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Abstract 

The weakly electric fish Eigenmannia virescens generates electric organ 

discharges (EODs) to navigate and communicate. The EODs are brief monophasic 

voltage pulses with brief inter-pulse intervals, resulting in a sinusoidal waveform. EODs 

are produced by the simultaneous action potentials (APs) of ~1000 electric organ (EO) 

cells (electrocytes). Electrocytes generate APs at steady frequencies of 200-600 Hz with 

Na
+ 

currents that exceed 10 microamperes during each AP, creating large energetic 

demands. The aim of this study was to investigate the biophysical mechanisms that 

allow fast spiking and manage the large ionic currents in electroctyes.  

E.virescens elecrocytes initiate the AP using voltage-gated Na
+
 (Nav) channels 

and terminate the AP using Na
+
-activated K

+
 (KNa) channels, rather than voltage-gated 

K
+
 (Kv) channels, as is the case in other electric fish where electrophysiological data are 

available. The characteristics of K
+
 channels are key determinants of an excitable cell’s 

firing pattern. Using degenerate PCR and RACE-PCR, I identified the presence of three 

types of KNa channel subunit in electrocytes, eSlack1 and eSlick, closely related to KNa 

channel subunits in other vertebrates, and a shorter isoform, eSlack2. Whole-cell 

currents recorded from Xenopus laevis oocytes expressing these KNa channels revealed 

that eSlack1 and eSlick can form functional homomeric K
+
 channels and eSlick currents 

activated much more rapidly than eSlack1 currents. eSlack2 could not form functional 

homomeric ion channels, even though the subunits could be successfully trafficked to 

the plasma membrane. 

To investigate how ion channels coordinate to generate high-frequency APs, I 

studied the expression pattern of ion channels and Na
+
/K

+
 ATPases using 
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immunohistochemistry and by expressing fluorescent protein-tagged ion channels in 

electrocytes. Cholinergic receptors and Nav channels are only localized on the posterior 

side, while all K
+
 channels including the three KNa channel subunits and the ATP 

sensitive Kir6.2 are expressed on the anterior side. Na
+
/K

+
 ATPases are widely 

distributed on both the posterior and anterior membranes. Two-photon 3D imaging of 

electrocytes showed the cell’s posterior membrane is densely occupied by narrow 

invaginations providing extensive surface area for the expression of Na
+
 channels and 

Na
+
/K

+
 ATPases to manage the large ionic currents. Abundant vesicles were present 

underneath the posterior membrane, which may be associated with the trafficking of 

Na
+
 channels and Na

+
/K

+
 ATPases to the plasma membrane when the amplitude of AP 

is under modulation. 

Finally, I investigated the ionic mechanisms associated with variations in AP 

frequency in the fast-spiking electrocytes by measuring the transcription levels of ion 

channels and ion transporters in EO from fish with different EOD frequencies. EOD 

frequency is correlated with the transcription levels of Nav1.4a, the fast-activating Slick 

KNa channel subunits, Kir6.2 and Na
+
/K

+
 ATPases but not Nav1.4b, eSlack1 and 

eSlack2.  

In summary, the fast-activating Slick KNa channels are expressed exclusively in 

electrocytes to support the generation of sustained high-frequency APs. Among all the 

ion channels and ion transporters expressed in electrocytes, only Slick KNa channels, 

Nav1.4a, and Na
+
/K

+
 ATPases are associated with increased excitability, and these 

transcripts are expressed predominantly in electrocytes when compared to skeletal 

muscle. Variations in the transcription levels of eSlick, Nav1.4a and Na
+
/K

+
 ATPases 
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are positively correlated with individual differences in EODf, where they likely 

contribute to the capacity for high-frequency firing. 

 

Key words: weakly electric fish, three-dimensional electrocyte morphology, ion channel 

compartmentalization, sodium-activated potassium channels 

 

Abbreviations: EO, electric organ, EOD, electric organ discharge; EODf, electric organ 
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Preface 

The main goal of this research was to investigate the biophysical mechanisms 

that allow the generation of metabolically expensive electrical sensory and 

communication signals in the weakly electric fish Eigenmannia virescens. In this work, 

I focused on the cellular and molecular features of E. virescens electrocytes that enable 

the sustained generation of high-frequency APs. It was completed under the supervision 

of Dr. Michael Markham of the Department of Biology at the University of Oklahoma. 

The dissertation is composed of four chapters. Chapter 1 is an overview of the 

electrosensory and communication signals in weakly electric fish. Chapters 2 and 3 

have been included in the format of two manuscripts. Chapter 4 is general conclusions 

and directions for future work.  

Chapter 2 is an investigation into the morphological characteristics of 

electrocytes and the subcellular localization of ion channels and ion transporters in 

electrocytes. I and Dr. Markham conceived the project.  I, Dr. Markham, and Dr. 

Benjamin Smith designed the experiments and wrote the manuscript. I performed all 

experiments except as noted. Dr. Markham performed the computational simulation of 

electrocyte function. Dr. Benjamin participated in this project when he was a research 

scientist at the Samuel Roberts Noble Microscopy Laboratory of the University of 

Oklahoma. Dr. Benjamin Smith now works as a microscopy specialist at the University 

of California-Berkeley. He performed and taught me imaging using the Leica
®
 TCS 

SP8 laser scanning confocal microscope, rendered the images in Avizo
®

 Fire 8.0.1 and 

quantified the number of nuclei in electrocytes. The work presented in this chapter has 

been published as Ban, Y., Smith, B. E., & Markham, M. R. (2015). A highly polarized 
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excitable cell separates sodium channels from sodium-activated potassium channels by 

more than a millimeter. Journal of Neurophysiology, 114(1), 520-530.  

Chapter 3 is an investigation into the ionic mechanisms associated with 

variations in action potential frequency in the fast-spiking electrocytes. I and Dr. 

Markham conceived the project and designed the experiments. I performed all 

experiments (except as noted) and wrote the manuscript. Rosalie Maltby, a researcher in 

Dr. Markham’s lab, performed RACE-PCR to amplify a fragment of eSlack1. 

Mehrnoush Nourbakhsh, a Ph.D. student at Dr. Markham’s lab, helped subclone 

mCherry-eSlack2 and mCherry-eSlick nucleotide sequence from pOX vectors into 

pMAX vectors. 
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Chapter 1: General introduction 

Cost of communication signals 

Communication occurs when one organism (the signaler) transmits information 

to a second individual (the receiver) to influence the behavior of the receiver. The 

information can be carried by a great diversity of signals including visual, acoustic, 

chemical, electrical and tactile modalities such as the ornamented tail feathers of a 

peacock, the roar of howler monkeys, the trail pheromones produced by ants, and the 

electric fields generated by electric fish. Although signaling can bring benefits including 

winning the competition for mates, warning approaching animals to maintain territories, 

leading nestmates to the location of food resources, etc., both signalers and receivers 

incur costs to participate in communication (Bradbury and Vehrencamp, 1998). These 

costs are represented in various forms: energetic investments in signal emission and 

anatomical structures required for signal production and receiving, opportunity cost 

such as the loss of  foraging time due to efforts in signaling to attract mates, and risks of 

predators eavesdropping on the signals (Bradbury and Vehrencamp, 1998).  

The cost of signaling determines the reliability of communication. When 

signalers and receivers experience conflicts of interest, why do animals continue to 

communicate reliably despite the temptation to manipulate signal receivers with 

misleading information? Zahavi’s “costly signaling” theory provided one explanation to 

this puzzle (Zahavi, 1975). The production of misleading signals is much more costly 

than honest signals, thus it is not worthwhile for signalers to deceive receivers. The 

incentives of honest communication come from the costs of signaling. 
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Communication signals can be energetically costly or inexpensive depending on 

the proportion of the organism’s energy budget allocated to signal production. Passive 

visual signals conveying information by the size, shape and color of an animal are 

thought to require less energy input from the signalers, because most of the energy is 

provided by extrinsic sources – the sun. Communication signals are costly when they 

involveactive signal generation such as the emission of ultrasonic echolocation calls of 

bats and electric organ discharges of weakly electric fish, in which the energy originates 

from the signalers (Nelson and MacIver, 2006). 

Communication signals coupled to active sensory systems 

Animals interpret the surrounding world by receiving signals reflected from or 

generated by objects in the environment. The sensory systems can be either active or 

passive depending on the origin of the energy carried by the signal. In passive sensory 

systems, the energy is generated by an extrinsic source, for example, birds use plumage 

color as a mating signal, in which the energy being received is provided by the sun. 

Some animals adopted active sensory systems, in which they use self-generated energy 

to probe the outside environment. Examples include echolocation in bats and dolphins, 

electrolocation in weakly electric fish, and active movement of whiskers in rodents and 

antennae in insects (Bullock et al., 2006; DuÈrr et al., 2001; Hartmann, 2001; Thomas 

et al., 2004).  

Animals with active sensory systems have the advantage of precisely controlling 

the characteristics of signals, such as the magnitude, direction and temporal resolution. 

In the example of weakly electric fish, they image their environment by generating an 

electric field, which allows them to operate in environments with low or absent ambient 
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energy (e.g., light), thereby inhabiting ecological niches other animals cannot (Bullock 

et al., 2006). Using electricity as the primary sensory modality also reduces the chance 

of eavesdroppers that target prey by detecting visual or acoustic signals. Additionally, 

the electric signals are broadly distributed to encompass a full 360° around the body to 

allow them to maintain sensory contact with targets in any direction (Knudsen, 1975). 

Some South American species can generate continuous high-frequency electric signals 

to image their surrounding world with very high temporal resolution. The combination 

of an omnidirectional emission pattern and a high discharge rate makes it easier for 

these fish to track moving objects, especially when living in rapidly flowing rivers 

(Hopkins and Heiligenberg, 1978). 

The trade-off for these advantages in active sensory systems is higher energetic 

demand as active-sensing animals need to allocate energy to generate the signals. 

Energy carried by the signals will be reduced during propagation by absorption or 

scattering by objects in the environment before being received by animals. Active-

sensing animals pay twice for the attenuation cost, once as the signal is transmitted from 

the signaler to the target, and again as the signal is returned from the target to the 

signaler (Nelson and MacIver, 2006). To compensate for the effects of attenuation, the 

intensity of signals emitted from active-sensing animals is often orders of magnitude 

higher than the detection threshold of receptors (Nelson and MacIver, 2006). Reducing 

energetic cost through decreasing the magnitude of signals or ceasing the signal 

periodically is likely to decrease the animal’s sensory and physical performance. Signal 

cessation is not even possible for those weakly electric fish that generating continuous 

high-rate electric signals for navigation and communication. 
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Electrolocation and communication in weakly electric fish 

In teleost fishes, electroreception appears in two distantly related clades: the 

South American siluriformes plus gymnotiformes and the African notopteriformes plus 

mormyriformes. The presence of ampullary-type receptors allows them to perceive low-

frequency electric fields produced by other organisms. In contrast to siluriformes and 

notopteriformes that are only passively electroreceptive, gymnotiformes and 

mormyriformes independently evolved EOs which are specialized to generate electric 

discharges, and tuberous electroreceptors that are tuned to self-produced high-frequency 

electric fields (Alves-Gomes, 2001; Lavoué et al., 2012). The electrogenic and 

electroreceptive organs in these two independent lineages have evolved in a convergent 

manner and developed an effective electric sensory and motor system in these fish. One 

gymnotiform, Electrophorus electricus, generates high-voltage shocks to stun prey and 

dissuade predators, while all other gymnotiformes and mormyriformes generate weak 

EODs for locating targets and communicating with conspecifics, thus are commonly 

called “weakly electric fish.” 

 Most weakly electric fish are nocturnal and live in murky waters where visual 

perception is almost impossible. Electrical signaling enables them to detect targets in 

the range of approximately one body length (Von der Emde, 1999). Objects having 

different electrical properties from the surrounding water will distort the electric field. 

By monitoring the distortions, these fish are able to determine the location, size, shape 

and composition of nearby objects. An object that is more conductive than water (e.g., 

copper) will increase the density of current lines between the object and the fish to 

create an “electrical bright spot” on the fish’s skin. In contrast, an object that is more 
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resistant than water (e.g., a rock) will decrease the current intensity and give rise to an 

“electrical shadow” on the fish’s skin.  Non-conducting objects (e.g., plastics) will slow 

down the passage of electricity, resulting in a delay in the arrival of electrical signals at 

the tuberous receptors (Bastian, 1981; Heiligenberg, 1973; von der Emde, 1990; Von 

Der Emde, 1998; von der Emde and Fetz, 2007). A fish’s electrolocation ability 

deteriorates in the presence of nearby fish generating electrical discharges at similar 

frequencies. Some species can avoid this jamming of electroreception by shifting their 

discharge frequency to reduce interference. During this jamming avoidance response, 

Eigenmannia can both increase and decrease its EOD frequency, while Apteronotus can 

only raise its frequency (Bullock et al., 1972; Heiligenberg, 1973; Heiligenberg et al., 

1991). 

The waveform and frequency of the EOD are species-specific, sexually 

dimorphic and individually distinct, and therefore can convey information about the 

fish’s species, sex, identity and social status. For example, the glass knifefish 

Sternopygus macrurus discharge at ~ 50-200 Hz (Hopkins, 1974a) while the brown 

ghost knifefish Aperonotus leptorhynchus discharge at much higher frequencies ~600-

1100 Hz. Sexual dimorphism in electric signals has been reported in many species. The 

EOD rates of male Sternopygus and Eigenmannia are lower than those of females, 

whereas male Apteronotus discharge at higher frequencies than females (Hopkins, 1972, 

1974a; Meyer et al., 1987; Zakon et al., 1991). Within each species’ range of discharge 

rates, each individual has its unique frequency and waveform. In Apteronotus and 

Sternarchorhynchus, dominant males show higher discharge rates (Fugère et al., 2010; 

Hagedorn and Heiligenberg, 1985).  
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These fish can also modify EOD patterns to communicate during social 

encounters such as aggression and courtship behaviors (Bullock, 1969; Hagedorn and 

Heiligenberg, 1985). The most-studied modulations are “chirps,” which are transient 

and dramatic increases in EOD frequency, followed by a similarly rapid decrease to 

baseline frequency. The increase in discharge rate is usually accompanied by a 

reduction in EOD amplitude. In Apeteronotus, chirps could occur spontaneously or be 

induced by an artificial electric signal mimicking the presence of a nearby fish (Bullock, 

1969; Engler et al., 2000; Engler and Zupanc, 2001; Zupanc, 2002; Zupanc and Maler, 

1993). 

The self-generated electric discharges and any modifications to the electric 

fields during navigation and communication are sensed by the tuberous receptors. These 

electroreceptors are densely distributed over the fish’s skin, allowing the animal to 

monitor its outside environment in an almost omnidirectional manner (Carr et al., 

1982). Axons of these electroreceptors project to the electrosensory lateral line lobes 

(ELLs) in the hindbrain. ELL efferent cells project to the midbrain torus semicircularis 

(TS), neurons of which then convey electrosensory information to higher processing 

centers (Bell and Maler, 2005; Krahe and Maler, 2014). 

Electric organs and the generation of electric organ discharges 

The electric signals used for navigation and communication are generated by the 

EO.  In gymnotiformes, the EO usually runs longitudinally along the fish’s body 

extending from just behind the gill to the tail. In mormyriformes, the EO is located 

between the trunk and the caudal fin (Bennett, 1971a; Stoddard, 2010). The EO is 

composed of specialized cells, named electrocytes. Except for Apteronotus, the EO of 
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which is neurogenic, all the remaining gymnotiformes and Mormyridae have EOs 

derived from muscle cells (Kirschbaum, 1977). The development of the EO in 

Apteronotus starts with a myogenic EO in the larval stage, which is then replaced by the 

axons of electromotor neurons during the juvenile stage (Kirschbaum, 1983).  

Compared to muscle fibers, myogenic electrocytes are larger in cell size, more 

electrically excitable, have enhanced insulation and eliminate the coupling between 

excitation and contraction. Gallant and colleagues (2014) identified the transcriptional 

changes accompanying the evolution of myogenic EOs from muscle tissues by 

transcriptome profiling of myogenic EOs and skeletal muscles in several species of 

gymnotifomes and mormyriformes. EOs downregulate several transcription factors to 

prevent further differentiate into muscle; enhance expression of the α subunit of Na
+
/K

+
 

ATPases (atp1a2a and atp1a3a) and voltage-gated Na
+
 channels (scn4aa) to increase 

excitability; increase expression of two collagen genes, col6a6 and col141a1 to ensure 

insulation; and upregulate genes involved in the insulin-like growth factor signaling 

pathway to increase cell size (Gallant et al., 2014). 

Electrocytes in the EO are usually organized in orderly rows (Ban et al., 2015; 

Paul et al., 2015; Schwartz et al., 1975a). The firing frequency of electrocytes is 

controlled by the medullary pacemaker nucleus via spinal motor neurons that innervate 

each cell on one face (Bennett et al., 1967a; Bennett et al., 1967b). All the electrocytes 

fire APs simultaneously to generate a current that moves forward toward the head then 

returns to the tail through the surrounding water. The EOD waveform can be 

monophasic, biphasic or more complex, depending on the biophysical properties of 

electrocytes. For example, the electrocytes of Eigenmannia and Sternopygus only 
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express voltage-gated Na
+
 (Nav) channels on the innervated posterior face and are able 

to fire a single AP, resulting in a monophasic EOD (Ban et al., 2015; Patterson and 

Zakon, 1996). In contrast, the electrocytes of Brachyhypopomus express Nav channels 

on both the posterior and anterior faces. Upon stimulation, the innervated posterior face 

first generates an AP creating a headward flux of Na
+
 ions, which depolarizes the 

anterior face and generates a second AP with a tailward flow of Na
+
 ions. The two APs 

together create a biphasic EOD wave (Fig. 1) (Markham and Stoddard, 2005; Stoddard 

et al., 1999).  

Based on the frequency and regularity of EOD waveforms, weakly electric fish 

are classified into two categories. All mormyriformes (except Gymnarchus niloticus) 

and the gymnotiform families Gymnotidae, Hypopomidae, and Rhamphichthyidae are 

pulse-type fish producing low-rate EODs (10-120 Hz) separated by long and irregular 

intervals. In contrast, fish that generate continuous high-frequency EODs (50-1100Hz) 

with intervals almost equal to the duration of a single EOD, such as Gymnarchus 

niloticus and the gymnotiform families Apteronotidae and Sternopygidae are defined as 

wave-type fish (Fig. 1) (Bennett, 1970a; Hopkins, 1986). Pulse-type fish can modulate 

their discharge rate, whereas wave-type fish maintain a constant high-frequency EOD, 

making it impossible to regulate energy expenditure by modulation of discharge rate. 

Metabolic cost of EOD generation 

The metabolic cost of electrogenesis in weakly electric fish has been addressed 

in a few studies with contrasting results. Earlier studies suggested that the energetic cost 

of electrogenesis was negligible. Hopkins (Hopkins, 1999) estimated the cost of EOD 

generation in the pulse-type fish Gnathonemus petersii based on previous current and 
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voltage recordings from the EO (Bell et al., 1976), and suggested that the energy 

allocated to electrogenesis is only ~1% of the total energy budget. Julian et al. found 

that the oxygen consumption rates of 34 gymnotiformes were only half of that estimated 

for non-electric teleost fishes having similar sizes (Julian et al., 2003). Whether the 

generation of communication signals is energetically costly or inexpensive should 

primarily depend on the proportion of energy budget that are allocated to signal 

production. It is important to focus on the cost of EOD production other than the 

metabolic cost of the whole animal. Salazar and Stoddard combined pharmacological 

approaches and respirometry to partition the cost of electrogenesis from other metabolic 

costs in the pulse-types fish Brachyhypopomus pinnicaudatus, and found that males 

consumed 11-22% of the total energy for electrical signaling (Salazar and Stoddard, 

2008b).  Lewis et al. used respirometry to measure the animal’s oxygen consumption 

during the jamming avoidance response and estimated that an individual EOD in the 

wave-type fish Eigenmannia virescens cost 7 × 10
13

 to 4 × 10
14

 ATP molecules, 

consistent with Markham’s estimation based on the cost of AP generation in 

electrocytes (Lewis et al., 2014; Markham et al., 2013). Incorporating the cost of the 

entire pacemaker network, Salazar et al. suggested that EOD generation consumed 

~30% of routine energetic cost (Salazar et al., 2013). These recent experimental and 

theoretical estimates indicate that EOD production is energetically expensive. 

Recent analyses comparing the cost of electric signaling to that of other 

communication signals also suggest that EOD production creates high energetic 

demand. Markham et al. (2016) compared the cost of electrical signaling in the wave-

type fish Eigenmannia virescens to the cost of other energetically expensive 
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communication signals, the mate attraction signals from trilling katydid and the loud 

calls from Carolina wren are the most expensive communication signals on a second-to-

second basis (Stoddard and Salazar, 2011). These signals are only emitted for a brief 

period during a day, while the wave-type fish Eigenmannia virescens generate EOD at a 

constant frequency (200-600 Hz) 24 hours per day. When comparing the metabolic cost 

of communication signals on a daily basis, the cost of EOD generation becomes 

approximately equal to the most expensive acoustic signals (Table 1) (Markham et al., 

2016). Markham et al. also compared the metabolic cost of EO and other tissues that are 

composed of excitable cells such as muscle, brain, heart and retina, and indicated that 

the energy consumed by EO was similar to that of other comparison tissues except 

skeletal muscle, which consumed a higher level of energy under exercise conditions 

(Ames et al., 1992; Gibala et al., 1997; Haworth et al., 1983; Lewis et al., 2014a; 

Sokoloff, 1969). Brain, heart and retina comprise only a small fraction of whole body 

weight, whereas EO comprises ~10% of the fish’s total weight, which would make the 

relative cost of EO higher than other comparison tissues (Markham et al., 2016). 

Behavioral adaptations in electrical signaling to conserve energy 

Plasticity in EOD waveforms plays an important role in regulating the energy 

expenditure of electrical signaling. Many species are nocturnal and the modulation of 

EOD waveforms has been shown to follow a circadian rhythm. Pulse-type fish can 

reduce both the rate and amplitude of EOD during the day to save energy (Franchina 

and Stoddard, 1998; Silva et al., 2007). However, reducing EOD frequency is not 

possible for wave-type fish. The only strategy available for them to save energy during 

the resting time is to produce smaller-amplitude EODs (Markham et al., 2009; Sinnett 
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and Markham, 2015). When socially isolated, these fish will also reduce the amplitude 

of the EOD (Franchina and Stoddard, 1998).  

The circadian and social modulations of EOD amplitude occur through the 

action of adrenocorticotropic hormone (ACTH). In vivo injection of ACTH into the 

pulse-type fish Brachyhypopomus pinnicaudatus and the wave-type fish Sternopygus 

macrurus increases EOD amplitude within minutes. And in vitro application of ACTH 

to electrocytes increased the amplitude of the discharge generated by an individual 

electrocyte (the μEOD) (Markham et al., 2009; Markham and Stoddard, 2005). The 

rapid modulation of EOD waveform mediated by ACTH is through the trafficking of 

Nav channels into and out of the plasma membrane of electrocytes to regulate the influx 

of Na
+
 ions in each electrocyte and the overall EOD amplitude (Markham et al., 2009b). 

Under extreme conditions such as hypoxia and food deprivation, weakly electric 

fish have shown behavioral adaptations similar to the energy-saving adaptations during 

resting periods. Without the ability of aerobic respiration, wave-type fish have low 

tolerance to aquatic hypoxia. Apteronotus leptorhynchus and Eigenmannia virescens 

were found to decrease their EOD amplitudes to reduce the energetic cost in response to 

hypoxic stress (Reardon et al., 2011b). The EOD amplitude of E. virescens was reduced 

under food deprivation and recovered after feeding (Sinnett and Markham, 2015). The 

modulation of EOD amplitude under food deprivation was suggested to be mediated by 

the level of leptin hormone (Sinnett and Markham 2015). It appears that these fish 

respond to energy-limiting conditions by reducing EOD amplitude but not frequency. 

Modulating EOD frequency may be an energetically expensive process. The inability to 
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change discharge rate further ensures the honesty of EOD frequency as a signal 

representing the organism’s identity. 

Cellular and molecular adaptations in electrical signaling to conserve energy 

EODs are generated by the summed simultaneous APs of electrocytes. Thus the 

energy consumed by EOD production should arise from the maintenance of membrane 

potentials, synaptic transmission and especially AP generation in electrocytes. APs are 

usually initiated by the opening of Na
+
 channels, allowing the influx of Na

+
 ions, which 

depolarize the cell and cause the opening of K
+
 channels. K

+
 efflux competing with Na

+
 

influx results in cell repolarization. Cells are eventually hyperpolarized and APs are 

terminated by the closing of Na
+
 channels and K

+
 channels. After each AP, Na

+
/K

+
 

ATPases restore the ionic gradients by importing two K
+
 ions and simultaneously 

extruding three Na
+
 ions at the cost of one ATP (Bean, 2007a). When both Na

+
 channels 

and K
+
 channels are open during repolarization, only a small portion of the K

+
 efflux is 

used to repolarize the cell, because most is cancelled by the simultaneous Na
+
 influx. 

This overlap between Na
+
 influx and K

+
 efflux reduces the energetic efficiency (Fig. 2) 

(Carter and Bean, 2009). 

The kinetics as well as the densities of ion channels determine the shape and 

frequency of APs. To achieve fast-spiking, neurons usually express fast-activating K
+
 

channels. However, faster K
+
 channels will increase the overlap between Na

+
 and K

+
 

currents, further magnifying the energetic cost. If minimizing energy consumption is 

one constraint governing the types of ion channels expressed in neurons (Hasenstaub et 

al., 2010a), neurons with faster K
+
 channels should also express Na

+
 channels with a 

faster inactivation speed in order to reduce the overlap between Na
+
 and K

+
 currents 
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(Fig. 2). This strategy was adopted by the electrocytes of wave-type fish Sternopygus 

macrurus to improve energetic efficiency of AP generation. 

The activation speed of K
+
 currents and the inactivation speed of Na

+
 currents is 

highly correlated in electrocytes of Sternopygus macrurus. Electrocytes from fish with 

higher EOD frequencies express fast-activating K
+
 currents as well as Na

+
 currents with 

a faster inactivation speed (Ferrari et al., 1995; McAnelly and Zakon, 2000). The 

increased inactivation speed of Na
+
 currents is achieved by the upregulation of Nav 

channels’ β1 subunit, which has been shown to affect the channel’s gating properties 

(Liu et al., 2007b). And the faster activation of K
+
 currents is supported by the increased 

expression level of two types of K
+
 channels, Kv1.1a and Kv1.2a (Few and Zakon, 

2007). 

Eigenmannia virescens as a model to study energy-saving adaptations 

 Eigenmannia virescens is a gymnotiform weakly electric fish that lives in the 

freshwater rivers of South America. E. virescens electrocytes generate APs at constant, 

high frequencies of 200-600 Hz with the influx of Na
+
 ions during each AP exceeding 

10 μA (Markham et al., 2013). The number of ATP molecules required by the Na
+
/K

+
 

ATPases to export the Na
+
 ions than enter the cell during each AP was estimated to be 

two orders of magnitude more than that estimated for mammalian neurons (Attwell and 

Laughlin, 2001a; Howarth et al., 2012b; Lewis et al., 2014b). The combination of high 

firing rates and large ionic currents creates extreme energetic demands for each 

electrocyte individually, and for the EO as a whole. Unlike the electrocytes of other 

gymnotiform electric fish, in which APs are terminated by classical Kv channels, E. 

virescens electrocytes express a novel KNa channel to repolarize the AP. Computational 
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simulation to compare the ability of model electrocytes with KNa or Kv channels to 

maintain the high-frequency firing pattern found that only KNa channels can support the 

cell to fire at 500 Hz without truncating the amplitude of APs, more importantly, KNa 

channels can make the AP ~30% energetically more efficient by reducing the overlap 

between inward Na
+
 currents and outward K

+ 
currents (Markham et al., 2013). 

KNa channels, widely expressed in cardiac cells, neurons and muscles of other 

vertebrates (Kaczmarek, 2013), are encoded by two highly similar paralog genes, Slack 

(Slo2.2, kcnt1) and Slick (Slo2.1, kcnt2) belonging to the Slo gene family (Bhattacharjee 

et al., 2003; Joiner et al., 1998). KNa channels are tetramers consisting of four subunits. 

Each Slack and Slick subunit is approximately 1200 amino acids long, containing six 

membrane-spanning domains, with a pore-forming region between the fifth and sixth 

membrane-spanning domain, and an extensive cytoplasmic C-terminus, composed of 

two RCK domains regulating the conductance of K
+
 ions (Fig. 3) (Yuan et al., 2003).  

A short motif located within the second RCK domain coordinates the binding of 

Slack and Slick subunits with Na
+
 ions (Thomson et al., 2015; Zhang et al., 2010a). 

Based on patch-clamp recordings, the concentration of Na
+
 ions required to activate KNa 

channels was estimated to far exceed that normally occuring in bulk cytoplasm (EC50 of 

Na
+
 activation: ~7-80 mM) (Dryer, 1994b). Hage and Salkoff determined that persistent 

Na
+
 currents provided the source of Na

+
 ions that activate KNa channels in mammalian 

neurons. They suggested that KNa channels were closely clustered with channels 

carrying the persistent Na
+
 currents allowing the accumulation of Na

+
 ions just beneath 

the plasma membrane to activate KNa channels without changing the concentration of 

Na
+
 ions in bulk cytoplasm (Hage and Salkoff, 2012). 
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Mammalian Slack and Slick subunits are ~74% identical in protein sequences, 

but with slightly different characteristics. The activation of Slack channels requires 

binding with Na
+ 

ions, whereas Slick channels have shown a basal level of activity in 

the absence of Na
+
 ions. Slick channels are more sensitive to [Cl

-
]i than Slack channels 

and have been shown to be inhibited by an increased level of  intracellular ATP 

(Bhattacharjee et al., 2003; Joiner et al., 1998). In rats, RNA alternative splicing gives 

rise to two amino-termini isoforms of Slack: Slack-A and Slack-B. Slack-A and Slick 

have similar amino-terminus and express currents activating much faster than that of 

Slack-B, which has a much larger amino-terminus (Brown et al., 2008).  Slick can form 

heteromeric KNa channels with Slack-B and the amino-terminus of Slack-B has been 

shown to facilitate the trafficking of Slick subunits to the plasma membrane (Chen et 

al., 2009). 

The physiological roles of KNa channels in excitable cells are not fully 

understood. In quail trigeminal ganglion neurons, KNa channels activated very rapidly 

during a depolarization step (Bader et al., 1985), suggesting their participation in fast 

repolarization, which is important for fast-spiking cells. Additionally, since the 

activation of KNa channels depends on binding with Na
+
 ions, they may serve as a 

negative feedback mechanism in response to increases in intracellular Na
+
 [Na

+
]i (Yuan 

et al., 2013). Under hypoxia or ischemia, inhibition of Na
+
/K

+
 ATPases increases [Na

+
]i, 

which would activate KNa channels. Thus KNa channels may play an important role in 

ameliorating the detrimental effects caused by osmotic imbalance and enhancing the 

ability of neurons and cardiomyocytes to react to hypoxic stress. 
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The main goal of this research was to investigate the biophysical mechanisms 

allowing the generation of metabolically expensive electrical signals in E. virescens. 

This study focused specifically on the cellular and molecular features of E. virescens 

electrocytes that maintain the high-frequency APs and manage the large ionic currents. 

The firing pattern of APs and the resulting metabolic cost are mainly determined by cell 

morphology, intrinsic properties, and densities as well as subcellular localization of ion 

channels involved in AP generation. Chapter 2 is an investigation into the morphology 

of electrocytes as well as the subcellular localization of cholinergic receptors, ion 

channels and Na
+
/K

+
 ATPases in electrocytes using confocal laser-scanning 

fluorescence microscopy and immunohistochemistry (Ban et al., 2015). Chapter 3 

focuses primarily on the role of KNa channels in facilitating high-frequency firing of 

electrocytes by exploring their molecular identity, expression pattern, densities and 

kinetic properties. 
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Figure 1. EOs, EOD waveforms and electrocytes of the gymnotiform families. 

Left: “molecular-morphological consensus phylogeny of the gymnotiform families” and 

their EOD waveforms (Stoddard, 1999). Middle: outlines of Brachyhypopomus 

gauderio (a pulse-type fish in the family of Hypopomidae, EOD frequency: 2-115 Hz), 

Apteronotus albifrons (a wave-type fish in the family of Apteronotidae, EOD 

frequency: 600-1100 Hz), and Eigenmannia virescens (a wave-type fish in the family of 

Eigenmanniidae, EOD frequency: 200-600 Hz). The location of EO in each fish is 

shown in grey. Right: Sketch of electrocytes indicating the expression pattern of Nav 

channels and the direction of current flow. This figure is adapted from Figure 1 of 

Stoddard, 1999 and Figure 1 of Salazar et al., 2013.  
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Figure 2. The generation of APs and the active restoration of ionic gradients by 

Na
+
/K

+
 ATPases. Top: AP generation. At resting membrane potential, both Na

+
 

channels and K
+
 channels are closed. There is a higher concentration of Na

+
 ions in the 

extracellular space and higher concentration of K
+
 ions inside cells. In the first stage of 

AP, depolarization causes Na
+
 channels to open, allowing the influx of Na

+
 ions, which 

further depolarizes the cell and cause the opening of K
+
 channels. Simultaneously, Na

+
 

channels start to inactivate as the cell becomes more depolarized. During the next 

phase,  K
+
 efflux competes with Na

+
 influx and repolarizes the cell. Eventually, cells are 

hyperpolarized and APs are terminated by the closing of Na
+
 channels and K

+
 channels. 

The shape and frequency of APs are determined by the densities and kinetics of ion 

channels. Bottom: after each AP, Na
+
/K

+
 ATPase restores the ionic gradients by 

importing two K
+
 ions and simultaneously extruding three Na

+
 ions at the cost of one 

ATP molecule. The energy consumed by Na
+
/K

+
 ATPases is determined by the number 

of Na
+
 ions that enter the cell during each AP. When both Na

+
 channels and K

+
 

channels are open during repolarization, most K
+
 efflux is cancelled by the 

simultaneous Na
+
 influx, leaving a small portion used to repolarize the cell. The overlap 

between Na
+ 

and K
+
 currents reduces the energetic efficiency. This figure is adapted 

from figure 1 of Hasenstaub et al., 2010. 
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Figure 3. Schematic representation of mammalian KNa channel. KNa channels are 

tetramers consisting four subunits. Each Slack and Slick subunit is approximately 1200 

amino acids long, containing six membrane-spanning domains, with a pore-forming 

region between the fifth and sixth membrane-spanning domain, and an extensive 

cytoplasmic C-terminus, composed of two RCK domains regulating the conductance of 

K
+
 ions. This figure is adapted from figure 1 of Salkoff et al., 2006.  
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Table 1: The metabolic cost of EOD production in gymnotiform electric fish 

compared to the costs of other animal’s communication signals. This table is 

adapted from Markham et al., 2016. 

Organism Source 
Signal ATP 

g
-1

 s
-1

 
Duration 

(hours day
-1

) 
Signal 

ATP g
-1

 d
-1

 

Arachnids 

Wolf Spider 
Hygrolycosa  rubrofasciata 

Kotiaho et al. 
(1998) 

1.71 x 10
17

 2 1.23 x 10
21

 

Insects 

Trilling Katydid 
Euconocephalus nasutus 

Stevens and 
Josephson  (1997) 

5.89 x 10
17

 2 4.24 x 10
21

 

Trilling cricket 
Gryllotalpa australis 

Kavanagh (1987) 1.82 x 10
17

 2 1.31 x 10
21

 

Amphibians 

Squirrel treefrog 
Hyla squirella 

Prestwich et al. 
(1989) 

7.88 x 10
16

 2 5.67 x 10
20

 

Birds 

Carolina Wren 
Thryothorus ludovicianus 

Eberhardt (1994) 3.37 x 10
17

 2 2.43 x 10
21

 

Gymnotiform weakly electric fish 

Feathertail knife fish (female) 
Brachyhypopomus gauderio 

Salazar and 
Stoddard (2008) 

5.97 x 10
14

 24 5.16 x 10
19

 

Feathertail knife fish (male) 
Brachyhypopomus gauderio 

Salazar and 
Stoddard (2008) 

4.74 x 10
15

 24 4.10 x 10
20

 

Glass knife fish (200 Hz) 
Eigenmannia virescens  Lewis et al. (2014) 4.82 x 10

14
 24 3.69 x 10

19
 

Glass knife fish (300 Hz) 
Eigenmannia virescens Lewis et al. (2014) 1.30 x 10

15
 24 1.12 x 10

20
 

Glass knife fish (500 Hz) 
Eigenmannia virescens  

Lewis et al. (2014) 3.47 x 10
15

 24 3.01 x 10
20
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Table 2: The metabolic cost of EO compared to the cost of other excitable tissues. 

This table is adapted from Markham et al., 2016. 

Tissue Organism Condition ATP g-1 s-1 Source 

Electric organ E. virescens 400 Hz rate 3.47 x 1016 Lewis et al. (2014) 

Skeletal muscle Human resting 1.10 x 1016 Gibala et al. (1997) 

Skeletal muscle Human exercising 6.02 x 1017 Gibala et al. (1997) 

Brain Human alert 7.40 x 1016 Sokoloff (1969) 

Brain Human sleeping 4.48 x 1016 Sokoloff (1969) 

Heart Rat 60 beats min-1 1.26 x 1016 Haworth et al. (1983) 

Retina Rabbit darkness 9.89 x 1016 Ames et al. (1992) 

Retina Rabbit light 6.92 x 1016 Ames et al. (1992) 
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Chapter 2: A highly polarized excitable cell separates sodium channels 

from sodium-activated potassium channels by more than a millimeter 

[This chapter has been published as Ban, Y., Smith, B. E., & Markham, M. R. (2015). A 

highly polarized excitable cell separates sodium channels from sodium-activated 

potassium channels by more than a millimeter. Journal of Neurophysiology, 114(1), 

520-530.] 

SUMMARY 

The bioelectrical properties and resulting metabolic demands of electrogenic 

cells are determined by their morphology and the subcellular localization of ion 

channels. The electric organ cells (electrocytes) of the electric fish Eigenmannia 

virescens generate action potentials (APs) with Na
+
 currents >10 microamperes and 

repolarize the AP with Na
+
-activated K

+
 (KNa) channels. To better understand the role 

of morphology and ion channel localization in determining the metabolic cost of 

electrocyte APs, we used two-photon 3D imaging to determine the fine cellular 

morphology and immunohistochemistry to localize the electrocytes' ion channels, 

ionotropic receptors, and Na
+
/K

+
 ATPases.  We found that electrocytes are highly 

polarized cells ≈1.5 mm in anterior-posterior length and ≈0.6 mm in diameter, 

containing approximately 30,000 nuclei along the cell periphery. The cell's innervated 

posterior region is deeply invaginated and vascularized with complex ultrastructural 

features while the anterior region is relatively smooth.  Cholinergic receptors and Na
+
 

channels are restricted to the innervated posterior region, while inward rectifier K
+
 

channels and the KNa channels that terminate the electrocyte AP are localized to the 
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anterior region, separated by >1  millimeter from the only sources of Na
+
 influx. In 

other systems submicron spatial coupling of Na
+
 and KNa channels is necessary for KNa 

channel activation. However, our computational simulations showed that KNa channels 

at a great distance from Na
+
 influx can still terminate the AP suggesting that KNa 

channels can be activated by distant sources of Na
+
 influx and overturning a long-

standing assumption that AP-generating ion channels are restricted to the electrocyte's 

posterior face. 

INTRODUCTION 

Action potentials (APs) are transient changes in membrane voltage that are 

typically initiated by inward Na
+
 current (INa) and terminated by outward K

+
 current 

(IK). These currents are driven by ionic concentration gradients across the cell 

membrane (Bean, 2007b) and transmembrane Na
+
/K

+
 ATPases consume energy to 

restore the ionic gradients after each AP. Total Na
+
 influx during the AP determines 

ATPase activity and therefore the resulting metabolic cost of the AP (Attwell and 

Laughlin, 2001a; Howarth et al., 2012a; Niven and Laughlin, 2008). Any temporal 

overlap of inward INa and outward IK reduces energy efficiency, but this overlap is often 

necessary in fast-spiking cells where the need to maintain brief APs requires that IK 

begins while INa is still active to terminate the AP quickly. This incomplete inactivation 

of Na
+
 channels during AP repolarization can result in the entry of twice as much Na

+
 

as the theoretical minimum, significantly reducing energy efficiency at high AP 

frequencies (Carter and Bean, 2009). 

The weakly electric fish Eigenmannia virescens generates electric organ 

discharges (EODs) to navigate and communicate in darkness (Hopkins, 1974). Because 
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they generate APs at steady frequencies of 200-600Hz (Scheich, 1977) with underlying 

Na
+
 currents that can exceed 10 microamperes (Markham et al., 2013), the electric 

organ cells (electroctyes) create extremely high metabolic demands (Lewis et al., 

2014b). High rates of ATP hydrolysis by the Na
+
/K

+
 ATPases are therefore necessary to 

remove Na
+
 from the cell between APs.  The simultaneous APs of  >1000 electrocytes 

during each EOD further magnify  the metabolic cost of signal production and as a 

result EOD amplitude is highly sensitive to metabolic stress (Reardon et al., 2011). 

E. virescens electrocytes are large cells >1mm in length, each innervated by 

spinal motoneurons at a cholinergic synapse on the morphologically complex posterior 

membrane (Fig. 1B) (Schwartz et al., 1975b). Only the posterior membrane generates 

an AP with the anterior membrane presumed to be electrically passive (Bennett, 1961, 

1971). These findings together led to a long-standing assumption that the ion channels 

responsible for producing the AP are restricted to the posterior region of the cell. 

Electrocytes express an inwardly rectifying K
+
 current, a voltage-gated Na

+
 current and 

a Na
+
-activated K

+
 (KNa) current that terminates the AP.  The expression of KNa 

channels instead of voltage-gated K
+
 (Kv) channels increases AP energy efficiency by 

reducing the overlap of INa and IK during the electrocyte AP (Markham et al., 2013).  

Early biochemical studies identified Na
+
/K

+
 ATPases expressed on both the anterior and 

posterior membranes (Denizot, 1982), but the spatial distribution of the cholinergic 

receptors and ion channels is not yet known. A full account of the electrocyte's fine 

morphology and distribution of ionotropic receptors and ion channels is a crucial first 

step toward understanding the interplay of the ionic currents that determine the 
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spatiotemporal dynamics of intracellular Na
+
 concentrations which regulate KNa channel 

activation, ATPase activity, and ultimately the metabolic burden of EOD production.  

We therefore used confocal laser-scanning fluorescence microscopy and 

immunohistochemistry to identify the electrocyte's fine 3D structure and the subcellular 

localization of their cholinergic receptors, ion channels, and ion transporters. We found 

that cholinergic receptors and Na
+
 channels were restricted to the innervated posterior 

region, while inward rectifier K
+
 channels and KNa channels were localized over 1 mm 

away in the anterior region. Confirming earlier results (Denizot, 1982), Na
+
/K

+
 

ATPases were densely expressed on both the posterior and anterior membranes.  These 

findings are unexpected because KNa channels that terminate the electrocyte AP and the 

anterior-membrane Na
+
/K

+
 ATPases are separated by more than a millimeter from the 

only sources of Na
+
 influx that would activate them. Our computational simulations of 

electrocyte APs and Na
+
 dynamics confirm that KNa channels, even at a distance of 

more than 1mm from Na
+
 influx, can terminate the electrocyte AP and maintain high-

frequency firing. This discovery is particularly surprising in light of data from other 

systems where micron-scale spatial coupling of KNa and Na
+
 channels is necessary for 

KNa channel activation (Budelli et al., 2009b; Hage and Salkoff, 2012a).  

MATERIALS AND METHODS 

Animals 

Fish were wild-caught male and female Eigenmannia virescens (Glass Knife-fish).  

Animals were from tropical South America, obtained from tropical fish importers and 

ranging in size from 12 to 19 cm.  Fish were housed in groups of 4-10 in 40-liter or 10-

liter tanks in a recirculating aquarium system at 28 ± 1 °C with water conductivity of 
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200-500 μS/cm.  The EOD of E. virescens is a sinusoidal wave with a frequency of 250-

600 Hz (Fig. 1F).  Each positive-going pulse of the wave is a single EOD (Fig. 1D, E), 

and these occur at regular intervals under the control of a medullary pacemaker nucleus 

(Fig.1A, B).   

We harvested electric organ (EO) tissue from E. virescens by cutting off a small 

(1-2 cm) piece of the narrow tail filament, consisting of only soft tissue and composed 

almost entirely of the EO (Fig.1C). This brief procedure lasts less than 15 seconds and 

is performed without anesthesia because induction and recovery from immersion 

anesthesia are more harmful to the fish than the tail-clip itself.  The tail and EO 

regenerate within two months.  

To obtain mouse brains for validating antibodies used in the present study, five 

C57BL/6J  mice (The Jackson Laboratory, stock #664) were deeply anesthetized by 

isoflurane inhalation (5% (v/v) isoflurane in oxygen), then decapitated and brains were 

quickly removed and frozen in liquid nitrogen.   

All methods were approved by the Institutional Animal Care and Use 

Committee of The University of Oklahoma, and complied with the guidelines given in 

the Public Health Service Guide for the Care and Use of Laboratory Animals. 

Microinjection 

We harvested a ≈2 cm section of the tail, removed the overlying skin, and 

pinned the exposed EO tissue in a Sylgard® (Dow Corning Corporation) coated petri 

dish containing normal saline (114 mM NaCl, 2 mM KCl, 4 mM CaCl2·2H2O, 2 mM 

MgCl2·6H2O, 2 mM HEPES, and 6 mM glucose; pH to 7.2 with NaOH). Temperature 

of the preparation was stable at room temperature (22±1°C). Rhodamine B or Alexa 
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Fluor® 594 dextran (10,000MW) (Life Technologies) were prepared as a 1% w/v 

solution in water. Precipitate within the dextran solution was removed by centrifugation 

at 12,000 × g for 5 min. Microinjections were performed using an automatic nanoliter 

injector ("Nanoject II”, Drummond Scientific Company). Micropipettes for injection 

were drawn from borosilicate glass capillaries (Drummond Scientific Company) with a 

laser micropipette puller (Model P-2000, Sutter Instruments). We injected 13.8 nL 

dextran solution into the cytoplasm of 4-5 electrocytes in each sample of EO with the 

constant injection speed of 23 nL/sec.  The EO tissue with Rhodamine B or Alexa 

Fluor® 594 dextran-injected electroctyes was then held in normal saline at room 

temperature (22±1°C) for 15 minutes until the dextran fully diffused into injected 

electrocytes.  We then proceeded immediately to image the live cells directly, or fix and 

section the tissue before mounting and imaging. 

Vibratome sectioning 

We fixed the Alexa Fluor® 594 dextran-injected EO tissue in 2% 

paraformaldehyde buffered with 1× phosphate-buffered saline (PBS) overnight at 4°C, 

and washed six times for 15 min each in 1× PBS. The EO tissue was then embedded in 

3% agar, trimmed and glued to a vibratome chuck with cyanoacrylate. The chuck was 

mounted on a vibratome (Leica Series 1000) and 100-μm sections were cut and 

mounted on microscope slides with VectaShield® with DAPI (Vector Laboratories). 

Confocal imaging 

Live electrocytes were imaged in situ on a Leica® TCS SP8 laser scanning 

confocal microscope, with a Coherent Chameleon mode-locked Ti:sapphire laser and a 

25x/0.95NA dipping objective.  The images were acquired as serial sections through the 
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entire electrocyte using intensity compensation via increasing detector gain.  The entire 

electrocyte was imaged using a 2×4 tiled scan with a 30% overlap between adjacent 

images.  The images were then rendered using a 3D shaded projection in Avizo® Fire 

8.0.1 (FEI Visualization Sciences Group). 

Fixed electrocyte sections were imaged on a Leica® TCS SP8 laser scanning 

confocal microscope, using a 63x/1.3NA glycerol objective with a correction collar and 

an argon laser, 488nm laser line to observe tissue autofluorescence, and a DPSS 561nm 

laser line to excite the Alexa® 594.  The images were acquired via serial sections with a 

voxel size of 160nm × 160nm × 160nm and intensity compensation via increasing laser 

output.  The images were then rendered using Imaris® x64 7.6.5(Bitplane).  Electrocyte 

nuclei were counted by determining the number of DAPI-stained nuclei colocalized 

with Alexa 594 within an image series from the anterior end, posterior end, or cell body, 

and then extrapolating to the total observed volume of each electrocyte region. 

Western Blot 

EOs and mouse brains were isolated from animals and flash frozen in liquid 

nitrogen. Tissues were ground into fine powder using a pre-chilled pestle in a mortar 

filled with liquid nitrogen. 15 mg mouse brain and 100 mg E. virescens EO tissue 

powder were dissolved in 1 mL 1× NuPAGE
®
 LDS sample buffer (Life Technologies) 

containing 2.5 % (v/v) 2-mercaptoethonal (Amresco), then heated at 70°C for 10 min. 

After heating, protein samples were centrifuged at 17,000 × g for 10 min to remove 

DNA. The collected supernatants were run on a NuPAGE
® 

Novex
® 

4-12% Bis-Tris 

protein gradient gel (Life Technologies) then transferred onto a PVDF membrane using 

an iBlot
® 

dry blotting system (Life Technologies). Membranes were blocked in 1× Tris-
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buffered saline (TBS) containing 0.1% Tween20 (Sigma-Aldrich) (TBST) and 5% 

nonfat dry milk for 1 h at room temperature under agitation. After blocking, membranes 

were sequentially incubated with primary antibodies diluted in TBST containing 5% 

nonfat dry milk and 0.02% Sodium Azide (Sigma-Aldrich) including rabbit polyclonal 

anti-kcnt1(Aviva Systems Biology) 1:200, rabbit polyclonal anti-Pan Nav (Alomone 

Labs) 1:200, and  mouse monoclonal antibody against the α subunit of Na
+
/K

+ 
ATPase 

(a5, developed by D.M. Fambrough (Lebovitz et al., 1989), and obtained from the 

Developmental Studies Hybridoma Bank (DSHB) at University of Iowa) 1:1000 at 

room temperature for 2 h under agitation. After primary antibody incubation, 

membranes were washed three times for 5 min with TBST. Then membranes were 

incubated with secondary antibodies conjugated with horseradish peroxidase (HRP) 

(Santa Cruz Biotechnology) diluted in TBST containing 5% nonfat dry milk (1:5000 

and 1:2000 for goat anti-rabbit IgG-HRP and goat anti-mouse IgG-HRP respectively) 

for1 h at room temperature. After washing, proteins on the membrane were detected 

using the Amersham
TM

 ECL
TM 

prime western blotting detection reagent (GE 

Healthcare) and imaged with a Chemi Doc
TM

 XRS+ imaging system (Bio-Rad). 

Exposure time was selected manually depending on the observed signal intensity. The 

membranes stained with polyclonal anti-Pan Nav and mouse monoclonal antibody 

against the α subunit of Na
+
/K

+ 
ATPase were cut to separate the EO and mouse brain 

strips then exposed separately due to the large difference in signal intensity between E. 

virescens EO and mouse brain.  Molecular weights of the detected protein were 

determined by loading Precision Plus Protein
TM 

Kaleidoscope
TM

 standards (Bio-Rad) 
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together with protein samples into the same gel. Final processing of the images was 

performed with ImageJ-win64 version 1.44B (National Institutes of Health). 

Immunohistochemistry 

Sections of EO were embedded completely in OCT compound, flash frozen in 

liquid nitrogen-chilled isopentane (Sigma-Aldrich) and stored at -80°C until further 

processing.  Serial longitudinal sections (15-20 µm thick) were cut at -25°C using a 

cabinet cryostat (Leica CM 1900), mounted on gelatin-subbed slides and air-dried 

overnight at room temperature. Tissue sections were then fixed in 4% paraformaldehyde 

(Electron Microscopy Sciences) buffered with 1×PBS for 20 min, subsequently washed 

three times for 5 min each in 1× PBS containing 0.05% Tween-20 (Sigma-Aldrich) 

(PBST) and blocked in PBST containing 2% bovine serum albumin (BSA) and 5% goat 

normal serum (Jackson ImmunoResearch) for 1 h at room temperature and then 

incubated overnight at 4°C with primary antibodies diluted in PBST. After primary 

antibody incubation, tissue sections were washed as above, and incubated with Alexa 

Fluor® 488 or 594-conjugated secondary antibodies (Jackson ImmunoReseach) 1:200 

diluted in PBST for 1 h at room temperature in a humidified chamber. Sections were 

then washed and air dried. Slides were mounted using VectaShield® with DAPI (Vector 

Laboratories) and kept in the dark at 4°C. 

A rabbit polyclonal antibody (1:100) against an intracellular epitope of Nav1.x 

channels (Anti-Pan Nav, obtained from Alomone Labs) was used to label voltage-gated 

Na
+
 channels. A mouse monoclonal antibody (1:100) against the α subunit of Na

+
/K

+ 

ATPase (a5, developed by D.M. Fambrough(Lebovitz et al., 1989), and obtained from 

the Developmental Studies Hybridoma Bank (DSHB) at University of Iowa) was used 
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to label Na
+
/K

+ 
ATPase. A rat antibody (1:10) against the muscle-type acetylcholine 

nicotinic receptor (mAb 35, developed by J. Lindstrom (Tzartos et al., 1981), and 

obtained from DSHB at University of Iowa) was used to label acetylcholine receptors. 

A mouse monoclonal antibody (1:100) against neurofilament-associated antigen (3A10, 

developed by T. Jessel and J. Dodd, and obtained from DSHB at University of Iowa) 

was used to label axon terminals. A rabbit polyclonal antibody (1:200) against KNa 

channel (anti-Kcnt1, obtained from Aviva Systems Biology) was used to label KNa 

channels. A mouse monoclonal antibody (1:100) against inward-rectifier K
+
 channel 6.2 

(B-9, obtained from Santa Cruz Biotechnology), was used to label ATP-sensitive 

inward rectifier K
+ 

channels. 

Immunohistochemistry slides were imaged on a Zeiss ApoTome.2 microscope 

with 5X/0.16NA and 10X/0.45NA dry objectives. Images were acquired with a Zeiss 

AxioCam MRm camera, then processed by Zeiss AxioVision Rel.4.8. We used 

structured illumination to create optical sections of our fluorescent samples. Final 

processing of the images was performed with ImageJ-win64 version 1.44B (National 

Institutes of Health). 

Computational Simulations 

We modeled the E. virescens electrocyte as a three-compartment cell consisting 

of an active posterior compartment, a passive central compartment, and an active 

anterior compartment.  We used the Hodgkin-Huxley formalism to simulate ionic 

currents and changes in membrane voltage.  We also applied a simplified model of Na
+
 

entry, diffusion, and pumping to simulate changes in Na
+
 concentrations in the three 

compartments.  Simulated cholinergic synaptic current was applied only to the posterior 
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compartment.  The capacitance for the posterior compartment was 48.0 nF and the 

anterior-compartment capacitance was 18.0 nF. We based these values on the surface 

areas of the posterior 0.35 mm and anterior 0.2 mm of the electrocyte, respectively, with 

surface areas determined from confocal 3D reconstructions of electrocytes.  The central-

compartment capacitance was 18 nF, estimated as the surface area of a cylinder 0.95 

mm long and 0.6 mm in diameter, dimensions determined by our imaging data.   

Differential equations were coded in Matlab (Mathworks, Inc. Natick MA) and 

integrated using Euler’s method with integration time steps of 5 × 10
-8 

sec.  All model 

parameters are shown in Table 1. 

The passive central compartment’s current balance equation included only 

passive leak (IL) fixed at 5 μS, and coupling to the two active compartments: 

𝐶𝑚
𝑑𝑉𝑐

𝑑𝑡
= −𝐼𝐿 +  𝑔𝑤(𝑉𝑎 −  𝑉𝑐) + 𝑔𝑤(𝑉𝑝 −  𝑉𝑐) (1) 

where gw is the coupling conductance, fixed at 322 μS.  

The current balance equations for the posterior and anterior active compartments 

were, respectively: 

𝐶𝑚
dVp

dt
= 𝐼𝑆𝑦𝑛(𝑡) − INa − IL + 𝑔𝑤(𝑉𝑐 −  𝑉𝑝)  (2) 

𝐶𝑚
dVa

dt
= −IKNa − IR − IL + 𝑔𝑤(𝑉𝑐 −  𝑉𝑎)  (3) 

where ISyn represents synaptic current, INa is Na
+
 current, IKNa is the Na

+
-activated K

+
 

current, and IR is the inward rectifier K
+
 current.  For all three compartments, IL is the 

leak current, which was given by Equation 4. 

𝐼𝐿 = �̅�L(V + 95)     (4) 

 The posterior-compartment synaptic current, ISyn, was given by Equation 5 
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𝐼𝑆𝑦𝑛 = �̅�𝑆𝑦𝑛 𝑔𝑆𝑦𝑛(𝑡)(𝑉𝑝 − 15)    (5) 

where the time series gSyn(t) was a series of 10 alpha waveforms generated using the 

discrete time equation: 

𝑔𝑆𝑦𝑛(𝑛+2) = 2 (1 −
𝑇

𝜏
) 𝑔𝑆𝑦𝑛(𝑛+1) − (1 −

𝑇

𝜏
)

2

𝑔𝑆𝑦𝑛(𝑛) +  (
𝑇

𝜏
)

2

𝑥(𝑛)  (6) 

(Graham and Redman, 1993) where T is the integration time step and τ is the time 

constant.  The binary series x(n) specified the onset times of the synaptic inputs, and the 

resulting time-series gSyn(n) was normalized such that 0 ≤ gSyn(n) ≤ 1. 

The equation for INa was divided into a transient component (INaT) and a 

persistent component (INaP) as in Equations 7 and 8,  

𝐼𝑁𝑎𝑇 = �̅�𝑁𝑎𝑚3(1 − 𝛾)ℎ(𝑉𝑝 − 𝐸𝑁𝑎)   (7) 

𝐼𝑁𝑎𝑃 = �̅�𝑁𝑎𝑚3𝛾(𝑉𝑝 − 𝐸𝑁𝑎)    (8) 

where 0 < γ < 1.  ENa, the Na
+
 equilibrium potential, was allowed to vary with changing 

Na
+
 concentrations in the posterior compartment (NaP) according to the equation ENa = 

25.7ln(114/[NaP]), assuming 114 mM extracellular Na
+
 and temperature of 25 °C. 

 The anterior-compartment K
+
 currents were given by equations 9 and 10. 

𝐼𝐾𝑁𝑎 = �̅�𝐾𝑁𝑎𝑛4𝑠4(𝑉𝑎 + 95)    (9) 

𝐼𝑅 =  �̅�𝑅 (
1

1+exp (𝜂𝑅(𝑉𝑚+110))
) (𝑉𝑎 + 95)  (10) 

The gating variables m, n, and h in Equations 7 - 9 are given by Equations 11-13 

where j = m, n, or h. 

𝑑𝑗

𝑑𝑡
=  𝛼𝑗(1 − 𝑗) −  𝛽𝑗(𝑗)       (11) 

𝛼j = 𝑘𝛼jexp (
𝛼j

V)     (12) 

𝛽j = 𝑘𝛽jexp (
𝛽j

V)     (13) 
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We modeled the Na
+
-dependence of IKNa with the gating variable, s, which is 

determined by the Na
+
 concentration in the bulk cytoplasm in the anterior compartment 

(NaA), according to Equation 14. 

𝑑s

𝑑𝑡
= 𝑘f[𝑁𝑎𝐴](1 − s) − 𝑘bs    (14)  

We modeled Na
+
 concentrations in each compartment based on the 

compartmental volumes which were 4.2 × 10
7
 μm

3
, 2.7 × 10

8
 μm

3
, and 1.7 × 10

7
 μm

3
 

for the posterior, central, and anterior compartments, respectively.   The posterior and 

anterior compartment volumes were measured from our 3D reconstructions of 

electrocytes, while the central compartment volume was estimated as the volume of a 

cylinder 0.95 mm long and 0.6 mm in diameter.  The initial Na
+
 concentration in all 

three compartments was 15 mM.  The equation for Na
+
 concentration in the posterior 

compartment was: 

𝑑[𝑁𝑎𝑃]

𝑑𝑡
= 𝑝 +  

𝑞

𝑉𝑜𝑙𝑃
− 𝛿([𝑁𝑎𝑃] − [𝑁𝑎𝐶])

𝜆𝑃

𝜆𝐶
 −  𝑏𝑃[𝑁𝑎𝑃]   (15) 

where p represents sodium leak and q is moles of Na
+
 ions entering through the 

cholinergic receptors and Na
+
 channels, given by Equation 16: 

𝑞 =
𝑑𝑡(2 ISyn+I𝑁𝑎)10−12

𝑒𝐿
     (16) 

wherein the integrated Na
+
 current, dt(2ISyn+ INa) in nA*ms, is multiplied by 10

-12
 to 

yield Coulombs, divided by the elementary charge on a monovalent cation, e,  to yield 

number of Na
+

 ions, and divided by Avogadro’s constant, L, to yield moles of Na
+
.   ISyn 

was multiplied by 2 in Equation 16 to account for Na
+
 entry associated with ISyn where 

gSyn arises from cholinergic receptors, assuming the Na
+
 permeability is twice that of 

the K
+
 permeability.  Diffusion of Na

+
 between compartments is governed by δ (the 

diffusion rate constant), the difference in Na
+
 concentration between the compartments, 
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and the ratio of their volumes (λ).  Na
+
 removal is modeled by the fractional pumping 

rate bP, representing the rate at which Na
+
 is pumped out of the posterior compartment 

to the extracellular space.     

The central compartment's Na
+
 concentration was affected only by diffusion to 

and from the posterior and anterior compartments as in Equation 17. 

𝑑[𝑁𝑎𝐶]

𝑑𝑡
= 𝛿([𝑁𝑎𝑃] − [𝑁𝑎𝐶])

𝜆𝑃

𝜆𝐶
− 𝛿([𝑁𝑎𝐶] − [𝑁𝑎𝐴])

𝜆𝐶

𝜆𝐴
   (17) 

The posterior compartment Na
+
 concentration was given by Equation 18 

𝑑[𝑁𝑎𝑃]

𝑑𝑡
= 𝛿([𝑁𝑎𝐶] − [𝑁𝑎𝐴])

𝜆𝐶

𝜆𝐴
 − 𝑏𝐴[𝑁𝑎𝐴]     (18) 

which includes diffusion to and from the central compartment as well as bA which gives 

the fractional rate at which Na
+
 is pumped from the anterior compartment to the 

extracellular space.  

RESULTS 

Gross electrocyte morphology 

In E. virescens, the EO runs longitudinally along the body and extends into the 

caudal tail filament (Fig.1A).  Several rows of electrocytes are densely packed in the 

EO (Fig. 1C). We injected Rhodamine B dextran (10,000 MW) into single electrocytes 

within an isolated section of EO, allowed 15 minutes for the dextran to fully diffuse, 

then imaged the cell on a Leica® TCS SP8 laser scanning confocal microscope.  3D 

reconstructions of these cells showed that electrocytes are large cylinder-like cells 

approximately 1.5 millimeter in length and 600 µm in diameter (Fig. 2A).  The 

electrocyte's surface structure was not uniform, and based on differences in surface 

structure we divided the cell into three regions: the posterior face, the main body, and 

the anterior face (Fig. 2A). The space between adjacent electrocytes along the rostral-
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caudal axis is ≈30 µm, and the posterior face of each electrocyte is surrounded by the 

anterior face of the adjacent cell (Fig. 2B).  

The surface of the posterior face was densely occupied by narrow invaginations 

that extended longitudinally into the cell approximately 300 μm, resulting in a 

pronounced increase in membrane surface area (Fig. 2C). The anterior face usually 

contained three large lobes with smaller papillary extensions. Additionally, a network of 

capillaries was observed embedded immediately underneath the ruffled anterior 

membrane (Fig. 2D, Fig. 3B2). In contrast to the posterior and anterior faces, the 

surface of the main body is relatively smooth, with an array of spherical structures just 

beneath the membrane (Fig. 2E).  

Electrocytes are multi-nucleated cells formed by the fusion of skeletal myocytes 

during development (Bennett, 1970; Unguez and Zakon, 1998a, 2002; Zakon and 

Unguez, 1999) resulting in a syncytium with nuclei localized to the surface of the 

electrocyte (Machado, et al., 1976).  Our images of DAPI stained nuclei colocalized 

with Alexa Fluor® 594 within our 3D reconstruction confirmed that the nuclei of E. 

virescens electroctyes are densely distributed in a thin layer near the membrane (Fig. 

2F; see Fig. 3A for colocalization).  The combination of whole cell 3D imaging and 

high-resolution imaging of smaller electrocyte sections in the present study allowed us 

to estimate the number of nuclei within a single electrocyte by two distinct methods, 

both of which indicated that each electrocyte has approximately 30,000 nuclei.   

The first method we used was to create an isosurface around the whole-cell 

image of the electrocyte (Fig. 2A).  This allowed us to measure the surface area of the 

entire electrocyte, which was 4.5 × 10
6
 μm

2
.  We then counted the number of nuclei per 
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unit surface area in a single high-resolution image of the cell body, and found that there 

were 220 nuclei per 2.8 × 10
4
 μm

2
 of cell surface area.  This method thereby yielded 

4.5 ×  106 μm2  (
220 nuclei

2.8 × 104 μm2 
)  = 35,000 nuclei in the electrocyte. To validate the 

above estimation, we used an alternate approach to estimating the number of nuclei 

within an electrocyte by modelling the electrocyte with simple geometries, with the 

anterior end and cell body approximated as a hollow cylinder with a paraboloid scooped 

out at the anterior end, and the posterior end as a solid paraboloid.  The anterior end had 

a cupped shape, with nuclei along the surface, so the surface area was approximated as 

a paraboloid with a measured radius of 365µm and a depth of 144 μm, giving a surface 

area of 4.8 × 10
5
 μm

2
.  We then counted the number of nuclei in a single high resolution 

image of the anterior region with 1.5 × 10
4
 μm

2
 of surface area and found 170 nuclei, 

giving a total of 4.8 ×  105 μm2  (
170 nuclei

1.5 × 104 μm2 
) = 5.4 × 103 

 nuclei in the anterior 

end.  The central compartment end was approximated as a hollow cylinder with a 

measured length of 1.0 × 10
3
 μm and a measured diameter of 600 μm.  Therefore, the 

total number of nuclei on the cell body would be 

(600μm)(π)(1000μm) (
220  nuclei

2.8 × 104 μm2 
) = 1.5 ×  104  nuclei in the central 

compartment.  For the posterior end, since the invaginations penetrate back to the cell 

body resulting in nuclei being located throughout the posterior end, we modelled the 

posterior end as a solid paraboloid.  The paraboloid had a measured length of 590 μm 

and a radius of 215 μm giving a total volume of 8.6 × 10
7
 μm

3
.  We then measured the 

number of nuclei in a 7.0 × 10
6
 μm

3
 image.  To ensure that we only measured 

electrocyte nuclei, we only counted nuclei that were colocalized with Alexa Fluor® 
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594.  In the sample volume, we counted 1000 nuclei.  Extrapolated over the whole 

posterior end, there would therefore be  8.6 ×  107 μm3  (
1000 nuclei

1.2 × 104 μm3 
) = 1.2 × 104 

nuclei in the posterior region. Taken together, these quantities sum to 32,000 nuclei per 

electrocyte, which is in close concordance with our estimate based on the first method.   

Fine structure of the electrocyte 

We investigated the fine structure of the posterior and anterior faces by imaging 

100-µm thick serial sections of a paraformaldehyde-fixed EO sample that contained a 

single target electrocyte filled with Alexa Fluor® 594 dextran. Electrocytes, 

vasculature, and pigment cells within the EO also emit a broad autofluorescence 

spectrum when excited by a 488 nm laser line.  We took advantage of this 

autofluorescence to image tissue adjoining the Alexa Fluor® 594 dextran injected cell. 

Our images of the posterior face showed that the surface of each invagination 

contained many small spine-like structures approximately 50 μm in length. The spines 

terminate in an enlarged sphere approximately 20 μm in diameter (Fig. 3A).  Blood 

vessels occupy the space between electroctyes with the majority penetrating into the 

invaginations of the posterior face, while a smaller number contact the anterior face 

(Fig. 3 A2 and B2, respectively).  Capillaries occupy much of the space within each 

posterior-face invagination, and the spines within the invaginations are largely 

enveloped by these capillaries. The fine structure of the anterior face (Fig. 3B) is 

generally less complex than the posterior face, with the unique feature that capillaries 

appear to reside within enclosed, tube-like structures proximal to the anterior face 

membrane (Fig. 3B2).  An additional and striking difference between the anterior and 
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posterior faces is that the posterior-face membrane is densely occupied by vesicles, 

which are exceedingly less abundant on the anterior face (Fig. 3C, D). 

Subcellular localization of cholinergic receptors, ion channels, and ion 

transporters 

In gymnotiformes, electrocyte APs are controlled by a medullary pacemaker 

nucleus via spinal electromotor neurons that innervate each electrocyte (Fig. 1A).  

Labeling of spinal nerves with the antibody 3A10 against neurofilament-associated 

antigen (Unguez and Zakon, 1998) showed that only the posterior face is innervated and 

the innervation occurs throughout the posterior face (Fig. 4A).  We also found that 

acetylcholine receptors were clustered only on the posterior face (Fig. 4B).  Given that 

the cholinergic synapses are restricted to the posterior membrane, we hypothesized that 

the other ion channels would be localized also on the posterior membrane.    

We labeled voltage-gated Na
+
 channels (Nav) with a pan-Nav antibody raised 

against an epitope identical in all isoforms of Nav1 and found that Nav channels were 

expressed only on the electrocyte's posterior face (Fig.4C). To ensure these signals are 

not from the innervating axons, we costained Nav channels with 3A10 and found no 

colocalization between them (Fig.4 D). The expression pattern of acetylcholine 

receptors and Nav channels indicates that the posterior face is the only entrance site for 

Na
+
 influx and the site of AP initiation.   

Based on electrophysiological and molecular evidence that electrocytes express 

inward-rectifier and KNa channels (Markham et al., 2013), we immunolabeled both 

channels and to our surprise, found that both are localized only to the anterior face (Fig. 

4E, F). Immunolabeling of Na
+
/K

+
 ATPase alpha subunits showed that these are found 
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on both the anterior and posterior faces, another unusual arrangement given that the 

sources of Na
+
 influx are restricted to the posterior membrane (Fig. 4G).  

Given the counterintuitive spatial separation of the Na
+
 channels, KNa channels, 

and Na
+
/K

+
ATPases, we performed western blot analyses to ensure that these antibodies 

indeed specifically labeled the proteins of interest. Western blot of E. virescens EO and 

mouse brain whole-cell lysate labeled with polyclonal anti-Nav detected specific bands 

of approximately 250 kDa (the predicted molecular weight of Nav channels) in both 

tissues (Fig. 4H).  Similarly, polyclonal anti-kcnt1 (KNa) and monoclonal anti Na
+
/K

+ 

ATPase-α subunit labeled bands of approximately 130 kDa and 100 kDa, respectively, 

in both EO and mouse brain  (Fig. 4H). These molecular weights correspond with the 

predicted molecular weights of KNa channels and Na
+
K

+
ATPase -α subunits. 

Numerical simulations of electrocyte function 

Given the unusually large separation of KNa channels from potential Na
+
 sources 

revealed by our imaging data, we used computational simulations of electrocyte action 

potentials and Na
+
 dynamics to test whether the high-frequency firing typical of E. 

virescens electrocytes could be reproduced in a model cell where the spatial 

arrangement of ion channels matched our imaging data. Our model cell had three 

compartments, an active posterior compartment, a passive central compartment, and an 

active anterior compartment.  The passive properties of these compartments were 

guided by morphological measurements of their volumes and membrane areas. We 

estimated the coupling conductances between compartments based on our 

measurements of the electrocyte’s length and diameter.  
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The posterior compartment had linear leak current, synaptic current via 

cholinergic receptors, and voltage-gated Na
+
 current (IL, ISyn, and INa, respectively).  The 

central compartment had only IL, and the anterior compartment had IL, inwardly 

rectifying K
+
 current (IR) and KNa current (IKNa). Unlike previous simulations of IKNa 

where the Na
+
 sensitivity of the current arises from direct access to a localized 

persistent Na
+
 current (Brown et al., 2008; Markham et al., 2013), we modeled IKNa here 

such that its Na
+
 sensitivity was determined by the Na

+
 concentration in the bulk 

cytoplasm of the anterior compartment. Our model also simulated changes in 

intracellular Na
+
 in each compartment based on Na

+
 influx resulting from a static Na

+
 

leak, ISyn and INa in the posterior compartment, a fractional Na
+
 pumping rate in both the 

posterior and anterior compartments, and Na
+
 diffusion between all three compartments.  

In the full model with all currents present according to the parameters in Table 

1, the model cell maintained repetitive firing in response to 500 Hz synaptic stimulation 

(Fig. 5A).  During these action potentials, INa reached peak currents of approximately 15 

μA, consistent with earlier experimental results (Lewis et al., 2014a), and IKNa exhibited 

current magnitudes exceeding 5 μA (Fig. 5B) suggesting an important role in shaping 

the cell's firing pattern.  Na
+
 concentrations in the three compartments did vary in 

response to Na
+
 influx, pumping, and diffusion, but only over a range of 1-2 mM (Fig. 

5C).  As a result, the fractional activation of IKNa due to Na
+
 concentrations in the 

anterior compartment remained fairly steady around 0.7 throughout the action potential 

train.  

To evaluate whether IKNa is a necessary component of AP repolarization in the 

model cell, we made a model cell with all of the same parameters as in Fig. 5A-C, but 
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set the conductance for IKNa to zero. This model cell could not maintain repetitive firing 

at 500Hz (Fig. 5D-E) and instead remained in a state of depolarized oscillation.  These 

results provide evidence that IKNa in our model cell is necessary for AP repolarization 

and plays a role in AP termination even when the KNa channels are at a great distance 

from transient Na
+
 sources.    

DISCUSSION 

The most striking finding from this study is the extreme compartmentalization 

of ion channels and ion transporters across vast distances in E. virescens electrocytes.  

The KNa channels that repolarize the electrocyte AP and a substantial portion of the 

Na
+
/K

+
 ATPases responsible for removing Na

+
 after each AP are separated by more 

than a millimeter from the only identified sources of Na
+
 influx.   

The presence of KNa channels at such a great distance from Na
+
 sources raises 

the important question of how these channels are activated during the AP.  In previous 

work with KNa channels from other taxa, channel activation required intracellular Na
+
 

concentrations ([Na
+
]i) that far exceed those normally found in bulk cytoplasm (Dryer et 

al., 1989; Kameyama et al., 1984; Yuan et al., 2003). In mammalian neurons, KNa 

channels are clustered within just a few μm of Na
+
 channels in microdomains that allow 

localized elevation of Na
+
 concentrations sufficient to activate KNa channels without 

changing [Na
+
]i in the bulk cytoplasm (Budelli et al., 2009b; Hage and Salkoff, 2012a) .  

However, we show here that Na
+
 and KNa channels are separated by great distances in 

E. virescens electrocytes, suggesting that KNa channels in E. virescens electrocytes do 

not require proximal sources of Na
+
 influx.     
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One hypothesis as to how KNa channels are activated in electroctyes is that 

electrocytes experience a significant increase in [Na
+
]i during each AP or during 

sustained high-frequency firing, a distinct possibility given the magnitude of INa during 

the AP.   We found a high density of Na
+
/K

+
 ATPases on the anterior face consistent 

with earlier biochemical data (Denizot, 1982), suggesting that Na
+ 

influx from the 

posterior face ultimately increases [Na
+
]i in the anterior region. Our computational 

simulations suggest that only small changes in [Na
+
]i occur during high-frequency firing 

in E. virescens electrocytes.  This suggests instead a second hypothesis, that the 

electrocyte's KNa channels are more sensitive to [Na
+
]i than most other KNa isoforms 

identified to date.  Indeed, our simulated IKNa was based on Na
+
-dependent rate 

constants that created partial activation with Na
+
 concentrations of approximately 15 

mM.  Multiple factors determine the Na
+ 

sensitivity of KNa channels.  Single amino-acid 

substitutions can shift the Na
+
 sensitivity of KNa channels over a range of 200 mM 

(Zhang et al., 2010). Given the elevated rates of evolution for other ion channels in 

gymnotiform electrocytes (Zakon et al., 2006; Zakon et al., 2008), it seems possible that 

KNa channels also could have undergone evolutionary changes that would enhance Na
+
 

sensitivity.  Additionally, intracellular factors such as NAD
+
 can modulate the Na

+
 

sensitivity of KNa channels such that the EC50 is approximately 17 mM (Tamsett et al., 

2009).  It is possible that such molecular evolution or functional modulation in E. 

virescens KNa channels could allow their activation at Na
+
 concentrations in the 15 mM 

range.  These possibilities can only be directly addressed through cloning and 

heterologous expression of E. virescens electrocyte KNa channels.   
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Our numerical simulations in the present study suggest that the electrocyte KNa 

channels remain in a state of partial activation during repetitive firing, rather than 

responding to transient increases in [Na
+
]i as concluded in earlier work (Markham et al., 

2013).  If electrocyte KNa channels indeed are maintaining a steady level of activation 

during normal repetitive firing, this raises the question of what function the channels' 

Na
+
 sensitivity serves in this system.  Further experimental investigation and 

computational simulations of Na
+
 dynamics in the electrocyte are needed to clarify the 

functional significance of KNa channels' Na
+
 sensitivity in E. virescens electrocytes.  

Additionally, the finding that ion channels are expressed on both the anterior 

and posterior electrocyte faces contradicts a long-standing assumption, originating with 

some of the earliest electrophysiological studies of E. virescens electrocytes, that only 

the innervated face is active (Bennett, 1961, 1971) and that all ion channels which 

produce the AP should therefore be localized to the posterior face (e.g., Assad et al., 

1998).   The presence of KNa and inward-rectifier K
+
 channels on the electrocyte 

anterior membrane indicates that both the posterior and anterior faces of the electrocyte 

are involved in AP production.  

A second important finding here is the sheer magnitude and complexity of the 

electrocyte's morphology. Our two-photon live-cell and fixed-tissue imaging of E. 

virescens electroctyes extends earlier electron microscopy studies (Schwartz et al., 

1975b) that first reported the 2D morphological polarization of these cells.  Our 3D 

reconstructions of E. virescens electrocytes also show that they are extremely large 

multi-nucleated cells with striking differences in the ultrastructural features of the 

posterior and anterior faces. Because of the electrocytes' large diameter, the laser 
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scanning confocal microscope could not resolve the submicron detail of the medial 

region of the cells, preventing us from obtaining a detailed 3D reconstruction of this 

region of the electrocyte. However, we observed a discrete lower boundary of the 

fluorescence on the medial side of the electrocyte at a depth of 600 µm, suggesting that 

the cell is 600 µm across on both the lateral-medial axis and the ventral-dorsal axis. 

The deep invaginations of the posterior region create a significant expansion of 

membrane surface area in a comparatively small volume.  This membrane area is almost 

entirely occupied by vascularization on the extracellular surface, and vesicles on the 

intracellular surface.  It is perhaps possible that some of the fibrillary structures we 

identified as capillaries were instead portions of the innervating spinal nerves, but this is 

unlikely because blood vessel walls, unlike nerve, contain autofluorescent elastin and 

collagen (Deyl et al., 1980) and the narrowest vessels we observed were ≈3 µm in 

diameter with a hollow center. Additionally, the vessels branched from a large central 

hollow tube that was almost 20 µm in diameter (Fig. 3B2), making it extremely unlikely 

that these are axons.  The dense vascularization of the posterior face is likely necessary 

to provide efficient nutrient supply and waste removal consistent with reports that high 

concentrations of mitochondria are present in the posterior region (Schwartz et al., 

1975b).  We hypothesize that the densely packed vesicles on the posterior membrane 

are associated with constitutive trafficking of Na
+
 channels and Na

+
/K

+
 ATPases. In a 

related electric fish, Na
+
 channels are constitutively cycled into and out of the 

electrocyte membrane, and upregulation of channel exocytosis by hormonal factors can 

increase INa magnitude by more than 50% within minutes (Markham et al., 2009a), as 

has been reported for E. virescens (Markham et al., 2013).   
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The proliferation of membrane surface area on the posterior face also provides a 

substrate for high numbers of Na
+
/K

+
 ATPases which are expressed throughout the 

posterior membrane.  Active transport of Na
+
 by the Na

+
/K

+
 ATPase occurs at the rate 

of ≈10
3
 ions per second (Holmgren et al., 2000) while selective ion channels pass 10

7
 to 

10
8
 ions per second (Morais-Cabral et al., 2001).  In E. virescens electrocytes  ≈6 x 10

10
 

Na
+
 ions enter the electrocyte with each AP (Lewis et al., 2014b) with only one 

millisecond between APs at 500 Hz.  Accordingly, efficient removal of Na
+
 during the 

brief interspike interval would depend on extremely high densities of Na
+
/K

+
 ATPases.  

The extensive posterior-face membrane area also would increase membrane capacitance 

and decrease resistance (assuming a constant membrane resistivity).  This combination 

of high capacitance and low resistance would increase current flow during the AP 

(Schwartz et al., 1975b) and the tuning of resistance relative to capacitance would 

determine the membrane time constant potentially influencing AP duration (Mills et al., 

1992).   

The complex organization of the posterior face in E. virescens electrocytes 

contrasts sharply with the morphology of the anterior face which is relatively featureless 

with sparse vascularization and few detectable vesicles. Within the relatively simple 

organization of the anterior face, KNa channels, inward-rectifier K
+
 channels, and 

Na
+
/K

+
 ATPases were densely and apparently evenly distributed across the membrane 

surface.  The paucity of anterior-face exocytotic vesicles suggests that KNa channels are 

perhaps not cycled or trafficked in the same manner as Na
+
 channels on the posterior-

face.  These results are consistent with our earlier studies of the hormonal regulation of 

ionic currents in E.virescens electrocytes. Application of adrenocorticotropic hormone 
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(ACTH) increased the magnitudes of INa and IKNa. The increase in INa was a direct effect 

of ACTH application regulating vesicular trafficking of Na
+
 channels, but the increased 

conductance of KNa channels was found to be a secondary effect of the hormone-

induced increase in INa magnitude (Markham et al., 2013).  

The bioelectrical properties of all excitable cells are determined by their 

morphology and the subcellular localization of ion channels. Electrocyte morphology is 

an important determinant of species-specific and individual-specific EOD waveforms 

(Bass, 1986; Gallant et al., 2011; Hopkins et al., 1990; Mills et al., 1992) and the 

subcellular distributions and densities of ionic currents also help determine EOD 

waveform (Ferrari and Zakon, 1993; Markham and Zakon, 2014; Shenkel and Sigworth, 

1991).   Some of the ion channels, ionotropic receptors, and ion transporters responsible 

for electrocytes' biophysical properties have been localized in other gymnotiform and 

mormyriform electric fish (Cuellar et al., 2006; Gallant et al., 2011; Liu et al., 2007).  

The present work is, to our knowledge, the first comprehensive presentation of detailed 

electrocyte morphology together with subcellular localization of all ionic mechanisms 

responsible for an electrocyte's electrical excitability. It is of course possible that 

additional key membrane proteins are present but not yet detected. Of particular 

concern is the possibility that a second undetected isoform of KNa channel is expressed 

in proximity to the voltage-gated Na
+
 channels. We believe this is unlikely because an 

earlier study detected only a single isoform of KNa channel in E. virescens electrocytes 

by RT-PCR, the KCNT1/Slack isoform (Markham et al., 2013), supporting the 

conclusion that our immunolabeling in the present study detected all KNa channels 

expressed in electrocytes. Moreover, the present immunolabeling study detected ion 
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channels corresponding to all known ionic currents in E. virescens electrocytes, and 

these ionic currents are sufficient to reproduce completely the electrical behavior of 

these cells as shown by our computational simulations in this study and in earlier work 

(Markham et al., 2013). 

Ultimately, the energetic demands of electrocyte APs and the ability to maintain 

firing rates exceeding 500 Hz throughout the animal's lifespan stem from the 

spatiotemporal dynamics of Na
+
 entry during the AP and the subsequent Na

+
 removal 

within a millisecond by the Na
+
/K

+
 ATPases.  For these peripheral excitable cells the 

metabolic cost of AP generation is likely a major force governing their biophysical 

properties as is the case for central neurons (Hasenstaub et al., 2010). Future studies on 

the temporal and spatial dynamics of Na
+
 entry and removal in electrocytes will be 

necessary for understanding how the ion channels and Na
+
/K

+
 ATPases coordinate to 

maintain high firing rates while managing the extremely large inward Na
+
 currents.  

Further, additional exploration of the interaction between electrocyte Na
+
 channels and 

KNa channels will likely lead to new insights on the many important roles that KNa 

channels play in excitable cell physiology (Bhattacharjee and Kaczmarek, 2005). 
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Figure 1. The electric organ discharge in E.virescens. (A)  The electric organ 

discharge (EOD) is produced by the coordinated action potentials (APs) of the 

electrocytes in the electric organ (EO). A medullary pacemaker nucleus controls the 

electrocyte APs via spinal electromotor neurons which innervate the electrocytes. (B) 

Simplified schematic of an electrocyte. These are large cells, greater than 1 millimeter 

in length, innervated by a cholinergic synapse on the posterior end of the cell. 

Activation of the cholinergic synapse initiates the AP when sodium enters the cell via 

voltage-gated sodium channels. The cell geometry causes the Na
+
 current to move along 

the rostral-caudal body axis. (C) A section of EO from the tail, with skin removed to 

expose the electrocytes, which are densely packed within the EO. A single electrocyte is 

outlined in black. (D) The simultaneous APs of all electrocytes in the EO generate 

current that moves forward toward the head, following a return path through the water 

to the tail. By convention, current moving toward the head is measured as positive 

(upward).  (E) A single EOD waveform corresponds to one cycle of APs in the EO. (F) 

The EOD waveform from a fish with EOD frequency of ≈500 Hz. 
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Figure 2.  Gross morphology of E. virescens electrocytes. (A) 3D reconstruction from 

serial confocal scanning through a live electrocyte injected with Rhodamine B dextran 

(10,000 MW). Arrow indicates site of dextran injection. Darkened horizontal and 

vertical lines (arrowheads) are artifacts caused by the image tile overlap. (B) A 

segmented autofluorescence image of the junction between two adjoining electrocytes 

with the posterior face of one electrocyte on the left (cyan)  and the anterior face of the 

adjacent electrocyte (pink) on the right. (C) A single optical section of the posterior face 

from a Rhodamine B dextran-injected electrocyte. The posterior face contains deep 

invaginations, dramatically increasing the surface area of the cell. (D) A single optical 

section of the anterior face from a Rhodamine B dextran-injected electrocyte.  Arrows 

indicate penetrating capillary structures within the anterior face. (E) Orthogonal 

sectional views of the spherical structures beneath the membrane of the cell body. E1 is 

looking down at the cell surface. E2 is a single Y-Z image orthogonal to E1, and E3 is a 

single X-Z image orthogonal to E1 and E2.  (F) A single 20 μm-thick electrocyte 

section stained with DAPI to label nuclei (posterior is to the right).  

 

 

 

 

 



65 

Figure 3.  Fine structure of E. virescens electrocytes. (A) 3D reconstruction of 

membrane papillae within a single invagination from serial confocal scans through a 

fixed 100 µm-thick section of EO tissue. A1 shows the intracellular structure identified 

by injection of Alexa Fluor® 594 dextran (10,000 MW). Arrows point to the spines 

projecting from membrane papillae. In A2, tissue autofluorescence reveals that the 

spines shown in A1are wrapped by capillaries. DAPI stains the multiple nuclei in A3. 

Images taken in channels A1-A3 opaquely superimposed in A4. (B) 3D reconstruction 

of the junction between adjacent electrocytes from serial confocal scans through a 100 

µm-thick section of fixed EO tissue. B1 shows the anterior face of the electrocyte 

injected with Alexa Fluor® 594 dextran. Blood vessels occupy the space between 

adjacent electrocytes in B2 and arrows indicate the capillaries penetrating the anterior 

face. DAPI labels nuclei in B3. Images taken in channels B1-B3 are merged in B4. (C) 

The posterior face membrane is mostly occupied by vesicles. C1 is an optical section 

from the serial confocal scans of the posterior face shown in (A1). The region outlined 

in white in C1 is enlarged in C2. Arrows indicate vesicles. (D) Few vesicles are found 

on the surface of the anterior face.  D1 is an optical section from the serial confocal 

scans of the anterior face shown in (B1).  Region outlined in white in D1 is enlarged in 

D2. Green circular structures in C-D are nuclei. Arrows indicate vesicles. 
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Figure 4. Western blot analysis and immunohistochemistry staining of 

acetylcholine receptors, ion channels and Na
+
/K

+
 ATPases in E. virescens 

electrocytes. (A-G) Expression pattern of acetylcholine receptors, ion channels and 

Na
+
/K

+
ATPases. (A) Only the posterior face (right) is innervated by spinal electromotor 

neurons. The axons of innervating neurons are labeled with 3A10 (green). (B) 

Acetylcholine receptors (green) are clustered only on the posterior face (right). (C) 

Voltage-gated Na
+
 channels (red) are localized only on the posterior face (right). (D) An 

electrocyte is co-labeled with 3A10 (green) and voltage-gated Na
+
 channels (red).  (E) 

Na
+
-activated K

+
 (KNa) channels (red) are only expressed on the anterior face (left). (F) 

ATP-sensitive inward rectifier K
+
 channels (red) are localized on the anterior face (left). 

(G) Na
+
/K

+
 ATPases (green) are expressed in both anterior and posterior faces. DAPI 

(blue) labels the electrocyte’s nuclei in A-G. The region outlined in white in A-G1 is 

enlarged in A-G2. (H) western blot analysis to confirm the specificity of rabbit 

polyclonal anti-Nav (left), rabbit polyclonal anti-kcnt1(middle) and mouse monoclonal 

anti-α subunit of Na
+
/K

+ 
ATPase (right) in E.virescens electric organ and mouse brain. 

In electric organ, a band around 250 kDa was labeled with anti-Nav which is slightly 

larger than that in mouse brain (left). Anti-kcnt1 detected a band around 130 kDa in 

electric organ which is slightly smaller than that in mouse brain (middle). A band at 100 

kDa was detected with anti- α subunit of Na
+
/K

+
ATPase in both electric organ and 

mouse brain (right). 
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Figure 5.  Computational simulations of electrocyte action potentials in a model 

electrocyte with KNa channels (A-D) and without KNa channels (E-G). (A) 

Membrane potential of the posterior (red), central (black), and anterior (blue) 

compartments of a model cell with KNa during a train of 10 action potentials elicited at 

500 Hz by simulated synaptic conductances.  (B) Time course of the Na
+
 current (INa), 

KNa current (IKNa) and synaptic current (ISyn) during the action potential train shown in 

A.  (C) Timecourse of internal Na
+
 concentrations in the posterior (red), central (black), 

and anterior (blue) compartments during the action potential train shown in Panel A.  

The different initial Na
+
 concentrations reflect the equilibrium of resting Na

+
 leak, 

pumping, and diffusion rates as shown in D.  (D) Posterior membrane potential and time 

course of internal Na
+
 concentrations in the posterior (red), central (black), and anterior 

(blue) compartments during the same simulation shown in A, but on an expanded 

timescale that shows the initial changes in Na
+
 concentrations as the Na

+
 leak, pumping, 

and diffusion processes reach equilibrium.  (E) Membrane potential of the posterior 

(red), central (black), and anterior (blue) compartments of a model cell without KNa 

during a train of 10 action potentials elicited at 500 Hz by simulated synaptic 

conductances.  (F) Time course of the Na
+
 current (INa), KNa current (IKNa) and synaptic 

current (ISyn) during the action potential train shown in E.  (G) Time course of internal 

Na
+
 concentrations in the posterior (red), central (black), and anterior (blue) 

compartments during the action potential train shown in E. The different initial Na
+
 

concentrations reflect the equilibrium of resting Na
+
 leak, pumping, and diffusion rates 

as shown in D. 
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Table 1. Parameter values for the electrocyte model 

Posterior Compartment Anterior Compartment 

Parameter Value Parameter Value 

    

gL 40 μS gL 20 μS  

    

�̅�𝑆𝑦𝑛 600 μS �̅�𝐾𝑁𝑎 8000 μS 

𝜏 0.07 ms 𝑘𝑎𝑛 1.209 ms
-1

 

  𝜂𝛼𝑛 0.00948 mV
-1

 

�̅�𝑁𝑎 700 μS 𝑘𝛽𝑛 0.4448 ms
-1

 

𝛾 0.05 𝜂𝛽𝑛 -0.01552 mV
-1

 

𝑘𝑎𝑚 13.6 ms
-1

 𝑘f 50 mM
-1

 ∙ ms
-1

 

𝜂𝛼𝑚 0.0037 mV
-1

 𝑘b 200 ms
-1

 

𝑘𝛽𝑚 0.6894 ms
-1

   

𝜂𝛽𝑚 -0.0763 mV
-1

 �̅�𝑅 100 μS 

𝑘𝑎ℎ 0.00165 ms
-1

 𝜂𝑅 0.22 mV
-1

 

𝜂𝛼ℎ -0.1656 mV
-1

   

𝑘𝛽ℎ 1.493 ms
-1

 δ 0.0019 mm
2
 s

-1
 

𝜂𝛽ℎ 0.11 mV
-1

 𝑏𝐴 0.7 mM ms
-1

 

    

p  5 mM ms
-1

   

δ 0.0019 mm
2
 s

-1
   

𝑏𝑃 0.3 mM ms
-1
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Chapter 3: Ionic mechanisms and a novel sodium-activated potassium 

channel associated with variations in action potential frequency in fast 

spiking cells 

SUMMARY 

The density and kinetic properties of potassium channels in the plasma 

membrane are key determinants of an excitable cell’s functional capacity and the 

resulting metabolic cost. The electric organ cells (electrocytes) of electric fish 

Eigenmannia virescens generate action potentials (APs) at 200-600 Hz. To better 

understand the role of potassium channels in endowing electrocytes with the ability to 

spike quickly and unremittingly, we cloned the cDNAs encoding the Na
+
-activated K

+
 

(KNa) channels which are used to terminate APs in electrocytes. Three types of KNa 

channel subunits were identified, eslack1, eslack2 and eslick, all of which were 

expressed on the anterior side of electrocytes, separated by >1 mm from the voltage-

gated Na
+
 (Nav) channels, which are restricted to the posterior membrane.  Transcripts 

for eslack1 and eslack2 are found in both skeletal muscle and electric organ (EO) while 

eslick is expressed only in EO. Whole-cell currents recorded from Xenopus laevis 

oocytes expressing E. virescens KNa channels revealed that eslick currents are activated 

more rapidly than eslack1 currents. In E. virescens, each fish has its individual-specific 

baseline EOD frequency (EODf). Using qRT-PCR to measure the mRNA levels of the 

three KNa channel genes in EO from fish with various EOD frequencies, we found that 

transcription levels of eslick correlated with EODf, but transcription levels of eslack1 

and eslack2 were not correlated with EODf.  We also found that transcription levels of 
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the inward rectifier K
+
 channel Kir6.2, Na

+
/K

+
-ATPase and voltage-gated Na

+
 channel 

Nav1.4a were correlated with EODf while the transcription level of Nav1.4b was not.   

INTRODUCTION 

          Individual variation in the properties of communication signals is common among 

many animal species and serves an important role in animals’ social behaviors. 

Individual differences have been reported in the acoustic characters of the calling song 

of cicadas (Seabra et al., 2008), songbirds (Fitzsimmons et al., 2008), frogs (Bee, 2004; 

Bee et al., 2001), and monkeys (Kitchen et al., 2003); in the frequency of bats’ 

echolocation calls (Davidson and Wilkinson, 2002; Jiang et al., 2010); and in the flash 

pattern of fireflies (Forrest and Eubanks, 1995). Variations in these communication 

signals are often used for individual discrimination, contain information regarding the 

animal’s dominance status, and facilitate effective communication in variable 

environments (Bee, 2004; Hahn et al., 2013; Kazial et al., 2001; Kitchen et al., 2003; 

Medina and Francis, 2012). The causes and molecular mechanisms controlling these 

individual variations in social signals are, surprisingly, not well understood. 

          The weakly electric fish Eigenmannia virescens relies on self-generated electric 

organ discharges (EODs) to navigate and communicate in darkness (Hopkins, 1974). E. 

virescens has a considerable animal-to-animal variability in EOD frequency (EODf) 

(200-500 Hz) (Scheich, 1977) (Fig. 1E). Early studies on the behavior of E. virescens 

suggested that EODf conveys information about individual identity, gender and 

dominance rank (Helfman et al., 2009; Hopkins, 1974). The EODf is set by the 

medullary pacemaker nucleus and the EOD is generated by the summed action 

potentials (APs) of >1000 electrocytes in the EO (Fig.1). The experimental tractability 
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of E. virescens’s electrogeneration system makes it a good model system for studying 

the molecular mechanisms giving rise to the individual variations in the frequency of 

communication signals. 

          Electrocytes are highly polarized cells approximately 1.5 mm in length and 600 

µm in diameter. APs are initiated with the activation of cholinergic receptors and Nav 

channels on the innervated posterior membrane to allow the influx of Na
+
 (Fig. 1). 

Electrocytes in E.virescens terminate APs with KNa channels rather than the voltage- 

gated K
+
 (Kv) channels that are predominantly expressed in the electrocytes of closely 

related species (Few and Zakon, 2007; Markham et al., 2013). Numerous studies have 

suggested that the density and kinetic properties of potassium channels in the plasma 

membrane are key determinants of an excitable cell’s functional capacity (Bean, 2007; 

Coetzee et al., 1999; Erisir et al., 1999; Few and Zakon, 2007; Kaczmarek et al., 2005; 

Shao et al., 1999). Therefore, we cloned the cDNAs encoding the KNa channels in E. 

virescens EOs and identified three different types of KNa channel subunits expressed in 

electrocytes. Two of these channels, eslack1 and eslack2, closely resemble KNa channels 

encoded by the slack gene in mammalian systems, and the third channel, eslick, shares 

the highest homology to the slick channel in rat. By expressing fluorescent protein-

tagged KNa channel subunits in electrocytes, we showed all three types of KNa channels 

are expressed on the anterior side of cells, separated by >1 mm from the Nav channels 

which are restricted to the posterior membrane. We also examined the functional 

differences among the three KNa channels by expressing them in X. laevis oocytes. 

Recordings of whole-cell currents showed that eslick currents are activated more 

rapidly than eslack1 currents. To explore which conductances play key roles in 
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determining the firing frequency of electrocytes, we used qRT-PCR to measure the 

mRNA levels of genes encoding ion channels and Na
+
/K

+
 ATPases in EO from fish 

with different EODf. The transcription levels of eslick, Nav1.4a, Kir6.2 and Na
+
/K

+
 

ATPase increased with EODf, while transcription levels of eslack1, eslack2, Nav1.4b 

did not correlate with EODf. 

MATERIALS AND METHODS 

Animals and tissue harvesting 

E. virescens (glass knifefish) were obtained from tropical fish importers 

(Gunpowder Aquatics, Wimauma, FL), and housed in tanks in a recirculating aquarium 

system at 28 ± 1°C with water conductivity 100-150 µS/cm. They were kept under 12 

hour light: 12 hour dark cycle and fed ad libitum with live blackworms. The EO tissue 

was harvested by cutting off  ~2 cm section of the tail and removing the overlying skin. 

Skeletal muscle tissue was dissected from the hypaxial muscle after fish were 

euthanized by immersion in 2% eugenol solution in aquarium water. 

          All methods described were approved by the Institutional Animal Care and Use 

Committee of The University of Oklahoma and complied with the guidelines given in 

the Public Health Service Guide for the Care and Use of Laboratory Animals. 

EOD frequency measurements 

           Fish were transferred to the EOD recording tank with two recording wires 

attached to the two opposite end walls and a ground wire located at one of the side 

walls. They were allowed to move freely while EODs were differentially amplified with 

a Cygnus FLA-01 amplifier (Delaware Water Gap, PA) and EODf of the amplified 

signal was measured with a RadioShack digital multimeter set in frequency mode. To 
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prevent effects of temperature and water conductivity on the fish’s EOD frequency, the 

recording tank was placed in the aquarium room and filled with water from the same 

aquarium system where the fish was kept. Representative EOD waveforms recorded 

from two fish are shown in Fig.1E.  

Molecular Biology 

Reagents 

          The pSP64 Poly(A) vector, ImProm-II
TM

 Reverse Transcription System and 

GoTaq® DNA polymerase were purchased from Promega (Madison, WI). The RNA 

Clean & Concentrator
TM

-5 was purchased from Zymo Research (Irvine, CA).  The 

SMARTer
®
 RACE 5’/3’ Kit was purchased from Clontech Laboratories, Inc. (Mountain 

View, CA). All other molecular biology reagents were purchased from Thermo Fisher 

Scientific (Waltham, MA). 

RNA and cDNA preparation 

          Tissues were homogenized using LabGEN 125 homogenizer (Cole-Parmer). 

Total RNA was extracted using TRIzol
®
 reagent and purified using RNA Clean & 

Concentrator
TM

-5. Genomic DNA contamination was removed by incubating the total 

RNA with DNaseI at room temperature for at least 15 minutes. RNA quality was 

assessed by loading and running total RNA in a 1% agarose gel containing 0.5% bleach 

and SYBR
®
 Green II RNA Gel Stain (Aranda et al., 2012). One microgram of EO total 

RNA was reverse transcribed to cDNA with oligo(dT)15 primer using ImProm-II
TM

 

Reverse Transcription System. The concentration of RNA and cDNA was measured by 

Qubit fluorometer 2.0 (Thermo Fisher Scientific). 

Cloning and sequencing of genes encoding E. virescens KNa channels 
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          cDNAs of interest were amplified by polymerase chain reaction (PCR) and 5’/3’ 

rapid amplification of cDNA ends (RACE). All PCR and RACE products were initially 

analyzed on 1% agarose gels stained with SYBR
®

 Safe DNA Gel Stain, purified and 

cloned into TOPO TA vector or pRACE vector. In each cloning, plasmids extracted 

from ten isolated individual colonies were sequenced by the Biology Core Molecular 

Lab at University of Oklahoma. Sequence results were used as a query to search the rat 

protein database using the online NCBI blastx tool to determine the molecular identity 

of amplified products (Altschul et al., 1990).  

eSlack1           

          A ~500-bp fragment of eslack1 was amplified by nested PCRs using Platinum
®
 

Taq High Fidelity DNA Polymerase with two pairs of degenerate primers designed 

against the highly conserved regions of published nucleotide sequences of slack in other 

species (external primer pair: forward 5’-ARAGYTTYACCTWYGCYKCCTTY-3’ and 

reverse 5’- RYYTTYTSNBGYARMAGRTGGCA-3’; internal primer pair: forward 5’- 

AYAARAARTAYGGWGTRTGTHTG-3’ and reverse 5’- GGMGAGCTSCCRATRT 

ABGGMGA-3’). The thermocycler conditions were 94°C for 2 min, 30 cycles of 94°C 

for 30 s 55°C for 30 s and 68°C for 3 min, followed by a final extension step of 68°C 

for 10 min. The missing 5’end of eslack1 cDNA was  amplified by the following 

reactions: 1) A ~1-kb fragment was amplified by a 5’RACE reaction with a slack 

degenerate primer (5’-GGMGAGCTSCCRATRTABGGMGA-3’) and an universal primer 

provided by the SMARTer
®
 RACE 5’/3’ Kit. 2) A ~500-bp fragment was amplified in a 

PCR with a forward degenerate primer (5’- GCCWTCBCAGCTSCTGGTGGT -3’) 

targeting the signature sequence of the K
+
 selectivity filter and an eslack1-specific 
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reverse primer (5’-GCAAAGTCCTTCACCGCCCA-3’) designed from the partial 

cDNA fragment. 3) A 5’RACE PCR was carried out with an eslack1 reverse primer (5’- 

TCACCTGACTGTCTGCCTCACATGGAC -3’) and the universal primer to amplify 

the start codon as well as the 5’untranslated region (UTR). The missing 3’end of 

eslack1 including the stop codon and 3’UTR was amplified by a 3’RACE reaction with 

an eslack1 forward primer (5’- CTACCCGTCCACAGCATCATCACTAGC-3’) and 

the universal primer. Sequences of the five eslack1 fragments were aligned into a single 

contig (Geneious software, Biomatters Ltd, Auckland NZ). The full-length cDNA of 

eslack1 was amplified with a forward primer (5’- ATATATAAGCTTTCTTTATTACC 

GAAGGTGTCCCTCCG-3’) derived from the 5’UTR and a reverse primer (5’-

TATATATCTAGAGTTTCGGTTGATCAGGTCAGTTTAAAC-3’) derived from the 

3’UTR. It was cut at the HindIII and XbaI sites introduced in the primers and cloned 

into pSP64 Poly(A) vector. Sequence of the insertion was confirmed to match the five 

overlapping PCR products. eSlack1 cDNA contains 3495 nucleotides. 

eSlack2 

          The presence of eSlack2 was noted when sequencing the TOPO TA vectors 

inserted with the ~500-bp PCR product amplified with a forward degenerate primer 

targeting the K
+
 selectivity filter signature sequence and a reverse eslack1-specific 

primer. Insert sequences from ten plasmids were aligned and assembled into two 

contigs using the Geneious software. The two contigs share 78.8% homology in 

nucleotide sequence, with residue differences dispersed along the entire region, and 

both of them share the highest homology with rat slack (NCBI BLAST). We next 

performed 5’ and 3’ RACE reactions to amplify the missing 5’ and 3’ ends. A ~1.5-kb 
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product was amplified in the 5’RACE reaction with a gene-specific reverse primer (5’- 

GAGCTGACGCAGAGCACCACGTGTTT-3’), and a ~5 kb product was amplified in 

the 3’RACE reaction with a gene-specific forward primer (5’- GCGTACCCACTCTG 

CCATGTTCAACC-3’). Sequences of the three PCR products were aligned to a single 

contig using Geneious. Full-length eslack2 cDNA was amplified with a forward primer 

(5’-ATATATGTCGACCTTCTTTACAATGATGGGAC-3’) targeting the 5’UTR and a 

reverse primer (5’-TATATAGGATCCCATTGGACAGTATGAATGAC-3’) targeting 

the 3’UTR. It was cut at the SalI and BamHI sites introduced to the primers and cloned 

into pSP64 Poly(A) vector. Sequence of the insert corresponded to the consensus 

sequence of the aligned contig. eslack2 is composed of 3093 nucleotides. 

eSlick 

          When amplifying the 3’end of eslack2 with an eslack2-specific forward primer 

(5’- TCTGGTGGTGGTGGACAAGGAGAGC-3’) and the universal primer, we 

detected a ~2.5-kb fragment. The RACE PCR product was cloned and sequenced as 

described. The nucleotide sequence was then blasted against the rat protein database in 

NCBI, and shown to share the highest homology with rat slick but not slack. Then a 

5’RACE PCR was performed to amplify the missing 5’end of the slick transcript using 

a gene-specific reverse primer (5’- ACGTCCTTATCCACAGATCCTCCTCGG-3’). A 

~4-kb DNA fragment was amplified, cloned and sequenced. Sequences of the two DNA 

fragments were aligned to a single contig containing potential start codon at the 5’ 

region and stop codon at the 3’ end. Full-length eslick cDNA was amplified with a 

forward primer (5’- ATATATGTCGACTTTAGAGGAACGCATACTTAGC-3’) 

designed against the 5’UTR and a reverse primer (5’- TATATAGGATCCTAAGT 
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AGTCAGATCAGTAGGGC-3’) designed against the 3’UTR. It was cut at the SalI and 

BamHI sites introduced in the primers and cloned into pSP64 Poly(A) vector. eslick 

cDNA contains 3510 nucleotides. 

Reverse transcription PCR analysis of gene expression in EO and muscle 

          To identify the expression patterns of target genes in EO and muscle, Reverse 

Transcription PCR was performed using GoTaq® DNA polymerase with one microliter 

EO or muscle cDNA. Genes of interest and their specific primers are listed in Table 1. 

Thermocycling conditions included 95°C for 2 min, 35 cycles of 95°C for 30 s, 55°C 

for 30 s, and 72°C for 1 min or 2 min (depending on the size of amplicons), and a final 

extension at 72°C for 5 min. After gel electrophoresis, PCR products were visualized 

using the Safe Imager
TM

 2.0 (Thermo Fisher Scientific). Gel images were taken with the 

same exposure time. 

Real-time PCR for mRNA quantitation in EO 

          One microgram of total RNA extracted from EOs from 11 adult E. virescens with 

EOD frequencies (192Hz, 202Hz, 206Hz, 229Hz, 250Hz, 300Hz, 333Hz, 350Hz, 

380Hz, 395Hz, 426Hz) spanning the species’ natural range was reverse transcribed to 

cDNA with oligo(dT)15 primer using ImProm-II
TM

 Reverse Transcription System. 

cDNA was diluted to 20 ng/µl.  Gene-specific primers were designed using the 

GenScript online software to constrain the primer length to ~20 bases, melting 

temperature (Tm) to the range of 58-60°C, and amplicon size to ~100 bp (Table 2). 

Each reaction contained 100 ng cDNA, 25 ul 2× Power SYBR
®
 Green Master Mix, 200 

nM of  forward and reverse primer, and nuclease-free H2O to reach a total volume of 50 

µl. Experiments were run in an Applied Biosystems 7500 Real-time PCR system using 
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the default run method for Power SYBR
®
 Green cDNA two step kit: hold at 95°C for 

10 min and 40 cycles amplification (denature at 95°C for 15 s, and anneal/extend at 

60°C for 1 min). Each sample had three technical replicates. The specificity of primers 

was assessed by both melt curve analysis and gel electrophoresis of qPCR product. The 

expression level of all target genes was normalized to the endogenous control β-actin. 

EO cDNA from fish with the lowest EOD frequency (192 Hz) was used as the 

calibrator sample. Reactions without cDNA template were performed as negative 

controls. All negative controls showed no amplification or amplification starting more 

than eight cycles later than the reactions with cDNA template. In each experimental run, 

the standard curve was generated using 500, 100, 20, 4, 0.8 ng EO cDNA from a fish 

with 202 Hz EOD frequency. All target genes and β-actin had standard curves with 

R
2
>0.97. The slopes of standard curves were used to estimate the amplification 

efficiencies, which were in the range between 95% and 105%. Data were analyzed 

using Applied Biosystems 7500/7500 Fast software. Standard deviations were 

calculated by following the Applied Biosystems guide to perform relative quantification 

of gene expression using the relative standard curve method. 

Gene phylogeny analysis 

          E. virescens slack1, slack2, and slick cDNA sequences were translated and 

aligned with protein sequences of the SLO family channels in nematode, zebrafish, 

mouse, rat and human using ClustalW. Then the phylogenetic relationship was analyzed 

using the Geneious software (version 7.1.7). The consensus tree was obtained by using 

the neighbor-joining method, Jukes Cantor amino acid substitution model and 

resampled 1000 times with the Bootstrapping method. Human voltage-gated K
+
 channel 
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subfamily A member 1 (hKv1.1) was included as the outgroup. Channels included in the 

phylogenetic analysis were Caenorhabditis elegans Slo1channel (NCBI accession 

number: Q95V25); Danio rerio Slo1 channel (NP_001139072); Mus musculus Slo1 

channel (NP_001240287); Rattus norvegicus Slo1 channel (NP_114016); Homo sapiens 

Slo1 channel (AAI44497); Caenorhabditis elegans Slo2 channel (AAD51350); Danio 

rerio Slack channel (XP_009293403); Danio rerio Slick channel (XP_017214614); 

Mus musculus Slack channel (NP_780671); Mus musculus Slick channel 

(NP_001074496); Rattus norvegicus Slack channel (NP_068625); Rattus norvegicus 

Slick channel (NP_942057); Homo sapiens Slack channel (NP_065873); Homo sapiens 

Slick channel (NP_940905); Mus musculus Slo3 channel (O54982); Homo sapiens Slo3 

channel (NP_001027006); Homo sapiens Kv1.1 channel (NP_000208). 

Expression of recombinant KNa channels in electrocytes 

          We constructed recombinant eSlack1, eSlack2 and eSlick channels tagged with 

the red fluorescent protein (mCherry) at their N-terminus. mCherry was PCR-amplified 

from u-mCherry (a gift from Scott Gradia; Addgene plasmid # 29769). The polylinker 

sequences between ion channels and mCherry were GGSGGGSGGSGS for eSlack1/ 

eSlick and GGSGGGSG for eSlack2 (Perestenko and Henley, 2006; Shi et al., 1999). 

mCherry-eSlack1, mCherry-eSlack2 and mCherry-eSlick were assembled and cloned 

into the pOX vector using the NEBuilder® HiFi DNA Assembly Master Mix (New 

England Biolabs
®
 Inc.) then subcloned into the pmaxCloning

TM
 vector (Lonza). Prior to 

EO injection, the fish were anesthetized by exposing them to 0.01% clove oil until 

losing equilibrium but still maintaining opercular beating (< 2 min total). A single 25 μl 

bolus of 5 µg/μl plasmid in 150 mM KCl was injected into the fish’s EO in the tail 
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using a microliter syringe. The injected fish was then transferred back to its home tank 

until its mobility was fully recovered. The expression of mCherry-tagged ion channels 

was examined on the 10
th

 day after injection using epifluorescence and confocal 

microscopy. 

Image acquisition 

          To examine the expression of mCherry-eSlack1, mcherry-eSlack2 and mCherry-

eSlick in electrocytes, we harvested the EO using the same procedure as described 

earlier (Ban et al., 2015). Live electrocytes were first examined on a Zeiss Apotome.2 

microscope with a X5/0.16NA dry objective and processed by Zeiss AxioVision 

Rel.4.8.2. Structured illumination was used to create optical sections of the sample. 

Then we used a LeicaTCS SP8 laser scanning confocal microscope with a X25/0.95NA 

dipping objective to acquire high-resolution images. mCherry was excited by a 561-nm 

laser line and autofluorescence of the electrocyte was excited by a 488-nm laser line 

(Ban et al., 2015). The images were acquired as serial sections and processed by the 

software Leica Application Suite Advanced Fluorescence (LAS AF) 3.3.0.10134. 

Electrocytes not expressing mcherry-tagged eSlack/Slick subunits were used as controls 

and imaged under the same settings. 

          Xenopus laevis oocytes expressing mCherry-tagged KNa channels were incubated 

in ND96 saline and imaged using a LeicaTCS SP8 laser scanning confocal microscope 

with a X10/ 0.3NA dry objective. Brightness and contrast of all images were adjusted 

using ImageJ for 64-bit Windows (version 1.51s; National Institute of Health). 
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Electrophysiology 

          eSlack/Slick cDNA was subcloned into pOX vector (a generous gift of Dr. 

Lawrence B. Salkoff, Washington University, St. Louis, USA). In vitro transcribed 

RNA (cRNA) was prepared using the mMESSAGE mMACHINE
TM 

T3 Transcription 

Kit (Thermo Fisher Scientific). We used an Agilent 2100 Bioanalyzer to examine the 

quality and concentration of cRNA. Defolliculated X. laevis oocytes in stage VI were 

obtained from Ecocyte Bioscience (Austin, TX) and incubated in modified Barth’s 

saline containing the following in mM: 88 NaCl, 1 KCl, 2.4 NaHCO3, 0.82 MgSO4, 

0.33 Ca(NO3)2 ·4H2O, 0.41 CaCl2 ·2H2O, 5 HEPES, 2.5 CH3COCOONa, and 50 μg/ml 

gentamycin at pH 7.5. Oocytes were injected with 46 nl of nuclease-free water 

containing ~80 ng of cRNA and studied 4 to 5 days post injection.  

          Whole-cell currents from oocytes were recorded using a standard two-electrode 

configuration (Markham et al., 2013), with an Axoclamp 900 amplifier controlled by a 

Digidata 1440 interface and pCLAMP10 software (Molecular Devices, Sunnyvale, CA). 

Data were sampled at 100 kHz and filtered at 10 kHz. Electrodes were pulled from 1.2 

mm o.d. thin-wall borosilicate glass tubing, filled with 2 M NaCl or KCl and had 

resistances of 0.5-1.2 MΩ. Oocytes were incubated in ND96 saline (in mM: 96 NaCl, 2 

KCl, 1 MgCl2, 1.8 CaCl2 ·2H2O and 5 HEPES, pH to 7.5). To measure channel 

activation, oocytes were held at -90 mV, then depolarized by 400-ms voltage steps 

ranging from -90 mV to +80 mV in 10-mV increments every 5 s. In some experiments, 

cells were depolarized by a 500-ms pulse to +20 mV from a holding potential of -90 

mV every 10 s to examine the effects of NaCl and KCl on the amplitude of whole-cell 

currents. The activation τ for eSlack and eSlick currents was estimated using the 
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Clampfit fitting functions. Current traces from the start point to the peak point just 

before the plateau stage were fitted to a standard single-term exponential growth 

function. The time required to reach 62.8% of the final value was calculated as the 

activation τ. 

RESULTS 

Molecular identities of KNa channels in E. virescens electrocytes 

          Mammalian KNa channels are encoded by two highly similar paralogous genes, 

Slo2.1 (Slick, kcnt2) and Slo2.2 (Slack, kcnt1) belonging to the Slo gene family 

(Bhattacharjee et al., 2003; Joiner et al., 1998). In E. virescens EOs, we cloned three 

genes similar to the mammalian Slo2 genes. Phylogenetic analysis (Fig. 2A) of channels 

in the SLO family show that two genes have the strongest homology with mammalian 

slack genes, and the third gene is more closely related to slick genes. The open reading 

frames (ORFs) of the two E. virescens slack genes encode two proteins that consist of 

1164 and 1030 amino acids with 68.6% homology. Amino acid differences between the 

two slack transcripts were dispersed along the entire sequence, suggesting they are not 

likely generated by RNA alternative splicing. Given the evidence that duplication of 

voltage-gated sodium and potassium channel genes has occurred in multiple 

gymnotiform species (Few and Zakon, 2007; Zakon et al., 2006), gene duplication is 

more likely the mechanism giving rise to the two slack transcript variants in E. 

virescens. We designated the duplicated slack genes in E. virescens as eslack1 (ORF: 

3495 nt) and eslack2 (ORF: 3093 nt), respectively.  

Electric organs (EOs) are developmentally derived from muscle (Bennett, 1970). 

With the development and maturation of EOs, electrocytes eliminate the coupling 
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between contraction and excitability (Gallant et al., 2014; Unguez and Zakon, 1998). 

Due to the myogenic origin of EO tissue, we examined the expression pattern of 

eSlack1, eSlack2, and eSlick in E. virescens muscle and EO by reverse transcription 

PCR and found that eSlack1 and eSlack 2 are expressed in both EO and muscle, 

whereas Slick is expressed solely in the EO (Fig. 2B). 

Sequence and Structure of E. virescens KNa Channels 

           The E. virescens 1164 amino acid-long eSlack1 and 1030 amino acid-long 

eSlack2 channel subunits share 74.3% and 70.8% homology to rat Slack-A, respectively 

(Brown et al., 2008). Both eSlack1 and eSlack2 subunits are predicted to contain six 

membrane-spanning domains (S1-S6) with a pore-forming loop between S5 and S6, and 

an extensive cytoplasmic C-terminal region (Fig. 3) (Hite et al., 2015; Hofmann and 

Stoffel, 1993; Joiner et al., 1998; Krogh et al., 2001). Slack channels are activated by 

intracellular Na
+
 ions, and the sensitivity of these channels to Na

+
 is determined by the 

presence of a Na
+
 coordination motif in the second RCK domain. This motif contains 

six amino acids in rat Slack subunits (DNKPDH), with aspartic acid (D) and histidine 

(H) in the beginning and ending positions, respectively (Zhang et al., 2010). In the 

homologous position, E. virescens Slack-1 and Slack-2 subunits have the sequence 

DNQPDDH and DNPPDNH, respectively, making them putative Na
+
-binding sites 

(Fig. 3A).  There is great divergence between E. virescens Slack-1 and Slack-2 in the N- 

and C- terminus. eSlack2 appears to have a C-terminal tail approximately 100 amino 

acids shorter than eSlack1 and all other identified Slack and Slick subunits in mammals 

(Fig. 2A). The N-terminus is where amino acid differences are most frequently found 

between eSlack1 and eSlack2. The N-terminus of eSlack2 is highly similar to that of 
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mouse and rat Slack-A. In mammals, RNA alternative splicing gives rise to three Slack 

transcripts, Slack-A, Slack-B and Slack-M, which are regulated by alternative 

promoters and differ in the residues in the N-terminus (Brown et al., 2008). eSlack1 has 

a unique N-terminus which is not identical to any known mammalian Slack isoforms 

(Fig. 3). 

          The ORF of E. virescens Slick encodes a protein composed of 1142 amino acids, 

sharing 66.6% homology with rat Slick subunits. It has an N-terminus closely 

resembling that of eSlack2 and rat Slick, six membrane-spanning domains (S1-S6) with 

a pore-forming loop between S5 and S6, and an extensive C-terminal region (Fig. 3). At 

the homologous position of the Na
+
 coordination motif of rat Slick subunit 

(DNPPDMH) (Thomson et al., 2015), E. virescens Slick has the sequence DNPPEPQ, 

which shares four of seven residues with rat Slick, and does not end with histidine. 

Histidine may be not necessary for binding Na
+
, consistent with the finding in rat Slick 

that mutation of the aspartic acid residue dramatically decreased the channel’s 

sensitivity to Na
+
, whereas histidine substitution barely changed the channel’s function 

(Thomson et al., 2015). Rat and human Slick channels are ATP-regulated channels, and 

can be directly inhibited by intracellular ATP. The molecular determinant of ATP 

sensitivity is the presence of the “Walker A motif” (GxxxxGKT) on the distal C-

terminus of Slick subunits (Bhattacharjee et al., 2003; Walker et al., 1982). The residues 

at the homologous position of the Walker A motif in rat Slick are not very conservative 

between rat and E. virescens Slick. And we could not find a motif having the signature 

residues of Walker A motif in the C-terminus of E. virescens Slick subunits. Whether E. 
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virescens Slick channels are regulated by intracellular ATP levels needs to be 

determined by future electrophysiology studies. 

Expression pattern of KNa channels in electrocytes 

          The subcellular localization of ion channels plays a key role in determining the 

bioelectrical properties of excitable cells, especially for electrocytes, which have been 

shown to be highly polarized, with quite different posterior and anterior membranes. 

Our previous immunohistochemical studies revealed that KNa channels are located on 

the anterior side, separated by >1 mm from cholinergic receptors and Na
+
 channels that 

are restricted to the posterior membrane (Ban et al., 2015). Protein sequence alignment 

between peptide immunogen and the three E. virescens KNa subunits showed that the 

KNa channel antibody used in that study only targeted the eSlack1 subunit. Due to the 

lack of specific commercially-available antibodies and the failure of multiple custom-

generated antibodies to produce specific labeling, we took the approach of visualizing 

the location of eSlack2 and eSlick subunits by expressing fluorescent protein-tagged 

constructs of these ion channel subunits in electrocytes. It has been shown that direct 

injection of naked DNA plasmids produces expression of transgene in fish muscle 

(Sudha et al., 2001). Electrocytes of E. virescens can reliably express fluorescent 

protein tagged actin following bulk injection of expression vectors into the EO (Michael 

Markham and Harold Zakon: unpublished observations). Because electrocytes exhibit 

autofluorescence with excitation and emission spectra similar to those of green 

fluorescent protein (GFP), red fluorescent protein (mCherry) was used to construct the 

recombinant ion channels. 
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          mCherry was fused to the N-terminus of eSlack/Slick subunits and separated by a 

flexible polylinker containing a glycine polypeptide with serine inserts to allow the 

proper folding and function of both molecules (Nuwer et al., 2010; Perestenko and 

Henley, 2006; Shi et al., 1999). Fluorescent protein fusion proteins can potentially 

affect the normal localization of the target protein. To ensure N-terminal mCherry 

fusion does not affect the trafficking of eSlack/Slick subunits to the plasma membrane, 

we examined the expression of these recombinant ion channels in Xenopus laevis 

oocytes and showed that all of them could be successfully expressed on cell membranes 

(Fig. 4). Next, we injected mCherry-eSlack/Slick expression vectors into the EO and 

found that mCherry-eSlack1 was localized on the anterior side, mimicking the 

distribution of endogenous eSlack1 detected by immunohistochemistry (Ban et al. 

2015) (Fig. 5B), suggesting that N-terminal mCherry fusion does not affect the normal 

localization of eSlack/Slick subunits. Similar to mcherry-eSlack1, the expression of 

mCherry-eSlack2 and mCherry-eSlick was only detected on the anterior side (Fig. 5C 

and D). Our results indicate that the three E. virescens KNa channel subunits have 

identical expression patterns, only on the anterior side of electrocytes. 

Characteristics of KNa channel currents 

          Markham et al. recorded whole-cell currents from E. virescens electrocytes and 

demonstrated the existence of the outward noninactivating Na
+
-activated K

+
 currents 

(IKNa) (Markham et al., 2013). To determine how the three KNa channels identified here 

contribute to outward K
+
 currents, we expressed the three KNa channels in X. laevis 

oocytes to characterize and compare their electrophysiological properties. Both eSlack1 

and eSlick constructs produced robust outward K
+
 currents with strong outward 
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rectification.  Whole-cell currents from cells injected with eSlack1 cRNA showed much 

slower activation than those injected with eSlick cRNA (Fig. 6A). At test potentials 

positive to -40 mV, eSlack1 activated with a slow component that increased with time 

(Fig. 6A and B). The τ-V relationship for the rate of eSlack1 activation shows that 

eSlack1 currents activated slower as membrane potential becomes more depolarized 

until +10 mV, after which activation becomes more rapid with more depolarized 

membrane potentials (Fig. 6C). In contrast, eSlick shows rapid activation. Whole-cell 

currents in eSlick- injected oocytes activated instantaneously with step changes in 

voltage to test potentials positive to -70mV (Fig. 6A and B). According to the τ-V 

relationship of eSlick activation, the τ decreases with more depolarized membrane 

potentials until +20 mV, when it reached a plateau (Fig. 6D). We used water-injected 

oocytes as controls.  As reported previously, control cells express an endogenous Ca
+
-

activated Cl
-
 current, the magnitude of which is much smaller than in cells expressing 

exogenous currents (Fig. 6A) (Cristofori-Armstrong et al., 2015). Unlike eSlack1 and 

eSlick, oocytes injected with eSlack2 cRNA expressed currents indistinguishable from 

those of control cells (Fig. 6A). The C-terminal tail of eSlack2 is approximately 100 

amino acids shorter than eSlack1 and eSlick. Since mCherry-eSlack2 can be expressed 

on the plasma membrane of both X. laevis oocytes and electrocytes, the absence of 

currents is not likely due to the difficulty of trafficking eSlack2 into the plasma 

membrane. A likely possibility is that eSlack2 cannot form functional homotetrameric 

channels without the intact C-terminus. 

          The activity of mammalian slack and slick channels is regulated by the 

intracellular levels of Na
+
 and Cl

-
. We therefore examined the effects of elevated [Na

+
]i 
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on the activity of eSlack1 and eSlick channels. Thomson et al. showed that filling low- 

resistance microelectrodes with 2 M NaCl allows Na
+
 to diffuse into the cell and 

thereby increases [Na
+
]i (Garg et al., 2013; Thomson et al., 2015). We applied the same 

method to increase [Na
+
]i and measured the amplitude of currents when the cell was 

depolarized to +20 mV repetitively from -90 mV every 10 s. The peak amplitude of 

eSlack1 and eSlick currents immediately after impaling the cell was higher than that of 

control cells, suggesting that eSlack1 and eSlick have basal levels of activity at 

intraoocyte Na
+ 

concentrations of ~10 mM (Weber, 1999) (Fig. 7A). During 9 min of 

recording, the peak amplitude of both eSlack1 and eSlick at a membrane potential of 

+20 mV was elevated with NaCl diffusing into the cell (Fig. 7A and C). To distinguish 

the role of Na
+
 and Cl

-
 in increasing current amplitude, we also used microelectrodes 

filled with 2 M KCl and measured the peak amplitude of both eSlack1 and eSlick over  

9 min. The eSlack1current remained constant with an increased intracellular level of 

KCl. In contrast, eSlick showed increased current magnitudes with KCl-filled electrodes 

(Fig. 7B and C). The peak current of control cells at +20 mV kept constant during 9-min 

loading of either 2 M NaCl or 2 M KCl (Fig. 7). These results suggest that eSlack1 has 

an absolute requirement for Na
+
 to increase the channel’s open probability, whereas 

eSlick may be more sensitive to intracellular Cl
-
 levels. The other possible reason for 

the increase of eSlick current with KCl diffusing into the cell is that a dramatic increase 

in the intracellular concentration of K
+
 shifted the equilibrium potential for K

+
 more 

negative. Future studies should use inside-out patch clamp to examine the KNa channel’s 

dependence on Na
+
 and Cl

-
. 
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Positive correlation between EODf and the transcription level of eSlick in the EO  

       E. virescens has considerable animal-to-animal variability in EOD frequency (200-

500 Hz) (Fig. 1E) (Scheich, 1977). Previous studies in a closely related species, 

Steropygus macrurus, have shown that the transcription levels of potassium channels in 

the EO are correlated with EODf (Few and Zakon, 2007). This led us to examine 

whether the mRNA levels of eslack1, eslack2 and eslick genes in the EO vary across 

fish with different EOD frequencies. We extracted RNA from the EO of 10 fish with 

different EOD frequencies (192 Hz, 202 Hz, 206 Hz, 229 Hz, 250 Hz, 300 Hz, 333 Hz, 

350 Hz, 380 Hz, 395 Hz, 426 Hz) spanning the species’ natural range, and measured the 

transcription levels of the three KNa channel genes with real-time PCR. We found that 

only the transcription level of eslick was positively correlated with EOD frequency 

(Fig. 8A and supplementary Fig. 1A-C)). We also divided the fish into two groups with 

high (> 300 Hz; n=5) and low (≤ 300 Hz; n=5) EOD frequencies, and compared the 

mean transcription level of the three KNa channel genes between the two groups. A 

significant difference between fish with high and low EOD frequencies was found in 

the transcription level of eslick (high frequency: 3.52 ± 0.58, n = 5; low frequency: 1.94 

± 0.28, n = 5; one-way ANOVA, p = 0.04), but not eslack1 (high frequency: 1.51 ± 

0.40, n = 5; low frequency: 0.96 ± 0.23, n = 5; one-way ANOVA, p = 0.26) or eslack2 

(high frequency: 2.31 ± 0.31, n = 5; low frequency: 1.83 ± 0.95, n = 5; one-way 

ANOVA, p = 0.65) (Fig. 8C). 

Transcription levels of Nav1.4a, Kir6.2 and Na
+
/K

+
 ATPase increase with EODf    

          In addition to the Na
+
-activated K

+
 current observed in electrocytes, whole-cell 

recordings of endogenous currents in electrocytes also indicated the existence of an 
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inwardly rectifying K
+
 (Kir) current and a voltage-gated Na

+
 (Nav) current (Markham et 

al., 2013). The firing frequency of electrocytes is maintained by the coordination 

between ion channels involved in generating APs and the Na
+
/K

+
 ATPases, which are 

responsible for restoring the ionic gradients after each AP. The Nav channels in the EO 

of E. virescens are encoded by a pair of duplicated genes, Nav1.4a and Nav1.4b, which 

are orthologs of the mammalian muscle-specific Nav1.4 gene (Zakon et al., 2006). The 

Kir channels are ATP-sensitive potassium (KATP) channels encoded by the KCNJ11 

gene (Michael Markham: unpublished data). In reverse transcription PCR, we noted that 

Nav1.4b and Kir6.2 are expressed in both muscle and EO, whereas Nav1.4a and the α-

subunit of Na
+
/K

+
 ATPases are predominantly expressed in the EO (data not shown). 

We reasoned that EOD frequency might also be correlated with expression levels of 

these ion channels and Na
+
/K

+
 ATPases. 

          With real-time PCR, we measured the mRNA levels of these genes from the EO 

of 10 fishes that were mentioned earlier. Results showed that the transcription levels of 

Nav1.4a, Kir6.2 and Na
+
/K

+
 ATPase increased exponentially with EOD frequency (Fig. 

8B1, B3 and B4, and supplementary Fig. 1D, F and G). No correlation between the 

transcription level of Nav1.4b and EOD frequency was detected (Fig. 8B2 and 

supplementary Fig. 1E). When comparing the mean transcription level of genes 

between the two groups of fish with high and low EOD frequencies, significant 

differences were detected in Nav1.4a (high frequency: 3.89 ± 0.72, n = 5; low 

frequency: 1.38 ± 0.17, n = 5; one-way ANOVA, p < 0.01), Kir6.2 (high frequency: 3.18 

± 0.55, n = 5; low frequency: 1.16 ± 0.13, n = 5; one-way ANOVA, p < 0.01) and  

Na
+
/K

+
 ATPase (high frequency: 6.84 ± 1.28, n = 3; low frequency: 1.57 ± 0.61, n = 5; 
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one-way ANOVA, p < 0.01), but not Nav1.4b (high frequency: 1.28 ± 0.19, n = 5; low 

frequency: 1.32 ± 0.19, n = 5; one-way ANOVA, p = 0.89) (Fig. 8C). 

DISCUSSION 

          E. virescens electrocytes are unique because they terminate their APs using KNa 

channels rather than voltage-gated K
+
 (Kv) channels, as is the case in all other electric 

fish where electrophysiological data are available (Few and Zakon, 2007; Markham et 

al., 2013). In this study, we discovered the presence of three KNa channel subunits 

expressed in electrocytes, eSlack1, eSlack2 and eSlick. Functional potassium channels 

are tetramers of four subunits, and channels can consist of homotetramers or 

heterotetramers.  All three KNa channels in E. virescens elecrocytes are expressed on the 

anterior side, raising the possibility that they form heterotetrameric KNa channels.  

 Heterotetrameric K
+
 channels have functional properties that are typically 

intermediate between the properties of homomeric channels for each subunit.  In the 

present study, eslick currents were much faster than eslack currents and therefore better 

suited for higher frequency electrocytes.  The positive correlation of eslick expression 

with EODf suggests two possibilities. One is that the ratio of eslick homotetrameric 

channels to eslack1 homotetrameric channels increases as EODf increases.  A second 

possibility is that the ratio of eslick to eslack1subunits within heterotetramers increases 

with EOD frequency.  Additionally, the failure of eslack2 expressed alone to produce 

functional KNa channels strongly suggests that this subunit occurs only within 

heterotetramers.  

In mammalian systems, RNA alternative splicing gives rise to multiple Slack 

variant transcripts, Slack-A, Slack-B and Slack-M, which are regulated by alternative 
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promoters and differ in the residues in their N-terminus (Brown et al., 2008). The N-

terminus of Slack-B is necessary for the trafficking of Slick subunits into the plasma 

membrane and they can form heterotetrameric KNa channels (Chen et al., 2009). 

eSlack2 and eSlick share similar N-terminal sequences with rat Slack-A and Slick. 

eSlack1 has a unique N-terminus, which is not identical to the N-terminus of any known 

mammalian Slack and Slick subunit. Heterogeneous expression of E. virescens KNa 

channels in X. laevis oocytes showed that eSlack1 and eSlick can form functional 

homotetrameric KNa channels and, although eSlack2 can be successfully trafficked into 

the plasma membrane, it could not conduct currents, which is likely due to the shorter 

C-terminal tail. Future biochemical studies with immunoprecipitation are necessary to 

examine the interactions among the three E. virescens KNa channel subunits and the 

possibility that they form heterotetrameric ion channels.           

Similar to mammalian KNa channels, the opening of eSlack1 channels requires 

[Na
+
]i, whereas eSlick channels’ opening appears to be more dependent on intracellular 

levels of Cl
-
. These characteristics offer KNa channels several advantages over Kv 

channels in cells with high firing rates. The accumulation of intracellular Na
+
 with high- 

frequency stimulation may result in the enhanced activation of KNa channels which may 

serve as a negative feedback mechanism to stabilize the membrane potential. 

Additionally, KNa channels may play a protective role against the inhibition of Na
+
/K

+
 

ATPases under hypoxic conditions. The natural habitats of E. virescens include regions 

of low-oxygen waters and these fish are reported to have higher tolerance to hypoxic 

stress. Hypoxia-induced inhibition of Na
+
/K

+
 ATPases results in the increase of 

intracellular levels of Na
+
 and Cl

-
, which may activate KNa channels to ameliorate the 
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detrimental effects caused by osmotic imbalance, thus increasing the cell’s ability to 

react to hypoxic stress.  

It was thought that E. virescens would reduce its EOD frequency in response to 

energetic constraints such as food deprivation and hypoxic stress. Surprisingly, these 

fish respond to metabolic stress by decreasing EOD amplitude but not frequency 

(Reardon et al., 2011; Sinnett and Markham, 2015). E. virescens modulate the 

amplitude of EOD by controlling the trafficking of Nav channels on the plasma 

membrane of electrocytes (Markham et al., 2009). It is a challenge for electrocytes to 

maintain firing rate when Na
+
 influx is reduced. The dependence of KNa channels on 

[Na
+
]i rather than the change of membrane potential allow electrocytes to scale the 

amplitude of K
+
 currents to the reduced Na

+
 conductance during the resting time or 

under energetic constraints and to mainitain the shape of AP. Our results showed that 

eSlack1 and eSlick channels could be activated by intraoocyte Na
+
 concentration of ~10 

mM (Fig. 7B). The high sensitivity of KNa channels allows electrocytes to repolarize as 

usual when Na
+
 influx is reduced, thus maintaining the cell’s characteristic firing rate 

and enforcing the fidelity of EODf as a signal to define the individual’s gender, identity 

and social status (Helfman et al., 2009; Hopkins, 1974). 

         In E. virescens, electrogenesis is energetically expensive, exceeding 25% of the 

fishes’ daily energy budget (Lewis et al., 2014; Markham et al., 2016; Salazar et al., 

2013).  The Na
+
 influx during each AP exceeds 10 µA. The number of ATP molecules 

required by Na
+
/K

+
 ATPases to restore the ionic gradients after each AP is 

approximately 2 × 10
10

, which is about 100 times higher than that estimated for human 

neurons (Hallermann et al., 2012; Howarth et al., 2012a; Lewis et al., 2014). 
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Simultaneous APs of approximately 1000 electrocytes at several hundred Hertz creates 

extreme energetic demands for each electrocyte individually, and for the EO as a whole. 

Thus the ion channels expressed in the cells must support high-frequency firing, and 

more importantly adapt the cell’s electrical activities to its metabolic state. The 

expression of ATP-sensitive K
+
 (KATP) channels may enable electrocytes to couple their 

excitability to the availability of ATP. Rat Slick contains an ATP-binding motif in its C-

terminal tail and can be directly inhibited by intracellular ATP (Bhattacharjee et al., 

2003). Whether eslick is an ATP-sensitive K
+
 (KATP) channel should be examined in 

future research.  Electrocytes also express an ATP-sensitive inwardly rectifying Kir6.2 

channel that forms functional complexes with a sulphonylurea receptor (e.g., SUR1) 

belonging to the ATP-binding cassette (ABC) superfamily. The Kir6.2-SUR1 complex 

in other systems has been shown to be inhibited by physiological levels of ATP, thereby 

increasing the channel’s open probability as the intracellular concentration of ATP falls 

(Inagaki et al., 1995). The relationship between the availability of ATP and the activity 

of the Kir6.2-SUR1 complex in electrocytes needs to be further studied to determine its 

precise role in electrocyte function.  One appealing hypothesis is that the presence of 

these potential KATP channels may form an endogenous protective system to stabilize 

the cell’s bioelectrical properties under energetic constraints. 

          In E. virescens, EODf is individually specific, ranging from 200 to 600 Hz. We 

demonstrated that in fish with higher EOD frequencies, electrocytes apparently fulfill 

the fast-spiking requirement by increasing the transcription level of some ion channels 

but not all of them. Importantly, a gene’s mRNA level does not always predict its 

protein abundance, and we have not yet determined whether the abundance of 
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corresponding proteins in electrocytes also correlates with EODf due to the lack of 

specific antibodies targeting most of the ion channels in electrocytes. However, the 

same biophysical strategy to enable the fast-spiking capability seems to be adopted by 

electrocytes from different species of electric fish. In Sternopygus macrucrus, a weakly 

electric fish species with lower EODf (50-200 Hz), the transcription levels of two Kv 

channel subunits in EO vary with the fish’s EODf. In E. virescens, we measured the 

mRNA level of Nav1.4a, Nav1.4b, eslack1, eslack2, eslick, Kir6.2 and Na
+
/K

+
 ATPase in 

EO from fish with different EODf and found out that transcription levels of only 

Nav1.4a, eslick, Kir6.2 and Na
+
/K

+
 ATPase are positively correlated to EODf. These 

genes likely contribute to the increased electrical excitability of EO compared to 

muscle. Nav1.4b, eslack1, eslack2 and Kir6.2 showed similar transcription level in both 

muscle and EO, whereas Nav1.4a and Na
+
/K

+ 
ATPase were predominantly expressed in 

EO and eslick was expressed exclusively in EO.  

 Given the faster activation kinetics for eslick compared to eslack1 and eslack2, 

the correlation of eslick with EODf is consistent with briefer APs required as EODf 

increases.  Higher expression of Na
+
/K

+ 
ATPases at higher EODfs also is easily 

understood for higher frequency EODs, as increased rates of AP generation will require 

more rapid restoration of ionic gradients following each AP.  We have not yet 

determined the biophysical properties of Nav1.4a and Nav1.4b in this system, but it 

seems likely that Nav1.4a currents would have faster kinetics given the association of 

Nav1.4a expression levels with EODf. 

 Understanding the mechanisms regulating ion channel expression levels as 

firing rates change is important not only in the context of electric sensory and 
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communication signals in fish, but also for understanding how the performance of fast-

spiking cells is tuned and perhaps optimized in other systems such as auditory 

processing networks.  This is especially true because in both cases a tradeoff between 

firing rates and metabolic cost appears to be a major force that shapes the operational 

properties and functional limits of these systems (Howarth et al., 2012b).    

Additionally, it is well known that excitable cells modify the expression patterns of 

ionic conductances to maintain a particular functional state (Marder and Goaillard, 

2006), but the cellular mechanisms that govern this process remain elusive.  A similar 

question arises in the case of electrocytes as in the present study.  Do electrocytes 

respond to a given firing rate determined by the pacemaker nucleus by some cell-

autonomous mechanism that appropriately tunes the expression levels of the necessary 

ion channels, or does some extrinsic mechanism regulate both pacemaker firing rate and 

electrocyte ion channel expression? Only additional research following on the findings 

presented here can address these questions. 
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Fig. 1. EOD generation in E. virescens. A: The EO runs longitudinally along the fish 

body and extends into the caudal tail filament. B: A section from the tail with skin 

removed to expose the EO. A single electrocyte is outlined in black. C: Schematic of an 

electrocyte. Electrocytes are highly polarized cells approximately 1.5 mm in anterior-

posterior length and 0.6 mm in diameter. Electrocyte APs are controlled by the 

medullary pacemaker nucleus via spinal motor neurons innervating on the posterior 

membrane of each electrocyte. The cell’s innervated posterior face is deeply 

invaginated and occupied by cholinergic receptors and voltage-gated Na
+
 (Nav) 

channels. The activation of cholinergic synapses causes an inward Na
+ 

current. D: The 

Na
+
 current moves toward the head, followed by a return path from head to tail in the 

surrounding water. E: The EOD waveforms recorded from fish with high and low EOD 

frequency. Panels A-D were adapted from Ban et al., 2015. 
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Fig. 2. Molecular identities of E. virescens KNa channel genes. A: A rooted neighbor-

joining phylogenetic tree for the high-conductance potassium channels in the SLO 

family. The family of SLO channels includes Slo1 (the “big” potassium (BK) KCa 

channel), Slo2.1 (the Slick KNa channel), Slo2.2 (the Slack KNa channel), and Slo3 (the 

large-conductance pH-sensitive K
+
 channel). Human Kv1.1 was used as the outgroup. 

(h: Homo sapiens; r: Rattus norvegicus; m: Mus musculus; d: Danio rerio; c: 

Caenorhabditis elegans; e: Eigenmannia virescens). B: Expression pattern of E. 

virescens KNa channels in muscle and EO. eSlack1 and eSlack2 were amplified from the 

cDNA of both muscle and EO, whereas eSlick was only amplified from EO cDNA. 

Primers and amplicon sizes are listed in table 1. 
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Fig. 3. Sequence and structure of E. virescens KNa channels. A: Multiple-sequence 

alignment was run by the Clustal W program using the Geneious software. Identical 

amino acids among all five sequences are shaded in brown except the C-terminal tail, 

where residues shared by eSlack1, eSlick, rSlack and eSlick are also highlighted. Gaps 

are represented by dashed lines. In the cytoplasmic N-terminus, identical residues are 

colored in blue. Red residues represent the membrane-spanning domains (S1-6) and the 

pore region (P) of the five KNa channels. Within the pore-forming loop, the conserved 

residues determining the channel’s specific selectivity to K
+
 ions are highlighted with a 

green box. Residues shaded in gray represent the Na
+
 coordination motifs in rat Slack 

and Slick. Residues composing the ATP-binding motif of rat Slick are shaded in 

magenta. Dashed lines indicate gaps. B: Kyte-Doolittle hydrophilicity plot of E. 

virescens KNa channels (window size of 19 amino acids).  C: Schematic representation 

of E. virescens KNa channel subunits. eSlack2 and eSlick have an identical N-terminus 

(blue), which is different from that of eSlack1(red). The C-terminal tail of eSlack2 is 

shorter than that of eSlack1 and eSlick (green). 
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Fig. 4. Expression of mCherry-tagged KNa channels on the plasma membrane of X. 

laevis oocytes. Top panel: Images of X. laevis oocytes expressing mCherry-tagged KNa 

channels taken at the focal plane of the maximal circumference of the cells. Bottom 

panel: Z stack images of X. laevis oocytes expressing mCherry-tagged E. virescens KNa 

channels rendered with maximum intensity projection. 
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Fig. 5. Distribution of KNa channels in electrocytes. A: z stack images of a control 

electrocyte without expressing mCherry-tagged KNa channels. Tissue autofluorescence 

(green) was excited by a 488-nm laser. B-D: Images of electrocytes expressing 

mCherry-eSlack/Slick plasmids revealed that all three types of KNa channel subunits are 

only localized in the anterior region of cells. Images in B1, C1 and D1, acquired using 

an epifluorescent microscope, show a larger field of view. Other images in B-D were 

acquired with a laser-scanning confocal microscope. Images displayed in B2, C2 and 

D2 are single optical sections showing the anterior face from cells expressing 

recombinant KNa channels (red). B3, C3 and D3 are z stack images rendered from the 

serial optical sections shown in B2, C2 and D2.  Merged images of autofluorescence 

(green) and mCherry (red) in C4, D4 and E4 revealed that recombinant KNa channels 

are not expressed on the posterior membrane of electrocytes. White dotted lines indicate 

the boundaries of electrocytes. 
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Fig. 6. Whole-cell recordings of X. laevis oocytes expressing E. virescens KNa 

channels. A: Whole-cell currents recorded when oocytes were depolarized by 400-ms 

voltage steps ranging from -90 mV to +80 mV in 10-mV increments every 5 s from a 

holding potential of -90 mV. B: Current-voltage relationships of oocytes expressing 

eSlack1 (circle; n=13) and eSlick (triangle; n=10) channels. Current amplitude was 

measured as the mean amplitude during the last 30 ms of each pulse, divided by the 

maximal current amplitude. C-D: Activation time constant (τ) of eSlack1 (C; n=13) and 

eSlick (D; n=10) currents was plotted as a function of membrane potential. 

 

 

 

 

 

 

 

 



110 

 

 

 

 

Fig. 7. Comparison between eSlack1 and eSlick whole-cell currents recorded with 

microelectrodes filled with 2 M NaCl or KCl. Oocytes were depolarized by a 500-ms 

pulse to +20 mV from a holding potential of -90 mV every 10 s. A: With both 

microelectrodes filled with 2 M NaCl, whole-cell currents recorded from control 

oocytes (left), oocytes expressing eSlack1 channels (middle), and oocytes expressing 

eSlick channels (right) immediately after impaling the cell (start; black) and after 9 min 

of loading (end; gray). B: Whole-cell currents recorded from the three types of oocytes 

mentioned above immediately after impaling the cell (start; red) and 9 min after (end; 

pink), with both microelectrodes filled with 2 M KCl solution. C: Current amplitudes 

were normalized to the current recorded at “start,” taking the log (base 2). Normalized 

current amplitudes from control cells (left), cells expressing eSlack1 (middle) and cells 

expressing eSlick (right) were plotted against time with 2 M NaCl (black) or KCl (red) 

loaded to the cell. Measurements from 8 cells in each group were analyzed. Standard 

error is shown as gray or pink shading. 
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Fig. 8. qRT-PCR quantification of ion channel genes in EOs from E. virescens with 

different EODf. A-B: The normalized transcription levels of target genes were plotted 

against EOD frequency. A: The transcription levels of eSlack1 (A1) and eSlack2 (A2) 

in the EO were not significantly correltaed with EOD frequency. The transcription level 

of eSlick significantly increased with EOD frequency (A3). B: The transcription levels 

of Nav1.4a (B1), Kir6.2 (B3) and Na
+
/K

+
 ATPase (B4) in EO from fish with different 

EOD frequencies can be fitted by exponential curves. There was no correlation between 

the normalized amounts of Nav1.4b (B2) transcripts in EO and EOD frequency. C: 

Comparison of the mean transcription levels of genes between low (< 300 Hz) and high 

(> 300 Hz) frequency EOs. The average amounts of eSlick, Nav1.4a, Kir6.2 and Na
+
/K

+
 

ATPase in high-frequency EOs were higher than those in low-frequency EOs. There 

was no significant difference in the mean transcription levels of eSlack1, eSlack2 and 

Nav1.4b between high-and low-frequency EOs. Statistically significant differences are  

marked by asterisks: One-way ANOVA, one asterisk, P < 0.05; two asterisks, P < 0.01. 
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Supplementary Fig. 1. Amplification of the target genes and endogenous control β-

actin from EO cDNA of a fish with low EODf and a fish with high EODf. The 

amplifications of β-actin, eSlack1 (A), eSlack2 (B), and Nav1.4b (E) from EO cDNAs 

of fish with high and low EODf look identical. eSlick (C), Nav1.4a (D), Kir6.2 (F), and 

Na
+
/K

+
 ATPase (G) started amplifying and reached the amplification plateau phase 

earlier when using EO cDNAs from a fish with high EODf than EO cDNAs from a fish 

with low EODf. 
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Table 1. Primers used in reverse transcription PCR 

Gene Primers 

(F: forward; R: reverse) 

Amplicon Size 

(bp) 

β-actin 
F  5’-GTATTGTCACTAACTGGG-3’ 

R  5’- CATAGCTTTTCTCCAGAG-3’ 
501 

eSlack1 
F  5’-TGTCTTCCACCTACGAGTGC-3’ 

R  5’-CCTCTCTGATCGACGAAACA-3’ 
1157 

eSlack2 
F  5’-GGGTTCTGCAGATTCCTCTC-3’ 

R  5’-CCTCTGATGACGAGAACACG-3’ 
1881 

eSlick 
F  5’-ATACCCTGTTCGGGATTGAC-3’ 

R  5’-TGTGAACGCAGCTCTTATCC-3’ 
1845 

 

Table 2. Primers used in qRT- PCR 

Gene Primers 

(F: forward; R: reverse) 

Amplicon Size 

(bp) 

β-actin 
F  5’-ATGAGGAAATCGCTGCTCTC-3’ 

R  5’- CCAACAATGGAAGGGAAGAC-3’ 
103 

Nav1.4a 
F  5’-CAGCAAGGACAGAAAGGACA-3’ 

R  5’- CAATGGGCACATTCAGAACT-3’ 
107 

Nav1.4b 
F  5’-AAACTGAAGGAGGAGGAGGA-3’ 

R  5’- CTTTGGGTTCAGGCTCTTC-3’ 
98 

Kir6.2 
F  5’-TGTTACCGACATCCACTCGT-3’ 

R  5’- GCAGACACGCATTCTTCTGT-3’ 
105 

Na
+
/K

+
 ATPase 

F  5’-CAGGAGACCTGGTGGAGATT-3’ 

R  5’- ACTCTCCGGTCAGAGAGGAA-3’ 
105 

eSlack1 
F  5’-AAGAGCATGCACTGGACAAG-3’ 

R  5’- CCTCTCTGATCGACGAAACA-3’ 
108 

eSlack2 
F  5’-GATCCCAATCGGACTGTACC-3’ 

R  5’- CGCACGAGGAACATCAAATA-3’ 
93 

eSlick 
F  5’-ATACCCTGTTCGGGATTGAC-3’ 

R 5’- GGCATATGACTGCAACAACC-3’ 
93 
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Chapter 4: Conclusion and future directions 

The glass knifefish E. virescens generates constant high-frequency EODs for 

navigation and communication. EODs are generated by the synchronous APs of 

electrocytes in the EO, thus the energetic cost of EOD production arises primarily from 

the energy consumed by Na
+
/K

+
 ATPases to restore the ionic gradients after each AP in 

electrocytes (Bean, 2007). The influx of Na
+
 ions during each AP exceeds 10 μA and 

the amount of ATP molecules required by Na
+
/K

+
 ATPases to extrude these Na

+
 ions is 

estimated to be two orders of magnitude more than that estimated for mammalian 

neurons (Attwell and Laughlin, 2001; Howarth et al., 2012; Lewis et al., 2014b). The 

combination of high firing rates and large ionic currents creates extreme energetic 

demand for each electrocyte, and for the EO as a whole. Recent experimental and 

theoretical estimates suggest the cost of EOD production exceeds 30% of the total 

energy budget (Lewis et al., 2014b; Salazar et al., 2013). This work studied the cellular 

and molecular mechanisms that enable the electrocyte’s functional capacity to maintain 

high firing rates while managing the extremely large inward Na
+
 currents by 

investigating electrocyte morphology together with the molecular identity, kinetic 

properties, density and subcellular localization of its ion channels. 

3D reconstructions of E. virescens electrocytes showed that they are large multi-

nucleated cells approximately 1.5 mm in anterior-posterior length and 0.6 mm across on 

both the lateral-medial axis and the ventral-dorsal axis. The posterior region is deeply 

invaginated and vascularized with dense layers of vesicles beneath the membrane, while 

the anterior membrane is relatively smooth, with sparse vascularization and fewer 

vesicles. The dense vascularization occupying the posterior face facilitates the exchange 
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of nutrients and metabolic waste, consistent with the presence of high concentrations of 

mitochondria in the posterior region (Schwartz et al., 1975).  

E. virescens electrocytes initiate the AP with Nav channels and repolarize the AP 

with KNa channels. The expression pattern of ion channels and ion transporters in 

electrocytes is highly compartmentalized. Cholinergic receptors and Nav channels are 

restricted to the posterior membrane, while KNa channels and Kir6.2 channels are 

localized on the anterior membrane. Na
+
/K

+
 ATPases are distributed on both the 

posterior and anterior faces.  

The densely packed vesicles beneath the posterior membrane are likely 

associated with trafficking of Nav channels and Na
+
/K

+
 ATPases through the action of 

ACTH to modulate EOD amplitude following the circadian rhythm (Markham et al., 

2009). The lack of vesicles on the anterior membrane suggests that KNa channels are not 

cycled into and out of membrane in the same manner as Nav channels. These results are 

consistent with earlier studies on the effects of ACTH on the ionic currents of E. 

virescens electrocytes. Application of ACTH increased the amplitude of both Nav and 

KNa currents. The increase of Nav currents was a direct effect of ACTH regulating the 

trafficking of Nav channels; however, the increase of KNa currents was a secondary 

effect caused by the increase in Nav currents (Markham et al., 2013).  

The large inward Na
+
 currents during each AP together with the high firing rates 

create significant demands on the Na
+
/K

+
 ATPases. The invaginations on the posterior 

side provide more membrane surface area for the expression of high densities of Na
+
/K

+
 

ATPases. The extensive posterior membrane would also increase membrane 



116 

capacitance and decrease resistance, which would facilitate current flow during the AP 

(Schwartz et al., 1975).  

KNa channels that repolarize the AP in E. virescens electrocytes have not yet 

been identified in other gymnotiform electric fish in which APs are terminated by 

classical Kv channels. I identified three types of KNa channel subunits, eSlack1 and 

eSlick, closely related to KNa channel subunits in other vertebrates, and a novel subunit 

eSlack2, which is about 100 amino acids shorter. eSlack1 and eSlack2 are expressed in 

both skeletal muscle and EO while eSlick is expressed only in EO. Whole-cell currents 

recorded from X. laevis oocytes expressing these KNa channels revealed that eSlick 

currents activated much more rapidly than eSlack1 currents. eSlack2 could not form 

functional homomeric ion channels, although the subunits could be successfully 

trafficked to the plasma membrane. 

The EOD frequency in E. virescens is individually specific. Using qRT-PCR to 

determine the transcription levels of electrocyte ion channels and Na
+
/K

+
 ATPases 

across fish with different EOD frequencies revealed that the mRNA levels of Nav1.4a, 

eSlick KNa subunit, Kir6.2 and Na
+
/K

+
 ATPase were positively correlated with EOD 

frequency, while the mRNA levels of Nav1.4b, eSlack1 and eSlack2 KNa subunits were 

not correlated with EOD frequency. These results suggest that the expression levels of 

some ion channels in electrocytes are precisely tuned to the cell’s firing frequency. 

Electrocytes are developed from muscle. Most ion channels and ion transporters existed 

in electrocytes are also present in muscle fibers. However, we found Slick KNa channels, 

Nav1.4a, and Na
+
/K

+
 ATPases were predominantly expressed in electrocytes. The 

expression of these three proteins in electrocytes are not only associated with the 
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individual variance in EODf, but also contribute to the increased excitability of 

electrocytes than muscle. 

Previous patch-clamp studies of KNa channels in other taxa suggested that 

channel activation required [Na
+
]i that far exceeds that normally existing in bulk 

cytoplasm (Dryer, 1994). KNa channels in mammalian neurons were suggested to be 

closely clustered with Na
+
 channels that allow localized accumulation of Na

+
 ions 

sufficient to activate KNa channels without increasing [Na
+
]i in the bulk cytoplasm 

(Budelli et al., 2009; Hage and Salkoff, 2012). In contrast, KNa channels in E. virescens 

electrocytes do not require proximal sources of Na
+
 influx, as all three types of KNa 

channel subunit are expressed exclusively on the anterior membrane, separated from the 

Nav channels on the posterior membrane by more than 1 mm (Ban et al., 2015). This 

raises the important question of how KNa channels are activated in electrocytes.  

Two hypotheses have been proposed to explain how KNa channels are activated 

in electrocytes. The first hypothesis assumed the activation of E. virescens KNa channels 

requires highly concentrated Na
+
, just like KNa channels in other vertebrates. During 

each AP or sustained high-frequency firing, electrocytes would experience a significant 

increase in [Na
+
]i in the anterior region, which would be sufficient to activate KNa 

channels. The other hypothesis assumed electrocytes KNa channels to be more sensitive 

to [Na
+
]i than other previously identified KNa channel isoforms. Computational 

simulation of electrocyte APs and Na
+
 dynamics indicated that KNa channels were 

activated by Na
+
 concentrations of approximately 15 mM (Ban et al., 2015). By 

expressing the three KNa channel subunits in X. laevis oocytes, we found eSlack1 and 

eSlick can be activated by intraoocyte Na
+
 concentrations of ~10 mM. These results 
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support the second hypothesis that electrocyte’s KNa channel has a higher sensitivity to 

intracellular Na
+
. 

To fully understand the activation mechanisms of electrocyte’s KNa channels, it 

is necessary to clarify whether the three KNa channel subunits form heteromeric ion 

channels and to examine the Na
+
 sensitivity of E. virescens KNa channels. 

Heterogeneous expression of E. virescens KNa channels in X. laevis oocytes showed that 

eSlack1 and eSlick can form functional homomeric KNa channel and, although eSlack2 

could be successfully expressed on the plasma membrane, it could not conduct currents. 

The difficulty of eSlack2 to form functional KNa channels is probably due to its shorter 

C-terminal tail. To test this possibility in future experiments, eSlack2 chimeras with the 

C-terminal tail replaced by the C-terminal tail of eSlack1 and eSlick could be expressed 

in X. laevis oocytes. The presence of whole-cell currents induced by the expression of 

eSlack2 chimeras would indicate the necessity of an intact C-terminal tail in channel’s 

normal gating properties.       

The other possibility is that the function of eSlack2 requires the presence of 

other KNa channel subunits, eSlack1 and/or eSlick. In mammalian neurons, Slick and 

the Slack-B isoform can form heteromeric KNa channels (Chen et al., 2009).  It is 

impossible to examine the interactions between the KNa channel subunits by purifying 

these proteins directly from electrocytes due to the lack of antibodies specific to E. 

virescens Slack and Slick subunits. The interaction could be characterized by expressing 

recombinant KNa channel subunits fused to peptide tags or fluorescent proteins in X. 

laevis oocytes. One approach would be to express the three types of KNa subunit fused 

to different immunoreactive peptide tags (e.g. His tag, Myc Tag and HA tag) in oocytes 
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and use co-immunoprecipitation and western blot to examine protein interactions. The 

other approach would be to fuse the three types of KNa subunit to cyan fluorescent 

protein (CFP), yellow fluorescent protein (YFP) and red fluorescent protein (RFP), 

respectively, express them together in X. laevis oocytes and perform single-molecule 

imaging with total internal reflection fluorescence (TIRF) microscopy. 

To precisely determine the Na
+
 dependence of electrocyte KNa channels, future 

experiments could use the inside-out patch clamp method to examine the Na
+
 sensitivity 

of each KNa channel subunit that are expressed in X.laevis oocytes. However, the 

channel’s activity as measured in vitro may not mimic its activity in vivo, as the 

channel’s Na
+
 sensitivity may be modulated by other intracellular factors such as NAD

+
 

(Tamsett et al., 2009) and the perfusion saline would not perfectly match the 

intracellular environment. Additionally, if the three KNa  channel subunits assemble into 

heterotetrameric complexes, the heteromeric K
+
 channel may have different kinetic 

properties and Na
+
 sensitivity from homomeric KNa channels. Due to the lack of 

antibodies specific to eSlack2 and eSlick subunit, it is impossible to determine the 

relative density of each subunit in electrocytes, making it extremely hard to mimic the 

composition of KNa channels in an exogenenous expression system. Alternatively, the 

activity of KNa channels can be examined in electrocytes. Fluorescent indicators of Na
+
 

and/or K
+
 could be loaded into a single electrocyte, then high-speed imaging can be 

performed to monitor the temporal and spatial dynamics of [Na
+
]i and [K

+
]i while the 

cell is stimulated to generate high-frequency APs. This approach would not only allow 

studying the activity of KNa channels in vivo, but also would help to determine how ion 
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channels and Na
+
/K

+
 ATPases coordinate to manage the large influx of Na

+
 ions under 

sustained high-frequency firing. 

E. virescens electrocytes generate APs constantly at high frequency ranging 

from 200 to 500 Hz. Some neurons in mammalian brain, such as certain neocortical and 

hippocampal interneurons and neurons in the auditory pathway located in the brainstem, 

are also able to generate APs at very high frequency ( >600 Hz) (Erisir et al., 1999; 

Kaczmarek et al., 2005). Results of the present research will not only contribute to 

understanding of the biophysical mechanisms allowing the generation of sustained high-

frequency firing in electrocytes but also to the understanding of general strategies 

adopted by excitable cells to achieve the fast-spiking phenotype. The bioelectrical 

properties of electrogenic cells such as neurons, myocytes, and electrocytes depend on 

cell morphology and the subcellular localization and functional properties of ion 

channels responsible for AP generation. Among various ion channels, the number and 

characteristics of K
+
 channels have been suggested to be key determinants of spiking 

rate (Faber and Sah, 2003; Few and Zakon, 2007; Massengill et al., 1997). More than 

100 types of K
+
 channel subunits with different biophysical properties have been 

identified to date (Coetzee et al., 1999). Fast-activating K
+
 channels give cells the 

ability to spike quickly (Hasenstaub et al., 2010); for example, fast-spiking cortical and 

hippocampal neurons often incorporate voltage-gated K
+
 channels of the Kv3 subfamily, 

which show fast activation and deactivation kinetics (Erisir et al., 1999; Lien and Jonas, 

2003; Rudy and McBain, 2001). The present study identified the expression of a fast-

activating Slick KNa channels in E. virescens electrocytes and demonstrated the role of 

these channels in supporting the generation of high-frequency APs by showing that the 
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spiking rate of electrocytes is correlated with the transcription level of Slick KNa 

channels but not the transcription level of the slow-activating Slack1 KNa channels. 

Besides functional requirements, minimizing the metabolic cost of AP 

generation is likely another major constraint governing the kinetics and density of ion 

channels (Hasenstaub et al., 2010). K
+
 channels with faster activation kinetics will 

enable higher firing rates, but at the expense of increased energy consumption due to 

the more extensive overlap between the inward Na
+
 currents and the outward K

+
 

currents. E. virescens electrocytes incorporate KNa channels to meet the fast-spiking 

requirement and to minimize the wasteful energy during AP generation. Results from a 

computational simulation to compare the energetic efficiency of model electrocytes 

expressing KNa channels and Kv3.1 channels indicated that KNa channels made the 

generation of 500-Hz APs ~30% more energetically efficient by reducing the overlap 

between the depolarizing Na
+
 and repolarizing K

+
 currents (Markham et al., 2013).  

Molecular adaptations that maximize electrocyte spiking functions while 

minimizing metabolic costs may also occur in other ion channels and transporters, such 

as Kir6.2 channels and Na
+
/K

+
 ATPases. E. virescens electrocytes express Kir6.2 

channels and a type of sulphonylurea receptor (SUR) which belongs to the ATP-binding 

cassette (ABC) superfamily (R. Maltby and M.R. Markham; unpublished data). In other 

systems, the activity of Kir6.2-SUR complex is inhibited by physiological levels of 

ATP, and the channel’s open probability increases as the intracellular concentration of 

ATP falls (Inagaki et al., 1995). The presence of ATP-sensitive Kir6.2 channels in 

electrocytes may form an endogenous protective system to stabilize the cell’s 

bioelectrical properties under energetic constraints. Studies of the molecular evolution 
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of Na
+
/K

+
 ATPases in weakly electric fish suggested the presence of positive selection 

in the α2 subunit of Na
+
/K

+
 ATPase within lineages with higher EOD frequencies (H. 

Riedmann and M.R. Markham; unpublished data). In E. virescens electrocytes, 

approximately 6 × 10
10

 Na
+
 ions enter the cell during each AP. Efficient removal of 

these Na
+
 ions during the 1-2 millisecond interspike interval requires high densities of 

Na
+
/K

+
 ATPases or extremely fast Na

+
/K

+
 ATPases or both. Results of the present study 

showed that higher transcription levels of Kir6.2 and Na
+
/K

+
 ATPase were present in 

electrocytes with higher firing rates. Future studies focusing on the properties of the 

Kir6.2-SUR complex and the consequences of those amino acid substiutions that are 

under positive selection in electrocyte Na
+
/K

+
 ATPases are necessary to fully 

understand the molecular adaptations that maximize electrocyte’s spiking ability while 

minimizing the energetic costs. Discoveries arising from continued investigation of the 

molecular mechanisms of fast-spiking in electrocytes will likely have important 

implications for the mechanisms that balance the metabolic costs with the information 

coding advantage of fast-spiking neurons in central neural systems (Howarth et al., 

2012). 
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