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Abstract 

 

This research focuses on planning and scheduling of adaptive and restorative 

capacity enhancement efforts provided by complex infrastructure network in the 

aftermath of disruptive events. To maximize the adaptive capacity, we propose a 

framework to optimize the performance level to which a network can quickly adapt to 

post disruption conditions by temporary means. Optimal resource allocation is 

determined with respect to the spatial dimensions of network components and available 

resources, the effectiveness of the resources, the importance of each element, and the 

system-wide impact to potential flows within the network. Optimal resource allocation 

is determined with respect to the spatial dimensions of network components and 

available resources, the effectiveness of the resources, the importance of each element, 

and the system-wide impact to potential flows within the network.   

To optimize the restorative capacity enhancement, we present two mathematical 

formulations to assign restoration crews to disrupted components and maximize 

network resilience progress in any given time horizon. In the first formulation, the 

number of assigned restoration crews to each component can vary to increase the 

flexibility of models in the presence of different disruption scenarios. Along with 

considering the assumptions of the first formulation, the second formulation models the 

condition where the disrupted components can be partially active during the restoration 

process. We test the efficacy of proposed formulation, for adaptive and restorative 

capacity enhancement, on the realistic data set of 400-kV French electric transmission 



xv 

network. The results indicate that the proposed formulations can be used for a wide 

variety of infrastructure networks and for real-time restoration process planning. 

Approaching the proposed formulations to reality, introduces a synchronized routing 

problem for planning and scheduling restorative efforts for infrastructure networks in 

the aftermath of a disruptive event. In this problem, a set of restoration crews are 

dispatched from depots to a road network to restore the disrupted infrastructure 

network. Considering Binary and Proportional Active formulation, we propose two 

mathematical formulation in which the number of restoration crews assigned to each 

disrupted component, the arrival time of each assigned crew to each disrupted 

component and consequently the restoration rate associated with each disrupted 

component are considered as variables to increase the flexibility of the model in the 

presence of different disruptive events. To find the coordinated routes, we propose a 

relaxed mixed integer program as well as a set of valid inequalities which relates the 

planning and scheduling efforts to decision makers policies. The integration of the 

relaxed formulation and valid inequalities results in a lower bound for the original 

formulations. Furthermore, we propose a constructive heuristic algorithm based on the 

strong initial solution obtained from feasibility algorithm and a local search algorithm. 

Computational results on gas, water, and electric power infrastructure network instances 

from Shelby County, TN data, demonstrates both the effectiveness of the proposed 

model formulation, in solving small to medium scale problems, the strength of the 

initial solution procedure, especially for large scale problems. We also prove that the 

heuristic algorithm to obtain the near optimal or near optimal solutions. 
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Chapter 1 : INTRODUCTION AND MOTIVATION 

1.1 Overview 

The United States, as well as many countries around the globe, have increasingly 

emphasized resilience planning for critical infrastructure networks. Presidential Policy 

Directive 21 [White House 2013] states that such networks “must be secure and able to 

withstand and rapidly recover from all hazards.” The combination of withstanding and 

recovering these critical infrastructure networks is generally referred to as resilience, 

formally defined as the “ability to withstand, adapt to, and recover from a disruption” 

[White House 2011]. Critical infrastructure networks are “systems and assets, whether 

physical or virtual” that underpin society and whose roles are so vital that their 

disruption “would have a debilitating impact on security, national economic security, 

national public health or safety, or any combination of those matters” [Department of 

Homeland Security 2013]. Examples of critical infrastructure networks include water, 

gas, communication, transportation, and the electric power grid. 

US resilience planning documents highlight terrorist attacks, natural disasters, and 

manmade hazards, all of which could exacerbate our aging and vulnerable infrastructure 

systems. According to the ASCE Infrastructure Report Card [2013]: (i) the US electric 

power grid was recently given a grade of D+, (ii) 32% of major roads are in poor or 

mediocre condition, and 24.9% of the nation’s bridges are structurally deficient, and 

(iii) many of wastewater and drinking water pipelines need to be replaced as they 

approaching the end of their useful life. The state of these critical infrastructure 

networks, combined with the fact that climate change will likely result in more frequent, 

severe, and complicated catastrophic events, motivates planning for resilient 
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infrastructure networks so that they may be recovered quickly after a disruptive event. 

For example, when Hurricane Sandy struck populated regions on the east coast, it 

caused about $65 billion in damages and economic loss, disabling infrastructure 

networks including roads, public transit, electric power, and telecommunication. For 

example, about 8.5 million customers were left without power, and commuting time 

increased substantially [Hurricane Sandy Rebuilding Task Force 2013]. Also, when 

Hurricane Harvey struck the southern coast, it caused about $200 billion in damages, 

and $20 to $30 billion in lost economic output [CNBC 2017]. According to FEMA 

[2017], nearly 40,000 people were in shelters in Texas and Louisiana, considering the 

most were without essential lifeline services. Over 160 drinking water systems were 

damaged, with 50 of them totally shut down, and 800 water waste facilities were 

partially damaged. Also, more than 300,000 customers were without power for more 

than 24 hours [Commission to Rebuild Texas 2017]. From Hurricanes Sandy and 

Harvey and their consequences, we can realize the extent to which a severe disruption 

in critical infrastructure networks can adversely impact the health, security, and the 

productivity of a society. 

1.2 Modeling Network Resilience 

There have been many recent attempts to define, model, and measure resilience 

across a number of application areas [Hosseini et al. 2016]. Some of these applications 

include infrastructure networks  (e.g., transportation, electric power, pipelines) 

[Bienstock and Mattia 2007, Nurre et al. 2012, Baroud et al. 2014, Nan and Sansavini 

2017], service networks (e.g., emergency response, humanitarian relief, debris removal) 

[Magis 2010, Aldrich 2012, Bene et al., 2012 Frankenberger et al., 2013, Celik et al. 
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2017], community networks (e.g., relationships among people and communities) [Cutter 

et al. 2008, Zeng et al. 2010], and the interconnectivity and consequently 

interdependency among various types of networks [Sharkey et al. 2017, Barker et al. 

2017]. Figure 1 offers a paradigm for the resilience of a network prior, during, and in 

the aftermath of a disruptive event, 𝑒𝑗 [Henry and Ramirez-Marquez 2012, Barker et al. 

2013, Pant et al. 2014]. The performance of the network is measure with φ(t) (e.g., the 

extent to which demand is met in an electric power network). The resilience of a 

network over time is measured with Я𝜑(𝑡│𝑒𝑗  ) , or the proportion of network 

performance in each time period after disruption (i.e., 𝜑(𝑡) for 𝑡 = 𝑡𝑒 , … , 𝑡𝑓 , caused by 

disruption scenario,  𝑒𝑗 ∈ 𝐷 for 𝐷 = {1, … , 𝐽} where 𝐷 is a set of possible disruptive 

events), to network performance prior to the disruption.  

Figure 1 highlights two primary dimensions of resilience: (i) vulnerability, or the 

lack of ability of a network to maintain its level of performance given the occurrence of 

a disruptive event, and (ii) recoverability, or the ability of a network to recover to a 

desired level of performance timely. Vugrin and Camphouse [2011] introduced 

resilience capacity, as a function of absorptive capacity (i.e., the extent to which a 

network can absorb disturbances during the occurrence of a disruptive event), adaptive 

capacity (i.e., the extent to which a network can quickly adapt in the aftermath of a 

disruptive event by short-term, temporary means), and restorative capacity (i.e., the 

extent to which a network can be restored from a disruptive event over a longer time 

horizon). Absorptive, adaptive, and restorative capacities are also overlaid the 

combination of vulnerability and recoverability in Figure 1.1. System resilience across 

system states. Absorptive and adaptive capacity address network vulnerability 
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mitigation, or how to extend the performance (i.e., stable original state) and how to 

reduce the drop in performance (i.e., system disruption state), respectively. Network 

recoverability can be addressed with restorative capacity, or how to reduce the time 

horizon in which restorative operations occur, thus increasing the slope of performance 

[Hosseini and Barker 2016]. Examples of absorptive, adaptive, and restorative capacity 

include fortifying bridges with continuous span in Northridge area in San Francisco 

Valley in Los Angeles [Cooper et al. 1994], emergency arc routing to maintain the 

connectivity of a transportation network in the aftermath of a disruptive event [Kasai 

and Salman, 2016], and debris removal to fully recover a transportation network [Celik 

et al. 2016], respectively. 

 

Figure 1.1. System resilience across system states 

 

Infrastructure networks generally rely on each other for functionality [Rinaldi et al. 

2001], and significant research effort has been devoted to this topic [Ouyang 2014]. An 

example illustration of this interdependency appears in Figure 1.2. In this work, we 

focus on the centrality of transportation networks as a means of accessibility to enable 
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the restoration of other infrastructure networks after a disruption. As such, we focus on 

the dependency of other networks on the transportation network to propose a 

formulation that combines restoration crew scheduling problem with the vehicle routing 

problem to address the problem of dispatching restoration crews through a routing 

problem to reach to and restore the disrupted components of other infrastructure 

networks.  

 

Figure 1.2. Depiction of interconnected infrastructure networks, including the 

centrality of transportation networks during times of disruption (adapted from 

Rinaldi et al. [2001]). 

 

1.3 Structure of the Dissertation  

Following the introduction presented in Chapter 1, Chapter 2 a mixed integer linear 

programming formulation is presented to maximize the network adaptive capacity by 

integrating and optimizing three characteristics into the formulation: link criticality (i.e., 

the importance of a link in enabling the performance of the network), network 

accessibility (i.e., the extent to which capacity is degraded across links in the network), 

and network connectivity (i.e., the extent to which demand is being met at demand 
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nodes). the optimization formulation is applied to several network instances motivated 

by the 400 kV French electric power transmission network. Chapter 3 provides two 

Binary Active and Proportional Active mixed integer linear models to assign restoration 

crews to disrupted components for two different kinds of infrastructure network 

structures and behaviors. We also discuss data generation and computational analyses of 

the impact of Proportional and Binary Active models on scale-free and small-world 

networks derived from the 400-kV French electric power transmission network, as well 

as the French power network itself. In Chapter 4, we propose a multiple restoration 

crew routing formulation to distribute restoration crews over the disrupted network 

components through a routing network and to update the model to incorporate the 

proportionally operational components in each time period. We then propose a lower 

bound for the restoration crew routing problem by introducing a relaxed formulation of 

the original model and a heuristic algorithm to provide a feasible initial solution aligned 

with policies. The applicability of the proposed formulations is illustrated with the 

system of gas, water, and electric power networks derived from those in Shelby County, 

Tennessee. And in Chapter 5 we present a constructive heuristic algorithm as our 

proposed solution approach to obtain a near-optimal feasible solution aligned with 

policies considered for restoration capacity enhancement. Finally, we discuss 

concluding remarks and prospective future work in Chapter 6. 
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Chapter 2 : ADAPTIVE CAPACITY PLANNING FORMULATION 

FOR INFRASTRUCTURE NETWORKS 

2.1 Introduction 

This Chapter focuses on the vulnerability dimension of resilience (i.e., Adaptive 

capacity), particularly as it applies to networks. In other words, the adverse impact that 

a disruption has on network performance is a function of the network’s vulnerability 

[Newman et al. 2004, Zio et al. 2008, Jonsson et al. 2008, Zhang et al. 2011]. As 

mentioned in Chapter 1, Examples of adaptive capacity include emergency debris 

removal from transportation routes and temporary reconstitution of emergency services 

[Bye et al. 2013]. In this study, focus is given to technical strategies to enhance adaptive 

capacity and, alternative mitigation strategies such as behavioral modifications (e.g., 

employees working from home to reduce traffic on damaged roads), are not 

investigated. 

After a disruptive event, the limited, spatially distributed resources are allocated to 

network components to quickly engage the affected components by proportionally 

improving their functionality. While these resources have potentially only limited 

effectiveness, their optimal allocation can significantly reduce vulnerability of the larger 

system in the immediate term.  

Resources engaged after a disruption encompass roadside debris removal equipment 

[Aksu and Ozdamar 2014, Celik et al. 2015], construction crews [Averbakh 2012], 

repair crews [Duque et al. 2016] and emergency response [Jacobson et al. 2012]. 

Particularly for electric power networks, such resources have included temporary 
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equipment to replace disabled high voltage transformers [Salmeron and Wood 2015], 

crews removing fallen objects causing shorted circuits [Wei et al. 2012], and inserting 

backup power (e.g., generators) in the system [Division of Emergency Management 

2008]. The assignment of and scheduling of these resources to disrupted network 

components is important [Duque et al. 2016, Arab et al. 2015, Aksu and Ozdamar 

2014], though not many have studied such a spatially-located resource allocation in an 

adaptive or restorative capacity context [Akbari and Salman 2017, Gormez et al. 2011, 

Kasaei and Salman 2016]. By considering the worst disruption scenario that may affect 

the network, we plan to allocate and schedule resources to increase the adaptive 

capacity of network immediately after disruption and, consequently, expedite the long-

term recovery. 

2.2 Methodological Background 

Most work in measuring and reducing vulnerability addresses absorptive capacity, 

or mitigation efforts to identify and fortify nodes in advance of a disruption. Many 

techniques have been developed to measure network vulnerability and identify the 

important network components contributing to vulnerability. Cohen et al. [2000] 

introduce a criterion based on percolation theory to identify critical nodes, the absence 

of which lead to disconnections in the network. Vromans et al. [2006] examine the 

vulnerability of a railway network to reduce the interdependencies between trains after a 

disruption. Jenelius [2006] introduces link importance and site exposure indices which 

are divided into two groups: (i) an equal opportunity perspective where roads are 

equally important, and (ii) a social efficiency perspective where more frequently used 

roads are considered more important. 
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One of the primary reasons to measure vulnerability is to understand the extent to 

which a disruptive event affects network performance to prepare the network for 

potential consequences. Instead of single link or node disruption, Jenelius and Mattsson 

[2012] adopt grids of uniformly shaped and sized cells, where each cell represents the 

extent of an event disrupting any intersecting links. Unlike single link failures, where 

the link flow and the redundancy in the surrounding network determine the impacts, the 

vulnerability to spatially spread events shows a markedly different geographical 

distribution. Jenelius and Mattsson [2015] perform regional vulnerability analyses in 

large-scale road networks due to both single link closures and area-covering disruptions. 

Lempert and Groves [2010] focus on adaptive capacity, implementing robust 

decision-making approaches to plan adaptive strategies against catastrophic events. 

Using a simulation-based approach, they identify the different sets of vulnerable 

network components that adverse impact network performance from various 

perspectives. Francis and Bekera [2014] propose a resilience framework to focus on the 

achievement of adaptive capacity along with absorptive and restorative capacity 

enhancement. They quantify adaptive capacity as the proportion of original system 

performance retained after the new stable level of performance in the aftermath of 

disruption. Particularly in power grid networks, Ghasemi and Parniani [2016] propose 

an adaptive control algorithm to prevent the overvoltage that may happen in the 

network immediately after disruptions. Arghaneh et al. [2016] demonstrate some 

adaptive capacity enhancement activities in the physical structure of power grid 

networks (e.g., reinforcing towers and poles), increasing the flexibility of the network 

by installing temporary means (e.g., transformers and sensors) and prioritizing 
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components with fortification. Fang and Sansavini [2017] co-optimize power grid 

expansion and installation of line switching devices to mitigate the supply disservice in 

the aftermath of disruptions and enhance resilience by system hardening and re-

configurability. In transportation networks, Zhang et al. [2015] consider the topological 

and spatial form of transportation networks and their impact on the flexibility of the 

network to adapt to disruption during response. They investigate the role of topological 

attributes of a transportation network (e.g., grid, hub-and-spoke, scale-free, and small-

world) in its ability to cope with disruptions by temporary means or redirecting routes to 

decrease network performance. El-Rashidy and Grant-Muller [2014] propose an 

integrated method including exhaustive optimization and fuzzy logic, combining 

different vulnerability measures (traffic flow, capacity, length, flow, and free flow) to 

introduce a unique index to increase the adaptive capacity of the transportation 

networks after disruptions. 

As opposed to absorptive capacity (emphasizing decisions during 𝑡 ∈ (𝑡0, 𝑡𝑒] from 

Figure 1.1) and restorative capacity (emphasizing decisions during 𝑡 ∈ (𝑡𝑑 , 𝑡𝑓]), work 

proposed here addresses the short-term allocation of resources after a disruption to 

improve adaptive capacity during 𝑡 ∈ (𝑡𝑒 , 𝑡𝑑]. The allocation of resources during this 

timeframe has little treatment in the literature (e.g., developing short-term routes after a 

disruption [MacKenzie et al. 2012, Chen et al. 2014, Darayi et al. 2016]).  

2.3 Problem Formulation  

Consider a directed network 𝐺 = (𝑁, 𝐴) where 𝑁 is the set of nodes and 𝐴 ⊆ 𝑁 × 𝑁 

is the set links. There is a set of supply nodes 𝑁+ ⊆ 𝑁, a set of demand nodes 𝑁− ⊆ 𝑁, 

and a set of transition nodes 𝑁= ⊆ 𝑁. Each supply node 𝑖 ∈ 𝑁+ can supply amount 𝑜𝑖 in 
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each time period, and each demand node 𝑖 ∈ 𝑁− demands amount 𝑏𝑖 in each time 

period. 

Each link (𝑖, 𝑗) ∈ 𝐴 has a defined pre-disaster capacity 𝑢𝑖𝑗𝑡𝑒
 and a pre-calculated 

flow value based on the summation of flow values across supply and demand nodes 

before the disruptive event that occurs at time 𝑡e in Figure 1.1. Without loss of 

generality, components in the context of this research refer to links, as any node failure 

can be represented by an appropriate set of link failures.  

Let 𝐴′ ⊆ 𝐴 denote the set of links in the network that are impacted by a disruptive 

event at time 𝑡𝑒. A link disruption is modeled by a reduction in link capacity. A 

reduction to a capacity level of 0 represents a total loss of the link. There exists a set of 

adaptive capacity resources that can be allocated promptly after a disruptive event to 

begin immediate-term recovery of system functionality. Each resource can send a 

specific number of services to the disrupted links. Each service may have a specific 

processing time and complete its task in any time period  𝑡 ∈ {1, … , 𝑇}, and the first 

time period starts from 𝑡𝑒, immediately after the occurrence of a disruptive event, and 

the last time period, 𝑇, ends at 𝑡𝑑, when short-term response ends. We define 𝑅 resource 

types. Each has a service capacity 𝑀𝑟 denoting the number of available resources of 

type 𝑟 ∈ {1, … , 𝑅} and has a number of services 𝑈𝑟 that can be performed by resource 

type 𝑟 ∈ {1, … , 𝑅}. In electric power networks, each of these resources might refer to a 

set of work crews that temporarily (i) harden distribution links or (ii) reinforce towers 

and poles to prevent cascading effects and overvoltage disruptions. The capability of 

each set of work crews to fortify a disrupted link depends on, for example, the 

experience of the technicians and the quality of their equipment. Network components 



12 

are located in a set of spatial clusters 𝑠 ∈ {1, … , 𝑆} that aid in the assignment of these 

resources, and the resources allocated to cluster 𝑠 can only serve the disrupted 

components in that cluster. It is assumed that there are limited available resources that 

can be allocated to minimize the adverse effects of a disruption in the first few time 

periods after a disruptive event. These resources temporarily support the damaged 

network and alleviate the severity of the adverse effects on the components. 

Furthermore, resources allocated to reduce vulnerability may more effectively reduce 

the subsequent longer term time and costs of recovery.  

The three primary components of the optimization problem proposed here for 

assigning adaptive capacity resources are: (i) criticality, (ii) accessibility, and (iii) 

connectivity. For criticality, the importance of each component is measured, such that 

more important network components are prioritized to increase adaptive capacity in the 

minimum possible time horizon. For accessibility, the effects of the disruption on 

component capacity is measured and emphasized. For connectivity, unmet demand for 

critical demand nodes is addressed. Previous work [Ouyang et al. 2012, Nurre et al. 

2014, Demirel et al. 2015] explore the relationship between connectivity and 

accessibility; this work includes the role of criticality, and its relationship to 

connectivity and accessibility, during short-term response. 

2.3.1 Criticality  

The criticality of network component (𝑖, 𝑗) ∈ 𝐴′ is primarily a function of its 

importance in the network. The importance of a component, measured on [0,1] with 

values close to 1 suggesting greater importance, can be measured from multiple 

perspectives. Several authors have proposed importance measures based on the 
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connectivity of the network when the component is removed, among other graph 

theoretic measures [Holme et al. 2002, Albert et al. 2004, Holmgren 2006, Johansson 

and Hassel 2010, Johansson et al. 2013, Wang et al. 2013]. Several authors have 

explored measures that quantify the importance of components to flow along the 

network [Nagurney and Qiang 2007a,b, 2008, Rocco et al. 2010, Nicholson et al. 2016]. 

Each network component has a certain importance measure value, where 𝐼𝑖𝑗
𝜋  is the 

importance measure calculated for (𝑖, 𝑗) ∈ 𝐴 of type 𝜋, where the 𝜋th importance 

measure represents one of many differing perspectives on importance (e.g., maximum 

flow count, edge centrality, and edge flow importance measures [Nicholson et al. 

2016]). The use of 𝐼𝑖𝑗
𝜋  in Eq. (2.1) is to aid in understanding component criticality prior 

to the actual allocation of resources to the clusters. Values of 𝐼𝑖𝑗
𝜋  closer to 1 would rank 

link (𝑖, 𝑗) as more critical in terms of receiving adaptive capacity services sent from the 

allocated resource. The criticality coefficient is captured in the objective function with 

Eq. (2.1), where 𝑦𝑖𝑗𝑡
𝑟𝑠  is a binary variable equal to 1 when the processing time, 𝑝𝑟, for 

resource 𝑟 ∈ {1, … , 𝑅} to service link (𝑖, 𝑗) in cluster 𝑠 ∈ {1, … , 𝑆} is completed at time 

period 𝑡 and 0, otherwise. 

𝐼𝑖𝑗
𝜋𝑦𝑖𝑗𝑡

𝑟𝑠  (2.1) 

In This work, we focus on links that are important to the aggregate flow delivered to 

all demand nodes, and use three (pre-disruption) flow-based importance measures 

proposed by Nicholson et al. [2016]: (i) max flow edge count, 𝐼𝑀𝐹𝑐𝑜𝑢𝑛𝑡 =

1

𝑛(𝑛−1)
∑ 𝜇𝑠̅𝑡̅(𝑖, 𝑗)𝑠̅,𝑡̅ ∈𝑉 , where 𝜇𝑠𝑡(𝑖, 𝑗) is a binary parameter and equals 1 if link (𝑖, 𝑗) is 

used in a given source-sink max flow path, (ii) edge flow centrality, 𝐼 𝐹𝑙𝑜𝑤 =
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∑ 𝜔𝑠̅𝑡̅(𝑖,𝑗)𝑠̅,𝑡̅ ∈𝑉

∑ 𝜔𝑠̅𝑡̅𝑠̅,𝑡̅ ∈𝑉
, where 𝜔𝑠̅𝑡̅(𝑖, 𝑗) is the flow on link (𝑖, 𝑗) for all possible source-sink paths 

and 𝜔𝑠̅𝑡̅ is the maximum feasible flow from source 𝑠̅ to sink 𝑡̅ for any source-sink path 

𝑠̅, 𝑡̅ ∈ 𝑉, and (iii) flow capacity rate, 𝐼 𝐹𝐶𝑅 =
1

𝑛(𝑛−1)

∑ 𝜔𝑠̅𝑡̅(𝑖,𝑗)𝑠̅,𝑡̅ ∈𝑉

𝑐𝑖𝑗
, where 𝑐𝑖𝑗 is the 

capacity of link (𝑖, 𝑗). 

2.3.2 Accessibility  

Morris et al. [1979] introduce accessibility as the ease whereby flow can reach from 

one location to another. In vulnerability analyses, both single component and area-

covering failures have been studied [Berdica 2002, Jenelius and Mattson 2012]. 

However, focusing on single component failure or a location failure may not be an 

appropriate method in origin/destination or supply/demand problems due to the nature 

of such networks. Instead of considering the accessibility of single components or a 

certain area, this work maximizes the accessibility of the entire network by adding 

adaptive capacity to disrupted links. The accessibility of link (𝑖, 𝑗) ∈ 𝐴′ prior to the 

occurrence of a disruptive event is measured by its pre-disaster capacity.  

𝑉𝑖𝑗𝑡𝑒
= 𝑢𝑖𝑗𝑡𝑒

 (2.2) 

The comparison of the network operating under the post-disruption performance (its 

performance after the disruptive event without taking any response or recovery action) 

and the its enhanced performance after building the adaptive capacity resource 

assignment strategy is shown in Eq. (2.3). First, the change in the capacity of 

components and subsequent network degradation are calculated. Second, as the network 

components are spatially clustered with adaptive capacity resources located in those 



15 

clusters, resources are dispatched to temporarily adapt the network to maintain its 

baseline performance level.  

Eq. (2.3) defines 𝑉𝑖𝑗𝑡, the accessibility measure for link (𝑖, 𝑗) ∈ 𝐴′ after disruption. 

In This work, 𝑉𝑖𝑗𝑡 can be interpreted as the capacity of a disrupted link (𝑖, 𝑗) after its 

fortification process is completed. Baseline network performance (its performance 

before the disruptive event) is measured immediately prior to 𝑡e as depicted in Figure 

1.1 The fully disrupted network performance is measured at time 𝑡 ∈ {1, … , 𝑇}. As such, 

𝑢𝑖𝑗𝑡e
 is the capacity on link (𝑖, 𝑗) before the disruptive event, and 𝑢𝑖𝑗𝑡d

 is the capacity of 

link (𝑖, 𝑗) at time 𝑡d.  

The amount of performance degradation for link (𝑖, 𝑗) in each time period 𝑡 is 

mitigated by the factor 𝐻𝑖𝑗
𝑟 ∑ 𝑦𝑖𝑗𝑐

𝑟𝑠𝑡
𝑐=1 , where 0 ≤ 𝐻𝑖𝑗

𝑟 ≤ 1 measures the extent to which 

the assignment of resource 𝑟 ∈ {1, … , 𝑅} to component (𝑖, 𝑗) increases accessibility and 

∑ 𝑦𝑖𝑗𝑐
𝑟𝑠𝑡

𝑐=1  is 1 if the processing time of component (𝑖, 𝑗) in cluster 𝑠 is completed in the 

time period 𝑐, 𝑐 ∈ {1, … , 𝑡}, by resource 𝑟. 

𝑉𝑖𝑗𝑡 = 𝑢𝑖𝑗𝑡𝑑
+ (∑ ∑ 𝐻𝑖𝑗

𝑟

𝑆

𝑠=1

∑ 𝑦𝑖𝑗𝑐
𝑟𝑠

𝑡

𝑐=1

𝑅

𝑟=1

) (𝑢𝑖𝑗𝑡𝑒
− 𝑢𝑖𝑗𝑡𝑑

) (2.3) 

 2.3.3 Connectivity 

Connectivity is a graph theoretic measure of the structure of a network [Demirel et 

al. 2015]. Studies on connectivity enhancement are performed with a broad range of 

connectivity measures such as diameter, number of cycles, cost, detour index, pi index, 

eta index, theta index, and average nearest neighbors’ degree [Hansen 1959, Waters 

2006, Jenelius et al. 2006, Erath et al. 2007, Rodrigue 2013, TDM 2013, Sullivan 2014, 
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Demirel et al. 2015]. In origin/destination problems, enhanced connectivity leads to less 

unsatisfied demand when the network is disrupted.  

In this work, the connectivity of a disrupted network is enhanced by reducing the 

difference between baseline and disrupted aggregate flows, or the total amount of flow 

that arrives to the demand nodes [Nurre et al. 2012]. This is calculated in Eq. (2.4), 

where 𝜑𝑖𝑡e
 is a parameter representing the aggregate flows reaching demand node 𝑖 

prior to a disruptive event at time 𝑡e, and 𝜑𝑖𝑡 is a variable that quantifies the aggregate 

flows reaching to demand node 𝑖 ∈ 𝑁− during 𝑡 ∈ {1, … , 𝑇}. So that Eq. (2.4) represents 

a proportional value that is commensurate with other terms in the subsequent objective 

function, 𝜑𝑖𝑡e
 is included in the denominator. 

𝜇𝑡𝑤𝑖

(𝜑𝑖𝑡e
− 𝜑𝑖𝑡)

𝜑𝑖𝑡e

 

(

2.4) 

The parameter 𝑤𝑖 is an importance weight assigned to demand node 𝑖. Such an 

importance weight could be calculated from a graph theory measure (e.g., centrality), by 

an economic index (e.g., economic potential), or some other decision maker-driven 

value (e.g., a hospital may have a higher priority than a residential location) [Demiral et 

al. 2015, Nurre et al. 2012]. In This work, each demand node is assigned a weight based 

on its priority, and the demand node within more populated areas is considered a higher 

priority relative to other demand nodes. The parameter 𝜇𝑡 is the weight associated with 

the performance of the network in each time period 𝑡. 
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2.4 Model Formulation 

The objective function and constraints considered in this work represent the 

integration of criticality, accessibility, and connectivity, with the goal being to assign 

spatial resources to improve the adaptive capacity of a network after a disruption.  

The variables in the model formulation are divided into three categories: (i) network 

flow variables, (ii) resource allocation variables, and (iii) resource assignment variables. 

For (𝑖, 𝑗) ∈ 𝐴′ and for 𝑡 ∈ {1, … , 𝑇}, 𝑥𝑖𝑗𝑡 is the network flow variable on link (𝑖, 𝑗) at 

time 𝑡, and 𝜑𝑖𝑡 is a continuous variable for each demand node 𝑖 ∈ 𝑁− representing the 

amount of demand that is met at time 𝑡. The resource allocation variable is binary 

variable 𝑧𝑟𝑠 for 𝑟 ∈ {1, … , 𝑅} and 𝑠 ∈ {1, … , 𝑆} that indicates resource 𝑟 is allocated to 

spatial cluster 𝑠. The resource assignment variable 𝑦𝑖𝑗𝑡
𝑟𝑠  is a binary variable for (𝑖, 𝑗) ∈

𝐴′, 𝑠 ∈ {1, … , 𝑆}, 𝑟 ∈ {1, … , 𝑅} that represents that link (𝑖, 𝑗) from spatial cluster 𝑠 is 

serviced by resource 𝑟. Table 2.1 summarizes the sets, parameters, and variables used in 

the following problem formulation. 
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Table 2.1. Relevant notations and variables for Adaptive capacity planning 
Notations 

𝑁 Set of nodes in network 𝐺 = (𝑁, 𝐴) 

𝐴 Set of links in network 𝐺 = (𝑁, 𝐴) 

𝐴′ ⊆ 𝐴 Set of disrupted links in network 𝐺 = (𝑁, 𝐴) 

𝑁− ⊆ 𝑁 Set of demand nodes in network 𝐺 = (𝑁, 𝐴) 

𝑁+ ⊆ 𝑁 Set of supply nodes in network 𝐺 = (𝑁, 𝐴) 

𝑁= ⊆ 𝑁 Set of transition nodes in network 𝐺 = (𝑁, 𝐴) 

𝑟 = 1, … , 𝑅 Set of resources  

𝑠 = 1, … , 𝑆 Set of clusters 

Parameters 

𝑤𝑖  The importance weight assigned to demand node 𝑖 
𝜇𝑡 The weight associated with the performance of the network in each time 𝑡 

𝐼𝑖𝑗
𝜋  The importance measure calculated for (𝑖, 𝑗) ∈ 𝐴 of type 𝜋 

𝜑𝑖𝑡𝑒
  The aggregate flows reaching node 𝑖 ∈ 𝑁−  before the occurrence of disruptions 

 𝑜𝑖  The amount of supply in each node 𝑖 ∈ 𝑁+ in each time period 

𝑏𝑖 The amount of demand in each node 𝑖 ∈ 𝑁− in each time period 

𝑢𝑖𝑗𝑡𝑒
 The capacity of each link (𝑖, 𝑗) ∈ 𝐴 before the occurrence of disruptions  

𝑢𝑖𝑗𝑡𝑑
 The capacity of each link (𝑖, 𝑗) ∈ 𝐴′ in the aftermath of disruptions, no fortification action 

is considered 

𝑀𝑟 The number of available resources of type 𝑟 = 1, … , 𝑅 

𝑈𝑟  The number of services each resource 𝑟 = 1, … , 𝑅 can send to disrupted components after 

its allocation to a certain cluster 

𝑝𝑟 The fortification time of each service sent from resource 𝑟 = 1, … , 𝑅 to each disrupted 

link 

𝜃𝑖𝑗
𝑠 

 Binary parameter equal one if link (𝑖, 𝑗) ∈ 𝐴′ belongs to cluster 𝑠 = 1, … , 𝑆,and 0 

otherwise 

Decision variables 

𝑦𝑖𝑗𝑡
𝑟𝑠  Binary variable equal to 1 if a service of resource 𝑟 assigned to cluster 𝑠 finishes the 

fortification process of link (𝑖, 𝑗) ∈ 𝐴′ at time 𝑡 = 1, … , 𝑇 

𝑥𝑖𝑗𝑡  Continuous variable representing the flow on link (𝑖, 𝑗) ∈ 𝐴 at time 𝑡 

𝜑𝑖𝑡  Continuous variable representing the amount of flow reaching to demand node 𝑖 ∈ 𝑁−  at 

each time 𝑡  

𝑧𝑟𝑠 Binary variable equal to 1 resource 𝑟 is assigned to cluster 𝑠 

 

The objective function for the short-term adaptive capacity resource allocation 

problem in Eq. (2-4) minimizes (i) the disruptive impacts to the more critical 

components with ∑ ∑ ∑ ∑ −𝐼𝑖𝑗
𝜋𝑦𝑖𝑗𝑡

𝑟𝑠𝑇
𝑡=1

𝑆
𝑠=1

𝑅
𝑟=1(𝑖,𝑗)∈𝐴′  (criticality), and (ii) the unsatisfied 

demand with ∑ ∑ 𝜇𝑡𝑤𝑖
(𝜑𝑖𝑡𝑒−𝜑𝑖𝑡)

𝜑𝑖𝑡𝑒

𝑇
𝑡=1𝑖∈𝑁−

 (connectivity). Accessibility is addressed by Eq. 

(2.10). Furthermore, a weighting factor could be added to each of these terms to model 

tradeoffs between component criticality and unsatisfied demand.   
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min ∑ ∑ ∑ ∑ −𝐼𝑖𝑗
𝜋𝑦𝑖𝑗𝑡

𝑟𝑠

𝑇

𝑡=1

𝑆

𝑠=1

𝑅

𝑟=1(𝑖,𝑗)∈𝐴′

+ ∑ ∑ 𝜇𝑡𝑤𝑖

(𝜑𝑖𝑡𝑒
− 𝜑𝑖𝑡)

𝜑𝑖𝑡𝑒

𝑇

𝑡=1𝑖∈𝑁−

 (2-4) 

∑ 𝑥𝑖𝑗𝑡

𝑗:(𝑖,𝑗)∈𝐴

− ∑ 𝑥𝑗𝑖𝑡

𝑗:(𝑗,𝑖)∈𝐴

≤ 𝑜𝑖 ∀𝑖 ∈ 𝑁+, ∀𝑡 ∈ {1, … , 𝑇} (2.5) 

∑ 𝑥𝑖𝑗𝑡

(𝑖,𝑗)∈𝐴

− ∑ 𝑥𝑗𝑖𝑡

(𝑗,𝑖)∈𝐴

= 0 ∀𝑖 ∈ 𝑁= , ∀𝑡 ∈ {1, … , 𝑇} (2.6) 

∑ 𝑥𝑖𝑗𝑡

(𝑖,𝑗)∈𝐴

− ∑ 𝑥𝑗𝑖𝑡

(𝑗,𝑖)∈𝐴

= −𝜑𝑖𝑡 ∀𝑖 ∈ 𝑁− , ∀𝑡 ∈ {1, … , 𝑇} (2.7) 

0 ≤ 𝜑𝑖𝑡 ≤ 𝑏𝑖 ∀𝑖 ∈ 𝑁−, ∀𝑡 ∈ {1, … , 𝑇} (2.8) 

0 ≤ 𝑥𝑖𝑗𝑡 ≤ 𝑢𝑖𝑗𝑡𝑒
 ∀(𝑖, 𝑗) ∈ 𝐴/𝐴′, ∀𝑡 ∈ {1, … , 𝑇} (2.9) 

0 ≤ 𝑥𝑖𝑗𝑡 ≤ 𝑉𝑖𝑗𝑡 ∀(𝑖, 𝑗) ∈ 𝐴′, ∀𝑡 ∈ {1, … , 𝑇} (2.10) 

∑ 𝑧𝑟𝑠

𝑆

𝑠=1

≤ 𝑀𝑟 ∀𝑟 ∈ {1, … , 𝑅} (2.11) 

∑ 𝑧𝑟𝑠

𝑅

𝑟=1

≤ 1 ∀𝑠 ∈ {1, … , 𝑆} (2.12) 

∑ ∑ (1 + ⌊
𝑡 − (𝑙 − 𝑝𝑟 + 1)

𝑇
⌋) 𝑦𝑖𝑗𝑡

𝑟𝑠

(𝑖,𝑗)∈𝐴′

𝑇

𝑡=1

≤  𝑈𝑟𝑧𝑟𝑠 

∀𝑠 ∈ {1, … , 𝑆}, ∀𝑟 ∈ {1, … , 𝑅} (2.13) 

∑ ∑ ∑ 𝑦𝑖𝑗𝑙
𝑟𝑠

T

𝑡=1

𝑅

𝑟=1

𝑆

𝑠=1

≤ 1 ∀(𝑖, 𝑗) ∈ 𝐴′ 
(2.14) 

𝑦𝑖𝑗𝑡
𝑟𝑠 ≤ 𝜃𝑖𝑗

𝑠 
 

∀(𝑖, 𝑗) ∈ 𝐴′, ∀𝑟 ∈ {1, … , 𝑅}, 

∀𝑠 ∈ {1, … , 𝑆}, ∀𝑡 ∈ {1, … , 𝑇} 

 (2.15) 

∑ 𝑦𝑖𝑗𝑡
𝑟𝑠

𝑝𝑟−1

𝑡=1

= 0 

∀(𝑖, 𝑗) ∈ 𝐴′, ∀𝑟 ∈ {1, … , 𝑅}, 

∀𝑠 ∈ {1, … , 𝑆} 

 (2.16) 
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𝑧𝑟𝑠 ∈ {0,1} ∀𝑟 ∈ {1, … , 𝑅}, ∀𝑠 ∈ {1, … , 𝑆}  (2.17) 

𝑦𝑖𝑗𝑡
𝑟𝑠 ∈ {0,1}         

   
∀𝑟 ∈ {1, … , 𝑅}, ∀𝑠 ∈ {1, … , 𝑆},  

∀(𝑖, 𝑗) ∈ 𝐴, ∀𝑡 ∈ {1, … , 𝑇} 

 (2.18) 

𝑥𝑖𝑗𝑡 ≥ 0 ∀(𝑖, 𝑗) ∈ 𝐴, ∀𝑡 ∈ {1, … , 𝑇}  (2.19) 

𝜑𝑖𝑡 ≥ 0 ∀𝑖 ∈ 𝑁− , ∀𝑡 ∈ {1, … , 𝑇}  (2.20) 

Eqs. (2.5)-(2.7) are network flow constraints over all available links in the network 

in time period 𝑡. According to Figure 1.1, a disruptive event occurs at time period 𝑡𝑒, 

and the network performance decreases until it reaches its minimum performance at 

time 𝑡𝑑. Eq. (2.5) ensures that flow generated from supply nodes does not exceed their 

supply 𝑜𝑖, 𝑖 ∈ 𝑁+. Eq. (2.6) ensures that no flow is generated from or delivered to 

transmission nodes. Eq. (2.7) delivers the amount of flow that satisfies demand nodes 

while not exceeding their demands 𝑏𝑖, 𝑖 ∈ 𝑁− in Eq. (2.8). The flow of an available link 

does not exceed its capacities, as ensured by Eqs. (2.9) and (2.10). In Eqs. (2.11) and 

(2.12), 𝑧𝑟𝑠 is a binary variable that equals 1 when resource 𝑟 ∈ {1, … , 𝑅} is allocated in 

cluster 𝑠 ∈ {1, … , 𝑆} and 0 otherwise. These two constraints ensure that the number of 

allocated resources does not exceed the number of available resources, 𝑀𝑟, and only 

one resource is allowed to be allocated to each cluster, respectively. Each allocated 

resource in each cluster assigns a specific number of services to the most critical 

disrupted components in that cluster. For each cluster, Eq. (2.13) ensures that the 

number of disrupted components being fortified by the allocated resource in each time 

period does not exceed its service capacity. It is assumed that a resource cannot 

strengthen adaptive capacity unless it is allocated to a cluster, and when it is allocated to 

a cluster, it is a candidate for being assigned to a disrupted component. Eq. (2.14) 
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ensures that each disrupted link is scheduled at most to one service sent from the 

allocated resource. Eq.  (2.15) ensures that an allocated resource to a cluster is only 

allowed to service the disrupted links in that cluster. Eq.  (2.16) is a logical constraint 

that ensures that strengthening adaptive capacity cannot be performed earlier than the 

required processing time, 𝑝𝑟, or the time required for any service sent by resource 𝑟 ∈

{1, … , 𝑅} to a disrupted link. Finally, Eqs.  (2.17)- (2.20) describe the nature of the 

decision variables. 

2.5 Case Study: 400-kV French Power Transmission 

The proposed formulation is exemplified with reference to a power transmission 

network in France, extracted from topological data for the 400-kV transmission lines of 

Le Réseau de Transport d’Electricité [RTE 2013]. According to the detailed description 

extracted from RTE [2013], this network is an undirected graph with 171 substations 

(nodes) and 220 transmission lines (links) summing up to more than 28,387 km. There 

are 26 generators which generate power and 145 distributers which receive power. 

Some of the generators and distributers also transmit power from other generators to 

distributers. From a topological perspective, the weights of the links, which are assumed 

as their capacity, is identical. However, from a resilience point of view, each link is 

assigned a level of criticality. Following Fang et al. [2014], only power plants with 

installed capacities more than 1000 MW are considered.  

A modified version of the disrupted French transmission network was produced by 

integrating the approaches of Alipour et al. [2014] and Fang et al. [2014]. The 

transmission network is depicted in Figure 2.1, which shows the relationships among 

pairs of nodes, the number of links, and the spatial location of substation nodes. The 
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capacity of each transmission line in the undirected network is 6000 MW, and the total 

network flow and aggregate flow for undisrupted network are 306253 MW and 84988 

MW, respectively. 

 

Figure 2.1. 400-kV French power transmission network. 

 

Table 2.2 provides some structural characteristics of the French transmission 

network including: mean node degree 〈𝑘〉, maximum node degree 𝑘max, the mean 

shortest path 〈𝑙〉, the cluster coefficient 𝐶, and the graph diameter 𝑑 [Alipour et al. 

2014]. These characteristics suggest that the transmission network is a sparse network 

with average degree of 3.05, with a number of links 𝐿 = 220 ≪ 𝑁2 = 29,241. The 
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clustering coefficient of 0.279 and mean shortest path of 6.61 are both greater than what 

would be expected from a random network [Rosato et al. 2007], suggesting that the 

French transmission network is a small world network, where most nodes are not 

connected to one another but can be reached through a few nodes that play the role of 

“hubs.”  

Table 2.2. Some structure properties of the 400-kV French transmission network 

𝑁 𝐿 〈𝑘〉 𝑘max 〈𝑙〉 𝐶 𝑑 

171 220 3.05 8 6.61 0.279 15 

 

According to Rosato et al. [2007] and Sole et al. [2008], such a transmission 

network is fragile to disruptive events. Consequently, identifying the most critical 

components and enhancing their adaptive capacity is of great significance to manage 

network resilience.  

2.5.1 The Simulated Disruption 

To maximize the adaptive capacity of the 400-kV French transmission network, we 

extend an operational scenario to include information about (i) disrupted network 

components, (ii) the level of disruptions, (iii) number of available adaptive capacity 

resources, and (iv) their impact on reducing the severity of disruptions. The spatial 

clusters to develop set 𝑆 could be derived by a number of means, including government 

zones or decision making areas of authority. We make use of a clustering method, of 

which three were considered: hierarchical clustering, k-means clustering, and Density 

Based Spatial Clustering of Application with Noise (DBSCAN). In this application, 

there is an advantage of using DBSCAN over using other methods for potential 

locations allocation. The disrupted locations of the French 400kV transmission network 

are scattered throughout the country. According to decision maker preferences and the 
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horizon of the response phase, DBSCAN clusters the disrupted links that are accessible 

by a resource in the response phase time horizon. We assume that the total number of 

resources are sufficient for each possible set of clusters identified by DBSCAN, yet the 

number of each type of resource may not be sufficient for their assignment to all 

clusters. Unlike k-means and hierarchical clustering, DBSCAN relies on a density based 

notion and can identify clusters of arbitrary shape [Ester et al. 1996].  

Start and end points are considered to be the objects that are geographically 

clustered. However, the lengths of the links in between are not equal, especially in 

transportation networks, and this inequality may lead to biased clustering. To avoid this 

issue, a set of virtual nodes generated links with equal unique length, an example of 

which is shown in Figure 2.2 [Kriegel and Pfeifle 2005].  

 

 

For illustrative purposes, a hypothetical spatially-confined scenario is assumed to 

occur with in the north-east of France (e.g., an earthquake), as illustrated in Figure 2.3. 

The disruptive event is assumed to be static (i.e., a design-based accident). DBSCAN 

classified the network into eight clusters and outlier nodes are considered in their 

neighboring clusters. As the number of services each resource can send to disrupted 

links is limited, there are limitations in the number of disrupted links that each type of 

Figure 2.2. Link division in a sample network. 
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resource can fortify in each cluster. Hence, prioritizing components based on their 

criticality is of interest. It is assumed that 48% of links in the network are disrupted. 

 

Figure 2.3. French power transmission network divided into eight spatial clusters 

identified with DBSCAN, with spatial disruption centered in cluster 𝒔 = 𝟏. 

 

There are four types of resources, {1,2,3,4}, with (i) different fortifying process 

times, 𝑝𝑟, such that  (𝑝4 = 3) > (𝑝1 = 2) > (𝑝2 = 1) = (𝑝3 = 1), where each time 

period is half an hour, and (ii) different fortifying capabilities are drawn from uniform 

distributions such that 𝐻𝑖𝑗
1 ∈ 𝑈(0.6,0.75), 𝐻𝑖𝑗

2 ∈ 𝑈(0.45,0.59), 𝐻𝑖𝑗
3 ∈ 𝑈(0.3,0.44), 𝐻𝑖𝑗

4 ∈

𝑈(0.15,0.29). Examples for specifying actions and resources utilities would be (i) 

limited number of transformers which can be substitute with disrupted transformers 

temporarily, these transformers may not perform as well as the original ones, yet can be 

substituted immediately after disruptions, (ii) enhancing the black-start capacity of 

generators which lead to partially performance of disrupted generators before they are 
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brought back fully operational in the network, and (iii) adjusting or removing certain 

protective systems which may result in not using the whole residual network capacity in 

the aftermath of disruptions (e.g., under-voltage, under-frequency, and synchronization 

checks)[ National Research Council, 2012].  

The average number of available resources is 𝑀̅𝑟 = 2, and the average number of 

services is 𝑈̅𝑟 = 3. Table 2.3 illustrates the characteristics of each resource by 

indicating their effect on network performance if only one type of resource is used. 

Based on Table 2.3, the resource type 𝑟 = 3 has the shortest processing time and the 

resource type 𝑟 = 1 has the largest fortifying capability (i.e., the aggregate flow after 

the its implementation at 𝑡 = 3, is larger than the aggregate flow resulting from the 

application of the other resources). Although resource type 𝑟 = 4 has the longest 

processing time and the weakest fortification capability, this type of resource may be 

used in the absence of other types of resources. 

Table 2.3. Aggregate flow across resources processing time 𝒓 ∈ {𝟏, … , 𝑹}. 

 Resource  

 𝑟 = 1 𝑟 = 2 𝑟 = 3 𝑟 = 4 

Processing time 

𝑝𝑟 
2 1 1 3 

 𝑡 = 1 2158 2158 2158 2158 

 𝑡 = 2 2158 15523.67 14916.8 2158 

𝑡 = 3 16699.59 26964.91 25805.16 2158 

𝑡 = 4 16699.59 35003.23 33914.62 13318.13 

 𝑡 = 5 29751.29 42472.61 38862.92 13318.13 

 𝑡 = 6 29751.29 45364.02 40851.41 13318.13 

𝑡 = 7 40467.07 45837.02 40911.86 21249.31 

𝑡 = 8 40467.07 45866.4 40911.86 21249.31 

 

Because of the nature of the short term response, the length of the adaptive capacity 

time horizon is much shorter than the recovery time horizon. Hence, we consider some 

assumptions to specify adaptive capacity characteristics: (i) when a resource, 𝑟 ∈
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{1, … , 𝑅}, is assigned to a cluster, 𝑠 ∈ {1, … , 𝑆}, it cannot be reassigned to another 

cluster, 𝑠′ ∈ {1, … , 𝑆}, (ii) discussed previously, the distance between any two clusters 

𝑠′, 𝑠 ∈ {1, … , 𝑆} makes it impractical for a resource in one cluster to service the 

disrupted components in other clusters, (iii) all services are released to serve disrupted 

components immediately after a disruptive event, and (iv) when each service is assigned 

to a disrupted component, it cannot be reassigned to any other disrupted component.  

2.6 Computational Experiment 

The model provides the optimal solution for the 400-kV French Transmission 

network and is solved with Python 2.7 using Gurobi 6.5.2. The computational time is in 

the order of few seconds, suggesting that the model is potentially useful for real-time 

post-disruption planning.The subsequent analysis considers different importance 

measures for link criticality and different weights for demand nodes. 

2.6.1 Link Criticality 

As link importance measures, 𝐼𝑖𝑗
𝜋 , were discussed generally in Section 2.4.1, this 

application makes use of three (pre-disruption) flow-based importance measures that 

account for different perspectives on component contribution to network performance 

measure all node pairs maximum flow [Nicholson et al. 2016].: (i) max flow edge count 

(𝐼𝑀𝐹𝑐𝑜𝑢𝑛𝑡), or the total number of times a given edge is utilized in all 𝑜-𝑑 pairs max 

flow problems, (ii) edge flow centrality (𝐼 𝐹𝑙𝑜𝑤), or the sum of flow on (𝑖, 𝑗) ∈ 𝐴′ for all 

possible 𝑜-𝑑 pair max flow problems divided by the sum of all pairs max flows (a 

variation on the node centrality measure by Freeman et al. [1991]), and (iii) flow 

capacity rate (𝐼 𝐹𝐶𝑅), or a measure of how close (𝑖, 𝑗) ∈ 𝐴′ is to becoming a potential 

bottleneck based on the difference between max flow amount and capacity. We also 
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consider a scenario where no importance measure is assumed, our concern is only the 

second element of objective function. Analyses described later will illustrate how these 

different perspectives alter adaptive capacity strategies. 

2.6.2 Weights for Demand Nodes and Time Periods 

We define two corresponding time-based weight procedures. Descending scaled 

weight is defined by placing more importance on adding adaptive capacity in earlier 

time periods (e.g., 𝜇ℎ > 𝜇𝑙, for  ∀ ℎ < 𝑙 when ℎ, 𝑙 ∈ {1, … , 𝑇}, 𝜇ℎ = 1 −
ℎ

𝑇+1
 ). 

Ascending scaled weight is defined by placing more attention on network performance 

in later time periods (e.g., 𝜇ℎ > 𝜇𝑙, for  ∀ ℎ > 𝑙 when ℎ, 𝑙 ∈ {1, … , 𝑇}, 𝜇ℎ = 1 +
ℎ

𝑇+1
), 

such that the transition to restoration may occur more smoothly.  

As for the weights of the demand nodes, 𝑤𝑖, 𝑖 ∈ 𝑁−, we consider scaled weights 

(i.e., specific to particular demand nodes), and constant weights (i.e., that assume 

similar importance across demand nodes). As such, we explore how focusing on 

meeting demand in particularly critical demand nodes alters adaptive capacity 

strategies. The scaled weights of demand nodes are utilized such that nodes in high 

populated areas are of greater significance than others (e.g., demand nodes are divided 

into two categories, relatively high populated demand nodes and relatively low 

populated areas). The weight of demand nodes in high populated areas are as twice that 

of demand nodes located in low populated areas.  

2.6.3 Computational Results 

Tables 2.4 to 2.9 present results of the adaptive capacity formulation on the French 

power network example, including: (i) the aggregate flow in each time period, 

calculated as ∑ 𝜑𝑖𝑡𝑖∈𝑁−
, (ii) the number of links that are active at time period 𝑇, 
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calculated as ∑ 𝐸𝑖𝑗𝑇(𝑖,𝑗)∈𝐴′ , where 𝐸𝑖𝑗𝑇 is a binary variable that is 1 if 𝑥𝑖𝑗𝑇 > 0 and 0 

otherwise, and (iii) the number of demand nodes that receive flow, calculated as 

∑ 𝐷𝑖𝑇𝑖∈𝑁−
, where 𝐷𝑖𝑇 is a binary variable that is 1 if 𝜑𝑖𝑇 > 0 and 0 otherwise. 

The effects of the three weights are examined: 𝑤𝑖, 𝑖 ∈ 𝑁− for weighting the 

importance of demand nodes, 𝜇𝑡, 𝑡 ∈ {1, … , 𝑇} for weighting network performance in 

each time period, and 𝐼𝑖𝑗
𝜋  for expressing the criticality of links. Each take on either a 

scaled value (following a specific calculation) or a constant value (all times periods, 

links, or demand nodes are weighted equally).  

Table 2.4. Aggregate flow, number of active links, and demand nodes receiving 

flow across link importance measures: 𝝁𝒕 and 𝒘𝒊 constant. 
Time 𝐼𝑀𝐹𝑐𝑜𝑢𝑛𝑡  𝐼𝑓𝑙𝑜𝑤 𝐼𝐹𝐶𝑅 Constant 

𝑡 = 1 2158 2158 2158 2158 

𝑡 = 2 6968 6968 7099.6 6968 

𝑡 = 3 20305 20362 20233 20305 

𝑡 = 4 26843 26815 26902 26843 

𝑡 = 5 35090 35222 34814 35090 

𝑡 = 6 37366 37377 37169 37366 

𝑡 = 7 42877 42706 42745 42877 

𝑡 = 8 43105 42952 42973 43105 

𝐷𝑖𝑇  (total active demand node) 140 138 139 139 

 𝐸𝑖𝑗𝑇(total active links) 201 199 196 203 

Fortified critical components 29 27 27 26 

 

Table 2.5. Aggregate flow, number of active links, and demand nodes receiving 

flow across link importance measures: 𝝁𝒕 constant and 𝒘𝒊 scaled. 
Time 𝐼𝑀𝐹𝑐𝑜𝑢𝑛𝑡  𝐼𝑓𝑙𝑜𝑤 𝐼𝐹𝐶𝑅 Constant 

𝑡 = 1 2158 2158 2158 2158 

𝑡 = 2 5190 4872 4884 5190 

𝑡 = 3 17339 16965 17489 17339 

𝑡 = 4 23985 23604 23903 23588 

𝑡 = 5 33074 33524 33135 33903 

𝑡 = 6 35954 35754 35696 36617 

𝑡 = 7 41992 41983 41738 41738 

𝑡 = 8 42220 42098 41966 41966 

𝐷𝑖𝑇  (total active demand node) 134 136 137 136 

 𝐸𝑖𝑗𝑇(total active links) 189 200 202 205 

Fortified critical components 26 24 25 22 
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Table 2.6. Aggregate flow, number of active links, and demand nodes receiving 

flow across link importance measures: 𝝁𝒕 ascending and 𝒘𝒊 constant. 
Time 𝐼𝑀𝐹𝑐𝑜𝑢𝑛𝑡  𝐼𝑓𝑙𝑜𝑤 𝐼𝐹𝐶𝑅 Constant 

𝑡 = 1 2158 2158 2158 2158 

𝑡 = 2 6968 6687 6968 6968 

𝑡 = 3 20305 20411 20388 20362 

𝑡 = 4 26843 26856 26872 26815 

𝑡 = 5 35109 35263 35234 34927 

𝑡 = 6 37368 37455 37476 37295 

𝑡 = 7 42877 42540 42480 42877 

𝑡 = 8 43105 42768 42776 43105 

𝐷𝑖𝑇  (total active demand node) 140 139 140 139 

 𝐸𝑖𝑗𝑇(total active links) 194 207 194 200 

Fortified critical components 28 23 23 23 

 

Table 2.7. Aggregate flow, number of active links, and demand nodes receiving 

flow across link importance measures: 𝝁𝒕 descending and 𝒘𝒊 constant. 
Time 𝐼𝑀𝐹𝑐𝑜𝑢𝑛𝑡  𝐼𝑓𝑙𝑜𝑤 𝐼𝐹𝐶𝑅 Constant 

𝑡 = 1 2158 2158 2158 2158 

𝑡 = 2 7291 6968 6968 7100 

𝑡 = 3 20332 20388 20277 20351 

𝑡 = 4 27116 27007 26856 26778 

𝑡 = 5 34937 35328 35185 35263 

𝑡 = 6 36705 37112 37456 37456 

𝑡 = 7 42589 42502 42493 42646 

𝑡 = 8 42837 42602 42572 42739 

𝐷𝑖𝑇  (total active demand node) 137 145 138 137 

 𝐸𝑖𝑗𝑇(total active links) 192 196 196 197 

Fortified critical components 27 24 25 24 

 

Table 2.8. Aggregate flow, number of active links, and demand nodes receiving 

flow across link importance measures: 𝝁𝒕 ascending and 𝒘𝒊 scaled. 
Time 𝐼𝑀𝐹𝑐𝑜𝑢𝑛𝑡  𝐼𝑓𝑙𝑜𝑤 𝐼𝐹𝐶𝑅 Constant 

𝑡 = 1 2158 2158 2158 2158 

𝑡 = 2 4884 4884 4884 4884 

𝑡 = 3 17033 17489 17033 17033 

𝑡 = 4 23985 23024 23302 23985 

𝑡 = 5 33250 34018 32494 34018 

𝑡 = 6 35954 36875 35549 36875 

𝑡 = 7 41992 41992 41738 41992 

𝑡 = 8 42220 42220 41966 42220 

𝐷𝑖𝑇  (total active demand node) 136 134 136 134 

 𝐸𝑖𝑗𝑇(total active links) 199 194 196 212 

Fortified critical components 28 26 26 26 

 

 



31 

Table 2.9. Aggregate flow, number of active links, and demand nodes receiving 

flow across link importance measures: 𝝁𝒕 descending and 𝒘𝒊 scaled. 
Time 𝐼𝑀𝐹𝑐𝑜𝑢𝑛𝑡  𝐼𝑓𝑙𝑜𝑤 𝐼𝐹𝐶𝑅  Constant 

𝑡 = 1 2158 2158 2158 2158 

𝑡 = 2 6700 6700 6700 6700 

𝑡 = 3 18038 18037 18038 18038 

𝑡 = 4 24602 23746 24471 24601 

𝑡 = 5 32949 32949 32949 32949 

𝑡 = 6 34572 34572 34456 34571 

𝑡 = 7 39717 39752 39260 39596 

𝑡 = 8 39736 39770 39260 39615 

𝐷𝑖𝑇  (total active demand node) 133 130 130 131 

 𝐸𝑖𝑗𝑇(total active links) 190 194 193 195 

Fortified critical components 26 24 24 24 

 

Constant weights, 𝑤𝑖 = 1 and 𝜇𝑡 =1, for the demand node and time periods in Table 

2.4 model the objective to pass maximum power throughout the residual network. 

Therefore, the model delivers maximum flow at the end of the fortification phase, in 

comparison to the maximum flow delivered at the end of fortification phase in Table 2.5 

to Table 2.9. As shown in Table 2.4, there is a potential issue in applying importance 

measures in the model formulation when constant weights are used (i.e., similar results 

are achieved by not using any importance measure and by using 𝐼𝑀𝐹𝑐𝑜𝑢𝑛𝑡). On the other 

hand, the use of the other importance measures resulted in decreased performance of the 

adaptive capacity strategies. That is because the goal of fortification is to adapt to the 

immediate adverse impact of the disruption. Therefore, each fortified link is not going 

to be fully functional until the end of the longer-term recovery process, which reduces 

the efficiency of using the importance measures in the model in the short term. 

However, fortifying links with a higher criticality may not improve the network 

performance during the short term assessed in this study (i.e., 𝑡 ≤ 𝑡𝑑), but as the critical 

links priorities in response phase are higher than other links (i.e., the coefficient of 

critical links in the objective function are greater than other links) they are going to be 
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proportionally recovered at the beginning of recovery phase (i.e., 𝑡 > 𝑡𝑑), which may 

enhance the recovery process. 

Among the implemented importance measures, 𝐼𝑀𝐹𝑐𝑜𝑢𝑛𝑡 shows the best 

performance in guiding the fortification of links as it identifies components that are 

shared in the maximum number of source-sink paths regardless of the percentage of the 

network flow that the component carries in the network. Hence, fortifying the 

components with maximum 𝐼𝑀𝐹𝑐𝑜𝑢𝑛𝑡 brings a great number of disrupted paths into 

partial activation. However, as the outcome of the response phase is to proportionally 

restore components, the links that are important according to 𝐼𝐹𝑙𝑜𝑤 and 𝐼𝐹𝐶𝑅 in the fully 

operational network may not be identified as critical in the fortified network. This is due 

to the fact that their capacity is not necessarily fully exploited in the partially 

operational network.  

Fortifying links with a higher criticality may not improve the network performance 

during the short term assessed in this study (i.e., 𝑡 ≤ 𝑡𝑑), but as the critical link 

priorities in response phase are higher than other links (i.e., the first part of the objective 

function), they are going to be proportionally recovered at the beginning of recovery 

phase (i.e., 𝑡 > 𝑡𝑑). This may enhance the recovery process. For example, Table 2.4 

through Table 2.9 suggest that the implementation of importance measures may not 

always result in better network performance. However, when compared to the 

conditions where only the second element of the objective function is considered, the 

application of the importance measures increases the number fortified critical 

components and reduces the long-term recovery horizon resulting in increased system 

resilience. 
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From the comparison of Table 2.4 with Table 2.5, Table 2.8, and Table 2.9, it 

appears that the priority weights of demand nodes have negative effects on the short-

term response. Nurre et al. [2012] mention that a “priority-based” plan, where 𝑤𝑖 is 

scaled, is aligned with a “demand-based” long-term recovery plan, where restoration 

efforts minimize the total demand dissatisfaction in the network (i.e., “priority-based” is 

also an optimal solution for the model with the “demand-based” restoration 

formulation). However, when we consider scaled 𝑤𝑖 in strengthening the short-term 

adaptive capacity, the same results are not observed because the length of the time 

horizon, 𝑡𝑒 < 𝑡 < 𝑡𝑑, is not extended enough to fulfill the resource allocation to all the 

prioritized demand nodes. Due to the interplay between the incomplete short-term 

response and the assumed characteristics of the resources, the priority-based results of 

this study conflict with the general priority-based results from the literature. However, 

in Table 2.5, applying importance measures to the model with scaled demand node 

weights leads to results that are more aligned with the demand-based formulation, 

where the goal is to maximize the aggregate flow reaching to demand nodes. In Table 

2.5, the application of importance measures enhances adaptive capacity, suggesting that 

the aggregate flow increases (i.e., the total unsatisfied demand decreases), and the total 

𝐷𝑖𝑇 increases (the number of demand nodes receiving flow increases). Recall that the 

importance measures lead the model to maximize the aggregate flow as well as the 

number of satisfied prioritized demand nodes by focusing on the links that are 

responsible for a large proportion of flow in the network.  

In the limited time horizon, the goal of fortifying adaptive capacity is to reach the 

maximum possible performance of the demand nodes (aggregate flow) at any time step 
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𝑡 ∈ {1, … , 𝑇}. One might imagine that the level of network performance at time 𝑇 is of a 

greater significance than prior time periods as longer term recovery follows. Therefore, 

the higher level of network performance at time 𝑇 may lead to more effective recovery. 

However, in some case studies reaching a certain level of aggregate flow earlier is more 

important than reaching the maximum fortified level of performance at time 𝑇 (e.g., 

nodes that include hospitals are required to receive power as soon as possible). Based 

on Table 2.5, ascending 𝜇𝑡 puts more emphasis on aggregate flow at the end of the 

response horizon, while in Table 2.6, descending 𝜇𝑡 places emphasis on increasing 

aggregate flow in earlier time periods. Note that it is assumed that there exists a tradeoff 

for resource capability and processing time: resources have shorter processing time with 

less fortification capabilities (e.g., 𝑟 = 3 in Table 2.3) or they have stronger fortification 

capabilities with more processing time (e.g., 𝑟 = 1 in Table 2.3). From Table 2.6 and 

Table 2.7, we conclude that reaching to a certain level of performance (ascending and 

descending  𝜇𝑡) in a short period of time might not be aligned with the implementation 

of importance measures. Indeed, in the response phase, the fortified portion of the 

capacity of less important links may carry a greater amount of flow than the partially 

operational critical links. 

In Table 2.7, using importance measures may distribute the same amount of 

aggregate flow among more demand nodes. This may result in fewer demand nodes 

being satisfied. However, depending on the temporal importance of fortification, a 

higher level of demand could be met for vital activities (e.g., hospitals, evacuation of 

casualties in particular areas). The similarity of Table 2.6 and Table 2.8 suggest that the 

same level of demand over the response horizon is met using either a constant 𝜇𝑡 or an 
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ascending 𝜇𝑡 in conjunction with a scaled 𝑤𝑖. A comparison of Table 2.7 and Table 2.9 

suggests that implementing a scaled value of 𝑤𝑖 performs better when no scale is given 

to time periods with 𝜇𝑡, though the comparison of Table 2.7 and Table 2.9 suggests that 

if a descending 𝜇𝑡 is used, then demand is met more effectively with a constant 𝑤𝑖. We 

note from Tables Table 2.4 to Table 2.9 that 𝐸𝑖𝑗𝑇, the number of links used to achieve 

aggregate flow, decreases when importance measures are applied. This might be of 

importance in situations when it is preferred to use fewer links and consequently shorter 

paths. For instance, in Table 2.8 using 𝐼𝑀𝐹𝑐𝑜𝑢𝑛𝑡 in the model delivers the more 

aggregate flow with fewer links relative to using no importance measure. 

2.7 Resource Allocation Sensitivity Analysis  

As adaptive-capacity-enhancing resources are limited, two scenarios are developed 

to alter 𝑀̅𝑟, the average number of resources available, and 𝑈̅𝑟, the average number of 

services that can be released from resources and assigned to disrupted components. The 

two scenarios applied to the French power network are: (i) a varying number of services 

that each resource can send to disrupted links from the range 𝑈̅𝑟 ∈ (0, ⌈
|𝐴|

𝑆
⌉), and (ii) a 

specific number of available resources of each type 𝑀̅𝑟 ∈ (0, 𝑆).  

Table 2.10 indicates the impact of number of resources on aggregate flow, number 

of demand nodes receive flow respectively. Results indicate that when 𝑀̅𝑟 ≥ 5, MILP 

obtains the best solution, higher aggregate flow as well as more satisfied demand nodes 

and increasing the average number of resources to more than four will not impact on the 

total amount aggregate flow reaching to the demand nodes. We do note that the required 

number of resource depends on the topology of the network, number of important links 
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which are affected, and the location of the disruptive event (e.g., the epicenter of the 

earthquake). 

Table 2.10. The impact of the average number of resources 𝑴̅𝒓 on aggregate flow, 

number of active links, and demand nodes receiving flow: constant 𝝁𝒕, constant 𝒘𝒊. 

Time 
𝑀̅𝑟

 

1 2 3 4 5 6 7 8 

𝑡 = 1 0 0 0 0 0 0 0 0 

𝑡 = 2 3491 5811 10157 14288 14336 14061 14336 13511 

𝑡 = 3 7846 15557 21929 23635 23699 24051 23660 24442 

𝑡 = 4 11684 24513 29125 32803 32998 33060 32906 33641 

𝑡 = 5 14562 31251 38194 40390 40463 40196 40828 40543 

𝑡 = 6 14562 33639 42079 43108 42927 43908 44206 44627 

𝑡 = 7 16903 39363 45815 44776 43923 44776 45347 45698 

𝑡 = 8 16903 39479 45931 44776 45931 45931 45347 45698 

 𝐷𝑖𝑇 128 137 137 139 139 139 139 140 

𝐸𝑖𝑗𝑇 198 215 210 204 197 202 200 205 

 

Table 2.11. The impact of the average 𝒏umber of services released from resources 

𝑼̅𝒓 on aggregate flow, number of active links, and demand nodes receiving flow: 

ascending 𝝁𝒕, constant 𝒘𝒊. 

Time 𝑈̅𝑟 

 
3 4 5 6 7 8 9 10 11 12 13 

𝑡 = 1 2158 2158 2158 2158 2158 2158 2158 2158 2158 2158 2158 

𝑡 = 2 6968 8617 9872 11090 12426 13379 13865 14444 14928 14928 14928 

𝑡 = 3 20305 24961 29692 32709 34559 36032 38118 38649 39692 39861 40184 

𝑡 = 4 26843 31732 35724 38976 40617 42577 42943 44430 46163 46442 46765 

𝑡 = 5 35090 40795 43131 44677 46144 46518 46645 46871 47066 47120 47120 

𝑡 = 6 37366 41273 43131 44677 46144 46518 46645 46871 47066 47120 47120 

𝑡 = 7 42877 45496 46631 46947 46918 47065 47120 47120 47120 47120 47120 

𝑡 = 8 43107 45496 46631 46947 46918 47065 47120 47120 47120 47120 47120 

𝐷𝑖𝑇 139 140 140 142 141 143 204 143 143 143 143 

𝐸𝑖𝑗𝑇 197 203 209 201 206 209 143 207 205 210 208 

 

Table 2.11 indicates the impact of resource capacity on the aggregate flow, number 

of demand nodes receiving flow, and number of involved links, respectively, for 

ascending 𝜇𝑡 and constant 𝑤𝑖. The results are analyzed under ascending 𝜇𝑡, and scaled 
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𝑤𝑖 and suggest that increasing capacity of resources enables the model to maximize 

aggregate flow and serves more demand nodes. However, for each of eight time periods 

in Table 2.11, there is a threshold in average number of services each resource can 

release to disrupted components (𝑈̅𝑟 = 10) above which no more improvement is seen 

in the aggregate flow reaching to the demand nodes. Table 2.12 shows the impact of 

resource capacity on the aggregate flow, number of demand nodes receiving flow, and 

number of involved links, respectively, for constant 𝜇𝑡 and scaled 𝑤𝑖. When demand 

nodes are prioritized (𝑤𝑖 is scaled), 𝑈̅𝑟 = 9 is the optimal solution for the model as it 

represents the maximum aggregate flow reaching to demand nodes, which is less than 

the situation in which there is no priority weights for demand nodes. 

Table 2.12. The impact of the average number of services released from resources 

𝑼̅𝒓 on the aggregate flow, number of active links, and demand nodes receiving 

flow: constant 𝝁𝒕, scaled 𝒘𝒊. 

Time 
𝑈̅𝑟

 

3 4 5 6 7 8 9 10 11 12 13 

𝑡 = 1 2158 2158 2158 2158 2158 2158 2158 2158 2158 2158 2158 

𝑡 = 2 5190 6549 8833 12034 12034 13170 13170 18325 18528 5190 6549 

𝑡 = 3 17339 21801 26270 33023 33023 34516 34516 36900 37605 21339 21801 

𝑡 = 4 23588 31171 34301 38516 38516 39778 39778 42048 42818 33588 31171 

𝑡 = 5 33903 39077 42283 44028 44028 44508 44508 45355 45353 45355 45353 

𝑡 = 6 36616 39772 42287 44028 44028 44508 44508 45355 45353 45355 45353 

𝑡 = 7 41738 44231 44485 45177 45177 45177 45177 45473 45473 45473 45473 

𝑡 = 8 41966 44231 44485 45177 45177 45177 45177 45473 45473 45473 45473 

𝐷𝑖𝑇 135 139 140 142 141 143 143 143 143 143 143 

𝐸𝑖𝑗𝑇 201 212 209 197 197 209 206 205 211 210 208 

 

2.8 Concluding Remarks 

This work is an initial attempt to explore the assignment of resources to a disrupted 

infrastructure network to enhance its adaptive capacity, or the ability of the network to 

quickly adapt after a disruption by temporary means. The mixed integer programming 

formulation proposed here uniquely accounts for three characteristics: (i) link criticality, 
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to emphasize those links that are considered important to the network, (ii) vulnerability, 

to emphasize those links that enable flow in the network, and (iii) connectivity, to 

emphasize those links that enable demand to be met at demand nodes. The optimization 

formulation was applied to a spatial disruption of the topology of the 400 kV French 

network.  

To measure link criticality, three flow-driven importance measures from Nicholson 

et al. [2016] were used and their effect on the aggregate flow, number of demand nodes 

receive flow and number of involved links were measured. These measures emphasize 

the effects of the links in the network to the maximum flow in each time period from 

different perspectives, though any type of network importance measure could be used. 

Note these importance measures may provide a limited perspective, as adaptive capacity 

is assume to not fully recover disruptions. However, from an integrated approach, 

fortifying more important links in the short term may result in more effective recovery 

in terms of length of recovery time and the quality of recovery plan. All resources are 

assigned to clusters immediately after the disruption. However, further work is needed 

to explore how quickly after a disruption adaptive capacity resources can be engaged to 

determine the value of post-disruption importance information.  

We examine the adaptive capacity efforts of the network when there are priorities of 

decision makers of the power network. It is observed that the optimal solution cannot be 

aligned with demand node priority as the network cannot be completely recovered 

during the short term and the component which is fortified by resources to lead flow 

through more important demand nodes may differ from the component which provide 

maximum aggregate flow in each time period. Ascending time weight, 𝜇𝑡, aligns with 
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maximum aggregate flow optimal solution. Furthermore, it provides the optimal 

solution that maximizes network performance at the end of the adaptive capacity time 

horizon, 𝑇, which may consequently lead to more effective recovery. Regarding 

component criticality, the computational results suggest that the implementation of 

𝐼𝑀𝐹𝑐𝑜𝑢𝑛𝑡  under any strategy (i.e., constant or scaled 𝜇𝑡 and 𝑤𝑖) enhance the adaptive 

capacity. In situations when demand nodes are prioritized, the use of the importance 

measures assists in choosing the paths that satisfy the corresponding demand nodes 

while considering the performance of the whole network 
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Chapter 3 : RESTORATIVE CAPACITY PLANNING 

FORMULATIONS FOR COMPLEX INFRASTRUCTURE 

NETWORKS 

3.1 Introduction 

Network recoverability can be addressed with restorative capacity, or how to reduce 

the time horizon in which restorative operations occur, thus increasing the slope of 

performance [Hosseini and Barker 2016]. Examples of absorptive, adaptive, and 

restorative capacity include fortifying bridges with continuous span in Northridge area 

in San Francisco Valley in Los Angeles [Cooper et al. 1994], emergency arc routing to 

maintain the connectivity of a transportation network in the aftermath of a disruptive 

event [Kasai and Salman, 2016], and debris removal to fully recover a transportation 

network [Celik et al. 2016], respectively.  

This Chapter focuses on enhancing recoverability through restorative capacity. The 

contribution of this research is to provide two mixed integer linear models to assign 

restoration crews to disrupted components and improve infrastructure network’s 

restorative capacity for two different kinds of infrastructure network behaviors. 

The first is referred to as the Proportional Active model, in which a disrupted 

component can be partially operational in the network while it is being recovered (e.g., 

a segment of multi-lane highway, the number of recovered power lines among those 

disrupted lines grouped in tubes installed underground). This is also the case for 

redundant components connected in a parallel configuration, in which the components 

equally share the load. Power lines, busbars, and stepdown transformers are often 

operated following this logic. The capacity and, consequently, the level of operation 
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associated with each disrupted line increase during restoration.). The second, is referred 

to as the Binary Active model, in which a disrupted component must be fully recovered 

to be fully operational (e.g., an electric power line). In the aftermath of a disruptive 

event, restoration work crews are distributed throughout the network to recover 

disrupted components. Each disrupted component has specific characteristics, such as 

the level of damage and its rate of recovery. Also, various work crews can be assigned 

to a component to accelerate its rate of recovery. The optimal assignment and schedule 

of work crews can significantly increase the recovery time of the entire network.  

Although the Proportional Active model may not be always applicable on power 

networks, its implementation on highway networks, physical structure of internet 

networks is of a great significance. Proportional Active model is also applicable to some 

cases where, along with restoring the main power lines, temporary, and emergency lines 

are installed and used to satisfy at least a portion of demands. Furthermore, this model 

is also applicable when redundant components are installed to perform the same task 

(e.g., parallel power lines and transformers).   

3.2 Methodological Background 

Considerable research in recent years has focused on optimization models and 

algorithms to improve recovery operations. Recent reviews by Anaya-Arenas et al. 

[2014] and Ozdamar and Ertem [2016] discuss post-disruption restoration plans 

particularly in humanitarian logistics, such as relief delivery, casualty transportation, 

and mass evacuation. As far as transportation networks are concerned, Kasaei and 

Salman [2016] study arc routing problems to regain network connectivity by clearing 

blocked roads, developing heuristic algorithms to attain maximum benefit gained by 
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network connectivity while minimizing the time horizon. Aksu and Ozdamar [2014] 

consider a multi-vehicle problem to maximize network accessibility during 

transportation network recovery by identifying critical blocked links and restore them 

with limited resources. Celik et al [2015] also consider debris removal problems and 

define a stochastic debris removal approach over discrete time periods to determine the 

optimal schedule of blocked links under uncertainty. It is assumed the information 

corresponding to clearance time changes as the debris amount changes. Therefore, as 

the information is updated the restorative vehicles assignment schedule change. Nurre et 

al [2012] introduce a design and scheduling formulation to expedite the infrastructure 

network restoration process. 

Electric power networks behavior differently than transportation networks, as 

according to laws of physics, power flow cannot be controlled and affected directly. 

Bienstock and Mattia [2007] proposed a mixed integer model to protect power grid 

networks at minimum costs to increase their survivability to cascading failures. Later 

Nurre et al. [2012] incorporate the method by Bienstock and Mattia [2007] to propose a 

schedule and design problem that models restoration efforts associated with power 

networks. Fang and Sansavini [2017] co-optimize power grid expansion and installation 

of line switching devices to mitigate the supply disservice in the aftermath of 

disruptions and enhance resilience by system re-configurability. Coffrin and Hentenryck 

[2014] propose a linear AC power to capture the key power flow factors such as 

reactive power and voltage magnitude. To control power transmission networks, Chang 

and Wu [2011] explore a quantitative method to measure the stability and reliability of 

electric power network under the triggered cascading failures. Bienstock and Grebla 
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[2015] introduce a stochastic algorithm to minimize the lost power load at the 

termination of the cascade considering noise and errors in the model. Xiao and Yeh 

[2011] use a dual covering graph in which nodes represent links in the corresponding 

original graph and present a model to assess the existence and non-existence of 

operational links after the failure of degree dependent links. Fang et al. [2014] introduce 

a pattern that searches for an optimal limited resource allocation to increase the capacity 

of some links in electric power networks so as to maximize network resistance to 

cascading failures. Their proposed multi-objective model proves the nonlinear capacity-

load relation where the unoccupied portion of capacity tends to decline in links with a 

heavier load and it tends to increase in links with light loads.  

Arif et al.[2017] propose a two stage method which first clusters the disrupted lines 

and grids based on their distance from the restoration depot and then proposes a mixed 

integer linear program to schedule restoration crews to disrupted locations and dispatch 

them through the network to minimizes the total restoration time. Chen et al. [2017] 

introduce a sequential service restoration framework to optimize the restoration process 

for large-scale power outages, disrupted distribution networks, and microgrids. The 

framework is formulated as a mixed integer linear program and schedules a set of 

control actions that synchronize distributed generators, switches, and switchable loads 

and form multiple isolated microgrids in three-phase unbalanced distribution systems 

and microgrids. 

Many infrastructure networks can be described by models of complex networks 

(e.g., scale-free and small-world networks), therefore recent research has focused on 

how network structures facilitate and constrain network behavior, particularly in the 
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aftermath of a disruptive event [Wang and Chen, 2003]. Ouyang et al. [2008] 

investigate how the resilience of redundant systems in scale-free networks plays a 

significant role to reduce the adverse effects of disruptions. They conclude that a 

redundancy strategy based on total degree, along with giving redundant systems 

sufficient capability to withstand disruption, is the most efficient policy to protect 

complex networks from disruption. Chang and Wu [2011] analyze complex network 

theories and characteristics to be able to track the mechanism of cascading failure, 

showing that network reliability could decline to 5% as the result of cascading failure. 

Albert et al [2014] assess level of robustness and vulnerability of complex networks for 

different disruption scenarios. They show that the malfunction of key components may 

nevertheless lead to an adverse loss in the complex networks as the result of redundant 

connections existing in the network structure. However, these connections do not share 

error tolerance thoroughly, which made some parts of the complex networks more 

vulnerable to attacks.  

In addition to studying different complex network structures, his work provides an 

assessment of the improvement in the restoration process of 400-kV French power 

transmission network. In this case study, we consider how to alleviate cascading failures 

effect in the early time periods after a disruptive event. We also incorporate linear 

approximation DC model to illustrate the effects of laws of physics on power flow 

behavior.  

3.3 Problem Formulation  

Let 𝐺 = (𝑁, 𝐴) be an undirected connected network, where 𝑁 is the set of nodes 

and 𝐴 is the set of links. There is a set of supply nodes 𝑁+ ⊆ 𝑁, a set of demand nodes 
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𝑁− ⊆ 𝑁, and a set of transshipment nodes 𝑁= ⊆ 𝑁. Each supply node 𝑖 ∈ 𝑁+ supplies 

amount 𝑜𝑖 in each time period, and each demand node 𝑖 ∈ 𝑁− demands amount 𝑏𝑖 in 

each time period. Each link (𝑖, 𝑗) ∈ 𝐴 has a defined pre-disruption capacity 𝑢𝑖𝑗𝑡𝑒
 and a 

pre-calculated flow value 𝑥𝑖𝑗𝑡𝑒
 based on the solution to the classic flow problem aiming 

to satisfy demand nodes 𝑖 ∈ 𝑁−  [Ahuja et al. 1993], Power flow rules are not 

considered in small-world and scale-free instances as the relevant series reactance 

values are not known.   

With the application of the DC linear approximation model for the 400kV French 

transmission network (shown in Appendix A), both of which represent time 𝑡𝑒 just prior 

to the disruption as shown in Figure 1.1. We are interested in sending the amount of 

flow from supply nodes to satisfy all demand nodes, respecting the flow capacity of 

links and supply/demand capacities of the requirements. There exists an importance 

weight 𝑤𝑖 of each demand node 𝑖 ∈ 𝑁−. 

There is a set of links 𝐴′ ⊆ 𝐴 that are affected by the disruptive event at time 𝑡𝑒. 

Without loss of generality, we can consider inoperable nodes as inoperable links since a 

node can be split to two nodes and a link. The affected links are scheduled to multiple 

parallel restoration crews, 𝑘 = 1, … , 𝐾, where 𝐾 is the maximum number of work crews 

that can be assigned to each disrupted link (𝑖, 𝑗) ∈ 𝐴′. The total number of work crews 

available for all links is 𝐿. Each link (𝑖, 𝑗) ∈ 𝐴′ has an associated processing time 𝑝𝑖𝑗𝑘 

which depends on the characteristics of that link and the number of restoration crews 

assigned to it. Without loss of generality, 𝑝𝑖𝑗𝑘 is an integer parameter for each (𝑖, 𝑗) ∈

𝐴′. We also assumed that each recovery task should be processed without interruption.  
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We evaluate the performance of the network in each time period 𝑡 = 1, … , 𝑇 by 

determining the total flow reaching to demand nodes, denoted by ∑ 𝜑𝑖𝑡𝑖∈𝑁−
. The 

objective function maximizes the resilience of the infrastructure network at each time 𝑡, 

and consequently over the horizon of the problem. The resilience of the system at time 𝑡 

after disruptive event 𝑒𝑗̅ 𝑗̅ ∈ 𝐸, is captured in the objective function with Eq. (3.21), 

where ∑ 𝜑𝑖𝑡𝑒𝑖∈𝑁−
 is the performance of the network before the occurrence of disruptive 

event (at time 𝑡𝑒 from Figure 1.1), and ∑ 𝜑𝑖𝑡𝑑𝑖∈𝑁−
 is the performance of the network 

after disruptive effects have occurred (at time 𝑡𝑑). 

Я𝜑(𝑡|𝑒) =
∑ 𝜑𝑖𝑡𝑖∈𝑁−

− ∑ 𝜑𝑖𝑡𝑑𝑖∈𝑁−

∑ 𝜑𝑖𝑡𝑒𝑖∈𝑁−
− ∑ 𝜑𝑖𝑡𝑑𝑖∈𝑁−

 (3.21) 

3.3.1 Mathematical Models 

In this section, two variations on a mixed integer mathematical model are presented 

to solve the infrastructure network restoration problem. In the Binary Active model, we 

assume that each disrupted link remains inoperable until the related recovery process is 

completed. The decision variables for the Binary Active model are found in Table 3.1. 

Decision variables in the Binary Active model. In certain realistic case studies, such as 

transportation networks, disrupted links can be partially operable during their recovery 

process. The Proportional Active model, the decision variables for which are found in 

Table 3.2, addresses this situation where the level of operability of link (𝑖, 𝑗) increases 

during its recovery process and becomes completely operational at the end of the 

recovery process.  
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Table 3.1. Decision variables in the Binary Active model. 
Notation Type Definition 

𝛼𝑘𝑖𝑗𝑡 Binary 
Equals 1 if the recovery process of link (𝑖, 𝑗) is completed by 𝑘 

work crews at time 𝑡, 0 otherwise 

𝛽𝑖𝑗𝑡  Binary Equals 1 if link (𝑖, 𝑗) is operational at time 𝑡, 0 otherwise 

𝜑𝑖𝑡  Continuous Cumulative flow reaching demand node 𝑖 at time 𝑡 

𝑥𝑖𝑗𝑡 Continuous Flow on link (𝑖, 𝑗) at time 𝑡 

 

Table 3.2. Decision variables in the Proportional Active model. 
Notation Type Definition 

𝛾𝑘𝑖𝑗𝑡  Binary 
Equals 1 if the recovery process of link (𝑖, 𝑗) begins by 𝑘 work 

crews at time 𝑡, 0 otherwise 

𝜑𝑖𝑡  Continuous The cumulative flow reaches to demand node 𝑖 at time 𝑡 

𝑥𝑖𝑗𝑡 Continuous The flow corresponding to link (𝑖, 𝑗) at time 𝑡 

 

3.3.1.1 MIP Model for Binary Active Network Restorative Capacity  

max ∑ 𝜇𝑡Я𝜑(𝑡|𝑒𝑗)

 𝑡∈𝑇

 (3.22) 

s.t.   

∑ 𝑥𝑖𝑗𝑡

𝑗:(𝑖,𝑗)∈𝐴

− ∑ 𝑥𝑗𝑖𝑡

𝑗:(𝑗,𝑖)∈𝐴

≤ 𝑂𝑖 ∀𝑖 ∈ 𝑁+ ,  𝑡 = 1, … , 𝑇 (3.23) 

∑ 𝑥𝑖𝑗𝑡

(𝑖,𝑗)∈𝐴

− ∑ 𝑥𝑗𝑖𝑡

(𝑗,𝑖)∈𝐴

= 0 ∀𝑖 ∈ 𝑁= ,  𝑡 = 1, … , 𝑇 
(3.24) 

∑ 𝑥𝑖𝑗𝑡

(𝑖,𝑗)∈𝐴

− ∑ 𝑥𝑗𝑖𝑡

(𝑗,𝑖)∈𝐴

= −𝜑𝑖𝑡 ∀𝑖 ∈ 𝑁− ,  𝑡 = 1, … , 𝑇 (3.25) 

0 ≤ 𝜑𝑖𝑡 ≤ 𝑏𝑖 ∀𝑖 ∈ 𝑁− , 𝑡 = 1, … , 𝑇 (3.26) 

0 ≤ 𝑥𝑖𝑗𝑡 ≤ 𝑢𝑖𝑗𝑡𝑒
 ∀(𝑖, 𝑗) ∈ 𝐴/𝐴′, 𝑡 = 1, … , 𝑇 (3.27) 

0 ≤ 𝑥𝑖𝑗𝑡 ≤ 𝛽𝑖𝑗𝑡𝑢𝑖𝑗𝑡𝑒
 ∀(𝑖, 𝑗) ∈ 𝐴′, 𝑡 = 1, … , 𝑇 (3.28) 

∑ ∑ (1 + ⌊
𝑡 − (𝑠 − 𝑝𝑘𝑖𝑗 + 1)

𝑀
⌋) 𝑘𝛼𝑘𝑖𝑗𝑠

𝑇

𝑠=𝑡

𝐾

𝑘=1

≤ 𝐿 

 ∀(𝑖, 𝑗) ∈ 𝐴′, 𝑡 = 1, … , 𝑇 (3.29) 

∑ ∑ 𝛼𝑘𝑖𝑗𝑡

𝑡∈𝑇𝑘∈𝐾

≤ 1 ∀(𝑖, 𝑗) ∈ 𝐴′ (3.30) 
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∑ 𝛼𝑘𝑖𝑗𝑡

𝑝𝑖𝑗𝑘−1

𝑡=1

= 0 ∀(𝑖, 𝑗) ∈ 𝐴′,  ∀𝑘 ∈ 𝐾 (3.31) 

𝛽𝑖𝑗𝑡 − ∑ ∑ 𝛼𝑘𝑖𝑗𝑠

𝑘∈𝐾

𝑡

𝑠=1

≤ 0 ∀(𝑖, 𝑗) ∈ 𝐴′,  𝑡 = 1, … , 𝑇 (3.32) 

𝛼𝑘𝑖𝑗𝑡 , 𝛽𝑖𝑗𝑡 ∈ {0,1} 

𝜑𝑖𝑡 ≥ 0 

∀𝑘 ∈ 𝐾, ∀(𝑖, 𝑗) ∈ 𝐴′,  𝑡 = 1, … , 𝑇 

∀𝑖 ∈ 𝑁− ,  𝑡 = 1, … , 𝑇 
(3.33) 

 

The objective function maximizes the resilience of the network over the horizon of 

the problem. We also associate weight 𝜇𝑡 to the resilience of the network at time 𝑡, as 

the importance of the resilience measure may vary over time (e.g., more rapid recovery 

may be achieved when earlier time periods have large weights). Eqs. (3.23)-(3.25) are 

network flow constraints in and out of supply nodes, transition nodes, and demand 

nodes, respectively. Eq. (3.26) ensures that the amount of delivered flow does not 

exceed the capacity of demand nodes. Eqs. (3.27) and (3.28) ensures that the flow of 

link (𝑖, 𝑗) ∈ 𝐴′ does not exceed its (disrupted or recovered) capacity. Eqs. (3.29)-(3.32) 

schedule disrupted link for recovery. Eq. (3.29) ensures that no more than 𝐿 restoration 

crews can work on disrupted links in each time period. None of the disrupted links 

receives recovery services more than once, according to Eq. (3.30), and no link 

recovery process completes before its processing time is finished with Eq. (3.31). Eq. 

(3.32) ensures that if link (𝑖, 𝑗) ∈ 𝐴′ is operational at time 𝑡, then its recovery process 

must have been completed by that time 𝑡.  

3.3.1.2 MIP Model for Proportional Active Network Restorative Capacity 

In the Proportional Active formulation, the processing time of link (𝑖, 𝑗) ∈ 𝐴′ is a 

function of: (i) the characteristics of that link, such as the level of disruption it 
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experiences and the series of required task for its recovery, and (ii) the number of the 

assigned work crews to link (𝑖, 𝑗), 𝑓𝑖𝑗𝑘(𝑡). This function is non-decreasing on 𝑡 =

1, … , 𝑇 intervals and, without loss of generality, it is integer-valued. We also assume 

that each recovery task should be processed without interruption.   

max ∑ 𝜇𝑡Я𝜑(𝑡|𝑒𝑗)

 𝑡∈𝑇

 (3.34) 

s.t.   

Eqs. (3.3), (3.4), (3.5), (3.6), (3.7)   

0 ≤ 𝑥𝑖𝑗𝑡 ≤ 𝑢𝑖𝑗𝑡𝑑
+ ∑ ∑ 𝛾𝑘𝑖𝑗𝑠

𝑡

𝑠=1

𝑓𝑘𝑖𝑗(𝑡−𝑠)(𝑢𝑖𝑗𝑡𝑒
− 𝑢𝑖𝑗𝑡𝑑

)

𝑘∈𝐾

 
∀(𝑖, 𝑗) ∈ 𝐴′, 

 𝑡 = 1, … , 𝑇 
(3.35) 

∑ ∑ (1 + ⌊
(𝑠 + 𝑝𝑘𝑖𝑗 − 1) − 𝑡

𝑀
⌋) 𝑘𝛾𝑘𝑖𝑗𝑠

𝑡

𝑠=1

𝐾

𝑘=1

≤ 𝐿 
 ∀(𝑖, 𝑗) ∈ 𝐴′,   
𝑡 = 1, … , 𝑇 

(3.36) 

∑ ∑ 𝛾𝑘𝑖𝑗𝑠

𝑡∈𝑇𝑘∈𝐾

≤ 1 ∀(𝑖, 𝑗) ∈ 𝐴′ (3.37) 

∑ 𝛾𝑘𝑖𝑗𝑡

𝑇

𝑡=𝑇−𝑝𝑘𝑖𝑗+1

= 0 
∀(𝑖, 𝑗) ∈ 𝐴′, 
 𝑘 = 1, … , 𝐾 

(3.38) 

𝛾𝑘𝑖𝑗𝑡 ∈ {0,1}, 𝜑𝑖𝑡 ≥ 0 

∀𝑘 ∈ 𝐾, 
 ∀(𝑖, 𝑗) ∈ 𝐴′  
𝑡 = 1, … , 𝑇, 

∀𝑖 ∈ 𝑁−  

(3.39) 

 

Eq. (3.34) calculates the improvement on each disrupted link (𝑖, 𝑗) ∈ 𝐴′ recovery 

process as an increase in its capacity while assuring the flow on link (𝑖, 𝑗) does not 

exceed its capacity. Eqs. (3.35)-(3.37) schedule disrupted link for recovery. Eq. (3.36) 

ensures that no more than 𝐿 work crews can work on disrupted links in each time 

period. Eq. (3.37) requires that the allocation of work crews is only made once for each 

disrupted link. No link recovery process starts if its processing time takes longer than 

the restoration horizon, as in Eq. (3.38). 
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The proposed formulations are applicable to various infrastructure networks, such as 

transportation and supply chains. However, to prove the applicability of the proposed 

model to power grid network it is required to update the formulation to capture the 

electric power flows computed according to circuit laws, which generally cannot be 

controlled individually by decision makers [Bienstock and Mattia 2007]. Similar to 

Nurre et al. [2012], we apply the DC model which is a linear approximation commonly 

used to model the operations of power network infrastructure. The linearized 

approximations have been justified using traditional engineering assumptions that under 

“normal” operating conditions, voltage magnitudes do not significantly deviate from 

nominal values and phase differences are “small” [Nagarajan et al. 2017]. In fact, the 

recovery process in Eqs. (A.1)-(A.7) is not intended to capture the operations of the 

power grid. Rather, it plans restoration, and the system is dispatched for “normal” 

conditions using the undisrupted elements.We also incorporate cascading failure effects 

in early time periods after disruptions into the proposed models. Then, we employ a 

combined algorithm from Soltan et al. [2014] and Bienstock [2011] to control the 

disruptions caused by imbalanced supply-demand correlation (see the Appendix A for 

details). The cascading failure evolution algorithm is also based on the DC 

approximation [Soltan et al. 2014]. Our focus is not on the effect of cascading failures 

and on their control. However, applying a cascading failures control algorithm 

immediately after a disruptive event provides a realistic disrupted network for 

implementation into and testing the proposed restoration and resource allocation 

formulations, which is our focus. To limit the approximation errors during the 
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deployment of this formulation on real-world systems, the AC relations can be applied 

in place of DC approximations [Nagarajan et al. 2017].  

3.4 Illustrative Examples Based on the 400 kV French Power Transmission 

Network 

The two proposed models are illustrated with reference to several test instances 

derived from the 400-kV electric power transmission network of France. The 

transmission network [RTE 2013], depicted in Figure 3.1 is an undirected network 

containing 171 nodes, including 26 generators (i.e., 26 supply nodes), 145 distributors 

(i.e., demand nodes), and 220 transmission lines. 

To test realistic disaster areas possibly affected by realistic disruptions (e.g., 

Hurricane Katrina led to devastation on the U.S. gulf coast approximately half the size 

of Sweden [Widegren, 2007]), we consider a hypothetically significant disruptive event 

(e.g., an earthquake) impacting 94 of 220 transmission lines (48%). The disruptions are 

distributed randomly among the network components. The capacity of each 

transmission line is about 5190 MW and the total delivered power flow is 84988 MW in 

the nominal operating conditions. Other modified versions of disrupted transmission 

networks are used by Alipour et al. [2014] and Fang et al. [2014]. We employ different 

network structures to evaluate the applicability of the two proposed models. Scale-free 

and small-world networks are generated according to Barabasi-Albert [1999] and 

Watts-Strogatz [1998] models, respectively, based on the data describing the 400-kV 

French transmission network. A small-world network refers to a type of mathematical 

graph in which the distance between two randomly nodes grows slowly, proportionally 

to the logarithm of the number of the nodes, while at the same time the level of 
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clustering in that corresponding network is not small [Watts and Strogatz, 1998]. These 

networks resemble many power grid networks and networks of how infectious disease 

spreads. For a scale-free network, the degree distribution follows a power law. That is, 

the portion of nodes having 𝑘̅ connections to other nodes is 𝑘̅−𝛾, where 𝛾 is a parameter 

in the rage of (2,3) [ Barabasi and Albert, 1999]. These networks resemble airline 

networks in the US, as well as the physical structure of the Internet and the world wide 

web. 

The small-world and scale-free networks are not spatially embedded networks, 

therefore their links overlap, and the definition of series reactance loses its meaning. To 

mitigate this issue, we consider the generated small-world and scale-free networks as 

simple supply-demand networks. For generated small-world and scale-free instances, as 

we do not have any information about the series reactance of the lines, we need exclude 

Eqs. (A.1)-(A.7), (i.e., the DC flow linear approximation constraint presented by 

Bienstock and Mattia [2007]), from the model formulation when applied to these 

network structures. The average capacity of the lines of each network instance is chosen 

so that all demand nodes are satisfied. 

For scale-free networks, we use preferential attachment as the growth mechanism 

for developing network structure for the test instances. In preferential attachment 

mechanism, the probability 𝑃(𝑖) that a node 𝑖 ∈ 𝑁 gets a new link to another node is 

proportional to a positive function, 𝐴ℎ𝑖
, of its current degree. Based on Barabasi-Albert 

model, 𝐴ℎ𝑖
= 𝐴ℎ is assumed to be a log-linear form of ℎ𝛼, where 𝛼 > 0 is the exponent 

attachment [Pham et al. 2015]. The data are also generated from the 400-kV French 

transmission network topology with 171 nodes. Without altering the number of nodes, 
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we vary the attachment exponent from 0.002 to 1. Changing the exponent attachment, 

we produce new network instances using the same number of nodes (i.e., supply, 

demand, and transmission nodes) with different numbers of lines and topological 

structure through which the disruptions distributed in a random order. 

Note that if 𝛼 < 1 (the sub-linear case), then the degree distribution is going to be a 

stretched exponential, while in the case of 𝛼 > 1 (super-linear case), one node will 

attain all the incoming links. Eventually, the power law distribution is presented only 

when 𝛼 = 1, linear case [Pham et al. 2015]. We alter the power of preferential 

attachment, which enables nodes with the higher degree to have a higher chance of 

grabbing new links added to the network, from 0.002 to 1.8, where 1 represents linear 

preferential attachment. 

For small-world networks, the data are randomly generated with the same amount of 

supply and demand as the 400kV French transmission network data set [RTE 2013], 

with 171 nodes and the same number of generators and distributors randomly allocated 

to the nodes. The capacities of lines are chosen to enable the network to satisfy all 

demand nodes in its undisrupted state with the minimum level of network redundancy. 

Without altering the number of nodes, we rewire each link with probability 𝑝 from 1 to 

0.001 and produce a new instance with different number of this links and topological 

structure through which the disruptions distributed in a random order, 𝑝 = 0 represents 

a regular ring lattice network,  𝑝 = 1 represents a complete random network, and 0 <

𝑝 < 1 represents a small-world networks. 
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Figure 3.1. The 400 kV French power transmission network [RTE 2013]. 

 

Each generated network may have a different number of links out of which 48% are 

disrupted. It is assumed that 14 work crews are deployed to recover disrupted links, and 

at most seven crews can be assigned to a disrupted link at the same time. The 

restoration times for disrupted links vary between 1 to 12 periods depending on the 

characteristics of the link, the level of damage it experienced, and the number of 

assigned work crews.  

We have run our computational experiment on a 64-bit Core™ i7-7500U CPU 

computer. We set a limit of 3600 seconds for all the instances and tested whether the 

proposed formulation solved them in this time limit or not. Each run was terminated 
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before 3600 s if the optimality gap fell below 0.2% for the Proportional Active model. 

Python 2.7.10 is used for modeling, and Gurobi 7.0.2 is used to solve both models. The 

time horizon 𝑇max is 60 periods (hours), which corresponds to six 10-hours work shifts. 

Figure 3.2 and Figure 3.3 illustrate the structural properties of small-world networks 

network including 𝐶(𝑝), or clustering coefficient, and 𝐿(𝑝), or path length (i.e., the 

number of hops [Walts and Strogatz 1998]), over random rewiring probability 𝑝 ∈

[0.001,1].  

 

Figure 3.2. Random rewiring procedure with increasing randomness (from a 

regular ring lattice to a random network) without altering the number of nodes or 

links in the graph (adapted from Watts and Strogatz [1998]). 

 

 

Figure 3.3. Characteristic path length 𝑳(𝒑) and clustering coefficient 𝑪(𝒑) for the 

family of randomly rewired graphs (adapted from Watts and Strogatz [1998]). 

 

Rewiring probability 𝒑 
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3.4.1 Computational Testing on Scale-Free Networks  

Table 3.3 presents the result of Binary Active and Proportional Active models for 17 

scale-free network test instances with different exponent attachment value, 𝛼 > 0, 𝛼 ∈

[0.002,1.8]. The exponent attachment value, the capacity of links, and the total number 

of active links are shown in the first, second, and third columns respectively. For both 

models, Table 3.3 provides (i) Makespan, or the minimum recovery time required for an 

infrastructure network to reach to the maximum level of resilience, (ii) %Gap, the 

optimality gap for the obtained solution, and (iii) the CPU time required for the  

computation of the solutions. Restoration is depicted with Figures 3.4 and 3.5.  

Table 3.3 demonstrates that the two models can be solved within 0.6% of the 

optimal solution. The Proportional Active formulation recovers networks in shorter time 

horizons and with a lower optimality gap. As expected, Figure 3.4 demonstrates that in 

the Proportional Active model the networks with attachment 𝛼 ≥ 1 display a great 

tolerance against catastrophic events, as they contain highly connected nodes, which 

form redundant paths and support connectivity. In This work, we consider natural 

disruptions, but intentional attacks could remove a set of more significant components 

that could more substantially damage the network. It is also concluded from Figures 3.4 

and Figure 3.5 that the higher exponent attachment 𝛼 provides relatively more uniform 

slope and present higher resilience value in any specific time horizon.  

 

 

 

 



57 

Table 3.3. Binary and Proportional Active model computational results for scale 

free networks 

𝛼 

Link 

capacity 

No. of 

links 

Binary Active model Proportional Active model 

Makespan 

(h) %Gap 

CPU time 

(s) 

Makespan 

(h) %Gap 

CPU time 

(s) 

0.002 13488 170 45 0.54 3600 33 0.14 3425 

0.004 23790 170 45 0.39 3600 33 0.18 3419 

0.006 16700 170 43 0.41 3600 32 0.16 3115 

0.008 9375 170 43 0.41 3600 32 0.17 3266 

0.02 9795 171 46 0.53 3600 31 0.19 3210 

0.04 17240 170 44 0.51 3600 34 0.16 3470 

0.06 8200 171 44 0.44 3600 31 0.11 3433 

0.08 8320 170 45 0.21 3600 33 0.11 3367 

0.2 16280 170 44 0.42 3600 32 0.06 3151 

0.4 8380 170 47 0.23 3600 32 0.05 3362 

0.6 12980 170 44 0.25 3600 32 0.07 3117 

0.8 10480 170 44 0.21 3600 32 0.07 3207 

1 14130 170 44 0.12 3600 32 0.04 3309 

1.2 8088 170 45 0.47 3600 33 0.20 3313 

1.4 8088 170 44 0.47 3600 31 0.04 3340 

1.6 8088 171 42 0.08 3600 32 0.02 3186 

1.8 11270 171 43 0.13 3600 32 0.02 3354 

 

  

Figure 3.4. Trajectory of the resilience measure for the Binary Active model 

applied to scale-free networks (for select values of 𝜶). 
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Figure 3.5. Trajectory of the resilience measure for the Proportional Active model 

applied to scale-free networks (for select values of α). 

 

3.4.2. Computational Testing on Small-World Networks  

Table 3.4 represents the results of the Binary Active model and Proportional Active 

model, respectively, for 20 small-world networks test instances with different rewiring 

probability scenarios. The rewiring probability and its related clustering coefficient, 

𝐶(𝑝), and mean path length, 𝐿(𝑝) before the occurrence of a disruptive event, are 

shown in the first, second, and third columns, respectively. The fourth and fifth columns 

display the capacity of links and the number of links respectively. The average capacity 

of links changes when we change 𝑝 so as to prevent flows from being rerouted through 

paths with redundant capacity, though rerouting is not a focus of this work. The 

makespan column provides the recovery time of best feasible solution, and the %Gap 

column provides the optimality gap for the obtained solution. The last column reports 

the CPU time required for computation of the solutions. 
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Table 3.4 demonstrates that the Binary Active model can be solved within 0.6% of 

the optimal solution, and the makespan of restorative efforts increases as the rewiring 

probability decreases. As expected, when rewiring probability is low, the nodes that are 

nearby are connected (i.e., local connections), and the clustering coefficient is high as 

well. Although the transitivity is high, some nodes may have long distance connection 

which simply means it takes a long chain of connection to reach from those nodes to 

some others. Note that path length counts each link as length one. Figure 3.6 illustrates 

the recovery process, where the curves associated with 𝑝 =1.0, 0.6, and 0.1 represent 

the restorative efforts for networks with random model characteristics, curves 

associated with 𝑝 =0.07, 0.04, and 0.01 represent networks with small-world properties, 

and curves associated with 𝑝 = 0.008, 0.004, and 0.001 represent networks with lattice 

model characteristics. For 𝑝 ≥ 0.1, the restoration process starts from a lower level of 

network resilience, suggesting that these networks are more initially vulnerable to 

random disruptions. By increasing the rewiring probability, 𝑝, results indicate a higher 

percentage of recovery in a specific time horizon. The diagrams associated with 𝑝 ≤

0.008 indicate smooth progress in the network resilience. The slope of resilience 

measure varies for different rewiring probabilities values in networks with rewiring 

probability 𝑝 ∈ [0.09,0.01], displaying much steeper recovery in the beginning for 

higher rewiring probabilities (𝑝 ≥ 0.06) and more uniform progress for lower rewiring 

probabilities. This case study suggests that a higher cluster coefficient results in a 

smoother trajectory of improvement in the resilience measure. 

As  Figure 3.7 shows, the makespan of restoration efforts related to different 

rewiring probabilities noticeably decreases when the Proportional Active model is 
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employed. Unlike the Binary Active model, altering the rewiring probability does not 

significantly affect the makespan. According to Figure 3.7, the trajectory of restoration 

for networks with different rewiring probabilities is illustrated as concave upward 

graphs with the uniform slope. From curves with  𝑝 ≤ 0.07, we can conclude that 

restoration efforts resulting from the Proportional Active model lead to more uniform 

restoration curves. Figure 3.7 also demonstrates that higher 𝐶(𝑝)/𝐶(0) result in less 

affected networks in the aftermath of a disruptive event for 𝑝 < 0.07, suggesting that 

networks with lattice characteristics are less vulnerable to random disruptions. Finally, 

we see steeper slope of resilience enhancement in the beginning for higher rewiring 

probabilities (𝑝 ≥ 0.06) and more robust networks with more uniform progress for 

lower rewiring probabilities (𝑝 < 0.06). 

Table 3.4. Binary and Proportional Active computational results for small-world 

networks. 

𝑝 
𝐶(𝑝)

𝐶(0)
 

𝐿(𝑝)

𝐿(0)
 

Link 

capacit

y 

No. 

of 

links 

Binary Active model Proportional Active model 

Makespan 

(h) 
%Gap 

CPU 

time 

(s) 

Makesp

an (h) 
%Gap 

CPU 

time 

(s) 

1 0.1 < 

0.04 

1730 215 

42 

0.530 3600 32 

0.253 

3600 

0.8 0.14 <0.04 1040 262 42 0.470 3300 32 0.300 3600 

0.6 0.18 0.04 1350 237 42 0.410 3600 32 0.200 3600 

0.4 0.25 0.14 975 268 42 0.528 3600 32 0.407 3600 

0.2 0.45 0.33 1348 222 46 0.524 3600 35 0.300 3600 

0.1 0.47 0.79 1350 232 44 0.510 3600 35 0.200 3600 

0.09 0.48 0.85 1690 217 44 0.460 3600 33 0.380 3600 

0.08 0.5 0.92 1160 270 45 0.530 3600 33 0.380 3600 

0.07 0.51 1 1015 286 44 0.595 3600 30 0.410 3600 

0.06 0.53 1.16 1015 289 44 0.343 3600 32 0.380 3600 

0.05 0.55 1.36 810 309 46 0.343 3600 32 0.410 3600 

0.04 0.57 1.57 1015 314 48 0.560 3600 32 0.343 3600 

0.03 0.59 1.96 810 340 48 0.420 3600 32 0.345 3600 

0.02 0.6 2.59 1350 263 46 0.424 3600 33 0.265 3600 

0.01 0.62 3.81 1015 340 47 0.556 3600 29 0.406 3600 

0.008 0.63 4.53 1011 331 47 0.523 3600 29 0.305 3600 

0.006 0.63 5.32 900 327 46 0.510 3600 33 0.204 3600 

0.004 0.64 6.44 1011 337 54 0.434 3600 35 0.334 3600 

0.002 0.64 8.36 1015 321 54 0.305 3600 37 0.376 3600 

0.001 0.4 9.96 1015 338 54 0.345 3600 34 0.402 3600 
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Figure 3.6. Trajectory of the resilience measure for the Binary Active model 

applied to small-world networks (for select values of 𝒑). 

 

 

Figure 3.7. Trajectory of the resilience measure for the Proportional Active model 

applied to small-world networks (for select values of 𝒑). 
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3.4.3. Computational Testing on the 400 kV French Transmission Network  

Figure 3.8 and Figure 3.9 compare the Binary Active and Proportional Active 

formulations for the actual 400 kV French transmission network topology as shown in 

Figure 3.1. Although the Proportional Active formulation may only be applicable to 

redundant lines and components and not to all disrupted lines in the 400 kV French 

transmission network, it is of interest to study the behavior of both Proportional and 

Binary Active formulations for a real data set. 

We examine the effect of the two weights: (i) 𝑤𝑖, 𝑖 ∈ 𝑁−, for weighting the 

importance of demand nodes, where demand nodes located in highly populated areas 

are considered a higher priority relative to other demand nodes. We update Eq. (3.40) to 

incorporate weights 𝑤𝑖 in models in Eq. (3.41). And (ii) 𝜇𝑡, 𝑡 ∈ {1, … , 𝑇}, for weighting 

network performance for each time period. Each takes on a constant value (where all 

time periods and demand nodes are weighted equally) or a scaled value (where weights 

are allowed to reflect importance).  

 

Я𝜑(𝑡|𝑒𝑗̅) =
∑ 𝑤𝑖𝜑𝑖𝑡𝑖∈𝑁−

− ∑ 𝑤𝑖𝜑𝑖𝑡𝑑𝑖∈𝑁−

∑ 𝑤𝑖𝜑𝑖𝑡𝑒𝑖∈𝑁−
− ∑ 𝑤𝑖𝜑𝑖𝑡𝑑𝑖∈𝑁−

 (3.41) 

 

In Table 3.5, Column 1 shows the possible combination of weighting scenarios. 

When 𝜇𝑡 is scaled, preference is given to earlier time periods. When 𝑤𝑖 is scaled, 

preference is given to demand nodes in more populated areas. Remaining columns show 

the makespan, optimality gap, and CPU time for both models. 

According to Table 3.5, both models can be solved at most within 0.7% of the 

optimal solution. The Proportional Active formulation results in full network 

performance recovery in a shorter time horizon. Note that scaled 𝜇𝑡 may not result in 
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shorter recovery time horizon, though it results in higher value of network resilience in 

a specific time horizon in comparison to other scenarios, as shown in Figure 3.8 and 

Figure 3.9. As expected, scaled 𝑤𝑖 prioritizes distributers located in more populated 

areas to be recovered. This scenario may not lead to a shorter recovery time horizon as 

the prioritized distributors may be supplied via paths that do not share disrupted links 

with other paths in the network. Regarding the fourth scenario, where both weights are 

enacted, incorporating scaled 𝜇𝑡 may lead to more aggregate flow reaching to demand 

nodes in each time period, which may conflict with scaled 𝑤𝑖 as it favors satisfying 

prioritized demand nodes. As such, the model restores the links that not do not carry a 

high percentage of accumulated network flow. Figure 3.8 and Figure 3.9 indicate that 

employing the fourth scenario does not lead to satisfying all prioritized distributers 

(using scaled 𝑤𝑖) nor to a higher value of network resilience in a specific time horizon 

(using scaled 𝜇𝑡), a counterintuitive result. 

We also analyze the restorative capacity formulation in the absence of cascading 

failures.  According to the results shown in Table 3.6, both models solved to within 

0.18% of the optimal solution in less computational time, and according to Figure 3.10 

and Figure 3.11, both are more robust to disruption (i.e., the levels of resilience related 

to both models in the aftermath of the disruptions are higher than the conditions where 

cascading failures are considered in the corresponding models). This is because, 

according to Algorithm A-1 (shown in Appendix A), in the aftermath of a disruptive 

event, the difference between the voltage in generators and distributers may bring 

several operational links to carry redirected flow that is greater than their capacity. This 

overload flow causes failures among operational links and increases the level of 
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network disruption in a very short time period (e.g., 5 to 10 seconds). Therefore, both 

model formulations have to restore the network starting from a lower level of resilience. 

That is, the total restoration time of the network, as well as the solution time, for the 

Binary and Proportional Active formulations increase considerably when considering 

cascading failures.  

Table 3.5. Computational results for the 400-kV French transmission network 

examples (considering cascading failures). 
 Binary Active model Proportional Active model 

 
Makespan 

(h) 
%Gap 

CPU time 

(s) 

Makespan 

(h) 
%Gap 

CPU time 

(s) 

𝑤𝑖: constant 

𝜇𝑡: constant 
39 0.32 1800 35 0.70 1800 

𝑤𝑖: scaled 

𝜇𝑡: constant 
40 0.23 1800 35 0.59 1600 

𝑤𝑖: constant 

𝜇𝑡: scaled 
43 0.32 1800 38 0.66 1180 

𝑤𝑖: scaled 

𝜇𝑡: scaled 
47 0.70 1800 40 0.45 1540 

 

 

Figure 3.8. Trajectory of the resilience measure for the Binary Active model 

applied to the 400-kV French transmission network (considering cascading 

failures). 
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Figure 3.9. Trajectory of the resilience measure for the Proportional Active model 

applied to the 400-kV French transmission network (considering cascading 

failures). 

 

Table 3.6. Computational results for the 400-kV French transmission network 

examples (without cascading failures). 
 Binary Active model Proportional Active model 

 
Makespan 

(h) 
%Gap 

CPU time 

(s) 

Makespan 

(h) 
%Gap 

CPU time 

(s) 

𝑤𝑖: constant 

𝜇𝑡: constant 
29 0.13 313 31 0.11 250 

𝑤𝑖: scaled 

𝜇𝑡: constant 
30 0.18 352 31 0.15 240 

𝑤𝑖: constant 

𝜇𝑡: scaled 
26 0.13 334 34 0.13 364 

𝑤𝑖: scaled 

𝜇𝑡: scaled 
31 0.15 345 36 0.14 343 
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Figure 3.10. Trajectory of the resilience measure for the Binary Active model 

applied to the 400-kV French transmission network (without considering 

cascading failures). 

 

 

Figure 3.11. Trajectory of the resilience measure for the Proportional Active 

model applied to the 400-kV French transmission network (without considering 

cascading failures). 
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3.5 Concluding Remarks 

This research is an attempt to explore formulations for enhancing restorative 

capacity that can be used in the recovery efforts of an infrastructure network after a 

disruptive event. Many complex networks arisen in nature or man-made environment 

can be represented by their scale-free and small-world properties, which are highly 

heterogeneous in their connectivity pattern. From scale-free and small-world networks 

to lattice and random networks, this problem is general enough to be applicable to a 

wide variety of infrastructure networks. Two formulations are proposed: (i) one that 

assumes that disrupted components cannot play a role in a network. 

performance unless they are recovered completely (e.g., railway network), which we 

refer to as a Binary Active model, and (ii) one that assume that we can alter the 

restoration process by assuming partially recovered network components as 

proportionally operational (e.g., road networks), which we refer to as a Proportional 

Active model.  

The proposed formulations are path-based scheduling models that accomplish the 

restorative capacity goals while providing the connectivity of suppliers to demand 

nodes in the network during the restoration process. Solving models on 34 realistic size 

networks with different structures, we show that both models can produce solutions that 

are within 0.7% above the best possible solution in one hour of computation time. 

According to Section 4, the high connectivity of scale-free networks (𝛼 > 1) 

increases their level of resilience after a disruption, and we observe a uniform 

restoration of the resilience measure as recovery commences. However, the increase in 

the number of high degree hubs in these networks results in them being potentially 
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highly vulnerable to malevolent attacks.  For small-world networks, the three categories 

of rewiring probabilities exhibit some different characteristics during restoration. 

Networks with 𝑝 > 0.1 have characteristics that are more similar to random networks 

and consequently are more vulnerable to disruptions (i.e., network performance after the 

disruption is lower). Networks with 𝑝 < 0.008, have characteristics that are more 

similar to lattice networks and therefore exhibit smoother progress during restoration. 

Small-world networks with rewiring probabilities in between the others (0.009 < 𝑝 <

0.09) show expedited restoration soon after restoration commences but after a particular 

time period, the full operational state is reached in a relatively long time. Also, for the 

400-kV French power transmission network, the inclusion of cascading failures, a 

potential concern in disrupted electric power networks, prolong the restoration process. 

The contributions of This work lie in: (i) the flexibility of the number of assigned 

crew to each disrupted link, (ii) the Proportional Active model formulation, and (iii) the 

applicability of both proposed formulations on different network structures. The first 

contribution on allows the number of restoration crews assigned to each disrupted link 

to differ from one link to another, so that the models is flexible enough to attain the 

maximum level of resilience in each time period. The second contribution incorporates 

each link under the restoration process as partially operational in the network. Results 

suggest that adopting a Proportional Active in appropriate network situations can alter 

tactical restoration scheduling and consequently enhance the recovery process. The 

third contribution studies the behavior of both formulations through different network 

structure (e.g., lattice, small-world, scale-free, and random networks) with various 
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characteristics (e.g., exponent attachment, 𝛼, for scale-free networks and rewiring 

probabilities, 𝑝, for small-world network). 

Modern society heavily depends on critical infrastructure networks, such as 

electricity, water, transportation, and telecommunications, for everyday activities. Just 

as we are dependent on these networks, these networks also depend on each other for 

operation. There exist several complex relationships between each of these critical 

infrastructures that make them highly vulnerable in the event of a malevolent attack, 

natural disaster, or random failure. As such, it has become increasingly important to not 

only protect these networks, but also create a plan for restoring them.  

This work proposes a model that can be used following a disruptive event to restore 

infrastructure networks to some desired level of resilience while optimizing the 

restoration process aligned with the decision makers policies. The model not only 

schedules work crews to restore disrupted components, but also determines where work 

crews should originate from, given a set of candidate locations. The proposed 

optimization model considers the physical interdependency between the infrastructure 

networks as well as the geographical interdependency when allowing work crews from 

different infrastructure networks to be stationed at the same established facilities. 

Due to the complexity of the mathematical models, the effects of such concepts as 

generator black start, generator ramping, and network maneuvering are not considered 

in the proposed formulations. An important direction for the future research is to 

propose an algorithm whereby we obtain the near optimal solution in a timely manner 

when such concepts are added to the formulation 
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Chapter 4 : WORK CREW ROUTING PROBLEM FOR 

INFRASTRUCTURE NETWORK RESTORATION 

4.1 Introduction  

In this Chapter, we focus on the enhancing restorative capacity of a system of 

interdependent infrastructure networks after a large disruptive event. The proposed 

formulations and techniques in This work can be applied to the restoration efforts of a 

variety of infrastructure systems. 

While other works have proposed optimization formulations to assign resources or 

schedule work crews for interdependent network restoration [Gonzalez et al. 2016a, 

Almoghathawi et al. 2017, Sharkey et al. 2015], proposed here is a formulation that 

integrates the work crew scheduling problem with a vehicle routing problem to address 

the practical problem of traversing a given road network to recover other infrastructure 

networks. The main contribution of this research is to propose two mixed integer linear 

routing models that assign a set of disrupted components to each restoration crew and 

identify the route with the minimum total traveling time associated with that restoration 

crew. In the first routing model, referred to as the Binary Active Restoration Crew 

Routing model, each disrupted component is not operational unless it is fully recovered. 

In the second routing model, referred to as Proportional Active Restoration Crew 

Routing, each disrupted component can be partially operational in the network while it 

is being recovered. Disrupted components have component-specific characteristics, 

including specific restoration rates and disruption levels. After a disruptive event, 

various restoration crews can be assigned to a disrupted component and accelerate its 

restoration trajectory. Each of the assigned restoration crews can arrive at a time that 
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does not depend on the arrival time of other assigned crews. However, a restoration 

crew cannot arrive at a disrupted component after its restoration process is completed 

by other crews. We also note that each disrupted component may experience different 

increase in the restoration rate when a new crew joins to the restoration process. The 

optimal assignment, schedule, and route of restoration crews can significantly reduce 

the restoration time of the entire set of infrastructure networks.  

4.2 Methodological Background 

Several studies in recent years have focused on optimization models and algorithms 

to improve the restoration process after disruptive events. Celik [2017] provides a 

comprehensive overview of the literature on large-scale infrastructure network 

restoration in the aftermath of catastrophes and malevolent attacks.  

Many of these studies do not address the issue of routing, instead focusing on 

scheduling and sequencing disrupted network components to restoration crews. Nurre et 

al. [2012] introduce a design and scheduling formulation to improve the infrastructure 

network construction and restoration process. Aligned with particular decision making 

policies, the authors develop a dispatching rule based heuristic to identify the next set of 

network components to be restored by crews. Sharkey et al. [2015] propose a new 

mathematical formulation that incorporates the restoration interdependencies among 

different infrastructure networks (e.g., water, power, transportation) into the design and 

scheduling problems. They also investigate the effects of centralized decision making 

(i.e., where one decision maker dispatches all recovery resources through all 

infrastructure networks) and decentralized decision making (i.e., where decision makers 

associated with each infrastructure determine restoration efforts independently and 
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communicate with other decision makers responsible for other infrastructure networks). 

González et al. [2016a, 2016b] propose a mathematical model to recover a damaged 

system of interdependent networks, while considering limited resources and diverse 

operational constraints. Their model considers not only physical interdependencies 

among the different networks in the system, but also cost reductions associated with 

recovering multiple co-located components simultaneously. Furthermore, considering 

the high computational complexity associated with optimizing the recovery of a system 

of interdependent networks, Gonzalez et al. [2017] propose a reduced-order linear 

representation based on data-driven system identification, denominated the recovery 

operator, which reproduces the main recovery dynamics of the system and can be used 

to generate efficient recovery strategies. Extending from the approach by Sharkey et al. 

[2015], Smith et al. [2017] propose a sequential game theoretic model to determine 

efficient recovery strategies that depict decentralized decision making processes with 

partial information under a time-discrete non-cooperative configuration. Chapman et al 

[2017] show that such a recovery operator can be used to efficiently model 

decentralized decisions, by constructing a layered Cartesian form of the studied system. 

Ouyang and Fang [2017] establish a decision making formulation to protect and restore 

critical infrastructure networks after malevolent attacks. Their proposed decomposition 

algorithm minimizes network vulnerability by fortifying network components and/or 

building new supporting lines prior to a disruption and enhances the network restoration 

process after the disruption. Liberatore et al. [2014] present a restoration planning 

formulation for disrupted transportation networks through which emergency goods are 

distributed to affected populations, noting that the routing problem is not considered in 



73 

their proposed formulation. Anaya-Arenas et al. [2014] and Ozdamar and Ertem [2016] 

study a variety of humanitarian operations, including relief delivery, casualty 

transportation, and mass evacuation after large-scale disruptions. While the 

aforementioned works deal with various aspects of service networks engaged after a 

disruption, none consider the routes of restoration crews, and none are concerned about 

the routing time of each crew and its effect on the restoration plan and schedule. 

Specifically for the road restoration process (e.g., debris cleaning and disposal, 

snow removal), previous works may differ from the restoration of other infrastructure 

networks as the disruptions in transportation networks result in the loss of physical 

connections. As a result, the accessibility to some disrupted network components 

depends on the operational state of other components. Aksu and Ozdamar [2014] 

propose a formulation to maximize transportation network accessibility and minimize 

total restoration time by determining and recovering critical disrupted network 

components with limited restoration crews. Celik et al. [2015] develop a partially 

observable Markov decision model to solve a stochastic debris removal problem to 

determine the optimal schedule of blocked links over discrete time periods. To 

reconnect a disrupted transportation network in the minimum time horizon, Kasaei and 

Salman [2016] propose an arc routing formulation that identifies the restoration 

schedule and sequence of blocked roads, and for large-scale routing problems, they 

develop a heuristic algorithm to maximize the benefit gained by network connectivity in 

a timely manner. Sahin et al. [2016] focus on routing problems in distributing relief 

supplies to areas affected by disruption with the goal to maximize the demand 

satisfaction of critical nodes through a routing network that include blocked links which 
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should be restored to reach to the critical nodes. Afacan and Albert [2016] propose a p-

median formulation to find the minimized weighted distance between the emergency 

responders and disrupted locations in a transportation network. To solve the large-scale 

instances, they propose a Lagrangian relaxation formulation to obtain a feasible solution 

as an upper bound for the original formulation. Then, they implement the upper bound 

into the branch and bound to improve the computational time for solving the model. 

Akbari and Salman [2017] extend the arc routing formulation to dispatch more than one 

restoration crew through the disrupted network, such that a closed road cannot be 

traversed unless its restoration procedure is completed. They then propose a local search 

algorithm to find a set of synchronized routes resulting in minimum required time to 

reach to the complete network connectivity. None of the above discussed problems 

addresses the interdependencies between a disrupted infrastructure network and the 

routing network that connects all disrupted components. Furthermore, the concept of 

assigning more than one crew to a disrupted component is not incorporated in the above 

problems.  

4.3 Problem Formulation 

Mentioned in Sections 4.1 the purpose of This work is to establish the optimal 

restoration plan for a disrupted infrastructure network by determining, among others, 

the best schedule and sequence of disrupted components assigned to each crew through 

an underlying routing network. The infrastructure network is represented by an 

undirected connected graph 𝐺 = (𝑁, 𝐴), where 𝑁 is the set of nodes and 𝐴 is the set of 

links. There is a set of supply nodes 𝑁+ ⊆ 𝑁, where each supply node 𝑖 ∈ 𝑁+ supplies 

amount 𝑜𝑖 in each time period, a set of demand nodes 𝑁− ⊆ 𝑁, where each demand 



75 

node 𝑖 ∈ 𝑁− demands amount  𝑏𝑖 in each time period, and a set of transition nodes 

𝑁= ⊆ 𝑁. There is also a set of links 𝐴′ ⊆ 𝐴, that are affected by a disruptive event. Each 

link (𝑖, 𝑗) ∈ 𝐴 has a pre-defined capacity 𝑢𝑖𝑗 and a pre-disruption flow value 𝑓𝑖𝑗 

calculated based on the total amount of demand. We define  𝜇𝑡 as the weight given to 

the performance of the network in each recovery period 𝑡 = 1, … , 𝑇, where 𝑇 is the 

restoration time horizon [Nurre et al. 2012].  In some cases, some demand nodes need to 

be prioritized over others as they might be located in more critical areas (e.g., more 

populated, located near hospitals or other critical facilities). To incorporate the relative 

importance of each demand node 𝑖 ∈ 𝑁−, we define weight 𝑤𝑖to give priority such 

nodes. The principal goal of our formulation is to send maximum flow from supply 

nodes to demand nodes, while respecting the flow capacity of links and supply/demand 

capacities. 

Separate from the infrastructure network, we model the routing network as a 

complete undirected graph 𝐺̅ = (𝑁̅, 𝐴̅), where 𝑁̅ is the set of nodes and 𝐴̅ is the set links 

defined between each pair of nodes. For directed routing networks, we simply assign 

𝑥𝑖𝑗𝑘 = 0, for 𝑘 ∈ Κ, ∀𝑖, 𝑗 ∈ 𝑁̅, where |Κ| is the total number of restoration crews, if 

there is no path from node 𝑖 to node 𝑗, where  𝑥𝑖𝑗𝑘 is a binary variable that equals 1 if 

crew 𝑘 travels from node 𝑖 to node 𝑗 and 0, otherwise. There is a set of nodes 𝑁̅𝐴′ ⊆ 𝑁̅ 

associated with disrupted locations on links 𝐴′ ⊆ 𝐴 in graph 𝐺̅ = (𝑁̅, 𝐴̅), and a set of 

depots 𝑁̅𝐷 ⊆ 𝑁̅ from which the restoration crews are dispatched. Each restoration crew 

𝑘 = 1, … , 𝐾 travels through each link (𝑖,̅ 𝑗)̅, with an associated traveling time 𝑐𝑖̅𝑗̅. 

Similar to Akbari and Salman [2017], we assume that the traveling time from 𝑖 ̅to 𝑗 ̅is 

equivalent to the traveling time from 𝑗 ̅to 𝑖 ̅(i.e., 𝑐𝑖̅𝑗̅ = 𝑐𝑗̅𝑖̅). Figure 4.1 depicts the 
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interdependency between the infrastructure network and its corresponding routing 

network in the aftermath of a disruptive event.  

Node

Undisrupted link

Disrupted link

Node

Depot

Route (k=1)

Route (k=2)

Route (k=3)

Route (k=4)

 
 

Figure 4.1. The interdependency of the routing network and the infrastructure 

network 

 

After a disruptive event, the mixed integer programming (MIP) formulation 

determines |𝐾| open routes on the complete graph 𝐺̅ = (𝑁̅, 𝐴̅) such that network 𝐺 =

(𝑁, 𝐴) becomes fully operational after all disrupted arcs in 𝐴′ ∈ 𝐴 are restored. Without 

loss of generality, we model disrupted nodes using disrupted links, since each node can 

be represented as two nodes and one link. Each restoration crew starts its route from its 

originating depot and ends in a dummy sink node, (𝑛 + 1). The disrupted links in the 

network 𝐺 are assigned to multiple parallel restoration crews, the total number of crews 

available to work on each particular link is |Κ|, and the maximum number of restoration 

crews that are able to work at each period of time is 𝐿. Note that more than one crew is 

able to work on a disrupted link simultaneously. The processing time of each disrupted 

link (𝑖, 𝑗) ∈ 𝐴′ depends on the characteristics of that link, its level of disruption, the 

number of restoration crews assigned to it, and the arrival time of each crew to that link.  

Infrastructure network  

Routing network  
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4.3.1. Dynamic Restoration Process  

Depending on its originating depot and route, the arrival time of each restoration 

crew assigned to each disrupted node 𝑖̅ ∈ 𝑁̅𝐴′ may be different from other crews 

assigned to that node. The restoration process starts as soon as the first crew arrives to 

node 𝑖̅ ∈ 𝑁̅𝐴′ and each time a new crew joins to the restoration process, it accelerates the 

remained restoration process and consequently decreases the remained processing time 

of node 𝑖.̅ Figure 4.2 illustrates how the restoration rate accelerates when a new crew 

joins the restoration process (relative to when crews arrive at the same time). We 

assume that 𝑝𝑖̅
𝑙 
 is an integer and represents the restoration process of node 𝑖̅ ∈ 𝑁̅𝐴′ if 𝑙 

restoration crews are assigned to 𝑖 ̅and start their restoration tasks at the same time. We 

do note that in cases where all crews arrive to node 𝑖 ̅at the same time, the restoration 

process will be completed sooner than the ones where the arrival time associated to each 

crew is different than others.  

At time period 𝑡1 the first assigned crew arrives to node 𝑖̅ ∈ 𝑁̅𝐴′ and starts the 

restoration process. If no other crew joins to the restoration process, it will be completed 

at time 𝑡1
′ , in 𝑝𝑖̅

1 
time periods. After the arrival of the second crew at time 𝑡2, the 

restoration rate accelerates, and the process is completed at time 𝑡2
′ , where 𝑡1 + 𝑝𝑖̅

2 <

𝑡2
′ < 𝑡1

′ . Finally, the third crew arrives and at time 𝑡3 and the restoration process is 

completed in time 𝑡3
′ , where 𝑡1 + 𝑝𝑖̅

3 < 𝑡3
′ < 𝑡2

′ . 
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Figure 4.2. Restoration rate acceleration as new restoration crews arrive at a 

disrupted component 

 

We also note that the restoration task on each link should be processed without 

interruption. The model also prevents time conflicts by calculating the arrival time of 

each crew 𝑘 = 1, … , 𝐾 at each node 𝑖̅ ∈ 𝑁̅𝐴′.  

The objective of the optimization model is to maximize resilience over time, where 

resilience is measured as a time-dependent function of recovered network performance 

to total performance loss, as adapted from Henry and Ramirez-Marquez [2012]. The 

resilience measure tracks the trajectory of restoration at each time, 𝑡 = 1, … , 𝑇, by 

determining the maximum weighted flow, denoted by ∑ 𝑤𝑖𝜑𝑖𝑡𝑖∈𝑁−
, that reaches to 

demand nodes. The resilience measure is calculated for a particular disruption 𝑒𝑗 with 

Eq. (4.42), where  ∑ 𝑤𝑖𝜑𝑖𝑡𝑒𝑖∈𝑁−
 is the total weighted flow reaching to demand nodes 

before the disruption and ∑ 𝑤𝑖𝜑𝑖𝑡𝑑𝑖∈𝑁−
 is the total weighted flow of the residual 

infrastructure network reaching the demand nodes. The importance of demand node 𝑖 is 

quantified with weight 𝑤𝑖, and the importance of time period 𝑡 is quantified with weight 
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𝜇𝑡. Time periods 𝑡𝑒 and 𝑡𝑑 are illustrated in Figure 1.1 as the pre- and post-disruption 

time periods. 

Я𝜑(𝑡|𝑒𝑗) = 𝜇𝑡

∑ 𝑤𝑖𝜑𝑖𝑡𝑖∈𝑁−
− ∑ 𝑤𝑖𝜑𝑖𝑡𝑑𝑖∈𝑁−

∑ 𝑤𝑖𝜑𝑖𝑡𝑒𝑖∈𝑁−
− ∑ 𝑤𝑖𝜑𝑖𝑡𝑑𝑖∈𝑁−

 (4.42) 

4.3.2. Mathematical Model 

We present two variations on the proposed MIP restoration routing problem. In the 

Binary Active model, it is assumed that each disrupted link remains inoperable until the 

related recovery process is completed in full. Although the Binary Active model has 

many applications in many realistic case studies (e.g., water pipe networks, railways, 

the Internet), other applications (e.g., road transportation networks) assume that 

disrupted links can be partially operable during their restoration. As such, the 

Proportional Active model addresses this latter category of restoration problems in 

which the level of operability in each disrupted link (𝑖, 𝑗) ∈ 𝐴′ increases during its 

restoration process until it becomes completely operational.  
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Table 4.1. Notation for the Binary and Proportional Active Restorative Capacity 

Routing problems. 
Infrastructure and routing network notation 

𝑁 Set of nodes in network 𝐺 = (𝑁, 𝐴) 

𝐴 Set of links in network 𝐺 = (𝑁, 𝐴) 

𝑁 Set of nodes in network 𝐺̅ = (𝑁, 𝐴̅)  
𝑁𝐴′ Set of nodes in network 𝐺̅ = (𝑁, 𝐴̅) corresponding to disrupted links in network 𝐺 =

(𝑁, 𝐴) 

𝑁𝐷 Set of depots from which recovery crews commence their routes 

(𝑛 + 1) The dummy sink node in where the walk of all restoration crews ends 

𝐴̅ set of links in network 𝐺̅ = (𝑁, 𝐴̅) which connects the nodes corresponding to disrupted 

links in network  𝐺 = (𝑁, 𝐴) 

Κ Set of restoration crews, where |Κ| is the maximum number of available crews through 

the restoration horizon 

{1, … , 𝐿} Set of restoration crews assigned to each node 𝑖 ∈ 𝑁𝐴′ , where 𝐿 is the maximum number 

of crews that can be assigned to each disrupted component 

Parameters 

𝑣𝑖̅ The maximum number of vehicles sent from depot 𝑖̅ ∈ 𝑁𝐷 

𝑝𝑖̅
𝑙 The processing time of node 𝑖 ̅ ∈ 𝑁𝐴′  when 𝑙 crews are assigned to it 

𝑐𝑖̅𝑗̅ The traveling time from node 𝑖 to node 𝑗,̅ (𝑖,̅ 𝑗)̅ ∈ 𝐴̅ 

𝜃𝑖𝑗𝑖̅ The binary parameter equals to 1 if node 𝑖̅ ∈ 𝑁𝐴′ represents link (𝑖, 𝑗) ∈ 𝐴′ in graph 𝐺 =
(𝑁, 𝐴) 

𝑢𝑖𝑡̅𝑒 The capacity of node 𝑖̅ ∈ 𝑁𝐴′, or its corresponding link (𝑖, 𝑗) ∈ 𝐴′, before the occurrence 

of a disruptive event 

𝑢𝑖𝑡̅𝑑 The capacity of node 𝑖̅ ∈ 𝑁𝐴′, or its corresponding link (𝑖, 𝑗) ∈ 𝐴′, immediately the 

occurrence of a disruptive event 

𝑏𝑖 The capacity of demand node 𝑖 ∈ 𝑁− 

𝑀 A very big number 

Decision variables 

𝑥𝑖𝑗̅̅
𝑘  Binary variable equal to 1 if vehicle 𝑘 ∈ 𝐾 travels link (𝑖,̅ 𝑗)̅ ∈ 𝐴̅ 

𝑧𝑖̅
𝑙 Binary variable equal to 1 if 𝑙 restoration crews are assigned to node 𝑖 ∈ 𝑁𝐴′   

𝜏𝑖̅𝑡
𝑘  Binary variable equal to 1 if vehicle 𝑘 arrives to node 𝑖̅ ∈ 𝑁𝐴′ at time 𝑡 

𝑔𝑖̅𝑡
𝑙  Binary variable equal to 1 if the 𝑙th vehicle arrives to node 𝑖̅ ∈ 𝑁𝐴′ at time 𝑡 

𝛽𝑖̅
𝑙 Continuous variable representing the completion time of the restoration process 

associated with node 𝑖 ̅when 𝑙 crews are assigned to it 

𝑓𝑖𝑗𝑡 Integer variable representing the flow on link (𝑖, 𝑗) ∈ 𝐴 at time 𝑡 

𝜑𝑖𝑡  Integer variable representing the flow reaching to demand node 𝑖 ∈ 𝑁− at time 𝑡 

𝛼𝑖𝑗𝑡  Binary variable equal to 1 if restoration task on link (𝑖, 𝑗) finishes at time 𝑡 

𝑦𝑖̅
𝑘 Binary variable equal to 1 if restoration crew 𝑘 ∈ Κ is assigned to node 𝑖 ∈ 𝑁𝐴′  

𝑓𝑖̅𝑗̅̅
𝑘 Integer variable representing the flow of restoration crew 𝑘 on link (𝑖,̅ 𝑗)̅ ∈ 𝐴̅  

 

4.3.2.1. MIP Model for Binary Active Network Restoration  

max ∑ Я𝜑(𝑡|𝑒𝑗)

 𝑡∈𝑇

 (4.2) 

∑ ∑ 𝑥𝑖̅𝑗̅
𝑘

𝑗̅:∈𝑁̅𝐴′:(𝑖̅,𝑗̅)∈𝐴̅𝑘∈Κ

= 𝑣𝑖̅,   ∀𝑖̅ ∈ 𝑁̅𝐷 (4.43) 
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∑ 𝑥𝑖̅𝑗̅
𝑘

𝑖̅:∈𝑁̅\(𝑛+1):(𝑖̅,𝑗̅)∈𝑁̅

≤ 1,   ∀𝑗̅ ∈ 𝑁̅𝐴′ ∪ (𝑛 + 1), 𝑘 ∈ Κ (4.44) 

∑ 𝑥𝑖̅𝑗̅
𝑘

𝑗̅:∈𝑁̅𝐴′:(𝑖̅,𝑗̅)∈𝑁̅

≤ 1,   ∀𝑖̅ ∈ 𝑁̅\(𝑛 + 1),   𝑘 ∈ Κ (4.45) 

∑ 𝑥𝑖̅(𝑛+1)
𝑘

𝑖̅:∈𝑁̅𝐴′∪𝑁̅𝐷:(𝑖̅,𝑗̅)∈𝐴̅

= 1, 𝑘 ∈ Κ (4.46) 

∑ 𝑥𝑖̅𝑗̅
𝑘

𝑖̅:∈𝑁̅\(𝑛+1):(𝑖̅,𝑗̅)∈𝐴̅

− ∑ 𝑥𝑗̅𝑖̅
𝑘

𝑖̅:∈𝑁̅𝐴′∪(𝑛+1):(𝑖,𝑗)∈𝐴̅

= 0,   ∀𝑗̅ ∈ 𝑁̅𝐴′ , 𝑘 ∈ Κ 
(4.47) 

∑ 𝑥𝑖̅𝑗̅
𝑘

𝑖̅:∈𝑁̅\(𝑛+1):(𝑖̅,𝑗̅)∈𝐴̅

= ∑ 𝜏𝑗̅𝑡
𝑘

𝑇

𝑡=1

,   ∀𝑗̅ ∈ 𝑁̅𝐴′𝑘 ∈ Κ (4.48) 

∑ ∑ 𝜏𝑖̅𝑡
𝑘 = ∑ 𝑙𝑧𝑖̅

𝑙

𝐿

𝑙=1

𝑇

𝑡=1𝑘∈Κ

,   ∀𝑖̅ ∈ 𝑁̅𝐴′ , 𝑙 = 1, … , 𝐿 
(4.49) 

∑ 𝑧𝑖̅
𝑙

𝐿

𝑙=1

≤ 1,   ∀𝑖̅ ∈ 𝑁̅𝐴′ (4.50) 

∑ 𝑡𝜏𝑗̅𝑡
𝑘

𝑇

𝑡=1

≥ 𝑐𝑖̅𝑗̅ + ∑ 𝑡𝜏𝑖̅𝑡
𝑘

𝑇

𝑡=1

+ 𝑝𝑖̅
𝑙 − 𝑀(1 − 𝑥𝑖̅𝑗̅

𝑘 ) − 𝑀(1 − 𝑧𝑖̅
𝑙)   

∀𝑖̅ ∈ 𝑁̅𝐴′ , ∀𝑗̅ ∈ 𝑁̅𝐴′ , 𝑙 = 1, … , 𝐿, 𝑘 ∈ Κ 

(4.51) 

∑ 𝑡𝜏𝑗̅𝑡
𝑘

𝑇

𝑡=1

≥ 𝑐𝑖̅𝑗̅ + 𝛽𝑖̅
𝑙 − 𝑀(1 − 𝑥𝑖̅𝑗̅

𝑘 ) − 𝑀(1 − 𝑧𝑖̅
𝑙)  ∀𝑖̅ ∈ 𝑁̅𝐴′𝑙 = 2, … , 𝐿, 𝑘 ∈ Κ (4.52) 

∑ 𝑡𝑔𝑖̅𝑡
𝑙+1

𝑇

𝑡=1

≥ ∑ 𝑡𝑔𝑖̅𝑡
𝑙

𝑇

𝑡=1

− 𝑀 (1 − ∑ 𝑧𝑖̅
𝑙 ̅

𝐿

𝑙=̅𝑙+1

) ∀𝑖̅ ∈ 𝑁̅𝐴′ , 𝑙 = 1, … , 𝐿 (4.53) 

∑ 𝑡𝑔𝑖̅𝑡
𝑙+1

𝑇

𝑡=1

≤ 𝛽𝑖̅
𝑙 + 𝑀 (1 − ∑ 𝑧𝑖̅

𝑙 ̅

𝐿

𝑙=̅𝑙+1

) ∀𝑖̅ ∈ 𝑁̅𝐴′ , 𝑙 = 1, … , 𝐿 (4.54) 
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∑ 𝜏𝑖̅𝑡
𝑘 ≥ ∑ 𝑔𝑖̅𝑡

𝑙

𝐿

𝑙=1𝑘∈Κ

 ,   ∀𝑖̅ ∈ 𝑁̅𝐴′ , 𝑡 = 1, … , 𝑇 (4.55) 

∑ 𝑔𝑖̅𝑡
𝑙 =

𝑇

𝑡=1

∑ 𝑧𝑖̅
𝑙 ̅

𝐿

𝑙=̅𝑙

,   𝑙 = 1, … , 𝐿, ∀𝑖̅ ∈ 𝑁̅𝐴′ (4.56) 

∑ 𝑓𝑖𝑗𝑡

𝑗:(𝑖,𝑗)∈𝐴

− ∑ 𝑓𝑗𝑖𝑡

𝑗:(𝑗,𝑖)∈𝐴

≤ 𝑂𝑖,   ∀𝑖 ∈ 𝑁+ ,  𝑡 = 1, … , 𝑇 (4.57) 

∑ 𝑓𝑖𝑗𝑡

𝑗:(𝑖,𝑗)∈𝐴

− ∑ 𝑓𝑗𝑖𝑡

𝑗:(𝑗,𝑖)∈𝐴

= 0,   ∀𝑖 ∈ 𝑁= ,  𝑡 = 1, … , 𝑇 (4.58) 

∑ 𝑓𝑖𝑗𝑡

𝑗:(𝑖,𝑗)∈𝐴

− ∑ 𝑓𝑗𝑖𝑡

𝑗:(𝑖,𝑗)∈𝐴

= −𝜑𝑖𝑡,   ∀𝑖 ∈ 𝑁− ,  𝑡 = 1, … , 𝑇 (4.59) 

0 ≤ 𝜑𝑖𝑡 ≤ 𝑏𝑖,   ∀𝑖 ∈ 𝑁− , 𝑡 = 1, … , 𝑇 (4.60) 

0 ≤ 𝑓𝑖𝑗𝑡 ≤ 𝑢𝑖𝑗 , ∀(𝑖, 𝑗) ∈ 𝐴, 𝑡 = 1, … , 𝑇 (4.61) 

0 ≤ 𝑓𝑖𝑗𝑡 ≤ ∑ 𝛼𝑖𝑗𝑠𝑢𝑖𝑗

𝑡

𝑠=1
,   ∀(𝑖, 𝑗) ∈ 𝐴′,  𝑡 = 1, … , 𝑇 (4.62) 

∑ 𝑠𝛼𝑖𝑗𝑠

𝑇

𝑠=1

≥  𝛽𝑖̅
𝑙 − 𝑀(1 − 𝑧𝑖̅

𝑙) − 𝑀(1 − 𝜃𝑖𝑗𝑖̅) 

∀ℎ ∈ 𝑁̅𝐴′∀(𝑖, 𝑗) ∈ 𝐴′, 𝑘 ∈ Κ 

(4.63) 

∑ 𝛼𝑖𝑗𝑠

𝑇

𝑠=1

≤ 1,   ∀(𝑖, 𝑗) ∈ 𝐴′ (4.64) 

𝑧𝑖̅
𝑙 = {0,1} , ∀𝑙 = 1, … , 𝐿, ∀𝑖̅ ∈ 𝑁̅𝐴′ (4.65) 

𝜏𝑖̅𝑡
𝑘 = {0,1}, 𝑔𝑖̅𝑡

𝑙 = {0,1}, ∀𝑖̅ ∈ 𝑁̅𝐴′ , 𝑘 ∈ Κ, 𝑙 = 1, … , 𝐿 𝑡 = 1, … , 𝑇 
(4.66) 

 𝑥𝑖̅𝑗̅
𝑘 = {0,1},   (𝑖,̅ 𝑗)̅ ∈ 𝐴̅, 𝑘 ∈ 𝐾 

(4.67) 

𝜑𝑖𝑡 > 0,   𝑖 ∈ 𝑁− ,  𝑡 = 1, … , 𝑇 
(4.68) 

𝛼𝑖𝑗𝑡 = {0,1}, 𝑓𝑖𝑗𝑡 > 0, (𝑖, 𝑗) ∈ 𝐴, 𝑡 = 1, … , 𝑇 
(4.69) 
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The objective function focuses on the performance of the infrastructure network as 

measured by the resilience of the network over the horizon of restoration capacity 

enhancement. We also incorporate weight 𝜇𝑡 to prioritize particular time periods, (e.g., 

the restoration rate of the infrastructure network is accelerated in earlier time periods). 

Eqs(4.43)-(4.48) are restoration crew routing balance equations. Eq. (4.43) requires that 

at most 𝑣𝑖 restoration crews can be dispatched from each depot ∀𝑖̅ ∈ 𝑁̅𝐷. Eqs. (4.44) 

and (4.46) ensure that each restoration crew travels through each link (𝑖,̅ 𝑗)̅ ∈ 𝐴̅ and 

visits each node 𝑖̅ ∈ 𝑁̅𝐴′ at most once, respectively. In Eq. (4.46), a dummy sink node, 

(𝑛 + 1), is considered for crews where their routes end, where 𝑥𝑖̅(𝑛+1)
𝑘 , 𝑖 ∈ 𝑁̅𝐷 is equal 

to 1 for crew 𝑘 ∈ 𝐾 when it is not used in the restoration process and does not leave its 

depot at all. In Eq. (4.47), each crew 𝑘 ∈ 𝐾 that enters a node 𝑖̅ ∈ 𝑁̅𝐴′ should leave that 

node after the restoration process is done. In Eq. (4.48), each crew does not travel link 

(𝑖,̅ 𝑗)̅ ∈ 𝐴̅ unless it is scheduled to restore node 𝑗̅ ∈ 𝑁̅𝐴′. Eq. (4.49) ensures that no 

restoration crew visits node 𝑖 ̅unless it is assigned to that corresponding node. Eq. (4.50) 

ensures that when a certain number of restoration crews are assigned to link (𝑖, 𝑗) ∈ 𝐴′, 

or its counterpart node ℎ ∈ 𝑁̅𝐴′, then the number of crews cannot be changed during the 

restoration process.  

Eqs. (4.51)-(4.54) determine the arrival time related to each restoration crew, 𝑘 ∈ Κ, 

𝑖̅ ∈ 𝑁̅𝐴′, and the processing time associated with each disrupted link. Eqs. (4.51) and 

(4.52) calculate the arrival time of each restoration crew 𝑘 ∈ Κ to each disrupted node 

𝑗̅ ∈ 𝑁̅𝐴′ from node 𝑖̅ ∈ 𝑁̅\{𝑛 + 1}. It is assumed that all restoration crews work 

independently, and each crew starts the restoration process as soon as it arrives to any 

disrupted node. Consider disrupted node 𝑗 ̅to which we assigned 𝑙 restoration crews. 
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After completing the restoration process associated with node 𝑖̅ ∈ 𝑁̅ at time 𝛽𝑖̅
𝑙, the first 

crew arrives at time 𝑡𝜏𝑗̅𝑡
𝑘 = 𝑡𝑔𝑗̅𝑡

1 = 𝛽𝑖̅
𝑙 + 𝑐𝑖̅𝑗̅, for 𝑗̅ ∈ 𝑁̅𝐴′ , 𝑘 ∈ Κ, and commences 

restoration operations with the recovery rate 𝜆𝑖̅
1, then the second crew arrive at time 

𝑡′𝜏𝑗̅𝑡′
𝑘 = 𝑡′𝑔𝑗̅𝑡′

2 = 𝛽𝑖̿
𝑙 + 𝑐𝑖̿𝑗̅, after completing the restoration process of node 𝑖,̿ and so 

forth. Each time a new crew joins to the restoration process of a disrupted link, its rate 

of increases. Therefore, the processing time of each disrupted link (𝑖, 𝑗) ∈ 𝐴′, or its 

counterpart node 𝑗̅ ∈ 𝑁̅𝐴′, is a function of the arrival time of that crew to that 

corresponding link. Eqs. (4.53) and (4.54) set a time window for 𝑙th restoration crew, 

𝑙 = 1, … , 𝐿, arriving to node 𝑖̅ ∈ 𝑁̅𝐴′ starting from the arrival time of the prior 

restoration crew and ending to the completion time of the restoration process of by 𝑙-1 

restoration crews. Eqs. (4.55) and (4.56) sort the arrival time associated with crews 

assigned to each disrupted link.  

Eqs. (4.57)-(4.62) are infrastructure network flow balance equations through supply 

nodes, transition nodes, and demand nodes. Eq. (4.60) ensures that the amount of flow 

reaching to each demand node 𝑖 ∈ 𝑁− does not exceed the capacity of that demand 

node. Eqs. (4.61) and (4.62) require that the flow of each link (𝑖, 𝑗) ∈ 𝐴, whether 

undisrupted, disrupted, or recovered, does not exceed the capacity of that link. Eq. 

(4.63) demonstrates that once the restoration process of each link (𝑖, 𝑗) ∈ 𝐴′, or its 

counterpart node 𝑖̅ ∈ 𝑁̅𝐴′, is completed, it becomes fully operational. Eq. (4.64) ensures 

that none of the disrupted links receives restoration services more than once. 
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4.3.2.1.1 Dynamic Restoration Time  

To clarify how we calculate  𝛽𝑖̅
𝑙 and implement it into the mathematical model, let 

us consider node  𝑖̅ ∈ 𝑁̅𝐴′ in routing network 𝐺̅ = (𝑁̅, 𝐴̅), to which 𝑙 = 1, … , 𝐿 number 

of restoration crews are assigned, 𝐿 is the maximum number of crews that can be 

assigned to 𝑖.̅ Each assigned crew arrives at a particular time 𝑡 = 1, … , 𝑇, that might be 

different from the arrival time of other assigned crews. In This work, the restoration 

progress in node 𝑖 ̅is measured in terms of the increase in the capacity of node 𝑖 ̅in a 

given time window ∆𝑡 = 𝑡𝑙′+1 − 𝑡𝑙′, 𝑙′ = 1, … , 𝑙 (i.e., between the arrival time of  𝑙′th 

and 𝑙′ + 1th assigned crews).  

Referred to as 𝐹𝑖̅
𝑙′

(∆𝑡), we calculate the restoration progress related to node 𝑖 ̅as 

follows; As the first restoration crew arrives to  𝑖,̅ the restoration process begins. The 

restoration progress of node 𝑖 ̅in the time window after the arrival of the 1𝑠𝑡 crew, 𝑡1, 

and before the arrival of the 2𝑛𝑑crew, 𝑡2, is 𝐹𝑖̅
1(𝑡 − 𝑡1), 𝑡1 ≤ 𝑡 < 𝑡2. Immediately after 

the arrival of the 2𝑛𝑑 crew the restoration progress is accelerated and upgraded to 𝐹𝑖̅
2. 

The restoration progress in the time window after the arrival of the 2𝑛𝑑 crew, 𝑡2,  and 

before the arrival of the 3𝑟𝑑crew, 𝑡3, is 𝐹𝑖̅
2(𝑡 − 𝑡2), 𝑡2 ≤ 𝑡 < 𝑡3 and the total restoration 

progress so far is 𝐹𝑖̅
1(𝑡2 − 𝑡1) + 𝐹𝑖̅

2(𝑡 − 𝑡2), 𝑡2 ≤ 𝑡 < 𝑡3. Finally, after the arrival of the 

𝑙𝑡ℎ crew, the restoration progress is upgraded to 𝐹𝑖̅
𝑙(𝑡), 𝑡𝑙 < 𝑡,  and the total restoration 

progress is presented as ∑ 𝐹𝑖̅
𝑛(𝑡𝑛+1 − 𝑡𝑛)𝑙−1

𝑛=1 + 𝐹𝑖̅
𝑙(𝑡 − 𝑡𝑙).  

Considering parameters 𝑢𝑖̅𝑡𝑒
 and 𝑢𝑖̅𝑡𝑑

 as the capacity of node 𝑖̅ ∈ 𝑁̅𝐴′, or its 

corresponding link (𝑖, 𝑗) ∈ 𝐴′, before the disruption (i.e., at time 𝑡𝑒), and its residual 

capacity after the disruption(i.e., at time 𝑡𝑑), respectively, the restoration process 
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continues until node 𝑖 ̅is completely operational, or its capacity is fully restored 

(i.e., 𝑢𝑖̅𝑡𝑑
+ ∑ 𝐹𝑖̅

ℎ(𝑡𝑛+1 − 𝑡𝑛)𝑙−1
ℎ=1 + 𝐹𝑖̅

𝑙(𝑡𝑙) ≃ 𝑢𝑖̅𝑡𝑒
).  

Being familiar with the performance of restoration progress, 𝐹𝑖̅
𝑙′ −1

(∆𝑢) is the 

reverse function of restoration progress and calculates the time required to have ∆𝑢 

progress in the restoration process of node 𝑖̅ ∈ 𝑁̅𝐴′ while 𝑙′ crews are working on node 

𝑖.̅ ∆𝑢 is the amount of disruption in node 𝑖 ̅that should be restored and its domain is  0 ≤

∆𝑢 ≤ 𝑢𝑖̅𝑡𝑒 − 𝑢𝑖̅𝑡𝑑
 and the domain of  the inverse function is  0 ≤ 𝐹𝑖̅

𝑙′ −1
(∆𝑢) ≤ 𝑝𝑖̅

𝑙′
. 

Considering (𝑢𝑖̅𝑡𝑒 − 𝑢𝑖̅𝑡𝑑
) as the total loss in the capacity of node 𝑖,̅ when the 𝑙𝑡ℎ crew 

arrives to node 𝑖,̅ there is exactly (𝑢𝑖̅𝑡𝑒 − 𝑢𝑖̅𝑡𝑑
) − ∑ 𝐹𝑖̅

(ℎ−1)(𝑡ℎ − 𝑡ℎ−1)𝑙−1
ℎ=2  units of 

capacity left disrupted, and consequently 𝐹𝑖̅
𝑙−1

((𝑢𝑖̅𝑡𝑒 − 𝑢𝑖̅𝑡𝑑
) − ∑ 𝐹𝑖̅

(ℎ−1)(𝑡ℎ −𝑙−1
ℎ=2

𝑡ℎ−1)) is the time required to finish the restoration process of node 𝑖,̅ after the arrival of 

𝑙𝑡ℎ assigned crew.  

To illustrate how we calculate the completion time of the restoration process 

associated with each disrupted node 𝑖̅ ∈ 𝑁̅𝐴′, consider the example in which the first 

crew arrives at the node 𝑖 ̅at time 𝑡1 and starts the restoration process. If only one crew 

is assigned to node 𝑖̅ ∈ 𝑁̅𝐴′, the restoration process will be completed in 𝐹𝑖̅
1−1

(𝑢𝑖̅𝑡𝑒 −

𝑢𝑖̅𝑡𝑑
) = 𝑝𝑖̅

1 time periods, where 𝑝𝑖̅
1 is the processing time of node 𝑖 ̅ ∈ 𝑁̅𝐴′ when only one 

crew is assigned to node 𝑖;̅ otherwise the next restoration crew arrives at time 𝑡2, where 

𝑡1 ≤ 𝑡2 < 𝑡1 + 𝐹𝑖̅
1−1

(𝑢𝑖̅𝑡𝑒 − 𝑢𝑖̅𝑡𝑑
)(i.e., the 2nd crew arrives before the restoration 

process of  node 𝑖 ̅is completed), accelerates the restoration process of the remaining 

task, complete it in 𝐹𝑖̅
2−1

((𝑢𝑖̅𝑡𝑒 − 𝑢𝑖̅𝑡𝑑
) − 𝐹𝑖̅

1(𝑡2 − 𝑡1)). The third crew arrives at time 
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𝑡3, 𝑡2 ≤ 𝑡3 < 𝑡2 + 𝐹𝑖̅
2−1

((𝑢𝑖̅𝑡𝑒 − 𝑢𝑖̅𝑡𝑑
) − 𝐹𝑖̅

1(𝑡2 − 𝑡1)), accelerates the restoration 

process of the remain task, and will complete it in 𝐹𝑖̅
3−1

((𝑢𝑖̅𝑡𝑒 − 𝑢𝑖̅𝑡𝑑
) −

∑ 𝐹𝑖̅
(𝑙′−1)(𝑡ℎ̅ − 𝑡ℎ̅−1)3

𝑙′=2 ). Finally, the 𝑙𝑡ℎ crew is the last restoration crew arriving at 

time 𝑡𝑙, 𝑡𝑙−1 ≤ 𝑡𝑙 < 𝑡𝑙−1 + 𝐹𝑖̅
(𝑙−1)−1

((𝑢𝑖̅𝑡𝑒 − 𝑢𝑖̅𝑡𝑑
) − ∑ 𝐹𝑖̅

(𝑙′−1)
(𝑡ℎ̅ − 𝑡ℎ̅−1)𝑙−1

𝑙′=2 ) and the 

remained task will be completed in 𝐹𝑖̅
𝑙−1

((𝑢𝑖̅𝑡𝑒 − 𝑢𝑖̅𝑡𝑑
) − ∑ 𝐹𝑖̅

(𝑙′−1)
(𝑡ℎ̅ − 𝑡ℎ̅−1)𝑙

ℎ̅=2 ) 

time periods. The total restoration process associated with node 𝑖 ̅ ∈ 𝑁̅𝐴′ is calculated as 

𝑡𝑙 + 𝐹𝑖̅
𝑙−1

((𝑢𝑖̅𝑡𝑒 − 𝑢𝑖̅𝑡𝑑
) − ∑ 𝐹𝑖̅

(𝑙′−1)(𝑡ℎ̅ − 𝑡ℎ̅−1)𝑙
𝑙′=2 ).  

In general, the arrival time of 𝑙′𝑡ℎ restoration crew, 𝑙′ = 1, … , 𝑙, to node 𝑖̅ ∈ 𝑁̅𝐴′ is 

shown by 𝑡𝑔𝑖̅𝑡
𝑙′

, where 𝑔𝑖̅𝑡
𝑙′

  is a binary variable, equals to 1 if the 𝑙′𝑡ℎ restoration crew 

arrives at node 𝑖.̅ Considering 𝑙 crews assigned to each node 𝑖̅ ∈ 𝑁̅𝐴′ , the completion 

time of each node 𝑖̅ ∈ 𝑁̅𝐴′, 𝛽𝑖̅
𝑙, is equal to the completion time of its counterpart link 

(𝑖, 𝑗) ∈ 𝐴′ and calculated with Eq. (4.70).  

𝛽𝑖̅
𝑙 = ∑ 𝑡𝑔𝑖̅𝑡

𝑙

𝑇

𝑡=1

+ 𝐹𝑖
𝑙−1

((𝑢𝑖̅𝑡𝑒 − 𝑢𝑖̅𝑡𝑑
) − ∑ 𝐹𝑖̅

(𝑙′−1)
(∑ 𝑡𝑔𝑖̅𝑡

𝑙′

𝑇

𝑡=1

− ∑ 𝑡𝑔𝑖̅𝑡
(𝑙′−1)

𝑇

𝑡=1

)

𝑙

𝑙′=2

) (4.70) 

Without loss of generality, we consider a linear relationship between the progress in 

the restorative capacity of each link and restoration time of that corresponding link, 

updating Eq.(4.68) with Eq.(4.71).  In Eq. (4.71), node 𝑖 ̅is restored with rate 𝜆𝑖̅
𝑙′

 when 

the 𝑙′ restoration crews are working on node 𝑖,̅ 𝐹𝑖̅
𝑙′

(∆𝑡) = 𝜆𝑖̅
𝑙′

∆𝑡. The recovery time for 

node 𝑖 ̅when one restoration crew is assigned is 𝑝𝑖̅
1, therefore 𝑝𝑖̅

ℎ is the recovery time 



88 

when ℎ crews commence restoring node 𝑖 ̅at the same time, where 𝑙 = 1, … , 𝐿 is the 

number of crews assigned to a link (i.e., its counterpart node in network 𝐺̅).  

𝛽𝑖̅
𝑙 = ∑ 𝑡𝑔𝑖̅𝑡

𝑙

𝑇

𝑡=1

+ (
(𝑢𝑖̅𝑡𝑒 − 𝑢𝑖̅𝑡𝑑

) − ∑ 𝜆𝑖̅
(𝑙′−1)

(∑ 𝑡𝑔𝑖̅𝑡
𝑙′𝑇

𝑡=1 − ∑ 𝑡𝑔𝑖̅𝑡
(𝑙′−1)𝑇

𝑡=1 )𝑙
𝑙′=2

𝜆𝑖̅
𝑙 ) (4.71) 

4.3.2.2 MIP Model for Proportional Active Network Restoration  

In the Proportional Active formulation, the processing time of each link (𝑖, 𝑗) ∈ 𝐴′ is 

presented as a function of: (i) the number of assigned restoration crews to that link, (ii) 

the level of disruption associated with that link and the set of required tasks for its 

restoration, and (iii) the characteristics of that link, such as the level of disruption it 

experiences and the series of required task for its recovery. We also assume that each 

recovery task should be processed without interruption. The formulation has many of 

the same constraints as the Binary Active model with the addition of Eq. (4.72), which 

calculates the improvement in the restoration process of each disrupted link (𝑖, 𝑗) ∈ 𝐴′ 

in each time period after its restoration process commences.  

 

max ∑ Я𝜑(𝑡|𝑒𝑗)

 𝑡∈𝑇

 
 

(4.3)-(4.21)  

𝑓𝑖𝑗𝑡 ≤ ∑(𝑡 − 𝑠)

𝑡

𝑠=1

(𝜆𝑖̅
1𝑔𝑖̅𝑠

1 + ∑(𝜆𝑖̅
ℎ+1𝑔𝑖̅𝑠

ℎ+1 − 𝜆𝑖̅
ℎ𝑔𝑖𝑠̅

ℎ+1)

𝑙−1

ℎ=1

) + 𝑀(1 − 𝑧𝑖̅
𝑙)

+ 𝑀(1 − 𝜃𝑖𝑗𝑖̅),   ∀(𝑖, 𝑗) ∈ 𝐴′, 𝑡 = 1, … , 𝑇, 𝑙 = 1, … , 𝐿, 𝑖̅ ∈ 𝑉𝐴′ 

(4.72) 
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4.3.3 MIP Model for Relaxed Network Restoration  

Since tracking the arrival time of restorative groups, 𝑘 ∈ Κ, to each node 𝑗̅ ∈  𝑁̅𝐴′, 

and consequently calculating the restoration processing time complicates the model, we 

present a relaxed formulation of the proposed problem such that the timing of 

restoration crews is ignored.  

 

min Ω (4.73) 

(4.3)-(4.48)  

∑ ∑ 𝑐𝑖̅𝑗̅𝑥𝑖̅𝑗̅
𝑘

(𝑖̅,𝑗̅)∈𝐴̅𝑘∈Κ

+ ∑ ∑ 𝑝𝑖̅
𝑙𝑧𝑖̅

𝑙

𝑖̅∈𝑁̅𝐴′

𝐿

𝑙=1

≤ Ω (4.74) 

∑ ∑ 𝑥𝑖̅𝑗̅
𝑘

𝑖̅:∈𝑁̅\(𝑛+1):(𝑖̅,𝑗̅)∈𝑁̅𝑘∈Κ

≥ 1,   ∀𝑗̅ ∈ 𝑁̅𝐴′ (4.75) 

∑ 𝑓𝑖̅̅𝑗̅
𝑘

𝑖̅:∈𝑁̅\(𝑛+1):(𝑖̅,𝑗̅)∈𝐴̅

− ∑ 𝑓𝑗̅𝑖̅
𝑘

𝑖:∈𝑁̅𝐴′∪𝑁̅𝐷:(𝑖̅,𝑗̅)∈𝐴̅

= 𝑦𝑗̅
𝑘,   ∀𝑗̅ ∈ 𝑁̅𝐴′ , 𝑘 ∈ Κ (4.76) 

𝑓𝑖̅̅𝑗̅
𝑘 − ∑ 𝑦𝑖̿

𝑘

𝑖̿:𝑁̅𝐴′:(𝑖,𝑗)∈𝐴̅

≥ −|𝑁̅|𝑥𝑖̅𝑗̅
𝑘 ,   ∀𝑖̅ ∈ 𝑁̅𝐷, ∀𝑗 ∈ 𝑁̅𝐴′ , 𝑘 ∈ Κ (4.77) 

𝑥𝑖̅𝑗̅
𝑘 ≤ 𝑄𝑖̅𝑗̅

𝑘 ≤ |𝑁̅𝐴′|𝑥𝑖̅𝑗̅
𝑘 ,   ∀(𝑖,̅ 𝑗)̅ ∈ 𝐴̅, 𝑘 ∈ Κ 

 

(4.78) 

Eq. (4.74) sets the objective function by minimizing the total traveling and 

restoration time, and Eq. (4.75) ensures that all disrupted links and their counterpart 

nodes should be visited. Eqs. (4.76)-(4.78) provide flow balance. In Eq. (4.76), the net 

flow of each node 𝑖 ∈ 𝑁̅𝐴′ is equal the number of the crews assigned to the 

corresponding node. For each depot, the net flow is the total number of nodes assigned 

to each restoration crew that starts its route from the corresponding depot, as shown in 
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Eq. (4.77). Eq. (4.78) does not allow a crew to travel on a link unless it is traveled by 

that crew, and if a link is used by a crew, then there must be a positive amount of flow 

associated with the restoration crew passing through that link. 

To incorporate 𝑤𝑖 in the relaxed formulation, we first find the set of paths that push 

required flow to prioritized demand nodes. Among those paths, we determine the level 

of importance of each link from one of a number of importance measure types 

representing different graph theoretical (e.g., edge betweenness) or flow-based 

measures (e.g., edge flow centrality, maximum flow edge count, flow capacity impact) 

[Nicholson et al. 2015]. We use 𝐼𝜋 to refer to the importance measure calculated for 

each link (𝑖, 𝑗) ∈ 𝐴′, or its counterpart node 𝑖̅ ∈ 𝑁̅𝐴′, of type 𝜋. In This work we 

consider three types of importance measure: (i) max flow edge count, 𝐼MFcount =

1

𝑛(𝑛−1)
∑ 𝜇𝑠̅𝑡̅(𝑖, 𝑗)𝑠̅,𝑡̅ ∈𝑉 , where 𝜇𝑠̅𝑡̅(𝑖, 𝑗) is a binary parameter and equals 1 if link (𝑖, 𝑗) is 

used in a given source-sink max flow path, (ii) edge flow centrality, 𝐼 Flow =

∑ 𝜔𝑠̅𝑡̅(𝑖,𝑗)𝑠̅,𝑡̅ ∈𝑉

∑ 𝜔𝑠̅𝑡̅𝑠̅,𝑡̅ ∈𝑉
, where 𝜔𝑠𝑡(𝑖, 𝑗) is the flow on link (𝑖, 𝑗) for all possible source-sink paths, 

and (iii) flow capacity rate, 𝐼 FCR =
1

𝑛(𝑛−1)

∑ 𝜔𝑠̅𝑡̅(𝑖,𝑗)𝑠̅,𝑡̅ ∈𝑉

𝑐𝑖𝑗
, where 𝑐𝑖𝑗 is the capacity of link 

(𝑖, 𝑗). More details about the calculation of these three importance measures is found in 

Nicholson et al. [2015].  

We then cluster disrupted links based on their importance measure. Aligned with 

decision making policies, we may define various thresholds for clusters and represent 

different number of clusters. The more the number of defined clusters is, the more 

accurate the demand nodes are prioritized. Yet, the obtained solution may be different 
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from the optimal solution which merely focuses on maximizing the network resilience 

enhancement.    

For example, if the importance measure of each link falls into the range of [0, 0.9], 

links with the importance measure equal to or greater than 0.6 are categorized in cluster 

one, or the most important set of links, 𝑁̅𝐴1
′ , links with the importance measure between 

0.3 and 0.5 are categorized in cluster two, 𝑁̅𝐴2
′ , and finally links with importance 

measure less than 0.3 are categorized in cluster three, 𝑁̅𝐴𝛾
′ , or the least important set of 

links, where  𝑁̅𝐴1
′ ∪ 𝑁̅𝐴2

′ ∪ … ∪ N̅AΓ
′ = 𝑁̅𝐴′. 

Eq. (4.79) then ensures that the disrupted links in 𝑁̅𝐴1
′  should be restored before the 

disrupted links in 𝑁̅𝐴2
′ , and disrupted link in cluster two should be served before 

disrupted links in 𝑁̅𝐴3
′  and so forth.  

∑ ∑ ∑ 𝑥𝑖̅𝑗̅
𝑘

𝑗∈𝑁̅
𝐴𝛾

′

= 0

𝑖∈𝑁̅
𝐴𝛾+1

′𝑘∈Κ

, 𝛾 = 1, … , Γ − 1 
(4.79) 

Proposition 1. The optimal recovery scheduling of the Relaxed Restorative 

Capacity problem, 𝑆𝑅_𝑅𝐶
∗ , builds a lower bound for the optimal solution to the original 

formulation.  

The proof to Proposition 1 is given in Appendix B-1.  

4.3.3.1 Solution Approach 

Since time-related variables are not considered (e.g., 𝜏𝑖̅𝑡
𝑘 ,𝑔𝑖̅𝑡

𝑙 ,𝛼𝑖𝑗𝑡,𝜑𝑖𝑡,𝑓𝑖𝑗𝑡), the 

routing time associated with each restoration crew should be evaluated to be 

synchronized with other routes with which it has restoration tasks in common. To 

achieve this, we start by obtaining a lower bound for the original problem by using the 
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relaxed formulation introduced in Section 4.3.2. Then, we use algorithm 2 to obtain a 

feasible solution for the original problem. Afterwards, we compare this feasible solution 

with the solution obtained from solving the original formulations. Note that if the 

original formulation could not be solved to optimality (for example, if the available 

computation time is limited), instead we may simply use the best solution achieved. 

The proposed feasibility algorithm modifies the optimal solution obtained by the 

relaxed formulation as follows. First, with the results obtained from the relaxed 

formulation, we form a solution table [Akbari and Salman 2017], such as Table 4.2, to 

illustrate the scheduled set of disrupted links assigned to each restoration crew, and the 

completion time of each restoration task assigned to that crew. Here, 𝑏𝑘ℎ is the ℎth 

disrupted link (𝑖, 𝑗) ∈ 𝐴′ visited by crew 𝑘, and 𝜏𝑘𝑖 is the time when the restoration 

process of this link is completed. As the number of disrupted links assigned to each 

restorative crew can vary, to facilitate the update of restoration orders, we construct |Κ| 

lists in Table 4.2 in which there are 𝑛𝑘 elements in row 𝑘.  

Table 4.2. Order of disrupted links assigned to each crew and their restoration 

process completion time. 

Crew Order of disrupted links 

1 𝑏11  →   𝑏12  →   𝑏13    …   𝑏1𝑛1
 

2 𝑏21 →  𝑏22  →   𝑏23    …   𝑏2𝑛2
 

⋮ ⋮ 
𝐾 𝑏𝐾1 →  𝑏𝐾2  →  𝑏𝐾3    …   𝑏𝐾𝑛𝑘

 

 Completion time of restoration tasks 

1 ℱ̃11 =  𝑐𝐷𝑏11
+ 𝑝𝑖𝑏11

 → ℱ̃12 = ℱ̃11 + 𝑐𝑏11𝑏12
+  𝑝𝑖𝑏12

 … ℱ̃1𝑛1
= ℱ̃1𝑛1−1 + 𝑐𝑏1𝑛1−1𝑏1𝑛1

+ 𝑝𝑖𝑏1𝑛1

  

2 ℱ̃21 = 𝑐𝐷𝑏21
+  𝑝𝑖𝑏21

 → ℱ̃22 = ℱ̃21 + 𝑐𝑏21𝑏22
+  𝑝𝑖𝑏12

 … ℱ̃1𝑛1
= ℱ̃1𝑛2−1 + 𝑐𝑏21𝑏𝑛2−1𝑛2

+ 𝑝𝑖𝑏2𝑛2

  

⋮ ⋮ 

𝐾 ℱ̃𝐾1 = 𝑐𝐷𝑏𝐾1
+ 𝑝𝑖𝑏𝐾1

 → ℱ̃𝐾2 = ℱ̃𝐾1 + 𝑐𝑏𝐾1𝑏𝐾2
+ 𝑝𝑖𝑏𝐾2

 … ℱ̃𝐾𝑛1
= ℱ̃𝐾𝑛1−1 + 𝑐𝑏𝐾𝑛𝐾−1𝑏𝐾𝑛𝐾

+ 𝑝𝑖𝑏𝐾𝑛1

  

 

Then we detect whether there is a directed cycle in the graph, that is, whether there 

is a particular restoration crew that is present in two different locations at the same time. 
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For example, from relaxed formulation results, we know that two crews 𝑘 and 𝜅 share 

disrupted nodes 𝑖 and 𝑗. Crew 𝑘 is scheduled to restore node 𝑖 then node 𝑗 while crew 𝜅 

is scheduled to restore node 𝑗 before node 𝑖. This schedule prevents the recovery task 

completion of nodes 𝑖 and 𝑗 as two crews should be present in two different locations at 

the same time and therefore it is an infeasible solution for original formulation. Inspired 

by the Depth First Search (DFS) algorithm, we present the Direct Cycle Elimination 

algorithm using the DFS algorithm to identify the direct cycles and eliminate them by 

reversing the restoration order of one of the involved routes that intersect with the 

corresponding cycle. One input to the algorithm is a list including the scheduled set of 

disrupted links assigned to each restoration crew, 𝐵. Another input is a dictionary, 

named 𝑔𝑟𝑎𝑝ℎ, whose keys are the all nodes, 𝑖̅ ∈ 𝑁̅𝐴′, in the routing network and the 

values associated with each key are the nodes, 𝑗̅ ∈ 𝑁̅𝐴′, where 𝑥𝑖̅𝑗̅
𝑘 = 1, 𝑘 ∈ Κ, and 𝑥 =

1.The output is a list of scheduled links to each crew forming a routing network without 

any direct cycle. The steps of the proposed algorithm are shown as follows. 

In a list named 𝑎𝑙𝑙𝑝𝑎𝑡ℎ.we define three procedures to eliminate direct cycles with 

the least increase in routing time. 

Procedure Opposing Routes Elimination 

Among direct cycles existed in the routing network 𝐺̅ = (𝑁̅, 𝐴̅), there might be 

some formed by opposing routes, shown in Figure. Considering  

 

 

Figure 4.3 for each two restoration crews 𝑘, 𝑘′ ∈ 𝐾, 𝑘′ ≠ 𝑘, we find whether there 

is a sequence of disrupted links assigned to crew 𝑘 which also assigned to crew 𝑘′in an 
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inverse order. Then, we change the sequence nodes scheduled to one of the crew that 

cause the least increase in the maximum routing time.  

Procedure Last Assignment Elimination 

Considering each restoration crew 𝑘 ∈ 𝐾, we find the last disrupted link (𝑖, 𝑗) ∈ 𝐴′, 

or its counterpart node 𝑖̅ ∈ 𝑁̅𝐴′,  scheduled to crew 𝑘. If node 𝑖 ̅is also assigned to other 

restoration crews, in a preceding order, we eliminate node 𝑖 ̅form the sequence of 

disrupted links scheduled to crew 𝑘.  

Procedure General Direct Cycle Elimination 

After the application Opposing routes elimination and Last assignment elimination 

procedures, we update 𝑎𝑙𝑙𝑝𝑎𝑡ℎ list using DFS algorithm and obtain the list of remained 

direct cycles. Starting from the first cycle in the most repetitive routing link 𝑏𝑘ℎ →

𝑏𝑘ℎ+1 for 𝑘 ∈ 𝐾 and ℎ = 1, … , 𝑛𝑘 in the list of direct cycles, we change its direction to 

𝑏′𝑘ℎ → 𝑏′𝑘ℎ+1 where 𝑏′𝑘ℎ = 𝑏𝑘ℎ+1,  𝑏′𝑘ℎ+1 = 𝑏𝑘ℎ, and then repeat the DFS algorithm 

and update 𝑎𝑙𝑙𝑝𝑎𝑡ℎ. The procedure is repeated unless no direct cycle is determined in 

the routing network. The algorithm repeats until no further direct cycle is found in the 

routing network (i.e., 𝑥 = 0) 
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steps of Direct cycle elimination Algorithm are shown as follows:  

Algorithm 1. Direct Cycle Elimination  

  1: Input   𝐵 = [

[𝐵11 … 𝐵1𝑛1
]

⋮ ⋱ ⋮
[𝐵𝐾1 … 𝐵𝐾𝑛𝑘

]
], 𝑔𝑟𝑎𝑝ℎ, 𝑥 = 1 

         Procedures 

  2:      Convert               Set 𝑔𝑟𝑎𝑝ℎ as an empty dictionary with all key ∈ 𝑉 and all value= [] 
  3:                                       for each key in V do: 

  4:                                           For ∀𝐵𝑖𝑗 = 𝑘𝑒𝑦  𝑔𝑟𝑎𝑝ℎ [key].value   𝐵𝑖𝑗+1  

  5:                                       end for 

  6:     Cycle Detection    Set 𝑔𝑟𝑎𝑝ℎ  Convert procedure, 𝑎𝑙𝑙𝑝𝑎𝑡ℎ = [  ] 

  7:                                         for 𝑖 ∈ 𝑉𝐴 do: 

  8:                                              Set start  𝑖, end 𝑖 and 𝑡𝑒𝑚𝑝 = [(𝑖, [   ])] 
  9:                                              While 𝑡𝑒𝑚𝑝 do 

10:                                                     if start=end do 

11:                                                        𝑎𝑙𝑙𝑐𝑦𝑐𝑙𝑒𝑠  path and go to line 8 

12:                                                       for next in 𝑔𝑟𝑎𝑝ℎ [state] do 

13:                                                           if next not in path do 

14:                                                              path  next 

15:                                                             state  next 

16:                                                             𝑡𝑒𝑚𝑝 = [(𝑛𝑒𝑥𝑡, 𝑝𝑎𝑡ℎ)] 
17:                                                           end if 

18:                                                       end for 

19:                                                     end if 

20:                                           end for 

21:    Elimination: 

22:       Opposing routes      for each two lists 𝐵𝑖 and  𝐵𝑗  𝑖, 𝑗 = 1, … , 𝐾, 𝑖 ≠ 𝑗 from 𝐵 do 

23:          elimination               Find the first 𝑏𝑖ℎ in list 𝐵𝑖 which is also repeated in  𝐵𝑗  (i.e., 𝑏𝑗ℎ′ = 𝑏𝑖ℎ) 

24:                                           Move forward in 𝐵𝑖 from  𝑏𝑖ℎ and backward in 𝐵𝑗  from 𝑏𝑗ℎ′  

25:                                           Find a sequence of nodes  𝑏𝑖ℎ ℎ = 1, … , 𝑛𝑖, named 𝑆𝑖 where |𝑆𝑖| > 1,  repeated  

26:…………………………   backward in 𝐵𝑗   

27:                                           if 𝑐𝑏𝑖ℎ𝑏𝑖ℎ+1
+ 𝑐𝑏𝑖ℎ+|𝑆𝑖| 𝑏𝑖ℎ+|𝑆𝑖|+1

≤ 𝑐𝑏𝑗ℎ′𝑏𝑗ℎ′+1
+ 𝑐𝑏𝑗ℎ′+|𝑆𝑖| 𝑏𝑗ℎ′+|𝑆𝑖|+1

 do 

28:                                               reverse the sequence in 𝐵𝑖 

29:                                           else reverse the sequence in 𝐵𝑗  

30:                                           end if   

31:                                        end for 

32:       Last assignment      for each list 𝐵𝑖  𝑖 = 1, … , 𝐾 do 

33:           elimination             if 𝑏𝑖𝑛𝑖
 is in lists 𝐵𝑟1

, 𝐵𝑟2
,…, 𝐵𝑟𝑅̅

, 𝑅̅ > 2 and for  ∀𝑏𝑟ℎ̅ℎ ∈ 𝐵𝑟ℎ̅
→ |𝑛𝑖| = |ℎ| + 𝑎, 𝑎 > 2  

34:                                              do 

35:                                              Delete 𝑏𝑖𝑛𝑖
 from 𝐵𝑖 

36:                                          end if  

37:                                       end for 

38:       General cycle        Set 𝑎𝑙𝑙𝑐𝑦𝑐𝑙𝑒    Cycle detection  

39:          elimination             While  𝑎𝑙𝑙𝑝𝑎𝑡ℎ ≠ ∅ do 

40:                                            Among all links 𝑎𝑙𝑙𝑝𝑎𝑡ℎ[1][𝑖] → 𝑎𝑙𝑙𝑐𝑦𝑐𝑙𝑒[1][𝑖 + 1], 𝑖 = 1, … , |𝑎𝑙𝑙𝑐𝑦𝑐𝑙𝑒[1]| find one  

41:                                            with the  

42:                                            maximum repetition in cycles in 𝑎𝑙𝑙𝑝𝑎𝑡ℎ 

43:                                            Substitute  𝑎𝑙𝑙𝑐𝑦𝑐𝑙𝑒[1][𝑖 + 1] → 𝑎𝑙𝑙𝑐𝑦𝑐𝑙𝑒[1][𝑖] 

44:…………………………    for all 𝑎𝑙𝑙𝑐𝑦𝑐𝑙𝑒[1][𝑖] → 𝑎𝑙𝑙𝑐𝑦𝑐𝑙𝑒[1][𝑖 + 1] in 𝐵 

45:                                             𝑎𝑙𝑙𝑝𝑎𝑡ℎ  all cycles in 𝑎𝑙𝑙𝑝𝑎𝑡ℎ but ones contain 𝑎𝑙𝑙𝑝𝑎𝑡ℎ[1][𝑖] → 𝑎𝑙𝑙𝑐𝑦𝑐𝑙𝑒[1][𝑖 + 1] 

46: While  𝑥 ≠ 0 

47:            𝐵 = 𝐸𝑙𝑒𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛(𝐶𝑦𝑐𝑙𝑒 𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛(𝑔𝑟𝑎𝑝ℎ), 𝐵) 



96 

48:            𝑔𝑟𝑎𝑝ℎ = Convert (V, B) 

49:            𝑎𝑙𝑙𝑝𝑎𝑡ℎ = (𝑔𝑟𝑎𝑝ℎ) 

50:            𝑥 = |𝑎𝑙𝑙𝑝𝑎𝑡ℎ| 

51:  Return B 

 

  

(a) (b) 

  

(c) (d) 

 

 

 

 

 

Figure 4.3. Illustrative example of Algorithm 1, the Direct Cycle Elimination 

algorithm. (a) the routing network contains the direct cycle 𝒊̅ → 𝒋̅ → 𝒌̅ → 𝒍̅ → 𝒉̅ →
𝒊,̅ (b) the direct cycle is eliminated by changing the route of crew two from 𝒅𝟐 →
𝒍̅ → 𝒉̅ to 𝒅𝟐 → 𝒉̅ → 𝒍̅, (c) the direct cycle is eliminated by changing the route of 

crew three from 𝒅𝟐 → 𝒉̅ → 𝒊 ̅to 𝒅𝟐 → 𝒊̅ → 𝒉̅, (d) the direct cycle is eliminated by 

changing the route of crew one from 𝒅𝟏 → 𝒊̅ → 𝒋̅ → 𝒌̅ → 𝒍̅ to 𝒅𝟏 → 𝒋̅ → 𝒊̅ → 𝒌̅ → 𝒍̅ 
 

Depot 

Disrupted location (counterpart node) 

The route related to restoration crew k=1 

The route related to restoration crew k=2 

The route related to restoration crew k=3 
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To eliminate the timing conflicts among the restoration crews assigned to each 

disrupted, two options are considered:  

Procedure Shift: 

In Table 5.2, considering crew 𝑘 as an outlier for 𝑗̅ 𝑡ℎ node scheduled to it, 𝑏𝑘𝑗̅, we 

look for the immediate precedent disrupted node, 𝑏𝑘𝑗̅−1, that is not shared with any 

other crew. if, in the absence of 𝑏𝑘𝑗̅−1, the summation of the arrival time to node 𝑏𝑘𝑗̅ 

and 𝑝𝑏𝑘𝑗̅

1  falls into the processing time window associated with 𝑏𝑘𝑗̅, done by other 

crews, we swap the position of 𝑏𝑘𝑗̅ with 𝑏𝑘𝑗̅−1. In cases where a sequence of ℎ̿ nodes, 

ℎ̿ = 2, … , 𝑗,̅ which are only scheduled to outlier crew 𝑘, immediately preceding node 

𝑖̅ ∈ 𝑉𝐴′, we allowed to swap the position of node 𝑖 ̅with any of those preceding nodes. 

Procedure Delete: 

We remove node 𝑏𝑘𝑗̅, from the sequence of disrupted links scheduled to the outlier 

crew 𝑘 and update the list of lists 𝐵, accordingly.  

We define 𝜏̃𝑘𝑖 as the arrival time of the restoration crew 𝑘 = 1, … , 𝐾 to the 𝑖𝑡ℎ node, 

and ℱ̃ and ℱ̅ as lists of 𝐾 lists to track fixed and unfixed completion time, respectively. 

Similar to the list of lists, 𝐵, in ℱ̃ and ℱ̅, each sub-list is associated with a restorative 

crew and has a defined length equals to the number of disrupted links scheduled to that 

corresponding crew. The completion time of each disrupted link (𝑖, 𝑗) ∈ 𝐴′, its 

corresponding node 𝑖̅ ∈ 𝑉𝐴′, is marked as unfixed if we find at least one unscheduled 

restoration task associated with that link.  We mark the completion time related to each 

disrupted link (𝑖, 𝑗) ∈ 𝐴′, its corresponding node 𝑖̅ ∈ 𝑉𝐴′, as fixed if there is no more 
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restoration task remained unscheduled for that link. During the algorithm, after crew 𝑘 

arrive to node 𝑖 ̅we may face one of the three options: (i) node 𝑖 ̅is only assigned to crew 

𝑘 and its processing time is 𝑝𝑖̅
1, and consequently  ℱ̃𝑘𝑖 = ℱ̅𝑘𝑖 = 𝜏̃𝑘𝑖 + 𝑝𝑖̅

1, (ii) the arrival 

time of crew 𝑘 to node 𝑖 ̅is greater than the completion of the restoration tasks scheduled 

to node 𝑖 ̅ previously, and consequently we require to apply Shift or Delete procedures, 

and (iii) the arrival time of crew 𝑘 to node 𝑖 ̅falls into the processing time window 

associated with 𝑘̅ restoration crews working on that corresponding node, 

[ min
𝜅=1,…,𝑘̅

𝜏̃𝜅𝑖 , 𝛽𝑖̅
𝑘̅), and consequently 𝑘 joins to the restoration process of node 𝑖 ̅and 

accelerate its restoration rate the remained disruptions. In some cases, the arrival time 

crew 𝑘 falls into  𝜏̃𝑘𝑖 < min
𝜅=1,…,𝑘̅

𝜏̃𝜅𝑖 or min
𝜅=1,…,𝑘̅

𝜏̃𝜅𝑖 < 𝜏̃𝑘𝑖 < max
𝜅=1,…,𝑘̅

𝜏̃𝜅𝑖 and it accelerate the 

restoration rate of node 𝑖 ̅in such a way that the arrival time of other crews 𝜅 = 1, … , 𝑘̅ 

falls out of the completion of the restoration tasks associated with node 𝑖.̅ To tackle this 

problem, we apply the Shift or/and Delete procedures on the outlier restoration crews 

and update the processing time, and number of crews related to node 𝑖.̅  

Algorithm 2. Initial Solution Preprocessing & Feasibility Algorithm 

 1: Input 𝐵, 𝐶 

 2: Apply the Direct Cycle Algorithm on the input 

 3: Set  ℱ̃ = [], ℱ̅ = [], 𝑃̅ = [], and 𝜏̃ = [] for all disrupted links; each of which is a list of 𝐾 lists and the length each 

list is equal to the number of disrupted nodes assigned to each restoration crew 

 4:       ℱ̃[𝑟][1] = 1, ℱ̅[𝑟][1] = 1, 𝑃̅[𝑟][1] = 1, and 𝜏̃[𝑟][1] = 1  

 5:                 Case1:  only one crew is assigned to 𝑩[𝒓][𝒉](𝒛𝑩[𝒓][𝒉]
𝟏 =1) 

 6:                                 𝜏̃[𝑟][ℎ] = ℱ̅[𝑟][ℎ − 1] + 𝐶[𝐵[𝑟][ℎ − 1], 𝐵[𝑟][ℎ]] 

 7:                                 𝑃̅[𝑟][ℎ] = 𝑝𝐵[𝑟][ℎ]
1 , ℱ̃[𝑟][ℎ] = ℱ̅[𝑟][ℎ] = 𝜏̃[𝑟][ℎ] + 𝑝𝐵[𝑟][ℎ]

1 ,                                 

 8:                Case2: more than one crew is assigned to 𝑩[𝒓][𝒉]) and 𝑩[𝒓][𝒉]  is visited for 

 9:                                the first time (𝒛𝑩[𝒓][𝒉]
𝒍 = 𝟏, 𝒍 > 𝟏) 

10:                                 𝜏̃[𝑟][ℎ] = ℱ̅[𝑟][ℎ] + 𝐶[𝐵[𝑟][ℎ − 1], 𝐵[𝑟][ℎ]]  

11:                                 𝑃̅[𝑟][ℎ] = 𝑝𝐵[𝑟][ℎ]
𝑙 , ℱ̅[𝑟][ℎ] = 𝜏̃[𝑟][ℎ] + 𝑝𝐵[𝑟][ℎ]

1            

12:                Case3: 𝑩[𝒓][𝒉]  is visited 𝒍 − 𝒍̅ times before 𝒛𝑩[𝒓][𝒉]
𝒍 = 𝟏, 𝒍 > 𝟏  

13:                                 𝒳́ = {𝐵[𝑖][𝑗]|𝐵[𝑖][𝑗] = 𝐵[𝑟][ℎ]},  

14:                                for 𝑜 = 1, … , |𝒳́| do 

15:                                     form 𝒳 = {𝜏̃[𝑖][𝑗]|𝜏̃[𝑖][𝑗] > 0, 𝐵[𝑖][𝑗] = 𝐵[𝑟][ℎ]},  

16:                                     𝒴 = {ℱ̅[𝑖][𝑗]|𝐵[𝑖][𝑗] = 𝐵[𝑟][ℎ]}, sorted non-increasing order 

17:                                end for 

18:                                𝜏̃[𝑟][ℎ] = ℱ̅[𝑟][ℎ − 1] + 𝐶[𝐵[𝑟][ℎ − 1], 𝐵[𝑟][ℎ]]        
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19:                                if        𝑚𝑎𝑥
𝑖=1,…,|𝒴|

𝒳[𝑖] ≤  𝜏̃[𝑟][ℎ] < 𝑚𝑎𝑥
𝑖=1,…,|𝒴|

𝒴[𝑖] and ⌊
𝜆

𝐵[𝑟][ℎ]

𝒛𝑩[𝒓][𝒉]
𝒍−𝟏

( 𝒎𝒂𝒙
𝒊=𝟏,…,|𝓨|

𝓨[𝒊]−𝜏̃[𝑟][ℎ])

𝜆
𝐵[𝑟][ℎ]

𝒛𝑩[𝒓][𝒉]
𝒍 ⌋ > 𝟏 do   

20:                                            Case 3-1 

21:                               else if  max
𝑖=1,…,|𝒴|

𝒴[𝑖] < 𝜏̃[𝑟][ℎ] do 

22:                                             Case 3-2                

23:                               else if   ∃𝑘 in 𝜏̃,  𝑘 > 𝜏̃[𝑟][ℎ]  do 

24:                                             Case 3-3   

25:                               end if     

26:                 Case3-1:  Case 3   and 𝒎𝒊𝒏
𝒊=𝟏,…,|𝓧|

𝓧[𝒊] < 𝝉̃[𝒓][𝒉] < 𝒎𝒂𝒙
𝒊=𝟏,…,|𝓨|

𝓨[𝒊] 

27:                                      for ∀ 𝐵[𝑖][𝑗] = 𝐵[𝑟][ℎ]  do 

28:                                              ℱ̅[𝑖][𝑗] = max
𝑖=1,…,|𝒳|

𝒳[𝑖] +
(𝜆𝐵[𝑟][ℎ]

1 𝑝𝐵[𝑟][ℎ]
1 −∑ 𝜆𝐵[𝑟][ℎ]

ℎ𝑙−1
ℎ=2 (𝒳[𝑙]−𝒳[𝑙−1]))

𝜆𝐵[𝑟][ℎ]
𝑙  

29:                                              𝑃̅[𝑖][𝑗] = ℱ̅[𝑖][𝑗] − 𝜏̃[𝑖][𝑗] 
30:                                              if  𝑙 ̅ = 1 do 

31:                                                   ℱ̃[𝑖][𝑗] = ℱ̅[𝑖][𝑗] 
32:                                              end if 

33:                                      end for  

34:                Case 3-2: 𝑩[𝒓][𝒉]  is visited 𝒍 − 𝒍̅ times before 𝒛𝑩[𝒓][𝒉]
𝒍 = 𝟏, 𝒍 > 𝟏 and  𝐦𝐚𝐱

𝒊=𝟏,…,|𝓨|
𝓨[𝒊] < 𝝉̃[𝒓][𝒉] 

35:                 Shift Procedure:          if   𝑧𝐵[𝑟][ℎ−1]
1 = 1, 𝜏̃[𝑟][ℎ − 1] < max

𝑖=1,…,|𝒴|
𝒴[𝑖] do 

36:                                                           Change the position of  𝐵[𝑟][ℎ̅] and 𝐵[𝑟][ℎ] in 𝐵 

37:                                                            𝑃̅[𝑟][ℎ]=𝑃̅[𝑟][ℎ − 1] 
38:                                                            𝑃̅[𝑟][ℎ − 1] = 0 

39:                                                            ℱ̅[𝑟][ℎ − 1] = ℱ̃[𝑟][ℎ − 1] 
40:                                                            Case 3 

41:                                                            𝜏̃[𝑟][ℎ] = ℱ̅[𝑟][ℎ − 1] + 𝐶[𝐵[𝑟][ℎ − 1], 𝐵[𝑟][ℎ]]  
42:                                                            ℱ̅[𝑟][ℎ] = 𝜏̃[𝑟][ℎ] + 𝑃̅[𝑟][ℎ]       

43:                 Delete Procedure:      else if   𝑧𝐵[𝑟][ℎ−1]
1 > 1 do 

44:                                                            Delete 𝐵[𝑟][ℎ] in 𝐵 

45:                                                            ℱ̅[𝑟][ℎ − 1] = ℱ̃[𝑟][ℎ − 1] = 0 

46:                                                            𝑧𝐵[𝑟][ℎ]
𝑙 = 0, 𝑧𝐵[𝑟][ℎ]

𝑙−1 = 1 

47:                                                           Main Function(𝑟, ℎ) 

48:                                                    end if 

49:               Case 3-3: 𝑩[𝒓][𝒉]  is visited 𝒍 − 𝒍̅ times before 𝒛𝑩[𝒓][𝒉]
𝒍 = 𝟏, 𝒍 > 𝟏 and  𝝉̃[𝒓][𝒉] < 𝒎𝒊𝒏

𝒊=𝟏,…,|𝓧|
𝓧[𝒊]             

50:                                             Form 𝒳 = 𝒳 ∪ 𝜏̃[𝑟][ℎ] in non-increasing order 

51:                                             𝑃̅′ = 𝑝𝐵[𝑟][ℎ]
1  

52:                                                   𝐹̅′ = 𝑃̅′ + 𝒳[1] 
53:                                                   for o= 2, … , |𝒳| do 

54:                                                          if  𝒳[𝑜] < 𝐹̅′ do 

55:                                                                       𝑃̅′= (𝒳[𝑜] − 𝒳[𝑜 − 1]) +
𝜆𝐵[𝑟][ℎ]

𝑜−1 (𝑃̅′− (𝒳[𝑜]−𝒳[𝑜−1]))

𝜆𝐵[𝑟][ℎ]
𝑜  

56:                                                                       𝐹̅′ = 𝒳[𝑜] + 𝑃̅′ 
57:                                                          else do 

58:                                                              for 𝑜̅ = 1, … , |𝒳́| do 

59:                                                                     if 𝜏̃ [𝒳́[𝑜̅][0]] [𝒳́[𝑜̅][1]] = 𝒳[𝑜] do 

60:                                                                        if   𝑧
𝐵[𝒳́[𝑜̅][0]][𝒳́[𝑜̅][1]]

1 = 1, 𝜏̃ [𝒳́[𝑜̅][0]] [𝒳́[𝑜̅][1] − 1] < 𝐹̅′ do 

61:                                                                               Change the position of  𝐵 [𝒳́[𝑜̅][0]] [𝒳́[𝑜̅][1] − 1] and                           

62:                                                                               𝐵 [𝒳́[𝑜̅][0]] [𝒳́[𝑜̅][1]] in 𝐵 

63:                                                                               𝑃̅ [𝒳́[𝑜̅][0]] [𝒳́[𝑜̅][1]]=𝑃̅ [𝒳́[𝑜̅][0]] [𝒳́[𝑜̅][1] − 1] 

64:                                                                               𝑃̅ [𝒳́[𝑜̅][0]] [𝒳́[𝑜̅][1] − 1] = 0 

65:                                                                               ℱ̅ [𝒳́[𝑜̅][0]] [𝒳́[𝑜̅][1] − 1] = ℱ̃ [𝒳́[𝑜̅][0]] [𝒳́[𝑜̅][1] − 1] = 0 

66:                                                                               𝒳[𝑜] = 𝜏̃ [𝒳́[𝑜̅][0]] [𝒳́[𝑜̅][1] − 1] 
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67:                                                                               𝑃̅′= (𝒳[𝑜] − 𝒳[𝑜 − 1]) +
𝜆𝐵[𝑟][ℎ]

𝑜−1 (𝑃̅′− (𝒳[𝑜]−𝒳[𝑜−1]))

𝜆𝐵[𝑟][ℎ]
𝑜   

68:                                                                               𝐹̅′ = 𝑃̅′ + 𝒳[𝑜] 

69:                                                                         else if   𝑧
𝐵[𝒳́[𝑜̅][0]][𝒳́[𝑜̅][1]]

𝑙 = 1, 𝑙 > 1 do 

70:                                                                                     Delete 𝐵 [𝒳́[𝑜̅][0]] [𝒳́[𝑜̅][1]] in 𝐵 

71:                                                                                     ℱ̅ [𝒳́[𝑜̅][0]] [𝒳́[𝑜̅][1]] = ℱ̃ [𝒳́[𝑜̅][0]] [𝒳́[𝑜̅][1]] = 0 

72:                                                                                     𝑧𝐵[𝑟][ℎ]
𝑙 = 0, 𝑧𝐵[𝑟][ℎ]

𝑙−1 = 1 

73:                                                                                     Main Function(𝑟, ℎ) 

74:                                                                        end if 

75:                                                                     end if      

76:                                                              end for 

77:                                                        end if  

78:                                                  end for 

79:                                                   𝒳̈ =  {𝐵[𝑖][𝑗]|𝐵[𝑖][𝑗] = 𝐵[𝑟][ℎ]}               

80:                                                   count = 0 

81:                                                   for 𝑜 = 1, … , |𝒳̈|: 

82:                                                         if  𝜏̃[𝒳̈[𝑜][0]][𝒳̈[𝑜][1]] > 0 do 

83:                                                              count = count+1 

84:                                                              𝑃̅ [𝒳̈[𝑜][0]] [𝒳̈[𝑜][1]] = 𝑃̅′ 

85:                                                              ℱ̅ [𝒳̈[𝑜][0]] [𝒳̈[𝑜][1]] = 𝐹̅′ 

86:                                                         else if   𝑧𝐵[𝑟][ℎ]
𝑐𝑜𝑢𝑛𝑡 = 1 do 

87:                                                              for 𝑜 = 1, … , |𝒳̈| do 

88:                                                                     ℱ̃ [𝒳̈[𝑜][0]] [𝒳̈[𝑜][1]] = 𝐹̅′ 

89:                                                              end for 

90:                                                         end if 

91:                                                   end for 

92:                Main Function: Input: (𝑟, ℎ) 

93:                                          if 𝑧𝐵[𝑟][ℎ]
1 =1 do 

94:                                              Case 1 

95:                                          else if 𝐵[𝑟][ℎ]  is visited for the first times before 𝑧𝐵[𝑟][ℎ]
𝑙 = 1, 𝑙 > 1 do 

96:                                              Case 2 

97:                                          else if 𝐵[𝑟][ℎ]  is visited 𝑙 − 𝑙  ̅times before 𝑧𝐵[𝑟][ℎ]
𝑙 = 1, 𝑙 > 1 do 

98:                                              Case 3 

99:                                          end if  

100: for ℎ = 1, … , max
𝑟=1,…,𝐾

(|𝐵[𝑟]|)  do 

101:       for 𝑟 = 1, … , 𝐾 do 

102:             if 𝐵[𝑟][ℎ] > 0  and 𝐵[𝑟][ℎ] ≠ 𝑛 + 1 

103:                 if  ℱ̃[𝑟][ℎ − 1] > 0     

104:                     Main Function(𝑟, ℎ) 

105:       for ℎ̅ = 1, … , ℎ: 

106:            for 𝑟̅ = 1, … , 𝑟: 

107:                   if 𝐵[𝑟̅][ℎ̅] > 0  and 𝐵[𝑟̅][ℎ̅] ≠ 𝑛 + 1 

108:                       if  ℱ̃[𝑟̅][ℎ̅ − 1] > 0: 

109:                           Main Function(𝑟̅, ℎ̅) 

 

Proposition 2. The initial solution resulted from solving the Initial Solution 

Preprocessing & Feasibility algorithm is at least equal to the max
𝑘∈Κ

ℱ̃𝑘𝑛𝑘
 (i.e.., the 

optimal solution obtained from Relaxed RCRP) and at most equal to |Κ| × max
𝑘∈Κ

ℱ̃𝑘𝑛𝑘
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(i.e., the maximum routing time) obtained from the Relaxed RCRP), which is at most 

equal to 𝐾 × max
𝑘∈Κ

ℱ̃𝑘𝑛𝑘
 obtained from the original Binary and Proportional RCRP. 

The proof of this Proposition is presented in Appendix B-2. 

4.4.  Illustrative Examples Based on Power Grid Transmission, Water, and Gas 

Networks in Shelby County, TN 

To test the performance of the mathematical formulations and heuristic algorithm, 

we apply the restoration crew routing problem to realistic data sets representing three 

different infrastructure systems, including the electric power, water, and gas networks in 

Shelby County, Tennessee. Shelby County, located in the New Madrid Seismic Zone, is 

home to Memphis, which has a population of over 650,000.  Shown in Figure 4.4, the 

power network by 597 components (i.e., 125 nodes and 472 links), the water network is 

formed by 120 components (i.e., 49 nodes and 71 links), and the gas network by 33 

components (i.e., 16 nodes and 17 links) [Gonzalez et al. 2016b]. The combination of 

the three infrastructures has the total number of 289 components (i.e., 125 nodes and 

164 links). Based on Gonzalez et al. [2016b], we consider a realistic earthquake 

scenario with epicenter at 35.3° N and 90. 3° W located 33 km northwest of the center 

of Memphis, including magnitudes within the range of 𝑀𝑤 ∈ [6, 9]. On average, for the 

simulated earthquakes with 𝑀𝑤 = 6, about 6.2% of all network components are 

destroyed, for 𝑀𝑤 = 7, 9.3% are destroyed, for 𝑀𝑤 = 8, 16.6% are destroyed, and for 

𝑀𝑤 = 9, 22.8% are destroyed. We distribute the disruptions among the components of 

the three networks randomly. Since each restoration crew is accompanied with 

personnel and equipment, the increase in the number of restoration crews adds 

additional costs to the problem. The maximum number of crews working in each time 
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period is 6, 5, and 4 for power grid, water, and gas networks, respectively. The distance 

between each pair of disrupted locations is the shortest unblocked path obtained through 

ArcGIS and Google Earth. The travel speed of restoration crews is assumed to be 70 

mph. Each of the disrupted infrastructure links may experience a certain level of 

damage and require a specific restoration time that depends on the number of assigned 

restorative crews, its level of damage, and other characteristics. After the occurrence of 

the disruption, crews should be dispatched from the depots. For each disruption scenario 

associated with each infrastructure network, we select 5, 10, and 15 potential locations 

for depots respectively. To simplify the calculation of the distance between a depot 

node and the location of disrupted links, the potential depot nodes are chosen from the 

nodes of each infrastructure network. In different scenarios, the depots are randomly 

chosen from the potential depots nodes. The traveling time between each pair of nodes 

𝑐𝑖̅𝑗̅ , 𝑖,̅ 𝑗 ̅ ∈ 𝑉𝐸 is equal the distance between 𝑖 ̅and 𝑗 ̅divided by the speed of restoration 

crew, 45 mile/h on average.  We consider the restoration time horizon as 100 hours or 

about four days.   
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(a) (b) 

  

(c) 

Figure 4.4. Graphical representations of the (a) power grid transmission, (b) 

water, and (c) gas networks at a transmission level in Shelby County, TN 

[Gonzalez et al. 2016b] 

 

4.4.1. Computational Experiment 

In this section, we present the computational results on 60 instances, where for each 

network we test five instances for each level of magnitude vibration, and the disruption 

links are randomly distributed through each network. The computational experiments 

for both mathematical formulations and heuristic are performed on an Intel Core™ i7-

7500U CPU 2.90GHz (with 32 GB RAM) using Gurobi 7.0.2 on Python 2.7.13. The 

outputs of the heuristics are compared with the exact solutions obtained by solving the 

Binary and Proportional Active restoration crew routing problems. For cases where the 

Gurobi Solver cannot provide the exact solution in the limited time considered, we 

compare the lower bound with the upper and lower bound found by Gurobi in the given 
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time limit. Table 4.3-Table 4.5 show the results for the power grid, water, and gas 

network instances in Shelby County, TN. Table 4.3 Table 4.4, and Table 4.5 represent 

the results of Binary Active and Proportional Active restoration crew routing models 

and the initial solution obtained from the Relaxed-Restoration Crew Routing 

formulation and Initial Solution Preprocessing & Feasibility algorithm. For each 

infrastructure network, the level of disruption (i.e., earthquake magnitude) and the 

number of restoration crews are shown in the first and second columns. The fourth and 

fifth columns provide the CPU time required for the computation of the initial solution 

and the makespan, or the restoration time, provided by the initial solution, 𝑇, 

respectively. The optimality gap for each scenario obtained from Gurobi 

optimization, 𝐺𝑎𝑝𝐺∗
, is shown under columns 7 and 11 for Binary and Proportional 

formulations, respectively. The percentage of difference between improvement in the 

network resilience associated with the initial solution and the optimization model is 

shown under column 6 and 10 for Binary and Proportional formulations, respectively, 

and is calculated in Eq. (4-80).  

𝐺𝑎𝑝𝑍 =  
∑ Я𝜑(𝑡|𝑒𝑗) 𝑡∈𝑇 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛

− max ∑ Я𝜑(𝑡|𝑒𝑗) 𝑡∈𝑇

max ∑ Я𝜑(𝑡|𝑒𝑗) 𝑡∈𝑇

 (4-80) 

Columns 4, 8 and 12 show the CPU time required for the computation of initial 

solution, Binary and Proportional formulations, respectively. Finally, the Makespan 

related to the two formulations are shown in columns 9, and 13, respectively.  
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Table 4.3. Percentage gap and solution time for Relaxed-Based Initial Solution 

Algorithm, Binary Active and Proportional Active Restoration Crew Routing 

Problem for the electric power network. 

   
Initial 

Solution 
Binary Active formulation Proportional Active formulation 

Ins

. 
𝑀𝑤 𝐾 𝐶𝑃𝑈(𝑠) 𝑇 𝐺𝑎𝑝𝑍(%) 𝐺𝑎𝑝𝐺∗

(%) 𝐶𝑃𝑈(𝑠) 𝑇 𝐺𝑎𝑝𝑍(%) 𝐺𝑎𝑝𝐺∗
(%) 𝐶𝑃𝑈(𝑠) 𝑇 

1 

6 

2 2.9 96 19.9 11.5 1800 70 15.7 3.86 1800 85 

2 3 2.4 67 32.9 7.45 1800 43 58.5 0.9 1800 35 

3 4 2.7 47 16.4 4.5 1800 41 35.3 0.1 1800 28 

4 5 5.8 47 19.1 5.55 1800 35 26.5 0.1 1800 28 

5 

7 

2 2.0 83 36.8 11 1800 69 12.4 2.73 1800 66 

6 3 6.3 62 31.2 9.1 1800 53 45.8 0.4 1800 37 

7 4 2.3 60 37.7 6.67 1800 44 49.4 0.7 1800 34 

8 5 3.9 57 37.2 5.85 1800 39 45.5 0.1 1800 26 

9 

8 

4 2.3 
11

1 
- - 3600 - - - 3600 - 

10 5 4.4 
10

3 
- - 3600 - - - 3600 - 

11 6 4.9 95 27.5 23 1800 86 21.8 14.10 1800 85 

12 7 2.9 83 16.1 18.6 1800 74 15.5 12.3 1800 72 

13 9 4 4.2 75 - - 3600 - - - 3600 - 

14  5 2.6 72 - - 3600 - - - 3600 - 

15  6 6.8 68 - - 3600 - - - 3600 - 

16  7 3.4 65 - - 3600 - - - 3600 - 

 

Table 4.4. Percentage gap and solution time for Relaxed-Based Initial Solution 

Algorithm, Binary Active and Proportional Active Restoration Crew Routing 

Problem for the water network. 
   Initial Solution Binary Active formulation Proportional Active formulation 

Ins. 𝑀𝑤 𝐾 𝐶𝑃𝑈(𝑠) 𝑇 𝐺𝑎𝑝𝑍(%) 𝐺𝑎𝑝𝐺∗
(%) 𝐶𝑃𝑈(𝑠) 𝑇 𝐺𝑎𝑝𝑍(%) 𝐺𝑎𝑝𝐺∗

(%) 𝐶𝑃𝑈(𝑠) 𝑇 

1 

6 

2 6.05 77 18.4 3.45 1800 65 31.5 2.37 1800 49 

2 3 3.72 42 12.7 2.67 1800 36 1.1 2.32 1800 40 

3 4 4.65 32 -2.7 3.08 1800 35 8.1 2.43 1800 29 

4 5 7.71 22 -2.4 2.45 1800 32 -6.1 1.54 1800 25 

5 

7 

2 3.44 89 3.8 3.42 1800 76 17.2 3.67 1800 59 

6 3 7.24 68 27 3.05 1800 47 20.0 3.73 1800 47 

7 4 6.78 54 38.2 3.71 1800 35 8.5 3.52 1800 46 

8 5 7.88 40 18.3 3.93 1800 34 -3.7 4.23 1800 42 

9 

8 

2 3.77 99 5.2 6.64 1800 95 26.8 5.5 1800 74 

10 3 3.46 71 5.1 6.24 1800 53 7.8 5.76 1800 63 

11 4 3.48 59 4.3 6.43 1800 51 2.2 5.75 1800 55 

12 5 4.90 51 1.8 6.34 1800 48 3.2 5.43 1800 45 

13 

9 

3 7.84 90 3.3 12 1800 79 8.1 9.85 1800 77 

14 4 6.69 81 -3.5 23 1800 85 45.3 14.56 1800 54 

15 5 7.37 69 8.6 13.5 1800 60 25.9 9.5 1800 38 

16 6 6.05 43 1.5 12.7 1800 41 24.2 9.6 1800 30 
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Table 4.5. Percentage gap and solution time for Relaxed-Based Initial Solution 

Algorithm, Binary Active and Proportional Active Restoration Crew Routing 

Problem for the gas network. 

   
Initial 

Solution 
Binary Active formulation Proportional Active formulation 

Ins

. 
𝑀𝑤 𝐾 𝐶𝑃𝑈(𝑠) 𝑇 𝐺𝑎𝑝𝑍(%) 𝐺𝑎𝑝𝐺∗

(%) 𝐶𝑃𝑈(𝑠) 𝑇 𝐺𝑎𝑝𝑍(%) 𝐺𝑎𝑝𝐺∗
(%) 𝐶𝑃𝑈(𝑠) 𝑇 

1 
6 

2 4.22 27 0 0 25 27 6.5 0 18 9 

2 3 3.57 21 0 0 45 21 20.5 0 32 10 

4 
7 

2 1.13 11 2.0 0.03 1800 51 1.6 0 38 21 

5 3 4.72 22 22.2 0.06 1800 27 28.8 0 41 11 

7 
8 

2 4.54 38 9.4 1.93 1800 59 26.3 0.3 1800 42 

8 3 1.97 32 -1.9 2.32 1800 55 22.6 0.95 1800 21 

10 

9 

4 3.68 28 -1.9 2.47 1800 43 10.4 1.56 1800 20 

11 3 2.27 36 -0.7 3.34 1800 59 11.1 2.42 1800 32 

12 4 2.23 31 -2.2 3.03 1800 44 37.8 2.65 1800 25 

 

According to Table 4.3 through Table 4.5, all instances under the disruption 

scenarios with 𝑀𝑊 = 6, 7, 8 were solved within reasonable amount of time (i.e., 1800 s) 

and with an average optimality gap of 4.5%. The variation of the optimality gap is 

larger for the disruption scenario with 𝑀𝑊 = 9, where the minimum, maximum, and 

average gaps are 3.03%, 23%, and 7.89%, respectively, for the Binary formulation, and 

1.56%, 14.5%, and 5.93%, respectively, for the Proportional formulation. For water and 

gas networks, the initial solution demonstrates the efficacy of the Algorithm 2 in 

providing a strong initial feasible solution for any solution improvement algorithm for 

the Restoration Routing Problems. It is also shown that in some cases the initial solution 

algorithm provides the better upper bound for the Binary and Proportional formulations 

(e.g., instance 1,2, and 8-12 in gas network and instance 4, 5, and 14 for water network). 

For the power network instances, as an example for large scale problems, Algorithm 

2 reaches to a reasonable initial feasible solution, with the average optimality gap of 

28.9% for Binary formulation and 36% for Proportional formulation, in a considerably 

short time of 3.5 seconds on average. For disruption scenario with 𝑀𝑊 = 9, as the size 

of the instances increase dramatically, the Binary and Proportional formulations fall 
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short of solving the power network instances with the disruptions level of 22.8%. 

However, the algorithm obtained the initial solution in a considerably short time of 4.5 

seconds on average. The exact formulations fall short in solving instances 10 and 11 

simply because the number of restoration crews were not adequate to restore the whole 

network in the given time horizon (i.e., 𝑇 = 100).  

Table 4.3through Table 4.5 denote that there should be a balance between the 

number of restoration crews and the number of disrupted links in the infrastructure 

network to obtain the minimum optimality gap in a given solution time. For example, 

for the disruption scenario with  𝑀𝑊 = 6, using three crews to restore the water 

network and four crews to restore the power network results in the minimum optimality 

gap, and with  𝑀𝑊 = 7  using three and five crews for restoring the water and power 

networks, respectively, results in the minimum optimality gap. The minimum optimality 

gap does not guarantee a minimum restoration time horizon, but rather it assures the 

best upper bound in a limited solution time.   

We examine the effect of the weight 𝑤𝑖, 𝑖 ̅ ∈ 𝑁−, for weighting the importance of 

demand nodes, where, for example, demand nodes located in highly populated areas 

have a higher priority relative to other demand nodes. To incorporate 𝑤𝑖 in both 

mathematical formulations, we update the objective function with Eq. (4.81).  

Я𝜑(𝑡|𝑒) =
∑ 𝑤𝑖𝜑𝑖𝑡𝑖∈𝑁−

− ∑ 𝑤𝑖𝜑𝑖𝑡𝑑𝑖∈𝑁−

∑ 𝑤𝑖𝜑𝑖𝑡𝑒𝑖∈𝑁−
− ∑ 𝑤𝑖𝜑𝑖𝑡𝑑𝑖∈𝑁−

 (4.81) 

 

For the relaxed formulation, we use three measures of importance (i.e., 𝐼MFCount, 

𝐼flow, 𝐼FCR) and categorize the important links to three clusters, one with IMs less than 

0.3, one with IMs between 0.3 and 0.6, and one with IMs greater than 0.6. Table 4.6 
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compares the performance of Algorithm 2 and the Binary Active RCR when we 

incorporate demand nodes with priority weight 𝑤𝑖, 𝑖 ̅ ∈ 𝑁−. To compare all results 

obtained from the Restoration Crew Routing formulation and Algorithm 2, we 

examined the results under the disruption scenarios with 𝑀𝑤= 6, 7, and 8. The type of 

the infrastructure network, the instance number, the magnitude of the earthquake, and 

the number of the restoration crews are shown in the first four columns of Table 4.6. 

The effect of employing different importance measures in Eq. (4.79) on the CPU time 

and the required restoration time is shown in columns 4 and 5 for 𝐼MFCount, columns 6 

and 7 for 𝐼FCR, and columns 8 and 9, for 𝐼flow. For each scenario the optimality gap, 

𝐺𝑎𝑝𝐺∗
, the CPU time, and the required restoration time obtained from Gurobi 

optimization are shown in columns 10 through 12. Finally, the percentage of difference 

between improvement in the network resilience measure associated with the initial 

solution for  𝐼MFCount, 𝐼FCR, and 𝐼flow and the optimization model,  𝐺𝑎𝑝𝑍, is shown the 

final three columns.  
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Table 4.6. Percentage gap and solution time for Relaxed-Based Initial Solution 

Algorithm, Binary Active Restoration Crew Routing Problem under the 

employment of importance measures 𝑰𝐌𝐅𝐂𝐨𝐮𝐧𝐭, 𝑰𝐅𝐂𝐑, and 𝑰𝐟𝐥𝐨𝐰. 
 

In

s. 
𝑀𝑤 𝐾 

𝐼MFCount 𝐼FCR 𝐼flow Binary Active formulation 

 
𝐶𝑃𝑈 𝑇 𝐶𝑃𝑈 𝑇 𝐶𝑃𝑈 𝑇 𝐺𝑎𝑝𝐺∗

 𝐶𝑃𝑈 𝑇 
𝐺𝑎𝑝𝑍(%) 

 MFCount 𝐹𝐶𝑅 𝑓𝑙𝑜𝑤 

P
o

w
er

 

1 

6 

2 4.80 97 4.23 99 1.32 100 5.4 1800 92 6.7 9.5 18.2 

2 3 3.52 68 5.24 69 4.40 70 2.2 1800 39 41 37.1 40.7 

3 4 4.67 49 4.63 49 3.77 51 1.8 1800 34 27.5 27.5 29.5 

4 5 4.96 49 2.93 49 5.64 49 2.1 1800 34 27.5 27.5 27.5 

5 

7 

2 3.40 84 2.22 86 2.91 86 3.7 1800 73 13.6 15.0 15.0 

6 3 6.36 64 3.60 65 2.09 64 2.1 1800 42 24.0 26.2 24.0 

7 4 3.83 61 2.23 61 3.72 64 2.4 1800 38 35.3 35.3 37.3 

8 5 3.94 59 5.53 59 5.97 59 1.8 1800 33 32.0 32.3 32.3 

9 

8 

2 6.96 115 6.43 115 6.82 115 - 3600 - - - - 

10 3 6.67 112 6.93 113 6.29 112 - 3600 - - - - 

11 4 6.83 105 6.29 108 6.02 109 26 1800 95 15.6 15.8 15.8 

12 5 6.71 92 6.92 94 6.12 94 21.3 1800 83 7.5 7.8 7.8 

W
at

er
 

13 

6 

2 6.73 79 6.40 79 4.57 79 3.6 1800 54 32.7 32.7 32.7 

14 3 2.76 44 6.46 45 6.69 43 3.9 1800 44 0 0.3 -0.3 

15 4 4.11 33 1.17 33 3.59 34 4.3 1800 37 -2.8 -2.8 -2.5 

16 5 4.28 24 3.34 23 1.01 25 2.6 1800 27 -2.9 -3.3 -1.4 

17 

7 

2 2.62 90 1.60 90 2.06 93 5.1 1800 64 28.2 28.2 31.2 

18 3 2.78 69 4.33 70 5.31 69 4.7 1800 52 16.3 19.3 16.3 

19 4 6.99 55 5.67 55 3.43 56 5.1 1800 53 1.6 1.6 2.1 

20 5 3.01 42 5.94 43 5.53 42 5.4 1800 47 -5.6 -6.6 -5.6 

21 

8 

2 4.55 101 5.1 103 5.43 103 - 3600 - - - - 

22 3 5.1 67 4.91 69 5.21 68 5.41 1800 59 16.4 17.1 17.5 

 23 4 4.32 65 4.55 65 4.58 65 5.38 1800 55 19.3 19.3 19.3 

 24 5 4.68 75 4.69 75 4.96 76 6.59 1800 51 27.4 28.9 27.4 

G
as

 

25 
6 

2 3.64 29 2.91 29 3.48 29 0 22 14 37.3 37.3 37.3 

26 3 3.99 22 3.39 22 3.70 22 0 45 15 28.9 28.9 28.9 

27 
7 

2 3.50 12 2.10 14 2.93 14 0 49 28 -33.8 
-

32.8 
-32.8 

28 3 2.98 24 3.01 25 2.37 24 0 63 15 29.0 30.8 29.0 

29 
8 

2 3.1 25 2.36 27 2.41 27 0 65 24 3.1 4.5 4.5 

30 3 3.4 46 2.65 47 2.58 50 0 67 43 12.9 13.6 16.8 

 

According to Table 4.6, the Binary Active formulation solved all instances in a 

reasonable amount of time (i.e., 1800 s) and with an average optimality gap of 2.81%. 

Employing each of the three importance measures, all prioritized demand nodes are 

satisfied before others. In cases where we suppose to consider the importance of some 

demand nodes over the others, scaled 𝑤𝑖, 𝑖 ∈ 𝑁−, the implementation of all three 

importance measures provides strong initial solutions for any of the solution 

improvement algorithms. The average, maximum, and minimum of 𝐺𝑎𝑝𝑍 related to 

𝐼MFCount are 16.2%, 37.3%, and -33.8%, for 𝐼FCR are 16.7%, 41%, and -32.8%, and for 
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𝐼flow are 17.4%, 40.7%, and -32.8%. Among the importance measures the 

implementation of  𝐼MFcount results in full network resilience in less required restoration 

time. This is because, regardless of the percentage of the network flow a link carries, the 

implementation of 𝐼MFcount finds links that are shared in the maximum number of 

source-target paths. Therefore, restoring more important links, measured by the 

employment of 𝐼MFcount, bring more paths into activation as well as satisfying the 

prioritized demand nodes contained on the paths. On the other hand, the implementation 

of 𝐼Flow and 𝐼FCR leads the relaxed formulation to focus on the links carrying the highest 

percentage of flow relative to total network flow and their defined capacity, 

respectively, which may not come from many source-target paths. As such, the choice 

of importance measure is an important consideration in finding a good solution.  

Depending on the magnitude of the disruption scenario, and the accessibility to each 

disrupted component (i.e., the ratio of the restoration time, related to each disrupted 

component, to its traveling time to other components and depots), there is a certain 

number of restoration crews, 𝑘∗, for which the results obtained from the Binary and 

Proportional formulations represent the maximum number of disrupted components that 

receive restoration services from more than one crew. Assigning more restoration crews 

than 𝑘∗ may result in a more scattered routing network, where the length of the route 

assigned to each restoration crew may decrease, yet a smaller number of disrupted 

components may be assigned to more than one restoration crew.  

To illustrate this behavior, Figures 6 indicates different scheduling and routing 

patterns obtained from Binary Active formulation, and Algorithm 2. These methods are 

studied under the disruption scenario with magnitude 𝑀𝑤 = 9 for the water network. In  
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Figure 4.5, the rectangular nodes represents the available depots and the numbered 

nodes represent the disrupted locations in the network after the occurrence of a 

disruptive event.  

 

 

Figure 4.5. water network under the disruption scenario with magnitude 𝑴𝒘 = 𝟗 

 

According to Figure 4.6, For the Binary Active formulation, the maximum number 

of disrupted components which receive restoration services from more than one crew 

when we incorporate three restoration crews. Four the proposed algorithm, assigning 

three restoration crews to the disrupted network results in the maximum number of 

disrupted component which are scheduled to more than one crew. Accordingly, 

Considering Binary formulation, for power network, we may incorporate 𝑘∗ =3, 4 and 

3, under the disruption scenario with magnitudes 𝑀𝑤= 6, 7 and 8, respectively, to see 

the maximum number of disrupted components scheduled to more than one crew. For 
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water network the number would be  𝑘∗ =2, 2, 3, and 3 under the disruption scenario 

with magnitudes 𝑀𝑤= 6, 7, 8, and 9, respectively. Finally, for the gas network, this 

number would  𝑘∗ = 2, 2, 3, and 4 under the disruption scenario with magnitudes 𝑀𝑤= 

6, 7, 8, and 9, respectively, for the gas network. Considering the proposed algorithm, for 

power network, this number would be 𝑘∗ =3, 4, 3 and 6, under the disruption scenario 

with magnitudes 𝑀𝑤= 6, 7, 8 and 9, respectively. For water network this number would 

be 𝑘∗ =3, 3, 3, and 3 under the disruption scenario with magnitudes 𝑀𝑤= 6, 7, 8, and 9, 

respectively. Finally, for the gas network, this number is 𝑘∗ = 2, 2, 3, and 3 under the 

disruption scenario with magnitude 𝑀𝑤= 6, 7, 8, and 9 respectively, for the gas 

network.  

 

  

(a) (a) 
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(c) (d) 

  

(e) (f) 

  

(g) (h) 

Figure 4.6. the computation results of water network under the disruption scenario 

with magnitude 𝑴_𝒘 = 𝟗. (a) Binary Active model with two restoration crews, (b) 

initial solution using two restoration crews, (c) Binary Active model with three 

restoration crews, (d) initial solution using three restoration crews, (e) Binary 

Active model with four restoration crews, (f) initial solution using four restoration 

crews, (g) Binary Active model with five restoration crews, (g) initial solution using 

five restoration crews 

 

In the proposed relaxed formulation, the average number of crews assigned to each 

disrupted component is greater than the average number of assigned crews in the 

solution obtained from Binary and Proportional Active formulations. Note that although 

this feature proposes great initial solutions for heuristic algorithms to find near optimal 

solutions for restoration routing problems, to solve the timing conflicts, Algorithm 2 has 

to change some routes and restoration sequences that may result in solutions with more 
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than 10% of optimality gap from the solutions obtained from Binary and Proportional 

Active formulations.  

4.5. Concluding Remarks 

Restoration capacity enhancement problems are often based on idealized 

assumptions (e.g., eliminating routing problems in restoration process, neglecting 

timing conflicts, considering fixed number of assigned crews), that may propose 

assumptions that may result in models that cannot be used in realistic contexts. With the 

implementation of routing among disrupted network components, we show that there is 

a considerable difference between these models and models that focus only on basic 

infrastructure network restoration. In other words, the basic infrastructure network 

restoration models may result in disrupted components schedules and sequences that are 

not applicable in realistic contexts, which must consider traveling time of each 

restoration crew traveling time between each two disrupted locations it is assigned to, as 

the two or more restoration crews have to be in more than one location at the same time 

(i.e., timing conflicts). Also, they do not consider the difference in the arrival of time of 

each assigned crew to a disrupted location and the effects it has on the restoration rate 

of that corresponding component in each time period.  

In This work, we reinforced the applicability of restoration capacity problems to the 

real-world case studies by: (i) integrating routing and restoration problems by 

formulating Restoration Crew Routing problems, (ii) implementing dynamic restoration 

rate, where an idle restoration crew can join other crews working on a disrupted link 

and accelerate the remaining restoration process. Two model formulations are proposed: 

(i) the Binary Active Restoration Crew Routing model, in which disrupted links cannot 
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play a role in network performance unless they are restored completely (e.g., railway 

network), and (ii) Proportional Active Restoration Crew Routing model, in which 

partially restored links are proportionally functional in the network, and as their 

restoration process progresses, their functionality in the network increases (e.g., 

highway network).  

Additionally, this work presents a new algorithm to obtain the best initial solution 

for the infrastructure network restorative capacity enhancement problem. We first 

introduce a relaxed formulation of the proposed routing problems which does not 

consider the arrival time restoration crews to each disrupted component and their effects 

on the restoration rate of that component in each time period. Then, a cycle elimination 

algorithm is employed to solve all timing conflicts and bring the routes of restoration 

crew into synchronization. Finally, the Initial Solution Preprocessing and Feasibility 

Algorithm (Algorithm 2) calculates the routing time of each restoration crew and solve 

the timing conflicts caused by any restoration crew arrives to a disrupted link after its 

restoration process is completed.  Using instances derived from real-life data from 

power grid, water, and gas networks in Shelby County, TN. The computational results 

prove the efficacy of both Binary Active and Proportional Active formulations, 

especially in small to medium scale problems, by showing the small optimality gap for 

relatively small sized instances. The initial solution obtained from Algorithm 2 are 

compared with the best upper bound obtained from original formulations. For the 

disruption scenario with 𝑀𝑤 = 6,7 and 8 the optimality gaps are close, 4.5% on 

average.  As expected, for large scaled problem, power network under the disruption 

scenario with 𝑀𝑤 = 9 both Binary Active and Proportional Model formulations fall 
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short in finding optimal solution of the best solution in the limited given time, yet the 

initial solution is obtained in considerably short time, 4.5 seconds on average. We 

further can use the obtained initial solution in heuristic algorithm to find optimal or near 

optimal solution in considerably short time. For gas and water networks, all instances 

under the disruption scenario with 𝑀𝑤 = 9, are solved by both Binary and Proportional 

Model formulations in fairy reasonable time, 1800 seconds, with the average optimality 

gap of 13% for water network and 2.51% for gas network.  Under the disruption 

scenario with 𝑀𝑤 = 9, the initial solution related to each instance in water and gas 

network is obtained in considerably short average solution time, 6.9 seconds for water 

network and 2.7 seconds for gas network.  

To incorporate the prioritization of some demand nodes over the others, scaled 

𝑤𝑖, 𝑖 ∈ 𝑁−, we introduce a variation of relaxed formulation restores the disrupted links 

which playing the important role in the source-target paths of the corresponding demand 

nodes. In terms of receiving restoration services, we prioritized the disrupted links 

based on the value of their corresponding measures of importance (e.g., 𝐼MFCount, 𝐼FCR, 

and 𝐼flow). The results shown in Table 4.6, prove the efficiency of the proposed 

variation in the relaxed formulation in serving the prioritized demand nodes before 

others. It also emphasizes that the performance of the Algorithm 2 is aligned with the 

minimizing the restoration horizon as well as serving the prioritized demand nodes 

when we implement 𝐼MFCount as the measure of importance 
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Chapter 5 : RESTORATION CREW ROUTING PROBLEM: A 

HEURISTIC APPROACH 

5.1. Introduction 

In previous chapter, we proposed a mixed integer programming (MIP) formulation 

that combines restoration crew scheduling problem with the vehicle routing problem to 

that schedule a set of disrupted components to each restoration crew and sequence those 

components in such a way that the routing time of that corresponding crew is at its 

minimum. The problem is at least as complicated as traditional vehicle routing 

problems, NP-hard problem, and it also incorporates variable service time for each node 

[Akbari and Salman 2017]. Therefore, we propose a heuristic algorithm to obtain either 

an optimal or near-optimal solution in a very short time on three realistic data sets, 

based on power grid transmission, water, and gas networks in Shelby County, 

Tennessee. We propose three illustrations on the individual networks and study the 

interdependency between each network and the routing network which connects the 

disrupted locations associated with that infrastructure network in the aftermath of a 

disruptive event.  

5.2. Solution Approach 

After solving the relaxed formulation, we calculate the arrival times of each 

restoration crew 𝑘 ∈ 𝐾 to each disrupted link (𝑖, 𝑗) ∈ 𝐴′, or its counterpart node 𝑖̅ ∈ 𝑁̅𝐴′, 

and the processing time of that node. To do so, we first form a solution table, Table 5.1 , 

from the results obtained from the relaxed model to illustrate the sequence of disrupted 

links scheduled to each restoration crew 𝑘 ∈ 𝐾, [Akbari and Salman 2017]. In Table 

5.1, 𝑏𝑘ℎ is the ℎ𝑡ℎ disrupted link (𝑖, 𝑗) ∈ 𝐴′ visited by crew 𝑘. Ignoring the time-related 
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variables may provide unsynchronized restoration routes which are infeasible in reality 

as:  

(a)  There might be some crews which are present at two different disrupted 

locations at the same time. Take the example where two restoration crews, 𝑘̅ and 

𝑘̿, are assigned to two different nodes 𝑖,̅ 𝑖 ̿ ∈ 𝑁̅𝐴′ in such a way, that crew 𝑘̅ visits 

node 𝑖 ̅first and then 𝑖 ̿while crew 𝑘̿ restores node 𝑖 ̿and then node 𝑖.̅ In reality, 

these two crews form a direct cycle through which both crews pass unlimitedly, 

never reaching to each other.  Inspired from Depth First Search (DFS) algorithm 

we propose direct cycle elimination Algorithm to identifies and eliminates all 

direct cycles formed by two or more crews with the least increase in their 

routing time. This algorithm is discussed in previous chapter. 

(b) Among the crews assigned to each node 𝑖̅ ∈ 𝑁̅𝐴′, there might be a crew 𝑘 ∈ 𝐾, 

called as outlier, arrives to node 𝑖 ̅after the completion of the restoration process 

of 𝑖 ̅by other restoration crews assigned to it. In reality, these solutions are of no 

use as they prolong the routing time of restoration crews without enhancing the 

restoration process associated with node 𝑖̅ ∈ 𝑁̅𝐴′. To obtain a feasible solution, 

we present Initial Solution Preprocessing & Feasibility Algorithm to detect 

whether there is a timing conflict among the crews assigned to each disrupted 

link. Two procedures are proposed by the Algorithm: (i) the position of node 𝑖̅ ∈

𝑁̅𝐴′ in the sequence of links assigned to the outlier crew is swapped with the one 

of precedent node in the schedule where the arrival time of crew 𝑘 falls into the 

restoration task time window (Shift procedure).  (ii) node 𝑖̅ ∈ 𝑁̅𝐴′ is simply 
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deleted from the restoration schedule of outlier crew 𝑘 (Delete procedure). This 

algorithm is given in Appendix A.2 

Table 5.1. Order of disrupted links assigned to each crew obtained from solving 

relaxed formulation 
Crew Order of disrupted links 

1 𝑏11  →   𝑏12  →   𝑏13    …   𝑏1𝑛1
 

2 𝑏21 →  𝑏22  →   𝑏23    …   𝑏2𝑛2
 

⋮ ⋮ 
𝐾 𝑏𝐾1 →  𝑏𝐾2  →  𝑏𝐾3    …   𝑏𝐾𝑛𝑘

 

 

Preventing new direct cycles through the application of Shift procedure, we only 

swap the position of node 𝑖̅ ∈ 𝑁̅𝐴′ with those nodes immediately preceding node 𝑖 ̅which 

receive restoration services only from the outlier crew 𝑘. For the cases, where a 

sequence of ℎ nodes, ℎ = 2, … , ∑ ∑ 𝜏𝑖̅𝑡
𝑘

𝑖̅∈𝑁𝐴′ − 1𝑇
𝑡=1 , which are only scheduled to outlier 

crew 𝑘, proceeds immediately before node 𝑖̅ ∈ 𝑁̅𝐴′, we allowed to swap the position of 

node 𝑖 ̅with any of those preceding nodes. Table 5.2 illustrates the output of Initial 

Solution Preprocessing & Feasibility Algorithm. Here, ℱ̃𝑘ℎ is the completion time of 

the restoration process associated with disrupted node 𝑏𝑘ℎ, 𝑃̃𝑏𝑘ℎ

𝑙  is the calculated 

processing time of node 𝑏𝑘ℎ when 𝑙 restoration crews are assigned to it, and  𝑐𝑏𝑘ℎ𝑏𝑘ℎ+1
 

is the traveling time between disruption links 𝑏𝑘ℎ and 𝑏𝑘ℎ+1. As the number of 

disrupted links assigned to each restorative crew can vary, to facilitate the update of 

restoration orders, we construct |𝐾| lists in Table 5.2 in which there are 𝑛𝑘 elements in 

row 𝑘.  

Table 5.2. The completion of the processing time associated with each disrupted 

link 
 Completion time of restoration tasks 

1 ℱ̃11 =  𝑐𝐷𝑏11
+ 𝑃̃𝑙𝑏11

 → ℱ̃12 = ℱ̃11 + 𝑐𝑏11𝑏12
+ 𝑃̃𝑙𝑏12

 … ℱ̃1𝑛1
= ℱ̃1𝑛1−1 + 𝑐𝑏1𝑛1−1𝑏1𝑛1

+ 𝑃̃𝑙𝑏1𝑛1

  

2 ℱ̃21 = 𝑐𝐷𝑏21
+  𝑃̃𝑙𝑏21

 → ℱ̃22 = ℱ̃21 + 𝑐𝑏21𝑏22
+  𝑃̃𝑙𝑏12

 … ℱ̃1𝑛1
= ℱ̃1𝑛2−1 + 𝑐𝑏21𝑏𝑛2−1𝑛2

+ 𝑃̃𝑙𝑏2𝑛2

  

⋮ ⋮ 

𝐾 ℱ̃𝐾1 = 𝑐𝐷𝑏𝐾1
+ 𝑃̃𝑙𝑏𝐾1

 → ℱ̃𝐾2 = ℱ̃𝐾1 + 𝑐𝑏𝐾1𝑏𝐾2
+ 𝑃̃𝑙𝑏𝐾2

 … ℱ̃𝐾𝑛1
= ℱ̃𝐾𝑛1−1 + 𝑐𝑏𝐾𝑛𝐾−1𝑏𝐾𝑛𝐾

+ 𝑃̃𝑙𝑏𝐾𝑛1
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5.2.1. A Heuristic for Restorative Capacity Routing Problem 

In the context of restorative capacity enhancement, having a short run times is of a 

great importance. Hence, inspired by Akbari and Salman [2017] algorithm, we propose 

a Heuristic Algorithm using the solution obtained from Solution Preprocessing & 

Feasibility Algorithm to provide near optimal solutions in an acceptable computing 

time. In the heuristic algorithm, we use three procedures, and combination of them, to 

obtain a near optimal feasible solutions for large scale problems. The input is a set of 

synchronized routes 𝐵, the processing time of each disrupted link (𝑖, 𝑗) ∈ 𝐴′, its 

counterpart node 𝑖̅ ∈ 𝑁̅𝐴′, 𝑃̃, and the completion of processing time of each disrupted 

link, ℱ̃. The output is the possibly shorter processing time for some disrupted links, 

shorter routing time for some restoration crews, and change in the restoration schedule 

of each crew which leads to enhance the total network resilience in each time period. 

The integration of procedures forms an easily implementable Heuristic Algorithm to 

obtain near-optimal feasible solution. The steps of the proposed Heuristic algorithm are 

shown in Algorithm 3. 

Procedure Shorten Routes:  

Considering crew 𝑘 with the maximum routing time, we check if there is any other 

crew 𝑘̅ ∈ 𝐾, 𝑘̅ ≠ 𝑘: (i) whose routing time is less than the routing time of crew 𝑘, and 

(ii) its routing time added to the traveling time from 𝑏𝑘̅𝑛𝑘̅
 (i.e., the last node scheduled 

to crew 𝑘̅ in 𝐵 which is counterpart to node 𝑗 ̅in routing network) to 𝑏𝑘𝑛𝑘
 (i.e., last node 

scheduled to crew 𝑘, in 𝐵 which is counterpart to node 𝑖 ̅in routing network),  

ℱ̃𝑘̅+𝑐𝑏𝑘̅𝑛𝑘̅
𝑏𝑘𝑛𝑘

, falls into the time window related to the restoration task of the last node 

scheduled to crew 𝑘, [ℱ̃𝑘𝑛𝑘−1 + 𝑐𝑏𝑘𝑛𝑘−1𝑏𝑘𝑛𝑘
, ℱ̃𝑘𝑛𝑘

).  If so, we pick one of those crews 
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such that adding crew 𝑘̅ to node 𝑖 ̅immediately after node 𝑗 ̅results in the best 

improvement in the objective function. After scheduling node 𝑏𝑘̅𝑛𝑘̅+1 = 𝑖 ̅to crew 𝑘̅, we 

sort the arrival time of the crews scheduled to node 𝑖̅ ∈ 𝑁̅𝐴′ in non-increasing order and 

put them into array ℊ, in which 𝑔̃ℎ𝑖̅ is the arrival time of ℎ𝑡ℎ crew to node 𝑖,̅ and then 

we update the completion time of the restoration task relate to 𝑖,̅  ℱ̃𝜅𝑖̅ = 𝑔̃|ℊ|𝑖̅ +

(
𝜆𝑖̅

1𝑝𝑖̅
1−∑ 𝜆𝑖̅

ℎ̅−1(𝑔̃ℎ̅+1𝑖̅−𝑔̃ℎ̅𝑖̅)
|ℊ|−1

ℎ̅=2

𝜆𝑖̅
|ℊ| ). After the application of Shorten routes procedure, If the 

maximum routing time, max
𝜅=1,…,𝐾

ℱ̃𝜅𝑛𝜅
, in the routing network 𝐺̅ = (𝑁̅, 𝐴̅) decreases, the 

new routing schedule will be substitute for the old 𝐵.  

In some cases, adding crew 𝑘̅ to node 𝑖 ̅ decreases the restoration process in such a 

way that some other restoration crews working on node 𝑖 ̅become outliers in the new 

schedule. To solve the timing conflict, we use Shift and/or Delete procedures for the 

outlier crews and update the lists of lists 𝐵, ℱ̃, and 𝑃̃. An instance of Shorten routes is 

given in Figure 5.1. In Figure 5.1a, crew 𝑘 has the longest routing time, and crew 𝑘̿ 

joins to the restoration process of node 𝑙3̅, which is the last node in the schedule of crew 

𝑘, after it finishes traveling its route. In Figure 5.1b, adding the restoration crew 𝑘̿ 

decreases the processing time of node 𝑙3̅ and make crew 𝑘 as an outlier for node 𝑙3̅. To 

synchronize the routes, we delete node 𝑙3̅ from the schedule of crew 𝑘, Figure 5.1c. In 

some cases, shown in Figure 5.1d, where the Shift procedure is applicable for crew 𝑘, 

we change the route of 𝑘 noting that the change does not worsen the objective function.  
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(a) (b) 

  

(c) (d) 

Figure 5.1. Illustration of Shorten Route procedure 

 

Procedure Shift Crew:  

Considering crew 𝑘 with the maximum routing time and 𝐽 ̅is the last node which 

receives restoration services from crew 𝑘 and it is only scheduled to crew 𝑘, we check if 

there is any other crew 𝑘̅ ∈ 𝐾, 𝑘̅ ≠ 𝑘 whose routing time is less than the routing time of 

crew 𝑘. If so, we pick one of those crews such that removing crew 𝑘 from the schedule 

of node 𝑗 ̅and adding crew 𝑘̅ to that node, at the end of the route of crew 𝑘̅, results in the 

best improvement in the objective function. An instance of Shift Crew is given in Figure 

5.2 . In  Figure 5.2a, crew 𝑘 has the longest routing time and node  𝑗 ̅ is only assigned to 

crew 𝑘. Among nodes which are only scheduled to crew 𝑘, node  𝑗 ̅ is the last one to be 

restored. In  Figure 5.2b, removing node 𝑗 ̅from the schedule of crew 𝑘 adding it to the 
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end of the route of crew 𝑘̅  decreases the routing time of crew 𝑘 and consequently 

decrease the maximum routing time of network 𝐺̅. 

 

  

(a) (b) 

Figure 5.2. Shift Crew Procedure 

 

Procedure Add Crew:  

Considering crew 𝑘 with the longest routing time, we take node 𝑖 ̅with the maximum 

value of 𝐼𝜋(𝑖̅) ∙ 𝑃̃𝑖̅
𝑙 from the inner product of 𝐼𝜋 ∙ 𝑃̃ , which is referred to as weighted 

processing time, and check whether there is any crew 𝑘̅ ∈ 𝐾 working on node 𝑗 ̅

neighboring node 𝑖,̅ located in the utmost 𝑟 distance from node 𝑖,̅ whose completion 

time, ℱ̃𝑘̅𝑗̅,  added to its traveling time of link (𝑗,̅ 𝑖)̅ ∈ 𝐴̅, 𝑐𝑖̅𝑗̅, falls into the processing 

time of node 𝑖,̅ [𝑔̃𝑖̅ , ℱ̃𝑘𝑖̅  ). If so, we pick one of those crews such that adding node 𝑖 ̅to 

the schedule of crew 𝑘̅, immediately after node 𝑗,̅ make the best improvement in the 

objective function (i.e., maximizing total network resilience over the restoration 

horizon). Applying Add Crew procedure, crew 𝑘 joins to the restoration process of node 

𝑖 ̅and the arrival time of all crews scheduled to node 𝑖 ̅are put into array ℊ𝑛𝑒𝑤 in 

nonincreasing order. On one hand, Considering node 𝑖,̅  𝑔̃|ℊ𝑛𝑒𝑤|𝑖̅ +
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(
𝜆𝑖̅

1𝑝𝑖̅
1−∑ 𝜆𝑖̅

ℎ̅−1(𝑔̃ℎ̅+1𝑖̅−𝑔̃ℎ̅𝑖̅)
|ℊ𝑛𝑒𝑤|−1

ℎ̅=2

𝜆𝑖̅
|ℊ𝑛𝑒𝑤| )  is the enhanced, shortened completion time of the 

restoration process associated with node 𝑖.̅ On the other hand, the arrival time of crew 𝑘̅ 

to node 𝑙,̅ which was scheduled immediately after node 𝑗 ̅before the application of Add 

crew procedure, increases as much as 𝑐𝑗̅𝑖̅ + 𝑐𝑖̅𝑙 ̅ + 𝑔̃|ℊ𝑛𝑒𝑤|𝑖̅ − 𝑔̃1𝑖̅ +

(
𝜆𝑖̅

1𝑝𝑖̅
1−∑ 𝜆𝑖̅

ℎ̅−1(𝑔̃ℎ̅+1𝑖̅−𝑔̃ℎ̅𝑖̅)
|ℊ𝑛𝑒𝑤|−1

ℎ̅=2

𝜆𝑖̅
|ℊ𝑛𝑒𝑤| ) − 𝑐𝑖̅𝑙 ̅. We note that the enhanced restoration process 

related to node 𝑖 ̅changes the arrival time of each crew 𝜅, scheduled to node 𝑖,̅ to the 

succeeding nodes scheduled to that corresponding crew, and consequently affects the 

processing time associated with each of those corresponding nodes. Hence, we update 

the routing time of each crew 𝜅 by (i) incorporating the changes into the processing 

time of nodes scheduled to each crew 𝜅 and succeeding node 𝑖,̅ and (ii) apply Shift 

and/or Delete procedures for nodes 𝑖̅ ∈ 𝑁̅𝐴′, or their corresponding nodes 𝑏𝜅𝑖, 𝑖 =

1, … , 𝑛𝜅 in 𝐵, to whom crew 𝜅 turn to an outlier crew. 

Illustrated in Figure 5.3, take i ̅as the node with the maximum weighted processing 

time in the schedule of crew 𝑘. At an utmost distance of 𝑟 from node 𝑖,̅ there are two 

restoration crews 𝑘̅, and  𝑘̿ working on node 𝑗 ̅, 𝑙 ̅, respectively, Figure 5.3a. Among 

these crews, scheduling crew 𝑘̅ to node 𝑖 ̅gives the best improvement in the total 

restoration time of the network 𝐺 = (𝑁, 𝐴). In other words, applying Add crew 

procedure, the increase in the completion time of the restoration task associated with 

node 𝑗2̅, which is in the schedule of crew 𝑘̅ immediately after node 𝑗 ̅, does not affect the 

total restoration time as much as the decrease in the processing time of node 𝑖 ̅resulted 

by adding 𝑘̅ to node 𝑖.̅ The updated routing network 𝐺̅ = (𝑉, 𝐸) is shown in Figure 5.3b. 
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Figure 5.3c also illustrates the application of Shift procedures on crew 𝑘̅ which turns 

into an outlier for node 𝑙3̅ after the application of Add Crew procedure. Employing the 

Shift procedure results in changes in the route of crew 𝑘′ from 𝐷2 → 𝑗1̅ → 𝑗 ̅ → 𝑖 ̅ →

𝑗2̅ → 𝑙2̅ → 𝑙3̅ to 𝐷2 → 𝑗1̅ → 𝑗 ̅ → 𝑖 ̅ → 𝑗2̅ → 𝑙3̅ → 𝑙2̅ , Figure 5.3.c.  

  

(a) (b) 

 

(c) 

Figure 5.3. Illustration for Add Crew procedure 

 

Procedure Remove Crew:  

Considering crew 𝑘 with the maximum routing time, we take node 𝑖,̅ which is (i) 

scheduled to crew 𝑘 along with other restoration crews (i.e., 𝑙>1), with the minimum 

value of  
𝜆𝑖̅

𝑙−𝜆𝑖̅
𝑙−1

𝑐𝑗𝑖̅+𝑝̃𝑙𝑖̅+𝑐𝑖̅ℎ̅−𝑐𝑗̅ℎ̅

 , or (ii) scheduled to crew 𝑘̅ whose route intersects with the 

route of crew 𝑘, for example in node 𝑗2̅, and 𝑖 ̅is a preceding node to  𝑗2̅ in the route of 

𝑘̅, with the minimum value of 
𝜆𝑖̅

𝑙−𝜆𝑖̅
𝑙−1

𝑐𝑗𝑖̅+𝑝̃𝑙𝑖̅+𝑐𝑖̅ℎ̅−𝑐𝑗̅ℎ̅

. Then we check whether removing crew 𝑘 
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from the schedule of node 𝑖 ̅enhances the objective function, in terms of total network 

resilience or total restoration time. Applying the Remove crew procedure, we update the 

processing time of node 𝑖 ̅and any other node 𝑗̅ ∈ 𝑁̅𝐴′ accessible from node 𝑖.̅ In the 

updated routing network, a number of crews might turn to outliers for some of nodes to 

whom they were scheduled previously. To tackle this problem, we apply Shift and/or 

Delete procedures for those corresponding nodes and update the lists of lists 𝑃̃, 𝐹̃ 

accordingly. For the first option, as it is shown in Figure 5.4a and Figure 5.4b, in the 

solution obtained from the Preprocessing & Feasibility Algorithm, the route 𝑑1 → 𝑖̅ →

 𝑖1̅ → 𝑖2̅ → 𝑖3̅ → 𝑖4̅ associated with crew 𝑘 has the maximum routing time. Considering  

𝑖 ̅as the node with the minimum 
𝜆𝑖̅

𝑙−𝜆𝑖̅
𝑙−1

𝑐𝑗𝑖̅+𝑝̃𝑙𝑖̅+𝑐𝑖̅ℎ̅−𝑐𝑗̅ℎ̅

 value, which is also scheduled to crew 𝑘̅, 

we remove node 𝑖 ̅from the schedule of crew 𝑘, Figure 5.4a. Applying the Remove 

Crew, the routing time of crew 𝑘 decreases, and the routing time of crew 𝑘̅ and 𝑘̿ 

increase, yet the updated routing network, shown in Figure 5.4b, results in a better 

objective function. To illustrate the second option, consider a routing network depicted 

in Figure 5.4c. The route associated with crew 𝑘̅ and 𝑘 intersect on node 𝑗2̅, and node 𝑖 ̅, 

with the minimum value 
𝜆𝑖̅

𝑙−𝜆𝑖̅
𝑙−1

𝑐𝑗𝑖̅+𝑃̃𝑙𝑖̅+𝑐𝑖̅ℎ̅−𝑐𝑗̅ℎ̅

, is a preceding node to node 𝑗2̅ in the route of 

crew 𝑘̅. By removing node 𝑖 ̅from the route of crew 𝑘̅ we decrease the routing time 

related to crew 𝑘 and reach to a better objective function. Hence, we update the route of 

𝑘̅ from 𝑑2 → 𝑖̅ → 𝑗2̅ → 𝑗̅ → 𝑗3̅ → 𝑙2̅ to 𝑑2 → 𝑗2̅ → 𝑗̅ → 𝑗3̅ → 𝑙2̅, Figure 5.4d. 
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(a) (b) 

 
 

(c)  (d) 

Figure 5.4. Illustration of Remove Crew procedure 

 

Procedure Change Assignment:  

Combining Add Crew and Remove Crew procedures, we consider crew 𝑘 with the 

maximum routing time and choose node 𝑖 ̅from the schedule of crew 𝑘 with the 

maximum weighted processing time, 𝐼𝜋(𝑖̅) ∙ 𝑝𝑖̅
𝑙. From the route of each crew 𝑘̅ ∈ 𝐾, 𝑘̅ ≠

𝑘 working on the node 𝑗̅ ∈ 𝑁̅𝐴′ in the 𝑟 distance from 𝑖,̅ we find node 𝑗1̅, precedent to 

node 𝑗 ̅,which has the minimum value of 
𝜆𝑗̅1

𝑙 −𝜆𝑗̅1
𝑙−1

𝑐𝑑2𝑗̅1+𝑃̃𝑗̅1
𝑙 +𝑐𝑗̅1𝑗̅−𝑐𝑑2𝑗̅

. During the Change 

Assignment procedure, after removing node 𝑗1̅, we face two options: (i) depicted in 

Figure 5.5, the updated  completion time,ℱ̃𝑗̅𝑘̅
𝑛𝑒𝑤

 , added to the traveling time of link 

(𝑗,̅ 𝑖)̅ ∈ 𝐴̅, 𝑐𝑗̅𝑖̅, falls into the processing time window associated with that corresponding 

node, (i.e., (𝑔̃1𝑖̅ − 𝑝𝑖̅
1, ℱ̃𝑖̅𝑘) where 𝑔̃1𝑖̅ is the minimum arrival times of the restoration 
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crews assigned to node 𝑖,̅ and 𝑝𝑖̅
1 is the processing time of node 𝑖 ̅when only one 

restoration crew is assigned to 𝑖.̅ In this case, we schedule node 𝑖 ̅to crew 𝑘̅ and check if 

the change enhances the objective function. If so, we pick one of those crews such that 

adding crew 𝑘̅ to node 𝑖 ̅gives the best improvement to the objective function, Figure 

5.5b, and update the lists of lists 𝐵, 𝐹̃, and 𝑃̃, accordingly. (ii) ℱ̃𝑗̅𝑘̅
𝑛𝑒𝑤

+𝑐𝑗̅𝑖̅ > ℱ̃𝑖̅𝑘 or 

ℱ̃𝑗̅𝑘̅
𝑛𝑒𝑤

+𝑐𝑗̅𝑖̅ + 𝑝𝑖̅
1 < 𝑔̃1𝑖̅ . In this case, we check whether crew 𝑘̅ arrives to the precedent 

node 𝑖1̅  neighboring  node 𝑖 ̅during its processing time. If so, we pick one of those 

crews such that adding crew 𝑘̅ to node 𝑖1̅ gives the best improvement in the objective 

function, Figure 5.5c.  

  

(a) (b) 

 

(c) 

Figure 5.5. Illustration of Change Assignment procedure 
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Algorithm 3. Heuristic Algorithm for Restoration Crew Routing Problem 

Input: 𝐵, ℱ̃, 𝑃̃, and the solution of Algorithm 2 

1: Apply the Shorten routes procedure on each restoration crew.  
2: Apply the Shift Crew procedure on each restoration crew.  

3: Apply the Add crew procedure for utmost each restoration crew. 

4: Apply the Remove crew procedure on each restoration crew. 

5: Apply the Change assignment procedure on utmost each restoration crew. 

6: Check if any of Shorten routes, Shift Crew, Add crew, Remove crew, and Change assignment is applicable for 

the current solution. If this is not the case, the current solution is the output of the Heuristic Algorithm, 

otherwise check the application of at least one of the steps 1,2,3, 4, and 5 give the better upper bound for current 

solution.  

7: Repeat step 6 

 

5.3. Illustrative Examples Derived from Power Grid Transmission, Water, and 

Gas Networks in Shelby County, TN 

To examine the efficacy of the proposed models and heuristic algorithm, we employ 

three realistic data sets, based on power grid transmission, water, and gas network in 

Shelby County, Tennessee, to study the behavior of Restoration Crew Routing problem 

faced with different disruption scenarios, each with different size and structure, and 

derive the optimality gaps associated with both mathematical formulations and heuristic 

algorithm.  

Located in the New Madrid Seismic Zone, Shelby County, with a population over 

650,000, is a home to Memphis. Three significant infrastructure networks, the power 

network formed by 289 components (i.e., 125 nodes and 164 links), the water network 

constructed of 120 components (i.e., 49 nodes and 71 links), and the gas network built 

upon 33 components (i.e., 16 nodes and 17 links), are shown in Figure 5.6. The 

integration of the three networks has the total number of 125 nodes and 472 links. 

Inspired by Gonzalez et al. [2016b], we consider four disruption scenarios with the 

magnitude of 𝑀𝑤 = 6, 7, 8, and 9. Each simulated earthquake with the magnitude of  

𝑀𝑤 = 6, 7, 8, and 9 results in the average disruption of 6.2%, 9.3%, 16.6% and 22.8% 
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of all network components, respectively, and the disruptions are distributed randomly 

among the network components. The distance between each pair of disrupted locations 

(𝑖,̅ 𝑗)̅ ∈ 𝐴̅ is the shortest unblocked path obtained through ArcGIS and Google Earth. As 

far as the restoration crews are concerned, each crew is utilized with personnel and 

equipment, so that adding more restoration results in additional costs for the decision 

makers. The traveling time of each crew 𝑘 ∈ 𝐾  between each pair of disrupted 

locations, 𝑖,̅ 𝑗 ̅ ∈ 𝑁̅𝐴′, is to be the shortest undisrupted path between those corresponding 

nodes divided by the velocity of the crew 𝑘, 60 mph on average, and is referred to as 

𝑐𝑖̅𝑗̅𝑖,̅ 𝑗 ̅ ∈ 𝑁̅𝐴′. In the aftermath of a disruptive event, each restoration crew starts its route 

from its originate depot randomly selected from 5, 10, and 15 potential locations for 

gas, water, and power networks, respectively. Each disrupted component may 

experience a certain level of disruption and requires a specific number of time periods 

to be restored, depending on the number of crews assigned to that component. The 

restoration time horizon is considered to be 100 hours or about four days. For crews 

which may leave a disrupted location in the middle of its restoration process, and after 

their restoration task are finished, we consider a certain processing time as a function of 

that corresponding component’s characteristics.  
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(a) (b) 

  

(c) 

Figure 5.6. Graphical representations of the (a) power grid transmission, (b) 

water, and (c) gas networks at a transmission level in Shelby County, TN 

[Gonzalez et al. 2016b] 

 

5.3.1. Computational Experiment 

For the infrastructure networks shown in Figure 5.6, we test 12 instances with the 

percentage of disruptions, varying between 6.2% to 22.8%, distributed randomly 

through each network. We evaluate the performance of the proposed heuristic with 2, 3, 

4, and 5 crews for water network, 2, and 3 for gas networks and 2, 3, 4, 5, 6, 7 for 

power network instances. The first, second, third, and forth columns in Table 5.3show 

the type of network and the number of instances, the magnitude of the disruptive event, 

and the number of crews, respectively. The fifth, sixth and seventh columns shows the 

elapsed time, CPU time, by Gurobi Solver to solve Binary Active, Proportional Active, 

and Relaxed formulations, respectively. The CPU time is in seconds and all the 
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instances are tested on an Intel® Core i7-7500U CPU @ 2.70 GHz 2.90 GHz (two 

processor) with 32 GB RAM.  

According to Proposition 1, the solution obtained from the Relaxed formulation, 𝑍𝑅
∗ , 

is the lower bound for the original Binary and Proportional Active formulations. It is 

also clear that the solution obtained from the Heuristic gives the upper bound for the 

original formulations. the solution obtained by the initial solution and feasibility 

algorithm is shown by 𝑍𝑓
  and is the upper bound for the Heuristic solution,𝑍𝐻

∗ . Adapted 

from Akbari and Salman [2017], we examine percentage of improvement made by the 

heuristic algorithm by HAI and calculate as follows: 

𝐻𝐴𝐼 =
𝑍𝑓 − 𝑍𝐻

∗

𝑍𝐻
∗ 100 

(5.82) 

In cases where the optimal solution of the relaxed formulation is a feasible solution 

for the original formulations, further improvements seem to be unnecessary. Therefore, 

we mark the column associated with HAI as N/A. The value of HAI is shown in the 

eighth columns. The ninth column represents the optimality gap for each scenario and is 

calculated as follow:  

𝑂𝑝𝑡𝑖𝑚𝑎𝑙𝑖𝑡𝑦 𝐺𝑎𝑝 =
𝑍𝐻 − 𝑍𝑅

∗

𝑍𝑅
∗ 100 

(5.83) 

Table 5.3 represents the results of Binary Active and Proportional Active models, 

the relaxed formulation, and the heuristic algorithm for power, water and gas network 

instances in Shelby County, TN. In Table 5.3, the first, second, third, and forth columns 

show the type of network , the number of instances, the magnitude of disruptive event 

and the number of disrupted components, in the parenthesis, and the number of crews 

working in the corresponding instances, respectively. The fifth, sixth, and seventh 
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columns provide the CPU time required for the computation of optimal solution 

obtained from Binary and Proportional formulations and initial solution. We set the 

time limit of one hour for all instances. The results associated with the computation of 

HAI and Optimality Gap is shown in eighth and ninth columns.  

 

Table 5.3. Computational results for water, gas, and power network 
 

Ins. 𝑀𝑤 𝐾 

𝐶𝑃𝑈(𝑠)  

HAI (%)  
Optimality 

Gap (%) 
 

 Binary 

Active Model 

 Prop. 

Active 

Model 

Relaxed 

Model  

Heuristic 

Algorithm 
 

P
o

w
er

 

1 

6 (13) 

2 1434 1418 3.57 1.78 N/A 0 

2 3 1484 1461 1.14 12.65 12.24 0 

3 4 1721 1689 3.28 14.40 11.43 9.58 

4 5 1800 1800 0.95 28.71 14.71 9.83 

5 

7 (18) 

2 3600 3600 1.65 19.96 N/A 0 

6 3 3600 3600 1.69 28.48 14.58 0 

7 4 3600 3600 0.21 32.80 34.09 11.87 

8 5 3600 3600 1.90 74.91 30.77 9.56 

9 

8 (28) 

2 - - 4.51 31.55 N/A 10.17 

10 3 - - 4.52 46.25 10.14 9.88 

11 4 3600 3600 14.86 11.84 43.33 9.88 

12 5 3600 3600 5.63 54.86 48.63 10.37 

13 6 3600 3600 17.22 15.17 20.00 0 

14 7 3600 3600 5.41 51.15 25.00 0 

15 

9 (40) 

2 - - 1.60 3.53 13.64 8.59 

16 3 - - 13.48 56.99 5.26 0 

17 4 - - 4.31 312.99 15.87 7.41 

18 5 - - 4.05 58.86 N/A 7.91 

19 6 - - 16.51 111.81 47.80 9.95 

20 7 - - 16.52 119.29 40.11 0 

W
at

er
 

21 

6 (7) 

2 335 329 2.64 37.89 N/A 0 

22 3 335 330 1.65 33.66 33.33 0 

23 4 425 396 3.23 56.47 62.96 0 

24 5 512 405 4.60 36.26 N/A 0 

25 

7 (11) 

2 619 598 1.08 16.50 54.55 0 

26 3 1332 1273 2.68 6.03 48.89 10.23 

27 4 1438 1386 0.76 13.70 30.98 0 

28 5 1800 1800 1.59 69.19 32.86 6.41 

29 

8 (20) 

2 3600 3600 3.02 29.99 N/A 6.67 

30 3 3600 3600 3.94 69.17 27.14 0 

31 4 3600 3600 4.24 19.22 9.62 4.06 

32 5 3600 3600 3.20 16.97 4.65 3.04 

33 

9 (27) 

2 3600 3600 5.95 21.57 N/A 7.61 

34 3 3600 3600 4.43 15.48 3.70 8.93 

35 4 3600 3600 3.68 60.58 19.91 0 

36 5 3600 3600 4.39 39.64 20.32 5.70 

G
as

 

37 
6 (4) 

2 10 8 0.23 0.01 N/A 0 

38 3 12 12 0.31 0.04 N/A 0 

39 
7 (6) 

2 15 13 1.17 0.06 N/A 0 

40 3 17 16 0.32 0.43 N/A 0 

41 
8 (8) 

2 24 23 0.33 0.10 N/A 0 

42 3 28 26 1.02 0.67 N/A 0 

43 
9 (10) 

2 32 32 0.13 0.66 N/A 0 

44 3 36 37 1.15 0.69 N/A 0 
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In 28 scenarios out of total 44, the optimal solution obtained from the relaxed 

formulation is infeasible for the Binary and Proportional active formulation. the average 

percentage of improvement among these 28 scenarios is around 26.6 percent. Also, in 

25 scenarios out of 44, the heuristic algorithm, the heuristic algorithm reaches an 

optimal solution. The average improvement in these 25 scenarios is 28.83 percent, and 

the optimality gap among those results obtained from the heuristic algorithm and are not 

optimal is 3.81 percent.   

According to Table 5.3, as the number of restoration crews increases the total 

restoration time decreases, yet complexity of the model results in the increase in the 

optimality gap (e.g., for scenarios with 2 and 3 restoration crews the optimality gap is 

around 2.7 percent and for scenarios with crews more than 4 and 5 crews the optimality 

gap is around 6.32 percent), and decreases the possibility of obtaining optimal solutions 

of the relaxed formulation which are also feasible for the original formulations. For 

large sized problem (e.g., power network under the disruption scenario with magnitude 

𝑀𝑤 = 9), The Binary Active and Proportional Active models fall short to solve the 

problem. However, the heuristic algorithm provides reasonable results in a relatively 

short time, 36.09 seconds on average. Adapted from Table 5.3, we conclude that as 

number of disrupted components goes beyond 18 the average solution time increases 

considerably. However, the heuristic algorithm still presents the smaller optimality gap. 

Apart from number of disrupted components the structure of the infrastructure network 

affects the timing conflicts observed in the optimal solutions obtained from the relaxed 

formulation. For example, the timing conflicts are more observable in the power 
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network relaxed solution than the relaxed solution obtained from the water network 

with the same number of disrupted components. We note that the locations of depots are 

randomly changed when the number of restoration crews change. Therefore, these 

random choices may result in positive optimality gap [Akbari and Salman 2017].  

For weighting the importance of demand nodes, we assign a particular weight 𝑤𝑖, to 

each demand node 𝑖 ∈ 𝑁−, proportional to the importance of that node in the 

infrastructure network. For example, demand nodes located in highly populated areas, 

in locations with critical properties (e.g., hospitals, hazardous material warehouses). To 

incorporated prioritization weight, 𝑤𝑖̅,  in both formulations, we update the objective 

function with Eq. (5.(4.81)).  

Я𝜑(𝑡|𝑒) =
∑ 𝑤𝑖𝜑𝑖𝑡𝑖∈𝑁−

− ∑ 𝑤𝑖𝜑𝑖𝑡𝑑𝑖∈𝑁−

∑ 𝑤𝑖𝜑𝑖𝑡𝑒𝑖∈𝑁−
− ∑ 𝑤𝑖𝜑𝑖𝑡𝑑𝑖∈𝑁−

 (5.84) 

For relaxed formulation, we first identify the critical paths ending to the prioritized 

demand nodes 𝑖 ∈ 𝑁−. Then, we use three measures of importance (i.e., 𝐼MFCount, 𝐼flow, 

𝐼FCR) and categorize the important links to a certain number of clusters. As the number 

of clusters increases, the relaxed objective function put more weight to prioritize 

demand nodes, yet it would be less considerate about the maximizing total resilience 

over the restoration horizon. The number of categories to be chosen depends on the 

decision makers policies. In this work, we categorize the links into three clusters: one 

with IMs less than 0.3, one with IMs between 0.3 and 0.6, and one with IMs greater 

than 0.6. during the heuristic algorithm, to keep track of prioritized demand node, we 

make sure disrupted links that are in the paths that reach to prioritized demand node 

receive services sooner than other disrupted links in the infrastructure network. 

Incorporating the prioritization weight, 𝑤𝑖, Table 5.4 represents the computational 
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results for the Binary Active formulation, the Relaxed formulation, and the proposed 

heuristic algorithm applied to the power, water, and gas networks in Shelby County, 

TN. In Table 5.4, the type of network, the number of instances, the magnitude of the 

disruption scenarios and also the number of disrupted links (shown in the parenthesis), 

and the number of restoration crews working on the network are shown in the first, 

second, third, and forth columns. Incorporating 𝐼MFCount, 𝐼flow, 𝐼FCR, The CPU time 

required for the computation of optimal solution for Binary active model, shown in 

Table 5.4 as B., and the Relaxed formulation, shown in Table 5.4 as R., are represented 

under the fifth, sixth, and the seventh column respectively. Finally, the columns eight, 

nine, and ten show results associated with the computation of HAI and Optimality Gap 

when we incorporate 𝐼MFCount, 𝐼flow, 𝐼FCR, respectively.  
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Table 5.4. Computational results for water, gas, and power network (scaled 𝒘𝒊) 
 

Ins 𝑀𝑤 𝐾 

𝐶𝑃𝑈(𝑠) 𝐼MFCount 𝐼flow 𝐼FCR 

 𝐼MFCount 𝐼𝑓𝑙𝑜𝑤  𝐼𝐹𝐶𝑅 
HAI 

(%) 

Opt. 

Gap 

(%) 

HAI 

(%) 

Opt. 

Gap 

(%) 

HAI 

(%) 

Opt. 

Gap 

(%) 
 B. 

Model 

R. 
Mode

l 

B. 
Model 

R. 
Mode

l 

B. 
Model 

R. 
Mode

l 

P
o

w
er

 

1 

6  

2 1363 6.29 1626 1.71 1573 0.35 N/A 0 N/A 9.88 N/A 5.48 

2 3 1555 2.35 1586 5.91 1416 3.54 12.0 0 12.7 9.91 15.77 16.4 

3 4 1429 0.04 1319 5.84 1600 3.56 14.6 11.86 14.1 10.37 11.13 9.71 

4 5 1516 4.27 1671 5.84 1617 7.63 
12.6

4 
9.28 13.4 12.32 11.32 9.26 

5 

7  

2 3600 4.76 3600 5.02 3600 5.33 N/A 0 11.3 3.26 N/A 8.38 

6 3 3600 2.07 3600 1.38 3600 2.80 11.7 0 13.9 4.02 15.15 5.57 

7 4 3600 2.49 3600 5.13 3600 2.49 34.3 10.13 31.7 17.44 33.92 13.13 

8 5 3600 5.19 3600 5.00 3600 5.90 30.1 11.32 30.9 14.86 32.28 15.36 

9 

8  

2 - 4.55 - 1.04 - 3.83 N/A 10.23 N/A 13.64 N/A 9.78 

10 3 - 10.4 - 11.6 - 8.63 10.9 10.69 16.6 17.49 9.06 11.04 

11 4 3600 14.5 3600 11.5 3600 12.4 43.9 9.94 46.9 10.22 45.1 8.62 

12 5 3600 8.79 3600 12.8 3600 8.76 51.2 10.56 51.3 13.08 49.38 11.59 

13 6 3600 6.14 3600 5.30 3600 8.02 24.1 0 30.2 3.71 23.18 5.9 

14 7 3600 7.41 3600 7.52 3600 9.49 27.3 0 34.3 3.97 26.64 2.21 

15 

9  

2 - 5.27 - 13.2 - 15.6 15.1 7.71 19.3 10.66 16.59 10.15 

16 3 - 14.8 - 6.14 - 7.11 10.7 0 16.5 9.16 16.27 8.2 

17 4 - 13.1 - 7.47 - 13.0 19.0 7.69 16.3 14.29 15.58 11.15 

18 5 - 10.6 - 6.66 - 14.0 7.08 7.85 11.7 12.13 10.08 6.02 

19 6 - 9.64 - 7.10 - 7.86 47.1 7.14 47.1 10.05 48.34 9.63 

20 7 - 10.7 - 8.57 - 6.18 43.2 0 47.2 4.32 43.03 1.99 

W
at

er
 

21 

6  

2 368 5.34 451 4.17 399 4.19 N/A 0 N/A 0 N/A 0 

22 3 340 3.55 389 1.14 464 5.41 N/A 0 36.0 0 39.92 0 

23 4 486 0.85 407 3.23 373 0.78 63.3 0 63.3 0 62.4 0 

24 5 439 2.76 486 4.63 321 1.98 N/A 0 N/A 0 N/A 0 

25 

7  

2 519 3.75 684 1.86 505 2.49 51.3 0 50.1 7.02 50.11 5.08 

26 3 602 3.56 667 1.03 511 0.77 45.8 11.45 41.9 4.38 57.29 5.92 

27 4 503 4.59 587 0.84 687 3.21 30.1 0 31.4 6.97 34.15 9.8 

28 5 526 0.56 653 4.69 508 0.66 32.7 7.34 36.6 6.43 34.05 6.4 

29 

8  

2 3600 2.16 3600 1.47 3600 2.29 N/A 6.21 13.7 4.15 N/A 8.25 

30 3 3600 0.78 3600 1.54 3600 3.04 28.9 0 31.4 4.89 30.81 8.15 

31 4 3600 0.97 3600 2.07 3600 4.30 11.8 4.45 7.45 5.30 10.58 7.27 

32 5 3600 4.59 3600 3.83 3600 3.18 4.53 4.19 8.00 5.58 6.76 7.97 

33 

9  

2 3600 3.62 3600 2.18 3600 2.61 N/A 6.99 7.59 5.30 N/A 4.6 

34 3 3600 1.16 3600 5.28 3600 4.02 8.86 9.60 8.79 7.45 8 7.82 

35 4 3600 4.72 3600 3.92 3600 1.22 20.7 0.04 8.97 3.78 24.72 5.16 

36 5 3600 3.77 3600 5.41 3600 2.73 20.5 6.21 7.78 4.56 26.42 7.75 

G
as

 

37 
6  

2 10 0.38 13 1.42 9 0.14 N/A 0 N/A 0 N/A 0 

38 3 17 0.08 17 1.16 18 1.26 N/A 0 N/A 0 N/A 0 

39 
7  

2 6 1.24 5 1.25 13 0.09 N/A 0 N/A 0 N/A 0 

40 3 14 0.07 13 1.21 11 1.33 N/A 0 N/A 0 N/A 0 

41 
8  

2 36 1.10 28 1.14 30 0.90 N/A 0 N/A 0 N/A 0 

42 3 37 0.52 20 0.97 21 0.83 N/A 0 N/A 0 N/A 0 

43 
9  

2 37 0.53 26 1.04 27 1.45 N/A 0 N/A 0 N/A 0 

44 3 38 0.91 27 0.82 39 1.12 N/A 0 N/A 0 N/A 0 

 

In Table 5.4, Implementing demand node prioritization techniques into the Relaxed 

formulation and the proposed Heuristic, the solution of all instances which incorporate 

𝐼flow and 𝐼FCR and most instances which incorporate 𝐼MFCount yield optimality gap. 
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Considering 𝐼MFCount, we see that the proposed heuristic obtains optimal solution in 23 

scenarios out of total 44. It is clear that as the number of crews increases the obtained 

optimality gaps also increases due to the complexity of the problem. In 29 scenarios 

from the total 44, The optimal solution obtained from Relaxed formulation contain time 

conflicts and consequently the initial solution and feasibility algorithm is required for 

these 29 scenarios. The average improvement among these scenarios is 26.2 percent. 

For near optimal solutions, the average optimality gap is 8.14 percent. For 𝐼flow and 

𝐼FCR, the proposed heuristic algorithm obtains optimal solution in 12 scenarios out of 

the total 44. The optimal solution obtained from Relaxed formulation is feasible for the 

Binary Active formulation in 15 scenarios out of total 44, for 𝐼FCR, and in 12 out of total 

44 scenarios, for 𝐼flow. For the Relaxed formulation optimal solutions which are not 

feasible for the original formulation, the average improvement among these scenarios is 

24.36 percent, for 𝐼𝐹𝐶𝑅, and 27.86 percent, for  𝐼𝑓𝑙𝑜𝑤. For near optimal solutions, the 

average optimality gap is 8.46, for  𝐼𝑓𝑙𝑜𝑤, and 8.24, for 𝐼𝐹𝐶𝑅. Increasing the number of 

disrupted components and the number of restoration crews, the Binary Active 

formulation falls short to solve the scenario (e.g., power network under disruption 

scenario with magnitude 𝑀𝑤 = 9), yet the heuristic algorithm mange to produce good 

solutions in the reasonable time. According to Table 5.4, the performance of the 

heuristic algorithm is better when we incorporate  𝐼MFCount than the time we incorporate 

𝐼𝐹𝐶𝑅 or 𝐼flow. The reason is that 𝐼𝑀𝐹𝐶𝑜𝑢𝑛𝑡 weight the links with the share in more critical 

paths as more important. In other words, the links which are important for the paths 

reaching to prioritized demand node, also play important roles in the total network 

restoration process as are shared most by different critical paths in the network, and 
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therefore, restoring those corresponding links sooner than other disrupted links,  strike a 

good balance between satisfying prioritized demand and maximizing total network 

resilience over the restoration horizon.  

5.4. Concluding Remarks 

In this paper, we defined a new infrastructure network restoration routing problem 

to encompass realistic assumptions and contexts. Integrating post disruption resilience 

problem and routing problems, we demonstrate that the restoration assignment and 

schedule represented in basic infrastructure network restoration models, may not be 

feasible in realistic contexts as they do not consider the traveling time between each pair 

of disrupted components that are assigned to a restoration crew and consequently may 

form some cases where a restorative crew  has to be present in  two different locations 

at the same time, or the crew reaches to a disrupted location after its restoration process 

is completed (i.e., timing conflicts). Along with realistic assumptions, we also consider 

the difference in arrival of time of each assigned crew to a disrupted location and 

analyze its effects on the restoration rate of that component, the schedule of restoration 

crews and the restoration sequence of disrupted components.   

The contributions of this paper include: (i) integrating routing and resilience 

enhancement problem as a Restoration Crew Routing formulation, (ii) incorporating 

dynamic restoration rate, where an idle crew can join in the middle of a restoration 

process of a component and accelerate  the rate of restoration associated with that 

component, (iii) proposing a relaxed formulation based heuristic algorithm to achieve 

the optimal or near optimal solution in a very short time. The proposed contributions are 

incorporated in two model formulations: (i) Binary Active model, in which disrupted 
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components do not play any role in the network performance unless they are completely 

restored, (ii) Proportional Active formulation, in which disrupted components can 

partially be operational during their restoration process. As their restoration process 

progress their functionality increase (e.g., highway network). 

To solve large scale disruption scenarios, we proposed a heuristic algorithm which: 

(i) solves a Relaxed formulation of Binary Active and Proportional Active models, (ii) 

implement initial solution and feasibility algorithm to the optimal solution obtained 

from the Relaxed formulation to reach to a feasible initial solution for the original 

models, and (iii) uses a local search algorithm to improve the initial solution and obtains 

a optimal/ near optimal solution in a very short time. Using instances derived from 

realistic case studies from power grid, water, and gas networks in Shelby County, we 

test Binary Active formulation, Proportional Active formulation, and the proposed 

heuristic over 44 scenarios with different magnitude of disruption (e.g., 𝑀𝑤 =

6, 7, 8, and 9), and different number of restoration crews varies from 2 to 7. The 

performance of the proposed heuristic algorithm over all 44 scenarios is satisfying and 

it results in either an optimal or near optimal solutions in a very short time. For cases 

where we only focus on maximizing the total network resilience, in 28 scenarios out of 

44, the heuristic algorithm reaches to the optimal solution and for the remained in 

represents tight upper bounds. For cases where we are interested in prioritizing demand 

nodes as well as maximizing total network resilience, in 23 scenarios out of total 44, the 

heuristic algorithm reaches to the optimal solution, for 𝐼𝑀𝐹𝐶𝑜𝑢𝑛𝑡, and for  𝐼𝐹𝐶𝑅, and 𝐼𝑓𝑙𝑜𝑤 

, the heuristic algorithm reaches to the optimal solution, in 15 scenarios out of total 44, 

and in 12 scenarios out of total 44, respectively. For large scale problems (e.g., power 
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network under the disruption scenario 9), the Binary and Proportional Active 

formulations fall short of solving the instances in a given time, yet the proposed 

heuristic algorithm gives an optimal or near optimal solution in less than half an hour 

for all instances. We note that CPU time for the heuristic algorithm includes the 

summation of the required time for solving the Relaxed formulation, the solution time 

of the initial solution and feasibility algorithm, and the solution time of the local search 

algorithm. 
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Chapter 6 : CONCLUDING REMARKS 

6.1 Summary and Conclusions   

The core of this thesis is to examine an adaptive and restorative capacity planning 

for interdependent complex infrastructure networks. We define a new post disruption 

response and restoration framework and demonstrate its applicability on a variety of 

infrastructure network (e.g., electric power, water, gas, and transportation networks). 

the proposed framework involves three main decisions: (i) allocating limited resources 

during the response phase to optimize the network performance to which the network 

can quickly temporarily adapt to after a disruption, (ii) assigning restoration crews to 

disrupted network components and maximize the network resilience, which is measured 

by the progress in the total network flow reaching to demand nodes, in any given time 

horizon after disruption, (iii) forming a synchronized routing problem for scheduling 

restoration efforts for infrastructure networks, in which a set of restoration crews are 

dispatched from depots to a road network to restore the disrupted infrastructure. We 

further establish the complexity of restoration routing problems to be NP-Hard. This 

motivates the need for a heuristic algorithm to solve the restoration routing problem and 

obtain an optimal or near optimal solution in a very short time. Therefore, we create a 

relaxed based heuristic algorithm following local search procedures to improve the 

feasible initial solution of original formulations and reaches to either an optimal and 

near optimal solutions in a very short time. The proposed heuristic algorithm can be 

easily customized to cases where demand nodes are prioritized according to their 

importance (e.g., the number of population of the region where they are located, the 

exitance hazardous material warehouse, and hospitals near their locations). Using a 
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feasible initial solution obtained from the Relaxed-formulation of the original models, 

the basis of the heuristic is to reduce the maximum routing time of the restoration crews 

by updating the set of disrupted components scheduled to each restoration crew and 

their restoration sequence.  

In the first step, we propose a mixed integer linear programming formulation to 

allocate spatially located resources to improve a network’s adaptive capacity. Three 

characteristics are integrated into the formulation: (i) link criticality, or the importance 

of a link in enabling the performance of the network, (ii) network accessibility, or the 

extent to which capacity is degraded across links in the network, and (iii) network 

connectivity, or the extent to which demand is being met at demand nodes. After a 

disruptive event, the limited, spatially distributed resources are allocated to network 

components to quickly engage the affected components by proportionally improving 

their functionality. While these resources have potentially only limited effectiveness, 

their optimal allocation can significantly reduce vulnerability of the larger system in the 

immediate term. The proposed model is examined to a variety of component importance 

measures that exist in literature as well as various settings of priorities for demand 

nodes and time periods. We demonstrate the applicability of the proposed model to a 

variety of infrastructure networks using several case studies based on a French electric 

power transmission network under simulated disruptions. 

In the second step, we focus on long term restoration efforts in the aftermath of 

disruptions. To do so, we propose two mixed integer linear models to assign restoration 

crews to disrupted components for two different kinds of infrastructure network 

behaviors. The first model is referred to as the Proportional Active model, in which a 
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disrupted component can be partially operational in the network while it is being 

recovered. This is also the case for redundant components connected in a parallel 

configuration, in which the components equally share the load. Power lines, busbars, 

and stepdown transformers are often operated following this logic. The capacity and, 

consequently, the level of operation associated with each disrupted line increase during 

restoration. The second model is referred to as the Binary Active model, in which a 

disrupted component must be fully recovered to be fully. In the aftermath of a 

disruptive event, restoration work crews are distributed throughout the network to 

recover disrupted components. Each disrupted component has specific characteristics, 

such as the level of damage and its rate of recovery. Also, various work crews can be 

assigned to a component to accelerate its rate of recovery. The optimal assignment and 

schedule of work crews can significantly increase the recovery time of the entire 

network. Considering cascading effects, we study both Binary and Proportional Active 

formulations on several scale-free and small-world networks derived from the 400-kV 

French electric power network as well as the network itself.  

To approach the theoretical model to the reality, in the third step, we propose a 

synchronize routing problem to enhance restorative capacity of an infrastructure 

networks after a large disruptive event. The proposed model integrates the work crew 

scheduling problem with a vehicle routing problem to address the practical problem of 

traversing a given road network to recover other infrastructure networks. we update two 

Binary and Proportional Active problems to mixed integer linear routing models that 

assign a set of disrupted components to each restoration crew and identify the route with 

the minimum total traveling time associated with that restoration crew. After a 
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disruptive event, various restoration crews can be assigned to a disrupted component 

and accelerate its restoration trajectory (i.e., dynamic restoration process). Each of the 

assigned restoration crews can arrive at a time that does not depend on the arrival time 

of other assigned crews. The optimal assignment, schedule, and route of restoration 

crews can significantly reduce the restoration time of the entire set of infrastructure 

networks. Considering the NP-Hardness of the both proposed models, we propose a 

relaxed mixed integer program as well as a set of valid inequalities which relates the 

planning and scheduling efforts to decision makers policies. The integration of the 

relaxed formulation and valid inequalities results in a lower bound for the original 

formulations. We further introduce a feasibility algorithm to derive a strong initial 

solution for the routing restorative capacity problem. Computational results on gas, 

water, and electric power infrastructure network instances from Shelby County, TN 

data, demonstrates both the effectiveness of the proposed model formulation, in solving 

small to medium scale problems, the strength of the initial solution procedure, 

especially for large scale problems.  

Finally, in the forth step, using the initial solution from the third step, we propose a 

heuristic algorithm which uses local search procedures to obtain a near-optimal feasible 

solution on three realistic data sets, based on power grid transmission, water, and gas 

networks in Shelby County, Tennessee. the computational results prove the efficacy of 

both mathematical formulation aligned with showing that the heuristic algorithm 

obtains optimal or near optimal solutions.  
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6.2 Future Directions 

For the first step, A direction for future work is the integration of the vulnerability 

reduction formulation proposed here with a restoration formulation, effectively studying 

the tradeoff between resource assignment for adaptive capacity versus restorative 

capacity for more comprehensive network resilience planning under dynamic disruption 

scenarios.  

For the second step, an important direction for the future work is to consider the 

case where some crews assigned to each disrupted component can finish their 

restoration process earlier than others and leave that component before its restoration 

process is completed. Another direction for the future research in this area is to effects 

of the disruptions on the routing network itself. In these cases, studying the methods 

which share and distribute restoration resource between the infrastructure network and 

the routing network would be of a great significance. 

Also, new methods can be developed to solve the relaxed formulation more 

efficiently or it can be substituted by a constructive heuristic.  The obtained initial 

solution can be used in proposed and well-known heuristic and metaheuristic methods 

to find near optimal solution. To tackle the uncertainty of the parameters, we can use a 

scenario based stochastic optimization method to incorporate a variety of values for 

parameters with certain probabilities.  

For the third and fourth steps, an important direction for the future work is to 

consider the case where some crews assigned to each disrupted component can finish 

their restoration process earlier than others and leave that component before its 

restoration process is completed. Another direction for the future research in this area is 
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to effects of the disruptions on the routing network itself. In these cases, studying the 

methods which share and distribute restoration resource between the infrastructure 

network and the routing network would be of a great significance. Also, new methods 

can be developed to solve the relaxed formulation more efficiently or it can be 

substituted by a constructive heuristic.  The obtained initial solution can be used in 

proposed and well-known heuristic and metaheuristic methods to find near optimal 

solution. To tackle the uncertainty of the parameters, we can use a scenario based 

stochastic optimization method to incorporate a variety of values for parameters with 

certain probabilities.  
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Appendix A 

A.1 DC Model Implementation in Binary Active and Proportional Active 

Formulations 

Bienstock and Mattia [2007] present a DC model as a good linear approximation of 

the steady-state behavior of power transmission networks. In this model, the active 

power of each link (𝑖, 𝑗) is a function of the angle of its origin and destination nodes, 𝜃𝑖 

and 𝜃𝑗 , and the series reactance of each link (𝑖, 𝑗), introduced here as 𝑞𝑖𝑗, is given by 

RTE [2013], as a physical parameter of that corresponding link. Note that the reactance 

of a link depends on its length and its voltage levels. The power flow on link (𝑖, 𝑗) is 

calculated with Eq. (A.1). 

 

𝜃𝑖 − 𝜃𝑗 − 𝑞𝑖𝑗𝑥𝑖𝑗𝑡 = 0 (A.1) 

 

Two important updates should be incorporated in both proposed formulations. First, 

the flow on each link can have a positive or negative value (i.e., a negative flow on the 

link (𝑖, 𝑗) means power flows from node 𝑗 to node 𝑖). Second, for a disrupted link, Eq. 

(A.1) is not valid unless it is completely recovered (e.g., resulting from the Binary 

Active formulation), or work crews start their task (i.e., resulting from the Proportional 

Active formulation). Therefore, for all undisrupted links we update constraints (3.27) in 

the Binary Active formulation and constraints (3.34) in the Proportional Active 

formulation with the constraints in Eqs. (A.2) and (A.3). 

𝜃𝑖𝑡 − 𝜃𝑗𝑡 − 𝑞𝑖𝑗𝑥𝑖𝑗𝑡 = 0 ∀(𝑖, 𝑗) ∈ 𝐴/𝐴′, 𝑡 = 1, … , 𝑇 (A.2) 

|𝑥𝑖𝑗𝑡| ≤ 𝑢𝑖𝑗𝑡𝑒
 ∀(𝑖, 𝑗) ∈ 𝐴/𝐴′, 𝑡 = 1, … , 𝑇 (A.3) 
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Where constraint (A.1) incorporates the DC model into both formulations and 

constraint (A.3) ensure that flow on the link does not exceed its capacity and 

consequently prevent cascading failures. For disrupted links, constraints (3.28) in the 

Binary Active formulation are replaced with the constraints in Eqs. (A.4) and (A.5). 

  

|𝜃𝑖𝑡 − 𝜃𝑗𝑡 − 𝑞𝑖𝑗𝑥𝑖𝑗𝑡| ≤ 𝑀(1 − 𝛽𝑖𝑗𝑡) ∀(𝑖, 𝑗) ∈ 𝐴′, 𝑡 = 1, … , 𝑇 (A.4) 

|𝑥𝑖𝑗𝑡| ≤ 𝛽𝑖𝑗𝑡𝑢𝑖𝑗𝑡𝑒
 ∀(𝑖, 𝑗) ∈ 𝐴′, 𝑡 = 1, … , 𝑇 (A.5) 

 

For Proportional Active formulation, the constraints (3.34) are replaced with the 

constraints in Eq. (A.6) and (A.7). 

|𝜃𝑖𝑡 − 𝜃𝑗𝑡 − 𝑞𝑖𝑗𝑥𝑖𝑗𝑡| ≤ 𝑀(1 − ∑ ∑ 𝛾𝑘𝑖𝑗𝑠
𝑡
𝑠=1𝑘∈𝐾 )        ∀(𝑖, 𝑗) ∈ 𝐴′,  

𝑡 = 1, … , 𝑇 

(A.6) 

|𝑥𝑖𝑗𝑡| ≤ 𝑢𝑖𝑗𝑡𝑑
+ ∑ ∑ 𝛾𝑘𝑖𝑗𝑠

𝑡

𝑠=1

𝑓𝑘𝑖𝑗(𝑡−𝑠)(𝑢𝑖𝑗𝑡𝑒
− 𝑢𝑖𝑗𝑡𝑑

)

𝑘∈𝐾

  
∀(𝑖, 𝑗) ∈ 𝐴′,  

𝑡 = 1, … , 𝑇 

(A.7) 

 

Following the Big M method, the parameter 𝑀 is used in constraints (A.4)- (A.6) 

[Bienstock and Mattia, 2007] to incorporate disrupted links into the network only after 

the restoration process in the Binary Active model, or after the restoration crews are 

assigned to them in the Proportional Active model.  

A.2 Controlling Cascading Failures in a Power Network  

Although constraints (A.4) and (A.5) prevent any violation from the link capacity, 

in reality, an initial disruption sets off a sequence of additional disturbances in the 

network in a time horizon that is on the order of minutes. We implement the Cascading 

Failure Evolution (CFE) algorithm introduced by Soltan et al. [2014]. We implement 
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the cascading process in ten rounds, 𝑅 = 10, and terminate the process using the 

termination law proposed by Bienstock [2011].  

Algorithm 1 – Cascading Failure Evolution (CFE) 

Input: Graph 𝐺 = (𝑉, 𝐴) and the set of initial disrupted links 𝐴0
′  ⊆ 𝐴 

1: 𝐴0
′∗ ← 𝐴0

′  and 𝑖 ← 0. 

2: for 𝑟 = 1, … , 𝑅 

3:       Adjust total demand to total supply within each connected island 𝜅  𝜅 ⊆ 𝐺 = (𝑉, 𝐴\𝐴′∗). 

4:       Compute the new flows 𝑥𝑖𝑗𝑟(𝐴′∗)   ∀(𝑖, 𝑗) ∈ 𝐴\𝐴′∗. 

5:       Find the set of new links  𝐴′𝑟+1 = {(𝑖, 𝑗)|𝑥𝑖𝑗𝑟(𝐴′∗) > 𝑢𝑖𝑗𝑡𝑒
, 𝐴\𝐴′∗}, 𝐴𝑟+1

′∗ ← 𝐴𝑟
′∗ ∪ 𝐴𝑟+1

′ .  

Termination. (round R) If any component has overload line, proportionally decrease the demand until all 

flows fall into capacity range. Set 𝜓𝐾
𝑅 = min{1, max

(𝑖,𝑗)∈𝐾
|𝑥𝑖𝑗𝑟(𝐴𝑅

′∗)|/𝑢𝑖𝑗𝑡𝑒
}. If 𝜓𝐾 > 1, then any distributer in 

round 𝑅 in each component resets its demand to 𝑏𝑖
𝑅/𝜓𝐾

𝑅 . 
 

The input of the algorithm is the initial set of disrupted links immediately after the 

occurrence of a disruptive event. We assume this set as the initial optimal set of 

disrupted links 𝐴0
′∗. It is assumed that the flow of each link falls in its capacity range, 

|𝑥𝑖𝑗𝑡𝑒
| ≤ 𝑢𝑖𝑗𝑡𝑒

. After a disruptive event, some links fail and disconnect the network to 

𝜅 ∈ 𝐾 islands. Each island may have a number of generators and distributors whose 

total pre-disruption supply and demand were not in balance. The network still sets the 

total supply and demand balance in each island. However, there are not an adequate 

amount of capacity due to the failure of some links, and this leads to the overload of 

some operational links and consequently other links may fail. In each round, a set of 

new disrupted links 𝐴𝑟+1
′ ⊆ 𝐴 is added to the previous set to form a new set of disrupted 

links 𝐴𝑟+1
′∗ ← 𝐴𝑟

′∗ ∪ 𝐴𝑟+1
′ . In the last round, the total demand in each island is adjusted 

to be equal to total supply of that island decreasing the level of demand (supply), 

referred to as the shedding/generation process [Soltan et al. 2014]. We assume that the 

supply-demand balance is considered in each time period of the recovery process to 

prevent additional disruptions. 
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Appendix B 

 

B.1.Proof of the Propositions 1 

Proof. Without loss of generality, we assume that no rerouting action takes place in 

the infrastructure network after the occurrence of a disruptive event. Hence, the time 

when the infrastructure network reaches to fully operational state is the same time it 

attains full recovery.  Recall that, we can state that the purpose of original Network 

Restorative capacity model is to maximize the infrastructure network by minimizing the 

maximum routing time. We prove that statement by two lemmas. 

Lemma 1. If 𝑝(𝑖,𝑗)
𝑙 , 𝑙 = 1, … , 𝐿  represents the restoration time of each disrupted link 

(𝑖, 𝑗) ∈ 𝐴′,  defined in the independent crew routing problem, and 𝑝(𝑖,𝑗)
𝑙 , 𝑙 = 1, … , 𝐿 

represents the restoration time of each disrupted link associated with the relaxed 

formulation, then we have that 

 

𝑝(𝑖,𝑗)
𝑙 ≤ 𝑝(𝑖,𝑗)

𝑙  (B.1) 

 

Proof. Table B.1 gives an instance that shows the impact of each crew on the 

processing time of each disrupted link (𝑖, 𝑗) ∈ 𝐴′. Each time a new crew 𝑘 = 1, … , 𝐾 

arrives, it accelerates the restoration rate associated with the remaining disruption. 

Therefore, the portion of disruptions processed prior to the arrival of crew 𝑘 cannot be 

affected by that crew. We assume that no restorative crew visits a disrupted link after it 

has been recovered.  
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Table B.1. The processing time of disrupted link (𝒊, 𝒋) for independent crew 

routing restoration problem. 
ℎ𝑡ℎ 

crew 
Assigned crews 

Acceleration in remained restoration 

process 

Processing time after the 

arrival of ℎ𝑡ℎ crew 

ℎ = 1 𝑘 = 1 - 𝑝(𝑖,𝑗)
1  

ℎ = 2 𝑘 = 1,2 𝑝̂(𝑖,𝑗)
2 =

𝜆(𝑖,𝑗)
1 (𝑝(𝑖,𝑗)

1 − (𝑡̂(𝑖,𝑗)
2 − 𝑡̂(𝑖,𝑗)

1 ))

𝜆(𝑖,𝑗)
2  

𝑝(𝑖,𝑗)
2 = (𝑡̂(𝑖,𝑗)

2 − 𝑡̂(𝑖,𝑗)
1 )

+ 𝑝̂(𝑖,𝑗)
2  

ℎ = 3 𝑘 = 1,2,3 𝑝̂(𝑖,𝑗)
3 =

𝜆(𝑖,𝑗)
2 (𝑝̂(𝑖,𝑗)

2 − (𝑡̂(𝑖,𝑗)
3 − 𝑡̂(𝑖,𝑗)

1 ))

𝜆(𝑖,𝑗)
3  

𝑝(𝑖,𝑗)
3 = (𝑡̂(𝑖,𝑗)

3 − 𝑡̂(𝑖,𝑗)
1 )

+ 𝑝̂(𝑖,𝑗)
3  

⋮ ⋮ ⋮ ⋮ 

ℎ = 𝑙 𝑘 = 1,2, … , 𝑙 𝑝̂(𝑖,𝑗)
𝑙 =

𝜆(𝑖,𝑗)
𝑙−1 (𝑝̂(𝑖,𝑗)

𝑙−1 − (𝑡̂(𝑖,𝑗)
𝑙 − 𝑡̂(𝑖,𝑗)

𝑙−1 ))

𝜆(𝑖,𝑗)
𝑙

 
𝑝(𝑖,𝑗)

𝑙 = (𝑡̂(𝑖,𝑗)
𝑙 − 𝑡̂(𝑖,𝑗)

1 )

+ 𝑝̂(𝑖,𝑗)
𝑙  

  

According to Table B.1, we have, 𝑝(𝑖,𝑗)
𝑙 = (𝑡̂(𝑖,𝑗)

𝑙 − 𝑡̂(𝑖,𝑗)
1 ) +

𝜆(𝑖,𝑗)
1 𝑝(𝑖,𝑗)

1 −∑ 𝜆(𝑖,𝑗)
ℎ−1(𝑡̂(𝑖,𝑗)

ℎ −𝑡̂(𝑖,𝑗)
ℎ−1)𝑙

ℎ=2

𝜆(𝑖,𝑗)
𝑙 , and we also have 𝑝(𝑖,𝑗)

𝑙 =
𝜆(𝑖,𝑗)

1 𝑝(𝑖,𝑗)
1

𝜆(𝑖,𝑗)
𝑙  . Through the method of 

proof by contradiction, suppose: 

(𝑡̂(𝑖,𝑗)
𝑙 − 𝑡̂(𝑖,𝑗)

1 ) +
𝜆(𝑖,𝑗)

1 𝑝(𝑖,𝑗)
1 −∑ 𝜆(𝑖,𝑗)

ℎ−1(𝑡̂(𝑖,𝑗)
ℎ −𝑡̂(𝑖,𝑗)

ℎ−1)𝑙
ℎ=2

𝜆(𝑖,𝑗)
𝑙 ≤

𝜆(𝑖,𝑗)
1 𝑝(𝑖,𝑗)

1

𝜆(𝑖,𝑗)
𝑙   

(B.2) 

𝜆(𝑖,𝑗)
𝑙 (𝑡̂(𝑖,𝑗)

𝑙 − 𝑡̂(𝑖,𝑗)
1 ) + 𝜆(𝑖,𝑗)

1 𝑝(𝑖,𝑗)
1 − ∑ 𝜆(𝑖,𝑗)

ℎ−1(𝑡̂(𝑖,𝑗)
ℎ − 𝑡̂(𝑖,𝑗)

ℎ−1)

𝑙

ℎ=2

≤ 𝜆(𝑖,𝑗)
1 𝑝(𝑖,𝑗)

1  

(B.3) 

∑ 𝜆(𝑖,𝑗)
𝑙 (𝑡̂(𝑖,𝑗)

ℎ − 𝑡̂(𝑖,𝑗)
ℎ−1)

𝑙

ℎ=2

≤ ∑ 𝜆(𝑖,𝑗)
ℎ−1(𝑡̂(𝑖,𝑗)

ℎ − 𝑡̂(𝑖,𝑗)
ℎ−1)

𝑙

ℎ=2

 

(B.4) 

𝑙𝜆(𝑖,𝑗)
𝑙 ≤ 𝜆(𝑖,𝑗)

1 + 𝜆(𝑖,𝑗)
2 + ⋯ + 𝜆(𝑖,𝑗)

𝑙  (B.5) 

 

Thus, we have the contradiction on (B-2) as it is clear that 𝜆(𝑖,𝑗)
𝑙 ≥ 𝜆(𝑖,𝑗)

𝑖̅ , 𝑖 ̅ =

1, … , 𝑙 − 1. Therefore, (B.1) is proved.  

As the traveling times among disrupted links remain unchanged, we conclude that: 

𝑍𝑅
∗ ≤ 𝑍𝑅(𝑆𝐵/𝑃𝐴𝑃

∗ ) (B.6) 
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 B.2. 

Proof. Building upon Akbari and Salman [2017], we know that the output of the 

Relaxed RCRP is a set of restoration routes which may share one node or more with one 

another. In the worst case, using cycle elimination algorithm results in traveling times 

related to some crews which are prolonged more than the time they save when they join 

to other crews on the restoration process of disrupted nodes (i.e. max
𝑘=1,…,𝐾

ℱ̃𝑘𝑛𝑘
 (Relaxed 

RCRP)≤ max
𝑘=1,…,𝐾

ℱ̃𝑘𝑛𝑘
 (feasibility algorithm)). We also defined a version of Binary and 

Proportional restoration crew routing formulation, let us call in Modified formulation, 

in which we substitute multiple crews to one crew, 𝑘. This crew starts its route from a 

depot, serves a number of nodes, may restore some of them completely and some others 

partially, comes back to the same depot or a different one in zero time, and then again 

starts a new route. This procedure repeats until all disrupted nodes are fully recovered.  

Without loss of generality we consider that no rerouting is possible in the network after 

disruption. Hence, to attain fully restored network resilience (Я𝜑(𝑡|𝑒𝑗)), we need to 

restore all disrupted links. In Modified formulation, the crew comes back to partially 

restored nodes and restores all remained disruptions or a proportion of it with the 

restoration rate 𝜆𝑖̅
𝑙, where 𝑙 is the number of times the crew has visited the node 𝑖̅ ∈ 𝑁̅𝐴′ 

so far. The maximum number of times the restoration crew starts a new route is equal to 

𝐾. The optimal solution of the Modified formulation is equal to ∑ ℱ̃𝑘𝑛𝑘

𝐾
𝑘=1 .  It is clear 

that 

max
𝑘=1,…,𝐾

ℱ̃𝑘𝑛𝑘
 (Algorithm 2)≤  ∑ ℱ̃𝑘𝑛𝑘

𝐾
𝑘=1  

And  
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∑ ℱ̃𝑘𝑛𝑘
𝐾
𝑘=1

𝐾
≤ max

𝑘=1,…,𝐾
ℱ̃𝑘𝑛𝑘

 (Relaxed formulation)  

Then we obtain  

max
𝑘=1,…,𝐾

ℱ̃𝑘𝑛𝑘
 (Relaxed formulation)≤ max

𝑘=1,…,𝐾
ℱ̃𝑘𝑛𝑘

 (Algorithm 2) ≤ 𝐾. max
𝑘=1,…,𝐾

ℱ̃𝑘𝑛𝑘
 

(Relaxed formulation) 

 

 


