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Abstract 

In this study, I introduce a novel workflow for extracting useful features in 

thyroid ultrasound images using deep learning and machine learning methods. The 

methodology combines Convolutional Auto-Encoder, Local Binary Patterns, Histogram 

of Oriented Gradients and professional image characterization together to extract useful 

information from medical images.  

Multiple machine learning classifiers are used to build an effective thyroid 

tumor diagnosis model from extracted features. The experimental results show that 

Support Vector Machine with a specifically designed preprocessing scheme and a 

customized objective function outperforms human on the test set. The final model can 

effectively reduce the number of unnecessary biopsies and the number of missing 

malignancies.
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Chapter 1 Introduction 

Humans have been trying to teach computers how to recognize meaningful 

objects since the late 1960s. Back then, Artificial Intelligence (AI) pioneers thought 

Computer Vision could be accomplished in a summer project by attaching camera to 

computer and let the computer “recognize what they saw” [1]. However, as soon as they 

realized the complexity hidden behind the pixels, they concluded that Computer Vision 

was greatly more than a summer project with a question mark: why is it so hard to 

explicitly express the logic of visual perception, what we as humans take for granted? 

In the next several decades, researchers began searching for answers by studying 

the visual systems of many biological entities. They developed quantitative analysis and 

rigorous mathematical models to simulate the visual systems of different species [2, 3]. 

One of the most influential mathematical model in computer vision that forms the 

architectural basis of most modern deep learning algorithms is the Neocognitron. 

(Figure 1) 

 

Figure 1 Structure of Neocognitron. (Figure from Fukushima, 1980) 
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Fukushima first proposed the concept of Neocognitron in the 1980s by 

mimicking mammal’s visual cortex [4]. The main breakthrough of the Neocognitron is 

that it can be insensitive to position shifts and size changes. However, this discovery did 

not attract much attention at the time because there were no efficient techniques found 

to self-organize (train) such visual model. Designing and specifying all the parameters 

and details required to achieve certain recognition task for this model was extremely 

labor intensive, even impossible.  

 From the 80s to 90s, researchers developed efficient ways to automatically train 

network model by applying chain rules to recursively calculate the gradient of error 

with respect to each parameter, namely, the back-propagation algorithm [5]. In 1989 

Yann LeCun implemented a network architecture similar to the Neocognitron with 

layers having local connections and shared weights. These architectures are later 

referred to as the Convolutional Neural Networks (CNN). LeCun trained the CNN using 

the back-propagation algorithm to recognize hand-written digits and achieved great 

performance [6]. His work is one of the earliest demonstrations that a CNN could be 

applied to real world visual applications and his system was later expanded for 

commercial use in banks and post offices.  

 The model complexity of CNN can be significantly less than the complexity of 

Neocognitron because CNN allows weight-sharing among filters and it also uses 

pooling to reduce network size. However, given the computing limit in the 90s, if 

stacking many layers together, the number of training parameters of CNN could easily 

become overwhelming. Furthermore, another obstacle which limits the depth of CNN is 

the vanishing gradient problem: the magnitude of gradient gradually decreases as error 
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propagates backwards. This phenomena is due to the fact that the gradient of error with 

respect to any parameter is calculated by chain rule. Longer the “chain” is, more likely 

the magnitude of gradient will be reduced by intermediate saturated nodes. 

Consequently, if the CNN model was too deep, the first several layers were very likely 

to be poorly trained back then. Therefore, CNN had very limited performance on more 

complex objects. The bad performance was once thought to originate from the 

convolutional model itself other than the lack of training. Consequently, CNN remained 

silent for another decade. 

Although the potential of the CNN was masked during the late 90s, the rise of 

kernel machines [7] offered a valuable bridge for object recognition. However, the 

performance of kernel machines highly relies on the quality of features. Coming up with 

useful features from images has become a new challenge since then. Therefore, many 

computer vision researchers developed visual descriptors that can quantify useful visual 

information such as the shape, texture, motion. Some useful visual feature descriptors 

include Local Binary Patterns (LBP) [8], Histogram of Oriented Gradients (HOG) [9] 

and Grey Level Co-occurrence Matrices (GLCM) [10]. The common wisdom of image 

recognition at the time was to use visual descriptors to extract features from image and 

feed the features to a Support Vector Machine.  

Visual descriptors can effectively extract information from images and they also 

serve as a way of reducing dimensionality which maps the pixel space of image to a 

lower dimensional vector (Figure 2). However, a great amount of information is lost 

and it does not perform well on an image recognition task like ILSVRC [11] (ImageNet 



4 

Large Scale Visual Recognition Challenge), which is also known as the Olympics of 

Computer Vision.  

 

Figure 2 Illustration of how LBP map Images to a Vector 

 Things have greatly changed from 1998 to 2010, both data storage technology 

and computing power has skyrocketed. The use of GPUs alone increased the 

computational speed by a factor of 1000, which enabled us to build and train more 

complex models within feasible time limits. Deep learning, which saves the burden of 

feature engineering by building deep hierarchical representation of input, gradually 

became reality on many problem domains. In the field of Computer Vision, Alex 

Krizhevsky, Ilya Sutskever, and Geoffrey Hinton shocked the world by using a deep 

convolutional neural network to win the ILSVRC in 2012 [12]. Since then, deep 

learning began to attract more and more attentions among computer vision and AI 

researchers. 

Over the last 6 years, deep learning has made remarkable achievements on 

image recognition, speech recognition, text processing and automatic game playing. For 

image recognition, it has boosted the performance of many computer vision tasks such 
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as face recognition, object recognition and image caption. It has been shown to be as 

good as humans at recognizing objects when the winner of ImageNet 2017 achieves 

2.25% error rate [13] (lower than human error). More importantly, it is helping 

computer vision researchers achieve what was meant to be a summer project a long time 

ago.  

In medicine and healthcare, the potential of applying deep learning techniques to 

solve medical vision problems has caught the attention of both industry and academia. 

For instance, IBM’s Watson [14, 15] has been developing optimized cancer diagnosis 

and treatment plans based on patient’s medical records. Google launched DeepMind 

Health [16, 17] to develop computer-aided diagnostic screening for disease and 

achieved great results in diagnosing diabetic retinopathy.  

A lot of medical data is published and accessible for anyone who wants to make 

medical discoveries, such as TCIA (The Cancer Imaging Archive), IDA (LONI Image 

Data Archive) and many others.  The number of publication on medical AI is also 

exploding, especially after Google published its deep learning framework TensorFlow 

[18] to the AI community.  

In Biomedical Imaging, deep learning helped researchers to solve wide ranges of 

medical image recognition problems. Broad categories of those problems are: anomaly 

detection, diagnosis classification, segmentation, recognition and brain decoding, see 

Table 1. 

Table 1 List of Deep Learning Applications in Biomedical Imaging 
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 One of the most important medical vision tasks is medical image diagnosis, for 

example, diagnosing whether a tumor is benign or malignant. A tumor (nodule) often 

results from cells that have their cell cycle broken by mutation. They can rapidly 

reproduce themselves and create their own base (tumor). Fortunately, most of those 

tumors are controlled by a membrane that prevents them from traveling elsewhere in 

our body (encapsulated), these tumors are described as benign tumor. However, some 

tumors may not be well-encapsulated and cancer cells can therefore travel through 

blood vessels to somewhere else (metastasis), in this case we have malignant tumor.  

 

Figure 3 Illustration of Thyroid and Thyroid Cancer 

 A tumor can originate from any cells at any part of our body, thyroid is no 

exception (Figure 4). The development of thyroid nodules is a common pathology that 

happens most frequently in females around 20-55 age. The most common type of cancer 

associated with thyroid nodules is papillary cancer that represents about 75% to 85% of 

all thyroid cancer cases [47]. Fortunately, most of the thyroid nodules are benign [48]. 

Thyroid nodules are usually imaged by ultrasound, thyroid nodules can have many 

different appearance on ultrasound images (Figure 4). Radiologists will diagnose the 

tumor by assessing and characterizing the thyroid nodule ultrasound image.  
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Figure 4 Examples of Thyroid Nodule Ultrasound Images 

 One of the most commonly used image characterization schemes for diagnosing 

thyroid tumors is the Thyroid Imaging Reporting and Data Systems (TIRADS) [49]. 

The TIRADS system includes several informative characterizations, such as shape, 

border, composition, calcification and many others. These characterizations are often 

referred as “TIRADS features” in many studies. In addition, TIRADS also provides a 

scoring system that helps radiologists to access the risk of malignancy. More details 

about TIRADS will be given in Chapter 4.  

 The rest of the thesis is organized as follows; Chapter 2 discusses the objective 

and scope of this study, Chapter 3 talks about the challenges of this thesis and more 

generally, the challenges of medical AI. Chapter 4 presents the dataset in the study. 

Chapter 5 illustrates the methodology used. Chapter 6 provides experimental results and 

analysis.  
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Chapter 2 Objective and Scope 

 The objective of this study is to analyze the medical records of patients with 

thyroid nodules through a deep learning and computer vision framework. The medical 

records used in this study include ultrasound biomedical images, biopsy results, 

radiologist’s annotations and patient’s demographic information. The ultimate goal of 

this study is to improve the current thyroid nodule diagnosis system and help 

radiologists better assess the risk of malignancy and make better decisions about a 

treatment plan.  

The final decision will be weighed on both medical and economical perspective; 

namely, it aims to achieve a balance between risk of missing malignancy and the cost of 

unnecessary biopsy. The population target in this study mainly resides in the 

northeastern coast of United States (Figure 5), and most patients live near New York.  

 

Figure 5 Population Target in This Study (Image from Wikipedia)  
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 Chapter 3 Challenges in Medical AI 

 Before moving forward to the methodology, it is worth mentioning the 

challenges associated with this study and more generally, challenges that are prevalent 

in medical image recognition AI. This section will also briefly mention different 

approaches used in this thesis to tackle these challenges. 

3.1 Hard to Make Decisions 

 It is very common that classifiers will produce a probabilistic output. The final 

decision will be the class with the highest probability. However, in medical practice, it 

is much more complicated. Imagine if a tumor is diagnosed benign with 80% chance, 

should people do a surgical biopsy or just ignore it?  

The answer depends on two things: the cost of biopsy (both economical and 

mental) and spread rate of cancer cells.  Unfortunately, these two factors may vary 

wildly from disease to disease, from individual to individual and from instance to 

instance.  

 Ideally we want to have an algorithm that can yield both low false negatives and 

low false discovery rates, but in reality, there is often a trade-off between them. From a 

machine learning perspective, in order to build a model that knows what we want, the 

objective function and model selection criteria have to account for this trade-off. 

  In the case of thyroid nodule diagnosis, the cost of biopsy is relatively low 

(~$200), but the cost of not detecting a malignant nodule is relatively expensive. 

Therefore, we want our false negatives to be minimal while false positives can be 

somewhat tolerable.  
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In the objective function, the weight of the positive class is modified to make 

sure that the positive data have enough significance (but not too much) in the 

optimization formulation. For the final model selection, radiologists provide us with a 

scoring function that is considered optimal by them on clinical and economical 

perspective. The scoring function is a weighted linear combination of the false negative 

rate, false discovery rate and accuracy. More details are provided later in Chapter 5.9. 

3.2 Learning without Human’s Guarantee of Success 

If there is one thing that makes medical image recognition different among other 

computer vision problems, it would be learning something without a guarantee of 

success by human, which leads to the following two problems; (1) we do not know the 

performance limit and (2) human cannot help much in improving model performance.  

In order to elaborate on these points further, I compare diagnosing malignancy 

with the ImageNet object recognition problem. ImageNet is a dataset that is used for 

identifying daily objects (like cars, chairs, cats etc. See Figure 6). 

 

Figure 6 Sample Images from ImageNet Dataset 
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Given any image in the ImageNet dataset, we have a prior knowledge that the 

information in the image is enough to make a near-perfect decision (because human can 

do it, given enough experts). Therefore, a performance limit barely exists in the 

ImageNet problem. On the other hand, however, diagnosing the malignancy of a tumor 

from an image is equivalent to “judging a book by its cover”, with a book representing 

the genotype of tumor, the cover being the phenotype of tumor. A Genotype can 

uniquely map to a phenotype but the opposite is not true. Therefore, we can think of a 

phenotype as a lower dimensional representation of the nature of tumor. Without further 

assumptions, we cannot recover the information of the higher dimensional space given 

its lower dimensional representation. Therefore, using “cover” to predict the quality of a 

“book” will never be perfect due to lack of information. In medical image diagnosis, 

neither can we perfectly diagnose malignancy of a tumor nor do we know where the 

performance limit is.  It is tricky to answer the simplest question such as: can I achieve 

90% accuracy on my dataset? Or what is the performance limit?  

Furthermore, humans can achieve a high performance on the ImageNet 

recognition problem. Given any image, humans know where to look and what the 

decision rules are, even though humans may not be able to mathematically express the 

rules. If we encounter any performance problems, we can always tune parameters or 

adjust the model architecture by introspection of our own recognition behavior.  

However, humans are not known to handle medical diagnosis well. Once AI has 

exceeded human performance, if the performance still does not meet our expectation, 

there is little we can do.  
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In this study, due to the lack of a known performance limit, I have chosen 

human performance to be the goal of performance. Once the performance exceeds 

human, I will settle with whatever results I end up with. Fortunately, the final algorithm 

greatly outperforms humans on the test set. More details are presented in Chapter 6.  

3.3 More Complex Problem with Less Data 

In ImageNet, we are required to identify whether the image is a cat or not (for 

simplicity). In medical imaging domain, instead of asking whether an image is a tumor 

or not, we are taking one step further by asking: what is the nature of that tumor? 

Intuitively speaking, the problem for medical diagnosis is much more complex than 

daily object recognition (Figure 7), thus medical diagnosis requires a more complex 

model to capture all the complexity.  

 

 

Figure 7 Object Recognition V.S. Medical Diagnosis 

 More model complexity means that more data is required to build a good model. 

However, in medical AI, instead of more data, the amount of available data is usually 
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orders of magnitude less than other recognition tasks. For a deep learning task, we are 

often used to image datasets with close to several million samples. However, for 

medical images, the sample size is often on the order of one hundred. The lack of 

medical data is mainly due to the expense of the medical data acquisition process. There 

are many legal issues regarding privacy of medical records as well.   

Figure 8 demonstrates the dataset size in TCIA archive, one of the largest public 

cancer imaging database. The collection is sorted based on the number of subjects 

(sample size). As we can see, only one collection has more than 10,000 subjects and 

two collections with more than 1,000 sample size. Most of the others have sample sizes 

of only several hundred.  

 

Figure 8 ICIA Cancer Imaging Archive Dataset Size in Sorted Order 
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In this study, the sample size of ultrasound thyroid image is 3183. More details 

about dataset will be discussed in the Chapter 4.  In order to deal with the scarcity of 

data, image augmentation is used to artificially generate medical images for training. 

Details of Image augmentation will be provided in Chapter 5.  

3.4 Traditional CNN is Limited in Medical Image Recognition 

Convolution is the basis of CNN and it works by having a kernel to capture 

specific local patterns and gradually assemble layers of local patterns together to form 

more general patterns. For example, given an image of a human face, a convolution 

may first extract edges in the first layer, then use those edges to construct simple shapes 

in the second layer and then use these shapes to determine higher-level features, such as 

facial shapes [50] (Figure 9). 

 

Figure 9 Hierarchy of Feature Representation by Convolution (Honglak Lee et al, 

2009) 

 By using the Convolutional Neural Networks (CNN) architecture for 

generalization, we are essentially making an assumption: all specific local patterns in 

testing data are arranged by a similar rule as in training data. However, in medical 

images, this assumption does not hold.  
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The CNN architecture has been widely successful in recognizing images that has 

specific arrangements of local patterns. For example, all human faces follow certain 

rules: eyes are always above the nose, the mouth is always below the nose. Similarly, all 

cats image follow certain spatial arrangements: they all have four legs, their eyes are in 

round shape. Because these arrangements are consistent through training and testing, 

Google’s Inception can effectively recognize cats and Facebook can automatically tag 

you in online images (Figure 10).  

 

Figure 10 CNN is Successful at Recognizing Objects that Follow Specific Spatial 

Arrangement of Patterns, Such as Face Image 

Medical images, on the other hand, do not have spatial feature arrangements for 

a CNN to capture. Unlike human faces, important information is not regulated in any 

spatial manner. For example, shape, size and border are all key characteristics 

describing a tumor which can appear in every imaginable manner (Figure 11). Thus, 

merely “remembering” what a benign nodule looks like will not guarantee us to 

successfully recognize a new benign tumor in the future.  
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Figure 11 Different Appearance of Tumor 

To make matters worse, similar appearing nodules can have wildly different and 

clinically important differences in pathologic categorization. In Figure 11, tumor d is 

very similar to tumor b. However, nodule b is benign by pathologic characterization, 

whereas nodule d is malignant. 

Therefore, in this study, I do not use a deep convolutional network as an end-to-

end predictor, instead, I use it as a feature extractor that “learns” what constitutes these 

ultrasound tumor images. Later, I use these learned features as attributes and feed them 

into other classifiers. More details can be found in Chapter 5.4. 

3.5 Data is Usually Imbalanced 

 Medical data is usually imbalanced and current techniques dealing with 

imbalanced data usually fall into two categories: data manipulation and algorithm 

manipulation. Data manipulation usually involves subsampling data of the major class 

or replicating data of the minor class. Neither imbalanced data manipulation methods 

work in medical image problems. First, medical data is scarce and expensive, down 

sampling data is not an option. Second, creation of minor class medical image data is 

technically not possible.  

 Algorithm manipulation is easier to achieve and is therefore used in this study. 

As mentioned in section 3.1, data imbalance is dealt with by applying additional 
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weights in the positive class and creating a customized model selection scoring 

function, more details can be found in Chapter 5.9. 
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Chapter 4 Dataset 

4.1 Ultrasound Images and Biopsy data 

3183 ultrasound thyroid images that are collected by East River Medical 

Imaging center over 5-year period using General Electric Logiq E9 are used in this 

study (Figure 12). Each thyroid ultrasound image is evaluated by a trained radiologist 

and have the nodule (tumor) area cropped for further analysis. 

 

Figure 12 Thyroid Nodule Image Data Acquisition 

 Each thyroid image has its own biopsy results represented by Bethesda Grade 

[51]. Bethesda grade divides the malignancy risk of a thyroid nodule into 6 categories, 

with label 1 being outlier, label 2 being benign and label 3 to 6 are associated with 

increasing risks as listed in Table 2. Label 6 has the highest probability of malignancy.  

 In this study, images with Bethesda grade 1 are deleted from the dataset.  Next, 

all tumor images that have Bethesda grade from 3 to 6 are grouped to be suspicious (or 

positive), and the rest are tumor images that are diagnosed as benign (or negative). 

Under this grouping scheme, 2451 out of 3183 thyroid nodule images are associated 

with benignity, which is around 77% of the entire sample set.  
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Table 2 The Bethesda System for Reporting Thyroid Biopsy Results (Edmund and 

Syed, 2009) 

 

4.2 Image Characterizations and TIRADS Features 

 In addition to the ultrasound image itself, image characteristics for 1434 images 

were evaluated by trained radiologists, according to the Thyroid Imaging Reporting and 

Data Systems (TIRADS).  The TIRADS is a risk stratification system based on image 

characteristics proposed by the American College of Radiology (ACR) [49]. It is also a 

scoring system that sums the scores across multiple ultrasound features categories. The 

overall score indicates the probability of malignancy with a recommendation for either 

fine needle aspiration (FNA) or a follow-up checkup (see Figure 13). 
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Figure 13 Thyroid Imaging Reporting and Data Systems (Franklin et al, 2017) 

The ultrasound features considered in TIRADS include composition, 

echogenicity, shape, margin and echogenic foci. Each feature has multiple categorical 

values; for example, composition can be described in 4 categories: cystic, spongiform, 

mixed cystic and solid. Each category for a specific feature corresponds to a pre-

assigned value and the overall score for a nodule is the summation of values among all 

features. Higher scores correspond to a higher probability of malignancy and an 

increasing recommendation for a biopsy.  The TIRADS features are described by using 

the in-house developed medical image feature description software MINT v1.4 (Figure 

14). 

 



21 

 

Figure 14 Medical Image Characterization Using MINT (Dong, 2017) 

In addition to TIRADS features, the coordinates of top/bottom/left/right 

boundary of nodule is also recorded for later preprocessing and alignment. Moreover, 

some demographic information is also recorded, such as age and gender. The detailed 

statistics of TIRADS characterization and demographic information in this study are 

displayed in Table 3. 
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Table 3 Statistics of TIRADS Characterization and Demographic Information in 

This Study 

 

 There are, in total, 1434 images that have a complete set of characterizations 

evaluated by radiologists. As shown in Table 3, most characterized nodules (78.17%) 

are benign, patients are mostly around middle to elder age and are mostly female 

(77.6%). At last, all data available for the study is summarized in Figure 15 by a Venn 

diagram.  
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Figure 15 Summary of Available Data for the Study 
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Chapter 5 Methodology 

5.1 Methodology Workflows 

 

Figure 16 Methodology Workflow in This Study 

The overall workflow in this study is described in Figure 16; each component 

will be discussed in detail later in this chapter. The general idea of this workflow is: 

gather useful features from multiple sources and build classifier on top of them. 

Given the ultrasound thyroid image, radiologists will crop a sub-image that 

contains a nodule. The cropped nodule image will go through image preprocessing to 

align all nodule together and resize based on the boundary coordinates provided by 

MINT.  

After preprocessing, I applied two computer vision descriptors: Local Binary 

Pattern (LBP) and Histogram of Oriented Gradients (HOG) on the nodule image to 

extract specific information. LBP can provide a texture information of the image and 

HOG can provide shape and directional patterns in the image. Next, I trained a 
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Convolutional Auto-Encoder (CAE) to extract useful patterns from the nodule image. 

The useful pattern is stored at the encoded layer of CAE.  

After extracting image features using LBP, HOG and CAE, an additional 

pooling layer is applied to further reduce dimensionality and preserve the spatial 

pattern. Next, I flatten the pooled images as vectors and concatenate them together with 

TIRADS features and patient’s demographic features. 

Now, the problem becomes a machine learning problem.  During the machine 

learning experiment design, nested cross validation is used to determine the optimal 

preprocessing methods and the optimal hyper-parameter for four classifiers.  

Finally, models with the best validation score for each algorithm are evaluated 

on a separate test set to calculate the final statistics and scores. 

5.2 Data workflow 

 In order to better understand the methodology, it is helpful to know how the data 

flow is handled in the study. Please note that the data workflow is not “data flow” in 

TensorFlow context; instead, it is a graph that specifies how the available data is being 

used for training, validation and testing.  The data workflow contains a combination of 

unsupervised feature learning and supervised classification, as shown in Figure 17 

below.  
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Figure 17 Data Workflow in the Study 

There are in total of 9 steps in the data workflow: 

(1) 250 cropped nodule images with professional characterizations are held out as 

retrospective test data. 

(2) As the study proceeds, there are 136 new test cases that also joining the test sets, 

the size of testing data is further expanded to 386. 

(3) Hold out 200 images from uncharacterized nodule images as test set for CAE, it 

is used to test the performance of CAE models. 

(4) Use the rest of the images to train CAE with image augmentation. 

(5) Test the reconstruction of CAE on test nodule images (T). 

(6) Use CAE to extract features for the rest of the characterized nodule images. 

(7) Use nested cross validation to build several good performing machine learning 

models based on the training features. 
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(8) Once a machine learning model finishes training and best model of each 

algorithm is selected from validation data, feed all characterized test sets into the 

CAE to extract image features. 

(9) Use those test features to make predictions using the machine learning model 

trained before, and see the test performance. 

5.3 Image Preprocessing 

Given the cropped nodule image, a preprocessing is required to align the nodule 

center of all images and then standardize image sizes.First, the center of each nodule is 

calculated by the boundary coordinates (Figure 18). Next, the center of all nodule 

images are aligned together at center (Figure 19). 

 

Figure 18 Center is the Intersection of two Boundary Lines 
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Figure 19 Align Nodule Center for all Images 

 After the alignment, the size of all images is standardized to 224x224 by 

stretching with respect to each center. During the stretch, the horizontal and vertical 

stretch ratio are recorded for image reconstruction later. Finally, the grey value pixel is 

rescaled between 0 and 1 for the convenience of CAE training. 

5.4 Convolutional Auto-Encoder 

 The concept of Convolutional Auto-encoder (CAE) originates from combining 

the concept of an Auto-encoder (AE) and Convolutional Neural Networks (CNN) 

together. Similar to an AE, the essential idea of a CAE is to gradually “compress” the 

two dimensional images to a lower dimensional representation. This is called the 

encoding process. Next, CAE will extract the encoded image back to its original image, 

which is called the decoding process. The objective of this process is to make sure that 

the reconstructed image is as similar to the original image as possible.  

 There are two goals that can be achieved by CAE’s encoding and decoding 

process. First it serves as a dimensionality reduction method that can effectively get rid 

of high frequency noises in the input. Second, and more importantly, by learning an 

efficient way of compression and extraction, CAE can extract very useful patterns from 
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the image. Therefore, CAE is not only a dimension reduction method, it is also an 

effective image feature extractor.   

 The general model architecture of CAE is described in Figure 20. First, the input 

images are filtered by a 2-D convolutional layer. Next, the size is reduced by pooling 

layers.  Multiple convolution-polling layers are stacked together until it reaches our 

expected pattern size. Sometimes multiple convolution layers can be stack together to 

allow for more non-linearity.  

 

Figure 20 The General Architecture of Convolutional Neural Network 

 

 The middle layer, with the lowest number of dimensions is called the encoded 

layer. Encoded layer is the place that stores the most compact patterns of input images. 

The rest of the network (decoder) is usually symmetric to the encoding process with a 

pooling layer now becoming an up-sampling layer. The weights in the decoder can 

either be the same as encoder (tied-weights) or different from encoder (untied-weights). 

  The encoded layer is a lower dimensional representation of the input image that 

not only has the high frequency noise removed, but also contains important patterns 

about the input image. Subsequent supervised classifiers can use the compact patterns in 

encoded layer as features, in which case, CAE can be used as a feature extractor. 
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 As it is mentioned in the Chapter 3.4, convolution is not suited for end-to-end 

task for medical image recognition. Therefore, in this study, CAE is used as feature 

extractor instead.  CAE can be easily constructed using the TensorFlow library. 

5.5 Image Augmentation 

 It is stated in Chapter 3.3 that the medical data is usually not enough to train 

most deep learning models. In order to mitigate the negative effect caused by lack of 

data, image augmentation methods can be used. Image augmentation is a way of 

artificially creating new training images to compensate the lack of data. Some simple 

image augmentation are achieved by rotation, shearing, shifting or cropping of initial 

images. Image Augmentation provides an efficient way to expand the number of 

training data.  Moreover, since the convolution process is rotation sensitive, image 

augmentation offers a way of helping the CNN recognize the rotation of images.   

 Before Image augmentation, it is important to make sure that the augmentation 

operation would not destroy any useful patterns in the original image. For example, in 

nodule image diagnosis, the width and height provide very valuable information on 

diagnosis, if rotating the image, the width and height information is no longer valid. 

In this study, the image augmentation specifications are shown in table 4. All 

grey-scale images are rescaled between [0, 1]. Then width and height are randomly 

shifted up to 20% of entire size, if images are shifted outside of size limit, then fill in 

constant 0 in those pixel. During the shifting, there is a random zooming effect up to 

25% applied to the tumor image as well.  At last, the horizontal axis of image may 

randomly flip. 
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Table 4 Image Augmentation Specification Used in This Study 

 

5.6 Average Pooling 

 Pooling layer is extensively used in almost all convolution neural networks. It is 

often placed after a convolution layer to reduce the dimensionality. Moreover, a pooling 

layer provides robustness to the model and is the primary reason why Convolutional 

Neural Network (CNN) can be insensitive to position shift [52, 53]. 

 The most common pooling methods are max pooling and average pooling. 

Pooling partitions the input image into a set of sub-regions such that for each sub-

region, it outputs the max or average value of the sub region (Figure 21). The pooling 

layer serves to progressively reduce the size of image, as well as reduce the number of 

training parameters. 
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Figure 21 Illustration of Average Pooling 

  

 The pooling layer provides invariance to modern CNN, it allows CNN to 

correctly recognize similar objects with differences.  For instance, in Figure 21, 

although the original top and bottom images are not the same, they all have circular 

pattern. Applying pooling is able to extract their circular pattern and as a result, their 

pattern after pooling is almost the same. This indicates that pooling can effectively 

increase the robustness in recognizing similar patterns.  

5.7 Local Binary Patterns 

 Local Binary Patterns (LBP) [8] are a simple, popular, yet efficient visual 

descriptor in computer vision. It is mainly used to describe the texture of images. Figure 

22 shows how LBP is calculated in an arbitrary pixel, with a neighborhood of 8 points 

on a circle of radius 1. 
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Figure 22 Demonstration of Local Binary Pattern Calculation of Arbitrary Pixel 

 The LBP code of a pixel value gc located at (xc,yc) is given by: 

𝐿𝐵𝑃𝑃,𝑅 =  ∑ 𝑠(𝑔𝑝 − 𝑔𝑐)2𝑝𝑃−1
𝑝=0                                            (1) 

 Where P is the total number of points in the neighborhood of radius R and s is a 

unit step function defined by: 

 

                                                  (2)  

 The input and output of an LBP descriptor usually has the same dimension. The 

output of each pixel represents the LBP code of the original image. Figure 23 displays 

an example of an LBP descriptor using a thyroid nodule image. A histogram can also be 

obtained from the LBP code to statistically represent texture information of image and 

LBP features are described as both LBP images and histogram counts.  In this study, the 

LBP is created through the skimage package in python. 
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Figure 23 Local Binary Pattern of one Nodule Image 

5.8 Histogram of Oriented Gradients  

Histogram of Oriented Gradients (HOG) is designed to capture the appearance 

and shape of a local object. [7] The directional pattern in the image can be depicted by 

the histogram of local intensity gradients. Given the input image, a centered filtered 

mask computes the magnitude and orientation of the gradients. The magnitude and 

gradients can capture contour and some texture information. Then, the image window is 

divided into small spatial cells, which quantize the gradients into a local 1-D histogram 

of gradients over all the pixels in the cell (Figure 24). The histogram divides the 

gradient angle range into a fixed number of bins and the magnitude of gradient is used 

to vote into the orientation histogram.  
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Figure 24 Creation of Cell Gradient Histogram 

 The HOG image of a nodule image is shown below in Figure 25. It is capturing 

the shape of the nodule, as well as some directional patterns outside of the boarders. 

The histogram count of each direction within a pooling layer can be used as a feature 

for later machine learning. The HOG image is generated by the skimage package. 

 

Figure 25 Histogram of Oriented Gradients of Nodule Image 

5.9 Model Selection Score Function 

 As it was mentioned in the section 3.1, the score function needs to be carefully 

determined so that it can correctly reflect the best trade-off between false positive and 
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false negative. The false negative and false positives are components of the confusion 

matrix (Figure 26). 

 

Figure 26 Confusion Matrix 

 Several important metrics in the study are accuracy, false discovery rate (FDR), 

false negative rate (FNR), sensitivity and precision. Each one of them is calculated from 

the confusion matrix with the following expression: 

Accuracy =  
𝑇𝑁+𝑇𝑃

𝑇𝑁+𝑇𝑃+𝐹𝑃+𝐹𝑁
                                                          (3)  

FDR =  
𝐹𝑃

𝐹𝑃+𝑇𝑃
                                                                    (4)  

FNR =  
𝐹𝑁

𝐹𝑁+𝑇𝑃
                                                                   (5)  

Sensitivity =  
𝑇𝑃

𝐹𝑁+𝑇𝑃
= 1 − FNR                                              (6)  

Precision =  
𝑇𝑃

𝐹𝑃+𝑇𝑃
 = 1 − FDR                                              (7)  

 In the context of this study, we want the FDR to be low because the final 

algorithm should reduce unnecessary biopsy cases, and at the same time, we want the 

FNR to be low because it is also important to reduce the number of missing malignancy 
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cases. At last, accuracy is also an important metric to give us an overall performance 

measure. 

The convention of score function is that a higher score indicates a better 

performance. Therefore, minimizing FDR and FNR means maximizing sensitivity and 

precision (from equation 6 and 7). A final score function is determined by radiologists 

teams by weighing both economical cost and clinical risks caused by FDR and FNR. 

Final Score = Accracy + 1.85 Precision + 4.73 Sensitivity                    (8) 

 It is known that some terms in equation (8) are repetitive to some degree. For 

example, both precision and sensitivity are using the same TP in the calculation and 

the use of accuracy involves all terms used to calculate precision and sensitivity. 

However, despite repetitiveness of information, the equation provides a nice and easy 

framework for radiologists to weigh each metric and is therefore used as score 

function in the study.  As we can notice in equation (8), reducing false negative is 

more than twice important than reducing false positive.  
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Chapter 6 Experimental Results and Analysis 

 This chapter will discuss the implementation, training, validation and testing 

details of Convolutional Auto-Encoder and multiple supervised classification models 

such as random forest, logistic regression, linear support vector machines and non-

linear support vector machines.  

6.1 Convolutional Auto-Encoder Experiments 

 After image preprocessing, the CAE model with the architecture shown in 

Figure 27 is constructed to extract patterns.  

 

Figure 27 Convolutional Auto-Encoder Model used in This Study 

 The encoding and decoding structure are entirely symmetric with respect to the 

encoded layer at the center. There are three convolution-pooling layer combinations on 

each side. Experiments showed that the use of two consecutive convolutional layers 

near the middle yields a better reconstruction of the original input. The specification of 

the CAE model for encoding layer is specified in table 5. Since the model is symmetric, 

the decoding specification is the same as encoding with each layer reversed.   
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Table 5 CAE Specification in the Study 

 

 During the training, I used image augmentation methods mentioned in Chapter 

5.5 to create different replication of training data for each epoch. The objective function 

is binary cross entropy, which has proved to be a very effective objective function for 

image data.  The optimizer used to train the CAE is RMSprop optimizer, which is an 

unpublished, adaptive learning rate method proposed by Hinton in a course [54]. The 

training configuration of CAE in this study is listed in table 6. 

Table 6 Training Specification of CAE 

 

 The training data is specified in chapter 5.2. After training, I used the test set to 

visualize the reconstruction. Figure 28 shows the comparison between the original 

image and reconstructed image for two nodules. 



40 

 

Figure 28 Input Image V.S. Reconstruction Test Image by CAE 

 There is a high degree of similarity between the input image and the 

reconstructed image, which ensures that our encoded layer, as a low dimensional 

representation that contains almost the same degree of information as the original 

image. Now the next question is: can encoding and decoding process extract useful 

patterns? 

 Fortunately, the encoded layers can be visualized for examination. The encoded 

feature for nodule 1 is shown in Figure 29 below.  
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Figure 29 The Encoded layer of CAE for Test Nodule#1 

 In the encoded layer, all pixel values are between zero and one, with zero being 

entirely dark (no signal) and one being entirely bright (full signal). The brightness of 

pixel represents the corresponding significance in each encoded grey scale image. As 

we can see from Figure 28, there are in total of 8 parallel images at encoded layer, 

where each encoded image is focusing on different pattern. For example, images 6 

focuses on the boarder of nodule. Image 1, 4 and 5 pay attention to the inner area.  

Image 2, 3, 7 and 8 look at surrounding tissues. The patterns in the encoded layer 

provide evidence to statement made earlier: CAE is not only a dimension reduction 

method, it is also an image feature extractor.  

 An average pooling layer with size 4x4 and stride 4 is applied after the CAE to 

extract pattern information while preserving the spatial pattern. After the average 

pooling, the feature is flattened and concatenated with features from LBP, HOG, 

TIRADS and demographic information. The next step is to use these features for 

supervised classification. 
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6.2 Nodule Diagnosis Classification 

6.2.1 Design of Experiments 

 Now the problem becomes a binary classification: deciding whether a nodule is 

benign or suspicious. Note that the target is not benign/malignant because our target is 

derived from Bethesda Grade, which comes from biopsy tests.  Although biopsy test 

can provide a very accurate answer, it still cannot confidently determine the malignancy 

of a nodule. Therefore, all nodules other than benign are lumped together as suspicious 

nodules. 

 The feature now has 1381 dimensions and the detail of these features is listed in 

Table 7. There are 8 parallel images at CAE’s encoded layer, each encoded image has 

dimension 28x28.  After a 4x4 non-overlapping average pooling, the dimension of each 

encoded image now becomes 7x7.  

The total number of features from CAE is 7x7x8=392. The LBP and HOG 

features are calculated in similar manner. LBP Histogram pooling is calculated from a 

10-bin histogram for each pooling region of LBP data. HOG histogram is calculated in 

a similar manner using 9 bins for angle. 
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Table 7 Size of Features for Each Component 

 

The training sample size is 1184 and it is the number of characterized images 

with 250 retrospective test cases being held out.  Since the 1381 features are gathered 

from multiple data sources, there are plenty of features with redundant information and 

many features may have limited information in diagnosing a nodule. Therefore, in order 

to proceed, it is necessary to apply feature selection and feature reduction methods.  

 In this study, the essential idea of building a supervised learning method is to 

create an overall pipeline that includes preprocessing, feature selection, dimension 

reduction and model selection together (Figure 30). Then I use two nested10-fold cross 

validation (CV) to do parameter optimization. The outer CV uses a random search to 

find the best preprocessing workflow and the inner CV uses a grid search for model 

selection.  
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Figure 30 Nested Cross Validation Modeling Scheme 

 The cross validation on the outer layer is used to decide the best suite of 

preprocessing parameters that gives us the highest model selection scores. The outer CV 

contains the following component: 

(1) The number of features is drawn from a uniform distribution from [200,600]. 

(2) Select a feature selection scheme, from Mutual Information (MI), F-Value and 

Random Selection with each method having equal probability. If using random 

selection, the feature index is recorded. 

(3) Select dimension reduction method from MDS, PCA and Isomap (each method 

has equal probability). 

(4) The number of reduced dimensions is further reduced to a smaller number, 

which is drawn from a uniform distribution within [10,200]. 
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(5) Randomly generate the weight for the positive class from gamma (2, 3) 

distribution, with probability distribution function shown in blue in Figure 31. If 

the weight happens to be less than 1, then manually assign 1 as a weight, 

because positive class should not be less important than negative class. 

 

Figure 31 Gamma Probability Distribution in the Study 

There are infinite number of preprocessing configurations because many 

preprocessing parameters are drawn from a random distribution. In order to fully 

explore the parameter space with finite computational resource, random search 

optimization is used in outer CV to find out the best preprocessing workflow. 

The random search in this study is inspired by Bergstra and Bengio’s paper [55]. 

In their study, they demonstrated that when the number of hyper-parameters is large, 

mostly only a small fraction of parameters are indeed important to final performance. 

Using a grid search is computationally expensive and may not be able to fully explore 

the space of important parameters. In Figure 32, vertical axis means the space of 

unimportant parameter and horizontal axis represents the space of important parameter. 
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If using 9-point grid search, only 3 values of important parameter are explored and it is 

less likely to find out the sweet spot of important parameters. Random search, on the 

other hand, can more effectively explore the space of important parameters and can 

therefore more likely to find the performance sweet spot. 

 

Figure 32 Grid Search V.S. Random Search (Bergstra and Bengio, 2012) 

Figure 33 shows the nested cross validation scheme. There are mainly four steps 

involved in nested cross validation: 

1. Randomly generate 1000 data preprocessing schemes.  

2. Divide the training the set to 10 outer folds for each preprocessing 

scheme. 

3. Use a grid search to determine a model hyper-parameter configuration 

for each inner fold (for example, c and g in RBF SVM).  

4. Further divide the rest of training data into inner 10 folds. The score for 

each fold is calculated by equation (8). If a null model is encountered 

(such as one that predicts all positive), then the score is assigned as 0.  
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Figure 33 Nested Cross Validation Scheme in the Study 

 The score in step 1 and 3 is calculated by averaging scores from multiple folds 

in step 2 and 4.  The optimal preprocessing scheme and the optimal hyper-parameter of 

each classifier is chosen by picking the best average score. Once the best preprocessing 

scheme for each classifier is determined, I retrained the inner grid search using the best 

preprocessing configuration for each classifier on entire training data.  

 For each algorithm, the whole nested cross validation takes about 2 days using a 

20-core node on a supercomputer. After finding the best preprocessing scheme and best 

model for each supervised classifier, I applied them on the test set and compare the test 

performance. 

6.2.2 Experimental Results 

The best preprocessing method and best parameter for each algorithm is listed 

on Table 8. Their corresponding performance on the test set is listed on Table 9. The 

test results for each classifier can provide us with information about the problem itself.   
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Table 8 Best Model for Each Algorithm 

 

Table 9 Test Performance for Each Algorithm 

 

 The Random forest produces the highest accuracy. However, since the dataset 

itself is imbalanced, accuracy can be misleading because it tends to predict the 

dominant class more likely than the minor class, which leads to a very low sensitivity 

and therefore a very high false negative rate. Therefore, the random forest yields the 

lowest overall score based on our scoring function. 

 The performance of Logistic Regression and Linear SVM is very similar, even 

though Logistic Regression has slightly better accuracy and Linear SVM has better 

recall. These two are both linear models and we can infer from their performance that 

the real decision boundary is highly non-linear under their best preprocessing scheme. 

 Support Vector Machines (SVM) with radial basis function kernel (RBF) 

surprisingly produces the highest score (even higher than human performance). 
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Although the accuracy is not the best, it is able to minimize the false negative the most, 

which produces the highest sensitivity and therefore the highest score.  

 Human performance has lowest accuracy and highest sensitivity, which is not a 

surprise. In order to reduce false negatives, radiologists tend to recommend biopsy for 

most thyroid nodules. Comparing the SVM with human performance, we can see that 

the SVM model with the RBF kernel has higher sensitivity and higher precision, which 

means that the SVM model can both reduce unnecessary biopsy cases and reduce the 

number of missing malignancy cases. 

6.2.3 Hypothesis Test 

 In order to ensure the consistency of experimental results, a hypothesis test is 

conducted on the final SVM model. When the optimal training configuration is fixed, I 

divide the entire training data into 10 folds and train 10 different SVM models with 

each model using 9 folds. At last, I evaluate each model against the test dataset. The test 

score for each model is shown in Table 10. I assume the human score is constantly 4.80 

on the test set.  

Table 10 Test Score of Different Final Models 
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The null hypothesis H0 is: The performance of final SVM models has an average 

score that is no greater than human performance score.  

Since the final SVM model results from multiple comparisons, thus the 

hypothesis test significance level 𝛼  needs to be corrected to account for multiple 

comparison. In this study, I correct 𝛼 using Bonferroni correction [56] by equation (9). 

α′ =
𝛼

𝑁
                                                                       (9) 

𝛼 = 0.05                                                                  (10) 

𝑁 = 3                                                                     (11) 

Where α′ is the corrected significance level and α is 4the original significance 

level, which is assumed to be 0.05 (equation 10). N is the total number of comparisons, 

there are 3 comparisons in finding the classification algorithm with maximal score. The 

corrected hypothesis significance level  α′  then becomes 0.0167.  

Given the performance scores in Table 10, unpaired bootstrap sampling with 

randomization is used conduct the one-sided hypothesis test (right-side test). The 

number of bootstrap resampling is set at 10 million.  

The final p value for the null hypothesis H0 is 0.00016, which is less than the 

corrected significance level 0.0167. Therefore, I can reject the null hypothesis and claim 

that the final SVM models has an average score greater than human performance score. 

The higher score means that the SVM model can provide better tumor diagnosis 

considering both economical cost and clinical risk. Therefore, the final model can be 

clinically helpful to radiologists in determining whether a nodule should undergo biopsy 

or not. 
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Conclusion 

  This study introduced how machine learning can be used in biomedical imaging 

to help radiologists improve cancer diagnosis. It also proposed a new framework for 

extracting useful information for thyroid ultrasound images. There are several key 

points in this thesis: 

(1) End-to-end Convolutional Neural Networks have limited applicability in thyroid 

nodule diagnosis due to lack of data and lack of spatial arrangements in 

ultrasound nodule images.  

(2) Medical Image Augmentation can be a primary solution to the lack of data 

problems in medical AI. 

(3) Convolutional Auto-Encoder is not only a dimension reduction technique, but 

also an effective feature extractor for medical image. 

(4) The feature extraction workflow produces features for multiple classifiers to 

diagnose thyroid tumor. The best performing model is RBF SVM, which is 

trained by nested cross validation and it outperforms human experts on the test 

set.  
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Future Work 

 The rise of deep learning and AI has the potential to improve and reform future 

medical diagnosis system. This thesis has only explored a tiny corner of a much bigger 

picture. Even in the field of thyroid tumor diagnosis, there are many promising future 

directions that are worth exploring. 

 First, future studies can try to predict some expert-determined features. If a 

machine can characterize a thyroid tumor image on a professional level, it can greatly 

lower the cost of medical data acquisition process. Moreover, having such system can 

help automate the thyroid nodule diagnosis workflow, which can significantly save 

labor costs and make high quality medical diagnosis more affordable.  

 Second, one can also study the importance of different features and transform 

them into medical knowledge and improve current thyroid diagnosis system. Studying 

the importance of different features can also help us eliminate irrelevant information in 

the input and build better performing models.  

 Last but not least, there are many new deep learning model architectures that are 

worth exploring. Future researchers are encouraged to design/try new model 

architectures for medical images to overcome limitations of current models. For 

example, CNNs cannot handle the recognition of the same objects from different 

viewpoints, which makes CNN bad at recognizing ultrasound images because most 

ultrasound images are captured from different angles. Capsule Networks, on the other 

hand, can be a promising model for ultrasound image because study has shown that the 

capsule architecture is capable of recognizing equivalence of images under different 

viewpoints [57].  
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