3.4 Bracelet Geometry

Given the bracelet design and the modification of the marker pattern with the
white border, the next step is to determine the bracelet geometry. The markers
making up the bracelet should be large enough to track, and the bracelet should
not be too bulky. This subsection presents the design process based on these
desirables. Bulkiness is defined later in this text.

The geometry of the marker bracelet is defined by an n-sided polygon with
an inscribed circle of a diameter D, where D is the diameter of the body part
on which it is to be worn (left, Fig. |3.13). Each of the n sides represent a
marker face of size s = w (see left, Fig.[3.13] and bottom right, Fig. . There
are three major factors affecting the design. 1) If height = width, h = w (the
faces are square) then size s of each side decreases as n increases (assuming
D is constant). Ideally, s should be as large as possible to achieve maximum
accuracy and minimum motion blurring. 2) The worst-case projection angle
of s decreases as n increases. This means that the ability to track the marker

face at an angle improves as n increases. 3) The bulkiness factor is related to
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the size of the circle that circumscribes the bracelet. Bulkiness of the bracelet
decreases as n increases.

To understand the effects of the first two factors, consider the following.
Ideally, s should be as large as possible to achieve maximum accuracy. In the
best case, the marker is perpendicular to the camera view, and s is maximum
when n is minimum (see center, Fig. [3.13]). This is the first factor mentioned
above. In other cases, the marker is rotated by an angle so that only a projection
$ is visible (see right, Fig. . The larger the rotation angle, the smaller the
projection §. For any given n, § is minimum when the rotation angle is equal to
half the angle subtended by a side (see right, Fig.[3.13)). This angle is the second
factor mentioned above, i.e. the worst-case projection angle or worst-case view.

From Fig. [3.13] the size s of each marker face is given by:

$p = Dtan (7/n), (3.4)

where n > 3. For the worst-case angle relative to the camera (right, Fig. |3.13)),

the projection s of the largest viewed marker is:

$p = Sy cos (m/n) = Dsin (w/n). (3.5)

This can be visualized in Fig. by the plot labeled “s variable.” §, has
been non-dimensionalized by dividing by body part or bracelet diameter D. It
is maximum when n is 3, as long as marker size and bracelet face size is the

same and square i.e.,

Sp = W, = hy, = x, =y, = Dtan (7/n).
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Note that this is a compound effect of decreasing size and decreasing worst-
case projection angle. The effect of changing just the worst-case projection
angle while keeping marker size s fixed can also be observed. This is done by
setting marker size to some constant number of sides n = m. And then the
same fixed size s,, is used for all s,, where 3 < n < m. In this case, the worst

case projected area § is given in terms of fixed size Sfizeq (OF Si,) by:

Sp = Sm cos (m/n) = Dtan (7/m) cos (7/n), (3.6)

where m is a constant and 3 < n < m. This can be visualized in Fig by
all the curves labeled “s fixed.” The “s fixed” curves are illustrated for 4, 6, 8,
and 10 sided bracelets (that is m = 4, 6, 8, and 10). In each case, it can be seen
that the projected size § increases as n increases, opposite of the effect when
the faces are kept square. In this case, marker size s is usually smaller than the

bracelet face width w and the faces are rectangular, i.e.,

where w,, > h,, when n < m, and w,, = h,,.

If the bracelet faces are kept square, then minimizing the number of faces
is beneficial. If the bracelet height is fixed, then maximizing the number of
faces until the faces become squares is beneficial. The tension between these

strategies can be quantified in the bulkiness factor. The bulkiness factor is:

bulkiness = D¢ — Dy, (3.7)

, 1
w, = h, = s, — bulkiness X —,
n
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Figure 3.14: “s variable” curve shows the combined effect of decreasing marker
size and decreasing worst-case projection angle as n increases (higher $/D is
better). “s fixed” curves show the effect of decreasing worst-case projection
angle only (higher §/D is better). The “bulkiness” curve shows the bulkiness
factor as n increases (lower bulkiness/D is better). Note that the intersection
with the bulkiness factor curve does not signify anything, since it can be scaled
to any value.

where D¢ is the diameter of the circle circumscribed around the outside of the
bracelet, and D; is the diameter of the circle inscribed inside the bracelet. D;
is the same as D in Fig. [3.13|

The bulkiness factor is illustrated in Fig.[3.14] It has been non-dimensional-
ized by D so the plot indicates the fraction by which D¢ is larger. For example,
at n=3, D¢ is 100 % larger than D;, and at n=4, D¢ is only about 40 % larger.
In terms of the bulkiness factor, ideally it is desirable to maximize the number
of sides n, as a larger value of n makes the bracelet less bulky. A larger value of
n also has the potential to detect more accurately the centerline of the bracelet

(and hence wrist or foot).
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Practically, it is desirable to maximize h and y and minimize n to maximize
the size of the marker. But it is also desirable to limit the bracelet bulkiness.
The intersection with the bulkiness plot in Fig. does not signify anything,
since the bulkiness factor can be scaled to any value. The largest allowable value
of the bulkiness factor depends on feedback from physical therapists on the basis
of how much each n sided bracelet interferes with an infant’s activities. There
is also some concern about potential sharp corners when n is very small (e.g.,
n=3). Based on discussions with physical therapists, the acceptable bulkiness
factor is bulkiness/D,. < 0.236, i.e., where n > 5. Physically, this means that
the outer diameter of the marker bracelet (D¢) should be at most 23.6 % larger
than the diameter of the body part that it is being worn on (D; or D).

Therefore, to conclude this subsection, the selected bracelet design has five
sides. Each side is a square. This is a tradeoff between the maximum visible
size at the worst-case viewing angle, and the maximum allowable bulkiness that

does not impede an infant’s activities.

3.3.5 Dynamic Considerations

For the purpose of capturing infant motion, it is essential that the speed of
infant motion does not require shutter exposure times beyond the capabilities
of a typical off-the-shelf camera. Typically, camera shutter exposure times can
go as low as about 0.05 ms to 0.1 ms and as high as 500 ms [24]. This is
important when there is relative motion between a marker and the camera, and
does not apply when there is no relative motion between the two.

Camera CCDs are exposed to incoming light for a finite amount of time to

capture an image. The lower limit of this time is dictated by the limits of the
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Figure 3.15: Dynamic considerations. Left, MoViT marker and grid dimensions.
Right, blurring as the marker moves distance yq¢ = ¢ while the shutter is
exposed for a time duration ¢..,. From , required shutter exposure time t.,),
should be within the limitations of the camera electronics. Top right, negligible
blurring. Bottom right, extreme blurring.

camera electronics. The upper limit is dictated by the amount of acceptable
blurring in the image. At one extreme, the exposure time should be long so that
a sufficient number of photons can enter the camera to register a discernible,
well-lit image. The fewer the number of photons, the darker the image. If
there are very few photons, then no contrast will be registered in the image. At
the other extreme, the exposure times should be short so that moving objects
have sharp outlines. When the sharp outlines of the marker patterns become
too blurred, the patterns cannot be reliably detected by the existing marker

detection algorithms in OpenCV.
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The limiting factor is the minimum exposure time allowed by the camera
electronics. The issue of sufficient lighting can be dealt with by shining more
light at the scene. So the shutter exposure time can be decreased as long as
sufficient lighting is added to the scene. The faster an object moves, the shorter
the exposure time needs to be in order to mitigate blurring effects. At some
maximum speed, the minimum shutter exposure time limit is reached.

Assuming a non-zero speed, a markeﬂ of size v = y = s = 8¢ (see left,
Fig. [3.15, and also Fig. m, Fig would lose its contrasting black-white
edges if it travels a distance § = ¢ while the camera shutter is exposed. In other
words, step changes in the color of adjoining pixels would be negligible. These
step changes in color are required by edge detection algorithms in OpenCV
for reliable pattern detection. If the camera shutter exposure time is ¢.., and

marker speed is v,,, then, for a marker in motion:

S

teap <
“P = 8oy,

(3.8)

where v,, > 0,7 > 0, and s = 8¢. v is a factor that indicates how far the marker
has traveled relative to the size of one grid element § = ¢ (left, Fig. [3.15).
~ represents the maximum acceptable blurring effect for the marker pattern
detection algorithm. If v = 0.01 then the marker has traveled 0.015 = 0.01¢
and blurring is negligible (top right, Fig. . If v = 0.50 then the marker
has traveled 0.505 = 0.50q and blurring is moderate (center right, Fig. . If
7 = 0.99 then the marker has traveled 0.99¢ = 0.99¢ and blurring is extreme
(bottom right, Fig. [3.15)).

This blurring effect in terms of v is illustrated in Fig. [3.15 Note that

11The MoViT marker pattern is made up of an 8 x 8 grid of black and white squares.
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holds true only for a marker in motion. It is irrelevant and is not defined for
a static marker, for which there is no motion blur. ~ is limited to a maximum
value of 1 in the current implementation where gradient-based edge detection
algorithms are used to detect marker patterns. For practical purposes, one
reasonable approximation is 0.5 < v < 1, depending on the pattern detection

algorithm used and camera white balance settings.

3.4 Design Summary

A Monocular Vision-Based Tracking (MoViT) system has been developed. It is
a motion capture system for tracking crawling motions of infants and is based
on planar pattern markers. The system consists of planar pattern AR markers
placed on the wrists and ankles to track them in 3D (see Fig. . A single
camera can be used to track markers in 3D. More markers can be added as
desired. The MoViT marker pattern has been derived from the ArUco [34]
marker pattern. The MoViT marker contains a 4 x 4 array of binary squares
(each of size ¢q) that define a unique identification code. The marker then has a
black border of thickness ¢ on all sides. This surrounded by a white border of
thickness ¢q. The entire marker is sized x = y = 8¢ (see Fig. . This makes
up a single face of a five-sided bracelet. Marker bracelets can be worn at the

hands and feet, and a single reference marker can be placed at the back.
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Chapter 4

Experiments

In the Chapter 3] a Monocular Vision-Based Tracking system called MoViT was
developed in the context of infant crawling motions. The system uses planar
pattern markers to track motion. A single camera may be used to track all the
markers. Not all markers may be simultaneously visible to one camera, so more
cameras may be required. The design requirements for MoViT were identified
in Chapter

The next step is to evaluate the MoViT system through physical tests. This
chapter broadly covers 4 different physical tests to evaluate performance. In
Section [4.1] the utility of the border modification presented in Section is
examined. The objective of this test is to justify this modification. In Sec-
tion the error in position tracking is measured. The objective of this test is
to evaluate tracking accuracy for different conditions, e.g., marker size, marker
distance, and camera point of view. In Section the dynamic limit is ex-
amined. The objective of this test is to confirm that the worst-case (longest)
shutter exposure time matches the predicted value. Another objective is to con-

firm that lowering the shutter exposure time helps with marker detection, and
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that these exposure times are above the typical minimum exposure time limits
for cameras. Finally, in Section tracking accuracy is observed for tracking
in the frame of reference of a reference marker. The objective of this test is to

guide future work and the final implementation.

4.1 Contrasting White Marker Border

4.1.1 Objective

The objective of this experiment is to verify that the modification of the marker
by the addition of a contrasting white border is indeed useful. This is done by
attempting to detect the original marker design and the new design in front
of backgrounds of different colors. The details of white border modification to
create the MoViT marker are outlined in Section [3.3.3] The justification for
the addition of the white marker border was that the original ArUco planar
pattern marker with its black border may not always be distinguishable from
different colors in the background, on the clothing, or even adjacent markers
on the bracelet (see Section for bracelet concept). The original design of
the marker, like other planar pattern AR markers, assumes that the marker will
be printed on a contrasting background (usually white printer paper), and that
adjacent markers will be adequately spaced. This ensures that all 4 edges of
the marker are detected. Otherwise, even a single missing edge can render the

marker undetectable in an image.
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(a) Representative camera view

(b) Overview of setup

Figure 4.1: Modified marker border experiment setup illustrating marker place-
ment relative to the camera. MoViT marker on the left and ArUco marker on
the right.
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Figure 4.2: Modified marker experiment. Panoramic views of three different
backgrounds used.

4.1.2 Experimental Setup

The test setup comprised a wooden base with two different markers mounted to
a stand. One was an unmodified ArUco marker (marker on the right, Fig. |4.1al),
and the other was the modified version with the white border (left, Fig. [4.1al).
A USB camera (Logitech, model ¢920) camera was mounted to the same base
at a distance of approximately 500 mm. Fig. 4.1| shows the experimental setup.
The camera was used to capture images of the markers. These images were then
used to detect the ArUco marker and the MoViT marker. OpenCV 3.1.0 and
its companion version of the ArUco library [55] were used for marker detection.
The camera resolution was set at 1920 x 1080 pixels and auto-focus was disabled
using Logitech’s helper software.

Images were continuously captured and processed as the base was rotated
360 degrees. This process was repeated at three different locations. This
changed the background and lighting behind the markers in the camera images.
This way, the detection process was tested against backgrounds of a variety of
color and lighting conditions. There was no relative motion between the markers

and the camera. Fig. shows panoramic views of the three different locations.
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Table 4.1: Camera calibration parameters obtained for the Logitech C920 cam-
era with 1920 x 1080 resolution.

parameter | value (3 sig. figs.)
fo (pixels) 1.38 x 10°
¢, (pixels) 9.53 x 10?
f, (pixels) 1.38 x 103
¢, (pixels) 5.54 x 10°
ky 1.05 x 1071
ko —1.76 x 107!
. 9922 x 102
™ 2.85 % 103

4.1.3 Results

A total of 2800 frames were captured. The detection rate for the ArUco marker
was 26.4 %. For the MoViT marker with the white border, the detection rate
was 100 %. The lower detection rate for the ArUco marker can be attributed to
backgrounds with shadows, and with colors which have a grayscale value close
to black. Even if one of the four marker edges blend into the background, such

that there is no sharp contrast (when converted to grayscale), then the ArUco

marker is undetectable. One example of this blending is Fig.

4.2 Static Accuracy

4.2.1 Objective

The objective of this experiment is to estimate the accuracy in the vicinity of
the expected workspace and potential marker positions and orientations. The
size of a tracked marker can vary. If a body part is large, then a large marker

can be placed on that part. The marker can be located at various distances
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Figure 4.3: Top view of SIPPC-3 robot showing the Y’ shaped structure with
3 ‘legs.” The longest ‘leg’ is about 470 mm long. Any mounted cameras have to
be within that structure. Image source: Ghazi et al. [35].

from the camera. It can also be placed at different angles with reference to the
camera image plane. This angle is known as the planar angle and is illustrated
later in this section (see Fig. 4.5). Finally, a marker can be located at different
angles within the camera’s field of view. The objective of this experiment is to

investigate the tracking error by varying all these conditions.

4.2.2 Experimental Setup

This was a two-part experiment with different conditions, but the same general
test setup, which is described below. The test setup comprised a sliding cart
mounted on top of a track (see Fig. . A camera fixture was mounted at
one end of the track, and a marker fixture was mounted on the sliding cart,

directly in front of the camera fixture (for setting marker distance or radial
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fixture

sliding
cart

motorized
pulley

Figure 4.4: Experimental setup to determine system accuracy.

distance). The camera fixture was used to pan the camera right or left (for
changing marker angle in camera field of view, see Fig. . The marker fixture
was used to turn the marker right or left (for changing marker planar angle, see
Fig. 4.5)).

The following guidelines were used to determine the maximum distance from
the camera to the marker. If viewed from the top, the SIPPC-3 robot has a ‘Y’
shaped structure around the infant. This is illustrated in Fig. [£.3] The length
of the longest leg of the Y’ structure is approximately 470 mm. Any mounted
cameras have to be within than structure. Therefore, the distance between a
mounted camera and a marker of interest on an infant can be up to 470 mm.

For all the tests, the marker or bracelet being tested was moved to within
+1 mm and the angles were set to within 1 degrees of the designated position.

A Logitech USB camera (model ¢920) was used to capture images. These
images were then processed using a laptop to detect the ArUco markers and
compute their 3D position. OpenCV 3.1.0 and its companion version of the
ArUco library [55] was used. Camera calibration parameters were required for
these computations. These were obtained using the OpenCV camera calibration

modules and are listed in Table The camera resolution was set at 1920x 1080
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pixels and auto-focus was disabled using Logitech’s helper software.

4.2.3 Varying Distance and Planar Angle

In the first experiment, the tracking accuracy for single markers in terms of
marker size, planar anglﬂ and distance from the camera was investigated. See
Fig. {.5a] and Fig. for an illustration of the planar angle. The planar angle
was changed using the marker fixture shown in Fig. [£.4]

Three different marker sizes were used. The MoViT marker sizes quoted be-
low include the white border (thus the tracked marker was 8¢ x 8¢ in size). With
the white border included the marker sizes were x = y = 26.7 mm, 53.3 mm,
and 80.0 mm. This is equivalent to ¢ = 3.33 mm, 6.67 mm, and 10.0 mm,
respectively. The camera distance was changed from 200 mm to 1000 mm in
100 mm increments. At each distance, the marker was tracked at planar angles
of 0, 30, and 60 degrees respectively. For each angle, 20 measurements were
taken. After each measurement, the marker was moved away to a different po-
sition and then brought back to the desired position. This was done to mitigate
potential systematic errors in positioning. For each condition (marker size, dis-
tance, planar angle), the mean, lower quartile, and upper quartile for tracked
position error were computed.

The minimal camera focus was estimated to be at a point between 100 mm
and 200 mm. Images closer than that point were blurred and out of focus. The
camera calibration model for computing the pose does not hold true in this
region and this introduces error in the marker pose estimation. Therefore, the
shortest tracking distance used was 200 mm. Images of objects further than

200 mm were in focus.

12The angle between the marker plane and the camera image plane.
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Figure 4.5: Accuracy experiment 1 setup illustrating the marker at different
positions and different planar angles (0 and 60 degrees) with reference to the
camera image plane.

The results are shown in Fig. and Fig. Error bars indicate lower and
upper quartiles. Note that this experiment, and in fact this chapter, is aimed
primarily at investigating 3D position tracking errors. Errors in 3D orienta-
tion tracking are not explicitly presented or analyzed. Marker orientation was
simultaneously computed, however. The orientation tracking results for this

experiment are presented in Appendix [C]

4.2.4 Results: Distance and Planar Angle

For the first experiment for marker accuracy, the results are presented in Fig.
and Fig.[4.7] The plot for the 26.7 mm marker at 60 degrees does not extend all
the way to 1000 mm (Fig. [4.6d, Fig.[4.7d). This is because the size of the marker
image decreased to the point that it was undetectable. The plots of percentage
RMS error versus distance are shown in Fig. [4.6] Absolute RMS error is shown
in Fig. [4.7] The error bars indicate lower and upper quartiles.

Fig. indicates that in general, the tracking error does not seem to be

correlated with distance and remains at or below 4 %. The exception is the
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Figure 4.6: Accuracy experiment 1. Percentage RMS position error at planar
angles 0, 30, and 60 degrees. Error bars indicate lower and upper quartiles.
Marker sizes © = y = 8¢ were 26.7 mm, 53.3 mm, and 80.0 mm. Sample size
n = 20.
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Figure 4.7: Accuracy experiment 1. Absolute RMS position error at planar
angles 0, 30, and 60 degrees. Error bars indicate lower and upper quartiles.
Marker sizes © = y = 8¢ were 26.7 mm, 53.3 mm, and 80.0 mm. Sample size
n = 20.
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increase in error is shown for the smallest marker (26.7 mm) when placed further
than 600 mm. This is most likely an anomaly because, at this point, the marker
is approaching the limits of detection. It appears that the smaller the marker,
the greater the tracking error and hence less accurate the tracked position.

Accuracy does not seem to be significantly affected by planar angle, except
for when the the smallest marker (26.7 mm) is beyond 500 mm, approaching
the limits of detection. The individual absolute position errors can be seen in
Fig. 1.7

Overall, some noise is to be expected in Fig. and Fig. [£.7 due to the
discretization of the marker into pixels and due to the nature of edge detection
algorithms. For detection of sharply contrasting marker edges, automatically
varying thresholds are used. This allows for edge detection under changing
lighting conditions, but the exact pixel location may be slightly different each
time the camera color balance changes, which can happen every frame, even
under constant lighting conditions.

There seems to be an anomalous increase in error at a camera distance of
600 mm for all three marker sizes at a planar angle of 30 degrees (see Fig. 4.6b},
Fig. 4.7b)). The combination of 600 mm distance and 30 degrees planar angle
seems to have a significant error regardless of marker size. An overview of
the raw pixel data indicates that data points with larger position errors had
different gradients for the top and bottom edges of the markers. Most likely,
the perspective projection of a marker edge is more sensitive to variations in
edge detection when the marker is at 600 mm and 30 degrees. Alternatively, the
pose estimation algorithm may be more sensitive to the marker edge gradient

at this particular position and orientation.
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Figure 4.8: Accuracy experiment 2 setup illustrating the marker moving towards
the edge of the camera’s field of view, away from the optical axis, but at a fixed
radial distance from the camera.

4.2.5 Varying Camera View Angle

In the second experiment, the change in tracking accuracy was investigated
under the following conditions: A marker was moved towards the edge of the
camera’s field of view, away from the optical axis, but at a fixed radial distance
from the camera. The setup is illustrated in Fig. [4.8l The camera was turned
from 0 to 30 degrees in 10 degree increments. The angle was changed using the
camera fixture shown in Fig. [4.4] These tests were done at a distance of 500 mm
for marker sizes x = y = 26.7 mm, 53.3 mm, and 80.0 mm (8¢ x 8¢). Each
marker size, angle and distance combination was repeated 20 times. The mean,
upper quartile, and lower quartile for tracked position error were computed. The

results are presented in Fig. [£.9 Error bars indicate lower and upper quartiles
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4.2.6 Results: Camera View Angle

From the results in Fig. 4.9 it can be seen that the further away a marker is
rotated, the greater the tracking error. The best accuracy is achieved at 10 de-
grees rather than the optical axis. This is not a trend but merely an outcome
of noise and discretization. Noise is expected due to errors in pixel discretiza-
tion and changes in automatic color balance. Errors in pixel discretization arise
because the boundary between two colors in a scene may fall at the center of
a pixel. But because a pixel can only represent one color, the boundary in the
image will be shifted by up to half a pixel. Another observation that supports
the claim that the curves in Fig. do not represent a real trend, is that the ab-
solute error for all three markers at 0 degrees is slightly greater than the error at
500 mm in Fig. which is exactly the same test condition (marker 500 mm
along optical axis, marker plane parallel to camera image plane). Moreover,
from Fig[4.9a] the overall change in percentage error is very small, i.e. from 1 %
to 3 %.

Further evidence to support the claim that the apparent trend in Fig. is
not significant is provided in Appendix [Bl Appendix [B] contains supplemental
results. The results are based on this experiment, repeated for two more cam-
eras (Logitech C920, Logitech C615). The results from both cameras show no
discernible trend.

To conclude, there is no correlation between tracking error and marker ori-

entation with reference to the camera optical axis.
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4.3 Dynamic Limitations

4.3.1 Objective

The main objective of this test is to confirm that the worst-case (longest) shutter
exposure time matches the time predicted by . Another objective is to
confirm that lowering the shutter exposure time helps with marker detection,
and that these exposure times are above the typical minimum exposure time
limits for cameras. In Section [3.3.5 the dynamic limitations were discussed.
For a given marker speed, there is an upper limit to the camera shutter exposure
time t.zp. At this upper limit, the marker becomes blurred beyond recognition
by OpenCV (where ArUco pattern detection is based on detecting contrasting
edges). For camera shutter exposure times below this limit, the blurring effect
decreases and the chances of detection increase. The hard limit for the shorter
exposure time is the camera hardware and this exposure time must be greater
than the limit imposed by the hardware. All these effects limit the maximum
speed of a wearable marker that can be detected. Given a marker speed v,,, the

camera shutter exposure time t.,, can determined by (3.8).

4.3.2 Experimental Setup

A marker of size 26.7 mm was moved at 0.5 m/s. The marker was mounted
to a motorized wheel of radius 900 mm. The wheel was rotated such that the
tangential speed of the marker was 0.5 m/s. The motion of the marker in this
case is an approximation of linear motion, with the outer edge of the marker
pattern traveling slightly faster than the center (about 1.5 %).

From , the maximum shutter exposure time is 1 X 26T mm G 67 ms

8%x500 mm/s
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(maximum when v = 1). Images of the moving marker were captured for shutter
exposure times 3.60 ms through 6.60 ms at 1.00 ms intervals. These images were
processed using the ArUco AR module in OpenCV to check if the marker could
be detected by the algorithm [34].

The Logitech C920 webcam, which was used for the other experiments, was
not used for this particular experiment. The LGS configuration utility for the
Logitech C920 webcam does not have firmware support to control shutter expo-
sure time. This is fairly typical of modern webcams. Therefore, shutter exposure
tests were carried out using a Raspberry Pi 3 with the Arducam OV5647 cam-
era at the same resolution as the other experiments (1920 x 1080 pixels). This

setup allows manual control of shutter exposure time.

4.3.3 Results

As expected, the detection rates dropped sharply in the vicinity of t.,, =
6.67 ms. At at t.,, = 5.6 ms, the detection rate was 0 %. By the time
tezp = 3.6 ms, the detection rate was 73 %. Representative images of the
blurred markers are shown in Fig. This agrees with the predicted max-
imum shutter exposure time of 6.67 ms. At this exposure time, the detection
rate should theoretically be zero. For shorter exposure times, the detection rate
should increase. Note that absolute minimum camera shutter exposure times
are typically about 0.05 ms to 0.1 ms [24]. There is some margin for the shutter
exposure time to go below the 3.6 ms used for the experiment.

An interesting observation here was that a shutter exposure time of 1.00 ms
was also attempted to get a benchmark result. All images of the marker were

very sharp, i.e., with no apparent blurring. But at this point, the lighting of the
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Figure 4.10: Experiment to verify predicted maximum camera shutter exposure
time for a marker moving at 0.5 m/s. Left, representative marker image when
it is detectable. Right, representative marker image when it is not detectable.

experiment setup was not enough to light up the image very well. The contrast
was not very desirable. Although the marker was visible to the human eye, it
was not detectable by the ArUco software 100 % of the time. The detection rate
was closer to 75 %. This is not a limitation of the MoViT mocap system. This
is a limitation that can easily be overcome by using better lighting to light up
the scene, or by using a more sophisticated detection algorithm. Better lighting

may even improve results for the longer shutter exposure times.
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reference marker

tracked marker -

Figure 4.11: Expected location of reference and target markers. Kinematic
skeleton of an infant in the prone position. On a 9-11 month old infant, the
target marker would be at (105.5, 274, -252). Based on sizing information
derived in Table

4.4 Accuracy with Reference Marker

4.4.1 Objective

The objective of this reference experiment is to gather preliminary data on
tracking performance in more realistic conditions. These data will also help
guide the implementation and direction of future work. Practically, a marker
will be tracked in the reference frame of a reference marker placed on the lower
back of the infant. This means that the total tracking error comprises position
errors from two markers as well as any orientation (angular) errors from the
reference marker. Also, there is the question of whether the relative orientation
of the two markers affects the error. This will help with the placement of the
reference marker for the final implementation. Finally, there is the question of
performance of the tracking process when the camera is placed at different view

points.
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(¢c) perpendicular planes

Figure 4.12: Setup for reference marker experiment. A target marker was con-
tinuously tracked in the frame of a reference marker as the camera was moved in
a sweeping pattern from the right to the front and from marker level upwards.
(a) Approximate camera sweep pattern. (b) Marker planes parallel. (c¢) Marker
planes perpendicular.
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4.4.2 Experimental Setup

A reference marker (size 80 mm) and a target marker (size 26.7 mm) were placed
along a 600 mm graduated level. The target was placed at coordinates (0, 387,
0) mm (see reference frame in Fig. [4.11). This simulates the distance between
a reference marker placed on the lower back and a target marker on the wrist.
On a 9-11 month old infant, the target marker would be located at (105.5, 274,
-252) mm (see Fig. 4.11)). The Euclidean distance between the reference and
target marker placed this way is 386.9 mm. These data are based on infant
sizing information derived previously in Table [2.1]

In one test, both markers were in placed parallel to each other, i.e., on the
same plane (Fig. 4.12b). This simulates a reference marker placed vertically

on an infant’s back while a target marker is on the wrist. In a second test,

both markers were in perpendicular planes (see Fig. [4.12a) Fig. 4.12¢)). This

simulates a reference marker flat on an infant’s back while a target marker is
on the wrist. Target marker position was continuously tracked in the reference
marker frame as the camera was swept around while keeping both markers in
view. The sweep pattern is illustrated in Fig. [4.12a

For the starting position for the parallel markers, both markers faced the
camera (Fig. |4.12b)). For the starting position for the markers on perpendicular
planes, the target marker faced the camera while the reference marker faced
upwards (Fig. , Fig. . For the camera sweep pattern, the radial
distance of the camera and target marker was kept constant at approximately
400 mm. The sweeping pattern was from the right side of the system to the
front of the system, a rotation of about 60 degrees. Subsequent sweeps were

made such that the camera was moved higher up and tilted down. The upward

90



sweep also spanned about 60 degrees. This simulates the camera rotating from
the side of the baby towards the front, and moving from marker level up to a

level higher than the baby.

4.4.3 Results

Histograms for percentage RMS position error are shown in Fig|4.13] This is a
percentage of the Euclidean distance between the reference and target markers,
i.e., 386.9 mm. Fig. shows the same results in terms of RMS position error
in mm. For both configurations, the mean RMS error is comparable (5.15 %
and 6.18 %, or 19.9 mm and 23.9 mm). This provides an insight into the
typical error based on the combined position error from the two markers, and
angular error from the reference marker. Fig[d.13bland Fig. show that the
distribution for the perpendicular plane setup is skewed, indicating a tendency
to have large tracking errors some of the time. The 95th percentile for the
perpendicular setup is 16.1 % (62.2 mm), while for the parallel plane setup, it
is 8.66 % (33.5 mm) as a percentage of the distance between the two markers.
This indicates that for some tracking positions, the perpendicular plane setup
can have significantly poor performance.

The most likely cause for the skewness in the perpendicular plane setup
results and Fig. is that there is a specific row of camera positions
at which the tracking error is significantly larger (see Fig. for the rows
of positions). If the individual error from each marker is proportional to the
planar angle between the marker and the camera image plane, then this would
be the row where the camera plane is oriented at 45 degrees with each marker.

An alternative explanation is that these larger errors occur at a specific column
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Figure 4.13: Results for reference marker experiment (percentage). (a) Planes
of markers parallel. Mean 5.15 %, 95th percentile 8.66 %. (b) Planes of markers
perpendicular. Mean 6.18 %, 95th percentile 16.1 %.
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Figure 4.14: Results for reference marker experiment (absolute). (a) Planes
of markers parallel. Mean 19.9 mm, 95th percentile 33.5 mm. (b) Planes of
markers perpendicular. Mean 23.9 mm, 95th percentile 62.2 mm.
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of positions in Fig. [£.12a] perhaps one where the camera is equidistant from
the two markers. Both the above explanations assume that both markers affect
the error equally. It is also possible that the larger errors depend on the planar
angle or position of the target marker alone.

Overall, this experiment has provided a useful insight into the expected
tracking error. Overall, the tracking error is higher, which is expected. Tracking
error can become significantly higher for the perpendicular configuration, i.e.,
when a reference marker is placed flat on the back. In terms of implementation,
this means that the current design of placing the reference marker flat on the
back could be problematic. Further experiments are required to identify whether
the perpendicular marker placement is problematic for all camera positions or
or only a subset of those positions. Other reference marker placement designs

should also be explored.

4.5 Conclusion

From Section [4.1] it is clear that the contrasting white marker border for the
MoViT marker is an improvement that allows seemingly 100 % detection rates
in the presence of other background colors and objects. The results from Sec-
tion show that for the expected marker distance from the camera (approx-
imately up to 500 mm), the 3D position tracking error is less than 4 % in the
worst-case. Based on results from Section the maximum predicted camera
shutter exposure time for tracking a marker moving at 500 mm/s is consistent
with the theoretically predicted time of 6.67 ms. As predicted, detection rate
increases from zero as the shutter exposure time is reduced (73 % at 3.6 ms). All

these are well within the specifications of typical cameras. Finally, in Section[4.4]
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a target marker was tracked by using a reference marker. The combined track-
ing error is approximately 5 % (or 19.9 mm). This is based on a marker-marker
distance of 387 mm, and marker-camera distance of approximately 400 mm.
The objective of the experiments in this chapter is to ultimately compare the
performance of the MoViT mocap system with the performance requirements
determined in Chapter[2] According to these requirements, the smallest possible
crawling motion is expected to have a displacement of 74.6 mm. The combined
error of 19.9 mm with a reference marker is sufficient to detect this motion. Ac-
cording to the performance requirements, the fastest possible movement of the
marker is expected to be around 304 mm/ ﬁ Tracking at this speed is within
the limitations of typical cameras, though extra lighting might be required. This

was demonstrated by detecting a marker moving at 500 mm/s.

13This is a 95th percentile value, so the top 5 % of peak speed values may be much higher,
and the marker may not necessarily be tracked at all of those top 5 % speeds.
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Chapter 5

A Model to Predict Performance

of the MoViT System

Chapter 4] presented some preliminary experiments to evaluate the performance
of the MoViT system developed in Chapter [3] In this context, the performance
of the system is defined as the tracking accuracy and camera shutter exposure
limits. This chapter presents a model to predict the performance without having
to physically test the system.

The need for a performance prediction model for the MoViT system is out-
lined in Section [5.1} This is followed by a survey of works that have evaluated
the 3D tracking performance of planar pattern AR markers in Section[5.2] The
MoViT marker used in the MoViT system is one such planar pattern AR marker
(based on the ArUco marker system). Section develops the performance
model for the MoViT system. In Section [5.4] three use cases are presented to
highlight the capabilities of the model. In Section [5.5] the error predicted by
one of the use cases is compared with the error measured from the physical

testing.
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5.1 The Need for a Model

The tracking performance depends on several factors, e.g., the size and position
of the planar pattern markers and the properties of the camera. Therefore,
the results presented in Chapter {4 apply to the specific test conditions and
the type of camera used. Those results are not necessarily informative if there
is a requirement to evaluate the performance of a different configuration, for
example with different marker sizes or a camera with a different resolution. It
is not feasible to experimentally determine the performance of every variation
of the system.

Consider the following example to explore the feasibility of physical testing
of the system. For the first experiment in Section [4.2] there were 3 different
marker sizes. For each marker size, there were 3 different planar angles. For
each marker size at a given planar angle, there were 8 different positions. Each
position was set up 20 times. This combination gives 3 x 3 x 8 x 20
or 1440 different size/angle/position setups. If setting up and logging each
size/angle /position instance took 20-30 seconds, then the total time for this
experiment is 8-12 hours. If for some reason, 3 more marker sizes were to be
tested, then that is another 8-12 hours of testing. That is a lot of testing to
obtain an estimate of the error.

An even more challenging testing scenario is related to testing for certain
motions of an infant. If the system is tested with a live infant, then some
sort of benchmark system will be required. Typically, infared point marker
vision systems are very accurate. If an infrared point marker system is used
for benchmarking, then a considerable amount of time and effort is required

for setting it up. An infant’s motion may not be exactly as desired and the
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experiment may have to be repeated several times over. Crawling infants cannot
be asked to make specific types of motions. They will move as and when they
feel like it.

Thus, it is more practical to have a model. Such a model could be used
to predict the performance of this planar pattern tracking system based on the
different variables involved. The motivation is that this should be useful in
evaluating and comparing the performance of variations of the MoViT system
developed in Chapter [3 More importantly, it could save a significant amount

of time in development and evaluation.

5.2 Survey of Evaluations of Planar Pattern

Marker Tracking

The following is an overview of work done in evaluating planar pattern marker
tracking. The intention is to discover potential models that may have been
developed and could be applicable to the MoViT system.

Much work has been done to evaluate planar pattern AR marker systems.
Mostly, the emphasis is on performance aspects related to marker detection,
e.g., in work done by Zhang et al. [07], Fiala et al. [28], and Agnus et al. [9].
Such aspects include positive or negative detection rate, pixel error in detected
features, and processing time taken for detection. Cesar et al. [25] evaluated
AR marker limitations underwater, such as smallest detectable marker size,
largest possible distance, and largest possible planar angle. La Delfa et al. [23]
also evaluated AR marker detection limitations for different sizes and camera

distances.
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Others have investigated accuracy in planar pattern marker tracking, but
much in the manner of Chapter [4| they have focused only on evaluating specific
setups. The results published by La Delfa et al. [23] were applicable only to
specific cameras. In fact, La Delfa et al. [23] used 3 different cameras and
resolutions for evaluating 3 different types of AR markers, so comparison is
difficult. Loépez-Céron et al. [44] have done an excellent analysis of position
and angle error for an AR marker. They generated a simulation in the Gazebo
simulator and validated it experimentally. Unfortunately, these results hold true
only for a specific marker size and a specific camera. Olson et al. [53] used a
ray tracer to generate simulated images and then used those images to predict
tracking accuracy of the position at difference distances and of the angle at
different angles. But their model and results applied to a specific camera and
marker size. Furthermore, their camera model, a 400 x 400 pixel pinhole camera
model, was not representative of a real-world camera.

From the above review of previous work in this area, it follows that the
work done in evaluating planar pattern marker tracking has been been either
limited to detection, or for a very specific set of parameters. Where some aspect
of modeling has been involved, it has been limited to fixed design parameters.
Therefore, there do not seem to be any models directly applicable to the MoViT

system.

5.3 Development of Model

This section describes the development and features of the MoViT model. It is
not limited to the MoViT system, but it does incorporate some features that

go beyond simply tracking a planar pattern marker in 3D. The model estimates
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the tracking accuracy and shutter exposure time limit.

Major factors that affect tracking accuracy are projective geometry, camera
lens distortion, and pixel noise in the marker image. The shutter exposure
time limit is dictated by the blurring of the image of the marker while it is in
motion relative to the camera. The longer the exposure time, the greater the
blurring of the image. For a given marker speed, there is an upper limit to the
exposure time. This limiting shutter exposure time interval is one where the
marker pattern has been blurred beyond recognition (see Fig. for marker
pattern). At this point, a marker detection algorithm will be unable to detect
the defining edges of a marker pattern in the camera image (see right, Fig.|4.10)).
More details are provided in Section [5.3.3]

This model can be used for: 1) a marker in a predefined workspace; and
2) for a marker following a limb trajectory in space. The required parameters
include camera intrinsic parameters, distortion parameters, marker size, and a
set of marker poses in the workspace. In the case of the limb trajectory option,
joint angle trajectories and the placement of the marker on the surface of the
limb are required. In this case, the marker workspace need not be explicitly
defined because it is computed using the limb kinematics. An outline of how

the model works is as follows:

1. Compute marker pose over a trajectory or space
2. Compute projected camera image

3. Estimate the marker pose from the image

4. Compute the pose error

5. Compute camera shutter exposure limit
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After computing the projected camera image (pixel coordinates of the four
marker corners), the camera parameters are used to solve the perspective n-point
(PNP) problem to estimate the marker pose in 3D. The model uses the Open
Source Computer Vision Library (OpenCV [54]) to solve the PNP problem.
The PNP problem is a classic computer vision problem and there are several
approaches to solving it. The approach used for this model is the default ap-
proach implemented in OpenCV called “solve PNP iterative” [56]. According
to OpenCV documentation, this approach finds the pose that minimizes the
reprojection error in the pixels. The reprojection error in pixels is defined as
the sum of squared distances between the pixel coordinates of the marker and
the pixel coordinates projected using the estimated pose. The iteration method
used is based on Levenberg-Marquardt optimization [43].

There are 3 main components to the model: 1) the marker model, 2) the
kinematic model, and 3) the camera model. The marker model defines the
geometry of the marker in terms of 4 corners. The kinematic model transforms
the geometry of the marker as it moves with a moving limb. The camera
which projects the 3D coordinates of the marker onto the 2D camera image
plane. Details of these three component models are provided in the following
subsections. Limb trajectories are computed at 100 Hz. Based on some infant
crawling data from Righetti et al. [72], this is sufficient to model the kinematics.
For comparison, Southerland’s inertial suit system captures motion data at

50 Hz.
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Figure 5.1: The limb kinematics model along with the marker model in the
neutral pose. A head and torso are shown in the background for illustration.
The convention is the same for either limb (arm or leg).

5.3.1 Marker Model

The marker model transforms marker coordinates from the marker body frame
to the end effector frame. Physically, this is the equivalent to placing the marker
on a bracelet around the wrist or ankle. This involves a translation (73) and a
rotation (f5) about the limb axis. Marker size needs to be specified. See Fig. 5.1
for an illustration. The transforms are listed in Table [5.11

It must be emphasized that this model is not limited to the 8 x 8 grid
MoVoiT marker (Fig. . Any square-shaped marker may be represented,
e.g., ARToolKit [41], AprilTag [53], and ARTag [27]. A rectangular-shaped
marker may be used with minor modification. The MoViT system requires a

border but the marker code/pattern and recognition algorithm can vary.
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Table 5.1: Transforms for the kinematic model, listed in the order they are
applied in the kinematic chain (arm or leg).

transform description

rotation R; 61, about x, flexion/extension

rotation Ry 0,5, about y, abduction/adduction

rotation R3 | 03, about z, lateral/medial rotation
translation T} along upper arm or thigh

rotation Ry 04, about x, flexion-extension
translation 75 along forearm or lower leg

rotation Rj 05, about z, marker placement
translation 73 | along x and z, marker placement

5.3.2 Kinematic Model

The kinematic model transforms the marker coordinates from the end effector
frame to the root frame of the limb. Physically, it represents marker pose as
a result of the limb joint angles. The limb is approximated by a two-link,
4 degrees-of-freedom (DOF) kinematic chain. The first joint is a 3 DOF ball
joint and the second joint is a 1 DOF hinge joint. The ball joint is represented
by a series of three 1 DOF hinge joints. Fig. shows the neutral pose of the
kinematics model in the context of a crawling body. The transforms are listed
in order in Table 5.I] The neutral or reference pose of a limb is defined with
both kinematic links (limb segments) pointing downwards (see Fig. [5.1)). The
x-axis is to the right, the y-axis is to the front, and z-axis is upwards. Rotations
about the z, y, and z axes represent flexion/extension, abduction/adduction,
and lateral /medial rotation respectively.

For a point in the end-effector frame PPNP = [z y 2]* the transform from

the end effector frame to the root frame is given by:
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Table 5.2: Infant sizes used in the kinematic model. These data are a subset of
the data in Table|2.1| which were derived from anthropometric data from Snyder
et al. [79].

3-5 6-8 9-11
months | months | months

(mm) | (mm) | (mm)
upper arm 123 131 145
forearm 92 100 107
thigh 101 111 124
lower leg 103 117 134
wrist diameter 32 33 34
ankle diameter 37 39 41

PROOT — R\ RyRy(T + Ry(Ty + PENP)) (5.1)

where R; represents a rotation and T} represents a translation. The definitions
of the transforms are listed in Table 5.1l If the transforms in the marker model
are included, then the full transform from the marker frame to the root frame

becomes:

PROOT — R\ RyRy(Ty + Ry(Ty + R5(Ty + PMERYY) (5.2)

Since the primary motivation for the MoViT system is capturing infant
motion, infant body sizing information has been predefined in the model (see
Table . These data are a subset of infant sizing data in Table Which were
derived from anthropometric data in Snyder et al. [79]. This simplifies usage
since only joint angle data and the age group is required to simulate motion.
This is in no way a limitation of the model. Sizes for other groups of individuals

can also be used.
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Figure 5.2: Illustration of the pinhole camera model.

If the marker is to be used in the context of a predefined workspace rather
than on a moving limb, then the limb and marker model transforms, defined in

Table 5.1} are replaced by a 3D rotation and translation:

PROOT — R(T + PMER) (5.3)

5.3.3 Camera Model

The camera model projects a real world point W = [z y 2]? (in mm) to the
camera image plane C' = [u v]” (in pixels) (see Fig. [5.2). It is based on the

pinhole camera model modified for lens distortion effects. Given:

¥=z/z, ¥y =y/z (5.4)
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(b) corrected for radial distortion

Figure 5.3: Example of positive radial distortion. Based on the image of a
regular checkerboard pattern. By using distortion models, an ideal image can
be distorted to get a camera image, or a camera image can be undistorted
to obtain the ideal image. (a) Image with distortion effects. (b) Image after
applying correction using a radial distortion model.
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the radial and tangential distortions can be approximated by:

2" =2 (14 kyr? + kor®) 4+ 2p12"y) + po(r? 4 227%) (5.5)

Y =y (14 kyr? + ko) + pr(r® 4 2y%) + 2poa’y/ (5.6)

where 2 = 22 + y?. k; and ky are radial distortion coefficients, and p; and
po are tangential distortion coefficients. More details on lens distortion can be
found in the OpenCV documentation for camera calibration [56]. Finally, the

pixel coordinates C' = [u v]T can be computed by:

u= frx" +cy + 0, (5.7)

v=fyy" +c,+5y (5.8)

where f, and f, are the focal lengths, ¢, and ¢, are the principal points, and 9,
and d, are Gaussian noise. 9, and ¢, account for the fact that the edge detection
algorithms detect the marker outline slightly differently in each frame. Some
of the factors that can influence this are difference in lighting, automatic white
balance, and automatic color balance.

The second part of the camera model computes the limiting shutter exposure
time. There are two assumptions: 1) rolling shutter effects are negligible, and,
2) the marker motion is largely parallel to the camera image plane. The reasons
for assuming parallel motion are explained in Section [5.3.4]

As discussed in Section the shutter exposure time is given by .

The shutter exposure time is limited by the speed of the marker (relative to
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the camera) and the physical size of a single grid element g on the grid pattern
(see Fig. [3.12)). The marker grid pattern will be blurred beyond recognition if
it travels a distance ¢, relative to the camera, while the shutter is open. For the
marker in Fig.|3.12) ¢ = x/8 = y/8 because it is an 8 x 8 grid. But a different

marker may use a different grid size.

5.3.4 Shutter Exposure Time: Assumptions

The following is an explanation of why the marker motion is assumed to be
largely parallel to the camera image plane. For comparable blurring effects,
motion normal to the camera image plane would have to be much faster than
motion parallel to the camera image plane. In other words, blurring effects due
to motion parallel to the camera image plane are observed first, at much lower
speeds.

Consider the case of motion normal to the camera image plane, with the
direction of motion being towards the camera. For a marker pattern to be
completely blurred when moving normal to the camera image plane, a grid
element ¢ x ¢ would have to increase to size 2g x 2¢q (grid element shown in
Fig. 13.12). That is to say, the marker would move so fast that a single grid
element would appear to grow to the size of 4 grid elements. The apparent
marker size would have to be doubled during the shutter exposure time ;.
For the apparent size to be doubled, the distance between the marker and the
camera would have to be halved. This means that the marker would have to
travel a distance that is equivalent to half the distance between the marker
and the camera. For the camera used in the last chapter, the shortest usable

target distance from the camera was about 200 mm. In this case, the marker
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would have to move a distance of about 100 mm during the shutter exposure
time ts. This is analogous to the minimum expected normal speed that could
cause excessive blurring. Note that this distance or speed would be larger if the
marker is located further away. This distance or speed will also be larger if the
marker is moving away from the camera, since in that case the distance would
have to be doubled.

Now consider the case of motion parallel to the camera image plane. A
marker would have to move a distance ¢ to become completely blurred. The
largest marker size used in the last chapter was 80 x 80 mm (equivalent to
8¢ x 8¢). This marker would have to move 10 mm parallel to the camera
image plane during the shutter exposure time ¢, in order to become completely
blurred. This is analogous to the maximum expected planar speed that could
cause excessive blurring. For smaller markers this planar speed (parallel to the
camera image plane) would be lower.

Blurring effects due to rotation of a marker are also less problematic. This is
because in order to cause a significant amount of blurring, rotation speed must
be tens of radians per second. This is much higher than typical movements
expected of infants (less than 5 rad/s, according to data from Smith et al. [7§]).

This proves that the blurring effects from motion parallel to the camera
image plane are dominant. From both the above scenarios, the speeds are as

follows. In the case of blurring effects due to normal motion, the speed at

100

. mm/s. In the case of blurring effects due to

which this happens is at least
planar motion, the speed at which this happens is at most g mm/s. In other
words, blurring effects due to planar motion (parallel to the camera image plane)

become apparent at much lower speeds, as compared to blurring effects due to

normal motion (normal to the camera image plane). Therefore, the limiting
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Figure 5.4: Using our model to predict tracking accuracy in a specific workspace.
Position tracking accuracy was estimated for different marker positions on the
horizontal plane. Camera at (0,0,0).

factor is the planar speed, and blurring effects can be computed by assuming

that the motion is largely parallel to the camera image plane.

5.4 Capabilities

The previous section presented a model to predict the performance of the MoViT
system. This section illustrates how such a model can be used to predict per-
formance. Three use cases are covered. 1) performance in a specific workspace,
2) comparing marker sizes, 3) performance as worn on a limb.

All use cases in this section are based on the camera calibration parameters of
a Logitech C920 webcam at a resolution of 1920 x 1080. The camera parameters
were obtained using the camera calibration utility in OpenCV and are quoted
in Table .1} Note that other resolutions and even other cameras may be used,
so long as the camera calibration parameters are computed and provided to the

model.
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Figure 5.5: Using the model to compare different marker sizes. Tracking accu-
racy was predicted using markers sized 26.7 x 26.7, 53.3 x 53.3, and 80 x 80 mm.
Each point represents mean (n=1000). Error bars indicate one standard devia-
tion.

5.4.1 Tracking Accuracy in a Specific Workspace

This is a use case where position tracking accuracy is to be predicted for a
specific workspace, given a marker size and a camera. In this experiment, a
marker of size + = y = s = 26.7 mm (¢ = 3.33 mm) was placed at different
locations along a horizontal plane at the camera level, at 100 mm intervals.
The plane of the marker was held parallel to the camera image plane. Fig.

illustrates the RMS position tracking error at each location.

5.4.2 Comparing Markers of Different Sizes

This is a scenario where performance is to be compared for different marker sizes
at different distances. The results are illustrated in Fig. which shows the
RMS position tracking error. In this experiment, markers sizes (r = y = s) used

were 26.7 mm, 53.3 mm, and 80 mm (¢ = 3.33 mm, 6.67 mm, and 10.0 mm).
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Figure 5.6: Joint angle data used from Righetti et al. [72] to simulate a marker
placed on the wrist of a crawling infant.

Markers were placed at different locations along the optical axis (same as the Z
axis in Fig. from 200 mm to 1000 mm at 100 mm intervals. This scenario

is identical to the experiment illustrated in Fig. with zero planar angle.

5.4.3 Marker Performance for a Specified Limb Motion

This is potentially the most helpful use case in the context of motion capture.
This is used to predict the performance for a marker worn on a moving limb. A
moving arm was simulated using the 2-link kinematic arm model. Joint angle
data for the right arm of a crawling infant from Righetti et al. [72] were used
(age group: 9-11 months). The joint angle data are illustrated in Fig. . Since
these data were from an infant aged 9-11 months, size data for the 9-11 month
age group were used from Table . Note that only the two flexion/extension
angles (0, and 6,) are available, so arm motion is in a single plane. The marker
size used was * =y = s = 26.7 mm (¢ = 3.33 mm).

The arm was rotated about the Y-axis so that the plane of motion of the
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Figure 5.7: Simulated trajectory of the center of a marker placed on the wrist
of a crawling infant. Camera at (0,0,0) mm.

arm was at 45 degrees relative to the camera image plane. Fig. illustrates
the motion of the center of the marker relative to the camera. To estimate
instantaneous joint speeds, timing data were used from Righetti et al. [72].
The tracking accuracy of the marker position through the crawling motion is
illustrated in Fig. |5.8|

Another aspect of the model is predicting the limit of the camera shutter
exposure time. Fig. [5.10] shows the limiting shutter exposure time through the
duration of the crawling motion. This is based on the instantaneous marker
speed (see Fig.|5.9).

Note that the angles and positions at the start and end of the crawl cycle
are approximately the same (Fig. [5.6] Fig.[5.7). But the speed at the start and
end of the crawl cycle are not as close to each other (Fig.[5.9). One reason for
this is that although the measured crawling motion was periodic in terms of
angle and position, it was not as consistently periodic in time. The initial limb

speed at the start of one cycle was typically different from the initial limb speed
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Figure 5.8: Using the MoViT model to predict tracking accuracy of a marker
placed on a crawling infant’s wrist. Points indicate mean error (n=1000). Error
bars indicate 68.26 percentile. Based on sizing data from Table|5.2land crawling
data of the right arm of an infant from Righetti et al. [72]. Simulated at 100 Hz.

at the start of the very next cycle. This is illustrated for typical trajectories in

the source for these data, i.e. Righetti et al. [72].

5.5 Comparison with Experimental Results

In the previous section, a model to predict the performance of the MoViT
system along with some use cases was presented. In this section, a comparison
of the model with experimental results is presented. The model predicts tracked
position error as well as maximum shutter exposure time. Tracked position error

is compared in this section.

5.5.1 Accuracy for Different Marker Sizes

The use case of comparing markers of 3 different sizes (Section [5.4.2)) was exam-

ined. Results from the simulated setup of Section were compared with the
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Figure 5.9: Using the MoViT model to estimate the speed of a marker placed
on a crawling infant’s wrist. Start and end speeds are not the same because
infant speed typically varies from one cycle to the next.

results from the physical setup in Section|4.2.3] This was the setup illustrated in
Fig. where 3 different marker sizes were placed at different distances along
the camera optical axis. In both cases, the same camera, i.e., the Logitech C920
(1920 x 1080 pixels) was used. The marker distance in the simulated setup was
from 100 mm to 2000 mm. The marker distance in the physical setup was from
200 mm to 1000 mm. Only the common data points, i.e., from 200 mm through
1000 mm were used. Similarly, the simulated setup used only a planar angle
of zero as compared to the planar angle values of 0, 30, and 60 degrees in the
physical setup. Only the data points with planar angle 0 degree were thus used
for comparison. The predicted RMS error (model) and the actual RMS error
(physical setup) in tracked position error (%) were compared.

Fig. shows a scatter plot of experimentally determined error versus
model predicted error, for all the different marker sizes and poses involved.
The correlation between the two can be observed from a linear fit to the data.

From the linear fit, the relation between the actual and predicted error can be
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Figure 5.10: Using the MoViT model to estimate the maximum shutter exposure
time required to capture a marker placed on a crawling infant’s wrist at each
instant.

estimated by:

erroractual = 1.50(erTorpredicted) + 0.0143 (5.9)

The coefficient of determination (R?) of the linear fit is 0.644. According to
the linear fit, the RMS error that was measured experimentally is 1.5 times the
error predicted by the model. The model predicted error is the same order of
magnitude as the experimentally measured error. This means that a 3 % worst-
case error would be predicted by the model as being 2 %. In other words, an
error 15 mm would be predicted by the model as being 10 mm. For very small
errors, the model seems to predict higher than experimental errors (pessimistic).
For larger errors (greater than about 0.75 %) the model seems to predict lower
than experimental errors (optimistic).

In general, the model predicted error is 33 % less than the actual error,

i.e., the model underestimates the error. Therefore, to make the model more
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Figure 5.11: Comparison of mean error predicted by the model with the mean
error measured from experiments.
realistic, either some elements of the model need to be improved, or additional
elements need to be incorporated. One element that can be added is the behav-
ior of the edge detection algorithms under different lighting and color balance
conditions. These algorithms detect the edges and corners of a marker in an

image. A bi-modal correction may also be used to improve the model.

5.6 Conclusion

This chapter presents a performance model for the MoViT system which uses
square shaped AR markers for tracking. The model can be used for a marker
worn on a limb, or for an explicitly defined set of marker poses. Marker size,
camera parameters, and limb size can be defined as desired. Three use cases
are highlighted to illustrate the capabilities of the model. Finally, some of
the model error predictions are compared to error obtained from a physical
test setup. The comparison of the two indicates that the error predicted by the

model is the same order of magnitude as the error measured from physical tests.
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While this is promising, there is room for improvement to make the model more
realistic. Improvements can be made by refining existing elements of the model,
or by including other elements not currently considered, or by combining all the

unkown errors into a bi-modal or tri-modal correction.
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Chapter 6

Conclusions and Future Work

6.1 Summary

The work in this dissertation is a subset of a larger effort to develop a new
method of intervention for crawling-age infants with motor disorders such as
Cerebral Palsy (CP). The fundamental idea of the intervention is that the infant
is placed in the prone position on a robot (called SIPPC-3). The SIPPC-3 robot
tracks the movements made by the infant. When crawling-like movements are
detected, the robot physically moves the infant’s body in that direction. This
intervention can help with cognitive, as well as muscle development.

In this context, the latest generation of prototypes for the above interven-
tion uses MEMS-based IMUs for capturing crawling motions. This is a com-
mon approach in motion capture. However, a limitation of this system is that
MEMS IMUs use magnetometers. Since they are sensitive enough to measure
the earth’s relatively weak magnetic field, they are also sensitive to distortions
in this field in the presence of large ferrous metals, or wires carrying mains

electricity. This electromagnetic interference introduces significant errors in the
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estimated body pose. This is compounded by the fact that sources of such in-
terference are often hidden from view, and it is challenging to predict the onset
of such interference in realtime.

In this context, there has been a need to develop a system that is not sub-
ject to the limitations of electromagnetic interference. This context drove the
two research questions for this dissertation: 1) What are the requirements for
capturing crawling motions of infants? 2) CanE] a mocap system be developed
that meets these requirements and is not subject to electromagnetic interference
(EMI)?

To that end, the requirements for capturing infant crawling motion were
compiled (ages 4-11 months). There is a severe lack of quantitative data on
infant crawling motions. Only one source of literature with joint angle trajec-
tories of 9-11 month old infants was located. Two other sources of data used to
compile crawling motions were past experiments with the SIPPC-3 robot, and
feedback from an expert on crawling development. Much of the data were avail-
able in the form of joint angle trajectories. To convert these into 3D Cartesian
coordinate trajectories, forward kinematics using an infant kinematic skeleton
were performed. The kinematic skeleton was based on infant sizing informa-
tion. Much of the sizing information was not available directly and had to be
derived. The end result of this effort was a data set of wrist and ankle motions
was compiled for infants learning how to crawl. The smallest crawling motion
that infants make is when they move a hand right or left along the floor to
turn the body sideways. Considering the wrist, the start and end points of this
motion are 74.6 mm apart. Motion speed is at least 42.7 mm/s. At 304 mm/s

(95th percentile), infants move their wrists faster than their ankles. That is to

14This is a question of what is possible.
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say, when considering 95th percentile speeds, the fastest motion that infants
make is with the wrist, moving at 304 mm/s.

Once the requirements were compiled, the MoViT system featuring a vision-
based marker tracking was developed. Initially, the approach was based on
tracking colored markers. But after experiencing limitations of this approach,
a planar pattern marker approach was developed. While typical marker-based
approaches require multiple cameras, a planar pattern marker can be tracked
in 3D by using a single camera.

The design of the MoViT system features planar marker bracelets worn
on the wrists and ankles, and at least one reference marker worn at the back
(Fig. 13.10). Tests were performed to evaluate the system. These included
tracking a single marker at different positions and orientations and tracking one
marker with reference to a reference marker. From the test with single markers,
the worst-case error within 500 mm of the marker was measured to be less than
4 % (15 mm). For the test with the reference marker, the error turned out to
be approximately 5 % (19.9 mm).

A model was developed to predict the performance of the MoViT system.
This makes it easier to quickly predict performance by changing design param-
eters, such as camera resolution, marker size, distance, angle, etc. The most
useful feature in the model is the ability to define a customizable infant limb
model wearing a marker. By using joint angle trajectories, the model can be
used to predict performance throughout the trajectory. Comparison of some of
the predictions of the model with the physical setup indicated that the actual
error was the same order of magnitude as the model predicted error. As a first
step in refinement, the model can be improved by applying correction over the

range of data collected.
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6.2 Addressing the Research Questions

The first research question was: What are the requirements for capturing crawl-
ing motions of infants? The answer to that is the smallest significant motion
that infants make as they learn how to crawl spans 74.6 mm. The tracking
accuracy required is at least 37.3 mm. Motion should be captured at speeds of
42.7 mm/s to 304 mm/s.

The second research question was: To what extent does a mocap system, not
subject to electromagnetic interference (EMI), meet the above requirements?
The answer to that is as follows: with a worst-case error of about 19.9 mm,
crawling motions of 74.6 mm or greater can potentially be detected. However,
more evaluation needs to be done to determine whether this is practical for

existing gesture recognition and filtering methods.

6.3 Future Work

Some more aspects of the MoViT system remain to be explored. Tracking error
tests based on the camera field of view have been done in the wider horizontal
field of view. For completeness, the narrower vertical field of view can also the
tested. For this research, the emphasis has been on the 3D position tracking
accuracy for the marker. More work needs to be done in testing for and model-
ing the 3D orientation tracking accuracy of the marker. Although the reference
marker test has implicitly covered it, the combined error based on a reference
marker as well as the target marker has not been thoroughly investigated. Per-
haps this should be incorporated into the model. Finally, several tests with real

infants would also help in evaluating the system. This would be most helpful
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in determining the ideal number of cameras required to capture infant motion.
This is probably best approached through empirical testing.

This work provides a limited insight into blurring and how it affects tracking.
More work needs to be done to understand and model the effects of blurring.
This includes two types of blurring. The first is motion blur. The value of the
~ factor defined previously, which relates motion blur and the “speed limit”
of a marker, must be determined. + likely depends on a number of variables,
e.g., white balance, type of edge detection algorithm used, and CCD properties.
The effects of these variables must be determined and added to the model. The
other type of blurring is one that takes place at very short shutter exposure
times. At short exposure times, fewer photons strike the camera CCD. This
reduces the signal-to-noise ratio, introduces a different type of blurring, and
likely introduces position tracking errors. This type of blurring must also be
investigated and modeled.

The system also needs to be packaged for field use, i.e., implemented in a
portable form factor. Currently it is implemented on a laptop with an external
webcam. This should be ported over to a platform like a Raspberry Pi 3 or
a cell phone application. The MoViT system should have a reliable way of
determining when a marker is too fast (blurred) to be detected. Machine vision
algorithms are available to continue tracking objects that have suddenly become
blurred (e.g., Bonnet et al. [I5]). Perhaps that is an approach that can be
implemented here. Finally, the mechanical design for the marker bracelet needs
to be determined. It should be low cost, the material should be comfortable to
wear yet rigid, it should be lightweight, and should be easy to put on.

Packaging for field use also involves deploying multiple cameras to ensure

that all the MoViT markers on an infant’s body are tracked. Most likely, at
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least one camera will be required for target markers on each limb. Initially,
two cameras could be attached to each leg of the SIPPC-3 robot frame. This
number can be increased or decreased after testing. Since each camera will likely
capture only a portion of the body, a number of reference markers on the body
and the SIPPC-3 robot frame would be required for coordinate transforms to
a common reference frame. One issue with this is that position and orientation
errors from the various reference markers will begin accumulating. These errors
could be reduced by simultaneously using multiple reference markers for each
camera. Another issue is that if a marker, e.g., on the wrist, is visible to multiple
cameras, then sensor fusion must be performed to combine the position tracking
data from multiple cameras. While sensor fusion is not a problem in itself, each
camera has the potential to increase or decrease the position tracking accuracy.
Accuracy can increase because the same marker is visible from multiple cameras.
But the opposite can also happen. Accuracy can decrease if some of the cameras
have large tracking errors, which would propagate to the results of the sensor
fusion process. This can be mitigated by developing metrics to continuously
monitor the reliability of the tracked position data for every visible marker for
each camera. This way, less weight will be given to cameras with less reliable
readings at any given instant in the fusion process.

The MoViT system has one major limitation: occlusion. This is when a
marker goes out of view and cannot be tracked by the system. If this happens
for short periods of time, it can be addressed by fusing the camera data with
IMU data. This is a well-established research area. Fusion of the two can be
done in several ways, e.g., a particle filter-based approach (Tao et al. [86]), a
complementary Kalman filter-based approach (Roetenberg et al. [74]) and a

multi-rate extended Kalman filter approach (Hol et al. [36]).
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While MEMS IMUs traditionally use magnetometers in their sensor fusion
algorithms (e.g., Bosch Sensortec BNO055 [76]), some of them use only gy-
roscopes and accelerometers to estimate 3D orientation relative to an initial
orientation. Examples of such sensors are the InvenSense MPU-6050 and MPU-
9250 ([37], [38]). These should be tested and if the drift is acceptable, then they
could be used for sensor fusion.

A slightly less noticeable issue with the MoViT system is that sometimes, a
marker may not be detected due to extreme blurring effects, or large changes
in automatic white balancing. This results in dropped frames, which drops the
overall sampling rate of the visual system. Again, this issue can be resolved by
fusing with data from an IMU, which can provide tracking information for the
missing frames. Bright lighting can also be used.

The MoViT system does not have a very high sampling rate. For the webcam
in Fig. [£.4) the sampling rate was about 15 Hz. For comparison, Southerland’s
IMU-based system [80] captures kinematics pose at 50 Hz. Although this re-
duced frame rate is partially due to processing limitations and dropped frames,
a large part of it is due to camera shutter exposure time limitations. Tests in
indoor lighting have shown automatically adjusting shutter exposure times to
be several tens of milliseconds. There are several ways to increase the frame
rate. One solution is to use a camera where the shutter exposure time can be
manually controlled. This will increase the frame rate. The MoViT system is
already in the process of being switched over over to the OV5647 camera for
a Raspberry Pi 3. This camera allows manual control of the shutter exposure
time. For cameras with automatic shutter exposure time control, more light
can be used, which will force reduced camera shutter exposure times. Another

solution is to use cameras with more sensitive CCD arrays (image sensors). Fi-
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nally, as mentioned above, using sensor fusion with an IMU-based system, e.g.,

Southerland’s suit system, can help increase the overall frame rate.
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Appendix A

Theoretically Estimated Error

for Marker Position Tracking

In this appendix, a theoretical estimate of the position tracking error in the
experiment in Section [4.2.3]is presented. In this experiment, the MoViT marker
position was tracked using OpenCV, while marker position, planar angle and
size were varied. The experimental results were presented in Section [£.2.4] This
appendix provides a theoretical estimate of the error.

The position error is derived in mm per unit pixel error. This is because pixel
discretization in the camera CCD introduces an error of up to 0.5 pixels. This
error propagates through the marker pose estimation process. Furthermore,
edge detection algorithms used to detect marker patterns in OpenCV can also

introduce pixel error.
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A.1 Defining a Marker in 3D

The 3D coordinates of a square-shaped marker are defined in terms of its geom-
etry, a rotation, and a translation. The geometry of the marker is defined with
its center at the origin, with all 4 points on the x-y plane (see Fig. . Its
position in 3D is defined by a rotation transform and a translation transform.
The rotation transform is a 3 x 3 matrix. The translation transformisa 3 x 1
matrix. Thus, the 3D coordinates for the 4 corners of a marker of size L. x L

are defined as:

11 Ti12 T13 —L/2 L/2 L/2 —L/2 tl
T91 To2 T9o3 L/2 L/2 —L/2 —L/2 + tQ
L 31 T32 T33 1L 0 0 0 0 | | t3 |

The ordering of the points above is clockwise, starting from the top left corner

of the marker. For brevity, consider the top right corner only:

Xz 11 Ti2 T13 L/2 tl
y | = | o1 T2 To3 L/2 | + | t
kA | 731 732 T3z | | O] | 13

Note that by definition, the geometry of any of the four corners of a marker will
always be defined at [+£ + £ 0]7. The third coordinate is always zero. There-

fore, by definition, row 3 of the rotation matrix is redundant. This simplifies
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the geometry model to:

o | -7“11 7”12- -tl-
L/2

y | = | ra ra | b
L/2

| 2] | 731 T2 | | 13 ]

This implies that to define the 3D points of a square marker with points that
are coplanar, the rotation matrix transform requires only the first two columns

of any 3 x 3 rotation matrix.

A.2 Camera Model

The camera model projects a real world point W = [z y 2]* (in mm) to the
camera image plane C' = [u v]7 (in pixels) (see Fig. [5.2). It is based on the

pinhole camera model modified for lens distortion effects. Given:

¥=x/z, Yy =vy/z, (A1)

the radial and tangential distortions can be approximated by:

2" =o' (1 + kyr? + kar') 4 2p12y' + po(r® + 227), (A.2)

Y =y (1 + kyr? + kor®) + pi(r? + 2y) + 2poa’y/, (A.3)

where 2 = 22 + y/2. k; and k, are radial distortion coefficients, and p; and
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po are tangential distortion coefficients. More details on lens distortion can be
found in the OpenCV documentation for camera calibration [56]. Finally, the
T

pixel coordinates C' = [u v]" can be computed by:

u= frx" + cy, (A4)

v=fy" + ey (A.5)

A.3 Setting Up the Pose Estimation Problem

The above set of equations represent a perspective n-point problem (PNP),
with 4 known points and 6 unknown variables. Of these, 3 unknowns define
the position of the marker, i.e. [t; t3 t3]7. The other 3 define the 3D rotation.
Although the rotation transform above shows 6 unknowns, a 3 x 3 rotation
matrix can be defined in terms of 3 rotation angles.

The error in each coordinate of the tracked position (i.e., t1, to, t3) is sen-
sitive to the error in pixel coordinates (i.e., u and v). Thus, for each position

ot Oty Atz Ot Oto

coordinate, the error per unit pixel can be defined as 31, 92, 92 4 <2 and,

ot
ov”

A.4 Simplifying Pose Estimation for a Specific
Case

Consider the simplified case where a marker is placed at different positions in

front of the camera, along the center-line, with a varying planar angle. This is
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the experiment described in Section [£.2.3] In this case, only one rotation, i.e.

about the y-axis, is present. The 3D coordinates of the top right corner are

defined as: - i i -
x cos¢p 0 t
L/2
y | = 0 1 + | &
L/2
|z | —sing 0 | 13 ]
Alternatively,
r = gcos¢ + 11, (A.6)
y = g + 1o, (A7)
L .
z = —Esmw + ts. (A.8)

Applying projection onto the camera image plane,

2t + Lcos¢

/
p—t _—-—m——o-—- A.-
v=u/z 2t5 — Lsing’ (4.9)
L+ 2ty
/ — = — A1
v=vlz 2t3 — Lsing (A.10)

Assuming that the radial and tangential distortion effects are negligible, the
pinhole camera model gives the pixel coordinates (u,v) on the camera image

plane:
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2t1 + Lcos¢

e o g Mt Leoso Al
u= fx'+c f2t3—Lsmgb+c (A1)
L+ 2ty
gt e (g L2 A12
v (fyy + Cy) (fy 2t3 . LSZn¢ + Cy) ( )
This gives the following relationships for computing 1, t5, and ¢3:
| CaLsing = Lusing = fuLeosg — ty(=2u+2e;) o
2fz
| — CeLsing — Lusing — f,Lcos$ — 2fsty (A.14)
—2u + 2¢,
HLsing — ¢, Lsing — Lvsing + f,L + t3(2c, — 2H + 2v)
- , (A.15)
—2f,
fy < HLsind = e,Loing — Lusing + f,L+ 26 1

—(2¢, — 2H + 2v) ’
where f, and f, are the focal lengths, ¢, and ¢, are the principal points, and
H is the vertical image resolution. H simply transforms the coordinates from
the physical frame to the pixel frame where the physical frame has the +Y axis
pointing upwards. Note that for ¢3, two different equations are available. These
are two different ways of deriving t3. Either one may be used for error estima-

tion. Thus, the error terms in mm/pixel are given by the partial derivatives:

8t1 . 2t3 - Lsmgb

= 57 (A.17)
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8t2 . 2t3 - LSanb

% — 2—.]0:[]7 (A.18>

Oty  —=2(2f.t1 + feLcosp — c,Lsing + Lusing) Lsing
9ts _ . . (A19)
ou (2¢, — 2u)? 2¢, — 2u

Physically, the above terms represent the position error in mm per unit pixel
of error. That is to say, for the image of a point in 3D, if the point detection is
off by one pixel, then the above terms indicate the resulting error in computing
each of the 3D coordinates of that point (i.e., error in ¢, ¢, and t3). The
analogy for a marker with four corners is that the marker appears larger by one

pixel on all sides.

A.5 Theoretically Estimated Error

The RMS error in mm/pixel, for 3 different angles, is shown in Fig. . Al-

though RMS error includes all three errors 24, %2

oty -
5, ‘g2, and F2, the dominant error

ot
ou”

errors. Fig. may be compared to Fig. [£.7, The error is larger in Fig. [A.]

because Fig. represents position error based on an error of 1 pixel in the

by far is That is to say, mainly the Z coordinate (¢3) is affected by pixel

camera image. In contrast, Fig. represents position error based on approxi-

mately 0.5 pixel error in the image.
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Figure A.1: Theoretically estimated position tracking error. Absolute RMS
position error at angles 0, 30, and 60 degrees. Error is based on (A.17)), (A.18)),
and (A.19). Plots have been scaled to match Fig. for comparison.
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Appendix B

Supplementary Results: Varying

Camera View Angle

Supplementary results for the test in Section [4.2.5] are presented below. In this
test, markers were rotated in the camera field of view, and the tracked position
error was observed. For details of the setup, see Section [4.2.5]

The results below were obtained from testing with two more cameras. One
of these cameras was a Logitech model C920, the same model as the one used
in Section [4.2.5 The other camera was a Logitech model C615.

These cameras were tested to verify that the position tracking error is not a
function of marker view angle in the camera field of view. When the results in
Section m (Fig. are viewed in isolation, it can be incorrectly concluded
that the position tracking error increases with the marker view angle in the
camera field of view. The collective results from all three cameras indicate
that there is no correlation between tracking error and marker orientation with
reference to camera optical axis. The results for the second Logitech C920 are

presented in Fig. [B.I] and for the Logitech C615 are presented in Fig.
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Figure B.1: Supplementary results for accuracy experiment 2 (camera view
angle). A second camera, also a Logitech model C920, was used. Error variation
as the marker is rotated away from the optical axis of the camera. Error bars
indicate lower and upper quartiles. The radial distance to the marker is 500 mm.
Sample size n = 20.
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Appendix C

Supplementary Results:

Orientation Tracking Error

This dissertation has been focused on position tracking error. Orientation track-
ing error can provide a useful insight when marker tracking involves multiple
cameras and reference markers. To that end, this appendix provides supplemen-
tary results for the test in Section [4.2.3] While Section presented position
tracking error, this appendix provides orientation tracking error for the same
test. An understanding of orientation tracking error is important for future
work.

Most studies analyzing orientation error present plots for the three angles
(roll, pitch, yaw) separately. Comparing such plots is not very intuitive. There-
fore, for this application, a single orientation error metric is defined. It is anal-

ogous to RMS position error:

ETTOT grientation = \/ (erroron)? + (errorpic)? + (erroryaw)?, (C.1)
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where error,o; is the error in roll angle, error,;., is the error in pitch angle,
and erroryy, is the error in yaw angle. The results are shown in Fig. for 3
different marker sizes and 3 different planar angles.

The results show an interesting trend. The orientation error for the 80 mm
marker is consistently small for all 3 planar angles, for distances up to 500 mm
(relevant range for the SIPPC-3 robot). For marker sizes 26.7 mm and 53.3 mm,
orientation estimates are worst at 0 degrees planar angle. They improve greatly
for 30 degrees and 60 degrees, where the worst case orientation error is less
than 4 degrees. This trend is the reverse of the results for position error (Sec-
tion , where position error was best for 0 degrees planar angle. This trend
in orientation error is expected due to the nature of perspective geometry. Per-
spective projection effects are more noticeable when there is at least some angle
between the plane being projected (in this case the marker plane) and the cam-
era image plane. When this angle is zero, perspective projection effects are not
very clear. Hence, using perspective geometry principles to estimate orientation
results in larger errors.

In terms of using reference markers for tracking, these results imply that if a
reference marker is relatively small, then it must be oriented at an angle to the
camera image plane so as to minimize the propagation of the orientation error.
If the reference marker plane has to placed parallel to the camera image plane,
then it should be large enough (larger than 53.3 mm) so that the orientation

error remains small.
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Figure C.1: Orientation tracking error. Absolute RMS angle error at planar
angles 0, 30, and 60 degrees. Error bars indicate standard deviation. Marker
sizes x = y = 8q were 26.7 mm, 53.3 mm, and 80.0 mm. Sample size n = 20.

149



	Introduction
	Background
	A Device for Early Intervention for CP
	Southerland's IMU Suit System

	Motivation and Problem Statement
	Limitation of Southerland's IMU System
	Need for an Alternate Approach

	Problem Definition for Dissertation
	Research Questions
	Research Question 1
	Research Question 2

	Research Plan

	Design Requirements: Capturing Infant Kinematics
	Overview of Desirable System Features
	Guidelines for Kinematic Requirements
	Infant Size Data
	Survey of Infant Size Data
	Derivation of Infant Size Data

	Infant Motion Data
	Survey of Motion Data
	Speed: Proficient Crawling
	Speed: Infants Onboard Assistive Robot
	Range of Motion

	Summary of Kinematic Requirements

	Developing a New Motion Capture System
	Types of Systems
	Survey of Mocap Systems Used for Infants

	Narrowing Selection Pool: Vision Marker
	Initial Selection: Color Marker Vision
	Abandoning Color Marker Vision
	Revised Selection: Planar Pattern Marker

	System Design
	Marker Placement on Body
	Bracelet to Increase Visibility
	Contrasting White Marker Border
	Bracelet Geometry
	Dynamic Considerations

	Design Summary

	Experiments
	Contrasting White Marker Border
	Objective
	Experimental Setup
	Results

	Static Accuracy
	Objective
	Experimental Setup
	Varying Distance and Planar Angle
	Results: Distance and Planar Angle
	Varying Camera View Angle
	Results: Camera View Angle

	Dynamic Limitations
	Objective
	Experimental Setup
	Results

	Accuracy with Reference Marker
	Objective
	Experimental Setup
	Results

	Conclusion

	A Model to Predict Performance of the MoViT System
	The Need for a Model
	Survey of Evaluations of Planar Pattern Marker Tracking
	Development of Model
	Marker Model
	Kinematic Model
	Camera Model
	Shutter Exposure Time: Assumptions

	Capabilities
	Tracking Accuracy in a Specific Workspace
	Comparing Markers of Different Sizes
	Marker Performance for a Specified Limb Motion

	Comparison with Experimental Results
	Accuracy for Different Marker Sizes

	Conclusion

	Conclusions and Future Work
	Summary
	Addressing the Research Questions
	Future Work

	Theoretically Estimated Error for Marker Position Tracking
	Defining a Marker in 3D
	Camera Model
	Setting Up the Pose Estimation Problem
	Simplifying Pose Estimation for a Specific Case
	Theoretically Estimated Error

	Supplementary Results: Varying Camera View Angle
	Supplementary Results: Orientation Tracking Error

