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Abstract

The explicit prediction of convective storms using storm-scale models has recently be-

come a reality. Radar data is a crucial source of information about the microphysical

and kinematic properties of convection at the storm-scale. Whereas assimilation studies

have primarily focused on radial velocity and reflectivity, much less has been done to in-

vestigate how dual-polarization radar data, and the enhanced microphysical information

it offers, may inform storm-scale models.

This study employs a suite of microphysical and numerical weather prediction

models, coupled to a polarimetric radar operator, to study how dual-polarization radar

data may be used in conjunction with storm-scale models. The commonly-used polari-

metric variables are defined, and a review of existing microphysical, wind, moisture,

and thermodynamic retrieval and radar data assimilation techniques is presented for re-

flectivity, radial velocity, and dual-polarization data. Using a one-dimensional spectral

bin model, the efficacy of reflectivity-based retrievals of hydrometeor mixing ratios in

rain/hail mixtures, and the potential benefits of dual-polarization data, is assessed. A

one-dimensional model of the melting layer is presented and used to study the impact of

the environment on polarimetric brightband characteristics, the potential for polarimet-

ric thermodynamic retrievals in the melting layer, and the potential microphysical causes

of “sagging” brightband signatures. Predicated on a connection between ZDR column

characteristics and the latent heating rate within convective updrafts, a novel method for

assimilating ZDR columns using a cloud analysis is developed, with results indicating

positive impacts compared to reflectivity-based cloud analysis techniques. Future work

ideas and an outlook for the near future is presented.

xxii



Chapter 1

Introduction

The roots of radar meteorology lie in the wake of World War II, when radars being used

for military applications were observed to detect precipitation. Immediately thereafter,

radar meteorology rapidly advanced, and has since become an integral part of meteoro-

logical observing and warning operations and a primary source of data to further under-

standing of atmospheric phenomena. The first nationwide network of weather radars in

the United States used for operational meteorology purposes was the Weather Surveil-

lance Radar - 1957 (WSR-57) network, which only provided coarse reflectivity (Z).

The introduction of the upgraded Weather Surveillance Radar - 1988 Doppler (WSR-

88D) network, which was deployed nationwide through the mid-1990s, revolutionized

the field by providing radial wind information in addition to Z, along with enhanced

resolution and volumetric scans. This enabled great advancements in severe weather

warnings, with improved lead time (primarily due to increased probability of detection)

of tornadoes and fewer fatalities compared to before the upgrade (Simmons and Sutter

2005).

Alongside observing systems like radar, numerical weather prediction (NWP) mod-

els have developed over the last century to become an integral part of both research

applications and operational forecasting. These models integrate the equations of mo-

tions from an initial state to some future state and have advanced significantly since their

initial formulations. Bauer et al. (2015) has described the advancements in NWP models

as a “quiet revolution... [whose impacts are] among the greatest of any area of physical

science”. In addition to improved understanding of the physical processes represented

in NWP models, much of this advancement is attributed to the increasing availability of

observations and to data assimilation techniques (Rabier 2005), which seek to integrate
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observations into NWP models. NWP models have historically been run with relatively

coarse grid spacings that do not allow for the resolving of small-scale processes. In-

stead, they have relied on parameterization schemes to assess and implement the bulk

effect of physical processes within the grid volume. For example, instead of actually

simulating the motions within a convective storm, convective parameterization schemes

produce precipitation and adjust the thermodynamic environment in a given grid volume

to that which would be achieved post-convection.

As computing power increased, studies that investigated the explicit processes within

simulated cumulus clouds (e.g., Ogura 1963; Orville 1965; Steiner 1973) and thun-

derstorms (e.g., Miller and Pearce 1974; Klemp and Wilhelmson 1978; Weisman and

Klemp 1982) began to be performed. These modeled storms were sometimes compared

to observations of real storms to evaluate the model and derive insight into the physical

processes behind occurring convection (e.g., Klemp et al. 1981; Wilhelmson and Klemp

1981). However, in a seminal paper, Lilly (1990) challenged the meteorological com-

munity to begin pursuing explicit forecasts of observed convection. In addition to the

availability of increased computing power, part of his motivation for believing this to

be an achievable goal was the then-impending WSR-88D network. Since then, much

progress has been made in the development of so-called convection-allowing models

(CAMs), which explicitly resolve convective processes and motions and do not rely

upon convective parameterization schemes. Whereas most CAMs are still only being

used in a research context, some, such as the High Resolution Rapid Refresh (HRRR)

model (e.g., Benjamin et al. 2009, 2011), have recently been adopted for operational

use.

Owing to the continual improvement of CAMs and the inherent limit to lead time

afforded to warnings based on detection of tornado precursors, the National Oceanic and

Atmospheric Administration’s (NOAA) National Severe Storms Laboratory (NSSL) is

investigating the potential for a paradigm shift known as Warn-on-Forecast (Stensrud
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et al. 2009, 2013). In this approach, forecasters would incorporate forecasts from an

ensemble of CAMs to issue probablistic forecasts and warnings well in advance of the

formation of traditional precursors of severe weather with the hope of appreciably ex-

tending the lead time for severe weather warnings. The project is still in its nascent

stages, with much research still being done on data assimilation strategies for radar (e.g.,

Wheatley et al. 2015) and satellite (e.g., Jones et al. 2016) data, the impact of horizontal

grid spacing (e.g., Potvin and Flora 2015), and even the sociological impacts of tornado

warning lead times in excess of one hour (Hoekstra et al. 2011). Recently, however,

a prototype Warn-on-Forecast system was used by forecasters at the National Weather

Service office in Norman, Oklahoma for the first time to provide approximately 90 min

of advance notice of an impending tornado threat in Elk City, Oklahoma, with tornado

sirens sounded 30 min in advance (National Oceanic and Atmospheric Administration

2017). These early successes are encouraging and provide a motivation for continued

research.

Whereas increased computing power, the increasing availability of observations, and

improved data assimilation methods are all contributing to the advancement of CAMs,

many challenges remain owing to the strong nonlinearities present at the convective-

scale, continued uncertainty about how to properly parameterize various physical pro-

cesses, and the general lack of observations dense enough to define the atmospheric

state at such fine resolutions. Any system of CAMs that will be used operationally to

forecast convection will necessarily rely on the assimilation of radar data. Doppler radar

is the only source of data of sufficient spatial and temporal resolution to fully resolve

convective systems in time and space, and as such is a crucial component of reducing

the spin-up time of convection in a modeling system compared to a so-called “cold-

start”. Principally, the assimilation of radar data has been limited to radial velocity and

Z. However, to achieve a balanced storm in a model that is able to be sustained, infor-

mation about the temperature, moisture, and wind perturbations and the hydrometeor
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contents of different precipitation species within the storm must be established. Many

approaches exist for accomplishing this (discussed further in section 2.3), but difficulties

exist with defining multiple state variables from solely Z and/or radial velocity.

The latest upgrade to the WSR-88D network was to add dual-polarization capability.

Although radar polarimetry has been utilized for research applications for decades, the

completion of the upgrade in 2013 has resulted in an unprecedented amount of polari-

metric observations. In contrast to single-polarization radars, dual-polarization radars

transmit and receive orthogonally-polarized electromagnetic waves from which infor-

mation about a target’s size, shape, orientation, and composition can be garnered (e.g.,

Kumjian 2013a). In addition to Z, commonly measured variables include differential re-

flectivity, co-polar correlation coefficient, and differential phase shift. Dual-polarization

radar data have contributed to significant advancements in our understanding of pre-

cipitation microphysics, with a number of ubiquitous signatures identified related to

specific microphysical processes (e.g., Kumjian 2012). Additionally, dual-polarization

data have been successfully leveraged for a number of applications including, but not

limited to, updraft detection (e.g., Brandes et al. 1995; Kumjian and Ryzhkov 2008;

Picca et al. 2010; Kumjian et al. 2012, 2014; Snyder et al. 2015), attenuation correction

(e.g., Bringi et al. 1990; Testud et al. 2000; Snyder et al. 2010), quantitative precipitation

estimation (e.g., Zrnić and Ryzhkov 1996; Ryzhkov et al. 2005a,b; Tabary et al. 2011),

hydrometeor classification (e.g., Lim et al. 2005; Park et al. 2009; Snyder et al. 2010; Al-

Sakka et al. 2013; Thompson et al. 2014), tornado debris detection (e.g., Ryzhkov et al.

2005c; Schultz et al. 2012b,a; Bodine et al. 2013, 2014; van den Broeke and Jauernic

2014; Snyder and Ryzhkov 2015), and the identification (e.g., Heinselman and Ryzhkov

2006) and size discrimination (e.g., Ryzhkov et al. 2013a,b) of hail.

Despite the advantages and additional information that radar polarimetry offers, it

remains unclear how to best incorporate these data into NWP models and, in particular,

CAMs. The goal of this work is to investigate the potential for dual-polarization radar
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data to aid CAMs and offer improvements over what is currently available from Z alone

for both analyzing and forecasting convection. More specifically, this work will investi-

gate the efficacy of using dual-polarization observations to retrieve hydrometeor content

and thermodynamic information within precipitation and the impacts of assimilating this

information using a suite of microphysical and NWP models coupled to a polarimetric

radar operator. Chapter 2 provides an overview of radar polarimetry as well as cur-

rent microphysical and thermodynamic retrieval and radar data assimilation techniques.

The various models and tools used in this work are described in Chapter 3. In Chapter

4, the use of Z for the retrieval of hydrometeor content (in the context of assimilation

into NWP models) is examined and compared to those from polarimetric data using

both observations and a simple model of melting hail. In Chapter 5, the potential for

dual-polarization data to provide information about the diabatic heating rate in updrafts

(using differential reflectivity columns) and the cooling rate within stratiform precipi-

tation (using polarimetric brightband signatures) is examined. As a follow-up, Chapter

6 explores a novel approach of assimilating differential reflectivity columns into CAMs

and the impact it has on short-term forecasts. Finally, Chapter 7 offers a summary of the

conclusions from this work as well as an outlook for future work.
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Chapter 2

Background and Motivation

2.1 Radar Variables

The most widely-used radar variables, and those relevant to this work, are briefly de-

scribed below. For a further review of weather radar polarimetry, see Zrnić and Ryzhkov

(1999), Kumjian (2013a,b,c), and Zhang (2016).

2.1.1 Reflectivity Factor (Z)

The most commonly-used and well-known radar variable is the radar reflectivity factor

(Z). The radar reflectivity factor at either horizontal (h) or vertical (v) polarization is

defined most generally as (Doviak and Zrnić 1993; Ryzhkov et al. 2011)

Zh,v =
l

4

p

5 |Kw|2
Z •

0
sh,v(D)N(D)dD (2.1)

where l is the radar wavelength, |Kw|2 is the squared dielectric factor related to the

dielectric constant for water ew by

|Kw|2 =
����
(ew �1)
(ew +2)

����
2
⇡ 0.93, (2.2)

N(D) is the particle size distribution (PSD), and sh,v(D) is the radar cross section of a

particle with equivolume diameter D at polarization h or v, given by

sh,v(D) = 4p

��� f (p)a,b (D)
���
2

(2.3)

where, for oblate spheroids, f (p)a,b (D) is the backscattering amplitude of size D along

its axis of rotation (a) and the orthogonal axis (b). For an uncanted particle with its

axis of rotation aligned with the vertical, a and b correspond to the v and h polarization

planes, respectively. The exact scattering amplitudes of particles of any size can be
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found according to the Mie scattering equations (Mie 1908). However, for particles

with diameters much smaller than the radar wavelength, the Rayleigh approximation

can be invoked, in which f (p)a,b (D) is equal to

f (p)a,b (D) = f (0)a,b (D) =
p

2D3

6l

2 x (2.4)

where f (0)a,b (D) is the forward scattering amplitude, and where x is a parameter related

to the shape of the particle given by

x =
1

La,b +
1

e �1

(2.5)

where, for oblate spheroids,

La =
1+ f 2

f 2

✓
1� arctan f

f

◆
, (2.6)

Lb =
1�La

2
, (2.7)

and

f =

s
b2

a2 �1, (2.8)

and where e is the dielectric constant of the scattering material. For spherical particles,

Eq. (2.4) reduces to

f (p)a,b (D) = f (0)a,b (D) =
p

2D3

2l

2
e �1
e +2

, (2.9)

allowing Zh,v for rain to be calculated as

Zh,v =
Z •

0
D6N(D)dD (2.10)

and, more generally for any hydrometeor species x,

Zh,v =
1

|Kw|2
Z •

0
|Kx|2 D6N(D)dD. (2.11)

Because the range of Zh,v values can span many orders of magnitude, it is typically

expressed as

ZH,V = 10log10 Zh,v (2.12)
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in units of dBZ. As seen from Eq. (2.11), for spherical particles in the Rayleigh scat-

tering regime, Zh,v is proportional to the sixth moment of the PSD and thus is a strong

function of the largest particles within the volume.

2.1.2 Differential Reflectivity (ZDR)

The differential reflectivity (ZDR; Seliga and Bringi 1976) is the logarithmic ratio of the

Z at horizontal and vertical polarizations, given by

ZDR = 10log10

✓
Zh

Zv

◆
= ZH �ZV. (2.13)

Spherical particles have an intrinsic ZDR of zero whereas oblate particles within the

Rayleigh scattering regime have positive values of ZDR. For some hydrometeors, such

as rain, the aspect ratio is a known and constrained function of size, with drops becom-

ing more oblate with size (e.g., Brandes et al. 2002, 2005; Thurai et al. 2009), and the

ZDR changes accordingly, making it a useful tool for the estimation of the median drop

size within a volume. For other hydrometeor species, such as snow and hail, the aspect

ratio as a function of size is less well defined. ZDR is sensitive to the dielectric constant,

causing hydrometeors with smaller dielectric constants to have smaller ZDR than parti-

cles of the same shape with larger dielectric constants. Particle orientation also affects

the ZDR, with a decrease in ZDR as particles become less preferentially aligned in the

horizontal (i.e., as the width of the canting angle distribution increases). Unlike Z, the

ZDR is independent of concentration, but can be prone to calibration errors.

2.1.3 Co-polar Correlation Coefficient (rhv)

The co-polar correlation coefficient (rhv), commonly referred to as the correlation co-

efficient, is the correlation between the backscattered signals at h and v polarizations at

lag-zero and is given by

rhv = |rhv(0)|=
h fvv f ⇤hhiq

h| fhh|2ih| fvv|2i
(2.14)
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where fhh and fvv are the complex scattering functions for scattered and incident wave

polarizations of h and v, respectively, asterisks denote the complex conjugate, and an-

gled brackets denote an average over the ensemble of hydrometeors. The rhv provides a

measure of scatterer diversity within a volume and is sensitive to particle sizes, shapes,

dielectric constants, and orientations. It is thus a good measure for discriminating non-

meteorological echoes (which tend to have low values of rhv) from meteorological ones

(which tend to have rhv closer to unity). The rhv is also prominently used in melt-

ing layer detection algorithms, as the diversity of hydrometeor composition, shape, and

orientations within the melting layer typically lowers the rhv appreciably.

2.1.4 Specific Differential Phase Shift (KDP)

When electromagnetic waves propagate through media, they slow down. For oblate

particles, more medium is encountered by h polarized waves than v polarized waves, and

a phase difference develops between them, with the h polarized wave lagging relative to

the v polarized wave. The measured phase difference is known as the differential phase

shift (FDP) and consists of the aforementioned difference owing to forward scattering

as waves propagate to and from the radar, as well as a differential phase shift imparted

upon backscatter (d ). The former component is often expressed as the two-way range

derivative of this accumulation in phase shift and is known as the specific differential

phase (KDP), given by

KDP =
1
2

dfDP

dr
=

180l

p

Z •

0
¬
h

f (0)a � f (0)b

i
N(D)dD (2.15)

and expressed in units of � km-1. Because the slowing of the wave is related to the

amount of medium encountered by the wave, along with its insensitivty to radar miscal-

ibration and other nonmeteorological artifacts, KDP offers advantages for quantitative

precipitation estimation (QPE) applications over Z (e.g., Zrnić and Ryzhkov 1996). It

is also unaffected by isotropic scatterers, and thus has been explored for mitigating hail

contamination in QPE (e.g., Balakrishnan and Zrnić 1990; Aydin et al. 1995).
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2.1.5 Specific Attenuation (AH)

As electromagnetic waves propagate, they weaken due to both scattering and absorption

by atmospheric particles. The rate at which this occurs, per unit distance, is known as

the specific attenuation (in this case at h polarization; AH) and, neglecting the minimal

losses due to air, is given by

AH = 10log10

✓
I0

I

◆
= 8.686l¡h f (0)hh i (2.16)

where I0 is the initial intensity of the wave entering a unit distance, I is the intensity

at the end of the unit distance, and ¡h f (0)hh i is the imaginary component of the complex

scattering function in the forward direction at the h polarization averaged over the en-

semble of hydrometeors in a volume. Attenuation of radar waves has historically been

considered problematic, with many methods developed to correct the other radar vari-

ables, such as Z (e.g., Hitschfeld and Bordan 1954; Testud et al. 2000; Bringi et al.

2001; Snyder et al. 2010). However, research at X- and Ka-band wavelengths has shown

that AH is relatively insensitive to drop size distribution variability and nearly linearly

related to rain rate (Atlas and Ulbrich 1977; Matrosov 2005). This approach has also

been extended to S-band radars (Ryzhkov et al. 2014). Specific attenuation also has ad-

ditional the benefit of being immune to radar miscalibration and partial beam blockage

(Ryzhkov et al. 2014).

Although not utilized in this study, other polarimetric variables do exist, such as the

linear depolarization ratio (LDR), circular depolarization ratio (CDR), and the co-cross-

polar correlation coefficients.

For the purpose of organizing the literature, the remainder of this chapter is divided

into what has been done to retrieve both microphysical and thermodynamic informa-

tion from radar data and to assimilate radar data into NWP models. However, these

are not necessarily separate goals, and the distinctions in some cases are arbitrary and

only for organizational purposes. Rather, they are both part of a spectrum that seeks to

define the entire state of a precipitation system in terms of hydrometeors, dynamics, and
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thermodynamics. This information, beyond improving our conceptual understanding

of meteorological phenomena, has many applications, only one of which is initializing

these fields within a NWP model for the purpose of forecasting. Retrieved information

can be assimilated into NWP models; conversely, NWP models can themselves be used

to retrieve unobserved variables from radar data.

2.2 Retrievals from Radar Data

2.2.1 Microphysical Retrievals

2.2.1.1 Traditional Approaches

The relationship between hydrometeor content in a volume and its measured Z, and the

retrieval of the former from the latter, has been examined for decades and is a main

research thrust of the radar meteorology community. Due to its widespread coverage,

the comparatively limited number of rain gauges, and the economic and societal impacts

of the distribution and magnitude of precipitation, radar has been used for QPE, which

requires retrieving the rainfall rate (R) or snowfall rate (S) and integrating it over time

for a given location. This has traditionally been from Z, with various empirical R(Z) and

S(Z) relations being proposed over the years. The sensitivity of Z to the largest particle

sizes and the variability of drop size distributions due to differing climate regimes, the

relative contributions of cold and warm rain processes, and even cloud condensation

nuclei (CCN) concentration (e.g., Khain 2009) results in significant variability in R(Z)

relationships. Battan (1973) famously presented 69 different R(Z) relations reported

in the literature, highlighting the uncertainty in finding an optimal relation. For S(Z)

relations, these issues are exacerbated by additional uncertainties in particle density,

habit, and fallspeed. In the same vein as Battan (1973), Bukovčić (2017) compared 13

S(Z) relations presented in the literature or used by the WSR-88D network in different

regions, finding estimates of S that span up to an order of magnitude for a given Z.
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The retrieval of precipitation content within a volume, in the form of liquid water

content (LWC) or ice water content (IWC), in g m-3, from Z is also common. For the

purpose of radar data assimilation, hydrometeor mixing ratios (q; kg kg-1), which dif-

fer from LWC and IWC by a factor of air density (ra), are often retrieved instead as

hydrometeor mixing ratios are typically NWP model state variables and form a link

between observations of Z and the model. Assimilating q retrieved from Z can help

alleviate the time needed for hydrometeors and convective-scale circulations to develop

in NWP models, known as the “spin-up” time, which is an important factor for rapidly-

developing convective-scale weather or real-time applications that require minimal la-

tency. In addition, both the amount of hydrometeor mass and its distribution across the

PSD dictate the impact of microphysical processes, which can subsequently drive non-

linear responses and the evolution of the forecast in a NWP model. As such, relating

observed Z to hydrometeor mixing ratios for use in NWP models is common. Many

empirical relations exist for retrieving the bulk LWC (e.g., Marshall and Palmer 1948;

Atlas 1954; Sauvageot and Omar 1987; Baedi et al. 2000; Khain et al. 2008) and IWC

(e.g., Sekhon and Srivastava 1970; Heymsfield 1977; Sassen 1987; Liu and Illingworth

2000; Heymsfield et al. 2016) from Z based on disdrometer data, in situ aircraft data,

and scattering calculations of simulated PSDs.

2.2.1.2 Polarimetric Approaches

Improving retrievals of R and q over those from Z alone is a comparatively mature ap-

plication of dual-polarization radar, and has been one of its primary benefits. As with

Z, much of the work has focused on the retrieval of R. Seliga and Bringi (1976) intro-

duced ZDR as a second radar measurement to constrain the parameters of an assumed

inverse exponential size distribution (Eq. 4.2) alleviating the need to hold one of them

constant. The method was found to be successful in reducing errors in the estimates

of R by a factor of two when compared to rain gauges over the use of Z alone (Seliga
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et al. 1981). This degree of improvement was corroborated with disdrometer measure-

ments by Ulbrich and Atlas (1984) for distributions assumed to be inverse exponential

in form, although a bias was introduced by this assumption compared to the full gamma

distribution (Eq. 4.1). These studies also neglected any canting of raindrops away from

having their minor axis aligned in the vertical, as well as the effect of drop oscillations

on aspect ratio.

As a consensus formed that dual-polarization measurements could significantly im-

prove the accuracy of microphysical retrievals, other polarimetric variables began being

investigated. Sachidananda and Zrnić (1987) obtained measurements of KDP and com-

pared R(KDP) with R(Z) and R(Z,ZDR) for simulated size distributions, finding better

performance of R(KDP) than R(Z,ZDR) for larger rain rates but with both exceeding

R(Z). R(KDP) also offers improved performance in rain/hail mixtures, where Z and ZDR

may be skewed high and low, respectively, hurting the accuracy of R(Z,ZDR) retrievals

(Aydin et al. 1995). Improvements when looking at areal averages of polarimetric R esti-

mates may be even more pronounced than validation at one point in space and time, with

Ryzhkov et al. (2005a) finding a reduction in errors by up to a factor of 3.7 compared to

R(Z).

While they all offer improvements over Z, retrievals employing the polarimetric vari-

ables have their own difficulties. Sachidananda and Zrnić (1987) found that, unlike

R(KDP), R(Z,ZDR) was quite sensitive to the assumed aspect ratio-size relation. Addi-

tionally, KDP can be noisy at low rain rates and hard to measure accurately, requiring

more range averaging than other variables which limits the resolution at which R can

be retrieved. Recognizing these limitations, as well as the necessary assumption of an

inverse exponential size distribution when using (Z,ZDR), Zhang et al. (2001) proposed

a method to estimate all three parameters of the gamma distribution, rather than just

bulk R values, by deriving a constraining µ �L relation. This allows for more accuracy
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and flexibility in the range of size distributions that are able to be represented. An-

other three-parameter estimation method employing Z, ZDR and KDP was developed by

Gorgucci et al. (2002). Most recently, Ryzhkov et al. (2014) proposed using R(AH) for

rainfall estimation. Although it has long been known that AH is nearly linearly related to

rainfall rate (e.g., Atlas and Ulbrich 1974; Matrosov 2005), it has been difficult to esti-

mate from single-polarization radar and use in practice. Ryzhkov et al. (2014) proposed

using FDP in conjunction with Z to estimate AH. The results indicate robust retrievals

of R, particularly at S band, although the method fails in the presence of hail. There are

many other studies that have been and continue to be done in the realm of polarimetric

QPE (e.g., Giangrande and Ryzhkov 2008; Cifelli et al. 2011). However, as noted by

Ryzhkov et al. (2005a), despite the variability in the details of the results, there is an

overall strong consensus that estimates of R are improved by using dual-polarization

radar due to its decreased sensitivity to variability of drop size distributions and, for

variables such as KDP and AH, immunity to miscalibration errors.

Although comparatively fewer studies have sought to derive explicit relations for

polarimetric estimates of qr, similar improvements over Z to those seen for R have been

found. Ulbrich and Atlas (1984) first introduced a polarimetric estimate for LWC based

on Z and ZDR for rain size distributions assumed to be inverse exponential in form. Ad-

ditional relations were found by Seliga et al. (1986) from linear regressions performed

on observed drop size distributions (DSDs), which performed favorably versus Z even

at distances far from the radar (Aydin et al. 1987). Yet another set of relations for

qr(ZH,ZDR), qr(KDP), and qr(KDP,ZDR) at C-band was presented in Bringi and Chan-

drasekar (2001) from linear regressions of radar variables calculated from simulated

gamma DSDs whose parameters spanned the typical range of observed values. These

equations have been used in the few studies that have assimilated polarimetric estimates

of qr (e.g., Li and Mecikalski 2010, 2012).
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Polarimetric retrievals of ice phases remain less explored. A handful of studies have

examined the retrieval of IWC in snow. Vivekanandan et al. (1994), noting the inherent

uncertainty of retrieving IWC from Z, offered a relation for retrieving IWC from KDP as

a function of the mean aspect ratio and density of ice particles in a volume. However,

these factors are rarely known in practice a priori. Aydin and Tang (1995), assuming

the density of particles in the volume was equal to that of solid ice, derived a relation for

IWC from KDP and ZDR. Ryzhkov et al. (1998) expanded on these modeling approaches

by allowing the particle densities and shapes to vary as a function of size based on obser-

vational data for different crystal habits, and found moderately good agreement of IWC

retrieved from KDP and ZDR with in situ aircraft data. However, the method will suffer

when ice crystals become heavily aggregated as the particles become more spherical

and less dense. Recently, Bukovčić et al. (2018) capitalized on the inverse relationship

between Z and KDP in aggregating snow and developed a novel approach of estimating

IWC from Z and KDP using a 2D video disdrometer dataset. This method proved to be

quite insensitive to the different geographic regions in which it was validated, although

assumptions were still required about the mean particle aspect ratio, canting angle dis-

tribution, and degree of riming.

Although dual-polarization radar has contributed to significant advancements in the

detection (e.g., Heinselman and Ryzhkov 2006) and, more recently, the size discrimina-

tion (Ortega et al. 2016) of hail, and has been used indirectly to partition the contribution

of rain and hail to Z (e.g., Balakrishnan and Zrnić 1990), the author is unaware of any

quantitative polarimetric retrievals of ice water content in hail and graupel. This is

perhaps unsurprising, as hail is often assumed to be spherical or nearly-spherical as it

tumbles and falls, limiting anisotropic scattering and thus the usefulness of polarimetric

measurements. Indeed, it is this quality that has enabled the reliable detection of hail

from other species. However, the limitations of using Z for retrievals of other species
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apply equally to hail and graupel, with the added complexity of non-Rayleigh scattering

possible for large hail, even at S band.

2.2.2 Wind Retrievals

The derivation of the full three-dimensional wind field has been a primary application

of Doppler radar and is widely used today. Historically, this has necessitated the use of

multiple Doppler radars, which together can be used to derive the horizontal wind field

and, when integrated using a mass continuity equation, the vertical wind field (Armijo

1969; Lhermitte 1970). The derivation of the three-dimensional wind field from multi-

ple Doppler radars has been widely adopted and used to study the wind field in, among

other phenomena, snow (e.g., Frisch et al. 1974), mesocyclones (e.g., Ray et al. 1975;

Ray 1976; Brandes 1978), tornadic circulations (e.g., Dowell and Bluestein 2002; Wur-

man et al. 2007), bow-echoes (e.g., Jorgensen and Smull 1993), and downbursts (e.g.,

Lee et al. 1992). This technique has been expanded upon to utilize variational analysis

(see section 2.3.2.3) when deriving the three-dimensional wind field (e.g., Ziegler 1978;

Gao et al. 1999; Shapiro et al. 2009), and much effort has been undertaken in address-

ing some of the sources of uncertainty in multiple-Doppler wind analyses, including

the specification of boundary conditions, differences in observation time, measurement

errors, and interpolation errors.

Owing to the wide spacing between WSR-88D sites and the general lack of multi-

Doppler radar data for operational use, many studies have sought to retrieve the wind

field from single-Doppler data. Early studies attempting to use single-Doppler data

employed adjoint model techniques to retrieve all unobserved variables from simulated

(e.g., Sun et al. 1991) and real (e.g., Sun and Crook 1994, 1997, 1998) data cases.

However, due to the computational expense of using adjoint techniques, nonuniqueness,

and the potential for issues related to model error, single-Doppler velocity retrievals

were pursued. Qiu and Xu (1992) developed a method for retrieving the horizontal

16



wind field using time-averaged single-Doppler radar data and conservation equations for

either Z or radial velocity. This method was expanded to all three dimensions by Gao

et al. (2001). Another method for retrieving the full three-dimensional wind from single-

Doppler data based on Z conservation, incompressibility, and a temporal constraint on

the velocity field was put forth by Shapiro et al. (1995). Regardless of how it is derived,

knowledge of the three-dimensional wind field derived from radar data has proven to be

an invaluable source of information for a wide array of applications.

2.2.3 Thermodynamic Retrievals

The structure and impacts of the latent heating budget of precipitation systems has been

an active area of research for decades. Much of the research has focused on mesoscale

convective systems (MCSs) due to their outsized contribution to the large-scale heating

budget, particularly in the tropics (e.g., Riehl and Malkus 1958). The archetypal heat-

ing structure of MCSs features distinctive heating regimes between the convective and

stratiform portions (e.g., Houze Jr. 1982, 1989; Johnson 1984). The convective region

features strong heating through most of the depth of the atmosphere, primarily due to

condensation within the updraft and with smaller contributions from freezing. Cooling

at the lowest levels of the atmosphere in the convective zone can occur due to the melt-

ing of graupel (Trapp et al. 2018) and the evaporation of rain. In contrast, stratiform

regions feature warming above the environmental 0�C level due to depositional growth

of snow and graupel, cooling within the melting layer due to the melting of snow and

graupel, and cooling due to evaporation of rain beneath that. Although the magnitude of

heating and cooling is greater in the convective region, the cooling within the melting

layer in the stratiform region can be spatially extensive and is confined to a relatively

thin layer.

Condensational heating within updrafts is the primary energy source for thunder-

storms (Braham Jr. 1952). The consequences of this latent heat release can be felt across
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all scales, however. Latent heat release due to condensation has been shown to impact

extratropical cyclone intensity and structure (e.g., Aubert 1957), the internal flow field

of MCSs (e.g., Pandya and Durran 1996), and serves as the primary source of energy for

tropical cyclones (e.g., Gray 1968) and the driver of large-scale circulations, including

the Walker circulation (e.g., Hartmann et al. 1984) and the Madden-Julian Oscillation

(MJO; e.g., Schumacher et al. 2004; Barnes et al. 2015). Although condensation is the

primary source of heating within the updraft, with the latent heat of vaporization nearly

an order of magnitude larger than the latent heat of fusion, freezing within the updraft

can be consequential. Numerous studies examining the impact of aerosols on convec-

tion have reported invigorated convection with enhanced updrafts as the concentration

of CCN that delay warm processes and enhance ice processes above the 0�C level is in-

creased (e.g., van den Heever et al. 2006; Khain 2009; Morrison and Grabowski 2013).

Cooling due to the evaporation and melting of precipitation in both convective and

stratiform precipitation can also have important dynamical consequences. These pro-

cesses are responsible for the formation of cold pools, which can have dominant im-

pacts on storm longevity and structure and subsequent storm formation (e.g., Rotunno

et al. 1988; Dawson et al. 2010; Schumacher and Peters 2017). In more intense cases,

strong downdrafts can result from cooling-induced negative buoyancy (e.g., Srivastava

1985, 1987). Evaporation is also hypothesized to play a role in tornadogenesis (e.g.,

Markowski et al. 2002, 2003; Snook and Xue 2008), with less evaporation allowing for

more buoyant rear flank downdrafts believed to be needed for tornadogenesis. Indeed,

both Kumjian (2011) and French et al. (2015) have found larger ZDR in non-tornadic

rear flank downdrafts than tornadic ones. Evaporation may increase ZDR due to a deple-

tion of smaller raindrops that results in larger median drop sizes and enhanced cooling

(although Xie et al. (2016) present evidence that, depending on the PSD, evaporation

can also decrease ZDR). This evidence, while circumstantial and without direct obser-

vation, lends credence to the idea that evaporation (and the cooling it produces) may
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play a significant role in tornadogenesis potential. The concentration of CCN can also

affect low-level drop size distributions depending on whether the rain stems from warm

or cold processes.

Cooling within the melting layer in stratiform precipitation can also have noteworthy

impacts. As the isothermal layer deepens, it can lead to sudden precipitation type transi-

tions at the surface (e.g., Wexler 1955; Bozart and Sanders 1991; Kain et al. 2000). This

cooling can also have dynamical consequences, including downdraft and gravity wave

generation (e.g., Szeto et al. 1988), turbulence and convection within the melting layer

due to instability created below the deepening isothermal layer (e.g., Findeisen 1940;

Stewart et al. 1984), mesoscale wind perturbations (e.g., Atlas et al. 1969; Heymsfield

1979), and impacts on cyclogenesis (e.g., Stewart and Macpherson 1989).

2.2.3.1 Traditional Approaches

Direct observations of latent heating and cooling are typically unavailable. However, the

significant impacts latent heating and cooling can have across all scales make it highly

desirable to estimate in both time and space. Radar data is a natural source to exploit for

this purpose, as the hydrometeors it measures are at least indirectly related to the phase

changes responsible for the heating and cooling. The following discussion highlights

many methods that have been developed over the past few decades to retrieve diabatic

heating and cooling rates from radar.

Dynamic Retrieval Methods Doppler wind radar data is utilized prominently in many

approaches for thermodynamic retrievals, as the three-dimensional wind field is inti-

mately tied to thermodynamic fields through physical constraints. Seminal papers were

published concurrently by Gal-Chen (1978) and Hane and Scott (1978) describing a

new methodology for retrieving thermodynamic information from radar data, differing

in their mathematical approach. In this method, the wind field derived from multi-

Doppler radar analysis (see section 2.2.2) is used to calculate the pressure perturbation
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field and, subsequently, diagnose the local buoyancy using the equations of motions.

The technique was first applied to real radar data in Roux et al. (1984), and expanded to

include the thermodynamic equation in Roux (1985) to predict the full temperature field

instead of only its perturbations. Since then, numerous refinements to the technique

have been proposed (e.g., Roux and Ju 1990; Roux et al. 1993; Guimond et al. 2011)

and the method has successfully been used to study the dynamic and thermodynamic

characteristics of various meteorological phenomena, including tornadic thunderstorms

(e.g., Brandes 1984; Hane and Ray 1985), tropical cyclones (e.g., Guimond et al. 2011),

and narrow cold-frontal rainbands (e.g., Parsons et al. 1987; Roux et al. 1993). Dy-

namic thermodynamic retrieval methods have also been applied to winds derived from

single-Doppler radar data (e.g., Weygandt et al. 2002a,b). The results of these retrievals

can be used to initialize NWP models suitable for forecasts provided that the moisture

field can be assumed or otherwise specified (e.g., Lin et al. 1993; Bielli and Roux 1999;

Weygandt et al. 2002b; Guimond and Reisner 2012).

Microphysical Retrieval Methods Another approach that utilizes radar velocity data

is a class of complementary thermodynamic retrieval techniques known as microphysi-

cal retrieval methods. In contrast to the dynamical retrievals discussed in the preceding

section that employ the equations of motions, a microphysical retrieval method that em-

ploys the continuity equations for water and heat was developed by Rutledge and Hobbs

(1984) and extended to three dimensions by Ziegler (1985). In this method, the continu-

ity equations for heat and moisture are integrated until a steady-state solution is found

that matches the wind field specified from a multi-Doppler anlaysis. Ziegler (1988) ad-

ditionally showed the retrieved thermal fields to be relatively insensitive to the details

of the microphysical parameterization. A unified framework for the microphysical and

dynamic retrieval methods was presented in Hauser et al. (1988), who compared the

methods and found they were mutually consistent, with good agreement with the lim-

ited observations available to compare with. This framework was used successfully in
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Marécel et al. (1993) to study a narrow cold-frontal rainband, with the rain and graupel

mixing ratios retrieved from Z. Although this method has the benefit of being able to

include complex microphysical processes, it does not use the momentum equation di-

rectly and thus balance between the derived thermodynamic field with the wind field is

not guaranteed (Hauser et al. 1988). Recently, Ziegler (2013a,b) developed a “diabatic

Lagrangian analysis” that uses radar-derived wind fields and hydrometeor distributions

to diagnose the temperature, buoyancy, and water vapor field by calculating backward

trajectories and integrating them forward using a prediction model, combining advan-

tages of both the microphysical and dynamic retrievals methods. Both methods are

advantageous in that they are based on physical constraints, but they require an analysis

of the full three-dimensional wind field to be available, which is often not the case. In

addition, as with all radar-based velocity approaches, the methods require ways to deal

with data-void regions and radar echo boundaries.

Budgeting Methods Other methods of estimating latent heating and cooling rates rely

on solely Z. One of the earliest methods for estimating latent heat release within ob-

served thunderstorms was by relating the water budget to that for energy. Sikdar and

Anderson (1974) first applied this to an Oklahoma supercell by retrieving the change in

storm total LWC and rainfall rate from Z and parameterizing the evaporation rate, from

which the condensation rate, and therefore overall heating rate, was able to be deter-

mined. Though simple, the calculated heating rate was comparable to that for a modeled

thunderstorm. A conservation approach was also utilized by Leary and House Jr. (1979)

for estimating cooling within the melting layer of stratiform precipitation. By assuming

no sources or sinks of moisture within the melting layer, retrieving LWC (IWC) below

(above) the radar brightband from Z, and provided a depth of the melting layer and

the terminal velocities of particles, they were able to calculate cooling rates of several

degrees per hour within the melting layer. A similar approach using the difference in
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retrieved LWC between 2.5 - 0.5 km was used to find the cooling rate due to evapora-

tion below the melting layer. However, neither approach allowed for the determination

of the vertical distribution of cooling within each layer, instead assuming a constant rate

through the depth.

Look-up Table Methods More recently, the use of look-up tables for retrieving latent

heating and cooling profiles has become prevalent. The launch of the Tropical Rainfall

Measurement Mission (TRMM; e.g., Simpson et al. 1996) satellite in 1997, the goal

of which was to observe precipitation across the tropics globally, lead to the develop-

ment of a suite of methods for latent heating retrievals (for a comprehensive review

see Tao et al. 2006). Central to most of these methods is the Precipitation Radar, a

vertically-pointing Ku-band radar with up to 250 m vertical resolution at nadir. Due to

its emphasis on global tropical coverage and precipitation impacts, much of the focus

for the TRMM’s latent heating retrievals has focused on MCSs, which for the purpose

of employing look-up tables need to be divided into convective and stratiform portions

due to their differences in archetypal latent heating structure. The lack of corresponding

three-dimensional wind observations prevents the use of any dynamic or microphysical

retrievals. However, the increasing utility of CAMs in recent years, when coupled to a

radar operator, has allowed for the compilation of many CAM runs into look-up tables

of vertical profiles of latent heating and cooling indexed by parameters of various radar

observables. Two of the most commonly-used algorithms are the Convective-Stratiform

Heating (CSH; Tao et al. 1993, 2010) algorithm and the Spectral Latent Heating (SLH;

Shige et al. 2004, 2007, 2009) algorithm, which both employ look-up tables generated

from multiple runs of the Goddard Cumulus Ensemble model (Tao and Simpson 1993).

The former generates vertical profiles of heating by weighting the relative area of con-

vective and stratiform regions, using the normalized heating profiles for each region,

and scaling the resultant profile by the surface rain rate. In contrast, the SLH uses

look-up tables indexed by precipitation top height for convective and shallow stratiform
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regions, which are scaled by the surface precipitation rate. For deep stratiform regions,

the look-up tables are indexed by melting-layer precipitation rate, with profiles scaled

by the precipitation rate above the melting level and by the difference in precipitation

rate between the melting layer and the surface below the melting layer to account for

losses due to evaporation. These algorithms have been shown to be successful for large-

scale applications, although Shige et al. (2007) notes the sensitivity of the profiles to the

model runs used, the case-dependency of the applicability of the derived profiles, and

that “instantaneous matching between a certain rainfall profile and a heating profile is

an ill-conceived concept”, perhaps limiting its use at high-resolutions on the convective

scale. Indeed, Park and Elsberry (2013) compared results of a dynamic retrieval of la-

tent heating to those of the SLH and showed deficiencies in applying the SLH at small

scales, with the use of averaged profiles precluding the retrieval of cooling downdrafts

aloft. Nelson et al. (2016) attempted to alleviate some of the deficiencies of using the

SLH deterministically by using Bayesian Monte Carlo methods to generate probability

distributions of heating profiles based on the observed Z, finding that a limited number

of parameters could retrieve the surface rain rate and height of maximum heating very

well. However, the authors note that random errors can be large due to the inability of Z

alone to constrain the drop size distributions responsible for diabatic heating and cool-

ing, which suggests the potential for dual-polarization radar measurements to improve

these retrievals.

2.2.3.2 Polarimetric Approaches

Most of the work done tying dual-polarization radar observations to diabatic heating

and cooling is qualitative and relates distinct polarimetric signatures to microphysical

processes, including the freezing of raindrops into graupel or hail in convective updrafts

(e.g., Kumjian et al. 2012), the evaporation of raindrops (e.g., Kumjian and Ryzhkov

2010), riming (e.g., Vogel et al. 2015; Ryzhkov et al. 2016), depositional growth (e.g.,
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Kennedy and Rutledge 2011; Andrić et al. 2013; Kumjian and Lombardo 2017), and the

refreezing of hydrometeors in winter precipitation (e.g., Kumjian et al. 2013; Bukovčić

et al. 2017). Some of these signatures, such as that of evaporation, are typically very

subtle and can easily be masked by other non-diabatic processes such as size sorting.

Others, such as the freezing or refreezing of raindrops, have not been studied quanti-

tatively but can at least serve as a marker that a diabatic process is occurring. Despite

the widespread examination of the radar brightband through observations and model-

ing studies, no work exists using the polarimetric brightband observations to study the

diabatic cooling within the melting layer to the author’s knowledge.

In addition to looking at the polarimetric signatures of specific microphysical pro-

cesses, a number of signatures have been identified that are due to dynamical features

within precipitation (which themselves are intimately related to diabatic processes). A

well-studied example is ZDR columns, vertical protrusions of positive ZDR above the

environmental 0�C level that are indicative of wet ice particles and oblate, supercooled

raindrops in the process of freezing being lofted by the updraft. Because ZDR columns

are associated with convective storm updrafts, they can theoretically be used as iden-

tifiers for regions of positive temperature perturbations from latent heat release due to

condensation and/or freezing. Although not directly retrieving the diabatic heating rate

due to condensation and freezing within the updraft, recent work has begun to inves-

tigate the relationship between ZDR columns and updraft intensity (Picca et al. 2010;

Kumjian et al. 2014; French and Snyder 2016; Snyder et al. 2017b). In contrast, down-

bursts are formed by negatively buoyant air that has been cooled by the evaporation

and melting of hydrometeors within the downdraft region of a thunderstorm (Srivastava

1987). A polarimetric signature associated with downbursts consisting of a trough in

ZDR and an enhancement of KDP within the Z core has been identified in numerous stud-

ies (e.g., Wakimoto and Bringi 1988; Scharfenberg 2003) due to the presence of melting

hail below the environmental 0�C level. In addition to identifying downbursts for the
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threats they pose to public safety, this signature could be used as an identifier for areas

of ongoing strong diabatic cooling.

There remains a dearth of studies using polarimetric radar data in a quantitative way

to estimate diabatic heating and cooling. Tong et al. (1998) investigated the latent heat-

ing rate due to condensation within a thunderstorm. They used the difference reflectivity

(ZDP; Golestani et al. 1989), defined as the logarithmic difference between Zh and Zv,

to partition the contributions of rain and hail to Z based on the premise that hail scat-

ters isotropically. A budgeting approach analogous to Sikdar and Anderson (1974) and

Leary and House Jr. (1979) was then employed that included ice microphysics. LWC

and IWC were retrieved from Z, and the surface rainfall rate was estimated using Z and

ZDR. With the sink of LWC due to rainfall and the temporal change in LWC and IWC

(assumed to be equal to the net gain/loss from freezing and melting) known, the heating

rate (the residual of condensation and evaporation) could be estimated. Results from this

approach were in modest agreement with those retrieved from a multi-Doppler analysis,

but only yielded the total estimated latent heating rate within the storm over time, not

its spatial distribution. Penide et al. (2013) utilized polarimetric data to classify pre-

cipitation as stratiform versus convective using a DSD approach and compared it to the

traditional method of using Z texture, as the resultant retrieved latent heating profiles

have been shown to be quite sensitive to the determined partitioning of convective and

stratiform regions (Lang et al. 2003). Although not directly related to retrieving the

diabatic heating and cooling profiles, the study demonstrates the improvement in clas-

sification that results from using polarimetric data, which could be applied to the many

retrieval techniques that rely on partitioning precipitation into convective or stratiform

portions. More recently, Xie et al. (2016) studied X-band polarimetric observations

of evaporation, which compared favorably with those simulated from the evaporation

model of Kumjian and Ryzhkov (2010). The model was used to show that, for the same
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environmental conditions, the cooling rate profile varied (both in magnitude and distri-

bution) based on the median drop diameter of the distribution, a measure related to ZDR.

The observed Z and ZDR just below the melting layer were used to retrieve the drop size

distributions to initialize the model and, when combined with environmental data from

a NWP model, the local cooling rate due to evaporation in time and space was able to

be simulated. The limitations of neglecting size sorting, coalescence, and drop breakup

in the model were noted, as these can appreciably change the polarimetric characteris-

tics of the precipitation being compared to. Still, the demonstrated potential for quickly

retrieving the spatial and temporal distribution of cooling due to evaporation for a real

event using a simple model is encouraging and warrants further investigation.

2.2.4 Moisture Retrievals

In addition to microphysical and thermodynamic retrievals, some studies have examined

deriving information about the moisture field from radar data, primarily for the purpose

of storm-scale data assimilation. As discussed in sections 2.3.2.2 and 3.1.4.2, cloud

analyis techniques, which are in widespread use, take a simple approach and typically

assume saturated conditions anywhere a prescribed Z threshold is exceeded. A more

complex approach was developed by Caumont et al. (2010) and Wattrelot et al. (2014)

in which one-dimensional profiles of relative humidity are derived from a model back-

ground based on the agreement between observed and simulated profiles of Z. Positive

impacts of assimilating these retrievals have been found (see section 2.3.2.3), but diffi-

culties exist with retrieving the moisture profile in cases where observed precipitation

fails to exist in the model. In addition, while the moisture field can be very important

to retrieve in order to specify accurately in storm-scale models (e.g., Weygandt et al.

2002a,b; Ducrocq et al. 2002), it is only indirectly related to the hydrometeors that com-

prise the observed Z and thus will continue to require indirect retrieval methods.
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2.3 Assimilation of Radar Data into NWP Models

2.3.1 General Considerations

The aforementioned thermodynamic and hydrometeor information content available

from radar data motivates its assimilation into NWP models. Regardless of the method

chosen, there are a number of considerations for using radar data that must be addressed

preceding assimilation. Sun (2005a) provides a thorough review of such factors. Data

quality is a primary concern, with a number of undesirable artifacts frequently present in

Z and radial velocity including ground clutter and biological echoes, anomalous propa-

gation, velocity folding, range folding, three-body scatter spikes, and sidelobe contam-

ination. All of these must be removed before the data can be assimilated, and a variety

of methods exist for combating these such as thresholding and the use of texture fields.

In order for the assimilation process to proceed, the model data and radar data must be

compared at the same point in space. Radar data can be interpolated onto the model

grid using a number of different methods, although the poor vertical resolution of tradi-

tional conical volume scans can make interpolation to model grids with dense vertical

spacing difficult. The data may also need to be thinned near the radar site due to the

increasing resolution at shorter ranges. As an alternative, the model data can be cast

onto conical volumetric surfaces to emulate the radar scans, which can involve beam

weighting in azimuth and elevation, calculating the refracting of the simulated radar

beam, and matching the beamwidth and scanning angles of the radar being compared

to (e.g., Lei et al. 2007). Radar operators, and more specifically the polarimetric radar

operator employed in this study, will be further explored in section 3.2.

2.3.2 Existing Methods for the Assimilation of Radar Data

A review of various existing methods of assimilating radar data focusing primarily on

assimilating Z (rather than radial velocity) is presented below. Although separated into

27



sections for organiational purposes, it is important to reitereate that many methods do

not fit neatly into such categories and instead employ variations on, or combinations of,

the different methods below.

2.3.2.1 Nudging Methods

One of the most straightforward, efficient, and easy to implement methods of radar data

assimilation is “nudging”. Based on Newtonian relaxation, nudging methods operate

by taking the difference between a model forecast and an observation and gradually

adding increments of this difference to “nudge” the model toward the observation. This

method was popularized for radar data assimilation by Jones and Macpherson (1997)

and Macpherson (2001), who developed the so-called Latent Heat Nudging (LHN) tech-

nique that is based on the idea of a connection between latent heating in a model col-

umn and the subsequent precipitation in the corresponding surface grid box. In this

approach, model precipitation forecasts are compared with radar-derived rainfall, with

the latent heating profile of the model gradually scaled by the difference between the

two. This method was found to be successful with improvements that lasted 6-9 hours,

and was particularly beneficial for frontal precipitation. Leuenberger and Rossa (2007)

investigated the sensitivity of the method to assimilation frequency and biases in the

environmental wind and found that the method may struggle in areas of fast-moving

precipitation, which speaks to the method’s assumption that the precipitation at a grid

point is due to the latent heating directly above it, which may not necessarily hold true,

particularly as a model’s horizontal grid spacing decreases. Stephan et al. (2008) pro-

posed a number of modifications to the original LHN scheme to make it better suited for

higher resolution models. Despite the successes, the authors note that the efficacy of the

method may be hindered by the accuracy of the background environment and whether it

supports the nudged increments. Outstanding questions also remain about how to best
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assign a latent heating profile for observed precipitation where the model has none. Al-

though not technically a nudging method, Rogers et al. (2000) sought to alleviate this

concern by simply activating the model’s convective parameterization scheme wherever

Z was observed. In addition, precipitation is the end result of a pathway that begins

with latent heating due to condensation, so LHN methods based on radar-inferred rain-

fall at the surface will necessarily always be delayed in their ability to drive convection,

particularly for rapidly-developing situations.

Nudging methods also exist for quantities other than the latent heating rate. Davolio

and Buzzi (2004) used radar-estimated precipitation to nudge the model specific humid-

ity toward or away from saturation, with different vertical application curves for whether

the model column is considered to be convective or stratiform precipitation. A slightly

modified procedure was studied by Korsholm et al. (2015), who applied drying to low-

level and in-cloud moisture for the case of overpredicted precipitation but enhanced the

horizontal velocity divergence term for the case of underpredicted precipitation to in-

duce further vertical motion. Very positive benefits were found using this method, with

little to no spin-up time or imbalances introduced into the model. A combination of

LHN and “cloud nudging” of relative humidtiy inferred from Z and satellite data, as

in cloud analysis methods, was implemented into the Met Office Unified Model with

positive results (Dixon et al. 2009). Similarly, a comparison of nudging water vapor and

LHN was performed by Sokol and Rezacova (2009), who found positive results using

both methods and improved performance using water vapor over latent heating in cer-

tain cases. All of these approaches fall under the umbrella of “diabatic initialization”

(Krishnamurti et al. 1991) and are somewhat analogous in that moisture, latent heat re-

lease, and divergence are all coupled for deep moist convection. Additionally, all rely

on either model-generated (in the case of LHN) or subjectively-determined vertical pro-

files (in the case of specific humidity or divergence) of the variables being nudged, and

all are sensitive to the accuracy of the Z-derived rainfall, which may be prone to large
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errors. Despite these potential limitations, nudging methods have the benefit of being

straightforward, computationally inexpensive, and are not tied to any one microphysics

scheme or model, making them easy to transfer and implement.

2.3.2.2 Cloud Analysis Method

Another approach for radar data assimilation based on the principle of diabatic initial-

ization is the cloud analysis technique. Unlike nudging methods for single model vari-

ables, cloud analysis techniques make adjustments to the model temperature, moisture,

and hydrometeor q fields through direct insertion based on Z. The basis of modern cloud

analysis techniques is the Local Analysis Prediction System (LAPS; Albers et al. 1996),

which was designed to synthesize information from a background model, volumetric

radar, satellite, and surface observations into a single analysis for forecasters. This ap-

proach was extended to serve as a part of the data assimilation routine to initialize the

ARPS model (see section 3.1.4) by Zhang et al. (1998) and Zhang (1999), the details

of which are described in section 3.1.4.2. Cloud analysis techniques are in widespread

use and are conceptually straightforward, computationally efficient, and are useful for

reducing the spin-up time of observed storms and improving short-term convective fore-

casts (e.g., Ducrocq et al. 2000, 2002; Xue et al. 2003, 2014; Souto et al. 2003; Dawson

and Xue 2006; Hu et al. 2006a; Zhao and Xue 2009; Schenkman et al. 2011a; Daw-

son et al. 2015; Zhuang et al. 2016). The cloud analysis is typically run after radial

velocity (along with other observations) has been assimilated (e.g., by a variational as-

similation routine), as the positive impacts of the cloud analysis are enhanced when

used in conjunction with radial velocity (e.g., Hu et al. 2006b). However, variations

in the implementation of cloud analysis results are possible. For example, Weygandt

et al. (2008) describes the Rapid Update Cycle (RUC) model’s Diabatic Digital Filter

Initialization (DDFI), which integrates the RUC backwards without physics, inserts the

latent heating rate derived from Z in the cloud analysis into the microphysics scheme
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and re-integrates the model forward. This has the additional advantage of evolving the

wind field in balance with the adjusted latent heating rate.

Modifications to the original cloud analysis have been made since its inception. For

example, Brewster (2002) improved the interpolation of Z onto the model grid, the di-

agnosis of cloud water and ice mixing ratios, and the temperature increments due to

latent heating, while Hu et al. (2006a) further improved the retrieval of hydrometeor

mixing ratios from Z and incorporated entrainment effects on cloud water and ice and

the thermal adjustment. In order to update so many model state variables from Z alone,

however, cloud analysis techniques rely on a number of semi-empirical quantiative rela-

tions (e.g., retrieving hydrometeor mixing ratios from Z as in section 2.2.1.1) and gen-

eral rules (e.g., saturating regions within a given Z threshold) that require simplifying

assumptions and may introduce errors.

2.3.2.3 Three-Dimensional Variational Assimilation (3D-Var) Method

Variational assimilation methods are a very commonly used class of assimilation meth-

ods in NWP at all scales. Variational methods seek to minimize a cost function of

the differences between the optimal analysis state and the model background and ob-

servations, weighted by their respective error covariances. Through these covariances,

analysis increments in an observed variable can update other unobserved variables both

at the observation point and nearby. This is the basis for the three-dimensional varia-

tional assimilation (3D-Var) method, which operates on all three spatial dimensions at a

single point in time. For use with radar data, techniques were initially developed for the

assimilation of radial velocity (Gao et al. 1999, 2004; Xiao et al. 2005; Hu et al. 2006b).

Xiao et al. (2007) modified the Weather Research and Forecasting (WRF; Skamarock

et al. 2005) 3D-Var system for assimilating Z in a tropical cyclone. In this approach, the

total water content was used as the control variable and the increment was divided be-

tween water vapor, cloud water, and qr using a linearized warm-rain partitioning scheme.
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This spread the influence of the increment spread to the thermodynamic and dynamic

variables as well. The impacts were positive, with an improvement over a comparison

run without assimilation. Sugimoto et al. (2009) supplemented this methodology with

a cloud analysis to condition the background in areas with large departures from the

observations (e.g., stable air with no precipitation where the radar indicates there is pre-

cipitation) to investigate the ability for the 3D-Var system to retrieved unobserved vari-

ables. It was found that the 3D-Var system could partly retrieved unobserved variables,

but struggled with retrieving the moisture field and, in the case of assimilating only a

single radar, the unobserved cross-radial wind component. In comparison to single-case

studies, Sun et al. (2012) tested the WRF 3D-Var system for a six-day period to mimic

an operational environment and found generally positive impacts from assimilating both

radial velocity and Z, although improvements were case-dependent and found to only

exist for daytime, surface-based convection. Recently, Gao and Stensrud (2012) took a

different approach and incorporated a hydrometeor classification based on model back-

ground temperature into the assimilation routine. A simple temperature thresholding

system was used to address the underdetermined problem of retrieving mixing ratios

for rain, snow, and hail from a single Z observation by determining which hydrometeor

species were present at an observation point, and unlike previous studies allowed for

the hydrometeors to be updated in the analysis vector. Results showed that the analysis

converged more quickly and accurately when using this hydrometeor classification.

3D-Var routines are desirable for their computational efficiency, which is an impor-

tant consideration for any operational system. However, many challenges remain for

using 3D-Var effectively at the convective scale. In general, the balances and back-

ground error statistics that help constrain 3D-Var solutions at large scales cannot be

used at the convective scale. In addition, there remain uncertainties in how to effectively

update unobserved variables from increments in the hydrometeor fields derived from Z.

Because of this, many studies have sought to use 3D-Var for winds in conjunction with
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a diabatic initialization technique (either nudging or a cloud analysis) for Z, and have

found success in doing so (Hu and Xue 2007; Kain et al. 2010; Rennie et al. 2011).

Others have combined these methods. For example, Wang et al. (2013) assimilated

retrieved qr from Z rather than assimilating Z directly, which avoids errors stemming

from the use of a linearized radar operator, and assimilated psuedo-observations of rela-

tive humidity found by inferring saturation in areas above a Z threshold. Improvements

lasting up to 7 hours after assimilation were found. Based on the premise that relative

humidity is more important to adjust than hydrometeors, another novel method is pre-

sented in Caumont et al. (2010) and Wattrelot et al. (2014). This method uses a 3D-Var

approach to assimilate retrieved one-dimensional profiles of relative humidity (called

the “1D+3DVAR” approach; see section 2.2.4). The method was found to have positive

impacts and has been implemented operationally at Météo-France and is now being in-

vestigated for operational use at the Japan Meteorological Agency (Iguchi et al. 2014)

and for multinational radar data assimilation (Ridal and Dahlbom 2017).

2.3.2.4 Four-Dimensional Variational Assimilation (4D-Var) Method

In contrast with 3D-Var, which assimilates observations at a single time, four-dimensional

variational (4D-Var) assimilation techniques assimilate observations within a time win-

dow, with the model itself being integrated through the period. In this way, the entire

model framework serves as a dynamical constraint within the cost function and allows

the technique to incorporate flow dependencies into its minimization. Because of the

short timescales in which convective weather can develop, incorporating observations as

they occur over time offers advantages over 3D-Var. The seminal work for assimilating

radar data using 4D-Var is Sun and Crook (1997, 1998), who assimilated radial velocity

and retrieved qr as part of a warm-rain microphysics scheme (for reasons similar to those

stated in Wang et al. 2013). The system was able to retrieve the temperature, wind, and
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hydrometeor fields that compared mostly favorably with observations. The impact of as-

similating radar observations at the time they occur rather than grouping them at a single

time was noteworthy, with vertical velocities that were up to 50% stronger in the former

rather than the latter case. This system was applied to a supercell case and compared fa-

vorably against observations for a 2-h forecast period (Sun 2005b), and was successfully

extended to include data from multiple radars (Sun and Zhang 2008). A comparison of

this 4D-Var approach with an analogous 3D-Var approach and the 3D-Var approach of

Wang et al. (2013) for a squall line case indicated quicker spin-up of precipitation, im-

proved quantative precipitation forecast verification scores, and improved analyses of

the wind field as well as the low-level convergence and cold pool structure when using

the 4D-Var routine (Sun and Wang 2013).

Despite the known advantages of incorporating the time dependency of observations

during assimilation, challenges with using 4D-Var for radar data assimilation remain.

The formulation and maintenance of the adjoint, particularly for nonlinear processes at

the convective-scale, is one of the primary difficulties in a 4D-Var system. Microphysi-

cal processes can be very nonlinear, so the formation of the adjoint often requires mod-

ification of the microphysics scheme to enable proper convergence of the cost function.

4D-Var is also computationally expensive, making it challenging to use in an operational

setting. Finally, 4D-Var has generally been limited to only warm-rain microphysics, al-

though recent work by Chang et al. (2016) has extended the method to include simple

ice microphysics. They found that the inclusion of ice phases improved the forecast of

convection and significantly affected the retrieved vertical velocity, temperature pertur-

bation, and hydrometeor fields.

2.3.2.5 Ensemble Kalman Filter (EnKF) Method

Recently, the ensemble Kalman filter method (EnKF; Evensen 1994) has become an

increasingly popular choice for convective-scale radar data assimilation. The EnKF
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method employs an ensemble of model forecasts to estimate the background error co-

variance, which allows for flow-dependency (unlike 3D-Var) and avoids having to code

and maintain an adjoint (unlike 4D-Var). EnKF was first applied at the convective-scale

by Snyder and Zhang (2003) for assimilating simulated radial velocity observations,

with the system able to retrieve the unobserved variables accurately within seven assim-

ilation cycles. A comparison of 4D-Var and EnKF by Caya et al. (2005) found that,

while the 4D-Var method was superior at first, the EnKF method performed better at

retrieving the unobserved variables once the storm was established in the model. Dow-

ell et al. (2004) also incorporated observations of Z and successfully assimilated data

from an observed supercell storm using a warm-rain microphysics scheme, with Tong

and Xue (2005) adding ice microphysics. Due to these early promising results, there

has been significant work done to improve the use of EnKF at the convective scale since

(e.g., Xue et al. 2006; Aksoy et al. 2009; Yussouf and Stensrud 2010; Snook et al. 2011,

2012; Yussouf et al. 2013; Wheatley et al. 2014, 2015). However, due to the ensemble

sizes needed, EnKF methods remain computationally expensive and generally limited to

the research realm. In addition, there are still uncertainties in how best to combat issues

related to rank deficiency (e.g., filter divergence due to sampling errors; Gao et al. 2014)

and nonlinear error growth in the forecast model, which can contaminate the derived

covariances and lead the analysis away from reality. Despite these outstanding issues,

the EnKF method offers a lot of potential for convective-scale radar data assimilation.

2.3.2.6 Hybrid Methods

Hybrid methods are a relatively new data assimilation method that seek to combine

the relative strengths of variational and ensemble methods. To do this, hybrid meth-

ods derive flow-dependent covariances from the ensemble and use those, in full or in

part, as the covariances in the variational routine. This allows for the capitalization of

the variational schemes’ computational efficiency along with the efficacy of ensemble
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methods to derive rigorous background covariances. Although hybrid methods have

been investigated at larger scales (e.g., Wang et al. 2008a,b), the methodology was im-

plemented at the convective-scale by Gao et al. (2013). In a follow-up study, Gao and

Stensrud (2014) found the hybrid technique to outperform both the 3D-Var and EnKF

techniques, with the optimal weighting of the background covariance between the static

variational covariance and the ensemble-derived covariance to increase toward the latter

with increasing ensemble size. A slightly different hybrid approach was recently de-

veloped by Gao et al. (2016) that derives the background covariance from an ensemble

of perturbed 3D-Var analyses rather than using an EnKF. This method performed sim-

ilarly to that of Gao and Stensrud (2014) using simulated observations but was more

computationally efficient. However, the method proved quite sensitive to the choice of

microphysics scheme. Pan et al. (2017) used this method to assimilate satellite-derived

cloud liquid water path and precipitable water observations alongside radial velocity and

Z. Although much work remains to be done, hybrid assimilation methods offer promis-

ing results while still being potentially well-suited for operational implementation.

2.3.3 Assimilation of Polarimetric Radar Data

Despite the connection between dual-polarization radar and the microphysical and ther-

modynamic characteristics of deep moist convection, leveraging polarimetric data for

NWP is a relatively new area of research. Much of the work thus far has focused on

comparing the polarimetric characteristics of convection in models to those of obser-

vations, predicated on the idea that a physically-accurate microphysics scheme should

be able to reproduce realistic polarimetric signatures. Relating model state variables to

observed polarimetric variables requires the use of a polarimetric radar forward operator

(e.g., Jung et al. 2008a, 2010a; Pfeifer et al. 2008; Ryzhkov et al. 2011), which com-

bine the model’s forecast hydrometeor size distributions with assumptions about their

canting angles, aspect ratios, and dielectric constants to produce simulated polarimetric
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variables. Many recent studies have used these operators to compare the performance

of and identify deficiencies in model microphysics schemes (e.g., Jung et al. 2008a,

2010a, 2012; Ryzhkov et al. 2011, 2013a; Kumjian and Ryzhkov 2012; Dawson II et al.

2013, 2014; Kumjian et al. 2014; Putnam et al. 2014; Johnson et al. 2016; Snyder et al.

2017a,b). Alternatively, if a model faithfully reproduces polarimetric signatures as they

are observed in nature, the model can be used to investigate what physical processes are

responsible for a given signature. Other studies have attempted to use polarimetric data

to inform the model analysis state. Sun and Crook (1998) used ZDR in conjunction with

Z to retrieve qr and found that, when assimilated into their 4D-Var system, the resultant

fields of rainwater and cloud water were closer to the aircraft observations than when us-

ing Z alone. Wu et al. (2000) attempted to use ZDR to differentiate between liquid and ice

phases for hydrometeor mass retrievals using a 4D-Var scheme but found little success

attributed to inadequecies in the model physics. Using an EnKF framework, simulated

polarimetric radar data were assimilated to estimate state variables (Jung et al. 2008a,b)

and microphysical parameters (Jung et al. 2010b), with positive impacts found in both

cases. Few studies have sought to assimilate real dual-polarization radar observations.

Li and Mecikalski (2010, 2012) compared the impacts of using both Z and the polarimet-

ric variables to update qr in a mesoscale convective system using a 3D-Var system and

warm rain microphysics and found positive impacts with forecasts that better matched

the observations. Yokota et al. (2016) also assimilated estimates of rainwater mixing

ratio retrieved from Z and KDP in an EnKF system. However, in all of these studies,

ice phases were neglected and, despite these encouraging results, assimilating observed

polarimetric data remains difficult due to data quality concerns and remaining uncertain-

ties in polarimetric operators. Posselt et al. (2015) examined the information content of

the polarimetric variables in a modeled convective storm using a Markov chain Monte

Carlo method and found that, whereas rain mass is generally well constrained by the

polarimetic variables, ice phases are much more difficult to retrieve, particularly when
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the intercept parameters and densities are allowed to vary. In addition to the data quality

issues already discussed for Z (see section 2.3.1), polarimetric data may exhibit other

artifacts, including nonuniform beam filling, differential attenuation and general biases

in ZDR due to radar miscalibration, and depolarization streaks (Kumjian 2013c), with

certain variables prone to significant noisiness (e.g., ZDR, KDP). Despite these consid-

erations and early successes, more work remains to be done to fully capitalize on the

additional information content that polarimetry offers for storm-scale assimilation.
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Chapter 3

Description of Tools Used

3.1 Models

Throughout this work, a number of models are used, and are briefly described below.

3.1.1 One-Dimensional Melting Hail Model (1D-MH)

The 1D-MH is a one-dimensional Lagrangian spectral bin model that contains pre-

scribed hail and graupel size distributions at the top of the model domain, coincident

with the 0�C level, and follows them as they fall and melt. Melting, shedding of meltwa-

ter, differential sedimentation, and drop breakup are included in the model, but processes

involving interactions between hailstones or size bins (e.g., collisions) are not included.

Mass water fraction is allowed to vary across the size distribution and meltwater and

ice cores are treated separately, with the mass water fraction counted as LWC and the

remaining ice core counted as IWC. Both spongy and solid hail are permitted. The treat-

ment of melting hailstones follows Rasmussen and Heymsfield (1987a,b). Drops begin

to be shed once there is no air volume remaining in the hailstone. Shed drops assume a

gamma size distribution with µ = 2.0 (Milbrandt and Yau 2005a), L = 2.0 mm-1, and N0

as a function of the mass of shed water. Drops larger than 8 mm begin to spontaneously

break up and assume an inverse exponential distribution following Kamra et al. (1991).

For more about the 1D-MH, see Ryzhkov et al. (2013a).
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3.1.2 One-Dimensional Melting Snow Model (1D-MS)

The 1D-MS is a one-dimensional Lagrangian spectral bin model for melting snow. In

addition to melting, the model was expanded from its previous version to include evap-

oration and the sublimation of snow. Feedbacks of temperature and moisture with the

environment were also added, allowing the evolution of the melting layer and associ-

ated brightband to be modeled rather than only looking at one point in time. Because

the time evolution of the environment is now allowed, the prescribed snow distribution

at the top of the domain can also vary in time. The initial density of snowflakes is as-

sumed to be inversely proportional to their diameter following Brandes et al. (2007).

The degree of riming, frim, is allowed to vary from 1 (no riming) to 5 (heavy riming).

The terminal velocity of melting particles is given as a function of that of a fully-melted

particle of equivalent mass and the meltwater fraction following Szyrmer and Zawadzki

(1999). The aspect ratio of melting snowflakes are treated in an analogous way, linearly

weighted between that of dry snow and the equivalent melted raindrop based on meltwa-

ter fraction. Ventilation and shape effects are included in the microphysical equations,

but processes that occur between different bins (e.g., aggregation) are neglected. By

doing this, the number concentration flux can be conserved at all heights, emulating

steady-state precipitation at a given time. In this study, the vertical grid spacing is 10 m,

with the model integration is performed downward toward the surface. A full description

of the model is included in section 5.2.2.

3.1.3 Hebrew University Cloud Model (HUCM)

The HUCM is a state-of-the-art non-hydrostatic Eulerian spectral bin model (Khain

et al. 2004, 2011; Ilotoviz et al. 2016). It contains 43 mass-doubling bins for cloud wa-

ter/rain, snow, three categories of ice (dendrites, plates, and columns), graupel, hail, and

freezing drops, with the smallest size bin corresponding to a particle with the mass of a

2-µm liquid drop. Both dry and wet hail growth with liquid water above the 0�C level
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is included (Phillips et al. 2015, 2014). A size distribution of aerosols is also included,

with their activation treated explicitly. The concentration of CCN is set to be constant

in the lowest 2 km and decreases exponentially with height above that. More informa-

tion about the details of the HUCM microphysics scheme is available in Ilotoviz et al.

(2016). The simulation employed in this study was two-dimensional in the x� z plane

and simulated a hailstorm that struck Villingen-Schwenningen, Germany on 28 June

2006 and caused significant damage (Noppel et al. 2010). By default and unless other-

wise specified, the CCN was set to 3000 cm-3 following Khain et al. (2011) to represent

polluted conditions. The initial horizontally-homogenous conditions were initialized by

the observed 12:00 UTC sounding at Stuttgart, Germany modified for additional diur-

nal heating (Khain et al. 2011). Storms are initiated by negative temperature tendencies

inserted in the low-levels meant to simulate a cold pool. The computational area of the

HUCM simulations used is 120 km ⇥ 19 km, with a horizontal grid spacing of 300 m

and a vertical grid spacing of 100 m. The model is run for 120 minutes, with output

written every 1 min. Radar variables were calculated at S band.

3.1.4 Advanced Regional Prediction System (ARPS)

The Advanced Regional Prediction System (ARPS; Xue et al. 2000, 2001, 2003), devel-

oped by the Center for Analysis and Prediction of Storms (CAPS) at the University of

Oklahoma, is a nonhydrostatic, compressible NWP model designed to function at mul-

tiple scales with an emphasis on the assimilation of data and the explicit prediction of

convective-scale phenomena. The ARPS Data Assimilation System (ADAS) contains

two primary steps: a 3D-Var routine for radial velocity and traditional surface and upper

air observations, and a cloud analysis package for assimilating radar and satellite data.
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3.1.4.1 ADAS 3D-Var Routine

The ADAS 3D-Var routine seeks to minimize a cost function, J(x), defined as

J(x) = 1
2
(x�xb)

TB-1(x�xb)+
1
2
(H(x)�yo)

TR-1(H(x)�yo)+ Jc(x) (3.1)

where xb is the background vector, B-1 is the inverse of the background error covariance

matrix, H is the observation operator that converts model space to observation space, yo

is the observation vector, R-1 is the inverse of the observation error covariance matrix,

Jc(x) is a constraint (or penalty) term, and x is the analysis field (Gao et al. 2004; Hu

et al. 2006b). The optimal analysis, xa, is obtained by finding x that minimizes J(x) (i.e.,

—J(x) = 0). The analysis vector x in ARPS contains the three-dimensional wind com-

ponents (u, v, and w), potential temperature (q ), pressure (p), and water vapor mixing

ratio (qv). As it was designed for use at the storm-scale, the routine includes multiple

analysis passes with varying scales of spatial influence to help resolve flows at different

scales. The observation error covariance matrix R is assumed to be diagonal (i.e., the

observation errors are uncorrelated), and the model error covariance matrix B does not

include covariances between model variables. The spatial covariances for a given vari-

able in B are modeled by a recursive filter (Hu et al. 2006b). The constraint term, Jc, is

a weak mass divergence constraint given by

Jc =
1
2

l

2
c


a

✓
∂ r̄u
∂x

+
∂ r̄v
∂y

◆
+b

∂ r̄w
∂ z

�
(3.2)

where lc is a weighting factor for the constraint term and the bracketed term is a di-

vergence term where r̄ is the mean air density at each level and a and b represent

weighting factors for the horizontal and vertical divergence terms, respectively (Hu

et al. 2006b). This constraint term is designed to aid in the accurate retrieval of the

full three-dimensional wind field from only radial velocity. Observations that are being

assimilated are often not the same variables that are in the model. To assimilate these

observations, the model variables must be converted to the observation space through H
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so that a comparison can be made. For assimilating radial velocity (Vr), the observation

operator H for calculating Vr from the model is given by

Vr =
(x� x0)u+(y� y0)v+(z� z0)w

r
(3.3)

where (x, y, z) is the model grid point, (x0, y0, z0) is the location of the radar, (u, v, w)

are the wind compoments at the model grid point, and r is the distance from the radar

location to the model grid point (Hu et al. 2006b). This is then compared against the

observed Vr, which is interpolated to the model grid and quality-controlled before the

assimilation cycle. Once all data is assimilated and the optimal analysis state is found,

this posterior analysis typically serves as the background for the cloud analysis routine.

3.1.4.2 ADAS Cloud Analysis

The ADAS cloud analysis (Zhang et al. 1998; Zhang 1999; Brewster 2002; Hu et al.

2006a) is based on the Local Area Prediction System (Albers et al. 1996) and is designed

to reduce the spin-up time of precipitation in the model.

Quality Control The radar data are first quality controlled and interpolated to the

model grid. Radar data between 3 km and 230 km from the radar site are used to avoid

near field noise. Ground clutter is detected and removed using gradient and texture fields

of Z and areas of low Vr, with additional filtering using a user-defined rhv threshold

(default of 0.85 for S-band). KDP, is calculated from FDP from a local least squares

fit on smoothed data using a Z-dependent averaging window. A 9-point median filter

is also applied to all fields. The radar data is then interpolated to the model grid using

a least squares fit to a local polynomial function, which thins the data near the radar

and interpolates it at distances far from the radar (Brewster et al. 2005). For the latest

changes to the cloud analysis, see Brewster and Stratman (2015).

Assimilation Once the radar data are on the model grid, a number of empirical rela-

tions are applied to modify the model state variables. An initial cloud fraction field is
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diagnosed from the background relative humidity field following a similar approach to

Koch et al. (1997), with additional options to incorporate satellite data and Automated

Surface Observing System (ASOS) sky observations. Subsequently, clouds are directly

inserted by setting the cloud fraction to 100% above the surface-based lifted condensa-

tion level anywhere Z exceeds a threshold, set to 15 dBZ above 2 km by default. Cloud

water and ice content can be determined either adiabatically or using the Smith-Feddes

model (Haines et al. 1989) with a reduction for entrainment following Hu et al. (2006a),

which is used in this study. Next, the dominant hydrometeor species in each grid box

is determined using temperature and Z thresholds. Snow/rain are considered when the

temperature is below/above 0�C, respectively, and where hail is considered when the

Z exceeds 45 dBZ (Albers et al. 1996; Pan et al. 2016). When run in a cycling mode,

the species can also be determined by the existing species in the model background.

The mixing ratios of each hydrometeor species are then typically retrieved using the

single-moment retrieval equations for rain, snow, and hail discussed in section 2.2.1 and

summarized in Dowell et al. (2011) and Pan et al. (2016). However, recent work has

initialized intercept parameters (and, if needed, shape parameters) for multi-moment

schemes using iterative techniques (Brewster and Stratman 2015), whereas other stud-

ies have found positive impacts from using single-moment microphysics schemes with

intercept parameters diagnosed from hydrometeor mixing ratios (e.g., Wainwright et al.

2014; Pan et al. 2016), as developed in Zhang et al. (2008).

After the hydrometeors have been inserted, a temperature adjustment is made to ac-

count for latent heat release within the updraft. This can be done by simply adding the

latent heating associated with the added cloud water and ice content (Zhang et al. 1998)

or by assuming a moist-adiabatic temperature profile from cloud base with entrainment

effects included (Brewster 2002; Hu et al. 2006a). In this study, the latter method is

applied to regions with vertical velocity w > -0.2 m s-1 (determined from the 3D-Var

analysis) with a linear ramp from no heating to full heating between w = -0.2 and 0.0 m
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s-1. Final moisture adjustments are made by re-establishing saturation anywhere the Z

threshold for clouds is exceeded (incorporating the previously-made temperature adjust-

ment) or to 95% anywhere the analyzed hydrometeor mass is less than the background

hydrometeor mass to help avoid over-moistening. Further details of the cloud analysis

and its latest updates can be found in Brewster and Stratman (2015) and Tong (2015).

3.2 Polarimetric Radar Operator

As mentioned in sections 2.3.1 and 2.3.3, radar operators are necessary to convert model

state variables into radar variables. For radial velocity this task is trivial, with the largest

uncertainty being how to characterize the terminal velocity of the hydrometeors. The

calculation of Z, and in particular the polarimetric variables, is more complicated due to

the number of factors that influence these radar variables that are not typically predicted

by models’ microphysics schemes. In this study, the polarimetric radar operator of

Ryzhkov et al. (2011) is used in conjunction with the 1D-MH, 1D-MS, and HUCM

models, and is the subject of the following discussion, whereas the polarimetric radar

operator of Jung et al. (2010a) is used to compute Z from the ARPS model. Some

modifications and changes to the default polarimetric radar operator discussed below are

examined and discussed for the 1D-MS in section 5.2.3. In the operator of Ryzhkov et al.

(2011), particles are treated as either oblate or prolate spheroids. Scattering amplitudes

can be computed using the Rayleigh scattering approximation or using a full T-Matrix

calculation (Mishchenko 2000).

The dielectric constants of water and ice are given by Ray (1972), whereas the di-

electric constants of mixed-phase media are found using Maxwell-Garnett mixing for-

mulas (Maxwell Garnett 1904). For the case of two-layer spheroids within the Rayleigh

regime, such as melting hail that can be understood as solid ice with a water shell,

the scattering amplitudes are found by using the formulation of Bohren and Huffman
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(1983). The operator allows for the volume mass water fraction to vary across the size

spectrum.

The aspect ratio of hydrometeors are not typically predicted by microphysics schemes

and thus must also be specified. The aspect ratio of a spheroid is defined as the ratio of

the length along its axis of symmetry to its tranverse axis. For rain, the aspect ratio as a

function of size is relatively well-constrained and given by Brandes et al. (2002, 2005).

The aspect ratios of ice crystals of different habits are specified from the parameters

given in Matrosov et al. (1996). Snow aggregates are, by default, assumed to have an

aspect ratio of 0.8 following Straka et al. (2000). Graupel is assumed to have an aspect

ratio that varies linearly from 1.0 to 0.8 for particles whose diameter is smaller than 10

mm and is then capped at 0.8 for particles with diameters exceeding 10 mm. The aspect

ratios of melting particles are harder to define. For melting snow, it is assumed to vary

linearly with mass water fraction between that of snow and that of the raindrop the snow

melts into. For melting graupel and hail, the parameterization given by Rasmussen et al.

(1984) is used.

Another factor that can affect the polarimetric characteristics of hydrometeors is

their orientation. The operator assumes that all hydrometeors have Gaussian canting

angle distributions with a mean canting angle of 0�. By default, it is assumed that the

width of the canting angle distribution is 10� for rain and oblate crystals and 40� for

dry snowflakes, graupel, and hail. As with aspect ratio, the width of the canting angle

distribution for melting particles is assumed to vary linearly with mass water fraction.

These factors, along with the radar wavelength, can then be used to calculate the po-

larimetric variables by summing along the model-provided size distributions. This study

will focus on the use of Z, ZDR, KDP, and AH. Although the operator has been shown

to qualitatively reproduce the observed features of rhv, the magnitudes are biased high.

This is hypothesized to be due to the exclusion of d (when the Rayleigh assumption

is being used) as well as the simplified treatment of hydrometeors as spheroids instead
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of the complex and jagged shapes that hydrometeors such as hail and melting snow

aggregates may attain in reality (Ryzhkov et al. 2011, 2013b).
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Chapter 4

Hydrometeor Mass Retrievals

The work presented in this chapter is taken from: Carlin, J. T., A. V. Ryzhkov, J. C. Sny-

der, and A. Khain, 2016: Hydrometeor Mixing Ratio Retrievals for Storm-Scale Radar

Data Assimilation: Utility of Current Relations and Potential Benefits of Polarimetry.

Mon. Wea. Rev., 144, 2981-3001, doi:10.1175/MWR-D-15-0423.1 and evolved from

the author’s Master’s thesis.

Hydrometeor size distributions are most generally assumed to follow a gamma dis-

tribution, given by (e.g., Ulbrich 1983)

Nx(D) = N0,xDµxe�LxD (4.1)

where N0,x is the intercept parameter, µx is the shape parameter, and Lx is the slope

parameter of hydrometeor species x. However, simplifying assumptions about the size

distribution are often made. By assuming µx = 0, as is commonly done, Eq. (4.1)

reduces to the inverse exponential distribution,

Nx(D) = N0,xe�LxD, (4.2)

becoming a two-parameter distribution used by so-called “double-moment” microphysics

schemes.

The mixing ratio of hydrometeor species x (qx) is proportional to the third moment

of the PSD and is given by

qx =
rx

r

p

6

Z •

0
D3Nx(D)dD (4.3)
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where r is the air density, rx is the hydrometeor density, D is the particle equivolume

diameter, and Nx(D) is the PSD of x. If an inverse exponential size distribution and the

Rayleigh scattering assumption are used, Zx (Eq. 2.11) can be expressed as

Zx = N0,x
|Kx|2

|Kw|2
G(7)
L7 (4.4)

where

Lx =

✓
rxpN0,x

rqx

◆0.25
. (4.5)

Substituting Eq. (4.5) into Eq. (4.4), the Z � q relation for inverse exponential size

distributions within the Rayleigh scattering regime can be expressed most generally as

Zx =

7.2⇥1020

��K2
x
��

|K2
w|
(rqx)1.75

p

1.75N0.75
0x r

1.75
x

. (4.6)

Equation (4.6) is the general form of the forward operator equations used in many

studies to calculate simulated Z from NWP model forecasts (e.g., Tong and Xue 2005;

Dowell et al. 2011). It also serves as the root for retrieving hydrometeor q from Z. How-

ever, assuming the composition (affecting both rx and Kx) of a hydrometeor species is

known, the relation is a function of two parameters of the size distribution, N0,x and Lx.

The retrieval of both parameters of the size distribution requires at least two independent

radar variables (Atlas and Ulbrich 1974). In the absence of utilizing dual-polarization

or dual-wavelength data, there are a few different approaches for determining the size

distribution parameters. A N0,x � qx relation (e.g., Zhang et al. 2008) can be used to

constrain the problem to a single parameter. This approach is used in Wainwright et al.

(2014) and Pan et al. (2016), who derive N0,x�qx relations from a NWP model employ-

ing double-moment microphysics and use it with a single-moment microphysics scheme

to allow for a variable N0. If the retrieved qx is being assimilated into an NWP model in

a cycling mode, such as through a cloud analysis (see section 2.3.2.2), the background

N0,x can be used. However, the most common approach by far is to fix the N0,x at a

constant value typical of a species, allowing Lx to be determined from Zx and qx to be
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retrieved. Although retrieving q from Z has many different applications, the following

discussion is in the context of retrieving q for assimilation into an NWP model.

For rain (r), N0,r is typically fixed at 8⇥106 m-4 (the well-known “Marshall-Palmer

distribution”; Marshall and Palmer 1948). Using the density and dielectric constant for

water, Eq. (4.6) for rain becomes

Zr = 3.63⇥109(rqr)
1.75. (4.7)

For snow (s), N0,s is usually assumed to be 3⇥106 m-4 (Gunn and Marshall 1958).

The dielectric constant for snow, Ks, depends on whether the snow is wet or dry. For dry

snow, Ks can be defined in terms of the dielectric constant for ice, Ki, and the density of

snow, rs, according to (Smith 1984)

|Ks|2 = |Ki|2
✓

r

2
s

r

2
i

◆
, (4.8)

where |Ki|2 ⇡ 0.17 and ri = 917 kg m-3. A second formulation exists that uses the

equivolume diameter of fully-melted snowflakes in which ri is replaced with rw (e.g.,

Dowell et al. 2011; Gao and Stensrud 2012). In this instance, |Ki|2 must be adjusted to

account for this decrease in diameter and instead takes the value 0.21. If rs is assumed

to be constant at 100 kg m-3, as if often done (e.g., Lin et al. 1983), the Z � q relation

for dry snow (ds) becomes

Zds = 9.80⇥108(rqds)
1.75. (4.9)

If the snow is assumed to be wet (often done if T > 0�C), Ks is assumed to be equal to

Kw, and the Z �q relation for wet snow (ws) becomes

Zws = 4.26⇥1011(rqws)
1.75. (4.10)

Finally, for hail (h), it is commonly assumed that N0h = 4⇥ 104 m-4 (Federer and

Waldvogel 1975), rh = 900 kg m-3, and with |Kh|2 adjusted in an analogous manner to

Eq. (4.8). This results in the retrieval equation for (dry) hail of

Zh = 4.33⇥1010(rqh)
1.75. (4.11)
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This set of simplified retrieval equations exhibit limitations ranging in validity due

to the assumptions made in deriving them. The most restrictive assumption is fixing the

N0,x of all species to be constant. Kessler (1969) described the assumption of a fixed

N0,r as one that “does some violence to the physics of the evaporation process”, and

Sun (2005a) noted that it is “not trivial to quantify” the error in the retrieved q induced

by such an assumption. The assumption of constant density may be a poor one for ice

hydrometeors, particularly for rs, which generally varies nearly inversely with diameter

with a mass-diameter relation for snow having a diameter exponent closer to 2 than 3

(e.g., Brandes et al. 2007), resulting in an approximate D4 dependence for Z from snow

rather than a D6 dependence. The density of hail and graupel may also vary from that

of pure ice as they may be spongy and contain air cavities, and may be either wet or dry

below the melting layer depending on whether meltwater seeps inside to fill the voids

(Dowell et al. 2011). Additionally, by invoking the Rayleigh approximation, resonance

scattering from large hydrometeors is neglected and subsequently any dependence on

radar wavelength or nonsphericity is excluded. However, efforts have been made in

some studies (e.g., Dowell et al. 2011) to account for the effects of non-Rayleigh scat-

tering of large hail by exponentiating a modified retrieval equation for wet hail to 0.95,

based on the work of Smith et al. (1975) and given by

Zh =

 
7.2⇥1020(rqh)

1.75

p

1.75N0.75
0h r

1.75
h

!0.95

= 6.13⇥1010(rqh)
1.6625. (4.12)

These simplified Z �q relations also assume a priori knowledge of what hydrome-

teor type to retrieve, and an approach for retrieving multiple hydrometeor species within

a volume and partitioning the Z is not immediately clear. Because of this, many systems

that retrieve q from Z, such as cloud analysis techniques, rely on empirical criteria (e.g.,

temperature and Z thresholds) for determining which species to retrieve (see section

3.1.4.2 for details). A demonstrative example of the application of these Z � q rela-

tions is shown in Figure 4.1 from the HUCM using the retrieval relations previously

described and species determined from the criteria used in the cloud analysis. A number
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of differences between the retrieved hydrometeor field and the model hydrometeor field

are present. Naturally, as the species in each grid box is determined using temperature

and Z thresholds, only one species is allowed to exist and the areas of hail/graupel and

snow and hail/graupel and rain are not reproduced. Above the environmental 0�C level

(located at approximately z = 3.5 km), there is too much snow retrieved, whereas appre-

ciable amounts of snow only exist in the model hydrometeor field above approximately

z = 8 km. Accordingly, the hail/graupel mass is thus underestimated in the mid-levels.

Below the environmental 0�C level, the retrieved rain field is much more expansive than

the model rain field, and features very large values in excess of 10 g m-3 in the main

precipitation core, whereas the model rain field peaks at approximately 4 g m-3. This

is very likely due to the assumption of rain alone below the environmental 0�C level,

whereas the model field makes clear that the Z exceeding 60 dBZ in this region is due

to melting hail.

Despite these limitations, assimilating retrieved q into storm-scale NWP models us-

ing these relations has proven to be beneficial, including reducing the spin-up time and

forecast error (e.g., Souto et al. 2003; Dawson and Xue 2006; Hu et al. 2006a; Zhao and

Xue 2009; Schenkman et al. 2011a). Thus, they still remain in widespread use for radar

data assimilation applications (e.g., Hu and Xue 2007; Kain et al. 2010; Stensrud and

Gao 2010; Schenkman et al. 2011b; Xue et al. 2014; Dawson et al. 2015; Chang et al.

2016).

In this study, the 1D-MH and HUCM models (described in sections 3.1.1 and 3.1.3,

respectively) are used to examine the utility of the retrieval equations for qr and qh in

the context of radar data assimilation and whether dual-polarization radar data can aid

in improving the accuracy of these retrievals. More specifically, it is the most limiting

versions of these Z-based retrieval relations with the most restrictive assumptions, given

by Equations (4.7) and (4.11), that are studied as they have the most potential for signif-

icant errors and are still widely used. Hereafter, the phrase “legacy retrieval equations”
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Figure 4.1: An example comparison of (a) model Z from the HUCM at t = 6000 s, (b)

the corresponding model qr (green), qs (blue), and qh+g (red) fields, and (c) the retrieved

hydrometeor qr, qs, and qh from Z using Eqs. (4.7), (4.9), and (4.11) and the temperature

thresholds described in section 3.1.4.2. The hydrometeor fields are contoured every 1.0

g m-3 up to 10 g m-3, along with 0.1, 0.25, and 0.5 g m-3.
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will specifically refer to this set of simplified equations. In addition, LWC and IWC,

both in g m-3, are used in place of qr and qh (and graupel mixing ratio, qg, where noted)

due to convention, differing by only a factor of r . Section 4.1 examines the performance

of various relations for retrieving R and LWC using disdrometer observations. The spe-

cific setup of the 1D-MH and HUCM used in this study is presented in section 4.2, and

the evolution in space and time of the biases of the retrieved LWC field will be shown

in section 4.3. Section 4.4 then examines the separate estimation of LWC and IWC in

rain/hail mixtures. A summary of the main conclusions is presented in section 4.5.

4.1 Inherent performance of polarimetric retrievals in rain

To investigate the use of dual-polarization data for improving LWC retrievals and to

review the utility of polarimetric R relations, data from a large two-dimensional video

disdrometer during pure rain (i.e., not mixed with hail, graupel, or snow) were used. The

data were collected over a seven year period in Oklahoma and contain 47,144 unique

DSDs from both stratiform and convective rain events. Following Ryzhkov et al. (2014),

polarimetric radar variables at S band (l = 11.0 cm) and C band (l = 5.3 cm) were

computed for each DSD at a temperature of 20�C using the canting angle distribution

and aspect ratio relation for rain discussed in section 3.2. Full details of the disdrometer

dataset can be found in Schuur et al. (2005). The derived retrieval relations were found

by performing weighted least squares regressions on the median of each variable within

bins of log10(R) and log10(LWC) ranging from -1.2 to 2.0 and -2.2 to 1.0, respectively,

in intervals of 0.1. Each bin was weighted by the center R or LWC within the bin

multiplied by the number of points within that bin. Retrievals using Z, Z and ZDR, KDP,

AH, and Z and the normalized drop concentration (Nw) are performed. Nw (Testud et al.

2001) is given by

Nw =
44

prw

LWC
D4

m
, (4.13)
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where Dm is the volume-weighted mean diameter (equal to the ratio of the fourth to the

third moment of the DSD). Nw represents the intercept parameter for an exponential size

distribution with an equivalent Dm and LWC regardless of actual DSD shape. For the

case of the Marshall-Palmer DSD (in which Nw = N0r), log10 Nw ⇡ 3.9. Tropical rain

with DSDs skewed toward smaller drops feature high values of Nw whereas rain from

strong continental convection with DSDs skewed toward larger drops features low val-

ues of Nw (Bringi et al. 2003). The goal of deriving retrieval relations for R and LWC

using the disdrometer data is to investigate the inherent usefulness of various polari-

metric variables for rain retrievals, as each derived retrieval equation was found using

the same method and dataset. A summary of all of these derived retrieval equations,

along with their root mean square errors (RMSE), Pearson correlation coefficients (r),

and standard deviations (s ) are shown in Table 4.1.

Figure 4.2: Taylor diagram comparing the performance of retrievals at S band (red)

and C band (blue) for (left) LWC (g m-3) and (right) R (mm h-1), corresponding to

Eqs. (1) - (10) and (11) - (20) in Table 4.1, respectively. The black circle represents the

characteristics of the observed disdrometer dataset. A line corresponding to a correlation

of 0.9 is shown for readability.
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Fig. 4.2 is a Taylor diagram1 (Taylor 2001) examining the performance of these

derived retrieval relations for both R and LWC at S and C band. For both LWC and R

at both wavelengths, retrievals using only Z perform the worst, with the largest RMSE,

standard deviations, and lowest correlations with the disdrometer dataset. At S band,

the LWC(Z,Nw) and R(Z,Nw) retrievals show the best performance. LWC(Z,Nw) also

shows superior performance at C band, whereas the error for R(Z,Nw) at C band is larger

for larger values of R.

In practice, however, the use of Nw may not be ideal. Estimates of Nw can be ob-

tained from dual-polarization radar data using the so-called “Z � ZDR method” by as-

suming a value of µ (Illingworth and Thompson 2005; Tabary et al. 2011), and esti-

mates of median volume diameter D0, which is quite close to Dm, can be found via

ZDR (e.g., Gorgucci et al. 2002; Cao et al. 2008), which can then be used to retrieve

the LWC. However, the accurate estimation of Nw requires high-quality, well-calibrated

radar measurements of the intrinsic Z and ZDR, which can become difficult at shorter

wavelengths owing to attenuation. Additionally, to achieve estimates of Z and ZDR with

sufficient accuracy, the Z �ZDR method requires the use of multiple consecutive radar

gates, resulting in a decreased spatial resolution for Nw. Owing to potential difficulties

in using Nw, alternative relations should also be considered.

Second to LWC(Z,Nw), LWC(AH) exhibits the smallest RMSE at S band whereas

LWC(KDP) exhibits the smallest RMSE at C band (though may also suffer from inferior

resolution compared to the other polarimetric retrieval methods due to a similar need
1Taylor diagrams are useful for assessing overall performance of models compared to a reference

dataset (in this case, disdrometer observations). The thick solid black line represents the standard devi-

ation of the observations (sobs), with 0.5sobs and 1.5sobs denoted in dashed lines. Pearson correlation

coefficient is shown as a function of angle a . RMSE values are shown in concentric thin gray rings cen-

tered at the observation point at the bottom of the plot (black dot) which corresponds to an RMSE of 0.0,

a correlation of 1.0 and the standard deviation of the dataset. For example, LWC(AH) at S-band has a

correlation coefficient of 0.96, a s of 0.43, and an RMSE of 0.13 g m-3, and is shown by a red star above

and slightly to the right of the observation point.
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for averaging as Nw). For R retrievals, similar conclusions are drawn as for LWC, with

R(AH) retrievals featuring the smallest RMSE at S band and R(KDP) having the smallest

RMSE at C band. For both LWC and R at both wavelengths, retrievals incorporating

ZDR improve upon those using Z alone but perform less well relative to the other polari-

metric retrievals presented. The performance of LWC(Z,ZDR) and R(Z,Zdr) retrievals

will likely be even poorer in areas dominated by rain derived from melting hail and

graupel, which tends to feature large drops with large ZDR that falls even further outside

of the typical Z�ZDR parameter space. Overall, with the exception of KDP, all retrievals

perform worse at C band than S band and for increasing RMSE exhibit larger standard

deviations and smaller correlations.

The above relations have been derived for the case of pure rain. In the case of a

mixture of rain and hail, different relations should be used to estimate LWC and IWC

separately.

4.2 Model setup

To investigate the performance of the legacy retrieval relations for the estimation of

LWC and IWC within rain and rain/hail mixtures, the 1D-MH and HUCM models cou-

pled to the polarimetric operator (described in sections 3.1.1, 3.1.3, and 3.2, respec-

tively) are used. The use of these two models for this purpose is intended to be com-

plementary: the HUCM can explicitly calculate the development of hydrometeor PSDs

from the modeled storm’s inception, with no restrictions on PSD form, whereas the 1D-

MH must have hydrometeor size distributions prescribed but can be initialized with the

user’s choice of PSD parameters, allowing for the selection of PSDs that encompass the

entire range of possible values observed in nature.

The HUCM run used is the default run described in section 3.1.3. For the 1D-MH,

the top of the model domain, and the coincident 0�C level, was set at 4 km with a

constant relative humidity of 100% and lapse rate of 6.5 �C km-1. All ice was assumed
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to be solid (r = 917 kg m-3). Meltwater was allowed to accumulate on the surface of ice

particles and began to be shed once a critical threshold was reached. Radar calculations

were performed for both S band (l = 11.0 cm, hereafter denoted in red) and C band (l =

5.45 cm, hereafter denoted in blue). To get a comprehensive and representative sample,

the 1D-MH was run with varying parameters across the reported parameter space for

hail PSDs. Based on previous findings of bi-exponential distributions within hailstorms

(Smith et al. 1976), initial ice distributions were given by

N(D) = N0g exp(�LgD)+N0h exp(�LhD) (4.14)

where N0g = 8000 m-3 mm-1 and Lg = 1.6 mm-1 for all distributions. This graupel

distribution was chosen to replicate a Marshall and Palmer (1948) raindrop distribution

at the surface. Three size categories for the hail portion of the distributions were used:

“small” (10 <Dmax  25 mm), “large” (30 <Dmax  50 mm), and “giant” (55 <Dmax 

75 mm), with Dmax varying in 5 mm increments. The slope parameter Lh varied in

increments of 0.05 mm-1 such that the product DmaxLh fell between approximately 5

and 11, following the findings of Ulbrich and Atlas (1982) and Cheng et al. (1985). The

intercept parameter was computed according to N0h = AL4.11
h following Cheng et al.

(1985) and Federer and Waldvogel (1975) with A varying from 50 to 800 in increments

of 50. Once the parameters of the graupel and hail distributions were specified, they

were combined and treated as one encompassing ice distribution. A total of 1,952 unique

ice distributions were modeled. The parameters of these distributions are summarized

in Table 4.2.

4.3 Variability of retrieval biases in time and space for rain

Although it is known that the assumptions made in deriving the legacy retrieval relation

for rain (Eq. 4.7) may introduce errors in the retrieved LWC, it is worth investigating

these biases as they evolve in time and space within the storm. Figure 4.3 shows the
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Table 4.2: Summary of the range of parameters used in determining the modeled hail

distributions in the 1D-MH.

Size Lh DLh Dmax DDmax A DA

(mm-1) (mm-1) (mm) (mm)

Small 0.25 - 1.10 0.05 10 - 25 5 50 - 800 50

Large 0.10 - 0.30 0.05 30 - 50 5 50 - 800 50

Giant 0.05 - 0.25 0.05 55 - 75 5 50 - 800 50

predicted LWC and Z of rain at various points of the simulated storm’s life cycle from

the HUCM, colored according to log10 Nw. It is immediately evident that the relation

between LWC and Z in rain is highly variable and changes significantly over time.

At t = 2460 s (Fig. 4.3a,e), raindrops have begun to form atop and fall alongside

of the burgeoning updraft (as discussed in Khain et al. 2013), with LWC approaching 1

g m-3. Rapid size sorting due to differential sedimentation occurs with this initial rain,

with most of the updraft featuring DSDs skewed toward smaller drops with relatively

low Z for the given LWC. This is seen prominently in the Nw field with very high values

throughout the updraft indicative of a categorical underestimation of LWC by the legacy

retrieval equation, which could negatively impact efforts to achieve an accurate analysis

of the qr in developing convection. A very sharp transition to low values of Nw is seen

on the bottom fringe of the rain field, representing the size sorted large drops that have

fallen out almost instantly upon formation.

By t = 2880 s (Fig. 4.3b,f), rain DSDs have matured and are reasonably close to that

predicted by the legacy retrieval relation, though distinct signatures for both the updraft

(z = 5-8 km) and size sorted drops (z = 0-2 km) still exist, resulting in a range of over 40

dBZ for LWCs under 1 g m-3.
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Figure 4.3: Comparison of the legacy LWC-Z retrieval relation (Eq. 4.7) to LWC and

Z (due to rain only) from the HUCM at (a,e) t = 2460 s, (b,f) t = 2880 s, (c,g) t = 4620

s, and (d,h) t = 6480 s. The top row shows the parameter space of the LWC vs. Z

relationship colored according to log10 Nw in comparison to the legacy retrieval relation.

The bottom row shows the vertical cross section of log10 Nw (shown only for LWC >

0.01 g m-3) at each time with LWC contoured at 0.1, 0.5, 1.0, 2.0, 3.0, and 4.0 g m-3.

Nearly 30 minutes later at t = 4620 s (Fig. 4.3c,g), the LWC-Z relationship has

changed significantly, with the most of the rain found below the melting level and dom-

inated by the melting of hail and graupel. Relatively low values of Nw are present in the

entire region indicative of large drops and a categorical overestimation of LWC from

the legacy retrieval equation by up to 500%. This is in agreement with previous studies

(e.g., Ryzhkov et al. 2009) that found that melting graupel and hail is associated with

high ZDR values. The predominance of rain generated from ice microphysical processes

persists throughout the storm’s lifecycle once it has matured. The microphysical char-

acteristics of the updraft have changed as well. By this time, a well-formed ZDR column

(e.g., Illingworth et al. 1987; Kumjian et al. 2014) is seen within the updraft as large

raindrops are recycled into the updraft and undergo time-dependent freezing. In this
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region, the LWC-Z relationship is similar to that beneath the melting level. Outside of

and above the ZDR column, where raindrops have frozen and converted to hail or the

“freezing drops” category, Nw rises sharply as the DSDs are once again skewed toward

smaller drops.

Finally, at t = 6480 s (Fig. 4.3d,h), a new updraft centered around x = 86 km and

z = 5 km begins to develop, with high values and a very sharp gradient of Nw and an

LWC-Z relationship similar to that seen at t = 2460 s. This occurs alongside the former

updraft with a ZDR column and widespread rain generated from ice, highlighting the

spatial variability in the LWC-Z relationship that may exist at any given time in addition

to the temporal variability.

Based on these results, it is clear that the variability in space and time of the LWC-

Z relationship must be taken into account to achieve accurate retrievals of LWC. In

all of these cases, the stratification of the LWC-Z relationship with respect to Nw is

pronounced, with Nw providing a clear indication of the bias of the legacy retrieval

relation regardless of area or stage of development.

4.4 Retrievals in rain/hail mixtures

4.4.1 Estimation of LWC

In practice, it is not known a priori what the relative contributions of rain and hail are to

the measured radar variables, where each measurement is a function of all hydromete-

ors contained in the volume. However, determining the complete hydrometeor fields for

assimilation necessitates the separate estimation of LWC and IWC within the volume.

The difficulties in accurately retrieving rain LWC(Z) are exacerbated if hail is contained

in the volume. Any information about LWC from Z is completely lost if even a small

amount of hail is contained in the volume as the signal from hail can completely dom-

inate Z and result in a severe overestimation of LWC if the volume is assumed to be
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entirely rain. Unfortunately, the calculation of AH proposed by Ryzhkov et al. (2014) is

corrupted in the presence of hail, so other methods must be sought.

The use of KDP for retrieving R and LWC in the presence of hail has been widely

proposed (e.g., Seliga and Bringi 1978; Doviak and Zrnić 1993; Ryzhkov and Zrnić

1995; Zrnić and Ryzhkov 1996). Beyond its reduced sensitivity to the rain PSD com-

pared to Z, the premise of using KDP to effectively estimate LWC in rain/hail mixtures is

based on the assumption that KDP is immune to hail due to random tumbling that results

in isotropic scattering. This assumption requires better justification for wet, melting

hail which may contain a torus of water on its surface (see Figure 1 of Rasmussen and

Heymsfield 1987a), causing it to stabilize and reduce the degree of tumbling.

Vertical profiles of IWC, LWC and KDP for each hail size category at both S and

C band from the 1D-MH are shown in Figure 4.4. Within the 1D-MH, there are three

sources of hydrometeor mass: solid ice cores, the meltwater that collects on the sur-

face of each ice core, and shed drops. Because bulk schemes do not typically allow for

mixed-phase particles, in the absence of information about the PSDs modelers are most

concerned with accurately representing the bulk values of LWC and IWC with a vol-

ume. Here, LWC was considered to be the sum of the surface meltwater and shedwater,

whereas the ice cores were considered the IWC. The KDP and LWC profiles shown in

Figure 4.4 are those associated with the initial species and phase of the particles within

a given bin in order to conserve the source (i.e., the vertical profile of graupel KDP is that

due to graupel particles as they melt and after they are completely melted). Shedding

only begins to take place below 2 km whereas breakup primarily takes place in the low-

est 1 km. In general and as expected, KDP is positively correlated with the total LWC.

For all of the modeled distributions, the almost all of the graupel melts in the first 1.0-1.5

km below the 0�C level and contributes almost all of the LWC and KDP in the first km

below the 0�C level, particularly for the distributions with larger hail (Fig. 4.4b,c,e,f).

For the small hail distributions, the smaller hailstones also completely melt, resulting in

63



a preponderance of large raindrops (see Fig. 5 in Ryzhkov et al. 2013a). This causes a

slight enhancement of KDP at S band (Fig. 4.4a) but a much larger enhancement at C

band (Fig. 4.4d), where median KDP values are 5.5 � km-1 and reach as high as 9.1 �

km-1 as resonance effects become pronounced.

The impact of melting hail on KDP can be seen between 2 and 3 km for large and

giant hail (e.g., Fig. 4.4b,c,e,f). The total LWC in this layer grows by a few tenths of g

m-3 above that due to graupel, which is almost entirely melted at heights of 2-2.5 km.

Shedding of meltwater has not yet begun at these heights, so the increase of total LWC

above that of graupel is due to melting hail. There is a corresponding increase in total

KDP above the KDP due to just graupel up to or exceeding 1.0 � km-1 at S band in some

cases (Fig. 4.4b between 2 and 2.5 km). This effect is more pronounced at S band than

C band, as also found for R(KDP) retrievals in Ryzhkov et al. (2013b). These results are

somewhat in contrast to the ideas discussed in Hubbert et al. (1998) which assumed that

observed areas of enhanced KDP aloft necessitated the presence of shed drops and are

more in line with the results of Loney et al. (2002) and Snyder et al. (2017b), whose

present evidence of a notable KDP contribution from wet ice particles aloft. As such, it

is determined that wet hailstones can contribute to KDP, although for the estimation of

bulk LWC KDP is still quite insensitive to IWC within the hailstone and thus represents

the potential for a marked improvement for retrieving LWC over the use of Z.

4.4.2 Estimation of IWC

The estimation of IWC within rain/hail mixtures is challenging. Results from the pre-

vious section agree with the wider literature and indicate that KDP can be used reliably

to isolate the contribution from LWC in a rain/hail mixture. One proposed method to

separate the contributions from rain and hail (Balakrishnan and Zrnić 1990; Doviak and

Zrnić 1993) is to assume that IWC in the mixture contributes negligibly to KDP, estimate
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Figure 4.4: Vertical profiles of median IWC (g m-3, dotted black line), LWC (g m-3,

solid black line), and KDP (� km-1) at (a-c) S-band (solid red line) and (d-f) C-band

(solid blue line) for small, large, and giant hail from the 1D-MH. The LWC and KDP

due to graupel alone at each wavelength are also shown in dashed lines, respectively.

The shaded regions for total LWC and total KDP depict the interquartile range of the

distributions.

65



Z due to rain (ZLWC) from KDP, and then estimate IWC from the remaining Z which is

assumed to be due to hail (ZIWC) according to

ZIWC = Z �ZLWC (4.15)

where Z, ZIWC, and ZLWC are in linear units of mm�6 m�3. ZLWC �KDP relations were

derived from the disdrometer dataset following a procedure analogous to that described

in section 4.1 and are as follows:

ZLWC = 8.406⇥104(KDP)
1.168,(l = 11.0 cm) (4.16)

ZLWC = 2.790⇥104(KDP)
1.097,(l = 5.33 cm). (4.17)

These relations are in relatively good agreement with relations that can be derived from

parameters reported in Doviak and Zrnić (1993) and Ryzhkov et al. (2013b) that implic-

itly assumed the standard ZLWC�R relation ZLWC=200R1.6 (Marshall and Palmer 1948),

although the exponents shown here are a bit smaller. The Doviak and Zrnić (1993) and

Ryzhkov et al. (2013b) sets of relations were also tested using the following procedure

and achieved very similar results to Eqs. (4.16) and (4.17) (not shown).

Figure 4.5 shows median and interquartile values from this method (calculating

ZLWC from KDP using Eqs. (4.16) and (4.17), finding ZIWC from Eq. (4.15), and re-

trieving IWC from ZIWC using the legacy retrieval equation (Eq. 4.11)) applied at both

S band (a-e) and C band (f-j) for all size distributions from the 1D-MH. Despite the good

correlation between LWC and KDP, there is seemingly no functional relation between

the retrieved ZIWC and the actual IWC (Fig. 4.5e,j, in black), along with a much larger

spread in retrieved IWC than exists in the 1D-MH model results. Consequently, the

retrieved IWC using the legacy retrieval equation for hail (Fig. 4.5e,j, in color) exhibits

very large errors (RMSEs of 2.93 g m-3 at S band and 1.64 g m-3 at C band) with almost

no skill (Pearson correlations of -0.27 and -0.02 at S and C band, respectively).

The possible sources of error in this technique include the assumption that KDP has

only a negligible contribution from hail, the derived ZLWC�KDP relation, and the legacy
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Figure 4.5: Vertical profiles of median (a,f) LWC (g m-3), (b,g) KDP (� km-1), (c,h)

retrieved ZLWC (dBZ) using Eqs. (4.16) and (4.17), (d,i) retrieved ZIWC (dBZ) using

Eq. (4.15), and (e,j) IWC (black, g m-3) and retrieved IWC (color, g m-3) using Eq.

(4.11) from the 1D-MH. S band calculations are shown in red and C band calculations

are shown in blue. The shaded regions depict the interquartile range of the distributions.
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retrieval relation for IWC(Z). The relationship between LWC and KDP is in general

quite immune to hail and robust (see previous section) although not perfect. Beyond the

possible aforementioned slight impacts of accumulated meltwater at larger hail sizes at

S band and possibly resonant effects from the melting of small hail at C band, the small

but nonzero KDP at 4 km above ground level (⇡ 0.08 deg km-1), where only ice exists,

results in an estimated ZLWC of approximately 35 dBZ. This is quite small in an absolute

sense in relation to the total Z, however, and should not introduce significant error into

the retrieved ZIWC. The ZLWC �KDP relations, Eqs. 4.16 and 4.17, are robust and quite

constrained, with RMSEs of 1.34 dBZ and 1.09 dBZ at S band and C band, respectively,

for all values of Z. This RMSE increases to 3.07 dBZ at C band for ZLWC greater than

40 dBZ due to the aforementioned resonance effects though the relationship is still a

strong one. Because the contributions to Z are due to only the LWC of rain and the IWC

of hail and graupel, the estimates of ZIWC seem plausible. Thus, the significant errors in

retrieved IWC are very likely due to the legacy retrieval relation for hail.

This conclusion was examined further in Figure 4.6, in which the IWC from the 1D-

MH is plotted against the retrieved ZIWC (using the previously described approach) for

all distributions and compared to the legacy hail retrieval relation. In addition to radar

wavelength and maximum hail size within the volume (where resonance effects may be-

gin to affect Z measurements at larger sizes, even at S band), the strongest dependency is

seen with respect to height below the melting level. For a decrease in IWC of two orders

of magnitude, ZIWC can remain nearly constant (e.g., ZIWC = 60 dBZ corresponding to

5.5 g m-3 of IWC near the melting level to nearly no IWC near the surface). At both

wavelengths, the use of the legacy retrieval equation results in a consistent negative bias

at and above the 0�C level and a positive bias below the 0�C level, qualitatively similar

to the findings for rain in section 4.3.

Figure 4.7 is a conceptual model showing the relative contributions to IWC and ZIWC

at both S and C band from mixed-phase particles of different sizes. Proportional to the
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Figure 4.6: IWC vs. retrieved ZIWC (via Eqs. 4.16 and 4.17) for both (a) S band and (b)

C band (blue), partitioned by maximum hail size, from the 1D-MH. The legacy relation

(Eq. (4.11)) is shown in black.
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third moment of the ice size distribution, the majority of the IWC is concentrated in

the smaller sizes, which is particularly the case when significant amounts of graupel are

present, as is necessarily the case for our results given the bi-exponential distributions

modeled using the 1D-MH. In contrast, ZIWC is equal to the sixth moment of the distri-

bution (assuming Rayleigh scattering) and has a much broader maximum contribution

at larger sizes. By the time the ice reaches the surface, all graupel and hail below a

certain size (represented by the shaded regions) have completely melted, representing a

loss of the majority of the IWC. However, their contribution to ZIWC was relatively low,

and the larger hailstones that are the dominant contributors to ZIWC do not contribute

very much to the IWC. This also demonstrates the impact of the maximum hail size in

the volume, which results in a decrease in ZIWC while only minimally affecting IWC.

Additionally, the contribution to ZIWC at C band is larger than at S band for small hail

sizes and smaller than at S band for large hail sizes due to resonance effects playing a

role at smaller hail sizes at C band (see Fig. 10 in Ryzhkov et al. 2013a). All of these

factors result in a very indirect relationship between IWC and ZIWC.

Based on these results, it is clear that radar wavelength, maximum hail size, and par-

ticularly the height below the 0�C level of the radar resolution volume in question must

be taken into account to retrieve accurate estimates of IWC. To demonstrate how the

IWC(Z) relation changes with wavelength, height, and maximum hail size, power-law

regressions of the form ZIWC = a(IWC)b were found at 500 m intervals below the 0�C

level from the 1D-MH results and are shown in Fig. 4.8. Distance below the melting

level plays the dominant role over radar wavelength and maximum hail size, with the

largest changes occurring in the first 2.0 km below the melting level before leveling off

and becoming quite steady. These coefficients are only valid for the atmospheric condi-

tions prescribed in the 1D-MH, though it is reasonable to expect that similar conclusions

would hold for most atmospheric profiles beneath the 0�C level representative of envi-

ronmental conditions conducive to convection and hail production. These results are
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Figure 4.7: Conceptual model of the normalized IWC (black) and Z (red - S Band, blue

- C Band) as a function of size. The shading represents the contributions that may be

removed due to total melting.
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reflected in the proposed Hail Size Discrimination Algorithm (HSDA; Ryzhkov et al.

2013b), which seeks to identify the maximum hail size within a radar resolution volume

by using the polarimetric variables in an analogous manner to the operational hydrome-

teor classification algorithm. In agreement with the results shown here, the membership

functions are constant below 3 km below the 0�C level. Thus, the radar wavelength,

maximum hail size in the volume estimated from the HSDA, and the height of the vol-

ume with respect to the 0�C level can all be used to select more appropriate retrieval

relations and improve the estimates of IWC from Z.

Figure 4.8: Regression coefficients from the 1D-MH of the form ZIWC = a(IWC)b,

where ZIWC is in linear units of mm6 m-3 and IWC is in g m-3 for small, large, and giant

hail at 500 m intervals below the melting level for S and C band.

To further strengthen the justification for the estimation of ZIWC using this approach,

the relationship between IWC and ZIWC partitioned by height from the HUCM is shown

in Fig. 4.9. Model output was accumulated over a 30 min period starting from when

hail first reached the surface to capture the variability of IWC-Z relations throughout the

developing and mature stages of the storm at each height interval. Here, as before, IWC

represents hail and graupel together due to the often abrupt conversion between the two

categories in some cases in the HUCM microphysics (due to graupel reaching a size or
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density threshold; see Ilotoviz et al. 2016 for more details) as well as the fact that many

microphysics schemes do not explicitly treat graupel and hail separately. This sudden

transition is easily seen in Figure 4.10a at z = 4-6 km.

Figure 4.9: Median ZIWC for binned IWC from the HUCM partitioned by height for

bins with 10 or more points. IWC was binned at every 0.02 g m-3 between 0.0 and 0.1

g m-3 and at every 0.1 g m-3 between 0.1 and 5.0 g m-3. The shaded regions depict

the interquartile range of the distributions. The legacy retrieval relations for dry (solid

black; Eq. 4.11) and wet hail (dashed black; Eq. 4.12) are shown. The melting level is

at approximately z = 3.5 km.

The results seen in Figure 4.9, for which ZIWC is calculated explicitly and rigorously

for each hydrometeor class, agree quite well with the retrieved ZIWC from the 1D-MH in

Figure 4.6. The legacy IWC(Z) relationship generally performs poorly above z = 4 km,
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where graupel dominates from the riming of snowflakes aloft before quickly melting

below the 0�C level or converting to hail (Fig. 4.10a). For a given value of Z, graupel

exhibits a much larger IWC than is predicted by the legacy hail retrieval relation due to

its lower density and smaller size. The use of the legacy retrieval relations for hail will

thus result in a severe underestimation of IWC aloft of up to 3 g m-3 through a large

depth of the storm (Fig. 4.10g). A separate graupel retrieval relation should instead be

considered.

At and below the 0�C level, the same biases found from the 1D-MH are seen from

the HUCM data. The use of the wet hail retrieval relation (Eq. 4.12) does a better job

than the dry hail retrieval relation (Eq. 4.11) although there is still a positive bias in

retrieved IWC (Fig. 4.10g) and the full variability of the IWC(Z) relation is not well

represented. As the Z calculated for hail in the HUCM consists of both the ice core

and surface meltwater, there is an increase in Z owing to the increase in the dielectric

constant of hail as meltwater accumulates on the surface. However, the primary source

of error in using a static hail retrieval relation comes from the precipitous loss of IWC

as hail and graupel fall and melt. This is easily seen in Figure 4.10(b-e), where graupel

and small hailstones melt very quickly into rain below the 0�C level while the largest

hail, which dominates the ZIWC, does not lose much mass. The hail mass distributions

tend to become relatively stable about 2 km below the melting level (Fig. 4.10e,f) in

good agreement with the 1D-MH. Although this example is from a Eulerian frame of

reference at a given time and therefore is not following the same volume of precipitation

as it falls in a Lagrangian sense, the results are broadly consistent with the 1D-MH as

well as conceptual expectations of the impact of melting hail on Z.

4.5 Summary and Future Work

Radar data are the only source of hydrometeor information available for assimilation on

the scale of convection-resolving models, which have seen a surge in development in
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Figure 4.10: HUCM output for t = 4260 s showing (a) contours of rain (green), hail (red),

and graupel (blue) mass every 0.5 g m-3 beginning at 0.5 g m-3, (b-f) mass distributions

of rain (green), hail (red) and graupel (blue) at 1-km intervals in the vertical at x = 53.1

km and with the IWC and ZIWC of the distributions shown, and (g) the bias in retrieved

IWC (g m-3) when using the legacy retrieval equation (Eq. (4.11)). The 0�C isotherm is

shown in black in (a) and (g) whereas the stars in (a) denote the locations of the sampled

mass distributions.
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the past two decades and will play an increasingly large role in the warning decision

process of forecasters in the future. Both forward operators and retrieval equations can

be used to accomplish this but often require many limiting assumptions.

The goal of this study was to investigate the utility of the most simplified versions

of commonly-used retrieval equations for LWC in pure rain and LWC and IWC within

rain/hail mixtures and the consequences of making such assumptions. These simplified

retrieval equations for rain, hail, and snow are derived in detail, and their assumptions

and limitations are discussed. Two spectral bin models are used in the study: the 1D-

MH model (see section 3.1.1) and the HUCM (see section 3.1.3). The 1D-MH model is

used to simulate the polarimetric radar characteristics of 1,952 different melting hail size

distributions for both S and C band. The HUCM is used to simulate a hailstorm from

its inception and to get a qualitative look at how the biases of these retrieval relations

behave in space and time. The general conclusions are that:

1. The relation between LWC and Z for rain varies significantly and is not constant

in space or time, corroborating the results of many previous studies (e.g., Atlas

and Chemla 1957; Battan 1973; Austin 1987). The use of the legacy retrieval

equation for rain results in a systematic underestimation of LWC in developing

updrafts and a systematic overestimation of LWC in rain derived from melting

hail and graupel, the dominant source of rain below the melting level in mid-

latitude convection. Size sorting processes will also limit the accuracy of the

legacy retrieval equation as PSDs deviate from the Marshall-Palmer distribution

implicit in the rain retrieval relation. The use of Nw, which can be estimated from

Z and ZDR, offers reliable insight into where and how severely the retrievals of

LWC from the legacy retrieval relation will be biased.

2. In pure rain at both wavelengths, LWC(Z) exhibits the largest errors whereas in-

corporating Nw results in the best retrievals. Estimates of R are also superior when
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using Nw at S band. However, accurate estimates of Nw require reduced resolu-

tion when compared to other radar variables and may be more difficult to estimate

accurately at C band due to possible attenuation affects. With that in mind, the

next best retrievals of R and LWC at S band are from AH, which can be obtained

with knowledge of the radar wavelength and a background temperature field from

a model, whereas at C band the best retrievals of R and LWC are from KDP. Both

AH and KDP have the additional advantage over Z of being immune to radar mis-

calibration and partial beam blockage.

3. Within rain/hail mixtures, the LWC and IWC must be estimated separately. All

information content about LWC in Z using the legacy retrieval relation for rain can

be lost if even a small amount of hail is present in the volume. The calculation of

AH also fails in the presence of hail, so the use of KDP to estimate the LWC in the

presence of hail is recommended for both S and C band.

4. Once the LWC within a rain/hail mixture is known, the ZIWC can be estimated.

However, the legacy retrieval relation for hail may result in large errors, where

neither the dry or wet forms of the legacy hail retrieval equation capture the full

variability of the parameter space. A categorical underestimation of IWC exists

above the 0�C level where lower-density graupel dominates the IWC, whereas a

consistent overestimation of IWC below the 0�C level exists as Z is dominated by

the largest hailstones and the bulk of the IWC comes from the smallest hailstones

and graupel, which quickly melt. The radar wavelength, maximum hail size, and

particularly the height below the melting level must be taken into account when

attempting to retrieve the IWC.

Although more accurate estimates of LWC and IWC are desirable for model analy-

ses, they still represent only one moment of the hydrometeor PSDs and once assimilated

will suffer from the same limitations encountered when using single-moment micro-

physics more generally. In addition to the rain and rain/hail mixtures investigated here,
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more work needs to be done on the utility of retrieval relations for other hydrometeor

types (e.g., snow) as well as the impacts of the performance. Other possibilities exist

for employing dual-polarization radar data for microphysical retrievals. For example,

results from the polarimetric hydrometeor classification algorithm could be used to de-

termine the dominant hydrometeor species in a volume and subsequently which retrieval

relation to use instead of relying on empirical rules based on model background temper-

ature. In addition to identifying regions containing hail (a crucial responsibility if one is

to achieve useful estimates of LWC using Z), the “big drops” category in the operational

hydrometeor classification algorithm (Park et al. 2009) can be used to identify regions

with rain PSDs skewed toward larger drops due to size sorting. The impact of determin-

ing q from the hydrometeor classification algorithm was examined by Tong (2015) for

the ARPS cloud analysis (see section 3.1.4.2). It was found that q determined from a

polarimetric hydrometeor classifiation algorithm produced more realistic hydrometeor

fields in the analysis (such as rain within updrafts above the environmental 0�C level)

and allowed for multiple species to be retrieved within a volume. However, 1-h forecasts

showed little impact of the modified q fields, with the choice of microphysics scheme in-

stead exerting the dominant control on forecast outcomes. For the purpose of improving

short-term forecasts, model analyses may be better served by utilizing dual-polarization

radar data to improve other model state variables beyond q. As such, the remaining

two chapters of this dissertation focus on using dual-polarization data for retrieving and

assimilating thermodynamic and moisture fields to improve short-term forecasts.
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Chapter 5

Polarimetric Thermodynamic Retrievals

5.1 Diabatic heating in updrafts

5.1.1 Connection between ZDR columns and heating rate

Numerous distinct polarimetric “signatures” have been identified and tied to dynamical

and microphysical processes within storms. One of the most ubiquitous polarimetric sig-

natures observed in deep moist convection is the so-called “ZDR column”. ZDR columns

are vertical protrusions of positive ZDR above the environmental 0�C level and are in-

dicative of wet ice particles and large, oblate raindrops in the process of freezing lofted

by the updraft. Values of ZDR within these columns can exceed 4 dB at S band and can

reach beyond 3 km above the 0�C level in extreme cases (Kumjian et al. 2014; Snyder

et al. 2015). Because ZDR columns are associated with convective storm updrafts, they

can theoretically be used as identifiers for regions of positive temperature perturbations

from latent heat release due to condensation and/or freezing, a primary driver of verti-

cal motion in convection. Although the connection between ZDR columns and updraft

location has been long known (e.g., Hall et al. 1984; Illingworth et al. 1987; Tuttle et al.

1989; Ryzhkov et al. 1994), recent work has begun to investigate the relationship be-

tween ZDR columns and updraft intensity. Simulations in Kumjian et al. (2014) showed

a relationship between ZDR column depth (that is, the distance above the 0�C level that

enhanced values of ZDR extend within the column) and updraft strength. These simula-

tion results have been bolstered by observational evidence. Both Picca et al. (2010) and

Kumjian et al. (2014) showed a correlation between ZDR column height and hail mass

at the surface at appreciable lag times, which has the potential to provide increased lead

time for forecasting hail at the surface as compared to traditional metrics such as 20-dBZ
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echo top height. Associations between the environmental instability (i.e., CAPE), storm

relative helicity, and lifted condensation level temperature and the depth of ZDR columns

have also been uncovered (van den Broeke 2016), along with some evidence of larger

aerial extent of ZDR columns for stronger tornadoes compared to weaker ones (van den

Broeke 2017). However, evidence of systematic differences between ZDR columns in

non-tornadic versus tornadic storms remains elusive and warrants further study (Picca

et al. 2015; van den Broeke 2017). For a more complete review of ZDR columns, see

Kumjian et al. (2014) and Snyder et al. (2015).

Both the conceptual understanding of ZDR columns as well as the aforementioned

results from both observational and modeling studies support the notion of ZDR col-

umn characteristics (e.g., depth, aerial extent) being positively associated with updraft

strength. However, the connection between the latent heating rate and ZDR column char-

acteristics has not been thoroughly investigated. Although one would expect there to be

a correlation given latent heat release due to condensation being a major driver of con-

vective updrafts, this has yet to be shown definitively. To serve as motivation for the

assimilation work presented in Chapter 6, a brief examination is presented here.

Observing ZDR column depth with precision can be difficult owing to the coarse ver-

tical resolution of the WSR-88D network at distances far from the radar (e.g., van den

Broeke 2016, 2017). In addition, direct observations of the latent heating rate within

updrafts are not readily available. The HUCM is used to simulate ZDR columns and

compare them to the modeled net latent heating rate. The case used is the same as

described in section 4.2. However, simulations are performed for five CCNsfc concen-

trations to increase the sample size and incorporate the effects of CCN concentration:

100 cm-3, 500 cm-3, 1000 cm-3, 1500 cm-3, and 3000 cm-3. All other aspects of the

model configuration are held constant.

Predicated on the widespread use of look-up tables for deriving vertical profiles of

convective heating, such as those utilized in the SLH algorithm (see section 2.2.3.1), a
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similar approach is used to show the connection between ZDR columns and the latent

heating profile. Using the maximum height of the 0.5-dB surface as an index, the mean

vertical profile of maximum heating is found for each index in increments of 0.1 dB

using data from the entire duration of each run. The results combining all five CCN

concentrations are shown in Figure 5.1. Due to the relatively small sample size, a 3 x

3 mean filter is applied to the chart to remove some noise. Overall, there is a very pro-

nounced and monotonic relationship between the height of the 0.5-dB surface and the

latent heating rate in the column above it. For the tallest columns – those extending up

to 3.0 km above the environmental 0�C level — the maximum heating rate exceeds 300

K h-1. The height at which the maximum heating rate occurs also rises, from ⇡ 4.0 km

when the 0.5-dB surface is 0.4 km above the environmental 0�C level to ⇡ 7.0 km when

the 0.5-dB surface reaches 3.0 km above the environmental 0�C level. This result is

particularly encouraging because the profile of latent heating shown is occurring simul-

taneously with the measured height of the ZDR column with no latency. Although not

shown, there was no change evident in the relationship between ZDR column depth and

the vertical profile of latent heating with a change with CCN. The standard deviation

of the heating rate typically increases with height and peaks between ⇡ 7.0 and 8.0 km

before dropping precipitously above that (along with the heating rate itself). As indi-

vidual plumes rise, the height of the maximum heating rate ascends and its magnitude

increases, and the ZDR column grows underneath it in tandem. At a certain point, how-

ever, the plume becomes disconnected from the surface and begins to weaken, causing

the ZDR column to rapidly descend. As a consequence, the standard deviation of the

heating rates comprising the mean values shown in Figure 5.1 is maximized for ZDR

column heights of ⇡1.0-1.5 km, as the 0.5-dB surface exists at this height both during

the initial growth phase of the plume (where the heating is concentrated at relatively

low levels with minimal heating aloft) and the collapsing phase of the plume and ZDR

column, where the heating is maximized aloft. However, overall the standard deviation
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is relatively low when compared to the mean heating rate, with some of the smallest

standard deviations (⇡ 50 K h-1) for the largest heating rates, indicative of a constrained

dispersion and high confidence of strong heating in this region. Although not shown due

to the possible presence of negative heating rates (which could slightly skew the mean),

the coefficient of variation, defined as the standard deviation normalized by the mean,

shows this well, with the smallest values in the regions of maximum heating that reaches

a minimum for the tallest columns. Other ZDR column thresholds (e.g., 1.0-dB, 1.5-dB)

were examined with similar conclusions.

Figure 5.1: Mean vertical profile of latent heating (K h-1, shading) and its standard

deviation (K h-1, contours) as a function of the 0.5-dB height above the environmental

0�C level composited from the HUCM for runs with CCNsfc = 100 cm-3, 500 cm-3, 1000

cm-3, 1500 cm-3, and 3000 cm-3.

As a point of comparison, a similar approach based on the SLH algorithm was taken

using the maximum height of the 10-dBZ surface in 0.1 km increments and smoothed
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in the same way as Fig. 5.1. Although the authors of the SLH algorithm note that it is

not meant to be used at such high resolutions in its current form, it is still instructive to

evaluate its performance compared to using ZDR columns. Figure 5.2 shows the mean

vertical profile of latent heating as a function of the 10-dBZ echo top height. In order

to guarantee the results apply only to regions of convection, only model columns with

surface Z � 50 dBZ are used. Overall, there is still a monotonic relationship between

the 10-dBZ height and the magnitude of the latent heating. However, there is more

variability in the heating profiles, which manifests as smaller values of mean heating

rate and larger standard deviations for a given magnitude of heating. For 10-dBZ heights

of less than ⇡ 9.5 km, for which the mean maximum heating rate is less than 25 K h-1,

standard deviations exceed 50 K h-1 due to the presence of latent cooling in downdrafts.

The coefficient of variation (not shown) also indicated more dispersion than when using

ZDR columns for the highest 10-dBZ echo top heights. Although the highest heating

rates are, overall, in the region of the highest 10-dBZ heights, more modest 10-dBZ echo

top heights offer little predictive value, with cooling downdrafts occurring alongside

warming updrafts for the same 10-dBZ heights and standard deviations that exceed the

magnitude of the maximum heating rate. The performance of the 10-dBZ height was

even poorer when using lower thresholds of surface Z (not shown).

As noted previously, it is often difficult to observe both the height of ZDR columns

and the 10-dBZ echo top height with great precision in practice due to poor vertical

resolution of most operational radars. However, it is evident from these results that ZDR

columns have the advantage of more precisely pinpointing the location of the strongest

heating plumes, with changes in the maximum heating rate scaling more linearly and

over a large range of values compared to the 10-dBZ echo top height.

Despite combining the results from runs with different CCN concentrations, the sam-

ple size is still quite limited. Only a case of very strong convection was examined in the

HUCM, which neglects the importance of accurately determining the vertical profile
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of heating in weaker convection. Additionally, although only one thermodynamic and

kinematic environment was examined, such variability may impact the quantitative na-

ture of the relationship between ZDR column height and the latent heating rate. Future

work will study the relationship between ZDR column height and updraft strength by

using vertically-pointing radars to measure vertical velocity in tandem with co-located

ZDR columns observed from nearby polarimetric radars.

Figure 5.2: As in Fig. 5.1, but as a function of the maximum 10-dBZ height.

5.1.2 Early ZDR signature of developing convection

In addition to the aforementioned ZDR columns associated with mature updrafts in deep

moist convection, enhanced ZDR coincident with low values of Z has been observed

aloft in the nascent stages of both developing tropical (Caylor and Illingworth 1987;

Illingworth 1988; Knight et al. 2002) and continential (Knight 2006) convection. These
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ZDR values may be quite anomalous, with ZDR values approaching 3 dB reported for Z

of only ⇡5 dBZ (Knight 2006). This was initially hypothesized to be due to the pres-

ence of ultragiant nuclei, which can grow rapidly by deposition in the lowest portions

of clouds, but no conclusive evidence yet exists to explain the formation of such large

drops so quickly. Details remain elusive in part because of the difficulty of observing

such phenomena; planes will struggle collect in situ data due to the latency in getting the

plane into developing convection during its earliest stages, and the plane may undersam-

ple such sparse large drops (Knight 2006), whereas range-height indicator (RHI) radar

scans need to be pre-emptively pointed in the correct direction of developing convection,

which is not always known.

An example of this signature observed from an operational radar is shown in Figure

5.3. Radar data from each scan were binned by height in 1-km increments (except above

10 km, where a 2-km increment is used) for a developing thunderstorm. It is seen that

for the first scan in which the Z reaches 10 dBZ (21:47:09 UTC), the mean ZDR at this

level (between 5 and 6 km) exceeds 0.5 dB. Less than 5 minutes later, at 21:54:45 UTC,

the Z field has deepened appreciably and extends up to 10 km, and the anomalous ZDR

signature is less distinct, instead resembling a more typical size sorting signature for Z

values of reaching approximately 30 dBZ.

Figure 5.4 shows a time-height series of the maximum Z and ZDR from the afore-

mentioned run of the HUCM with CCNsfc = 3000 cm-3 compared to the same plots for

radar observations of convection in Knight (2006). The HUCM is able to reproduce

this anomalously high ZDR during the earliest stages of development, with ZDR values

exceeding 1.0 dB between ⇡ 3.5 and 5.0 km for Z values less than 10 dBZ. The time-

height series from the HUCM is also in qualitative agreement with the overall evolution

in the observations (Fig. 5.4, bottom).

Notably, although the HUCM run in this example is highly polluted, no giant or

ultragiant nuclei were included. The evolution of this feature is examined further in
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Figure 5.3: Time-height series of (top) maximum Z and (bottom) mean ZDR of a devel-

oping thunderstorm from the Des Moines, IA (KDMX) WSR-88D on 14 June 2014.
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Figure 5.4: (Top) Time-height series of maximum Z (color) and ZDR (black) from the

HUCM for a storm in a highly polluted environment (CCNsfc = 3000 cm-3). (Bottom)

Analogous plots from radar observations for strong convective cases (Fig. 6 of Knight

et al. 2002).
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Figure 5.5, which shows vertical cross sections of Z, ZDR, and the rain PSDs in the

area of enhanced ZDR. The traditional “first echo” forms atop the burgeoning updraft

before beginning to fall down the sides of the updraft. A separate stem of Z forms on

the upwind (in the case of Fig. 5.5, on the left) side of the updraft. The anomalously

high ZDR forms at the base of this stem, exceeding 1.0 dB for Z of -3.6 dBZ and ex-

ceeding 2.0 dB for a Z of 6.4 dBZ (Figure 5.5, bottom). This is remarkably consistent

with Knight’s description of his observations, in which he stated that “positive ZDR is

found within and to the upwind side of the updraft, separate from the conventional first

precipitation echoes, which appear first at higher altitude, generally downwind of the

updraft core, and have no significantly positive ZDR” (Knight 2006). The rain PSDs

(Figure 5.5, bottom) through this time suggest very rapid growth through coalescence,

as the distribution flattens out appreciably in the span of 5 minutes.

The impact of the initial CCN concentration on the radar variables during the early

stages of convection is examined in Figure 5.6 using the aforementioned five simula-

tions. The burst of anomalously high ZDR during the initial stages of development (t

= 13-17 min) is absent for the lowest CCN concentrations, and becomes increasingly

robust as CCN concentration increases. This seems to be consistent with the conceptual

model for the impact of CCN concentration on precipitation development. For low CCN

cases, the available moisture is spread among relatively few CCN, eventually inducing

collision-coalescence processes and a gradual increase in ZDR. For the highest CCN

cases, warm rain production is generally suppressed as the drop spectrum is narrowed

and ice phases play an increasing role in precipitation production. However, there are

many small drops available to be collected, such that any single drop that stochastically

begins to grow (or ice particle falling from above in the traditional “first echo” region,

as hypothesized in Knight 2006) can grow large very quickly.
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Figure 5.5: Vertical cross sections of (top) Z, (middle) ZDR, and (bottom) rain PSDs

at 1-min intervals in the developing stages of a storm in a highly polluted environment

(CCNsfc = 3000 cm-3) from the HUCM. Vertical velocities in excess of 5 m s-1 are shown

by vectors. The rain PSDs are for locations denoted by stars in the top and middle rows.
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Figure 5.6: Time-height series of (left) maximum Z and (right) ZDR at the location of

the maximum Z for CCNsfc = 100 cm-3, 500 cm-3, 1000 cm-3, 1500 cm-3, and 3000 cm-3

from the HUCM.
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If the magnitude of this early anomalous ZDR signature may be tied to the initial

CCN concentration, how should this inform any application for storm-scale NWP mod-

els? The rate of development of convection as a function of CCN is shown in Figure

5.7. A number of changes are evident. First, as expected from previously described

theory, the time of the first -10 dBZ echo is delayed for larger CCN concentrations as

warm rain processes are increasingly suppressed. Perhaps more importantly, the rate of

the increase in the maximum Z with time is positively correlated with CCN concentra-

tion, as is the height of the maximum Z and the magnitude of the maximum Z. This

suggests that, if the early ZDR signature is indeed tied to the available CCN or ongo-

ing microphysical processes in the earliest stages of developing convection, information

could theoretically be garnered about the expected rate and characteristics of the pending

convective development.

The investigation of this early ZDR signature was only cursory, and is limited by a

small sample size from the HUCM and a continued lack of high spatial and temporal

resolution observations. Other proposed mechanisms for the formation of this signa-

ture cannot be ruled out, and there is no guarantee that only one pathway is available to

produce this signature (e.g., both ultragiant nuclei with any CCN concentration, or areas

free of ultragiant nuclei with otherwise high CCN concentrations could result in the pro-

duction of anomalously high ZDR). Still, it seems noteworthy that the HUCM was able

to reproduce this signature as described for observations in the literature in the absence

of giant and ultragiant nuclei and with a clear impact of CCN concentration. Knight

(2006) note that this curious feature may not have significant dynamical consequences

because it is transient and likely due to only a very small number of drops, but rather

may be important for what it may signify indirectly (i.e., the presence of a considerable

amount of small drops in the early stages of developing convection). Regardless of the

exact mechanisms responsible or the connection with resultant storm development and

intensity, the presence of a size sorting signature consisting of anomalously high ZDR
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Figure 5.7: Time-series of the maximum Z for CCNsfc = 100 cm-3, 500 cm-3, 1000 cm-3,

1500 cm-3, and 3000 cm-3 from the HUCM starting at the first appearence of -10 dBZ.

Markers are colored according to the height at which the maximum Z occurs.
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colocated with low Z at the earliest stages of developing convection can at the very least

be used to locate burgeoning updrafts and remains potentially relevant to storm-scale

NWP. The ubiquity of this signature in developing convection is the motivation behind

the ongoing development of a size-sorting detection algorithm for use in aviation to

detect developing convection effectively (Picca et al. 2017).

5.2 Diabatic cooling in the melting layer

5.2.1 Background

Nearly concurrent with the adoption of radar for weather surveillance was the discov-

ery of the so-called radar “bright-line” (now known as the “brightband”; e.g., Byers

and Coons 1947), which was quickly and correctly understood to be associated with

the melting layer (e.g., Cunningham 1947; Austin and Bemis 1950). The brightband

signature was first identified by a layer of enhanced Z, which to a first order is due

to the sharp increase in the dielectric constant of snowflakes as they begin to melt be-

fore collapsing into smaller raindrops and decreasing their number concentration due

to increased fallspeeds. However, a number of secondary processes can occur within

the melting layer, including aggregation and breakup of snowflakes, although there is

no consensus about the significance of such processes (e.g., Fabry and Zawadzki 1995,

see section 5.2.3.5). The unique polarimetric characteristics of the brightband were also

observed relatively early on. Pronounced enhancements in the linear depolarization ra-

tio (LDR; Browne and Robinson 1952; Humphries 1974; Anderson 1974) and circular

depolarization ratio (CDR; Humphries and Barge 1979) below the height of the Z max-

imum were observed soon after the discovery of the brightband. Similar observations

were subsequently made in ZDR by Bringi et al. (1981). Zrnić et al. (1993) presented

a detailed analysis of polarimetric melting layer signatures coupled with in situ aircraft

measurements, noting a pronounced reduction in rhv (e.g., Illingworth and Caylor 1989)

attributed to appreciable d caused by large wet aggregates exceeding 1 cm in diameter,
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rather than simply having a wide range of hydrometeor types, shapes, and sizes within

the layer. This change in d as particles grew due to aggregation also resulted in an

oscillatory KDP profile through the melting layer, which was otherwise positive with a

maximum near the height of the Z maximum. The maximum ZDR occurs at a lower

height than the maximum Z. The distance between the Z and ZDR maxima can vary

widely, with depths of 700 m (e.g., Zrnić et al. 1993) to 200 m or less (e.g., Humphries

and Barge 1979) reported.

More recently, quasi-vertical profiles (QVPs; Ryzhkov et al. 2016) have emerged as

a convenient way to study the evolution of the polarimetric signatures of microphys-

ical processes in time. QVPs display a timeseries of azimuthally-averaged radar data

from a high elevation scan in a time-height format. The large increase in the number of

samples due to the averaging procedure results in significantly reduced errors and en-

hanced data quality compared to typical plan-position indicator scans, allowing for the

detection of more subtle polarimetric signatures that may have otherwise been obscured

by noise (e.g., Griffin et al. 2018). However, the averaging procedure will obscure any

heterogeneities within the averaging domain and so works best in uniform precipitation,

such as stratiform rain or snow. The time-height format of QVPs makes them ideal for

comparing against the output of the 1D-MS.

A demonstrative example of a typical polarimetric brightband signature is shown

in Figure 5.8. These vertical profiles were derived from averaging QVP data from an

MCS in northern Oklahoma on 20 May 2011 from Vance Air Force Base WSR-88D

(KVNX) between 10:14:51 UTC and 11:15:33 UTC during a pronounced and fairly

intense bright band signature. The KDP is calculated using the methodology of Griffin

et al. (2018) that removes the contribution of d to FDP by removing noisy FDP and

replacing it with a linear interpolation from above and melting the melting layer when

calculating KDP along a given radial. The melting layer is approximately 1300 m deep

(based on the depth of the layer with reduced rhv) and features an increase in Z of
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Figure 5.8: Vertical profiles of (a) Z, (b) ZDR, (c) KDP, and (d) rhv derived from a QVP

from the Vance Air Force Base WSR-88D (KVNX) radar averaged between 10:14:51

UTC and 11:15:33 UTC on 20 May 2011. The approximate height of the 0�C level is

shown by the dashed line.

approximately 13 dBZ, a ZDR maxima of 1.8 dB located 400 m below the height of the

Z maxima, an increase in KDP to nearly 0.1 � km-1, and a reduction in rhv to below 0.9.

This depth is larger than that of a typical melting layer and is due to the averaging of the

QVP over a range of times in which the height of the brightband varied. Although the

average profiles in Figure 5.8 do not show the large degree of variability of brightband

characteristics for this event, they provide a general sense of the polarimetric features

characteristic of a melting layer within stratiform precipitation.

Because of its ubiquity and importance, many studies have sought to model the

brightband and its effects to gain insight into the microphysical characteristics of the
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melting layer. Despite their widespread use, models with bulk microphysical parame-

terization schemes generally fail to accurately represent the bright band (e.g., Li et al.

2008; Gallus and Preifer 2008) due to the lack of mixed-phase hydrometeor species and

rigorous melting procedures, which strongly impact the particle scattering characteris-

tics (Iguchi et al. 2014). Phillips et al. (2007) found that the assumption of instantaneous

melting will underestimate the cooling due to melting, which results in insufficient feed-

back processes that may drive convection. Because of the insuffiencies of bulk micro-

physical models to properly simulate the complexity of the melting layer, many studies

employ spectral bin models with a more explicit treatment of the melting process.

The earliest studies in modeling the melting layer focused primarily on the represen-

tation of the physical processes of a melting snowflake (e.g., Matsuo and Sasyo 1981;

Mitra et al. 1990). However, due to the connection between the melting layer and its

observed radar signature, many subsequent studies have included electromagnetic scat-

tering components of differing complexity to compare the observed Z in brightbands

with the modeled Z in one-dimensional (e.g., Yokoyama and Tanaka 1984; Klaasen

1988; Hardaker et al. 1995; Fabry and Szyrmer 1999; Gray et al. 2001; Olson et al.

2001; Zawadzki et al. 2005) and three-dimensional (e.g., Phillips et al. 2007; Planche

et al. 2014; Iguchi et al. 2014) models. A lesser number of studies have made efforts to

reproduce observed polarimetric signatures in the bright band (e.g., Russchenberg and

Ligthart 1996; D’Amico et al. 1998; Giangrande 2007; Trömel et al. 2014). The ob-

jective of these studies has generally been to better understand the physical processes

within the melting layer that lead to brightband signatures and to evaluate the perfor-

mance of microphysics schemes in their ability to reproduce these signatures.

As discussed in section ??, cooling due to the melting and evaporation of precipita-

tion within the melting layer can have significant impacts not only for observed weather

conditions at the surface but for the dynamics and subsequent downstream development
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of precipitation systems. Given the potential for polarimetric measurements to pro-

vide increased insight into ongoing microphysical processes, it is worth investigating

whether these measurements can be utilized for improved thermodynamic retrievals by

better quantifying microphysical processes within the melting layer. In this study, the

1D-MS model described in section 3.1.2 (with full details of the model available in the

Appendix) is used to relate the polarimetric characteristics of modeled brightbands to

the diabatic cooling rate within them. Sensitivity tests for a number of model param-

eters will be shown in section 5.2.3, along with a brief validation of the model against

observations in QVP format for the stratiform region of a severe MCS. Section 5.2.4

will investigate the impact of the environment on the resultant polarimetric brightband,

and the efficacy of utilizing polarimetric brightband signatures for thermodynamic re-

trievals. Finally, a brief examination of the “sagging” brightband signature using the

1D-MS will be undertaken in section 5.2.5.

5.2.2 Model description

The 1D-MS is a one-dimensional Lagrangian spectral bin model that resembles those

used in other studies of melting snow (e.g., Szyrmer and Zawadzki 1999; Zawadzki

et al. 2005; Giangrande 2007; Grim et al. 2009; Trömel et al. 2014) with a number of

improvements. As part of this effort, the model was translated from the Interactive Data

Language (IDL) language it was originally written in to Python in an effort to increase

its portability and shareability. A full list of variables and their units (and values, if

applicable) is presented in Table 5.1.

PSDs consist of 80 size bins, and particles are tracked downward from the top

of the model as they melt and/or evaporate/sublimate. Interactions between particle

bin sizes (e.g., aggregation, breakup, and shedding of meltwater) are not currently in-

cluded, allowing for one snowflake aloft to correspond to one raindrop at the surface
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and the size of each particle bin to change with height (i.e., in the absence of evapora-

tion/sublimation, the bins are mass-conserving).

To calculate the initial bin sizes of snow aloft, the density of snow (rs) is assumed

to be a function of the particle diameter (D) and frim according to

rs = 0.178 frimD�0.922 (5.1)

Brandes et al. (2007), and is capped at a maximum allowable snow density (rs,max) of

0.5 g cm-3 (Zawadzki et al. 2005). The frim is allowed to vary from 1 (unrimed snow)

to 5 (heavily rimed snow). It can be shown that, using Eq. (5.1) and the assumptions of

snowflake-raindrop correspondence, the initial diameter of a snowflake corresponding

to a given raindrop of an equivalent mass (with diameter Dr) can be found according to

D = 2.29 f�0.48
rim D1.443

r . (5.2)

Example bin sizes as a function of height for typical raindrop diameters are shown in

Figure 5.9 using Eq. (5.2).

Two options exist for defining the PSD at each height. In the original model for-

mulation, the PSD for rain is defined at the surface (N(Dr,z0); referred to here as the

“bottom-up” approach). Various PSD options have been implemented in the model,

including monodispersed size distributions, inverse exponential distributions, and size

distributions derived from mean rain size distributions measured at the surface by a dis-

drometer in Oklahoma (Schuur et al. 2005) and partitioned by surface Z. These rain

DSDs are defined using 0.1-mm-wide bins ranging from 0.05 to 7.95 mm. The concen-

tration of particles at each height z, N(D,z), is found by conserving concentration flux

(Szyrmer and Zawadzki 1999):

u(D,z)N(D,z)dD = ur(Dr,z0)N(Dr,z0)dDr (5.3)
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Figure 5.9: Particle size for unrimed snow as a function of height for raindrop diameters

of 0.5, 1.0, 2.0, 3.0, and 4.0 mm found according to Eq. (5.2).

where u(D,z) is the terminal velocity of particles of diameter D at height z and any stage

of melting and ur(Dr,z0) is the terminal velocity of rain at the surface. The terminal

velocity of rain is given by Brandes et al. (2005),

ur(Dr,z) =
✓

ra,0

ra(z)

◆0.4⇣
�0.1021+0.4932Dr�

0.9551D2
r +0.07934D3

r �0.002363D4
r

⌘ (5.4)

where (ra,0/ra(z))0.4 is a correction factor for the local air density (Foote and du Toit

1969). The terminal velocity of a particle at any stage of melting is found as a function

of the meltwater mass fraction ( f ), defined by

f =
mw

mi +mw
(5.5)

where mw and mi are the mass of water and ice in the particle, respectively, and the

terminal velocity of a raindrop of equivalent mass, following Szyrmer and Zawadzki

(1999):

u(D,z) =
ur(Dr,z)

g( f )
, (5.6)
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where

g( f ) = a�b f (1+ f ), (5.7)

a = 1.26r

�1/3
s and b = 0.5(a�1). Equation (5.6) becomes equivalent to (5.4) when the

particle is fully melted ( f = 1.0).

The “bottom-up” approach was used in previous studies employing the prior itera-

tions of this model (e.g., Kumjian et al. 2016). However, inherent in the assumption of

extrapolating upward from a surface rain distribution to get an initial PSD is mass con-

servation, which was appropriate in the older version of this model where only particle

melting was considered. In addition, when using a PSD of rain at the surface (e.g., the

average observed PSDs of Schuur et al. 2005), it does not account for any modifications

that may have modified the rain PSD below the melting layer (e.g., breakup). In this

updated version of the model, evaporation and sublimation are incorporated, and mass

losses from the bin are possible. Therefore, a second option has been added to define

the snow distribution aloft (referred to as the “top-down” approach) that defines the size

distribution at each height in reference to the top distribution according to

u(D,z)N(D,z)dD = us(Ds,ztop)N(Ds,ztop)dDs. (5.8)

where Ds is the equivolume diameter of the initial unmelted snow particles. The con-

centration flux is conserved in a similar manner, with the initial bin sizes (Eq. 5.2)

determined by assuming 0.1-mm bin sizes for rain as before and calculating ur using the

D of fully-melted particles of equivalent mass.

Once the initial particle sizes and densities have been established, each particle size

bin is tracked as it falls and evolves. The transfer of heat by radiation and the collection

of cloud droplets by the particle are neglected as they are small in comparison to the

primary microphysical processes (e.g., Szyrmer and Zawadzki 1999). Curvature and

solute effects are also neglected. In addition, when considering the heat balance of

the particle, it is assumed that the particle’s temperature is homogenous, and that no

sensible heat is stored in the particle (i.e., all input heat goes toward the ongoing phase
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change). The relevant microphysical process acting on a particle is determined by the

local environmental conditions as well as the particle composition and temperature.

When ice particles are located in air that is subsaturated with respect to ice, subli-

mation occurs, which decreases the particle’s temperature. Following Pruppacher and

Klett (1997) and by assuming fv ⇡ fh, the equilibrium temperature of the particle (Tp)

undergoing sublimation can be found according to

Tp = T � LsDv

kaRv

✓
es,i(Tp)

Tp
� e(T )

T

◆
, (5.9)

which results from solving for the equilibrium condition between the sensible heat and

latent heat transfer to the particle. This equation is solved iteratively for each particle

at each height to within a 0.01 �C threshold. Because the terminal velocity of dry snow

is relatively slow, the residence time within a grid box of Dh = 10 m, the vertical grid

spacing used in this study, is long enough to permit the assumption of equilibrium with

the environment.

The rate of mass diffusion for a particle due to sublimation, following Rogers and

Yau (1989), can be expressed as

dmi,subl

dt
= 2pDDv fvDrv (5.10)

where Drv is the difference in vapor density (with respect to ice) between the environ-

ment and the surface of the particle. Recognizing that for a falling particle

dm
dt

=
dm
dz

dz
dt

⇡ Dm
Dh

Dh
Dt

= Dm
(u�w)

Dh
, (5.11)

where w is the local vertical velocity, the change in mass of a single particle in a given

grid box due to sublimation (Dmi,subl) assuming steady-state conditions can be found

according to

Dmi,subl =
4pc fvDv

Rv

Dh
(u�w)

✓
e
T
�

es,i(Tp)

Tp

◆
(5.12)

where the variables are as listed in Table 5.1 and described below.
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If the air is subsaturated above the 0�C level, the particle temperature can be sub-

zero when it crosses the 0�C level, and must warm up to 0�C before melting can occur.

This can delay the onset of melting by up to a few hundred meters below the 0�C level

(Matsuo and Sasyo 1981, see section 5.18). Melting commences once the particle tem-

perature reaches 0�C. During the entire melting process, it is assumed that the particle

temperature remains at 0�C.

The ice loss due to melting for a particle within a grid box is a balance between the

sensible heat flux to melt the ice and the cooling due to evaporation of meltwater and

can be found according to

Dmi,melt =
�4pc

L f

Dh
(u�w)


fhka(T �Tp)+ fv

DvLv

Rv

✓
e
T
�

es,w(Tp)

Tp

◆�
. (5.13)

If the bracketed term on the right hand side of Eq. (5.13) is < 0, evaporative cooling

exceeds the sensible heat flux used to melt ice, and sublimation is instead considered.

When it is > 0, melting occurs, and the loss of ice mass is converted into melt water

(i.e., Dmi,melt = �Dmw,melt). With f > 0.0, loss of water due to evaporation (discussed

below) is also calculated in accordance with the evaporative cooling component in Eq.

(5.13). Currently, refreezing (which would occur if f > 0.0 and Tp  T0) is not included.

Finally, evaporation (by itself) occurs when f = 1.0 and Tp � T0 (which necessitates

that the particle is entirely melted). Similar to sublimation, the rate of mass loss of a

single particle due to evaporation is described by

dmw,evap

dt
= 2pDDv fvDrv (5.14)

where Drv is the difference in vapor density (with respect to water) between the envi-

ronment and the surface of the particle. However, due to the relatively high terminal

velocity of raindrops compared to Dh and the thermal relaxation time for raindrops (on

the order of a few seconds; e.g., Tardif and Rasmussen 2010), it cannot be assumed that

raindrops are in equilibrium with the environment within a given grid box in the pres-

ence of changing environmental conditions (Caplan 1966) as was done for dry snow
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and as is frequently done in other studies (e.g., Srivastava 1985). The rate of change of

Tp can be found by the balance of the sensible heat transfer due to conduction and the

cooling due to evaporation (Tardif and Rasmussen 2010):

mwcw
dTp

dt
= Lv

dmw

dt
+

dh
dt

. (5.15)

When the sensible and latent heat terms are expanded, the change of Tp within a grid

box can be found according to

DTp =
Dh

(u�w)mwcw


4pc fv

LvDv

Rv

✓
es,w(Tp)

Tp
� e

T

◆
�4pc fhka(Tp �T )

�
(5.16)

where the Tp used on the right side of Eq. (5.16) comes from the grid point above.

This process begins as soon as melting is complete, when Tp = 0�C, and the maximum

temperature attainable by a raindrop is capped at the equilibrium Tp, found using Eq.

(5.9) except replacing Ls and es,i with Lv and es,w. An example comparison of particle

temperatures for a variety of raindrop sizes and their equilibrium temperatures as well

as the environmental temperature is shown in Figure 5.10. The environmental 0�C level

is at 2.0 km, the lapse rate is constant at 6�C km-1, and the relative humidity is con-

stant at 90%. Melting is delayed by 130 m due to sublimation as the particles need to

warm to 0�C. Once melting begins, the different sized particles take different distances

to completely melt, ranging from 190 m for a particle with Ds f c = 0.58 mm to 780 m for

a particle with Ds f c = 5.97 mm. Because of this, along with their different masses, the

particles warm at different rates once fully melted; smaller raindrops reach their equilib-

rium temperature quickly, whereas the largest drops never quite reach their equilibrium

temperature. If the environment is dry, raindrops may remain appreciably colder than

the environment (e.g., for a constant relative humidity of 50%, raindrops are up to 5.5�C

colder than the environment (not shown)).

Once the Tp of the raindrops is known, the mass loss due to evaporation can be found

with an analogous equation to Eq. (5.12):

Dmw,evap =
4pc fvDv

Rv

Dh
(u�w)


e
T
�

es,w(Tp)

Tp

�
(5.17)
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Figure 5.10: Example comparison of particle temperatures (solid lines) and their equi-

librium temperatures (dashed lines) for raindrops with surface diameters of 0.58 mm

(red), 1.10 mm (orange), 2.00 mm (green), 3.97 mm (blue), and 5.97 mm (purple) for

a lapse rate of 6�C km-1 and a constant relative humidity of 90%. The environmental

temperature is shown in black, with the 0�C level at 2000 m.
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The capacitance (c) in Eqs. (5.12), (5.13), and (5.17) reflects the impact of the

particle’s shape on its rate of mass transfer. Particles are assumed to be oblate spheroids

representing low-density snow aggregates. Although much more detailed models of

melting aggregates are beginning to be explored (e.g., Leinonen et al. 2017), oblate

spheroids greatly simplify the treatment of the microphysical processes and have been

shown to be a good approximation (e.g., Matrosov et al. 1996; Hogan et al. 2012) and

reproduce observed polarimetric signatures fairly well (e.g., Ryzhkov et al. 2011). For

spherical particles, c is equal to the particle’s radius. For oblate spheroids, c is equal to

(McDonald 1963):

c = 0.5Dr�1/3
m

x
sin�1 x

(0.8+0.2 f ) (5.18)

where rm is the aspect ratio of the particle at any stage of melting and is given as a linear

function of f between that of dry snow, rs, and that of a completely melted particle of

the same mass, rr:

rm = rs + f (rr � rs). (5.19)

and the ellipticity of the spheroid, x, is equal to
p

1� r2
m. The aspect ratio for raindrops

is well established and given by (Brandes et al. 2002, 2005):

rr = 0.9951+0.0251Dr �0.03644D2
r+

0.005303D3
r �0.0002492D4

r

(5.20)

There is more uncertainty with regard to the aspect ratio for dry snow aggregates, which

can be set to a constant value (e.g., Vivekanandan et al. 1994; Ryzhkov et al. 2011;

Thompson et al. 2014) or vary slightly across the size spectrum (e.g., Brandes et al.

2007) or as a function of riming (Garrett et al. 2015, see section 5.2.3.2).

The venatilation coefficients for heat ( fh) and vapor ( fv) in Eqs. (5.12), (5.17),

and (5.13) account for the removal of heat and vapor away from the falling particle

due to air motion. Two options exist for calculating fh and fv. The first (and default
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option) employs the empirical formulas of Hall and Pruppacher (1976), which defines

the ventilation coefficient for vapor as

fv =

8
>><

>>:

1+0.14c

2, for c < 1

0.86+0.28c, for c � 1
(5.21)

where c = N1/3
Sc N1/2

Re , NSc is the Schmidt number given by

NSc =
na

Dv
(5.22)

and NRe is the Reynolds number given by

NRe =
L⇤U
na

(5.23)

where na is the kinematic viscosity of air, and L⇤ is the particle characteristic length,

which for an oblate spheroid can be expressed as (Pruppacher and Klett 1997):

L⇤ =
D

4r
1
3
m


2+ r2

m
1
x

ln
✓

1+ x
1� x

◆�
. (5.24)

The diffusivity of water vapor (Dv) is found by Hall and Pruppacher (1976)

Dv = 2.11⇥10�5
✓

T
T0

◆1.94✓ p0

p

◆
(5.25)

whereas the kinamatic viscosity of air, na, is given by

na =
ha

ra
(5.26)

where the dynamic viscosity of air, ha, is given by

ha = (0.379565+0.0049T )⇥10�5. (5.27)

The ventilation coefficient for heat ( fh) follows a similar form as Eq. (5.21), except uses

the Prandtl number (NPr) instead of the Schmidt number (i.e., c = N1/3
Pr N1/2

Re ), where NPr

is given by

NPr =
na

ka
(5.28)
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where the thermal diffusivity of air, ka, is defined as

ka =
ka

cpra
(5.29)

and the thermal conductivity of air, ka, is given by

ka = (0.441635+0.0049T )⇥10�2. (5.30)

An additional option of using the ventilation coefficients put forth in Szyrmer and Za-

wadzki (1999) is included. In this instance, the ventilation coefficients for heat and

vapor are assumed equal and given by

fh = fv = 33.0
D1.7

r
D

(5.31)

where D and Dr are given in cm.

Once dmi or dmw have been calculated, the mass and volume of each constituent

(i.e., water, ice, and air) is updated. During the melting process, it is assumed that the

density of the snow core increases, up to rs,max. By modifying Eq. (5.1) for volume

instead of diameter, the volume of snow (vs) can be found according to

vs = 343
✓

P
frim

◆1.443
(5.32)

where P is defined as

P = (ri �ra)vi +ravs (5.33)

and where vs in P comes from the grid box above. From this, the new snow density is

found according to

rs = 1.75⇥10�2 frimv�0.307
s , (5.34)

which is simply Eq. (5.1) expressed in terms of volume. Once rs reaches rs,max, it is

kept constant regardless of vs.

The option to include temperature and moisture feedbacks with the environment has

been added to the model. The change of the environmental temperature at each height

is found according to
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DT (z) =
Dt

cpra(z)


Ls ÂDmi,subl(D,z)N(D,z)dD

+ Lv ÂDmw,evap(D,z)N(D,z)dD

+ L f ÂDmi,melt(D,z)N(D,z)dD
�

(5.35)

where steady-state conditions are assumed to exist for 1 min (i.e., Dt = 60 s) by de-

fault. Similarly, the change in the environmental water vapor mixing ratio, qv, is found

according to

Dqv(z) =� Dt
ra,d(z)Dh Â(u(D,z)�w(z))

⇥
Dmi,subl(D,z)+Dmw,evap(D,z)

⇤
N(D,z)dD.

(5.36)

where ra,d(z) is the density of dry air at height z. For both temperature and moisture,

the summation is applied across all 80 particle size bins at each height, and all other

variables (e.g., es, ra, ew, etc.) are subsequently updated.

At each height, Z, ZDR, and KDP are calculated using the Ryzhkov et al. (2011) po-

larimetric operator discussed in section 3.2 with the modifications discussed below in

section 5.2.3. The scattering amplitudes can be calculated using Rayleigh scattering

equations or the PyTMatrix package (Leinonen 2014), an open-source Python package

containing an implemention of the Mishchenko (2000) T-Matrix formulation. The di-

electric constants for ice and air, ei and ea, are considered constants whose values are

given in Table 5.1. The dielectric constant of water, ew, varies with temperature and is

found according to the equations put forth in Ray (1972).

Table 5.1: Summary of the variables and constants used in the 1D-MS.

Symbol Variable Value Units

c Capacitance of particle mm

cp Specific heat of air at constant

pressure

1005 J kg�1 K�1
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Table 5.1: Summary of the variables and constants used in the 1D-MS.

Symbol Variable Value Units

cw Specific heat of water at constant

pressure

4181 J kg�1 K�1

D Equivolume particle diameter mm

D⇤ Diameter of particle in terms of

largest dimension

mm

Dmax Diameter of largest particle in the

PSD

mm

Dr Equivolume diameter of a

completely melted particle

mm

Dv Diffusivity of water vapor in air m2 s�1

e Vapor pressure Pa

es,w Saturation vapor pressure w.r.t. water Pa

es,i Saturation vapor pressure w.r.t. ice Pa

es,0 Saturation vapor pressure at 0�C 611.2 Pa

f Mass water fraction

frim Riming factor

fh Ventilation coefficient for heat

fv Ventilation coefficient for vapor

Dh Vertical grid spacing 10 m

ka Thermal diffusivity of air m2 s�1

L f Latent heat of fusion at 0�C 3.35⇥105 J kg�1

Ls Latent heat of sublimation at 0�C 2.85⇥106 J kg�1

Lv Latent heat of vaporization J kg�1

L⇤ Characteristic length of particle mm

m Total mass of particle g
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Table 5.1: Summary of the variables and constants used in the 1D-MS.

Symbol Variable Value Units

mi Total mass of ice in particle g

ms Total mass of “snow” (ice + air) in

particle

g

mw Total mass of water in particle g

N0,s Intercept parameter for snow PSD m-3 mm-(1+µs)

NPr Prandtl number

NRe Reynolds number

NSc Schmidt number

N(D) Number of particles of size D m�3 mm�1

p Atmospheric pressure Pa

p0 Reference atmospheric pressure 101325 Pa

qv Water vapor mixing ratio kg kg�1

qv,s Saturation vapor mixing ratio kg kg�1

rm Aspect ratio of melting particle

rr Aspect ratio of raindrop

rs Aspect ratio of snowflake

Rd Gas constant for dry air 287.0 J kg�1 K�1

Rv Gas constant for water vapor 461.5 J kg�1 K�1

RH Environmental relative humidity %

T Air temperature K

Tp Particle temperature K

T0 Triple point temperature of water 273.15 K

u Terminal velocity of particle m s�1

ur Terminal velocity of raindrop m s�1

us Terminal velocity of snowflake m s�1
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Table 5.1: Summary of the variables and constants used in the 1D-MS.

Symbol Variable Value Units

v Total volume of particle g cm�3

va Volume of air in particle g cm�3

vi Volume of ice in particle g cm�3

vs Volume of “snow” (ice + air) in

particle

g cm�3

vw Volume of water in particle g cm�3

w Vertical velocity of air m s�1

z0 Reference surface level

G Environmental lapse rate � km-1

ea Dielectric constant of air (1.0,

5⇥10�7)
ei Dielectric constant of ice at 0�C (3.18,

8.54⇥10�3)
ew Dielectric constant of water

h Dynamic viscosity of air kg m�1 s�1

ka Thermal conductivity of air J m�1 s�1 K�1

l Radar wavelength cm

Ls Slope parameter for snow PSD mm-1

µs Shape parameter for snow PSD

n Kinematic viscosity of air m2 s�1

ra Air density g cm�3

ra,d Dry air density g cm�3

ra,0 Reference air density 1.292 g cm�3

ri Density of solid ice 0.917 g cm�3

rs Density of snow g cm�3
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Table 5.1: Summary of the variables and constants used in the 1D-MS.

Symbol Variable Value Units

rs,max Maximum allowable density of snow 0.5 g cm�3

rw Density of water 1.0 g cm�3

sr Canting angle width of rain 10�

ss Canting angle width of snow

5.2.3 Model sensitivity tests and validation

There are a number of parameters in the 1D-MS pertaining to particle characteristics that

require selection and can significantly alter the results, but the nature of which remain

highly uncertain. Although the 1D-MS is in itself a valuable tool for studying the impact

of these various uncertainties and assumptions, the remainder of this work necessitates

a reduction in the degrees of freedom in the model. The following sections describe

these uncertainties, the model sensitivity to the range of possible values, and provide

justifications for parameter choices going forward. Although the impact of changing

one parameter is often sensitive to the value of others, efforts have been made to isolate

the impact of each parameter to the furthest extent possible.

The same model settings were used for all of the following sensitivity tests, with only

the relevant parameter being investigated varying from its otherwise specified value. The

settings used are shown below in Table 5.2. In this case, the primary concern is how non-

environmental parameters affect the resultant profile of radar variables. The model was

run in its “top-down” mode with a constant lapse rate of 6 �C km-1 and a RH of 100%

with the 0�C level at 2.0 km. The selection of a representative PSD was more difficult,

as there is a large degree of variability in observed snow PSD parameters. For simplicity,

an inverse exponential distribution (µs = 0.0) was used to initialize the model. From the
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in situ observations in and above the melting layer reported in Heymsfield et al. (2002)

and Heymsfield et al. (2015) from a number of field experiments, the N0,s was selected

to be 1⇥104 m-3 mm-1, Ls was 1.15 mm-1, and the maximum particle diameter was

1.0 cm, representing a typical PSD observed in stratiform precipitation. Despite the

large degree of variability among observed snow PSDs and the resultant radar variables,

the qualitative conclusions were insensitive to the choice of initial PSD; although not

shown for brevity, the same sensitivity tests were performed using various N0,s and Ls

combinations as well as the “bottom-up” approach assuming a Marshall-Palmer rain size

distribution at the surface with R = 5 mm h-1 that resulted in the same conclusions. All

calculations were done at S band (l = 11.0 cm) using T-matrix scattering calculations

unless otherwise specified.

Table 5.2: Summary of the default criteria used to evaluate the sensitivity of the 1D-MS.

Variable De f ault

Approach “Top-down”

PSD Inverse exponential

N0,s 1⇥104 m-3 mm-1

Ls 1.15 mm-1

ee MG: (I | W) | A

rs 0.6

frim 1.0

l 11.0 cm

ss 30�

G 6.0 �C km-1

RH 100%
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5.2.3.1 Dielectric constant

One of the largest uncertainties in the modeling of the bright band is how to appropri-

ately calculate the dielectric constant of a melting snowflake. A common choice for cal-

culating the effective dielectric constant of a mixed-phase particle (ee) is the Maxwell-

Garnett mixing formula (Maxwell Garnett 1904). In this approach, one medium is con-

sidered the matrix whereas the other is considered to be randomly-distributed inclusions

within the matrix. Following Zhang (2016),

ee = emat
1+2 f y
1� f y

(5.37)

where emat is the dielectric constant of the matrix material, f is the fractional volume of

the inclusions, and y is given by

y =
einc � emat

einc +2emat
(5.38)

where einc is the dielectric constant of the inclusions. For particles with three phases

(i.e., ice, water, and air, as is the case for a melting snowflake), this formula should be

applied twice: first to a combination of media, and then again using the first calculation

as either the matrix or the inclusions with the third media. However, it is not immediately

clear which combination of ice, water, and air is most appropriate for melting snow, as

the formula results in different dielectric constants depending on which media is chosen

as the matrix and the inclusions.

To address this, the Polder-van Santen mixing formula (Polder and van Santen 1946)

can be applied, which is given by

f1
e1 � ee

e1 +2ee
+ f2

e2 � ee

e2 +2ee
= 0 (5.39)

where f1 and e1 ( f2 and e2) are the fractional volume and dielectric constant of the first

(second) materal in the mixture. The Polder-van Santen mixing formula does not require

an assumption of which media acts as the matrix and gives a result that is between the

Maxwell-Garnett mixing formula results with either combination of media as the matrix
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and inclusions. In addition, like the Maxwell-Garnett formula, it can be applied twice

sequentially to calculate ee for a three-phase particle. For both the Maxwell-Garnett and

Polder-van Santen approaches using the Rayleigh approximation, the calculated ee is

used in Eq. (2.5) to calculate the scattering amplitudes.

A third approach is that of Bohren and Huffman (1983), which computes an effective

dielectric constant for a particle assuming spheroids of two separate layers. In this

instance, the factor x in Eq. (2.4) is instead given by

x =
(eout �1)(eout +(einn � eout)La,b(1�z ))+z eout(einn � eout)

eout +(einn � eout)La,b(1�z )(1+(eout �1)La,b)+z La,beout(einn � eout)
(5.40)

where einn is the dielectric constant of the inner spheroid, eout is the dielectric constant of

the outer spheroid, and z is the volumetric fraction of the inner spheroid. Here, the inner

layer is considered to be snow (for which e is found using the Maxwell-Garnett mixing

formula with an air matrix and ice inclusions) and the outer layer is water. This approach

is frequently used for melting hail and graupel for which meltwater accumulates on the

surface. Other, more complex methods (e.g., those that use a weighted-average of the

ee computed from various combinations of Maxwell-Garnett formulas; Meneghini and

Liao 1996) also exist.

Previous modeling studies have employed a wide variety of approaches for calculat-

ing the ee of melting snow, and there is no well agreed-upon approach. Both Yokoyama

and Tanaka (1984) and Hardaker et al. (1995) assumed a two-layer concentric sphere

model consisting of an inner core of ice and air and an outer shell of water. Klaasen

(1988) used the Maxwell-Garnett formula with air inclusions inside of a wet snow ma-

trix consisting of ice inclusions in a water matrix, whereas D’Amico et al. (1998) as-

sumed a water matrix and inclusions of ice and air. Russchenberg and Ligthart (1996)

used the average ee from the previous two methods. Other studies have expressly stud-

ied the applicability of various mixing formulations. Fabry and Szyrmer (1999) found a
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strong impact of the choice of which media is the matrix in the Maxwell-Garnett mix-

ing formula, with a complex two-layer spheroid with each layer consisting of a three-

component Maxwell-Garnett approach performing the best. Subsequently, Battaglia

et al. (2003) found that the Maxwell-Garnett mixing formula using an air matrix and in-

clusions composed of a water matrix and ice inclusions performed best when compared

to brightband observations.

All three aforementioned approaches for calculating the ee are included in the model,

which can serve as an insightful tool for investigating the impacts of different mixing

formulas. However, given its dominant effect in the resultant radar calculations, an

appropriate choice for the calculation of the dielectric constant must be made for the

remainder of this study. Figure 5.11 shows the resultant vertical profiles of Z using

sixteen different mixing formulas. The Maxwell-Garnett mixing formulas (MG) are

labeled in the form “Matrix | Inclusion” for both applications (i.e., “W | (I | A)” refers

to a water matrix with inclusions composed of an ice matrix with air inclusions). The

Polder-van Santern (PS) mixing formulas are labeled similarly, showing the two media

that are combined first before being combined with the third. An frim of 1.0 was used

as the differences due to the choice of ee are most dramatic for unrimed snow. For the

sake of completeness, all twelve MG combinations are shown, although they are not all

equally physically valid. For example, Mitra et al. (1990) showed that water melts at the

tips of ice crystals and is then drawn into the inner core of the particle, making formulas

that assume a dominant outer media of water less physically plausible.

It is immediately evident that the choice of ee can have a profound effect on both

the shape and magnitude of the brightband signature in Z. As found in previous studies

(e.g., Fabry and Szyrmer 1999), the formulations that consider water to be the matrix (or

the outer shell, in the case of the two-layer spheroid) have a brightband that is much too

strong, with a DZ = Zmax�Zrain over 15 dBZ (and up to 20 dBZ for sensitivity tests with

alternative PSDs). Using 600 h of vertically-pointing X-band radar data in stratiform
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Figure 5.11: Comparison of (left) simulated vertical profiles of Z at S band and (right)

the maximum brightband enhancement of Z using different mixing formulas for the

dielectric constant of melting snow. ‘MG’ refers to the Maxwell-Garnett mixing formula

(where the matrix and inclusions are specified in the form Matrix — Inclusion for both

mixing calculations as explained in-text), ‘PS’ refers to the Polder-van Santen mixing

formula, and ‘2-layer spheroid’ refers to the two-layer spheroid calculation of Bohren

and Huffman (1983). The environmental 0�C level is at 2 km.

precipitation, Fabry and Zawadzki (1995) found a mean DZ in the brightband that ranged

from 8-10 dBZ for light to moderate precipitation. More recently, Trömel et al. (2017)

found similar results using QVPs, reporting an average DZ of 7.7 dB. Many other mixing

formula combinations, particularly those that use air as a matrix, have a DZ that is too

small (⇡ 1-2 dBZ). In addition to the DZ within the brightband, Fabry and Zawadzki

(1995) report that the maximum Z remains near the middle of the brightband at all

precipitation intensities, which certain mixing formula combinations fail to reproduce
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(e.g., A | (W | I)). All of the mixing formulas shown here make simplifying assumptions

about the nature of scattering in a melting snowflake, and it is likely none of them

perfectly represent the actual scattering of a melting particle. However, based on the

above analysis of Z the Maxwell-Garnett mixing ratio using a combination of ice and

water that is mixed with air (“MG: (I | W) | A”) seems to perform the best, with the

analogous Polder-van Santen mixing formula (“PS: (I + W) + A”) performing second

best with a weaker brightband than is typically observed. Although the magnitude of

the Z (both in the brightband and outside it) is dependent on the chosen input PSD, the

relative comparisons and conclusions of the various options for ee remain the same.

Figure 5.12: As in Figure 5.11, but for ZDR.

In addition to Z and unlike previous studies, the impact of ee on the polarimetric

variables can be examined to aid in the determination of an optimal ee. The vertical

profiles of ZDR using the various mixing formulas for ee are shown in Figure 5.12. There

is typically (for snow that is not heavily rimed) a “bump”’ in the ZDR profile (e.g., Figure
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5.8b) with a maximum near the bottom of the melting layer (e.g., Wolfensberger et al.

(2016) show the maxima in ZDR to be 200-300 m above the bottom of the melting layer

on average) as large wet snowflakes collapse into raindrops. In contrast to this idea,

many of the mixing formulas (primarily the ones that posit air as the matrix) instead

show a monotonic increase in ZDR and fail to reproduce this feature. As before, the two-

layer spheroid mixing formula produces an increase in ZDR that is larger than typically

observed (more than 1.0 dB over that of rain). In addition, sensitivity tests of other

distributions often produced a bimodal ZDR field within the melting layer (not shown).

All three Polder-van Santen mixing formulas produce almost equivalent results. There

is some difficulty in using observations of ZDR within the melting layer to validate the

choice of mixing formula here due to the exclusion of aggregation, which should act to

increase the magnitude of the ZDR maxima. However, the optimal choices for calculating

ee based on Z (i.e., “MG: (I | W) | A)” and “PS: (I + W) + A”’) seem to also hold for

ZDR.

Figure 5.13: As in Figure 5.11, but for KDP.
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The validation of KDP within the melting layer is a bit more challenging due to

limited observations and the difficulty of estimating KDP in the presence of possible d

within the melting layer. In addition, the range of sensitivity tests performed indicate

that KDP in the brightband is highly sensitive to the input PSD, which can vary widely

between and within precipitation systems and in time. Wolfensberger et al. (2016) report

a mean (standard deviation) peak KDP of 0.11 (0.21) � km-1 associated with a mean

(standard deviation) peak Z of 29.04 (7.97) dBZ using RHIs, with a wide range mean

KDP across the four sites examined. In contrast, Trömel et al. (2017) report a mean

(standard deviation) peak KDP of 0.60 (0.37) � km-1 associated with a mean (standard

deviation) Z of 31.2 (5.7) dBZ using QVPs and the KDP estimation methodology of

Griffin et al. (2018). Both of these studies used X-band radars (l = 3.2 cm). As KDP is

inversely proportional to l in the Rayleigh regime, this translates to a range of equivalent

KDP at S-band of roughly 0.03 - 0.18 � km-1. Considering the robustness of the KDP

estimation presented in Trömel et al. (2017), it is reasonable to expect KDP values on

the order of 0.05 - 0.2 � km-1 in moderate precipitation at S band. Indeed, the KDP in

Figure 5.8c peaks at 0.10 � km-1. The variability in the vertical profiles of KDP as a

function of ee is shown in Figure 5.13. The increase in KDP within the melting layer

is large and spans two orders of magnitude. As with Z and ZDR, the KDP associated

with mixing formulas that assume a water shell or water as the matrix are biased very

high (even keeping in mind that the Z profiles suggest a more intense brightband being

modeled here than in the previously cited studies). Many other mixing formulas have

only very weak increases in KDP. The preferred mixing formula (“MG: (I | W) | A)” has

a peak KDP of just over 0.4 � km-1. Although this is larger than the median observations

presented in the literature, it falls within the realm of reported melting layer KDP and

seems to be an appropriate value for the corresponding Z of this distribution. At X

band, the peak Z and KDP values for this modeled distribution are 40.7 dBZ and 1.47 �
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km-1, which fall squarely in the right tail of both the Z and KDP distributions reported in

Trömel et al. (2017).

Based on all three of the aforementioned variables, the remainder of this work will

employ the “MG: (I | W) | A” mixing formula unless otherwise noted.

5.2.3.2 Aspect ratio of snow

In contrast to rain, for which the aspect ratio is relatively well known, there is some un-

certainty when it comes to characterizing the aspect ratio of snow and snow aggregates.

Pristine ice particles can have large aspect ratios that result in high ZDR. For example,

aspect ratios of 0.1-0.3 are often assumed for pristine dendrites (e.g., Matrosov 2006),

which can result in ZDR values for dendrites up to 6 dB (Straka et al. 2000). Snow aggre-

gates, on the other hand, tend to be closer to spherical. Many studies assume a constant

aspect ratio across the size spectrum. Ryzhkov et al. (2011) suggest using 0.8, whereas

other studies have begun to form a consensus of a mean aspect ratio for aggregates of

approximately 0.6 (Korolev and Isaac 2003; Matrosov et al. 2005; Hogan et al. 2012;

Garrett et al. 2015). The results of Garrett et al. (2015) also suggest a dependence on

riming, with rimed snow (graupel) having a median aspect ratio of 0.70 (0.85). This

notion is supported by Straka et al. (2000) and Ryzhkov et al. (2011), who assume an

aspect ratio for graupel that linearly decreases from 1.0 to 0.8 for particles smaller than

10 mm and stays constant at 0.8 for larger particles. To approximate this relationship, an

additional option for the aspect ratio of snow (rs) as a function of frim has been included

in the 1D-MS and is given by

rs = 0.60+0.25
✓

frim �1
4

◆
. (5.41)

Finally, the results of Brandes et al. (2007) suggest more spherical particles that become

less oblate with size according to the (statistically insignificant) relation of

rs = 0.8467+0.01714D, (5.42)
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where D is in mm, which has also been included as an option in the 1D-MS.

Figure 5.14: Comparison of vertical profiles of (a) Z, (b) ZDR, and (c) KDP for rs values

of 0.5, 0.6, 0.7, 0.8, 0.9 and as a function of size (Eq. 5.42).

Figure 5.14 shows the impact of varying rs on the resultant profiles of Z, ZDR, and

KDP. In this case, the frim-dependant rs is not shown separately as unrimed snow is

being modeled, resulting in an rs of 0.6. There is essentially no impact on the resultant

Z profile both above and within the melting layer (Fig. 5.14a). However, rs can have

noticeable impacts on the polarimetric variables, especially within the melting layer.

With a decreasing aspect ratio, both ZDR and KDP increase both above and particularly

within the melting layer (Fig. 5.14b,c). These impacts are particularly pronounced for

KDP, for which the maximum value increases by a factor of four for rs of 0.9 to 0.5 (Fig.

5.14c). Because of the increasing consensus that rs = 0.6 is a good approximation for

the rs of snow aggregates (Korolev and Isaac 2003; Matrosov et al. 2005; Hogan et al.
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2012; Garrett et al. 2015), the reasonable vertical profiles of polarimetric radar variables

it produces, and the conceptual understanding that the riming of particles should cause

them to become more spherical, Eq. (5.41) will be used to calculate rs in the remainder

of this work unless otherwise indicated.

5.2.3.3 Riming factor

The degree of riming can have a large impact on the characteristics of the melting layer

signature and the resultant profiles of radar variables. Riming results in smaller, denser

particles that have faster terminal velocities than unrimed snow particles of equivalent

mass. Because they fall faster, rimed particles take longer to melt and act to increase

the depth of the brightband. Previous studies have found that riming should result in

a weaker brightband signature (e.g., Fabry and Szyrmer 1999; Zawadzki et al. 2005;

Vogel et al. 2015) and a decrease of Z aloft (Vogel et al. 2015). Vogel et al. (2015) also

found based on observations that riming should also act to reduce the ZDR of snow aloft

and within the melting layer for cases of riming that do not result in the production of

small ice crystals due to splintering during the riming process, with the opposite found

for riming that results in splintering (e.g., Hallett and Mossop 1974).

Figure 5.15 shows the impact of riming on the polarimetric variables for both vari-

able and constant rs (the latter being shown to isolate the impacts of riming alone).

In accordance with observations, increasing frim acts to deepen the melting layer and

brightband in the 1D-MS, as well as decrease Z above the melting layer (Fig. 5.15a,b;

e.g., Fabry and Szyrmer 1999; Zawadzki et al. 2005; Vogel et al. 2015). For Z and KDP,

increasing frim results in a decreased brightband magnitude (Fig. 5.15a,b,e,f). Mean-

while, for ZDR, increasing frim with a constant rs = 0.6 results in an increase in the

magnitude of the brightband, in contrast with observations. (Fig. 5.15d). It is only

when rs varies with frim that a decrease in the brightband magnitude for ZDR is seen
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Figure 5.15: Comparison of vertical profiles of (a,b) Z, (c,d) ZDR, and (e,f) KDP using

(a,c,e) rs that varies according to Eq. (5.41) and (b,d,f) a constant rs of 0.6 for frim

ranging from 1 (unrimed snow) to 4 (heavily rimed snow).
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(Fig. 5.15c). In addition, the variable rs acts to accentuate the differences due to riming

for KDP in the melting layer (Fig. 5.15e).

Changes are also seen above the melting layer. With a constant rs of 0.6, ZDR and

KDP are enhanced aloft due to the increase in density, contrary to what is expected from

observations (Fig. 5.15d,r). When rs is allowed to vary with frim, the increase in KDP

above the melting layer is minimized (Fig. 5.15e), and the increase in ZDR is reduced,

although not completely negated (Fig. 5.15c). This provides further evidence that rs

should be allowed to vary with frim. The minute increase in Z, ZDR, and KDP below the

melting layer with increasing frim is due to enhanced condensation onto melting ice par-

ticles, as the rimed particles fall further before completely melting and thus have a larger

vapor density flux from the warm, saturated environment. This effect is more prominent

for distributions with larger raindrops which remain colder than the environment for

longer. Although not shown, the differences in Z, ZDR, and KDP due to ee shown in Figs.

5.11, 5.12, and 5.13 is reduced as frim increases.

In the absence of other information, frim will be assumed to be 1 (no riming) as a

default unless otherwise indicated.

5.2.3.4 Canting angle distribution of snow

There is much uncertainty about the distribution of canting angles for snow. Generally,

and in the polarimetric radar operator employed here (see section 3.2), hydrometeors

are assumed to have a Gaussian canting angle distribution with a mean of 0� (i.e., no

preferred canting angle) and a specified canting angle width, s . Ryzhkov et al. (2011)

assumed the canting angle width of snow, ss, to be 40�. However, recent particle imager

observations by Garrett et al. (2015) indicate a much broader spectrum of canting angles,

with a median canting angle of 39�. The authors suggest the canting angle distribution

is a function of turbulence, with increasing median and mode canting angles for more
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turbulent conditions. Interestingly, neither particle size nor degree of riming were found

to have a strong impact on the canting angle distribution.

The impact of ss on the vertical profiles of radar variables is shown in Figure 5.16.

The impact on Z is negligible (Fig. 5.16a), with small impacts on ZDR, mostly affecting

dry snow above the melting layer. The effects on KDP are more prominent, both for dry

snow and within the melting layer (Fig. 5.16c). However, the difference in brightband

KDP between ss of 20� and 50� is only 0.17 � km-1. Given the large degree of variability

and uncertainty of ss and its comparatively small impact on the resultant radar variables,

30� seems like a reasonable approximation and will be used for the remainder of this

work.

Figure 5.16: Comparison of vertical profiles of (a) Z, (b) ZDR, and (c) KDP for ss values

of 20�, 30�, 40�, and 50�.
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5.2.3.5 Impact of neglecting aggregation and breakup

There is lingering uncertainty about the nature of and frequency of aggregation and

breakup processes within the melting layer. A number of studies have found that the

size distributions of snow and rain indicate a correspondance of one snowflake above

the melting layer to one raindrop below the melting layer (e.g., Ohtake 1969; Barthazy

et al. 1998). Ohtake (1969) suggested this to be proof of the absence of breakup pro-

cesses within the melting layer. Additionally, the wind tunnel observations presented

in Mitra et al. (1990) did not typically show spontaneous breakup of melting particles.

Szyrmer and Zawadzki (1999) argue in favor of this conclusion and state that, for the

typical brightband, aggregation and breakup likely due not play appreciable roles (or

are balanced by each other, which they deem unlikely) in causing the observed bright-

band. However, it is also well known that aggregation and breakup play important roles

in determining the snow size distribution above the melting layer (Lo and Passarelli Jr.

1982). In contast to the studies that discount the role of aggregation and breakup within

the melting layer, Barthazy et al. (1998) suggested aggregation occurs in the top of the

melting layer with counteracting breakup in the bottom due to the largest aggregates

being found in the middle of the brightband near its peak, as opposed to at the top of

the melting layer as would be the case in the absence of aggregation. More directly,

numerous studies have observed aggregation within the top portion of the melting layer

with in situ PSD data (Stewart et al. 1984; Willis and Heymsfield 1989; Heymsfield

et al. 2002; McFarquhar et al. 2007; Heymsfield et al. 2015), with Willis and Heyms-

field (1989) attributing the depth of the brightband to the survival of a few very large

aggregates well below the 0�C level. These observations make sense intuitively given

the wetness of snowflakes and the range of terminal velocities and particle sizes present

in the upper region of the melting level, all of which are understood to be favorable for

effective snowflake aggregation.
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Aggregation and breakup are excluded from the 1D-MS as it is nontrivial to model

these stochastic processes. The collision efficiency of melting particles is not known

with certainty, and it is unclear how to reconcile whether aggregation or breakup oc-

curs upon particle collisions. In addition, it is not clear that aggregation processes are

consistent across cases and environments. Past studies have often relied on simple pa-

rameterizations to qualitatively model the effects of aggregation. For example, Willis

and Heymsfield (1989) applied a linearized growth term to approximate particle growth

due to aggregation while neglecting breakup and the loss of smaller particles; Trömel

et al. (2014) included a parameterization for the accretion of small, completely melted

raindrops by larger snowflakes to study the impacts on d of redistributing water from

small particles to large, wet aggregates. Unfortunately, although the bulk of latent heat-

ing in the melting layer is due to the melting of small particles, Z and ZDR within the

brightband may be sensitive to the presence of large aggregates, which can fall outside

the Rayleigh scattering regime, even at S band. Fabry and Zawadzki (1995) estimate the

impact of aggregation on Z to be less than 2 dB, but to the author’s knowledge no sys-

tematic study exists examining the impact of neglecting aggregation on ZDR and KDP.

In addition, the depth of the melting layer can be extended due to the presence of large

aggregates falling further distances before melting completely. Although the 1D-MS is

able to reliably reproduce the general characteristics of the melting layer, it should be

kept in mind that the quantitative results shown are potentially subject to some unknown

error due to these exclusions and thus should be understood qualitatively. Future work

should address the inclusion of aggregation and breakup into the 1D-MS.

5.2.3.6 Comparison against observations

Now that the model sensitivity to non-environmental parameters has been explored, it is

worth comparing the model results to observations to evaluate its performance. There is

a fairly large degree of subjectivity in doing so, as the model results are quite sensitive to
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the environmental profile of temperature and humidity as well as the input PSD, which

is typically unknown. As a case study, the model is evaluated against the mean QVP

shown in Figure 5.8, which was taken in the stratiform portion of a mature mesoscale

convective system and covers the period of a particularly intense brightband. A more

detailed discussion of the range of observed PSD parameters at and above the melting

layer and environmental conditions within the stratiform portion of MCSs is provided in

section 5.2.4.2. In agreement with the PSD and environmental observations presented

in McFarquhar et al. (2007), a gamma distribution was employed with N0,s = 800 m-3

mm-(1+µs), Ls = 0.40 mm-1, and µs = -1.6, with a Dmax of 1.0 cm. The G was set to 6.0
�C km-1 with a RH lapse rate of 3% �C-1. Radar variables were calculated using the

T-matrix scattering calculations at S band. The 0�C level was assumed to be at 3.7 km

based on the mean observed QVP profile and the 1200 UTC 20 May 2011 soundings

from Norman, Oklahoma and Dodge City, Kansas.

Figure 5.17: Comparison of vertical profiles of (a) Z, (b) ZDR, and (c) KDP from the

1D-MS (blue) and the QVP from the Vance Air Force Base WSR-88D (KVNX) radar

averaged between 10:14:51 UTC and 11:15:33 UTC on 20 May 2011 (red).
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The results of the comparison are shown in Figure 5.17. Overall, there is good agree-

ment between the 1D-MS and the observations given the number of unknowns. The Z

brightband matches the observed quite well (Fig. 5.17a). The ZDR brightband maximum

is slightly underpredicted and at a slightly higher altitude than the observed maximum

(Fig. 5.17b), and the KDP brightband correctly matches the magnitude although the

maximym is displaced ⇡ 300 m above the actual maximym (Fig. 5.17c). Sensitivity

tests (not shown) showed the height of the KDP maxima to be sensitive to µs. The depth

of the brightband is slightly underpredicted, which along with the ZDR maxima could be

a consequence of the exclusion of aggregation or the unknown degree of riming. The

difference in Z above the 0�C level (Fig. 5.17a) is due to ongoing aggregation in the ob-

servations, whereas the prescribed PSD in the 1D-MS is representative of the 0�C level

after said aggregation has taken place. The most prominent differences are below the

melting layer, where all three variables are biased high compared to the observations.

These differences are consistent with the exclusion of breakup in the 1D-MS, which

should act to decrease Z and ZDR and, to a lesser extent, KDP. The results shown here

provide confidence that the 1D-MS is able to realistically model the melting layer.

5.2.4 Polarimetric thermodynamic retrievals

5.2.4.1 Impacts of the thermodynamic environment

Before investigating the retrieval of latent heating rates from within the melting layer,

it is worthwhile to examine how the environment can influence the resultant brightband

characteristics. To do this, the 1D-MS was used in its “top-down” mode with the same

PSD described in section 5.2.3 applied to a wide variety of environments. The RH

was assumed to be constant through the model depth and ranged from 50% to 100% in

increments of 2%, and G ranged from 3� km-1 to 9.8� km-1 in increments of 0.2 �C km-1

for a total of 910 runs. These runs were performed both for frim = 1.0 and frim = 4.0

to get a sense of how these environmental impacts vary due to riming. The 0�C level
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was located at 3.0 km. All other parameters remained the same as described in Table

5.2. Although the G and the RH profile may not necessarily be independent in nature,

they are considered independent here as a theoretical investigation of the full parameter

space. As in previous sections, the qualitative conclusions remained the same for other

examined input PSDs (not shown).

Figure 5.18: Comparison of the height below the 0�C level at which melting begins (m)

for lapse rates ranging from 3 � km-1 to 9.8 � km-1 and relative humidities ranging from

50% to 100% for (left) frim = 1 and (right) frim = 4.

Figure 5.18 shows the height below the 0�C level at which melting begins. This

distance is the same for both frim = 1.0 and frim = 4.0 because the height at which melting

begins depends solely on when Tp reaches 0�C, which was assumed to be in equilibrium

with the environment for snow and thus only a function of the environmental T and

RH. However, that the assumption of a particle’s temperature remaining in equilibrium

with the environment is less likely to be valid as its fall velocities increases, as occurs

with riming. As expected, melting is delayed for drier environments and environments

with small lapse rates, with the impact of RH enhanced for environments with smaller

lapse rates. For near saturated environments (e.g., RH � 95%), melting occurs within
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the first 100 m below the environmental 0�C level. With an RH of only 70%, however,

melting can be delayed by ⇡ 300 m for lapse rates near the dry adiabatic lapse rate to

over 800 m for lapse rates of 3�C km-1. This delay in melting reaches almost 1500

m for a lapse of 3�C km-1 and an RH of just 50%. Thus, consistent with theory and

past observations and modeling studies (e.g., Matsuo and Sasyo 1981; Rasmussen and

Pruppacher 1982; Heymsfield et al. 2015), subsaturated environments can substantially

displace the location of the brightband with respect to the 0�C level, the degree to which

depends upon the environmental lapse rate.

Figure 5.19: As in Figure 5.18, but for melting layer depth (m).

The depth of the melting layer as a function of the environmental G and RH is shown

in Figure 5.19. The melting layer is defined here to be the layer where melting has begun

but ice is still present. For both frim = 1.0 and frim = 4.0, the depth of the melting layer

increases as lapse rates decrease due to decreased sensible heat flux and slower melting.

For a given thermodynamic environment, the depth of the melting layer is also larger

by nearly a factor of two for frim = 4.0 than frim = 1.0 due to faster particle fallspeeds.

Because of this, the brightband can be ⇡ 1.2 km deep for very small lapse rates and

heavily rimed particles. Counterintuitively, the environmental RH has little effect on
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the melting layer depth except for very dry environments and smaller values of G, with

effects lessened for more heavily rimed particles. This is due to two reasons: drier

environments suppress the height at which melting begins, which results in melting

occurring in a layer of warmer temperatures that offsets the impact of the decreased

RH, and drier environments result in sublimation above the melting layer which acts

to decrease the amount of ice and thus the time needed for complete melting. Heavier

rimed particles fall more quickly than unrimed particles and thus are less affected by

local RH at any one height. Note that the RH was assumed to be constant through the

model depth to emphasize the impact of the environmental conditions, when in actuality

the environment is often saturated at the 0�C level with an RH profile that decreases

toward the ground (e.g., McFarquhar et al. 2007). In cases of a strong decrease in RH

toward the ground, the latter type of environment could result in minimal suppression

of the height at which melting begins but a more pronounced impact on the melting rate

within the melting layer than demonstrated here.

Figure 5.20: As in Figure 5.18, but for the maximum Z (dBZ) within the brightband.

The environment can also strongly impact the radar observables within the bright-

band. Figure 5.20 shows the maximum Z within the brightband. As with the depth at
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which melting begins below the 0�C level, the maximum Z is also strongly affected by

the environmental RH but less so by the lapse rate. The strong influence of the environ-

mental RH on the maximum Z is due to the sublimation of ice above the melting occurs

that occurs in dry environments and results in smaller and fewer particles within the

melting layer. Conversely, the lesser impact of G on the maximum Z in the brightband

stems from Z being dominated by the largest particles in the volume, whose ee increases

appreciably as soon as they are wet regardless of G. As in Figure 5.15a,b, the maximum

Z in the brightband is larger for unrimed particles than heavily rimed ones due to their

slower terminal velocity and larger size. This enhanced terminal velocity for rimed par-

ticles also limits the amount of sublimation that occurs in dry environments above the

melting layer and thus results in a decreased sensitivity to environmental RH for heavily

rimed particles compared to unrimed ones.

Figure 5.21: As in Figure 5.18, but for the maximum ZDR (dB) within the brightband.

In contrast with Z, the maximum ZDR within the brightband (Fig. 5.21) is mostly

insensitive to the environment. This is partly a consequence of the assumption within

the model of a constant rs across the size spectrum and not changing rs in the presence of

sublimation, as well as fixing Dmax at a constant value. As also shown in Figure 5.15c,d,
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the maximum ZDR is smaller for heavily rimed particles than unrimed ones. There is

a slight decrease in the maximum ZDR for unrimed particles in drier environments and

smaller G due to the sublimation of smaller, denser particles, which leaves less dense

particles with slightly smaller inherent ZDR. Overall, however, subject to the above

model assumptions, the decrease in maximum ZDR across the range of environments

shown only amounts to ⇡ 0.1 dB.

Figure 5.22: As in Figure 5.18, but for the maximum KDP (� km-1) within the brightband.

Figure 5.22 shows the maximum KDP within the brightband. The sensitivity is rem-

iniscent of that of the maximum Z, with less sensitivity for heavier rimed particles and

decreasing values of KDP for drier environments with smaller lapse rates due to en-

hanced sublimation above the melting layer and increased evaporation within it, which

decreases the amount of liquid water and thus significantly impacts the KDP maximum.

Finally, Figure 5.23 shows the sensitivity of the maximum cooling rate (where the

“maximum cooling rate” refers to the minimum ∂T /∂ t) within the melting layer. As

with the polarimetric radar variables, both the magnitude and the sensitivity of the envi-

ronment of the maximum cooling is decreased with increasing frim due to faster terminal
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Figure 5.23: As in Figure 5.18, but for the maximum cooling rate (K h-1) within the

brightband.

velocities and a larger depth over which the melting is distributed (e.g., Fig. 5.19), peak-

ing at -26.4 K h-1 for frim = 1.0 and only -14.9 K h-1 for frim = 4.0. However, unlike

the maximum Z and KDP, which decrease with decreasing RH and, to a lesser extent,

increase with increasing G, the maximum cooling rate increases for both decreasing RH

and increasing G. For a given RH with a larger G, the environment is warmer at a given

depth below the melting layer and has a larger sensible heat flux, which results in more

melting in a given layer and thus more cooling. However, as the RH decreases, the

cooling due to evaporation increases significantly, which acts to decrease KDP and Z but

contributes significantly to the cooling rate within the melting layer. As with the other

radar variables, the maximum cooling rate begins to decrease for very dry environments

with smaller lapse rates due to sublimation above the brightband, which decreases the

mass of particles undergoing melting within the melting layer and instead leads to sig-

nificant cooling above it, which is not reflected in Figure 5.23 which focuses only on the

melting layer. The axis of maximum cooling exists from an RH of 78% for G = 3.0 C�
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km-1 to an RH of 64% for G = 9.8 C� km-1 for frim = 1.0, and from an RH of 70% for G

= 3.0 C� km-1 to an RH of 52% for G = 9.8 C� km-1 for frim = 4.0.

5.2.4.2 Relation between the polarimetric brightband and the cooling rate

To investigate the connection between the polarimetric radar variables and the latent

heating rate, an approach analogous to that used in section 4.2 was used to sample a

full, realistic parameter space for the input PSDs. Studies have employed both inverse-

exponential distributions (e.g., Lo and Passarelli Jr. 1982; Woods et al. 2008) and gamma

distributions (e.g., Heymsfield et al. 2002; McFarquhar et al. 2007; Neumann 2016) to

model observed snow PSDs. For this study, gamma distributions are used to describe the

snow PSD in the 1D-MS in its “top-down” mode due to the increased variability in the

PSD it allows for and the volume and fidelity of the datasets used in the aforementioned

studies that suggest gamma distributions are appropriate.

In an effort to use realistic distributions, studies with in situ observations of snow

PSDs near the melting layer were consulted as parameters of ice PSDs can vary appre-

ciably by climate regime and the height and position within the cloud. A large number

of relations between PSD parameters have been proposed and are summarized in Patade

et al. (2015). Special consideration was given to the observations from the Midlati-

tude Continential Convective Clouds Experiment (MC3E; Neumann 2016) and the Bow

Echo and Mesoscale Convective Vortex Experiment (BAMEX; McFarquhar et al. 2007),

which used gamma distributions and focused on the PSDs above the melting layer in the

stratiform portion of MCSs.

The parameter that is most agreed upon across observation datasets is the slope pa-

rameter, Ls, which tends to increase toward the melting layer due to aggregation. There

is relatively good agreement about the range of Ls near the melting layer, which ranged

from ⇡ 0.2 mm-1 to 0.8 mm-1 in the MC3E observations and from ⇡ 0.2 mm-1 to 1.5

mm-1 in the BAMEX observations. Numerous other studies from a wide variety of field
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campaigns support Ls falling in the range of 0.2 mm-1 to 1.5 mm-1 in this region (e.g.,

Heymsfield et al. 2002, 2013, 2015; Patade et al. 2015; Neumann 2016; Matrosov and

Heymsfield 2017). Thus, in this study, Ls is varied from 0.2 mm-1 to 1.5 mm-1 in incre-

ments of 0.05 mm-1. However, one consideration that must be taken into account is how

the particle diameter is defined when calculating these values of Ls. The particle bin

sizes in the 1D-MS are given in equivolume diameter (D), whereas many of these stud-

ies (e.g., Heymsfield et al. 2002; McFarquhar et al. 2007; Heymsfield et al. 2013; Patade

et al. 2015) use the maximum particle diameter (D⇤), which will always be larger than

equivolume diameter for oblate particles. Thus, the values of Ls used when defining

the PSD in the 1D-MS need to be adjusted to take this fact into consideration. With-

out this adjustment, the concentration of particles will be overestimated across the PSD.

Because rs is assumed to be constant at 0.6 across the PSD, each size bin is decreased

by a constant factor, given by

D⇤(0.6)
1
3 = D (5.43)

to conserve mass between particle size definitions. As such, it can be shown that

the equivalent Ls for use with bins of equivolume diameter in the 1D-MS is equal to

(0.6)�
1
3 Ls and ranges from ⇡ 0.25 mm-1 to 1.8 mm-1.

Defining the intercept parameter N0,s and the shape parameter, µs, is less clear, par-

ticularly so for N0,s given its range of many orders of magnitude in the observations.

There is also a large degree of variability between cases and campaigns, with the N0,s

values reported for MC3E being typically 1-2 orders of magnitude smaller than those

observed during BAMEX. However, the intercept parameter, N0,s and the shape pa-

rameter, µs, are not necessarily independent of Ls, which can aid in constraining the

parameter space (e.g., Heymsfield et al. 2002; McFarquhar et al. 2007; Heymsfield et al.

2013; Patade et al. 2015). McFarquhar et al. (2007) provides derived relations between

these parameters, given by

µs = 0.93L0.314
s �3.05 (5.44)
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and

log10 N0,s =�4.14exp(�0.082Ls) (5.45)

where Ls is in cm-1 and N0,s is in cm-(4+µs). Rather than varying µs and N0,s linearly

and independently of each other and Ls, Eqs. (5.44) and (5.45) are used here to draw a

sample of N0,s and µs values dependent on Ls. In this way, both the constraining rela-

tions between the parameters presented by McFarquhar et al. (2007) are preserved while

still allowing for a large degree of internal variability and the generation of outliers. For

each value of Ls, a “mean” µs is found using Eq. (5.44). Then, 10 samples are ran-

domly selected assuming a Gaussian distribution centered on the mean µs with a s

µ

of

0.2. This s

µ

was roughly determined from the data presented in Fig. 19 of McFarquhar

et al. (2007) (reproduced in Fig. 5.25 for reference). Similarly, a mean N0,s was deter-

mined from Eq. (5.45), with 10 samples randomly selected from an assumed Gaussian

distribution (in logarithmic-space) assuming a sN0,s of 0.2, similarly determined from

the data presented in Fig. 18 of McFarquhar et al. (2007) (reproduced in Fig. 5.26 for

reference). However, the conversion from units of cm-(4+µs) in Eq. (5.45) to units of m-3

mm-(1+µs) compatible with the units used in the 1D-MS is µs-dependant. In this way,

every N0,s drawn from the distribution is converted to units of m-3 mm-(1+µs) using all

ten sampled µs values. This results in a total of 2700 distributions being sampled across

the range of parameters shown here.

Histograms of the resultant Ls, µs, and N0,s distributions for one realization are

shown in Figure 5.24. The distribution of Ls (using the original values associated with

Dmax and used to retrieve N0,s and µs, not those used in the 1D-MS) is flat between

0.2 and 1.5 mm-1 as the values increase linearly in increments of 0.05 mm-1. The µs

distribution forms a Gaussian distribution with a mean (median) of -1.27 (-1.26) and

ranges from -2.0 to -0.5, in agreement with the ranges shown in both the MC3E and

BAMEX observations. The distribution of log10 N0,s is a somewhat-skewed Gaussian

distribution, with a mean (median) of 4.11 (4.15) and ranges from ⇡ 2.5 to 5.0, spanning
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the range reported for both MC3E (O(2) - O(3) m-3 mm-(1+µs)) and for BAMEX (O(3)-

O(4) m-3 mm-(1+µs)). Thus, the range of PSDs sampled here covers those that have

typically observed in the stratiform region of MCSs.

Figure 5.24: Normalized histograms for (a) Ls, (b) µs, and (c) log10 N0,s for one realiza-

tion of PSD parameters.

To further validate the range of parameters used and the use of Gaussian sampling

around a mean to derive it, Figure 5.25 compares the sampled parameter space of µs

versus Ls from the 1D-MS to the parameter space observed in McFarquhar et al. (2007).

There is good agreement between the two, with perhaps a slight underdispersion of the

µs in the 1D-MS parameters, primarily for larger values of Ls. Good agreement is

also seen between the sampled N0,s and the values reported in McFarquhar et al. (2007)

(Fig. 5.26). Note that the units for the McFarquhar et al. (2007) data shown in Figure

5.26 should be cm-(4+µs) and match those used for the 1D-MS data. These comparisons

provide confidence that the sampling routine employed in the 1D-MS is performing well

in sampling the observed range of parameters reported from in situ observations.

Earlier in situ studies of PSDs may have unknowingly been contaminated by particle

shattering, which would act to artifically increase the number of small crystals observed

(Field et al. 2003; Heymsfield 2007). However, the values of N0,s reported in McFar-

quhar et al. (2007), which ranged from 10-4 to 10-1 cm-(4+µs), have been corroborated by

more recent studies that have taken explicit measures to combat this possible shattering
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Figure 5.25: Comparison of the Ls � µs parameter space from (left) the observations

reported in McFarquhar et al. (2007) (their Fig. 19) and (right) the Gaussian sampling

procedure employed in the 1D-MS. Ls from the 1D-MS is shown in units of cm-1 for

consistency.

effect. For example, Patade et al. (2015) report a range of 10-4 to 10-1 cm-(4+µs) in the re-

gion above the melting layer, and Neumann (2016) report values of 10-5 to 10-2 cm-(4+µs)

for smaller Ls values, which is consistent with the data presented in McFarquhar et al.

(2007)). The shape parameter µs could also be affected by this shattering effect, which

could promote superexponential PSDs and thus negative values of µs. However, similar

to N0,s, the negative values of µs reported in McFarquhar et al. (2007) have been cor-

roborated by other recent studies, all of which have indicated values of µs between ⇡

-2.0 and 0.0 for larger Z and regions near the melting layer with smaller values of Ls

(Heymsfield et al. 2013; Patade et al. 2015; Neumann 2016; Matrosov and Heymsfield

2017).

The final parameter that must be defined is the diameter of the largest particle in the

PSD, Dmax. A consensus exists that Dmax is inversely related to Ls, with larger Dmax for

smaller values of Ls. This is consistent with the effects of aggregation, which broadens

141



Figure 5.26: As in Figure 5.25, but for the Ls�N0,s parameter space. Note that the units

for the McFarquhar et al. (2007) data shown in Figure 5.26 (their Fig. 18) should be

cm-(4+µs) and match those used for the 1D-MS data. Ls from the 1D-MS is shown in

units of cm-1 for consistency.

the size distribution and increases the maximum particle size at the expense of smaller

particles, decreasing the Ls. In this study, the Dmax �Ls relation from Heymsfield et al.

(2013) is used and is given by

Dmax = (0.6)
1
3 4.36L�0.77

s (5.46)

where Dmax and Ls are in cm and cm-1, respectively. The factor of (0.6)
1
3 is again used

to convert the resultant Dmax to equivolume diameter for the 1D-MS, as the relation was

developed for particles using D⇤. The modeled distributions were for unrimed snow

( frim = 1.0), and all radar calculations were performed at S band. Unfortunately, due to

computational expense, the Rayleigh scattering approximation had to be used. As such,

Dmax was capped at 10.0 mm (corresponding to Ls values below 0.55 mm-1) in an effort

to stay within the Rayleigh scattering regime and avoid errors due to resonant scattering

of the largest particles. This introduces an error compared to what would occur in nature.

For the smallest Ls of 0.2 mm-1, Eq. (5.46) indicates a Dmax of ⇡ 2.0 cm (corresponding
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to an equivolume Dmax of ⇡ 1.7 cm). This is at the upper range of what has been

observed (e.g., Heymsfield et al. 2013), with other studies reporting typical Dmax values

of 1.5-1.6 cm. Because only the smallest Ls values are impacted by this assumption, the

impact of these assumptions is likely to be relatively confined. Sensitivity tests for a few

sample distributions (not shown) suggest this impact are comparitively small in the face

of the overall uncertainties and range of parameters in the 1D-MS. Still, it is instructive

to examine the theoretical worst case scenario of the assumptions of Rayleigh scattering

and an equivolume Dmax capped at 10 mm for Ls = 0.2 mm-1 with an actual equivolume

Dmax of 17 mm. Other details about the PSD parameters and environment are included

in the caption of Figure 5.27.

Figure 5.27: Comparison of the vertical profiles of (a) Z, (b) ZDR, (c) KDP, and (d)

∂T /∂ t for an PSD described by N0,s = 2000 m-3 mm-(1+µs), µs = -1.7, and Ls = 0.2 mm-1

with (blue) Rayleigh scattering and an assumed equivolume Dmax of 1.0 cm and (red)

T-matrix scattering calculations and an assumed equivolume Dmax of 1.7 cm. A G = 6.0
�C km-1 and 100% RH were assumed with the 0�C level at 2.0 km.

Figure 5.27 shows the result of this comparison. The Z is underestimated at all

heights by ⇡ 3 dBZ when using Rayleigh scattering and the smaller Dmax (Fig. 5.27a).

The most severe differences are for ZDR, for which the maximum value in the brightband
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is underestimated by 0.54 dB and the resultant values in rain are decreased by 40% (Fig.

5.27b). This is compounded by the existing uncertainty in the calculated ZDR values

that results from neglecting aggregation occurring within the melting layer. The profile

of KDP is much less affected, with similar maximum values in the brightband and a

slight underestimation in rain (Fig. 5.27c) due to being a lower moment of the PSD

and concentration-dependent. Finally, the vertical profile of latent heating (Fig. 5.27d)

is hardly affected by the assumption of a smaller Dmax, as most of the cooling in the

melting layer is due to smaller particles. The melting layer is also deeper by ⇡ 100 m

due to the largest snowflakes taking longer to melt.

In addition to varying the input PSDs, both the G and environmental RH were also

varied as the resultant brightband signature can be quite sensitive to the environment (see

section 5.2.4.1). As discussed in section 5.2.3.6, McFarquhar et al. (2007) report a mean

G of ⇡ 6.0 �C km-1 and a mean profile of RH that decreases at a rate of 3% �C-1 below

the environmental 0�C level (denoted by “—RH = 3.0” hereafter). However, a range of

G and RH profiles were reported, with RH lapse rates of up to 4.5% �C-1 observed. To

incorporate the effects of the environment on the thermodynamic retrieval efficacy, the

full range of simulations were performed for G values ranging from 3.0 �C km-1 to 7.0
�C km-1 in increments of 1 �C km-1 and for RH lapse rates of 0.0% �C-1 to 4.5% �C-1 in

increments of 1.5% �C-1, resulting in a 54 000 total simulations being considered. The

range of PSD parameters, lapse rates, and RH profiles used is summarized in Table 5.3.

For the following analysis, the same set of parameters (those shown in Fig. 5.24) were

used with each environment to keep the input PSDs consistent. However, a separate set

of runs were also performed in which every environment used its own sampling of 2700

distributions, and the conclusions remained the same (not shown), providing confidence

that the random sampling procedure is not introducing biases or appreciable sampling

error into the analyses.
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Table 5.3: Summary of the snow PSD parameters and range of environmental conditions

used in the 1D-MS. The units shown here are consistent within the table but differ from

those actually used in the 1D-MS and as described in-text. The e in the values for µs

and N0,s represent some offset from the mean determined randomly by drawing from a

Gaussian distribution centered on the mean value with the specified standard deviation.

Parameter Value Units Increment Standard Deviation

Ls 2 - 15 cm-1 0.05 —

µs 0.93L0.314
s - 3.05 + e — 0.2

log10 N0,s �4.14exp(�0.082Ls)+ e cm-(4+µs) — 0.2

Dmax min
h
(0.6)

1
3 4.36L�0.77

s ,1.0
i

cm — —

G 3.0 - 7.0 �C km-1 1.0 —

RH 0.0 - 4.5 %�C-1 1.5 —

Figure 5.28 shows the normalized distribution of maximum cooling rates in the melt-

ing layer from two environments: G = 3.0 �C km-1 with —RH = 0.0 % �C-1 and G = 7.0
�C km-1 with —RH = 4.5 % �C-1. These represent the environments that should result

in the smallest and largest cooling rates, respectively. Both distributions are lognormal

distributions with longer right tails and median cooling rates of 4.2 K h-1 (interquartile

range: 2.8 to 6.5 K h-1) and 9.2 K h-1 (interquartile range: 6.0 to 14.3 K h-1), respec-

tively. However, the distribution in the warmer, drier environment is both shifted and

notably broader than the distribution in the colder, moister environment, resulting from

the variable impacts of drier air across the PSD and the impact of Lv being large for

particles in the melting layer that still have relatively slow terminal velocities (i.e., the

distribution translates rightward in log-space). Although in situ data of cooling rates

within the melting layer are somewhat lacking, with most studies focusing primarily

on the depth of the isothermal layers caused by latent cooling instead, these values are
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Figure 5.28: Normalized histogram of the maximum cooling rates (K h-1) in the melting

layer of the sampled distributions for (blue) G = 3.0 �C km-1 and —RH = 0.0 % �C-1

and (red) G = 7.0 �C km-1 and —RH = 4.5 % �C-1. The dark red area shows the overlap

between the distributions.

within the range of cooling rates reported in the literature (e.g., Willis and Heymsfield

1989; Szyrmer and Zawadzki 1999; Grim et al. 2009; Thériault et al. 2012).

To investigate the relationship between the polarimteric variables in the brightband

the cooling rate, the maximum values of each are compared for the array of environ-

ments examined using scatterplots. Only G = 3.0, 5.0, and 7.0 �C km-1 are shown for

brevity. The shading is a kernel density estimate intended for visual guidance of the

bulk behavior of the data with respect to the environment. Ordinary least squares linear
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regressions were performed for each of the environments and variables examined. To

combat the pronounced heteroscedasticity of the data (i.e., unequal variance across the

range of the data), the linear regressions were performed in logarithmic space for both

the radar variables and the cooling rate (⌘�∂T /∂ t), and are plotted as such. However,

the regression equations shown in each subplot have been transformed to linear space

for conciseness and to be consistent with linear units of the root mean square error of

the retrieved cooling rate. Given the amount of subjectivity in sampling the parameter

space for the PSDs, the linear regressions are meant to be used qualitatively.

Figure 5.29 shows the maximum Z versus the maximum cooling rate in the bright-

band. As shown in previous results, both increasing G and particularly increasing —RH

(defined so that drying occurs downward) results in an increase in cooling rates (seen as

a slight overall shift upward in the kernel density shading from Fig. 5.29a to 5.29l). It is

evident that the maximum Z is not well-correlated with the maximum cooling rate, with

spread of an order of magnitude in the cooling rates for a given value of Z and r2 values

of only ⇡ 0.05. In addition, RMSE values are large and range from ⇡ 3.5 to 8.5 K h-1,

increasing with increasing G and —RH. In any environment, the bulk of the cooling is

due to tiny particles, whereas Z in the Rayleigh regime is a strong function of the largest

particles within the volume that do not contribute much to the cooling rate. The actual

variability in Z may be even larger than shown due to the decision to cap Dmax at 10

mm and the exclusion of aggregation, which could further enhance Z while having little

effect on the cooling rate.

Another brightband parameter often considered is the DZ, or the difference between

the maximum Z in the brightband and the Z at the top of the brightband. The results

of comparing DZ to the maximum cooling rate are shown in Figure 5.30. In addition

to the upward shift in the kernel density field as G and —RH increase, there is a slight

leftward shift with increasing —RH as DZ decreases due to evaporation. Overall, the

maximum cooling rate tends to decrease with increasing DZ, though as with Zmax there
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Figure 5.29: Comparison of the maximum Z versus maximum cooling rate in the bright-

band for (top row) G = 3.0 �C km-1, (middle row) G = 5.0 �C km-1, and G = 7.0 �C km-1

and gradients of RH (—RH, in units of % �C-1 and decreasing downward) ranging from

(leftmost column) 0.0 to (rightmost column) 4.5 % �C-1 for all 2700 simulations summa-

rized in Table 5.3. The shading indicates a kernel density estimate for visual guidance.

The linear regression equation (where Z is in mm6 m-3 and -∂T /∂ t is in K h-1), r2, and

root mean square error (“RMSE”; in K h-1) are shown for each subplot.

is spread of an order of magnitude in the maximum cooling rate for a given value of DZ.

Subsequently, RMSE values remain high and similar to those for Zmax, and r2 values

are slightly improved but still remain below ⇡ 0.25. This counterintuitive result of an

inverse relation between DZ and the maximum cooling rate likely stems from the fact
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that the largest cooling rates result from snow PSDs with many small crystals, which

generally have larger values of Ls and N0,s and thus smaller Dmax, which results in

smaller values of Zmax and DZ. Conversely, distributions that result in large values of

DZ typically have larger Dmax and smaller values of Ls and fewer small crystals. Thus,

predicted on the general relationships inherent in our selection of PSD parameters from

McFarquhar et al. (2007), neither Zmax nor DZ may contain much information about the

maximum cooling rate within the melting layer.

Figure 5.30: As in Fig. 5.29, but for the maximum DZ in the brightband (defined as

Zmax �Ztop).

Figure 5.31 compares the maximum ZDR and cooling rate in the brightband. Almost

no functional relationship exists between the two. As noted earlier, the ZDR,max in nature
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may be strongly affected by aggregation, the Dmax, and non-Rayleigh scattering. How-

ever, ZDR is unaffected by concentration and, like Z, is related to the largest particles

in the volume that are not responsible for the bulk of the cooling. Thus, as with Zmax

and DZ, r2 remains low and RMSE remains high, and it is not expected that ZDR,max

alone can provide appreciable information about the cooling rate within the melting

layer. Like the other variables examined, the kernel density shading shifts upward for

increasing G and —RH and slightly to the left for increasing —RH.

Figure 5.31: As in Fig. 5.29, but for the maximum ZDR in the brightband.

Finally, Figure 5.32 shows the maximum KDP in the brightband versus the maximum

cooling rate. In contrast to Z, DZ, and ZDR, there is a striking linear relation between

KDP,max and the maximum cooling rate, with r2 values near 1.0 (note: the r2 values
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equal to 1.0 in Fig. 5.32 are due to rounding). The resultant RMSE values are an order

of magnitude smaller than those from Zmax, DZ, and ZDR,max and remain below ⇡ 0.6 K

h-1. The impact of the environment on the relation between KDP,max and the maximum

cooling rate is also straightforward. For all environments, the exponent in the regression

equation remains near 1.0, implying a linear relationship even in linear space. However,

the coefficients of the regression relations increase with increasing G and —RH, as the

cooling rate is enhanced for a given value of KDP for warmer and drier air. As with the

other variables, it is possible that the PSDs sampled here are underdispersive compared

to nature, but it is evident that KDP holds the best potential for estimating the magnitude

of the cooling within the melting layer.

Figure 5.32: As in Fig. 5.29, but for the maximum KDP in the brightband.
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Figure 5.33: Cross sections of particle bin versus height showing the contribution of

each bin toward (a) -∂T /∂ t, (b) Z, and (c) KDP (black contours) and the moment-

relationship of each variable with particle diameter in each bin (shading) for a sample

PSD of N0,s = 938 m-3 mm-(1+µs), Ls = 0.6 mm-1, µs = -1.52, and Dmax = 9.2 mm and

environment of G = 6.0 � km-1 and —RH = 3.0 % �C-1. Contours are from 0.01 to 0.1 K

h-1 every 0.01 K h-1 for -∂T /∂ t, 0.1⇥10�3 to 1.0⇥10�3 � km-1 every 0.1⇥10�3 � km-1

for KDP, and from 25 to 150 mm6 m-3 every 25 mm6 m-3 for Z.
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To examine the cause of this correlation, the contribution of each bin to the cooling

rate, Z, and KDP is shown in Figure 5.33 for a sample distribution. The white areas

for small bins at heights below 100 m below the 0�C level are bins with completely

evaporated particles. The values of both Z (Fig. 5.33b) and KDP (Fig. 5.33c) increase

downward as melting progresses, before decreasing markedly due to a rapid decrease

in particle concentration (and, in the case of KDP, to a collapse of particles into more

spherical shapes). It is readily evident that the ellipses of contribution to the cooling rate

(Fig. 5.33a) are nearly co-located with the ellipses of contribution to KDP (Fig. 5.33c),

with the maxima occuring at similar heights and within the same bins (primarily bins

3 through 9 in this example). The ellipses of contribution to Z are displaced further

downward and toward larger particle bin sizes (Fig. 5.33b).

In addition to the differing contributions to each variable, it is instructive to do an

analysis of PSD moments across the range of heights and bins. For a given environment,

the cooling rate is proportional to the rate of change of meltwater times the concentra-

tion,

�∂T
∂ t

µ ∂mw

∂ t
N(D)dD = u

∂mw

∂ z
N(D)dD, (5.47)

neglecting the small impact of ra on the cooling rate. The concentration, N(D), is equal

to the 0th moment of the PSD. The moment of the rate of change of meltwater can be

found using Eq. (5.13). For a given environment and assuming fh ⇡ fv, the only terms

that are a function of particle size are the capacitance c and the ventilation coefficient

fv,
∂mw

∂ z
u µ c fv. (5.48)

The capacitance is ⇡ 0.5D and therefore related to the 1st moment of the PSD. Because

the moment M is equal to the slope of the fv �D relation in logarithmic space, the

moment of the PSD of fv can be found by

M =
—(log10 fv)

—(log10 D)
. (5.49)
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For melting particles, M is ⇡ 0.3 and rises to ⇡ 0.7 for particles with f nearing 1.0.

Therefore, the cooling rate is approximately proportional to the 1.3rd-1.5th moment of

the PSD, with some slight variability across the size distribution. If evaporation occurs,

Eq. (5.17) similarly indicates that Eq. (5.48) applies and the moment of cooling is

roughly proportional to the 1.3rd-1.5th moment of the PSD as well. These conclusions

are seen graphically in Fig. 5.33a, as all the cooling in the melting layer (shown by

the series of ellipses above and to the right of the 1.5th moment line) occurs in bins

corresponding to the 1.0-1.5th moment of the PSD. The cooling shown in smaller bins

below 100 m below the 0�C level is due to evaporation of small raindrops.

Calculations similar to Eq. (5.49) were performed for the Z and KDP contribution

in each bin. The Z (Fig. 5.33b) is initially proportional to the 4th moment of the PSD

at the top of the domain for dry snow, as is expected given the inverse relationship be-

tween rs and D given in Eq. (5.1) (Brandes et al. 2007). The bulk of the Z occurs

in bins proportional to the 3rd to 5th moments of the PSD before melting entirely and

becoming proportional to the 6th moment of the PSD, as expected for nearly spherical

Rayleigh scatterers. In contrast, while KDP is proportional to the 1st moment for dry

snow (Bukovčić et al. 2018) and the 4.24th moment in rain (Sachidananda and Zrnić

1986), the swath of maximum KDP neatly follows the 1.5th moment axis for small to

medium size bins (containing the bulk of particles), nearly the same moment that the

cooling rate is proportional to. It is not trivial to isolate the factors contributing to the

KDP’s moment of the PSD in any given bin when considering the changes in meltwater

fraction, terminal velocities (and thus concentration, due to the assumption of flux con-

servation), and aspect ratios across heights and bin sizes, all of which affect the resultant

KDP in a bin. This is further complicated by the linear change of aspect ratio (Eq. (5.19))

but nonlinear change in terminal velocity (Eqs. (5.6)-(5.7)) with meltwater fraction, and

the differential changes in concentration across the PSD due to the range of differences
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between ur and us across the size spectrum. Suffice it to say that, subject to the pre-

ceding model assumptions described in sections 5.2.2 and 5.2.3, these properties that

result in KDP being proportional to the ⇡ 1.5th moment make it an attractive variable for

relating to the cooling rate within the melting layer that warrants continuing research.

Figure 5.34: As in Fig. 5.32, but assuming (a) rs = 0.6 and (b) rs = 1.0 for an environment

characterized by G = 6.0 �C km-1 and —RH = 3.0 % �C-1.

A cursory investigation into the robustness of this result reveals that it is sensitive

to the assumed rs. Figure 5.34 shows the impact of the assumed rs on the correlation

between the maximum KDP and the maximum cooling rate in the melting layer. In

comparison to the assumption of rs = 0.6 (for which the results agree with those from

other environments shown in Fig. 5.32), the correlation is strongly degraded for rs = 1.0,

with an r2 of 0.22 and an increase in RMSE of an order of magnitude over Fig. 5.34a

and approaching that of Z (Fig. 5.29). In addition, the values of KDP are smaller by an

order of magnitude despite using the same range of PSDs. KDP is a function of both the

mass content of a particle and its aspect ratio (i.e., completely spherical particles of any

mass will have zero KDP). When rs = 0.6, small particles, which are present in very large

concentrations, undergo a large change in rm while melting, from oblate snow crystals to
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nearly spherical raindrops, and contribute appreciably to KDP while they are wet, oblate

spheroids. Meanwhile, large particles, which are sparse, do not change their aspect ratio

much while melting. This situation is reversed if the snow particles are assumed to be

spherical to start. The near-sphericity of small crystals during the melting process when

rs = 1.0 severely restricts their contribution to KDP, resulting in much smaller KDP values

overall as seen in Fig. 5.34b. However, this also results in larger snow particles exerting

the dominant effect on KDP values, which hardly contribute to the maximum cooling

rate. This weakened relationship is demonstrated in Figure 5.35. Although the cooling

rate (Fig. 5.35a) and the Z (Fig. 5.35b) plots resemble Fig. 5.33a,b, the contribution

to KDP is shifted toward lower heights and larger bins and the axis of maximum KDP

contribution is now proportional to the ⇡ third moment of the PSD. Thus, although there

is evidence to support the use of rs = 0.6, it should be kept in mind that these results are

sensitive to model parameters that influence the distribution of KDP contribution along

the PSD. Continuing research into these sensitivities is warranted.

5.2.5 Investigation of the cause of “saggy” brightbands

With the advent of QVPs, one of the most pronounced features to be identified is the

so-called “sagging” brightband, a temporary and often sudden downward excursion of

the brightband signature (Ryzhkov et al. 2016; Kumjian et al. 2016; Erlingis et al. 2018).

This feature was examined in detail by Kumjian et al. (2016) for two cases for which in

situ thermodynamic and particle imaging data were available: a broad area of stratiform

rain above a front, and the trailing stratiform portion of a classical MCS. There were

several characteristics common to both cases. During periods of sagging, the Z and ZDR

maxima were enhanced and occurred at lower heights. The brightband depth increased.

In addition, enhanced Z and decreased ZDR were noted above the brightband at times of

sagging, with enhanced values of Z and ZDR present beneath it. The authors hypothesize

this to be due to riming, which results in faster falling particles that take longer to acquire
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Figure 5.35: As in Fig. 5.33, but for rs = 1.0.

sufficient meltwater to cause the brightband and thus suppress the brightband height. In

situ data for one of the cases supports this, with particle imager data showing small,

rimed particles and evidence of pristine ice generated from splintering during riming,

and vertical profiler data showing enhanced fall speeds aloft. In addition, the region

above the melting layer was saturated with respect to liquid water, a necessary condition

for riming. Using a simplified version of the 1D-MS, the authors were able to recreate a

similar sagging feature by covarying the frim and precipitation intensity (changing frim
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alone did not reproduce the features), and thus conclude that riming of an existing PSD

is likely a cause of sagging brightband features. However, the described profiles of Z and

ZDR in regions of sagging are also consistent with ongoing aggregation, and the second

case lacks evidence of riming in the in situ data. Instead, large aggregates and small

isometric crystals are observed, and the air is significantly subsaturated with respect to

water, consistent with the presence of a rear inflow jet and suggestive of sublimation

above the melting layer and possible downdrafts. The authors propose and discount a

number of other reasons brightbands may sag, including the role of cooling-induced

isothermal layers, although they note that no thermodynamic feedbacks were included

in their version of the model. Thus, it is worth investigating the various potential causes

of brightband sagging using the modified 1D-MS with environmental feedbacks.

In addition to the cases shown in Kumjian et al. (2016), Figure 5.36 shows another

example of a sagging brightband (between approximately 60 and 90 minutes). The QVP

was taken in the trailing stratiform portion of a strong MCS from the KLSX radar and

was formatted to correspond with the following figures from the 1D-MS to facilitate an

easy comparison. Like those reported in Kumjian et al. (2016), there is an enhancement

in Z and ZDR during the period of sagging, as well as a lowering of the height at which

the brightband maxima occur by approximately 400 m. The KDP field, which was un-

available from the cases reported in Kumjian et al. (2016), also shows a pronounced

enhancement in the sagging region with values up to 0.4 � km-1. In contrast, the case

here does not show a clear indication of an enhancement in Z and decrease of ZDR above

the sagging brightband, although both do remain enhanced below it. This lack of de-

crease in ZDR values above the brightband is curious, but could be a consequence of

competing effects for either riming and aggregation. Riming results in more spherical

particles that reduces ZDR but increases their density which increases ZDR; aggregation

results in less dense particles which decreases ZDR but could potentially result in more

oblate particles, which would serve to increase the ZDR. The rhv field shows a clear
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Figure 5.36: QVP data of (a) Z, (b) ZDR, (c) KDP, and (d) rhv of a sagging bright band

from KLSX on 2017 April 29 between 22:14:52 and 01:45:10 UTC. Data processed and

provided by Amanda Murphy.

lowering, suggestive of a delay of melting until lower heights. Given its inclusion of

KDP, this case, along with those described in Kumjian et al. (2016), provide a picture of

the features of sagging brightbands and will be used to evaluate the performance of the

1D-MS in simulating this phenomenon.

One of the factors contributing to uncertainty regarding sagging brightbands is the

different ways in which a brightband can be considered to be sagging. Figure 5.37

shows a conceptual model of a vertical profile of a radar variable (e.g., Z) outside of, and

during, periods of sagging. Point A denotes the top of the melting layer, whereas point

B denotes the brightband maxima. The various factors that could, in theory, contribute

to brightband sagging can all affect the magnitude and/or height of point A and/or point
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Figure 5.37: Conceptual representation of the vertical profile of a hypothetical radar

variable (solid) before sagging and (dashed) during sagging. Point ‘A’ represents the

top of the melting layer, whereas point ‘B’ represents the peak of the brightband at any

given time.

B, and the gradient between them, in different ways. As a framework for the following

discussion, changes in the magnitude and height of point A (B) will be referred to as

Amag (Bmag) and Ahgt (Bhgt), respectively. Upon visual inspection of time-height cross

sections of radar variables, brightbands may appear to sag when Bhgt lowers in height. In

contrast, or concurrent with this lowering, Ahgt may also lower. In addition, Bmax tends

to increase and Amax also changes (increases for Z, decreases for ZDR, etc.) during

periods of sagging. The depth of the brightband (Ahgt - Bhgt) is also typically enhanced
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during sagging. These differing perspectives on defining sagging brightbands are both

investigated below but should be clarified in future literature.

Four possible causes of the changes described above are investigated in isolation to

study their individual impacts on the resultant brightband signature: changes in aggre-

gation, precipitation intensity, relative humidity, and vertical velocity. Following the

approach of Kumjian et al. (2016), the various parameters of interest were modulated

using a Gaussian function with a standard deviation of 15 minutes. A total period of 150

min was examined. For the first 15 minutes, the unperturbed environment is modeled.

The left half of the Gaussian distribution is then applied over 45 minutes, with the fully

perturbed environment modeled for an additional 30 minutes. Finally, the right half of

the Gaussian distribution is modeled before returning to the unperturbed environment

for the final 15 minutes. A diagram demonstrating this is shown in Figure 5.38.

Figure 5.38: Diagram demonstrating the applied condition modulations for the sagging

brightband tests.

Unless otherwise specified, the environmental G is 6.0 �C km-1 and the —RH is 3.0.

161



5.2.5.1 Aggregation

To approximate the effects of aggregation alone, the PSD was varied to decrease Ls

while conserving the IWC. For a gamma distribution, the IWC can be expressed as

(Boudala et al. 2006):

IWC =
aN0,s

Lb+µs+1
s

G(b +µs +1) (5.50)

where a and b are the parameters in the mass-dimension relation for snow (for a rela-

tionship of the form m=aDb ). Although not used explicitly, the implicit mass-diameter

relation in the 1D-MS features b = 2.08 and a = 9.361⇥10�5 g mm-1, where D is in

mm and m is in g. These values fall roughly within the range of values reported in the

literature (e.g., Mitchell et al. 1990; Szyrmer and Zawadzki 2010). For demonstrative

purposes, the IWC was held constant at 1.0 g m-3, while Ls was varied from 1.3 mm-1

to 0.3 mm-1 to approximate the effects of aggregation. The µs was calculated from Eq.

(5.44). From this, the N0,s that conserves the IWC was found.

The results of varying aggregation alone are shown in Figure 5.39. For this and each

of the following three causes, temperature and moisture feedbacks with the environment

are turned off; the latent heating rates shown in panel (d) are instantaneous and due to

microphysics alone. The 1D-MS lacks a number of processes that, in reality, act in

concert with the latent heating due to microphysics to modify the environmental tem-

perature and moisture field including vertical motion, turbulent mixing, and advection.

These processes can act to make the growth of a deep isothermal layer self-limiting, and

may even offset the effect of diabatic cooling entirely (e.g., Kain et al. 2000). These

contributions are not straightforward to include in the 1D-MS. By turning off the envi-

ronmental feedback, a quasi-balance between these effects is approximated and allows

the instantaneous effect of the modeled changes to be evident.

The resultant brightband shown in Figure 5.39 bears a striking resemble to those

reported in the literature (e.g., Fig. 5.36, Figs. 3 and 5 of Kumjian et al. 2016). During

the period of enhanced aggregation (between 60 and 90 min), Bhgt decreases and Bmax
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Figure 5.39: Time-height cross sections from the 1D-MS showing the effects of aggre-

gation on (a) Z, (b) ZDR, (c) KDP, and (d) ∂T /∂ t during brightband sagging.

increases for both Z (Fig. 5.39a) and ZDR (Fig. 5.39b). The Bhgt for Z and ZDR decrease

by 110 m and 330 m, respectively, which agrees nicely with the ZDR sagging of 351 m

reported in Kumjian et al. (2016). Thus, there is a very pronounced visual sagging and

enhancement of the brightband, particularly in ZDR. The observed increase in the depth

of the brightband is also evident in Z during the period of enhanced aggregation. At

the top of the brightband, the modeled Amax during the period of enhanced aggregation

also exhibits the changes seen in the cases examined in Kumjian et al. (2016), with an

increase in Z and decrease in ZDR. This decrease in ZDR was attributed to riming in

Kumjian et al. (2016), but occurs here (where frim = 1.0 everywhere) despite rs = 0.6 for

all particle sizes due to the decrease in density of the median particle size owing to aggre-

gation. The reported enhancemnets of Z and ZDR below the brightband during periods of
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sagging are also correctly portrayed here due to the production of larger raindrops dur-

ing periods of aggregation (as well as less mass loss due to evaporation owing to faster

terminal velocities, as evidenced by the decrease in cooling rate below the melting level

in Fig. 5.39d). Despite the reproduction of observed sagging brightband characteristics,

Ahgt is unaffected (i.e., melting begins at the same height regardless of the state of ag-

gregation; Fig. 5.39d). The cooling rate in the melting layer is also slightly lower during

the period of enhanced aggregation due to the cooling being spread out through a deeper

layer. In addition, the KDP in the brightband is actually decreased during periods of sag-

ging, in contrast with Figure 5.36c. Regardless, it is noteworthy that changing only the

slope parameter for a constant IWC (to model the effects of aggregation) can reproduce

the most noteworthy and pronounced observed features of sagging brightbands.

5.2.5.2 Precipitation Intensity

The next possible factor contributing to the sagging of brightbands is an increase in

precipitation intensity. In contrast to aggregation, where the IWC was held constant and

only Ls was varied, here Ls (and µs) are held constant while N0,s is varied. By default,

Ls = 1.0 mm-1 and its corresponding µs are used with the value of N0,s corresponding

to an IWC of 1.0 g m-3 from the previous section. N0,s is then varied up to twice its

original value, resulting in a doubling of input IWC with everything else held constant.

The results are shown in Figure 5.40.

In contrast to Figure 5.39, Bhgt remains unchanged (i.e., there is no visual sagging in

the height of the brightband maximum), although the thickness of the brightband does

seem to increase (for Z and KDP). Bmax does increase for Z (Fig. 5.40a) but remains

constant for ZDR (Fig. 5.40b), which is not affected by concentration. The Bmax for

KDP (Fig. 5.40c) is also increased due to the increase in concentration. The doubled

concentration also results in a doubling of the cooling rate within and above the melting

layer (Fig. 5.40d). Based on these results, although a change in precipitation intensity
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Figure 5.40: As in Figure 5.39, but for variable precipitation intensity.

can result in the enhanced brightband values observed for Z and KDP, it is unable to

explain the sagging of the brightband (in terms of either Ahgt or Bhgt) by itself.

5.2.5.3 Vertical velocity

By default, the vertical velocity in the 1D-MS has been assumed to be zero. However,

any nonzero vertical velocity will affect effective hydrometeor fallspeeds and thus their

concentration. In organized MCSs, mesoscale downdrafts may occur in the stratiform

region as a component of the descending rear-to-front mid-level flow. However, model-

ing and observational studies indicate that these mesoscale downdrafts typically do not

exceed, at most, 1 m s-1 in the vicinity of the melting level (e.g., Yang and Houze Jr.

1995a,b; Schuur and Rutledge 2000; Kumjian et al. 2016). To consider the more ex-

treme end of what may be possible, the vertical velocity was varied from 0 m s-1 to -1.5
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m s-1, with results shown in Figure 5.41. The same PSD for an IWC of 1.0 g m-3 from

the precipitation intensity experiment is used.

Figure 5.41: As in Figure 5.39, but for variable downdraft intensity.

Even with a downdraft of 1.5 m s-1 imposed, the resultant sagging of the brightband

is only slight, with Bhgt for ZDR only lowering 80 m, less than what is often observed

in prominent cases of brightband sagging. There is little to no change in Bmax for Z,

ZDR, and KDP, with only a slight increase in the depth of the melting layer. In addition,

because the particle temperature is assumed to be in equilibrium with the environment

for snow, particles begin melting at the same point regardless of their slight increase

in terminal velocity. Thus, the impact of vertical velocity on particle fallspeeds alone

cannot explain sagging brightbands.
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5.2.5.4 Relative Humidtiy

Figure 5.42: As in Figure 5.39, but for variable environmental humidtiy.

Finally, the impact of environmental relative humidity on sagging brightbands is

investigated in Figure 5.42 using the same PSD as the previous two sections. Although

on average McFarquhar et al. (2007) found the environment to be saturated down to

the melting level with a —RH of 3.0 % �C-1 beneath that, significant variability can

exist, with drier air able to be transported into the low and mid-levels via the descending

rear-to-front inflow jet (e.g., Houze Jr. 1994). Dry air at and above the environmental

0�C level was seen in the second case reported in Kumjian et al. (2016). Therefore,

in contrast to the previous three sections, the environmental RH is assumed to initially

be 100% throughout the column and decreases to 70% in order to model a reasonable
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“worst-case” scenario for strong impacts from environmental RH on the brightband.

The results are shown in Figure 5.42.

As with aggregation, a prominent sagging of the brightband is observed. In this

case, Bhgt descends by 380 m (for ZDR). However, unlike the three previous experi-

ments, Ahgt also descends due to sublimational cooling keeping snowflakes colder than

0�C for an extra 440 m. However this strong sublimation also acts to decrease Z and

KDP above and within the melting layer during sagging, in direct contrast to what is ob-

served, along with a slightly thinner brightband. In addition, Amax for ZDR is unchanged

(as seen in Figure 5.36), although Kumjian et al. (2016) note that snow crystals should

preferentially sublimate at the tips and should therefore become more spherical with

sublimation, an effect not yet accounted for in the 1D-MS. Therefore, although a surge

of dry air results in a sagging of the brightband in terms of Ahgt due to sublimation,

the same process results in a weaker Bmax and thinner brightband and thus fails to re-

produce the observed features of sagging brightband. However, the degree of drying in

this case was significant, and variability in the PSD will affect how much the resultant

Bmax changes in the sagging brightband. For example, a similar experiment using the

aggregation PSD results in a much less marked decrease in the Bmax for Z, ZDR, and

KDP than in Figure 5.42 (not shown).

Although the previous analysis shows the benefits and insights to be gained from

isolating specific processes, it is likely that much of the variabilities are coupled in re-

ality. For example, it stands to reason that more intense precipitation rates may lead to

enhanced aggregation, and thus the impacts of these changes may be additive. Similarly,

downdrafts near the melting layer may form and intensify due to cooling from sublima-

tion, melting, and evaporation (e.g., Houze Jr. 1994), and thus the impacts of vertical

velocity and relative humidity changes should occur together. Conversely, changes due

to aggregation may affect the degree and location of sublimation in any dry layers aloft
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and the degree to which the brightband is affected. While no one physical process ex-

amined can fully explain every aspect of observed brightband sagging characteristics,

the combination of various processes may be able to.

The only remaining factor that has not yet been considered is the impact of environ-

mental cooling and moistening feedbacks. The sublimation, melting, and evaporation

of precipitation acts to create 0�C isothermal layers that deepen with time. Of course, as

discussed previously, the exclusion of mixing and other processes results in unrealisti-

cally deep isothermal layers, which would, in reality, be counteracted by other processes

(i.e., the deepening isothermal layer results in an increasingly superadiabatic layer be-

neath it, which should result in convective mixing and warming of the layer from below).

Figure 5.43: As in Figure 5.39, but for variable aggregation and precipitation intensity

and including environmental temperature and moisture feedbacks.
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A demonstrative example of more realistic variability is shown in Figure 5.43. Here,

both aggregation and precipitation intensity are co-varied as described in their respec-

tive previous sections so that the IWC is 1.0 g m-3 during periods of low aggregation

and increases to 2.0 g m-3 during intense aggregation. These values are large and result

in a brightband that is on the upper end of what is typically observed, but serve as a

useful demonstration. With the combination of changes in aggregation and precipita-

tion intensity along with incorporating changes to the environment, all of the observed

brightband characteristics during sagging events can be simulated. Ahgt descends by

900 m in the span of 150 min due to the formation of an isothermal layer, whereas Ahgt

increases for Z and decreases for ZDR. This rate of descent is roughly comparable to that

seen in Figure 5.36. The thickness of the brightband is enhanced, and Bmax increases

for Z, ZDR, and KDP. Due to the aforemention exclusion of counteracting processes, the

“return” of the brightband to its pre-sagging level is not modeled. Although the goal

here is not to disprove the theory of riming’s contribution to sagging brightbands, for

which good evidence has been provided by Kumjian et al. (2016) for at least one case,

the results shown here suggest that sagging due to other causes — namely enhanced

precipitation/aggregation and the resultant cooling of the atmosphere — cannot be en-

tirely ruled out, and it is possible that there are multiple pathways that result in sagging

brightbands. Further research is needed.

5.2.6 Summary and Future Work

In this chapter, a one-dimensional model of melting snow was developed and expanded

upon and used to study the sensitivity of the brightband to the environment, the potential

for thermodynamic retrievals within the melting layer using polarimetric radar data, and

the possible causes of observed brightband sagging. With many customizable inputs

and switches, the model itself serves as a valuable research tool for studying the melting

layer, and interest has been expressed in using it to improve the representation of melting
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snow in bulk microphysical schemes. Notable changes in the brightband are shown to

be sensitive to the existing background conditions for equivalent input PSDs. Using a

large number of samples that span the range of typically observed PSDs, very promising

results have been achieved for using KDP within the brightband to estimate the maximum

cooling rate within it, with the potential for significant improvement upon methods that

rely on Z. The advent of QVPs provide a robust way to estimate KDP in the melting layer

for the first time. In addition, it has been shown that other microphysical processes, such

as an increase in precipitation intensity and the resultant cooling, could plausibly be

responsible for sagging brightband signatures, in addition to the existing hypothesis of

riming. As noted in Kumjian et al. (2016), this could have implications for nowcasting

of precipitation type and melting layer height as well as the possible identification of

riming conditions dangerous to aviation operations.

Despite the encouraging results, much work remains to be done in studying the

melting layer and its associated polarimetric signatures. There are many other ways

the 1D-MS can be used in its current form. Preliminary steps have begun to be under-

taken to initialize the 1D-MS from QVPs of real data using recently developed retrieval

equations for Dm and Nt in snow (Murphy et al. 2018), which, when combined with cor-

responding environmental conditions (e.g., from a short-term NWP forecast), will facil-

itate the direct comparison between the 1D-MS and observations for real snow events

and potentially permit time-height retrievals of cooling rate for the events. Superexpo-

nential gamma distributions were the focus of this study based on reported observations,

but it would be worthwhile to investigate the results when using subexponential gamma

distributions (e.g. as reported in Brandes et al. 2007) or inverse exponential distribu-

tions. The results shown here focused primarily on the maximum cooling rate within the

melting layer. While the cooling rate profile is typically parabolic in nature, more work

should be done investigating the retrieval of the vertical distribution of cooling and the

height at which the maximum occurs. Only S-band wavelengths were studied, and for
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the most part employed the Rayleigh scattering assumption; future work should exam-

ine other radar wavelengths and employ T-matrix scattering calculations when possible.

More sagging brightband cases should be compiled and investigated, preferably with in

situ particle and thermodynamic data to aid the interpretation of the polarimetric sig-

natures. In particular, as was suggested from in the data from Kumjian et al. (2016),

the different characteristics of sagging brightbands in different stratiform precipitation

regimes should be clarified.

There are also many ways in which the 1D-MS could be expanded and improved

upon. The resultant evolution of the environment and the surface precipitation type is

strongly sensitive to the model microphysical parameterizations (Milbrandt et al. 2014).

Therefore, a wider variety of m�D and m� u relations for snow should be examined.

Aggregation and breakup processes should also be added, as should secondary ice gen-

eration processes such as splintering and an explicit representation of the riming process.

In addition, given the model sensitivity to its value, the aspect ratio and canting angles of

snow should be studied further. Spheroids, although commonly used in modeling stud-

ies, are likely an oversimplification of the particle shape and its response to impinging

electromagnetic radiation. As our understanding of the complexity of melting particles

increases (e.g., Leinonen et al. 2017), this knowledge should be incorporated in future

modeling studies. Going forward, the 1D-MS should contain multiple habits of ice

crystals, each with their own m�D and aspect ratio relations (e.g., Andrić et al. 2013).

From a longer term perspective, the adoption of QVPs and the information they contain

begs for a comprehensive 1D model to be developed and used alongside QVPs that ex-

pands upon the 1D-MS and includes multiple habits and options for all microphysical

processes in the column (e.g., initial ice generation, deposition, breakup, aggregation,

secondary ice generation, sublimation, melting, and evaporation).
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Chapter 6

Assimilation of ZDR columns via cloud analysis

The work presented in this section is taken from: Carlin, J. T., J. Gao, J. C. Snyder,

and A. V. Ryzhkov, 2017: Assimilation of ZDR Columns for Improving the Spin-Up and

Forecast of Convective Storms in Storm-Scale Models: Proof-of-Concept Experments.

Mon. Wea. Rev., 144, 5033-5057, doi:10.1175/MWR-D-17-0103.1.

Cloud analysis techniques for assimilating radar data into storm-scale NWP models

are in widespread use, and make effective use of radar data to reduce the spin-up time

of model precipitation. As described in section 3.1.4.2, cloud analysis techniques rely

on a number of empirical relations between Z and model state variables for temperature,

moisture, and q in order to analyze the full three-dimensional model state. In addition

to deriving q from the legacy retrieval relations discussed in Chapter 4, moisture and

temperature fields within areas of precipitation are analyzed by saturating within a Z

threshold and heating based on the vertical velocity field after the 3D-Var assimilation

of other data sources. Currently, dual-polarization radar data are not utilized in the cloud

analysis beyond thresholding within the data quality control routines. However, as the

results from section 5.1 indicate, polarimetric signatures, such as ZDR columns, may

contain valuable information about areas of heating (and moistening) within convective

updrafts that is more targeted and rooted in physical principles than saturating based on

a single Z threshold.

The work in this chapter explores the impact of assimilating observed polarimet-

ric data through a modified cloud analysis routine. In addition to its proven success in

reducing the spin-up time of modeled precipitation, the cloud analysis technique was
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chosen due to ease of implementing modifications into existing code infrastructure. Di-

rect insertion of the retrieved temperature and moisture perturbations is currently more

straightforward than assimilating the polarimetric variables using variational techniques,

which may require cross covariances between model state variables and the polarimet-

ric variables that are not currently well formulated. Section 6.2 details the modifications

made to the existing cloud analysis routine to accomodate ZDR columns, and section 6.3

describes the experimental setup used for the two case studies examined. Results are

presented in section 6.4, followed by a summary and discussion in section 6.5.

6.1 Motivation

Studies have shown that both temperature perturbations (e.g., Hu et al. 2006a) and the

initial moisture field (e.g., Bielli and Roux 1999; Ducrocq et al. 2002; Weygandt et al.

2002b; Ge et al. 2013) can play primary roles in determining forecast accuracy. The in-

sertion of too much water vapor mass can result in an overestimate of the intensity and

areal coverage of convection, leading to a degradation of the forecast (e.g., Schenkman

et al. 2011a; Schenkman 2012). This issue was examined in detail in Tong (2015),

who found that saturating based on a Z threshold can result in too much moisture being

added and large degradations in forecast skill. Forecast skill was greatly improved when

a more accurate initial moisture field was provided in an observing system simulation

experiment. Due to the lack of a direct relationship between in-cloud moisture and con-

ventionally available observations, Tong (2015) proposed a modification to the cloud

analysis in which the relative humidity in downdraft regions, which are generally unsat-

urated, is reduced. Notable improvements were found for both the analysis and forecast

for all state variables examined, further highlighting the importance of improving the

initial moisture field for convective storm-scale modeling. Despite these encouraging

results, certain issues remain. While unsaturated regions correspond well with down-

drafts overall, the specific quantitative relationship between water vapor mixing ratio
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(qv) and w is unknown and poorly constrained. In addition, even with a perfect qv �w

relationship, the success of this method relies on an accurate model analysis of w, which

is not always known and/or guaranteed, particularly if limited radars are available for

assimilation. As an alternative to using w, a method is proposed here using ZDR columns

to provide adjustments to temperature and moisture in the cloud analysis similar to the

methodology for assimilating lightning data at the cloud scale put forth by Fierro et al.

(2012, 2014, 2015) and Marchand and Fuelberg (2014). Although they are caused by

distinct phenomenon, both traditional ZDR columns caused by mature updrafts (section

5.1.1) and those due to early size-sorting in developing convection (section 5.1.2) will

be utilized here and collectively referred to as “ZDR columns”.

To investigate the validity of the proposed modifications, vertical cross sections of

relative humidity, latent heating rate, ZDR, Z, and storm-relative winds for the case de-

scribed in section 4.2 from the HUCM are shown in Figure 6.1. Throughout the lifetime

of the storm, ZDR columns are coincident with updrafts featuring deep plumes of sat-

uration and with the region of latent heating directly above the columns (as discussed

in section 5.1.1). Notably, the area contained within the 15-dBZ contour is much more

extensive than the areas that are near or at saturation, with large regions exhibiting sub-

saturation. It is apparent that saturating everywhere within the 15-dBZ threshold — the

default Z threshold for saturating within the cloud analysis — would result in too much

moisture being added to the system. These results support the conceptual model of ZDR

columns and their use as proxies for updrafts and subsequently areas of moistening and

heating. It should be noted, however, that the Z threshold used for saturation in the cloud

analysis is an adjustable parameter and there is no agreed-upon Z threshold to use. Other

studies have addressed overmoistening concerns by instead reducing the frequency of

applications of moistening (e.g., Schenkman et al. 2011a).
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Figure 6.1: Vertical cross sections of simulated deep moist convection from the HUCM

showing RH with respect to ice (shaded gray above 90%), the 100 K h-1 latent heating

rate contour (orange), the 1.0-dB ZDR contour (red), the 15-dBZ Z contour (black),

the environmental 0�C level (blue), and storm-relative wind vectors in the x-z plane

(vectors).
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6.2 Description of modified cloud analysis routine

Polarimetric data are first quality-controlled and mapped to the model grid as described

in section 3.1.4.2. Areas of interest for identifying ZDR columns are limited to regions

in which Z � 10 dBZ and rhv � 0.85 to ensure sufficient signal-to-noise ratio and good

quality data, and to regions below the environmental -20�C level to mitigate the chance

of ice crystals with enhanced ZDR causing false detections. Similar to the criteria used in

Snyder et al. (2015) for their ZDR column detection algorithm, a ZDR column is defined

here to exist if ZDR � 1.0 dB for at least two vertically-contiguous grid boxes from

the environmental 0�C level upwards. To help ensure that only legitimate ZDR columns

are detected and limit the chance of noise in the ZDR field causing false detections, an

additional 3 x 3 km horizontal mode filter is applied in which only columns exhibiting

rhv � 0.85 and 1.0  ZDR  5.0 dB in at least five of the nine grid boxes within the

filter are counted. A summary of these detection criteria is shown in Table 6.1.

Table 6.1: Summary of the criteria used to detect ZDR columns.

Variable Criteria

T -20�C  T  0�C

Z � 10 dBZ

rhv � 0.85

ZDR � 1.0 dB with vertical continuity

As opposed to warming in areas with w > -0.2 m s-1 as in the existing cloud analysis,

temperature adjustments are instead made anywhere ZDR columns are detected. Adjust-

ments are made both where ZDR columns are located and to one grid box surrounding

the ZDR columns to aid in establishing wide-enough updrafts that are not smoothed

out before becoming established. Similarly, instead of saturating based on a simple Z
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criterion, saturation is only applied to the model columns (within the cloud region as

determined by Z) where ZDR columns have been detected. Model columns surrounding

detected ZDR columns are also saturated, with the horizontal extent proportional to the

detected depth of the columns (in this case, half the number of model levels in the de-

tected ZDR columns) to prevent the added moisture from mixing out and to attempt to

add more moisture for “stronger” (i.e., taller) ZDR columns. In addition to moistening

and heating at observed ZDR column locations, an additional drying procedure is applied

in an attempt to mitigate possible over-moistening by the microphysics scheme. At any

locations satisfying Z � 10 dBZ and relative humidity � 80% but no detected ZDR col-

umn, the relative humidity is reduced by half of the excess relative humidity above 80%

(e.g., if the relative humidity is 90% with no ZDR column detected, the relative humidity

is reduced to 85%). This is, admittedly, an arbitrary process, but remains a succinct way

to provide minor drying to areas characterized by precipitation (sufficient to meet the

Z � 10 dBZ criterion) but that are outside of ZDR columns (where, it is hypothesized,

deep updrafts are less likely). Future work should examine the sensitivity to the ZDR

column detection criteria and the details of the filtering and weighting procedures for

moistening and drying.

An example of the differences in potential temperature and water vapor mixing ratio

analysis increments between the traditional cloud analysis and the modified cloud anal-

ysis is shown in Figure 6.2 for the initial 20:00 UTC assimilation cycle of the 19 May

2013 Oklahoma case (discussed in the following section). Although the magnitudes of

the moistening and warming are comparable, the location and extent of the increments

vary between the two. The traditional cloud analysis (Fig. 6.2a) shows a large area of

moistening with two primary areas of warming west-northwest of Oklahoma City asso-

ciated with the developing first supercell, and smaller areas of moistening and warming

northwest and west-southwest of Oklahoma City. In contrast, the modified cloud anal-

ysis employing detected ZDR columns (Fig. 6.2b) shows a smaller area of moistening
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Figure 6.2: 20:00 UTC analysis increments of water vapor mixing ratio (shading, g kg-1)

and potential temperature (black contours every 1 K) at approximately 5 km AGL for (a)

the traditional cloud analysis and (b) the modified cloud analysis for the 19 May 2013

Oklahoma case.
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and warming directly west of Oklahoma City, southwest of the area modified in the

traditional cloud analysis, and with little moistening or warming elsewhere. The only

exception is far southwest of Oklahoma City, where the modified cloud analysis shows

a bit more moistening associated with developing convection than the traditional cloud

analysis.

Figure 6.3: Vertical cross sections of the 20:00 UTC analysis increments of relative hu-

midity (shading, %), perturbation potential temperature (orange contours every 1 K), the

15-dBZ Z contour (black), and the 1.0-dB ZDR contour (red) for (a) the traditional cloud

analysis (taken through 35.67�N) and (b) the modified cloud analysis (taken through

35.53�N) for the 19 May 2013 Oklahoma case. The environmental 0�C level is shown

in blue.

To further demonstrate the differences between the analysis increments and confirm

that the changes to the cloud analysis were providing the desired outcome, vertical cross

sections are shown for the same time in Figure 6.3 and compared to the Z and ZDR
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at 20:00 UTC, analogous to Figure 6.1 from the HUCM. The cross sections are taken

approximately through the perturbation potential temperature maximum in each case

and subsequently are not through the same point. As in Figure 6.1, the areal extent of

moistening in the OK Control case based on Z (Fig. 6.3a) is more extensive than in

OK ZDRCOL (Fig. 6.3b). The extent of heating is also more extensive and within the

area of Z in OK Control than in OK ZDRCOL, where it is placed on the left flank of

the storm directly above the detected ZDR column, which already extends approximately

2 km above the environmental 0�C level. While the differences in analysis increments

between the traditional and modified cloud analyses vary with time, Figures 6.2 and 6.3

provide a demonstrative example of the typical differences seen between the methods.

6.3 Experimental setup

To investigate the impact of the modified cloud analysis, two tornadic supercell events

are studied: the 19 May 2013 tornado outbreak in central Oklahoma (the “OK case”)

and the tornadic supercell of 25 May 2016 in north-central Kansas (the “KS case”).

6.3.1 Case descriptions

Around 20:00 UTC on 19 May 2013, thunderstorms initiated near a dryline just west

of the Oklahoma City metropolitan area in an environment characterized by strong ver-

tical wind shear and high potential convective instability (i.e., CAPE). These storms

developed quickly into three supercells that moved toward the east-northeast; two of the

supercells produced a total of eight tornadoes, whereas the third supercell was nontor-

nadic. The northernmost supercell produced two brief tornadoes north and northeast of

Oklahoma City, Oklahoma, before producing a long-lived tornado that produced EF3

damage near Carney, Oklahoma between 21:41-22:24 UTC that resulted in 4 injuries;

the southernmost supercell spawned a tornado that produced EF4 damage near Shawnee,

181



Oklahoma between 23:00-23:50 UTC that resulted in 2 fatalities and 10 injuries (Na-

tional Weather Service 2017a).

In the KS case, an isolated supercell formed in north-central Kansas just north of a

warm front around 22:00 UTC on 25 May 2016 and moved slowly east-southeastward.

The storm produced a total of four tornadoes, including a long-track tornado just east-

northeast of Salina, Kansas that lasted over 1.5 h (00:07-01:40 UTC) (National Weather

Service 2017b).

For both cases, observed tornado tracks were retrieved from shapefiles created from

damage survey reports.

6.3.2 Model setup

The ARPS (see section 3.1.4) was used in this study. Terrain data were derived from

the U.S. Geological Survey 3-s dataset. Subgrid-scale turbulence was parameterized us-

ing a 1.5-order TKE turbulence scheme, with the evolution of the planetary boundary

layer using the formulation of Sun and Chang (1986). Cloud microphysics were param-

eterized using the Milbrandt-Yau double-moment scheme (Milbrandt and Yau 2005a,b),

and both short- and longwave radiation were parameterized using the NASA Goddard

schemes (Chou 1990, 1992). A two-layer force-restore soil model based on Noilhan and

Planton (1989) was used with surface fluxes based on stability-dependent drag coeffi-

cients using surface temperature and volumetric water content. More information about

the full ARPS physics suite can be found in Xue et al. (2001).

Experiments were conducted using a one-way nested grid configuration. The parent

domain was 1200 x 1200 km with a horizontal grid spacing of 4 km whereas the inner

nest was 500 x 500 km with a horizontal grid spacing of 1 km. The domains for the

OK and KS cases were centered on (35.45�N, 97.25�W) and (38.65�N, 97.55�W), re-

spectively. Both nests used a stretched vertical grid containing 53 vertical levels with

an average spacing of 400 m and a minimum spacing of 100 m near the surface. The
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model top was rigid with a Rayleigh damping layer above 12 km to absorb vertically

propagating waves. Lateral boundary conditions were externally forced. The simulated

Z fields were computed using the T-matrix-based algorithm of Jung et al. (2010a). The

domains used for each case are shown in Figure 6.4, and a summary of the model setup

used for these experiments is provided in Table 6.2.

Figure 6.4: Model domains used for the (left) 19 May 2013 Oklahoma case and the

(right) 25 May 2016 Kansas case. The larger outer nest is shown in a thick black line, the

inner nest is shown in a thin black line, and the zoomed-in domain plotted in subsequent

figures is shown with a dotted line. The radar site used for each case is labeled.

6.3.3 Assimilation procedures

The 12-km North American Mesoscale (NAM) model analysis and forecast data were

used to initialize the parent domain. For the OK case, the 19 May 2013 18:00 UTC

NAM analysis was used, and for the KS case the 2-h forecast from the 25 May 2016

18:00 UTC NAM (valid at 20:00 UTC) was used. The NAM data were interpolated

onto the 4-km ARPS grid, which was then integrated forward for 1 h using 3-h lateral

boundary conditions derived from the NAM. This forecast was then further interpolated

down to the inner nest and integrated forward another 1 h, with boundary conditions on
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the inner nest updated at 30-min intervals from the outer nest, for a total spin-up period

of 2 h. This forecast was then used as the background for all assimilation experiments

performed.

Assimilation cycles were performed every 10 minutes following Hu and Xue (2007),

who found this to be the optimal cycling frequency in their experiments. Radial velocity

data were assimilated using the ARPS 3D-Var routine (Gao et al. 2004; Hu et al. 2006b),

after which the cloud analysis routine was called. For the OK case, Oklahoma Mesonet

data (Brock et al. 1995) were also assimilated using the 3D-Var routine. After 30-min,

a separate 1-h forecast was made, with 10-min assimilation cycles continuing. One-

hour forecasts were subsequently initiated every 30-min for three hours after the initial

analysis time. A diagram of the spin-up, cycling, and assimilation process is shown in

Figure 6.5. For the OK case, radar data from the Twin Lakes, Oklahoma WSR-88D

(KTLX) were used, whereas the KS case used data from the Topeka, Kansas WSR-88D

(KTWX) (Fig. 6.4). For each case, two runs were performed: a control run (hereafter,

“Control”), in which the legacy cloud analysis is used (see section 3.1.4.2), and an

experimental run (hereafter, “ZDRCOL”), which employed the modified polarimetric

cloud analysis described in section 6.2.

Specific nomenclature for each experiment will be referred to hereafter by their case

and which cloud analysis method was used (e.g., “KS ZDRCOL” refers to the 25 May

2016 KS case experiment employing the modified cloud analysis).

6.4 Results

6.4.1 19 May 2013 Case

To investigate the performance of the ZDR column detection algorithm, a composite plot

of observed 1-km Z and analyzed ZDR column depth from the KTLX radar observations

in 10-min intervals for the assimilation period is shown in Figure 6.6. Each of the three

swaths associated with a supercell is labeled and will be used to reference each storm
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Figure 6.5: Diagram showing the spin-up and assimilation cycles used for the (a) OK

Case and the (b) KS Case. ‘FX’ represents forecasts, whereas ‘A’ represents assimi-

lation cycles encompassing the ARPS 3D-Var + Cloud Analysis routines. The 0-1 h

forecasts initiated every 30-min are denoted by red arrows. The dotted lines indicate a

continuation of the 10-min assimilation cycles in addition to the initiated 0-1 h forecast.
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in the subsequent discussions. The 15-dBZ contour is also shown as that is the default

threshold for saturation in the original cloud analysis routine. Distinct ZDR column

tracks are evident for all three primary storms, with all storms exhibiting prominent ZDR

columns during their formative stages before becoming more intermittent, supporting

the use of ZDR columns for spinning up storms in the model early in their lifecycle.

In each case, the ZDR column is found on the southwest flank of the storm where the

main updraft is expected to be located. The only exception to this is for the weakening

and fast-moving cell north of Oklahoma City that propagates to the left of the mean

wind off to the north-northeast. The supercell that begins to the west of Oklahoma City

(“Supercell 1” in Fig. 6.6) exhibits a large, deep ZDR column from its inception that

travels toward the northeast and then turns to the east-northeast before producing the

first tornado. The ZDR column then shrinks and becomes shallower near and after the

first tornado dissipates; the ZDR column associated with the main updraft becomes more

robust shortly after the genesis of the second tornado east-northeast of Oklahoma City,

near the observed track. Two more ZDR column tracks are evident south of Oklahoma

City, with the middle track (“Supercell 2”) associated with a smaller ZDR column as it

tracked northeast. The southernmost storm (“Supercell 3”) exhibited a larger and taller

ZDR column that suddenly weakened and never fully reappeared. The period analyzed

here ends at 23:00 UTC, the approximate start time of the long-track southern tornado

southeast of Oklahoma City. However, no clear ZDR column is evident here due to

the close proximity of the updraft to the radar (i.e., the ZDR column was likely located

within the cone of silence, which extends out to ⇡12 km from the radar at a height of

4 km AGL), although additional obfuscation by hail or tornadic debris cannot be ruled

out. This is a known drawback that should be taken into consideration when using any

methods that use vertically integrated data or echo top heights from a single radar.

The areas encompassed by the 15-dBZ threshold are much larger and extend further

to the north and east of the analyzed ZDR columns. For this and all subsequent figures

187



Figure 6.6: Composited remapped Z (15-dBZ contour in gray) and analyzed ZDR column

depth (color shaded, in m, and defined as the height of the 1.0-dB surface above the

environmental 0�C level) between 20:00-23:00 UTC in 10-min intervals for the 19 May

2013 case using the detection criteria listed in Table 6.1. Observed tornado tracks are

shown in black and gray, with gray tracks indicating observed tornadoes that fall outside

of the period of study.
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for the OK case the two easternmost tornadoes (shown in gray in Fig. 6.6) occurred

after the period examined in this experiment.

Composite plots of the maximum analyzed w (contoured at 30 m s-1) at each grid

point for both OK Control and OK ZDRCOL through the assimilation period (20:00 -

23:00 UTC) are shown in Figure 6.7. OK Control exhibits a rather noisy w field com-

posed of many spurious updrafts, along with a pronounced northward bias compared to

the observed tornado tracks. This northern and positive forward speed bias has been ob-

served in many storm-scale modeling studies (e.g., Potvin et al. 2014; Xue et al. 2014;

Stratman and Brewster 2015; Wheatley et al. 2015). In sharp contrast, OK ZDRCOL

features much more consolidated updraft tracks that closely follow the analyzed ZDR

column paths (and observed tornado tracks). As in Figure 6.6, the final analysis in-

cluded is at 23:00 UTC near the beginning of the long-track tornado southeast of Okla-

homa City, evident with a large and strong updraft in excess of 40 m s-1 near the start of

the tornado track that is not as apparent in OK Control. The 30 m s-1 contours also seem

to be larger in OK ZDRCOL than in OK Control, suggest wider, stronger updrafts.

The composited 1-6 km above-ground-level (AGL) updraft helicity (Kain et al.

2008) swaths for three different forecast periods are shown in Figure 6.8. Model out-

put was saved every 5 minutes and composited over the 1-h forecast, with the max-

imum for the forecast period shown at each grid point. The 1-6 km updraft helicity

provides a reasonable depiction of the path of mesocyclones and overall storm track.

To aid in verifying the forecast updraft helicity swaths, rotation tracks derived from the

Multi-Radar/Multi-Sensor (MRMS; Smith et al. 2016) system, which are composited

maximum values of radar-derived azimuthal shear (Smith and Elmore 2004) in a layer

through a given time period, are included in Figure 6.8. While the traditional azimuthal

shear product uses 0-2 km or 3-6 km AGL layers, the 1-6 km AGL azimuthal shear was

used in this study to better correspond with the 1-6 km updraft helicity derived from the
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Figure 6.7: Composited maximum vertical velocity in each grid column for each of

the post-assimilation analyses from 20:00 UTC through 23:00 UTC for the 19 May

2013 case for the (a) OK Control case and (b) OK ZDRCOL case, colored according

to their corresponding analysis time and showing the 30 m s-1 vertical velocity contour

line. Observed tornado tracks are shown in black and gray, with gray tracks indicating

observed tornadoes that fall outside of the period of study.
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model output. The rotation tracks shown in Figure 6.8 correspond to the 1-h forecast

periods shown in each panel.

During the first 0-1 h forecast at 20:30 UTC (Fig. 6.8a,b), both OK Control and

OK ZDRCOL feature a storm track for Supercell 1 that is located too far north. The

updraft helicity swath in OK ZDRCOL, however, is more consolidated and features

a smaller northward bias compared to OK Control. Supercell 1 in OK ZDRCOL has

a slower mean storm motion, with the center of the updraft helicity swath covering ap-

proximately 10 fewer km than OK Control during the forecast period. Finally, OK ZDRCOL

features a weak updraft helicity swath associated with the second developing storm (Su-

percell 2, southwest of Oklahoma City) that is absent in the OK Control run.

The improvements of OK ZDRCOL over OK Control are most pronounced in the

forecast initiated at 21:30 UTC (Fig. 6.8c,d), approximately 10 minutes before the start

of the long-track tornado northeast of Oklahoma City. OK Control features multiple

updraft helicity swaths. There is no identifiable strong updraft helicity swath coincident

with the observed rotation track of Supercell 1, with instead a very strong and promi-

nent updraft helicty swath displaced far to the northeast of the observed rotation track

and corresponding tornado. Moreover, there are two notable updraft helicity swaths cor-

responding to the weakening rotation track of Supercell 2 southeast of Oklahoma City,

with no updraft helicity swath that clearly corresponds with the rotation track for Super-

cell 3. In stark contrast, OK ZDRCOL captures the updraft helicty swath of Supercell 1

well, with the forecast swath nearly coincident with the observed rotation track and with

only a slight bias in forward speed. It also correctly captures the updraft helicity swath

associated with Supercell 2 that weakens as it moves to the northeast. Finally, the early

development of strong rotation in the southernmost supercell (Supercell 3) that would

go on to produce the Shawnee tornado is depicted to the south of Oklahoma City while

being absent in OK Control.
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Figure 6.8: Composited 1-6 km AGL updraft helicity (m2 s-2, red shading) at each grid

point for (a,c,e) OK Control and (b,d,f) OK ZDRCOL for the 0-1 h forecasts beginning

at (a,b) 20:30 UTC, (c,d) 21:30 UTC, (e,f) 22:30 UTC. MRMS-derived 1-6 km AGL

rotation tracks (black contours, 0.01 s-1 shown) are included for each 1-h period. The

initial 1-km Z of each 1-h period is shown for reference (grayscale shading).
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The 22:30 UTC 0-1 h forecast (Fig. 6.8e,f) show many of the same improvements.

Both Supercells 1 and 2 were non-tornadic and beginning to weaken, with less pro-

nounced updraft helicity swaths in OK ZDRCOL. In contrast, OK Control has strong

but noisy updraft helicity swaths for these storms displaced to the northeast of these

storms. For Supercell 3, both OK Control and OK ZDRCOL exhibit updraft helicity

associated with the strong and broad observed rotation track south of Oklahoma City.

However, the updraft helicity swath in OK Control is primarily north and east of the ob-

served rotation track, whereas OK ZDRCOL captures the rotation (albeit with a slight

north bias) and its timing well.

To further examine the improvements in the OK ZDRCOL forecasts over OK Control,

the 1-km AGL Z is shown for the forecasts initiated at 21:30 UTC in 20-min increments

and compared to the observed radar fields in Figure 6.9. This time period represents

the duration of the northern long-track tornado northeast of Oklahoma City, which was

on the ground between 21:41 UTC and 22:24 UTC, as well as the lead up period to the

long-track tornado produced by Supercell 3, which first touched down at 23:00 UTC.

For both the OK Control and OK ZDRCOL runs, an adjustment period is seen in the

first twenty minutes (Figs. 6.9e,f) with small, yet intense, precipitation cores (Z � 65

dBZ) present. These high values of Z occur within the core of the middle and northern

storms (Supercells 1 and 2) in OK Control (Fig. 6.9e), whereas in OK ZDRCOL these

high Z values are predominantly near the southern flank of the storms and/or within the

hook echoes, where the ZDR columns were analyzed. Later in the forecast period (22:10-

22:30 UTC), it is again clear that the OK Control run features a northward and positive

forward speed bias (Fig. 6.9h,k) compared to the observations (Fig. 6.9g,j). Supercell

2 fails to remain distinct, and by 22:30 UTC unobserved banding features are seen in

the OK Control run (Fig. 6.9k). The storms are also larger than those observed, with

large areal coverage of Z � 45 dBZ. In contrast, the OK ZDRCOL run is much closer

to the observations. Although a small northeastward bias does still exist, the forecast
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storms are in better agreement with the observations in terms of size and position, with

three distinct storms featuring identifiable hook echoes and broad supercellular features

present 1-h into the forecast (Fig. 6.9l).

Based on these encouraging qualitative results, the equitable threat scores (ETS) and

frequency biases were computed for a quantitative look at the performance of OK Control

and OK ZDRCOL. The ETS, also known as the Gilbert Skill Score (Gilbert 1884), is

given by

ET S =
H �Hrdn

M+F +H �Hrdn
(6.1)

where H is the number of hits, M is the number of misses, F is the number of false

alarms, and Hrdn is the number of hits expected due to random chance, given by

Hrdn =
(H +M)(H +F)

N
(6.2)

where N is the total number of forecast points included in the calculation. The ETS is

calculated on a gridpoint basis satisfying or exceeding a defined (here Z) threshold, with

a value of 1.0 indicating a perfect forecast and 0.0 indicating no forecast skill. The bias

is calculated from

Bias =
H +F
H +M

�1 (6.3)

and provides a ratio of the number of forecast grids and the number of observed grids

exceeding a threshold, normalized to zero. A bias of zero indicates no bias, whereas

a positive bias indicates an overestimate of Z exceeding a threshold. Both the ETS

and bias were calculated for the composite Z at 20, 30, and 40 dBZ thresholds and are

shown for the OK case in Figure 6.10. Note that the ETS at the analysis time is not

necessarily equal to 1.0 due to both smoothing procedures and differences in how Z is

calculated: the observations are being compared against simulated Z derived from a T-

matrix code for the single-species hydrometeor distribution that was retrieved from the

cloud analysis. The ETS for the 20-dBZ threshold (Fig. 6.10a) are comparable between

the two experiments, but notable improvements in ETS are seen in OK ZDRCOL over
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Figure 6.9: Plots of (left) observed 1-km AGL Z from KTLX remapped to the

ARPS grid, and corresponding forecasts from the (middle) OK Control and (right)

OK ZDRCOL runs for the 0-1 h forecast beginning at 21:30 UTC for the 19 May 2013

case. Plots are shown for (a)-(c), the analysis at 21:30 UTC, (d)-(f) 20-min forecast at

21:50 UTC, (g)-(i) 40-min forecast at 22:10 UTC, and (j)-(l) 60-min forecast at 22:30

UTC. Observed tornado tracks are shown in black.
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OK Control for high Z thresholds (Figs. 6.10c,e). The ETS for OK ZDRCOL remains

superior for the entire 1-h duration of every forecast, showing a noteworthy positive im-

pact of ZDR column assimilation. Both OK Control and OK ZDRCOL exhibit generally

positive biases that increase with time at all three Z thresholds. For all forecasts at all

times, however, OK ZDRCOL features smaller biases (Figs. 6.10b,d,f). This tendency

toward smaller Z biases in OK ZDRCOL is also seen in 1-km Z for the 21:30 UTC

forecast (Fig. 6.9).

Figure 6.10: Equitable threat score and bias of composite Z at (a,b) 20 dBZ, (c,d) 30

dBZ, and (e,f) 40 dBZ thresholds for each of the 0-1 h forecasts for the OK case.
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6.4.2 25 May 2016 Case

The KS case presents a somewhat more challenging forecast scenario owing to a com-

plex evolution of the supercell and the greater distance between the supercell and the

radar. After becoming mature, the main supercell began moving slowly to the southeast.

A new storm developed to the southwest of the main supercell, which produced a left-

moving supercell that moved off to the north-northeast before merging with the primary

supercell. Additional convection also formed along, and was absorbed into, the southern

flank of the forward flank downdraft in the supercell. This storm was further away from

the radar than the storms in the OK case were (initiation occurred approximately 140 km

away from the radar compared to 65 km away from the radar in the OK case), resulting

in a decrease of the quality of radar data available for assimilation due to both decreased

low-level coverage and increasing radar resolution volume (⇡0.22 km3 at a 65 km range

vs. ⇡1.01 km3 at a 140 km range for a 0.5� elevation angle). Additionally, in contrast

to the OK case, this case lacked the assimilation of Mesonet surface observations.

A long, continuous swath of detected ZDR columns are shown for the duration of

the period analyzed in the southwest corner of the supercell where the main updraft is

expected to be located (Fig. 6.11). The ZDR column’s width and depth increases shortly

before the start of the long-track tornado northeast of Salina, KS, and the ZDR column

remains broad and deep until the end of the tornado, near the end of the assimilation

period. A second ZDR column swath is seen with the left split of the supercell as it

moves off to the north-northeast. This column weakens near the end of the assimilation

period, and the storm weakened shortly thereafter. As in the OK case, the easternmost

tornado falls outside the analyzed period for this case.

The composite plot of maximum w in the analyses for the KS case shows many of

the same improvements documented in the OK case (Fig. 6.12). The KS Control case

shows a more disorganized and less coherent updraft path, with many spurious updrafts
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Figure 6.11: Composited remapped Z (15-dBZ contour in gray) and analyzed ZDR col-

umn depth (color shaded, in m) between 22:00-01:00 UTC in 10-min intervals for the

25 May 2016 case using the detection criteria listed in Table 6.1. Observed tornado

tracks are shown in black and gray, with gray tracks indicating observed tornadoes that

fall outside of the period of study.
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to the north of the main supercell path and observed tornado tracks (Fig. 6.12a). Con-

sidering that the end of the assimilation period is near the ending time of the long-track

tornado, the general progression of the analyzed updrafts is also too fast. In contrast,

KS ZDRCOL features a much more coherent updraft swath with a slower forward mo-

tion to the east-southeast and a path closer to the observed tornado track (Fig. 6.12b).

KS ZDRCOL also features less spurious convection than KS Control in the central and

southern parts of the domain.

Figure 6.12: Composited maximum vertical velocity in each grid column for each of

the post-assimilation analyses from 22:00 UTC through 01:00 UTC for the 25 May

2016 case for the (a) KS Control case and (b) KS ZDRCOL case, colored according

to their corresponding analysis time and showing the 30 m s-1 vertical velocity contour

line. Observed tornado tracks are shown in black and gray, with gray tracks indicating

observed tornadoes that fall outside of the period of study.

A comparison of 1-6 km updraft helicity with MRMS-derived rotation tracks, sim-

ilar to Figure 6.8, is shown for the KS case in Figure 6.13. The forecasts selected here

were chosen to coincide with the long-track tornado. In the forecast initiated at 23:00
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UTC (Fig. 6.13a,b), both KS Control and KS ZDRCOL produce a developing super-

cell north of Salina with an unorganized updraft and an east-northeast motion. The

observed rotation tracks show only slight, messy rotation during this period. Starker

differences are seen for the 00:00 UTC forecast (Fig. 6.13c,d). KS Control features a

disorganized updraft helicity swath displaced far to the north of the observed rotation

track. In contrast, KS ZDRCOL features a consolidated updraft helicity swath through

the duration of the forecast period along and just north of the observed rotation track,

although a slight slow bias in forward speed is evident. These same general patterns

are also observed for the 01:00 UTC forecast, with a noisy updraft helicity field too far

to the northeast in KS Control; KS ZDRCOL exhibits a large, southeastward-directed

updraft helicity swath displaced slightly southwest of the observed rotation track.

An example of observed and forecast 1-km Z for both KS Control and KS ZDRCOL

is shown in Figure 6.14 for the 00:00 UTC forecast. This 1-h period begins near the start

time of the primary long-track tornado and features a complex evolution involving the

secondary storm to the southwest splitting and merging with the main supercell (Figs.

6.14a,d,g,j). As such, both KS Control and KS ZDRCOL struggle to accurately predict

the evolution of the storm during this period. A very large and elongated forward flank

downdraft not seen in the observed Z quickly develops and extends to the east-southeast

and east-northeast in KS Control and KS ZDRCOL, respectively. This forward flank

precipitation seems to stem from weak upper-level Z in the anvil in the observations.

Despite this, KS ZDRCOL features a more realistic supercell structure 20-min into the

forecast (Fig. 6.14f) compared to KS Control (Fig. 6.14e), with a well defined hook

echo and rear flank downdraft near the observed tornado track. Neither KS Control

nor KS ZDRCOL clearly capture the left-splitting supercell. An erroneous region of

moderate Z (i.e., 25-35 dBZ) within the inflow region of the supercell is also seen in the

KS Control run (Fig. 6.14e) that is not seen in the KS ZDRCOL run. Both KS Control

and KS ZDRCOL generally feature Z values that are too low (by ⇡5-10 dBZ) compared
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Figure 6.13: Composited 1-6 km AGL updraft helicity (m2 s-2, red shading) at each grid

point for (a,c,e) KS Control and (b,d,f) KS ZDRCOL for the 0-1 h forecasts beginning

at (a,b) 23:00 UTC, (c,d) 00:00 UTC, (e,f) 01:00 UTC. MRMS-derived 1-6 km AGL

rotation tracks (black contours, 0.01 s-1 shown) are included for each 1-h period. The

initial 1-km Z of each 1-h period is shown for reference (grayscale shading).
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Figure 6.14: Plots of (left) observed 1-km AGL Z from KTWX remapped to the

ARPS grid, and corresponding forecasts from the (middle) KS Control and (right)

KS ZDRCOL runs for the 0-1 h forecast beginning at 00:00 UTC (on 26 May) for

the 25 May 2016 case. Plots are shown for (a)-(c), the analysis at 00:00 UTC, (d)-(f)

20-min forecast at 00:20 UTC, (g)-(i) 40-min forecast at 00:40 UTC, and (j)-(l) 60-min

forecast at 1:00 UTC. Observed tornado tracks are shown in black and gray, with gray

tracks indicating observed tornadoes that fall outside of the period of study.
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Figure 6.15: As in Fig. 6.10, but for the KS case.
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to observations outside of the forward flank downdraft. Overall, KS ZDRCOL features

a slower and noticeably more accurate forecast track of the hook echo than KS Control

(as also seen Figs. 6.13c,d), as well as a more realistic looking hook echo (Fig. 6.14i,l

vs. Fig. 6.14h,k) .

Quantitatively, KS ZDRCOL generally exhibits improvements over KS Control with

larger ETS scores and smaller biases, although the improvements in ETS scores are more

mixed than in the OK case, with lower scores for the first two forecasts in the period (Fig.

6.15). Overall scores are lower in the KS case compared to the OK case, in part due to

the challenging nature of the forecast and in part due to the aforementioned biases in

Z (e.g., Fig. 6.15b,d,f) and the extensive forward flank downdrafts, which generally

exceed the biases seen for the OK case, particularly for later forecasts.

6.5 Summary and Future Work

In this work, the potential for the assimilation of polarimetric radar data observations

via a cloud analysis technique to aid in the spin-up and forecast of convection in storm-

scale NWP models is examined. ZDR columns are ubiquitous features of deep moist

convection that are coincident with updrafts and, thus, with areas of saturation and latent

heat release. Based on this premise, a ZDR column detection algorithm is developed to

identify ZDR columns and (1) insert positive temperature and moisture perturbations at

these locations and (2) remove modest amounts of moisture outside of these locations

where Z exceeds 15 dBZ. To evaluate this method, two cases are analyzed: the 19 May

2013 tornadic supercells in central Oklahoma and the 25 May 2016 tornadic supercell

in north-central Kansas. For each case, two runs were performed to gauge the impact of

these changes: a “Control” run using the original cloud analysis, and a “ZDRCOL” run

using the newly-modified cloud analysis that incorporates dual-polarization radar data.

The general conclusions are that:
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1. The ZDR column detection algorithm is shown to reliably identify ZDR columns

associated with convective updrafts. ZDR columns are shown to be coincident with

plumes of diabatic heating and saturation within updrafts, which occupy a much

smaller region than the 15-dBZ contour, the default threshold for saturation with

the cloud analysis.

2. The use of ZDR columns in the cloud analysis results in more coherent and con-

solidated analyzed updraft tracks, with less spurious convection compared to the

traditional cloud analysis analyses.

3. Short-term forecasts from analyses that assimilated ZDR columns in the cloud

analysis show a reduction in forward speed and northward position bias of the

modeled storms than those using the traditional cloud analysis, a bias encountered

in many storm-scale modeling experiments. Forecast 1-6 km AGL updraft helicity

swaths agree better with radar-derived rotation tracks, and forecast Z fields agree

better with observations both in terms of placement and general characteristics.

4. Quantitative verification scores bear out these qualitative conclusions, with gen-

erally improved ETS scores for large Z thresholds and reduced biases when using

ZDR columns in the cloud analysis than the traditional version.

These experiments represent a basic proof-of-concept investigation of the potential

for assimilating ZDR columns into storm-scale models and warrant further study. How-

ever, drawbacks to the method examined here exist that have yet to be addressed. First,

although ZDR columns are fairly ubiquitous in deep convection and are generally col-

located with updrafts, they can be masked by the presence of hail or tornadic debris

(Snyder et al. 2015) in the updraft, resulting in the intermittent appearance (or complete

disappearance) of ZDR columns; in some cases, ZDR columns may not be observed in

deep convection at all. Future work should examine the potential of using KDP columns

in a similar manner to alleviate these issues (van Lier-Walqui et al. 2016), although the
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use of KDP columns bears its own shortcomings (e.g., poor estimation of KDP in areas of

limited precipitation). The polarimetric version of the newly-developed Storm Labeling

in Three Dimensions (SL3D) algorithm (Starzec et al. 2017), which has demonstrated

success in identifying convective updrafts using a combination of weak-echo regions,

ZDR columns, and KDP columns, may also prove particularly useful going forward. Fig-

ure 6.16 demonstrates the benefits of combining multiple forms of polarimetric updraft

detection (e.g., ZDR and KDP columns) for the two cases presented in this chapter. The

added benefit of KDP columns is particularly evident for the OK case, which features

intermittent ZDR columns, particularly in the lead up to each of the long-track torna-

does. When combined with KDP columns, a more continuous swath of detected updraft

signatures is now available.

Figure 6.16: As in Figs. 6.6 and 6.11, but including KDP column depth (purples, in m,

and defined as the height of the 0.75-� km-1 surface above the environmental 0�C level

in areas where Z > 30 dBZ, following Starzec et al. (2017)).
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In addition to the aforementioned issues about intermittency, the use of ZDR columns

to aid the spin-up of precipitation in a NWP model may not be appropriate for weak con-

vective storms and stratiform rain where ZDR columns are ill defined or may not exist.

Only two cases were analyzed in this study, with each being an archetypal case of very

strong convection with good radar coverage and prominent ZDR columns. Additional

microphysics schemes should be testing to study whether the impacts observed in this

study are consistent across schemes. The parameters both for detecting ZDR columns

and for applying moisture and temperature increments were subjectively determined

and should undergo further refinement. Finally, for this work, only a single radar was

assimilated in each case, which may limit the efficacy of assimilating radial velocity

observations in conjunction with the cloud analysis. Assimilating data from multiple

radars may enhance the impact of radial velocity on the spin-up and analysis of storms

examined in this work, as well as alleviate radar coverage concerns for detecting ZDR

columns.

While being a relatively simple and efficient method for assimilating Z, cloud anal-

ysis techniques may not be optimal owing to their inherent empirical relationships that

can compromise initial adjustments in the model. As temperature and moisture incre-

ments seem to play a large role in aiding the spin-up of observed storms in storm-

scale models, future work should seek to explore the possibility of assimilating cloud

analysis-derived temperature and moisture increments based on detected ZDR columns

as “pseudo-observations” in a 3D-Var framework, similar to the work of Fierro et al.

(2016) for lightning data assimilation. Using a variational framework to assimilate ZDR

columns should result in a more balanced analysis between the kinematic and thermo-

dynamic fields and, hence, for a smoother cycling process.
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Chapter 7

Summary and Outlook

The increasingly widespread adoption of dual-polarization radar has revolutionized both

operational radar meteorology, with improvements in the detection of dangerous phe-

nomena such as hail, tornadoes, and heavy rain, as well as research meteorology, with

improved insight into storm microphysical content and processes. As such, the poten-

tial for dual-polarization radar data to inform storm-scale NWP models has long been

acknowledged, with the few studies done in this area primarily focused on improving

the representation of precipitation hydrometeors. The first part of this dissertation is

centered here, exploring the deficiencies of current methods for retrieving hydrometeors

from Z and to what extent dual-polarization radar can improve upon these estimates.

The rest of the work presented here, however, lays the groundwork for a paradigm shift

in how dual-polarization radar data is utilized for storm-scale NWP models by investi-

gating its potential to offer information about thermodynamic fields. A one-dimensional

model is developed and used to study the polarimetric characteristics of the melting layer

in stratiform precipitation, and whether information about the cooling rate in this layer

can be retrieved from these characteristics. The heating rate within convective updrafts

is also investigated by way of ZDR columns, with a novel method of assimilation into

storm-scale NWP models developed that results in positive impacts on the forecast for

two real data cases. These results are encouraging, and should promote further study

into how dual-polarization radar data can inform not only the hydrometeor content of

precipitation systems but their thermodynamic and dynamic components, as well.

The use of ZDR columns to pinpoint the location of latent heating in deep moist

convection has been met with interest in the convective-scale modeling community. A

procedure predicated on this work is now being implemented and researched for use
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Figure 7.1: A demonstration of ongoing research into the implementation of latent heat-

ing rates based on ZDR columns in the HRRR model showing (a) detected ZDR columns

(where ZDR � 1.0 dB and Z � 30 dBZ above the 0� level), (b) the detected columns

interpolated to the model grid, (c) latent heating rate applied at interpolated ZDR column

locations, and (d) the latent heating rate from the current Z-based approach. Taken and

adapted from Alexander et al. (2017).
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in the High-Resolution Rapid Refresh (HRRR) model at the Earth System Research

Laboratory (Alexander et al. 2017; Murdzek et al. 2018), with encouraging preliminary

results. An example of this implementation in shown in Figure 7.1, which compares the

latent heating rate derived from ZDR columns compared to the current procedure based

on Z. In addition, the modified polarimetric cloud analysis has now been interfaced to be

compatible with the Weather Research and Forecasting (WRF) model (Yunheng Wang,

personal communication), which will permit testing and development in a community

model with a larger user base. Preliminary work has begun using a three-dimensional

polarimetric mosaic of multiple radars (John Krause, personal communication) using the

compositing method put forth in Homeyer and Kumjian (2015), as well as assimilating

the temperature and moisture increments determined from ZDR columns variationally,

as suggested in section 6.5.

Beyond the novel approaches presented here, there are a number of ways dual-

polarization radar could also be used to improve upon existing Z-based techniques for

utilizing radar data for storm-scale NWP models. Nudging techniques, including la-

tent heat nudging, divergence nudging, and moisture nudging, all rely on the differ-

ence between the predicted and observed rainfall at the surface. Dual-polarization radar

can improve the quality of radar-derived rainfall estimates, which will directly impact

the amount of nudging performed by such schemes. Although somewhat crude, the

budgeting techniques for the estimation of diabatic heating within storms discussed in

section 2.2.3.1 could be revisited with improved estimates of hydrometeor q from dual-

polarization radar. The Bayesian method for estimating the vertical profile of latent

heating put forth in Nelson et al. (2016) would benefit from additional radar moments

to better constrain the drop size distributions, and Penide et al. (2013) showed the im-

provement in the partitioning of convective and stratiform precipitation when employ-

ing dual-polarization data. Polarimetric radars can also improve the discrimination of
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non-meteorological echoes and help with attenuation correction, often a necessary com-

ponent of using radar observations in any capacity.

As radar technology continues to evolve, the need for studying the potential benefits

and effects of these changes will remain present. The next leap forward for weather radar

technology may be phased array radar, which is currently being studied as a potential re-

placement for the aging WSR-88D network. Unlike the WSR-88D radars, which rely on

mechanical beam steering and obtain full radar volumes every ⇡5 minutes, phased-array

radars operate using electronic beam steering and can achieve full radar volumes every

⇡1 minute. Studies have shown that forecaster warning performance is improved when

using these faster updates (Heinselman et al. 2012, 2015; Bowden et al. 2015; Wilson

et al. 2017b) and that forecasters derived more qualitative value from the enhanced tem-

poral resolution (Bowden and Heinselman 2016; Wilson et al. 2017a). Limited studies

have also examined the impact of assimilating such rapid updates of radar data compared

to the WSR-88D, with both simulated data in observing system simulation experiments

(Lei et al. 2007; Yussouf and Stensrud 2010) and real phased-array radar observations

(Supinie et al. 2017) showing positive impacts that warrant further exploration in the

future. Thus far, research into the feasibility of phased-array radar has been done with

single-polarization data. However, the potential for a dual-polarization phased-array

radar system is being investigated (Torres 2017), which would mark another pivotal step

forward for the weather radar community. How best to assimilate rapid updates of po-

larimetic radar data, and whether similar or better improvements can be obtained as with

existing polarimetric radar technology, will almost certainly remain a research priority

in the coming years.
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Bukovčić, P., D. Zrnić, and G. Zhang, 2017: Winter precipitation liquid-ice phase tran-
sitions revealed with polarimetric radar and 2DVD observations in central Oklahoma.
J. Appl. Meteor. Climatol., 56, 1345–1363, doi:10.1175/JAMC-D-16-0239.1.

216



Byers, H. R., and R. D. Coons, 1947: The ‘bright line’ in radar cloud echoes and its
probable explanation. J. Meteor., 4, 78–81, doi:10.1175/1520-0469(1947)004h0078:
TLIRCEi2.0.CO;2.

Cao, Q., G. Zhang, E. Brandes, T. Schuur, A. Ryzhkov, and K. Ikeda, 2008: Analysis
of video disdrometer and polarimetric radar data to characterize rain microphysics in
Oklahoma. J. Appl. Meteor. Climatol., 47, 2238–2255, doi:10.1175/2008JAMC1732.
1.

Caplan, P. M., 1966: On the evaporation of raindrops in the presence of vertical
gradients of temperature and relative humidity. J. Atmos. Sci., 23, 614–617, doi:
10.1175/1520-0469(1966)023h0614:OTEORIi2.0.CO;2.
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Sachidananda, M., and D. S. Zrnić, 1987: Rain rate estimates from differential po-
larization measurements. J. Atmos. Oceanic Technol., 4, 588–598, doi:10.1175/
1520-0426(1987)004h0588:RREFDPi2.0.CO;2.

Sassen, K., 1987: Ice cloud content from radar reflectivity. J. Climate Appl. Meteor., 26,
1050–1053, doi:10.1175/1520-0450(1987)026h1050:ICCFRRi2.0.CO;2.

Sauvageot, H., and J. Omar, 1987: Radar reflectivity of cumulus clouds. J. Atmos.
Oceanic Technol., 4, 264–272, doi:10.1175/1520-0426(1987)004h0264:RROCCi2.0.
CO;2.

Scharfenberg, K. A., 2003: Polarimetric radar signatures in microburst-producing thun-
derstorms. 31st Int. Conf. on Radar Meteorology, Seattle, WA, Amer. Meteor. Soc.,
8B.4.

Schenkman, A. D., 2012: Exploring tornadogenesis with high-resolution simulations
initialized with real data. Ph.D. thesis, University of Oklahoma, 186 pp.

Schenkman, A. D., X. Ming, A. Shapiro, K. Brewster, and J. Gao, 2011a: The analysis
and prediction of the 8-9 May 2007 Oklahoma tornadic mesoscale convective system
by assimilation WSR-88D and CASA radar data using 3DVAR. Mon. Wea. Rev., 139,
224–246, doi:10.1175/2010MWR3336.1.

Schenkman, A. D., M. Xue, A. Shapiro, K. A. Brewster, and J. Gao, 2011b: Impact of
CASA radar and Oklahoma mesonet data assimilation on the analysis and prediction
of tornadic mesovortices in an MCS. Mon. Wea. Rev., 139, 3422–3445, doi:10.1175/
MWR-D-10-05051.1.

Schultz, C. J., and Coauthors, 2012a: Dual-polarization tornadic debris signatures. Part
I: Examples and utility in an operational setting. Electron. J. Oper. Meteor., 13, 120–
137, [Available online at http://nwafiles.nwas.org/ej/pdf/2012-EJ9.pdf].

Schultz, C. J., and Coauthors, 2012b: Dual-polarization tornadic debris signatures. Part
II: Comparisons and caveats. Electron. J. Oper. Meteor., 13, 138–150, [Available on-
line at http://nwafiles.nwas.org/ej/pdf/2012-EJ10.pdf].

239



Schumacher, C., R. A. Houze, and I. Kraucunas, 2004: The tropical dynamical response
to latent heating estimates derived from the TRMM Precipitation Radar. J. Atmos.
Sci., 61, 1341–1358, doi:10.1175/1520-0469(2004)061h1341:TTDRTLi2.0.CO;2.

Schumacher, R. S., and J. M. Peters, 2017: Near-surface thermodynamic sensitivities
in simulated extreme-rain-producing mesoscale convective systems. Mon. Wea. Rev.,
145, 2177–2200, doi:10.1175/MWR-D-16-0255.1.

Schuur, T. J., and S. A. Rutledge, 2000: Electrification of stratiform regions in
mesoscale convevctive systems. Part I: An observational comparison of symmetric
and asymmetric MCSs. J. Atmos. Sci., 57, 1961–1982, doi:10.1175/1520-0450(2001)
040h1019:DSDMBAi2.0.CO;2.

Schuur, T. J., A. V. Ryzhkov, and D. R. Clabo, 2005: Climatological analysis of DSDs
in Oklahoma as revealed by 2D-video disdrometer and polarimetric WSR-88D. 32nd
Conf. on Radar Meteorology, Albuquerque, NM, Amer. Meteor. Soc., 15R.4.

Sekhon, R., and R. Srivastava, 1970: Snow size spectra and radar reflectivity. J. Atmos.
Sci., 27, 299–307, doi:10.1175/1520-0469(1970)027h0299:SSSARRi2.0.CO;2.

Seliga, T. A., K. Aydin, and H. Direskeneli, 1986: Disdrometer measurements during an
intense rainfall event in Central Illinois: Implications for differential reflectivity radar
observations. J. Climate Appl. Meteor., 25, 835–846, doi:10.1175/1520-0450(1986)
025h0835:DMDAIRi2.0.CO;2.

Seliga, T. A., and V. N. Bringi, 1976: Potential use of radar differential reflectivity mea-
surements at orthogonal polarizations for measuring precipitation. J. Appl. Meteor.,
15, 69–76, doi:10.1175/1520-0450(1976)015h0069:PUORDRi2.0.CO;2.

Seliga, T. A., and V. N. Bringi, 1978: Differential reflectivity and differential phase
shift: Applications in radar meteorology. Radio Science, 13, 271–275, doi:10.1029/
RS013i002p00271.

Seliga, T. A., V. N. Bringi, and H. H. Al-Khatib, 1981: A preliminary study of
comparative measurements of rainfall rate using the differential reflectivity radar
technique and a raingage network. J. Appl. Meteor., 20, 1362–1368, doi:10.1175/
1520-0450(1981)020h1362:APSOCMi2.0.CO;2.

Shapiro, A., S. Ellis, and J. Shaw, 1995: Single-Doppler velocity retrievals with Phoenix
II data: Clear air and microburst wind retrievals in the planetary boundary layer. J.
Atmos. Sci., 52, 1265–1287, doi:10.1175/1520-0469(1995)052h1265:SDVRWPi2.0.
CO;2.

Shapiro, A., C. K. Potvin, and J. Gao, 2009: Use of a vertical vorticity equation in
variational dual-Doppler wind analysis. J. Atmos. Oceanic Technol., 26, 2089–2106,
doi:10.1175/2009JTECHA1256.1.

240



Shige, S., Y. N. Takayabu, S. Kida, W.-K. Tao, X. Zeng, C. Yokoyama, and T. L’Ecuyer,
2009: Spectral retrieval of latent heating profiles from TRMM PR data. Part IV: Com-
parisons of lookup tables from two- and three-dimensional simulations. J. Climate,
22, 5577–5594, doi:10.1175/2009JCLI2919.1.

Shige, S., Y. N. Takayabu, W.-K. Tao, and D. E. Johnson, 2004: Spectral retrieval of
latent heating profiles from TRMM PR data. Part I: Development of a model-based
algorithm. J. Appl. Meteor., 43, 1095–1113, doi:10.1175/1520-0450(2004)043h1095:
SROLHPi2.0.CO;2.

Shige, S., Y. N. Takayabu, W.-K. Tao, and D. E. Johnson, 2007: Spectral retrieval of
latent heating profiles from TRMM PR data. Part II: Algorithm improvement and
heating estimates over tropical ocean regions. J. Appl. Meteor. Climatol., 46, 1098–
1124, doi:10.1175/JAM2510.1.

Sikdar, R. E., D N Schlesinger, and C. E. Anderson, 1974: Severe storm latent heat
release: Comparison of radar estimate versus a numerical experiment. Mon. Wea.
Rev., 102, 455–465, doi:10.1175/1520-0493(1974)102h0455:SSLHRCi2.0.CO;2.

Simmons, K. M., and D. Sutter, 2005: WSR-88D radar, tornado warnings, and tornado
casualties. Wea. Forecasting, 20, 301–310, doi:10.1175/WAF857.1.

Simpson, J., R. F. Adler, W.-K. Tao, and R. Adler, 1996: On the Tropical Rain-
fall Measuring Mission (TRMM). Meteor. Atmos. Phys., 60, 19–36, doi:10.1007/
BF01029783.

Skamarock, W. C., J. B. Klemp, J. Dudhia, D. O. Gill, D. M. Barker, W. Wang, and
J. G. Power, 2005: A description of the advanced research WRF version 2. NCAR
Tech. Note NCAR/TN-468+STR, 88 pp. [Available from UCAR Communications,
P.O. Box 3000, Boulder, CO, 80307.].

Smith, P. L., 1984: Equivalent radar reflectivity factors for snow and ice particles.
J. Climate Appl. Meteor., 23, 1258–1260, doi:10.1175/1520-0450(1984)023h1258:
ERRFFSi2.0.CO;2.

Smith, P. L., D. J. Musil, S. F. Weber, J. F. Spahn, G. N. Johnson, and W. R. Sand,
1976: Raindrop and hailstone distributions inside hailstorms. 17th Int. Conf. on Cloud
Physics, Boulder, CO, American Meteorological Society, 252-257.

Smith, P. L., C. G. Myers, and H. D. Orville, 1975: Radar reflectivity factor calcula-
tions in numerical cloud models using bulk parameterization of precipitation. J. Appl.
Meteor., 14, 1156–1165, doi:10.1175/1520-0450(1975)014h1156:RRFCINi2.0.CO%
3B2.

Smith, T. M., and K. M. Elmore, 2004: The use of radial velocity derivatives to diag-
nose rotation and divergence. 11th Conf. on Aviation, Range, and Aerospace, Amer.
Meteor. Soc., Hyannis, MA, P5.6, [Available online at https://ams.confex.com/ams/
pdfpapers/81827.pdf].

241



Smith, T. M., and Coauthors, 2016: Multi-Radar Multi-Sensor (MRMS) severe weather
and aviation products: Initial operating capabilities. Bull. Amer. Meteor. Soc., 97,
1617–1630, doi:10.1175/BAMS-D-14-00173.1.

Snook, N., and M. Xue, 2008: Effects of microphysical drop size distribution on tor-
nadogenesis in supercell thunderstorms. Geophys. Res. Lett., 35, 1–5, doi:10.1029/
2008GL035866.

Snook, N., M. Xue, and Y. Jung, 2011: Analysis of a tornadic mesoscale convective
vortex based on ensemble Kalman filter assimilation of CASA X-band and WSR-
88D radar data. Mon. Wea. Rev., 139, 3446–3468, doi:10.1175/MWR-D-10-05053.1.

Snook, N., M. Xue, and Y. Jung, 2012: Ensemble probabilistic forecasts of a tor-
nadic mesoscale convective system from ensemble Kalman filter analyses using
WSR-88D and CASA radar data. Mon. Wea. Rev., 140, 2126–2146, doi:10.1175/
MWR-D-11-00117.1.

Snyder, C., and F. Zhang, 2003: Assimilation of simulated Doppler radar observations
with an ensemble Kalman filter. Mon. Wea. Rev., 131, 1663–1677, doi:10.1175/2555.
1.

Snyder, J. C., H. B. Bluestein, D. T. Dawson, and Y. Jung, 2017a: Simulations of
polarimetric, X-band radar signatures in supercells. Part I: Description of exper-
iment and simulated rhv rings. J. Appl. Meteor. Climatol., 56, 2001–2026, doi:
10.1175/JAMC-D-16-0139.1.

Snyder, J. C., H. B. Bluestein, D. T. Dawson, and Y. Jung, 2017b: Simulations of polari-
metric, X-band radar signatures in supercells. Part II: zdr columns and rings and kdp
columns. J. Appl. Meteor. Climatol., 56, 1977–1999, doi:10.1175/JAMC-D-16-0138.
1.

Snyder, J. C., H. B. Bluestein, G. Zhang, and S. J. Frasier, 2010: Attenuation correc-
tion and hydrometeor classification of high-resolution, X-band, dual-polarized mo-
bile radar measurements in severe convective storms. J. Atmos. Oceanic Technol., 27,
1979–2001, doi:10.1175/2010JTECHA1356.1.

Snyder, J. C., and A. V. Ryzhkov, 2015: Automated detection of polarimetric tornadic
debris signatures using a hydrometeor classification algorithm. J. Appl. Meteor. Cli-
matol., 54, 1861–1870, doi:10.1175/JAMC-D-15-0138.1.

Snyder, J. C., A. V. Ryzhkov, M. R. Kumjian, A. P. Khain, and J. Picca, 2015: A zdr
column detection algorithm to examine convective storm updrafts. Wea. Forecasting,
30, 1819–1844, doi:10.1175/WAF-D-15-0068.1.

Sokol, Z., and D. Rezacova, 2009: Assimilation of the radar-derived water vapour mix-
ing ratio into the LM COSMO model with a high horizontal resolution. Atmos. Res.,
92, 331–342, doi:10.1016/j.atmosres.2009.01.012.

242
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Trömel, S., A. V. Ryzhkov, B. Hickman, and C. Simmer, 2017: Climatology of the
vertical profiles of polarimetric radar variables at X band in stratiform clouds. 38th
Conf. on Radar Meteorology, Amer. Meteor. Soc., Chicago, IL, 5.
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