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ABSTRACT 

Exercise-induced muscle damage (EIMD) is a result of high-force eccentric 

contractions and can lead to significant alterations in the structure and function of 

skeletal muscles. Critical torque (CT) and the impulse above critical torque (IACT) 

have both been reported to decrease following EIMD.  PURPOSE: The purposes of 

this study were to 1) observe the time course of change in CT and IACT up to 7-days 

following EIMD, and 2) to assess the extent to which central and peripheral fatigue 

contribute to changes in CT and IACT following EIMD. METHODS: Participants 

(males = 6, females = 4) completed 2 familiarizations and 5 experimental visits. Fatigue 

patterns were assessed, and CT and IACT were derived at the 1st experimental visit. The 

2nd experimental visit included an EIMD protocol consisting of 100 back squats. The 

3rd, 4th, and 5th experimental visits were identical to the 1st.  CT and IACT were acquired 

through voluntary and stimulated conditions. RESULTS: The participant’s ratings of 

muscle soreness were significantly elevated up to 4-days following EIMD (p<0.05). 

Dominant leg MVIC was reduced up to 2-days (p<0.05) while non-dominant leg MVIC 

was reduced up to 4-days (p<0.05) following EIMD. Mean CT was decreased up to 4-

days following EIMD in the voluntary condition (p<0.05) while decreases lasted up to 

2-days in the stimulated condition (p<0.05). IACT was not significantly different 

following EIMD in either conditions (p>0.05). Voluntary activation was not 

significantly different following EIMD (p>0.05) and these results are the same for 

twitch torque (p>0.05).  EMG RMS and twitch torque both showed a significant 

reduction during the voluntary CT test (p<0.05). There were no changes in low-

frequency fatigue after the voluntary and stimulated conditions (p>0.05) or following 
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EIMD (p>0.05). CONCLUSIONS: Even though CT was lower following EIMD, 

IACT was not. Additionally, our results show no contribution of central or peripheral 

fatigue on torque production following EIMD. These findings suggest the loss in torque 

production following EIMD to be a factor of EIMD’s effect on muscular function and 

not the central and peripheral mechanisms of fatigue.
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CHAPTER I - Introduction 

1.1 Introduction 

Exercise-induced muscle damage (EIMD) commonly occurs following high 

intensity exercise involving eccentric contractions. EIMD results in predictable 

alterations in both the structure and function of skeletal muscle which leads to decreases 

in force production, delayed-onset muscle soreness (DOMS), and decreases in endurance 

exercise performance (Black & McCully, 2008; D. Burt, Lamb, Nicholas, & Twist, 2012; 

Carmichael et al., 2006; Davies, Rowlands, Poole, Jones, & Eston, 2011; Fouré et al., 

2015; Highton, Twist, & Eston, 2009). The impact of EIMD on aerobic metabolic 

function has been increasingly studied in recent years. For example, resting muscle 

oxygen utilization has been shown to increase following EIMD; perhaps to aid in repair 

of damaged muscle fibers (Sirous Ahmadi, Sinclair, & Davis, 2008). Likewise, EIMD 

also increases blood volume and resting blood flow to skeletal muscle (Selkow et al., 

2015). A growing number of studies have found EIMD negatively impacts performance 

in endurance time-trials perhaps due to decreased local endothelial flow-mediated 

dilation (Caldwell et al., 2016), increased ratings of perceived exertion (RPE) and muscle 

pain (Black & Dobson, 2013), reduced VO2 peak  (Black & Dobson, 2012) and 

ventilatory threshold (Black & Dobson, 2012, 2013; D. G. Burt & Twist, 2011) and earlier 

accumulation of lactate (Gleeson, Blannin, Walsh, Field, & Pritchard, 1998).  

 Although less studied, critical power (CP)--defined as the maximal work rate that 

can be tolerated for a very long duration without fatigue (Jones, Vanhatalo, Burnley, 

Morton, & Poole, 2010; Monod & Scherrer, 1965) represents an emerging parameter of 

aerobic metabolic function that predicts exercise performance. Work performed at an 
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intensity above CP, utilizes a finite and fixed energy store termed W’. The magnitude of 

W’ and thus the amount of work that can be performed above CP is likely determined by 

anaerobic energy stores such as muscle phosphocreatine (PCr), anaerobic glycolysis, and 

stored oxygen (Broxterman et al., 2014; Fukuba et al., 2003; Jones et al., 2010; A. Miura, 

Kino, Kajitani, Sato, & Fukuba, 1999; Monod & Scherrer, 1965). A study by Burnley 

(Burnley, 2009) has validated a 5-minute all-out test protocol that can be used to estimate 

W’ and critical torque (CT), an isometric exercise analog of critical power. CT represents 

the maximal torque output a muscle can sustain for a very long duration without 

inexorably fatiguing (Monod & Scherrer, 1965). Using this protocol, W’ is estimated as 

the impulse above the critical torque (IACT).  In a recent study conducted in our lab the 

5-minute all-out test (Burnley, 2009) was used to investigate changes in CT and IACT 

following EIMD (Szczyglowski, Ade, Campbell, & Black, 2017). In this study, 

significant decrements in both IACT and CT were found 48-hours following EIMD with 

CT being reduced 14% while IACT was reduced 33%. Interestingly, when CT was 

expressed as a percentage of MVC, which was reduced ~20% following EIMD, the 

difference no longer occurred—suggesting the decline in CT may have been related to 

the decline in MVC. The finding that EIMD seemed to preferentially affect IACT relative 

to CT suggests EIMD may preferentially alter anaerobic metabolism and deserves further 

study. 

Given that both CT and W’ appear to be reduced following EIMD, it would be 

interesting to assess their recovery over a longer duration. The recent study of 

Szczyglowski et al., (2017) also did not provide any data regarding the role of central and 

peripheral fatigue factors in the decline in CT and IACT following EIMD. The 



3 

 

inflammatory response that results from EIMD sensitizes group III and IV afferent fibers 

which could elevate perceptions of pain and discomfort and could lead to central fatigue 

and thus reduce voluntary activation of muscle  (Black & Dobson, 2013; Graven-Nielsen 

& Mense, 2001; Proske & Morgan, 2001; Sidhu et al., 2017). EIMD has also been shown 

to affect peripheral fatigue sites such as excitation-contraction coupling and the disruption 

of sarcomere mechanics (Proske & Morgan, 2001).  Furthermore, recovery time from 

EIMD can last several days to weeks (Burt, Lamb, Nicholas, & Twist, 2013). Studies 

have shown reduced gas exchange threshold (GET) and VO2 peak for up to 10 days  

(Black, Gonglach, Hight, & Renfroe, 2015; Davies, Rowlands, et al., 2011) and reduced 

maximal strength for up to 14 days depending on the intensity of the EIMD protocol 

(Black et al., 2015; D. Burt et al., 2012, 2013; Highton et al., 2009). The relative 

contribution of central vs. peripheral fatigue to decreases in endurance performance over 

the course of recovery from EIMD has not been widely studied.   

In another recent study in our lab we developed a variation of Burley’s 5-minute 

all-out test that is based on the use of electrical muscle stimulation (EMS), coined the 

stimulated CT test (Janzen, Hight, Patel, Campbell, Larson, & Black, 2018). EMS is the 

use of electrical current to stimulate muscle fibers to contract (Gregory & Bickel, 2005). 

Though it was suggested that EMS may cause a reversal of the size principle of muscle 

fiber recruitment, it is well accepted in current literature that EMS based muscle fiber 

recruitment follows a nonselective, spatially fixed, and temporally synchronous pattern 

(Crameri et al., 2007; Gregory & Bickel, 2005). Accordingly, only muscle fibers within 

the reach of the current field can be recruited. Using different frequencies of EMS, and 

looking at torque production under conditions of blood flow occlusion, we validated the 
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attainment of a stimulated version of CT using the stimulated CT test (Janzen et al., 2018). 

Thus, it would be interesting to examine how our EMS based variation of the 5-minute 

all-out test behaves following EIMD. 

 

1.2 Purpose 

The purpose of this study is to investigate the time course of change in impulse above 

critical torque (IACT) and critical torque (CT) following EIMD. A secondary purpose of 

this study is to examine the central and peripheral markers of fatigue during exercise 

bouts following EIMD. 

 

1.3 Research Questions 

1. Will impulse above critical torque (IACT), measured via the five-minute all-out 

test (Burnley, 2009) and stimulated CT test (Janzen et al., 2018), differ between 

the pre, 2-days post, 4-days post, and 7-days post visits in the Quadriceps Femoris 

muscle? 

2. Will critical torque (CT), measured via the five-minute all-out test (Burnley, 

2009) and stimulated CT test (Janzen et al., 2018), differ between the pre, 2-days 

post, 4-days post, and 7-days post visits in the Quadriceps Femoris muscle? 

3. Will percent voluntary activation, assessed via the twitch interpolation technique 

using EMS (Behm, St-Pierre, & Perez, 1996; Belanger & McComas, 1981; 

Denny-Brown, 1928; Shield & Zhou, 2004), differ between the pre, 2-days post, 

4-days post, and 7-days post visits in the Quadriceps Femoris muscle? 
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4. Will peripheral fatigue, assessed via twitch torques during the 5-minute all-out 

test, differ between the pre, 2-days post, 4-days post, and 7-days post visits in the 

Quadriceps Femoris muscle? 

5. Will LFF, measured as the ratio of torque from a single pulse to a doublet before 

and following the 5-minute all-out and stimulated CT test (Janzen, unpublished 

observations), differ between the pre, 2-days post, 4-days post, and 7-days post 

visits in the Quadriceps Femoris muscle? 

 

1.4 Research Hypotheses 

1. IACT, acquired through the 5-minute all-out test and stimulated CT test, will 

differ between the pre, 2-days post, 4-days post, and 7-days post visits in the 

Quadriceps Femoris muscle. 

2. CT, acquired through the 5-minute all-out test and stimulated CT test, will differ 

between the pre, 2-days post, 4-days post, and 7-days post visits in the Quadriceps 

Femoris muscle. 

3. Percent voluntary activation, assessed during the 5-minute all-out test, will differ 

between the pre, 2-days post, 4-days post, and 7-days post visits in the Quadriceps 

Femoris muscle. 

4. Peripheral fatigue, assessed via twitch torques during the 5-minute all-out test, 

will differ between the pre, 2-days post, 4-days post, and 7-days post visits in the 

Quadriceps Femoris muscle. 
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5. LFF, assessed before and after the 5-minute all-out test and the stimulated CT test, 

will differ between the pre, 2-days post, 4-days post, and 7-days post visits in the 

Quadriceps Femoris muscle. 

 

1.5 Significance 

 EIMD is an expected outcome of exercise involving eccentric motions. Eccentric 

motions are evident not only in daily activities but also in sports. Because of eccentric 

muscle actions, a person’s absolute ability to complete a task can be impaired. This can 

lead to a less fruitful workout or mediocre performance in a sports/ athletic setting. 

Ultimately, this can be detrimental for those seeking optimal results from training or at 

competitive events. Unfortunately, there exists no medicinal countermeasure to EIMD. 

Research has shown that sufficient rest can revert the losses in strength and endurance 

performance following EIMD. However, there is a lack of research when considering the 

recovery rate of CT and IACT following EIMD. Understanding how the loss in CT and 

IACT recovers can help athletes create a more stable training regimen that works within 

the constraints imposed by EIMD. 

 

1.6 Delimitations 

 The delimitations of this study include: 

1. Inclusion of males and females ranging from 18 – 35 years of age. 

2. Inclusion of males and females who can tolerate EMS. 

3. Inclusion of males and females who are capable of CT testing and undergoing an 

EIMD protocol. 
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4. Exclusion of individuals who have resistance trained their legs 6 months prior to 

the study. 

5. Exclusion of males and females with health issues as ascertained via the physical 

activity readiness questionnaire (PAR-Q) and the Health Status Questionnaire. 

6. Exclusion of males and females who supplement with non-steroidal anti-

inflammatory drugs (NSAIDs) which could potentially affect results. 

7. Exclusion of females who are pregnant or thinking of becoming pregnant. 

8. Exclusion of current smokers, daily drinkers, and non-prescribed/illegal drug 

abusers. 

 

1.7 Limitations 

 The limitations of this study include: 

1. Participants were asked not to resistance train their legs for the duration of the 

study however their compliance to this request was not controlled. 

2. The whole sample underwent an EIMD protocol, however, therapeutic modalities 

(ice/heat, massage etc.) outside of the lab setting was not controlled for. 

3. Since participant recruitment was limited by training status, age, location, and 

those willing to volunteer the results may not be representative of the general 

population. 

4. Participants were asked to maintain their normal diet, but their eating habits were 

not controlled for. 
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1.8 Assumptions 

 The assumptions of this study include: 

1. Measuring IACT is a valid and reliable method to estimate the W’ parameter. 

2. Measuring the end test torque of the 5-minute all-out test is a valid and reliable 

method to estimate the critical torque. 

3. The twitch interpolation technique is a valid and reliable method to determine 

percent voluntary activation and assess central fatigue. 

4. Surface electromyography (EMG) is a valid and reliable method to evaluate 

muscular activity. 

5. The EIMD protocol that will be utilized in this study is a valid and reliable 

approach to induce muscle damage. 

6. Participants gave maximal effort during all visits of the study. 

7. Participants adhered to instructions regarding lower body resistance training for 

the duration of the study. 

8. Participants gave truthful health information prior to the study. 

 

1.9 Operational Definitions 

 The operational definitions of this study include: 

1. Central fatigue – a component of fatigue marking the decline in force production 

during an exhaustive task that is attributed to alteration in the transmission of 

neural output (Boerio, Jubeau, Zory, & Maffiuletti, 2005; Gandevia, 2001). 

2. Critical Torque (CT) – a maximal isometric work rate that a muscle can 

withstand for a very long duration without fatiguing (Monod & Scherrer, 1965). 
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3. Eccentric contraction – a form of muscle contraction that involves the muscle 

being forcibly lengthened (Proske & Morgan, 2001). 

4. Electrical muscle stimulation or Electromyostimulation (EMS) – the use of 

electrical current to stimulate muscle fibers to contract (Gregory & Bickel, 2005). 

5. Exercise-induced muscle damage (EIMD) – a result of high force eccentric 

contractions experienced through resistance training and explosive training 

(Armstrong, Ogilvie, & Schwane, 1983). 

6. Impulse above critical torque (IACT) – a fixed amount of work that can be 

performed above critical torque regardless of the rate of energy expenditure 

(Fukuba et al., 2003; A M Jones & Whipp, 2002). 

7. Low-frequency fatigue (LFF) – a decline in force production that is greater at 

lower frequencies of EMS relative to higher frequencies (Edwards, Hill, Jones, & 

Merton, 1977; D. A. Jones, 1996). 

8. Peripheral fatigue - a component of fatigue marking the decline in force 

production during an exhaustive task that is attributed to impairments at or below 

the neuromuscular junction (Boerio et al., 2005; Gandevia, 2001). 

9. Surface electromyography (EMG) – a method of looking at the electrical signal 

evoked by muscle fibers over a select field (De Luca, Adam, Wotiz, Gilmore, & 

Nawab, 2006). 

10. Twitch interpolation – a technique relying on the use of EMS to assess percent 

voluntary activation (Behm et al., 1996; Belanger & McComas, 1981; Denny-

Brown, 1928; Shield & Zhou, 2004).  
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Chapter II – Literature Review 

Exercise induced muscle damage (EIMD) has shown to be a disadvantage for 

performance (Black & McCully, 2008; D. Burt et al., 2012, 2013; Carmichael et al., 2006; 

Davies, Rowlands, et al., 2011; Fouré et al., 2015; Highton et al., 2009). We know of only 

one study that has investigated the effects of EIMD on CT and IACT (Szczyglowski et 

al., 2017). Interestingly, this study showed significant decreases in both variables. 

However, it is still unknown how long it would take for both these variables to return to 

baseline and how factors of fatigue may affect the pattern of recovery. 

The purpose of this study is to investigate the time course of change in IACT and 

CT following EIMD. Additionally, this study also examines the central and peripheral 

markers of fatigue during exercise bouts following EIMD. This section provides a brief 

overview of the published literature on topics related to this study. Accordingly, this 

chapter is broken down into the following sections: EIMD, CP and W’, central fatigue, 

peripheral fatigue, and LFF attempting to show outcomes in the current literature 

regarding each section. 

This literature review includes studies acquired from the Google Scholar and 

Medline databases. Likewise, this literature review also contains studies that were 

manually searched from the reference list of retrieved documents. The search process 

included the following keywords: “Exercise Induced Muscle Damage”, “Critical Power”, 

“Critical Torque”, “W Prime”, “Impulse Above Critical Torque”, “Interpolated Twitch”, 

“Central Fatigue”, “Voluntary Activation”, “Motor-Unit Recruitment” “Low-Frequency 

Fatigue”, “Peripheral Fatigue” and any combination of those keywords. Studies were 
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included regardless of whether they showed significant or non-significant differences in 

their results. 

2.1 Exercise-Induced Muscle Damage 

EIMD detriments: 

It is well accepted in most findings that EIMD is an outcome of eccentric exercise 

(Caldwell et al., 2016; McCully & Faulkner, 1986; Proske & Morgan, 2001; Stacy, 

Bladon, Lawrence, McGlinchy, & Scheuermann, 2013). Eccentric exercise can 

potentially lead to impairments of the excitation-contraction coupling system and also 

disruption of sarcomeres causing EIMD (Proske & Morgan, 2001) which can trigger an 

inflammatory response as the muscle recovers from injury (Tidball, 2005). Equally, task 

specific ATP production can also be affected by this energy demanding repair process 

following EIMD as seen with increases in resting metabolic rate and oxygen saturation 

(Ahmadi, Sinclair, Foroughi, & Davis, 2008; Ahmadi et al., 2008; Dolezal, Potteiger, 

Jacobsen, & Benedict, 2000). Additionally, research has shown an increased inorganic 

phosphate concentration following EIMD, further suggesting an increase in energy 

production (Davies, Eston, et al., 2011; Fouré et al., 2015).  

Depending on the intensity of and the level of sensitivity to eccentric contractions, 

EIMD can also result in a reduced capacity to generate force ranging from hours to days 

(Black et al., 2015; Highton et al., 2009; Newham, Jones, & Clarkson, 1987; Rodenburg, 

Boer, Schiereck, Echteld, & Bar, 1994). A reduction in force could, in part be attributed 

to a decreased oxidative capacity, which could impact overall ATP production as seen in 

human and animal studies (Newcomer, Sirikul, Hunter, Larson-Meyer, & Bamman, 2005; 

Pilegaard & Asp, 1998; Warren et al., 1996). A reduced oxidative capacity following 
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EIMD can be a result of impaired mitochondrial function (Fouré et al., 2015; Newcomer 

et al., 2005) as suggested by an increased ratio of oxygenated blood flow relative to 

oxygen utilization (Davies et al., 2008; Selkow et al., 2015). Reductions in oxidative 

capacity following EIMD could also be attributable to macrovascular and microvascular 

alterations. Macrovascular dysfunction following EIMD is likely due to decreases in 

flow-mediated dilation (Caldwell et al., 2016) while microvascular impairments are likely 

a result of a slowed contraction-induced vasodilation which alters the complementing of 

oxygen delivery to utilization (Larsen, Hirata, Madzak, Frøkjær, & Graven-Nielsen, 

2015). The byproducts of eccentric exercise-induced tearing of muscle fibers serve as an 

additional reason for decreases in force production; as they induce a nociceptive stimulus 

in the form of soreness (Proske & Morgan, 2001). Paired with the inflammatory response 

as the muscle recovers, muscle soreness can persist for a significant amount of time (Burt 

et al., 2012; Highton et al., 2009; Martin, Millet, Lattier, & Perrod, 2004; Newcomer et 

al., 2005; Selkow et al., 2015). Collectively, EIMD can burden energy metabolism, impair 

blood flow delivery and utilization, and induce muscle soreness which can have a 

determining effect on force production. 

EIMD on Performance Variables: 

 Maximal oxygen consumption (VO2max or VO2peak) has been shown to be both 

lowered and unaffected as a result EIMD (Black & Dobson, 2012; Black et al., 2015; D. 

G. Burt & Twist, 2011; Caldwell et al., 2016; Chrismas, Taylor, Siegler, & Midgley, 

2017; Davies, Rowlands, et al., 2011; Gleeson et al., 1998). Similarly, a decrease in gas 

exchange threshold (GET) and an increase ventilation (Ve) has been shown as a result of 

EIMD all while seeing no changes in the lactate threshold (D. Burt et al., 2012; Davies, 
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Rowlands, et al., 2011). Likewise, maximal voluntary contraction (MVC) has been shown 

to decrease as a result of EIMD (Sirous Ahmadi et al., 2008; Newham et al., 1987). These 

performance moderating results are likely a result of the muscle damage induced 

inflammatory response and the effect it may have on the activation of type III and IV 

afferent fibers (Black & Dobson, 2012; Graven-Nielsen & Mense, 2001) which have been 

linked to affect not only the ventilatory response (Davies, Rowlands, et al., 2011) but also 

corticospinal excitability (Sidhu et al., 2017). It is likely that EIMD affects these 

performance variables through a combination of properties mentioned above. 

 Despite the abundance of literature reviewed for this section, only one study that 

has addressed the effects of EIMD on CT and IACT (Szczyglowski et al., 2017). This 

study utilized the 5-minute all-out test (Burnley, 2009) to inspect the decrements in CT 

and IACT, if any, that may be present following EIMD. This study saw a 14 ± 12% 

decline in CT and a 33 ± 13% decline in IACT following EIMD. These reductions were 

attributed to a loss of strength since no differences were seen in microvascular circulation.  

2.2 Critical Power (CP) & W Prime (W’)  

 CP can be defined as an intensity at which one can theoretically exercise at 

indefinitely (Jones et al., 2010; Monod & Scherrer, 1965) while W’ can be interpreted as 

a finite, primarily anaerobic magnitude of work above CP that is funded by muscle 

phosphocreatine, anaerobic glycolysis, and stored oxygen (Broxterman et al., 2014; 

Fukuba et al., 2003; Jones et al., 2010; A. Miura et al., 1999; Monod & Scherrer, 1965). 

Furthermore, CP has been defined as the boundary between the heavy and severe intensity 

exercise domains (Poole, Ward, Gardner, & Whipp, 1988). It has been seen that the 

transition from CP to an intensity above CP disrupts the stable metabolic acidity related 
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to CP with unavoidable shifts in the rate of oxygen consumption to its maximal values 

(Poole et al., 1988). Likewise, it has been shown that exercising above CP (utilizing W’) 

can result in fatigue-like metabolic perturbations including a fall in pH, an increase in 

inorganic phosphate, and a decrease in muscle phosphocreatine until exercise termination 

(Jones, Wilkerson, Dimenna, Fulford, & Poole, 2008). Accordingly, these measures 

attained a steady state when the exercise intensity was below CP (Jones et al., 2008). 

Since W’ is a finite work capacity, athletes must be aware of its allocation in a competitive 

setting. In fact, it has been shown that competitive runners could greatly optimize their 

results while running at an intensity above CP so long as total distance has been 

considered (Jones & Whipp, 2002).  

  Blood flow occlusion has been seen to decrease CP while playing a heightening 

role on the W’ in the flexor digitorum superficialis muscle (Broxterman, Ade, et al., 

2015). Similarly, near-infrared spectroscopy has revealed a greater deoxygenated 

concentration of hemoglobin and myoglobin when the muscle is occluded suggesting a 

dependency of CP on continuous oxygen delivery and an enhanced ability of the stored 

oxygen content to supply the W’ (Broxterman, Ade, et al., 2015). A potential association 

of the increase in W’ with occlusion could be the build-up of fatigue, since a positive 

relationship has been shown between the amount of fatigue accrued and the range of W’ 

(Broxterman, Craig, et al., 2015). Accordingly, a greater duty cycle has been shown to 

lower CP and increase W’ relative to a lower duty cycle suggesting a decreased exercise 

tolerance and further implicating the influence of fatigue on W’ (Broxterman et al., 2014). 

It is likely that a limitation on CP tends augment the W’ and vice versa. In view of that, 

it has been seen that hyperoxic conditions reduced the rates of change in muscle 
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phosphocreatine and pH during exercise whereby increasing CP and decreasing W’ 

(Vanhatalo, Fulford, Dimenna, & Jones, 2010). This study will be analyzing the torque 

analogues of CP and W’ referred to as CT and IACT respectively to assess the duration 

of recovery following EIMD. 

2.3 Central Fatigue 

 Central fatigue is a branch of fatigue responsible for the gradual decline in neural 

drive during exercise (Gandevia, 2001). One way to analyze central fatigue is via the use 

of the twitch  interpolation technique (Gandevia, 2001). Twitch interpolation involves the 

use of EMS to apply a superimposed twitch on top of a voluntary contraction to assess 

motor-unit recruitment (Belanger & McComas, 1981; Denny-Brown, 1928). The 

following equation is used in the twitch interpolation technique where IT refers to the 

superimposed twitch and RT refers to the resting twitch: 

% Voluntary Activation = 100% x (1 – (IT/RT)) (Shield & Zhou, 2004) 

  A high ability to activate a muscle during a contraction can result in a low 

superimposed twitch force from twitch interpolation (Shield & Zhou, 2004). Increases in 

the superimposed twitch force during fatiguing muscle contractions can be informative 

of central fatigue and could reflect an impairment in the recruitment of motor-units or 

maintaining firing rates (Gandevia, McNeil, Carroll, & Taylor, 2013). It has been seen 

that fatiguing contractions can  lead to a decrease in percent voluntary activation which 

can be attributed to central fatigue (Kawakami, Amemiya, Kanehisa, Ikegawa, & 

Fukunaga, 2000). Voluntary activation has also been seen to be decreased up to 30 

minutes following a fatiguing bout (Simpson, Burke, & Davis, 2004). Equally, voluntary 

activation has also been shown to be depressed immediately following EIMD (Behrens, 
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Mau-Moeller, & Bruhn, 2012; Martin et al., 2004). In comparison, for the quadriceps 

femoris, percent voluntary activation has also been seen to play no role in the loss of force 

during fatiguing contractions suggesting an absence of central fatigue (Bigland-Ritchie, 

Furbush, & Woods, 1986). The present study will investigate the role of central fatigue, 

through analyzing percent voluntary activation during the 5-minute all-out test, and how 

this measure may contribute to the change in CT and IACT following EIMD. 

2.4 Peripheral Fatigue 

 Peripheral fatigue is a another type of fatigue whose effects on force production 

during an exhaustive bout can be attributed to alterations at or below the neuromuscular 

junction (Boerio et al., 2005; Gandevia, 2001). One possible mechanism of peripheral 

fatigue is the reduction in the intracellular calcium release paired with a reduced calcium 

sensitivity of myofilaments during prolonged exercise which could have a detrimental 

effect on the excitation-contraction coupling process (Allen, Westerblad, Lee, & 

Lännergren, 1992). As mentioned above, an impairment of the excitation-contraction 

coupling process is also a likely response to EIMD (see EIMD detriments). Accordingly, 

it has been suggested that peripheral factors including changes in the muscle contractile 

properties along with an altered excitation-contraction coupling process may be 

accountable for the prolonged force loss following EIMD (Behrens et al., 2012; Martin 

et al., 2004). Similarly, the loss of force production in response to a fatiguing protocol of 

the quadriceps femoris has been attributed to the muscles contractile properties due to a 

sustained motor-unit recruitment (Bigland-Ritchie et al., 1986). 

 To purely assess the role of peripheral fatigue during an exercise test motor-units 

need to be recruited using a constant stimulus. One potential way to do this is the use of 
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EMS. EMS involves the use of electrical current to stimulate muscle fibers to contract 

(Gregory & Bickel, 2005). However, the use of EMS yields a different recruitment pattern 

compared to voluntary contractions in that muscle fibers are recruited in a nonselective, 

spatially fixed, and temporally synchronous pattern (Crameri et al., 2007; Gregory & 

Bickel, 2005). Due to its spatially fixed nature, EMS based contractions result in the same 

motor-units being recruited which can lead to a greater rate of fatigue (Gregory & Bickel, 

2005). This role of EMS can also be advantageous in analyzing peripheral fatigue since 

neural drive can be rendered constant. Suitably, following an EMS based protocol MVC 

has shown a decrease which has been attributed to peripheral fatigue (Fouré et al., 2014). 

Accordingly, the present study will utilize the application of electrical twitches to evoke 

twitch torques to aid in analysis of peripheral fatigue during the 5-minute all-out test 

before and following EIMD. 

2.5 Low-Frequency Fatigue (LFF) 

LFF is a form of peripheral fatigue and can be defined as the loss of force at low 

levels of stimulation that is relatively greater than the force depletion at higher levels of 

stimulation (Edwards et al., 1977; D. A. Jones, 1996). LFF has been attributed to 

alterations in the excitation-contraction coupling process and impairments in the release 

of calcium (Bigland-Ritchie et al., 1986; Edwards et al., 1977). Accordingly, upon 

fatiguing the quadriceps femoris the force from a single twitch has shown up to a 75% 

decline compared to a 54% decline following a 50 Hz train (Bigland-Ritchie et al., 1986). 

Similarly, following an EMS based muscle damaging protocol, the ratio of force from a 

10 Hz train relative to a 100 Hz train has been shown to be reduced up to the following 

day suggesting a prolonged effect of LFF (Fouré et al., 2014). Likewise, the ratio of force 
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of the knee extensors from a 20 Hz to an 80 Hz train has shown complete recovery 48 

hours after EIMD (Martin et al., 2004). Conversely, the present study will assess LFF to 

test its potential contribution to the loss in CT and IACT following EIMD.  

2.6 Conclusions 

In conclusion, taking the current research into considered we see that there is still 

a gap in the knowledge when measuring CT and IACT following EIMD. It is certain that 

CT and IACT are both informative parameters and that analyzing these variables 

following EIMD can increase the current level of knowledge. As we’ve seen, EIMD 

seems to play a reductive role on CT and IACT. However, there exist no studies that have 

analyzed the duration of recovery for CT and IACT following EIMD. Additionally, no 

study has investigated the relative contribution of the central and peripheral markers of 

fatigue factors to changes in CT and IACT following EIMD. In an attempt to clear these 

gaps in the literature concerning EIMD, the present study will apply the 5-minute all-out 

test (Burnley, 2009) and the stimulated CT test (Janzen et al., 2018) to investigate the 

time course over which CT and IACT return toward baseline following EIMD along with 

differences in the central and peripheral markers of fatigue. 
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Chapter III – Methodology 

3.1 Introduction 

In a recent study, we saw a powerful effect of EIMD on CT and IACT 

(Szczyglowski et al., 2017). Yet it remains unclear as to how CT and IACT recover in the 

days following EIMD. Additionally, it would be interesting to understand the contribution 

of central and peripheral fatigue to force production during exercise bouts following 

EIMD. This study aims to clarify some of the disparities in the current literature by 

analyzing the hyperbolic torque-time relationship and its variables CT and IACT 

following EIMD. The purpose of this study is to investigate the time course of recovery 

in impulse above critical torque (IACT) and critical torque (CT) following EIMD. 

Additionally, this study will also examine the central and peripheral markers of fatigue 

during exercise bouts following EIMD. To present an understanding of the investigation, 

the intent of this chapter will be to explain the methodology used to assess each variable 

and clarify the overall experimental process. 

3.2 Sample 

 Ten participants of age 18 – 35 years volunteered and completed participation in 

this study. Participants were recreationally active individuals who did not perform lower-

body resistance training in the past 6 months, specifically their Quadriceps Femoris. 

Recreationally active individuals included those who semi-regularly lift weights (upper 

body only), play sports, run, and/or walk. Both males and females were accepted for 

participation because EIMD has been shown to have a similar effect on both genders 

(Clarkson & Hubal, 2002; Rinard, Clarkson, Smith, & Grossman, 2000; Sayers & 

Clarkson, 2001; Stupka et al., 2000). Participants were volunteers and therefore a non-
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probability sampling procedure was employed. Participants were excluded from this 

study if they could not tolerate EMS, had existing health conditions, were pregnant or 

considering pregnancy, were smokers, drank alcohol regularly, abused drugs, or if they 

answered “yes” to any questions on the Physical Activity Readiness Questionnaire (PAR-

Q) (see Table 1). All participants were recruited from the University of Oklahoma 

(Norman, OK campus) and surrounding area by email, fliers, announcements made in 

classes, and word of mouth. Before beginning the study each participant’s informed 

consent was obtained and they were instructed to honestly fill out the PAR-Q along with 

the Health Status Questionnaire (HSQ). Participants were advised to refrain from physical 

activity at least 24 hours preceding each visit along with the consumption of food by at 

least 3 hours and non-water beverages by at least 6 hours. Participants were also 

recommended to stay properly hydrated prior to each visit. Additionally, participants 

were directed to avoid supplementing with caffeine at least 6 hours before each visit 

(Statland & Demas, 1980), along with NSAIDs and other pain medications. Subjects were 

asked to not utilize any therapeutic modalities that may ease the feeling of muscle 

soreness associated with EIMD (ice, salt and cold-water baths, massages etc). Adherence 

to these instructions was confirmed throughout the study. Participants who did not display 

close to a 25% drop in maximal voluntary isometric contraction (MVIC) immediately 

following EIMD were discarded from data analysis for they were judged to have 

experienced an insufficient amount of muscle damage for this study. This study was 

approved by the University of Oklahoma Institutional Review Board and was also 

conducted in agreement with the Declaration of Helsinki. 

Inclusion Exclusion 
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People living in proximity to the OU Norman 

campus 

Those who did experience sufficient muscle 

damage through the EIMD protocol 

Males and females within the age range 18-

35 years 

Those with cardiovascular, pulmonary, or 

metabolic diseases that could impede 

maximal effort during testing 

Those who did not resistance train their 

Quads but are recreationally active 

Those who were pregnant, thinking of 

becoming pregnant, current smokers, daily 

drinkers, and non-prescribed/illegal drug 

abusers 

Those who could tolerate EMS, 5-minute all-

out testing, and the EIMD protocol 

Those who answered “yes” to any questions 

on the PAR-Q and/or have any known 

cardiovascular, pulmonary, or metabolic 

diseases 

Table 1: Subject criteria for participation in this study 

3.3 Experimental Design 

 Since this study will consist of participants being measured over time, a repeated 

measures design will be employed. This study shall consist of a total of 7 visits including: 

2 familiarization sessions, a pre (baseline) visit, an EIMD visit, a 2-days post visit, a 4-

days post visit, and a 7-days post visit (see Table 2). All visits were conducted at the same 

location (Sensory & Muscle Function Lab, Dept. of Health & Exercise Science, the 

University of Oklahoma, Norman, OK). 

Familiarization (Visit 1 and 2): 

The first familiarization visit consisted of signing all the paperwork including: a 

signed consent form, a physical activity readiness questionnaire (PAR-Q), an 
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international physical activity questionnaire (IPAQ), a talent release form, a photo release 

form, and a health status questionnaire (HSQ). Each participant was also given a second 

copy of the consent form for their own record. The first familiarization also included 

Smith Machine 1-RM testing, dominant leg twitch-current (amplitude) determination, 

MVIC determination, and dominant leg familiarization to 5-minute all-out testing 

(Szczyglowski et al., 2017). Because each visit required effort, subjects were asked upon 

recruitment to have eaten 3 hours prior to coming in and to stay hydrated. 1-RM testing 

was conducted for purposes of the EIMD protocol and is further detailed below. Twitch-

current was determined by gradually applying a doublet twitch (a 1 ms twitch followed 

in 5 ms by another 1 ms twitch) on the vastus lateralis and vastus medialis until either 

there was a plateau in torque or the stimulation intensity cannot be tolerated. Following 

this, 3 separate MVICs were performed with 2 minutes of rest in between. Voluntary 

activation was determined during the MVICs using the twitch interpolation technique 

(described below). Following a 10-minute rest, a familiarization to the 5-minute all-out 

test was initiated consisting of 36 MVICs with the duty cycle of 3 seconds on 

(contraction) and 2 seconds off (relaxation). 

There was at least a 24-hour gap between the first and second familiarization 

visits. The second familiarization was similar to the first familiarization visit with the 

inclusion of MVIC determination and train current determination for the non-dominant 

leg prior to performing the stimulated CT test in that same leg. MVIC in the non-dominant 

leg was determined just like the dominant leg except motor-unit recruitment was not 

assessed. The train current determination included the application of a 3-second train of 

EMS at a frequency of 50 Hz. Like the twitch-current determination process, the 
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amplitude of the current was gradually increased during the train current determination 

until the torque was at or slightly above 25% of the participants MVIC. The MVIC that 

was considered for this was the highest of the three partaken. Following this, a 5-minute 

stimulated CT test was performed on the non-dominant leg at the current determined 

during the train current determination. This test consisted of 60 involuntary EMS based 

contractions with a 3 on (current) 2 off (no current) duty cycle. No data acquired during 

these two familiarization visits was analyzed. 

Pre (visit 3): 

 The pre visit began at least 2 days following the second familiarization. This 

visit included dominant leg twitch-current determination and MVIC determination in 

that exact order. Ten minutes following this, the participant underwent the 5-minute all-

out test (Burnley, 2009). This test consisted of 60 MVICs with a duty cycle of 3 seconds 

on (contraction) 2 seconds off (relaxation). Data regarding changes in LFF were 

acquired before and after the test, and voluntary activation/central fatigue was assessed 

during the test (detailed below). 

 After completion of the 5-minute all-out test the participant was given a 10-

minute rest. Following this 10-minute rest the participant underwent an MVIC 

determination and a train current determination for the non-dominant leg. Following 

another 10-minute rest, participants underwent a stimulated CT test in the non-dominant 

leg. EMS based contractions result in a decline in torque at a faster rate due to a non-

selective recruitment pattern (Crameri et al., 2007; Gregory & Bickel, 2005) and 

therefore may be helpful in interpreting changes, if any, that could be attributed to 

peripheral fatigue following EIMD. Like the 5-minute all-out test, data regarding CT, 
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IACT, and LFF were acquired during the stimulated CT test. Unlike the 5-minute all-

out test, voluntary activation/central fatigue was not addressed during the stimulated CT 

test. 

EIMD session (visit 4):  

 The EIMD session was held at least 2 days following the pre visit. On this day, 

the participants underwent a muscle damaging protocol consisting of active eccentric 

and semi-passive concentric contractions. The EIMD protocol involved 10 sets of 10 

repetitions on the Smith Machine. These sets were conducted at the participants 1-RM 

(further details are provided below). On this visit, participants were also required to rate 

their perception of muscle soreness before and following EIMD (detailed below). 

Immediately following the EIMD protocol, the participant partook in the 

determination of MVIC for each leg, dominant and non-dominant. Three MVICs were 

performed for each leg and the value of the two closest were considered and averaged. 

If this value for each leg was at least 25% lower than the criterion MVIC for each leg 

during the pre visit, then participants were perceived to have experienced a sufficient 

amount of EIMD. If the drop in MVIC for each leg was not close to 25%, then more 

sets of active eccentric and semi-passive concentric Smith Machine squats were 

incorporated accordingly. Participants were relieved from further participation if further 

increases in volume of up to 3 sets in the EIMD protocol show no decreases in MVIC 

for each leg. 

2-days post (visit 5), 4-days post (visit 6), and 7-days post (visit 7). 

 The visits 2-days, 4-days, and 7-days post were held 2, 4, and 7 days following 

the EIMD session, respectively. These visits were identical to the baseline visit, except 
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ratings of muscle soreness were recorded at the beginning of each of these visits. At the 

end of the 7-days post visit, each participant was compensated for the lengthy 

participation in this study. 

Visit Procedures 

Familiarization 1 1. Paperwork 

2. 1-RM testing 

3. Twitch-current determination (dominant 

leg) 

4. MVIC (dominant leg) 

5. Familiarization to 5-minute all-out test 

(dominant leg) 

Familiarization 2 1. Twitch-current determination (dominant 

leg) 

2. MVIC (dominant leg) 

3. Familiarization to 5-minute all-out test 

(dominant leg) 

4. MVIC (non-dominant leg) 

5. Train current determination (non-

dominant leg) 

6. Stimulated CT test (non-dominant leg)  

Pre 1. Twitch-current determination (dominant 

leg) 

2. MVIC (dominant leg) 

3. 5-minute all-out test/ LFF (dominant leg) 

4. MVIC (non-dominant leg) 

5. Train current determination (non-

dominant leg) 

6. Stimulated CT test/ LFF (non-dominant leg)  

EIMD session  1. Rating of muscle soreness 

2. EIMD protocol 

3. Rating of muscle soreness 

4. MVIC to see close to a 25% drop (dominant 

leg) 

5. MVIC to see close to a 25% drop (non-

dominant leg) 

2-days post 1. Rating of muscle soreness 

2. Twitch-current determination (dominant 

leg) 
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3. MVIC (dominant leg) 

4. 5-minute all-out test/ LFF (dominant leg) 

5. MVIC (non-dominant leg) 

6. Train current determination (non-

dominant leg) 

7. Stimulated CT test/ LFF (non-dominant leg) 

4-days post 1. Rating of muscle soreness 

2. Twitch-current determination (dominant 

leg) 

3. MVIC (dominant leg) 

4. 5-minute all-out test/ LFF (dominant leg) 

5. MVIC (non-dominant leg) 

6. Train current determination (non-

dominant leg) 

7. Stimulated CT test/ LFF (non-dominant leg) 

7-days post 1. Rating of muscle soreness 

2. Twitch-current determination (dominant 

leg) 

3. MVIC (dominant leg) 

4. 5-minute all-out test/ LFF (dominant leg) 

5. MVIC (non-dominant leg) 

6. Train current determination (non-

dominant leg) 

7. Stimulated CT test/ LFF (non-dominant leg) 

Table 2: This table shows each visit and the procedures corresponding to each of those 

visits. 

 

3.4 Experimental Procedures 

Isokinetic Dynamometer: 

 All testing was conducted using the same isokinetic dynamometer (KinCom 

isokinetic dynamometer, Chattanooga, TN, USA). The dynamometer was setup similar 

to what has been seen (Burnley, 2009). During the first familiarization visit the KinCom 

was setup for the subject for both legs and the positions were recorded for future visits. 

The device was set to form a parallel between the axis of rotation of the KinCom lever 

arm and the knee joint. The distance of the moment arm was recorded and remained 
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constant for each subject. The subject’s shin was strapped snugly to the cushioned force 

application device using an inelastic strap and the angle was set to a knee extension 

angle of 110 degrees (20 degrees above a seated 90-degree knee flexion). Using the 

KinCom, the upper body was strapped down to avoid extraneous movements that could 

potentially corrupt data.  

1-RM Testing: 

 1-RM testing was conducted for Smith Machine back squats for all participants 

on the first familiarization visit. If participants had never done back squats before, then 

they were first shown how to do so. Upon learning, the weight (Kg) was gradually 

increased or decreased to achieve a 1-RM within 5 attempts. The first attempt was a 

warm-up to 10 repetitions and the second attempt involved selecting a weight the 

participant could squat for 5 repetitions. The final 3 repetitions included increasing or 

decreasing the weight accordingly to acquire a 1-RM. Each participant’s 1-RM was 

recorded for the EIMD protocol. 

Twitch Current Determination: 

 For the twitch interpolation technique, each visit involved the determination of a 

maximal doublet current (milliamps - mA). The goal was to determine a maximal 

tolerable EMS current upon which further increases in amplitude (mA) could not yield 

increases in the force. To do this, stimulation electrodes (3’ x 4’, PALS Platinum, 

Axelgaard, LTD, Fallbrook, CA, USA) were placed on the vastus lateralis around mid-

thigh and on the vastus medialis at the distal end of the muscle. Every time before 

electrode placement, the site was wiped with an alcohol swipe.  Placement of stimulation 

electrodes was marked with a permanent marker on the first visit and remarked thereafter. 
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These same stimulation electrode placement procedures were applied to each leg being 

tested. The electrodes were connected to a current stimulator (Digitimer DS7A Current 

Stimulator, Digitimer North America, LLC, Ft. Lauderdale, FL, USA) and the muscles 

were stimulated once at 30 mA with a doublet (a 1 ms pulse followed by another 1 ms 

pulse in 5 ms). Following 15 seconds of rest the current was increased by 10-20 mA. This 

process continued until a plateau in twitch force was achieved. The twitch force was 

recorded during each contraction using the Biopac Acknowledge software (Biopac, 

Goleta, CA, USA). The twitch current that was determined for each respective day was 

then used for the interpolated twitch technique during MVIC recordings and for assessing 

central fatigue during the 5-minute all-out test. Hence, participants who could not tolerate 

EMS were discarded from the study.  

 EMG electrodes were also placed and marked on the subjects. EMG electrodes 

were placed immediately following placement of stimulation electrodes. Equally, the site 

was wiped with an alcohol swipe which was preceded with dry shaving. Likewise, EMG 

electrodes were placed and marked for each leg being tested. Monopolar EMG electrodes 

(10 mm diameter) were placed only on the vastus lateralis in compliance with SENIAM 

recommendations. A ground electrode was also placed on the patella. The interelectrode 

distance was set at 30 mm with at least 50 mm of separation between the stimulation and 

EMG electrodes (Gruet et al., 2014; N. Miura & Watanabe, 2016). Bipolar EMG signals 

were retrieved to the Acknowledge software using a BioNomadix dual channel wireless 

receiver (Biopac, Goleta, CA, USA). The signal was acquired at a sampling rate of 2000 

Hz and high and low pass filtered at 500 Hz and 10 Hz, respectively (Szczyglowski et al., 

2017). EMG was used to acquire root mean square (RMS) for the vastus lateralis. 



29 

 

Maximal Voluntary Isometric Contraction (MVIC): 

 Subjects remained seated on the dynamometer as described above to test either 

their dominant or non-dominant leg. The MVIC determination included 3 trials with 2 

minutes of rest between each trial. The mean of the two closest MVICs was used as the 

criterion MVIC for the day for each leg. Subjects were asked to wait on an auditory cue 

before an MVIC. The auditory cue lasted for 3 seconds and subjects were asked to 

maximally contract and relax in accordance with this signal. Approximately 2.5 seconds 

into the 3 second MVIC the subject received a doublet twitch. Likewise, the subject 

received another doublet twitch 1 second after the 3 second MVIC. The twitch-current 

(mA) for the two twitches was determined during the twitch-current determination 

process (detailed above). During each MVIC trial the subject was not presented with 

visual feedback but given verbal encouragement. 

 The reason behind the twitches during MVIC determination is the foundation of 

the interpolated twitch technique to look at voluntary activation. During the 5-minute all-

out test this technique can be utilized to assess central fatigue. In the equation below 

(Gruet et al., 2014; Shield & Zhou, 2004) the doublet twitch that is applied 2.5 seconds 

into the MVIC is the interpolated twitch (IT) and the doublet twitch applied a second after 

the MVIC is the resting twitch (RT). 

% Voluntary Activation = 100% x (1 – (IT/RT)) 

5-Minute All-Out Test: 

 Being seated to test the dominant leg on the isokinetic dynamometer with both 

stimulation and EMG electrodes placed and properly connected as described above, 

participants underwent the 5-minute all-out test following a 10-minute rest. This test 
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was 5 minutes long and consisted of 60 MVICs requiring the subject to maximally knee 

extend for 3 seconds and relax for 2 seconds (a 3 on 2 off duty cycle). Similar to the 

MVIC measurements, participants were provided with an auditory cue informing them 

when to contract and when not to. Equally, a doublet was applied during and following 

the 1st and every 6th contraction after to analyze voluntary activation and twitch torque. 

Participants were not presented with visual feedback to retain their attention solely to 

maximally kicking. Additionally, participants were encouraged by the researchers 

throughout the duration of the test to provide maximal effort. As validated (Burnley, 

2009), the average torque of the final 6 contractions of the 5 minute protocol was used 

as the estimate of CT for data analysis. Similarly, IACT was calculated as the area 

under the torque-time curve by summing the difference between each contraction and 

the CT (Burnley, 2009; Kellawan & Tschakovsky, 2014), see equation below.  

IACT = ∑ (Torque Impulse – CT) 

Train Current Determination: 

 Subjects were seated to test their non-dominant leg on the isokinetic 

dynamometer as described above. Non-dominant leg MVIC was determined before 

assessing train current determination. During train current determination, the participant 

received a 3 second stimulation train at 50 Hz, 50 individual 1 millisecond electrical 

stimuli every second (A total of 150 individual 1 millisecond stimuli over 3 seconds). 

The reason for this process was to yield a current amplitude (mA) that can elicit a force 

output close to 25% of the highest non-dominant leg MVIC for the day. Therefore, 

starting at 30 mA the current amplitude was increased progressively by 10 mA, with a 
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15-20 second rest period. The amplitude value that closely approximated 25% of MVIC 

was recorded and used for the stimulated CT test that followed. 

Stimulated CT test: 

 The stimulated CT test followed 10 minutes after the train current determination 

process. This test’s protocol was conducted similar to that described above in the 5-

minute all-out test, except the subject was asked to relax and not voluntarily contract the 

knee extensors. Additionally, voluntary activation via the twitch interpolation technique 

was not assessed during this involuntary stimulated CT test. In this test, the participant 

received a stimulated duty cycle of 3 second on (current train) 2 second off (no 

current/relaxation) at 50 Hz at the current determined during the train current 

determination process. This test lasted 5 minutes similar to the 5-minute all-out test and 

provide 60 stimulated contractions for assessment of peripheral fatigue. 

EIMD Protocol: 

 The muscle damaging protocol used in this study involved the execution of 100 

Smith Machine squats. Participants were shown how to properly perform a squat during 

the first familiarization visit when 1-RM was measured. Participants were directed to 

lower the weight until the knees are at or slightly below a 90-degree angle (eccentric 

portion). Once a participant is at the bottom of the squat range of motion, the weight was 

smoothly lifted, along with partial help from the subject, by two researchers on each side 

of the smith machine bar to allow the participant to ease back to the initial position (semi-

passive concentric). These eccentric squats were performed at each participant’s 1-RM. 

The 100 eccentric squats were broken up in to 10 sets of 10 repetitions with 1 minute of 

rest in between sets. Upon completion of the EIMD protocol, the participant were sat on 
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the KinCom and MVIC was measured for each leg. More sets were incorporated if a 

participant did not show close to a 25% drop in MVIC. 

Ratings of Muscle Soreness: 

 Ratings of the perception of muscle soreness were marked by participants on a 

visual analog scale (VAS). The VAS included a line ranging 100 mm in length and the 

words “no pain at all” and “worst imaginable pain” on opposite sides of the line. For each 

rating, participants were asked to squat their body to or slightly below 90 degrees and 

return to a stand themselves. During this process, participants were asked to keep the 

quadricep pain associated with the downward portion in mind. Participants were then 

asked to mark their feeling of pain on the VAS. These ratings were done five times for 

each subject, twice during the EIMD visit, and once at the beginning of the 2-days, 4-

days, and 7-days post visits. 

Low-frequency fatigue (LFF):  

 LFF was assessed before, immediately after, and 3 minutes after the 5-minute 

all-out test and the stimulated CT test (Janzen et al., in press) in the dominant and non-

dominant legs, respectively. LFF was measured using the application of a doublet that 

was followed by a single twitch in 3 seconds. Each doublet followed by a single twitch 

made a pair. Each pair was separated by 3 seconds. There was a total of 10 pairs before, 

immediately after, and 3 minutes after the 5-minute all-out and the stimulated CT test. 

Likewise, the first 10 pairs were separated from the onset of the tests by 20 seconds. 

The second 10 pairs began 2 seconds following the offset of the tests and the last 10 

pairs followed 2 minutes afterwards. LFF was calculated by looking at the twitch force 

values of the single twitch relative to the doublet. These ratios were averaged for each 
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of the three timeframes during which LFF was assessed. The current amplitude that was 

used during assessment of LFF during the 5-minute all-out test was that acquired during 

the twitch-current determination process. Similarly, the current amplitude that was used 

for assessment of LFF during the stimulated CT test was that acquired during the train 

current determination process. 

3.5 Statistical Analysis 

 All tests were performed using the same statistical analysis software, SPSS 

version 21 (IBM Corp., Armonk, NY, USA). A one-way repeated measures ANOVA was 

conducted to test the differences between the visits for the variables CT, IACT, stimulated 

CT, stimulated IACT, soreness, and MVIC. Pairwise comparisons were made using least 

significant difference (LSD) and significant differences were reported relative to the pre 

visit. A two-way repeated measures ANOVA was conducted to test differences between 

visits and over timepoints during the 5-minute all-out test and the stimulated CT test for 

voluntary activation, twitch torque, EMG RMS, and LFF. Pairwise comparisons were 

performed using LSD and differences were reported relative to the pre visit. For all tests, 

the alpha level was set at a priori p < 0.05.   
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Chapter IV – Results 

 A total of 10 subjects (6 males and 4 females) complied with instructions 

concerning participation and managed to fully complete the study. Analysis for all the 

voluntary tests were conducted on data retrieved from 8 of 10 subjects, due to poor 

effort during the 5-minute all-out tests from 2 subjects. Analysis for all the stimulated 

tests were conducted on data retrieved from all 10 participants. Participant 

characteristics are shown in table 3. All participants performed 10 sets with 10 reps 

each of active eccentric, semi-passive concentric Smith Machine back squats with one 

minute of rest in between sets. 

Setting Age (yrs) Height (cm) Weight (Kg) 

Voluntary (n = 8) 21.9 ± 2.0 176.5 ± 16.2 71.9 ± 11.6 

Stimulated (n = 10) 22.1 ± 1.9 176.2 ± 14.3 73.3 ± 12.1 

 Table 3: Participant characteristics for those included in the data analysis in the 

voluntary and stimulated setting. 

 

4.1 Assessment of Muscle Damage and Delayed Onset Muscle Soreness 

 Figure 1 displays the changes in the perception of pain associated with muscle 

soreness. The one-way repeated measures ANOVA conducted to assess VAS data for 

ratings of muscle soreness yielded a significant main effect for visits (p<0.001). 

Pairwise comparisons using least significant difference (LSD) showed that the ratings 

of muscle soreness relative to pre-EIMD were significantly greater post-EIMD 

(p<0.001), 2-days post (p<0.001), and 4-days post (p=0.005), but not 7-days post 

(p>0.05).   
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Figure 1:  Ratings of the perception of pain associated with muscle soreness. Ratings 

were significantly greater (p<0.05) post-EIMD, 2-days post, and 4-days post. * 

indicates a significant difference from pre-EIMD. Values are mean ± SD. 

 

Figure 2 displays the changes in MVIC for the dominant leg. The one-way 

repeated measures ANOVA showed a significant main effect for visits (p<0.001). 

Pairwise comparisons using LSD showed a significant decrease in MVIC post-EIMD 

(p=0.004) and 2-days post (p=0.002) relative to pre-EIMD. However, the visits 4-days 

and 7-days post were not significantly different from pre-EIMD (p>0.05). Figure 3 

displays the changes in dominant leg MVIC as a percent of initial values at pre-EIMD. 

Like the results seen in Figure 2, there was a significant main effect for visit (p<0.001). 

Pairwise comparisons via LSD revealed a significant force decrement post-EIMD 

(p<0.001) and 2-days post (p=0.006). Force decrement was not significantly different 

from pre-EIMD on the visits 4-days and 7-days post (p>0.05). 
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Figure 2: Dominant leg MVIC before muscle damage and the days following it. Force 

was significantly decreased (p<0.05) post-EIMD and 2-days post. * indicates a 

significant difference from pre-EIMD. Values are mean ± SD. 

 

 
Figure 3: Decrease in dominant leg MVIC as a percent of MVIC at pre-EIMD. Force 

decrement was significant post-EIMD and 2-days post (p<0.05). * indicates a 

significant difference from pre-EIMD. Values are mean ± SD. 

 

 Figure 4 illustrates the changes in MVIC for the non-dominant leg. The one-way 

repeated measures ANOVA showed a significant main effect for visits (p<0.001). 
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Pairwise comparisons using LSD showed significant decreases post-EIMD (p<0.001), 

2-days post (p=0.001), and 4-days post (p=0.041) relative to pre-EIMD. The change in 

non-dominant MVIC relative to pre-EIMD was not significant 7-days post (p>0.05). 

Figure 5 displays the changes in non-dominant leg MVIC as a percent of initial values 

at pre-EIMD. Relating to the results in figure 4, there was a significant main effect for 

visit (p<0.001) for percent decrement. Pairwise comparisons via LSD revealed 

significant percent force decrement post-EIMD (p<0.001), 2-days post (p=0.001), and 

4-days post (p=0.037). However, force decrement was not significantly different 7-days 

post (p>0.05). 

 
Figure 4: Non-dominant leg MVIC before muscle damage and the days following it. 

Force was significantly decreased (p<0.05) post-EIMD, 2-days post, and 4-days post. * 

indicates a significant difference from pre-EIMD. Values are mean ± SD. 
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Figure 5: Decrease in non-dominant leg MVIC as a percent of MVIC at pre-EIMD. 

Force decrement was significant post-EIMD, 2-days post, and 4-days post (p<0.05). * 

indicates a significant difference from pre-EIMD. Values are mean ± SD. 

 

4.2 Voluntary Critical Torque 

 Figure 6 displays the peak torque throughout the 5-minute all-out test for each 

visit. Likewise, figure 7 illustrates the peak torque relative to the first contraction of the 

5-minute all-out test for each visit. A one-way repeated measures ANOVA was 

conducted to test differences in absolute peak CT, displayed in figure 8. A main effect 

for visit was significant (p=0.047) and pairwise comparisons via LSD showed a 

significant decrease at 48-post relative to pre-EIMD (p=0.031) but not during the other 

visits (p>0.05). Peak CT was also normalized relative to the initial contraction of the 5-

minute all-out test. A one-way repeated measures ANOVA was run to test relative peak 

CT. The main effect for visit was not significant (p>0.05) for the data shown in figure 9.  
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Figure 6: Peak torque for each contraction during the 5-minute all-out test for each 

visit. 

 

 
Figure 7: Peak torque for each contraction during the 5-minute all-out test relative to 

the first contraction. 
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Figure 8: Peak CT for each visit. Values were significantly decreased at 2-days post 

(p<0.05). * indicates a significant difference from pre. Values are mean ± SD. 

 

 
Figure 9: Peak CT relative to the initial contraction of the 5-minute all-out test. There 

were no significant differences. Values are mean ± SD. 

 

 

 Figure 10 illustrates the mean torque for each contraction during the 5-minute 

all-out test for each visit. Likewise, figure 11 shows the mean torque relative to the 
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MVIC for each contraction during the 5-minute all-out test for each visit.A one-way 

repeated measures ANOVA was conducted to test differences in absolute mean CT, 

displayed in figure 12. There was a significant main effect for visit (p=0.011). Pairwise 

comparison using LSD showed that mean CT was significantly lower on the visit 2-

days post (p=0.011) and 4-days post (p=0.035) relative to pre. Mean CT was also 

analyzed relative to the mean torque of the MVIC prior to the 5-minute all-out test, 

displayed in figure 13. This showed no significant differences between the visits 

(p>0.05).  

 
Figure 10: Mean torque for each contraction during the 5-minute all-out test for each 

visit. 
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Figure 11: Mean torque for each contraction of the 5-minute all-out test as a percentage 

of the MVIC. 

 

 
Figure 12: Mean CT for each visit. Values were significantly lower 2-days post and 4-

days post (p<0.05). * indicates a significant difference from pre. Values are mean ± SD. 
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Figure 13: Mean CT relative to MVIC. No significant differences were seen (p>0.05). 

Values are mean ± SD. 

 

 

4.3 Stimulated Critical Torque 

 Figure 14 shows the peak stimulated torque for each contraction of the 

stimulated CT test for each visit. Figure 15 illustrates each peak stimulated torque from 

the stimulated CT test relative to the initial. A one-way repeated measures ANOVA was 

conducted to test differences in peak stimulated CT. The test failed to see a significant 

main effect for visit (p>0.05), see figure 16. Peak stimulated CT was also analyzed 

relative to the initial contraction of the stimulated CT test. A one-way repeated 

measures ANOVA showed no significant main effect for visit (p>0.05) for relative peak 

stimulated CT, shown in figure 17.  
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Figure 14: Peak stimulated torque for each contraction of the stimulated CT test per 

visit. 

 

 
Figure 15: Peak stimulated torque for each contraction of the stimulated CT test as a 

percentage of the initial contraction. 
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Figure 16: Peak stimulated CT from each visit. No significant differences were seen 

(p>0.05). Values are mean ± SD. 

 

 
Figure 17: Peak stimulated CT as a percentage of the first contraction of the stimulated 

CT test. No significant differences were seen (p>0.05). Values are mean ± SD. 

 

 

Figure 18 shows the mean stimulated torque for each stimulated contraction of 

the stimulated CT test per visit. Accordingly, figure 19 illustrates the mean stimulated 
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torque of each contraction of the stimulated CT test relative to the first contraction. 

Figure 20 shows the results of a one-way repeated measures ANOVA to test differences 

in mean stimulated CT. The results show a significant effect for visit (p=0.014). 

Pairwise comparisons via LSD reveal a significant decrease in mean stimulated CT at 2-

days post relative to pre (p=0.010). There were no significant differences for the other 

visits relative to pre (p>0.05). Mean stimulated CT was also analyzed relative to the 

first contraction of the stimulated CT test. A one-way repeated measures ANOVA 

showed no significant differences between visits when looking at the relative mean 

stimulated CT (p>0.05), see figure 21.  

 
Figure 18: Mean stimulated torque for each contraction of the stimulated CT test per 

visit. 
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Figure 19: Mean stimulated torque for each contraction of the stimulated CT test 

relative to the first contraction. 

 

 

 
Figure 20: Mean stimulated CT for each visit. There was a significant decrease at 2-

days post when compared to pre (p<0.05). * indicates a significant difference from pre. 

Values are mean ± SD. 
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Figure 21: Mean stimulated CT as a percentage of the first contraction of the stimulated 

CT test. No significant differences were seen (p>0.05). Values are mean ± SD. 

 

 

4.4 Voluntary IACT 

 IACT was analyzed using peak torque values (peak IACT) and mean torque 

values (mean IACT) from the 5-minute all-out test. A one-way repeated measures 

ANOVA was used to look at changes in peak IACT and mean IACT. There was no 

significant main effect for visit for both: peak IACT and mean IACT (p>0.05). Figure 

22 displays changes in peak IACT and figure 23 shows changes in mean IACT for the 

visits. 
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Figure 22: IACT analyzed using peak torque values from the 5-minute all-out test. No 

significant differences were seen (p>0.05). Values are mean ± SD. 

 

 
Figure 23: IACT analyzed using mean torque values from the 5-minute all-out test. No 

significant differences were seen (p>0.05). Values are mean ± SD. 
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4.5 Stimulated IACT 

 IACT from the stimulated CT test was also analyzed using peak torque values 

(stimulated peak IACT) and mean torque values (stimulated mean IACT). A one-way 

repeated measures ANOVA was conducted to test differences over visits in both 

stimulated peak IACT and stimulated mean IACT. The results yielded no significant 

main effect for visit for either stimulated peak IACT or stimulated mean IACT 

(p>0.05). Figure 24 shows the stimulated peak IACT and figure 25 shows the 

stimulated mean IACT for the visits. 

 
Figure 24: IACT analyzed using peak torque values from the stimulated CT test. No 

significant differences were found (p>0.05). Values are mean ± SD. 
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Figure 25: IACT analyzed using mean torque values from the stimulated CT test. No 

significant differences were found (p>0.05). Values are mean ± SD. 

 

4.6 Voluntary Activation 

 Voluntary activation was assessed at different timepoints throughout the 5-

minute all-out test. A two-way repeated measures ANOVA was used to see differences 

over visits and timepoints. The interaction of visit and timepoints was not significant 

(p>0.05). Furthermore, the results yielded no significant main effect for either visit 

(p=0.34) or timepoints (p=0.06). Figure 26 depicts percent voluntary activation for each 

timepoint per visit.  
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Figure 26: Change in voluntary activation during the 5-minute all-out test per visit. No 

significant differences were found between visits or timepoints (p>0.05). 

 

4.7 EMG RMS 

 EMG RMS was expressed relative to the RMS value of the initial contraction of 

the 5-minute all-out test. A two-way repeated measures ANOVA was used to test 

differences over visits and timepoints. The results showed no significant interaction of 

visit and timepoints (p>0.05). Additionally, the results showed no significant main 

effect for visit (p>0.05), however, there was a significant main effect for timepoints 

(p<0.001). Pairwise comparisons using LSD was used to exam all timepoints of the 5-

minute all-out test relative to the 1st (5 sec) timepoint. The results showed that the 8th 

(210 sec), 9th (240 sec), and 10th (270 sec) timepoints, were all significantly reduced 

compared to the 1st timepoint of the 300-second long 5-minute all-out test (p=0.028, 

0.023, and 0.021 respectively). There were no significant differences for the rest of the 

timepoints relative to the first (p>0.05). Figure 27 depicts the EMG RMS for each 

timepoint relative to the first for each visit. 
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Figure 27: EMG RMS for each timepoint relative to the value of the first timepoint. * 

and the dashed lines show a significantly reduced EMG RMS at the 210, 240, and 270 

second timepoints (p<0.05).  

 

4.8 Twitch Torque 

 A two-way repeated measures ANOVA was used to test differences in twitch 

torque between the visits and timepoints. The results yielded a significant interaction of 

visit and timepoints (p=0.033). Additionally, there was no significant main effect for 

visit (p>0.05), however, there was a significant main effect for timepoints (p<0.001). 

Pairwise comparisons using LSD showed a significantly reduced twitch torque 

compared to the 1st timepoint from the 4th timepoint at 90 seconds to the last timepoint 

at 300 seconds (p<0.05). Twitch torque plateaued at the 7th timepoint (180 sec). Due to 

a significant interaction, eleven separate one-way repeated measures ANOVA were run 

to test for significant differences per individual timepoint over the visits. The results for 

the eleven separate one-way repeated measures ANOVAs showed no significant 

differences for any individual timepoint among visits (p>0.05). Figure 28 illustrates the 
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twitch torque for each timepoint during the 5-minute all-out test per visit. 

 
Figure 28: Twitch torque from each timepoint during the 5-minute all-out test. * and 

dashed rectangle indicate a significant decrease in twitch torque from the first timepoint 

(p<0.05). 

 

 Twitch torque was also analyzed relative to the value of the first timepoint. The 

results of the two-way repeated measures ANOVA showed no significant main effect 

for visit (p>0.05), however, there was a significant main effect for timepoints 

(p<0.001). The interaction of visit and timepoint was not significant (p>0.05). Thus, 

pairwise comparisons using LSD were performed to test differences between 

timepoints. The results showed that all timepoints ranging from the 3rd to the 11th (60 

sec to 300 sec of the 5-minute all-out test) had a significantly reduced twitch torque 

relative to the 1st timepoint (p<0.05). Relative twitch torque also plateaued at the 7th 

timepoint (180 sec), see figure 29. 
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Figure 29: Twitch torque as a percentage of the value at the first timepoint. * and 

dashed rectangle indicate a significant percent decrease at timepoints from 60 to 300 

seconds (p<0.05). 

 

4.9 Low-Frequency Fatigue 

 Low-frequency fatigue was analyzed before, immediately after, and 3 minutes 

after the 5-minute all-out test. A two-way repeated measures ANOVA was conducted to 

test differences over timepoints and between visits. The results showed no significant 

main effect for visit or timepoint (p>0.05). The results also showed no significant 

interaction of visit and timepoint (p>0.05). Figure 30 illustrates these results. 
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Figure 30: Low-frequency fatigue regarding the 5-minute all-out test. No significant 

differences were found between visits or timepoints (p>0.05). Values are mean ± SD. 

 

 Low-frequency fatigue was also analyzed before, immediately after, and 3 

minutes after the stimulated CT test. A two-way repeated measures ANOVA was used 

to test differences between visits and over timepoints. The results showed no significant 

main effect for visit or timepoint (p>0.05). The results also showed no significant 

interaction of visit and timepoints (p>0.05). Figure 31 illustrates these results. 
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Figure 31: Low-frequency fatigue regarding the stimulated CT test. No significant 

differences were found between visits or timepoints (p>0.05). Values are mean ± SD. 
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Chapter V – Discussion & Conclusions 

5.1 Exercise-Induced Muscle Damage 

The EIMD protocol employed in this study is almost identical to what has 

previously been conducted in the literature to induce a significant degree of muscle 

damage (Burt et al., 2012, 2013; Davies et al., 2008; Davies, Eston, et al., 2011; Davies, 

Rowlands, et al., 2011). This study saw a significant drop in torque production up to 2-

days post eccentric exercise in both the dominant and non-dominant legs—indicating 

damage occurred. These results at 2-days post for the dominant leg are similar to what 

has been reported in the literature using similar exercise protocols to induce EIMD 

(Burt et al., 2012, 2013; Davies et al., 2008; Davies, Eston, et al., 2011; Davies, 

Rowlands, et al., 2011). Interestingly, force production was reduced for a longer 

duration in the non-dominant leg, up to 4-days post exercise. Using a single-leg split 

squat muscle damaging protocol at 40% of body weight, Black et al., (2015) saw 

decreases in quadriceps force production for up to 4-days post. Additionally, the results 

of Hody et al., (2013) suggest no effect of leg dominance on the magnitude of EIMD. 

Thus, the differences in force loss between the dominant and non-dominant leg seen in 

this study may be a result of how the data were analyzed; since ten subjects were 

included for the non-dominant leg compared to eight for the dominant leg. The Cohen’s 

d effect size at 4-days post, was 0.15 SD for the dominant leg and 0.24 SD for the non-

dominant leg, suggesting a slightly larger effect in the non-dominant leg. 

The results of the muscle soreness ratings saw a significant increase in soreness 

up to 4-days post eccentric exercise. Ratings of muscle soreness were done 
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simultaneously for both limbs to discount for any knee-joint related pain that might 

have been accounted for using single leg exercise that could potentially impact 

participants’ perceptions of soreness and muscle pain. This study’s results for muscle 

soreness are similar to what has been reported in the literature, showing a significant 

increase immediately post eccentric exercise (post-EIMD) up to 4-days post exercise 

(Black & McCully, 2008; Cleak & Eston, 1992; Ebbeling & Clarkson, 1989; Evans, 

Knight, Draper, & Parcell, 1892; Lee et al., 2002; Newham, Jones, & Edwards, 1983). 

Much of the current literature confirms muscle soreness can persist up to 2-days post 

(Black & Dobson, 2012; D. Burt et al., 2012; Davies et al., 2008; Davies, Eston, et al., 

2011; Davies, Rowlands, et al., 2011) with soreness abating between 3 to 7 days 

following EIMD (Fouré et al., 2015; Highton et al., 2009). Our results, identical to 

Black & McCully (2008), may be a result of the EIMD protocol utilized in this study 

and the resulting magnitude of its effect. Likewise, these results could also be attributed 

to the participants not having done any lower-body resistance exercises in at least 6-

months prior to testing according to data suggesting a reduced degree of EIMD 

following a repeated bout (Burt et al., 2013). Collectively, our finding that soreness has 

returned to baseline levels (essentially zero) by 7-days post suggests a return to baseline 

of the nociceptive inflammatory response that drives the increase of noxious 

biochemicals that augment perception of muscle soreness, similar to what has been 

observed by others (Black & Dobson, 2013; Crameri et al., 2007; Proske & Morgan, 

2001).  

5.2 Voluntary Critical Torque 

This study saw a significant decrease in both peak CT and mean CT at 2-days 
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post. Our results showing a 17.2 ± 12.9 % decrease in mean CT at 2-days post are 

similar to those of Szczyglowski et al., (2017)  who saw a 14 ± 10.2 % decrease at 2-

days post. A novel aspect of our study was that we assessed CT over the course of 7-

days of recovery from EIMD. To this end, mean CT was found to be decreased at 4-

days post. Interestingly, peak CT showed no differences from pre to 4-days post—

suggesting the method of quantifying torque over each contraction may play a role in 

the observed CT. Thus, measuring mean CT may represent a better approach when 

attempting to derive CT from the 5-minute all-out test as it encompasses the ability of 

the participant to maintain torque over the course of the 3 second contraction rather than 

simply the highest torque they can generate at any point in the contraction. Mean and 

peak CT were recovered by 7-days post, which is in alignment with the changes in the 

markers of EIMD. When both mean and peak CT were expressed relative to initial 

MVIC values on that testing day, no differences were seen between visits, identical to 

what was observed by Szczyglowski et al., (2017) . These changes suggest that the 

decline in strength following EIMD plays an important role in determining CT 

compared to any aerobic metabolic alterations consequent to EIMD (Szczyglowski et 

al., 2017).  

5.3 Stimulated Critical Torque 

Like Janzen et al., (2018), this study saw a hyperbolic decline in torque followed 

by a plateau during the stimulated CT test, suggesting the attainment of a metabolic 

steady-state. This study saw a decrease in the mean stimulated CT at 2-days post 

eccentric exercise, but not peak stimulated CT. These results could be explained 

through an understanding of how EMS contractions function. EMS based contractions 
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follow a nonselective, spatially fixed, and temporally synchronous recruitment pattern 

(Crameri et al., 2007; Gregory & Bickel, 2005). Therefore, when a muscle is being 

stimulated, all motor-units within reach of the current’s field will fire. This would lead 

to a high peak torque for the onset of any 3-second stimulus which would lower 

significantly over a span of milliseconds as many of the type II fibers fatigue. This may 

explain why peak stimulated CT was not reduced following EIMD. Similar to the 

voluntary condition, when tracking changes following EIMD, looking at stimulated 

mean torque values may give a more physiologically grounded approach to measure 

CT. Since stimulation electrode placement was held constant, and there was little to no 

day-to-day differences in train current intensity, we assume stimulated mean torque 

values decreased following EIMD as a product of the resulting impairment in 

excitation-contraction coupling and sarcomere disruption (Proske & Morgan, 2001) that 

occurred with EIMD. Yet, EIMD was still evident (judged by a decline in voluntary 

MVC) in the non-dominant leg at 4-days post, but stimulated mean CT values showed a 

return to baseline. One possible explanation of this finding is that because the 

stimulated exercise did not recruit all of the knee extensor motor-units, just those within 

the current field, that there were damaged muscle fibers that were not activated—

accounting for the continued decline in MVC but return of stimulated CT to baseline. 

This can be seen with the percent force decrement which was 20.9% at 2-days post, but 

only 11.3% at 4-days post in the non-dominant leg. Interestingly, when stimulated mean 

and peak CT were analyzed as a percentage of the first contraction of the stimulated CT 

test, no differences were seen. These results suggest a decline in torque that is more 

dependent upon the initial value of torque, and less so on the physiological muscular 
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imbalances accrued by EIMD. This pattern further validates the stimulated CT test of 

Janzen et al., (2018), as it follows a similar relative decrease in torque seen in voluntary 

conditions.  

5.4 Voluntary & Stimulated IACT 

IACT, the isometric torque analog of W’, represents a finite energy store above 

CT that is depended upon muscle phosphocreatine (PCr), anaerobic glycolysis, and 

stored oxygen (Broxterman et al., 2014; Fukuba et al., 2003; Andrew M. Jones et al., 

2010; A. Miura et al., 1999; Monod & Scherrer, 1965). Szczyglowski et al., (2017)  saw 

a significantly reduced IACT following EIMD at 2-days post, with the magnitude of 

decrease for IACT (33%) being greater than that for CT (14%). EIMD has been 

suggested to increase the body’s energy expenditure to help in its repair process as 

evident with increases in resting metabolic rate and oxygen saturation (Ahmadi et al., 

2008; Ahmadi et al., 2008; Dolezal et al., 2000) which could appropriate from the 

anaerobic glycolysis that IACT is dependent upon. Additionally, the increased reliance 

on anaerobic metabolism following EIMD (Newcomer et al., 2005; Warren et al., 1996) 

could take away from the muscle PCr stores, known to be higher in type II fibers 

relative to type I (Casey, Constantin-Teodosiu, Howell, Hultman, & Greenhaff, 1996). 

Surprisingly, with evidence of EIMD, this study failed to see significant changes in 

IACT on any of the visits following EIMD for voluntary and stimulated conditions. Our 

results suggest no effect of EIMD on any combination of: muscle PCr stores, anaerobic 

glycolysis, and stored oxygen. These results, being different from those of 

Szczyglowski et al., (2017) , may be a representation of the chosen EIMD methodology. 

Since Szczyglowski et al., (2017)  used a single-leg EMS based approach to EIMD up 
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to a 40% decline in MVIC post-EIMD, while this study used a voluntary approach to 

EIMD aiming to a 25% decline in MVIC post-EIMD. Perhaps not enough EIMD 

occurred in the present study to alter the anaerobic contributions to IACT. Further study 

of the effects of the magnitude of EIMD on IACT could help clarify this finding.  

5.5 Central Fatigue During the CT Test 

It has been observed that muscle fatigue can be influenced by central factors, 

evident with decreases in voluntary activation up to 30 minutes following a fatiguing 

bout (Kawakami et al., 2000; Simpson et al., 2004) and immediately following EIMD 

(Behrens et al., 2012; Martin et al., 2004). This study was interested in assessing 

voluntary activation during the 5-minute all-out test and how it may have changed 

because of EIMD. Central fatigue may occur following EIMD due to muscle soreness, 

swelling (inflammation), and stiffness (Byrne, Twist, & Eston, 2004) preventing 

maximal motor-unit recruitment. Following EIMD, Prasartwuth et al., (2005)  saw up to 

a 23% decline in voluntary activation that remained significantly depressed up to 24 

hours using nerve stimulation, however, no significant changes were reported using 

motor cortex stimulation. Similarly, no significant differences in voluntary activation 

were seen following EIMD in this study. Interestingly, our results contradict those of 

Janzen (unpublished observations), who saw a significantly lower voluntary activation 

toward the end of the 5-minute all-out test. Similarly, Burnley, 2009 also saw a 

significant decrease in voluntary activation throughout the 5-minute all-out test. 

However, Bigland-Ritchie et al., (1986) saw no decline in voluntary activation during a 

fatiguing bout for the quadriceps muscle attributing these results to muscle contractile 

properties in well-motivated subjects. Unlike Szczyglowski et al., (2017), this study saw 
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a significant decrease in net neuromuscular activation as seen with changes in EMG 

RMS. Seeing changes in EMG RMS towards the end of the 5-minute all-out test may 

indicate central impairments, however, no changes were seen in voluntary activation to 

supplement the EMG RMS results. Accordingly, EMG RMS did not change following 

EIMD. These results share a similar suggestion by Szczyglowski et al., (2017)  that the 

total amount of electrical signal reaching the neuromuscular junction and traveling to 

the sarcolemma was unchanged before and following EIMD. Collectively, our findings 

suggest that the loss of force that was seen throughout the 5-minute all-out test and 

following EIMD may be a product of impairments below the neuromuscular junction 

that are attributed to peripheral fatigue, such as impairments in excitation-contraction 

coupling, and Calcium kinetics (Allen et al., 1992).  

5.6 Peripheral Fatigue 

Peripheral fatigue can effect force production through impairments at or below 

the neuromuscular junction (Boerio et al., 2005; Gandevia, 2001). Analyzing peripheral 

fatigue, this study saw a significant decrease in twitch torque during the 5-minute all-

out test. These results are similar to those of Burnley (2009)  who saw a decrease in 

twitch torque following exhaustive exercise. Similarly, our results also align with 

Janzen (unpublished observations) who showed a significant decrease in twitch torque 

throughout the beginning half of the 5-mnute all-out test with a plateau occurring near 

the end. Following EIMD, Black et al., (2015)  saw a significant reduction in resting 

twitch torque up to 7-days post. These results are fairly consistent with EMS based 

EIMD protocols, showing reduced twitch torque values up to 4-days post (Fouré et al., 

2014). Interestingly, our EIMD protocol had no effect on resting twitch torque. Since 
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peripheral fatigue is known to have a detrimental  effect on the excitation-contraction 

coupling process among other things (Allen et al., 1992), we gather the lack of changes 

following EIMD to be a product of the EIMD protocol not significantly impairing the 

excitation-contraction coupling process to see an additional effect (Proske & Morgan, 

2001). Thus, the decline in torque values throughout the 5-minute all-out test following 

EIMD were not affected by a higher degree of peripheral fatigue but rather the muscular 

alterations induced by EIMD, specifically the disruption of sarcomeres (Proske & 

Morgan, 2001). 

Low-frequency fatigue (LFF) was also analyzed to further examine peripheral 

fatigue. LFF can indicate impairments not only in the excitation-contraction coupling 

processes, but also Calcium kinetics (Bigland-Ritchie et al., 1986; Edwards et al., 

1977). Accordingly, the ratio of torque from 10 Hz/100 Hz has shown a reduction up to 

1 day following EIMD (Fouré et al., 2014). Likewise, the ratio of torque from 1 Hz/50 

Hz has also been shown to decrease following a fatiguing bout (Bigland-Ritchie et al., 

1986). Janzen (unpublished observations) also reported a significant level of LFF 

following the 5-minute all-out test. LFF following EIMD has been reported to show a 

complete recovery at 2-days post when frequency ratios were 20 Hz/80 Hz (Martin et 

al., 2004). Our findings show no differences following the 5-minute all-out test, the 

stimulated CT test, or following EIMD. Our results are congruent with those of Martin 

et al., (2004) , however, it was interesting to see no LFF at any timepoint following the 

5-minute all-out test. Since twitch torque values confirm a degree of peripheral fatigue 

following the 5-minute all-out test, this fatiguing bout may not have been sufficient in 

impairing Calcium kinetics to a significant degree to see evidence of LFF. Collectively, 
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our findings regarding twitch torque and LFF suggest no effect of the peripheral 

markers of fatigue to torque production following EIMD. 

5.7 Conclusions 

In conclusion, we accept our hypothesis seeing a significant decrease in CT and 

stimulated CT up to 4-days and 2-days post EIMD, respectively. Surprisingly, we failed 

to reject the null hypothesis with our results showing no differences in IACT in either 

voluntary or stimulated conditions. This is likely a product of the chosen EIMD 

protocol. Additionally, we failed to reject the null hypothesis as we saw no changes in 

the central markers of fatigue during an exhaustive bout following EIMD. Twitch 

torque did show a contribution in the decline in force in this study, but only throughout 

the 5-minute all-out tests. We fail to reject the null hypothesis when looking at the 

peripheral markers of fatigue over the course of EIMD as we saw no changes. 

Collectively, our findings suggest a return to baseline in CT and stimulated CT by 7 

days and 4 days following EIMD, respectively. Moreover, these results suggest no 

contribution of central or peripheral markers of fatigue to the decline in torque 

production that was seen following EIMD. Interestingly, our results saw a decline in the 

stimulated CT following EIMD, similar to the voluntary condition in the current study 

and previously. These results further validate our stimulated CT showing its 

vulnerability to the effects of EIMD. Future directions for research would need to test 

out different approaches for EIMD to accept a recovery pattern for CT and IACT on the 

days following. Both EMS and voluntary approaches to EIMD should be employed to 

see if these two methods have a differing impact. Additionally, it would be interesting 

to look at trained individuals rather than those who have not done any lower-body 
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resistance training in the past 6 months. Furthermore, different conditions and 

supplementations should be tested to examine an attenuation effect on CT and IACT 

following EIMD including: hyperoxia, caffeine, and anti-inflammatory drugs. 
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APPENDIX B: INFORMED CONSENT FORM 

 

Signed Consent to Participate in Research  

 

Would you like to be involved in research at the University of Oklahoma? 

I am Darshit Patel from the Department of Health and Exercise Science, and I 
invite you to participate in my research project titled “Time Course of Change in 
Critical Torque and Impulse Above Critical Torque Following Exercise-Induced 
Muscle Damage”. This research is being conducted at the University of 
Oklahoma Norman Campus. You were selected as a possible participant 
because you have no history of lower leg injuries, have no contraindications to 
performing resistance exercise, and are not pregnant. You must be between the 
ages of 18 and 35 to participate in this study. 

Please read this document and contact me to ask any questions that you 
may have BEFORE agreeing to take part in my research. 

What is the purpose of this research? The purpose of this research is to 
assess the time course of change in critical torque (CT) and the impulse above 
critical torque (IACT) following exercise-induced muscle damage (EIMD). 

How many participants will be in this research? About 20 men and women 
will take part in this research. 

What will I be asked to do? If you take part in this study, you will 
undergo the following sessions: two familiarization sessions and five 
experimental sessions. There will be at least a 24-hour gap in between 
the two familiarization visits. On the first familiarization visit your Smith 
Machine back squat 1-RM will be taken, which will be followed with 
dominant leg twitch current determination. This process will involve the 
use of a stimulation electrode placed on your vastus lateralis and vastus 
medialis. A current (two 1 ms pulses separated by 5 ms) will be sent to 
these stimulation electrodes every 15-20 seconds with the stimulation 
intensity increasing by 10 milliamps each time. This will continue until 
you have achieved a plateau in torque. Following this, the dominant leg 
maximal voluntary isometric contraction (MVIC) will be determined. This 
process will involve the performance of 3 MVICs with 2 minutes of rest in 
between each. Each MVIC will last for 3 seconds and the peak to peak 
will be measured. Two and a half seconds into the MVIC you will receive 
a current, the one at which you plateaued, and then you will receive 
another a second following your MVIC. Your highest MVIC will be 
considered the criterion for the day. Following this, you will undergo a 
familiarization to the 5-minute all-out test in the dominant leg. This test 
consists of 60 MVICs performed at a 3 on (contraction) 2 off (relaxation) 
duty cycle. During this test, you will receive a current, the one at which 
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you plateaued, 2.5 seconds into every 6th contraction and a second after 
it. However, because this is a familiarization visit, this test will only last 3 
minutes instead of the full 5 minutes.  

The second familiarization visit will consist of the same measurements in 
the dominant leg, which will be followed by testing in the non-dominant 
leg. MVIC will be determined in the non-dominant similar to the dominant 
leg, however no current will be applied. The highest MVIC will then be 
considered and a 25% value will be derived. Following this, you will 
undergo a train current determination in the non-dominant leg. In this 
step, you will be stimulated via current for 3 seconds straight at 50 Hz 
(150 individual stimuli in 3 seconds). The current intensity will be 
increased by 10 milliamps every 15-20 seconds until 25% of the MVIC is 
achieved. This current will then be used for the stimulated critical torque 
test in the non-dominant leg. This test will be similar to the 5-minute all-
out test except there will be no voluntary contractions being performed. 
Voluntary contractions will be replaced with stimulated contractions at 
the train current that was determined.  

The same measurements will be conducted on the 1st, 3rd, 4th, and 5th 
experimental visits. The 2nd experimental visit will involve a muscle 
damaging protocol. The 2nd, 3rd, 4th, and 5th experimental visits will also 
include a measurement of the pain associated with muscle soreness. 
This will be done using a 100-millimeter visual analog scale with the 
word indicators “no pain at all” and “most intense pain imaginable” on 
opposite ends of the scale. You will be asked to perform the downward 
portion of a squat with your body and mark the pain associated with the 
motion on the visual analog scale. On the 1st, 3rd, 4th, and 5th 
experimental visit you will undergo the same measurement for the 
dominant and non-dominant leg as mentioned for the 2nd familiarization 
visit. However, during these visits you will perform the full length of the 5-
minute all-out test. Additionally, before, immediately after, and 3 minutes 
after the 5-minute all-out test, and the stimulated critical torque test we 
will be measuring low-frequency fatigue. This will be done by applying 10 
doublet/single twitch pairs each time. A doublet is two 1 ms currents that 
are separated by 5 ms, while a single twitch is only a 1 ms current. For 
the 5-minute all-out test the same current intensity at which you plateau 
will be used. Accordingly, for the stimulated critical torque test the current 
that will be used will be the one at which you achieved 25% of your 
MVIC.  

The 2nd experimental visit will include performance of active eccentric 
and semi-passive concentric Smith Machine back squats. The weight will 
be set at your 1-RM and you will actively lower the weight to 90 degrees 
or slightly below. Following this the weight will be lifted back up to allow 
you to ease into the initial stance. This constitutes 1 repetition, you will 
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be performing 10 repetitions per set. Each set will be separated by 1 
minute for a total of 10 sets. Following this your MVIC will be measured 
in each leg to see if your force production has dropped by at least 30%. If 
not, then more sets will be added until further increases in volume of up 
to 3 sets show no further decreases in you MVIC for each leg. If you fail 
to show at least a 30% decline in MVIC you will be dropped from further 
participation. 

By signing at the end of this document you are agreeing to the procedures 
above and what will be required from you with regards to each procedure. 

 

How long will this take? Your participation will take 7 visits, each lasting 60-90 
minutes. The second visit will take place at least 24 hours after the first visit, 
and the following visits will take place at least 48 hours apart. The total time 
commitment for this study is approximately 11 hours.  

What are the risks and/or benefits if I participate? During the exercise 
protocols, an electrical current will be applied to the vastus lateralis and vastus 
medialis muscles of your quadriceps. You may experience pain and/or 
discomfort in your quadriceps from the electrical stimulation and the force of the 
contractions. The intensity of pain or discomfort varies from person to person. It 
may gradually progress to the sensation similar to the stinging feeling in your 
hand after performing a very hard “high five”. There is minimal risk of 
developing muscle soreness or injury resulting from isometric exercise. 
However, the EIMD protocol will result in muscle soreness. The pain associated 
with muscle soreness is usually tolerable and normally decreases over a couple 
of days. During isometric contractions or the EIMD protocol you may experience 
lightheadedness or nausea. There is also a risk for cardiovascular events when 
performing maximal contractions. There are no direct benefits to participating in 
this study. 

What do I do if I am injured? If you are injured during your participation, report 
this to a researcher immediately. Emergency medical treatment is available. 
However, you or your insurance company will be expected to pay the usual 
charge from this treatment. The University of Oklahoma Norman Campus has 
set aside no funds to compensate you in the event of injury. 

Will I be compensated for participating? You will be given a $20 gift card for 
completing the study. 

Who will see my information? In research reports, there will be no information 
that will make it possible to identify you. Research records will be stored 
securely and only approved researchers and the OU Institution Review Board 
will have access to the records. 

You have the right to access the research data that has been collected about 
you as a part of this research. However, you may not have access to this 
information until the entire research has completely finished and you consent to 
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this temporary restriction. 

Do I have to participate? No. If you do not participate, you will not be 
penalized or lose benefits or services unrelated to the research. If you decide to 
participate, you don’t have to answer any question and can stop participating at 
any time. 

Will my identity be anonymous or confidential? Your name will not be 
retained or linked with your responses. The data you provide will be destroyed 
unless you specifically agree for data retention or retention of contact 
information at the end of the research. Please check all of the options that you 
agree to:  

I agree for the researcher to use my data in future studies. ___Yes ___ No  

Photographing of Research Participants/Activities In order to preserve an 
image related to the research, photographs may be taken of participants. These 
photos may be used for research publication or for posters. You have the right 
to refuse to allow photographs to be taken without penalty. Please select one of 
the following options: 

I consent to photographs.   ___ Yes ___ No 

Will I be contacted again? The researcher would like to contact you again to 
recruit you into this research or to gather additional information.  

_____ I give my permission for the researcher to contact me in the future.  

_____ I do not wish to be contacted by the researcher again. 

Who do I contact with questions, concerns or complaints? If you have 
questions, concerns or complaints about the research or have experienced a 
research-related injury, contact me at 580-370-5957 or darpatel7@ou.edu. 
Additionally, you may contact Dr. Christopher Black at 405-325-7668 or 
cblack@ou.edu.  

You can also contact the University of Oklahoma – Norman Campus 
Institutional Review Board (OU-NC IRB) at 405-325-8110 or irb@ou.edu if you 
have questions about your rights as a research participant, concerns, or 
complaints about the research and wish to talk to someone other than the 
researcher(s) or if you cannot reach the researcher(s). 

You will be given a copy of this document for your records. By providing 
information to the researcher(s), I am agreeing to participate in this research. 

Participant Signature 

 

 

Print Name Date 

Signature of Researcher Obtaining 
Consent 

 

 

Print Name Date 

mailto:irb@ou.edu
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Participant Signature 

 

 

Print Name Date 

Signature of Witness (if applicable) 

 

 

Print Name Date 
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APPENDIX C: HIPAA 

 

AUTHORIZATION TO USE or SHARE 

HEALTH INFORMATION1 THAT IDENTIFIES YOU FOR RESEARCH 

An Informed Consent Document for Research Participation may also be required. 

 

Title of Research Project: Time Course of Change in Critical Torque and Impulse 

Above Critical Torque Following Exercise-Induced Muscle Damage. 

IRB Number:  

Leader of Research Team: Christopher D. Black 

Address: 1401 Asp Ave., #110 HHC, Norman, OK 73019 

Phone Number:  405-325-7668 (office); 706-255-3750 (cell) 

If you decide to sign this document, University of Oklahoma (OU) researchers may use 

or share information that identifies you (protected health information) for their research. 

Protected health information will be called PHI in this document. 

 

PHI To Be Used or Shared.  Federal law requires that researchers get your permission 

(authorization) to use or share your PHI. If you give permission, the researchers may 

use or share with the people identified in this Authorization any PHI related to this 

research from your medical records and from any test results.  Information used or 

shared may include all information relating to any tests, procedures, surveys, or 

interviews as outlined in the consent form; medical records and charts; name, address, 

telephone number, date of birth, race, and government-issued identification numbers. 

Purposes for Using or Sharing PHI. If you give permission, the researchers may use 

your PHI to determine if it is safe for you to participate in the exercise used in this study. 

Other Use and Sharing of PHI. If you give permission, the researchers may also use 

your PHI to develop new procedures or commercial products. They may share your PHI 

with other researchers, the research sponsor and its agents, the OU Institutional Review 

Board, auditors and inspectors who check the research, and government agencies such 

as the Department of Health and Human Services (HHS), and when required by law.  

The researchers may also share your PHI with your physician and/or a University of 

                                                 
1 Protected Health Information includes all identifiable information relating to any aspect of an 

individual’s health whether past, present or future, created or maintained by a Covered Entity. 
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Oklahoma physician in the event of a serious health risk or adverse event that occurs 

during the study. 

Confidentiality. Although the researchers may report their findings in scientific journals 

or meetings, they will not identify you in their reports. The researchers will try to keep 

your information confidential, but confidentiality is not guaranteed.  The law does not 

require everyone receiving the information covered by this document to keep it 

confidential, so they could release it to others, and federal law may no longer protect it. 

YOU UNDERSTAND THAT YOUR PROTECTED HEALTH INFORMATION 

MAY INCLUDE INFORMATION REGARDING A COMMUNICABLE OR 

NONCOMMUNICABLE DISEASE. 

Voluntary Choice. The choice to give OU researchers permission to use or share your 

PHI for their research is voluntary.  It is completely up to you.  No one can force you to 

give permission.  However, you must give permission for OU researchers to use or share 

your PHI if you want to participate in the research and, if you cancel your authorization, 

you can no longer participate in this study. 

Refusing to give permission will not affect your ability to get routine treatment or health 

care unrelated to this study from OU.   

Canceling Permission. If you give the OU researchers permission to use or share your 

PHI, you have a right to cancel your permission whenever you want. However, 

canceling your permission will not apply to information that the researchers have 

already used, relied on, or shared or to information necessary to maintain the reliability 

or integrity of this research. 

End of Permission. Unless you cancel it, permission for OU researchers to use or share 

your PHI for their research will never end.  

Contacting OU: You may find out if your PHI has been shared, get a copy of your PHI, 

or cancel your permission at any time by writing to: 

Privacy Official                     or Privacy Board 

University of Oklahoma 

 

  University of Oklahoma  

PO Box 26901 

 

 

 

  201 Stephenson Pkwy, Suite 4300A 

Oklahoma City, OK 73190 

 

  Norman, OK 73019 
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If you have questions, call: (405) 271-2511         or   (405) 325-8110 

 

Access to Information. You have the right to access the medical information that has 

been collected about you as a part of this research study.  However, you may not have 

access to this medical information until the entire research study is completely finished.  

You consent to this temporary restriction.  

Giving Permission.  By signing this form, you give OU and OU’s researchers led by 

the Research Team Leader permission to share your PHI for the research project listed 

at the top of this form. 

  

 

 

Participant Name (Print): _________________________  

 

 

__________________________________________  _______________ 

Signature of Participant 

 

 

 

  Date 

or Parent if Participant is a minor 

 

Or  

 

__________________________________________  _______________ 

Signature of Legal Representative** 

 

 

  Date 

 

**If signed by a Legal Representative of the Participant, provide a description of the 

relationship to the Participant and the authority to act as Legal Representative: 

 

______________________________________________________________________

_ 

OU may ask you to produce evidence of your relationship. 
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A signed copy of this form must be given to the Participant or the Legal 

Representative at the time this signed form is provided to the researcher or his 

representative. 
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APPENDIX D: HEALTH STATUS QUESTIONNAIRE 

 

Health Status Questionnaire 
 

 

Part 1.  Information about the individual 

 
1.  ____________________________________  

     Participant ID 

 

2.  _________________________________________  

     Date       

 

3.  _________________________________________ ________________________ 

      Mailing Address     Phone # 

          ________________________ 

     ________________________________________  Email  

 

4.  _______________________________________  ______________________ 

       Primary Physician     Physician Phone# 

      

     _______________________________________  

      Date of Last Physical Examination 

 

 

5.  _______________________________________ ______________________ 

     Person to contact in emergency   Phone 

 

6.  Gender (circle one)  Female  Male 

 

7. Age ________  Date of Birth _______/________/________ 

 
8. Height ____________    Weight___________      

 

9.  Do you smoke?     Yes          No 

 

10.  If you are a smoker, indicate number smoked per day: 

 Cigarettes: 40 or more          20-39          10-19          1-9 

 Cigars or pipes only: 5 or more or any inhaled  Less than 5, none inhaled 

 

11. Are you currently taking prescription or over-the-counter medication(s)? If so, please list the 

medication, daily dose, and why you are taking it. 

 

 

 

 

 

12. Are you currently taking any vitamins or nutritional supplements? If so, please list the 

vitamin/supplement, the daily dose, and why you are taking it. 
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Part 2.  Medical History 

 

You have had or currently have any of the following:  

 

History 

___ A heart attack  

___ Heart surgery  

___ Cardiac catheterization  

___ Coronary angioplasty (PTCA)  

___ Pacemaker-implantable cardiac defibrillatory/ rhythm disturbance  

___ Heart valve disease  

___ Heart failure  

___ Heart transplantation  

___ Congenital heart disease 

___ Peripheral arterial disease 

___ Stroke   

 

Signs/Symptoms  

___ You experience discomfort and/or pain with exertion in the chest, neck, jaw, arms   

___ You experience unreasonable breathlessness at rest or with mild exertion 

___ You experience dizziness, fainting, or blackouts 

___ You experience ankle edema 

___ You experience heart palpitations or tachycardia (unpleasant awareness of force or rapid 

heart beats) 

___ You have or experience intermittent claudication (muscle pain due to ischemia) 

___ You have a heart murmur  

___ You take medication(s) for ANY type of heart condition or high blood pressure 

 

Other health issues  

___ You have diabetes 

___ You have a thyroid disorder 

___ You have a renal (kidney) disorder 

___ You have liver disease (e.g. cirrhosis)  

___ You have COPD, asthma, cystic fibrosis or other lung disease  

___ You have burning or cramping sensation in your lower legs when walking short distances  

___ You have musculoskeletal problems that limit your physical activity (arthritis, etc.)  

___ You are pregnant  
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Part III: Cardiovascular Risk Factors 

 

 Age 

___ You are a man older than 45 years  

___ You are a woman older than 55 years, have had a hysterectomy, or are postmenopausal 

  

Medical/Lifestyle  

___ You smoke, or quit smoking within the previous 6 months 

  

___ A physician has ever said have high blood pressure (>140/90)?  

   

___ A physician has said you have high cholesterol (Total >200 mg/dl or LDL cholesterol is 

>130 mg/dl)  

 

___ You have a close blood relative who had a heart attack or heart surgery before age 55 

(father or        brother) or age 65 (mother or sister) 

  

___ You are physically inactive (i.e., you get <30 minutes of physical activity 3 days per week) 

 

___ You have impaired fasting glucose (> 100mg/dl) that has been confirmed by a doctor on 

two separate occasions 

  

___ Your BMI is >30   BMI___________ 

 

 

 

I understand my signature signifies that I have read and understand all the information on the 

questionnaire, that I have truthfully answered all the questions, and that any questions/concerns 

I may have had have been addressed to my complete satisfaction.  

 

Name (please print)____________________________________________________________  

 

Signature _______________________________________________Date _________________  
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APPENDIX E: INTERNATIONAL PHYSICAL ACTIVITY QUESTIONNAIRE 

 

INTERNATIONAL PHYSICAL ACTIVITY 

QUESTIONNAIRE 

(October 2002) 

http://www.ipaq.ki.se/ipaq.htm 

 

LONG LAST 7 DAYS SELF-ADMINISTERED FORMAT 

 

FOR USE WITH YOUNG AND MIDDLE-AGED ADULTS (15-69 years) 

 

The International Physical Activity Questionnaires (IPAQ) comprises a set of 4 

questionnaires. Long (5 activity domains asked independently) and short (4 generic 

items) versions for use by either telephone or self-administered methods are available. 

The purpose of the questionnaires is to provide common instruments that can be used 

to obtain internationally comparable data on health–related physical activity. 

 

Background on IPAQ 

The development of an international measure for physical activity commenced in 

Geneva in 1998 and was followed by extensive reliability and validity testing 

undertaken across 12 countries (14 sites) during 2000. The final results suggest that 

these measures have acceptable measurement properties for use in many settings and 

in different languages, and are suitable for national population-based prevalence 

studies of participation in physical activity. 

 

Using IPAQ  

Use of the IPAQ instruments for monitoring and research purposes is encouraged. It is 

recommended that no changes be made to the order or wording of the questions as 

this will affect the psychometric properties of the instruments.  

 

Translation from English and Cultural Adaptation 

Translation from English is encouraged to facilitate worldwide use of IPAQ. Information 

on the availability of IPAQ in different languages can be obtained at www.ipaq.ki.se. If 

a new translation is undertaken we highly recommend using the prescribed back 

http://www.ipaq.ki.se/ipaq.htm
http://www.ipaq.ki.se/
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translation methods available on the IPAQ website. If possible please consider making 

your translated version of IPAQ available to others by contributing it to the IPAQ 

website. Further details on translation and cultural adaptation can be downloaded from 

the website. 

 
Further Developments of IPAQ  

International collaboration on IPAQ is on-going and an International Physical Activity 

Prevalence Study is in progress. For further information see the IPAQ website.  

 

More Information 

More detailed information on the IPAQ process and the research methods used in the 

development of IPAQ instruments is available at www.ipaq.ki.se and Booth, M.L. 

(2000). Assessment of Physical Activity: An International Perspective. Research 

Quarterly for Exercise and Sport, 71 (2): s114-20. Other scientific publications and 

presentations on the use of IPAQ are summarized on the website. 

http://www.ipaq.ki.se/
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INTERNATIONAL PHYSICAL ACTIVITY QUESTIONNAIRE 

 

We are interested in finding out about the kinds of physical activities that people do as 

part of their everyday lives. The questions will ask you about the time you spent being 

physically active in the last 7 days. Please answer each question even if you do not 

consider yourself to be an active person. Please think about the activities you do at 

work, as part of your house and yard work, to get from place to place, and in your 

spare time for recreation, exercise or sport. 

 

Think about all the vigorous and moderate activities that you did in the last 7 days. 

Vigorous physical activities refer to activities that take hard physical effort and make 

you breathe much harder than normal. Moderate activities refer to activities that take 

moderate physical effort and make you breathe somewhat harder than normal. 

 

PART 1: JOB-RELATED PHYSICAL ACTIVITY 

 

The first section is about your work. This includes paid jobs, farming, volunteer work, 

course work, and any other unpaid work that you did outside your home. Do not 

include unpaid work you might do around your home, like housework, yard work, 

general maintenance, and caring for your family. These are asked in Part 3. 

 

1. Do you currently have a job or do any unpaid work outside your home? 

 

  Yes 

 

 No Skip to PART 2: TRANSPORTATION 

 

The next questions are about all the physical activity you did in the last 7 days as part 

of your paid or unpaid work. This does not include traveling to and from work. 

 

2.  During the last 7 days, on how many days did you do vigorous physical 

activities like heavy lifting, digging, heavy construction, or climbing up stairs as 

part of your work? Think about only those physical activities that you did for at 

least 10 minutes at a time. 
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_____ days per week 

  

 No vigorous job-related physical activity Skip to question 4 

 

3. How much time did you usually spend on one of those days doing vigorous 

physical activities as part of your work? 

 

_____ hours per day 

_____ minutes per day 

 

4. Again, think about only those physical activities that you did for at least 10 

minutes at a time. During the last 7 days, on how many days did you do moderate 

physical activities like carrying light loads as part of your work? Please do not include 

walking. 

 

_____ days per week 

 

 No moderate job-related physical activity 

 Skip to question 6 

 

5. How much time did you usually spend on one of those days doing moderate 

physical activities as part of your work? 

 

_____ hours per day 

_____ minutes per day 

 

6. During the last 7 days, on how many days did you walk for at least 10 minutes at 

a time as part of your work? Please do not count any walking you did to travel to or from 

work. 

 

_____ days per week 

 

 No job-related walking Skip to PART 2: TRANSPORTATION 
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7. How much time did you usually spend on one of those days walking as part of 

your work? 

 

_____ hours per day 

_____ minutes per day 

 

 

PART 2: TRANSPORTATION PHYSICAL ACTIVITY 
 

These questions are about how you traveled from place to place, including to places 
like work, stores, movies, and so on. 
 

8. During the last 7 days, on how many days did you travel in a motor vehicle like a 

train, bus, car, or tram? 

 

_____ days per week 

 

 No traveling in a motor vehicle Skip to question 10 

 

9. How much time did you usually spend on one of those days traveling in a train, 

bus, car, tram, or other kind of motor vehicle? 

 

_____ hours per day 

_____ minutes per day 

 

Now think only about the bicycling and walking you might have done to travel to and 

from work, to do errands, or to go from place to place. 

 

10. During the last 7 days, on how many days did you bicycle for at least 10 minutes 

at a time to go from place to place? 

 

_____ days per week 

 

 No bicycling from place to place  Skip to question 12 
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11. How much time did you usually spend on one of those days to bicycle from 

place to place? 

 

_____ hours per day 

_____ minutes per day 

 

12. During the last 7 days, on how many days did you walk for at least 10 minutes 

at a time to go from place to place? 

 

_____ days per week 

 

 No walking from place to place Skip to PART 3: 

HOUSEWORK, HOUSE MAINTENANCE, AND CARING FOR FAMILY 

 

13. How much time did you usually spend on one of those days walking from place 

to place? 

 

_____ hours per day 

_____ minutes per day 

 

 

PART 3: HOUSEWORK, HOUSE MAINTENANCE, AND CARING FOR FAMILY 

 

This section is about some of the physical activities you might have done in the last 7 
days in and around your home, like housework, gardening, yard work, general 
maintenance work, and caring for your family. 
 

14. Think about only those physical activities that you did for at least 10 minutes at a 

time. During the last 7 days, on how many days did you do vigorous physical activities 

like heavy lifting, chopping wood, shoveling snow, or digging in the garden or yard? 

 

_____ days per week 
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 No vigorous activity in garden or yard Skip to question 16 

 

 

15. How much time did you usually spend on one of those days doing vigorous 

physical activities in the garden or yard? 

 

_____ hours per day 

_____ minutes per day 

 

16. Again, think about only those physical activities that you did for at least 10 

minutes at a time. During the last 7 days, on how many days did you do moderate 

activities like carrying light loads, sweeping, washing windows, and raking in the garden 

or yard? 

 

_____ days per week 

 

 No moderate activity in garden or yard Skip to question 18 

 

17. How much time did you usually spend on one of those days doing moderate 

physical activities in the garden or yard? 

 

_____ hours per day 

_____ minutes per day 

 

18. Once again, think about only those physical activities that you did for at least 10 

minutes at a time. During the last 7 days, on how many days did you do moderate 

activities like carrying light loads, washing windows, scrubbing floors and sweeping 

inside your home? 

 

_____ days per week 

 

 No moderate activity inside home Skip to PART 4: 

RECREATION, SPORT AND LEISURE-TIME PHYSICAL ACTIVITY 
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19. How much time did you usually spend on one of those days doing moderate 

physical activities inside your home? 

 

_____ hours per day 

_____ minutes per day 

 

 

PART 4: RECREATION, SPORT, AND LEISURE-TIME PHYSICAL ACTIVITY 

 

This section is about all the physical activities that you did in the last 7 days solely for 

recreation, sport, exercise or leisure. Please do not include any activities you have already 

mentioned. 

 

20. Not counting any walking you have already mentioned, during the last 7 days, on 

how many days did you walk for at least 10 minutes at a time in your leisure time? 

 

_____ days per week 

 

 No walking in leisure time Skip to question 22 

 

21. How much time did you usually spend on one of those days walking in your 

leisure time? 

 

_____ hours per day 

_____ minutes per day 

 

22. Think about only those physical activities that you did for at least 10 minutes at a 

time. During the last 7 days, on how many days did you do vigorous physical activities 

like aerobics, running, fast bicycling, or fast swimming in your leisure time? 

 

_____ days per week 

 

 No vigorous activity in leisure time Skip to question 24 
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23. How much time did you usually spend on one of those days doing vigorous 

physical activities in your leisure time? 

 

_____ hours per day 

_____ minutes per day 

 

24. Again, think about only those physical activities that you did for at least 10 

minutes at a time. During the last 7 days, on how many days did you do moderate 

physical activities like bicycling at a regular pace, swimming at a regular pace, and doubles 

tennis in your leisure time? 

 

_____ days per week 

 

 No moderate activity in leisure time Skip to PART 5: TIME 

SPENT SITTING 

 

25. How much time did you usually spend on one of those days doing moderate 

physical activities in your leisure time? 

_____ hours per day 

_____ minutes per day 

PART 5: TIME SPENT SITTING 

 

The last questions are about the time you spend sitting while at work, at home, while 

doing course work and during leisure time. This may include time spent sitting at a desk, 
visiting friends, reading or sitting or lying down to watch television. Do not include any 

time spent sitting in a motor vehicle that you have already told me about. 

 

26. During the last 7 days, how much time did you usually spend sitting on a 

weekday? 

 

_____ hours per day 

_____ minutes per day 
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27. During the last 7 days, how much time did you usually spend sitting on a 

weekend day? 

 

_____ hours per day 

_____ minutes per day 

 

 

This is the end of the questionnaire, thank you for participating. 
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APPENDIX F: PHYSICAL ACTIVITY READINESS QUESTIONNAIRE 

 

PAR-Q & YOU 
(A Questionnaire for People Aged 15 to 69) 

Regular physical activity is fun and healthy, and increasingly more people are starting to become more active every 

day.  Being more active is very safe for most people.  However, some people should check with their doctor before 

starting to become much more physically active. 

If you are planning to become much more physically active than you are now, start by answering the seven questions 

in the box below.  If you are between the ages of 15 and 69, the PAR-Q will tell you if you should check with your 

doctor before you start.  If you are over 69 years of age, and you are not used to being very active, check with your 

doctor. 

Common sense is your best guide when you answer these questions.  Please read the questions carefully and answer 

each one honestly:  check YES or NO. 

YES NO 

  1. Has your doctor ever said that you have a heart condition and that you 

should only do physical activity recommended by your doctor? 

  2. Do you feel pain in your chest when you do physical activity? 

  3. In the past month, have you had chest pain when you were not doing 

physical activity? 

  4. Do you lose your balance because of dizziness or do you ever lose 

consciousness? 

  5. Do you have a bone or joint problem (for example, back, knee or hip) 

that could be made worse by a change in your physical activity? 

  6. Is your doctor currently prescribing drugs (for example, water pills) for 

your blood pressure or heart condition? 

  7. Do you know of any other reason why you should not do physical 

activity? 
 

If 

you 

answered 

YES to one or more questions 

Talk to your doctor by phone or in person BEFORE you start becoming much more physically 

active or BEFORE you have a fitness appraisal.  Tell your doctor about the PAR-Q and which 

questions you answered YES. 

▪ You may able to any activity you want – as long as you start slowly and build up gradually.  Or, 
you may need to restrict your activities to those which are safe for you.  Talk with your doctor 

about the kinds of activities you wish to participate in and follow his/her advice. 

▪ Find out which community programs are safe and helpful to you. 

NO to all questions 

 

DELAY BECOMING MUCH MORE ACTIVE: 

▪ If you are not feeling well because of a temporary 

illness such as a cold or a fever – wait until you feel 

better; or 
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If you answered NO honestly to all PAR-Q questions, you can be 

reasonably sure that you can: 

▪ start becoming much more physically active – begin slowly and 
build up gradually.  This is the safest and easiest way to go. 

▪ Take part in a fitness appraisal – this is an excellent way to 

determine your basic fitness so that you can plan the best way for 
you to live actively.  It is also highly recommended that you have 

your blood pressure evaluated.  If your reading is over 144/94, talk 

with your doctor before you start becoming much more physically 
active. 

▪ If you are or may be pregnant – talk to your doctor 

before you start becoming more active. 

PLEASE NOTE: If your health changes so that you then 

answer YES to any of the above questions, tell your 

fitness or health professional.  Ask whether you should 

change your physical activity plan. 

Informed use of the PAR-Q: The Canadian Society for Exercise Physiology, Health Canada, and their agents assume 

no liability for persons who undertake physical activity, and if in doubt after completing this questionnaire, consult 

your doctor prior to physical activity. 

No changes permitted.  You are encouraged to photocopy the PAR-Q but only if you 

use the entire form. 

NOTE: If the PAR-Q is being given to a person before he or she participates in a physical activity program or a fitness appraisal, this section may be used for legal 

or administrative purposes. 

“I have read, understood and completed this questionnaire.  Any questions I had were 

answered to my full satisfaction.” 

NAME        

SIGNATURE   DATE       

SIGNATURE OF PARENT  WITNESS       

Or GUARDIAN (for participants under the age of majority) 

Note: This physical activity clearance is valid for a maximum of 12 months from the 

date it is completed and becomes invalid if your condition changes so that you would 

answer YES to any of the seven questions. 
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APPENDIX G: TALENT RELEASE 
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APPENDIX H: PHOTO RELEASE 

 

 

 

 

 

 



103 

 

APPENDIX I: EMAIL RECRUITMENT SCRIPT 

 

Email Recruitment 

 

Are you interested in SCIENCE? Darshit Patel and Dr. Chris Black are looking for 

volunteers for a study titled “Time Course of Change in Critical Torque and Impulse 

Above Critical Torque Following Exercise-Induced Muscle Damage”. This study 

investigates how critical torque and the impulse above critical torque change following 

muscle damage. Critical torque is an intensity which that can be sustain for a very long 

duration while the impulse above critical torque represents a finite energy store that can 

be utilized at intensities above critical torque. Recreationally active men and women 

between 18 to 35 years of age who have not performed any lower-body resistance 

training in the past 6 months may be eligible to participate. The study will involve 7 

sessions with a total time commitment of 11 hours. You will be compensated for your 

time. If you have any questions or are interested in participating, contact Darshit Patel at 

darpatel7@ou.edu or 580-370-5957 or Dr. Chris Black at cblack@ou.edu or 705-255-

3750. 

The OU IRB has approved the content of this advertisement but the investigator is 

responsible for securing authorization to distribute this message by mass email. 

The University of Oklahoma is an equal opportunity institution. 

 

 

 

 

 

 

 

 

 

 

 

 

 



104 

 

APPENDIX J: DIRECT CONTACT RECRUITMENT SCRIPT 

 

Direct Contact Recruitment 

 

Hello, my name is Darshit Patel, and I am looking for volunteers for a study titled 

“Time Course of Change in Critical Torque and Impulse Above Critical Torque 

Following Exercise-Induced Muscle Damage”. This study will investigate how critical 

torque and the impulse above critical torque change following muscle damage. Critical 

torque is an intensity which you can sustain for a very long duration while the impulse 

above critical torque represents a finite energy store that can be utilized at intensities 

above critical torque. I am looking for recreationally active men and women who are 

ages 18 to 35 who have not lower-body resistance trained in the past 6 months. The 

study will involve 7 sessions with a total time commitment of 11 hours. You will be 

compensated for your time upon completion of the study. If you have any questions or 

are interested in participating, you can contact me at darpatel7@ou.edu or 580-3705957 

or Dr. Chris Black at cblack@ou.edu or 705-255-3750. Thank you! 

The University of Oklahoma is an equal opportunity institution.  

 


