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Abstract

Current decision-support frameworks to assist mitigation planning do not in-

clude uncertainty and complexity of network failures, either one or both. To

close this research gap, this thesis walks through a demonstration of the im-

portance of including uncertainty in the decision analysis to later propose a

novel methodology that employs simulation data that encapsulates both un-

certainty and complexity of failures modeled by domain experts. Thus, this

work is divided in two parts. The first part of this work examines how com-

ponent importance measures fail to give the necessary intuition for mitigation

planning in the light of uncertainty. The analysis is assisted by a novel compo-

nent importance measure called probabilistic delta centrality that demonstrates

how previously neglected stochastic considerations change decisions suggested.

In the second part, a new paradigm for stochastic network mitigation is pro-

posed. The approach leverages realizations from scenario event simulations to

develop a probabilistic framework that supports constrained decision making.

This scenario event simulation framework is capable of comprising component

fragilities, correlation among random variables, and other physical aspects

that affect component failure probabilities. On the top of that, a statistical

learning model is built to enable a rapid estimation of post-disruption im-

pact, which permits a metaheuristic to intelligently explore feasible discrete

x



enhancements from mitigation strategies. The search for near-optimal solu-

tions can be restricted by limited resources and potential political, social, and

safety limitations. Two examples are presented to exhibit how this method pro-

vides detailed information for mitigation. The level of complexity embedded

in search along with its detailed solutions are pioneering in network mitigation

planning.
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Chapter 1

Introduction

Physical infrastructure networks are the backbone of modern society. Pre-

venting large disruptions on them is associated to alleviating not only massive

economic losses, but also preventing social issues (as population dislocation),

and life threatening scenarios. However, the current state of these networks

have serious shortfalls. For example, the American Society of Civil Engineers

found 56,007 of the nation’s bridges to be structurally deficient in 2016 and

cite the funding necessary to rehabilitate them at $123 billion [3]. Clearly,

the deteriorating physical infrastructure in the US is already susceptible to

failure and even more so for certain types of natural disasters. In this context,

pre-disaster mitigation analysis arises as a multidisciplinary area in which one

key thrust is towards developing models of real-world physical systems and

their hazard responses with a goal of providing risk-informed decision support

from a systemic perspective. Decreasing the probability of failure of network

components (nodes/links) via improvements/upgrades is the most frequent in-

tervention studied because the installation of new components skyrocket costs
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[4]. Thus, the focus of this work is in optimizing the way we select components

in a physical network to improve, in the light of its system vulnerability to

natural disasters.

Figure 1.1: Worldwide air transportation network [1]. It is an example of a
network prone to costly disruptions.

Two distinct methods to address this problem are going to be foundational for

this work: component importance measures and stochastic network design. In

this thesis, we incorporate network failure characteristic to each of these two

methods in different manners with the objective of providing more accurate

and comprehensive insight for decision-making.

Network component importance measures (CIMs) quantify one or several as-

pects of the topology and/or functionality of the network to indirectly capture

the impact of component failures. Then, components are ranked according

to these values and those highly ranked are considered the most critical and,

therefore, prioritized for mitigation or protection. However, in the light of

uncertainty in component failures, we demonstrate that they do not provide

sufficient intuition. On the other hand, the stochastic network design problem

naturally incorporates uncertainty of stochastic events in networks and sup-

ports constrained optimization. Nevertheless, current solution methods based
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on sampling incorporating limited complexity aspects of network failures.

This thesis proposes an approach that is able to incorporate both uncertainty

and complexity network failures by extensively using external data from do-

main experts (based on simulation) to solve the novel formulation of the

stochastic network design problem for mitigation. For this, we leverage sim-

ulation data to set up a probabilistic framework that supports constrained

decision making. The network of study can be any physical network (modeled

as either a directed or indirected graph) with the requirement that it should

be feasible to estimate the effects between component improvement and its

probability to remain present in the network after a disaster. In addition, this

method does not focus on a specific performance metric as [5], but it leaves

to the user the selection of a suitable performance metric for her own needs.

We demonstrate the flexibility of this methodology with two examples with

different networks and performance metrics.

The remainder of this thesis is organized as follows. Chapter 2 introduces

the background that is foundational for this thesis. Chapter 3 develops a

method to incorporate uncertainty in component importance measures, to fi-

nally conclude that they should be avoided. Chapter 4 presents the data-based

methodology to incorporate complexity in mitigation planning, which is the

main contribution of this work. Then, we present two examples with different

settings in Chapter 5 and Chapter 6. Chapter 7 summarizes this work and its

conclusions. Finally, Chapter 8 states future research work envisioned.

3



Chapter 2

Background

Physical networks are interconnected systems that transport goods and ser-

vices whose nodes and links physically exist. Some examples of these networks

are electric power networks, watter supply/sewage networks, and fiber optic

networks. Due to the importance of the goods and services that these net-

works supply, failure on them interrupts the normal development of society

(e.g. Figure 2.1) with not only economic consequences but it also deteriorates

quality of life. Sabotage, human error in operation, terrorism, and natural dis-

asters are examples of hazards that if affecting physical networks, would have

different failure outcomes. For example, merely single component1 failures are

unlikely outcomes for large scale natural disasters [6, 7, 8] while this is may

be a common pattern for terrorist attacks [9].

The focus of this work is in network vulnerability due to natural hazards.

Natural disaster are highly impactful sporadic events that may affect a broad

geographic area. Affected areas contain several networks going through them,
1Component is either a node or link.
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Figure 2.1: Obstruction in highway.

which if some of their components get affected, it may require a major effort to

recover their previous functionality. Additionally, each day that these compo-

nents are not fully functional may be millions of dollars lost for the economy.

Clearly, disruption of these systems should be prevented whenever is possible.

Among the four stages of the disaster cycle, i.e., mitigation, preparedness, re-

sponse, and recovery [10], this thesis focuses on pre-disaster mitigation strate-

gies. Network-specific mitigation interventions can be broadly classified in two

groups: topological interventions (e.g., redundant construction, incrementing

roadway capacity) and reliability-based interventions (e.g., structural retrofit,

maintenance). Given the high costs of topological interventions in physical

networks, reliability-based interventions are preferred.

Structural retrofit/upgrade is an example of a reliability-based intervention

that provokes an increment in the likelihood to withstand a natural disaster

(known as survivability probability). For example, for seismic scenarios, seis-
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mic retrofit with steel jackets in columns (Figure 2.2) can shift the structure’s

fragility curve, which is translated to a discrete increment in the survival prob-

ability of the structure. A seismic fragility curve is a statistical tool that relates

in a probabilistic manner structural damage with structural and seismic char-

acteristics. Similar artifacts are being developed for floods and hurricanes to

assess their survival probability.

Figure 2.2: Seismic retrofit for bridge using steel jackets in columns. Left:
before retrofit; right: after retrofit.

For a decision-maker who wants to plan mitigation actions from a systemic

perspective, the problem is about allocating resources to improve a set of com-

ponents (one or more) that, by increasing their survival probability, the overall

expected impact given a natural disaster would be minimal. Two methods that

are capable to support decision-makers on this problem are component impor-

tance measures and stochastic network design.

2.1. Component Importance Measures (CIMs)

One common approach in network mitigation literature is based on employing

component importance measures (CIMs). Methods to compute component
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importance consist on measuring one or several aspects of the topology and/or

functionality of the network. Once a CIM is calculated for all components,

highly ranked components are recommended to be prioritized in mitigation

interventions [11, 12, 13, 14].

There is a group of CIMs that share the underlying idea that the most impor-

tant components are the ones whose disruption is the most impactful to an

overall performance metric. We call that group impact-based CIMs. The CIM

computation is primarily related to the choice of the network performance

metric evaluated. For example, if the system metric is related to graph con-

nectivity, an impact-based CIM would evaluate components on their ability to

disconnect the network. Examples of performance metrics include network effi-

ciency [15, 16, 17], travel demand [18], and travel time for all origin-destination

nodes [9].

2.2. Stochastic Network Design (SND)

Stochastic network design (SND) is a problem setup that brings a different

perspective to formulating mitigation in networks. In a stochastic network, the

nodes and edges are either present or absent with certain probabilities. The

probability of being present can be incremented via improvement interventions

(also referred as management actions) to the component. This problem is

conceived as a constrained optimization problem and falls within the category

of NP-hard problems [19]. For mitigation, this problem can be re-formulated

as the search for an optimal allocation strategy for available resources to reduce

post-disruption impact.
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Solution methods for the general form of the SND problem are based on ap-

proximate methods rooted in sampling. The most prominent one is sample

average approximation (SAA) [20] that approximates the original stochastic

problem to a deterministic one. For this, it employs Monte Carlo sampling

from known probability distributions to identify the most frequent cases, and

then solves the optimization problem for them. It disregards the least frequent

cases after showing that these rare scenarios do not affect much the optimal

solution. Specific methods use SAA along with intelligent search, greedy algo-

rithms and mixed integer programming, sometimes as a two-stage stochastic

optimization (e.g. [5, 21, 19]). Optimality convergence may be guaranteed for

n→∞ depending on the deterministic optimization method selected [22].

2.3. Uncertainty and Complexity of Network

Failures

Network failures due to natural disasters present two interconnected modeling

facets: uncertainty and complexity. Uncertainty is embedded in modeling and

simulating the damage state of network components in an stochastic manner,

as per [23]. Damage estimation models are probabilistic artifacts to estimate

probable damage patterns, which are configurations of components with an as-

sociated level of damage. Correlations and dependencies introduce complexity

within component failures that affect their uncertainty. Dependencies among

components from the same network and with components from other networks

is considered key in modeling failure for some physical networks [24]. An ex-

ample of the effect of this is the following: “Failure of A and B leads to failure

8



of C.” On the other hand, there are correlated failures among components,

which may explain more than 20% of the damage in some systems [25]. An

example of the effect of this is the following: “Failure of A increases probability

of failure of B.”

Figure 2.3: Uncertainty and complexity in network failures.

However, component importance measures and the stochastic network design

problem do not fully incorporate these two aspects of network failures.

CIMs do not incorporate the uncertainty and complexity of component fail-

ures, which may prevent them to provide optimal guidance. One natural

consequence of network failure uncertainty that has not been comprehen-

sively included in CIMs is multiple component failures. Several authors using

CIMs have focused their analysis in analyzing the effect of isolated failures

[11, 16, 17, 26, 27, 28, 29, 30, 31, 32]. However, using this simplification may

lead to misleading decisions because large synergistic effects of multiple si-

multaneous component failures may be overlooked [33]. For example, when

comparing the loss of one major electrical substation versus the loss of two mi-
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nor substations, it may be the case that the two minor ones failing represent

a greater risk [34].

On the contrary, SND naturally incorporates uncertainty and there are some

advances in incorporating complexity. As noted before, in disaster scenar-

ios, independent failures are replaced by spatiotemporal correlated failures [7].

Some specific correlation has been investigated using sampling methods aided

with probabilistic graphical models [35]. However, domain experts rely on

other correlation methods based on experimentation (e.g. spatial correlation

model for seismic ground motion [36]) that have not been included yet in SAA

sampling methods. Conversely, dependencies as previously described may be

incorporated in these samplers, but to the best of our knowledge they have

not.

Uncertainty and complexity of network failures are captured in failure patterns,

which are built by domain experts using multi-layer Monte Carlo simulations

that embed results from hazard models, network estimation models, and func-

tionality assessment. Unfortunately, SAA relies on samplers and is unable to

incorporate these rich pre-defined datasets. The methodology that we propose

is completely different from SAA because it comprises these datasets using

machine learning to incorporate both uncertainty and complexity to the SND

for mitigation. In Figure 2.4, we summarize SAA pros and cons from this

perspective.

In the rest of this thesis, we incorporate uncertainty in component impor-

tance measures to show how they fail to provide sufficient insight for decision-

making. Subsequently, we define the stochastic network design for mitigation

and present our proposed methodology to incorporate complexity.
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Figure 2.4: Pros and cons of using SAA
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Chapter 3

Incorporating Failure Uncertainty

in CIMs

In this chapter, stochastic characteristics from component failures are included

in a novel CIM called probabilistic delta centrality whose strategies suggested

are contrasted with the ones from impact-based CIMs.

3.1. CIM-based decision-making

3.1.1 CIM Definitions

Let G = (N , E) be the graph (directed or undirected) defined by a set of nodes

N and a set of edges E that mathematically represent a network. Let s − t

pair be a pair of nodes so that a directed path starts from node s (source) and

ends in node t (sink) such that s 6= t. If the graph is undirected, then there is

no distinction between s− t and t− s.

12



Figure 3.1: The positive drop in the performance metric after disruption is
denoted as (∆P ).

Delta Centrality

In general, an impact-based CIM can be constructed from any performance

metric that can be calculated in both a normal and disrupted network. Let P

be a performance metric that meets this requirement. Let (∆P )i be defined as

the drop in the performance metric when component i fails in isolation. Delta

centrality [37], then, is defined in Equation (3.1).

C∆
i =

(∆P )i
P

(3.1)

Network efficiency—introduced by [37]—measures how well information or

goods flow in the graph as it considers the inverse of the shortest distance

between each node s and t, dst as shown in Equation (3.2). Its use is prefer-

able for vulnerability analysis because it can handle infinite distances that

occur in disconnected networks.

E =
1

N(N − 1)

∑
s,t∈N|s 6=t

1

dst
(3.2)

Information centrality [38], denoted C∆I
i , defined in Equation (3.3), is a delta

13



centrality based on network efficiency.

C∆I
i =

(∆E)i
E

(3.3)

Note that delta centrality was proposed using a single removal strategy; thus,

we refer to these as individual delta centralities. We now propose a generalized

form of delta centrality.

Synergistic Delta Centrality

Definition 3.1. Synergistic delta centrality. Let sk ⊆ G be a set of k > 1

components in graph G. Let (∆P )sk be the impact in performance metric P

when all components in sk fail simultaneously. The synergistic delta centrality

for sk is (∆P )sk divided by the performance metric P of the network in healthy

state as in Equation (3.4).

C∆
sk

=
(∆P )sk
P

(3.4)

Notationally, if k = 2 and s2 = {i, j}, then let (∆P )ij denote the impact on P

of the simultaneous failure of components i and j. Additionally, let C∆
ij denote

the related synergistic delta centrality.

Similar to the individual delta centrality, a synergistic delta centrality can

be defined based on network efficiency, i.e., synergistic information centrality.

The synergistic delta centrality along with individual delta centralities will be

used to define the probabilistic delta centrality.

14



3.1.2 Probabilistic Delta Centrality

A probabilistic view for the delta centrality is proposed to account for real-

world aspects of component failures. This will help to pinpoint limitations of

importance measures with both single and multiple removal strategies.

Definition 3.2. Probabilistic delta centrality. Let δsk be a random variable

associated with the impact in the performance metric P when only elements

belonging to sk fail stochastically. The probabilistic delta centrality is defined

as the expected value of δsk divided by the performance metric P of the network

in healthy state, as in Equation (3.5).

Cδsk =
E
[
δsk
]

P
(3.5)

Note that δsk takes on the value (∆P )i if only component i fails. Likewise, it

takes the value (∆P )ij if only components i and j fail. Let pi and pij be the

probability of the isolated failure of i and probability of the simultaneous fail-

ures of i and j, respectively—the latter probability can handle correlations and

failure dependencies. Then, for two components i and j, E
[
δij
]
is calculated

as in Equation (3.6),

E
[
δij
]

= pi(∆P )i + pj(∆P )j + pij(∆P )ij (3.6)

since (∆P )∅ is zero. By combining Equation (3.4), (3.5), and (3.6) a relation-

ship between the probabilistic, individual and synergistic centralities is derived

in Equation (3.7).

Cδij = piC
∆
i + pjC

∆
j + pijC

∆
ij (3.7)
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Thus, the study of component importance based on the probabilistic delta cen-

trality can account for multiple failures and the probabilities, independent or

correlated, which are associated with those failures. Similarly to the previous

delta centralities, the probabilistic delta centrality for network efficiency will

be referred as the probabilistic information centrality and denoted CδI
ij .

3.2. Case Study

In this section, an example is used to demonstrate issues relating to CIMs for

mitigation decision-making. The new probabilistic delta centrality provides a

means to quantitatively demonstrate some pitfalls of impact-based CIMs. For

this study, a geometric random graph is chosen as it resembles some critical

infrastructure networks [39, 40]. The graph, depicted in Figure 3.2, has 200

nodes and 534 edges. Each of the CIMs defined in Section 3.1.1 and Section

3.1.2 are computed for the example graph.

Table 3.1 contains the top five most important components with respect to the

CIM information centrality (Equation (3.3)) along with two other components

that will gain importance when analyzing synergistic delta centralities.

Table 3.2 list the top five most critical two-at-a-time failures based on the syn-

ergistic information centrality. The combined failure of components 423 and

503 has the highest C∆I
ij value. As seen in Figure 3.2, these two components

act as alternates of the other and their simultaneous failure disconnects the

graph.

Table 3.2 reveals an interesting facet of multiple failures. However, it may

be that the combination of components with the highest synergistic centrality

16



423
503

419

349

309

Figure 3.2: Random geometric graph of 200 nodes and 534 edges. Selected
edge indexes are labeled.

has a very low probability of simultaneous failure. This would be potentially

misleading for mitigation decision-making. The probabilistic delta centrality

can be used to demonstrate how failure probabilities can affect ranking and

thus mitigation decision-making.

3.2.1 Analysis with the Probabilistic Delta Centrality

Consider a simplistic example, based on the topology shown in Figure 3.2, in

which each of the components fail independently and with the same probability

p. Hence, for two components, the probability of exactly one failure is p(1−p),
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Table 3.1: Top five components along with two other components that serve
in the discussion.

i ∈ E C∆I
i

419 0.0536
349 0.0206
112 0.0180
309 0.0169
325 0.0169

423 0.0013
503 0.0013

Table 3.2: Top five synergistic information centralities for combinations of two
edges.

{i, j} C∆I
ij

{423, 503} 0.2609
{309, 349} 0.1471
{349, 419} 0.0736
{112, 419} 0.0707
{309, 419} 0.0706

while the probability of simultaneous failures is p2. The probabilistic delta

centrality Cδij for two components i, j ∈ G becomes a function of a single

probability and simplifies to Equation (3.8):

Cδij = p(1− p)
(
C∆
i + C∆

j

)
+ p2C∆

ij (3.8)

In the given example, if a decision is to be made to improve or protect exactly

two components (e.g., due to a limited budget, etc.) using information cen-

trality as the system performance metric, the pair of components that should

be selected changes with respect to the value of p.

For 0 < p ≤ 0.55, the highest value for CδIij is for the component set {309, 349}
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Figure 3.3: Probabilistic information centrality as a function of failure proba-
bility p for select pairs of components.

(Figure 3.3). This combination is second in importance with respect to the

synergistic information centrality. The probability of both components 309 and

349 failing simultaneously is less than 0.3025. For higher failure probabilities,

p > 0.55, the set {423, 503} is the best selection. This agrees with the top

ranked pair in Table 3.2. In general, the probabilistic delta centralities, under

the highly unlikely assumption of independent and equal failure probabilities

with p = 1, is equivalent to the implied assumptions and results for synergistic

delta centralities.

The values for probabilistic information centralities of the top three pairs of

components from Table 3.2, i.e., {423, 503}, {309, 349}, and {349, 419}, are

plotted in Figure 3.3. The third ranked pair of important components in Table

3.2, which are also the top two components based on a ranking of the individual

19



information centralities (Table 3.1), are never the optimal mitigation choice

across all values of p. Clearly, synergistic delta centrality captures only one

aspect of the full spectrum of analysis possible with the probabilistic delta

centrality approach.

The simplifications related to independent and equal failure probabilities are

not necessary with the probabilistic centrality measures. Realistic failure prob-

abilities as induced by various hazards (e.g., the probabilities of damage states

associated with an earthquake of a given magnitude) are easily incorporated

in the calculations.

Note that the probabilistic delta centrality requires the calculation of all syn-

ergistic delta centralities which may be very costly depending on size of the

network and performance metric selected. For example, for this random graph

with 200 nodes, it took about one week to calculate the synergistic delta cen-

trality for k = 2 distributed in 30 parallel threads in a 2.4 GHz server. If

we had k > 2, the number of combinations to evaluate would increase ex-

ponentially. Therefore, in practice, its use is limited by this computational

considerations.

3.3. Concluding Remarks

Network component importance measures for mitigation decision-making using

may provide misleading guidance. This is indicated with the analysis driven

by the probabilistic delta centrality, a novel CIM which accounts for probabil-

ities of component failures. Unfortunately, the computational limitations of

the probabilistic delta centrality are an obstacle. Nevertheless, the empirical
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results from its use shed light on desirable characteristics for component-level

mitigation decision support. Any pre-disaster ranking which does not ade-

quately address uncertainty has limited decision support value. Even under

the simplifying assumption that all elements fail independently and with equal

probability, the previous example has shown that they may not follow deter-

ministic rankings.

There are other limitations for CIMs. They are completely independent of

external economic constraints and others that may prevent improvement in

certain components like social, political and safety limitations. The inclusion

of these limitations would not longer guarantee that highly ranked compo-

nents should be prioritized for mitigation. In addition, this method cannot

handle the discrete levels of improvement that some component networks may

presented as noted in Chapter 2. Due to all these reasons, we recommend to

exclude CIMs as a possibility for stochastic mitigation.
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Chapter 4

Incorporating Failure Complexity

in SND

The interdisciplinary nature of hazard mitigation planning requires decision

frameworks to be easily adapted to the input from simulations developed by

domain experts (e.g. geologist, hydrologist, civil engineers). The common

ground for these experts is Monte Carlo simulation. Several layers of Monte

Carlo simulations (from hazard simulation to network damage estimation)

outputs a dataset of probable failure patterns for the network. This dataset

encapsulates a high amount of complexity modeled by a diverse set of experts.

Thus, a compelling decision support tool should take advantage of the avail-

ability of these models and provide guidance with respect to realistic system

constraints. However, current solution approaches for the stochastic network

design (SND) problem do not benefit from these advances. In this chapter, we

propose a way to include this rich dataset in solving this kind of problems.
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4.1. Adapting SND to Mitigation

In the general SND problem, networks present stochastic characteristics in

diverse ways. For example, nodes/links can be present or absent with a prob-

ability, or link capacities, weights or lengths may take discrete or continuous

values in a stochastic way, which may represent the traffic status for a given

hour of the day. Management actions can change these probabilities. SND

includes the costs linked to actions to search for a suitable management strat-

egy. This general problem can be formulated for network mitigation in the

following manner.

Let G = (N , E) be the a graph (directed or undirected) defined by a set

of nodes N and a set of edges E ⊆ N × N that mathematically represent

a network. The network components (including both nodes and edges) are

indexed from 1 to N . Assume the state of any component as being either

functional (survived) or non-functional (failed) after a disruptive event. Let

pi be the survival probability [21], which is the probability of the component

i to survive and can be determined by structural analysis [41]. Conversely,

1− pi denote the probability of failure for component i. Let p = 〈p1, · · · , pN〉

be the representation of the current state of the network component’s survival

probabilities.

Realistically, a component’s survival probability value can not be improved to

any level (improvement in survival probabilities is not continuous as explained

in Chapter 2). As such, we assume that a component’s survival probability

can be improved according to a finite set of discrete values (e.g., a building

might be retrofit to a higher code level resulting in a specific shift in the

structure’s fragility curve). Each survival probability increment is associated
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with a list of possible levels of improvement according to available mitigation

interventions. For example, a building with survival probability 0.90 may have

three levels of improvement (0.93, 0.95, and 0.97) based on retrofits associated

with enhanced building codes. Each level of improvement has a cost associated

with labor, materials, and other required resources. Furthermore, we realize

that for decision-makers there may be other concerns besides finances such

political, social, or safety limitations that prevent interventions for certain

components.

Among the constraints that this problem considers are the following. It may

be that due to social, political, safety or other issue it is not possible to improve

one component or a combinations of components. There may be constraints

on the number of components to be improved imposed by external regulations.

Additionally, budgetary or resource limitations need to be addressed.

The problem objective relates to the expected value of a post-disruption per-

formance metric ϕ that is aligned with a desirable outcome for G. Many

performance metrics exist in the literature relating to various infrastructures,

e.g., travel time in transportation systems [42], expected cost of direct hazard

damage [43], commodity flow [11], among others. The decision variable is the

vector x that represents the discrete improvements to be performed in the

network having p as baseline.

In summary, the problem addressed is to minimize post-disruption impact

on ϕ by choosing network components for mitigation interventions that im-

prove their survival probabilities for a given hazard subject to limited financial

resources and other political, social, and/or safety standards that impose con-

straints on component selection.
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4.2. Data-based Stochastic Network Mitigation

Our proposed methodology called data-based stochastic network mitigation is

completely different from the sample average approximation (SAA) introduced

in Section 2.2. The approach ingests data from Monte Carlo simulations to

build up a probabilistic framework that supports constrained optimization.

This constrained optimization is driven by a metaheuristic search whose ob-

jective is to look for near-optimal values of performance metric ϕ. This process

is facilitated by a statistical learning model that relates ϕ with survival prob-

abilities associated with improvement strategies. Therefore, a probabilistic

representation of the simulation dataset is required for the construction of this

statistical learning model.

Figure 4.1: Overview of the proposed methodology.

This methodology has three steps to build the statistical learning model (Sec-
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tions 4.2.1, 4.2.2, 4.2.3). Then, it uses the regression model to find near-

optimal solutions in a constrained optimization framework (Section 4.2.4),

and finally correct these solutions (Section 4.2.5). These steps are depicted in

Figure 4.1.

4.2.1 Simulation-based data generation

The simulation data should be based on hazard specific and component specific

fragility curves. A fragility curve depicts the probability of a component ex-

ceeding a given damage state as a function of hazard intensity. Once a hazard

intensity is selected for analysis, Monte Carlo simulations and damage estima-

tor models are used to estimate the impact to system components. Oftentimes,

the damage states include multiple discrete levels (e.g., slight, moderate, exten-

sive, complete), but converting to a binary representation (functional and non-

functional) is straightforward, and arguably appropriate for failures caused by

a disaster [44]. The results from the collection of Monte Carlo realizations

provide a rich set of data that represent likely failure patterns.

Figure 4.2: Multi-layer Monte Carlo Simulation (MCS).
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Finally, for each of the simulation realizations, the network performance metric

ϕ is computed. We refer to the combination of plausible failure patterns and

the associated performance metric evaluations as a subset of the realization

space and denote the dataset as Ω containing n observations. If the network

contains N components, then an example excerpt of Ω could look like Table

4.1, where a value of 1 denotes that a component is functional (survived) and

a value of 0 denotes that a component has failed. The data in Ω is used

to estimate a probabilistic space which incorporates expected values of the

performance metric. The average of each column from this dataset (from 1 to

N) is designated as the baseline state for the network survival probabilities.

Table 4.1: Example observations in realization dataset Ω.

Realization Component 1 Component 2 · · · Component N ϕ

1 1 1 · · · 0 13.32
2 0 1 · · · 1 14.81
...

...
...

...
...

...
n 1 0 · · · 1 12.74

4.2.2 Probabilistic data transformation

A subset of the probabilistic space is denoted as Ψ, and it relates components

survival probabilities with expected values of the performance metric. This is

accomplished by sampling with replacement1 η rows from Ω. The component

statuses and ϕ values from each of the η samples are averaged together to create

a dataset Ψ withm observations and N+1 values. Thus, each observation in Ψ

is a vector of survival probabilities p and an average of the performance metric
1Sampling with replacement allows to cover more values in the probabilistic space.
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that is denoted as ϕ̄. An example of this dataset is illustrated in Table 4.2.

Table 4.2: Example observations in probabilistic dataset Ψ.

Prob.
Sample Component 1 Component 2 · · · Component N ϕ̄

1 0.68 0.88 · · · 0.96 12.62
2 0.72 0.92 · · · 0.76 12.92
...

...
...

...
...

...
m 0.88 0.8 · · · 0.84 13.22

The selection of the sample size η needs some reflection because it affects the

accuracy of the statistical model in two conflicting ways. First, η affects the

accuracy of the expected performance metric ϕ̄: the higher η is, the more

accurate ϕ̄ is (law of large numbers). Second, η governs the number of prob-

abilistic samples that are going to fall within the prediction boundaries for

the statistical model (i.e. where this model is going to be predicting when

used for optimization). Each of the columns of the probabilistic dataset follow

a Binomial sample proportion distribution which approximates to a normal

distribution with mean equals to pi and variance of pi(1 − pi)/η. Therefore,

if η increases, σ shrinks, which means that by increasing η, some parts within

the prediction boundaries may have fewer examples, which is undesirable to

train the statistical model as it may compromise the accuracy of the predic-

tions within these boundaries. Thus, the selection of η needs to consider the

tradeoffs between accuracy of ϕ̄, and accuracy of the statistical model in the

optimization framework.

The following considerations can be taken to suggest a way to handle this

tradeoff. As noted before, the survival probabilities in Ψ for each component

follow approximately a normal distribution with mean pi (baseline survival

28



probability for component i). The lower boundary of prediction is always

going to pi, and the upper boundary depends on the probabilities associated

with the feasible levels of improvements. The difference between the upper and

lower boundary for a component i is called the range of prediction (denoted

as Ri), which can be viewed as a deviation from the mean. Thanks to this,

a relationship between Ri and σi can be formulated in Equation (4.1) so that

most data is going to fall within the range of prediction. The standard devia-

tion is multiplied by 2 to ensure the tail of the Gaussian within the boundaries

is not too thin, i.e. not many observations near the upper boundary.

Ri ≤ 2 · σi ≈ 2 ·
√
pi(1− pi)/η (4.1)

4.2.3 Statistical modeling

Statistical learning methods, especially non-linear machine learning models,

are designed to fit the complex relationships between inputs and outputs em-

bedded in the probabilistic data Ψ. We employ such methods to derive f as

an estimate of the relationship between p̄ and ϕ̄, i.e., ϕ̄ ≈ f(p) = ϕ̄p, where

ϕ̄p is the predicted average performance value to be optimized.

The focus on building a machine learning model for this methodology is on

predictability. We want this model to be able to predict the expected perfor-

mance metric for an improvement strategy that we want to evaluate because

these predictions will be used to evaluate how good a feasible solution is.

Thus, it is recommendable to try models with high predictability as boosted

and ensemble methods, deep neural networks, and others.
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4.2.4 Optimization formulation

The mathematical formulation of this problem follows:

max (or min) ϕ̄p (4.2)

s.t. cost(x) ≤ Budget (4.3)

xi ≤ li ∀i ∈ {1, · · · , N} (4.4)

zi =


1, xi > 0

0, xi = 0

∀i ∈ {1, · · · , N} (4.5)

N∑
i=1

zi ≤ k (4.6)

xi ∈ Z≥0 ∧ zi ∈ {0, 1} ∀i ∈ {1, · · · , N} (4.7)

The decision variable x = 〈x1, · · · , xN〉 are integers denoting the improvement

options for each component, where for example, x1 = 0 implies that compo-

nent 1 should be left at its baseline state of p1, whereas x1 = v implies that

component 1 should be retrofit to level v > 0 which will result in a higher

survival probability than the baseline. The function cost(x) relates discrete

survival probability improvements with their intervention costs. The param-

eter li is the maximum level of improvement for component i; zi is a binary

variable that takes on a value of 1 if component i is selected and 0, otherwise;

and k ≤ N is the total number of components available for enhancement.

Constraint (4.3) represents the economic limitations. Constraint (4.4) fixes the

maximum level of improvement for each component. If mitigation efforts are

not feasible for component i (due to physical, political, or other reasons) li is
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set to zero. Constraint (4.5) relates xi and zi. Constraint (4.6) sets a limitation

on the number of components that can be enhanced. Constraint (4.7) sets the

domain for the decision variables.

The solution method for this optimization problem depends on the selected

statistical model and the function cost(x). If cost(x) is linear or easy to lin-

earize, it may be worth trying a linear regression model because it would allow

us to use a MIP (mixed-integer programming) solver and guarantee getting to

the global optima. On the other hand, having non-linear relationships in our

optimization formulation may required approaches as metaheuristic search,

which provide local optima solutions. In the latter case, as metaheuristic ap-

proaches are stochastic methods, the search should be repeated with different

seeds to find several different solutions from which the best one should be cho-

sen. Whether the solutions are global or local optima, they will be represented

as x∗ in the rest of the thesis.

4.2.5 Correction of expected performance metric value

The objective value ϕ̄p of the solution(s) obtained in the previous step are

predicted values of the expected performance metric. There are two sources

of error for this estimate: the sampling error known as standard error of the

mean (Section 4.2.2), and the error of the statistical model (Section 4.2.3).

The standard error of the mean is estimated with Equation (4.8).

σϕ̄ ≈ s/
√
η (4.8)

where s is the standard deviation of the performance metric in the realization
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dataset, and η is the sample size calculated in Section 4.2.2. On the other

hand, the error of the statistical model can be estimated from the square root

of the mean squared error of the model predicting in the test set. Therefore,

these ϕ̄p are inaccurate estimates, however, they are useful for exploring the

solution space. Once solutions x∗ have been identified, the inaccurate estimate

for its performance metric can be corrected in the following manner.

A new realization dataset similar to Ω with size n′ can be generated by simulat-

ing the system with the new survival probabilities obtained from the solution

x∗. Then, 1
n′

∑n′

i=1 ϕ, which converges to the actual expected performance met-

ric as n′ goes to infinity (law of large numbers), can be a better estimated of

the expected performance metric given the selected improvements. This value

will be denoted as ϕ̄c.

To select a value for the sample size n′, we suggest the following procedure

based on confidence intervals.

1. Calculate the performance metric ϕ for a set of m ∈ N failure patterns

generated using probabilities associated with solution x∗.

2. Calculate the performance metric mean ϕ̄m and standard deviation sm.

The sub-index m represents that these point estimates were calculated

with the initial m samples.

3. Select a desired level of error ε (multiplied by ϕ̄ results in the margin of

error) and a significance level α for that margin of error.

4. Use Equation (4.9) to get a lower bound for n′ where Z1−(α/2) is the

z-score of the standard normal distribution. Use student-t-distribution

rather than the normal distribution for m < 30.
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n′ ≥
(
Z1−(α/2) · sm

ε · ϕ̄m

)2

(4.9)
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Chapter 5

Example 1: Shelby County

Transportation Network

5.1. Scenario Setup

The network topology from Shelby County, Tennessee is utilized to demon-

strate an application of the proposed methodology for a seismic event. Shelby

County is located in the southwest part of the state of Tennessee, and con-

tains the city of Memphis, which is the second-largest metropolitan area in

Tennessee.

Figure 5.1 shows a simplified Shelby transportation network in which only

major highways and their bridges are depicted. The components considered

vulnerable to an earthquake hazard for this study are the 24 bridges portrayed

in the figure, i.e. N = 24. The nodes are either intersections of major highways

or intersections of a highway with the limits of the county.

For a given earthquake hazard, the reliabilities of the bridges are known, yet for
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Figure 5.1: Shelby County transportation network, only major highways de-
picted

demonstration purposes are assumed to be equal at 0.8. Further assumptions

are that each bridge can be improved up to four different levels of reliabil-

ity (0.85, 0.9, 0.95, and 0.97) and the associated costs are known ($100,000,

$220,000, $300,000, and $360,000). The objective is to maximize the post-

disaster performance network efficiency.

Four constraint cases for long-term mitigation are studied separately. They

are motivated by real-world limitations and selected to use the mathematical

constraints described in 4.2.4.

Case 1 Select at most three bridges to improve with unlimited budget.

Case 2 Budget available of $500,000.

Case 3 Budget available of $1,500,000.
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Figure 5.2: Levels of improvement with associated survival probabilities and
costs.

Case 4 Two bridges with the highest delta centrality (44 and 35) can not be

improved due to social/political reasons. Budget available of $1,500,000.

5.2. Application of Methodology

5.2.1 Data Generation and Transformation

The failure data for each component is generated via Monte Carlo simulation

using independent Bernoulli trials with probability of success equal to 0.8.

Once the whole dataset is generated, the network efficiency (Equation (3.2) is

calculated for each network failure pattern.

For this example, the prediction boundaries for all components are 0.8 as lower

boundary and 0.97 as upper boundary (within these boundaries the statistical

model is going to predict). Let us apply Equation (4.1) to have an upper
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bound for η.

0.97− 0.80 ≤ 2 ·
√

0.8 · 0.2/η

η ≤ 22.15

Then, we select a round number for η that is below 22.15: η = 20. A less precise

way to select η is visually by plotting histograms of the survival probabilities of

each component for different values of η. Figure 5.3 shows that the histogram

for η = 20 is more suitable than its counterpart with η = 40 because the

Gaussian tail is thicker for values around 0.95, which will help the learning

algorithm to make better predictions for those probability values.
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Figure 5.3: Histograms of component survival probabilities. Left, sampled
with η = 20; right, sampled with η = 40.

5.2.2 Statistical Modeling

A random forest is used as the statistical learning model to learn the complex

relationships embedded in the probabilistic dataset. First, this probabilis-

tic dataset (20,000 observations) is divided in two: train set (80%) and test

set (20%). To select appropriate parameters for this random forest model, a
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cross-validation with k = 5 is performed within the train set with the hyper-

parameter grid described in Table 5.1.

Table 5.1: Hyper-parameter values considered in tunning the random forest.
Selected in bold.

Hyper-parameter Values

No. of estimators 200, 400, 600, 800, 1000, 1200, 1400, 1600, 1800, 2000
Maximum depth 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, None

Max. features on split N,
√
N

In Table 5.1, the number of estimators is the number of trees that are going to

be part of the ensemble. The maximum depth controls the depth of each tree

in the ensemble. The maximum number of features on split is the number of

features that will be considered in each split. In the case of the N option, it

considers all the features for split. In the case of the
√
N option, it considers

a number of features equal to the square root of the total number of features.

The metric used to tune these hyper-parameters is the mean squared error

(MSE).

With the tuned hyper-parameters (shown in bold in Table 5.1), a learning

curve (Figure 5.4) is built running 5-fold cross-validation repeatedly for several

training set sizes. It can be noted in Figure 5.4 that the current random forest

model has a low training error compared with the validation error, which is a

sign of overfitting. In this cases, it is recommended to reduce the complexity of

the model using regularization. For this specific random forest, the parameter

maximum observation per leaf node is selected as a regularization parameter.

After experimenting with several values for this parameter, we select to set

it to be 200 (based on its validation error). The learning curves after this

regularization are now closer, which suggests that the new model is less biased
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and apt for better generalization.

In addition, from this learning curve, it can be noted that a size of 2,500 is

necessary to avoid overestimation of the validation error. This result tell us

two things: (1) using 2,500 samples for training in cross-validation should be

ensured to get a proper error estimation for tuning; (2) to meet the requirement

in (1) with 5-fold cross validation, it is needed to have at least 2, 500× 5/4 =

3125 samples for training. Therefore, we do not need to use the 16,000 samples

that were initially generated by the probabilistic transformation.

The final model was build with the parameters from the cross-validation and

regularization. Its performance metrics mean squared error (MSE) and mean

absolute error (MAE) were 2.32×10−6 and 0.0012 respectively. To have other

assessment of the quality of the model, we made a reliability curve for the

test set shown in Figure 5.5, where the closest the red line is to the gray

dashed, the lower the bias error. This curve answers the question: “Given a

predicted average ϕ̄p, what is the most likely observation of the actual ϕ̄?” It

can be noted that the lower extreme has high bias error, therefore, it should

be expected that those those values the prediction is overestimating the actual

average performance metric. In contrast, the other end of the graph seems to

have a low bias.
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Figure 5.4: Learning curve for random forest model before (above) and after
(below) regularization.
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5.2.3 Optimization

A genetic algorithm is used to explore the probabilistic solution space using

the previous machine learning model to estimate the expected value of the

performance metric for each improvement strategy. The selected parameters

are presented in Table 5.2.

Table 5.2: Genetic algorithm parameters.

Parameter Value

Cross-over probability 0.5
Mutation probability 0.2
No. of Generations 500
Population Size 800

In Table 5.2, the cross-over probability is the likelihood of two parent solutions

to be combined to get new children solutions; otherwise, they will not change.

This probability is suggested to be set to 0.5 [45]. The mutation probability

is associated to changing one of the chromosomes of children solutions. The

number of generations sets how many times old population are going to perish

to give birth to new ones. Finally, the population size is the number of indi-

viduals (solutions) in each generation. The last three parameters are set via

empirical analysis.

In order to run the genetic algorithm with the selected parameters, the con-

straints must be defined. Each constrain case is related to a mathematical

constraint introduced in Section 4.2.4 in the following manner.

Case 1 Set k = 3 in Constraint (4.6)

Case 2 Set Budget = $500, 000 in Constraint (4.3)
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Case 3 Set Budget = $1, 500, 000 in Constraint (4.3)

Case 4 Set li = 0 for bridges 44 and 55 in Constraint (4.4) and set Budget =

$1, 500, 000 in Constraint (4.3)

Note that the function cost(x) from Constraint (4.3) is non-linear for this

problem, thus, it can be coded as a look-up table.

Metaheuristic approaches are stochastic methods, therefore, the search for

solution for each constraint case should be repeated with different random

seeds to find several different solutions from which the best one should be cho-

sen. The corrected estimates of performance metric for each of these solutions

should be compared to select a final solution for each case.

5.2.4 Correction of Predicted Performance Metric ϕ̂p

In Equation (4.9), Z1−(α/2) for level of significance α = 0.05 will take Z0.975 =

1.96. Then, we decide to have a level of error of ε = 1%. Taking m = 1000, we

can calculate the average performance metric ϕ̄m and the standard deviation

for the performance metric sm for each of the solutions. The following is an

extract of the best solutions for each constraint case. Remind that for each

constraint case there were several runs of the genetic algorithm to ensure get

several local optima. Each of these local optima has to be corrected.

Case 1 ϕ̄m = 0.1325 and sm = 0.0067 result in n′ ≥ 98.22

Case 2 ϕ̄m = 0.1305 and sm = 0.0083 result in n′ ≥ 155.40

Case 3 ϕ̄m = 0.1337 and sm = 0.0056 result in n′ ≥ 67.39

43



Case 4 ϕ̄m = 0.1327 and sm = 0.0061 result in n′ ≥ 81.18

Looking at the lower bounds for n′ for each constraint case, it is clear that

the average performance metric calculated with 1,000 samples fulfills the sig-

nificance level and level of error required. Therefore, the calculated values for

ϕ̄m can be used as the corrected performance metric ϕ̂p, which are presented

in Table 5.3.

5.3. Results and Discussion

The solutions x are presented in Table 5.3 for each of the four cases described.

The solutions from the proposed approach are compared to a CIM ranking

based approach using the individual information centrality C∆I
i introduced in

Section 3.1.1.

From Table 5.3, a key finding is that the CIM-ranking has a mixed and even

poor relationship with the best solutions for a decision maker. In Case 1, when

three bridges are desired, bridge 34, ranked third according to the CIM, is not

chosen to be improved. In Case 2, with a restrictive budget, the priority is

on bridges ranked fourth and fifth rather than bridges ranked second or third.

In Case 3, when the budget increases to $1,500,000, five bridges are chosen

from the top five CIM ranked positions, however, the level of improvement is

does not correspond perfectly to their CIM ranking. In the final case in which

the two bridges with the highest information centrality values are removed

from consideration, the CIM ranking would fail to recognize the importance

of bridges 21, and 14 – all ranked relatively low according to the C∆I
i value.
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For three of the cases presented, the absolute difference between ϕ̄p and the ϕ̄c

is higher than the expected MAE (0.0012). The reason for this is the following.

The MAE is calculated only for the regression model, and the error in ϕ̄p comes

from two sources: sampling error (0.0014 calculated using Equation (4.8)) and

the statistical model error (0.0015). Hence, it should not be a surprise to

have this difference out of the MAE range. It is worth reporting that from

our experiments with different seeds for the genetic algorithm and correcting

several different solutions for each case, it is noticed that the estimates of ϕ̄p

for this problem presented a strong correlation with ϕ̄c, which provides support

to say that the statistical model is useful for exploring the solution space.
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Table 5.3: Solutions for constrained cases with bridge indexes sorted by infor-
mation centrality C∆I

i . Each solution column contains the level of improve-
ment suggested for each component i, from 0 (no improvement) to 4 (highest
improvement). At the bottom, predicted average performance metric ϕ̄p (ob-
jective) and corrected expected performance metric ϕ̄c for each solution.

Bridge
ID CIM Solution x∗(j) to constraint case j

i C∆I
i x

∗(1)
i x

∗(2)
i x

∗(3)
i x

∗(4)
i

44 0.0537 4 3 3 -
35 0.0380 4 0 3 -
34 0.0346 0 0 3 4
27 0.0328 4 1 2 3
43 0.0292 0 1 4 4
30 0.0156 0 0 0 0
41 0.0154 0 0 0 4
5 0.0149 0 0 0 0
24 0.0125 0 0 0 0
28 0.0124 0 0 0 0
37 0.0120 0 0 0 0
21 0.0116 0 0 0 1
9 0.0104 0 0 0 0
17 0.0082 0 0 0 0
26 0.0078 0 0 0 0
2 0.0077 0 0 0 0
14 0.0077 0 0 0 1
40 0.0067 0 0 0 0
19 0.0064 0 0 0 0
8 0.0062 0 0 0 0
15 0.0057 0 0 0 0
7 0.0043 0 0 0 0
22 0.0028 0 0 0 0
25 0.0018 0 0 0 0

ϕ̄p (predicted) 0.1306 0.1301 0.1312 0.1304
ϕ̄c (corrected) 0.1325 0.1305 0.1337 0.1327

Thous. of USD spent 1,080 500 1,480 1,480
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Chapter 6

Example 2: IEEE 30-bus Test

System

6.1. Scenario Setup

The IEEE 30-bus test system [46] (Figure 6.1) depicts a portion of the U.S.

Electric Power System and is utilized as an example where vulnerable compo-

nents are both nodes and links, with different survival probabilities and levels

of improvements. The graph simplification of this system (Figure 6.2) has 30

buses (nodes) and 41 transmission lines (links), i.e. number of components

N = 71. These 30 buses that are represented as nodes can be either generator

nodes, transmission nodes or demand nodes. For demonstration purposes, the

generation capacity of all generator nodes is set to 60 MW, each demand node

requests 20 MW, and transmission lines capacities are 50MW, which will be

represented as link capacities.

For a given earthquake hazard, the survival probabilities of the components
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Figure 6.1: Single-line diagram of the IEEE 30-bus test system [2].

are known, which will be assumed as 0.8 for generator nodes, 0.85 for demand

nodes, 0.85 for transmission nodes, and 0.8 for transmission links. The levels

of improvement will be also assumed to be different for each type of compo-

nent: generator nodes can only be improved to one level of survival probability

(0.87) at the cost of $350,000; demand nodes can be improved to two levels of

survival probability (0.9, 0.95) at the cost of $50,000 and $70,000, respectively;

transmission nodes can be improved to three levels of survival probability (0.9,

0.95, 0.97) at the cost of $15,000, $30,000 and $50,000, respectively; finally,

transmission lines can be improved to two levels of survival probability (0.85,

0.93) at the cost of $35,000 and $50,000. This information is summarized in

Figure 6.3.

The objective is to maximize the expected post-disaster electric demand met,

which in the simplified graph from Figure 6.2 can be calculated by solving
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Figure 6.2: Graph representation of the IEEE 30-bus test system [2]. The
dark grey nodes labeled with G represent the generator nodes, the white nodes
labeled with T represent transmission nodes, and the light grey nodes labeled
with D represent the demand nodes.

a max flow problem, which needs to connect all generator nodes to a source

node, and all demand nodes to a sink node. This performance metric will be

depicted as F and its value when the network is healthy is 350 MW.

Four constraint cases for long-term mitigation are studied separately. They

are motivated by real-world limitations and selected to use the mathematical

constraints described in 4.2.4. Case 3 and Case 4 are complicated decision

making scenarios that the proposed approach can handle.

Case 1 Budget of $300,000.

Case 2 Budget of $700,000.

Case 3 Budget of $700,000. No demand nodes can be improved.
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Figure 6.3: Levels of improvement with associated survival probabilities and
costs for each type of component.

Case 4 Budget of $700,000. The political decision of improving nodes G:22

and G:23 has been irreversible made without technical consultation.

A CIM ranking based on impact is presented to provide a better understanding

of the individual effects of isolated failures in the network. The delta centrality

that is derived from using the demand met as performance metric is denoted

as C∆F
i = (∆F )i/F . Table 6.1 presents a summary of this delta centrality

results for the IEEE 30-bus test system. Note that the most impactful el-

ements are the generators, subsequently, generator 13 and its adjacent link

and demand node have the same centrality value of 0.1429. The rest of the

nodes and links have little to none impact when failing in isolation. However,

this should not be interpreted as they are not important because there may

be simultaneous component failures that are both probable and impactful, as

discussed in Chapter 3.
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Table 6.1: Component ID sorted by C∆F
i .

Components C∆F
i

G:2 0.2000
G:1, G:22, G:23, G:27 0.1714

D:12, G:13, (D:12, G:13) 0.1429
D:10, D:15 0.0571

D:3, D:4, T:6, D:19, D:24, T:25,
(G:1, D:3), (D:15, G:23) 0.0286

Rest (53 components) 0.0000

6.2. Application of Methodology

6.2.1 Data Generation and Transformation

Probable failures patterns are constructed using Monte Carlo Simulation based

on the baseline component survival probabilities. The computation of the

selected performance metric (demand met via solving the max flow problem)

is calculated in polynomial time, therefore, there is no constraint to work with

as many failure patterns as desired.

For this example, the prediction boundaries for each type of component are

different. The analysis to select η should be done using Equation (4.1) for

components that have the same lower predict bound because they share the

same mean for their Gaussian curve. Note that generator nodes and trans-

mission lines share the baseline probability of 0.8, which means that the range

of prediction for both will start at 0.8. On the other hand, transmission lines

can be improved to a higher probability than the generators. Thus, the upper

boundary for transmission lines will have fewer data points than the upper

boundary for generator nodes. Therefore, it is enough to analyze the type of
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component with the higher range of prediction, which are the transmission

lines.

0.93− 0.80 ≤ 2 ·
√

0.80 · 0.20/η

η ≤ 37.87

Similarly, demand nodes and transmission nodes share the same baseline prob-

ability: 0.85. The highest upper prediction boundary is for transmission nodes,

so we apply Equation (4.1) on those components.

0.97− 0.85 ≤ 2 ·
√

0.85 · 0.15/η

η ≤ 35.41

Considering these two upper bounds for η, we select η = 35. This is the

size of the sample to take from the realization dataset to generate the proba-

bilistic dataset. An example of the histogram for each type of component is

represented in Figure 6.4.

6.2.2 Statistical Modeling

A random forest is used as the statistical learning model to learn the complex

relationships embedded in the probabilistic dataset. First, this probabilis-

tic dataset (20,000 observations) is divided in two: train set (80%) and test

set (20%). To select appropriate parameters for this random forest model, a

cross-validation with k = 5 is performed within the train set with the hyper-

parameter grid described in Table 6.2.
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Figure 6.4: Histograms of component survival probabilities generated with
η = 35 for each type of component. A: generator nodes; B: demand nodes; C:
transmission node; D: transmission link.

In Table 6.2, the number of estimators is the number of trees that are going to

be part of the ensemble. The maximum depth controls the depth of each tree

in the ensemble. The maximum number of features on split is the number of

features that will be considered in each split. In the case of the N option, it

considers all the features for split. In the case of the
√
N option, it considers

a number of features equal to the square root of the total number of features.

The metric used to tune these hyper-parameters is the mean squared error

(MSE).

With the tuned hyper-parameters (shown in bold in Table 5.1), a learning

curve (Figure 6.5) is built running 5-fold cross-validation repeatedly for several

training set sizes. It can be noted in Figure 6.5 that the current random forest
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Table 6.2: Hyper-parameter values considered in tunning the random forest.
Selected in bold.

Hyper-parameter Values

No. of estimators 200, 400, 600, 800, 1000, 1200, 1400, 1600, 1800, 2000
Maximum depth 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, None

Max. features on split N,
√
N

model has a low training error compared with the validation error, which is a

sign of overfitting. In this cases, it is recommended to reduce the complexity of

the model using regularization. For this specific random forest, the parameter

maximum observation per leaf node is selected as a regularization parameter.

After experimenting with several values for this parameter, we select to set it

to be 500 (based on its validation error). The learning curves after with this

regularization are now closer, which suggests that the new model is less biased

and apt for better generalization.

In addition, from this learning curve, it can be noted that a size of 5,000 is

necessary to avoid overestimation of the validation error. This result tell us

two things: (1) using 5,000 samples for training in cross-validation should be

ensured to get a proper error estimation for tuning; (2) to meet the requirement

in (1) with 5-fold cross validation, it is needed to have at least 5, 000× 5/4 =

6250 samples for training. Therefore, we do not need to use the 16,000 samples

that were initially generated by the probabilistic transformation.

The final model is build with the parameters from the cross-validation and

regularization. Its performance metrics mean squared error (MSE) and mean

absolute error (MAE) were 51.8783 and 5.7398 respectively. To have other

assessment of the quality of the model, we made a reliability curve for the
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test set shown in Figure 5.5, where the closest the red line is to the gray

dashed, the lower the bias error. This curve answers the question: “Given a

predicted average ϕ̄p, what is the most likely observation of the actual ϕ̄?”

It can be noted that the extremes have high bias error, therefore, it should

be expected that those those values the prediction is more likely to be off by

either overestimating (lower extreme) or underestimating (upper extreme) the

actual average performance metric.
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Figure 6.5: Learning curve for random forest model before (above) and after
(below) regularization.
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Figure 6.6: Reliability curve for final random forest model. Gray dashed line
is a perfect reliability curve. Red is actual.
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6.2.3 Optimization

A genetic algorithm is used to find near optimal solutions in the probabilistic

space using the previous machine learning model to estimate the expected

value of the performance metric for each improvement strategy. The selected

parameters are presented in Table 6.3.

Table 6.3: Genetic algorithm parameters.

Parameter Value

Cross-over probability 0.5
Mutation probability 0.2
No. of Generations 500
Population Size 800

In Table 6.3, the cross-over probability is the likelihood of two parent solutions

to be combined to get new children solutions; otherwise, they will not change.

This probability is suggested to be set to 0.5 [45]. The mutation probability

is associated to changing one of the chromosomes of children solutions. The

number of generations sets how many times old population are going to perish

to give birth to new ones. Finally, the population size is the number of indi-

viduals (solutions) in each generation. The last three parameters are set via

empirical analysis.

In order to run the genetic algorithm with the selected parameters, the con-

straints must be defined. Each constrain case is related to a mathematical

constraint introduced in Section 4.2.4 in the following manner.

Case 1 Set Budget = $300, 000 in Constraint (4.3)

Case 2 Set Budget = $700, 000 in Constraint (4.3)
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Case 3 Set Budget = $700, 000 in Constraint (4.3) and set li = 0 for all

demand nodes in Constraint (4.4)

Case 4 Set Budget = $700, 000 in Constraint (4.3) and set xi = 1 for gen-

erator nodes G:22 and G:23 (level 1 is the maximum improvement for

generator nodes), i.e. all solutions to be explored will be generated set-

ting xi = 1 for those generator nodes

Constraint case 4 cannot be handled with any of the constraints presented

in Section 4.2.4. It requires to code the restriction directly to the genetic

algorithm. Finally, the function cost(x) from Constraint (4.3) is non-linear for

this problem, thus, it can be coded as a look-up table.

6.2.4 Correction of Predicted Performance Metric ϕ̂p

In Equation (4.9), Z1−(α/2) for level of significance α = 0.05 will take Z0.975 =

1.96. Then, we decide to have a level of error of ε = 1%. Taking m = 1000, we

can calculate the average performance metric ϕ̄m and the standard deviation

for the performance metric sm for each of the solutions. The following is an

extract of the best solutions for each constraint case. Remind that for each

constraint case there were several runs of the genetic algorithm to ensure get

several local optima. Each of these local optima has to be corrected.

Case 1 ϕ̄m = 219.48 and sm = 53.85 result in n′ ≥ 2, 312.96

Case 2 ϕ̄m = 230.58 and sm = 53.69 result in n′ ≥ 2, 082.83

Case 3 ϕ̄m = 221.17 and sm = 54.47 result in n′ ≥ 2, 330.10
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Case 4 ϕ̄m = 234.66 and sm = 53.22 result in n′ ≥ 1, 975.99

Looking at the lower bounds for n′ for each constraint case, the final value

selected for n′ is 2,500 for all of the corrections. The corrected values using

this n′ are presented in Table 6.4.

6.3. Results and Discussion

In Case 1, because of the restrictive budget, improving a generator node is

not possible, thus, the solution must be a combination of other types of com-

ponents. The solution x∗(1) suggests to prioritize some components that are

close to generators, while other components were selected due to their strategic

position to reach other demand nodes (e.g. T:6). This selection is intuitive

because they are components needed to distribute electricity to other demand

nodes. In Case 2, when budget increases to $700,000, there are enough re-

sources to enhance a generator, but other components are prioritized because

their combination is found to be more effective to minimize impact (i.e. even

with a high individual impact, generator nodes are not the first option for

improvement). The solution suggested includes all improvements from Case

1 along with others that share the proximity to generator nodes and a C∆F

value higher than 0 (e.g. D:24). Nevertheless, others are less intuitive when

looking at its position and C∆F value (e.g. link T:9).

In Case 3, the budget level is maintained but no demand nodes can be improved

due to an external reason. Say, for example, that the delivering time for devices

needed to enhance demand nodes is too long for the desired planning schedule.

This constraint mandates that the resources previously invested in demand
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Table 6.4: Solutions for constrained cases with component ID sorted by com-
ponent type and index number. Each solution column contains the level of
improvement suggested for each component. At the bottom, predicted av-
erage performance metric ϕ̄p (objective) and corrected expected performance
metric ϕ̄c for each solution. Note that from the 71 components, only the ones
that have improvements are presented.

Component Solution x∗(j) to constraint case j

i x
∗(1)
i x

∗(2)
i x

∗(3)
i x

∗(4)
i

G:27 0 0 1 0
D:4 2 2 0 2
D:10 2 2 0 2
D:12 2 2 0 2
D:15 2 2 0 0
D:19 0 1 0 0
D:24 0 2 0 0
T:6 2 2 2 0
T:9 0 2 0 0
T:25 0 2 2 2
T:28 0 0 2 0

(G:1, D:3) 0 2 2 2
(G:2, T:6) 0 0 2 0
(D:4, D:12) 0 0 0 2
(D:10, D:20) 0 2 0 0
(D:10, G:22) 0 0 2 0
(D:12, G:13) 2 2 2 2
(D:15, G:23) 0 2 2 2
(G:27, D:29) 0 0 0 2

ϕ̄p (predicted) 208.73 209.41 208.99 213.11
ϕ̄c (corrected) 218.57 230.71 221.14 234.38

Thous. of USD spent 290 690 690 690
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nodes have to go to other type of components. Our method is straightforward

in handling this constraint: the only modification is to set to zero li for all

demand nodes. Only after this restriction, the method finds suitable to invest

in improving an expensive generator node.

In the final case in which nodes G:22 and G:23 have been decided to be in-

vested, and the budget remains $700,000 (as Case 2), the solution suggest to

remove the investment on some components close to G:22 and G:23 (e.g. D:15,

D:19, D:24), and allocate the resources in farther areas (e.g. links (D:4, D:12),

(G:27, D:29)) that are more vulnerable. In other words, the method finds out

that after these two close generators were enhanced, the area where they are

located is now less vulnerable than other areas in the network. Therefore,

the reward is higher when allocating the money in components that were not

considered in the solution of Case 2.

For all of the cases presented, the absolute difference between ϕ̄p and the ϕ̄c is

higher than the expected MAE (5.7398). The reason for this is the following.

The MAE is calculated only for the regression model, and the error in ϕ̄p comes

from two sources: sampling error (9.0993 calculated using Equation (4.8)) and

the statistical model error (7.2026). Hence, it should not be a surprise to

have this difference out of the MAE range. It is worth reporting that from

our experiments with different seeds for the genetic algorithm and correcting

several different solutions for each case, it is noticed that the estimates of ϕ̄p

for this problem presented a strong correlation with ϕ̄c, which provides support

to say that the statistical model is useful for exploring the solution space.

62



Chapter 7

Conclusions

This work discussed and expanded two methods for mitigation decision mak-

ing in physical networks with an emphasis in including both uncertainty and

complexity of network failure. The probabilistic delta centrality, a novel cen-

trality measure that accounts for failure probabilities, shows how the expected

impact of components failures—that changes with their probability of failure—

does not correspond with individual and synergistic delta centralities. There-

fore, using these component importance measures would provide sub-optimal

improvement strategies. Consequently, when there is stochastic information

available, our data-based methodology is a better option. Our data-based

methodology leverages the realistic failure pattern data and converts this to

a probabilistic real-valued space through sampling to then employ in a novel

manner statistical learning models to estimate the function f , which captures

both uncertainty and complexity embedded in the network failure phenom-

ena like hazard intensities, hazard characteristics, failure correlations, and

dependencies among components. This function then becomes the objective
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in a problem suitable for constrained decision-making using mathematical op-

timization or metaheuristic search techniques. The two examples presented

showed its flexibility in incorporating complexity, and in handling intricate

constraints.
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Chapter 8

Future work

We envision that our data-based approach can be extended to solve other

type of stochastic network mitigation problems. For example, influence max-

imization in social networks could be assisted with our approach either using

simulated data obtained from contagion models. To implement this, a type

of event should be identified and simulated so that the state of the network

after the event can be expressed as a binary vector. Then, using the proce-

dure presented in this thesis, it can assist decisions regarding increasing the

probabilities of a node to be influenced.

In addition, we consider to be a useful extension to convert failure states

from a binary representation to a either discrete or continuous. From our

experience working with civil engineers, current Monte Carlo simulations are

able to provide discrete damage states. An example of using this information

to calculate the performance metric is when we have a network of bridges.

For instance, their capacity could decrease to 90% of their max capacity when

damage is slight, or to 0% when damage is extensive.
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