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Abstract 

The use of chemical stabilization of soft soils to achieve increased strength and 

decreased compressibility for subgrade and site improvement applications is a well-

documented and accepted practice in geotechnical engineering. As use of cement 

mixing continues to grow in popularity and new applications are proposed, it is 

important for researchers and designers to have robust and reliable tools for the analysis 

and design of geotechnical systems utilizing this technology. The need for such tools 

becomes all the more important when the behavior of such systems has to be analyzed 

during seismic events. Computational modeling techniques (e.g., finite element or finite 

difference analysis programs) can be very useful in predicting the behavior of a 

proposed geotechnical system or structure under different loading conditions before its 

construction. However, the overall predictive capabilities of such tools are reliant on the 

algorithms which calculate the stress-strain responses of the individual elements of the 

model; i.e., the constitutive models. 

This research details a bounding surface elastoplastic constitutive model which 

accounts for the effects of cementation through soil sensitivity and size and aspect ratio 

of the bounding surface. Destructuring of stabilized soil structure is tracked as a 

function of volumetric and deviatoric plastic strain accumulation. In order to predict 

plastic strain accumulation due to unloading and reloading/load-reversal events, the 

bounding surface concept is extended to incorporate a relocating projection center. 

Model predictions are compared with consolidation and conventional drained and 

undrained triaxial compression test results to demonstrate the predictive capability of 

the model for monotonic loading. A forecast of an undrained, stress-controlled, two-



xviii 

way cyclic shear triaxial test is shown to demonstrate the model’s ability to capture 

stress-strain phenomena associated with structure degradation due cyclic loading. The 

proposed model is able to adequately capture the general stress-strain behavior of 

normally consolidated and lightly overconsolidated soils in post-yield, under drained 

and undrained compression loading. Suggestions are made to improve the model 

predictions for soils in pre-yield and soils undergoing large strains. These suggestions 

include better methods for characterizing the initial sensitivity and its evolution and 

introducing a non-associative flow rule.



1 

 Introduction 

Geotechnical engineers are often faced with the challenge of working on sites 

with soft or marginal soils. As a result, many design methodologies for negating the 

soil’s undesirable characteristics have been devised: loose soils may be compacted to a 

more desirable density; highly compressible soils may be pre-consolidated prior to 

construction; swelling soils may be isolated from sources of moisture or have moisture 

control implemented as part of the final design; and soft soils may be strengthened 

through use of chemical admixtures. Cement-improvement, i.e., chemical stabilization 

using cement as the bonding agent, is being used in a wide array of applications 

including subgrade strengthening, site remediation, excavation support, bridge abutment 

and embankment support, hydraulic cutoff, and deep foundation strengthening against 

lateral loading both on and offshore. This technology may also be used in remediation 

of existing structures through jet grouting.  

As use of cement mixing continues to grow in popularity and novel applications 

are proposed, it is important for researchers and designers to have robust and reliable 

tools for the analysis and design of geotechnical systems utilizing this technology. The 

need for such tools becomes all the more important when the behavior of such systems 

has to be analyzed during seismic events. The behavior of natural soils and soil-

structure interaction under dynamic loading are complex problems in and of themselves, 

so additional variables introduced by the inclusion of cement-mixed soils can make the 

design of such systems all the more complicated. Computational modeling techniques, 

e.g. finite element or finite difference analysis programs, can be very useful in 

predicting the behavior of a proposed geotechnical system or structure under different 
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loading conditions before its construction. However, the overall predictive capabilities 

of such tools is reliant on the algorithms which calculate the stress-strain response of the 

individual elements of the model; i.e., the constitutive models.  

1.1 Motivation 

 A number of constitutive models have been proposed to describe the stress-

strain behavior of artificially cemented clayey soils. Most of these models have been 

formulated for soils mixed with small amounts of cement additives (Xiao et al. 2016), 

and none have been specifically formulated to predict the behavior of cement-admixed 

clays subjected to cyclic loading. An essential aspect of cyclic modeling is the 

prediction of plastic strains during non-virgin loading (i.e., unloading and 

reloading/load-reversal). Most of the models proposed in the literature have the ability 

to predict plastic strains during reloading events, but none account for plastic strains 

during unloading or load-reversal events. This capability is crucial because: 

 Cement-admixed clays do not behave elastically during unloading/load-reversal; 

the magnitude of pore water pressure and strain accumulation due to variable 

loading/unloading/load-reversal cycles which occur during seismic events will 

thus be best predicted if unloading/load-reversal is represented as an 

elastoplastic process, and 

 Many researchers have characterized degradation of cemented-soil structure as a 

strain-dependent process. Predicting plastic strain accumulation during 

unloading/load-reversal events should allow better characterization of soil 

destructuring during cyclic loading. 
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1.2 Organization of dissertation 

 This dissertation is organized by chapters. A review of the literature pertaining 

to the stress-strain behavior of saturated clays under cyclic loading and cement-

improved cohesive soils under both monotonic and cyclic loading is provided in 

Chapter 2. A discussion of the constitutive models formulated to predict the behavior of 

these soils will also be presented in Chapter 2. Chapter 3 puts forth the formulation of 

the proposed constitutive model, including the basic formulation of traditional plasticity 

and the bounding surface concept. A discussion of the implementation of the proposed 

model into a computer code is included in Chapter 4. A guide for the determination of 

the required model parameters, and sensitivity analysis of the parameters, is presented 

in Chapter 5. The proposed model is validated by comparing test results with model 

predictions in Chapter 6. Finally, conclusions and recommendations are provided in 

Chapter 7. 

  



4 

 Literature review 

 Before entering into a discussion of pertinent constitutive models currently 

available in the literature, it is appropriate to examine the stress-strain behaviors 

exhibited by cement-mixed clays and saturated clays under cyclic loading. Results of 

cyclic shear testing on cement-mixed, or artificially chemically improved, clays are of 

limited availability in the literature; however, some effort will be made to discuss 

important features observed in the limited dataset. A discussion of models formulated to 

predict the stress-strain behavior of naturally bonded/structured clays, soft rocks, and 

cyclically loaded clays will follow. 

2.1 Overview of behavior of interest 

2.1.1 Cyclic shearing of saturated clays 

The stress-strain response of cyclically loaded cohesive soils is a subject which 

has been studied since the 1960’s (Larew and Leonards 1962). The body of knowledge 

is quite extensive; interested readers should refer to the research report by Nieto Leal 

and Kaliakin (2013) for a comprehensive review of the seminal works on the subject. In 

their research, Nieto Leal and Kaliakin (2013; 2016) identify the following as some of 

the main features of the cyclic response of cohesive soils: 

 A “cyclic threshold” stress or strain exists which can predict if a specimen will 

quickly reach an equilibrium state (characterized by no increase in inelastic 

strains, stiffness degradation, and excess pore water pressure [PWP] generation) 

or will experience large strains before reaching the equilibrium state or failure. 

This threshold is approximately 2/3 of the failure strength of the specimen in a 
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monotonic load test, but can be influenced by specimen properties such as 

overconsolidation ratio (OCR). 

 For normally consolidated specimens, the generation of excess PWP causes a 

decrease in effective stresses during loading, which can be interpreted as an 

apparent overconsolidation. 

 The rate and magnitude of strength and stiffness degradation of the specimen is 

dependent on the stress (or strain) levels, frequency of loading, and OCR.  

 Excess PWP and inelastic strains develop more rapidly under two-way loading 

than for one-way (non-reversal) loading. 

 There is a strong correlation between the generation of excess PWP and the 

relationship between the cyclic deviatoric stress (qcyclic) and the threshold 

deviatoric stress (qthreshold), as depicted in Figure 2.1-1.  

o When qcyclic falls under the threshold, the excess PWP strictly increases 

during loading and decreases during unloading (not shown). 

o If the qcyclic exceeds the threshold by a relatively small amount, the 

excess PWP generation will increase during loading and decrease during 

unloading, but will not be of the same magnitude (see Figure 2.1-1a). 

o At an even higher value of qcyclic, the excess PWP will initially decrease 

during unloading, but will ultimately increase before the beginning of the 

next loading increment (see Figure 2.1-1b). 

o For very high values of qcyclic, the excess PWP will exhibit larger 

increases during unloading (see Figure 2.1-1c). 
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It is widely accepted that plastic deformations can occur during unloading 

phases of a cyclic loading test before the full reversal of the stress path. Although this is 

not explicitly outlined by Nieto-Leal and Kaliakin (2013), the above discussion of 

generation of excess PWP is inextricably related to the observed inelastic behavior. The 

consideration of plastic deformations during unloading phases is a key addition to the 

formulation of cyclic-loading specific models which will be discussed at length in 

Section 2.2. 

2.1.2 Stress-strain behavior of cemented clays 

Mixing cement into soil creates bonds between soil particles. Such bonds create 

an increase in shear strength and stiffness in the mixed specimens. But the differences 

in the stress-strain behavior are more nuanced and become more evident with increased 

bonding. The degree of bonding can allow a specimen to act similar to a naturally 

structured clay, a soft rock, or somewhere in between. The behavior of this geomaterial 

is, however, ruled by the strength and degradation of the cementitious bonds. 

Figure 2.1-1: Strain-excess PWP curves for various cyclic deviatoric stresses in 

relation to threshold stress (Sheu 1984) 
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In consolidation tests, cement-mixing increases the yield stress and can affect 

the consolidation parameters. In Figure 2.1-2, the trend of increasing yield stress and 

increasing slope of the virgin compression line (λ) can be observed with increasing 

cement content. The virgin compression line of the cement-mixed soil may also exhibit 

nonlinearity, with the slope approaching the slope of the parent soil’s virgin 

compression line. This has been considered evidence of the gradual destructuring, 

breaking of the cement bonds, during loading. Theoretically, the specimen will exhibit 

behavior similar to that of the parent clay after complete destructuring.  

a) b) 

  

Figure 2.1-2: Effect of cementation on (a) oedometer and (b) isotropic 

consolidation results (Kamruzzaman et al. 2009) 

Because of the increase in yield stress associated with cement-mixing, these 

soils are often said to have an “artificial” stress history. The concept of artificial stress 

history also has implications in monotonic shear results. Cemented clay specimens 

which have been created in the laboratory, and therefore have no stress history, will 

exhibit dilation and peak/residual behavior associated with overconsolidated clays at 

relatively low confining stresses; however, identical specimens will exhibit a lesser 

tendency toward dilation behavior at higher confining stresses. These effects can be 
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observed in both undrained and drained triaxial compression tests as shown in Figure 

2.1-3, Figure 2.1-4, and Figure 2.1-5. 

 

It is notable that the peak/residual strength behavior is evident in most of the 

results and becomes more prominent as the confining stresses increase. This decrease in 

strength has been taken by many researchers as evidence of breakdown of the 

cementitious bonds within the sample during loading. The terms ‘pre-yield shear 

behavior’ and ‘post-yield shear behavior’ used to categorize testing results in   

Figure 2.1-3: Effective stress path results from CIUC tests on cement-improved 

clay samples (Chiu et al. 2009) 

Figure 2.1-4: CIUC test results on cemented-improved clay specimens with 

varying confining pressures (Chiu et al. 2009) 
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Figure 2.1-5: CIDC test results with varying cement content, total water to cement 

ratio, and confining stress (Miura et al. 2001) 
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Figure 2.1-3 and Figure 2.1-4 indicate the important role the imposed stresses will have 

in the degree of destructuring; if the stresses imposed are low in comparison to the 

strength of the cementitious bonds, very little destructuring will occur within the 

specimen. This relationship can also be noted in the deviatoric stress (q) – strain (ε) 

shown in Figure 2.1-5. The results for specimens with cement content, Aw = 12%, 

clearly show the influence of the confining pressure: the specimens with smaller 

confining pressures exhibit their peak strength at smaller strains (i.e., they act more like 

a brittle material). Decreased brittleness can be explained by the increased destructuring 

that results from the increased confining pressure. One may also note that the influence 

of confining pressure decreases with increased bonding/bond strength.  

Much of the published literature on the cyclic behavior of cement-improved 

cohesive soils has focused on pavement applications, where the imposed stresses are 

generally very small (Abu-Farsakh et al. 2015; Ardah et al. 2017; da Fonseca et al. 

2013; Panico and da Fonseca 2016). Such studies focused on the accumulation of 

permanent strains and evolution of shear stiffness with increasing load cycles. Figure 

2.1-6 shows the results of a series of drained cyclic triaxial loading tests on unimproved 

and improved specimens with 3, 5, and 7% cement contents (Panico and da Fonseca 

2016). In order to remain in the elastic zone, the axial load imposed was cycled between 

10 and 20% of the ultimate deviatoric stress of the specimen type. Figure 2.1-6a and 

Figure 2.1-6b show that, for cemented specimens, a threshold exists after which the rate 

of axial strain accumulation increases dramatically, indicating a loss of structure in the 

specimens. Additionally, Figure 2.1-6c and Figure 2.1-6d show that the cemented 

specimens exhibit dilation, similar to the behavior of overconsolidated clays, after 
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reaching the threshold; the observation of dilation behavior reinforces the concept of 

cement-improvement causing an artificial stress history. Figure 2.1-7 shows the 

degradation of the secant shear modulus is related to the number of loading cycles and 

to the level of imposed deviatoric stresses (Sharma and Fahey 2003). Arrows in Figure 

2.1-7a indicate a deviatoric yield stress, separating zones of almost-constant and rapidly 

decreasing shear stiffness. Sharma and Fahey (2003) note that with increasing numbers 

of cycles, this yield stress becomes more difficult to define. Subramaniam and Banerjee 

(2014) characterized the degradation of the shear modulus for cement-admixed soils 

tested at larger shear strain amplitudes. 
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Figure 2.1-6: Evolution of the accumulated deformation with number of cycles (a) 

& (b) axial deformation, (c) & (d) volumetric deformation for samples with e0 = 0.6 

& 0.75, respectively (Panico and da Fonseca 2016) 
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Stress-strain behavior of an individual specimen has been shown to be 

influenced by a number of factors including: cement content, total water-to-cement 

ratio, initial void ratio, curing conditions and curing time (Miura et al. 2001). Although 

the behavior of a cement-mixed specimen cannot be characterized directly by the 

cement content, it will be prudent to describe the degree of cementation with a single 

value. A discussion of such a bond parameter, as well as other modeling techniques, 

will be discussed in Section 2.3. 

 

Figure 2.1-7: Variation of secant shear modulus with (a) deviatoric stress and (b) 

shear strain amplitude for various loading cycles (Sharma and Fahey 2003) 



13 

2.2 Models for cyclic shear loading of saturated clays 

An essential aspect of cyclic modeling of cohesive soils is the prediction of 

plastic strains during non-virgin loading (i.e., during reloading and load-reversal). Many 

authors have noted that constitutive models which include multi-surface or bounding 

surface plasticity theories may provide adequate predictions of cyclic shear response 

through predicting plastic strains during reloading events. However, this is in fact the 

barest necessity in making such predictions (Cambou and Hicher 2010); a model should 

also be capable of predicting plastic strains during unloading events in order to be fully 

capable of predicting cyclic behavior. Some authors have sought to include this 

capability by proposing use of a distinct plastic modulus for virgin loading, unloading, 

and reloading stages (Hong et al. 2014; Wathugala and Desai 1993).  

Another set of models created to describe the behavior of cyclically loaded 

materials implement variations on the Masing rule (Masing 1926). The original rule, 

formulated for one-dimensional loading, has been shown to be applicable to a great 

number of materials with few modifications (Montáns 2000). In fact, it has been shown 

that Mroz type multi-surface kinematic hardening models will ensure the Masing rule, 

including characteristic closed and stabilized hysteresis loops for the first or second 

loading cycle (Montáns 2000; Navarro et al. 2005).  

Researchers have adopted the bounding surface plasticity theory on top of the 

Masing rule to address variable hardening during increased loading cycles. A number of 

constitutive models utilizing the extended Masing rule and bounding surface plasticity 

have been proposed to describe the behavior of cohesive soils under cyclic loads. This 

family of models is characterized by a translating projection center and bounding 
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surface which undergoes isotropic and kinematic hardening (Hu and Liu 2015; Li and 

Meissner 2002). Figure 2.2-1 demonstrates the evolution of the bounding and loading 

surfaces and relocation of the projection center, as formulated by Li and Meissner 

(2002). Figure 2.2-1a shows isotropic consolidation loading along the p’-axis with the 

projection center at the origin O. In Figure 2.2-1b, the projection center has translated to 

point x upon the change of direction of the total stress path (TSP). A loading surface (f1) 

will undergo isotropic hardening during the current loading event, indicated by arrow 

XA. The bounding surface (F1) and loading surface (f1) are homologous and tangential 

at the projection center. When the TSP direction is changed at the end of the loading 

event, the projection center translates to point A, the point of the stress path reversal, as 

demonstrated in Figure 2.2-1c. In addition to the translation of the protection center, the 

bounding surface (F1) undergoes kinematic hardening such that the new bounding 

surface (F2) is now tangential to the loading surface (f1) at A. Following the update of 

the bounding surface, the loading surface is replaced with a new loading surface (f2) to 

describe the loading taking place during the current loading event, signified by arrow 

AB.  

Relocation of the projection center for bounding surface models has also been 

adopted in the absence of kinematic hardening of the bounding surface. Seidalinov and 

Taiebat (2014) and Nieto Leal (2016), among others, present formulations which utilize 

rotational hardening of the bounding surface and a changing projection center to predict 

the induced anisotropy and hysteresis behavior of cyclically loaded clays. Noting the 

reliance of the bounding surface on Lode angle, Nieto Leal (2016) proposed an 

extended radial mapping scheme to ensure correctness of the Lode angle used to 
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determine the similarity ratio and image values of the stress invariants, when the 

projection center may not be located on the I-axis (in I-J space) or the origin of the π-

plane. Additionally, Nieto Leal (2016) incorporated a degradation term into the shape 

hardening equation to emulate the decrease in soil stiffness under increasing number of 

loading cycles. 

 

2.3 Elastoplastic models for bonded/structured geomaterials 

 A number of constitutive models for naturally structured, naturally bonded and 

artificially bonded cohesive geomaterials have been proposed by researchers. Many aim 

to modify existing models for remolded cohesive soils. Many of these new models 

account for increased strength, apparent cohesion, increased void ratios, and 

destructuring.  

In many of these models the yield surface is assumed to have the same shape as 

that of the parent soil, but the size is increased to account for higher strength (Arroyo et 

Figure 2.2-1: "Movement of bounding and loading surfaces in stress space: (a) 

virgin loading, (b), (c), and (d) non-virgin loading" (Li and Meissner 2002) 
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al. 2011; Arroyo et al. 2012; Asaoka et al. 2000; Horpibulsuk et al. 2010; Lee et al. 

2004; Nova et al. 2003; Suebsuk et al. 2011; Yu et al. 2007). This increase in yield 

surface size is defined by the initial isotropic yield strength of the bonded specimen 

(i.e., p′0 or Io). Asaoka et al. (2000), Taiebat et al. (2010), and Baudet and Stallebrass 

(2004) account for the difference in size of the yield surface by employing a similarity 

ratio between the remolded and bonded surfaces (e.g., sensitivity, as discussed in 

Subsection 2.3.2); conversely, several other authors account for the influence of 

bonding on the size of the yield surface through a defined structure strength parameter, 

often defined on the positive p′ axis (Arroyo et al. 2012; Horpibulsuk et al. 2010; 

Nguyen et al. 2014; Nova et al. 2003; Suebsuk et al. 2010; Suebsuk et al. 2011; Yu et 

al. 2007). One common method is to define a parameter, p′c, which is the direct 

contribution of the structure to the isotropic compression strength as shown in Figure 

2.3-1 (Yu et al. 2007). 

 

2.3.1 Yield and plastic potential surfaces 

In general, the yield surface is translated to the left along the p′ axis in order to 

simulate the tensile capacity created through cement mixing. Arroyo et al. (2011), Nova 

Figure 2.3-1: Yield surface proposed in Clay and Sand Model (Yu et al. 2007) 
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et al. (2003), and Yu et al. (2007) define p′t, the value of the bonded yield surface 

intercept in tension, as a decreasing function of the similarity ratio and p′c, the 

difference between the bonded and reconstituted yield surface intercepts in compression 

as shown in Figure 2.3-1. Horpibulsuk et al. (2010), Suebsuk et al. (2010), and Suebsuk 

et al. (2011) define the translation of the yield surface with respect to the bonding 

cohesion parameter, C, which defines the intercept of the translated critical state line 

(CSL) with the q axis as shown in Figure 2.3-2. In order to account for this translation, 

the authors introduce a modified mean effective stress for structured clays: 

p′̅ = p′ + C M⁄  2.3-1 

In this family of models, the authors use p̅′ in place of p’ in the Modified Cam Clay 

yield surface function, which results in a tension zone in the initial yield surface and 

translation of the yield surface during loading. Notable exceptions to the trend to 

include tension zones within initial yield surfaces are Asaoka et al. (2000), who 

ostensibly do not account for cohesion, and Xiao et al. (2016), who account for 

cohesion in the formulation of the bounding surface equation. 

 

Figure 2.3-2: Yield surface proposed in Structured Cam Clay model (Horpibulsuk 

et al. 2010) 
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As previously stated, not all of the proposed models for structured/bonded soils 

utilize the same shape for the yield surface as used in similar models for remolded soils. 

Building upon the work of Suebsuk et al. (2010), Nguyen et al. (2014) and Nguyen et 

al. (2017) redefine modified mean effective stress in order to better fit the failure 

envelope of cemented clays observed in the literature. The authors contend that the 

failure envelope should account for destructuring due to the influence of mean effective 

stress, as shown in Figure 2.3-3. As such, the authors state that the modified mean 

effective stress should take the form: 

p̅′ = p′ +
C(1+

pd′

C+β
)exp(

−pd′

C+β
)

M
  2.3-2 

where p’d is the mean effective stress inducing degradation (i.e. crushing) of the 

cementitious bonds, and β is a fitted rate parameter. If this p̅′ is used in place of p’ in the 

Modified Cam Clay yield surface function, as proposed by Horpibulsuk et al. (2010), 

the yield surface will not retain its elliptical shape for C>0. 

Figure 2.3-3: Failure envelope proposed in Cemented Cam Clay model (Nguyen et 

al. 2014) 
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Researchers such as Kasama et al. (2000) and Xiao et al. (2016) proposed yield 

surfaces formulated specifically to take the influence of bonding into account when 

defining the shape of the yield surface. The authors derive yield surfaces from a 

modified external energy equation. Kasama et al. (2000) propose the following 

relationship: 

dWin = p̅′√((dν
p)2 + Xdνpdεp + (Mdεp)2) − p′rdν

p 2.3-3 

in which p′̅ = p′ + p′r, where pr′ is a term signifying the additional strength due to 

bonds [similar to Nova et al. (2003), Horpibulsuk et al. (2010), and others discussed 

previously], and Xdνpdεp is a generalized soil dilatancy coupling term, where  

X = (c − 2)η∗ 2.3-4 

and c is a fitted parameter affecting the shape of the surface. The resulting yield 

function will be a pinched ellipse, whose shape and size are determined by the 

parameter c and the value of p′r (the intercept on the negative p’ axis), respectively.  

Xiao et al. (2016) stated that the degree and effect of cementation can be defined 

by the sensitivity, S, and the cohesion intercept of a Mohr-Coulomb failure surface, C. 

The authors proposed a “Mohr-Coulomb generalization” of the Modified Cam Clay 

flow rule, i.e. 

dWin = p′dεv
p
+ qdεs

p
= √(p′dεv

p
)
2
+ ((C + Mp′)dεs

p
)
2
 2.3-5 

to define the yield surface (associated flow rule is assumed). This formulation allows 

the shape of the yield surface (specifically, aspect ratio and cohesion intercept) to be 

directly affected by changes in the cohesion (bond) parameter. Figure 2.3-4 shows the 

evolution of the proposed yield surface due to isotropic compression. One will note that 
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as the cohesion intercept (C) decreases, the aspect ratio of yield surface in p’-q space 

decreases (i.e. the surface becomes wider in relation to its height).  

 

Although allowing the shape (and/or aspect ratio) of the yield surface to change 

during loading is not a feature common to improved soil models, Xiao et al. (2016) are 

not the only authors to build such a capability into their formulations. In their 

modification of the SANICLAY model, Taiebat et al. (2010) define the slope of the 

critical state line (M) of the structured surface as a function of a structuration factor (Sf) 

and the final critical state line slope (M*); i.e.,  

M = SfM
∗  2.3-6 

In the Sydney Soil Model, Liu et al. (2010) define M for a structured soil as: 

M =
M∗

1 + μ ln(p′s p′e⁄ )
 

 
2.3-7 

where p′s and p′e represent the intercepts of the structured and reference yield surfaces 

with the positive p’ axis, respectively; M* is the final (reference) state CSL slope; and μ 

Figure 2.3-4: Evolution of the yield locus in p'- q space (Xiao et al. 2016) 
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is a model parameter indicating the influence of soil structure on the shape of the yield 

surface. 

Where Xiao et al. (2016) derived an expression for a plastic potential and then 

adopted an associative flow rule to determine the yield surface, some researchers 

implemented non-associative plastic potentials, also derived from the energy equation. 

Suebsuk et al. (2010) and Suebsuk et al. (2011) use the stress-dilatancy relationship 

introduced by McDowell and Hau (2003), and coincidentally the same expression used 

for X by Kasama et al. (2000). Therefore the yield surface of Kasama et al. (2000) is the 

same as the plastic potential of Suebsuk et al. (2010) and Suebsuk et al. (2011). Nguyen 

et al. (2014) introduce a new expression for the soil dilatancy coupling term (X) in the 

Kasama et al. (2000) generalized energy equation; i.e.,  

X = (2
α + 1

A
− 2) η∗ 

 
2.3-8 

A = 1 −
p′dC

M(C + β)2
exp(

−p′d
C + β

) 
 

2.3-9 

One will note that this expression resembles the form of that used by Kasama et al. 

(2000), where 2
α+1

A
 stands in for the shape parameter c in Equation 2.3-4. α is coupling 

parameter and one may recall that C, β, and p′d are parameters associated with the 

influence and degradation of cementation. Nguyen et al. (2017) further modify the X 

term in the Kasama et al. (2000) generalized energy equation to relate the size of the 

yield surface (via p’0) to the effects of cement-improvement (represented by the second 

half of Equation 2.3-2). In order to create a model appropriate for artificially cemented 

sands and clays, Yu et al. (2007) propose a modified flow rule derived from minimum 

energy considerations for particle sliding (Rowe 1963; Rowe 1962), based on the 



22 

critical state friction angle and cohesion intercept. The cohesion intercept is assumed to 

decrease with increasing degradation, hence changing the shape of the surface during 

loading. 

2.3.2 Destructuring and its implications on isotropic compression curves 

With structure diminishing during loading, the isotropic compression curve 

cannot be assumed bilinear in void ratio (or specific volume) vs. ln(p’) space. Defining 

the structured compression line (SCL) is, therefore, another important modeling 

consideration in the formulation of constitutive models for structured geomaterials. In 

the simplest case, Lee et al. (2004) define the SCL as a third order polynomial, e(p’), 

calibrated to fit experimental data. Liu and Carter (2000) introduced the hypothesis that 

the SCL was equivalent to the intrinsic compression line (ICL) plus additional void 

ratio due to structure for any mean effective stress: 

e = e∗ + ∆ei (
p′y,i

p′
)
b
, when p′ ≥ p′y,i 2.3-10 

where e*, Δei, and p’y,i are defined graphically in Figure 2.3-5, and b is a rate variable. 

This method has been used in the constitutive models by Liu et al. (2006), Horpibulsuk 

et al. (2010), Suebsuk et al. (2010), and Suebsuk et al. (2011). Rouainia and Muir Wood 

(2000), Baudet and Stallebrass (2004), and Xiao et al. (2016) define the SCL in relation 

to the ICL and current degree of structure, such that: 

p′ = rp′ref 2.3-11 

for a given specific volume, where p’ is the mean effective stress on the SCL, and the 

p’ref is the corresponding stress on the ICL. Baudet and Stallebrass (2004) and Xiao et 

al. (2016) utilize Cotecchia and Chandler’s sensitivity framework (2000), for which the 

parameter r in Equation 2.3-11 is replaced by sensitivity, the ratio of the mean effective 
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stresses (p’) corresponding to equivalent specific volumes (ν) on the isotropic 

compression curves of intact and fully remolded cement-mixed clays (i.e. S =
p′0

p′0u
), 

shown in Figure 2.3-6.  

 

 

Figure 2.3-5: Structured Compression Line (SCL) proposed by Liu and Carter 

(2000) 

Figure 2.3-6: Determination of sensitivity from isotropic compression curves of 

cement-mixed clay in intact and remolded states (Xiao et al. 2016) 

u 
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Representing the decrease in structure during loading is important for capturing 

the softening behavior exhibited by cemented clays. Many researchers model the 

decrease in structure as an exponential function of some damage variable. Asaoka et al. 

(2000), Lee et al. (2004), Suebsuk et al. (2010), and Suebsuk et al. (2011) define the 

damage variable as a function of the plastic deviatoric strain; Baudet and Stallebrass 

(2004), Arroyo et al. (2012), Nova et al. (2003), Yu et al. (2007), and Taiebat et al. 

(2010) define the damage variable as a combination of plastic deviatoric and volumetric 

strain. Alternatively, Liu et al. (2006), Horpibulsuk et al. (2010), and Nguyen et al. 

(2014) propose that degradation of the structure is an exponential function of mean 

effective stress. These formulations assume that crushing of the inter-particle bonds is 

the predominant mechanism of destructuring. Liu et al. (2006) and Horpibulsuk et al. 

(2010) only calculate the effect of crushing when the stress point is on the critical state 

line, but the specimen has not reached critical state (i.e., the modified effective stress 

state travels up or down the critical state line). This crushing is built directly into the 

shape of the failure envelope of the Nguyen et al. (2014) model. Nguyen et al. (2017) 

built upon the earlier work of Nguyen et al. (2014) by stating that the effect of 

cementation, noted as the second term in Equation 2.3-2, will degrade with increasing 

plastic deviatoric strain, as discussed above. Xiao et al. (2016) state that destructuring is 

caused by work done against the cement structure during plastic loading. The derivation 

of the degradation-work relationship relies on the common assumption that the load 

carried by the cementitious bonds is the total load minus the strength of the parent soil 

at the same specific volume, again building off of the sensitivity framework of 

Cotecchia and Chandler (2000). The resulting degradation equation takes the form: 
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dS =
−αυS

p′0
{p′dεv

p
+ qdεs

p
−√(p′udεv

p
)
2
+ (Mp′udεs

p
)
2
} 2.3-12 

where p′u is the mean effective stress on the corresponding unstructured soil yield 

surface, S is the sensitivity, and α is a rate parameter. This formulation can account for 

the crushing caused by large confining stresses, while also incorporating the damage 

caused by deviatoric strains, which may be left out for stress paths with little change in 

p’. 

2.3.3 Artificial stress history and accumulated plastic strain 

 As discussed in Subsection 2.1.2, the cement mixing process creates an artificial 

stress history within the specimen due to the strength of the bonds. Many authors 

recognize that cement improved specimens develop plastic strains during loading, even 

while the stress point is inside the yield surface. Some authors have applied multi-

surface plasticity (Baudet and Stallebrass 2004) and bounding surface plasticity 

(González et al. 2011; Rouainia and Muir Wood 2000; Suebsuk et al. 2011; Xiao et al. 

2016) to better predict the stress-strain behavior of specimens at relatively low 

confining stresses.  

2.4 Other models for bonded/structured geomaterials 

2.4.1 Micromechanical models 

Micromechanical models, described by the Discrete Element Method (DEM), 

are a popular way of describing the interactions of granular materials. At their most 

basic form, these models take local forces and movements and translate them into 

stresses and strains on both the local and macro-scale levels through the energy balance 

principle. Recently, Discrete Element Methods have been used to study bonded 

materials. Such models idealize the contributions of inter-particle bonding with varying 
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complexity. A recent model by Obermayr et al. (2013) describe such bonds as 

Timoshenko beam elements connecting the centers of individual sand particles. A 

simpler formulation, the NS2D model proposed by Jiang et al. (2007), states that 

bonded contacts can carry tensile forces, as well as higher normal and shear stresses in 

compression than unbonded contacts. Once bond strengths are exceeded, the contacts 

are considered unbonded and classical friction laws are reinstated for model 

calculations.  

Zhang et al. (2013) propose a micromechanically informed model for cement 

mixed clay. Cementation in the specimen is represented by additional inter-cluster 

bonding, characterized by additional cohesion in shear sliding and higher strength in 

normal compression. The yield surface, hardening function, and stress/dilatancy 

equation are defined with respect to the inter-cluster cohesion and inter-cluster friction 

angle, which decrease with damage accumulated during loading. 

2.4.2  Disturbed state concept models 

Desai and Toth (1996) described a bonded soil system as a combination of the 

behaviors of two reference states: the relatively intact and fully adjusted states, 

corresponding to bonded and remolded states, respectively. The overall incremental 

stress is a linear combination of the incremental stress of each of the reference states. 

The reference states may be described by any appropriate model (e.g., linear elastic or 

elastoplastic). The contribution of each reference state to the overall behavior is 

controlled by the disturbance variable, D, which is a function of the direction of the 

plastic deviatoric strain increment. Similarly, Vatsala et al. (2001) described a bonded 

system as having two parts: the soil skeleton and cementitious bonds. The stiffness 
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matrices of each system are added to find the stiffness matrix of the combined system. 

Vatsala et al. (2001) propose an elastoplastic formulation with a square shaped yield 

surface in q-p’ space and associated flow rule for the bonds and use the Modified Cam 

Clay model to describe the stress-strain relationships of the unbonded soil skeleton.  

Liu et al. (2016) proposed a binary-medium disturbed state model in which the 

bonded (i.e. intact) and remolded elements are modeled as a brittle bond and a frictional 

plastic slider, respectively. The elastic portions of both element types are modeled as 

springs. The incremental stress-strain behavior of the element is a combination of the 

bonded and frictional element behaviors, dictated by the homogenization theory and 

disturbed state concept. Ouria (2017) uses the disturbed state concept to characterize the 

virgin compression behavior (λ) of structured soils as a combination of the initially 

structured (λRI) and fully remolded (λFA) states where the value of the disturbance 

variable is controlled by the ratio of the current and yield mean effective stresses. Ouria 

(2017) proposes a hybrid disturbed state concept and elastoplastic model by integrating 

the formulation for λ into the Modified Cam Clay model (Roscoe and Burland 1968). 

2.5 Damage models for quasi-brittle geomaterials 

The stress-strain behavior of quasi-brittle geomaterials (e.g., some types of rock, 

concrete, etc.) is related to the creation of micro- and meso-cracks, opening and closing 

of these cracks, and frictional sliding between the crack surfaces. Damage models, 

based on thermodynamic formulations, have been proposed by many authors, including 

Halm and Dragon (1998), Desmorat et al. (2007), and Lanoye et al. (2013). Anisotropy 

and frictional sliding are not always factored into the formulation of such damage 

models, but are required to provide good approximations of behavior under complex 
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loading paths, such as torsion (Lanoye et al. 2013). In isotropic models, and some 

anisotropic models, the damage is denoted by a scalar parameter (Desmorat et al. 2007; 

Lanoye et al. 2013). In the Halm and Dragon (1998) family of models, anisotropic 

damage is tracked as a second-order tensor which can be represented more simply as a 

set of three positive eigenvalues and three orthogonal eigenvectors. As micro-cracks are 

opened during loading, the Young’s and shear moduli are decreased. The uniaxial 

effect, considered by Halm and Dragon (1998) and Lanoye et al. (2013), describes the 

recovery of these moduli when the appropriate micro-cracks are closed during loading. 

Accounting for such behavior results in better approximations of loading/unloading 

cycles. 
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 Model formulation 

Constitutive modeling of cyclic loading of cohesive soils and monotonic loading 

of cement-mixed cohesive soils have been very thoroughly researched independently. 

However, few models have been developed to address cyclic loading of cement-mixed 

cohesive soils. Degradation of cementitious bonds has been documented to be a result 

of both crushing due to confining stress and accumulated plastic strain during shear. 

Xiao et al. (2016) proposed a straightforward formulation which harnesses the effects of 

cementation through parameters that are directly observable in their initial states; i.e., 

sensitivity and the cohesion intercept. The model of Xiao et al. (2016) is used as a 

starting point for the formulation of a new single-surface bounding surface model based 

on the concepts put forth by Dafalias (1986), Dafalias and Herrmann (1986), and 

Kaliakin and Dafalias (1989). However, the Xiao et al. (2016) formulation has several 

weaknesses which will make it difficult to implement into a finite element program, 

namely: a) the formulation relies on triaxial stress invariants, and b) the bounding 

surface (see Figure 2.3-4) is not a continuous closed surface. In order to rectify these 

shortcomings and extend the model to incorporate the bounding surface concept with 

radial mapping rule (Dafalias 1986), an earlier iteration of the proposed model 

attempted to emulate the non-elliptical, cohesion intercept defined Xiao et al. (2016) 

bounding surface with a single-ellipse, Lode angle dependent, surface defined through a 

generalized cohesion intercept. This initial formulation exhibited significant predictive 

shortcomings, especially when the soil approaches the fully remolded state (i.e., S ≈ 1). 

The final form of the proposed model utilizes a single-ellipse surface (Kaliakin and 

Dafalias 1989) with a modification to allow the aspect ratio (relationship of height: 
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width) of the surface to vary as a function of soil structure. In outlining the proposed 

model, the formulation for elastoplastic theory in general stress invariant space will first 

be presented. Then the formulation of the Xiao et al. (2016) model will be presented 

along with its generalization to dependence on the direct stress invariants I, J, and Lode 

angle (θ). The full formulation of the proposed model will be discussed in Section 3.5 

and the Nieto Leal (2016) projection center relocation procedure, including Lode angle 

correction, adopted herein will be discussed in Subsection 3.5.4 

3.1 Definitions of stress and strain invariants 

Before putting forth a discussion of the theories underlying the existing and 

proposed models, it is necessary to define the stress and strain invariants which will be 

used. Triaxial stress invariants, the mean effective stress (p’) and deviatoric stress (q), 

are defined as: 

p′ =
σ′1 + 2σ′3

3
=
 σ′11 + σ′22 + σ′33

3
=
δijσ′ij

3
 

 3.1-1 

q = σ′1 − σ′3 = (
3
2⁄ sijsij)

1
2⁄

 
 3.1-2 

where δij is the Kronecker delta and sij is the deviatoric stress tensor.  

The direct stress invariants are defined, and related to the triaxial stress invariants, by: 

I = δijσ′ij = 3p′  3.1-3 

J = (1 2⁄ sijsij)
1
2⁄  ;  J2 =

q2

3
  3.1-4 

T = (1 3⁄ sijsjkski)
1
3⁄
  3.1-5 

−π

6
≤ θ =

1

3
sin−1 [

3√3

2
(
T

J
)
3

] ≤
π

6
  3.1-6 

The stress gradients of the direct stress invariants are: 
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∂I

∂σij
= δij  3.1-7 

∂J

∂σij
=
sij

2J
  3.1-8 

∂θ

∂σij
=

√3

2J cos 3θ
[
sikskj

J2
− 3(

𝑇

J
)
3 sij

2J
−
2

3
δij]  3.1-9 

Assuming infinitesimal strains, the strain tensor invariants, volumentric (εv) and 

deviatoric (εs) strain, are defined as: 

εv = ε11 + ε22 + ε33 = δijεij  3.1-10 

εs =
2
3⁄ (ε1 − ε3) = (

2
3⁄ eijeij)

1
2⁄  

 
3.1-11 

where eij is the deviatoric strain tensor. 

3.2 General formulation of plasticity in direct stress invariant space 

The proposed model is built upon the general rate independent elastoplasticity 

framework utilizing the bounding surface and radial mapping concepts for isotropic 

materials, as outlined by Dafalias (1986) and Dafalias and Herrmann (1986). The 

bounding surface concept is an extension of traditional plasticity, therefore it is 

necessary to cover the basics of plasticity before moving on to a discussion of the 

bounding surface concept (Dafalias 1986).  

The general, rate-independent elastoplasticity formulation is characterized by a 

yield surface in stress space defined by 

f(σij,  qn) = 0  3.2-1 

where qn indicates the set of plastic internal variables. The total strain rate is taken as 

the sum of elastic and plastic parts, following the form: 
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ε̇ij = ε̇ij
e + ε̇ij

p
  3.2-2 

where the e and p superscripts designate elastic and plastic portions, respectively, and 

the superposed dot designates a material time derivative or rate. The elastic, plastic, and 

total strain rates are related to the stress rate, σij, by the following (Dafalias and 

Herrmann 1986): 

ε̇ij
e = Cijklσ̇kl ;  σ̇ij = Eijklε̇kl

e   3.2-3 

ε̇ij
p
= 〈L〉Rij  3.2-4 

q̇n = 〈L〉rn  3.2-5 

ε̇ij = Dijkl
−1 σ̇kl  3.2-6 

Dijkl = Eijkl − h̅(L)B
−1PijQij  3.2-7 

Qkl = EklrsLrs ;  Pij = EijabRab  3.2-8 

B = Kp + LabEabcdRcd  3.2-9 

L =
1

Kp
Lijσ̇ij =

1

B
Qklε̇kl  3.2-10 

where Lij is the stress gradient of f(σij, qn), Rij, and rn are the directions of ε̇ij
p
, and q̇n, 

respectively, L denotes the loading index, and Kp indicates the plastic modulus. The 

Macauley brackets define the function 〈x〉 = h̅(x)x, where h̅(x) is the Heaviside step 

function. From this set of equations it may be noted that plastic strains will only be 

predicted when the loading index is positive, i.e. the stress increment is pointed in the 

outward direction with respect to the yield surface. The magnitude of the plastic strain 

is influenced by the magnitude of the stress/strain increment and plastic modulus. 

 In classical plasticity, the stress state remains inside or on the yield surface. 

Plastic strains are predicted only when the stress state lies on the yield surface. Utilizing 
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the consistency condition (ḟ = 0), and Equations 3.2-5 and 3.2-10, the plastic modulus 

can be shown to be:  

Kp = −
∂f

∂qn
rn  3.2-11 

when the stress state is located on the yield surface. 

It should be noted that the elastic compliance and elastic modulus are fourth 

order tensors which, for the case of elastic isotropy, take the following forms: 

Cijkl =
2G − 3K

18KG
δijδkl +

1

4G
(δikδjl − δilδjk)  3.2-12 

Eijkl = Kδijδkl + G(δikδjl + δilδjk −
2

3
δijδkl)  3.2-13 

where G and K are the elastic shear and bulk moduli, respectively. 

3.3 Bounding surface concept and formulation in direct stress invariant space 

  Researchers have noted that the classical plasticity formulation has significant 

limitations in the prediction of stress-strain behavior of elastoplastic materials 

undergoing reloading events (i.e., loading events where the stress states reside inside the 

yield surface). The ability to predict plastic strains for reloading events was identified as 

an important modeling necessity, especially for models predicting the behavior of 

overconsolidated cohesive soils. Many models have been proposed utilizing 

multisurface (Hashiguchi 1977; Mroz 1966; Mroz 1967) and bounding surface (Dafalias 

1975; Dafalias and Popov 1977) plasticity to accomplish this. 

In bounding surface plasticity, the yield surface of classical plasticity is replaced 

by loading and bounding surfaces. The loading surface is an implied surface, which is 

defined by the current stress state. The bounding surface defines the set of states at 
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which yielding occurs. Loading and bounding surfaces are homologous, with the 

bounding surface defined by a set of “image” stress states 

F(σ̅ij,  qn) = 0  3.3-1 

The center of homology for the loading and bounding surfaces is the projection center, 

denoted by αij in Figure 3.3-1. According to the radial mapping rule, the “image” stress 

states is defined by 

σ̅ij = b(σij − αij) + αij  3.3-2 

where b is the similarity ratio between the loading and bounding surfaces, and a bar 

over a value denotes its association with the bounding surface (Dafalias 1986). 

 Plastic strain accumulation is predicted by defining the plastic modulus for 

stress states falling inside the bounding surface. In order to predict increasing rates of 

plastic strain accumulation as the stress state approaches the bounding surface, the 

actual plastic modulus is taken as a function of the relative sizes of the loading and 

bounding surfaces with a minimum value of the image plastic modulus. Utilizing the 

radial mapping rule, this takes the form (Dafalias 1986): 

Kp = K̅p + Ĥ
δ

〈r − sδ〉
= K̅p + Ĥ 〈

b

b − 1
− s〉−1  3.3-3 

K̅p = −
∂F

∂qn
rn  3.3-4 

 where (δ - r) and r are distances between the projection center, and the current and 

image stress states, respectively, as shown in Figure 3.3-1. The model parameter s 

determines the size of the elastic nucleus; and b is the aforementioned similarity ratio. 

The scalar shape hardening function, Ĥ, combines the general form proposed by 
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Kaliakin and Dafalias (1989) for the single-surface bounding surface model with the 

improved shape hardening function proposed by Nieto-Leal and Kaliakin (2014); i.e.,  

Ĥ =
1 + ein
λ − κ

patm[h(θ)z
m + h0(1 − z

m)] [9(F,I̅ )
2 +

1

3
(F,J̅ )

2
] f  3.3-5 

f =
1

2
[a + sgn(nI)|nI|

1
w⁄ ] (

I

I0
)  3.3-6 

h(θ) =
2kh

1 + kh − (1 − kh) sin 3θ
hc  3.3-7 

where λ and κ are the negative of the slope of the virgin compression and recompression 

lines respectively, in void ratio (e) vs. ln(I) space, ein is the initial void ratio, patm is the 

atmospheric pressure, nI is the unit outward normal to the bounding surface in the I-

direction in isotropic invariant stress space, and z is a value weighting the current and 

maximum possible values of J; i.e., (J/Jmax); hx, a, and w are fitted material parameters. 

The x subscript stands in place for c, e, and 0 which denote values associated with 

triaxial compression, triaxial extension, and in the vicinity of the I-axis, respectively. 

The notation kh denotes the ratio he hc⁄ . 

  With the definition of the bounding surface, the loading index is redefined as: 

L =
1

Kp
Lijσ̇ij =

1

K̅p
L̅ijσ̇̅ij  3.3-8 
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3.4 Generalization of Xiao et al. (2016) model to direct invariant stress space 

The proposed model is based on, and in some cases directly adopts portions of, 

the Xiao et al. (2016) bounding surface Cam Clay model for cement-admixed clays. 

Therefore it is reasonable to present the Xiao et al. (2016) formulation, and the steps 

taken to generalize it into direct stress invariant space. Xiao et al. (2016) put forth a 

“Mohr-Coulomb generalization of the Cam-clay” model in which the effect of 

cementation is tracked through sensitivity (Cotecchia and Chandler 2000) and the 

cohesion intercept, and destructuring is taken as an effect of plastic work against the 

cement structure due to plastic strain accumulation. Xiao et al. (2016) predicate their 

extension of the Cam Clay model on the Mohr-Coulomb failure criterion, taken as  

q = Mp′ + C  3.4-1 

Figure 3.3-1: Schematic of bounding surface and radial mapping concepts 

(Dafalias 1986) 
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in triaxial stress space, where M is the slope of the critical state line (CSL) and C is the 

cohesion intercept. In order to generalize the Xiao et al. (2016) formulation from 

triaxial stress invariant space to direct stress invariant space, relationships outlined in 

Equations 3.1-3 and 3.1-4 are utilized to define 

J = NI + D  3.4-2 

N = M 3√3⁄  ; D = C √3⁄   3.4-3 

where N is the slope of the CSL and D is the cohesion intercept in I-J space. 

3.4.1 Equation of the bounding surface 

 Xiao et al. (2016) built cohesion into the Modified Cam Clay (Roscoe and 

Burland 1968) model beginning with the flow rule 

dWp = p
′dεv

p
+ qdεs

p
= √(p′dεv

p
)
2
+ (Mp′dεs

p
)
2

⟹√(p′dεv
p
)
2
+ {(Mp′ + C)dεs

p
}
2
 

 3.4-4 

which may be rearranged and integrated to become a non-elliptical plastic potential 

surface. An associative flow rule is assumed. The yield surface thus takes the form 

f = g = (p′0 − p′) (M
2p′ +

C2

p′0
) + 2MCp′ ln (

p′0
p′
) − q2 = 0  3.4-5 

which may be restated as 

f = g = (I0 − I) (N
2I +

D2

I0
) + 2NDI ln (

I0
I
) − J2 = 0  3.4-6 

using Equations 3.1-3, 3.1-4, and 3.4-3, where p’0 and I0 are the effective isotropic 

compression yield stress in triaxial and direct invariant stress space, respectively.  



38 

3.4.2 Hardening and destructuring 

 In addition to the isotropic yield stress, the cohesion intercept (C, D) and 

sensitivity (S) are hardening parameters used to track the effect of the cement structure. 

Xiao et al. (2016) adopted the Cotecchia and Chandler (2000) definition of sensitivity; 

i.e., the ratio of the effective isotropic compression yield stress for structured and 

remolded specimens for a given specific volume or void ratio (S =

p′0,intact p′0,remolded⁄ = I0,intact I0,remolded⁄ ) for stresses equal, or greater than, the 

yield stress, illustrated in Figure 2.3-6. Xiao et al. (2016), building upon the work of 

Xiao and Lee (2014), stated that the hardening parameters are related to volumetric and 

deviatoric plastic strains by: 

dp′0 = −
δλuν

S(λu − κs)
{Sp′dεv

p
+ Sqdεs

p
−√(p′dεv

p
)
2
+ (Mp′dεs

p
)
2
}

+
νp′0
λu − κs

dεv
p
 

 3.4-7 

dS = −
δν

p′0
{Sp′dεv

p
+ Sqdεs

p
−√(p′dεv

p
)
2
+ (Mp′dεs

p
)
2
}   3.4-8 

C

Ci
= (

S−1

Si−1
)
ζ
   3.4-9 

where δ and ζ are model parameters related to the rate of destructuring, λu and κs are the 

slopes of the virgin compression and rebound lines on the isotropic compression curves 

in e vs. ln(p′) space of fully remolded and intact specimens, respectively, and the i 

subscript denotes an initial value of the parameter.  

Using the previously mentioned stress space relationships, and allowing for 

specification of different destructuring rates due to volumetric and deviatoric plastic 

strain accumulation, these hardening and destructuring relationships can be rewritten as: 
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dI0 = −
λu(1 + ein)

S(λu − κs)
{δSIdεv

p
+ 3√3πSJdεs

p

−√(δIdεv
p
)
2
+ (3√3πNIdεs

p
)
2
} +

1 + ein
λu − κs

I0dεv
p
 

 3.4-10 

dS = −
1+ein

I0
{δSIdεv

p
+ 3√3πSJdεs

p
−√(δIdεv

p
)
2
+ (3√3πNIdεs

p
)
2
}   3.4-11 

D

Di
=

C

Ci
   3.4-12 

where δ and π are model parameters related to the rate of destructuring due to 

volumetric and deviatoric plastic strains, respectively.  

3.4.3 A single-ellipse emulation of the bounding surface 

In an earlier formulation of the model, an attempt was made to emulate the Xiao 

et al. (2016) bounding surface by defining a bounding surface composed of a single 

ellipse, characterized directly by the cohesion intercept (0, D), isotropic yield stress (I0, 

0), and ellipse center (Io/R, 0): 

F(I,̅ J,̅ θ, qn) = (
I̅

I0
− 1)(R

I̅

I0
+ (R − 2)) +

J̅2(R − 2)

D2
= 0  3.4-13 

where the D and N are functions of the Lode angle, and the value of D decreases as a 

function of soil destructuring (i.e., governed by Equations 3.4-9, 3.4-11, and 3.4-12).  

In the formulations put forth by Dafalias and Herrmann (1986) and Kaliakin and 

Dafalias (1989), the R value is a constant model parameter; this formulation required 

that the R value take a variable form in order for the surface to imitate the shape of the 

Xiao et al. (2016) bounding surface. A study of various cohesion ratios (I0/D), CSL 

slopes (N), and best-fit R values showed a unique relationship (see Figure 3.4-1) best 

characterized by the trend line 
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 Rfitted = (
I0

D
N)

−1.88
+ 2  3.4-14 

Figure 3.4-2 illustrates the form of the bounding surface and variable R value compared 

with the generalized Xiao et al. (2016) bounding surface (Equation 3.4-6).  

 

A consequence of the R parameter taking a variable form was the definition of 

an implied CSL, demarcated as the line connecting the origin and tallest point of the 

bounding surface (I0/R, Jmax). This value was characterized by:  

Nimplied =
DR

I0
[1 −

1

(R − 1)2
]

−1
2⁄

  3.4-15 

 Although this model formulation was able to capture the trends in stress-strain 

behavior, a number of issues became evident during the process of validating the model 

by comparing monotonic triaxial test results and predictions. First, the model over-

predicted the deviatoric strength of normally consolidated specimens tested under 

undrained triaxial compression. In the Dafalias and Herrmann (1986) and Kaliakin and 

Dafalias (1989) bounding surface models, the R shape parameter(s) would be calibrated 

using normally consolidated triaxial test results and therefore control the predicted 

deviatoric strength. With the value of the R parameter being internally controlled, the 

Figure 3.4-1: Fitted R-parameter with cohesion ratio and slope of the critical state 

line for unimproved soil 
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user does not retain the ability to control this behavior through proper parameter 

calibration. Second, the reliance of the bounding surface on D caused issues when S = 

1, its theoretical minimum. Through Equations 3.4-9, 3.4-12, and 3.4-15 one may 

observe that when the soil becomes “fully-remolded” (i.e., S = 1) the values of D, 

Nimplied = 0. A comparison of the predictive capabilities of this iteration of the model 

and the final proposed model will be briefly presented in Section 6.2. 

a) 

 

b) 

 
c) 

 

d) 

 
Figure 3.4-2: Prior proposed bounding surface compared with the Xiao et al. 

(2016) yield surface with I0 = 300, M=2.45, various values of D 
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3.5 Formulation of the final proposed model 

A single-elliptical surface bounding surface model, utilizing the radial mapping 

rule and an arbitrarily defined projection center, is proposed. The effects of soil 

structure are integrated through the sensitivity put forth by Xiao and Lee (2014) and 

Xiao et al. (2016). The evolution of the bounding surface is described by destructuring 

and aspect ratio change rules adapted from Xiao et al. (2016) and Liu et al. (2010), 

respectively. Including a modified Liu et al. (2010) aspect ratio change rule is the major 

difference from the earlier version of the model discussed in Section 3.4. The projection 

center is arbitrarily defined in order to facilitate easy extension to cyclic loading, further 

discussed in Subsection 3.5.4. 

3.5.1 Continuation of general bounding surface formulation 

 Taking the projection center (formerly denoted as αij, but henceforth denoted as 

σij
pc

) as an arbitrarily defined point in stress invariant space, along with Equation 3.3-2, 

leads to the following expressions: 

I̅ = b(I − IPC) + IPC  3.5-1 

J̅ = b(J − JPC) + JPC  3.5-2 

s̅ij = b(sij − sij
PC) + sij

PC  3.5-3 

where the super/sub-script PC denotes a value associated with the projection center. A 

discussion of the procedure for determining the appropriate Lode angle (θ) for a 

situation in which the projection center does not coincide with the I axis is presented in 

Subsection 3.5.4.  
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Following the example of Dafalias and Herrmann (1986), for a bounding surface 

defined in direct stress invariant space, F(I,̅ J,̅ θ, qn), Equations 3.1-3 to 3.1-9 and 3.1-1 

to are used to define 

Lij = F,I̅ δij + F,J̅
s̅ij

2J̅
+ F,θ

√3

2J̅ cos(3θ)
[
s̅iks̅kj

J̅2
− 3(

S̅

J̅
)
3 s̅ij

2J̅
−
2

3
δij]   3.5-4 

Qij = 3KF,I̅ δij + GF,J̅
s̅ij

J̅
+ GF,θ

√3

J̅ cos(3θ)
[
s̅irs̅rj

J̅2
− 3(

S̅

J̅
)
3 s̅ij

2J̅
−
2

3
δij]   3.5-5 

B = Kp + 9KF,I̅ U,I̅ + G [F,J̅ U,J̅ +
F,θU,θ

J̅2
]   3.5-6 

L =
1

Kp
[F,I̅ İ + F,J̅ J̇ +

1

b
F,θ θ̇] =

1

K̅p
[F,I̅ I̅

̇ + F,J̅ J̅
̇ + F,θ θ̇]   3.5-7 

for this formulation. Rij and Pij are found by substituting U for F in Equations 3.5-4 and 

3.5-5, respectively. An associative flow rule is assumed, therefore F(I,̅ J,̅ θ, qn) =

U(I,̅ J,̅ θ, qn) = 0. The partial derivatives of the bounding surface required for the full 

expression of these equations are provided in Appendix A. 

3.5.2 Specific form of the bounding surface 

This formulation expands upon the Kaliakin and Dafalias (1989) Lode angle 

dependent, single-ellipse bounding surface by allowing the aspect ratio of the surface to 

evolve with degradation of the soil structure. The surface is defined by the isotropic 

yield stress (I0, 0), ellipse center (Io/R, 0), and the peak of the surface (Io/R, NIo/R): 

F(I,̅ J,̅ θ, qn) = (I̅ − I0) (I̅ +
R−2

R
I0) + (R − 1)

2 (
J̅

N
)
2

= 0   3.5-8 

where N depends on the Lode angle according to: 

N(θ) = NcgN(θ);  

gN(θ) = [
2kN

4

1+kN
4−(1−kN

4) sin(3θ)
]

1
4⁄

  

 3.5-9 

and kN = Me
∗ Mc

∗⁄ , as proposed by Sheng et al. (2000).  
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 The Liu et al. (2010) equation for the variable slope of the critical state line 

(Equation 2.3-7) is modified to characterize the relationship between the structured and 

reference states via the sensitivity framework. Variability in the value of N is integrated 

into the formulation via the calculation of the critical state line in triaxial compression 

 Nc =
Nc
∗

1−μ lnS
  3.5-10 

where 𝑁𝑐
∗ is the large-strain slope of the critical state line in triaxial compression in 

direct stress invariant space and μ is a model parameter that dictates the magnitude of 

the variability in the aspect ratio.  

3.5.3 Hardening and destructuring 

The dependence of destructuring on both volumetric and shear plastic strains 

makes the hardening and destructuring formulation proposed by Xiao et al. (2016) well 

suited for capturing stress-strain behavior under a wide range of load paths and 

conditions. The generalized relationships presented in Equations 3.4-10 and 3.4-11 are 

adopted in this formulation. From this set of equations, the set of internal variables, qn, 

are taken as the plastic volumetric and deviatoric strains.  

Expanding upon Equation 3.3-4, and using Equation 3.2-5 and the consistency 

condition (Ḟ = 0), the image plastic modulus takes the form: 

K̅p = −3
∂F

∂εv
p F,I̅−

1

√3

∂F

∂εs
p√F,J̅

2+ (
F,θ

J̅
)
2
   3.5-11 

∂F

∂εv
p =

∂F

∂I0

∂I0

∂εv
p + (

∂F

∂N

∂N

∂S
)
∂S

∂εv
p   3.5-12 

∂F

∂εs
p =

∂F

∂I0

∂I0

∂εs
p + (

∂F

∂N

∂N

∂S
)
∂S

∂εs
p   3.5-13 

The partial derivatives of the isotropic compression stress and sensitivity with respect to 

the volumetric and deviatoric plastic strains may be taken from the total derivatives 
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presented in Equations 3.4-10 and 3.4-11. Following the lower limit formulation 

utilized in Equations 27a and 27b of Dafalias and Herrmann (1986), the partial 

derivatives may be taken as: 

∂I0

∂εv
p =

1+ein

S(λu−κs)
{S[〈I0 − Il〉 + Il] − δλu(S − 1)[〈I − Il〉 + Il]}   3.5-14 

∂I0

∂εs
p =

−3√3πλu(1+ein)

S(λu−κs)
{SJ − N[〈I − Il〉 + Il]}   3.5-15 

∂S

∂εv
p = −δ(1 + ein)(S − 1)

[〈I−Il〉+Il]

[〈I0−Il〉+Il]
   3.5-16 

∂S

∂εs
p =

−3√3πλu(1+ein)

[〈I0−Il〉+Il]
{SJ − N[〈I − Il〉 + Il]}   3.5-17 

The functional forms of the actual plastic modulus and shape hardening functions 

adopted in this formulation are presented as Equations 3.3-3 through 3.3-7, where the z 

parameter will be calculated based on the variable slope of the CSL, z = JR/(NI0). The 

partial derivatives of the bounding surface and bounding surface parameters required 

for the full expression of these equations are provided in Appendix A. 

3.5.4 Bounding surface extension to cyclic loading 

As discussed in Section 2.2, relocating the projection center when the direction 

of the stress path reverses (tested by a change in the sign of the loading index L) is one 

method in modeling the hysteresis behavior of cyclically loaded soils. Determination of 

image stresses and stress invariants (i.e., projection of the current stress state onto the 

bounding surface) in the I-J plane follows neatly from Equations 3.5-1 and 3.5-2. 

However, allowing the projection center to be defined as any stress state falling inside, 

or on, the bounding surface may result in a projection center stress state having a non-

zero deviatoric component (i.e., sij
PC ≠ 0; JPC ≠ 0). Figure 3.5-1b demonstrates the 

inadvertent effect that the calculation of the image Lode angle (θ̅), based on the image 
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deviatoric stress tensor (s̅ij) via Equations 3.1-4 through 3.1-6, may not be the same 

value of the Lode angle associated with the actual deviatoric stress tensor (Nieto Leal 

2016). The Lode angle dependence of the bounding surface equation requires that the 

“image” Lode angle being used is correct and consistent with the Lode angle for the 

actual state of stress (Nieto Leal 2016). 

In order to ensure the actual and image Lode angles are consistent, the Nieto 

Leal (2016) procedure for correcting image Lode angle is adopted in this formulation. 

The Lode angle correcting radial mapping procedure is given as follows: 

1. Calculate the stress invariants, IPC and JPC, and deviatoric stress tensor, sij
 PC, 

associated with the projection center. 

2. Solve for “local” similarity ratio, bL, by considering the explicit expression for 

the bounding surface (with the assumption that the bounding surface is 

temporarily independent of the Lode angle). The image stresses affiliated with 

the current stress state are defined by the equivalencies provided in Equations 

3.5-1 and 3.5-2, where b is replaced by the “local” similarity ratio, bL. A closed 

form solution for the similarity ratio is provided in Appendix B. 

3. The center of the loading surface in deviatoric stress space, sij
C, will be taken as: 

 sij
 C = sij

 PC −
1

bL
sij
 PC = (1 −

1

bL
) sij

 C  3.5-18 

4. Intermediate values of the stress invariants, JL and TL, and correct Lode angle, 

θL, are calculated using the intermediate deviatoric stress tensor in Equations 

3.1-4, 3.1-5, and 3.1-6:  

 sij
 L = sij − sij

 C  3.5-19 
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5. Using the correct Lode angle, θL, determine the correct similarity ratio, b, by 

solving the bounding surface equation with the image stresses defined by 

Equations 3.5-1 and 3.5-2. 

This corrected Lode angle should be used for all instances of the Lode angle occurring 

in the present formulation; however, it is important to note that instances of the image 

deviatoric stress tensor, s̅ij, in the present formulation refers to the value given by the 

equivalency in Equation 3.5-3, using the correct similarity ratio determined in step 5, 

and not any intermediate value of the deviatoric stress tensor calculated in the Lode 

angle correction procedure.  

 As the projection center must not be located outside the bounding surface, it is 

prudent to employ a law to describe the evolution of the projection center during a 

single loading event (the sum of the loading increments between two sequential stress 

reversals or the beginning/conclusion of loading). The Nieto Leal (2016) isotropic 

hardening based evolution rule, Equation 3.5-20, is adopted.  

σ̇′ij
PC = (İ0 I0⁄ )σ′ij

PC 3.5-20 

  

Figure 3.5-1: Definitions for the radial mapping rule in (a) invariant stress space, 

and (b) in the octahedral plane of deviatoric stress space (Nieto Leal 2016) 
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 Numerical implementation 

In order to numerically implement the model proposed in Section 3.5 in a 

manner which is easily accessible to geotechnical engineering professionals and 

researchers, an algorithm was written to complete the numerical evaluation of the 

model. The algorithm, BONDCLAY, was created by editing an existing Fortran 77 set 

of subroutines for the numerical evaluation of the bounding surface model for isotropic 

cohesive soils (Dafalias and Herrmann 1986), CLAY. The numerical implementation 

scheme utilized in this code is outlined by Herrmann et al. (1987) and, as it is directly 

adopted for the new algorithm, is presented in this chapter for completeness. 

4.1 General statements on the utility of BONDCLAY algorithm 

The BONDCLAY algorithm “solves” the stress-strain relationship for a single 

element (i.e., a single point) over a single increment. When incorporated into a finite 

element (FE) program, the FE program will call the BONDCLAY algorithm to solve 

the general incremental relationship: 

{∆σ}N,K = [D̅]N,K−1{∆ε}N,K + {∆σ0}N,K−1  4.1-1 

for each spatial integration point, where K is a given iteration for a particular solution 

step N, and {Δσ0} is a stress correction vector used exclusively in the global solution. 

For implementation into a computer program, it is convenient to express the second 

order stress, σij, and strain, εij, tensors and fourth order stiffness tensor, D, as 6x1 ({σ}, 

{ε}), and 6x6 matrices ([D]), respectively. It should also be noted that since the 

proposed model is highly non-linear and history dependent, global (on the increment 

solution scale) and local (inside an incremental solution) iteration are important for the 

calculation of accurate predictions.  
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4.2 Numerical implementation 

Many of the equations presented in Chapter 3 are rate relationships. Although 

this model is rate-independent, it is easier for discussion purposes to think of global 

increments as time-steps, ΔtN. To solve the stress-strain relationship over (time)step N, 

4.1-1 is integrated over the range of the (time)step: 

∫ {σ̇}N,Kdt
tN

tN−1

= ∫ [D]N,K−1{ε̇}N,Kdt
tN

tN−1

  4.2-1 

where the strain rate is approximated by {휀̇} = {∆휀} ∆𝑡𝑁⁄ . By integrating the left-hand 

side, Equation 4.2-1 can be shown to equal Equation 4.1-1, if [�̅�] is taken as an average 

of D over the (time)step: 

[D̅]N,K−1 =
1

∆tN
∫ [D]N,K−1dt
tN

tN−1

  4.2-2 

The procedure for ensuring adequate approximation of the stiffness matrix, [�̅�], over 

the increment is the subject of the next subsection. It should be noted that the 

information in the preceding paragraph and next subsection have dealt with the 

numerical integration of the stress-strain relationship. Specific forms of the numerical 

integration of the dI0 and dS relationships are presented in Appendix C. 

4.2.1 Substepping and local iteration 

In order to confirm the correctness of the integration, indicated by results 

conforming to two convergence criteria described later, the increment is divided into M 

= 1, 2, 4, 8, 16, 32 substeps. Assuming proportional strain components, the multistep 

trapezoidal rule is used to redefine Equation 4.2-2: 
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[D̅]N,K−1 = ∑[D̅]N,K−1
m

M

m=1

  4.2-3 

[D̅]N,K−1
m ≅

1

2∆tm
([D]N,K−1

m−1 + [D]N,K−1
m )  4.2-4 

where [D]N,K−1
m−1  and [D]N,K−1

m  are the values of [D] at the beginning and end of the 

substep, respectively. 

If the substeps are taken to be of equal size, the size of a substep for global step 

N is ∆tm = ∆tN M⁄ , where the time at a given substep can be taken as tm = tN−1 +

m∆tm = tm−1 + ∆tm. Following this format, the strain and stress at time tm are 

{ε}m ≅ {ε}N−1 +
m

M
{∆εN}  4.2-5 

{σ}m ≅ {σ}N−1 + {∆σm} = {∆σ}N−1 + ∑{∆ε}i

m−1

i=1

+ {∆σ}m  4.2-6 

where the {∆σ}m tensor is updated in each local iteration using appropriate strain rate 

and stiffness matrix values from the previous local iteration. 

 Two tests are implemented to determine the appropriate number of substeps, M, 

into which a solution step is divided. Each solution step N will first be approached as a 

single step (i.e., M=1). After the appropriate calculations are completed, a stress state 

{σ} will be predicted. If this {σ} falls outside of the bounding surface, indicated by a 

corresponding value of b (see Equation 3.3-2) less than 1 (actual implemented value 

0.999), a problem has occurred with the numerical integration and the number of 

substeps, M, will be doubled. This test is repeated until the b value check is passed or 

M=32. The number of substeps required to pass the b value check will be taken as the 

minimum M for all subsequent global iterations of the Nth solution step; this value will 
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not decrease, but may be increased if smaller substeps are deemed appropriate. The 

second test for appropriate substep size is an assessment of the convergence of the 

solution. To satisfy that convergence has occurred 

|L0
n − L0

m|

L0
n < 0.01  4.2-7 

where L0
n  and L0

m are the sums of the absolute values of the calculated incremental stress 

components at the end of the increment where m = 2n ≤ 32. Each substep undergoes up 

to five local iterations to determine {∆σ}m. Local iteration is concluded when Equation 

4.2-7 is satisfied where b values calculated from two consecutive local iterations are 

used in place of the L0
x  values. 

4.2.2 Radial return correction procedure 

When a calculated b value indicates that a stress state falls outside the bounding 

surface, the radial return procedure (Hughes 1984) is adopted to move the stress state 

back to the bounding surface. The scaled stress state and stress correction vector can be 

taken as: 

{σ}N−1scaled = b[{σ}N−1 − {σ}N−1
PC ] + {σ}N−1

PC   4.2-8 

{∆σ0} = (b − 1)[{σ} − {σ}
PC]  4.2-9 

and the scaled direct stress invariants can be calculated following Equations 3.1-3 

through 3.1-5.  

4.3 Incorporating pore water pressure 

This section will address some of the issues pertaining to implementing the 

BONDCLAY algorithm into a parent FE program, specifically notes on incorporating 

pore water pressure into the stress-strain predictions for drained and undrained 

conditions. As the BONDCLAY algorithm only considers the stress-strain relationship 
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in terms of effective stresses, additional considerations must be made to incorporate the 

influence of pore water pressure for specific drainage conditions. Traditionally, two 

separate approaches have been taken to include the effects of pore water pressure in the 

soil response. First the change in pore water pressure is calculated directly from the 

volumetric strain increment and added directly into Equation 4.1-1: 

{∆σ}N,K
t
= [D̅]N,K−1{∆ε}N,K + ∆uN,K{1} + {∆σ0}N,K  4.3-1 

∆uN,K = ΓΔεkkN,K  4.3-2 

where {1}={1,1,1,0,0,0}T
 and Γ is the combined bulk modulus of the pore fluid and 

solid phase. Alternatively, the total stress tensor can be calculated by including the 

influence of the pore water pressure into the stiffness matrix by: 

{∆σ}N,K
t
= ([D̅]N,K−1 + [d]){∆ε}N,K + {∆σ0}N,K  4.3-3 

where [d] is a 6x6 matrix populated by Γ in the left uppermost 3x3 submatrix and 0 in 

the remaining values. From these two formulations it is apparent that the values of Γ is 

of utmost importance in the pore water pressure predictions. Even though few real-

world situations can be classified as being truly undrained or fully drained, most 

analyses are specified as one of these two drainage conditions. A fully drained condition 

is specified by Γ = 0, where no stiffness is contributed by pore fluids; conversely, an 

undrained condition is specified by setting Γ = 2.20x106 kPa, the bulk modulus of 

water. Herrmann et al. (1987) give additional details pertaining to the numerical 

implementation of bounding surface constitutive models for cohesive soils. 
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 Parameters: fitting and sensitivity analysis 

The proposed model formulation requires the specification of fifteen parameters 

to characterize the initial state and elastoplastic response. This set of values can be 

subdivided into five categories: initial state parameters, traditional elastoplastic material 

parameters, destructuring parameters, hardening parameters, and bounding surface 

configuration parameters. Each parameter will be discussed with respect to its physical 

or model context, its method of determination, and its effects on model predictions. A 

list of all the model parameters and typical values for all parameters are given in Table 

5.6-1. 

A set of parameters should be determined for each chemical stabilization mix 

design (i.e. cement content, water content, approximate initial void ratio and curing 

conditions) and remolded soil. Establishing this set of parameters will require a set of 

eight laboratory tests, including: 

1. An isotropic (preferred) or oedometer consolidation test on one structured and 

one fully remolded specimen, and 

2. Six consolidated, undrained (preferred) or drained, triaxial tests on each of the 

following: one normally consolidated, one lightly overconsolidated, and one 

heavily overconsolidated improved structured specimen, sheared in compression 

(three total) and extension (three total). 

Initial state and traditional material parameters, with the exception of PL, are determined 

directly from this set of laboratory tests. Values of PL, m, h0, and w are considered 

fixed, or are determined with respect to other model parameters. The remainder of the 

parameters should be established by curve-fitting analytical solutions to laboratory test 
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results. A quick overview of the suggested range of values and calibration procedure is 

provided at the end of this chapter. 

5.1 Initial state parameters 

The parameters characterizing the initial state of the specimen are the initial void 

ratio (ein), stress history [in the form of the isotropic or oedometer consolidation yield 

stress or maximum past consolidation pressure (p’0)], and initial sensitivity (Si). 

Additionally, the initial stress state is specified by the confining pressures (σx, σy, σz) 

and the initial pore water pressure (u0). The physical meaning and determination of void 

ratio and consolidation yield stress are standard procedures within the larger 

geotechnical engineering field and their use in elastoplastic modeling of geomaterials is 

an established practice; therefore, they will not be further discussed herein. 

5.1.1 Initial sensitivity Si 

Sensitivity is the parameter used to track the amount and influence of the intact 

bond structure, relating the strength of the bonded and remolded soils for a given 

specific volume or void ratio. The initial value of sensitivity is identified by relating the 

compression curves of the chemically stabilized and remolded soil, as shown in Figure 

2.3-6. First, the stress and specific volume (or void ratio) of the treated specimen at 

yield should be determined (p’0i and ν0i, respectively). Next, the virgin compression line 

for the remolded specimen should be extended such that the mean effective stress 

corresponding to the previously identified specific volume at yield can be determined 

(p’0ui). The initial sensitivity is defined as: 

Si =
p′0i

p′0ui
⁄   5.1-1 
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In the case that p’0ui is excessively small, a lower limit value may be imposed. The 

value of initial sensitivity must be equal or greater than 1. 

5.1.2 Initial stress-state and maximum past pressure specification 

An important feature of the proposed formulation is the ability to predict 

destructuring of the improved soil skeleton due to isotropic and shear loading. Correctly 

specifying the initial stress state and maximum past pressure is important in tracking 

destructuring for model predictions. How the initial stress-state is specified is 

determined by the imposed loading used in the prediction; the following terminology 

will be adopted here to disambiguate these “loading types:” 

 Pre-yield, artificially overconsolidated – This term applies to specimens 

which are consolidated to stress-state less than the isotropic or oedometer 

yield stress (p’0i). The initial OCR for a prediction of this type will be 

defined with respect to the yield stress and will be denoted as the 

artificial OCR. 

 Normally consolidated (NC) – This term applies to specimens which are 

consolidated to a stress-state equal to or greater than the isotropic or 

oedometer consolidation yield stress (p′0i) prior to being sheared. 

 Overconsolidated (OC) – This term applies to specimens which are 

consolidated to a stress-state greater than the isotropic or oedometer 

consolidation yield stress (p′0i) and unloaded to a lower stress state prior 

to being sheared. 
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The initial stress-state of pre-yield, artificially overconsolidated predictions may 

be specified by declaring the initial confining stresses directly and setting the maximum 

past pressure equal to the isotropic or oedometer consolidation yield stress (p’0i).  

Conversely, destructuring of the specimen due to consolidation past yield in 

normally consolidated and over consolidated predictions should be specified in one of 

two ways: allowing the model to predict consolidation and destructuring as the first 

loading step(s) of the prediction, or direct specification with the effects of destructuring 

calculated and directly specified by the user. If the first method is chosen, the initial 

stress-state and maximum past pressure should be specified as the yield stress, then the 

initial loading increment(s) should be used to specify consolidation past the yield stress. 

If the second method is selected, the true initial stress-state and true maximum past 

pressure may be directly specified. However, the user should calculate the evolution of 

sensitivity (3.4-8/3.4-11) and cohesion (3.4-9/3.4-12) and use these values in place of 

their respective initial values, as discussed in the section above. 

5.2 Elastic and critical state material constants 

This set of material constants includes the elastic shear modulus (may also be 

calculated if Poisson’s ratio, ν, is specified) and critical state parameters: slopes of the 

remolded virgin compression (λu) and structured rebound (κs) lines in e-ln(p′) space, 

and large-strain slope of the critical state lines in q-p′ space in compression and 

extension (Mc* and Me*, respectively). The influence of varying the critical state 

parameters is presented in Figure 5.2-1, Figure 5.2-2, and Figure 5.2-3. The bulk elastic 

modulus is calculated as: 

K =
(1+ein)

3κs
(〈I − IL〉 − IL)  5.2-1 
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where IL is a transitional stress used to limit excessive softening when very small values 

of I are used (Dafalias and Herrmann 1986). The transitional stress is specified by PL, 

where IL = 3PL. Traditionally, PL, which is not a model parameter, has been specified as 

one-third of the atmospheric pressure (Patm) in applications of the Dafalias and 

Herrmann (1986) and Kaliakin and Dafalias (1989) bounding surface model for 

isotropic cohesive soils. The same definition is retained here. 

 

 

 

 
Figure 5.2-1: Effect of varying λu on the predicted stress-strain and pore pressure-

strain response of soil specimens at OCR = 2.0 subjected to conventional 

undrained triaxial loading 
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Figure 5.2-2: Effect of varying κs on the predicted stress-strain and pore pressure-

strain response of soil specimens at OCR=2.0 subjected to conventional undrained 

triaxial loading 

 

Figure 5.2-3: Effect of varying Mc* on 

the predicted effective stress path, stress-

strain and pore pressure-strain response 

of soil specimens at OCR=1.0 subjected 

to conventional undrained triaxial 

loading 
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5.3 Structure degradation parameters 

This set of parameters dictates the rate of destructuring due to accumulation of 

plastic strains, as detailed in Equations 3.4-7 through 3.4-12. 

5.3.1 Destructuring rate parameter δ 

The δ destructuring rate parameter characterizes both the rate of change in the 

size of the bounding surface (I0) and value of sensitivity (S) due to plastic volumetric 

strain. This parameter should be greater than or equal to zero, where δ = 0 results in no 

changes in sensitivity and I0 due to plastic volumetric strain. 

Xiao and Lee (2014) proposed a method of determining δ from isotropic 

consolidation test results. Results of a structured consolidation test should be analyzed 

and plotted in ln (
1−D

Θ−D
)  vs. [−(λu − κs)

Δν

λu
− κslnΘ] space, where: 

D = 1 Si
⁄   5.3-1 

Θ = S Si
⁄  5.3-2 

The δ parameter is taken as the slope of the linear best fit line through the plotted results 

characterizing the virgin compression behavior, as shown in Figure 5.3-1. 

While the Xiao and Lee (2014) determination procedure will produce a highly 

precise value, the amount of analysis required may be daunting for some users. It is 

suggested here that δ may be determined through fitting analytical results to 

consolidation test results. This process will be simplest if isotropic, as opposed to 

oedometer, consolidation results are used. 
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Figure 5.3-1: Determination of δ degradation parameter from consolidation test 

results (Xiao and Lee 2014) 

5.3.2 Destructuring rate parameter π 

The π parameter is used to characterize the destructuring rate due to plastic 

deviatoric strain accumulation. Similar to the δ parameter, π should be greater than or 

equal to zero, where π = 0 results in no changes in sensitivity and I0 due to plastic 

deviatoric strain. 

The value of the π parameter should be established by curve-fitting deviatoric 

stress versus axial strain (undrained) or deviatoric strain (drained) data for normally 
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consolidated specimens. This process will be simplest if undrained test data is used as 

destructuring will be a function of deviatoric strain alone. The influence of the π 

parameter on undrained and drained deviatoric stress versus strain is shown in Figure 

5.3-2. 

 
Figure 5.3-2: Effect of varying π on the predicted stress-strain response of soil 

specimens at OCR=1.0 subjected to conventional undrained (left) and drained 

(right) triaxial loading 

5.4 Bounding surface configuration parameters 

5.4.1 Initial projection center parameter c 

The ability to define an initial projection center:  

(IPC
i , JPC

i ) = (cI0, 0)  5.4-1 

has been preserved as a legacy feature from the Dafalias and Herrmann (1986) 

bounding surface for isotropic cohesive soils formulation. Implementation of the 

updating projection center rules complicates and limits the utility of specifying the c 

parameter. In theory the value of c may be set in the range of zero to one, where c = 0 

sets the initial projection center at the origin in direct stress invariant space. However, in 

practice IPC
i  must be less than or equal to the I-coordinate of the initial stress state; if 
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this test is not satisfied, the projection center will be updated to the initial stress state in 

accordance with the projection center relocation rules. As a result, the proposed model 

formulation will not be able to predict initial dilation under drained loading conditions, 

an important feature of the Dafalias and Herrmann (1986) model’s ability to predict the 

behavior of heavily overconsolidated soils. 

 Variation of c will influence degree of dilation or compaction predicted for 

overconsolidated specimens, as shown in Figure 5.4-1. The value of c should be 

established via curve-fitting pore water pressure (undrained) or volumetric strain 

(drained) versus axial strain behavior of lightly overconsolidated specimens. 

 
Figure 5.4-1: Effect of varying c on the predicted stress-strain and pore pressure-

strain response of soil specimens at OCR=2.0 subjected to conventional undrained 

triaxial loading 

5.4.2 Elastic zone parameter s 

The elastic zone parameter defines an implied surface (similar and homologous 

to the bounding surface at the projection center) inside which only elastic strains are 

predicted. The s parameter may, theoretically, be defined by any value equal to or 

greater than one, where s = 1 denotes no purely elastic zone and s = ∞ causes the 
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bounding surface to operate as a classical yield surface. Figure 5.4-2 shows that 

increasing the value of s results in increased stiffness in the initial stress-strain response. 

As the elastic zone will always be contained within the bounding surface and therefore 

does not influence the response of states on the bounding surface, the stress-strain 

behavior of an overconsolidated specimen should be used to determine s. 

 
Figure 5.4-2: Effect of varying s on the predicted stress-strain and pore pressure-

strain response of soil specimens at OCR=2.0 subjected to conventional undrained 

triaxial loading 

5.4.3 Shape parameter R 

The shape parameter R informs the shape of the bounding surface and size of the 

tension zone through designating the center of the elliptical bounding surface on the 

positive I axis. Mathematically, the R parameter must be assigned a value greater than 

2.0; larger values will result in the center of the bounding surface being closer to the 

origin in I-J space. The effect of varying the R parameter is shown in Figure 5.4-3. 
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Figure 5.4-3: Effect of varying R on the predicted effective stress path and stress-

strain response of soil specimens at OCR=1.0 subjected to conventional undrained 

triaxial loading 

 
Figure 5.4-4: Effect of varying μ on the predicted effective stress path and stress-

strain response of soil specimens at OCR=1.0 subjected to conventional undrained 

triaxial loading 

5.4.4 Aspect ratio parameter μ 

The μ aspect ratio parameter describes the influence the soil structure has on the 

peak deviatoric strength of the specimen. The value of the parameter may be set at any 

value greater or equal to 0.0, where zero results in no effect of destructuring on the 

aspect ratio of the bounding surface (i.e., the calculated critical state line). Larger values 
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of μ result in larger peak deviatoric stresses and larger effects of destructuring. Figure 

5.4-4 demonstrates the influence of the aspect ratio parameter on normally consolidated 

undrained triaxial compression test predictions.  

5.5 Shape hardening parameters 

This set of parameters controls the amount of strain hardening or softening 

predicted for stress-states within the bounding surface through the hardening function, 

Equations 3.3-5 through 3.3-7.  

5.5.1 Plastic shape hardening parameters hc, he, h0, and m 

The parameters hc and he are the primary shape hardening parameters, 

describing the stiffness of the response in triaxial compression and extension, 

respectively. The shape hardening parameters hc and he can be assigned any value 

greater than zero; the bounding surface acts as a classical yield surface when hc = he = 

∞. Larger values of hc (or he) result in greater values of the plastic modulus, Kp, and 

therefore in stiffer stress-strain response, smaller predicted volumetric strains in drained 

simulations or larger predicted pore water pressures in undrained simulations (Figure 

5.5-1).  

The exponent m in Equation 3.3-5 ensures that the h0 parameter defines the 

hardening behavior in the vicinity of the I axis. The value of h0 is traditionally set at the 

average of hc and he in order to ensure a smooth transition when the stress point crosses 

the I axis. Similarly, the exponent m has typically been fixed at m = 0.02. 

5.5.2 Single ellipse hardening parameters a and w 

The single ellipse hardening parameters a and w determine the hardening 

response predicted for analyses in the heavily overconsolidated range. Variations in the 
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parameter ‘a’ significantly affect the stiffness exhibited in stress-strain response, as 

shown in Figure 5.5-2. Nieto-Leal and Kaliakin (2014) propose the w parameter should 

be considered fixed at w = 5.0.  

 
Figure 5.5-1: Effect of varying hc on the predicted stress-strain and pore pressure-

strain response of soil specimens at OCR=2.0 subjected to conventional undrained 

triaxial loading 

 
Figure 5.5-2: Effect of varying a on the predicted stress-strain and pore pressure-

strain response of soil specimens at OCR=6.0 subjected to conventional undrained 

triaxial loading 
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5.6 Abbreviated guide to parameter determination 

The process of determining a suitable set of model parameters should be 

approached systematically in order to avoid unnecessary complications and confusion. 

This section aims to suggest a reasonable calibration procedure and provides guidance 

on an appropriate range of values for each parameter. 

Once the appropriate initial stress state and past stress history values have been 

determined for the prediction type, as discussed in Subsection 5.1.2, values of the 

remaining model parameters should be set to the typical values provided in Table 5.6-1 

before proceeding with the calibration procedure presented in Table 5.6-2. Parameters 

listed within the same calibration step should be characterized one at a time. 

Although no model parameters presented in this chapter can be directly defined 

by the cement content, or any other facet of the mix design, it is notable that a few of 

the model parameters loosely correlate to the amount of cement used in the mixed soil. 

The material parameters, κs and Mc* tend to decrease and increase, respectively, with 

increasing cement content. Most notably, the purely theoretical μ parameter shows a 

strong trend toward larger values with increasing cement content (over 10% ≤ cement 

content ≤ 30%). Interestingly, value of μ used for the X_2-1-4 soil is less than that for 

the X_2-1-3 soil (see Chapter 6 for the description of the soils), despite having the same 

amount of cement in the mixed soil. Miura et al. (2001) state that the behavior of 

cement-mixed soils depends on a number of factors, but that cement and total water 

contents play key roles; greater cement contents results in larger yield stresses, while 

greater total water contents does the opposite. 
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Table 5.6-1: Typical values for model parameters 

Initial state parameters Typical Value Range of Values 

Si 35.0 5.0 – 100.0 

Elastoplastic model parameters Typical Value Range of Values 

λu 0.20 0.10 – 0.30 

κs 0.015 0.01 – 0.03 

Mc* 2.4 2.2 – 2.6 

Me*/Mc* 0.2 0.1 – 0.5 

ν 0.2 0.15 – 0.3 

PL
† Patm/3 Patm/3 

Destructuring parameters Typical Value Range of Values 

δ 2.69 1.1 – 3.7 

π 2.69 1.0 – 5.0 

Surface configuration parameters Typical Value Range of Values 

c 0.3 0.0 – 0.5 

s 1.2 1.0 – 2.0 

R 2.2 2.1 – 2.4 

μ 0.05 0.0 – 0.1 

Hardening parameters Typical Value Range of Values 

m† 0.02 0.02 

hc 15.0 5.0 – 100.0 

he 15.0 3.0 – 100.0 

h0
† (hc + he)/2 --------- 

a 2.0 1.0 – 5.0 

w† 5.0 5.0 

† Parameters considered fixed values as indicated. 
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Table 5.6-2: Overview of suggested calibration procedure 

Step 
Parameters 

determined 
Methodology 

1 

Si 

Directly from comparison of structured and   

remolded consolidation test results 

λu Directly from remolded consolidation test 

κs Directly from structured consolidation test 

Mc* Directly from set of triaxial compression tests 

Me* Directly from set of triaxial extension tests 

G or ν Adopt a standard value from the literature 

2 δ 

Curve-fitted to structured consolidation test or 

directly from consolidation test results 

3 

μ Curve-fitted to NC triaxial compression test 

π Curve-fitted to NC triaxial compression test 

 R Curve-fitted to NC triaxial compression test 

4 c Curve-fitted to lightly OC triaxial compression test 

5 

hc Curve-fitted to lightly OC triaxial compression test 

he Curve-fitted to lightly OC triaxial extension test 

6 s Curve-fitted to lightly OC triaxial compression test 

7 a Curve-fitted to heavily OC triaxial compression test 
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 Predictions 

The proposed model’s ability to predict the stress-strain behavior of cement-

mixed clay specimens under monotonic and cyclic loading is investigated. First, model 

predictions using the cohesion and variable R parameter defined bounding surface and 

the final proposed form of the bounding surface (detailed in Subsections 3.4.3 and 3.5.2, 

respectively) are compared. Then a fuller set of model predictions using the final 

proposed model formulation is presented. In the case of monotonic loading behavior, a 

comparison of predictions and published laboratory test results validate the model 

formulation. Model predictions will also be presented to demonstrate the model’s ability 

to predict evolution of the stress-strain response over a number of cycles. 

6.1 Soils and laboratory tests used for model validation 

A large amount of data exists on the monotonic stress-strain response of cement-

improved cohesive soils. However, “fully-developed” data sets; i.e., those containing 

triaxial tests over large ranges of confining pressures and consolidation tests for both 

structured and unstructured soil samples, are not common in the literature. The 

comparisons presented herein are based on datasets published by Xiao et al. (2016), 

Xiao and Lee (2014), and Quiroga et al. (2017) on specimens with cement contents 

ranging between ten to fifty percent. Table 6.1-1 shows an overview of the prediction 

comparisons for each of the six cement-mixed soils used in this chapter. A note on the 

soil-type nomenclature scheme: the leading letter refers to the source of the test data and 

the numbers denote the soil-cement-water proportions in the mix determined by weight. 

The cement contents and total water contents for each soil type are provided in Table 

6.1-2. Test data for all X-designated soils were presented by both Xiao and Lee (2014)   
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(isotropic consolidation data) and Xiao et al. (2016) (drained and undrained triaxial 

compression data). Results for identical soils are presented as a single dataset herein. 

Table 6.1-2: Mix design for model comparison soils 

 
Cement contents 

(%) 

Total water content 

(%) 

Curing time 

(days) 

X_10-1-11 10 100 7 

X_5-1-6 20 100 7 

X_10-3-13 30 100 7 

X_2-1-3 50 100 7 

X_2-1-4 50 133 7 

Q_10-2-5 20 41 60 

Note: Data on X-soils reproduced from Xiao and Lee (2014) and Xiao et al. (2016); 

data on Q-soil reproduced from Quiroga et al. (2017). 

 

6.2 Comparison of model predictions using two bounding surface equations 

The two disparate equations for the bounding surface depend on two similar sets 

of model parameters. In particular, the final bounding surface formulation requires 

characterization of the Mc
∗, Me

∗ Mc
∗⁄ , μ, and R parameters, as discussed in Chapter 5; 

conversely defining the bounding surface through the cohesion intercept required 

characterization of the Mc, Me Mc⁄ , UCS, A, Ce Cc⁄ , and ζ parameters, defined in the 

following subsection. 

6.2.1 Parameters for cohesion-based single-ellipse bounding surface model 

The slope of the critical state lines in q-p′ space in compression and extension 

(Mc and Me, respectively) are equivalent to the starred values (i.e., final or large strain 

values) used in the final proposed model formulation. 
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Unconfined compression strength, UCS, and a cohesion scale factor, A, are used 

to determine the initial cohesion value. The customary analysis of unconfined 

compression tests for purely cohesive soils states that cohesion is UCS/2, however Xiao 

et al. (2016) suggest cohesion for a chemically stabilized marine clay may be better 

represented as UCS/3. In order to allow flexibility within the model formulation, the 

initial cohesion in compression in triaxial stress-space is calculated as: 

Ci,comp =
UCS

A⁄   6.2-1 

The value of Ce Cc⁄  defines the relationship between the cohesion intercepts in triaxial 

extension and compression.  

The cohesion degradation parameter, ζ, relates the change in cohesion to the 

change in sensitivity. Xiao et al. (2016) state that ζ = 0.28 adequately characterizes the 

change in cohesion, via Equations 3.4-9 and 3.4-12, for a set of cement-treated soils 

with cement contents ranging from 10-50% (by dry weight) and total water content 

between 100-133%. 

6.2.2 Selected model predictions 

Updating the equation of the bounding surface generally increased the predictive 

capabilities of the proposed model formulation. The largest increases in agreement 

between prediction and test data were noted for triaxial tests on normally consolidated 

specimens. For the sake of brevity, only one set of compared model predictions is 

presented (Figure 6.2-1); although this trend was evident with all of the soil types used 

in this study. Model parameters used in these simulations are presented in Table 6.2-1 

and Table 6.3-2. 
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a) 

 
b) 

 
Figure 6.2-1: Comparison of model simulations of undrained shear behavior of 

normally consolidated X_5-1-6 soil specimens using bounding surface formulations 

from Subsections 3.4.3 and 3.5.2: (a) mean effective stress versus deviatoric stress, 

and (b) axial strain versus deviatoric stress  
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Table 6.2-1: Bounding surface model parameters for X_5-1-6 soil model 

predictions using Subsection 3.4.3 bounding surface 

Parameter Value Parameter Value Parameter Value 

ein 2.445 κs 0.020 c 0.5 

𝐩′𝟎 (kPa) 370 Mc 2.36 s 2.00 

UCS (kPa) 300 Me/Mc 1.0 hc 55.0 

Ce/Cc 1.0 ν 0.3 he/hc 1.0 

A 3.0 δ 2.69 a 2.0 

Si 54.63 π 1.69   

λu 0.230 ζ 0.28   

 The remainder of this chapter presents and discusses predictions made with the 

actual proposed model formulation (i.e., using the bounding surface detailed in 

Subsection 3.5.2). 

6.3 Predictions of monotonic response 

The method for calibrating model parameters outlined in Chapter 5 was 

followed as closely as possible for each soil type. However, from Table 6.1-1 it is 

evident that none of the data sets include all of the tests required by the calibration 

procedure. The modifications taken will be detailed in discussing the individual soil 

predictions.  

Values of initial void ratio, p′0, Si, λu, κs, Mc
∗, and δ for X-soils are adopted from 

Xiao and Lee (2014) and Xiao et al. (2016). Values of Me
∗ Mc

∗⁄  and he/hc are set to one in 

the absence of triaxial extension data. It is important to note that for all normally 

consolidated and overconsolidated tests, the change in initial sensitivity and void ratio 

was calculated and directly specified accordingly, as discussed in Subsection 5.1.2. 
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Specific tests used to calibrate model parameters for X-soil predictions are detailed in 

Table 6.3-1. 

Values of initial void ratio, p′0, λu, κs, and Mc
∗ for Q_10-2-5 soils are adopted 

from Quiroga et al. (2017) and initial sensitivity is determined from improved and 

unimproved soil oedometer tests. Values of Me
∗ Mc

∗⁄  and he/hc are set to one in the 

absence of triaxial extension data. Although the results of an isotropic model predicting 

anisotropic consolidation behavior is questionable, oedometer test data was used to 

determine δ and a starting value of π. The CU 207 (PY) test was used to finalize the 

value of π and the remaining model parameters.  

A list of the model parameters used for each soil type can be found in Table 

6.3-2. Figure 6.3-1 shows the predictions of X-soil isotropic consolidation tests. 

Predictions of drained and undrained triaxial compression test results for various X-

soils are shown in Figure 6.3-2 through Figure 6.3-19. Oedometer test predictions for 

the Q-soil are shown in Figure 6.3-20. Figure 6.3-21 shows the predictions of Q-soil 

undrained triaxial compression test results. A single set of parameters are used to 

predict all the test results for a given soil. 

Table 6.3-1: Tests used to calibrate X-soil curve-fitted parameters 

 NC parameters 

(π) 

Lightly OC parameters 

(c, s, hc) 

Heavily OC parameters 

(a) 

X_10-1-11 CD 500 CU 500-250 --- 

X_5-1-6 CU 500 CU 500-250 --- 

X_10-3-13 CU 500 CU 350 (PY) --- 

X_2-1-3 CD 1025 CU 500 (PY) --- 

X_2-1-4 CU 500 CU 500-250 --- 
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a) 

 
b) 

 

Figure 6.3-2: Simulation of undrained shear behavior of overconsolidated X_10-1-

11 soil specimens: (a) mean effective stress versus deviatoric stress, and (b) axial 

strain versus deviatoric stress 
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a) 

 
b) 

 

Figure 6.3-3: Simulation of drained shear behavior of normally consolidated X_10-

1-11 soil specimens: (a) mean effective stress versus volumetric strain, and (b) 

deviatoric strain versus deviatoric stress 
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a) 

 
b) 

 

Figure 6.3-4: Simulation of drained shear behavior of overconsolidated X_10-1-11 

soil specimens: (a) mean effective stress versus volumetric strain, and (b) 

deviatoric strain versus deviatoric stress 
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a) 

 
b) 

 

Figure 6.3-5: Simulation of undrained shear behavior of normally consolidated 

X_5-1-6 soil specimens: (a) mean effective stress versus deviatoric stress, and (b) 

axial strain versus deviatoric stress 
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a) 

 
b) 

 

Figure 6.3-6: Simulation of undrained shear behavior of overconsolidated X_5-1-6 

soil specimens: (a) mean effective stress versus deviatoric stress, and (b) axial 

strain versus deviatoric stress 



84 

a) 

 
b) 

 

Figure 6.3-7: Simulation of drained shear behavior of normally consolidated and 

pre-yield (PY) X_5-1-6 soil specimens: (a) mean effective stress versus volumetric 

strain, and (b) deviatoric strain versus deviatoric stress 
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a) 

 
b) 

 

Figure 6.3-8: Simulation of drained shear behavior of overconsolidated X_5-1-6 

soil specimens: (a) mean effective stress versus volumetric strain, and (b) 

deviatoric strain versus deviatoric stress 
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a) 

 
b) 

 

Figure 6.3-9: Simulation of undrained shear behavior of normally consolidated 

and pre-yield (PY) X_10-3-13 soil specimens: (a) mean effective stress versus 

deviatoric stress, and (b) axial strain versus deviatoric stress 
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a) 

 
b) 

 

Figure 6.3-10: Simulation of undrained shear behavior of overconsolidated X_10-

3-13 soil specimens: (a) mean effective stress versus deviatoric stress, and (b) axial 

strain versus deviatoric stress 
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a) 

 
b) 

 

Figure 6.3-11: Simulation of drained shear behavior of pre-yield (PY) X_10-3-13 

soil specimens: (a) mean effective stress versus volumetric strain, and (b) 

deviatoric strain versus deviatoric stress 
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a) 

 
b) 

 

Figure 6.3-12: Simulation of drained shear behavior of overconsolidated X_10-3-13 

soil specimens: (a) mean effective stress versus volumetric strain, and (b) 

deviatoric strain versus deviatoric stress 
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a) 

 
b) 

 

Figure 6.3-13: Simulation of undrained shear behavior of overconsolidated and 

pre-yield (PY) X_2-1-3 soil specimens: (a) mean effective stress versus deviatoric 

stress, and (b) axial strain versus deviatoric stress 
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a) 

 
b) 

 

Figure 6.3-14: Simulation of drained shear behavior of normally consolidated and 

pre-yield (PY) X_2-1-3 soil specimens: (a) mean effective stress versus volumetric 

strain, and (b) deviatoric strain versus deviatoric stress 
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a) 

 
b) 

 

Figure 6.3-15: Simulation of drained shear behavior of overconsolidated X_2-1-3 

soil specimens: (a) mean effective stress versus volumetric strain, and (b) 

deviatoric strain versus deviatoric stress 
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a) 

 
b) 

 

Figure 6.3-16: Simulation of undrained shear behavior of normally consolidated 

X_2-1-4 soil specimens: (a) mean effective stress versus deviatoric stress, and (b) 

axial strain versus deviatoric stress 



94 

a) 

 
b) 

 

Figure 6.3-17: Simulation of undrained shear behavior of overconsolidated X_2-1-

4 soil specimens: (a) mean effective stress versus deviatoric stress, and (b) axial 

strain versus deviatoric stress 



95 

a) 

 
b) 

 

Figure 6.3-18: Simulation of drained shear behavior of normally consolidated and 

pre-yield (PY) X_2-1-4 soil specimens: (a) mean effective stress versus volumetric 

strain, and (b) deviatoric strain versus deviatoric stress 
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a) 

 
b) 

 

Figure 6.3-19: Simulation of drained shear behavior of overconsolidated X_2-1-4 

soil specimens: (a) mean effective stress versus volumetric strain, and (b) 

deviatoric strain versus deviatoric stress 
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Figure 6.3-20: Simulation of oedometer consolidation behavior of Q_10-2-5 soil 
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a) 

 
b) 

 

Figure 6.3-21: Simulation of undrained shear behavior of pre-yielded Q_10-2-5 soil 

specimens: (a) mean effective stress versus deviatoric stress, and (b) axial strain 

versus deviatoric stress 
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6.4 Comments on monotonic predictions 

The model predictions in the previous subsection show the proposed model 

formulation will predict isotropic consolidation behavior and capture the general stress-

strain behavior for soils subjected drained and undrained triaxial compression loading. 

Predictions for lightly overconsolidated and artificially lightly overconsolidated, pre-

yield specimens show the best agreement with the actual results. Normally consolidated 

predictions using large confining stresses overestimate the deviatoric strength of the 

cement-mixed soil.  

An important feature of stress-strain predictions to note is the tracking of dIo 

through Equation 3.4-10. For a loading increment when the current stress state is 

located on the bounding surface, the numerical model will calculate a stress increment 

which pushes the state of stress along the bounding surface toward the peak of the 

surface, (I0/R, NI0/R), where N is the calculated slope of the line located through the 

origin and peak of the surface in direct stress invariant space. Once the current stress-

state is located at the peak of the bounding surface, the stress-state will remain at the 

peak for additional loading stress increments. In the Dafalias and Herrmann (1986), and 

other plastic and elastoplastic models, this state defines the critical state. However in the 

proposed model, the line defined by the calculated slope, N, is not indicative of the 

actual critical state. In the current formulation, critical state may only be achieved once 

the cemented soil becomes fully remolded; i.e., the sensitivity equals one. 

The “post-peak” behavior exhibited by the effective stress paths, most obvious 

in Figure 6.3-16a, tracks the evolution of the bounding surface as destructuring takes 

place. For all X-soil predictions, this “post-peak” behavior models the decrease in 



100 

deviatoric stress due to destructuring. Conversely, for Q-soil predictions the tracking of 

the maximum point on the bounding surface describes the downward hook in the 

effective stress paths and marked peak/residual deviatoric strength behavior in the 

stress-strain relationship (see Figure 6.3-21). The test data do not exhibit the hook 

behavior and destructuring shown in the predictions. The model begins to predict such 

unrealistic behaviors for pre-yield specimens with artificial overconsolidation ratios 

greater than 4.0. 

The predictions show good agreement with the peak/residual deviatoric stress 

vs. axial strain undrained triaxial compression test data for normally consolidated and 

lightly overconsolidated (artificial and real) specimens. However, the test data show the 

deviatoric stresses have largely stabilized (i.e., reached the residual value) at, or before, 

5% axial strain; for the predictions shown in the previous subsection, the predictions do 

not reach a residual deviatoric strength by 5% axial strain, but continue to exhibit 

destructuring for larger axial strains. Additional model predictions show the ultimate 

shear strength near critical state will be extremely low compared to that exhibited in the 

test data. Recall that Equations 3.4-10 and 3.4-11 describe the change in the size of the 

bounding surface and change in sensitivity. One may note from Equation 3.4-10 that the 

size of the bounding surface will generally decrease, or increase at a rate slower than the 

traditional elastoplastic formulation would predict, with the rate of change largely 

dependent on the sensitivity and rate parameters δ and π. Larger sensitivity implies a 

greater amount of structure, and thus a greater potential for decrease in the structured 

bounding surface and strain softening. The tendency of the predictions to exhibit greater 
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softening behavior than is evidenced by actual test data implies that the Xiao and Lee 

(2014) method of calibrating initial sensitivity could be improved. 

6.5 A forecast of cyclic modeling capability 

As the datasets used in this study do not include cyclic triaxial test data, the 

ability of the model to predict the behavior of cyclically loaded cement-mixed soils will 

be determined by a model prediction to the behavioral trends discussed in the literature.  

Figure 6.5-1 shows the prediction for an undrained, two-way triaxial cyclic test 

using the model parameters for a normally consolidated X_10-3-13 specimen. Note that 

arrows indicate the trend with increasing numbers of cycles. The predictions exhibit 

shear modulus degradation, a phenomenon discussed by several authors studying small-

strain pavement subgrade applications (Abu-Farsakh et al. 2015; Ardah et al. 2017; da 

Fonseca et al. 2013; Panico and da Fonseca 2016) and authors investigating cyclic 

behavior using larger deviatoric stresses (Subramaniam and Banerjee 2014). The model 

also captures the increases in pore water pressure generation, which is a key feature of 

cyclic response of soft clays but, is also identified as a characteristic response of 

cyclically loaded cemented marine clays (Moses and Rao 2003). 
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a) 

 
b) 

 
c) 

 

Figure 6.5-1: Prediction of an undrained, stress-controlled, two-way triaxial cyclic 

test for a normally consolidated X_5-1-6 specimen 
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6.6 Investigation into the effects of initial sensitivity 

Excessive strain softening seen in the model predictions was not shown 

previously; however predictions with larger axial strains (see Figure 6.6-2) show 

continued destructuring over larger values of axial strain. Sensitivity is the model 

parameter relating the sizes of the bonded and remolded bounding surfaces. Therefore, 

excessive strain softening in monotonic model predictions indicates the choices of 

initial sensitivity are too large for the soils used in this study. It is hypothesized that 

using smaller values of initial sensitivity will result in better stress-strain predictions. In 

this section, this hypothesis will be tested by treating initial sensitivity as an additional 

fitted model parameter for simulations of X_2-1-4 undrained triaxial compression test 

data. 

For this investigation, Si and δ were calibrated simultaneously from the isotropic 

compression curve using a trial-and-error curve-fitting approach, shown in Figure 6.6-1. 

The parameter π was calibrated using the CU 500 test results shown in Figure 6.6-2a. 

The remaining parameters were assumed to be the same as used in the previous 

calibration. A list of the resulting model parameters is provided in Table 6.6-1.  

Figure 6.6-2 compares test results, model predictions using the original 

theoretically-based definition of sensitivity, and model predictions using the fitted 

initial sensitivity value. Two test results are presented for each confining stress: one test 

using a specimen with a traditional triaxial test specimen and one specimen with a 1:1 

ratio of height to diameter, denoted as a tall and short specimen, respectively. These two 

test results are presented as bounds of stress-strain behavior which may be expected in 

full-scale boundary value problems. The model predictions using the fitted initial 
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sensitivity shown in Figure 6.6-2 exhibit modest increases in predictive capacities over 

the predictions using the theoretically-based definition of sensitivity. New model 

predictions shown in Figure 6.6-2a exhibit faster destructuring, but also predict a higher 

residual deviatoric strength, than the original predictions; however, the model still over-

predicts the occurrence of destructuring in this specimen. The new model prediction 

shown in Figure 6.6-2b shows much closer agreement with the test data, especially in 

the magnitude of residual deviatoric strength. 

 
Figure 6.6-1: Simulation of isotropic consolidation behavior of X_2-1-4 soil 

specimen with Si treated as a fitted parameter 

Table 6.6-1: Bounding surface model parameters for prediction of X_2-1-4 soil 

tests with Si treated as a fitted parameter 

ein 3.033 Me*/Mc* 1.0 c 0.5 

p'0 439 ν 0.3 s 1.20 

Si 8.0 R 2.20 hc 35.0 

λu 0.300 δ 3.00 he/hc 1.0 

κs 0.013 π 2.30 a 2.0 

Mc* 2.53 μ 0.03   
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a) 

 
b) 

 

 

 
Figure 6.6-2: Comparison of simulations of axial strain versus deviatoric stress 

relationship for undrained shear behavior of large-strain, normally consolidated 

triaxial compression tests for X_2-1-4 soil specimens with theoretically determined 

and fitted Si parameters: (a) CU 500, and (b) CU 1000 
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 Conclusions and recommendations 

While the proposed model may not be meaningfully applied to artificially 

cemented soils with a large overconsolidation ratio, the model is able to capture the 

behavioral trends of lightly overconsolidated and normally consolidated soils. The 

ability of the implemented projection center relocation formulation to allow 

accumulation of plastic strain during load-reversal is demonstrated not only in the 

prediction of cyclic loading, but also during the unloading stage of the Q-soil oedometer 

test prediction. Although it should, again, be noted that an isotropic model may not be 

able to accurately predict anisotropic consolidation behavior. Despite the cyclic 

prediction not being compared with an actual test result, the prediction does exhibit the 

anticipated destructuring behaviors, namely decreasing secant shear modulus and 

increasing strain accumulation with an increasing number of loading cycles.  

Excessive softening behavior in the monotonic model predictions implies the 

initial sensitivity values are excessively large. The Xiao and Lee (2014) calibration 

method, utilized in this dissertation, uses two separate specimens, one intact and one 

fully remolded, to characterize the sensitivity and the δ parameter. It is unclear if any 

control has been enacted to ensure the consolidation curves would coincide (i.e., reach 

the same specific volume or void ratio and p’) if the intact specimen was loaded to 

cause a fully remolded state. It is hypothesized a more accurate representation of 

sensitivity would be achieved if a structured specimen is consolidated to very large 

stresses to effectively create a remolded state with the slope of the remolded 

consolidation line projected backwards to smaller p’ values in order to determine the 

initial sensitivity and δ parameter. Future research should investigate if the resulting 
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values of Si and δ are better predictors of the bond degradation, especially in undrained 

triaxial compression stress-strain behavior. Initial investigations, detailed in Section 6.6, 

indicate this will likely increase the predictive capabilities in some, but not all cases. 

The results presented in the investigation into the effects of initial sensitivity and 

the model predictions for pre-yield, artificially heavily overconsolidated specimens 

(Figure 6.3-21) show that the current formulation over-predicts destructuring behavior 

at large strains and for soils with large artificial overconsolidation ratios. In addition to 

the redefinition of initial sensitivity, future work to refine the proposed model should 

modify the destructuring equations (3.4-10 and 3.4-11) to better reflect the soil 

behavior. Adoption of a non-associative flow rule should also be considered.  

 Although a large amount of work has been completed to characterize the stress-

stain and destructuring behavior of cement-mixed soils, few fully developed and 

thorough data sets, including triaxial extension and cyclic loading, are available in the 

literature. Future work should focus on developing larger sets of laboratory test data, 

including:  

 An isotropic consolidation test, loaded to extremely large stresses with at least 

one unloading; 

 A set of pre-yield, undrained, triaxial compression and extension tests with 

artificial overconsolidation ratios equal to 2, 4, and 8; 

 A set of pre-yield, drained, triaxial compression tests with artificial 

overconsolidation ratios equal to 2, 4, and 8; 
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 A set of normally consolidated, undrained triaxial compression and extension 

tests with confining stresses approximately equal to 1, 1.5, 2, and 4 times the 

isotropic yield stress; 

 A set of normally consolidated, drained triaxial compression tests with confining 

stresses approximately equal to 1, 1.5, 2, and 4 times the isotropic yield stress; 

 A set of overconsolidated, undrained triaxial compression and extension tests 

with preconsolidation pressures approximately equal to 1.5, 2, and 4 times the 

isotropic yield stress and overconsolidation ratios equal to 2, 4, and 8; 

 A set of undrained, stress-controlled, one-way and two-way cyclic shear triaxial 

tests using pre-yield specimens with artificial overconsolidation ratios equal to 

2, 4, 8 and maximum shear stresses equal to 15, 35, and 70% of the peak 

deviatoric strength for the comparable monotonic triaxial test;  

 A set of undrained, stress-controlled, one-way and two-way cyclic shear triaxial 

tests using overconsolidated with preconsolidation pressures approximately 

equal to 1.5 and 4 times the isotropic yield stress, overconsolidation ratios equal 

to 2 and 4, and maximum shear stresses equal to 15, 35, and 70% of the peak 

deviatoric strength for the comparable monotonic triaxial test;  

 A set of constant p′ triaxial tests utilizing various confining stresses and artificial 

overconsolidation ratios; and 

 A set of monotonic and cyclic plane strain or true triaxial tests with various 

boundary conditions. 

Additional laboratory testing plans to investigate the strain-rate effects and 

development of stress-induced anisotropy should also be considered.  
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Appendix A: Specific forms of partial derivatives of the bounding 

surface equation and variable bounding surface parameters 

From Equation 3.5-8: 

𝐹,𝐼̅= 2𝐼0 (
𝐼 ̅

𝐼0
−
1

𝑅
)  A-1 

𝐹,𝐽̅= 2𝐽̅ (
𝑅 − 1

𝑁
)
2

  A-2 

𝐹,𝑁 = −
2𝐽2̅

𝑁
(
𝑅 − 1

𝑁
)
2

  A-3 

𝐹,𝐼0 = −
2

𝑅
{𝐼 ̅ − (𝑅 − 2)𝐼0}  A-4 

𝐹,𝜃 =
𝜕𝐹

𝜕𝑁

𝜕𝑁

𝜕𝜃
  A-5 

From Equations 3.5-9 and 3.5-10: 

𝜕𝑁

𝜕𝜃
= 𝑔𝑁,𝜃  A-6 

𝜕𝑁

𝜕𝑆
=

𝜇𝑁𝑐
∗𝑔𝑁

𝑆(1 − 𝜇 ln 𝑆)2
  A-7 

where 𝑁(𝜃) and 𝑔𝑁(𝜃) are given by Equation 3.5-9, and 𝑔𝑁,𝜃 is the partial derivative of 

Equation 3.5-9 with respect to Lode angle, given by: 

𝑔𝑁,𝜃 =
3𝑘𝑁

4(1 − 𝑘𝑁
4) cos(3𝜃)

2 (
2𝑘𝑁

4

1 + 𝑘𝑁
4 − (1 − 𝑘𝑁

4) sin(3𝜃)
)

3
4⁄

(1 + 𝑘𝑁
4 − (1 − 𝑘𝑁

4) sin(3𝜃))
2

 
A-8 
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Appendix B: Closed form solution for similarity ratio (b) 

In order to solve for the similarity ratio, b, Equation 3.5-8 is expanded via Equations 

3.5-1 and 3.5-2 and rearranged into an equation which is quadratic in b, which may be 

solved by: 

𝑏 =
−𝐵 ± √𝐵2 − 4𝐴𝐶

2𝐴
  B-1 

𝐴 = (𝐼 − 𝐼𝑃𝐶)
2 + [

(𝑅 − 1)(𝐽 − 𝐽𝑃𝐶)

𝑁
]

2

  B-2 

𝐵 = (𝐼 − 𝐼𝑃𝐶) [𝐼𝑃𝐶 + 𝐼0
𝑅 − 2

𝑅
] + (𝐼𝑃𝐶 − 𝐼0)(𝐼 − 𝐼𝑃𝐶) + 2𝐽𝑃𝐶(𝐽 − 𝐽𝑃𝐶) (

𝑅 − 1

𝑁
)
2

  B-3 

𝐶 = (𝐼𝑃𝐶 − 𝐼0) [𝐼𝑃𝐶 + 𝐼0
𝑅 − 2

𝑅
] + (𝐽𝑃𝐶

𝑅 − 1

𝑁
)
2

  B-4 
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Appendix C: Specific forms for numerical integration of dI0 and dS 

It should be noted that updating the isotropic compression stress (Equation 

3.4-10) and sensitivity (Equation 3.4-11) calculated at the end of each solution step 

requires the numerical integration of these relationships. Following the steps outlined by 

Herrmann et al. (1987), including approximation of dependent values by the trapezoidal 

rule, the value of I0 and S for a given solution step of a drained prediction can be taken 

as: 

If I > Il and I0 > Il C-1 

𝐼0𝑚 = [𝐼0𝑚−1 +
𝑎

𝑏
] 𝑒𝑥𝑝(𝑏) −

𝑎

𝑏
  

𝑆𝑚 = [𝑆𝑚−1 +
𝑐

𝑑
]  𝑒𝑥𝑝(𝑑) −

𝑐

𝑑
  

𝑎 =
−𝜆𝑢(1+𝑒𝑖𝑛)

𝜆𝑢−𝜅𝑠

{
 
 

 
 

𝛿𝐼𝑚−1Δ휀𝑣𝑚 −
𝛿(Δ𝐼𝑚)

2

12
(

1

𝐾𝑚−1
+

1

𝐾𝑚
) + 3√3𝜋𝐽𝑚−1∆휀𝑠𝑚 −

3

2

𝜋(∆𝐽𝑚)
2

𝐺
−

√
[
𝛿𝐼𝑚−1∆ 𝑣𝑚

2
(

1

𝑆𝑚−1
+

1

𝑆𝑚
) −

𝛿(∆𝐼𝑚)
2

12𝑆𝑚−1
(

1

𝐾𝑚−1
+

1

𝐾𝑚
)]
2

+

[
3√3𝜋𝑁𝐼𝑚−1∆ 𝑠𝑚

2
(

1

𝑆𝑚−1
+

1

𝑆𝑚
) −

3𝜋𝑁𝐼𝑚−1

𝐺𝑆𝑚−1
∆𝐽𝑚]

2

}
 
 

 
 

  

𝑏 = {
1+𝑒𝑖𝑛

𝜆𝑢−𝜅𝑠
[Δ휀𝑣𝑚 −

1

6
(

1

𝐾𝑚−1
+

1

𝐾𝑚
)∆𝐼𝑚]}  

𝑐 =
1+𝑒𝑖𝑛

𝐼0𝑚−1

{
 

 
√
[𝛿𝐼𝑚−1∆휀𝑣𝑚 −

𝛿(∆𝐼𝑚)
2

12
(

1

𝐾𝑚−1
+

1

𝐾𝑚
)]
2

+

[3√3𝜋𝑁𝐼𝑚−1∆휀𝑠𝑚 −
3𝜋𝑁𝐼𝑚−1

𝐺
∆𝐽𝑚]

2

}
 

 
  

𝑑 =
−(1+𝑒𝑖𝑛)

𝐼0𝑚−1
{𝛿𝐼𝑚−1∆휀𝑣𝑚 −

𝛿(∆𝐼𝑚)
2

12
(

1

𝐾𝑚−1
+

1

𝐾𝑚
) + 3√3𝜋𝐽𝑚−1∆휀𝑠𝑚 −

3𝜋(∆𝐽𝑚)
2

2𝐺
}  

If I > Il and I0 ≤ Il C-2 

𝐼0𝑚 = 𝐼0𝑚−1 + 𝑎  

𝑆𝑚 = [𝑆𝑚−1 +
𝑐

𝑑
]  𝑒𝑥𝑝(𝑑) −

𝑐

𝑑
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𝑎 =
−𝜆𝑢(1+𝑒𝑖𝑛)

𝜆𝑢−𝜅𝑠

{
 
 

 
 

𝛿𝐼𝑚−1Δ휀𝑣𝑚 −
𝛿(Δ𝐼𝑚)

2

12
(

1

𝐾𝑚−1
+

1

𝐾𝑚
) + 3√3𝜋𝐽𝑚−1∆휀𝑠𝑚 −

3

2

𝜋(∆𝐽𝑚)
2

𝐺
−

√
[
𝛿𝐼𝑚−1∆ 𝑣𝑚

2
(

1

𝑆𝑚−1
+

1

𝑆𝑚
) −

𝛿(∆𝐼𝑚)
2

12𝑆𝑚−1
(

1

𝐾𝑚−1
+

1

𝐾𝑚
)]
2

+

[
3√3𝜋𝑁𝐼𝑚−1∆ 𝑠𝑚

2
(

1

𝑆𝑚−1
+

1

𝑆𝑚
) −

3𝜋𝑁𝐼𝑚−1

𝐺𝑆𝑚−1
∆𝐽𝑚]

2

}
 
 

 
 

+
(1+𝑒𝑖𝑛)

𝜆𝑢−𝜅𝑠
[∆휀𝑣𝑚 −

1

6
(

1

𝐾𝑚−1
+

1

𝐾𝑚
)∆𝐼𝑚] × 𝐼𝑙  

𝑐 =
(1+𝑒𝑖𝑛)

𝐼𝑙

{
 

 
√
[𝛿𝐼𝑚−1∆휀𝑣𝑚 −

𝛿(∆𝐼𝑚)
2

12
(

1

𝐾𝑚−1
+

1

𝐾𝑚
)]
2

+

[3√3𝜋𝑁𝐼𝑚−1∆휀𝑠𝑚 −
3𝜋𝑁𝐼𝑚−1

𝐺
∆𝐽𝑚]

2

}
 

 
  

𝑑 =
−(1+𝑒𝑖𝑛)

𝐼𝑙
{𝛿𝐼𝑚−1∆휀𝑣𝑚 −

𝛿(∆𝐼𝑚)
2

12
(

1

𝐾𝑚−1
+

1

𝐾𝑚
) + 3√3𝜋𝐽𝑚−1∆휀𝑠𝑚 −

3𝜋(∆𝐽𝑚)
2

2𝐺
}  

If I ≤ Il and I0 > Il C-3 

𝐼0𝑚 = [𝐼0𝑚−1 +
𝑎

𝑏
] 𝑒𝑥𝑝(𝑏) −

𝑎

𝑏
  

𝑆𝑚 = [𝑆𝑚−1 +
𝑐

𝑑
]  𝑒𝑥𝑝(𝑑) −

𝑐

𝑑
  

𝑎 =
−𝜆𝑢(1+𝑒𝑖𝑛)

𝜆𝑢−𝜅𝑠

{
 
 

 
 

𝛿𝐼𝑙Δ휀𝑣𝑚 −
𝛿𝐼𝑙

6
(

1

𝐾𝑚−1
+

1

𝐾𝑚
)∆𝐼𝑚 + 3√3𝜋𝐽𝑚−1∆휀𝑠𝑚 −

3

2

𝜋(∆𝐽𝑚)
2

𝐺
−

√
[
𝛿𝐼𝑙∆ 𝑣𝑚

2
(

1

𝑆𝑚−1
+

1

𝑆𝑚
) −

𝛿𝐼𝑙

6𝑆𝑚−1
(

1

𝐾𝑚−1
+

1

𝐾𝑚
)∆𝐼𝑚]

2

+

[
3√3𝜋𝑁𝐼𝑙∆ 𝑠𝑚

2
(

1

𝑆𝑚−1
+

1

𝑆𝑚
) −

3𝜋𝑁𝐼𝑙

𝐺𝑆𝑚−1
∆𝐽𝑚]

2

}
 
 

 
 

  

𝑏 = {
1+𝑒𝑖𝑛

𝜆𝑢−𝜅𝑠
[Δ휀𝑣𝑚 −

1

6
(

1

𝐾𝑚−1
+

1

𝐾𝑚
)∆𝐼𝑚]}  

𝑐 =
−(1+𝑒𝑖𝑛)

𝐼0𝑚−1

{
 

 
√
[𝛿𝐼𝑙∆휀𝑣𝑚 −

𝛿𝐼𝑙

6
(

1

𝐾𝑚−1
+

1

𝐾𝑚
)∆𝐼𝑚]

2

+

[3√3𝜋𝑁𝐼𝑙∆휀𝑠𝑚 −
3𝜋𝑁𝐼𝑙

𝐺
∆𝐽𝑚]

2

}
 

 
  

𝑑 =
−(1+𝑒𝑖𝑛)

𝐼0𝑚−1
{𝛿𝐼𝑙∆휀𝑣𝑚 −

𝛿𝐼𝑙

6
(

1

𝐾𝑚−1
+

1

𝐾𝑚
)∆𝐼𝑚 + 3√3𝜋𝐽𝑚−1∆휀𝑠𝑚 −

3𝜋(∆𝐽𝑚)
2

2𝐺
}   

If I ≤ Il and I0 ≤ Il C-4 

𝐼0𝑚 = 𝐼0𝑚−1 + 𝑎  
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𝑆𝑚 = [𝑆𝑚−1 +
𝑐

𝑑
]  𝑒𝑥𝑝(𝑑) −

𝑐

𝑑
  

𝑎 =
−𝜆𝑢(1+𝑒𝑖𝑛)

𝜆𝑢−𝜅𝑠

{
 
 

 
 

𝛿𝐼𝑙Δ휀𝑣𝑚 −
𝛿𝐼𝑙

6
(

1

𝐾𝑚−1
+

1

𝐾𝑚
)∆𝐼𝑚 + 3√3𝜋𝐽𝑚−1∆휀𝑠𝑚 −

3

2

𝜋(∆𝐽𝑚)
2

𝐺
−

√
[
𝛿𝐼𝑙∆ 𝑣𝑚

2
(

1

𝑆𝑚−1
+

1

𝑆𝑚
) −

𝛿𝐼𝑙

6𝑆𝑚−1
(

1

𝐾𝑚−1
+

1

𝐾𝑚
)∆𝐼𝑚]

2

+

[
3√3𝜋𝑁𝐼𝑙∆ 𝑠𝑚

2
(

1

𝑆𝑚−1
+

1

𝑆𝑚
) −

3𝜋𝑁𝐼𝑙

𝐺𝑆𝑚−1
∆𝐽𝑚]

2

}
 
 

 
 

+
(1+𝑒𝑖𝑛)

𝜆𝑢−𝜅𝑠
[𝐼𝑙∆휀𝑣𝑚 −

𝐼𝑙

6
(

1

𝐾𝑚−1
+

1

𝐾𝑚
)∆𝐼𝑚]  

𝑐 = (1 + 𝑒𝑖𝑛)

{
 

 
√
[𝛿∆휀𝑣𝑚 −

𝛿∆𝐼𝑚

6
(

1

𝐾𝑚−1
+

1

𝐾𝑚
)]
2

+

[3√3𝜋𝑁∆휀𝑠𝑚 −
3𝜋𝑁

𝐺
∆𝐽𝑚]

2

}
 

 
  

𝑑 = −(1 + 𝑒𝑖𝑛) {𝛿∆휀𝑣𝑚 −
𝛿∆𝐼𝑚

6
(

1

𝐾𝑚−1
+

1

𝐾𝑚
) +

3√3𝜋𝐽𝑚−1

𝐼𝑙
∆휀𝑠𝑚 −

3𝜋(∆𝐽𝑚)
2

2𝐺𝐼𝑙
}  

where the subscripts m and m-1 denote values associated with the current and previous 

solution steps, respectively. It should be noted that that (∆𝐼𝑚)
2 and (∆𝐽𝑚)

2 are quick 

notations for the following equivalencies: 

(∆𝐼𝑚)
2 = 𝐼𝑚

2 − 𝐼𝑚−1
2   C-5 

(∆𝐽𝑚)
2 = 𝐽𝑚

2 − 𝐽𝑚−1
2  C-6 

 


