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Abstract 

Highways are the most frequently used means of transportation in today’s world and the 

leading source of travel mishaps. Crashes or incidents on highways—both primary and 

secondary—constrain highway capacity, threaten passenger safety, and increase travel 

time, resulting in delays and wasted traffic management resources. This thesis aims to 

expand field knowledge about the detection of secondary incidents by analyzing primary 

incidents and their spatiotemporal influence on traffic. 

Analytical and statistical methods including logit, probit, and artificial neural network 

models were designed for automating incident classification by processing vehicle count, 

weather conditions, and traffic flow, among other parameters. The logit and probit model 

showed similar performance with an accuracy of 67% in the former and 66% in the latter 

and an identical precision of 48%. The contribution of each independent feature was 

gauged using odds ratio. The artificial neural network (ANN), on the other hand, out-

performed the logit and probit model. A simple 3-layer ANN was used for incident 

classification which showed an accuracy of 91% and a precision of 89%. The improved 

performance of ANN can be attributed to its ability to learn complex relations. 

A novel connection-weight algorithm was then used to determine the importance of the 

various features on the dependent variable and how they affect the model. Results were 

encapsulated in a graphical user interface for facilitating data collection and analysis.   
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Chapter 1: Introduction 

Highway incidents (or ‘crashes’) handicap the networked transportation system 

by restricting traffic flow, threatening vehicle passenger safety, causing extended vehicle 

queues, lengthening travel time, and expending traffic management resources. Although 

secondary incidents (i.e., those occurring subsequent to and within the spatiotemporal 

area-of-influence of a primary incident) occur less frequently than primary incidents, they 

are often severer and amplify consequences of an incident. This research focuses on 

incidents classified as rear-end and side-swipe ‘crashes.’ This term will be used 

interchangeably with the term ‘incidents’.   

1.1 Primary and Secondary Incidents 

Highway incidents are classified as primary or secondary. The former occurs in a 

free-flowing traffic and are attributed to human or vehicle error. Often, they cause lane 

blockage, restrict traffic flow, and reduce highway capacity. The latter occur in the 

spatiotemporal area-of-influence of the former, posing further constraints on the highway 

network system. Depending on the extent of damage to and number of vehicles involved 

in an incident, lane blockage is possible and could affect traffic flow accordingly. Limited 

roadway capacity often causes queues of vehicles to build up increasing travel time. The 

effect of a primary incident can be interpreted in terms of distance (d) and time (t)[1], 

where d is the length of queue formed as a result of compromised capacity and t is the 

average time a vehicle remains in the queue. Figure 1 demonstrates the continuum of a 

primary incident, followed by a secondary incident occurring at a given distance and time.  
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Figure 1. Representation of secondary incident following a primary incident. 

1.2 Defining the spatial and temporal boundaries 

To fully understand the spatiotemporal area-of-influence of a primary crash, the 

typical movement of vehicles on highways should be considered. In free-flowing traffic 

conditions, vehicle service time (i.e., time to travel a specified section of highway) is less 

than the inter-arrival time of vehicles. This actuality ensures that traffic moves at an 

optimal speed and no queues should exist. Subsequent to a primary crash, vehicle service 

time in the affected section of highway increases as vehicles slow down and change lanes 

to avoid affected roadway lanes. Inter-arrival time remains relatively constant. However, 

any increase in service time results in queue-formation, which can be interpreted as an 

effect of the primary incident in terms of the distance (d) moving traffic is affected. Queue 

length can be calculated by multiplying the number of vehicles in the queue by the 

average vehicle length. This thesis work is based on the average car class of vehicles, 

measuring up to 4.1 meters in length. 

Likewise, an effect of the primary incident can be measured in terms of time (t), 

Time (t) can be expressed in terms of the amount spent in a queue—where traffic is not 

moving—and expressed as reporting time, response time, vehicle clearing time, and time 

taken to resume normal flow of traffic. Together, distance (d) and time (t) express the 

maximum spatiotemporal area-of-influence of a primary incident.  

Distance: d 

Time: t 
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The highway travel concepts defined above can further explained with the use of 

vehicle movement simulations that incorporate various effects (e.g., vehicle slow down, 

number of lanes blocked, vehicle lane change from those affected by the crash to in 

service lanes).  

1.3 Creating Graphical User Interface 

A graphical user interface (GUI) was created to encapsulate the process of 

utilizing information from Oklahoma Department of Transportations (ODOT) databases 

to calculate spatiotemporal area-of-influence for a given incident. The GUI facilitates 

data collection and research by automating the process of fetching data from the database 

and plotting the spatiotemporal area-of-influence relative to a primary incident and other 

incidents in proximity.  

The multi-frame GUI leverages Tkinter library in Python. Dynamic plots were 

incorporated, using zoom in/out and save-image functionality. A Google Map API was 

also implemented to plot incidents onto a Google Map, aiding in the depiction of traffic 

flow directionality affected by an incident. The resulting dataset—based on the GUI 

representation of primary and secondary incidents—was then used to generate automated 

models for classifying incidents.  

1.4 Creating statistical and artificial neural network models 

After manually creating the dataset of incidents and classify an incident either a 

primary or secondary, the next step was to automate the process of classification, given a 

set of parameters. This will help us in having a better understanding of secondary 

incidents and their causative factors [12] [13]. Statistical models including logit and 

probit were used in the analysis. The dependent variable for the models is categorical in 
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nature. Notably, logit models are widely used in the fields of health sciences and ecology; 

probit models are typically used for econometrics.  

Furthermore, a simple, three-layered, ANN was used for modeling the 

classification algorithm for primary and secondary incidents [21]. Its use enabled the 

ability to learn and model non-linear complex relationships, such as those occurring in 

real-life, input and output events of a complex nature. Also, the predictive capabilities of 

a neural network facilitate an inference of classes in unseen data.  

1.5 Understanding traffic factors influencing secondary accidents 

A connection weight algorithm was used [16] to understand how different features 

used as input to ANNs affect the classification. While neural networks provide little 

explanatory insight into independent variables and their effects on incident classification, 

the connection weight algorithm uses input-hidden weights and hidden-output weights to 

quantify variable importance.  

1.6 Contribution of the thesis 

This thesis presents details to enhance the understanding of secondary incidents 

by using the data provided by the Oklahoma Department of Transportation (ODOT) 

Accident and Incident databases. A process was developed to analyze various chosen 

features in a database for gauging the effects of a primary incident on a highway network 

system and plot the incident’s spatiotemporal area-of-influence.  

Major contributions of the thesis include: 

• The proposed process can be applied to any transport-related data, as it clearly 

outlines the process for using available traffic data to gauge the spatiotemporal 

effect of a primary incident toward identifying secondary incidents. 
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• The lane-changing feature incorporated into the algorithm is unique (to the best 

of the author’s knowledge) and incorporates the effect vehicles that are changing 

lanes following an incident has on incoming traffic and how it increases 

congestion on lanes still in service.  

• A novel graphical user interface (GUI) was developed to encapsulate the process 

for measuring the spatiotemporal area-of-influence of a primary incident. 

Python’s Tkinter was used as a backend for development.  

• An approach was defined for decoding the neural network and gaining 

explanatory insight to lend an understanding of the importance of various traffic 

and road input features. Connection weight algorithm aided in gauging feature 

importance—the knowledge from which can be used to address such issues and 

move towards improved data collection.  

The remainder of the thesis is organized into five additional chapters. Chapter 

2 addresses related work that has previously been reported in this field. Chapter 3 

explains the proposed process and its use for a) measuring the spatiotemporal area-

of-influence of a primary incident, b) explaining how various parameters 

corresponding to the problem at hand were developed, and c) describing how the 

GUI functions for encapsulating the entire process and generating plots. Chapter 4 

introduces the concept of using the data gathered via the GUI and automating the 

incident classification process using logit, probit, and ANN models. The chapter also 

highlights results for each method. Chapter 5 discusses the connection weight 

algorithm that was utilized for measuring feature importance using weights from a 
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neural network. Finally, Chapter 6 provides concluding thoughts and forecasts future 

work.  
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Chapter 2: Related Work 

The work in this thesis derives inspiration from the field of transport engineering 

machine learning. Chapter 2 provides an overview published work that promotes an 

understanding of secondary incidents as an effect of primary incidents. Moore, et al. [1] 

explained that secondary incidents are defined as those that occur within a predefined 

spatiotemporal region of a primary incident and cause reduced roadway capacity. These 

types of incidents are common on highways, restricting highway capacity and initiating 

traffic delays. When compared with primary incidents, secondary incidents are typically 

severer. Hence, identifying and understanding secondary incidents facilitates more 

efficient use of traffic control resources whilst increasing highway safety [3].  

Although early research in the field of secondary incidents tends to utilize pre-

defined spatiotemporal boundaries, it has failed to incorporate various features of 

incidents or consider their dynamic nature.  

Raub (1997) [2] presented an algorithm for spatiotemporal analysis of secondary 

incidents in urban highways, assuming a fifteen-minute clearance time and one-mile 

spatial effect. The study failed to incorporate features like incident type, highway traffic, 

number of vehicles involved etc. Effect was measured for a distance of only 1,600 meters 

(one mile).  If an accident occurred within this fixed spatial threshold, the accident was 

considered secondary. Later, Moore, et al. (2004) [1] improved this approach, 

incorporating directionality of incident and a queueing mechanism. Moore conducted his 

research using data collected on Los Angeles freeways with special data resources and 

continued using the static spatial boundary for defining spatiotemporal area-of-influence.  
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Zhan, et al. (2008) [8], developed a method for defining dynamic boundaries for 

primary incidents using incident and traffic data. The method was based on a cumulative 

arrival and departure traffic model for estimating queue length and traffic delays while 

considering lane blockage during the process. The result provided a superior method for 

determining spatiotemporal area-of-influence and incorporating real-world features, 

queueing highway vehicles on highway, and considering lane blockage.  

Zhang and Khattak (2010) [3] introduced a dynamic queue method to aid in 

understanding the distant effect of a primary incident. Queue length was determined by 

leveraging the deterministic D/D/1 model based on average traffic traveling on a 

highway. Sun and Chilukuri (2010) [4] suggested using video-based traffic data caused 

by secondary incidents for determining the threshold of spatiotemporal area-of-influence. 

An incident progression was suggested based on the incident severity and the volume 

over capacity ratio of highway traffic [16]. Kerner, Rehborn, Aleksic, and Haug  (2004) 

[5] used Automatic Jam Recognition and Forecasting for traffic objects based on Kerner’s 

Three Phase Traffic Theory. This method for detecting traffic jams and their 

spatiotemporal influence is completely dependent on live, video data of the traffic jam.  

To improve on the system of queueing and to better understand the dynamic 

nature of primary incidents, this thesis presents a method to accommodate the dynamic 

system of queuing by using the memoryless M/M/1 scheme acting on the data obtained 

from ODOT Accident database. Poisson arriving rate in M/M/1 is better descriptive of 

traffic than the average arriving rate used in D/D/1 models. The truncated Poisson-like 

process, furnished with the various features of traffic data, is shown to mimic real-world 

behavior of vehicles traveling on highways.  
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Karlaftis, et al. (1999) [6] suggested that clearance time, season, vehicle type, and 

lateral location of the primary crash are significant factors.  

Karlaftis, et al. (1999) [6] examined primary crash characteristics that influence 

the likelihood of secondary incident.  The authors suggested that clearance time, season, 

vehicle type, and lateral location of the primary crash were critical factors for predicting 

a secondary incident.  

Vlahogianni, et al. (2010) [18] introduced a Bayesian framework for combining 

crash and queue information, suggesting a dynamic range for distance and time effect 

following a primary highway incident. Later that year, Zhang and Khattak (2010) [3] 

developed a logit model for determining the relationship between primary and secondary 

incidents. Their work reported an important finding that duration of primary incident, 

lane blockage, and vehicle number involved in a primary incident were the most 

influential factors in determining a secondary incident. Karlaftis and Vlahogianni (2011) 

[18] used the logit model to establish a relationship between primary and secondary 

incidents. The researchers also considered the use of ANN [9] for efficient predictive 

models for this type of classification. Tu (1996) [10] summarized the advantages of neural 

networks over logit models, suggesting that although neural networks provide acceptable 

results and robust models, they are not sufficient for modeling. Statistical models (e.g., 

logit and probit) provide necessary explanatory data.  

Neural network use for establishing a relationship between primary and secondary 

incidents continue to perplex the research community. Vlahogianni, Karlaftis, and 

Orfanou (2002) [18] suggested using mutual information—a method used to determine 

variable information before training the network. Though useful, this method does not 
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explain the effect of variables on classification after training the neural network. To solve 

this problem, this thesis uses the connection weight algorithm introduced by Olden, Joy, 

and Death, (2003) [20], which established the relative importance of each variable using 

the final weights of the neural network. 
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Chapter 3: Parameters and Development of a Graphical User 

Interface 

Chapter 3 details three important facets for developing an algorithm to plot the 

spatiotemporal effects of a primary incident. Sections below provide information 

necessary for understanding the framework required for processing the data collected on 

various state highways in Oklahoma. Various limitations and challenges associated with 

utilizing data in the Oklahoma Department of Transportation (ODOT) Accident and 

Incident databases are discussed. Parameters for and steps involved in algorithm creation 

are described, followed by a description of how the entire process was encapsulated using 

a Graphical User Interface (GUI) created in Python.  

3.1 Dataset acquisition and processing 

Data records of various state highways in Oklahoma were obtained from ODOT 

databases. Two divisions were instrumental in providing the data—Traffic Engineering 

Division [Accident database] and Intelligent Transportation System (ITS) Division 

[Incident database]. The former was composed of all incidents occurring in the state of 

Oklahoma and was accessible via an online portal. Individual or query-related records 

functionality allowed easy access to incident records reported by county or city. The 

present study was based on a total of 65,000 incident records from 2014 in the city of 

Tulsa, Oklahoma.  

The latter (i.e., Incident database) was composed of 3,026 records collected 

between 2014 and 2015 from a variety of highways throughout the state, including 

incident duration, number of lanes closed, and directionality of lane closure. Notably, the 

Accident database is more comprehensive than the Incident database. Combined, the two 
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databases provide a comprehensive view of incidents that occurred in the state of 

Oklahoma. Databases were combined using a simple correlation detailed in section 3.2.2. 

The highways network structure for the cities of Tulsa and Oklahoma City are presented 

below (See Figures 2 and 3).  

 

Figure 2. State highways in the city of Tulsa  
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Figure 3. Highways in the state of Oklahoma 

Database features were used to determine characteristics of primary incidents, in 

terms of the effect on distance (d) and time (t), with the goal of detecting secondary 

incidents. Determining these is dependent upon various parameters, which are explained 

below.  

3.2 Algorithm parameters 

This section introduces the internal working of the newly developed algorithm 

and various associated parameters. Distance (d) and time (t) are subject to understanding 

and calculating multiple parameters. When combined in a GUI, this information generates 

a plot that provides potential maximum spatial and temporal boundaries from the primary 

incident under-test. These are essential for determining the likelihood of secondary 

incidents.  

The following parameters are important for such predictions. 

• Queuing—ways in which vehicle drivers respond to highway incidents, and how 

vehicles queue up on highways post incidents.  

• Lane blockage and its effects—primary incident impact on highway capacity. 



14 

• Time distribution of traffic flow—the effect of traffic intensity at different times 

during a day and how it affects the movement of vehicles on roads 

• Lane changing behavior—driver’s lane-changing behavior  

• Spatiotemporal effect—distance and time boundaries with respect to the primary 

incident 

These parameters can be used to generate average vehicle wait time and queue length for 

the highway network system (See Figure 4).  

 

Figure 4. The process to generate queue length and average waiting time 

3.2.1 Queuing  

Capturing vehicle movement on the roadway is important for increasing algorithm 

effectiveness and can be accomplished by simulating the inter-arrival times of vehicles 

in a real-world situation. Deterministic and memoryless queueing models were leveraged 

to assess relatedness of detecting secondary incidents. In the more prevalent deterministic 

queuing model, inter-arrival times remain constant for all vehicles, whereas in the 

memoryless queuing model, inter-arrival times are not mutually dependent. In this study, 

vehicle arrival rate on highways resembled a memoryless model [M/M/n], where the 

number of servers or equals the number of highway lanes and each lane is an independent 

queue. The memoryless model of queuing used in the algorithm defines a memoryless 

interarrival rate for the vehicles in the system and a memoryless servicing time. 
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Figure 5. Vehicles moving on a two-lane highway 

Highway vehicles move in a pattern similar to a truncated Poisson process. At any 

given point in the day, arrival rate of subsequent vehicles is not dependent on the arrival 

rate of the present vehicles. However, inter-arrival time is generally bound by an upper 

and lower limit, hence the name truncated Poisson. The plot in Figure 6 shows the 

distribution of vehicle inter-arrival times used in simulations. These ranged from 4 to 5s 

for incoming vehicles. This feature aided in simulating a real-world vehicle arrival 

pattern. 

 

Figure 6. Inter-arrival times versus number of vehicles 
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Results of the queuing model provided average length of queue (𝑑) and average 

time a vehicle spent in the queue (𝑡). Both variables, d and t, are important for establishing 

the spatiotemporal boundaries of a primary incident. Variable values could be used to 

identify and detect the likelihood of secondary incidents. 

The mathematical overview of the queuing process used in this research is 

presented below. M/M/c queuing variables are defined, as follows. 

• 𝑃𝑜𝑖𝑠𝑠𝑜𝑛 𝑎𝑟𝑟𝑖𝑣𝑎𝑙𝑠 𝑤𝑖𝑡ℎ 𝑟𝑎𝑡𝑒 𝜆 

• 𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙 𝑠𝑒𝑟𝑣𝑖𝑐𝑒 𝑡𝑖𝑚𝑒𝑠 𝑤𝑖𝑡ℎ 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 𝜇 

• 𝑐 𝑠𝑒𝑟𝑣𝑒𝑟𝑠 (ℎ𝑖𝑔ℎ𝑤𝑎𝑦 𝑙𝑎𝑛𝑒𝑠) 

• 𝐴𝑟𝑟𝑖𝑣𝑖𝑛𝑔 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑠 (𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑠) 𝑓𝑖𝑛𝑑𝑠 𝑛 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑠 (𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑠)𝑖𝑛 𝑡ℎ𝑒 𝑠𝑦𝑠𝑡𝑒𝑚 

o 𝑛 < 𝑐: 𝑖𝑡 𝑖𝑠 𝑟𝑜𝑢𝑡𝑒𝑑 𝑡𝑜 𝑎𝑛𝑦 𝑖𝑑𝑙𝑒 𝑙𝑎𝑛𝑒 

o 𝑛 ≥ 𝑐: 𝑖𝑡 𝑗𝑜𝑖𝑛𝑠 𝑡ℎ𝑒 𝑤𝑎𝑖𝑡𝑖𝑛𝑔 𝑞𝑢𝑒𝑢𝑒 −

𝑤ℎ𝑒𝑛 𝑎𝑙𝑙 𝑙𝑎𝑛𝑒𝑠 𝑎𝑟𝑒 𝑏𝑢𝑠𝑦 (𝑏𝑙𝑜𝑐𝑘𝑒𝑑) 

• 𝑃𝑄 = 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑞𝑢𝑒𝑢𝑒𝑖𝑛𝑔  

• 𝑝𝑜 𝑎𝑛𝑑 𝑝𝑛 𝑎𝑟𝑒 𝑡ℎ𝑒 𝑠𝑡𝑎𝑡𝑖𝑜𝑛𝑒𝑟𝑦 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛𝑠  

𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑠 𝑤𝑎𝑖𝑡𝑖𝑛𝑔 𝑖𝑛 𝑡ℎ𝑒 𝑞𝑢𝑒𝑢𝑒 − 𝑛𝑜𝑡 𝑖𝑛 𝑠𝑒𝑟𝑣𝑖𝑐𝑒 

𝑁𝑄 = ∑ (𝑛 − 𝑐)𝑝𝑛 = 𝑝𝑜

(𝑐𝜌)𝑐

𝑐 !
 ∑ (𝑛 − 𝑐)𝜌𝑛−𝑐 = 𝑝𝑜

𝑐𝜌

𝑐!
 

𝜌

(1 − 𝜌)2

∞

𝑛=𝑐
 

∞

𝑛=𝑐
 

= 𝑃𝑄(1 − 𝜌)
𝜌

(1 − 𝜌)2
= 𝑃𝑄

𝜌

1 − 𝜌
 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑤𝑎𝑖𝑡𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 𝑖𝑛 𝑞𝑢𝑒𝑢𝑒 

𝑊 =
𝑁𝑞

𝜆
= 𝑃𝑄

𝜌

𝜆(1 − 𝜌)
 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑡𝑖𝑚𝑒 𝑖𝑛 𝑠𝑦𝑠𝑡𝑒𝑚 (𝑞𝑢𝑒𝑢𝑒𝑑 + 𝑠𝑒𝑟𝑣𝑖𝑐𝑒𝑑) 
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𝑇 = 𝑊 +
1

𝜇
 

𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑠𝑦𝑠𝑡𝑒𝑚 

𝑁 = 𝜆𝑇 

The expected number of vehicles waiting in queue multiplied by average vehicle 

length (e.g., a sedan in this study) determines average length of the queue (𝑑) and 

establishes the spatial effect of an incident. 

3.2.2 Lane blockage – Effect of incidents on highway capacity 

Understanding the effect of incidents on highway capacity is important for 

determining the effect on the ability for vehicles to travel without delay, or, in other 

words, determining the number of vehicles serviced by a highway in a given unit of time. 

An increase in service time results in a longer queue, hence a longer wait for vehicles 

within the highway network system at the time of an incident. Such a phenomenon 

effectively increases the area of spatial and temporal effects of a primary incident.  

The Accident database was unable to provide information concerning the effect 

of a primary incident on highway capacity or lanes blockage. The Incident database, 

however, was able to do so, although data was limited to 623 instances in Tulsa county. 

Information garnered from the Incident database lacked the comprehensiveness of that in 

the Accident database. Hence, it was necessary to fetch time and location parameters from 

both databases to identify a total of 42 incidents that were common in both sets.  

To establish a correlation between various features (e.g., number of vehicles 

involved in an incident, number of highway lanes, number of lanes blocked, and extent 

of vehicle damage [ODOT specified], an association analysis that considered rear-end 

and side-swipe incidents was used. Association analysis [14] is a rule-based machine-
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learning method for discovering interesting relations between variables in datasets. The 

intended purpose is identifying strong rules in databases using some measure of 

interestingness.  

The support, confidence, and lift of a rule determine the extent of its correctness.  

Given the following problem: Let 𝑋 be an itemset, 𝑋 ⇒ 𝑌 an association rule, and 𝑇 a 

set of transactions of a given database, features include: 

Support: An indication of how frequently a given itemset appears in a dataset. The 

support of 𝑋 with respect to 𝑇 is defined as the proportion of transactions 𝑡 in the dataset 

that contains the itemset 𝑋. 

𝑠𝑢𝑝𝑝(𝑋) =
|{𝑡 ∈ 𝑇; 𝑋 ⊆ 𝑡}|

|𝑇|
 

Confidence: An indication of how often the rule has been found true; interpreted as the 

probability of finding the right-hand side of the rule in transactions, given that the 

transactions also contain the left-hand side. 

𝑐𝑜𝑛𝑓(𝑋 ⇒ 𝑌) =
𝑠𝑢𝑝𝑝(𝑋 ∪ 𝑌)

𝑠𝑢𝑝𝑝(𝑋)
 

Lift: the ratio of observed support for the rule to that expected, given that the antecedent 

and consequent are independent. 

𝑙𝑖𝑓𝑡(𝑋 ⇒ 𝑌) =
𝑠𝑢𝑝𝑝(𝑋 ∪ 𝑌)

𝑠𝑢𝑝𝑝(𝑋) ∗ 𝑠𝑢𝑝𝑝(𝑌)
 

Using the above-mentioned measures, rules were extracted to determine the effect 

of an incident on highway capacity. Parameters included the number of vehicles involved 

in an incident; the number of lanes on the highway; and the extent of damage. Once rules 

were determined, the total number of times the rules were followed in the Incident 

database were calculated. For example, when the number of vehicles involved in an 
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incident equaled two and the damage extent was less than three i.e. functional damage to 

the vehicle, there was a 45% chance that one lane was closed. Similar calculations were 

executed for various numbers of vehicles—ranging from one to greater-than-or-equal-to-

four—and damage extent ranging from one to five, as defined in the ODOT user 

dictionary. 

No. vehicles lanes_closed_1 lanes_closed_2 lanes_closed_3 lanes_closed_4 

1 0.98 0.02 0 0 

2 0.45 0.54 0.01 0 

3 0.31 0.49 0.19 0.01 

4 or more 0.01 0.6 0.3 0.09 

Table 1. Probabilities of the number of lanes closed 

The table above represents various probabilities that relate the number of lanes closed in 

an incident with the numbers of vehicles and lanes. Results can then be used in the 

algorithm for calculating the spatial and temporal effects of a primary incident, as well as 

determining average queue length and average waiting time for a vehicle in the highway 

network system.  

3.2.3 Traffic intensity – Distribution of average daily traffic over time 

Traffic intensity is the number of vehicles travelling a highway at a given day 

time. This figure dictates vehicle inter-arrival time. The less the inter-arrival time is, the 

longer the queue build-up will be in the event of an incident, and vice versa. Results in 

this study were obtained utilizing data from a project conducted by the Washington State 

Transportation Center [16] in which an urban area was considered for observing and 

recording the distribution of traffic for 24 hours during a weekday. A bimodal traffic 

pattern was attributed to the geographic location of the area and roadway function. 

Specific peak height differed from location to location and was dependent on various 
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traffic generators. Two peak-traffic distributions were associated with directional 

commuter trips. 

Traffic intensity measured at different times of the day aids the algorithm in 

determining inter-arrival rate limits for vehicles at different times of the day. The effect 

of traffic intensity on highway capacity indicates that when traffic intensity is high, inter-

arrival times decrease. Hence, an accident with merely low damage extent could 

potentially result in long queue times, effectively increasing the time spent by a vehicle 

on the highway network system or a vehicle waiting to be serviced. During peak night 

hours, inter-arrival time for vehicles increases, resulting in shorter queues and reduced 

waiting times.  

 

Figure 7. Traffic intensity at various times of the day 

Traffic intensity can also be used to calculate inter-arrival times of vehicles on road as 

follows: 

𝑇𝑟𝑎𝑓𝑓𝑖𝑐 𝑝𝑒𝑟 ℎ𝑜𝑢𝑟 = 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑡𝑟𝑎𝑓𝑓𝑖𝑐 (24 ℎ𝑜𝑢𝑟) ∗ 𝑇𝑟𝑎𝑓𝑓𝑖𝑐 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 

𝐼𝑛𝑡𝑒𝑟 − 𝑎𝑟𝑟𝑖𝑣𝑎𝑙 𝑟𝑎𝑡𝑒 =
3600

𝑇𝑟𝑎𝑓𝑓𝑖𝑐 𝑝𝑒𝑟 ℎ𝑜𝑢𝑟
 𝑠𝑒𝑐𝑜𝑛𝑑𝑠 ∕ 𝑐𝑎𝑟 
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The inter-arrival rate calculated above acts as a mode for the inter-arrival rates of vehicles, 

where the inter-arrival rate of the previous and next hour act as upper and lower bound. 

3.2.4 Changing Lanes behavior of vehicles in case of an incident 

Following lane blockage, the serving capacity of the lane is reduced to zero, 

causing a stationery queue to build up in that particular lane. Vehicles typically continue 

to travel even after an incident on the highway, moving away from the lanes which are 

blocked because of the primary incident to the lanes which are still in service. This effect 

increases the inter-arrival time of vehicles at the server and reduces their speed, 

contributing to a greater primary incident area-of-influence as longer queues are formed, 

and vehicles spend more time on the highway network system. 

 

Figure 8. Movement of vehicles from the affected lane to an adjacent lane 

This provides valuable insight about how vehicles move during an incident and 

its spatiotemporal effect of a primary incident. To simulate this factor in the algorithm, a 

custom arrival node was created in the CIW library [22] written in Python; it randomly 

pushes vehicles in the affected lane to an adjacent lane, thus effectively keeps traffic 

moving. A threshold of a single car was set for research purposes. For example, after an 

incident and the blocked lane has more than one car in queue, the systems begin to move 

incoming cars from the blocked lane(s) to lanes still in service. Pseudocode in Figure 9 
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shows that if an incident takes place in a two-lane highway and lane 1 is blocked, 

incoming vehicles in lane 1 are directed to move to lane 2 in an effort to keep traffic 

moving.  

 

Figure 9. Code for lane changing feature in algorithm 

The act of lane change can be fed into the algorithm with the aforementioned parameters 

to define the area of the spatiotemporal boundaries of a primary incident.  

3.2.5 Spatial and temporal influence of the incident 

Once all parameters have been accounted for and calculated—based on an 

incident’s unique features, results are entered into the algorithm to determine the potential 

maximum spatiotemporal effect of a primary incident. The effect can then be plotted by 

leveraging the GUI for further analysis. Additional incidents within the area-of-influence 

can be considered secondary incidents.  

    # lanes = 2 and blocked lanes = 1 

    class CustomArrivalNode21(ciw.ArrivalNode): 

        def send_individual(self, next_node, next_individual): 

            self.number_accepted_individuals += 1 

            if ((Q.nodes[1].number_of_individuals) <= -1): 

                Q.nodes[1].accept(next_individual, self.next_event_date) 

            else: 

                self.simulation.nodes[2].accept(next_individual, 

self.next_event_date) 
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Figure 10. Spatial-Temporal influence of an incident 

In the above example, incident ‘300224431’ was considered the primary incident. 

The shaded area represents the spatial-temporal area-of-influence of the primary incident, 

and other incidents in the shaded area may be considered secondary incidents. The 

primary incident occurred on Oklahoma Highway I-44 was a rear-end car crash involving 

two vehicles and the extent of damage was graded a 3. The incident resulted in one out-

of-service lane for approximately 70 minutes, causing vehicle service time to increase. A 

queue build-up increased the time vehicles spent on the highway network.  

Although this type of graphical representation provides adequate information 

about the spatiotemporal effect of an incident, it does not depict the direction of vehicle 

travel and affected highway sections. This problem was solved using the Gm-Plot library 

in Python in conjunction with the Google Maps API. Latitude and longitude coordinates 

contained in the Accident database were utilized for plotting the incident location on a 

Google Map. Coordinates are calculated up to the fifth decimal place and are accurate up 

to 1.1m. Using this method for studying the location of incidents provides insight about 

the highway section affected by the incident, as well as the direction of vehicle flow. 
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Figure 11. Primary and secondary incidents plotted in Google Maps (Primary-Blue, 

Secondary-Red) 

Combining both, graphical representation aids in identifying secondary incidents 

and in locating them on a map.  

3.3 Graphical User Interface 

Figure 3.1 highlighted the process for encapsulating the GUI. The interface was 

created using Python with Tkinter as backend and facilitated the process of collecting 

data. The GUI facilitated the analysis of individual incidents from the Accident database 

by calculating their spatiotemporal area-of-influence and helping to locate secondary 

incidents. The GUI was also connected with a Google Maps API to plot incidents on a 

satellite map, according to their latitude and longitude coordinates. The GUI was 

designed with a simplified framed structure and ease of navigation, making use of only 

three input values.  

Frame 1 allows users to input date in MM/DD/YYYY format and highway chosen 

from the drop-down menu. The GUI then fetches the corresponding data from the 

Accident database for use in subsequent frames.  
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Figure 12. Frame 1 of the GUI 

Frame 2 is navigational, 1) permitting users to advance to Graph 1 where incidents are 

plotted based on their differences in distance and time or 2) view the Doc_IDs of 

individual incidents for further analysis. 

 

Figure 13. Frame 2 of GUI 

Frame 3 shows the dynamic plot of all incidents on the specified date and 

highway, based on their differences in time and distance. Secondary incidents generally 

take place in close proximity to primary incidents; hence, visualizing clustered incidents 

is preferable in Graph 1. GUI plots are dynamic and can be zoomed in or out, saved, or 

shown in an altered graph size.  
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Figure 14. Frame 3 of GUI 

Doc_IDs are unique and act as an identifier for the incidents. The Frame 4 of the GUI 

shows all the Doc_IDs corresponding to unique incidents on the chosen highway and their 

associated dates. Once the Doc_ID is chosen from the list, the button Graph 2 can be 

clicked to further analyze the incident and find out its spatiotemporal influence. Frame 4 

also has a navigational option to return to the Frame 2 in case the inputs to the GUI need 

to be changed.  

 

Figure 15. Frame 4 of GUI 
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Frame 5 illustrates the spatiotemporal analysis of a single incident. A single Doc_ID 

analyzed in the previous frame is processed in the backend algorithm utilizing different 

available features to calculate the incident’s effect in terms of time (t) and distance (d) 

(which can also be interpreted as average wait time for a vehicle in the highway network 

and average queue length in response to an incident). The algorithm also calculates the 

difference in distance and time between user-selected incident and all other incidents 

recorded on that day. This information is then plotted, see Figure 3.10. The shaded region 

on the plot indicates the spatiotemporal boundaries within which incidents are considered 

secondary ones. 

A Google Map API was added to the GUI to further validate secondary incidents by 

plotting them on a satellite map. The button Plot_gmaps plots incident points in the 

browser.  

 

Figure 16. Frame 5 of GUI 

The plot in the GUI represents all incidents in the spatiotemporal region of the 

primary incident. To ensure secondary incidents are located within the same highway 
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section, traffic flow direction is considered and then plotted into the Google Maps. The 

blue marker represents the primary incident, and the red marker represents all incidents 

within the primary incident spatiotemporal area of influence. A hover detail feature was 

added to display incident latitude, longitude, and Doc_ID.  

The databases provided by ODOT had no indication of an incident being primary 

or secondary whatsoever. So, GUI was used to collect all the primary and secondary 

incidents used for statistical and artificial neural network modeling. The incidents were 

first analyzed using the GUI and then further validation was done using the google maps. 

Using this technique a small dataset was created with primary and secondary incidents 

classified.  

 

Figure 17. Incident plot in Google Maps  
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Chapter 4: Statistical and Artificial Neural Network Modelling 

The previous Chapter introduced the concept of manually analyzing incidents 

using a GUI to determine which incidents are secondary. This information laid the 

foundation for understanding the effect of a primary incident and how additional incidents 

within its spatiotemporal area-of-influence could be considered secondary incidents.  

Manually analyzing each incident in a database and classifying it as primary or 

secondary for the purpose of studying its parameters can be a tedious task. Hence, the 

need for automation is required. An algorithm was designed using statistical and neural 

network models to process incident databases and classify them as primary or secondary. 

This type of automated classification aids in assessing a large number of incidents and 

determining which factors can be used to identify incidents. This Chapter offers an 

overview of how ODOT data was processed for establishing an algorithm to accomplish 

this and informs about the variety of algorithms developed for modelling the incident 

classification system.  

4.1 Dataset preparation 

The Accident database provided by the ODOT Traffic Engineering Division was 

used to create statistical and neural network models. The dataset housed therein was 

characterized by an array of features related to the different aspects of an incident. After 

reviewing the literature, the following features were chosen as factors in the initial study. 
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Collision Time 
Rush Hour 

Non-rush hour 

Number of vehicles involved The number of vehicles involved in the incident 

Commercial vehicles involved 
Indicates the presence of commercial vehicles 

involved in the incident 

Number of lanes 
Indicates the number of lanes on one side of the 

highway 

Damage extent to the vehicle 

01 - None 

02 - Minor 

03 - Functional 

04 - Disabling 

09 - Unknown 

Average traffic 
Indicates the average number of vehicles present 

on a highway in a day 

Weather conditions 

01 - Clear 

02 - Fog/Smog/Smoke 

03 - Cloudy 

04 - Rain 

05 - Snow 

06 - Sleet/Hail (Freezing Rain/Drizzle) 

07 - Severe Crosswind 

08 - Blowing Snow 

09 - Blowing Sand, Soil, Dirt 

10 - Other 

Light Conditions 

01 - Daylight 

02 - Dark / Unlighted 

03 - Dark / Lighted 

04 - Dawn 

05 - Dusk 

06 - Dark / Unknown Lighting 

Table 2. Features used for modelling and their attributes 

Only two major types of crashes — “rear-end collisions” and “side-swipe 

collisions”—were considered for the statistical and neural network models. After data 

processing, incident classification based on the factors listed in Table 2 became a binary. 

To address this, two statistical models, namely logit and probit, were selected to provide 

a starting point for classification and serve as a benchmark for the ANN modeling.  
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Figure 18. Correlation matrix for various features in the dataset 

4.2 Statistical models for classification of incidents 

To start of the automatic classification process, I chose to start with the logit 

model as it is simplistic and is widely accepted in many scientific areas. The rationale 

behind using two statistical models was to identify which model—logit or probit—

worked better when processing transportation-related data.  

4.2.1 Logit Model 

The logistic regression (i.e., logit) model is one of the most widely known discrete 

choice models, often used in the fields of health sciences and ecological studies [24]. This 

particular statistical regression model is utilized in situations when the dependent variable 

is categorical. It performs well given the number of variables is limited. 

The data detailed in this thesis is considered categorical/binary, representing 

primary or secondary incidents. The logit model considers one or more independent 

variables for determining an outcome. The model is an extension of the linear regression 

model, modified with the use of a link (or logistic) function. The logistic function bounds 
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the output between zero and one, which can then be interpreted as probabilities of 

independent variables assigned to a certain class. 

Assume 𝑡 is a function of an explanatory variable 𝑥 that can be expressed as: 

𝑡 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 … + 𝛽𝑛𝑥𝑛 

The logistic (or link) function 𝜎(𝑡) is defined as: 

𝜎(𝑡) =
𝑒𝑡

𝑒𝑡 + 1
 

𝜎(𝑡) =
1

𝑒−𝑡 + 1
 

Logistic function can now be written as: 

𝑃(𝑌 = 1|𝑥) = 𝐹(𝑥) =
1

1 + 𝑒−(𝛽0+𝛽1𝑥1+𝛽2𝑥2…+𝛽𝑛𝑥𝑛)
 

𝐹(𝑥) can be interpreted as the probability of the dependent variable representing a case 

or success. 𝛽0 is the intercept from the linear regression equation (i.e., the value of the 

criterion when the predictor is equal to zero), and 𝛽1 is the regression coefficient 

multiplied by some value of the predictor. Base 𝑒 denotes the exponential function. 

4.2.2 The Probit Model 

The probit model is also a regression model wherein dependent variable are 

assigned only binary values (e.g., zero or one, true or false) [25]. This is widely used in 

the fields of political sciences and econometrics. The probit model is based on the 

cumulative distribution function of the standard normal distribution and processes a set 

of independent variables for determining the probability of belonging to a certain class. 

It is based on the cumulative distribution function of the standard normal distribution.  

Much like the logit model, the probit model also uses a link function to bound the output 

between zero and one, called as the probit link function. The coefficients in the probit 
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model are calculated in a way similar to the logit model, using maximum likelihood 

estimation.   

To better understand the probit model, assume 𝑡 is a function of an explanatory 

variable 𝑥. Then, 𝑡 can be expressed as: 

𝑡 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 … + 𝛽𝑛𝑥𝑛 + 𝜀 = 𝑋𝛽 + 𝜀 

Now assume the model takes the following from: 

Pr(𝑌 = 1|𝑋) = Φ(𝑋𝛽 + 𝜀) = 𝐾 

where Φ is the Cumulative Distribution Function of the standard normal distribution and 

the value of 𝑋𝛽 can determined from ′𝑧′ values. 

The probit link function for the probit model can be defined as: 

𝐹(𝐾) = Φ−1(𝐾) 

Additional parameters are estimated using maximum likelihood estimation. In the probit 

model, the value of 𝑋𝛽 is the z-value of a normal distribution, where a higher value of 

𝑋𝛽 indicates the event is more likely to happen. The use of standard normal distribution 

causes no loss of generality when compared with the use of an arbitrary mean and 

standard deviation, primarily because adding a fixed amount to the mean can be 

compensated by subtracting the same amount from the intercept. 

4.3 Artificial Neural Network 

ANN is a machine learning classification (or prediction) algorithm heavily 

influenced by the structure of neurons in the brain [9]. Such algorithms have been 

successfully used in many fields of science. This section introduces ANN classification 

for incident-type detection. 
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ANN architecture is simple, yet powerful, performing well with limited dataset 

and input parameters. Data is divided into two sets, training and testing. The training data 

is fed into the neural network to train it for weights, which then can be used for 

classifications and in the next part determining the relative importance of the features. 

The testing dataset is used to test how well is the neural network performing. The 

architecture considered for the ANN modelling resembles Fig 4.1, where it has thirteen 

input nodes, seven hidden nodes and a single output node to provide probabilities of 

incident belonging to a certain class.  

 

Figure 19. A simple Artificial Neural Network  

Neural network classifiers are based on Multi-Layer Perceptron (MLPs) and 

similar to logistic models [21]. The neural network is divided into three layers—input, 

hidden, and output.  

The output of the hidden layer can be calculated as follows, where 𝑤𝑖𝑘 is the 

connection weight between 𝑖𝑡ℎ input neuron and 𝑘𝑡ℎ hidden layer neuron: 

𝑛𝑒𝑡𝑘 = ∑𝑤𝑖𝑘𝑥𝑖 + 𝜃𝑖  

𝑛𝑒𝑡𝑘 is then passed through an activation function: 
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ℎ𝑘 =
1

1 + 𝑒−𝑛𝑒𝑡𝑘
 

Similarly, weights are calculated for the output of the hidden layer to the output layer:  

𝑛𝑒𝑡𝑗 = ∑𝑤𝑘𝑗ℎ𝑘 + 𝜃𝑗  

where 𝑤𝑘𝑗 is the weight between neurons in the hidden layer and the output layer, and 𝜃𝑗  

is the bias term. The output of the hidden layer is represented using ℎ𝑘, and then 

normalized and bound between 0 and 1; the result is interpretable as probability and 

achieved using the following equation: 

𝑦𝑝 =
1

1 + 𝑒−𝑛𝑒𝑡𝑗
 

In this research both models were considered collectively to increase the explanatory 

power of the features and understand their impact of features in classification.  

Notably, ANN is trained using the training dataset before training weights are 

validated using the validation datasets. If accuracy or loss is not acceptable, changes can 

be made to the ANN structure by a) adding additional features, b) changing the number 

of nodes in the hidden layer or the number of epochs, or c) making similar adjustments 

etc.  

4.4 Results - Statistical and Artificial Neural Network Models 

The statistical and ANN models mentioned in the previous section were provided 

data from the Accident database prior to obtaining results. The models can then be used 

to automate primary and secondary incident classification.  

This following section discusses the parameters used to gauge model and offers a 

comparative analysis to determine the optimal model given a particular dataset. 
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4.4.1 Results from the Logit Model 

The logit model is a statistical model employing a logistic link function to bound 

the output between 0 and 1. The logistic model was created in Python leveraging the 

Statsmodels library. Data was divided into training and testing datasets with a split of 70-

30, respectively. The model, then, was trained with the former dataset. Table 3 shows 

results derived from the logit model. 

  coef OddsRatio P>|z| 

Intercept -1.3411 0.1913744 0.322 

C(Weather_Conditions)[T.3L] 0.6222 2.111998 0.26 

C(Weather_Conditions)[T.4L] 0.9132 3.286169 0.027 

C(Weather_Conditions)[T.6L] 1.1729 2.811445 0.044 

C(Weather_Conditions)[T.8L] 20.8792 4.35728E+12 1 

C(Light_Conditions)[T.2L] -0.5897 2.995745 0.564 

C(Light_Conditions)[T.3L] 0.1713 1.259635 0.631 

C(Light_Conditions)[T.5L] 1.9051 15.69422 0.014 

Collision_Time 0.0129 1.017518 0.796 

Vehicles 0.4181 1.73322 0.017 

Commercial_Vehicles 0.7481 1.634679 0.092 

Number_Lanes -0.4668 0.5377444 0.039 

Damage_Extent 0.0632 0.9575034 0.697 

Average_Traffic 7.23E-

06 

1.000012 0.203 

 Table 3. Coefficients and odd ratio for Logit Model 

The logit model uses maximum likelihood estimation to optimize parameters. 

Coefficients alone can be somewhat difficult to interpret and are only used for calculating 

probability using the mathematical form described in Section 4.2.1. The odds ratio can, 

however, be interpreted as the effect an additional unit of a feature would have on 

classification. For example, given that the odds ratio for Number_Lanes is .5 (which can 

be interpreted for each additional lane added to the highway), the chances of a secondary 

incident are .5 times as large. The p-values provided in the results table offer valuable 

insight into the data and demonstrate the effect on the overall model. A p-value of less 
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than 0.10 defies the null hypothesis, asserting that values in the dataset are important to 

model functionality. A p-value of approximately 1 signifies that the dataset values are not 

as important. If provided with mean of data, results would be the same. A confusion 

matrix was generated to analyze and understand the accuracy and precision of the model.     

True Positives (TP) False Positives (FP) 

False Negative (FN) True Negatives (TN) 

Table 4. Confusion Matrix representation 

Accuracy and precision from the confusion matrix can be calculated as: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

where TP, TN, FP, FN represent the true positive, true negative, false positive, and false 

negative components of the matrix. The logit model performed with 67% accuracy and 

48% precision. Although accuracy was acceptable, the model did not meet the acceptable 

precision objective.  

A true positive rate vs. false positive rate plot was generated to determine the 

effectiveness of the prediction method. A curve leaning to upper left corner would 

represent an ideal scenario. Figure 20 shows that the logit model Receiver Operating 

Characteristic (ROC) curve stays above the dashed diagonal line, meaning that the model 

is predicting rather than guesstimating the class of an incident. However, performance 

was less than desirable, as many incidents were classified as false positives and false 

negatives. The area under the ROC curve can be used to compare the performance of 

different models.   
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Figure 20. ROC for logit model 

4.4.2 Results from the Probit Model 

The statistical probit model can be used for binary classification and is typically 

utilized in the econometric field. The model is similar to the logit model, the only 

difference being the activation function. The probit model uses the cumulative 

distribution of the standard normal distribution to bound the output between 0 and 1. Like 

the logit model, the p-values in the probit model provide insight to the uniqueness of the 

data in the dataset. The odds ratios provide an insight to an increase of one unit in a feature 

affects the odds of classification as secondary incident and p-values less than 0.10 

represent a feature that defies the null-hypothesis and contribute to the classification of 

the incident because of its uniqueness.   

Table 5 enumerates results obtained after executing the probit model using the 

training dataset. 
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coef OddsRatio P>|z| 

Intercept -0.7949 0.451621 0.332 

C(Weather_Conditions)[T.3L] 0.3369 1.400595 0.31 

C(Weather_Conditions)[T.4L] 0.4982 1.645807 0.037 

C(Weather_Conditions)[T.6L] 0.6641 1.942813 0.057 

C(Weather_Conditions)[T.8L] 7.5359 1.345443 1 

C(Light_Conditions)[T.2L] -0.3857 0.679976 0.529 

C(Light_Conditions)[T.3L] 0.1041 1.109763 0.635 

C(Light_Conditions)[T.5L] 0.9966 2.709062 0.013 

Collision_Time 0.0102 1.010238 0.735 

Vehicles 0.2492 1.282982 0.018 

Commercial_Vehicles 0.4607 1.58515 0.094 

Number_Lanes -0.2821 0.754233 0.036 

Damage_Extent 0.0327 1.033282 0.729 

Average_Traffic 4.58E-06 1.000005 0.177 

Table 5. Coefficients and odd ratio for Probit Model 

The probit model performed with a 66% accuracy and 48% precision. The area 

under the ROC curve for the probit model was less than that of the logit model, 

demonstrating a decrease in accuracy. In fact, the probit model performed much like the 

logit model with the same precision. Suboptimal precision in both statistical models 

makes them difficult to use, as a classification model should have better accuracy and 

precision.  

 

Figure 21. ROC for Probit model 
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4.4.3 Results from the Artificial Neural Network Model 

ANNs have proven acceptable for both accuracy and precision in classification 

solutions and been used as classifier for many problems. In this work, the ANN model 

used the same data as the statistical model, with a 70-30 divide between training and 

testing datasets.  

 

Figure 22. Loss vs epoch plot  

 

Figure 23. Accuracy vs epoch plot 

Neural network training was performed for 110 epochs. Figure 22 illustrates the 

point at which training should cease. Similarly, accuracy vs. epoch plot commences 

forming a flat tail when raining approaches 110 epochs. 
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Figure 24. ROC for ANN model 

The ROC plot takes on a good shape, indicating that the model is accurate. The 

area under the ROC curve in the ANN model was substantially superior to that of the 

statistical logit and probit models. ANN achieved 91% accuracy and 89% precision using 

the same testing dataset. 

An overview of the accuracy and precision scores for the various tested models is 

shown in Table 6. ANN clearly outperforms statistical models for both accuracy and 

precision.  

 Logit Probit ANN 

AUC 0.669981188 0.665143779 0.91104182 

Precision 0.48 0.48 0.890909091 

Table 6. Comparative analysis of different models 
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Chapter 5: Factors Influencing Secondary Incidents 

Having been utilized in various scientific fields, ANN has been proved a suitable 

model for classification problems. Despite the obvious benefit of providing impressive 

results for classification, ANN results can sometimes be hard to interpret and provide 

little or no information on the significance of independent variables. However, in 

transportation engineering, knowing independent variables that influence the model 

classifying certain incidents as primary or secondary can be extremely beneficial. For 

example, knowing that the presence of commercial vehicles on a highway is related to 

classifying a particular incident as secondary incident, the transportation department can 

take preventative steps for controlling and/or avoiding certain situations. 

To address this challenge, a connection weight algorithm [15] was used to gauge 

determine variable importance in ANN. Such information can be used to better 

understand the influence of certain independent variables on classification and to make 

recommendations for improving data collection or identifying scenarios where secondary 

accidents are highly likely to happen. 

5.1 Connection Weight Algorithm 

The connection weight algorithm is the preferred method for accessing variable 

importance in simple feed-forward neural networks. Characteristics of such neural 

networks can be described as having an input layer and a hidden layer, as well as being 

fully connected and trained, using the back-propagation algorithm. Although 

characterized by simple architecture, these neural networks are good predictors. The 

connection weight algorithm considers neuron final weight between input layer and 
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hidden layer, as well as between hidden layer and output layer. To further understand the 

process, consider the following neural network.  

 

Figure 25. A simple three-layer neural network 

Simple neural network architecture follows the rules of the connection weight 

algorithm. Weights from the input layer to the hidden layer are as follows. 
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Hidden 
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Input 1 -0.93 -1.49 0.37 

Input 2 -0.57 1.74 -0.14 

Input 3 -0.85 0.09 0.84 

Input 4 0.25 0.36 0.05 

Table 7. Input to hidden connection weights 

Weights from the hidden layer to the output layer are as follows. 
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Output -1.75 1.13 -1.01     

    

Table 8. Hidden to output connection weights 
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The next step is calculating the product of the input- to hidden-layer connection weight 

with the hidden- to output-layer connection weight. The resulting products are as 

follows. 
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Hidden 

A 

Hidden 

B 

Hidden 

C 

Input 1 1.63 -1.68 -0.37 

Input 2 1.00 1.97 0.14 

Input 3 1.49 0.10 -0.85 

Input 4 -0.44 0.41 -0.05 

Table 9. Product of input-hidden connection weights to hidden output connection 

weights 

After calculating the product, corresponding variable importance can be 

calculated by summing results across the hidden nodes.  

 Importance Rank 

Input 1 -0.43 4 

Input 2 3.11 1 

Input 3 0.74 2 

Input 4 -0.08 3 

Table 10. Variable importance by Connection Weight approach 

The connection weight approach offers a fair idea of how an independent 

variable influences the model for certain classification. Similarly, the effect of variable 

influence on secondary incident classification was calculated and can be seen in Figure 

25. Weight from training the neural network is available in Appendix D. 

Results from executing the connection weight algorithm demonstrated that 

features like collision time, number of vehicles, and presence of commercial vehicles 

heavily contributed to the model for accurately detecting secondary incidents. Similarly, 

weather related conditions (e.g., normal or light fog) did not affect the system as much as 

snow or icy conditions.  
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Figure 26. Independent variable influence for secondary incident detection 

W_1 Clear 

W_2 Fog/Smog 

W_3 Cloudy 

W_4 Rainy 

W_5 Snow 

W_6 Sleet/Hail 

W_7 Severe Crosswind 

W_8 Blowing Snow 

Table 11. Legend for weather conditions 

L_1 Daylight 

L_2 Dark-Not Lighted 

L_3 Dark-Lighted 

L_4 Dawn 

L_5 Dusk 

Table 12. Legend for light conditions 

Neural network complexity can be understood, and methods like connection weight 

algorithm can be used to gain explanatory insights into how independent variables 

influence the models’ decision-making ability. 
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Chapter 6: Conclusion and Future Work 

The work in this thesis presented an approach for identifying secondary incidents 

and understanding the spatiotemporal area-of-influence of primary incidents and various 

associated parameters. Results suggest that detecting secondary incidents can improve 

vehicle passenger safety and aid in effective utilization of transportation network 

resources.  

Data from ODOT was utilized to define a dynamic boundary for primary incident 

spatiotemporal area-of-influence, and then leveraged using a memoryless queuing 

mechanism. Incorporating real-world highway dynamics (e.g., lane blockage, lane 

change, variable inter-arrival time, inconsistent traffic conditions at given times of day, 

variety of vehicles, weather, lightning) resulted in a more comprehensive and accurate 

algorithm. The combination of such parameters with a memoryless queueing mechanism 

proved to be an improved solution and provide an adaptive system for determining the 

spatiotemporal area-of-influence of primary incidents. A newly designed GUI 

encapsulated the process for determining the spatiotemporal area-of-influence and 

facilitating data collection and research.  

Logit and probit, as well as ANN, models aided in understanding the relationship 

between primary and secondary incident features, as well as the likelihood of a secondary 

incident to occur. This research suggests the use of neural networks for incident 

classification based on a given number of features. Neural networks outperformed logit 

and probit models in terms of accuracy and precision.  

A connection weight algorithm was used to define the relative feature importance 

of various independent variables and aided in further understanding of features affecting 
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secondary incident classification in further detail. The importance of this discovery will 

advance the base knowledge of possible root causes for secondary incidents and improve 

data collection for future studies. 

Future work related to analyzing and identifying secondary incidents could 

include generating a more comprehensive dataset, including features like duration of 

incident and lane blockage during an incident. This type of information will aid in 

modeling scenarios for future studies and forecasting while also validating the accuracy 

of the current approach for detecting the threshold of primary incident spatiotemporal 

area-of-influence. 
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Appendix A: Neural Network Connection Weights 

Input hidden connection weights: 

 A B C D E F G 

Rush 0.69271 0.777883 0.684415 0.342325 -0.07679 0.811768 0.261276 

W_3 -1.29719 -0.00645 0.128218 -0.99929 -1.10178 0.171364 0.040599 

W_4 1.159608 0.213143 0.034387 -0.66016 -0.04609 0.442911 0.314572 

W_6 0.520552 -1.20084 0.315501 0.340511 0.591987 -0.59904 -1.01597 

W_8 0.053541 0.499754 0.912387 -0.17719 -0.02768 -0.42908 -0.65266 

L_2 0.325479 0.597245 -0.39884 0.251416 0.73503 0.237695 0.566599 

L_3 0.175793 -0.4718 1.291586 0.512648 -0.13926 0.110973 0.249066 

L_5 0.665901 -2.58659 -1.04436 -0.37161 -0.09469 -2.1639 -1.3726 

vehicles -0.86972 0.315213 -0.20352 0.199212 0.834422 0.035555 0.216745 

c_vehicles 1.093651 -0.59043 -0.62619 -1.19255 1.434648 0.238632 -0.05639 

number_lanes 0.104821 -0.59005 0.094154 -0.22013 0.332132 -0.90319 0.32808 

damage_extent 0.570255 0.138818 1.274808 0.921009 0.296363 -0.2668 -0.37151 

average_traffic 0.597507 0.588416 -0.3907 -1.37449 -0.01554 -0.3746 0.690666 

 

Hidden output connection weights: 

 Hidden Nodes 

A 1.809079 

B 1.520681 

C -1.13517 

D 1.137134 

E 1.331394 

F -1.629735 

G -0.999267 

 

 

 


