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Abstract

The effort of this doctoral dissertation research is devoted to the design of an

automaton system and corresponding computer experiments for studying the dy-

namics of energy flow on lattice graphs. Such a Transient Energy Automaton (TEA)

is a computational system that automates dynamic energy exchanges on a graph

once triggered by disturbances similar to those used in the analysis of the dynam-

ics of multi-machine power model system. The differences between TEA and other

automata are: 1) TEA considers all of the vertices in the lattice graphs that are

connected with each other; 2) TEA supposes the energy exchange processing by two

specific actions; 3) TEA defines the governing rules of those actions.

The TEA enables two fundamental actions of energy exchange at each vertex: a

slow action to absorb a certain fraction of the energy received from the site of initial

disturbance or the neighboring vertices, and a fast action to reflect the rest of the

received energy to the rotors or oscillators at neighboring vertices on the graph. These

two fundamental actions coupled together to enable the energy flow of TEA.

In order to simplify the coupling of the two actions in the TEA, we let these two

fundamental actions at local site or vertex be governed by the following rules:

• For each vertex, the amount of energy received at a local site in the reflection

action, which is defined as dispersion ratio, is a function of the graph geometry

including the structure of lattice and value configuration of edges;

• The fraction of energy that can be absorbed by each vertex in the absorption

action, which is defined as absorption ratio, is based on the capability of the

xiii



vertex;

• We suppose at a particular time instant, all the vertices are in one same action,

either fast action or slow action;

• Such rules are functions of the geometry and value configuration of graph and

the property of vertices, which ultimately enable the TEA to create time evo-

lution of energy distribution, that may affect the dynamics of the system.

The two governing rules apply to the fast and slow actions at the local site or

vertex-level by the ratios of dispersion and absorption. The ratios are defined by two

major intrinsic factors for the global energy exchange: 1) geometry of graph and its

value configuration, and 2) property of vertex. The geometry controls the energy

dispersion among vertices according to their propinquities and centralities configured

by graph lattice, while the property of vertex is the capability to absorb or reflect the

energy received.

The energy distribution among vertices on a graph and its time evolution are com-

puted recursively using computational formula of the two actions under the governing

rules. Moreover, the computation of the accumulated energy at each vertex satisfies

an additive superposition principle to obtain the homogeneity of energy distribution

on graph for each time step and for the time evolution of the process. The global

properties of energy flow on a graph can then be investigated by analyzing the func-

tionalities of graph geometry and vertex property at local site or vertex-level, both

directly impact the fast and slow actions.

The experiment with TEA concentrates on discovering the linkage between char-

acteristics of graph, such as homogeneously and heterogeneously distributed, and the

dynamics of TEA from the local-level or global-level. More specifically, the proposed

TEA model system and the experiment approach can simulate energy exchange at

each local site or vertex level to obtain the global dynamics of energy flow on graph.

xiv



Through analyzing energy absorption at vertices in slow actions, energy dispersion

over the lattice in fast actions, homogeneity of the energy distribution on graphs, as

well as their time evolution, we are able to obtain constructive evidence that energy

automation may possibly be a simplifying approach to understanding the global dy-

namical properties of energy flow on graphs, and more ambitiously, those found in

real large-scale energy interconnections.

The automaton model system and the experiment approach exhibits a number of

advantages: practically they have a simplifying complex feature in modeling coupled

dynamics on graph to produce global features of large-scale energy interconnections,

demanding an extra-low computational burden comparing to those needed to solve

Differential Algebraic Equations of large-scale system. More importantly, a quick

insight on the nature of dynamics on graph that ordinary methods are inadequate,

particularly when there are significant structural changes in graph topology and vertex

functionality.
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Chapter 1

Introduction

Energy analysis is one of the feasible and practical methods for gaining insight

into a system. Based on the time dependency, energy analysis can be categorized

as static energy analysis and dynamic energy analysis [1] [2]. The static energy

analysis evaluates the instantaneous energy distribution configuration of the system

[3] [4]. This method is not focused on tracking short-run time-series evolution of

energy flow in a system. Rather than static energy analysis, dynamic energy analysis

takes the interactive nature of energy into account, and tracks the energy injected

into every element of the system and the energy dissipation out of them [5]. Thus,

dynamic energy analysis is commonly used by the engineers. For example, Energy2D

is a simulation program that models dynamics of heat-transfer process [6]. These

dynamic energy analysis approach usually based on solving dynamic equations and

which is very time-consuming.

Cellular Automata (CAs) are simple mathematical idealizations of nature systems

and these are designed to follow predetermined set of rules [7] [8] [9] [10] [11] [12] [13]

[14] [15] [16] [17] [18] [19] [20] [21]. The classical model of CAs is to define a set of

local rules and use these local rules updating the state of each cell and its immediate

surrounding neighbor cells step by step. Even with a set of simple local rules, CAs

1



could produce a quite complicated behavior. We will briefly introduce CAs in the

Chapter 2. CAs are used in the research of several different areas, for example, [14]

use CAs to simulate the traffic flow.

The objective of this dissertation is to design an automaton system, which we

named as Transient Energy Automaton (TEA), and to use the corresponding com-

puter experiments for analyzing the dynamics of energy on the graph. When com-

paring the TEA with the CAs, we can draw the following conclusions:

• Both of these models are complex systems generated from a simple configuration

and a simple set of local rules;

• Both of these two models are discrete models build upon a collection of vertices

(or called cells in CAs) on a graph that evolve through discrete time;

• Unlike CAs, where all the cells could be in different states at a time, TEA model

assumes that all vertex in the graph must be in a same state, which is in either

fast action or slow action, at a time;

• Unlike CAs, where each cell tends to interact locally, each vertex in TEA model

interacts globally with all of the other vertices on the graph;

• Unlike CAs, where the next status of each cell is depending on current states of

this cell and its corresponding neighborhood, the energy contained of each vertex

in the TEA model at next time step is depending on the energy distribution on

the graph at current time;

• Unlike CAs where the configuration is the states distribution on the graph, the

configuration of TEA is the energy distribution on the graph at each step;

• Both of those two models reflect the energy spreads from local area to the global

area;

2



we will evaluate TEA model by comparing the TEA predicted results to the ones

predicted based on the power system dynamic simulations in a power grid.

The dissertation is organized as follows: In Chapter 2 we overview the important

concepts and methods that forms the basis for the proposed research. In Chapter

3 we introduce the inspiration of this research. In Chapter 4 we show the model

of Transient Energy Automaton. In Chapter 5 we present the experimental system.

In Chapter 6 we discuss impacting factors of energy distribution dynamics in TEA

system. Chapter 7 we show comparative study. In Chapter 8 we conclude the research

presented in this dissertation, and recommendations for future research.
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Chapter 2

Background

Transient Energy Automaton (TEA) is an automaton for analyzing the dynamics

of energy on the graph. It is an interdisciplinary area, where different aspects of

graph theory, formal language theory, automaton theory, and data visualization must

be considered all together. Therefore, in this chapter we will introduce the related

concepts and methods necessary to design TEA.

This chapter consists of two sections: section 2.1 briefly introduces cellular au-

tomata; and section 2.2 introduces relevant approaches in graph layout.

2.1 Automata Modeling in Computer Science

Cellular Automata (CAs) are discrete dynamical systems that use simple, local

rules to simulate complex behavior of the graph. Before introducing important con-

cepts in CAs, we will briefly describe related concepts in general automata theory.

2.1.1 Related Terminologies of General Automata

Set: A set is a collection of unique elements. For example, the set S of symbols

x, y, z is denoted as S = {x, y, z}. In order to indicate that x is a member of the set
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S, we write x ∈ S; otherwise, we write x /∈ S. A set S1 is said to be a subset of

set S if every element of S1 is also an element of S, denoted by S1 ⊆ S. A set S1

is said to be a proper subset of S if S1 ⊆ S. If a set S contains elements not in S1,

we denote it by S1 ⊂ S. A set is said to be a finite set if it contains a finite number

of elements; otherwise it is called an infinite set. The usual set operations are union

(∪), intersection (∩), and difference(-), which are defined as:

• S1 ∪ S2 = {x : x ∈ S1 or x ∈ S2},

• S1 ∩ S2 = {x : x ∈ S1 and x ∈ S2},

• S1 − S2 = {x : x ∈ S1 and x /∈ S2},

Function: A function is the relation between a set of inputs and a set of permis-

sible outputs with the property that each input is related to exactly one output. If f

denotes a function, then the input set is called the domain of f while the output set

is the range of f . We write f : S1 → S2 to indicate the domain of f is a subset of S1

while the range of f is a subset of S2.

Alphabet: An alphabet is a finite and non-empty set of symbols, such as the

binary alphabet Σ = {0, 1}. The alphabet of an automaton is usually denoted as Σ.

Word (or string): A word is a finite sequence of symbols selected from a alpha-

bet. For example, “01010”is a word from the binary alphabet Σ = {0, 1}. The set of

all words over an alphabet Σ is denoted by Σ∗. We denote the empty string as ε. For

example, if Σ = {0, 1}, then Σ∗ = {ε, 0, 1, 00, 01, 10, 11, ...}.

Languages: The languages are a collection of words of finite length, which are

all constructed from a finite alphabet of symbols. For example, let Σ = {0, 1}, then

Σ∗ = {ε, 0, 1, 00, 01, 10, 11, ...}; the set {0, 11, 110} is a language on Σ.

Grammar: The Grammar is a finite collection of rules that can describe an

infinite language. A grammar G is defined as a quadruple G = (N,Σ, P, S) where

• N is a finite set of nonterminals,
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• Σ is a finite set of terminals,

• S ∈ N is the start symbol,

• P is a finite subset of N × V ∗, which are called the set of production rules.

Here, V = N ∪ Σ,

Context-Free Grammar: A given grammar G = (N,Σ, P, S) is a context-free

grammar if all productions in P have the form A→ x, where A ∈ N and x ∈ (N∪Σ)∗.

Automaton: Automaton is an abstract machine which is designed to perform a

function according to a given sequence of inputs in discrete time steps. The input file

of an automaton is a word over a given alphabet, which is read only for automaton.

The input mechanism for automaton is read from left to right, one symbol at a time;

also, automaton can detect the end of each input word. Each automaton contains

a finite number of states. The purpose of these states is to remember the relevant

portion of the system’s history [22]. We suppose the automaton can only be in one

of a given state at a given time. The state of the automaton at the next time step

is determined by transition function. This transition function identifies the next

state by recorded states and current input symbol. There are many applications of

automaton, such as, software for scanning large bodies of text for finding pattern,

etc.

Finite Automaton: Finite Automaton is a simple idealized machine used to

recognize patterns of the input. This type of Automaton has no temporary storage

to record the previous status. A finite automaton M can be defined by a quintuple

M = {Q,Σ, δ, q0, F}, where

• Q: is a finite set of states;

• Σ: is input alphabet;

• q0 ∈ Q: is start state;
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• F ⊆ Q: is a set of accept states;

• δ : Q× Σ→ Q: is a transition function;

Pushdown Automaton: Pushdown Automaton provides a way to implement a

context-free grammar. Compared with Finite Automaton, this type of automaton can

memorize an infinite amount of information by implementing a stack into its structure.

A Pushdown Automaton M can be defined by a sextuple M = {Q,Σ,Γ, δ, q0, z, F},

where

• Q: is a finite set of states;

• Σ: is input alphabet;

• Γ: is stack alphabet;

• δ : Q× (Σ∪ {ε})× Γ→ set of finite subsets of Q× Γ∗: is a transition function;

• q0 ∈ Q: is start state;

• z ∈ Γ: is the initial stack top symbol;

• F ⊆ Q: is a set of accept states;

Turing Machine: Turing Machine is a type of automaton whose temporary

storage is a tape. This tape is divided into several cells, each of those cells is capable

of holding one symbol. The Turing machine can travel right or left on the tape while

read and write a single symbol on each move. A Turing Machine M can be defined

by a sextuple M = {Q,Σ,Γ, δ, q0, b, F}, where

• Q is a finite set of states;

• Σ is input alphabet;

• Γ is tape alphabet;
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• δ: is a transition function;

• q0 ∈ Q: is start state;

• b ∈ Γ: is the blank symbol;

• F ⊆ Q: is a set of accept states;

2.1.2 Description of Cellular Automata

Structure: A CA consists of elements which we called cells; each cell can be in

one of the finite states set at a time. The graph of cells can be in any finite number

of dimensions. To simplify, in this section, we discuss CA in one-dimension and the

state for each cell is either in white or black.

Neighborhood: The neighborhood of a cell is the set of adjacent cells. In one-

dimensional CA, the neighborhood is described by the radius r, which refers the

number of cell, either left or right, from the current cell. In the following introduction,

we assume that the radius r is defaulted by one.

Local interactions: Each cell’s behavior depends only on what happens within

its local neighborhood of cells.

Evolution: The evolution of CA depends on the cells’ states changing pattern via

time, which is determined by CA rule. When the cells change from current states to

the next states, each cell looks around and gathers neighborhood states’ information.

Based on the cell’s current state, its neighbors’ current states, the rule will determine

the next state of the cell. In CA, we suppose all of the cells change their states at

the same time.

Configuration: Configuration is the concatenation of all cells states on the graph

of CA at time t.

Definition: A d-dimensional CA is a quadruple A = (Zd, S,N, δ) where:

• Zd: is the discrete graph where each element of this lattice is the cell of the CA;
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• S: is a finite set of states;

• N : stands for the neighborhood of each cell in A;

• δ: is the rule of CA.

Fractal: Fractal is generated by the evolution of CA, and which reflects the

configuration changes via time. In this chapter, we suppose the fractal generated

by CA starting from only the middle cell is colored as black. After initiation, the

cells in all following rows are colored automatically depending on the rule and related

neighborhood.

Classes of fractal pattern: By different rules, CAs can produce varieties of

fractal patterns. These fractal patterns can be characterized as four classes, including:

• Class l: CA evolution leads to a homogeneous state, where all cells stably end

up with the same value;

• Class 2: CA evolution leads to a set of stable or simple periodic structures;

• Class 3: CA evolution leads to a chaotic, non-periodic pattern;

• Class 4: CA evolution leads to complex pattern and structure.

Figure 2.1 shows the examples of different classes of fractal pattern generated by CAs.

We can summarize the features of CAs as follows:

• CA is a complex system, generated from a very simple configuration and simple

rules;

• CA is a discrete model built upon a collection of cells on a graph that evolves

through a number of discrete time;

• Each cell of CA is found in one of a finite number of states;
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Figure 2.1: Examples of different classes of fractal pattern generated by CAs.
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• Each cell of CA tends to interact locally depending on itself and its neighbor-

hood;

• The state of each cell in CA at the next time is determined by the current state

of the cell and its neighborhood;

• The configuration of CA is the concatenation of all cells’ states on the graph;

• The pattern generated by CA can be seen as the energy spreads from local area

to the global area.

2.2 Graph Layout

In order to help people understand the topology structure of the TEA graph,

we deploy the graph drawing approach in this dissertation. Our approach aims at

exhibiting the graph structure onto a two-dimensional display automatically and re-

vealing information buried inside. This technique is a combination of Mathematics

and Computer Science, which comes from subjects of graph theory, topology, and

information visualization etc.

2.2.1 Related Terminologies of Graph Theory

Graph: A graph G can be defined as G = (V,E), where V = {v0, v1, ..., v|V |}

stands for a set of vertices (also called as nodes or points) and E = {e0, e1, ..., e|E|}

stands for a set of connections (also called as edges or lines or arcs). The order of a

graph is |V |, which stands for the number of vertices in the G; the size of a graph is

|E|, which stands for the number of connections in the graph G.

Directed graph: Given a graph G = (V,E), if every connection in this graph

acts as an ordered pair, we call this graph is directed graph. Figure 2.2a shows an

example of directed graph.
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Undirected graph: Given a graph G = (V,E), if every connection in this graph

acts as an unordered pair, we call this graph is undirected graph. Figure 2.2b shows

an example of undirected graph.

(a) An example of directed graph. (b) An example of undirected graph.

Figure 2.2: Directed graph vs undirected graph.

Disconnected graph: Given an undirected graph G = (V,E), if there exists two

vertices with no path between them, we call this graph is disconnected graph. Figure

2.3a shows an example of disconnected graph.

Connected graph: Given an undirected graph G = (V,E), if for every pair of

vertices there exists at least one path between them, we call this graph is connected

graph. In a connected graph, there are no unreachable pair of vertices. Figure 2.3b

shows an example of connected graph.

Complete graph: Given a connected graph G = (V,E), if every pair of vertices

in this graph is connected by an connection, we call this graph the complete graph.

A complete graph contains all possible connections. Figure 2.4 shows an example of

complete graph.
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(a) An example of disconnected
graph.

(b) An example of connected graph.

Figure 2.3: Disconnected graph vs connected graph.

Figure 2.4: An example of complete graph.

Weighted graph: In many applications, there is a numerical value associated

with each connection of a graph. We define this value is the weight of a connection

and remark this kind of graph the weighted graph. The weight could be a measure

of the length of a route, the capacity of a line, the energy required to move between

locations along a route, etc. In this dissertation, we assume the weight represents a

measure of the length between each pair of vertices.

Shortest path between vertices in a graph: Given a weighted graph and a

designated pair of vertices vi and vj, we could find a path of least total weight from vi

to vertex vj in the graph. We call that path the shortest path between vertex vi and

13



vertex vj. Figure 2.5 exhibits an example of weighted graph, which is also a complete

graph. The shortest distance between vertex 3 and vertex 2 is 6. For a weighted

graph G, there may be more than one shortest path between two vertices. If there

is no path connecting the two vertices, then the shortest distance between these two

vertices is defined as infinite.

Figure 2.5: An example of weighted graph.

Degree: Degree is the number of connections to the vertex. The degree of a

vertex v is denoted as deg(v). For example, the degree of vertex 0 in Figure 2.5 is 3.

Degree Matrix: Given a graph G = (V,E) with |V | = n, the degree matrix D

for G is a n× n diagonal matrix defined as:

Dij =


deg(vi) if i = j

0 otherwise

(2.1)

For example, the degree matrix of graph in Figure 2.5 is:

D =



3 0 0 0

0 3 0 0

0 0 3 0

0 0 0 3


(2.2)
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Adjacency Matrix: Given a graph G = (V,E) with |V | = n, the degree matrix

A for G is a n× n matrix defined as:

Aij =


1 if vertex i and vertex j are connected

0 otherwise

(2.3)

For example, the adjacency matrix of graph in Figure 2.5 is:

A =



0 1 1 1

1 0 1 1

1 1 0 1

1 1 1 0


(2.4)

Laplacian Matrix: Given a graph G = (V,E), the laplacian matrix L for G is

L = D − A. For example, the Laplacian matrix of graph in Figure 2.5 is:

L =



3 −1 −1 −1

−1 3 −1 −1

−1 −1 3 −1

−1 −1 −1 3


(2.5)

Planar: A planar graph is a graph that can be drawn on the plane without any

connections intersect with each other out of their endpoints.

Graph Energy: Given a graph G = (V,E). Let A be the adjacency matrix of G

and let λi where i = 1, ..., |V | be the eigenvalues of A. Then graph energy is defined

as the sum of the absolute values of the eigenvalues.

E(G) =
n∑

i=1

|λi|

.
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Drawing Conventions: They are approaches of how to place connections on the

layout when creating the final drawing. There are three kinds of drawing conventions,

such as:

• Polyline drawing: the final drawing can have any number of bends on a con-

nection. Sub figure 2.6a shows an example of polyline drawing.

• Straight-line drawing: the final drawing has only straight lines in it. Sub figure

2.6b shows an example of straight-line drawing.

• Orthogonal drawing: the final drawing has only vertical or horizontal line seg-

ments in it. Sub figure 2.6b shows an example of orthogonal drawing.

(a) An example of polyline
drawing.

(b) An example of straight-
line drawing.

(c) An example of orthogo-
nal drawing.

Figure 2.6: Examples of different drawing conventions.

Aesthetic rules: Aesthetic rules are defined for determining the ability of draw-

ing on conveying information [23] [24], such as:

• Minimal edge crossing;

• Vertices and connections must be evenly distributed;

• Curves must be straight lines and should all have the same length;

• Maximal angular resolution;

• Maximize display of symmetries;

• Minimal the drawing area;
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Trade-offs: One drawing cannot simultaneously satisfy all of the aesthetic rules,

thus some aesthetic rules conflict with one another. For example, in some cases it

would be best to include bends in order to avoid edge crossing. Since that, trade-offs

need to be made based on the drawing requirement of aesthetic rules.

Drawing Constraints: Some readability aspects require knowledge about the

semantics of the specific graph. Since that, constraints are provided as additional

inputs to a graph drawing algorithm. For example, in the thesis [25], we use the

voltage of each vertices as a constraint to draw the electrical power system.

2.2.2 Description of Graph Layout

There are many kinds of graph layout algorithms [24], such as the force-directed

layout algorithm, isometric layout algorithm, random layout algorithm, and circular

layout algorithm, etc.. Figure 2.7 shows four different drawings of the same abstract

graph.

Isometric layout algorithm: It is a method for the visual representation of

three-dimensional nodes in two dimensions. This algorithm uses an isometric per-

spective to visualize networks. Subfigure 2.7a shows an example of graph generated

by isometric layout algorithm.

Circular layout algorithm: It is a visualization approach of a graph with the

following characteristics:

• The vertices of graph are placed onto the circumference of an embedding circle;

• Each connection of the graph is drawn as a straight line.

Subfigure 2.7c shows an example of graph generated by circular layout algorithm.

Random layout algorithm: It is a visualization approach of a graph with the

following characteristics:

• The vertices of graph are placed randomly onto a two-dimensional display;
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(a) Isometric layout. (b) Random layout.

(c) Circular layout. (d) Force-directed layout.

Figure 2.7: Different drawings of an abstract graph.
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• Each connection of the graph is drawn as a straight line.

Subfigure 2.7b shows an example of graph generated by random layout algorithm.

Force-directed layout algorithm: This algorithm simulates a physical system

in order to visualize a network. The algorithm is commonly used for graph plotting

which can be found in literature such as [26] [27] [28] [29] [30]. The initial step of

force-directed method is to lay all the vertices randomly on the display. After that,

two kinds of forces are defined and used: the repulsive force and the attractive force.

The repulsive force, analogous to electrical force used to push vertices away from each

other, existed between each pair of vertices. In a graph G(V,E), The repulsive force

is define as:

fr(u, v) = −CK2/||xu − xv||,where u 6= v, u, v ∈ V (2.6)

where K is a parameter as the optimal distance, C is the strength relationship be-

tween repulsive and attractive force and xi is the current location of vertex i on the

display. The attractive force, analogous to mechanical spring force used to pull ver-

tices towards, exists between a vertex and its connected neighbors. The attractive

force is defined as:

fa(u, v) = ||xu − xv||2/K, u↔ v, u, v ∈ V (2.7)

As a result, the force of vertex u can be represented as:

f(u) =
∑

fr(u, v)|u6=v +
∑

fa(u, v)|u↔v, u, v ∈ V (2.8)

These forces work together and create movements that make system converge to a

balanced state. This final configuration is used to layout the graph data. Subfigure

2.7d shows an example of graph generated by force-directed layout algorithm.

In this dissertation, we will use the force-directed layout algorithm to exhibit the
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structure of lattice graph in TEA. Figure 2.8 shows an example of comparison between

the physical map locations of a real power grids and their graph layouts generated

by force-directed method. In this figure, the left sub graph is the layout of the Italy

power grid, each vertex represents a bus in the power grid while each connection

represents a transmission line connecting two buses in the grid. Meanwhile, right sub

graph is the map of Italy power system. The critical shape defining vertices in the

graph and the corresponding physical locations in the map are circled and marked

in the figure. The generated graph is consistent with the map. For example, the

positions of eight substations in the map are consistent with those in the generated

graph. This example shows the force-directed drawing can reflect the topology feature

of the graph.

Figure 2.8: Comparison of force-directed layout method generated graph with the
map of Italy power grid.
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Chapter 3

Inspiration from Examples of

Physics

In the previous chapter, we present the related concepts and methods of this

dissertation. As mentioned, we want to design an automaton for analyzing the energy

dynamics of a graph. For this, we imagine energy flow between two vertices to be

analogous to the physical movement of one particle between two locations. So before

introducing the mechanism of TEA, it is worthwhile to introduce the inspiration of

the research. In this chapter, we will use particle movements as the example to show

the idea behind this research.

This section consists of five parts: in section 3.1, Brownian motion will be in-

troduced as an example to show the Langevin equation can be used to explain the

stochastic motion of particles; from section 3.2 to section 3.4, the Lorenz system will

be introduced as an example to show chaotic movements of particles can be synchro-

nized by network. Section 3.2 exhibits the different chaotic motions of unsynchronized

particles; section 3.3 introduces the chaotic motions of particles can be synchronized

through connections; moreover, section 3.4 shows particles in the network can also be

synchronized; finally in the section 3.5, we will summarize the whole chapter.
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3.1 Implication of Langevin Equation on Free Sin-

gle Particle

Brownian motion describes the stochastic movement of particle due to collisions

with other small molecules[31]. Figure 3.1 [32] shows an example of Brownian motion.

In this movement, the size of particle is considered vastly larger than the size of

molecules. Thus, the motion of Brownian particle is vastly slower than the motion of

molecules in the fluid. There are several different approaches for explaining Brownian

motion, Langevin equation is one of them. In the following part of this section, we

will use one-dimension Brownian motion as an example to show the idea of Langevin

equation.

Figure 3.1: Stochastic motion of a Brownian particle.

22



Figure 3.2: A large particle B immersed in a fluid of small molecules.

Langevin equation is a stochastic differential equation that explains the evolu-

tion of particle stochastic movements. Typically this equation divided the stochastic

movements into macroscopic (slow) movements and microscopic (fast) movements,

where the macroscopic movements change slowly compared to the microscopic move-

ments. Thus, Langevin equation considers instantaneous force on a particle at time

t consists of two types of forces, where one is in macroscopic scale while the other is

in microscopic scale as Figure 3.2 shows. Moreover, Langevin equation in stochastic

particle movement can be written as follows:

d(x(t))

dt
= v(t)

d(v(t))

dt
∝ F(t) + F (t)

(3.1)

In this equation:

• F(t) stands for the sum of the force drive slow action. In Brownian motion

example, F(t) is the friction force of Brownian particle.

• F (t) stands for the sum of the force drive fast action. In Brownian motion

example, F (t) is the stochastic force due to the collisions of Brownian particle

with the surrounding small molecules. This force is assumed to be a Gaussian
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process with

〈F (t)〉 = 0, 〈F (t1)F (t2)〉 = gδ(t1 − t2) (3.2)

where 〈...〉 implies the sample average, both of t1 and t2 are times, g is a measure

of the strength of the fluctuating force and delta function indicates there is no

correlation between two stochastic force at different time t1 and t2.

From this function, we can conclude that stochastic behavior of particle movement

can be explained as the combination of the forces driven by slow action and fast

action.

3.2 Chaotic Movements of Unsynchronized Parti-

cles

In the rest of this chapter, we will use Lorenz equation to simulate the trajectories

of chaotic particle movements. The Lorenz equation is a group of nonlinear differential

equations [33] [34] [35] [36] [37], which can be represented by spatial variables x y and

z as follows:

dx

dt
= σ(y − x)

dy

dt
= x(ρ− z)− y

dz

dt
= xy − βz

(3.3)

where t is the time, σ ρ β are the three input parameters. Figure 3.3 shows a sample

solution of Lorenz equation.

24



Figure 3.3: a sample solution of Lorenz equation.

Lorenz equation is notable for several natures, in this section we mainly discuss

two of them:

• Lorenz equation has chaotic solution of certain parameters. Such as: for the

input parameters σ = 10 ρ = 28 β = 8
3
, Figure 3.4 shows the chaotic solution

of Lorenz equation with initial condition (x1(0) = 1, y1(0) = 1, z1(0) = 1) from

time 0 to time 100.
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Figure 3.4: Solution of Lorenz equation with parameters σ = 10 ρ = 28 β = 8
3

and
initial condition (x(0) = 1, y(0) = 1, z(0) = 1) for 0 ≤ t ≤ 100.

• Lorenz equation is highly sensitive to initial conditions. Figure 3.5 shows an ex-

ample: the x-coordinate trajectory of the solution modeled by identical Lorenz

equations with initial conditions (x(0) = 1, y(0) = 1, z(0) = 1) is different from

the x-coordinate trajectory of another solution modeled by the same Lorenz

equations with different initial conditions (x(0) = 1.001, y(0) = 1, z(0) = 1).

The two trajectories remain close from time 0 to time 20, then start to exhibit

different chaotic behaviors. In this section, we only discuss trajectory of the x-

coordinate for simplicity since the trajectory of the y- and z-coordinate behaves

in the same manner as that of the x-coordinate.
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Figure 3.5: Sensitivity of particles to the initial condition. Curve 1 is the trajectory
of solution with initial condition (x(0) = 1, y(0) = 1, z(0) = 1) for 0 ≤ t ≤ 30; curve
2 is the trajectory of solution with initial condition (x(0) = 1.001, y(0) = 1, z(0) = 1)
for 0 ≤ t ≤ 30.

These two natures show that given two separate particles with the same Lorenz

equation but slightly different initial conditions, they will exhibit different chaotic

trajectories without synchronization.

3.3 Chaotic Movements of Synchronized Particles

In this section we will illustrate that the chaotic motions of different particles can

be synchronized through connections among them.
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3.3.1 Synchronization of Particles Movements through One

Connection

Figure 3.6: Two particles coupled by a connection.

Figure 3.6 shows an example of two particles coupled through a connection. Par-

ticle A and particle B are modeled by Lorenz equation with same parameters[38]; the

two particles start at two different locations, (1, 1, 1) and (12, 4, 6); the two particles

connected through a connection which leads to the movement of particle A affects

the movement of particle B; we suppose two particles are linearly coupled. Thus, we

represent these two particle movements by the following Lorenz equations:

dxA
dt

= σ(yA − xA)

dyA
dt

= xA(ρ− zA)− yA
dzA
dt

= xAyA − βzA

(3.4)
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for the movement of particle A and

dxB
dt

= σ(yB − xB) + dAB
x ∗ (xA − xB)

dyB
dt

= xB(ρ− zB)− y2 + dAB
y ∗ (yA − yB)

dzB
dt

= xByB − βz2 + dAB
z ∗ (zA − zB)

(3.5)

for the movement of particle B. In this example, the coupling of particle A and

particle B is represented by dAB
x dAB

y dAB
z , which are called as coupling coefficients.

Suppose the system parameters for particle A and particle B are σ = 10 ρ = 28

β = 8
3

and coupling coefficients dAB
x = dAB

y = dAB
z = 1.5, the simulation results can

be seen as Figure 3.7 shows: the trajectories of particle A and particle B exhibit

different chaotic behavior from time 0 to time around 3, and later become closely to

each other. We can conclude that trajectory of particle B is synchronized with the

trajectory of particle A.

Figure 3.7: Synchronization of particle movements in two-particles one-connection
network with coupling coefficients dAB

x = dAB
y = dAB

z = 1.5 in 0 ≤ t ≤ 8. Curve 1 is
the movement trajectory of particle A; Curve 2 is the movement trajectory of particle
B.
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Figure 3.8: An example of three-particle and two-connection radial connected system.

3.3.2 Synchronization of Particles Movements through Ra-

dial Connections

Figure 3.8 shows an example of radial connected system: this example consists of

three particles particle A, particle B and particle C; each of those particles is modeled

by Lorenz equations with same parameters; the three particles starts at three different

locations, (1, 1, 1) (12, 1, 5) and (10, 9, 7); the two connections in the network lead to

the movement of particle A affects that of particle B and the movement of particle B

affects that of particle C; the same as previous example, we suppose those particles are

linearly coupled. Thus, we represent these three particle movements by the following

Lorenz equations:

dxA
dt

= σ(yA − xA)

dyA
dt

= xA(ρ− z1)− yA
dzA
dt

= xAyA − βzA

(3.6)
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for the movement of particle A,

dxB
dt

= σ(yB − xB) + dAB
x ∗ (xA − xB)

dyB
dt

= xB(ρ− zB)− yB + dAB
y ∗ (yA − yB)

dzB
dt

= xByB − βzB + dAB
z ∗ (zA − zB)

(3.7)

for the movement of particle B, and

dxC
dt

= σ(yC − xC) + dBC
x (xB − xC)

dyC
dt

= xC(ρ− zC)− yC + dBC
y (yB − yC)

dzC
dt

= xCyC − βzC + dBC
z (zB − zC)

(3.8)

for the movement of particle C. The effect of particle A on particle B is given by

coupling coefficients, dAB
x , dAB

y , dAB
z while the effect of particle B on particle C is

given by coupling coefficients, dBC
x , dBC

y , dBC
z . Suppose parameters are σ = 10 ρ = 28

β = 8
3

and the coupling coefficients dAB
x = dAB

y = dAB
z = 1.5, dBC

x = dBC
y = dBC

z = 1.5,

the simulation result at x-coordinate from time=0 to time=8 of this radial connected

system can be seen in Figure 3.9: the movement trajectories of particle B and particle

C exhibit different chaotic behaviors at the beginning, and later become synchronized

to the movement trajectory of particle A. The time lag for movement of particle B

synchronized with the movement of particle A is shorter than that between particle C

and particle A. This example shows that the connections are capable of synchronizing

the particle movements in the radial connected system.
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Figure 3.9: Synchronization of particle movements in three-particle two-connection
network with coupling coefficients dAB

x = dAB
y = dAB

z = 1.5, dBC
x = dBC

y = dBC
z = 1.5

for 0 ≤ t ≤ 8. Curve 1 is the movement trajectory of particle A; curve 2 is the
movement trajectory of particle B; curve 3 is the movement trajectory of particle C.

3.4 Impacts of Coupling Structure on Synchroniza-

tion of Particles Movements

In this section we will illustrate how the synchronized motions of particles in the

network can be influenced by coupling structure.

3.4.1 Synchronization of Particles Movements by Radial Cou-

pling

We start the discussion by considering a simple networking in Figure 3.10. Suppose

two particle A and B represent by 3.4 and 3.5 with parameter σ = 10 ρ = 28 β = 8
3
,

and they start at two different locations (1, 1, 1) and (12, 4, 6). By testing three

different sets of coupling coefficients dAB
x =dAB

y =dAB
z = 0.75, dAB

x =dAB
y =dAB

z = 1.5

and dAB
x =dAB

y =dAB
z = 5, we can conclude the movement trajectory of particle B

under three different coupling coefficients vary with each other. As Figure 3.11 shows,

when increasing the coupling coefficients dAB
x dAB

y dAB
z , the time lag for movement of
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Figure 3.10: Two particles coupled by a radial connection with three different coupling
coefficients.
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particle B synchronized with movement of particle A decreased.

Figure 3.11: Behaviors of movement of particle B synchronized with movement of
particle A upon different coupling coefficients for 0 ≤ t ≤ 8. Curve 1 is the movement
trajectory of particle A; Curve 2 is the movement trajectory of particle B coupled by
dAB
x = dAB

y = dAB
z = 0.75; Curve 3 is the movement trajectory of particle B coupled

by dAB
x = dAB

y = dAB
z = 1.5; Curve 4 is the movement trajectory of particle B coupled

by dAB
x = dAB

y = dAB
z = 5.

Figure 3.12: A looped network with three different sets of coupling coefficients.
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3.4.2 Synchronization of Particles Movements by Looped Cou-

pling

Furthermore, we also consider the synchronization of particle movements in a

three-particle and four-connection looped network on different coupling coefficients.

Based on previous three-particle and two-connection radial connected system in Fig-

ure 3.8, we add a connection from particle A to particle C and a connection from

particle C to particle B as Figure 3.12 shows. Those connections lead to the move-

ment of particle A affects that of particle B, and the movements of particle C and the

particle B affect with each other. We use the following Lorenz equations to represent

these three particle movements:

dxA
dt

= σ(yA − xA)

dyA
dt

= xA(ρ− zA)− yA
dzA
dt

= xAyA − βzA

(3.9)

for the movement of particle A,

dxB
dt

= σ(yB − xB) + dAB
x ∗ (xA − xB) + dCB

x (xC − xB)

dyB
dt

= xB(ρ− zB)− yB + dAB
y ∗ (yA − yB) + dCB

y (yC − xB)

dzB
dt

= xByB − βzB + dAB
z ∗ (zA − zB) + dCB

z (zC − zB)

(3.10)

for the movement of particle B, and

dxC
dt

= σ(yC − xC) + dAC
x (xA − xC) + dBC

x (xB − xC)

dyC
dt

= xC(ρ− zC)− yC + dAC
y (yA − yC) + dBC

y (xB − xC)

dzC
dt

= xCyC − βzC + dAC
z (zA − zC) + dBC

z (xB − xC)

(3.11)
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for the movement of particle C, where the two sets of parameters, dAC
x =dAC

y =dAC
z

and dBC
x =dBC

y =dBC
z , stand for coupling coefficients of movement of particle A affects

on that of particle C and movement of particle B affects on that of particle C. In

Figure 3.13, solid curves are the movement trajectory of particle A, the dashed curves

are the movement trajectory of particle B and dash-dot curve are the movement tra-

jectory of particle C; both the movements of particle B and particle C will become

synchronized with movement of particle A. Depending on different coupling coeffi-

cients, the movements of particle B and particle C show different features; in (a), all

of the three movements become synchronized at about t = 6; in (b) and (c), all of the

three movements become synchronized at about t = 4; the movements of particles B

and C show different trajectories from t = 1 to t = 4. This example shows that by

different coupling rules, a simple particles connection is capable of producing a great

variety of unexpected synchronization behaviors.
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(a) Trajectory of movements of particles by coupling coefficients: dAB
x =

dAB
y = dAB

z = 1, dAC
x = dAC

y = dAC
z = 0.5, dCB

x = dCB
y = dCB

z = 1, dBC
x =

dBC
y = dBC

z = 1

(b) Trajectory of movements of particles by coupling coefficients: dAB
x =

dAB
y = dAB

z = 1, dAC
x = dAC

y = dAC
z = 1, dCB

x = dCB
y = dCB

z = 1, dBC
x =

dBC
y = dBC

z = 1

(c) Trajectory of movements of particles by coupling coefficients: dAB
x =

dAB
y = dAB

z = 1, dAC
x = dAC

y = dAC
z = 1, dCB

x = dCB
y = dCB

z = 0, dBC
x =

dBC
y = dBC

z = 1

Figure 3.13: Synchronization of particle movements in three-particle four-connection
network by different coupling coefficients for 0 ≤ t ≤ 8. In subfigure (a)-(c), curve
1 is the movement trajectory of particle A; curve 2 is the movement trajectory of
particle B; curve 3 is the movement trajectory of particle C.
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3.5 Summary

In this chapter, we introduce the inspiration of this research. First we explained

the stochastic motion of particle can be represented as a way of Langevin equation,

which is a combination of macroscopic (slow) movement and microscopic (fast) move-

ment.

Next, we use Lorenz system as an example to exhibit the chaotic motions of par-

ticles can be synchronized by connections, and moreover by different coupling struc-

tures. By proposing particular cases of networks, we find: the movements of particles

can become synchronized by links or even by a connected network; by changing sim-

ple coupling rules, the particles in the connected network are capable of producing a

great variety of unexpected synchronization behaviors.

In the next chapter, we will the hints from this chapter to form the Transient

Energy Automaton model.
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Chapter 4

Proposition of Transient Energy

Automaton

Transient Energy Automaton(TEA) is a mathematical model to analyze the en-

ergy flow on the network once triggered by disturbances. The graph of TEA consists

of a collection of vertices. Each vertex has a value at a time, which stands for the

energy distributed on the vertex. The configuration of TEA is represented by the

values of all vertices on the graph and which can be seen as the energy distribution

on the graph. The vertices update their values synchronously on discrete time steps

according to the rules. The new value of each vertex depends on the previous con-

figuration of TEA. The TEA evolution is composed of configuration changing over

time.

The differences between TEA and CAs are: 1) TEA considers all vertices in the

graph do the same action, which is in either fast action or slow action, at a time;

2) TEA assumes each vertex interacts globally with all of the other vertices on the

graph; 3) TEA considers the energy distribution at next time step depends on that of

current time; 4) The configuration of TEA is the energy distribution on the graph at

a time. In this section, we will introduce the general description of TEA. For simplify,
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we discuss the TEA with two-dimensional graph, particularly lattice graphs, in this

dissertation.

4.1 Automation Mechanism

We start this chapter by introducing the mechanism of TEA. We assume each

vertex in the TEA is capable of processing energy by either reflecting or absorbing.

When a vertex receives energy from the others, this vertex has a tendency to absorb

and reflect the received energy. To simplify, we suppose that one vertex will absorb

part of the received energy while reflecting the rest part of the received energy to

the other vertices. Therefore, we define two actions, fast action and slow action, to

present the process of energy reflection and energy absorption.

Firstly, we define the fast and slow actions in the TEA as follows:

Definition 1. Fast Action: A process for the vertex to reflect energy. We suppose

after the vertex receives energy, part of the received energy will be reflected from the

vertex and received by other vertices on the graph. This process takes a relatively

short time when compared with slow action.

Definition 2. Slow Action: A process for the vertex to absorb energy. We suppose

after the vertex receives energy, part of the received energy will be absorbed by this

vertex and the rest of them will be processed by fast action. This process takes a

relatively long time when compared with fast action.

Secondly, we define the governing rules for TEA. Since the fast and slow actions

of each vertex are coupled with each other, the two actions for each vertex requires

complex rules to govern them. In order to simplify and implement those actions into

TEA model, we simplify these rules as follows:

• The fraction of energy that can be absorbed by each vertex in the slow action
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depends on the capability of the vertex. We define this fraction is a constant,

which we call as absorption ratio;

• For each vertex, the amount of energy received at a local site (from the distur-

bance vertex or the reflected energy from neighboring vertices) in the fast action

is a function of the graph geometry including the structure of lattice and value

configuration of edges. We define this function is determined by a constant,

which we call as dispersion ratio;

• We suppose for all of the vertices in TEA, the fast action and slow action are

synchronized. For each discrete time step, there contains one fast action and

one slow action;

• Such rules are functions of the geometry and value configuration of graph and

the property of vertices, and ultimately enable the TEA to create time evolution

of energy distributions that may affect the dynamics of the system.

In other words, the first rule shows the absorption ratio is given by the property of

that vertex, which is assumed to be known; the second rule shows dispersion ratio

is related to graph geometry; the third rule shows all the vertices synchronize their

actions; the fourth rule summarizes how to create the evolution of TEA.

In the rest of this section, we will introduce the approach of calculating dispersion

ratio. First, we consider the graph of TEA defined by an undirected, weighted and

connected graph G = (V , E) with N vertices. The set of vertices is given by V = {i :

i = 0, ..., N − 1}, and the set of connections is given by E = {(i, j) : i, j ∈ V , i 6= j}.

Furthermore, we define the shortest distance between each pair of vertices is given by

the mapping function 4.1:

B : E → R (4.1)

The graph can then be described by N = (V , E , B). We have the shortest distance
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matrix A ∈ RN×N as follows:

Aij =


Bij if i 6= j

0 otherwise

(4.2)

where Bij can be any kind of shortest distance between i and j.

Next, we introduce the connection strength matrix of the graph N , which is

labeled as T . In this part, the term connection strength represents the ability of

energy exchange between a pair of vertices: the stronger the strength between two

vertices, the higher the intensity of energy exchange between them. Mathematically,

for the vertex i and vertex j with connection strength Tij ∈ T , a greater distance

between them would represent weaker connection strength and hence a smaller value

of Tij. Particularly, we define the connection strength matrix T ∈ RN×N as follows:

Tij =


(1
2
)Aij if i 6= j

0 otherwise

(4.3)

Remark 1. We suppose in fast action, there is no energy dispersion or consumption

during the procedure of energy exchange.

Remark 2. We suppose a vertex cannot receive the energy reflected from itself.

Connection strength matrix T helps us in calculating energy distribution by fast

action which will explain by using the following example. Assume N -vertex graph

N = {V , E , B} with connection strength matrix T ∈ RN×N , the vertex i will reflect

and distribute the entire energy pi by fast action to the graph. Using T , we can

calculate pij (j ∈ V and j 6= i), which means the energy reflected from vertex i and

received by vertex j, is

pij = pi × Tij∑N−1
k=0,k 6=i Tik

(4.4)
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Assuming P i ∈ RN×1 to describe the energy reflected from vertex i to all vertices, we

have:

P i =



pi0

pi1
...

piN−1


(4.5)

where pii is 0 (by remark 2). We denote the following function to describe the mapping

pi × T → P i

D : InjectE × CSMatrix→ Dist(InjectE) (4.6)

where InjectE stands for injected energy, CSMatrix stands for the connection

strength matrix and Dist(InjectE) stands for the distribution of injected energy.

We denote this function as Energy Distribution Function (EDF). Energy distribu-

tion function D is important in TEA and we will use this function in the following

discussion.

Before we continue, let me introduce a notation that will be helpful in following

discussion. We label a matrix M whose elements of ith row and ith column are all 0

as M−i,−i, i.e. the matrix M is

M =



1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16


(4.7)
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and the corresponding matrix M−3,−3 is

M−3,−3 =



1 2 0 4

5 6 0 8

0 0 0 0

13 14 0 16


(4.8)

4.2 The Model

In the previous section, we assume all the actions of vertices in TEA are synchro-

nized with a global clock and executed at the same time. Moreover, we start by using

two states to describe the two actions. They are:

• -1: The vertex is in fast action.

• 1: The vertex is in slow action.

Secondly, we introduce the initial condition of TEA. We use the term Start vertex

to indicate a vertex where energy is injected into the graph at the very first time. We

assume that after initial step, the start vertex cannot receive or keep any energy but

it still keep on connected in the network (or more precisely, the network connection

structure is not changed). Thus, we can define start vertex as:

Definition 3. Start vertex: Start vertex is the vertex that receives the injected

energy and reflects all of its received energy to the other vertices. This is defined

as the initial step. After this step, start vertex will remain connected to the graph

without absorbing or receiving energy.

After the energy is injected into start vertex, the energy evolution in TEA begins.
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Figure 4.1: The received energy can be divided into two parts, which are absorbed
energy and reflected energy.

Thirdly, we will focus on iterations of TEA. As we assume in the previous section,

there exists a fast action and a slow action for each time step from time t1 to time

t1 +1 where t1 = 0, 1, .... The fast action takes place from time t1 to time t1 +ε1 while

the slow action takes place from time t1 + ε1 to time t1 + 1 where ε1 � 1. In order

to help us illustrate energy flow caused by slow action and fast action, we define the

concepts of absorbed energy and reflected energy as Figure 4.1 shows. For the received

energy of each vertex on graph, it can be divided into two parts, they are:

Definition 4. Absorbed energy: It is the absorbed parts of received energy. We

denote it as Ai(t1) where t1 = 0, 1, ... is the time step and i is the vertex. This part

of the energy will be absorbed by the slow action of the vertex.

Definition 5. Reflected energy: It is the reflected parts of received energy. We

denote it as Ri(t1) where t1 = 0, 1, ... is time step and i is the vertex. This part of

the energy will be reflected by the fast action of the vertex.

The ratio between absorbed energy and received energy is defined as the property of

vertex. We use reflection ratio to represent the ratio between reflected energy and

received energy.

Definition 6. Reflection ratio: It is a ratio between reflected energy and received

energy of a vertex. In this dissertation, we use ri to represent the reflection ratio of
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vertex i. Unlike absorption ratio, this ratio stands for the ability of the vertex to

reflect energy.

Besides, we also define the concept of Total contained energy and Entire absorbed

energy

Definition 7. Total contained energy: It is the entire energy contained in the

vertex i at time t1 − 1. We denote it as Ei(t1).

Definition 8. Entire absorbed energy: It is the entire energy absorbed by the

vertex i till current time.

Formally, the TEA can be defined as a structure below:

Definition 9. A Transient Energy Automaton is a 8-tuplesA= (N , T, r, v0, π,S,Σ, τ)

where:

• N = {V , E , B} is an undirected graph of the A. The vertices set V of this graph

has N elements, B is the mapping function to obtain the shortest distance

between each pair of vertices;

• T ∈ RN×N is the connection strength matrix of the graph;

• r ∈ RN×1 is the reflection ratio vector of the graph;

• v0 ∈ V (G) is the start vertex;

• π ∈ R is the entire energy injected into vertex v0;

• S is the nonempty set of vertices states at a time. The state for vertex i at time

t is

Si(t) =


−1 when t1 ≤ t ≤ t1 + ε1

1 when t1 + ε1 ≤ t ≤ t1 + 1

(4.9)

where ε1 � 1, -1 stands for fast action and 1 stands for slow action.

46



• Σ is a triplet energy values set where Σ(t1) = (R(t1), A(t1), E(t1)):

– R ∈ RN×1 stands for the reflected energy for each vertex at the time t = t1,

where:

R(t1) =



R0(t1)

R1(t1)

...

RN−1(t1)


(4.10)

– A ∈ RN×1 stands for absorbed energy for each vertex at the time t = t1,

where:

A(t1) =



A0(t1)

A1(t1)

...

AN−1(t1)


(4.11)

– E ∈ RN×1 stands for the total contained energy for each vertex at a time

t = t1, where:

E(t1) =



E0(t1)

E1(t1)

...

EN−1(t1)


(4.12)

• τ is a function that maps the current triplet energy values set into the next

triplet energy values.

Σ(t1 + 1) = τ(Σ(t1)) (4.13)
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Figure 4.2: A six-vertex TEA graph

In the rest part of this section we will use an example of six-vertex connected

graph in Figure 4.2 as to show the operations of TEA. In this example, the start

vertex is vertex 0. When dynamics of energy flow triggered, the energy is reflected

from start vertex to other vertices as Figure 4.3 shows. After initiation, the start

vertex never keep any energy as Figure 4.4 shows. Figure 4.5 shows the energy flow

of fast action on all of vertices except start vertex.

Figure 4.3: The energy flow of six-vertex graph at time t = 0: the energy disperse
from start vertex 0 to other vertices by fast action.

48



Figure 4.4: The energy distribution after initialization.

(a) Fast action of Vertex 1. (b) Fast action of Vertex 2. (c) Fast action of Vertex 3.

(d) Fast action of Vertex 4. (e) Fast action of Vertex 5.

Figure 4.5: The fast action of each vertex at time t = t1.

4.3 Working Process

In the previous section, we introduced the model of TEA. The overall energy flow

on the G(V,E) is updated as Figure 4.6 shows: the rows of circular node stand for

N vertices (from 0 to N − 1) while the columns stand for the discrete time (from 0

to t1 + 1), i.e. the row v0 and column 1 means the vertex v0 at time 1; the arrows
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stand for the directions of energy flow, i.e. the arrow from row v0 at column 0 to row

0 at column 1 means energy reflected from vertex v0 at time 0 and received by vertex

0 at time 1. This graph consists of N -vertex and with connection strength matrix

T . Initially, the energy flow from start vertex v0 to other vertices except v0. After

initiation, for every vertex in the network except v0, the energy will flow from this

vertex to the other vertices except v0.

Figure 4.6: Energy flow in the graph.

Firstly, we discuss the energy flow at the initial step. Suppose the connection

strength matrix is T , the energy flow from start vertex v0 to other vertex i is deter-

mined by EDF(equation 4.6). We use αv0
i indicate

Tv0i∑N−1
j=0,j 6=i T

′
v0j

, then energy received

by vertex i from start vertex is Ev0 ∗ αv0
i . The reflected energy for vertex i at t = 0

can be represent as:

Ri(0) = Ev0 ∗ Tv0i∑N−1
j=0,j 6=i Tv0j

∗ γi = Ev0 ∗ αv0
i ∗ γi (4.14)
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where Ev0 stands for the energy injected to the start vertex. The absorbed and total

contained energy for vertex i, where i 6= v0, at time t = 0 are

Ai(0) = Ev0 ∗ Tv0i∑N−1
j=0,j 6=i Tv0j

∗ (1− γi) = Ev0 ∗ αv0
i ∗ (1− γi) (4.15)

and

Ei(0) = 0 (4.16)

Next, we discuss the energy flow of the network at the iteration t1, from time

t1 − 1 to time t1 (t1 > 1). We use ∆Ei(t1) to stand for the total contained energy

change of vertex i from time t1 − 1 to t1, then it can be written as:

∆Ei(t1) = Ai(t1 − 1) (4.17)

The received energy for vertex i is

Ai(t1) +Ri(t1) =
N−1∑

k=0,k 6=i

Rk
i (t1 − 1) (4.18)

where Rk
i (t1− 1) stands for the energy reflected from vertex k and received by vertex

i. Rk
i is calculated by EDF with connection strength matrix T ′ = T−v0,−v0 . We use

βk
i to indicate

T ′ki∑N−1
j=0,j 6=i T

′
ji

, equation 4.4 can be rewritten as:

Rk
i (t1) = Rk(t1 − 1) ∗ βk

i
(4.19)

By remark 1 we have:

Rk(t1) =
N−1∑
j=0

Rk
j (t1 − 1) ∗ γi

=
N−1∑
j=0

Rk(t1 − 1) ∗ βk
j ∗ γi

(4.20)
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where
N−1∑
j=0

βk
j = 1 (4.21)

and

Ak(t1) =
N−1∑
j=0

Rk
j (t1 − 1) ∗ (1− γi)

=
N−1∑
j=0

Rk(t1 − 1) ∗ βk
j ∗ (1− γi)

(4.22)

Finally, we show varieties of dynamics of energy flow in the TEA. Figure 4.7 and

Figure 4.8 show two examples, where the horizon axis represents the time step and

the vertical axis represents the total contained energy in vertex i. Figure 4.7 exhibits

the first two time steps, including initial step. Vertex i is not start vertex, thus it

contains null energy at time t = 0. Due to the fast action of start vertex, the total

contained energy of vertex i at time t = ε1 is increased to Ei(ε1). After initiation,

from time t = ε1 to time t = 1, the vertex i absorbs part of its received energy by

slow action. These two actions make the total contained energy in vertex i decreased

to Ei(1) by Ri(0). The same thing happened in the time period from time period

t = 1 to time period t = 2.
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Figure 4.7: Trajectories of total contained energy evolution in the first 2 time steps
.

In Figure 4.8, we illustrated two different trajectories of evolutions of total contained

energy of vertex i from t = n− 1 to t = n+ 1. In (a) Ei(n− 1) > Ei(n) while in (b)

Ei(n − 1) < Ei(n). We use those two figures to show the total contained energy at

time n − 1 can be greater or smaller or equal to that at time n. This can cause the

chaotic behaviors of dynamics of energy flow in TEA.
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(a)

(b)

Figure 4.8: Different trajectories of energy flow dynamics
.

4.4 Summary

This chapter describes how TEA simulates the evolution of energy flow. First, we

divide the energy flow process of each vertex into fast action and slow action. Second,

we implement correlated rules for these two action in order to create evolution of

energy flow. Third, we define the model of TEA. At last, we use examples to show

that dynamics of energy flow in TEA exhibit different chaotic behaviors.

We will objectively study the energy flow in the TEA by simulation in a compu-
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tational system. In the next chapter, we will introduce the implementation of a TEA

based computational system.
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Chapter 5

Design and Implementation of

Experimental System

In the previous chapter, we introduce how TEA is designed under governing rules.

Since TEA is focused on analyzing the dynamics of energy on the graph, we need to

design an experimental system which is capable of helping people understand the

global dynamical properties of the graph. Designing a system that can simulate TEA

and reveal its properties is difficult. Besides the implementation problem of governing

rules, there is a need for designing an expandable format for managing the geometry

and value configuration of the graph and the property of vertices in the graph. More-

over, we need a visualization approach for displaying energy distribution dynamics of

each vertex on the graph. In this section, we will introduce the experimental system

for TEA-based research.

5.1 System Overview

TEA experimental system is concentrated on providing time-based energy propa-

gation visualization services to the user. The system consists of three major modules:

simulation environment controller, energy flow simulator and visualization, as Figure
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Figure 5.1: Software system architecture.

5.1 shows. The simulation environment controller module will generate the TEA net-

work case file; the energy flow simulator module will implement the governing rules of

the TEA and simulate energy flow among vertices at each time step; the visualization

module will visualize the structure of the TEA network and display configuration of

TEA on the graph.

We design TEA simulation system in this three-modules pattern because we want

to create an application that separates the different aspects of the application (data

preparation logic, data processing logic and visualization logic), while providing a

loose coupling structure between these modules. The pattern specifies where each

kind of logic should be located in one module of the application: data preparation

logic belongs to the simulation environment controller module; data processing logic

belongs in the energy flow simulator module; visualization logic belongs to the visu-

alization module. This separation enables us to focus on one aspect of the implement

at a time, which would help us manage complexity in building the application.

The loose coupling between the three main modules of TEA simulation system

also reduces the risk that a change made within one module will create unexpected

changes in other modules. For example, if we change the approach of calculating the

connection strength matrix in simulation environment controller module while keep

the same TEA network case file format, we do not need to worry about the changes

in energy propagation simulator module.
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Figure 5.2: Structure of TEA simulation environment data.

5.2 Properties of System Simulation Environment

We first introduce simulation environment controller module of TEA experimental

system. Figure 5.2 shows the structure of TEA input data, which consists of two

components, one is TEA case data while the other is TEA runtime arguments. TEA

case data includes both geometry and value configuration of graph and property

of vertices. In this dissertation, we define TEA case data to be an xlsx file which

provides the detailed information of edge list, connection strength matrix, reflection

ratio list and initial energy. TEA runtime arguments, which include start vertex and

injected energy, will be inputed at the initial state of TEA system in the energy flow

simulation module. The system simulation environment is mainly about generating

TEA case data.

In this section, we will introduce algorithm of generating connection strength

matrix in subsection 5.2.1; after that, we will introduce the format of TEA case data

in subsection 5.2.2. In this part, we assume the name of each vertex in N -vertex TEA

graph is labeled from 0 to N − 1.

5.2.1 Algorithm of Generating Related Parameters

We firstly illustrate the complete steps of generating connection strength matrix.

The sketch of this algorithm is shown in Algorithm 1. We start from acquiring the
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list of vertices n in the edge list l(line 2); connection strength matrix is initialized as

a N ×N matrix E (line 3); for each pair of vertices in l, algorithm will measure the

shortest distance between them, and fill the corresponding element of matrix E with

connection strength which is calculated by the measured shortest distance (lines 4-9).

Algorithm 1 Algorithm of Generating Connection Strength Matrix

1: procedure GetEMatrix(l) . l is edge list
2: n = GetVerticesList(l) . (n is list of vertices in l)
3: E = Init(l) . E is connection strength matrix of l
4: for i = 0,1,2,...,sizeof(n) do
5: for j = 0,1,2,...,sizeof(n) and j != i do
6: k = FindShortestPath(l, n[i], n[j])
7: E[n[i], n[j]] = 1/power(2, k)
8: end for
9: end for

10: return E
11: end procedure

Multiple metrics can be used to measure shortest distance between each pair of

vertices in the edge list. In this subsection, an example of measuring geodesic distance

[39] is implemented as Algorithm 2 shows. This approach is based on non-recursive

Breadth-First Search (BFS) method. As we assume TEA network is a connected

graph, the function will return the geodesic distance in line 10. Otherwise, we do not

need to consider the situation that the function returns in line 20 since we do not

discuss the disconnected TEA network in this dissertation.
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Algorithm 2 Approach of measuring shortest path between two vertices.

1: procedure FindShortestPath(l,i,j) . l is edge list; i is from vertex; j is to
vertex

2: d = 1 . d is measurement of shortest distance
3: create vertex set Q . Q contains all vertices in edge list.
4: Q.remove(i) create set P and P.push(i)
5: while P is not null do
6: create set O
7: for each element u in Q do
8: for each neighbor v of u do
9: if v == j then

10: return d
11: else if v.contains(Q) is not true then
12: O.add(v)
13: Q.add(v)
14: end if
15: end for
16: end for
17: d = d+ 1
18: P = O
19: end while
20: return INFINITY
21: end procedure

5.2.2 Case Definition and Data Format for Experiments

Figure 5.3: Structure of TEA case data.

The simulation case file includes all the basic information of TEA case file to

simulate the energy flow on the graph. This file consists of two parts as Figure 5.3

shows. Graph structure data contains the edge list data of the graph, which is a

M × 3 matrix where M is the number of edges in the graph; graph parameter data
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consists of three matrices, including two 1 × N row vectors and one N × N matrix

where N is the number of vertices. Two row vectors include reflection ratio vector

and initial energy vector of TEA, while the N ×N matrix is the connection strength

matrix of TEA which we labeled as E in our program. In this software, we use xlsx

format for storing and transferring simulation case data because this format is easy

to storing, organizing and manipulating by Microsoft Excel.

Edge Number From Vertex No. To Vertex No.

1 1 2
2 2 3
3 1 4
4 2 0
5 3 5
6 4 0
7 0 5
...

...
...

M vi vj

Table 5.1: Example of TEA case file graph structure.

Reflection Ratio
0.9 0.3 0.5 0.2 0.7 0.3 · · · 0.3 0.1

Initial Energy
0 0 0 0 0 0 · · · 0 0

E
0 0.5 1 0.5 1 1 · · · 1 0.5
0.5 0 1 0.5 1 0.25 · · · 0.25 0.125
1 1 0 1 0.5 0.5 · · · 0.5 0.25
0.5 0.5 1 0 0.25 1 · · · 0.25 0.5
1 1 0.5 0.25 0 0.5 · · · 0.5 0.25
1 0.25 0.5 1 0.5 0 · · · 0.5 1
...

...
...

...
...

...
. . .

...
...

1 0.25 0.5 0.25 0.5 0.5 · · · 0 1
0.5 0.125 0.25 0.5 0.25 1 · · · 1 0

Table 5.2: Example of TEA case file graph parameters.

Figure 5.1 and Figure 5.2 show examples of TEA network case data in N -vertex

and M -connection system. In Figure 5.1, each row stands for a connection, i.e, row
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five is the fifth connection of the network, and this connection is between vertex three

and vertex five. In Figure 5.2, row two is the reflection ratio vector of the TEA

network, i.e, the data in second cell of reflection ratio vector is the reflection ratio for

the vertex one (we use zero-based numbering); row four is the initial energy vector

of the TEA network, in this example the initial energy for each vertex is set as null

energy; the matrix starting from row six is the N ×N matrix of connection strength

matrix, i.e, the element in row three and column four of this matrix is the connection

strength between vertex two and vertex three.
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5.3 Software Implementation

Figure 5.4: Flow chart of energy flow simulator.

The implement of energy flow simulator module follows the operations of TEA as

we introduced in the previous chapter, Figure 5.4 shows the flow chart of the evolution

simulator:

• Load Case Data: As we introduced in the previous section, TEA network case

data is stored in xlsx format. As a result, most of the parsing process need to

be done in this step;
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• Load Runtime Arguments: We read the inputs of TEA runtime arguments,

including start vertex and injected energy;

• System Initialization: In this step, we implement the equation 4.14 of the previ-

ous chapter. We also initialize absorbed energy vector A, reflected energy vector

R and total contained energy vector E as TEA model defined. Assume N is

the number of vertices in the network: absorbed energy vector A is a 1 × N

row vector which is initialized by equation 4.14; reflected energy vector R is

1×N zero row vector; and total energy vector E is a 1×N row vector which

is initialized by initial energy vector in the TEA network case file;

• Calculating Reflected Energy by Fast Action: In this step, we implement the

equation 4.22 from the previous chapter. After that, we update contained total

contained energy vector E by

Ei = Ei + Ai +Ri (5.1)

where Ei and Ai stand for the ith element of E and A. The result of E will

output to the visualization module;

• Calculating Absorbed Energy by Slow Action: In this step, we implement the

equation 4.20 from the previous chapter. After that, we update total contained

energy vector E by

Ei = Ei −Ri (5.2)

where Ei and Ri stand for the ith element of E and R. The result of E will

output to the visualization module.

The design of energy flow simulator module is highly modular and thus flexible.

Due to the modularity design, it is extremely easy for us to add or modify models in

order to expand the capabilities of TEA simulation system. This feature eliminates
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the need to make major changes on the main body of the program, when we need to

modify or integrate new models.

5.4 Method for Result Visualization

The visualization module is focused on helping people understand and analyze the

energy flow in the TEA network by visualization techniques. TEA simulation system

visualization plan includes TEA network visualization and displays of time-based

TEA configuration.

The basic visualization problem can be simply expressed as follows: given a graph

formed by nodes and connections, calculate the position of each node and draw the

corresponding curve for every connection[23]. Thus, one of the key factors of visu-

alization is how to lay all the vertices and connections on a plane. Indeed, a good

layout allows a user to extract information at a glance, whereas a poor layout is far

more challenging to be understood.

As we mentioned in the Chapter 2, force-directed method is used to generate the

layout of TEA graph [25]. Figure 5.5 shows the layout generated by force-directed

method of a forty-nine vertex lattice graph.
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Figure 5.5: The force-directed layout of forty-nine vertex lattice.

TEA experimental system defines the gray scale of each node represents partial

energy information of corresponding vertex in the TEA graph. Darker color represents

more energy is distributed on the correlated vertex at current time step, while lighter

color represents less energy is distributed on the correlated vertex at current time

step. Figure 5.6 shows an example of visualized configuration of TEA in the first five

time step. This TEA is composed of forty-nine vertices with the start vertex twenty-

one and injected energy forty. The characteristic manner of this example is clear: at

initial step t = 0, the energy was injected to start vertex twenty-one; from time step

t = 1 to t = 3, the injected energy reflected from start vertex and distributed over

the network; start from time step t = 4, energy distribution remains stable in the

network.
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(a) t=0 (b) t=1

(c) t=2 (d) t=3

(e) t=4

Figure 5.6: First five time steps of the forty-nine vertex graph TEA with start vertex
six and injected energy forty.
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The front-end graphical user interface (GUI) is developed by Java as Figure 5.7

shows: this GUI consists of nine components, labeled from one to nine. In the rest

of this section, all these components are described in the ascending order.

• Component one is the control panel. This panel provides access to the following

functions: button Load stands for loading a TEA network case data; button

Visualization stands for visualizing TEA network; button Initialization stands

for reading TEA runtime arguments and initializing TEA system; button Step

stands for processing TEA by one time step; and button Ten Steps stands for

processing TEA by ten time steps.

• Component two is implemented for inputing TEA runtime arguments.

• Component three is implemented for displaying and modifying TEA network

case data.

• Component four is implemented for selecting vertices and setting colors of the

selected vertices. The energy dynamics of selected vertices will be visualized in

component eight.

• Component five is implemented for displaying the evolution of sum of entire

reflected energy in TEA.

• Component six is implemented for illustrating the runtime statistic of TEA at

each time step. Type one shows the average absorbed energy among the TEA

system and the standard deviation of this mean; type two shows the median of

the absorbed energy among the TEA system and the standard deviation of this

median.

• Component seven is implemented for displaying the absorbed energy distribu-

tion of TEA network at each time step.
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• Component eight contains three sub-components. Figure 5.8a shows the energy

evolution of selected vertices. In this figure horizon axis represents the time step

while the vertical axis represents the energy distributed on the correlated vertex

at the related time step. The vertices and its correlated color can be selected in

component four. Figure 5.8b shows the irregularity in energy dynamics. We use

crossovers among total contained energy evolution to represent the irregularity

in energy dynamics of the graph. In this figure, the horizon axis represents the

time step while the vertical axis represents the number of crossovers at correlated

time step. Figure 5.8c shows the received energy ranks of the selected vertex.

In this figure, the horizon axis represents the name of vertex while the vertical

axis represents the amount of energy received from correlated vertex to selected

vertex at current time.

• Component nine displays two kinds of energy distribution charts at each time

step. In Figure 5.9a and Figure 5.9b, the length of the spoke stands for the entire

energy absorbed by the correlated vertex. Figure 5.9a shows charts of vertices

energy distribution at t = 2 and t = 3 where the ith spoke represents the vertex

i. Figure 5.9b shows charts of ordered energy distribution at t = 2 and t = 3

where the ith spoke represents the vertex which absorbs ith least entire energy.

In those two Figures, different colors of charts stand for different time step: the

charts in red line stand for energy distribution or ordered energy distribution at

time step t = 2; the charts in blue line stand for energy distribution or ordered

energy distribution at time step t = 3.
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(a) Energy distribution dynamics. (b) Irregularity in energy dynamics.

(c) Received energy ranks for the selected
vertex.

Figure 5.8: TEA real time energy evolution monitors.
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(a) Energy distribution chart. (b) Ranked energy distribution
chart.

Figure 5.9: Two kinds of TEA real time energy distribution charts.

5.5 Summary

In this chapter, we introduce our TEA experimental system in detail. This system

consists of three modules: simulation environment controller generates the TEA net-

work case data; energy flow simulator reads the generated case data, accepts runtime

arguments and simulate the dynamics of energy flow; visualization module displays

the time-based energy propagation. In this dissertation, we mainly use Matlab and

Java to develop this system; we use JAMA, which is a linear algebra package in Java,

to do the matrix calculation; since TEA network case data is in excel format, we use

Apache POI components, which are open source and third party API for developing

pure Java ports of xlsx format, to parse case data; and in data visualization module

we choose Gephi-toolkit, which is a Java base library, to layout the graph.

In the next chapter, we will discuss the impacts of different factors on the evolution

of energy distribution in the TEA.
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Chapter 6

Impacting Factors on Energy

Distribution

TEA consists of several different arguments, including reflection ratio for each

vertex, the location of energy injection, network structure, and structure of reflection

ratio distribution. Each of these arguments generates a different evolution of energy

distribution on the graph. These results will help people understand the impacts of

different factors on dynamics of energy distribution.

In this chapter, we design four different kinds of experiments. Each experiment

will contain several simulations that will separate one kind of impacting factor, as well

as analyze the impacts of the factor. Impacts include energy distribution dynamics,

irregularity of dynamic evolution, the homogeneous or heterogeneous feature of energy

distribution, and the convergence speeds of energy evolution. Moreover, a conclusion

is presented by comparing the results of energy distribution among these impacting

factors.
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6.1 Impacts of Homogeneously Reflection Ratios

Distribution

We start by discussing the impacts of homogeneously distributed reflection ratios

on the evolution of energy distribution in the graph. Reflection ratio stands for the

ability of a vertex to reflect its received energy; homogeneously distributed stands

for the reflection ratio of each vertex is uniform. When the reflection ratio of each

vertex on the graph is defined, we become interested in how energy is distributed on

the graph, what are the energy distribution dynamics and when did these dynamics

converge.

In order to explain these questions, we design an experiment of paired compari-

son simulations. These two simulations are based on forty-nine vertex homogeneous

lattice graph, which is shown in Figure 6.1a. In this square grid graph, we assume

that each connection has the same distance of one. By the Algorithm 1 in section

5.2, we can calculate the connection strength matrix of the graph. Moreover, in order

to compare the impacts of different homogeneously distributed reflection ratio on the

graph, we will adjust the value of reflection ratio vector. The reflection ratio vector is

shown in the Table 5.2 row two, which is in the TEA network case data. Figure 6.1b

shows the energy distribution among the vertices of the graph: the energy disperses

from being concentrated in the center black vertex to becoming spread out, and later

it gets distribute on the other forty-eight white vertices. The weight of each line

in graph stands for the amount of energy transfer from center black vertex to the

correlated vertex.

This section consists of three parts: subsection 6.1.1 discusses impacts of homo-

geneously distributed low reflection ratios on the graph; subsection 6.1.2 discusses

impacts of homogeneously distributed high reflection ratios; subsection 6.1.3 gives a

summary of impacts of homogeneously distributed reflection ratios.
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(a) A forty-nine vertex homogeneous lat-
tice graph with the length of each con-
nection is one.

(b) Energy disperses from the center
black vertex to the other forty-eight white
vertices. The weight for each line stands
for amount of energy transfer from black
vertex to the correlated vertex.

Figure 6.1: Model of the simulation.

6.1.1 Low Reflection Ratios

In this part, we will present the impacts of homogeneously distributed low reflec-

tion ratios by a simulation. Low reflection ratio of a vertex can be explain as, with

certain amount of received energy, most of them are absorbed by the vertex while only

a small part of them will be reflected. Figure 6.2 shows the received energy model of

vertex with low reflection ratio. In this simulation, we set the reflection ratio of every

vertex to be 0.1 and set the runtime arguments as start vertex to be 0 (the center of

lattice graph) and injected energy to be 5.
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Figure 6.2: Model of low reflection ratio vertex.

Figure 6.3 shows the results of energy distribution dynamics in the whole process.

It can be seen that the homogeneously distributed low reflection ratios significantly

decrease the entire energy flow in the graph. Figure 6.3a shows the entire absorbed

energy dynamics converge very quickly in this simulation. Figure 6.3b shows total

contained energy dynamics also converge rapidly. This is because for each vertex, low

reflection ratio affects most of energy absorbed by each vertex. Thus, the activities

of the whole system are decreased.

Figure 6.5 exhibits the entire absorbed energy distribution at different time steps.

From the statistic component of TEA simulation system, we can see the average

absorbed energy for each vertex is 0.104 and the standard deviation (SD) of absorbed

energy is 0.095. Thus, we can calculate relative standard deviation (RSD) of absorbed

energy which is (0.095/0.104) ∗ 100% = 91.3%. Since the relative standard deviation

is so high, we consider that the energy is distributed unevenly on the graph.
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(a) Entire absorbed energy dynamics.

(b) Total contained energy dynamics.

Figure 6.3: Energy distribution dynamics for a grpah with low reflection ratios ho-
mogeneously distributed.
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Figure 6.4: Entire absorbed energy distribution chart for a graph with low reflection
ratios homogeneously distributed.

(a) t=0 (b) After t=1.

Figure 6.5: Absorbed energy distribution fo a graph with low reflection ratios homo-
geneously distributed.
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6.1.2 High Reflection Ratios

In this part, we will show the impacts of homogeneously distributed high reflection

ratios. High reflection ratio for a vertex means that with certain amount of received

energy, most of them are reflected by the vertex while only a small part of them will

be absorbed. Figure 6.6 shows the received energy model of each vertex with high

reflection ratio. In this simulation, we assume the reflection ratio of each vertex as

0.9 and set runtime arguments as start vertex to be 0 and injected energy to be 5.

Figure 6.6: Model of high reflection ratio vertex.

Figure 6.7 shows the results of energy distribution dynamics in the whole process.

It can be seen that the homogeneously distributed high reflection ratios obviously

increase the energy flow in the graph. Figure 6.7a shows the entire absorbed energy

dynamics converge very slowly in the simulation. Figure 6.7b shows the total con-

tained energy dynamics exhibit chaotic oscillations. That is because for each vertex,

high reflection ratio affects most of energy reflected to the other vertices. This will

amplify the energy flow in the graph. Thus, the activities of the whole system are

increased.
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(a) Entire absorbed energy dynamics.

(b) Total contained energy dynamics.

Figure 6.7: Energy distribution dynamics on a graph with high reflection ratios ho-
mogeneously distributed.
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Figure 6.8: Entire absorbed energy distribution chart on a graph with high reflection
ratios homogeneously distributed.

Figure 6.7 exhibits the entire absorbed energy distribution at five different steps.

In this experiment, the average absorbed energy for each vertex which is 0.104 and the

standard deviation of absorbed energy which is 0.029. Thus, the relative standard

deviation of absorbed energy which is (0.029/0.104) ∗ 100% = 27.9%. Since the

relative standard deviation is so low, we consider the energy is distributed evenly on

the graph.

6.1.3 Remarks

In this section, we use paired comparison simulations to illustrate the impacts

of energy distribution dynamics through homogeneously distributed reflection ratios.

By comparing the results between the two simulations, where one is based on forty-

nine vertex homogeneous lattice graph with homogeneously distributed low reflection

ratios and energy injected at graph center, while the other is based on forty-nine vertex
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(a) t=0 (b) t=1.

(c) t=10 (d) t=30

(e) After t=50

Figure 6.9: Absorbed energy distribution on a graph with high reflection ratios ho-
mogeneously distributed.
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homogeneous lattice graph with homogeneously distributed high reflection ratios and

energy injected at graph center, we can conclude:

• The higher the reflection ratio, the longer the time spend on the energy distri-

bution dynamics converge;

• The higher the reflection ratio, the more chaotic the oscillations of energy dis-

tribution dynamics;

• The energy prefers to distribute evenly on the graph when reflection ratio is

high;

• The energy prefers to distribute unevenly on the graph when reflection ratio is

low;

6.2 Impacts of Different Energy Injected Location

Next, we discuss the impacts of different energy injected locations on energy dis-

tribution of the graph. Location of energy injection is presented by start vertex in the

runtime arguments. With different energy injection locations, the energy distribution

dynamics show variety of different patterns. When the location of energy injection

is defined, we become interested in evolution of both irregularity in energy dynamics

and energy distribution dynamics.

In order to demonstrate these impacts, we also design an experiment of paired

comparison simulations. These two simulations are based on forty-nine vertex ho-

mogeneous lattice graph with homogeneously distributed reflection ratios. Figure

6.10 shows the received energy model for each vertex. Specifically in this section, we

assume the reflection ratio for each vertex to be 0.8.
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Figure 6.10: Model of vertex in simulations of different energy injected locations.

This section consists of three parts: subsection 6.2.1 exhibits the impacts of energy

injected at center of graph; subsection 6.2.2 exhibits impacts of energy injected near

the corner of the graph; subsection 6.2.3 give a conclusion of previous simulations.

6.2.1 Energy Injected into Graph Center

In this subsection, we will show the pattern of energy distribution dynamics when

the energy is injected into the center of graph. Here, we set the runtime arguments

as start vertex to be 0 and injected energy to be 5.

Figure 6.11 and Figure 6.12 show the results of the simulation. In Figure 6.11,

the entire absorbed energy dynamics for forty-eight vertices exhibit nine different

oscillations. Figure 6.12 shows there are less irregularities during the whole energy

flow process. The reason is that the energy injected location is the center symmetry

vertex of the graph. Thus, the connection strength vector for this vertex distributed

homogeneously. Therefore, the received energy for each vertex at any time step will

be distributed symmetrically on the graph.

Figure 6.14 shows the entire absorbed energy distribution at four different time

steps. In this simulation, the average absorbed energy for each vertex is 0.103 and the

standard deviation of absorbed energy is 0.038. Thus, the relative standard deviation

of absorbed energy which is (0.038/0.103)∗100% = 36.9%. Since the relative standard

deviation is low, we consider the energy is distributed evenly on the graph.
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(a) Entire absorbed energy dynamics.

(b) Total contained energy dynamics.

Figure 6.11: Energy distribution dynamics on a graph with energy injected from
graph center.
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Figure 6.12: Irregularity in energy dynamics of the graph with energy injected from
graph center.

Figure 6.13: Entire absorbed energy distribution chart on a graph with energy injected
from graph center.
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(a) t=0 (b) t=1.

(c) t=5. (d) t=20.

Figure 6.14: Entire absorbed energy distribution in graph with energy injected from
graph center.

6.2.2 Energy Injected into Vertex near Graph Corner

This subsection shows the pattern of energy distribution dynamics when the en-

ergy injected near graph corner. We set the runtime arguments as start vertex 36

and injected energy 5.

Figure 6.15 and Figure 6.16 show the results of this simulation. In Figure 6.15, the

total contained energy dynamics for forty-eight vertices present lots of different oscilla-

tions. Figure 6.16 shows there are more irregularities in the whole energy flow process.

This is due to the vertex thirty-six is non-symmetric vertex of the graph. Thus, the
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connection strength vector for this vertex distributed heterogeneously. Therefore, the

received energy for each vertex at any time step will be distributed non-symmetrically

on the graph.

Figure 6.18 shows the absorbed energy distribution at four different time steps.

In this simulation, the average absorbed energy for each vertex which is 0.103 and the

standard deviation of absorbed energy which is 0.056. Thus, the relative standard

deviation of absorbed energy which is (0.056/0.103) ∗ 100% = 54.4%. So we consider

that the energy is distributed unevenly on the graph.
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(a) Entire absorbed energy dynamics.

(b) Total contained energy dynamics.

Figure 6.15: Energy distribution dynamics on a graph with energy injected from a
vertex near graph corner.
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Figure 6.16: Irregularity in energy dynamics of the graph with energy injected near
graph corner.

Figure 6.17: Entire absorbed energy distribution chart on a graph with energy injected
near graph corner.
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(a) t=0 (b) t = 1

(c) t = 5 (d) t = 20

Figure 6.18: Entire absorbed energy distribution on a graph with energy injected
from a vertex near graph corner.

6.2.3 Remarks

In this section, we use paired comparison simulations to illustrate the impacts of

energy distribution dynamics through injecting energy location. By comparing the

results between the two simulations, one is based on forty-nine vertex homogeneous

lattice graph with homogeneously distributed reflection ratios and energy injected

from center graph, while the other is base on forty-nine vertex homogeneous lattice

graph with homogeneously distributed reflection ratios and energy injected near graph

corner, we can conclude:
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• Location of energy injection has impacts on the variety of energy distribution

dynamics;

• Location of energy injection has impacts on the irregularity in energy dynamic;

• Location of energy injection has impacts on the unevenly absorbed energy dis-

tribution;

6.3 Impacts of Heterogeneous Network Structure

In the previous section, we exhibit the dynamics of energy distribution in homoge-

neous lattice graph. However, with heterogeneous network structure, the energy dis-

tribution dynamics shows variety of different patterns. In this section, we will discuss

the dynamics of energy distribution affected by heterogeneity of network structure.

We consider two ways to affect the heterogeneous of network structure in this sec-

tion. One is by adjusting the length of connections in a homogeneously distributed

graph, while the other is by adjusting the number of vertices in a homogeneously

distributed graph. In order to demonstrate the behaviors of these two kinds het-

erogeneously distributed network, we design two simulations based on each kind of

heterogeneous network structure. Then, we compare the result of each simulation with

the result of homogeneous network structure in subsection 6.2.1 to make a conclusion.

Specifically, we assume the reflection ratio for each vertex in these two simulations to

be 0.8 and the runtime arguments as start vertex to be 0 and injected energy to be 5.

This section consists of two parts: subsection 6.3.1 exhibits impacts of hetero-

geneously distributed network structure by adjusting the length of the connections;

subsection 6.3.2 exhibits impacts of heterogeneously distributed network structure by

removing vertex.
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6.3.1 Heterogeneous Length Distribution

In this section, we will show the behavior of heterogeneous length distributed

network structure. This impacting factor means the distance of each connection on

the graph is not even. Figure 6.19 shows the graph of this simulation. In this graph,

we divide the vertices of forty-nine lattice graph into two groups: group I and group

II, and define the length of each connection on the graph by following rules:

• For each connection that connects two vertices in the same group, such as con-

nection between vertex 26 and vertex 27, the distance of this kind of connection

is 1;

• For each connection that connects two vertices in the different groups, such

as connection between vertex 27 and vertex 28, the distance of this kind of

connection is 5.

Based on these two rules, we can calculate the connection strength matrix by the

Algorithm 1 and build the TEA model.
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Figure 6.19: A lattice graph with forty-nine vertices heterogeneously length dis-
tributed.

Figure 6.20 and Figure 6.21 show the results of energy distribution dynamics

in this simulation. In Figure 6.20, the energy distribution dynamics of forty-eight

vertices present lots of different oscillations. Figure 6.21 shows there are a lot of

irregularities in the whole process. These are because the factor of heterogeneous

length distribution changes the structure of graph and makes the connection strength

matrix non-symmetric. Therefore, the received energy by each vertex at any time

step is distributed non-symmetrically on the graph.
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(a) Entire absorbed energy dynamics.

(b) Total absorbed energy dynamics.

Figure 6.20: Energy distribution dynamics on a graph with heterogeneously length
distributed.
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Figure 6.21: Irregularity in energy dynamics of a graph with heterogeneously length
distributed.

Figure 6.22: Entire absorbed energy distribution chart on a graph with heteroge-
neously length distributed.

Figure 6.23 shows the absorbed energy distribution at four different time steps.
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In this simulation, the average absorbed energy for each vertex is 0.103 and the

standard deviation of absorbed energy is 0.084. Thus, the relative standard deviation

of absorbed energy which is (0.084/0.103) ∗ 100% = 81.6%. So we consider that the

energy is distributed unevenly on the graph.

(a) t=0 (b) t=1.

(c) t=5 (d) t=20

Figure 6.23: Entire absorbed energy distribution on a graph with heterogeneously
length distributed.

6.3.2 Heterogeneous Vertices Distribution

In this section, we will show the behaviors of heterogeneous vertices distributed

structure. This impacting factor stands for the vertices distributed unevenly in the

graph. As Figure 6.24 shows, we consider this network structure by removing vertex
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8 out of the forty-nine homogeneous lattice graph while keeping other properties the

same as the simulation in subsection 6.2.1.

Figure 6.24: A lattice graph with forty-eight vertices heterogeneously distributed.

Figure 6.25 and Figure 6.26 show the results of energy distribution dynamics in

this simulation. In Figure 6.25, the entire absorbed energy dynamics for forty-seven

vertices present lots of different oscillations. Figure 6.26 shows there are more irreg-

ularities during the whole process. These are because this impacting factor changes

the structure of graph. Thus, the connection strength matrix is non-symmetrical.

Therefore, the distribution of received energy at any time step is distributed non-

symmetrically on the graph.
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(a) Entire absorbed energy dynamics.

(b) Total contained energy dynamics.

Figure 6.25: Energy distribution dynamics on a graph with heterogeneously vertices
distributed.
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Figure 6.26: Irregularity in energy dynamics on a graph with heterogeneously vertices
distributed.

Figure 6.27: Entire absorbed energy distribution chart on a graph with heteroge-
neously vertices distributed.

Figure 6.28 shows the entire absorbed energy distribution at four different time
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steps. In this simulation, the average absorbed energy for each vertex which is 0.105

and the standard deviation of absorbed energy which is 0.038. Thus, the relative

standard deviation of absorbed energy which is (0.038/0.105) ∗ 100% = 36.2%. So we

consider that the energy is distributed evenly on the graph.

(a) t=0 (b) t=1.

(c) t=5 (d) t=20

Figure 6.28: Entire absorbed energy distribution on a graph with heterogeneously
vertices distributed.

6.3.3 Remarks

In this section, we present two simulations of heterogeneously distributed network

structure, one is by adjusting the length of connections while the other is by removing

one vertex out of the graph. By comparing the results of these two simulations to
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the result of homogeneously distributed network structure in subsection 6.2.1, we can

conclude:

• Both of the two factors, heterogeneous length distribution and heterogeneous

vertices distribution, can change the network structure;

• Both of the two factors have impacts on increasing variety of energy distribution

dynamics;

• Both of the two factors have impacts on increasing irregularity in the energy

dynamics;

• Heterogeneously length distribution has impacts on the unevenly energy distri-

bution.

6.4 Impacts of Heterogeneous Reflection Ratios

Distribution

The last impacting factor of energy distribution dynamics on the graph we will

discuss in this dissertation is heterogeneous reflection ratios distribution. In order

to conclude the impacts of this reflection ratio distributed factor, we design a sim-

ulation based on forty-nine vertex homogeneous lattice graph with heterogeneously

distributed reflection ratio and energy injected from center graph. We will compare

the result of this simulation with forty-nine vertex homogeneous lattice graph with

the simulation in sub section 6.2.1.

Heterogeneously distributed reflection ratios graph means, as what the name im-

plies, a graph of reflection ratios distributed unevenly. In this simulation, we define

the reflection ratio for each vertex except start vertex to be either 0.7 or 0.9; the

average value of these reflection ratios is 0.8. The reflection ratio for each vertex on

the graph is shown in Table 6.1
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Vertex No. 0 1 2 3 4 5 6 7 8 9
Reflection Ratio 0.8 0.7 0.7 0.7 0.7 0.7 0.9 0.7 0.7 0.7

Vertex No. 10 11 12 13 14 15 16 17 18 19
Reflection Ratio 0.9 0.7 0.7 0.7 0.7 0.7 0.9 0.7 0.7 0.7

Vertex No. 20 21 22 23 24 25 26 27 28 29
Reflection Ratio 0.7 0.7 0.7 0.7 0.7 0.9 0.9 0.9 0.9 0.9

Vertex No. 30 31 32 33 34 35 36 37 38 39
Reflection Ratio 0.9 0.9 0.9 0.7 0.9 0.9 0.9 0.9 0.9 0.7

Vertex No. 40 41 42 43 44 45 46 47 48 49
Reflection Ratio 0.9 0.9 0.9 0.9 0.9 0.7 0.9 0.9 0.9 0.9

Table 6.1: Heterogeneous reflection ratios distribution.

6.4.1 Impacts on Time Evolution

Figure 6.29 and Figure 6.30 show the results of energy distribution dynamics

in this simulation. In Figure 6.29, the energy distribution dynamics of forty-eight

vertices present variety of different oscillations. Figure 6.30 shows there exists a lot

of irregularities in the whole process. This is due to the heterogeneously distributed

reflection ratios on graph. Since there are not all of the symmetric pair of vertices on

the graph have same ability of reflecting energy, the reflected energy distribution on

graph exhibits non-symmetric behaviors. Therefore, the energy distribution dynamics

on graph exhibits so many different behaviors.
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(a) Entire absorbed energy dynamics.

(b) Total contained energy dynamics.

Figure 6.29: Energy distribution dynamics on a graph with reflection ratio heteroge-
neously distributed.
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Figure 6.30: Irregularity in energy dynamics of a graph with reflection ratio hetero-
geneously distributed.

Figure 6.31: Entire absorbed energy distribution chart on a graph with reflection
ratio heterogeneously distributed.
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6.4.2 Impacts on Energy Distribution

Figure 6.32 shows the entire absorbed energy distribution at four different time

steps. In this simulation, the average absorbed energy for each vertex is 0.103 and the

standard deviation of absorbed energy is 0.076. Thus, the relative standard deviation

of absorbed energy which is (0.076/0.103)∗100% = 73.8%. So we consider the energy

is distributed unevenly on the graph.

(a) t=0 (b) t=1.

(c) t=5 (d) t=20

Figure 6.32: Entire absorbed energy distribution on a graph with reflection ratio
heterogeneously distributed.
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6.4.3 Remarks

In this section, we present a simulation of heterogeneously distributed reflection

ratios network structure. By comparing the result of this simulation to the result

of homogeneously distributed reflection ratios graph in subsection 6.2.1, we can con-

clude:

• Heterogeneous reflection ratios distribution has impact on the variety of energy

distribution dynamics;

• Heterogeneous reflection ratios distribution has impact on increasing the irreg-

ularities in energy dynamics;

• Heterogeneous reflection ratios distribution has impact on the unevenly energy

distribution;

6.5 Summary

In this section, we introduce four kinds of impacting factors which affect the

evolution of energy distribution on the graph. Table 6.33 summaries the impacts

of those factors on the energy distribution dynamics of the graph. Although we

summarize only four kinds of impacting factors in this dissertation, the combination

of these factors could produce more complex result of energy distribution dynamics on

the graph. In the next chapter, we will use TEA to simulate the energy distribution

dynamics in a real power system.
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Figure 6.33: Summaries of energy distribution dynamics affected by different impact-
ing factors.
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Chapter 7

Comparative Studies

In the previous chapter, we explore the energy distribution characteristics in a

latter graph based on TEA. In this chapter, we will compare the energy distribution

based on TEA with the one evaluated based on power system dynamics simulations

in a power grid to validate the efficacy of TEA-based energy analysis.

7.1 Energy Flow Analysis Using Power System Model

Similar to the lattice graph as shown in Figure 6.1 and 6.10, a homogeneous power

grid is constructed. As shown in Figure 7.1, the power grid has eighty-four lines and

forty-nine buses, which is the same as previous simulation. Each bus is connected to

a generator and a load.

In order to simulate the dynamics of the described power system in this chapter,

we make the following assumptions:

• 1. Each generator is represented by a classical model, which is a constant voltage

source behind transient reactance;

• 2. Governor action is not considered in this simulation while mechanical torque

is assumed to be constant;
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Figure 7.1: Forty-nine buses power system.

• 3. Damping coefficients are neglected;

• 4. Power consumption is neglected in transmission lines.

Under the above assumptions, the motion of the ith generator is described by the

following differential equations in using centre of angle (COA) reference[40]:

Miω̇i = Pmi − Pei −
Mi

MT

PCOA (7.1)

θ̇i = ωi (7.2)

where

Pei =
EiVisin(θi − φi)

x′di
(7.3)

MT =
m∑
t=1

Mi , PCOA =
m∑
t=1

(Pmi − Pei) (7.4)

In the previous equations, m is amount of generators in this power system, Mi is
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inertia constant of generator i, ωi is the angular velocity of generator i in COA

reference, θi and φi are angles of generator i and bus i with respect to COA, Ei

is the internal voltage of generator i, Vi is the voltage at bus i, Pmi stands for the

mechanical power input to generator i and Pei stands for the electrical power generated

by generator i. By the definition of COA variables [40], we have:

m∑
i=1

Miθi = 0 and
m∑
i=1

Miωi = 0 (7.5)

For each load model in this power system, we assume both active and reactive

powers, Pli and Qli, is given.

As we assumed there is no lossless in the power transmission, we have the following

power flow equations. Let

g1i =
EiVisin(φi − θi)

x′di

g2i =
n∑

j=1

ViVjBijsinφij

g3i =
V 2
i − EiEjcos(θi − φi)

x′di

g4i =
n∑

j=1

ViVjBijcosφij

(7.6)

where Bij = Im[Ybus(i, j)], Ybus is the admittance matrix of the network. The active

power injected into the network from bus i is

Pi = g1i + g2i (7.7)

The reactive power injection at bus i is

Qi = g3i + g4i (7.8)
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Thus, the power flow equations at bus i can be written as

Pi + Pli = 0 (7.9)

and

Qi +Qli = 0 (7.10)

7.2 Energy Flow Analysis Using TEA model

Before we introduce our comparison experiments, it is necessary to review our

TEA model which will be used in the simulations. The TEA is a 8-tuples A =

(N , T, r, v0, π,S,Σ, τ) where:

• N = {V , E , B} is a forty-nine vertex homogeneous lattices graph. In this graph,

each connection is one.

• T ∈ R49×49 is the connection strength matrix of the network;

• r ∈ R49×1 is the reflection ratio vector of the graph where each element is 0.8;

• v0 ∈ V (G) is the start vertex where energy is injected in;

• π ∈ R is the amount of energy which will be injected into the vertex v0;

• S contains two states where -1 means fast action while 1 means slow action;

• Σ records the energy status of each vertex in TEA;

• τ is a function that maps the current energy status into next energy status.

The test case in this simulation is shown in Figure 7.2.
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(a) Forty-nine vertex homogeneous lat-
tice graph with the length of each con-
nection is one.

(b) Model of each vertex where we as-
sume the reflection ratio is 0.8.

Figure 7.2: Model of comparative study.

7.3 Comparison between TEA and Power System

Dynamic Simulation

In this experiments, we compare the energy distribution evaluated based on power

system dynamic simulation with those based on TEA when the energy is injected

from different locations. In power system dynamic simulations, the energy injection

is triggered by applying a fault at a specific bus in the grid at t = 0s and later cleared

at tc = 0.1s.

7.3.1 Distributions of Energy Injected from Center Bus

We first compare the energy distribution evaluated based on power system dy-

namic simulations with those based on TEA when the energy is injected into the grid

from center bus 0 as shown in Figure 7.3.

We can see the results of these two simulations in Figure 7.4. It can be concluded

that TEA and power system dynamic simulations provide the consistent evaluation

results when the energy is injected from the center bus. As shown in Figure 7.4, the
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energy profile provided by power system dynamic simulations is almost the same as

the one provided by TEA. Specifically, based on the TEA evaluation results as shown

in Figure 7.4b, the buses in the power grid can be generally classified into three groups

(groups a− c) in terms of their received energy: group a is composed of vertices 1-8;

group b consists of vertices 9-26; and group c is made up of vertices 27-48. Based on

the results of power system dynamic simulations as shown in Figure 7.4a, the buses

in the grid can be also be classified into three groups (groups a′− c′) in terms of their

received energy: group a′ is composed of vertices 1-8; group b′ consists of vertices

9-26; and group c′ is made up of vertices 27-48. By comparing these groups one by

one, it is found that one of these three groups a, b, c not only has the same energy

profile as the one corresponding to the those three groups a′, b′, c′, but also has the

same buses. For example, both group a and group a′ are composed of four peaks,

which are vertices 2, 4, 5 and 7, and the energy received from these four vertices

forms the same profile. Thus, when the energy is injected into the grid at the center

bus 0, the two methods provide consistent results of energy distribution.

Figure 7.3: Power fault happened at the center of the power network.
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(a) Energy distribution result by
power system dynamic simulation.

(b) Energy distribution result by
TEA simulation.

Figure 7.4: Energy distribution results of energy injected from center bus.

7.3.2 Distributions of Energy Injected from Corner Bus

We further compare the energy distribution evaluated based on power system

dynamic simulations with those of TEA when the energy is injected into the grid

from corner bus 37 as shown in Figure 7.3.

We can see the results of these two simulations in Figure 7.4. It can be concluded

that TEA and power system dynamic simulations provide the highly similar evalua-

tion results when the energy is injected from the corner bus. As shown in Figure 7.6,

the energy profile provided by power system dynamic simulations is very similar to

the one provided by TEA. Specifically, based on the TEA evaluation results as shown

in Figure 7.6b, all buses in the power grid can be classified into four groups (groups

a− d) in terms of their received energy: group a is composed of vertices 0-11; group

b consists of vertices 12-25; group c is made up of vertices 26-36; and group d is com-

posed of vertices 38-48. Based on the results of power system dynamic simulations

as shown in Figure 7.6a, all buses in the power grid can also be classified into four

groups (groups a′ − d′) in terms of their received energy: group a′ is composed of

vertices 0-11; group b′ consists of vertices 12-25; group c′ is made up of vertices 26-36;
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and group d′is composed of vertices 38-48. Comparing these groups one by one, we

find that one of the four groups a, b, c, d not only has the similar energy profile to the

corresponding one in those three groups a′, b′, c′, d’, but also has the similar buses.

Thus, when the energy is injected into the grid at the corner bus 37, the two methods

generated highly similar results of energy distribution.

Figure 7.5: Power fault happened at a corner of the power network.

(a) Energy distributed result by
power system dynamic simulation.

(b) Energy distributed result by
TEA simulation.

Figure 7.6: Energy distribution results of energy injected from corner bus.

116



7.4 Summary

In the preliminary study, we use the shortest distance between each pair of vertices

to reflect the link relationship of them. This distance evaluation method may not

correctly reflect the link relationship of two buses in the power system field. However,

it still qualitatively describes the dependence of each pair of buses.

In this chapter, we study the energy injected into graph center and graph corner

by two different approaches. By comparing the distribution evaluated based on TEA

with the one evaluated based on power system dynamic simulations, we find the

results obtained by two different approaches are qualitatively consistent with each

other. More specifically, the result of energy injected into graph center by TEA-

based energy analysis is more accurate than the result of energy injected into a graph

corner by the same method. The reason for this is: when energy injected into the

graph center, the shortest distance between each pair of vertices consistent with the

link relationship of them; when energy injected into a graph corner, the shortest

distance method is still good, but with more discrepancy.

The results of these two experiments show that simple model of TEA may gen-

erate the similar results of complicate model in power system dynamic simulation.

Moreover, TEA offers more insights of energy flow on graph. This approach could be

useful for large scale power system analysis.
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Chapter 8

Conclusions and Future Work

This chapter summarizes the contributions made in the related work and states

some research directions for future work.

8.1 Conclusions

In this dissertation, we design the Transient Energy Automaton (TEA) to sim-

ulate the energy flow in a lattice graph. This TEA is a computational system that

automates dynamics of energy exchanges on graph once triggered by disturbances

similar to those used in the analysis of the dynamics of multi-machine power model

system. The design and implementation of TEA is mainly based on cellular automata

and graph visualization approach.

In order to simulate the dynamics of energy on the graph, TEA enables two fun-

damental actions and correlated rules of these two actions for each vertex in dynamics

of energy flow in the graph. The two fundamental actions include: the slow action

of a vertex to absorb the energy received from other vertices; and the fast action of

a vertex to reflect the other part of energy to the other vertices. For simplifying and

implementing these actions into the TEA model, we assume the couplings of these

actions are governed by the following rules:
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• For each vertex, the amount of energy received at a local site in the reflection

action, which is defined as dispersion ratio, is a function of the graph geometry

including the structure of lattice and value configuration of edges;

• The fraction of energy that can be absorbed by each vertex in the absorption

action, which is defined as absorption ratio, is based on the capability of the

vertex;

• We suppose at a particular time instant, all the vertices are in one same action,

either fast action or slow action;

• Such rules are functions of the geometry and value configuration of graph and

the property of vertices, which ultimately enable the TEA to create time evo-

lution of energy distribution, that may affect the dynamics of the system.

The energy flow among vertices on graph and its time evolution are computed recur-

sively using computational formula of the two actions under the governing rules.

We also design and realize our TEA simulation system for providing time-based

energy distribution visualization services to the user. This system consists of three

modules: controller module generates the TEA case data file; evolution simulator read

the generated case data, accept runtime arguments and process the received data to

output the energy distribution data; visualization module displays the evolution of

energy distribution. The whole system is mainly developed by Java.

The simulation results show that with the simple rules, such as homogeneously or

heterogeneously distributed network structures, TEA can produce varieties of com-

plex energy distribution dynamics. Table 6.33 summaries the impacts of four factors

on the energy distribution dynamics of the graph. Although we summarize only four

kinds of impacting factors in this dissertation, the combination of these factors could

produce more complex results of energy distribution dynamics on the graph.
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At last, we compare the energy distribution evaluated based on TEA with the one

evaluated based on power system dynamic simulations in a homogeneous power grid.

The results of the two experiments, the one is energy injected into graph center while

the other is energy injected into graph corner, show that the energy distribution

obtained by two different approaches are qualitatively consistent with each other.

This shows that simple model of TEA may generate the similar results of complicate

model in power system dynamic simulation. Moreover, TEA offers more insights of

energy flow on graph. This approach could be useful for large scale power system

analysis.

8.2 Future Work

Unsynchronized action for each vertex at a time should be considered in a more

realistic TEA model. Our model assumed all of the vertices are in one action, either in

fast action or in slow action, at the same time. Moreover, during a fixed time interval,

TEA supposes each vertex in the network will process one fast action and one slow

action. In a realistic model, the actions of all vertices may not be synchronized. Thus,

more realistic TEA model must incorporated with unsynchronized actions for all the

vertices in the graph.

Variable model parameters should be implemented into a more realistic TEA

model. In this dissertation, we simulate the energy flow on ideal models. This means

we assume the values of the parameters used here, which include the reflection ratio

for each vertex and the connection strength matrix of the network, remain the same

in the whole process. More realistic models of vertices and network should consider

the fluctuation of reflection ratio for each vertex and variable connection strength

matrix for the TEA network over times.

More experiments on real power grid should be simulated by TEA-base energy
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analysis method. In our study, we have presented the comparison of the energy

distribution evaluated based on TEA with the one evaluated based on power system

dynamic simulations in a homogeneous power grid. However, this is an ideal power

grid which is not the real power system. Furthermore, the simulation of TEA-based

energy analysis is not performed on the real power system. Thus, more experiments

based on real power grid, such as Taxes power grid, are needed to be simulated in

order to validate the efficacy of TEA-based energy analysis.

121



Bibliography

[1] Jyotirmay Mathur, Narendra Kumar Bansal, and Hermann-Joseph Wagner.

Dynamic energy analysis to assess maximum growth rates in developing power

generation capacity: case study of india. Energy Policy, 32(2):281 – 287, 2004.

[2] Stein Keijzers. Energy Consumption Analysis of Practical Programming Lan-

guages. PhD thesis, Radboud University Nijmegen, 2014.

[3] R.S. Hartman. Frontiers in energy demand modeling. Annual Review of Energy,

4:433–466, 1979.

[4] J. A. Butts and G. S. Sohi. A static power model for architects. In Proceed-

ings 33rd Annual IEEE/ACM International Symposium on Microarchitecture.

MICRO-33 2000, pages 191–201, 2000.

[5] B. Friedman, T. A. Carter, M. V. Umansky, D. Schaffner, and B. Dudson.

Energy dynamics in a simulation of LAPD turbulence. Physics of Plasmas,

19(10):102307, October 2012.

[6] Charles Xie. Interactive Heat Transfer Simulations for Everyone. The Physics

Teacher, 50:237–240, 2012.

[7] X.-S. Yang and Y. Z. L. Yang. Cellular Automata Networks. ArXiv e-prints,

March 2010.

122



[8] S. K. Lemieux A. A. Patel, E. T. Gawlinski and R. A. Gatenby. A cellular

automaton model of early tumor growth and invasion: The effects of native

tissue vascularity and increased anaerobic tumor metabolism. J. theor. Biol.,

213:315–331, 2001.

[9] J. Kari. Theory of cellular automata:a survey. Theoretical Computer Science,

334:3–33, 2005.

[10] Stephen Wolfram. Computation theory of cellular automata. Communications

in Mathematical Physics, 96(1):15–57, 1984.

[11] Ansgar Kirchner, Katsuhiro Nishinari, and Andreas Schadschneider. Friction

effects and clogging in a cellular automaton model for pedestrian dynamics.

Phys. Rev. E, 67:056122, May 2003.

[12] S. Heike G. Martin and T. John J. A cellular automaton model of excitable

media including curvature and dispersion. Phys. Rev. E, 247:1563–1566, March

1990.

[13] H.M. Byrne T. Alarcon and P.K. Maini. A cellular automaton model for tumour

growth in inhomogeneous environment. Journal of Theoretical Biology, 225:257–

274, June 2003.

[14] M. Fukui and I. Ishibashi. Traffic flow in 1d cellular automaton model including

cars moving with high speed. Journal of Physical Society of Japan, 65(6):1868–

1870, June 1996.

[15] A. Kirchner and A. Schadschneider. Simulation of evacuation processes using

a bionics-inspired cellular automaton model for pedestrian dynamics. Physica

A, 312:260 276, February 2002.

123



[16] K. C. Clarke and L. J. Gaydos. Loose-coupling a cellular automaton model

and gis: Long-term urban growth prediction for san francisco and washing-

ton/baltimore. International Journal of Geographical Information Science,

12(7):699–714, 1998.

[17] Sahotra Sarkar, Kelley A Crews-Meyer, Kenneth R Young, Christopher D Kel-

ley, and Alexander Moffett. A dynamic graph automata approach to modeling

landscape change in the andes and the amazon. Environment and Planning B:

Planning and Design, 36(2):300–318, 2009.

[18] C. F. Lee M. D. Fricker D.Smith, J. Onnela and N. F. Johnson. Network

automata: Coupling structure and function in dynamic networks. Advances in

Complex Systems, 14(03):317–339, 2011.
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