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Abstract 

Tenontosaurus tilletti Ostrom, 1970 is one of the most completely known Early 

Cretaceous (Aptian-Albian) dinosaurs, represented by more than thirty partial skeletons. 

Even so, some questions remain about the morphology of this species, particularly 

concerning the rarely preserved manual elements. Herein, I present new observations 

from an exceptionally well-preserved subadult specimen from the Antlers Formation of 

southeastern Oklahoma. Oklahoma Museum of Natural History (OMNH) specimen 

number 58340 preserves nearly every bone in articulation including the rarely preserved 

distalmost phalanges. The preservation of these manual elements reveals a phalangeal 

formula count of 2-3-3-2-2. With the complete hand morphology now known, only 

digits I and II are shown to terminate with an arched claw-like ungual, a new 

autapomorphy of the species. In contrast, digits III, IV, and V are terminated by small 

sesamoid-like phalanges, which were mistakenly interpreted as distal carpal elements. 

Moreover, the unique preservation of this specimen makes possible inferences about the 

soft tissue structure of the wrist, providing insights into the function of the carpus.  

In addition to the complete manus, OMNH 58340 has five trauma and infection related 

skeletal pathologies. The manual phalanx I-1 and left dorsal rib 10 are fractured with 

signs of extensive callus formation in the later stages of healing, interpreted to be 

contemporaneous injuries. In addition to traumatic fractures, both elements have a 

morphology consistent with post-traumatic osteomyelitis. Left dorsal rib 7 and right 

dorsal rib 10 exhibit impacted fractures that are compressed 26 mm and 24 mm, 

respectively. Both lack callus formation and possess a fracture morphology consistent 



 ix  

with pliable living bone, suggesting these fractures occurred around the time of death. 

Computed tomography (CT) visualizations reveal the presence of a large internal 

abscess in pathological metacarpal IV of OMNH 58340, with a morphology consistent 

with a subacute type of hematogenous osteomyelitis, termed a Brodie abscess. This is 

only the second report of an injury of this type in non-avian dinosaurs and the first in 

Ornithopoda. Based on the location and two distinct phases of healing present, I 

hypothesize that this individual experienced a minimum of two traumatic events (e.g., 

from a fall) with the injuries of the former developing chronic osseous infections. 
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The Revised Manus Morphology of Tenontosaurus tilletti (Dinosauria: 

Ornithopoda) 

 

Introduction 

The manus of ornithopods is consistently one of the most enigmatic, incompletely 

represented parts of the skeleton. Often descriptions of new genera do not include 

descriptions of manual elements or are described on the basis of incomplete 

disarticulated manus elements (Galton, 1974; Ostrom, 1970; Sereno, 1991), even among 

relatively well-represented taxa. This is certainly the case for Tenontosaurus tilletti, a 

medium-sized iguanodontian first described by Ostrom (1970) from the Early 

Cretaceous Cloverly Formation of Montana. At the time of Ostrom’s (1970) work, 26 

partial or nearly complete skeletons were known, of which only four examples of 

preserved manus were described—OMNH 10321 (formerly OU 11), BB-1, AMNH 

3031 and YPM 5459 (institutional abbreviation are defined below). Unsurprisingly, the 

lack of articulated manus material led to confusion about the placement of some 

elements. In a redescription of the postcranial skeleton of T. tilletti,  Forster (1990) 

noted that Ostrom had erroneously placed phalanx V-1 as the distal phalanx of digit IV 

and the radiale was placed as the terminal phalanx of digit V. Based on these 

corrections it was inferred that the phalangeal formula of T. tilletti is 2-3-3-1?-1? rather 

than the 2-3-3-2-2 as originally suggested by Ostrom (1970). Until now, this 

arrangement has largely gone unchallenged (Norman, 2004). The discovery of new 

specimens of T. tilletti with articulated manus from the Aptian-Albian Antlers 

Formation of southeastern Oklahoma indicates the need for further revision of the 

manus morphology. 
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The Antlers Formation has produced 16 partial or nearly complete skeletons of T. tilletti 

of multiple ontogenetic classes (Werning, 2012). One specimen of note, OMNH 58340, 

is a nearly complete, articulated, subadult T. tilletti skeleton with multiple elements 

retaining three-dimensional articulation such as the skull, pelvis, right foot, and left 

manus (Werning, 2012). This specimen includes rarely preserved elements such as the 

hyoids, atlantal ribs, and distal-most phalanges; the skeleton lacks only the middle 

section of the tail due to weathering prior to collection. The articulation of this 

individual was preserved during preparation so that all elements remain in their in situ 

articulation, leaving no doubts as to the positioning of the elements. Here, I revise the 

manus morphology of T. tilletti based on OMNH 58340 and two other intact manus 

(OMNH 62990, 63525) from the Antlers Formation. Furthermore, I make comparisons 

with ornithopods having well-known manus morphologies, including, Iguanodon 

bernissartensis (Boulenger, 1881), Camptosaurus dispar (Marsh, 1885), and 

Hypsilophodon foxii (Huxley, 1869), to make inferences about the functionality of the 

manus. 

Institutional Abbreviations: AMNH, American Museum of Natural History, New York 

City, New York; BB, Buffalo Bill Center of the West, Cody, Wyoming; MOR, Museum 

of the Rockies, Montana State University, Montana; OMNH, Sam Noble Museum of 

Natural History, Norman, Oklahoma; YPM, Yale Peabody Museum of Natural History, 

New Haven, Connecticut  
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Materials & Methods 

The following description is based on three nearly complete articulated manus: the left 

manus of OMNH 58340, the left manus of OMNH 62990, and the right manus of 

OMNH 63525. During preparation, the articulation among individual bones was 

retained by making plaster jackets that hold the bones—now free from matrix—in their 

original in situ positions (Fig. 1). All specimens were placed in their respective maturity 

class based on a histological study performed by Werning (2012). OMNH 58340 and 

OMNH 63525 are both subadult individuals, although OMNH 63525 is approximately 

25% smaller than OMNH 58340. Of the three specimens, OMNH 58340 is the most 

complete, missing only phalanx V-2. OMNH 63525 includes the intermedium and 

ulnare in the carpus, preserves all five metacarpals, and is missing phalanges: I-1, I-2, 

III-2, III-3, and IV-2; however, this is the only manus to preserve the distal most 

phalanx on digit V, V-2. OMNH 62990 is from an adult specimen and preserves all 

elements of the manus except the distal most phalanges: III-3, IV-2, and V-2.    

Geologic Context 

The Antlers Formation outcrops in Oklahoma as an E-W trending band 8 to 20 miles in 

width and approximately 210 miles long, spanning the southeastern margin of the state, 

from the Arkansas border to Lake Texoma in the west, where it dips southward into 

Texas (Fig. 2) (Manley, 1965). It is composed of fluvial, deltaic, and strand plain 

sandstones deposited on the northern and western margins of the East Texas 

Embayment (Hobday et al., 1981). The Antlers Formation is the northern and western 

lateral equivalent to the Trinity Group of Texas. The Trinity Group is composed of 

three units: the Twin Mountains, Glen Rose, and Paluxy formations, in ascending order. 
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The middle unit, the Glen Rose Formation, is a transgressive shallow marine limestone 

that pinches out to the north and west. In the absence of the Glen Rose Formation, the 

terrigenous Twin Mountains and Paluxy formations are indistinguishable and therefore 

grouped together as the Antlers formation (Hobday et al., 1981). The age of the Antlers 

Formation is extrapolated from the biostratigraphic dating of invertebrates from the 

Trinity Group and overlying formations. While not constrained at the base, the Twin 

Mountains Formation is assumed to be no older than the Barremian-Aptian boundary; 

the beginning of the Albian is located at the base of the Glen Rose Formation, and the 

Paluxy Formation is constrained from above as early middle Aptian by the occurrence 

of the ammonite Metengonoceras in the Goodland Formation (Jacobs and Winkler, 

1998). Therefore, as the Trinity Group’s lateral equivalent, the Antlers Formation is 

Aptian-Albian in age.  

Specimen OMNH 58340, was collected from the Antlers Formation of southeastern 

Atoka County, Oklahoma, at OMNH locality V821 (Fig. 2). V821 is located 1 km 

northeast of the better known OMNH locality, V706, that produced numerous 

microfossils, a partially articulated Deinonychus antirrhopus (Ostrom, 1969) and 

multiple associated Tenontosaurus tilletti remains, including OMNH 62990 and OMNH 

63525 (Brinkman et al., 1998; Cifelli et al., 1997; Thomas, 2015). In addition to OMNH 

58340, the sauropod Sauroposeidan proteles (Wedel et al., 2000) was found at V821 in 

sediments 3-5 m lower, stratigraphically. Rennison (1996) estimated the stratigraphic 

level of V706 to be 87 m above the base of the formation, with a total estimated 

thickness of 150 m, placing V706 in the upper-middle section of the formation. 

Therefore, the adjacent locality V821 is likely at a similar stratigraphic level.  
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The lithology of the Antlers is variable; locally, it is composed of laterally 

discontinuous bands of fine to coarse grained, moderately sorted, argillaceous to locally 

carbonate-cemented, ferruginous sandstones with interspersed lenses of sandy clays, 

typical of the Antlers Formation but lacking the poorly sorted gravel-conglomerate 

lenses reported in other parts of the formation (Manley, 1965). OMNH 58340 is 

complete, with only the mid-section of the tail missing due to weathering. Additionally, 

the remarkable completeness is matched by the 3D preservation and retainment of 

articulation in many of its elements including the left manus, right pes, pelvic girdle, 

and skull (see Thomas, 2015 for description of cranial elements). The preservation of 

rare elements and exceptional articulation suggests that this specimen was minimally 

transported and buried quickly with significant portions of flesh preserved. The 

preservation and preparation of this specimen provides a unique opportunity to make 

estimates of cartilage thickness from the preserved interosseous spacing.   

Manus Description 

OMNH 58340 

While multiple other articulated manus of Tenontosaurus tilletti exist (i.e., OMNH 

62990, 63525), the left manus of OMNH 58340 preserves all elements (except phalanx 

V-II) in articulation with minimal taphonomic distortion. As exposed in its plaster 

support holder, the hand is seen in palmar view, with digits I and II slightly flexed 

presumably in rigor mortis (Fig. 1), a condition typically seen in the articulated pes of 

this species. Digits IV and V are laterally divergent from the closely associated digits II 

and III. Digit V is so laterally divergent that it is closely associated with the lateral 

margin of the ulnare. Unlike the condition seen in other, presumably more derived 
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iguanodontians, the carpals and metacarpals of OMNH 58340 do not articulate, varying 

in their amount of separation from 7 to 30 mm. Based on the articulation and orientation 

of the metacarpals and phalangeal elements, the three-dimensional relationships as 

preserved are presumed to reflect their original anatomy and not produced by 

taphonomic distortion. Hereafter, the term “articulate” will be used to describe the 

adjacent faces of the metacarpals and carpals even though, in life, these elements were 

separated by considerable soft tissue and did not, in fact, articulate sensu strico.  

Carpus  

The carpal elements of OMNH 58340 are composed of three slightly interlocking 

carpals, the ulnare, the intermedium, and the radiale (Fig. 3A, B). The radiale is roughly 

hourglass shaped (i.e., the proximal and distal margins are flared relative to the 

midline). The distal surface is wide, ovate, and rugose with a small medial projection 

that tapers to a rounded point. The proximal surface is rugose and rounded transversely. 

The palmar surface is rugose and flat while the other sides are slightly convex.  

The intermedium, the smallest of the three carpals, is rectangular and has flat proximal 

and distal surfaces. The dorsal surface is smooth and concave transversely. The palmar 

side is tightly concave proximo-distally. The medial side that articulates with the radiale 

is convex and the side that articulates with the ulnare is slightly convex, forming an 

integrated carpal complex.  

The largest and most lateral element of the carpus is the ulnare. The dorsal face of the 

ulnare is smooth, transversely concave, and roughly parallelogram shaped in outline. 

The margins taper to form a smaller parallelogram on the palmar surface. The medial 
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and proximal margins are concave, forming a waist around the medial and proximal 

borders. The distal and lateral faces are flat and square in outline with a rounded border 

between them, presumably forming a buttress for articulation with the laterally oriented 

digits IV and V. The orientations of the intermedium and ulnare shown by Forster 

(1990:fig. 13) are now known to be incorrect. The smooth surface on the intermedium 

described by Forster (1990) as proximal is instead the dorsal surface. The corrected 

orientations for the ulnare and intermedium provided by Forster (1990:fig. 13) are: A) 

dorsal, B) proximal, C) palmar. Additionally, the manus of OMNH 58340, OMNH 

62990, OMNH 63525 do not preserve distal carpal ossifications as previously suggested 

for T. tilletti (Dodson, 1980; Forster, 1990).  

Forster (1990) reported that BB 1 and AMNH 3014 have a single distal carpal 

ossification, that YPM 5459 has two distal carpal ossifications, and that in other well-

preserved specimens these ossifications are absent. In OMNH 58340 these ossifications 

are also absent in the carpal region and they are absent in the larger (OMNH 62990) and 

smaller (OMNH 63525) articulated manus, indicating that they do not ossify through 

ontogeny. OMNH 58340 and OMNH 63525 do, however, preserve distal phalangeal 

elements that are small, ovoid, sesamoid-like bones, which if disarticulated, could be 

confused with distal carpal ossifications. Therefore, T. tilletti has only three ossified 

carpal elements, the radiale, intermedium, and ulnare with no distal carpal ossifications; 

rather, the ossifications earlier termed “distal carpal elements” are the rarely-preserved, 

distal-most phalanges. The geologically older species, Tenontosaurus dossi (Winkler et 

al., 1997) may have had similar distal phalanges. Winkler et al. (1997, p. 340) described 

a “small round distal carpal” present between the intermedium and ulnare in a partially 
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articulated forelimb (FWMSH 93B2); however, confirmation from a more complete 

specimen is needed.  

Metacarpals and Digits 

The articulated manus of OMNH 58340 indicates that digits IV and V are closely 

associated and diverge laterally, and that digits I, II, III are closely associated with a 

pronounced medial curvature, forming a wide, manus vaguely resembling a baseball 

mitt, with a phalangeal formula of 2-3-3-2-2 (based on OMNH 58340, OMNH 63525, 

OMNH 62990).  Metacarpal I is dorsoventrally compressed with a triangular proximal 

condyle and a sub-rectangular distal condyle. Phalanx I-1 has a short and wide 

diaphysis, with a well-developed sagittal furrow, a significantly expanded lateral 

trochlea, and a large lateral collateral ligament pit. The terminal phalanx is a robust, 

medially curved, claw-like ungual with a lateral groove only on the medial side. 

Metacarpal II is dumbbell-shaped; the proximal articular surface is flat and slightly 

pitted with a distally deflected medial margin to accommodate metacarpal I. The 

proximal articular surface is medially inclined and rectangular in outline. Phalanges II-1 

and II-2 are short with well-developed laterally expanded trochleae and deep sagittal 

furrows that cause digit II to curve medially when articulated. Additionally, II-1 has a 

distal deflection on the palmar side of the proximal articular surface on the medial side 

that terminates in a lip, presumably a flexor tubercle. Digit II is terminated by a claw-

like ungual that is curved slightly towards the palm with well-developed lateral grooves 

on both sides and is longer and more gracile than the ungual of digit I. Metacarpal III, 

like metacarpal II, is dumbbell-shaped and has a distally deflected medial margin on the 

proximal articular surface for articulation with digit II. Overall, it is more gracile than 
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metacarpal II. The phalanges of digit III are dorsoventrally compressed with moderately 

developed sagittal furrows and trochlea, and the digit is terminated by a small sesamoid-

like distal ungual (OMNH 58340), rather than the clawed ungual that was previously 

reconstructed to terminate this digit (Forster, 1990:fig. 14 B; Dodson, 1980:fig. 1 D; 

Ostrom, 1970:plate 21 A). The sesamoid-like ungual is 10 mm long, 8 mm wide, and 5 

mm proximo-distally, and is semi-ovoid, with a flat proximal surface and domed distal 

surface. The termination of digit III by a sesamoid-like ungual rather than a claw-like 

ungual may be an autapomorphy of T. tilletti. Other similarly well-known 

iguanodontian manus retain a clawed or hoof-like ungual on this digit (Galton, 1974; 

Gilmore, 1909; Norman, 1980).  Metacarpal IV is short relative to metacarpals II and 

III, with a mediolaterally expanded proximal articular surface that is oval in outline and 

rounded on the margins. Like metacarpals II and III, the proximal condyle of 

metacarpal IV has a slight distal deflection on the medial side for articulation with 

metacarpal III. The distal condyle of metacarpal IV is rectangular in outline. 

Additionally, it has a well-developed collateral fossa on the medial and lateral side. 

Phalanx IV-1 is extremely short with a poorly defined trochlea and no sagittal furrow. 

Like digit III, digit IV is terminated by a sesamoid-like distal phalanx comparable to III-

3 in size. The proximal and distal articular surfaces of metacarpal V are flared dorsally 

giving the dorsal side an arched appearance relative to the flat ventral side, as seen in 

other ornithischians such as, Camptosaurus, Hypsilophodon, Leptoceratops, and 

Lesothosaurus (Sereno, 1991). The extensively flared proximal margin is suggestive of 

a large degree of dorsiflexion between the carpus and metacarpals. Phalanx V-1 has a 

wide proximal articulation and a short distal condyle, with only one slightly-developed 
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trochlea. Like digits III and IV, digit V is terminated by a small sesamoid-like bone; this 

is missing from OMNH 58340 but present in OMNH 63525. 

Discussion  

The manus of Tenontosaurus tilletti retains plesiomorphic characteristics present in the 

manus of basal ornithischians (e.g. Lesothosaurus Galton, 1978) and basal ornithopods 

(e.g. Hypsilophodon). Digits I, II, and III, retain concavo-convex joints, sagittal 

furrows, sagittal crests, deep collateral ligament fossa, and prominent proximal 

processes for attachment of extensor and flexor tendons (Fig. 3). The concavo-convex 

articular surfaces, sagittal furrows and crests formed saddle-shaped joints in the 

phalanges of digits I-III that restricted motion to the sagittal plane and resisted torsion. 

When used during quadrupedal locomotion this type of joint is associated with a 

digitigrade posture (Moreno et al., 2007). Digits I, II, III were likely the primary digits 

used during locomotion; digits IV and V are extremely divergent laterally and lack the 

saddle-shaped joints. The divergent and reduced lateral digits are consistent with the 

general trend in Dinosauria to reduce the lateral digits (Sereno, 1997). The digits and 

metacarpals of T. tilletti lack the flattened articular surfaces associated with the shift to 

a sub-unguligrade manus posture, seen in ankylopollexians (a clade of derived 

iguanodontians with the synapomorphy of a fused or conical digit I). The metacarpals 

are short and dumbbell shaped like in Hypsilophodon, and lack the elongation and 

incipient tridactyl paring of digits II, III, and IV present in Camptosaurus, 

Ouranosaurus (Taquet, 1976) and taken to the extreme in Iguanodon (Fig 4). The claws 

terminating digits I and II are longer proximodistally than they are wide, in contrast to 
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the ungual of I. bernissartensis which are longer mediolaterally (hoof-like) (Norman, 

1980). 

The carpus, much like the phalanges, lacks ankylopollexian adaptations associated with 

weight bearing such as a row of distal carpal elements whose flattened surface 

permitted only small degrees of flexion, and an ossified carpal complex composed of 

the radiale, intermedium, and ulnare (Carpenter and Wilson, 2008). Additionally, the 

combined proximal surface of radiale, intermedium, and ulnare form distinct articular 

facets for articulation with the radius and ulna as seen in both Camptosaurus dispar and 

Iguanodon bernissartensis (Gilmore, 1909; Norman, 1980). The carpus of 

Tenontosaurus has three carpal elements that articulated slightly and possessed no 

incipient or well-developed articular facets for articulation with the radius and ulna, nor 

are there distal carpals present in any articulated specimens. Furthermore, shown most 

clearly by the articulated left manus of OMNH 58340, the carpals and metacarpals are 

not as closely associated as they are in C. dispar and I. bernissartensis; there is a gap 

varying from 7 mm (between the radiale and proximal surface of metacarpal I, to 30 

mm (between the intermedium and proximal surface of metacarpal II; (Fig. 1). This 

positioning may suggest that there were extensive cartilaginous epiphyses present on 

the proximal articular surfaces of the metacarpals. Comparisons with extant archosaurs 

showed that dinosaurs, particularly sauropods and ornithischians, possessed extensive 

epiphyseal cartilage that formed a significant component of joint morphology in life. 

(Fujiwara et al., 2010; Holliday et al., 2010).  The osseous signature of cartilaginous 

epiphyses is an undulating and pitted articular surface, which represents the inferred 

trace of vascular channels required to supply large cartilaginous structures (Holliday et 
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al., 2010). The proximal articular surfaces of the metacarpals of OMNH 58340 show the 

characteristic undulating surface texture described by Holliday et al. (2010) (Fig. 3C). 

This, coupled with the preserved space between the carpals and metacarpals, indicates 

that T. tilletti likely had extensive cartilaginous epiphyses filling the space between the 

carpals and metacarpals. The cartilage in the carpus may have acted as a shock-

absorbing pad (Holliday et al., 2010) that preceded the evolution of a tightly articulating 

and ossified carpus as seen in other iguanodontian manus with weight-bearing 

adaptations (Gilmore, 1909; Norman, 1980).   

Conclusions 

The discovery of articulated manus of Tenontosaurus tilletti has provided multiple new 

insights into the manus morphology of this species: (1) the phalangeal formula is 

confirmed at 2-3-3-2-2 (based on OMNH 58340 and OMNH 63525), (2) digits III, IV, 

and V are now known to be terminated by small sesamoid-like distal phalanges that in 

disarticulated specimens were previously identified as distal carpal ossifications, (3) the 

lack of a clawed ungual on digit III is a deviation from the ornithischian primitive 

characteristic not seen in any other known iguanodontian manus and may be an 

autapomorphy of Tenontosaurus tilletti, and (4) the relationship of the carpals to 

metacarpals is suggestive of extensive cartilaginous epiphyses on the proximal articular 

surfaces of the metacarpals. 
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Figures 

 

Figure 1: The left manus of OMNH 58340 in a plaster support holder preserving the 

articulation as found, in palmar view. 
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Figure 2: Map of southeastern Oklahoma depicting the area over which the Antlers 

formation outcrops in Oklahoma (shaded) and the location of OMNH locality V821 

(modified from Davis et al., 2008). 

 

  

 



18 
 

 

 

Figure 3: Left manus of OMNH 58340. A. Dorsal view B. Palmar view C. Proximal 

view of proximal articular surfaces. 
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Figure 4: Manus phylogeny showing the change in manus shape in Iguanodonts 

(including representative left manus of Tenontosaurus tilletti, Camptosaurus dispar, 

and Iguanodon bernissartensis) with Hypsilophodon foxii representing basal ornithopod 

manus morphology (manus depictions adapted from Forster, 1990:fig 14; Galton, 

1974:fig 41; Gilmore, 1909:fig 28; Norman, 1980:fig 60a) 
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First Documented Pathologies in Tenontosaurus tilletti with Comments on 

Infection in Non-Avian Dinosaurs 

 

Introduction 

In recent years, the field of dinosaurian paleopathology has grown significantly 

expanding the breadth of taxa involved and types of pathologies reported (Butler et al., 

2013; Foth et al., 2015; Matthias et al., 2016; Peterson and Vittore, 2012; Senter and 

Juengst, 2016; D. Tanke and Rothschild, 2014; Tanke and Rothschild, 2010; Xing et al., 

2018). Through this large data set it has become clear that while injuries or 

abnormalities are quite common and well-documented, demonstrable infection is not 

common in dinosaurs (Rega, 2012). In a review of 119 theropod pathologies, Molnar 

(2001) found only seven instances of infection. However, some large theropod 

skeletons (e.g., Allosaurus fragilis (see Foth et al., 2015; Hanna, 2002) and 

Tyrannosaurus rex (Molnar, 2001)) show multiple isolated cases of infection, a result of 

their active predatory lifestyle. In contrast, herbivorous dinosaurs typically only display 

single cases of infection (Gross et al., 1993; Lü et al., 2007; Xing et al., 2018) with rare 

instances of multiple infected elements (García et al., 2017; Tanke and Rothschild, 

2014). Additionally, it has been suggested that non-avian dinosaurs do not exhibit 

hematogenous (blood-borne) osteomyelitis, due to the inferred similarities in their 

immune response with reptiles and their apparent ability to isolate osteomyelitis to 

single elements (Foth et al., 2015).   

Here, I report five skeletal pathologies on a nearly complete subadult Tenontosaurus 

tilletti from the Antlers Formation of southeastern, Oklahoma. Prior reports of 
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pathologies and evidence of bone modification on T. tilletti skeletons include only 

feeding traces attributed to the predatory theropod Deinonychus antirrhopus (Ostrom, 

1969), none of which contain evidence of healing and therefore are not considered 

pathologies (Brinkman et al., 1998; Gignac et al., 2010). The pathological bones 

observed in this study include: left dorsal ribs 7 and 10, right dorsal rib 10, left pedal 

phalanx I-1, and left metacarpal IV. The pathologies present on this individual represent 

three distinct cases of infection. Furthermore, the infection on metacarpal IV is 

consistent with the morphology of a Brodie abscess, which in humans is a type of 

osteomyelitis that is hematogenous in origin, indicating that hematogenous 

osteomyelitis affected non-avian dinosaurs. 

Institutional abbreviations: BMR, Burpee Museum of Natural History, Rockford, 

Illinois, USA; FMNH, Field Museum of Natural History, Chicago, Illinois, USA; MOR, 

Museum of the Rockies, Montana State University, Montana, USA; OMNH, Sam 

Noble Museum of Natural History, Norman, Oklahoma, USA; TMP, Royal Tyrrell 

Museum of Palaeontology, Drumheller, Alberta, Canada; UMNH, Utah Museum of 

Natural History, University of Utah, Salt Lake City, Utah; UUVP, University of Utah 

Vertebrate Paleontology, Salt Lake City, Utah, USA (housed at UMNH) 

 

Material & Methods 

 OMNH 58340 is a subadult Tenontosaurus tilletti  collected from OMNH 

locality V821, during the 2000–2001 field season (Werning, 2012). V821 is located in 

Atoka County, Oklahoma, within the Aptian-Albian aged Antlers Formation (Jacobs 

and Winkler, 1998). In addition to OMNH 58340, the articulated vertebrae of the 

holotype specimen for Sauroposeidon proteles (Wedel et al., 2000) was collected 3-5m 

stratigraphically below OMNH 58340 at V821 (Thomas, 2015). OMNH 58340 is nearly 
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complete with only the mid-section of the tail missing due to weathering prior to 

discovery. 

In total, OMNH 58340 has five pathological elements, two left ribs, a right rib, left 

pedal phalanx I-1, and the left metacarpal IV. Bone abnormalities were diagnosed 

through macroscopic inspection and with the aid of Computed Tomography (CT). 

Pathologies were classified as traumatic (from injury), infectious (from viral, bacterial, 

and fungal foreign agents), traumatic-infectious (infection following an injury), 

developmental (caused by growth disturbance during development), or idiopathic (the 

pathogenesis is indeterminate) (sensu Hana, 2002). 

CT scans were performed at the University of Oklahoma Health Science Center using a 

Philips Brilliance 16 slice CT scanner. Metacarpal IV was scanned at 120 kVp and 151 

mAs at 16 x 0.7mm slices and reconstructed at 0.35 mm overlapping slices with a high-

resolution filter on a 512 matrix. Phalanx I was scanned at 120 kVp and 251 mAs at 16 

x 0.7mm slices and reconstructed at 0.35 mm overlapping slices with a high-resolution 

filter on a 512 matrix. Ribs L7-L10, and R10 were scanned at 140 kVp and 199 mAs at 

16 x 1 mm slices and reconstructed at 0.5 mm overlapping slices with a high-resolution 

filter on a 512 matrix. Data were exported as DICOM files representing a 69.0mm field 

of view and are available in the supplementary data files. Measurements of the 

circumference of phalanx-1 were taken macroscopically with a measuring tape, and 

measurements of endosseous structures were measured on the CT scans using the 

measure function in Fiji (Schindelin et al., 2012). 
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Results 

Phalanx I-1 

The left pedal phalanx I-1 has a large, irregularly shaped exostosis surrounding the 

diaphysis and the proximal articular surface (Fig. 5A–C). The surface of the exostosis is 

rugose and covered in shallow, irregular pits with multiple areas of raised bony 

spicules. The exostosis has increased the circumference of the diaphysis to be nearly 

equal to the circumference of the proximal articular surface. The inflation of the 

diaphysis is not uniform; the dorsal side shows more expansion than the plantar side, 

particularly on the dorsomedial edge (Fig. 5H). The exostosis surrounding the diaphysis 

at its widest extent has a circumference of 14.4 cm, whereas the unaffected right 

phalanx has a circumference of 8 cm. Proximal to distal condyle on the dorsal side, 

there is a pronounced lip terminating the extent of the exostosis, leaving the distal 

condyle unaffected. Deformation caused by the exostosis modified the articular surface 

with metatarsal I into a wide, ovate shape with no observable extensor tubercle (Fig. 

5B). In contrast with the unaffected right phalanx I-1, the articular surface is overall 

more rounded, creating a pentagonal outline (Fig. 5E). Additionally, the shape of the 

fossa within the proximal articular surface of phalanx I-1 has been deformed from 

circular in outline to more elliptical and its depth has been elaborated by the growth of 

the exostosis (Fig. 5B, E).  

In CT scan dorsal view, a faint, internal, dense line is observed one-third of the way 

down the shaft from the proximal end, indicating the presence of the original diaphyseal 

cortical bone. When outlined, the internal line conforms to the corresponding section of 

the diaphysis in the unaffected phalanx. The cortical bone can also be observed in the 
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proximal view and is present throughout the proximal two-thirds of the element. Based 

on the location of the original cortical bone, the primary expansion of the exostosis was 

in the dorsomedial direction. Additionally, the CT scans reveal this element to be 

taphonomically fractured to a degree atypical of other bones belonging to OMNH 

58340. The fracturing present on the phalanx cross-cuts pathological features and 

therefore is most likely due to taphonomic processes (Fig. 5G-I). This could be the 

result of the pathology reducing the structural integrity of the phalanx.   

Adjacent bones are unaffected, except for the distal condyle of metatarsal I. The 

proximal articular surface of left pedal phalanx I-1 is more concave than the unaffected 

contralateral phalanx I-1; therefore, the distal condyle of left metatarsal I was 

remodeled accordingly, resulting in a more convex articular surface than that of the 

right metatarsal I.   

Diagnosis: This pathology bears a strong resemblance to that of two pedal phalanges 

belonging to Allosaurus fragilis, described by Hanna (2002). The right pedal phalanx 

III-1 of MOR 693 and the left pedal phalanx III-1 (UUVP 1657) of another Allosaurus 

from the Cleveland-Lloyd Quarry both possess a large exostosis covering the proximal 

two-thirds of the diaphysis and the proximal articular surfaces. The diaphyseal and 

articular expansions are interpreted as an involucrum— a periosteal outgrowth of bone 

that surrounds the original bone in response to an infection within the medullary 

cavity—that may have occurred secondarily to a trauma-related  fracturing of these 

elements. Therefore, a combination of callus formation and infection-related bone 

growth could have produced these abnormalities. Both specimens possess what Hanna 

(2002) interpreted to be penetrating lesions, cloacae for the drainage of pus produced in 
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response to osteomyelitis, on the exterior of these phalanges. The penetrating lesions 

and involucrum are interpreted as evidence of infection and therefore Hanna (2002) 

classified these pathologies as post-traumatic chronic suppurative osteomyelitis. Rega 

(2012) challenged this diagnosis suggesting that the phalanx I-1 of MOR 693 lacks 

cloacae and that the surface texture and inflation of the element could be indicative of a 

benign bone tumor called an osteochondroma. Therefore, a differential diagnosis of 

OMNH 58340 phalanx I-1 should discuss three possible etiologies: an osteochondroma, 

callus formation, and osteomyelitis. 

Osteochondromas are the most common bone tumors found in humans (Murphey et al., 

2000). They are characterized as benign outgrowths that consist of medullary and 

cortical bone capped by hyaline cartilage. The pathognomonic characteristic of this type 

of lesion is its continuity with the underlying non-pathological bone cortex (Murphey et 

al., 2000). Therefore, in diagnosing an osteochondroma it is crucial to determine if the 

exostosis is in continuity with the cortical bone and underlying medullary cavity. The 

presence of the original cortical bone (Fig. 5G, H) within the exostosis strongly argues 

against a diagnosis of an osteochondroma for this element, because the exostosis is not 

continuous with the original cortical and medullary cavity. Osteochondromas do not 

typically envelope the bone they outgrow from, rather this morphology is more 

consistent with either callus formation or osteomyelitis.  

The latter etiologies are not mutually exclusive; callus formation can begin, and bacteria 

can be introduced secondarily causing osteomyelitis. Internally, there is no evidence of 

a malunion of the cortical bone within the phalanx; however, this may be obscured by 

the beam hardening caused by iron-bearing permineralization. Alternatively, the lack of 
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resolution surrounding the cortical bone may reflect a callus in the later stages of 

healing, where osteoclastic activity has begun resorbing the original cortical bone 

(Straight et al., 2009). This inference may be corroborated by the fact that the left 

metatarsal I has a more convex distal articular surface, to match the increased concavity 

of the pathological proximal articular surface on the phalanx, a degree of remodeling 

that would indicate a significant span of time has passed. The rough, pitted texture 

covering the callus appears similar to the texture associated with osteomyelitis in a 

sauropod tail in which the periosteal surfaces of multiple caudal vertebrae were covered 

with a rough ‘microbubbly’ surface texture (García et al., 2017). Therefore, the rugose 

texture of the periosteal surface surrounding the phalanx is consistent with osteomyelitis 

and this element’s pathology is considered traumatic-infectious (Hanna, 2002). 

Ribs 

Left dorsal rib 7 (L7) is fractured just below the greatest curvature of the rib, 75 mm 

distal to the tuberculum (Fig 6B). The distal portion of the rib is compressed and 

telescoped approximately 14.5 mm proximally into the broken end of the proximal rib 

segment, resulting in a total shortening of 26 mm. The ventral side of the rib is cracked 

and bulged outward to accommodate the impaction of the distal rib segment into the 

proximal rib segment. There are no signs of callus formation surrounding the break. The 

CT scans (Fig. 6C, D) of this pathology clearly show stacked cortical bone on the 

ventral side of the rib. 

Right dorsal rib 10 (R10) is fractured 140 mm below the tuberculum where the rib 

begins to straighten out. The distal end of the fracture is displaced 18 mm proximally 

(Fig. 6A), for a total shortening of the rib by 24 mm. While still an impacted fracture 
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the morphology differs slightly from that of L7. There is minor angulation of the distal 

rib segment so that the anterior cortical bone the of distal rib segment overlays the 

anterior cortical bone of the proximal rib segment. Furthermore, some deformation and 

cracking is present on the ventral side like what is seen in L7. There is no callus 

formation around the break.      

Left dorsal rib 10 (L10) has a smooth, inflated callus 35 mm below the tuberculum (Fig. 

7). There is no visible offset, nor is there any indication of a fracture except the 

extensive callus. The callus is demarcated from the non-pathological bone by an eye-

shaped texture change 22 mm long (proximodistally) and spanning the width of the rib. 

The callus expands the circumference of the bone from 55 mm distal to the callus to 67 

mm at the widest point of the callus. On the anterior surface of the callus, there are two 

small erosive lesions with sharp edges that pass through the periosteal surface of the 

callus. The distal lesion is heart-shaped, 9 mm by 7 mm in size and 2-3 mm deep. The 

proximal lesion is smaller in size (5 mm by 5 mm) and is not as deep as the distal lesion 

(Fig. 7B). The lesions are located within the eye-shaped margin of the callus. 

Diagnosis: Ribs L7 and R10 are classified as traumatic. The two rib fractures are 

consistent with direct trauma to the rib cage. The impact direction can be inferred from 

the location of the fractures on the ribs. A fracture at or near the angle of the rib is 

indicative of a force applied from the ventral side of the rib cage, for example from a 

fall (Lovell, 1997). Multiple aspects suggest that the fractures of L7 and R10 are from 

the same traumatic event. L7 and R10 are both impacted fractures with 26 mm and 

24mm of impaction, respectively, indicating an equivalent force fractured both ribs. 

Additionally, both ribs have no external or visible internal callus formation, indicating 
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that the fractures were likely synchronous. The lack of healing is permissive of two 

interpretations: (1) that these fractures occurred perimortem; (2) that the rib fractures 

occurred postmortem. Two features of these fractures support the former hypothesis. 

The fractures, particularly on the ventral sides of the ribs, are consistent with the 

breaking of pliable living bone, rather than the brittle fracturing of weathered or 

permineralized bone, wherein soft tissue (such as collagen) is lacking. Furthermore, the 

similar degree of impaction on L7 (26mm) and R10 (24 mm) when no other ribs were 

affected by such force, argues against taphonomic (postmortem) deformation. 

Rib L10 is classified as traumatic-infectious. The presence of a callus or proliferative 

lesion is necessary but not sufficient to diagnose a pathology as traumatic (Rega, 2012). 

Additional factors such as location and type of lesion need to be considered. The callus 

on L10 (Fig. 7A) is at the greatest curvature of the rib, again indicative of a force from 

the ventral side of the rib cage (Lovell, 1997). The smooth callus is most prominent on 

the anterior side, and the CT scans reveal no internal cortical bone, all of which are 

consistent with a rib fracture in the later stages of callus remodeling (Rega, 2012).  The 

lytic lesions present on the anterior side of  the callus are localized areas of bone 

destruction characteristic of osteomyelitis in reptiles and mammals (Antinoff, 1997; 

Ortner, 2003). The morphology of lytic lesions can be used to determine the rate of 

bone destruction within. If the bone lysis ceases after an initial phase of destruction, the 

lesion will be circumscribed by bony sclerosis. However, if lysis is still active and 

progressing at a moderate pace, the margins of the lesion will be sharply defined with 

no sclerosis. If lysis is progressing at a rapid pace, the margins of the lesion will exhibit 

a gradient of destruction rather than a sharply defined margin. The heart-shaped lesion 
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has internal margins that are sharply defined with no apparent sclerotic bone formation; 

therefore, this lesion was progressing at a moderate rate of bone destruction (Fig. 7B). 

The margins of the more proximal lesion are extremely irregular. This may be caused 

by the lack of complete penetration of the cortical bone of the callus or it may signify 

that lysis in this lesion was progressing at a higher rate (Ortner, 2003). Thus, the lytic 

lesions present on the external surface of this callus indicates that there was either an 

infection in the surrounding soft tissue or that the infection had spread to the bone and 

was progressing into a chronic phase of osteomyelitis.    

Metacarpal IV 

A large exostosis is present 10 mm beyond the proximal articular surface on the lateral 

side of the diaphysis. The exostosis begins to diverge from the lateral side of the shaft 

30 mm from the distal condyle forming a sub-triangular outgrowth that projects laterally 

20 mm from the lateral side of the bone (Fig. 8A). The termination of the exostosis is 

rugose and composed of cortical bone. There is no abnormal bone thickening in the 

dorsal and palmar directions; rather the exostosis appears to continue the normal 

periosteal surface of the bone on the dorsal and palmar sides. However, on the dorsal 

side, there is a concentric disruption of the normal long grain bone texture, 20 mm in 

diameter, coinciding with an underlying intraosseous abscess (Fig. 8C–E). The texture 

within the disruption is completely disorganized. In addition to the large exostosis, there 

is a small bone spicule 3 mm in length extending laterally from the proximal margin of 

the lateral collateral ligament pit. The proximal and distal epiphyses are unaffected.  

Computed Tomography (CT) scans of metacarpal IV were crucial in characterizing the 

internal morphology of this pathology. These CT scans reveal that within the exostosis 
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there is an internal abscess that measures 11.5 X 9.2 X 6.2 mm (Length X Width X 

Height) that is ovoid in shape with the long axis oriented palmodorsally. The lesion is in 

the medullary cavity of the diaphysis 6 mm distal the proximal condyle and just within 

the cortical bone on the lateral side. The margin of the abscess is clear and distinct, with 

a dense rim of cancellous sclerosis circumscribing the abscess. Contained within the 

abscess is an irregularly-shaped sequestrum. The sequestrum mimics the abscess in 

shape and has a density consistent with the surrounding bone, eliminating the possibility 

that it is a diagenetic mineral filling the void created by the abscess. Additionally, the 

exostosis is as it appears macroscopically, is a well-organized periosteal outgrowth 

composed internally of cancellous bone and externally of cortical bone.   

Diagnosis: The exostosis on metacarpal IV is interpreted as a periosteal response to the 

proliferation of an internal abscess and therefore is considered one pathology. The 

morphology of the metacarpal IV abnormality is consistent with the characteristics of a 

Brodie abscess, a type of subacute pyogenic osteomyelitis, therefore this pathology is 

classified as infectious. Brodie abscesses are variable in humans in terms of size, degree 

of osseous proliferative response, and location. Because of their variability, they are 

commonly misdiagnosed (Miller et al., 1979). Their typical imaging appearance is 

characterized as an intraosseous bone lesion with an eccentric area of bone destruction 

that is variably emarginated by reactive sclerosis of the surrounding bone. In a study of 

25 confirmed cases of Brodie abscesses in humans, all but one occurred in the lower 

limbs, most commonly in the tibia and the femur (Miller et al., 1979). Nine were 

present in the diaphysis and of those nine, four were in the medullary cavity. In all but 

four cases, cancellous sclerosis was present surrounding the abscess, and in ten of the 
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cases, reactive periosteal growth like that of the exostosis on metacarpal IV was present. 

Sequestrum was present in five of the 25 cases and the authors suggested that presence 

of sequestra may indicate an abscess early in its development (Miller et al., 1979). A 

differential diagnosis including a Brodie abscess must also include a discussion of the 

characteristics of an osteoid osteoma, a type of benign bone tumor (Atesok et al., 2011). 

An osteoid osteoma produces a morphology that is similar to a Brodie abscess in CT 

scans, including a low attenuation nidus (hole) and adjacent sclerosis of the surrounding 

bone (Atesok et al., 2011). However, irregular sequestra like that seen within the 

abscess on the metacarpal IV of Tenontosaurus is not typical of an osteoid osteoma; 

rather a central mineralization may be present within the nidus of the osteoid osteoma, 

but is spheroidal (Atesok et al., 2011; Vittore and Henderson, 2013). The abscess within 

metacarpal IV of OMNH 58340 exhibits many of the characteristics associated with 

Brodie abscesses, including; (1) a cancellous sclerotic rim that surrounds the area of 

bone destruction (Fig. 8C, D), (2) a reactive periosteal outgrowth closely associated 

with the abscess; and (3) an eccentric, irregularly shaped sequestrum typical of early-

stage hematogenous osteomyelitis (Fig. 8C–E). Moreover, a diagnosis of this pathology 

is not unprecedented in non-avian dinosaurs. A Brodie abscess was described by Vittore 

and Henderson (2013) in the left pedal phalanx II-1 of the tyrannosaurid BMR 

P2002.4.1. However, this is the first reported Brodie abscess in herbivorous dinosaurs. 
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Discussion 

The five pathologies diagnosed herein for the skeleton of T. tilletti (OMNH 58340) are 

classified following Hanna (2002) as follows: left dorsal rib 7 (L7) and right dorsal rib 

10 (R10) are traumatic, the left pedal phalanx I-1 and left dorsal rib 10 (L10) are 

traumatic-infectious, and the left metacarpal IV is infectious. The pathologies present 

on this individual suggest a minimum of two traumatic events. The pathologies on left 

phalanx I-1 and L10 appear to be in the late stages of callus remodeling, suggesting they 

are contemporaneous injuries likely related to a fall on the left side. The lack of healing, 

similar fracture location, type, and extent of fracture to ribs L7 and R10 strongly 

suggest that these injuries are contemporaneous and occurred perimortem. The 

development of the Brodie abscess is difficult to constrain directly; the recurrent dull 

ache associated with a Brodie abscess has been reported to last from four weeks to ten 

years in humans. Therefore it is possible the Brodie abscess preceded all other injuries 

present on OMNH 58340 (Brodie, 1832; Miller et al., 1979). However, the extensive 

sequestra within the Brodie abscess indicates that it might be early in its development, 

potentially placing its development around the time of the initial trauma event (Miller et 

al., 1979).    

In isolation, the symptoms of these pathologies are unlikely to be immediately fatal, yet 

the sum may have directly contributed to this individual’s death. The fractures present 

on phalanx I-1 and L10 would have caused localized swelling and chronic pain, 

although the post-traumatic osteomyelitis likely had greater systemic effects. Fighting 

infection such as osteomyelitis requires a strong immune response, thus demanding an 

increased intake of food and fluids (Gross et al., 1993). The symptoms of a Brodie 
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abscess are generally isolated to the affected limb and include a dull recurrent ache, 

local swelling, and in some patients a pronounced limp (Brodie, 1832; Miller et al., 

1979). Therefore, the Brodie abscess present in metacarpal IV, in combination with the 

osteomyelitic phalanx, may have inhibited this animal’s ability to acquire food resulting 

in malnutrition and a suppressed immune system leaving it susceptible to greater 

secondary infection (Gross et al., 1993). The impacted fractures of R10 and L7 likely 

directly contributed to the death of this animal as evident from the lack of callus 

formation around the fractures. The fracture type, an impacted fracture, and the location 

of these fractures strongly suggest that this individual suffered a strong ventral force to 

the rib cage, suggestive of a fall. The impacted fractures shortened the ribs by 24 and 26 

millimeters. Fractures of this type likely severed or injured the intercostal vessels and 

nerves that track along the inner curvature of the ribs. Following the severing of the 

vessels, hemothorax (the presence of blood within the thorax) may have developed due 

to internal bleeding (Lovell, 1997). Thus, this individual likely died from complications 

of its multiple injuries.  

Osteomyelitis such as a Brodie abscess forms when pyogenic bacteria enters the bone 

via three possible vectors: (1) transmission through the infection of adjacent soft tissue, 

(2) direct transmission into the bone (e.g. through a compound fracture) and (3) 

transmission through the bloodstream (hematogenously) from another septic source 

(Ortner, 2003). While the condition of the soft tissue adjacent to the metacarpal IV is 

unknown, the Brodie abscess in metacarpal IV shows no evidence of trauma, therefore 

direct transmission is unlikely. In humans, hematogenous transmission is the most 

common vector of development and therefore is considered the method of transmission 
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for this pathology (Miller et al., 1979). In many cases, the septic source for a Brodie 

abscess cannot be identified. In a case study of 25 Brodie abscesses only 5 patients 

reported prior instances of infection varying from a staphylococcal abscess of the arm to 

blood poisoning (Miller et al., 1979). Other suggested septic sources include skin 

abscesses, infections of the genitourinary, gastrointestinal, biliary, and respiratory 

systems (Vittore and Henderson, 2013). Therefore, antecedent infection in the soft 

tissues should always remain a possible septic source of bacteria when looking at 

sources of infection in the fossil record. In the only other reported case of a Brodie 

abscess in non-avian dinosaurs, in which concomitant infected elements were lacking 

on the remains of a tyrannosaurid BMR P2002.4.1, Vittorre and Henderson (2013) 

suggested that dental trauma may have been the septic source of bacteria for the Brodie 

abscess on phalanx II-1 of BMR P2002.4.1. Dental trauma is well documented in 

theropods but is less likely to be the septic source in herbivorous dinosaurs, owing to 

the decreased chance of injury associated with an herbivorous feeding style. The most 

likely septic source for the Brodie abscess in OMNH 58340 is the infections present in 

phalanx I-1 and rib L10; however, because the state of soft tissue in this individual 

cannot be assessed, infection in the soft tissues cannot be ruled out. 

Multiple studies have shown the utility of micro-CT and CT scanning as a non-invasive 

way of studying the internal morphology of bones (Anné et al., 2015; Straight et al., 

2009; Vittore and Henderson, 2013). The application of CT scanning in this diagnosis 

was integral for narrowing the range of possible etiologies. The identification of the 

original cortical bone within the callus on phalanx I-1 was crucial in differentiating 

between a diagnosis of an osteochondroma—which had been suggested for similar 
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structures on MOR 693 and UUVP 1657—and a callus with a post-traumatic infection 

(Hanna, 2002). Furthermore, prior to CT scanning, the morphology of the metacarpal 

IV abnormality was consistent with tendon avulsion, stress fracture, osteochondroma, 

and enthesopathy. The visualization of an internal abscess through CT reduced the 

differential diagnosis to two possibilities: a Brodie abscess and an osteoid osteoma. The 

CT scans revealed that the pathology was consistent with a Brodie abscess, confirming 

the second report of hematogenous osteomyelitis in non-avian dinosaurs and the first 

report in Ornithopoda. Future study methods should include CT scanning as a 

diagnostic tool, especially if the pathological elements in question are located in the 

axial skeleton, where hematogenous osteomyelitis is most likely to occur (Emslie and 

Nade, 1983; Miller et al., 1979; Ortner, 2003; Vittore and Henderson, 2013).   

The presence of hematogenous osteomyelitis, in the form of a Brodie abscess, in this 

individual and BMR P2002.4.1 suggests that the hematogenous spread of infection in 

dinosaurs may be more common than previously recognized (Vittore and Henderson, 

2013). Foth et al. (2015) used the lack of hematogenous osteomyelitis and the isolation 

of infection to single elements in Allosaurus to suggest that extant phylogenetic 

bracketing should be applied in pathological studies and a reptilian-immune response 

should be considered for dinosaurs, while mammalian comparisons should be avoided. 

This is based on the differing physiological responses to infection present in mammals, 

birds, and reptiles. Upon infection by pyogenic organisms, reptiles and birds produce a 

caseous substance called fibrin. If the infection continues or does not rupture to the 

surface, a hard, encapsulating mass forms around the focus of infection, called a 

fibriscess (Huchzermeyer and Cooper, 2000; Mader, 2006). The isolation of a pathogen 
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in a fibriscess appears to restrict the spread of infection, reducing the likelihood of 

septicemia in birds and reptiles (Huchzermeyer and Cooper, 2000). In contrast, 

mammals produce pus at the focus of an infection, forming a suppurative abscess by 

which adjacent tissues are more likely to be affected, with an increased chance of 

septicemia relative to reptiles (Ortner, 2003). The pathologies on OMNH 58340 do not 

show dissemination to adjacent bones, consistent with the observation of infected 

element in Allosaurus and other dinosaurs, yet the Brodie abscess is undoubtedly 

hematogenous in origin (Foth et al., 2015; Gross et al., 1993; Hanna, 2002; Rega, 2012; 

Senter and Juengst, 2016). The presence of hematogenous osteomyelitis may indicate 

that a more avian-like immune response to infection should be considered for dinosaurs 

because, although rare in birds, birds do exhibit hematogenous osteomyelitis (Emslie 

and Nade, 1983; Maier et al., 2015).  

When describing pathologies, previous investigators have chose to use a mammalian 

model, particularly in reference to infection (Gross et al., 1993; Hanna, 2002; Rega, 

2012; Vittore and Henderson, 2013; Xing et al., 2018). This is likely due to two 

reasons; first, there is abundant literature on mammalian pathologies owing to an 

anthropocentric bias in medical literature, and second, infectious pathologies in 

dinosaurs bear a strong resemblance to mammalian infectious pathologies. Rega (2012) 

noted that the morphology of an abnormality on the fibula of a Tyrannosaurus rex, 

FMNH PR 2018 has an involucrum, sequestrum, and cloaca, all suggestive of a 

mammalian pus producing reaction. However, the described morphology does not 

necessitate that dinosaurs produced pus; rather, it suggests that the response to 

osteomyelitis in dinosaurs and mammals might produce the same osseous morphology. 
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Two studies—Emslie and Nade (1983), and Tully et al. (1996)—noted that 

osteomyelitis in birds follows a similar pathogenesis to mammals and can produce 

similar osseous responses in analogous elements. Tully et al. (1996) described 

osteomyelitis in the tarsometatarsus of two ratites, both of which exhibit a sequestrum 

and involucrum. The radiographs of an ostrich show an involucrum, sequestrum, and a 

small sinus tract (cloaca) draining liquid exudate through a fistula in the skin, characters 

commonly associated with mammalian osteomyelitis. Tully et al. (1996) noted that the 

presence of sequestra in ratites bears a strong resemblance to sequestra commonly 

found in infected metacarpals and metatarsals of horses. These examples indicate that 

mammalian descriptors and diagnoses might not be wholly inapplicable when 

describing dinosaurian infection as some researchers have suggested (Foth et al., 2015; 

Senter and Juengst, 2016). The similarity in osseous response to infection in birds and 

mammals should be the subject of future studies to better inform descriptions of 

infectious pathologies in dinosaurs. Owing to the similarities between birds and 

mammals discussed above, and the similarities in morphology of our specimen with the 

characteristics of a mammalian Brodie abscess, we chose to use mammalian descriptors 

when diagnosing the internal abscess present in metacarpal IV. We implore future 

researchers to consider use of mammalian descriptors when describing infection if such 

descriptors appear to accurately describe the morphology of the infection.    
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Figures

 

Figure 1: OMNH 58340 left pedal phalanx I-1 (A-C, G-I) and non-pathological right 

pedal phalanx I-1(D-F) for comparison. (A, D, H) dorsal view. (B, E, I) proximal view. 

(C, F, J) lateral view. The rugose callus has thickened the diaphysis and drastically 

changed the shape of the proximal articular surface. The black arrows denote the 

location of the extensor tubercle and the degree to which callus growth on the 

pathological specimen has obscured or remodeled the tubercle. The white arrows 

indicate original bone cortex surrounded by a mottled layer (woven bone) and a thin 

solid white layer (lamellar bone) this morphology is consistent with callus formation. 

The rough outer texture of the callus indicates that this element was secondarily 

affected by osteomyelitis (a traumatic-infectious pathology).   
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Figure 2: Fractured right dorsal rib (R10) (A.) and fractured left dorsal rib (L7) (B–D). 

A. R10 in anterior view B. L7 in anterior view C. Anterior slice through L7 showing 24 

mm of compaction and angulation of the distal rib element. D. Cross-section of rib L7 

in proximal view, location of slice indicated by the white arrow in C. The slice shows 

the stacked cortical bone resulting from the impaction of the distal rib element into the 

proximal element. The lack of callus formation indicates this fracture is perimortem. 

The pathology is classified as traumatic.  
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Figure 3: A. Left dorsal rib 10 (L10) in anterior view showing a callus that has 

expanded the shaft of the rib. B. Enlarged anterior view of callus surface showing eye-

shaped callus margin with two lytic lesions present on the callus margin. These lesions 

are suggestive of osteomyelitis (a traumatic-infectious pathology).     
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Figure 4: OMNH 58340 left and right metacarpal IV. A. Left metacarpal IV dorsal view 

B. Right metacarpal IV dorsal view. C-E. Computed tomography scans of left 

metacarpal IV showing the internal morphology consistent with a type of subacute 

pyogenic osteomyelitis called a Brodie abscess. C. Proximal view D. Dorsal view E. 

Lateral view. Arrow indicates the presence of an irregular sequestrum within the 

abscess consistent with a Brodie abscess in an early stage of its development.  

 


