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Abstract 

Guided by the proposed paths among interest, intention, and choice variables in Social 

Cognitive Career Theory (Lent, Brown, Hackett, 1994), the current study utilized latent 

growth modeling to investigate changes in students’ interest in physical sciences and 

intention to major in STEM over the course of their undergraduate career. Results 

indicated that interest in physical sciences was the lowest in students’ second year in 

college, which may be reflecting the “sophomore slump” phenomenon. Gender, 

race/ethnicity, math classes taken in high school, realistic learning experiences, 

investigative learning experiences, implicit theories of math ability, and math ACT 

were found to be associated with students’ level of interest in physical sciences in their 

first year of college. Moreover, a higher endorsement of the belief that math ability is 

fixed was associated with a faster decline in interest in physical sciences. Similarly, 

gender, race/ethnicity, math classes taken in high school, investigative learning 

experiences, implicit theories of math ability, and math ACT were found to be 

associated with students’ level of intention to major in STEM in their first year of 

college. However, no predictors were found to be associated with the rate of decline in 

intention to major in STEM. Lastly, models that incorporated students’ chosen 

academic major also supported that interest in physical sciences and intention to major 

in STEM in students’ first year in college as well as the rate of decline in intention to 

major in STEM were associated with the extent to which math was emphasized in 

students’ chosen majors.
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Introduction 

Research pertaining to interest and persistence in science, technology, 

engineering, and mathematics (STEM) fields continues to be a top priority on the 

nation’s educational research agenda (National Science Board, 2010). The Bureau of 

Labor Statistics (2017) estimated that between May 2009 and May 2015, STEM 

occupations grew by 10.5% compared with 5.2% for non-STEM occupations. 

Moreover, occupations in the Computer category are projected to increase by 12.5%. 

Despite the significant impact that STEM careers will have on the nation’s economic 

future, various minority groups (e.g., women and racial/ethnic minorities) continue to 

be underrepresented in STEM fields (Chen, 2013; National Center for Science and 

Engineering Statistics, 2013). Individuals who identify as Black, Hispanic, and Native 

American each constitute a disproportionately small percentage of science and 

engineering degree recipients as well as jobholders in STEM fields (National Center for 

Science and Engineering Statistics, 2013). These discrepancies are caused by a myriad 

of factors, with differential drop-out rates being one of the most profound. Chen (2013) 

reported that among students who started their bachelor’s degree in 2003 and 2004, 

approximately 10% of Asian students left STEM by dropping out of college compared 

to about 20% of White students, 23% of Hispanic students, and 29% of Black students. 

Among the various underrepresented racial/ethnic groups in STEM, research on 

Native Americans has been noticeably limited. For example, the National Center for 

Science and Engineering Statistics (2013) was unable to report the status of Native 

Americans’ participation in STEM due to insufficient sample size in the national 

surveys that were conducted. From the limited research available, Native Americans 
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(61%) were less likely to graduate from high school compared to Asians (91%), Whites 

(80%), and Hispanics (62%) (Aud, Fox, & KewalRamani, 2010). Additionally, Native 

Americans between the ages of 18 and 24 were less likely to enroll in colleges and 

universities (21.9%) than their Asian (57.6%), White (44.2%), Hispanic (25.8%), and 

Black (32.1%) counterparts (Aud et al., 2010). Moreover, Native Americans (4.2%) 

were less likely than Asians (8.7%), Whites (5.2%), and Hispanics (4.4%) to obtain an 

engineering bachelor’s degree (Aud et al., 2010). 

In contrast, Asian students were generally comparable to their White 

counterparts in terms academic achievement (see Stetser & Stillwell, 2014). For 

example, in 2008, 17% of Asian high school students and 16% of White high school 

students scored a 3 or better on Advance Placement exams (Aud et al., 2010). 

Researchers suggested that the difference between Asian students and students of other 

minority groups in academic achievement and STEM representation may be due to the 

fact that Asian students are often better prepared in high school mathematics (Berkner 

& Choy 2008). For example, in 2005, 30% of Asian students had completed a calculus 

course in high school, compared with 15% of White, 8% of American Indian/Alaska 

Native, and 6% each of Black and Hispanic students (Aud et al., 2010). 

In addition to race/ethnicity, the underrepresentation of women in STEM has 

been a long-standing issue. For example, only 14.5% of engineers are women. 

Specifically, women make up 7.9% of the mechanical engineering workforce (National 

Science Foundation, 2017). In 2014, at the doctorate level, 28.9% of the degree 

recipients in mathematics and statistics and 18.7% of the degree recipients in physics 

were women (National Science Foundation, 2017). According to Nauta and Epperson 
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(2003), math and science abilities only explain a small proportion of variance in 

women’s decisions to choose a STEM field. Additional factors, such as the visibility of 

demographically similar role models and the influence of social norms often contribute 

to individual’s career decisions. Because of the future demand for a larger and more 

diverse STEM workforce, the talent pool should be expanded to be more inclusive of 

previously underrepresented groups (National Science Board, 2010). 

Social Cognitive Career Theory: Interest and Intention 

The pathway to successful attraction and retention of women and racial ethnic 

minority groups in STEM careers is affected by a myriad of personal and environmental 

factors. The most essential factor is for an individual to be not only interested in a 

STEM topic (e.g., mathematics and engineering) but also have the intention to choose a 

STEM major in college. Studies show that at the college level, women and racial/ethnic 

minorities are less interested in STEM topics and/or have a lower intention of selecting 

a STEM major. For example, in 2012, 53% of Asian college freshmen reported that 

they intended to major in science and/or engineering compared with 42% of Hispanic, 

37% of White, 36% of Black, and 33% of Native American college freshmen (National 

Science Foundation, 2014). The pathway leading up to the development of interest and 

intention to major in STEM is capsulated by the Social Cognitive Career Theory 

(SCCT; Lent, Brown, & Hackett, 1994), one of the most commonly utilized frameworks 

in the investigation of the underrepresentation of various groups in STEM (Fouad & 

Santana, 2016).  

Bandura’s self-efficacy theory was first utilized by Betz and Hackett (1981) to 

investigate women’s career choice patterns (Fouad & Santana, 2016). Lent and 
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colleagues (1994) further enhanced the idea of self-efficacy being the key component in 

individual’s career in the SCCT framework. Specifically, based on the fundamental 

assumption of social cognitive theory, that behaviors are derived from the interplays of 

person predispositions and the environment (Bandura, 1986), the SCCT outlined the 

interactive variables and paths that are involved in a person’s decision to select and 

enter a career field. According to SCCT, the process by which a person makes 

academic-related or career-related decisions can be divided into the initial expression of 

interest and the actions that one takes to further develop the interest. Specifically, 

interests promote cognized career choice goals such as intentions, plans, and 

aspirations, which increase the probability of choice actions, such as the selection of a 

certain major (Lent et al., 1994).  

The SCCT interest and choice model encompasses a number of different 

variables that influence career choices, some of which include self-efficacy, outcome 

expectations, interests, and anticipated support and barriers (Fouad & Santana, 2016). 

The interest and choice model has been examined and supported in racially diverse 

samples in engineering (Lent et al., 2005; Flores et al., 2014), biological/life sciences 

(Byars-Winston, Estrada, Howard, Davis, & Zalapa, 2010), and computer science (Lent, 

Lopez, Sheu, & Lopez, 2011). For example, in a sample of computer science students, 

interest was predicted by self-efficacy, and intention to persist in computing was 

predicted by self-efficacy, interest, and supports and barriers (Lent et al., 2011).  

Moreover, Lent et al. (2015) noted that SCCT’s interest, choice, satisfaction, and 

performance models were often studied as separate segments. They proposed and tested 

an integrative model of interest, satisfaction, and choice using a sample of engineering 
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students across three time points. Interest at a later time point was found to be 

moderately related to interest in an earlier time point. Similarly, intention to persist at a 

later time point was also found to be moderately related to interest in an earlier time 

point. Despite the moderate number of longitudinal studies that have supported SCCT’s 

interest and choice model, according to Lent, et al. (2008), the majority of studies that 

have tested different aspects of SCCT were limited by their cross-sectional nature. 

Cross-sectional designs may be able to establish whether or not the obtained 

relationships are consistent with SCCT’s hypotheses but are unable to demonstrate 

longitudinal effects and implications of the SCCT’s variables. 

There are several ways by which longitudinal components can be embedded in a 

study. One of these is a cross-lagged panel design (Bentler & Speckart, 1981; Hamaker, 

Kuiper, & Grasman, 2015), which has been commonly used to demonstrate the 

reciprocated relationships among SCCT variables. For example, studies have used 

cross-lagged panel design to test the extent to which self-efficacy, measured at the first 

time point, predicts interest, measured at the second time point, all the while controlling 

for the level of interest that was initially measured (e.g., Nauta, Kahn, Angell, & 

Catarelli, 2002; Lent, Tracy, Brown, Soresi, & Nota, 2006). In Lent et al. (2008), self-

efficacy at time one yielded significant lagged paths to outcome expectations, interests, 

and persistence goals at time two. However, interests at time one did not produce 

significant lagged effects on persistence goals at time two. Using the same cross-panel 

design, Lent, Sheu, Gloster, and Wilkins (2010) and Navarro, Flores, Lee, & Gonzalez 

(2014) extended Lent et al. (2008) by including additional variables, such as social 

support, social barriers, and academic satisfaction.  
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In addition to the cross-lagged panel design, studies have “longitudinally” fitted 

the SCCT path model in the sense that SCCT variables (e.g., early learning experiences) 

that were theorized to precede other variables (e.g., number of math classes taken in 

high school) were collected at an earlier measurement occasion. For example, Nauta 

and Epperson (2003) collected initial data from students while they were in high school 

and continued to collect data after these individuals have entered college. Although data 

were collected at different time points, no repeated assessment was present in these 

studies. Whereas the goal of cross-lagged panel design is to identify causal dominance 

among various candidate SCCT variables, the goal of “longitudinal” path models, such 

as the one utilized in Nauta and Epperson (2003), was to provide support for the paths 

within the full SCCT model. 

Lastly, a third approach to study SCCT interest and intention is to utilize latent 

growth modeling (Duncan & Duncan, 2004; Jung & Wickrama, 2008). This approach 

takes the rate of change as a latent variable and allows researchers to investigate the 

antecedents and impacts of this latent variable. The latent growth model (LGM) 

framework is currently less common in the studies of SCCT interest and intention. As 

the central methodological framework of the current study, later sections provided 

additional reviews on the method. 

Social Cognitive Career Theory: Antecedents of Interest and Intention 

In SCCT, Lent et al. (1994) indicated that background/contextual affordance 

variables, personal input variables, and learning experiences determine a portion of 

variance in career-related interest and choice behaviors. Background/contextual 

affordance may include racial/ethnic background, socioeconomic background, and 
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family structure. Regarding demographic variables, Lent et al. (1994) suggested that 

while race and sex can be regarded as biological attributes, they often carry profound 

psychological and social significance. That is, demographic variables often evoke 

systematic sociocultural reactions from the environment (e.g., racial stereotypes) which 

shape people’s perceptions toward themselves and others. 

Personal input refers to psychological predispositions such as values, learning 

orientation, and beliefs about human attributes. Similar to background 

contextual/affordance variables, SCCT suggests that people’s basic values and beliefs 

could influence their learning experiences and therefore, affect their perceptions of their 

own abilities and development of interests. For example, the implicit theories 

framework, which conceptualizes that people’s perception toward various human 

attributes are either fixed or malleable, have been shown to be predictive of effort and 

performance (e.g., Dweck, Chiu, & Hong, 1995; Dweck, 2012). Specifically, the belief 

that intelligence or ability is fixed was found to be associated with lower self-efficacy 

and interest, whereas the belief that intelligence or ability is malleable was found to be 

associated with higher self-efficacy and learning goals (Baird, Scott, Dearing, & 

Hamill, 2009).  

Learning experiences refer to the type and amount of exposure that one receives 

in early childhood environment. SCCT posits that learning experiences can facilitate 

one’s self-efficacy and interest in the domains where one has rich learning experiences. 

Lent and colleagues (e.g., Sheu et al., 2010) often utilize Holland’s six occupation 

themes (Realistic, Investigative, Artistic, Social, Enterprising, and Conventional; 

RIASEC; Holland, 1997) as the framework to assess individuals’ learning experiences. 
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One study found that men reported higher learning experiences in the Realistic and 

Investigative domains whereas women reported higher learning experiences in the 

Social domain (Williams & Subich, 2006). Another study found that after controlling 

for gender, learning experiences in the Investigative, Enterprising, and Conventional 

domains were positively associated with perceived social status (Thompson & Dahling, 

2012). Both studies supported that learning experiences in certain domains are 

positively associated with self-efficacy and outcome expectations in the corresponding 

domains. In addition to the RIASEC themes, the amount of exposure and positive 

experiences in math and science-related domains would also lead to higher self-efficacy 

and interest in math and science-related fields (e.g., Byars-Winston et al., 2010; Lent et 

al., 2008). 

In sum, SCCT posited that variables such as demographics, socioeconomic 

context, beliefs, learning experiences, and previous accomplishments will jointly predict 

a person’s academic/career interest, intention, and choice. A simplified version of 

SCCT’s interest and choice model is presented in Figure 1. 

Latent Growth Modeling and Social Cognitive Career Theory 

In recent decades, researchers have emphasized the importance of implementing 

longitudinal designs to understand the change of attitudes and behaviors over time. One 

of the most common approaches has been latent growth modeling (LGM) within the 

structural equation modeling (SEM) framework (Duncan & Duncan, 2004). The need 

for LGM was based on the assumption that individuals differ not only in their baseline 

level (i.e., the Intercept latent factor in LGM) but also their growth over time (i.e., the 

Slope latent factor in LGM) (Muthén & Khoo, 1998). With the development of this 
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technique, researchers were able to articulate a wide variety of research questions that 

could not be easily accommodated with other techniques (Preacher, 2008). For example, 

with LGM, researchers can incorporate the change of attitudes and behaviors over time 

as a unique research interest. That is, in addition to studying the mean differences in 

attitudes and behaviors across individuals at one time point, one could also study the 

change of attitudes and behaviors over time (Bollen & Curran, 2006; McArdle & Bell, 

2000). Additionally, researchers can inquire about the relationship between the initial 

level (i.e., Intercept) and the rate of change (i.e., Slope), whether groups differ in their 

trajectories, and whether there are significant predictors for the Intercept and the Slope 

(see Figure 2 for a graphical representation of LGM). 

 In educational and developmental psychology, LGM has been commonly 

applied to achievement-related variables. For example, Muthén and Khoo (1998) 

investigated growth of math achievement over grades 7 to 10 using two cohorts of 

students. Specifically, they modeled how the trajectories of math achievement varied as 

a function of background variables such as gender, mother’s education achievement, 

and resources at home. In another study, the author utilized LGM to examine changes in 

students’ attitudes toward science across the middle school and high school years. 

Results indicated that positive attitudes toward science generally decline over the 

middle school and high school years (George, 2000). Although George (2000) did not 

interpret results in accordance to SCCT, findings inadvertently supported some paths in 

SCCT. For example, teachers’ encouragement and peer attitudes toward science were 

found to be significant predictors of students’ attitude toward science. This finding 

supports SCCT’s proposition that proximal and contextual support can influence people 
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attitudes toward a certain academic or career field. In addition, students in metropolitan 

and rural schools were found to have less positive attitudes toward science in seventh 

grade compared to students in suburban schools. This finding supports SCCT’s 

proposition that background/contextual affordance variables can influence individuals’ 

attitudes toward a certain academic or career fields. 

 Among adolescent samples, LGM has been applied to study the impact of 

parental involvement on student achievement (Hong & Ho, 2005), patterns of career 

exploration and career identity formation (Shevlin & Millar, 2006), changes in self-

esteem (Rhodes, Roffman, Reddy, & Fredriksen, 2004), and delinquent activities 

(Windle, 1990). Among college students, LGM has been applied to study drinking 

behaviors (Greenbaum, Del Boca, Darkes, Wang, & Goldman, 2005), procrastination 

(Moon, & Illingworth, 2005), and the development of ethnic identity (Syed & Azmitia, 

2009). In general, LGM is more frequently applied to adolescent samples than college 

samples due to the fact that data on adolescents are often publically available (e.g., 

Longitudinal Study of American Youth).  

Specific to SCCT’s interest and choice model, Frenzel, Goetz, Pekrun, and Watt 

(2010) utilized LGM to investigate the trajectories of math interest and effects of 

gender, family context, and school context in a sample of adolescents. The resulting 

LGM depicted a downward trend of math interest with a high amount of variability in 

the mean levels of math interest but a low amount of variability in the shape of the 

trajectories. However, no research is available to indicate whether the trajectories of 

math or STEM interest would be the same for college students. Decisions and choices 

that are made in college are more proximal to the selection of a career path. Yet, little 
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longitudinal research regarding college students’ interest in STEM is available. 

Understanding college students’ development of interests and choice behaviors may 

provide insights to the underrepresentation of various minority groups in STEM, as well 

as inform appropriate intervention strategies. 

The Present Study 

Although many studies that are based on the SCCT framework have utilized 

longitudinal designs, the majority of these studies are limited to a two-wave design 

(Lent et al., 2015). Additional waves of data are required to provide compelling 

evidence on patterns of change over time (Hamaker et al., 2015). One of the root causes 

of the underrepresentation of women and racial/ethnic minority groups in the STEM 

workforce is the fact that while in college, these groups of individuals are less interested 

in STEM topics and/or have a lower intention to major in a STEM field (National 

Science Foundation, 2014). Stemming from the proposed paths among the interest, 

intention, and choice variables in SCCT, the current study focused on interest and 

intention as the two focal variables that can change over time. In addition, the current 

study investigated how the amount of change in interest and intention may be associated 

with the choice of major variable. 

The current study focused on the Native American student population due to the 

scarcity of existing data and reports on this group. In many national educational reports, 

statistics regarding Native American students are represented with asterisks to denote 

lack of sufficient numbers, incompletion, or unstable results. For example, in a report 

examining STEM attrition, instead of being in its own category, Native Americans were 

categorized into “all other races” (Chen, 2013). The “asterisk” phenomenon is a 
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symbolic description of the neglect of in-depth reporting on Native American students’ 

participation in higher education and the fact that the mainstream understanding of this 

cultural/ethnic group is highly limited (Shotton, Lowe, & Waterman, 2013). As 

mentioned previously, the percentage of Native American college freshman (33%) that 

had the intention to major in STEM fields was lower than that of other racial/ethnic 

groups. Thus, the current study devoted more emphasis to the Native American student 

group. 

In terms of gender, women are severely underrepresented in engineering, 

mathematics, and physics (collectively referred to as physical sciences in the current 

study) in contrast to life sciences such as biology and medicine. For example, in 2015, 

47.9% of women were employed as life scientists. In contrast, 14.5% of engineers were 

women (National Science Foundation, 2017). Thus, for the interest variable, the current 

study focused on physical sciences while the intention variable was inclusive of all 

STEM fields.  

 Utilizing LGM, the first purpose of this study was to investigate the trajectories 

of students’ (1) interest in physical sciences and (2) intention to major in STEM fields 

over the course of their college careers. Maltese and Tai (2010) suggested that those 

with a major in a STEM field have made the career choice decision in high school. In 

other words, there might not be much fluctuation in STEM interest over a person’s 

college career. However, research has also found that attrition from STEM fields is 

prevalent among college students. For example, one report indicated that 48% of 

bachelor’s degree-seeking students who entered STEM fields between 2003 and 2009 

left these fields by Spring 2009 (Chen, 2013), suggesting that interest in STEM and 
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intention to major in a STEM field may exhibit a downward trend over time. Based on 

these findings, the current study hypothesized the following: 

Hypothesis 1. Students’ (a) interest in physical sciences and (b) intention to 

major in STEM fields will decline over the course of their college careers.  

Moreover, the current study also explored the relationship between the starting 

point of the interest and intention trajectories and the slope of these trajectories. In 

general, one would expect that higher interest and intention in the initial time point will 

be either positively related or not significantly related to the change of interest and 

intention over time. The current study proposed the following question: 

Research Question 1. Will there be a positive association between the starting 

point of the trajectory and the slope of the trajectory for (a) interest in physical 

sciences and (b) intention to major in STEM? 

The second purpose of the study was to investigate the effects of predictors on 

the trajectories, that is, the estimated Intercept and Slope of the model (see a graphical 

representation in Figure 3). As shown by previous research (e.g., Chen, 2013; National 

Science Board, 2010), demographic variables such as gender and race/ethnicity are 

associated with differences in STEM representation. Using a nationally representative 

sample, one study found that male students showed higher levels of interest in 

engineering whereas female students showed higher levels of interest in health and 

medicine during their high school years. Moreover, male students’ interest in STEM 

careers remained relatively stable throughout high school, whereas female students’ 

interest in STEM careers declined significantly (Sadler, Sonnert, Hazari, & Tai, 2012). 

Thus, the current study hypothesized the following:  
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Hypothesis 2. Women will have lower levels of (a) interest in physical sciences 

and (b) intention to major in STEM at the starting point of the trajectory. 

Since not enough previous research is available to develop a hypothesis 

regarding gender’s association with the rate of change in STEM interest or intention in 

college, the current study explored the following research question: 

Research Question 2. Is gender associated with the slope of (a) interest in 

physical sciences and (b) intention to major in STEM over time? 

Given reports that show the underrepresentation of Native Americans in STEM 

and overrepresentation of Asians in STEM (National Center for Science and 

Engineering Statistics, 2013), it is likely that the trajectory of interest and intention in 

STEM would differ across racial/ethnic groups. Maltese and Tai (2010) found that 

without controlling for other predictors, Asians have higher odds of completing a 

degree in a STEM field. Thus, the current study hypothesized the following:  

Hypothesis 3. In comparison to Asian students, Native American students will 

have lower levels of (a) interest in physical sciences and (b) intention to major in 

STEM at the starting point of the trajectory. 

Since insufficient research is available to develop a hypothesis regarding 

race/ethnicity’s association with the slope of these trajectories over time, the current 

study explored the following research question: 

Research Question 3. Is race/ethnicity associated with the slope of (a) interest in 

physical sciences and (b) intention to major in STEM over time? 

The availability of school resources is critical to STEM education (Tytler, 

Osborne, Williams, Tytler, & Cripps Clark, 2008). Interview data from one study 
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indicated that students who went to a rural high school believed that they had less 

STEM-related resources, fewer adult role models in STEM fields, and that their 

community didn’t place a high value on STEM education (Pitchford, 2016). For rural 

areas that are self-sustaining, college education may not be a priority or a realistic goal 

for students (see Goodpaster, Adedokun, & Weaver, 2012; Herzog, & Pittman, 1995). 

In contrast to students who grew up in an urbanized area, or a larger city, students who 

grew up in a rural area, or a smaller town, may not have extensive exposure to STEM 

subjects. Thus, the current study hypothesized the following: 

Hypothesis 4. The size of students’ childhood town will be positively associated 

with (a) interest in physical sciences and (b) intention to major in STEM at the 

starting point of the trajectory. 

The current study also explored the following research question: 

Research Question 4. Will the size of students’ childhood town be associated 

with the slope of (a) interest in physical sciences and (b) intention to major in 

STEM over time?  

 According to the SCCT, learning experiences early in life, such as exposure to 

and modeling behaviors in certain subject domains, are critical in shaping individuals’ 

career interest and choice later in life (Lent et al., 1994). Specific to interest and choice 

in STEM fields, using Holland’s (1970) classification system, engineers and scientists 

generally score higher in the Realistic career theme, which includes technical, skilled, 

and laboring occupations, and the Investigative career theme, which primarily consisted 

of scientific occupations (O*NET, retrieved 2018). Moreover, Su and Rounds (2015) 

suggested that the preference to work with people versus things may explain the gender 
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differences in interest in STEM. Previous studies have found gender differences in the 

Realistic and Investigative domain (Williams & Subich, 2006) as well as supported that 

exposure to a certain domain would be related to one’s interest in that domain (e.g., 

Byars-Winston et al., 2010). The current study proposed the following hypotheses and 

research questions:  

Hypothesis 5. The number of math classes that college students took in high 

school will be positively associated with (a) interest in physical sciences and (b) 

intention to major in STEM at the starting point of the trajectory.  

Research Question 5. Is the number of math classes that college students took in 

high school associated with the slope of (a) interest in physical sciences and (b) 

intention to major in STEM over time? 

Hypothesis 6. Students’ early learning experiences in the Realistic and 

Investigative occupation themes will be positively associated with their (a) 

interest in physical sciences and (b) intention to major in STEM at the starting 

point of the trajectory. 

Research Question 6. Are students’ early learning experiences in the domains of 

Realistic and Investigative themes associated with the slope of (a) interest in 

physical sciences and (b) intention to major in STEM over time? 

As outlined in the SCCT model, in addition to gender, race/ethnicity, size of 

childhood town, and learning experiences, individuals’ preexisting beliefs about 

learning should also influence the development of interest. A person’s beliefs about 

intelligence or other human attributes has been shown to influence effort and 

performance outcomes (see Dweck, 2012). One study found that the belief that 
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intelligence is malleable was associated with higher academic self-efficacy (Komarraju 

& Nadler, 2013). Similarly, the belief that leadership ability is malleable was associated 

with leadership self-efficacy (Burnette, Pollack, & Hoyt, 2010). As seen in studies of 

the SCCT (e.g., Lent et al., 2008), self-efficacy in a particular domain is related to 

interest in that domain. Specific to STEM-related attributes, Chen and Usher (2010) 

found that a “malleable” view of science ability, or the belief that science ability can 

change, was associated with higher academic motivation, learning orientation, and 

science achievement. Moreover, a “malleable” view of intelligence was found to be 

associated with a positive rate of change in academic performance over time in a group 

of 7th graders (Blackwell, Trzesniewski, & Dweck, 2007). Thus, the current study 

proposed the following hypothesis and research question: 

Hypothesis 7. A fixed view of math ability will be negatively associated with (a) 

interest in physical sciences and (b) intention to major in STEM at the starting 

point of the trajectory. 

Research Question 7. Is a fixed view of math ability associated with the slope of 

(a) interest in physical sciences and (b) intention to major in STEM over time? 

Many colleges and universities in the United States require students to submit 

standardized test scores as a part of the college admission application. Despite calls for 

the reconsideration of using standardized test scores in admission decisions (Walpole et 

al., 2005), scores from standardized tests, such as the Scholastic Aptitude Test (SAT) 

and American College Testing (ACT), are still one of the strongest predictors of college 

grade point average (GPA; Oswald, Schmitt, Kim, Ramsay, & Gillespie, 2004). Test 

scores not only provide admission officers a standardized evaluation of students’ 
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abilities, they may also influence students in evaluating their own academic strengths 

and weaknesses, and therefore impact their academic interest and career intentions. For 

example, a student who scored low on the math section of the ACT but high on the 

verbal section of the ACT is very likely to enter a field that requires more writing and 

less math. The current study proposed the following hypothesis and research question: 

Hypothesis 8. Students’ standardized math test score will be positively 

associated with (a) interest in physical sciences and (b) intention to major in 

STEM at the starting point of the trajectory.  

Research Question 8. Are students’ standardized math test scores associated 

with the slope of (a) interest in physical sciences and (b) intention to major in 

STEM over time? 

According to the SCCT (Lent et al., 1994), interest and intention will lead to 

choice actions. Lent and colleagues (1994) stated that the process by which individuals 

choose an occupation involves a compromise of what is preferred and what is chosen. 

Interest can be defined as the “psychological state of engaging or the predisposition to 

reengage with particular classes of objects, events, or ideas over time” (Hidi & 

Renninger, 2006, p.112). As a psychological state, interest does not directly imply the 

exhibition of behaviors, but it can be viewed as a precursor of choice intentions and 

behaviors. Previous studies (e.g., Lent et al., 2018; Sheu et al., 2010) have found 

support for the links among interest, intention, and choice (Brown & Lent, 2016). 

Specific to the STEM domain, high interest in physical sciences and intention to major 

in STEM should be associated with the actual selection of a major in a STEM field. 

Thus, the current study proposed the following:  
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Hypothesis 9. Higher levels of (a) interest in physical sciences and (b) intention 

to major in STEM at the starting point of the trajectory will be associated with 

higher math emphasis in students’ academic major. 

Research Question 9. Is the slope of (a) interest in physical sciences and (b) 

intention to major in STEM over time associated with having an academic major 

with higher math emphasis?  

Lastly, anxious attitudes and behaviors toward math are commonly observed in 

some school-age children and people in general (Ashcraft, 2002; Hembree, 1990). For 

students who are highly anxious about math, poor performance in math classes may be 

detrimental to overall academic performance. That is, individuals who perform poorly 

in math or have low interest in math may have lower overall academic performance 

scores because they may not be able to pass basic math classes. However, it has been 

commonly reported that, at the college level, introductory classes in STEM fields, such 

as calculus, chemistry, and physics, are particularly challenging. Seymour (1995) 

argued that the grading scheme for STEM introductory courses is so strict that it has 

turned away many high-potential students. Thus, because of the critical grading scheme, 

students who are well-prepared in math and are interested in STEM fields or have 

selected a major in a STEM field may also have a lower overall performance score. 

Since there is no clear expectation to how students’ interest and intention in STEM are 

associated with their overall performance score, the current study proposed the 

following: 
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Research Question 10. Are students’ trajectories of (a) interest in physical 

sciences and (b) intention to major in STEM associated with their overall 

academic performance? 

 Final Model 

The interplays among interest, intention, and actual choice behavior carry more 

nuances than one may imagine. According to the four-phase model of interest 

development, the process of interest development starts with interest as a situational 

phenomenon and ends with it being more stable across situations or more individualized 

(Hidi & Renninger, 2006). Interest involves both affective and cognitive systems (Hidi, 

2001; Hidi & Renninger, 2006). However, unlike behavioral intentions, it does not 

involve realistic considerations of the context.  

According to the theory of planned behaviors (Ajzen, 1991), intention is 

predicted by three major factors: attitude toward the behavior, subjective norms, and 

perceived behavioral control. That is, in addition to the basic attitude, the context, such 

as social norms, and perceived ability to control the outcome can also determine one’s 

intention toward a specific behavior (e.g., choosing an academic major). Lent, Brown, 

and Hackett (2002) further emphasized that contextual influences, such as career 

barriers, play a significant role in the relationships among career interest, intention, and 

choice outcome. For example, one study found that career barriers moderated the 

relationship between interest and choice intention (Lent et al., 2001). 

Both interest and intention can be viewed as precursors of behaviors (Lent et al., 

1994). However, neither will guarantee a behavior (e.g., the act of choosing an 

academic major). According to Greve (2001), there is an alternative explanation to the 
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intention-behavior relationship. That is, from a logical stand point, one could interpret 

the relationship as action (or behavior) implies intention rather than intention implies 

action (or behavior). For example, in contrast to the intuitive interpretation that the 

intention to major in a STEM field will result in the act of choosing a STEM major, it 

can also be argued that if one has chosen a STEM major, then he or she must have the 

intention to do so. By the same token, if one has a high intention to choose a major in a 

STEM field, then it can be inferred that an individual has high interest in STEM. 

However, under rare circumstances, one could have the intention to select a STEM 

major without being interested in it (e.g., pressure from parents) or have chosen a 

STEM career without having true intentions of pursuing the career (e.g., lack of 

planning and goal-setting). 

In addition to testing the hypotheses and research questions, the current study 

also examined the relationship (1) between interest and choice and (2) between 

intention and choice by modeling students’ choice of major as an outcome in the final 

model. Unlike previous studies that rely on self-reports of the choice variable, the 

current study utilized official records for students’ choice of major. 

Method 

Participants and Procedures 

Participants consisted of 3,116 undergraduate students (40.9% male and 59.1% 

female) who participated in a longitudinal survey study, referred to as Native American 

Student Achievement study, from 2014 to 2017. The largest three ethnic groups that 

were included in the analysis are Native American (n = 826), Asian (n = 568), and 

White (n = 1,146). Other racial/ethnic groups were not specifically recruited. The 
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sample size for these groups were insufficient for the models in the current study. Given 

the nature of the study (i.e., longitudinal design with missing data), the sample size 

varied across models depending on the type of missing data technique that was used. 

 The Native American Student Achievement study is a multiple-cohort, online 

survey study that investigates Native American students’ interest, persistence, and 

success in STEM fields. Asian students and White students were selected as the 

comparison groups. With the permission from the university, eligible students were 

invited to participate in an online survey. Following the initial survey, students were 

continuously invited to subsequent surveys. Each survey took about 30 to 45 minutes to 

complete. Participants were compensated with a $20 gift card for every survey that they 

completed. The survey utilized measures that are outlined in the SCCT framework, such 

as background/contextual affordance variables, learning experiences, interest in STEM 

fields, and intention to major in STEM fields. 

The data collection process started in the spring semester of 2014 and is 

currently ongoing. Data that were used in the current study were collected between 

Spring 2014 and Spring 2017. Although repeated measures were administered on an 

annual basis, survey was launched every semester such that some participants started in 

the spring semester while others started in the fall semester. With the exception of 

Spring 2017, new participants were invited to complete the survey every semester. In 

other words, in the current study, participants could start the initial survey at any given 

semester between Spring 2014 and Fall 2016 and were continuously invited to 

subsequent surveys until Spring 2017. The current study consisted of a total of 6 cohorts 

as defined by the semester that they started the survey (see Table 1). 
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Survey Design and Data Management 

In many applied research settings, the most common metric of time is simply the 

wave of assessment. However, depending on the research questions, it may be more 

appropriate to use an alternative metric of time, such as the chronological age of the 

participants (Bollen & Curran, 2006). In the current study, the metric of time was 

defined as the years that a person spent in college with one academic year as the 

equivalent of one-time unit. That is, the first time point would represent students’ first 

year in college, second time point would represent students’ second year in college, and 

so on. Since participants of any academic year could participate in the survey at any 

given point of assessment, not all participants started the survey during their first year 

of college. Table 2 shows the opportunities that participants had to provide data given 

their academic standing (i.e., years in college) and cohort of measurement (CM), which 

is defined by the semester in which the initial survey was completed. 

As shown in Table 2, for the cohort that started the study in Spring 2014 (CM1), 

a first-year college student would have the opportunity to provide data for a set of four 

repeated measures which covers his or her first year, second year, third year, and fourth 

year in college. In comparison, those who started the survey in Fall 2016 (CM6) would 

have the opportunity to provide data for only one set of measures with no repetition 

before the end of the data collection process. Despite being a part of the study, 

participants could skip surveys at any time. In other words, the opportunity to take the 

survey is not the equivalent of the presence of data. Data would be missing for 

participants who have graduated or were no longer interested in participating. 
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The current study utilized two forms of data. The first form of data consisted of 

participants’ responses to surveys that they completed online. SCCT variables such as 

beliefs toward human attributes, interest in physical sciences, and intention to major in 

STEM were available in survey data. The time-invariant variables such as 

demographics and size of childhood town were assessed in the initial survey, whereas 

time-variant variables such as interest in physical sciences and intention to major in 

STEM were assessed both in the initial survey and subsequent surveys that were 

repeated every year.  

The second form of data consisted of participants’ academic records, which 

were retrieved from the university’s information storage system for those students who 

granted permissions to the researchers. Academic variables such as math standardized 

test scores and GPA were available in academic records. The survey data were merged 

with the academic data via the link between students’ participant identification number 

and their student identification number, and were reassembled in a wide format with 

each repetition of time-varying variables as unique variables. The data management 

process, such as matching and merging, was conducted using Microsoft Excel and 

Statistical Packages for Social Sciences (SPSS). 

Analysis 

As shown in Table 2, the availability of data was restricted in several ways. 

Missing data might be caused by events such as withdrawal from school or early 

graduation. Additionally, participants might have forgotten to participate or chose not to 

participate at any time. Moreover, a majority of the data was censored by the design of 

the study (see Schafer and Graham, 2002 for cohort sequential survey design), and thus, 
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can be considered to be missing at random. According to Bollen and Curran (2006), 

missing data are very common in longitudinal studies. Current literature regarding 

missing data generally agrees that full information maximum likelihood (FIML) and 

multiple imputation (MI) are the two most dependable methods for handling missing 

data (Graham, 2009). The FIML method assumes multivariate normality and computes 

parameter estimates of the model using available information. On the other hand, the 

MI method restores the error variance that is lost from regression-based single 

imputation by pooling the estimates that are produced from using multiple sets of 

imputed data (see Enders, 2010; Graham 2009). According to Enders (2010), the two 

methods should produce highly similar results. However, they may differ depending on 

whether auxiliary variables were included in the imputation process. Given the amount 

of missing data, the current study took a conservative approach to address the 

hypotheses and research questions. That is, the current study would use both methods to 

handle missing data. The effects would be considered significant if estimations using 

one of the methods (i.e., either FIML or MI) were significant at p < 0.05 while 

estimations using the other method (i.e., either FIML or MI) were significant at p ≤ 

0.08. The current study wish to remain conservative in evaluating the effects. 

Preliminary Analysis 

Prior to conducting the LGM, the current study explored mean differences 

between every two consecutive time points for (1) interest in physical sciences and (2) 

intention to major in STEM. Specifically, the current study conducted paired sample t-

tests, comparing the means of interest in physical sciences at students’ first year and 

second year in college, second year and third year in college, and third year and fourth 



26 

year in college. This set of analyses was repeated for students’ intention to major in 

STEM. The preliminary analysis was conducted in SPSS with listwise deletion. 

Main Analysis 

To address Hypothesis 1 and Research Question 1, unconditional LGMs were 

run for interest in physical sciences and intention to major in STEM. To examine the 

unique effect of each of the predictors (Hypothesis 2 through Hypothesis 8 and 

Research Question 2 through Research Question 8), models were run with one predictor 

at a time. For example, to address Hypothesis 2 and Research Question 2, gender was 

included in the model as the predictor of the Intercept and Slope. For Hypothesis 9, 

Research Question 9, and Research Question 10, the Intercept and Slope in the LGM 

framework were run as predictors for the level of math emphasis in students’ major and 

overall academic performance (i.e., GPA). After all models were conducted using 

FIML, all models were rerun using MI, where 100 sets of imputations were made for 

every model.  

In addition to testing the above hypotheses and research questions, a final model 

consists of the predictors and the outcome of the Intercept and Slope was also tested. 

The variables that were found to be significant predictors when run as the predictor in 

the individual models were entered into the final model as the predictors of the Intercept 

and Slope. Students’ major was entered into the final model as the outcome of the 

Intercept and Slope (see Figure 4). All models were conducted using MPlus version 

7.11. 
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Measures 

Gender and Race/Ethnicity 

Participants were asked to indicate their gender and race/ethnicity in the initial 

survey. For racial/ethnic group, participants selected one racial/ethnic group that they 

primarily identify with. Only individuals who self-identified as either Native American, 

Asian, or White were included in the current study. 

Size of Childhood Town (M = 3.94, SD = 1.50) 

The size of childhood town was measured with the item “Where did you grow 

up?” Participants responded by selecting one of the six options: (1) rural (outside of a 

town), (2) small town (< 1,000 people), (3) medium size town (< 10,000 people), (4) 

small city (< 100,000 people), (5) medium size city (> 100,000 people), and (6) big city 

(> 200,000). Higher scores indicate that the participants spent their childhood in a larger 

city/town.  

Math Classes Taken in High School (M = 5.10, SD = 1.53)  

Participants were asked to check all of the math classes that they have taken 

from a list of eight classes, which includes, Pre-Algebra, Algebra, Geometry, 

Trigonometry/Algebra II, Pre-Calculus, Calculus I, Calculus II, and Statistics. Higher 

numbers of classes taken indicate that participants have greater exposure to math in 

high school.  

Realistic Learning Experiences (M = 4.02, SD = 0.75) and Investigative Learning 

Experiences (M = 4.02, SD = 0.72)  

Realistic and investigative learning experiences are two subscales that were 

measured with the Learning Experiences Questionnaires (LEQ; Schaub, 2004; Schaub 
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& Tokar, 2005). The LEQ assesses the extent to which individuals are exposed to and 

competent with activities that are specific to each of Holland’s six occupation themes 

(i.e., Realistic, Investigative, Artistic, Social, Enterprising, and Conventional). One 

study provided support for the independent use of each of the six subscales (Tokar, 

Buchanan, Subich, Hall, & Williams, 2012).  

Realistic and investigative learning experiences each consisted of 20 items that 

assess the extent to which participants were exposed to, have past accomplishments in, 

or have negative experiences with realistic-oriented or investigative-oriented activities. 

A sample item for realistic learning experiences is “I observed people whom I respect 

repair mechanical things” (see the full set of items in Appendix A). A sample item for 

investigative learning experiences is “While growing up, I saw people I respected using 

math to solve problems” (see the full set of items in Appendix B). Participants rated the 

items using a scale from 1 (strongly disagree) to 6 (strongly agree). Higher scores 

indicate higher learning experiences in realistic-oriented or investigative-oriented 

activities. The Cronbach’s alpha was 0.88 for the Realistic subscale and 0.86 for the 

Investigative subscale.  

Implicit Theories of Math Ability (ITMA; M = 2.84, SD = 1.02) 

Implicit theories of math ability was measured with an 8-item instrument that 

was modified based on Dweck’s (1999) measure of implicit theories of intelligence. 

Similar to Chen and Usher (2013), I modified the measure to reflect “math ability” 

instead of general intelligence. Participants rated the items using a scale from 1 

(strongly disagree) to 6 (strongly agree). A sample item was “You can learn new 

things, but you can’t really change your basic math ability” (see the full set of items in 
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Appendix C). The items framed in the opposite direction (e.g., “No matter how much 

math ability you have, you can always change it quite a bit”) were reverse-coded. 

Higher scores indicate a stronger belief that math ability is fixed. The Cronbach’s alpha 

was 0.89. 

Interest in Physical Sciences  

The measure for interest in physical sciences was adopted from Lent et al. 

(2001). Participants were asked to indicate their interest in a list of subjects using a 

scale from 1 (strongly dislike) to 5 (strongly like). The list includes Statistics, 

Chemistry, Physics, Basic Math, Computer Science, Advanced Math, and Engineering. 

Higher scores indicate that participants have a higher interest in STEM subjects. This 

measure was assessed repeatedly over time. The Cronbach’s alpha for the measure at 

first-time point was 0.82.  

Intention to Major in STEM  

The measure for intention to major in STEM was adopted from Lent et al. 

(2003). Using a scale from 1 (strongly disagree) to 5 (strongly agree), participants were 

asked to rate three items: “I intend to major in a science/technology/engineering/math 

field,” “I think that earning a bachelor’s degree in science/technology/engineering/math 

is a realistic goal for me,” and “I am fully committed to getting my college degree in 

science/technology/engineering/ math.” Higher scores indicate a stronger intention to 

major in STEM fields. This measure was assessed repeatedly over time. The 

Cronbach’s alpha for the measure at first-time point was 0.97. 
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Math ACT (M = 25.63, SD = 4.59) and Academic Performance (M = 3.20, SD = 0.58)  

Participants’ performance on standardized math tests was operationalized by 

their math ACT score. Participants’ overall academic performance was operationalized 

by their overall retention GPA. For participants who provided permission to the 

researchers to access their records, I retrieved their highest math ACT score and 

undergraduate retention GPA at the end of the Spring 2017 semester from the 

university’s information system.  

Math Emphasis in Students’ Academic Major (M = 2.29, SD = 1.20)  

Participants’ academic majors were coded based on the extent to which math 

classes are required for the completion of the curriculum. Using guidelines from the 

National Science Foundation, the National Institutes of Health, and the university in 

which data was collected from, participants’ academic majors were given a numeric 

value of 1 (Non-STEM), 2 (Social/Behavioral Sciences; SBS), 3 (Life Sciences), and 4 

(Physical Sciences) with 1 representing the majors with a lower number of required 

math classes and 4 representing the majors with a higher number of required math 

classes. The value of 1 corresponds to majors that are in the fine arts college, journalism 

college, English department, and foreign language department. The value of 2 

corresponds to majors that are associated with social and behavioral science and/or 

require some basic math or science training, such as psychology, anthropology, and 

sociology. The value of 3 corresponds to majors that are associated with the study of 

life, such as biology, zoology, botany, microbiology, pre-nursing, and pre-medicine. 

The value of 4 corresponds to majors that are associated with the study of non-living 

things, such as engineering, computer science, physics, and mathematics. 
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Results 

Preliminary Analyses 

Results from the paired-sample t-test indicated that interest in physical sciences 

in students’ first year in college (M = 3.05, SD = 0.85) was higher than in their second 

year in college (M = 2.90, SD = 0.90), t(518) = 5.07, p < 0.01. Additionally, interest in 

physical sciences in students’ second year in college (M = 2.94, SD = 0.89) was lower 

than in their third year in college (M = 3.00, SD = 0.92), t(358) = -1.98, p < 0.01. 

However, interest in physical sciences did not differ between students’ third year in 

college (M = 2.93, SD = 0.95) and fourth year in college (M = 2.97, SD = 0.95), t(363) = 

-1.10, p > 0.05. 

Results from the paired-sample t-test indicated that intention to major in STEM 

in students’ first year in college (M  = 3.61, SD = 1.52) was higher than in their second 

year in college (M = 3.44, SD = 1.58), t(522) = 3.36, p < 0.01. Additionally, intention to 

major in STEM in students’ second year in college (M = 3.60, SD = 1.57) was higher 

than in their third year in college (M = 3.45, SD = 1.61), t(361) = 2.89, p < 0.01. 

However, intention to major in STEM did not differ between students’ third year in 

college (M = 3.36, SD = 1.67) and fourth year in college (M = 3.37, SD = 1.66), t(363) = 

-0.14, p > 0.05. 

Main Analyses 

Table 3 displays the inter-variable correlations. Figure 5 and Figure 6 displays 

the interest in physical sciences by gender and intention to major in STEM by gender, 

respectively. Figure 7 and Figure 8 displays the interest in physical sciences by 

race/ethnicity and intention to major in STEM by race/ethnicity, respectively. Based on 
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the graphs, one may expect to see some differences in interest in physical sciences and 

intention to major in STEM across gender and racial/ethnic groups. 

Hypothesis 1 and Research Question 1 

To test Hypothesis 1 and Research Question 1, I ran two unconditional LGMs 

using interest in physical sciences and intention to major in STEM.  

Interest in physical sciences unconditional LGM. For interest in physical 

sciences, the model provided minimally acceptable fit to the data when using the FIML 

method, χ2(5) = 49.67, p < 0.01; RMSEA = 0.06; CFI = 0.96; TLI = 0.96; SRMR = 

0.08. However, when using the MI method, the model provided poor fit to the data, 

χ2(5) = 17.91, p < 0.01; RMSEA = 0.030; CFI = 0.96; TLI = 0.96; SRMR = 0.10. 

Specifically, the SRMR is greater than the standard cut-off (Hooper, Coughlan, & 

Mullen, 2008). Thus, taking a conservative approach, the unconditional LGM for 

interest in physical sciences was considered to be a poor fit to the data. 

As shown in Figure 5, the trajectories may vary by gender, such that the 

unconditional model, which assumes the presence of one group, did not fit well. 

However, adding predictors to the model may improve the fit. Thus, Hypothesis 1(a), 

which states that interest in physical sciences will exhibit a declining trend, was not 

supported. Research Question 1(a), which asks about the relationship between the 

Intercept and Slope for interest in physical sciences, could not be tested under the 

current model.  

Intention to major in STEM unconditional LGM. For intention to major in 

STEM, the model provided acceptable fit to the data both when using the FIML method 

(χ2(5) = 13.56, p < 0.05; RMSEA = 0.03; CFI = 0.99; TLI = 0.99; SRMR = 0.04) and 
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when using the MI method (χ2(5) = 6.52, p > 0.05; RMSEA = 0.01; CFI = 0.99; TLI = 

0.99; SRMR = 0.04). Using the FIML method, the estimated factor means for the 

Intercept (µ = 3.50) and Slope (µ = -0.117) were both significant at p < 0.01. Using the 

MI method, the estimated factor means for the Intercept (µ = 3.38) and Slope (µ = -

0.05) were also both significant at p < 0.01. The Slope was estimated to be negative, 

which indicates that students’ intention to major in STEM was declining over time. 

Thus, Hypothesis 1(b), which hypothesized that students’ intention to major in STEM 

will generally decline over time, was supported. 

The estimation of the factor correlation between the Intercept and Slope differed 

between the FIML method (r = 0.106, p < 0.05) and the MI method (r = 0.07, p = 0.24) 

for intention to major in STEM. According to the pre-established rule, effects would be 

considered significant if estimations using one of the methods (i.e., either FIML or MI) 

were significant at p < 0.05 while estimations using the other method (i.e., either FIML 

or MI) were significant at p ≤ 0.08. Thus, the current relationship between the Intercept 

and Slope would not be considered significant. That is, regarding Research Question 

1(b), the level of the intention to major to STEM at the start of the trajectory was not 

related to the rate at which it declines over time under the current study context. 

Hypothesis 2–Hypothesis 8 and Research Question 2–Research Question 8 

To test the effect of each of the predictors on the Intercept (Hypothesis 2 

through Hypothesis 8) and the Slope (Research Question 2 through Research Question 

8), I ran a set of 7 conditional LGMs separately for interest in physical sciences and 

intention to major in STEM, including only one predictor variable per model. 
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The effects of predictors on the Intercept of interest in physical sciences. For 

interest in physical sciences, all 7 models provided minimally acceptable fit to the data 

when using the FIML method and when using the MI method (see Table 4). As shown 

in Table 5, under the FIML method, gender (β = -0.58), identification as White (in 

contrast to Native American) (β = 0.14), identification as Asian (in contrast to Native 

American) (β = 0.41), number of math classes taken in high school (β = 0.18), realistic 

learning experiences (β = 0.11), investigative learning experiences (β = 0.57), implicit 

theories of math ability (β = -0.28), and math ACT score (β = 0.08) were individually 

found to be significant predictors of the Intercept. Results were consistent when the 

model was conducted with the MI method.  

Thus, Hypothesis 2(a), which states that women will have lower interest in 

physical sciences at the starting point of the trajectory, was supported. Hypothesis 3(a), 

which states that, in comparison to Native American students, Asian students will have 

higher interest in physical sciences at the starting point of the trajectory, was also 

supported. Moreover, in comparison to Native American students, White students also 

had higher interest in physical sciences at the starting point of the trajectory. Hypothesis 

4(a), which states that the size of students’ childhood town will be associated with their 

interest in physical sciences at the starting point of the trajectory, was not supported. 

Regarding students’ general learning experiences, Hypothesis 5(a), which states that 

more exposure to math in high school will be associated with higher interest in physical 

sciences, and Hypothesis 6(a), which states that higher realistic and investigative 

learning experiences will be associated with higher interest in physical sciences, were 

both supported. Hypothesis 7(a), which states that a fixed view of math ability will be 
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negatively associated with interest in physical sciences, was supported. Lastly, 

Hypothesis 8(a), which states that students’ math score on the ACT standardized test 

will be associated with their interest in physical sciences, was also supported. 

The effects of predictors on the Slope of interest in physical sciences. 

Regarding Research Question 2(a) through Research Question 8(a), under both the 

FIML method and the MI method, only implicit theories of math ability emerged as a 

significant predictor of the Slope (β = -0.02, p = 0.06 and β = -0.04, p < 0.01 for the 

FIML method and MI method, respectively). Given the declining trajectory, the 

negative value for the coefficient indicated that a higher fixed view of math ability was 

associated with a faster rate of decline for interest in physical sciences over time. Thus, 

addressing Research Question 2(a) to Research Question 8(a), none of the predictors 

were significantly associated with the rate of decline in students’ interest in physical 

sciences except for implicit theories of math ability. 

 The effects of predictors on the Intercept of intention to major in STEM. For 

intention to major in STEM, all 7 models provided minimally acceptable fit to the data 

when using the FIML method and when using the MI method (see Table 6). As shown 

in Table 5, under the FIML method, gender (β = -0.52), identification as Asian (in 

contrast to Native American) (β = 0.67), number of math classes taken in high school (β 

= 0.17), investigative learning experiences (β = 0.73), implicit theories of math ability 

(β = -0.35), and math ACT score (β = 0.10) were individually found to be significant 

predictors of the Intercept. Under the MI method, results were consistent except that 

identification as White (in contrast to Native American) was found to be significant (β = 

0.18). 
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However, given the pre-established rule, only gender, identification as Asian (in 

contrast to Native American), number of math classes taken in high school, 

investigative learning experiences, implicit theories of math ability, and math ACT 

score would individually be considered significant predictors of the Intercept. Thus, 

Hypothesis 2(b), which states that women will have lower intention to major in STEM 

at the starting point of the trajectory, was supported. Hypothesis 3(b), which states that 

in comparison to Native American students, Asian students will have higher intention to 

major in STEM at the starting point of the trajectory, was also supported. However, the 

anticipation that White students, in comparison to Native American students, would 

have higher intention to major in STEM at the starting point of the trajectory, was not 

supported. Hypothesis 4(b), which states that the size of students’ childhood town will 

be associated with their intention to major in STEM at the starting point of the 

trajectory, was not supported. Regarding students’ general learning experiences, 

Hypothesis 5(b), which states that more exposure to math in high school will be 

associated with higher intention to major in STEM, was supported. However, 

Hypothesis 6(b) was only partially supported. Only investigative learning experiences 

were found to be associated with intention to major in STEM. Hypothesis 7(b), which 

states that a fixed view of math ability will be negatively associated with intention to 

major in STEM, was supported. Lastly, Hypothesis 8(b), which states that students’ 

math score on standardized test will be associated with their intention to major in 

STEM, was also supported. 

The effects of predictors on the Slope of intention to major in STEM. 

Regarding Research Question 2(b) through Research Question 8(b), none of the 



37 

predictors were found to be significantly associated with the Slope using the MI 

method. However, identification with Asian (β = 0.11) and the size of childhood town 

(β = 0.03) were individually found to be significant under the FIML method. Thus, 

addressing Research Question 2(b) to Research Question 8(b), under the pre-established 

rule, none of the current predictors were significantly associated with the rate of decline 

in students’ intention to major in STEM. 

Hypothesis 9 and Research Question 9 

Hypothesis 9 stated that (a) interest in physical sciences and (b) intention to 

major in STEM at the starting point of the trajectory would be associated with having a 

major with higher levels of math emphasis. Research Question 9 asked whether the rate 

at which (a) interest in physical sciences and (b) intention to major in STEM changes 

over time would be associated with higher levels of math emphasis in students’ major. 

Interest in physical sciences and academic major. For interest in physical 

sciences, the model that included the level of math emphasis in students’ major as the 

outcome of the Intercept and Slope provided minimally acceptable fit to the data both 

when using the FIML method (χ2(7) = 52.55, p < 0.05; RMSEA = 0.05; CFI = 0.98; TLI 

= 0.97; SRMR = 0.07) and when using the MI method (χ2(7) = 22.59, p > 0.05; RMSEA 

= 0.03; CFI = 0.97; TLI = 0.96; SRMR = 0.08). As shown in Table 9, using the FIML 

method, the effects of Intercept (β = 1.24, p > 0.10) and Slope (β = -6.96, p > 0.10) on 

students’ major were not significant. Using the MI method, the effect of Intercept (β = 

0.97, p < 0.05) was found to be significant whereas the effect of Slope (β = -1.67, p > 

0.10) was not. Thus, Hypothesis 9(a) was not supported. Interest in physical sciences at 

the starting point of the trajectory was not associated with having a major with higher 
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math emphasis. Addressing Research Question 9(a), the Slope, or rate at which interest 

in physical sciences changed over time, was not associated with having a major with 

higher math emphasis.  

Intention to major in STEM and academic major. For intention to major in 

STEM, the model provided acceptable fit to the data both when using the FIML method 

(χ2(7) = 21.85, p < 0.05; RMSEA = 0.03; CFI = 1.00; TLI = 0.99; SRMR = 0.04) and 

when using the MI method (χ2(7) = 11.12, p > 0.05; RMSEA = 0.01; CFI = 0.99; TLI = 

0.99; SRMR = 0.04). Using the FIML method, the effect of Intercept (β = 0.70; p < 

0.01) was significant whereas the effect of Slope (β = 0.81, p > 0.10) was not. Similarly, 

using the MI method, the effect of Intercept (β = 0.71, p < 0.01) was found to be 

significant whereas the effect of Slope (β = 0.51, p > 0.10) was not (Table 9). Thus, 

Hypothesis 9(b) was supported. Intention to major in STEM at the starting point of the 

trajectory was associated with having a major with higher math emphasis. Addressing 

Research Question 9(b), the Slope, or the rate at which intention to major in STEM 

changed over time, was not associated with having a major with higher math emphasis. 

Research Question 10 

Research Question 10 asked whether students’ trajectories of (a) interest in 

physical sciences and (b) intention to major in STEM would be associated with their 

overall academic performance. To explore this, I ran LGMs with Intercept and Slope as 

the predictors of GPA.  

Interest in physical sciences and GPA. For interest in physical sciences, the 

model provided minimally acceptable fit to the data when using both when using the 

FIML method (χ2(7) = 50.44, p < 0.05; RMSEA = 0.05; CFI = 0.96; TLI = 0.95; SRMR 
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= 0.07) and when using the MI method (χ2(7) = 35.52, p > 0.05; RMSEA = 0.04; CFI = 

0.95; TLI = 0.93; SRMR = 0.09). As shown in Table 9, using the FIML method, the 

effects of Intercept (β = -0.19, p > 0.10) and Slope (β = 4.51, p > 0.10) on GPA were 

not significant. Similarly, using the MI method, the effects of Intercept (β = -0.06, p > 

0.10) and Slope (β = 1.93, p > 0.10) were also not significant. Thus, answering 

Research Question 10(a), students’ trajectory of interest in physical sciences was not 

related to their overall academic performance.   

Intention to major in STEM and GPA. For intention to major in STEM, the 

model provided acceptable fit to the data both when using the FIML method (χ2(7) = 

13.99, p > 0.05; RMSEA = 0.02; CFI = 1.00; TLI = 0.99; SRMR = 0.03) and when 

using the MI method (χ2(7) = 8.85, p > 0.05; RMSEA = 0.01; CFI = 1.00; TLI = 1.00; 

SRMR = 0.03). Using the FIML method, the effects of Intercept (β = -0.12, p > 0.10) 

and Slope (β = 1.55, p > 0.10) on GPA were not significant. Similarly, using the MI 

method, the estimates of Intercept (β = -0.001, p > 0.10) and Slope (β = 0.07, p > 0.10) 

were also not significant (Table 9). Thus, answering Research Question 10(b), students’ 

trajectory of intention to major in STEM was not related to their overall academic 

performance. 

Final Model 

The final model was intended to provide a comprehensive view of relationships 

among the predictor variables, Intercept, Slope, and the level of math emphasis in 

students’ major. Variables that were found to be significant individual predictors were 

entered into the final model as predictors of the Intercept and Slope. Students’ major, 



40 

coded by the level of math emphasis, was entered as the outcome of Intercept and 

Slope.  

Interest in physical sciences final model. For interest in physical sciences, 

predictors in the final model included: gender, identification as White, identification as 

Asian, number of math classes taken in high school, realistic learning experiences, 

investigative learning experiences, implicit theories of math ability, and math ACT 

score. The model provided acceptable fit to the data both when using the FIML method 

(χ2(32) = 76.56, p < 0.05; RMSEA = 0.04; CFI = 0.98; TLI = 0.96; SRMR = 0.04) and 

when using the MI method (χ2(32) = 68.67, p < 0.05; RMSEA = 0.02; CFI = 0.98; TLI 

= 0.97; SRMR = 0.04).  

In the final model that was estimated with FIML, gender (β = -0.28), 

identification as Asian (β = 0.12), number of math classes taken in high school (β = 

0.08), realistic learning experiences (β = 0.10), investigative learning experiences (β = 

0.39), implicit theories of math ability (β = -0.15), and math ACT score (β = 0.03) were 

found to be significant predictors of the Intercept of interest in physical sciences (Table 

7) in the final model. This set of results was the same when the model was estimated 

using the MI method. None of the predictors were found to be significant for the Slope 

of interest in physical sciences under the FIML method (Table 7). Thus, even though 

implicit theories of math ability (β = -0.03) emerged as a significant predictor for the 

Slope under the MI method, it would not be evaluated as significant given the pre-

established rule.  

Lastly, the effect of Intercept of interest in physical sciences on the level of math 

emphasis in students’ major was found to be significant under both FIML method and 
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MI method (β = 1.04 and β = 0.91, respectively). That is, students’ interest in physical 

sciences in their first year in college was associated with higher math emphasis in their 

major. However, the effect of Slope on the level of math emphasis in students’ major 

was not significant (see Table 7).  

Intention to major in STEM final model. For intention to major in STEM, 

gender, identification as White, identification as Asian, number of math classes in high 

school, investigative learning experiences, implicit theories of math ability, and math 

ACT score were entered as predictors in the final model. The model provided 

acceptable fit to the data both when using the FIML method (χ2(29) = 68.34, p < 0.05; 

RMSEA = 0.03; CFI = 0.98; TLI = 0.97; SRMR = 0.03) and when using the MI method 

(χ2(29) = 44.91, p > 0.05; RMSEA = 0.01; CFI = 0.99; TLI = 0.99; SRMR = 0.03). 

In the final model that was estimated with FIML, only identification as Asian (β 

= 0.39), number of math classes in high school (β = 0.08), investigative learning 

experiences (β = 0.76), and implicit theories of math ability (β = -0.13) were found to be 

significant predictors of the Intercept of intention to major in STEM (Table 8). The 

results varied slightly when the model was estimated using MI. Specifically, gender (β 

= -0.24) and math ACT score (β = 0.03) were found to be significant predictors of the 

Intercept. Number of math classes taken in high school was found to be marginally 

significant (β = 0.05; p = 0.08). Given the pre-established rule, gender and math ACT 

score would not be considered significant. Given that the effect of number of math 

classes taken in high school was marginally significant (p ≤ 0.08) for the MI method 

and was fully supported under the FIML method, it was judged to be a significant 

predictor in the context of the current study.  
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Under the FIML method, investigative learning experiences (β = -0.06) and 

math ACT score (β = 0.01) were found to be significant predictors of the Slope. In 

addition, gender (β = -0.06) and identification as Asian (β = 0.09) were found to be 

marginally significant predictors of Slope of intention to major in STEM (p ≤ 0.08). 

However, none of the predictors were found as significant predictors of Slope under the 

MI method (Table 8). Thus, the conclusion is that none of these variables were 

significantly related to the rate at which intention to major in STEM changes over time.  

Lastly, as shown in Table 8, the effect of Intercept of intention to major in 

STEM on the level of math emphasis in students’ major was found to be significant 

under both FIML method and MI method (β = 0.64 and β = 0.67, respectively). That is, 

students’ intention to major in STEM in their first year in college was associated with 

the extent to which math is emphasized in their major. In addition, the effect of Slope of 

intention to major in STEM on the level of math emphasis in students’ major was found 

to be (marginally) significant under both FIML method and MI method, (β = 2.20, p < 

0.01 and β = 1.09, p = 0.07, respectively). That is, the rate at which students’ intention 

to major in STEM declined over time was associated with the extent to which math was 

emphasized in their major. 

Discussion 

The purpose of the current study was to apply LGM to study changes in 

students’ interest in physical sciences and intention to major in STEM (see Table 10 for 

a summary of findings). First, an unconditional model was used to test the overall 

trajectories. The model with linear declines over time fit well for intention to major in 

STEM but not interest in physical sciences. Based on the preliminary analysis, students 
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tend to have the lowest interest in physical sciences in their second year. This finding 

may relate to the general lack of engagement in students’ second year in college, which 

is commonly known as the “sophomore slump” (McBurnie, Campbell, & West, 2012; 

Tobolowsky, 2008). In the transition from high school to college, students often 

question their self-worth and direction in life and often experience withdrawal 

behaviors such as depression, decreased motivation, and loss of interest in everyday 

activities (Gerdes & Mallinckrodt, 1994). The “reality check,” (Keup, 2007), that is, 

realizing that college life is different from the one that was previously imagined, may 

leave students confused, unconfident, and helpless (McBurnie et al., 2012; Gohn, 

Swartz, & Donnelly, 2001). For students who are considering a STEM major, the level 

of difficulty in the math and science classes that are required in STEM curricula in 

students’ first year may be particularly damaging to students’ self-esteem, persistence, 

and interest (Kardash & Wallace, 2001). 

On the other hand, students’ intention to major in STEM decreased linearly as 

students move toward their final year in college. In contrast to interest, which can be 

defined as a motivational state that is initiated by the interaction between the person and 

an environmental stimulus (Hidi & Renninger, 2006), intention involves more 

deliberate planning, goal setting, and consideration of the context (Ajzen, 1991). Thus, 

a student may have high interest in a particular subject while having no intention to 

pursue it as a degree. The current finding on the decline of intention to major in STEM 

over the course of undergraduate years extends previous research that indicated that 

positive attitudes toward science generally decline throughout the middle school and 

high school years (George, 2000). Moreover, the current study also found that the rate 
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of decline in the intention to major in STEM was not related to the level of intention to 

major in STEM in the first year.  

 One of the key advantages of the LGM is that it allows researchers to examine 

the predictors of the Intercept and Slope. In testing Hypotheses 2 through 8, the current 

study found that gender, race/ethnicity, the number of math classes taken in high school, 

realistic learning experiences, investigative learning experiences, implicit theories of 

math ability, and math ACT score were significant predictors of the Intercept of interest 

in physical sciences when they were individually modeled as the predictor. However, 

contrary to Hypothesis 4, the size of childhood town was not related to interest in 

physical sciences. This hypothesis was based on the assumption that the size of 

childhood town may be related to an enriched learning environment, socioeconomic 

status, and exposure to scientific ideas (see Basham, Israel, & Maynard, 2010; 

Greenwald, Hedges, & Laine, 1996). However, this connection between the size of 

childhood town and interest in physical sciences may be distal. Alternatively, it is 

possible that the relationship between city/town size and educational resources is not 

fully established. Moreover, people may prefer things that are outside of one’s 

immediate environment or normal experiences (Kashdan, & Silvia, 2009). That is, if a 

person grew up in an environment where scientific thinking is not emphasized, he or 

she may be interested in science due to curiosity. 

 In addressing Research Questions 2 through 8, the current study found that only 

implicit theories of math ability was related to the rate of change in students’ interest in 

physical sciences. Specifically, a more fixed view of math ability was associated with a 

faster rate of decline in interest in physical sciences. That is, students who believe that 
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they cannot change their math ability had a faster decline in their interest in physical 

sciences across the undergraduate years. This finding supports the main assertion of 

Dweck’s growth mindset theory, which states that people’s perception regarding the 

malleability of human attributes will influence their behaviors, such as effort and 

perseverance in relevant domains (e.g., Komarraju & Nadler, 2013). Furthermore, this 

finding is consistent with the Blackwell et al.’s (2007) finding, which indicated that the 

malleable view of intelligence was associated with an upward trajectory in grades 

across two years in a sample of 7th graders. Given that behavioral outcome variables 

such as achievement and persistence have an implied temporal element, it is important 

to examine the effect of people’s implicit theories over time. The current study is one of 

the few studies that has investigated the long-term effect of people’s implicit theories on 

interest.  

 For students’ intention to major in STEM, results of the LGM indicated that 

gender, identification as Asian, the number of math classes taken in high school, 

investigative learning experiences, implicit theories of math ability, and math ACT 

score were significant predictors of the Intercept when they were individually modeled 

as the predictor (Hypotheses 2b through 8b). Identification with the White group was 

not a significant predictor, indicating no significant difference between Native 

American and White students in terms of their intention to major in STEM. Similar to 

students’ interest in physical sciences, the size of childhood town was not associated 

with the initial level of intention to major in STEM. Interestingly, realistic learning 

experiences was not a significant predictor. This could be due to the fact that many 

highly realistic occupations, such as plumbers and landscape workers, do not require a 
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college education (O*NET, retrieved 2018). That is, interest in a highly realistic 

occupation may not be highly related to intention to enter a STEM field. Moreover, the 

Realistic occupation theme may be more associated with physical sciences occupations 

(e.g., engineering) than life sciences occupations (e.g., medical doctors) or STEM fields 

in general. One meta-analysis found that the gender difference was larger for the 

Realistic theme than the Investigative theme (Su et al., 2009). This could explain why 

both realistic and investigative learning experiences predicted interest in physical 

sciences in students’ first year in college but only investigative learning experiences 

predicted intention to major in STEM in students’ first year in college.  

 Addressing research questions 2(b) through 8(b), the overall conclusion is that 

there were no significant relationships between any of the predictors and the rate of 

decline of intention to major in STEM. Although the declining trend of intention to 

major in STEM was clear, the increment of the decline was relatively small. Given this 

subtlety, it is not surprising to see that none of the predictors significantly predicted the 

Slope.  

 Lastly, the final model tested multiple predictors and the outcome in the same 

model. For interest in physical sciences, all predictors (except for identification as 

White) that were statistically significant in the previous step also significantly predicted 

interest in physical sciences in students’ first year in college when entered into the final 

model. The interest in physical sciences in students’ first year in college, in turn, 

predicted the extent to which math is emphasized in students’ academic major. 

However, concluding based on the results obtained using the FIML method and the 

results obtained using MI method, none of the predictors were associated with the rate 
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of decline in interest in physical sciences. Moreover, the rate of decline in interest in 

physical sciences did not predict the extent to which math is emphasized in students’ 

academic major. 

 Concluding based on the results obtained using the FIML method and the results 

obtained using MI method, only identification as Asian, number of math classes taken 

in high school, investigative learning experiences, and implicit theories of math ability 

emerged as significant predictors of intention to major in STEM in students’ first year 

in college. That is, gender and math ACT score did not play a significant role in the 

intention to major in STEM in the first year. This could be due to the fact that in 

contrast to the category of physical sciences, proportionally more women are in the 

general STEM fields, which include life sciences. Similarly, math ACT score may be 

more relevant to physical sciences than STEM fields in general. Thus, gender and math 

ACT score may be more relevant to interest in physical sciences and less relevant to the 

intention to major in general STEM fields.  

Similar to interest in physical sciences, intention to major in STEM in students’ 

first year in college also predicted the extent to which math is emphasized in students’ 

academic major. Unlike interest in physical sciences, however, the rate of decline in 

intention to major in STEM also predicted the extent to which math is emphasized in 

students’ academic major. According to the SCCT model (Lent et al., 1994; Lent et al., 

2001), intention is a more proximal predictor of actual choice than interest. This current 

finding supports this notion, such that the change in interest in physical sciences over 

time did not predict the choice of a math-heavy major but the intention to major in 

STEM did. To more directly predict whether or not students will choose a STEM 
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career, interest-based questions (e.g., are you interested in engineering?) may be less 

predictive than intention-based questions (e.g., do you intend to get a degree in 

engineering?). 

Although not directly tested in the current study, the results provide some 

support for SCCT’s propositions regarding interest, intention, and choice (e.g., Lent et 

al., 1994). When approached from a longitudinal perspective, the rate of change for the 

intention variable was related to the decision outcome whereas the rate of change for the 

interest variable was not. That is, it can be inferred that intention is a more proximal 

predictor of the actual career decision. Referring back to the discussion of interest as a 

psychological state, individuals may remain interested in a particular subject matter 

regardless if it is a realistic or obtainable career goal. 

Limitations 

Despite the strengths of the current study in the application of LGM, the 

utilization of official records, and the inclusion of a large Native American student 

sample, several limitations should be noted. First, missing data is inevitable in 

longitudinal research (Bollen & Curran, 2006). I utilized both FIML and MI missing 

data handling techniques and compared results in order to make conservative 

conclusions regarding the significance of predictor variables. However, depending on 

how one perceives the issue, the amount of missing data may not be much of a concern 

in the current study. For example, consider the reasoning behind a cohort-sequential 

modeling approach (see Duncan, Duncan, Strycker, & Chaumeton, 2007), under the 

condition that the sample size is large, variables assessed on an overlapping subset of 

time points from different groups of individuals can be synthesized and assumed to 
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represent variables for the full set of time points from one group. Given that the current 

study had a large sample size at each time point, from a macro perspective, the cross-

time data can be thought at as coming from the same group despite that there are 

different individuals in the group.  

 Another limitation of the current study concerns the fourth time point, which 

consisted of students who are in their fourth or greater years of college instead of just 

the fourth year. This limitation is due to the fact that the survey used in the current study 

attempted to mirror how the university defines “seniors.” Under this system, all students 

who have earned 90 credit hours or more would be categorized as “seniors.” That is, a 

student who have earned 90 credit hours and a student who have earned 130 credit 

hours (who is more likely to have been at the university for more than 4 years), would 

both be regarded as a “senior.” From the longitudinal modeling perspective, using more 

specific time points (i.e., the number of times of the repeated assessment) would usually 

allow researchers to make stronger and more reliable conclusions regarding the results 

(see Willett, Singer, & Martin, 1998). However, in the current study, the distinction 

among fourth-, fifth-, and sixth-year students was not available. 

 In addition, while it would be informative to examine the interest and intention 

models in combination, in the current study they were examined separately. Complex 

models require a large amount of data to be sustainable and meaningful (see Myung, 

2000). Thus, given the limited amount of data, it is questionable whether sophisticated 

models that combine the interest and intention variables and intention variable can be 

held up to scrutiny. Moreover, many cross-sectional studies have provided strong 

support for the positive relationship between interest and persistence intention (e.g., 
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Lent et al., 2008; Lent et al., 2011). Thus, the gain in the literature regarding the 

relationship between the longitudinal effect of interest and intention does not outweigh 

the risk in conducting a complex model that may not converge or be stable.  

 In the current study, students’ majors, coded in terms of the number of math 

classes required, was treated as a continuous variable rather than a categorical one. This 

limitation is due to the fact that a categorical variable with four levels was too complex 

for the proposed model under the MI method, causing a failure to converge. Given that 

institutions and government agencies define STEM curricula and fields differently, the 

current approach in defining the variable as a continuum based on the extent to which 

math is emphasized may be a useful alternative.  

 Finally, the study was cautious about making Type I errors by utilizing model 

results from both the FIML and MI methods. Although the levels of significance for 

most parameters were the same between the two methods, a small number of them were 

not. The judgements regarding whether the FIML or MI method should be preferred in 

those situations were beyond the scope of the current study. A few of the effects (e.g., 

the effect of the implicit theories of math ability on the Slope of the interest variable) 

were small despite their significance; thus, practical significance may be debatable. 

Future Research Directions 

The current study is one the few studies that has examined the interest and 

intention aspects of the SCCT model longitudinally and may be the first study to have 

utilized the LGM approach. By considering the results obtained from both the FIML 

and MI methods, the conclusions of the current study err on the side of caution in terms 

of rejecting the null hypotheses. Researchers should consider replicating the current 
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models or testing highly similar models if a fuller set of data is available. Furthermore, 

it would be important to assess the repeated measurements more frequently (e.g., once a 

semester instead of once a year). The last time point of the current study consists of 

students in multiple years of college. Considering that most students don’t graduate 

within four years (Lewin, 2014; National Student Clearinghouse, 2016), fifth-year 

seniors and sixth-year seniors may have different characteristics compared with students 

who graduate within four years. For example, for students who completed a bachelor’s 

degree in 2014 and 2015, women who were 20 years old or older when they started 

college spent on average 8.8 calendar years for a bachelor’s degree (National Student 

Clearinghouse, 2016).  

As discussed in the limitations section, given the scarcity of data and the 

complexity of the models, the current study did not attempt to model the paths among 

the interest variable, the intention variable, and the choice variable. Researchers may be 

able to obtain a fuller set of data if data were collected more frequently (e.g., once or 

twice a semester). This would allow a finer examination of the relationships among the 

Intercept and Slope of the interest variable and the Intercept and Slope of the intention 

variable, as well as their relationship with the choice variable.  

In addition, the current study was one of the few studies to investigate the 

impact of implicit theories of math ability on outcomes across time. The implicit 

theories framework defines the extent to which people believe that human attributes can 

be changed over time (Dweck, 2012). Thus, it is sensible to expect that people’s beliefs 

regarding the malleability of attributes will be related to behavioral outcomes at not just 

one time point but over multiple time points. This idea has been supported in Blackwell 



52 

et al. (2007) where implicit theories of intelligence was related to the trajectory of 

academic grade over time. Researchers may wish to further verify this finding using 

other attributes, such as morality and leadership ability. Specific to the study of STEM 

career decisions, researchers may want to investigate the impact of implicit theories of 

math ability on effort and persistence in math classes over time.  

The current study is an effort to analyze the trajectories of Native American, 

Asian, and White students’ interest and intention in STEM from a macro and 

quantitative perspective. Given that qualitative research often provides descriptions and 

reasoning at a finer, more theoretical level, it is wise for researchers to conduct 

interviews with students regarding their interest and intention in STEM fields and 

continuously follow up with the same set of interview questions throughout students’ 

time in college. Analysis of exemplar cases may provide unique insights to the problem 

that would not be captured by quantitative analysis otherwise. 

Practical Implications and Suggestions for Intervention 

One of the primary goals of the current study was to explore the rate of change 

in interest and intention to major in STEM over students’ time in college. The interest in 

physical sciences was at the lowest level in students’ second year in college, indicating 

the potential need for interventions after students’ first year in college to retain students 

in STEM-related majors. Current programs that are aimed at assisting students in 

transitioning into college primarily occur in the summer between high school and 

college. Participation in these summer programs has been associated with higher 

academic performance and intention to major in a STEM field (Eagan et al., 2014). 

However, these academic preparation programs (e.g., Headlands Indian Health Careers 
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Program, University of Oklahoma) are often only available to students in the summer 

before the first year of college. The effectiveness of these programs may further be 

reduced by other complications (e.g., social relationship and identity crisis) in students’ 

first year college experience. 

Tobolowsky (2008) referred to students’ second year in college as “a forgotten 

year” for two reasons. First, students who have been given attention such as orientation 

programs in their first year often feel that they are being forgotten in their second year. 

Second, Tobolowsky (2008) noted that higher education administrators usually allocate 

the majority of resources toward programs that are designed to aid students in their first 

year and last year, neglecting students in their second year. The second year was 

described as a time of “inertia,” where students can potentially develop strategies to 

combat the problems that they have experienced in their first year and plan their path 

for their remaining time in college (Freedman, 1956). Programs (e.g., Second-year 

Transformational Experience Program at the Ohio State University) that focus on 

helping second-year students to maintain engagement and interest, particularly those 

who are interested in STEM in their first year, may be critical in reducing the rate in 

which students drop out of STEM disciplines.  

As shown in the model, for both interest in physical sciences and intention to 

major in STEM, rates of decline were minimal. In other words, the level of interest in 

physical sciences and intention to major in STEM over the second, third, and fourth 

year in college remained relatively similar to the level students reported in their first 

year. It can be inferred that most of the variation in interest and intention was shaped 

prior to college. This finding is pessimistic in the sense that the opportunity to improve 
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the current status of underrepresentation of certain groups in STEM during college is 

minimal. According to SCCT, people’s career decisions are distally influenced by their 

socioeconomic status and contextual affordance. These variables then impact self-

efficacy in a specific domain, resulting in the development of interest and intention in 

that domain. For example, Thompson and Dahling (2010) found that perceived social 

status was related to exposure to different types of career-related learning experiences. 

Specifically, higher perceived social status was found to be related to learning 

experiences in the Investigative, Enterprising, and Conventional domains. Interventions 

that target students’ socioeconomic status, family background, and early self-efficacy 

generally occur prior to college and are beyond the scope of higher education 

administrators. 

However, remaining optimistic, there are a few characteristics and opportunities 

that are unique to postsecondary education. First, in college, students are not formally 

under the influence of their parents. Second, unlike primary and secondary schools, 

students are free to set their own pace of learning in college. As seen in Keup (2007), 

students view college as a place where they can gain more autonomy regarding their 

identity and future. Third, postsecondary schools often offer a broader variety of 

courses, such that students may choose to take courses to address their specific 

weaknesses if advised appropriately. In general, college freshman find that being able to 

go to college is satisfying (Ruffalo Noel Levitz, 2015).  

To improve the current situation with the underrepresentation of minority groups 

in STEM, higher education administrators can capitalize on these advantages that are 

unique to postsecondary education by considering interventions in curriculum design 
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and course plans. In a story in the New York Times, Tough (2014) illustrated the 

challenges that are experienced by students from lower income families through the lens 

of a female, African American, first-generation student. The article further discussed 

how some of the challenges are addressed by the implementation of an alternative 

course plan called Texas Interdisciplinary Plan. Under this plan, an alternative 

introductory chemistry class, characterized by a smaller class size, longer hours of 

instruction, and availability of advisers and peer mentors, was shown to be effective in 

improving standardized chemistry scores of students who came from lower income 

families and who scored lower on the SAT (Tough, 2014). 

Other intervention plans that focus on providing role models, changing students’ 

perceptions, and offering tools and strategies to students have also been shown to be 

effective. For example, in difference-education intervention, students were provided 

with insights about the contribution of diverse background to education and strategies to 

combat disadvantages due to socioeconomic background (Stephens, Hamedani, & 

Destin, 2014). The intervention was effective in increasing first-generation students’ 

utilization of college resources and eliminating the achievement gap between first-

generation and continuing-generation college students (Stephens et al., 2014). In 

general, studies (e.g., Mattanah et al., 2010) also found that interventions targeting 

students’ socialization can mitigate negative emotions such as loneliness.  

As informed by the current findings, a growth mindset or the malleable view of 

intelligence or ability is a key ingredient to student success. According to Seymour 

(1995), one of the major causes of high STEM major drop-out rate resides in the 

pedagogy styles in introductory STEM courses. The harshness in grading systems, the 
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intensity in the sequence of classes, and the unsupportive culture of science education 

contribute to the low retention rate in STEM (Seymour, 1995). Furthermore, the 

practice of telling students that certain classes are intended to “weed out” some 

students, which signals a fixed view of intelligence and ability, can be especially 

harmful to students who are among the demographic groups that are traditionally 

underrepresented in STEM (Kardash & Wallace, 2001; Moss-Racusin, Dovidio, 

Brescoll, Graham, & Handelsman, 2012). One study found that teachers who hold a 

fixed view of math ability were more likely to judge students as having low ability and 

would be more likely to provide “comforting” feedback such as “Not everyone is good 

at math,” rather than provide students with strategies to improve (Rattan, Good, & 

Dweck, 2012). In this study, students who received the “comforting” feedback showed 

lower motivation and lower expectations for their own performance. 

As Ratten et al. (2012) stated, the underrepresentation of minority groups in 

STEM or math achievement in general can be traced back to whether students believe 

that they can improve by exerting effort. The general declining trajectories in the 

interest and intention to major in STEM, as seen in the current study, may very well be 

due to the pedagogy styles, people’s assumptions about human intelligence and 

abilities, and an unwelcoming culture in STEM classrooms. In sum, interventions would 

have to be systematically targeting the immediate learning environment in order to 

facilitate changes in the perceptions. That is, to reduce the underrepresentation of 

various minority groups in STEM, the first step would be to intervene on how math and 

science instructions are delivered. 

Conclusion 
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The growth in the number of STEM occupations demands a workforce that is 

diverse and well-trained in those domains. However, due to various reasons, women 

and ethnic minority groups continue to be underrepresented in STEM fields. One of the 

main reasons is the fact that while in college, these groups of individuals are less 

interested in STEM topics and/or have a lower intention to major in a STEM field 

(National Science Foundation, 2014). Utilizing the latent growth modeling technique, 

the current study found that, in general, college students’ interest and intention in 

STEM are declining over time. However, these declines are minimal, which indicates 

that changes in interest and intention typically occur before college. This also means 

that major interventions targeting the development of interest should occur prior to 

college. Confirming past research on the effects of the learning context, findings 

regarding implicit theories of math ability speaks to the importance of facilitating a 

growth mindset in education. With regards to shaping the STEM workforce, the growth 

mindset emphasis is particularly important to introductory STEM classes at the college 

level given that they are college students’ first interaction with the subject domains.  

In conclusion, the belief that people can improve with persistent effort is a 

critical criteria for the emergence and maintenance of a workforce. Specific to the 

STEM workforce, at the societal level, creating the general normative belief that one 

can further develop math- and science-related skills and abilities will prompt 

individuals to learn and strive in relevant domains, and therefore, mitigate the problem 

with underrepresentation of women and ethnic minority groups in STEM fields. 
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Table 1  

Data Collection: Cohort of Measurement by Time of Assessment  
 Initial 

Measurement 

Second 

Measurement  

Third 

Measurement 

Fourth 

Measurement 

CM1 Spring 14 Spring 15 Spring 16 Spring 17 

CM2 Fall 14 Fall 15 Fall 16  

CM3 Spring 15 Spring 16 Spring 17  

CM4 Fall 15 Fall 16   

CM5 Spring 16 Spring 17   

CM6 Fall 16    

Note. The data collection process started in Spring 14 and ended in Spring 2017. CM = 

Cohort of Measurement, which is defined by the semester in which participants 

completed the initial survey. No new participants were added in Spring 2017. There are 

a total of 6 possible semesters in which participants could start the initial survey. 
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Figure 1. A revised version of SCCT’s interest and choice model. Dashed arrow 

indicates the path that was not tested in the current study.  
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Figure 2. An example of latent growth model. 
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Figure 3. An example of the conditional latent growth model. 
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Figure 4. The structure of the final model. 
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Figure 5. Interest in physical sciences by gender. The scale ranged from 1 = strongly 

dislike to 5 = strongly like. 
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Figure 6. Intention to major in STEM by gender. The scale ranged from 1 = strongly 

disagree to 5 = strongly agree. 

2.5

2.7

2.9

3.1

3.3

3.5

3.7

3.9

1 2 3 4

S
co

re
 M

ea
n
s

Years in College

Male Female



89 

 
 

Figure 7. Interest in physical sciences by ethnicity. The scale ranged from 1 = strongly 

dislike to 5 = strongly like. 
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Figure 8. Intention to major in STEM by ethnicity. The scale ranged from 1 = strongly 

disagree to 5 = strongly agree. 

  

2.6

2.8

3

3.2

3.4

3.6

3.8

4

1 2 3 4

S
co

re
 M

ea
n
s

Years in College

Native American Asian White



91 

Appendix A: Learning Experiences Questionnaire (Realistic Subscale) 

Learning Experiences Questionnaire (Realistic Subscale; Schaub, 2004) 

 

Note. The instrument was obtained by contacting the author. Participants rated the items 

using a scale from 1 (strongly disagree) to 6 (strongly agree). 

 

 I have made simple car repairs.  

 I have made repairs around the house.  

 I have been successful when I used tools to work on things.  

 I have done a good job at things that involved physical labor (e.g., landscaping).  

 I have done well in building things.  

 I have observed members of my family build things.  

 I watched people whom I respect work in the outdoors.  

 I observed people whom I respect repair mechanical things.  

 While growing up, I watched adults whom I respect fix things 

 I observed people whom I admire work in a garden.  

 People I respect have urged me to learn how to fix things that are broken.  

 Teachers I admired encouraged me to take classes in which I can use my mechanical 

abilities.  

 While growing up, adults I respected encouraged me to work with tools.  

 People whom I look up to have urged me to pursue activities that require manual 

dexterity.  

 Family members have encouraged me to pursue activities that involve working 

outdoors.  

 I have become uptight while trying to repair something that was broken.  

 I have become nervous when working on mechanical things (e.g., appliances).  

 I have felt uneasy while using tools to build something.  

 I have felt anxious while performing basic repairs on a car. I remember feeling 

anxious while working on something that required manual labor. 
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Appendix B: Learning Experiences Questionnaire (Investigative 

Subscale) 

Learning Experiences Questionnaire (Investigative Subscale; Schaub, 2004) 

 

Note. The instrument was obtained by contacting the author. Participants rated the items 

using a scale from 1 (strongly disagree) to 6 (strongly agree). 

 

 I performed well in biology courses in school 

 I was successful performing science experiments in school.  

 I received high scores on the math section of my college entrance exam (e.g., SAT).  

 I have easily understood new math concepts after learning about them in class.  

 I have demonstrated skill at conducting research for my term papers. 

 In school, I saw teachers whom I admired work on science projects.  

 While growing up, I saw people I respected using math to solve problems.  

 I have seen people whom I respect participating in activities that require math 

abilities 

 I recall seeing adults whom I admire working in a research laboratory.  

 While growing up, I recall seeing people I respected reading scientific articles.  

 People whom I respect have encouraged me to work hard in math courses.  

 I remember my family telling me that it is important to be able to solve science 

problems.  

 People whom I looked up to told me that it is important to read scholarly articles 

 My friends have encouraged me to use my research abilities.  

 Teachers whom I admire have encouraged me to take science courses.  

 I have become nervous while solving math problems.  

 I have felt anxious while taking a science course in school.  

 I have felt uneasy while learning new topics in biology courses.  

 Reading scientific articles has made me feel uneasy.  

 I have felt dread while using math in a job. 
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Appendix C: Implicit Theories of Math Ability 

Implicit Theories of Math Ability 

 

Note. The instrument was modified based on Dweck’s (1999) measure of implicit 

theories of intelligence. “Intelligence” was replaced with “math ability.” Participants 

rated the items using a scale from 1 (strongly disagree) to 6 (strongly agree). * indicate 

“malleable” items. 

 

 You have a certain amount of math ability, and you can’t really do much to change 

it. 

 Your math ability is something about you that you can’t change very much. 

 No matter who you are, you can significantly change your math ability level.* 

 To be honest, you can’t really change how intelligent you are at math. 

 You can always substantially change how intelligent you are at math.* 

 You can learn new things, but you can’t really change your basic math ability. 

 No matter how much math ability you have, you can always change it quite a bit.* 

 You can change even your basic math ability level considerably.* 

 

 

 

 

 

 

 

 

 

 

 


