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Abstra
t

In
reased utilization of wide swathes of spe
trum motivate re
eivers with wide

instantaneous bandwidth. Traditional wideband re
eivers inherently have high

data rates that are di�
ult to pro
ess and store, and re
eivers that use multiple

analog to digital 
onverters to a
hieve wide bandwidth have high power usage

and 
ost. Compressive sensing (CS) provides a potential low-data-rate and low-

power solution in environments where only a small portion of the wide spe
trum

monitored is in use at one time, through sub-Nyquist sampling at the informa-

tion rate. The Nyquist Folding Re
eiver (NYFR), proposed by Fudge et al., is

one su
h promising CS ar
hite
ture. This thesis investigates the design trade-o�s

inherent to any NYFR re
eiver. Basi
 appli
ations in
luding pulse dete
tion,

angle of arrival estimation, and pro
essing of 
ommuni
ation signals are simu-

lated. Finally, a prototype re
eiver was used to experimentally demonstrate the


apabilities of a NYFR with an instantaneous bandwidth of 18 GHz while only

sampling at 1.5 GSPS.

viii



Chapter 1

Introdu
tion

In
reasing utilization of large amounts of spe
trum motivates monitoring of wide

bandwidths for appli
ations su
h as 
ognitive radio where empty 
hannels are

identi�ed to more e�
iently use the spe
trum, or for signal dete
tion and 
apture

for signals intelligen
e. Traditional methods of a

omplishing this are expensive

in both pri
e and power usage. Designing analog to digital 
onverters that op-

erate at high frequen
ies is a di�
ult a�air, and even when the ADC portion is

solved, the tremendous amount of data generated requires high throughput to

the pro
essor or large quantities of storage.

Current wideband re
eivers fall largely in two 
ategories. The �rst have multi-

ple re
eive 
hannels, ea
h �ltered to sample a small sli
e of spe
trum, and an ADC

for ea
h. The additional hardware for ea
h 
hannel 
auses high 
ost. The se
ond

are sweeping re
eivers. These move between multiple frequen
y zones, monitor-

ing a wide bandwidth over time with fewer 
omponents. The major drawba
k to

the sweeping re
eiver is that this does not give a wide instantaneous bandwidth;

for example, a frequen
y hopping radar that broad
asts for only a very short time

before 
hanging frequen
ies may get missed as the re
eiver is sweeping through

other frequen
ies.

The modern �eld of 
ompressive sensing gives potential for a re
eiver ar
hi-
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te
ture that solves both the issues of handling large amounts of data and the 
ost

of wide instantaneous bandwidth. Appli
ations of the theory allow for sampling

a wide bandwidth with a single low sample-rate ADC. The Nyquist Folding Re-


eiver (NYFR), proposed by Fudge et al. [1℄, is one parti
ularly promising design

of a 
ompressive sensing system. The NYFR signi�
antly undersamples input

signals 
ausing them to alias su
h that original frequen
ies would normally be

lost, but the NYFR en
odes the original frequen
y as modulation on the input

signals so that all of the original information is preserved. Compressive sensing


on
epts allow for this en
oded frequen
y information to be re
overed, with the

assumption that the original spe
trum was sparse. Fudge developed a model for

a prototype NYFR that uses in-phase and quadrature-phase (I/Q) sampling, and

demonstrated frequen
y re
overy of 
ontinuous wave tones and on-o� key (OOK)

signals.

This thesis provides a model for a NYFR that uses real-valued samples rather

than I/Q data, and adds results from a simulation of the real-valued re
eiver

model used to investigate the trade-o�s inherent to any NYFR ar
hite
ture. The

information given about the trade-o�s potentially enables the sele
tion of op-

erating parameters that are 
loser to optimal for spe
i�
 environments. The

thesis shows su

essful re
overy of pulses and 
ommuni
ation signals on a pro-

totype re
eiver, and notably the re
overed signals have wider bandwidth than

the CW tones and OOK signals demonstrated by Fudge. Finally, this thesis

adds experimental veri�
ation of basi
 appli
ations, su
h as dire
tion �nding and

demodulation of 
ommuni
ation signals.
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1.1 Organization

Chapter 2 begins with a short introdu
tion to 
ompressive sensing that is needed

to understand the underlying theory that allows the re
eiver to work. An overview

of 
ompressive sensing re
onstru
tion algorithms is given. Finally a survey is

given of other 
ompressive sensing re
eiver ar
hite
tures. Chapter 3 goes in detail

on the spe
i�
s of the Nyquist Folding Re
eiver itself, both the system model and

the physi
al implementation. Chapter 4 des
ribes the e�e
t of various design

parameters on the performan
e of a NYFR. Several basi
 appli
ations of the

re
eiver are explored through simulation. Chapter 5 gives experimental results

from a physi
al NYFR prototype, 
on�rming that the simulated appli
ations are

indeed possible in reality. Chapter 6 gives the �nal 
on
lusions, overview of the

work, and potential future resear
h topi
s.

3



Chapter 2

Ba
kground

2.1 Compressive Sensing Theory

First, before going into detail about the NYFR, it is helpful to understand the


on
ept that allows the NYFR to sample far below the Nyquist rate, without,

under spe
i�
 
ir
umstan
es, losing any information. This 
hapter will give a brief

overview of 
ompressive sensing (CS) theory, whi
h is a mathemati
al framework

for sampling a system at the information rate rather than the Nyquist rate. While

the work of Nyquist and Shannon established that sampling at a rate twi
e the

highest frequen
y of a 
ontinuous �nite-bandwidth signal is a su�
ient 
ondition

for re
overing all the information in the signal, this 
ondition is not ne
essarily

the only su�
ient one. Nyquist hinted at the idea that the a
tual information


ontent may only make up a limited portion of an analog signal in his des
ription

of separate intelligen
e 
arrying and inert 
omponents that form telegraph signals

in 1924 [2℄, insinuating that sampling at the Nyquist-Shannon rate may waste

some e�ort on re
overy of the inert 
omponent. However, a method for sampling


loser to the information rate for a general set of 
ir
umstan
es did not arrive until

the modern theory of 
ompressive sensing was developed by Candès, Romberg,

Tao, and Donoho over the 
ourse of 2004 to 2006 [3℄. Compressive sensing added

a mathemati
al framework 
apable of 
al
ulating the lower bound on how many

4



measurements are required to re
over the full information 
ontent of a signal.

Similarities to modern 
ompressive sensing 
an be found in the histori
al use of

the ℓ1-norm in several di�erent �elds, ranging from 
omputational statisti
s to the


reation of seismi
 images in the 1970s from undersampled data [4℄. Algorithms

appli
able to the re
overy of sparse solutions have existed at least sin
e mat
hing

pursuit was formulated in 1993 [5℄.

2.1.1 Compressed Signals

As the name implies, signals that are 
ompressible are 
entral to the 
on
ept

of 
ompressive sensing. If a signal 
an be represented in some ve
tor spa
e by

a small number of linearly independent ve
tors, it has a sparse representation

in some representation basis Ψ. The number of nonzero 
oe�
ients required to

represent the signal is the sparsity k of the signal. Many real world signals are

not stri
tly sparse, but rather are said to be 
ompressible. A 
ompressible signal

has the majority of its energy 
ontained in a small number of 
oe�
ients, su
h

that when most of the 
oe�
ients are approximated as zero the original signal is

still well represented. The level of sparsity of the 
ompressed signal determines

the e�
ien
y of the 
ompressive sampling [6℄.

The mutual 
oheren
e µ of two matri
es is the absolute value of the maximum


ross-
orrelation between any pair of 
olumns from the matri
es, as de�ned by

µ(Φ,Ψ) = max
k,j

|〈φk, ψj〉| . (2.1)

The value of µ is bounded by

1√
n

≤ µ ≤ 1 for a pair of N × N matri
es [7℄.

Now 
onsider some sensing basis Φ that is in
oherent with the representation

basis, that is µ(Φ,Ψ) is minimal. The information in the small number of 
om-

5



pressible 
oe�
ients is spread into many 
oe�
ients in the sensing basis. Ea
h

measurement in the sensing basis re
ords some information about the full sup-

port of the signal in the representation domain. For an illustrative example, a


onstant frequen
y sine wave is sparsely represented as a Dira
 delta in the fre-

quen
y domain, and extends in�nitely in the time domain. It is known by the

Nyquist sampling theorem that in order to re
over the frequen
y 
ontent of any

signal it is su�
ient to sample in the time domain at twi
e the frequen
y of the

highest frequen
y 
omponent. Additionally, if it is known a priori that there is

only a single sinusoid present, then its frequen
y is known after sampling for one

period, not requiring all of the in�nite number of time domain 
oe�
ients to be

sampled. It follows that sampling the entire support of the sensing basis is not a

requirement for sampling the total information 
ontent of the signal.

For a signal that is sparse in the representation basis, a small number of 
om-

pressive samples taken in the sensing basis may be su�
ient to measure all the

needed information. Not every measurement ne
essarily re
ords new information,


onsider for the time-frequen
y domain single sinusoid example if the signal is

being uniformly sampled in the time domain at some rate. If, for example, the

sinusoid's frequen
y is exa
tly a multiple of the sample rate every measurement

will be made at the same point on the sine wave and thus the frequen
y is not

measured. If however the sinusoid is sampled in random points in time, ea
h

measurement will be at a di�erent point on the sinusoid and thus adds new infor-

mation. Random sampling is indeed a popular 
on
ept used in many 
ompressive

sensing systems, as any random matrix is likely to be highly in
oherent with any

representation basis. Random sampling is not the only e�e
tive method though,

as a stru
tured sampling s
heme 
ould be designed to sample at the best points

of the sinusoid, or at least a su�
ient number of them. The Nyquist Folding

6



Re
eiver is su
h a stru
tured sampling s
heme [8℄. The question now be
omes

one of how 
an the original signal be re
overed from these measurements, and

how many measurements are truly needed to identify the original sparse signal.

2.1.2 An Underdetermined Problem

Even though the a
quired 
ompressed measurements 
ontain most of the infor-

mation that the original signal had, the measurements are not useful for most

appli
ations until the original signal in the sparse representation basis is re
on-

stru
ted. This applies to 
ompressed information in general, for example, when

viewing 
ompressed JPEG2000 
omputer graphi
s, the end user does not stare at

stored wavelet 
oe�
ients, instead the image must �rst be de
ompressed to a 2D

grid of 
olours. Re
overy of the original signal from 
ompressive measurements

is not straightforward, as it requires solving an under-determined linear system.

Let zΦ ∈ ℜm
be a ve
tor of m 
ompressed measurements, A ∈ ℜm∗n = ΦΨ be

the measurement matrix, and xΨ ∈ ℜn
be the original signal of length n that is

sparse in Ψ, then

z = Ax (2.2)

is the linear system that is to be solved for x. This is the re
overy of the signal

x from measurements z. As the point of 
ompressive sensing is to take only as

many measurements as are ne
essary to identify the original sparse signal, m < n

measurements are taken, thus (2.2) has in�nitely many solutions. However, it

is known that the original signal is sparse in the representation domain. The ℓ0

norm is the measure of sparsity, the number of non-zero 
omponents of a ve
tor

x. By adding the 
onstraint that the original signal is known to be the most

sparse, a unique solution 
an be found.

7



2.2 Re
onstru
tion Algorithms

If the original signal is know to be sparse, the most straightforward approa
h for

solving the system would be to solve

minimize ||x||0 subje
t to Ax = z (2.3)

by sear
hing through all possible solutions and sele
ting the one that is the most

sparse. This brute-for
e approa
h is not 
omputationally feasible though, as it is

a NP-hard problem. Instead, there are several major families of algorithms that

have been designed to more e�
iently solve for the original sparse signal from the


ompressive measurements [9℄. Some may be better suited to 
ertain problems,

depending on the stru
ture of the signals and the sensing matrix.

The algorithms 
an be broadly grouped into �ve families: greedy iterative,

iterative thresholding, 
ombinatorial, 
onvex relaxation, and non-
onvex mini-

mization. Greedy iterative algorithms solve the linear system in a series of it-

erative steps. First the residual r is set equal to z. Now at ea
h step a lo
ally

optimal, that is greedy, sele
tion of the 
olumn of A that 
orrelates most with

r is made. The 
oordinate of the 
olumn is re
orded as part of the support of

x. The 
ontribution of the 
oordinate to z is estimated and subtra
ted from r,

then the next iteration is performed on the residual. Removing the 
ontribution

of the most highly 
orrelated 
olumn de
reases the least square error with ea
h

iteration. The major 
hanges between di�erent algorithms are the stopping 
ri-

teria and the details of estimating ea
h 
olumn's 
ontribution. In general these

algorithms perform best with signals that are very sparse, with the quality of

re
overy rapidly be
oming worse as sparsity de
reases. The need for very sparse

8



signals 
an 
ause issues in systems with signi�
ant noise, as noise adds additional

non-zero 
oe�
ients in the representation basis; one algorithm 
alled Regularized

Orthogonal Mat
hing Pursuit worked well in the ideal NYFR simulations but had

a mu
h lower su

ess rate on re
overing the frequen
y support from a
tual data

with multiple signals and noise present.

Iterative thresholding algorithms limit the solution set for noisy measurements

with some form of soft or hard thresholding. There are many variations of these

algorithms, with the thresholding fun
tion dependent on the spe
i�
 problem.

After thresholding the solution is found through iteration similar to the greedy

iterative algorithms. Message passing algorithms are a modi�
ation of iterative

algorithms that in
lude additional variables with ea
h iteration, messages, that

are used to speed 
onvergen
e.

Combinatorial algorithms use group testing to re
over the signal. They are


omputationally fast, but require the sensing matrix A to itself be sparse. Thus

they are only useful for very spe
i�
 problems, and the NYFR is not one of

them. While it is shown later that the NYFR sensing matrix 
an be 
onsidered

blo
k-sparse, 
onsisting of blo
ks for ea
h Nyquist zone the system operates on,

the blo
ks themselves are large for any pra
ti
al system with usable baseband

bandwidth.

2.2.1 Convex Optimization

The algorithms that give the best re
onstru
tion quality for the NYFR re
eiver

implementation are in the 
onvex optimization family. If instead of attempting to

minimize the ℓ0 norm dire
tly, we relax the problem to minimizing the ℓ1 norm,

then signal re
overy be
omes a 
onvex problem with the potential for e�
ient

linear solutions. The ℓ1 norm is the sum of the absolute value of the ve
tor

9



ℓ0 ℓ0 < ℓp < ℓ1 ℓ1 ℓ∞

Figure 2.1: Unit sphere with p-norm. The dashed line on ℓ0 gives an example of

a region of feasible solutions.


omponents as de�ned by

||x||1 =
N∑

i=1

|xi|. (2.4)

In addition to being 
onvex, the ℓ1 norm is not smooth, so regularization on it also

promotes sparsity. Convex optimization has broad appli
ation, whi
h has 
aused

it to be
ome a well-studied problem with reliable and e�
ient solutions [10℄. For

a stri
tly 
onvex problem, any lo
al minimum found is guaranteed to also be the

unique, global minimum, giving an obvious advantage over a non
onvex prob-

lem where one 
ould imagine an algorithm might get stu
k in a lo
al minimum

between two hills, not knowing that past the next hill is a better solution.

Figure 2.1 illustrates the 
on
ept of general ℓp norms in two dimensions. In

this 
ase the region of feasible solutions to Ax = b is a 
ontour. The geometry

of the norms are represented by unit spheres in Figure 2.1, that is the plot of

all points for whi
h ℓp=1. Let a unit sphere grow from the origin until it �rst

interse
ts the solution region, then that �rst interse
tion is the minimum-norm

solution. For any solution on the ℓ0 norm, the support is of size one, as the

interse
tion is either entirely on the x or the y axis. Thus the ℓ0 norm is the most

sparse.

There is a
tive resear
h seeking the potential advantages of using ℓp quasi-

10



norms with 0 < p < 1, forming the non-
onvex family of 
ompressive re
onstru
-

tion algorithms [11℄. The 0 < p < 1 is more sparse than the ℓ1 norm as many

solutions have one large and one small 
oe�
ient; it 
an be seen on the �gure

that most interse
tions with the norm will have either a large x or a large y


omponent, but not both. A simple test to see that the norm is not 
onvex is to

attempt to draw a line between two points on the norm without interse
ting the

inside of the norm, this is possible on any pair of points from di�erent axes on

the ℓ0 norm and for many points on the 0 < p < 1 norms, so these norms are not


onvex. Thus the 0 < p < 1 norms are said to further promote sparsity, but are

no longer 
onvex 
ausing more di�
ulty in solving the problem e�
iently.

The ℓ1 norm still promotes sparsity, just to a lesser degree than p < 1, and

is 
onvex. Sin
e the ℓ1 norm is 
onvex, when a lo
al minimum is found, it is

guaranteed to also the global minimum, giving the optimal solution. Thus the

ℓ1 norm is e�e
tive for 
ompressive sensing re
onstru
tion, as we are re
overing

signals that are sparse, and e�
ient algorithms for solving 
onvex problems exist.

Any norm with p > 1 is also 
onvex, but is also a smooth fun
tion with most

interse
tions having both a large x and a y 
omponent, so it is not useful for

promoting sparsity. The �rst interse
tion of the solution region with ℓ∞ has a

support of size two, evenly split between the x and y axes, 
learly not sparse.

The 
on
ept of the two-dimensional unit sphere extends to n many dimensions,

with for example the ℓ0 forming a many dimensional spiky ball for 
ompressive

sensing problems with a large representation basis.

There are three 
ommonly used 
onvex relaxations of the 
ompressive sensing

problem. The �rst is basis pursuit (BP), whi
h is de�ned as

minimize ||x||1 subje
t to Ax = z . (2.5)
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The exa
t solution sought by basis pursuit does not work well for analog mea-

surements 
ontaining noise, so for these 
ases the basis pursuit denoising (BPDN)

formulation is used instead, whi
h is

minimize ||x||1 subje
t to ||Ax− z||2 ≤ σ , (2.6)

where σ gives a toleran
e for how exa
t the solution must be and is usually

derived from an estimate of the noise power. It is worth noting that in most

sampling s
hemes the noise in the original representation basis will be folded into

the smaller number of measurements taken, multiplying the noise varian
e by

n/m, so the noise power 
an be signi�
ant in a real system [12℄. The least ab-

solute shrinkage and sele
tion operator (LASSO) is the �nal 
ommon relaxation.

LASSO pre-dates modern 
ompressive sensing, having originally been 
reated as

a regression analysis method for statisti
s, but is dire
tly equivalent to the BPDN

problem [13℄ as it is de�ned by

minimize ||Ax− z||2 subje
t to ||x||1 ≤ τ . (2.7)

The problem solved for the NYFR is the BPDN one rather than BP, as the goal

is to re
over signals on real hardware with noisy measurements. Additionally,

in 
ompressive sensing literature, the BPDN formulation is more 
ommon than

LASSO.

If x is su�
iently sparse and the sensing matrix A is appropriately designed,

the 
onvex relaxation of the problem will yield the exa
t solution of x. An s-

sparse signal is de�ned as having a support size of s, that is the ve
tor has s many

nonzero elements. Candès introdu
ed the restri
ted isometry property (RIP) as

12



a means to 
hara
terize the quality of the sensing matrix [14℄. For ea
h integer

s = 1, 2, ..., N the restri
ted isometry 
onstant δs of the matrix A is de�ned as

the smallest number su
h that

(1− δs)||x||22 ≤ ||Ax||22 ≤ (1 + δs)||x||22 (2.8)

for all s-sparse ve
tors. Thus, a sensing matrix satis�es the (s,δ)-RIP if the

above 
ondition holds for every s-sparse ve
tor x, and perfe
t re
onstru
tion is

guaranteed via 
onvex relaxation. Various re
onstru
tion guarantees based on

the RIP have also been found for other re
onstru
tion methods [15℄. While this

is a 
ommonly used property, solving the general problem of whether an arbitrary

sensing matrix A satis�es the (s,δ)-RIP is NP-hard.

As 
al
ulating a value for δ is a hard problem for many 
ases, it is 
ommon to

turn to the measure of 
oheren
e between the sensing and representation bases to

predi
t re
onstru
tion performan
e. For the 
ase of ℓ1 optimization with a signal

x ∈ R
n
and a uniform random sampling basis Candès found that the probability

of su

essful re
onstru
tion ex
eeds 1− δ, if

m ≥ C · µ2(Φ,Ψ) · s · log(n/δ) (2.9)

where m is the number of measurements, C is some positive 
onstant, µ is the

mutual 
oheren
e of the two bases, and s is the sparsity of the signal [16℄. This

shows that higher in
oheren
e between the bases or greater sparsity lowers the

ne
essary number of 
ompressive measurements for re
onstru
tion.

The spe
tral proje
ted-gradient SPGL-1 
onvex re
onstru
tion algorithm in

parti
ular was found to give high re
onstru
tion performan
e with low 
omputa-

13



tional time for the NYFR system [17℄. The spe
i�
 formulation that solves the

BPDN problem is used as there is signi�
ant noise in the NYFR 
hain. Mu
h

of the 
onvergen
e speed of the SPGL-1 algorithm is due to its exploitation of a

Pareto frontier [18℄. When there are two or more variables being optimized, the

Pareto frontier is the 
urve formed by the set of values where one variable 
an-

not be improved without harming the other variable. As the BPDN problem is


onstrained by both ||x||1 and ||Ax−b||2, a Pareto frontier is formed by the two

norms. The authors prove that this Pareto 
urve is 
ontinuously di�erentiable,

enabling the use of a Newton root-�nding algorithm to solve a non-linear equation

des
ribing the 
urve. This approa
h gives a fast iterative algorithm that outputs

a small sear
h spa
e of optimal solutions. The se
ond innovation of the algorithm

is an optimized method of performing least squares minimization with orthogonal

proje
tions of ve
tors on a 
onvex set. This proje
tion algorithm is extended to


omplex ve
tors, and thus useful for re
overing signals in the frequen
y domain.

2.3 Sampling Paradigms

So far the mathemati
al 
on
ept of 
ompressive sensing has been dis
ussed, but

not how CS systems are realized in hardware. As a random sensing basis gives

a low level of 
oheren
e with any other basis, random sampling s
hemes are a

popular method of implementing a 
ompressive sensing system. Perhaps one

of the most popular examples of su
h a system is the Ri
e single-pixel 
amera.

An array of digitally 
ontrolled mi
ro mirrors are randomly �ipped on or o� to

re�e
t random linear 
ombinations of light onto a single CCD sensor. A set of

these single-pixel measurements is solved for the random sequen
e used and the

wavelet domain 
ompressed image is re
onstru
ted.

The goal of the NYFR is to perform analog-to-information 
onversion at low

14



sample rates. There are several systems that use di�erent sampling s
hemes to

meet the same goal. Most 
ompeting systems use a random sensing matrix as

opposed to the NYFR's stru
tured sensing matrix.

The Random-Modulation Pre-Integrator ar
hite
ture was demonstrated with

2 GHz of instantaneous bandwidth and a 320 MS/s sample rate. The RMPI mod-

ulates the input signal with a pseudorandom binary sequen
e (PRBS), integrates

the output of the modulator, then samples at a low rate. A potential limitation is

that the PRBS generation and mixing must o

ur at the Nyquist rate. Su

essful

re
onstru
tion of two 450 ns pulses with di�erent 
arrier frequen
ies that overlap

in time has been shown [19℄.

Northrop-Grumman's Non-uniform Sampler samples at random time intervals

with a nonuniformly 
lo
ked sample-and-hold 
ir
uit [20℄. An 8192-bit PRBS


ontrols the sample times. The instantaneous bandwidth is 2.2 GHz, and a low-

sample-rate ADC samples at 230MS/s. Experiments su

essfully re
onstru
ted

GSM signals with a bit error rate under 10−5
.

The Modulated Wide-band Converter multiplies an input signal with a bank

of periodi
 waveforms before low pass �ltering and sampling at below the Nyquist

rate [21℄. This ar
hite
ture is an implementation of the Xampling s
heme [22℄.

The bank of modulators aliases di�erent parts of the spe
trum, from the entire

Nyquist range, into the baseband. To a
hieve a 
ertain performan
e level, this

s
heme has a trade-o� between the sample rate of ea
h 
hannel and the number

of 
hannels.

The above sampling paradigms for analog signals are all limited in that either

some system 
omponents still have to operate at the Nyquist sampling frequen
y,

spe
i�
ally to generate the PRBS, or multiple re
eive 
hannels are required, in-


reasing power requirements and 
ost. The NYFR does not have these 
on-

15



straints; the highest frequen
y that must be generated is only slightly higher

than the sampling 
lo
k, and only a single re
eive 
hain is required.

16



Chapter 3

Nyquist Folding Re
eiver

Now that a brief overview of 
ompressive sensing has been given, this 
hapter will


over the hardware of the Nyquist Folding Re
iever (NYFR) and the CS model

that links the NYFR's sampling and representation bases. In 2008 Fudge et al.


onsidered a 
ompressive sampling s
heme that would use stru
tured non-uniform

sampling rather than random sampling for re
overy of signals that are sparse in

the frequen
y domain [1℄. Random sampling s
hemes require some 
omponents

to operate at the high frequen
y Nyquist rate of the signals, whereas a non-

uniform sampling s
heme 
ould potentially be realized with only 
omponents

at the Nyquist rate of the baseband. If a signal is undersampled, below the

Nyquist rate, it will alias to some lower frequen
y and thus information on the

original frequen
y will be lost. However, the original stru
ture of the signal will

be largely preserved, as long as the sampling rate is higher than the bandwidth

of the signal. The NYFR en
odes the original frequen
y information onto the

aliases of input signals, in su
h a way that 
ompressive sensing 
on
epts 
an be

used to re
onstru
t the original inputs 
ompletely.

A prototype system was built with experimental results and a matrix model

for the 
ompressive sensing equation published in 2012 [8℄. In depth information

about Fudge's prototype hardware is not provided however, and the model is not

17
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Figure 3.1: Basi
 blo
k diagram for one NYFR 
hannel.

dire
tly usable for the system used in this thesis. In parti
ular Fudge's model

uses a 
omplex in-phase and quadrature-phase representation with an ADC that

provides I/Q data. How the NYFR hardware manipulates input signals naturally

leads to the model des
ribing the system, so �rst we give a detailed des
ription

of the prototype re
eiver hardware.

3.1 Hardware Implementation

A high-level blo
k diagram of the prototype NYFR re
eiver is shown in Figure 3.1.

A Tektronix arbitrary waveform generator (AWG) is used along to generate the

referen
e lo
al os
illator signal sLO(t). Use of the AWG gave �exibility in exper-

imenting with additional modulation patterns and parameters. In a produ
tion

system, a 
heaper devi
e that only requires 
omponents operating up to the de-

sired baseband sampling rate 
ould be used to generate the modulated LO signal.

Inside the harmoni
 mixer, a step re
overy diode is used to 
reate a very nar-

row, high-bandwidth pulse on ea
h positive zero 
rossing of sLO(t). Figure 3.2

illustrates the pulse generation for a 
onstant-frequen
y LO and a frequen
y-

modulated LO. Let sLO(t) be a real sinusoid sin(ωLOt), then the ideal approxi-
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Figure 3.2: Narrow pulses are generated on the zero 
rossings of the LO port.

The lower plot shows how the frequen
y of pulse generation varies along with a

frequen
y-modulated LO.

mation of the diode output is by a train of Dira
 delta fun
tions

∆(t) =
∞∑

k=−∞

δ(t− kT ) (3.1)

with T being the period of sLO(t). The Fourier transform of a pulse train is a
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omb fun
tion with a spike at the harmoni
s of ωLO su
h that

∆(ω) =

∞∑

k=−∞

δ(ω − kωLO) . (3.2)

In real hardware the amplitudes of the higher harmoni
s roll o�, as the pulses

generated by the mixer are not ideal impulse fun
tions, limiting the useful band-

width of the devi
e. The HL9313 mixer used for the re
eiver has a nominal 3 dB

bandwidth of 15 GHz. Thus the nonideal mixer 
reates pulses with some shape

p(t), so that the pulse train takes the form

∆(t) = (

∞∑

k=−∞

δ(t− kT )) ∗ p(t) , (3.3)

and has a spe
trum de�ned by

∆(ω) = P (ω)
∞∑

k=−∞

δ(ω − kωLO) (3.4)

where P (ω) drops by 3 dB at approximately 15 GHz.

The pulse train is then mixed with the RF input port. As the RF input

sRF (t) mixes with ea
h 
omponent of ∆(t), 
opies of the input are 
reated at

ωRF ± kωLO. Thus, the harmoni
 mixer is e�e
tively sampling sRF at ea
h zero


rossing whi
h 
auses aliasing harmoni
s of the of the mixer's sample rate, ωLO.

The 
opy at baseband with a frequen
y less than

sLO
2

is the 
opy produ
ed by

the harmoni
 
losest to the original frequen
y.

Now let the sLO(t) be a real frequen
y modulated sinusoid 
entered at ωLO

with phase modulation θ(t)

sLO(t) = sin(ωLOt+ θ(t)) (3.5)
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and θ(t) a sinusoidal modulation de�ned as

θ(t) =
F∆

Fmod
sin(2πFmodt) . (3.6)

For the hardware implementation used in this thesis, ωLO is 1.5 GHz. A

ording

to the Dira
 s
aling property [8℄, the non-uniform pulse train generated in the

harmoni
 mixer takes the form

∆̃(t) = ϕ′(t)
∑

k

2πδ(ϕ(t)− 2πk) (3.7)

where ϕ = ωLOt+ θ(t). The identity 2π
∑

k δ(t− 2πk) =
∑

k e
jkt

is then used to

rewrite (3.7) as

∆̃(t) = (ωLO + θ′(t))
∑

k

ejk(ωLOt+θ(t)) . (3.8)

Considering that the modulation is narrowband su
h that |θ′(t)| << ωLO, (3.8)


an be approximated by

∆̃(t) ≈ ωLO

∑

k

ejk(ωLOt+θ(t)) = ωLO

∑

k

ejkωLOtejkθ(t) . (3.9)

The ejkθ(t) term shows that modulating the frequen
y of sLO(t) spreads the spe
-

trum of the pulse train harmoni
s, with the amount of spread in
reasing as the

magnitude of the harmoni
 number k in
reases. Thus ea
h harmoni
 has a unique

pattern en
oded on it. Figure 3.3 shows the pulse train spe
trum for su
h a mod-

ulated pulse train with a peak frequen
y deviation F∆ of 4 MHz. Figure 3.4 shows

the spe
trum of a pulse train for a higher frequen
y deviation, F∆=15 MHz. The

energy 
ontent of ea
h harmoni
 is spread out over a wider range of frequen
ies.
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Figure 3.3: Simulated spe
trum of the pulse train inside the harmoni
 mixer for a

sinusoidal sLO(t) with a F∆ of 4 MHz. As the frequen
y in
reases the amplitude

of the harmoni
s drop with P (ω), and the energy of the higher harmoni
s is

spread out over a wider frequen
y range.

The sele
tion of F∆ requires a performan
e trade o� that will be examined in

depth later in the thesis. Note that the typi
al peak frequen
y deviation F∆ used

throughout this thesis is 4 MHz unless otherwise stated.

Next, let there be a real, narrowband RF input signal with a 
enter frequen
y

at ωRF and phase φ

x(t) = cos(ωRF t+ φ) . (3.10)
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ies than the equivalent harmoni
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The harmoni
 mixer output then be
omes

y(t) = x(t)∆(t) ≈
∑

k

cos(ωRF t + φ)ejkωLOtejkθ(t) . (3.11)

The output of the harmoni
 mixer is followed by an anti-aliasing �lter. Let

this low pass anti-aliasing �lter (LPF) have a 
uto� frequen
y of

1

2
ωLO, and

let kH be the harmoni
 in the Fourier series of the impulse train that satis�es

0 ≤ |ωRF −kHωLO| ≤
1

2
ωLO, in other words kHωLO is the harmoni
 
losest to the
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input RF frequen
y. The output of the LPF is then

z(t) = cos((ωRF − kHωLO)t+ φ)ejkHθ(t) . (3.12)

It is 
lear that the 
opy of the RF input passed by the �lter is the produ
t of only

the harmoni
 
losest to ωRF . Re
all that ea
h harmoni
 has a unique frequen
y

spread from the sLO(t) modulation. This means the resulting mixer and �lter

output for two 
opies of an input signal, whi
h are identi
al ex
ept for having


arrier frequen
ies from di�erent Nyquist zones, are unique even if the inputs

fold to the same baseband frequen
y. Sin
e information on the original frequen
y

support is preserved even though the input signal is aliased, it is possible to

re
onstru
t the original signal. Figure 3.5 illustrates this 
on
ept. The �gure

plots the simulated output spe
trum for a 9.2 GHz 
ontinuous-wave (CW) RF

input and a sinusoidally modulated sLO(t). Examination of the plotted spe
trum

shows that no two harmoni
 produ
ts are identi
al, and only a single produ
t is to

the left of the LPF 
uto� frequen
y, thus the original zone is uniquely identi�ed.

The spe
trogram in Figure 3.6 shows a simulation of the mixer and �lter output

for a 3.5 GHz and 9.2 GHz tone with a sinusoidal modulated sLO(t) with F∆=15

MHz. The 9.2 GHz tone is 
learly modulated over a wider frequen
y range.

For a non-ideal system the 
areful 
onsideration of the frequen
y response

of the LPF must be made. The ideal 
ut-o� in Figure 3.5 passes the desired

harmoni
 produ
t without any attenuation, while perfe
tly blo
king the harmoni


produ
ts from the wrong Nyquist zones. The a
tual �lter used in this NYFR

implementation has a 
uto� frequen
y fc of 750 MHz, half the sampling rate

of the system. If there is non-negligible attenuation at half the sLO(t) 
enter

frequen
y, as is the 
ase with the re
eiver prototype, then the re
eiver will have
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Figure 3.5: Output spe
trum of the harmoni
 mixer for a 9.2 GHz tone RF input

blind-spots at all multiples of

fLO
2

. Any signal that folds to a frequen
y 
lose

to

fLO
2

will be attenuated below the noise �oor. The blind zone issue 
an be

mitigated by using two 
hannels with di�erent sampling frequen
ies 
hosen su
h

that the two resulting blind zones never o

ur at the same frequen
ies throughout

the desired bandwidth of the re
eiver, but this obviously leads to higher system


ost.

On the other hand, if the LPF 
uto� is set to a higher frequen
y, or the �lter

order is low 
ausing the frequen
y roll-o� of the �lter to be less steep, su
h that

frequen
ies higher than

fLO
2

are not attenuated enough, unwanted aliases from

harmoni
s outside of the RF signal's original Nyquist zone will be passed by the
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Figure 3.6: Spe
trogram of the simulated harmoni
 mixer and LPF output for a

3.5 GHz and 9.2 GHz tone RF input. For simple RF input 
ases the spe
trogram

may be used to visually estimate the original input frequen
ies. The sLO(t)
used is sinusoidal modulation with F∆ =15 MHz and Fmod=5 MHz. As the


enter frequen
y of sLO(t) is fLO =1.5 GHz, the Nyquist rate baseband has a

bandwidth of 750 MHz. The 9.2 GHz tone folds to 3.5 GHz - 6·1.5 GHz=200

MHz, and the 3.5 GHz tone folds to 500 MHz. The 
ompressed 9.2 GHz signal

deviates 6 ·F∆=90 MHz from the 200 MHz 
enter. The period of the modulation

is 0.2 µs due to the Fmod of 5 MHz.

�lter. As the unwanted harmoni
 produ
ts in the output are indistinguishable

from a true input signal, they may lead to false positives during re
onstru
tion

of the input. General re
onstru
tion performan
e is also lowered by the false

positives, as now the signal being re
onstru
ted is less sparse.

The next 
omponent in the re
eive 
hain is an ampli�er. As the harmoni


mixer spreads the energy of signals from higher zones a
ross the spe
trum, am-

pli�
ation is required to mat
h to the dynami
 range of the analog to digital


onverter (ADC). Then another low pass �lter is used to remove spurious prod-
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Figure 3.7: Real valued 
ompressive sensing matrix model for the NYFR imple-

mentation.

u
ts from the ampli�er. Finally the re
eiver output is sampled at 1.5 GS/s by a

Red Rapids Model 276 ADC with 12-bit resolution. Three of these PCIe 
ards are

hosted in a Linux PC with MATLAB used to pro
ess the output of the prototype

three 
hannel NYFR.

In order to mat
h the 
ompressive sensing model with the physi
al hardware,

the phase of the modulation indu
ed on the RF signal, and thus the starting phase

of sLO(t) must be known. The phase o�set between the start of an ADC 
apture

and the sLO(t) generated by the AWG is 
ontrolled by triggering both the ADCs

and the AWG with a multi
hannel digital pulse generator. The delay between the

ADC trigger and AWG trigger was experimentally adjusted to a

ount for the

delay of the whole system, in
luding the delays between the triggers and a
tual

a
tion and the phase response of the re
eive 
hain. In a produ
tion system, this

timing and phase must also be a

urately known.

3.2 Compressive Sensing Model

Now a CS model of the measurement pro
ess performed by the hardware is needed

to enable re
onstru
tion of the original RF input from the 
ompressed re
eiver
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output. The real-valued signal model for the hardware used by this thesis is

developed in [23℄. Figure 3.7 shows the full model. The 
ompressed measurements

z are 
aptured by the ADC in the time domain. R is a set of identity matri
es

that proje
t Z number of Nyquist zones onto a baseband of K samples.

The 
onjugate symmetri
 diagonal matrix S 
ontains the modulation indu
ed

on ea
h zone as a fun
tion of time. As shown in Se
tion 3.1 when given a

frequen
y-modulated sLO(t) the harmoni
 mixer spreads the input signal over a

range of frequen
ies, with the spread in
reasing for higher harmoni
s of sLO(t) and

thus higher frequen
y input signals. The modulation indexM = 0,−1, 1, 2,−2, ..., Z

is the parameter that uniquely de�nes the original frequen
y of the 
ompressed

signals giving an output with a peak frequen
y deviation MF∆. The sign of the

modulation is set by whether the signal is from the upper or lower sideband,

and negative modulation is shifted 90 degrees from the positive modulation. The

modulation index depends on the Nyquist zone of the RF input frequen
y fRF ,

giving the pattern

M(fRF ) =






0, for fRF <
fLO
2

−1, for

fLO
2

< fRF < fLO

1, for fLO < fRF <
3fLO
2

−2, for

3fLO
2

< fRF < 2fLO

.

.

.

.

.

.

−Z, for

(2Z − 1)fLO
2

< fRF < ZfLO

Z, for ZfLO < fRF <
(2Z + 1)fLO

2

. (3.13)

Thus S is also said to be split into two 
onjugate symmetri
 blo
ks for ea
h zone,


onsisting of the time modulation pattern 
ommon to all zones modi�ed for that
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parti
ular zone's value of M .

Ψ is a blo
k diagonal matrix with ea
h blo
k 
onsisting of the inverse dis-


rete Fourier transform (IDFT) matrix for one sub-band. The IDFT blo
ks are

split into upper and lower side-bands in order to mat
h the sign of the indu
ed

modulation. Finally X is the 
omplex-valued dis
rete Fourier transform of the

full-bandwidth signal. The full model is an under-determined equation, as only

R, S, Φ, and z whi
h is shorter than X are known. The system samples in the

time domain and represents the signal in the frequen
y domain. The two bases

are in
oherent, whi
h is optimal for 
ompressive sensing. The equation may be

solved for X with CS algorithms if X is sparse and z 
onsists of a su�
ient num-

ber of measurements that have low 
oheren
e. The assumption that the original

frequen
y spe
trum is sparse limits re
overy of signals with very wide bandwidth,

espe
ially those wide enough to �ll the whole baseband.

Figure 3.8 shows the results of using the 
ompressive sensing model with a


onvex re
overy algorithm to re
over the original frequen
ies for the inputs show

in Figure 3.6. The original frequen
ies of the two CW tones are 
orre
tly re
ov-

ered. Note that these inputs �t the assumption of a sparse frequen
y spe
trum.

For 
ases with wide-bandwidth signals, espe
ially ones wide enough to �ll the

baseband de�ned by ADC's low sample rate, re
overy of the spe
trum will fail

as the sparsity assumption is no longer true. The left panel Figure 3.9 shows an

LFM 
hirp that starts at 2.3 GHz and ends at 3 GHz, having signi�
ant band-

width 
ompared to the sample rate. The right panel shows the failed spe
trum

re
overy. It is worth noting, however, that the 
hirp is still sparse in frequen
y

over a small period of time, thus for short enough time windows, re
overy of some

kinds of LFM signals is still possible. Additionally, a CS model using a di�erent

basis 
ould potentially be found, for example a di
tionary of various expe
ted
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Figure 3.8: Output of the SPGL-1 
onvex re
overy algorithm ran on the simulated

inputs from Figure 3.6 for the CS model given in this 
hapter. Both of the input

frequen
ies, 3.5 GHz and 9.2 GHz, are 
orre
tly re
overed. Thus the CS model

is shown to work for a sparse 
ase with s = 4.


hirp signals, then this example input would have a sparse representation in that

basis. Now that it has been shown that the sparsity of the spe
trum 
an 
ause

re
onstru
tion to fail, the RIP will be used in order to get an idea of what number

of measurements or level of sparsity is su�
ient for re
onstru
tion.
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Figure 3.9: The simulated re
eiver output for wideband LFM 
hirp starting at 2.3

GHz and ending at 3 GHz is plotted in the left panel. The right panel shows the

ideal spe
trum of the 
hirp, and the attempted re
overy of the spe
trum through


onvex optimization. Re
overy is not su

essful as the input 
hirp is not sparse

in the basis used for the CS model.
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3.2.1 RIP Analysis

As mentioned in Chapter 2, the restri
ted isometry property 
an be used to

establish whether a sensing matrix is guaranteed to exa
tly re
over x for a sparsity

level s. Of 
ourse, the di�
ult 
omputation is determining δs for a matrix. By

the de�nition of the RIP, the problem of �nding the RIP 
onstant is equivalent

to �nding the signal x that is s-sparse and gives the largest value of δs

||Ax||22 = (1± δs)||x||22. (3.14)

Additionally the spe
tral norm-deviation of x is de�ned as

δs(x) =

∣∣∣∣∣
||A∗

Λ(x)Ax||2
||x||2

− 1

∣∣∣∣∣ (3.15)

where Λ(x) is the support of x [24℄. The spe
tral norm of x is the maximum

singular value of x. Finding δs is then equivalent to �nding the maximum value

spe
tral norm-deviation of all possible 
ombinations of x.

Determining δs exa
tly for a given s would require examining all possible val-

ues x 
an take with a support size of s, whi
h is 
learly not feasible. Instead Fudge

et al. 
onsider what should be the worst 
ase for the NYFR system, frequen
y-

bin-
entered tones at frequen
ies that fold to the same baseband frequen
y [24℄.

First, the system is 
onsidered as if there no zone-dependent modulation indu
ed.

Without modulation, it is impossible to distinguish between two signals that orig-

inate from di�erent Nyquist zones but fold to the same frequen
y, whi
h is the

worst 
ase. By de�nition the worst 
ase gives the maximum value of δs(x), whi
h

is then also the restri
ted isometry 
onstant of A for any s-sparse signal. Fudge

shows that for 
ases where aliased, bin-
entered frequen
ies do not fold to the
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same 
ompressed bin, δs is identi
ally zero, and establishes a lower bound of one

for folds to the same bin.

A RIP 
onstant of one or greater does not guarantee su

essful re
onstru
tion

for any algorithm. This leads to an alternative 
onsideration of how often these

worst 
ases will o

ur. If the original signal x 
onsists of s 
ontinuous-wave

(CW) tones that have a uniform probability of originating from any parti
ular

frequen
y bin in the re
eiver's bandwidth, then it follows that the probability

of δs(x) being identi
ally zero, guaranteeing re
onstru
tion, is the probability of

any two of the tones aliasing to the same baseband frequen
y-bin, whi
h is found

through a short derivation to be

P (δs(x)) =

(
fLOT − 1

fLOT

)s!/(2(s−2)!)

(3.16)

where T is length in se
onds of the re
onstru
tion window. For the values most


ommonly used for the implementation of the NYFR in this thesis, fLO=1.5

GHz and T=1 µs, whi
h gives a probability of 0.9993 of su

essful re
overy of

any spe
trum 
ontaining two signals with a high-signal-to-noise ratio (SNR). Of


ourse, in a real environment the distribution of signals a
ross the spe
trum is

far from uniform, and rarely will a signal be a bin-
entered CW tones, so this

result is of limited utility.

Next, we extend this 
onsideration of the worst 
ase to the NYFR system

that indu
es a zone-dependent modulation. Consider two signals that fold to the

same 
ompressed 
enter frequen
y. The further away the original Nyquist zones

are, the more their modulation di�ers and thus the less 
orrelated they are. The

worst 
ase will be when the two signals are highly 
orrelated; that is, when they
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are from adja
ent zones. An upper bound for δs was then 
al
ulated in [24℄ to be

δs ≤ sC

√
1

F∆T
(3.17)

where C is some 
onstant that must be empiri
ally found for a parti
ular modula-

tion pattern. In general it 
an be 
on
luded that for a high-SNR 
ase, in
reasing

the peak frequen
y deviation of sLO(t) or in
reasing the number of measurements

will improve the level of sparsity that is guaranteed to be re
onstru
ted. As the

exa
t performan
e bound of the NYFR is di�
ult to derive mathemati
ally, su
h

that the 
urrent literature requires C be empiri
ally found, a useful step for de-

signing the system was the 
reation of a simulation based on the hardware. The

simulation was then used to qui
kly �nd values for adjustable parameters su
h

as the sLO(t) modulation pattern that should later give reasonable performan
e

for the hardware prototype.
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Chapter 4

Simulation

This 
hapter will detail results found through the use of a MATLAB simulation

of the NYFR system. The simulation enabled analysis of some of the design 
on-

straints inherent with the NYFR ar
hite
ture, eventually leading to a reasonable

set of parameters that were used with the re
eiver prototype. The simulation

was designed to mat
h the operation of the harmoni
 mixing hardware. Short

pulses are generated on the zero 
rossings of the simulated sLO(t), and mixed

with simulated input signals. The bandwidth of the mixer is modeled as having

the -3 dB point at the 15 GHz harmoni
. The LO 
enter frequen
y is 1.5 GHz.

An a

urate simulation of the harmoni
 mixer behavior is su�
ient to model the


ompressive sensing performan
e. The other 
omponents of the system are only

simulated for the ideal 
ase: the digital LPF used to simulate the analog LPF

after the harmoni
 mixer output has a signi�
antly sharper 
uto� at 750 MHz

than the �lter used in the hardware implementation, and other loss in the system


omponents su
h as the limiters and ADC quantization loss are not 
onsidered.

4.1 Frequen
y Re
overy

The e�e
ts of several system parameters on the ability to re
over the frequen
y

support of narrowband input signals are analyzed in order to obtain optimal re-
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onstru
tion performan
e. The design of the LO sampling waveform is of parti
u-

lar interest. For the 
ase of indu
ing the sinusoidal frequen
y modulation de�ned

in (3.6) on the RF input by modulating the phase of the LO waveform, the peak

frequen
y deviation F∆ and the modulation rate Fmod must be sele
ted. F∆ in-

volves a trade-o� between re
overing low-power signals in higher Nyquist zones

and the ability to determine the 
orre
t origination zone. In
reasing Fmod allows

for re
overy of shorter pulses by in
reasing the in
oheren
e of the small number of

measurements taken during the short pulse, but the maximum modulation rate is

limited by phase noise. Both parameters limit the dynami
 re
onstru
tion range

of the system.

4.1.1 Sele
tion of Peak Frequen
y Deviation

In
reasing F∆ de
reases the 
orrelation between 
ompressed signals in adja
ent

Nyquist zones, thus making it easier for 
ompressive re
onstru
tion algorithms to

identify the 
orre
t zone. However, in
reasing F∆ also spreads the energy 
ontent

of the input signal over a wider frequen
y range, eventually 
ausing the signals at

higher zones to fall below the noise �oor. Thus a trade-o� must be made between

the probability of sele
ting the 
orre
t Nyquist zone and the signal-to-noise ratio

(SNR) requirements of a pra
ti
al system.

Figure 4.1 shows the results of a Monte Carlo simulation for the probability of

su

essful re
onstru
tion versus SNR for signals in the �rst seven Nyquist zones.

F∆ is set to 4 MHz. Ea
h trial 
onsists of randomly generating a single input

frequen
y with added white noise, attempting to re
over the frequen
y support

with the SPGL-1 solver, and �nally 
lassifying the re
onstru
tion as su

essful if

the energy in the bins 
ontaining the original frequen
y is greater than 80% of the

maximum re
onstru
ted frequen
y bin. The two frequen
y bins surrounding the
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random frequen
y are summed in order to handle 
ases where the frequen
y does

not exa
tly �t on the simulation grid. This approa
h does allow a re
onstru
tion

with a limited number of false positives to still be 
lassi�ed as su

essful. Forty-

eight trials were performed for ea
h zone and SNR step. The re
onstru
tion

performan
e de
reases rapidly as the spe
trum of the modulated input signal

falls into the noise �oor. The SNR requirements for re
onstru
tion grow at an

in
reasing rate as the modulation index in
reases.

Now 
onsider that signals that fold to the same baseband frequen
y, with all

things identi
al other than the original zone, are still somewhat similar as the

same modulation pattern is applied to ea
h. The 
oheren
e between identi
al

signals from di�erent zones is not zero. In the most extreme 
ase of F∆=0 Hz,

the mutual 
oheren
e is one, and whi
h zone the signal originally 
ame from may

not be determined. An important e�e
t 
aused by the modulation patterns for

ea
h zone not being 
ompletely in
oherent is that when 
onvex optimization is

performed to re
over a signal at a frequen
y fRF , spurious values appear in the

re
onstru
tion at fRF ± fLO. The highest magnitude spurs are always in the

zones to either side of the 
orre
t one, as these zones have the least di�eren
e

in modulation pattern and thus have the highest 
oheren
e with the true zone.

Algorithm families su
h as iterative thresholding make the 
oheren
e issue less


lear, as they stop iterating after re
onstru
ting a sele
ted number of the highest

magnitude 
oe�
ients rather than optimizing the whole signal basis, and the

weaker fRF ± fLO will often fall below the threshold for re
onstru
tion, but there

is still a nonzero probability that an in
orre
t Nyquist zone will be sele
ted.

A se
ond Monte Carlo simulation was performed to �nd the relative levels

of the adja
ent Nyquist zones versus F∆. Thirty-two simulations per F∆ step

were performed for a 
onstant RF input with frequen
y fRF on the simulation
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Figure 4.1: Results of Monte Carlo Simulation for the re
onstru
tion of random

frequen
ies in ea
h Nyquist zone versus SNR. Trials are ran for seven Nyquist

zones ea
h with a 
orresponding modulation index M = ±1,±2, ...,±7. For

ea
h trial, a CW tone is randomly sele
ted with uniform probability from the

frequen
y range of the 
urrent zone. AWG is added to the generated input to

give a spe
i�
 SNR. Re
onstru
tion is then performed for ea
h trial. The number

of re
onstru
tions that 
orre
tly identify the random tone is used to estimate

the probability of su

essful re
onstru
tion at various SNRs for ea
h zone. As

the SNR de
reases, the modulated harmoni
 mixer output falls below the noise

�oor, 
ausing re
onstru
tion to fail. As the energy of input signals from higher

Nyquist zones is spread out over a wider frequen
y range a

ording to MF∆,

high frequen
y signals require a higher SNR for the 
ompressed output to remain

above the noise �oor.
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frequen
y grid with an SNR of 40 dB. Peak frequen
y deviations of sLO(t) were

stepped through from 0.5 MHz to 6 MHz with a 
onstant Fmod of 5 MHz. The

mean relative level of the peak side zones is plotted in Figure 4.2. It 
an be seen

that the side-zone levels are de
reasing as the peak frequen
y deviation in
reases.

This intuitively makes sense, as the higher the peak frequen
y deviation, the less


orrelated di�erent zones are.

To illustrate the relation between Fmod and F∆, the simulation is performed

again with an Fmod of 10 MHz and plotted in Figure 4.3. In
reasing the mod-

ulation rate without also in
reasing the underlying sampling rate of the system


auses there to be fewer measurements at ea
h intermediate sampling frequen
y.

Fewer measurements lowers the re
onstru
tion performan
e of the system, rais-

ing the side-zone levels. Thus the sele
tion of F∆ is a trade-o� that depends on

the required attenuation of the side-zones, the modulation rate, and the needed

sensitivity of the system to low-power signals in the higher Nyquist zones.
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Figure 4.2: Mean relative level of the spurs from adja
ent zones for di�erent

peak frequen
y deviation values. As the same signal, ex
ept for originating in

di�erent Nyquist zones, is not perfe
tly in
oherent, the re
onstru
tion of the

original signal X appears to have nonzero 
omponents at the fRF ± nfLO where

n is integer multiples of fLO. In
reasing F∆ de
reases the 
oheren
e of the zones

with ea
h other. The zones to either side of the zone the signal truly originates

from, the "side-zones", have the least di�eren
e in modulation pattern and thus

are the most likely to be re
onstru
ted with signi�
ant false magnitude. A CW

input of 9.2 GHz with added AWGN for an SNR of 60 dB is used for ea
h trial.

Trials are ran for ea
h value of F∆. The mean of all side-zone power levels,

in
luding both adja
ent zones, are plotted.
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Figure 4.3: Relative level of the adja
ent zones for di�erent modulation frequen
y

deviation values, with the modulation rate set to 10 MHz. A CW input of 9.2

GHz with added AWGN for an SNR of 60 dB is used for ea
h trial. Trials are

ran for ea
h value of F∆. The mean of all side-zone power levels, in
luding both

adja
ent zones, are plotted.
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4.1.2 Re
onstru
tion Dynami
 Range

For a pra
ti
al 
ase where there is not a priori knowledge of the number of signals

or their power levels, some dis
ussion must be made of how to sele
t a threshold

to determine whether there is an a
tual signal lo
ated at a frequen
y in the

re
onstru
ted spe
trum, or just a spurious re
onstru
tion or noise. One simple

method is to set a minimum amplitude threshold for a re
onstru
ted signal to be


onsidered a true signal. However when the original input had multiple signals

of varying power levels, sele
ting whi
h signals are truly present be
omes more

di�
ult.

As the magnitudes of side-zone harmoni
s, dependent on the sele
tion of Fmod

and F∆, 
an be signi�
ant, the side-zones limit the dynami
 range of the system

when performing re
onstru
tion. As the 
onvex optimization is not guaranteed to

determine exa
tly the original zone of a signal, shown in Se
tion 4.1.1, harmoni
s

of the signal will appear at freconstructed ± fLO with a power level relative to the

original signal power. If one signal sour
e has a signi�
antly higher power than

another sour
e, the re
onstru
ted harmoni
s of the �rst signal may also have

a higher power than the se
ond sour
e. If the threshold for signal dete
tion is

set relative to the strongest re
onstru
tion, in order to ignore the harmoni
s,

dete
tion of the se
ond sour
e will fail. An example for three CW tones of

unequal power at 3.5, 3.65, and 3.8 GHz is shown in Figure 4.4. The signals are

all lo
ated in the same zone, in order to ignore any a�e
ts from the frequen
y

spread in
reasing with higher zones. The signal at 3.8 GHz has the highest power,

at 80 dB above the noise �oor, 3.65 GHz is 20 dB above, and 3.5 GHz is 30 dB

above. The side harmoni
s of the 3.8 GHz tone are higher for the 10 MHz Fmod


ase than the 5 MHz 
ase, as expe
ted. Indeed they are higher than the re
overed
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Figure 4.4: The re
onstru
tion dynami
 range is limited by the harmoni
s lo
ated

in the zones to either side of the strongest signal. In the top �gure the higher value

of F∆ 
auses the average magnitude of the side-zone harmoni
s to be lower, su
h

that in this example all original signals are re
onstru
ted above the harmoni
s.

In the bottom �gure F∆ is de
reased, raising the side-zones of the strongest signal

above the 
orre
t frequen
ies of the other two signals, 
ompli
ating identi�
ation

of the signals present.
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tones at 3.65 GHz and 3.5 GHz tones, so a simple thresholding method would

either give false positives or false negatives.

There is a potential for more intelligent dete
tion methods to alleviate this

e�e
t. An iterative method 
ould sele
t the strongest re
onstru
ted signal, sub-

tra
t that signal and the predi
ted harmoni
s from the re
onstru
ted spe
trum,

then repeat until the strongest dete
tion is below some threshold that is sele
ted

from the re
eiver noise �oor. This method would have a few drawba
ks, however,

as this 
ould 
ause the presen
e of a real, but weak, signal that is lo
ated at a

harmoni
 of the one strong signals to not be dete
ted. This method also be
omes

more fragile in the presen
e of signals with signi�
ant bandwidth, as the band-

width must be estimated before subtra
ting the harmoni
s. The performan
e of

this method will be shown in Chapter 5.

4.1.3 Phase A

ura
y Requirement

The question of how 
lose the phase of the sensing matrix used for re
onstru
tion

must mat
h the phase of the measurements should be 
onsidered, in order to be

informed of the timing requirements for a real system. A single simulated CW

tone in the 16-17.5 GHz Nyquist zone mat
hing the highest zone of the physi
al

prototype, is input into the harmoni
 mixer along with a sinusoidal sLO(t) with

the modulation θ(t, τ) = F∆

Fmod

sin(2πFmodt + τ). The mixer output for various

values of phase drift τ is then re
onstru
ted via a sensing matrix assuming τ = 0.

This pro
edure simulates the unknown alignment between the sLO(t) generator

and the start of an ADC 
apture in a the real system. The results for F∆=4 MHz

and Fmod=5 MHz are plotted in Figure 4.5.

There is a sharp transition between su

essful and failed re
overy at the same

delay for both the ROMP greedy iterative thresholding algorithm and the SPGL-
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Figure 4.5: Simulation performed to test how 
losely the phase of the CS model

and the 
ompressive measurements must mat
h in order to get su

essful re
overy.

One hundred trials were performed for ea
h time delay, generating a CW tone

in the highest Nyquist zone with added AWGN. The estimated probability of

re
overy is plotted. For the tested LO parameters re
overy fails when there is a

di�eren
e of approximately 4.25 ns between the model and measurements.

1 
onvex optimization. In
reasing the slope of the modulation by in
reasing the

modulation rate or peak deviation de
reases the misalignment at whi
h re
on-

stru
tion fails. Depending on the sele
ted LO parameters, this 
onstraint is not

too di�
ult to meet; for the values used for the majority of the experiments per-

formed with the hardware prototype, the timing must remain within only 4.25 ns


ompared to the modulation period of 0.2 µs.
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4.2 Re
overy of Pulses

The re
overy of pulses is of interest as few signal sour
es in the real world are


onstant-frequen
y tones. Digital 
ommuni
ation systems transmit in bursts as

needed, and in several s
hemes only transmit part of the time to allow other

devi
es to share the same frequen
y. Frequen
y hopping radar is another inter-

esting signal sour
e, espe
ially sin
e existing swept frequen
y re
eivers will miss

some of the pulses. If the duration of a pulse is long enough for the system to


apture a number of in
oherent measurements to satisfy the RIP, re
onstru
tion

performan
e is the same as that of a CW tone. A pulse length requirement of

greater than one LO modulation period was dis
overed to be a general rule of

thumb for there to be measurements taken with low enough 
oheren
e for su
-


essful re
overy. In
reasing Fmod de
reases the 
oheren
e of ea
h measurement in

the pulse, allowing re
onstru
tion of a shorter pulse where only a small number of

measurements may be taken, but as noted in Se
tion 4.1.1 there is also a negative

e�e
t in that in
reasing Fmod raises the side-zone magnitudes. Figure 4.6 shows

an example of two simulations for a pulse length three mi
rose
onds shorter than

half a modulation 
y
le and for a pulse length equal to half the modulation 
y-


le. The underlying sampling rate of the system de�ned by fLO and the ADC

sampling rate limits the shortest pulse than 
an be re
onstru
ted as well, sin
e

the sample rate obviously limits the number of measurements of the pulse that

are taken. Figure 4.7 shows an example of re
onstru
tion of three pulses, ea
h

lasting more than one modulation period. With three pulses in the re
onstru
tion

window, intermodulation produ
ts also appear in the re
onstru
tion.

As 
ontinuous re
onstru
tion is 
omputationally expensive, to the point that

with 
urrent te
hnology it is di�
ult to s
ale up to real-time pro
essing, it is
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Figure 4.6: Simulated re
onstru
tions to show an example of the pulse length

requirements for su

ess. The top �gure has a pulse length equal to one LO mod-

ulation period, giving it a su�
ient number of measurements with low 
oheren
e

for su

essful re
onstru
tion. The bottom �gure has the same pulse ex
ept now

it is three mi
rose
onds shorter, giving it fewer in
oherent measurements. The

smaller number of measurements 
auses the re
onstru
tion to be noti
eably less


lean.

useful to examine alternatives. Rather than intensive pro
essing of either large

time windows or many windows, it is faster to only perform re
onstru
tion on

small time windows that may 
ontain new signals of interest. Classi
al pulse

dete
tion te
hniques, su
h as those used for radar, are useful for time lo
alization,

allowing a fast re
onstru
tion to be performed to identify the original frequen
y

support only when the signals present 
hange. It is later shown in Se
tion 4.5 that

knowledge of the frequen
y support 
an be used to demodulate the 
ompressed

data, arriving at the original signals of interest. This three-step s
heme 
an redu
e
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Figure 4.7: Simulation and re
overy of three pulses of varying duration at 2.415,

2.8, and 4.82 GHz with an SNR of 20 dB. The left pane shows the re
overed

spe
trum, with the frequen
y support of all three pulses 
orre
tly identi�ed. The

right pane shows a spe
trogram of the simulated 
ompressed pulse data.


omputational 
ost for re
overy of pulses or bursty 
ommuni
ation signals. This

method is limited by how e�e
tive the pulse dete
tion method is, and the shortest

duration that is re
onstru
tible is set by the sele
tion of Fmod. As high values

of Fmod are both limited by phase noise and the required dynami
 range of the

re
onstru
tion, there is a pra
ti
al limit on the minimum pulse length.

Constant False Alarm Rate (CFAR) is used for su
h an example of pulse

dete
tion prepro
essing. CFAR is used in radar to determine whether range 
ells

from time series data 
ontain targets, with the goal of providing a 
onstant rate
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of false alarm [25℄. The time data is split into several 
ells. Then the 
ells are

iterated over, with the 
urrent 
ell being the 
ell under test (CUT). Referen
e


ells on either side of the CUT are used to estimate the power level of noise and

interferers in order to adaptively set a threshold for dete
tion. For radar, often

guard 
ells are a small number of ignored 
ells in between the CUT and referen
e


ells, used to ensure returns from the target in the CUT does not e�e
t the noise

power estimation, but for the NYFR we're using the CFAR te
hnique to dete
t

the presen
e of a new pulse and the guard 
ells are not needed. The threshold

is set above the noise power estimated from the referen
e 
ells, so that there is a


onstant rate of false alarm 
al
ulated from the probability of noise in one sample

ex
eeding the threshold. The adaptive threshold 
auses 
ontinuous signals and

short pulses to only be dete
ted on
e, as after the dete
tion the threshold raises

above the new power level, and long pulses are dete
ted on
e near the beginning

and ends of the pulse as the power level of the NYFR output 
hanges. The system

must wait until the referen
e 
ells after the CUT arrives before the threshold 
an

be 
al
ulated, so CFAR will add some laten
y to the system.

A simulation is 
reated that has one CW tone present at 11.5 GHz, and a

pulse-gated tone at 7.4 GHz with a pulse duration of 1 µs. The probability of

false alarm is set to 10−6
. The CFAR output dete
ts a time 
lose to the 
enter of

ea
h pulse and is plotted in Figure 4.8. The plot of the threshold in
reases as ea
h

pulse begins and de
reases as the pulses end. For ea
h 
ontinual set of 
ells that

all ex
eed the threshold, the 
enter 
ell marks the beginning or end of a pulse and

is plotted on the �gure as dete
tions. A short 0.4 µs re
onstru
tion window is


reated for ea
h dete
tion, aligned with the start of the modulation period prior

to the pulse 
enter. The re
onstru
tion output for one of the dete
ted pulses is

shown in Figure 4.9. This method works well for any 
ase where the total power
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Figure 4.8: Constant False Alarm Rate dete
tion is used to dete
t pulses. The

top �gure pane displays the spe
trogram of the simulated input. A CW tone

is present at 8.35 GHz in order to show how CFAR sets the threshold when a

signal is present for the whole 
apture, and four pulses of di�erent frequen
ies

and duration are simulated. The bottom panel shows the CFAR output. The

blue line tra
ks the total power of the NYFR output at that time. The other line

plots the threshold adaptively set by CFAR. The 
ir
les mark the pulse dete
tions

that are used to sele
t windows of the 
ompressed data for re
onstru
tion.

in the RF spe
trum 
hanges when any signals of interest start or stop; the one

weakness is that if the next pulse starts immediately when the previous one ends,

and has nearly the same power level, the 
hange will not be dete
ted. A more


omplex dete
tion method that also takes into a

ount the baseband frequen
y

as well, possibly a wavelet based method, would handle su
h a 
ase.
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Figure 4.9: One of the pulses is dete
ted by CFAR then the frequen
y support

is re
overed with a short re
onstru
tion window. Both the CW tone that is

present throughout the whole 
apture and the dete
ted pulse's frequen
y are

re
overed. The pulse frequen
y was re
overed without performing re
onstru
tion

for the entire 100 µs simulation, signi�
antly lowering the number of 
omputations

performed.
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Figure 4.10: Real valued 
ompressive sensing matrix model for 
ombining mea-

surements from multiple 
hannels.

4.3 Multi
hannel Re
overy

Measurements from multiple re
eiver 
hannels may be 
ombined in the re
overy

step, 
apturing more samples in the same time period and thus improving re-


onstru
tion performan
e. Expanding the 
ompressive sensing model to in
lude

this is simple; the data from ea
h 
hannel may simply be appended together as

shown in Figure 4.10. The matrix R be
omes a blo
k diagonal matrix, with one

blo
k for ea
h 
hannel. The time modulation matrix S is expanded verti
ally for

ea
h 
hannel, allowing for di�erent modulation patterns for ea
h 
hannel. The

remainder of the model is the same as for the single-
hannel 
ase. If identi
al

modulation is used for two ideal 
hannels with perfe
tly syn
hronous timing then

the measurements will be the same, adding no information to the system. In

reality the timing will never be perfe
t, so the measurements will be di�erent,

but as shown earlier in the single-
hannel 
ase, if signi�
ant phase di�eren
es are

not a

ounted for in the sensing model, re
onstru
tion will fail. Instead, di�erent
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Figure 4.11: Results for re
overy using only the 
hannel with sinusoidal modu-

lation and for re
overy using also the measurements from the 
hirp modulated


hannel. The dual 
hannel 
ase re
overs all of the input frequen
ies, while the

single-
hannel misses eight of them. As predi
ted the RIP, in
reasing the number

of low 
oheren
e measurements used for re
overy improves the re
overy perfor-

man
e, allowing for full re
overy in less sparse environments.

modulation s
hemes 
an be applied to ea
h sLO(t) to guarantee that the 
hannels

add unique information.

By the RIP it is known that additional in
oherent measurements should allow

re
onstru
tion of less sparse signals. A simulation of two 
hannels is 
reated.

One 
hannel has sinusoidal modulation with Fmod= 5 MHz and F∆= 4 MHz.

The se
ond 
hannel is modulated with a linear up
hirp with a rate of 6 MHz and

0.2 µs period. One hundred frequen
y-bin-
entered CW tones of equal power

are simulated as input. SPGL-1 is used to re
onstru
t the spe
trum over a 0.5

µs window. The results for re
overy on only the sinusoidal 
hannel and on the

53




ombined 
hannels are plotted in Figure 4.11.

If for this 
ase su

essful re
overy is de�ned optimisti
ally as the original

frequen
y bin being re
overed with greater than one per
ent of the original am-

plitude, the single-
hannel 
ase re
overs 92% of the tones. The dual 
hannel

re
overy for di�erent modulations, giving twi
e the e�e
tive number of measure-

ments, re
overs 100% of the tones. Qualitatively the top panel is a 
leaner re
on-

stru
tion as well. Thus, it is shown that for an ideal multi
hannel system, if the


hannels indu
e di�erent modulation on sLO(t), the re
onstru
tion performan
e


an be improved.

Additionally, the same inputs are re
overed with measurements from two


hannels that both use the sinusoidal modulation from earlier. One 
hannel is de-

layed by 1.3 ns to simulate the imperfe
t timing mat
h a real system would have,

making the measurements from ea
h 
hannel slightly di�erent while still being

within the phase a

ura
y requirements established in Chapter 3. Figure 4.12

displays an example of the re
overy. This 
ase of 
ombining two identi
ally mod-

ulated 
hannels also re
overs 92% of the tones, just as if only a single-
hannel

were used, showing that 
ombining measurements from multiple 
hannels using

an identi
al sLO(t) makes little di�eren
e on re
onstru
tion performan
e.
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Figure 4.12: Results for re
overy using 
ombined measurements from two 
han-

nels that both have the same sinusoidal modulation. Eight input signals are

missed, just as in the single-
hannel 
ase, demonstrating that 
ombining mea-

surements from multiple 
hannels does not have a signi�
ant e�e
t on re
overy

performan
e if the measurements from the two 
hannels have high 
oheren
e.

Taking nearly identi
al measurements in multiple 
hannels adds no new informa-

tion to the system.
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Figure 4.13: Blo
k diagram of the two element NYFR array used for dire
tion of

arrival estimation.

4.3.1 Dire
tion of Arrival Estimation

One advantage of the stru
tured sampling approa
h of NYFR is that it allows

for simple implementation of existing dire
tion of arrival (DOA) te
hniques, as

long as the same modulation is applied to two or more 
hannels. It should also

be noted that joint estimation of both frequen
y and dire
tion of arrival without

prior information about either is an a
tive area of interest [26℄[27℄. The basi


DOA estimation for multiple sour
es problem assumes that the frequen
ies of the

signals arriving at the antenna array are known [28℄. Common solutions in
lude

the MUltiple SIgnal Classi�
ation (MUSIC) te
hnique and the ESPRIT algorithm

for uniform linear arrays. MUSIC is applied to frequen
y estimation in [29℄. The

narrowband MUSIC te
hnique has been extended to wideband 
ases [30℄. The

NYFR provides a promising solution for sparse RF environments. Figure 4.13

gives the blo
k diagram of a two-
hannel NYFR system whi
h is a linear array.

Let sRF (t) be a narrowband real signal cos(ωct+φ). The sLO(t) with sinusoidal
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d

α

Figure 4.14: Geometry of antenna array for DOA estimation.

modulation that is des
ribed in Chapter 3 is used for both 
hannels. The output

of the �rst harmoni
 mixer and LPF is given in (3.12).

Now the geometry for a uniform linear array with elements separated by a

distan
e d meters is shown in Figure 4.14. The narrowband plane wave sRF1(t)

is in
ident on the array at an angle α. Let sRF1(t) arrive at element 1 at time t,

then the signal in
ident at element 2 is the time delayed sRF1(t − τ) = sRF2(t).

From the geometry it is derived that the time delay τ between the signal arriving

at the two elements is

τ =
d sin(α)

c
. (4.1)

The se
ond harmoni
 mixer samples the time delayed sRF2(t), giving

y2(t) = y1(t− τ) ≈
∑

k

sRF2(t)e
jnH(ωLOt+θ(t))e−jτ . (4.2)

The modulation indu
ed by the harmoni
 mixers is independent of the time delay

at ea
h element. This means that CS re
onstru
tion 
an be applied using the

same measurement matrix for either digitized 
hannel to re
over the frequen
y

support. The re
overed 
enter frequen
y also gives the wavenumber

2π

λ
. Sin
e

57



equal modulation has been indu
ed on ea
h signal, they are simply delayed 
opies

of ea
h other allowing traditional dire
tion of arrival estimation te
hniques to be

applied without demodulating the 
hannels.

Capon Minimum Varian
e Distortionless Response (MVDR) beamforming is

implemented for a reasonable tradeo� between 
omplexity and resolving power.

The MVDR power spe
trum is de�ned as

P (φ) =
1

aH(φ)R̂−1a(φ)
(4.3)

where a is the array manifold and R̂ is the sample 
ovarian
e matrix. It must

be 
onsidered that the original signal frequen
y may not exa
tly align with the

re
onstru
tion frequen
y grid. Error in estimating the original frequen
y also in-

trodu
es error to the angle of arrival estimation. To improve the angle estimation

performan
e, an angle-frequen
y spe
trum is 
reated by 
al
ulating the MVDR

power for the re
overed frequen
y ±10 KHz. The peak power from the spe
trum

is then used as a re�ned angle estimate.

A simulation for a three element ULA spa
ed by 1.5 
m is 
reated with three

CW sour
es: 6.02 GHz at −65◦, 4.44 GHz at 0◦, and 8.52 GHz at 42◦. The

sour
e frequen
ies are 
orre
tly identi�ed by re
onstru
tion with one element.

The output of the MVDR-based DOA estimation is shown in Figure 4.15. The

signals are estimated to be at −69.5◦, −0.516◦, and +44.0◦, all 
lose to the 
orre
t

angles.

It was shown earlier that using two or more 
hannels with di�erent modula-

tion patterns adds additional in
oherent measurements, allowing for faster 
on-

vergen
e to the original sparse solution. However, multi
hannel re
onstru
tion is

not fully 
ompatible with using multiple 
hannels for dire
tion �nding. Spe
i�-
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Figure 4.15: Output of dire
tion of arrival simulation. The jointly estimated

frequen
ies and angles are all 
lose to the ideal ones.


ally, the phase di�eren
e between the 
hannels 
onne
ted to di�erent antennas

will 
ause the 
urrent system model and 
ompressive sensing solvers to fail when

the time delay between the signal arriving at ea
h antenna be
omes signi�
ant.

The NYFR CS model solves for the 
omplex-valued DTFT of the original sig-

nal. The system is not just solving for the magnitude of the frequen
y spe
trum,

but also the phase. When an RF signal impinges on an array, there is a phase

di�eren
e between the 
opy at ea
h 
hannel that is exploitable for dire
tion �nd-

ing. This phase di�eren
e means that the 
orre
t solution for a signal that is to

be re
onstru
ted for one parti
ular 
hannel is an entirely di�erent solution from

the 
orre
t one for a separate 
hannel. Now if the measurements from the two

di�erent 
hannels were 
ombined, based on the CS model, they give 
on�i
ting
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information on what the original signal was, lowering re
onstru
tion performan
e

or 
ausing it to fail. There is an additional 
ompli
ation in that when di�erent

modulations are applied to two 
hannels they must be demodulated before being

used for angle estimation, as the 
hannels are no simply time delayed 
opies.

The most straightforward to implement solution to have both dire
tion �nd-

ing 
apabilities and improved re
onstru
tion performan
e from multiple 
hannels

would be to use a three 
hannel system, with two phase mat
hed 
hannels with

di�erent modulation patterns pro
essing the input of one antenna, and the third

providing the angle of arrival estimation with a se
ond antenna. However, this

obviously has the downside of higher 
ost. There is some potential to apply al-

gorithms that promote group sparsity or blo
k sparsity to the 
hannels, in whi
h


ase the solution that separately is the most sparse for ea
h 
hannel is found.

Another alternative would be the 
reation of a phase independent representation

basis.

4.4 Communi
ation Signal Re
overy

Another advantage of the stru
tured sampling approa
h of NYFR has over sys-

tems with a random sampling matrix is the 
apability to re
over the original

signals with a simple demodulation operation, whi
h is more spe
i�
ally termed

as de
ompression. When the original 
arrier frequen
y of a signal is identi�ed,

the modulation applied by the harmoni
 mixer is also known. Demodulating the


ompressed data using the known Nyquist zone gives the original, de
ompressed,

signals that were present in that zone.

Another ni
e property is that signals from other zones that fold onto the

same 
ompressed frequen
y remain frequen
y modulated. Consider that there

is one parti
ular signal of interest, and we want to ignore all other signals, so
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the other signals are unwanted interferes. The frequen
y deviation be
omes

(Mi − Mdemod)F∆ where Mi is the original modulation index of an unwanted

interferer and Mdemod is the modulation index for whi
h the data is being de-


ompressed. Thus for an interfering signal with the same modulation sign as the

signal of interest, that is an interferer that originates from the same of either

the upper or lower zone sidebands, the interferer's frequen
y deviation in
reases

for ea
h zone between it and the signal of interest. For signals from the other

sideband, with the opposite modulation sign, the 
loser the zones are, the further

energy is spread. The important takeaway is that any interfering signals that

alias to the same frequen
y still have their spe
trum spread, e�e
tively whitening

the interferers and thus improving the SNR of the parti
ular signal of interest.

A simulation is performed for a random QPSK bitstream. For this exer
ise, 10

symbols are generated at a modulation rate of 5 Msym/s, and AWGN is added to

simulated RF input to have an SNR of 30 dB. To simulate interferen
e from other

signal sour
es, two other RF inputs of equal power, one a CW tone at 8.4 GHz,

M = −6, and the other a FM modulated signal with a bandwidth of 44.1 KHz

at 9.6 GHz, M = 6, are generated. The QPSK signal has a 
arrier frequen
y

of 2.4 GHz, M = −2, whi
h aliases to 600 MHz. The two interfering signals

fold down to the same alias at 600 MHz. The left panel of Figure 4.16 shows

the spe
trogram of the 
ompressed and digitized output of the re
eiver. All ten

symbols are present in the plot. As the QPSK signal is in the lower Nyquist zone,

it 
an be visually identi�ed as the signal with the lowest peak frequen
y deviation

out of the three signals. Additionally, the one-sided power spe
tral density of the


ompressed and de
ompressed NYFR output is plotted in Figure 4.17.

Re
onstru
tion is performed with SPGL-1 to identify the signals present and

their 
arrier frequen
ies, with the result shown in Figure 4.18. The re
onstru
tion
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Figure 4.16: The left panel 
ontains the spe
trogram of the 
ompressed QPSK

signal with interferers. The QPSK signal is from the lowest zone, and as su
h

appears as the signal around 600 MHz with the lowest peak frequen
y deviation.

The right panel shows the spe
trogram of the data that has been de
ompressed

for the Nyquist zone that the 
ompressed QPSK signal originates from. The

QPSK signal now appears as a straight line at 600 MHz, as the zone dependent

frequen
y modulation has been removed from it.
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trum. Note
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ompressed QPSK signal.
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Figure 4.18: Re
onstru
tion of the frequen
y support of the QPSK signal and

two interferers. All three frequen
ies are re
onstru
ted.

identi�es that there is a signal at 2.4 GHz, in the se
ond Nyquist zone. At this

point the 
ompressed data 
an be demodulated for this zone of interest. In a

produ
tion system it would likely be ne
essary to demodulate ea
h zone and

side-band that the re
onstru
tion reports as having a signal, in this example the

three at M = −2,−6, 6, as whi
h signals are parti
ularly interesting might not

be known.

The demodulation is then performed a

ording to

zdemod,M (t) = z(t)e−jMθ(t)
(4.4)
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where θ(t) is the sinusoidal modulation de�ned in Chapter 3, with an Fmod of

5 MHz and an F∆ of 10 MHz. The demodulation operation has low 
omputation


ost as it it simply element-wise multipli
ation of two ve
tors, and ea
h zone


an be demodulated and pro
essed in parallel, so de
ompressing multiple zones

should not present any throughput issues in a real system. In this 
ase we are

interested in the QPSK signal, so the de
ompressed spe
trogram for the M = 2

zone is plotted on the right of Figure 4.16. Upon 
omparison of the two spe
-

trograms in Figure 4.16, it 
an be 
learly seen that the frequen
y spread of the

interfering signals is in
reased after de
ompression, as the right panel shows that

the frequen
y deviation of the 9.6 GHz interferer is in
reased to 11F∆.

In a produ
tion system, a priori knowledge of expe
ted 
ommuni
ations pro-

to
ols, or some algorithms to determine the s
heme, would be needed. For this

simulated 
ase, with a priori knowledge of the bandwidth of the QPSK, and the


enter frequen
y re
overed by the re
eiver, a digital FIR bandpass �lter is dy-

nami
ally 
reated with the passband at frecovered± 5 MHz and used to isolate the

de
ompressed data. The QPSK 
ommuni
ation signal itself is then demodulated,

with assumption of prior knowledge of the symbol timing and phase. Figure 4.19

plots the 
onstellation diagram of the demodulated signal. The symbols are well

de�ned, even with the added interferen
e from the two overlapping RF signals

of equal power. This simple re
overy of the original 
ommuni
ation signal dis-

plays the advantage of the stru
tured sampling performed by the NYFR, largely

preserving the original stru
ture of measured signals.
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Figure 4.19: Constellation diagram for a simulated QPSK signal with the sim-

ulated re
eiver output de
ompressed for the QPSK signal's original zone. The

two interferers that alias to the same 
enter frequen
y have little e�e
t, as the

demodulated QPSK symbols are 
losely grouped into the four states that were

transmitted. Thus the NYFR 
an potentially 
apture 
ommuni
ations signals

even if multiple signals with bandwidth fold to the same frequen
y.
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Chapter 5

Experimental Results

Now that examination has been made of the trade-o�s inherent in the design of

sLO(t), and simulations have been performed showing several potential appli
a-

tions of the system, in this 
hapter we will 
on�rm these �ndings on a physi
al

NYFR prototype. For testing single 
hannel frequen
y re
overy, the simulations

show that F∆=4 MHz and Fmod = 5 MHz should be a reasonable trade-o� be-

tween the re
onstru
tion dynami
-range, the probability of re
onstru
ting high

Nyquist zones, and a minimum re
onstru
table pulse duration of 0.2 µs, thus

re
onstru
tions of CW tones and pulses using these parameters will be demon-

strated. First dire
t stimulation of the harmoni
 mixer input port will be shown,

then later over-the-air (OTA) 
aptures with a broadband antennas are given. The

ability to use multiple 
hannels for in
reased re
onstru
tion performan
e and di-

re
tion of arrival estimation will be tested. Finally an OTA 
ommuni
ation signal

will be de
ompressed and demodulated.

The 
omplete experimental setup for testing the prototype re
eiver is pi
tured

is pi
tured in Figure 5.1. The arbitrary waveform generator used for sLO(t) is at

the bottom of the ra
k on the left, and host PC is to the right with the timing

pulse generator sitting on top. The prototype re
eivers are on top of the ra
k

that holds the AWG. Three 
opies of the re
eiver were pa
kaged in two 
ases to
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Figure 5.1: Full experimental setup with test equipment.

keep the 
ontents prote
ted but easily a

essible.

5.1 Hardware Chara
terization

In order to measure the a
tual frequen
y response and useful bandwidth of the

re
eiver 
hain, an automated testing suite was 
reated in MATLAB. A CW tone

with no modulation was generated at 1.5 GHz and fed into the LO port. Using

a 
onstant LO allowed the frequen
y response of the system to be measured

separately from the magnitude roll-o� 
aused by the usual spe
trum spreading

of higher Nyquist zones. A waveform generator 
ontrolled by MATLAB was

atta
hed to the RF input port and swept from 0 Hz to 18 GHz in in
rements

of 10 MHz. At ea
h step, a 10 ms ADC 
apture is taken and the PSD was
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Figure 5.2: Frequen
y response of a single NYFR 
hannel for F∆ = 0. The blind
frequen
ies 
aused by the anti-aliasing �lter appear at ea
h multiple of 750 MHz.

The roll-o� of the harmoni
 mixer is visible in how the zones, ea
h 
entered about

multiples of 1.5 GHz, are attenuated at the higher frequen
ies.

estimated in MATLAB. The bin for the down
onverted input RF frequen
y was

then re
orded. The resulting measure of the frequen
y response for one of the


hannels is pi
tured in Figure 5.2. The roll-o� and not
hes 
aused by the low

pass �lter at 750 MHz 
learly delineate the sub-bands of ea
h Nyquist zone. The

frequen
y response in ea
h sub-band due to the two LPFs is far from �at; it

would likely be useful in many situations to digitally 
orre
t for this. The ADCs

themselves have about 1dB of attenuation at 750 MHz as well. The roll-o� of

harmoni
s generated by the harmoni
 mixer is shown by the weaker response to

higher Nyquist zones. The goal for the re
eiver was to 
over a range from 1.5

GHz to about 16 GHz. The 10 dB attenuation of signals in the higher frequen
y

range did not prevent re
overy of high frequen
y over-the-air signals that were
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high power, but if weak signals are to be monitored, it should be improved.

5.2 Single-Channel Re
overy

In the early stages of experimenting with the re
eiver, many tests were performed

with the RF port stimulated by dire
t 
onne
tion to waveform generators. Some

work was required to a

ount for the phase delay of the re
eiver 
hains and the

delay between the ADC's re
eive trigger and the data samples. Another issue

was that the AWG generated additional high-frequen
y harmoni
s in addition

to sLO(t), whi
h 
aused additional, weaker 
opies of the RF tones with higher

frequen
y deviations in the re
eiver output. Adding an appropriate bandpass

�lter on the AWG output alleviated this. On
e those two issues were solved,

su

essful re
overy of up to three CW tones was demonstrated on ea
h of the

re
eiver 
hannels. Figure 5.3 shows one of the results of these experiments. The

left panel shows a spe
trogram of the 
ompressed data 
aptured by the signal.

In the spe
trogram the three input signals with varying peak levels of frequen
y

modulation are visible. The right panel shows the results of re
onstru
tion with

the SPGL-1 algorithm, on top of the ideal spe
trum of the input frequen
ies.

Figure 5.4 gives another example, with the additional 
ompli
ation of two of the

tones folding to the same alias frequen
y. The power levels of the inputs are also

more 
losely mat
hed in this example.

The timing sensitivity for 
lean re
onstru
tion of one CW tone with the SPGL-

1, SALSA, ROMP, and COSAMP algorithms was tested by in
reasing the delay

between triggering the AWG and the ADCs until re
onstru
tion failed. Both

4.3 GHz and 9.2 GHz tones were tested. For all algorithms, re
onstru
tion fails

when the misalignment with the model is greater than 8 ns nanose
onds for a

5 MHz modulation rate LO, slightly more tolerant than predi
ted in Se
tion 4.1.3.
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Figure 5.3: Re
onstru
tion of three CW tones from signal generator 
onne
ted to

RF port. The left panel displays a spe
trogram of the 
ompressed data 
aptured

by the re
eiver. The 
ompressed 3.85 GHz tone is at the top of the spe
trogram,

the 9.4 GHz in the middle, and the 7.7 GHz tone is at the bottom. The right

panel shows that all three tones are re
overed su

essfully. The 3.85 GHz tone

is re
onstru
ted as having very low amplitude, due to the input signal being

generated at a lower power and the LPFs attenuating the 650 MHz frequen
y

that the tone folds to.
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Figure 5.4: Re
onstru
tion of three CW tones. Two fold to same intermediate

frequen
y at 600 MHz. The right pane displays su

essful re
onstru
tion of all

three tones, thus it is shown that signals folding to the same frequen
y 
an indeed

still be re
overed.
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Figure 5.5: Example of CFAR pulse dete
tion used on OTA data. The upper

panel shows a spe
trogram of the NYFR output. Both a CW tone and a series

of 1 µs duration pulses are present. The lower panel shows the CFAR output.

The threshold adjusts to dete
t ea
h pulse on
e, and all pulses were dete
ted as

shown by the 
ir
les on the plot.

The timing requirement is not a huge 
onstraint on the design of an NYFR, as

the su

ess of this system shows that timing on the order of a nanose
ond is

not di�
ult a
hieve. With the 5 MHz modulation rate 
ommonly used for this

implementation, pulses lasting only a �fth of a mi
rose
ond 
an be re
overed.

Su

essful re
onstru
tion was demonstrated with mixed CW tones and mi
rose
ond-

s
ale pulses. CFAR thresholding was used as in Chapter 4 to dete
t pro
essing

windows that 
ontain a pulse, then re
onstru
tion was performed for ea
h de-

te
ted pulse. The CFAR output is shown in Figure 5.5. Figure 5.6 shows an

example of one of the dete
ted re
onstru
tion windows. The right pane of the

73



PSfrag repla
ements

Ideal Input

Re
overed

Re
onstru
tion of Dete
ted Pulse at 175.084 µs

Window Relative Time (µs)

F

r

e

q

u

e

n




y

(

M

H

z

)

Frequen
y (GHz)

N

o

r

m

a

l

i

z

e

d

P

o

w

e

r

0.1 0.2 0.3−20 0 20

0

100

200

300

400

500

600

700

0

0.2

0.4

0.6

0.8

1

Figure 5.6: Example of OTA pulse re
onstru
ted by CFAR dete
tion and pro
ess-

ing window sele
tion. Both the CW tone and pulse frequen
ies were re
overed

without performing re
onstru
tion for the whole 200 µs 
apture, greatly lowering

the number of 
omputations performed.

�gure displays a spe
trogram of the window of 
ompressed data that the re
on-

stru
tion is performed on. As the spe
trogram 
learly shows two signals, both

the CW tone and at the pulse frequen
y, it is 
lear that CFAR dete
ted a win-

dow 
ontaining a pulse. The re
onstru
tion in the left panel shows that both

frequen
ies were re
onstru
ted.

Next, re
onstru
tion is performed on over-the-air 
aptures. A broadband 2-20

GHz double ridge horn was 
onne
ted to the RF input of one 
hannel. Captures

were performed in a busy lab environment 
ontaining multiple WiFi, Bluetooth,

and 
ellular devi
es. As most of these operate at frequen
ies that are in lower
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Nyquist zones, the wide frequen
y 
overage is demonstrated with two X-band

transmitters purposely pointed toward the re
eiving antenna. A spe
trogram and

re
overed spe
trum for one of the more interesting 
aptures, featuring input from

a 
ell phone and aWiFi devi
e, is shown in Figure 5.7. The RF environment in the

building was rather sparse, as it 
ontained a limited number of 
ommuni
ation

devi
es that share narrow spe
trum allo
ations and transmit infrequently, and

the building itself is well shielded from outside transmitters. Figure 5.8 shows

another example, with re
onstru
tion performed on a 1 µs window. The dynami


range of the signals present is wide enough that the low-power Bluetooth signal

was below the harmoni
s of the other sour
es, so an example of predi
ting and

removing harmoni
s from the re
overed spe
trum is given.

Another set of data was 
aptured with a high-gain, 1.0-2.5 GHz antenna with

the intent of dete
ting weaker signals in the lower industrial, s
ienti�
, and medi-


al (ISM) bands. Figure 5.9 shows one example from this dataset with su

essful

re
overy of the 
enter frequen
ies of two di�erent WiFi 
hannels. Identi�
ation

of individual 
hannels demonstrates potential usage for the system in 
ognitive

radio; for example a single re
eiver 
hannel 
ould simultaneously dete
t whi
h


hannels are in use in the 900 MHz, 2.4 GHz, or 5 GHz bands in order to sele
t

an empty one to use for transmission.

Su

essful re
overy of the frequen
y support has been demonstrated for a

sparse environment and for up to �ve simultaneous sour
es. It is signi�
ant that

the 
ommuni
ation signals re
overed have bandwidth, proving that the system


an perform re
overy of signals other than ideal, frequen
y-bin-
entered, CW

tones.
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Figure 5.7: Example of re
onstru
tion of over-the-air 
apture with a 2 to 18 GHz

antenna. A high power QPSK signal is present at 15.3 GHz, 5 µs pulses at 9.05

GHz, LTE 
ell phone signal at 1.9 GHz, and a WiFi QPSK signal at 2.462 GHz.

A spur from the ADC sampling 
lo
k at fs/4, 375 MHz, was also re
onstru
ted.

This gives a useful example of re
overy in an a
tual sparse-RF environment that


ontains several 
ommuni
ation signals with some amount of bandwidth.
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Figure 5.8: Example of re
onstru
tion of over-the-air 
apture with a 2 to 18 GHz

antenna. A high power QPSK signal is present at 10.6 GHz, LTE 
ell phone

signal at 1.9 GHz, and a low-power Bluetooth signal at 2.42 GHz. The relative

power of the Bluetooth signal is so low 
ompared to the other two signals that

it is outside of the dynami
 range for the sLO(t) used, as 
an be seen by the red

stars. An example of �ltering the harmoni
s by iterating through the strongest

re
onstru
tions, removing their predi
ted harmoni
s until a threshold of -30 dB

is hit, is given by the blue 
ir
les.
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Figure 5.9: Example spe
trogram and re
onstru
tion from the dataset 
aptured

with a high gain 1-2.5 GHz antenna. The spe
trogram 
learly shows two 
om-

muni
ation signals between 2.4 and 2.5 GHz, as well as the faint ADC sample


lo
k spur at 350 MHz. A s
an of available WiFi networks from a smartphone

shows that devi
es are transmitting on WiFi Channel 1 and 11 at about 2.412 and

2.462 GHz, mat
hing within ±1 MHz of the peak frequen
ies in the re
onstru
ted

spe
trum shown at the bottom of the �gure.
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5.3 Multi
hannel Re
overy

After single-
hannel re
overy was demonstrated, experiments were performed

with multiple re
eiver 
hannels. It is predi
ted in Se
tion 4.3 that simultane-

ously using the data from multiple 
hannels with di�erent modulation s
hemes

has a positive impa
t on re
onstru
tion performan
e, as more in
oherent mea-

surements are being used to re
onstru
t the signal. For the ideal 
ase of using the

same modulation, there should be no bene�t, as the additional samples from one


hannel would be identi
al to those from the other and thus add no additional

information. In reality the ADCs will not sample at the exa
t same time, and

thus multiple 
hannels with the same modulation s
heme would provide more

measurements, but in order to a
tually realize bene�t the phase di�eren
e be-

tween the 
hannels would have to be known and a

ounted for in the sensing

model.

First for 
omparison identi
al modulation s
hemes are used on ea
h 
hannel.

The external triggers used to time the LO waveform generator and the PCIe

ADCs start the 
apture on ea
h ADC 
ard within ±1 sample of ea
h other, or

approximately within 1 ns, whi
h is within the requirements for mat
hing the

sensing matrix model. As the ADCs used were not spe
i�
ally designed to be

well mat
hed for use in multi
hannel appli
ations, the frequen
y response of the

two di�er somewhat. The signal 
entered at 340 MHz in the baseband pi
tured

in Figure 5.10 is about 3 dBm lower in 
hannel 2 than 
hannel 1. This di�eren
e

did not prevent re
overy in the experiments performed, but it is possible that

a system designed to have more 
losely mat
hed 
hannels would have better

re
onstru
tion performan
e.

Next experiments were performed with di�erent modulation s
hemes applied
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Figure 5.10: Comparison of two re
eiver 
hannels with same modulation. The

signal in Channel 2 is about 3 dBm lower and the ADC fs/4 spur is slightly

worse. The 
hannels are reasonably well mat
hed though, as re
onstru
tion with

identi
al CS models su

eeded on ea
h and su

essful angle of arrival estimation

will be shown later.

to ea
h 
hannel, spe
i�
ally 
ombining linear and sinusoidal frequen
y modula-

tion. Figure 5.11 gives an example of using sinusoidal modulation on 
hannel one

with a peak deviation of 4 MHz and modulation rate of 5 MHz, and triangular

modulation on 
hannel two with a peak deviation of 6 MHz and 0.5 µs period.

The re
onstru
ted spe
trum using the 
ombined measurements from both 
han-

nels shows improvement over the single-
hannel re
onstru
tions with a de
reased

peak spurious frequen
y magnitude. This mat
hes the theoreti
al improvements

shown in Se
tion 4.3.

Now to test dire
tion �nding, an experiment was 
reated with a two element

array of X-band horn antennas. The horns are physi
ally large, limiting the

minimum element separation to 2.75 
m, giving a maximum grating lobe free look

angle of only ±5.2◦ for a 10 GHz sour
e. This would limit utility in a pra
ti
al
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Figure 5.11: Combined multi
hannel re
overy with di�erent modulation s
hemes.

Channel 1 has sinusoidal modulation and Channel 2 has a triangle waveform

applied. The re
overy resulting from the 
ombined 
hannels has a larger di�eren
e

between the 
orre
t signal at 4.75 GHz and the strongest false result. Thus it is

shown that 
ombining measurements from multiple modulation s
hemes 
an give

improved re
onstru
tion quality.
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system unless me
hani
al s
anning is used, but for the purpose of showing that

the dire
tion of arrival estimation is viable, the limited maximum look angle is

su�
ient. The 
oordinate system is set up su
h that when fa
ing from the array,

negative angles are to the left of the array 
enter and positive to the right. A

pulsed sour
e at 7.845 GHz is to the right of a pulsed sour
e at 8.02 GHz, both

sour
es are less than 5 degrees to the right of the array 
enter. When a single-


hannel is used the two sour
e frequen
ies are identi�ed in Figure 5.12. The

sour
es are a
tually 
lose enough to the 
enter of the array that the time delay

between the two elements is lower than 4.25 ns, spe
i�
ally

τ ≤ 0.0275
sin(5◦)

c
= 8ps , (5.1)

low enough that 
ombining measurements from both 
hannels for re
onstru
tion

does not fail, but due to the phase delay the re
onstru
tion quality degraded. As

the di�eren
e between the sour
e angle and the array 
enter in
reases, re
onstru
-

tion over multiple 
hannels should fail. The MVDR angle-frequen
y spe
trum is


al
ulated around the two sour
e frequen
ies and the peak values sele
ted. Fig-

ure 5.13 shows that the 7.845 GHz sour
e is 
orre
tly identi�ed as being right of

the 8.02 GHz sour
e, and the estimated angles for ea
h are to the right of the

array 
enter as expe
ted. Thus appli
ation of the NYFR to joint dire
tion of

arrival and frequen
y estimation is shown to be viable.
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Figure 5.12: Re
overy of sour
e frequen
ies impinging on the two element array.

Single-
hannel re
onstru
tion is su

essful. The 
ombined 
hannel re
onstru
tion

is worse due to the time delay between the array elements, but does not fail

outright as in this 
ase the time delay is mu
h less than a nanose
ond.
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y spe
trum sli
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estimated frequen
y. The bottom plots of are the MVDR beamformer output

for the peak frequen
y sli
e found from the spe
trum above. The 8.02 GHz is


orre
tly identi�ed as being on the left of the 7.45 GHz sour
e.
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Figure 5.14: The OTA 
apture in Figure 5.7 was de
ompressed for M=10, then

bandpass �ltered with a 
enter frequen
y at 300 MHz in order to extra
t the

signal dete
ted at 15.3 GHz. The spe
trogram of the de
ompressed and �ltered

output 
learly shows one 
ommuni
ation signal at 300 MHz. The pulsed signal

that was present in the 
apture is faintly visible at about -50 dB below the 
omm

signal.

5.4 Communi
ation Signal Re
overy

Final experiments were performed to show that re
overy of 
ommuni
ation sig-

nals by the NYFR is possible. The OTA 
apture from Figure 5.7 is de
ompressed

for the modulation index M=10 and bandpass �ltered to extra
t the QPSK signal

at 15.3 GHz. The QPSK signal is a randomly generated bitstream with a known

symbol rate of 1 Msym/s. Figure 5.14 shows the de
ompressed and �ltered QPSK

signal. Root-raised-
osine pulse shaping is used on the transmitter, so mat
hed

�ltering is applied to the de
ompressed data. Timing re
overy was done by sam-
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Figure 5.15: Constellation diagram of the QPSK signal re
overed from the over-

the-air 
apture. The 
onstellation is well de�ned, with the 80 symbols 
aptured

all 
lumped relatively 
lose one of the four transmitting states. Now if the pilot

signal or sequen
e were known by the system, the digital information that was

transmitted has been re
overed by the NYFR.

pling the mat
hed �lter peaks, as the pro
essing was done o�ine. The re
overed


onstellation diagram is plotted in Figure 5.15, showing that the symbols are

well identi�ed. Thus the viability of re
overing 
ommuni
ation signals with the

NYFR is shown.
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Chapter 6

Con
lusions and Future Work

The trade-o�s of design parameters for sLO(t) whi
h 
ontrols the modulation

pattern indu
ed on RF signals by the Nyquist Folding Re
eiver were identi�ed and

dis
ussed. In parti
ular, a trade-o� must be made between 
orre
tly identifying

the original Nyquist zone and the ability to re
over low SNR signals from higher

Nyquist zones. The LO signal modulation rate must be sele
ted for the shortest

pulse time that is to be re
overable while not being su
h a high rate of modulation

that the phase di�eren
e of the real hardware and the 
ompressive sensing model

is not too great for re
onstru
tion.

Multi
hannel NYFR systems were also 
onsidered. A system model was 
re-

ated that 
ombines measurements from multiple 
hannels, and it is found that

if ea
h 
hannel has a unique modulation s
heme, more in
oherent measurements

are 
olle
ted in the same time window, improving re
onstru
tion quality. Con-

versely, 
ombining multiple 
hannels with identi
al modulation does not a�e
t

re
onstru
tion. Multiple 
hannels are also used for joint angle of arrival and

frequen
y estimation.

A full pro
ess for identifying a 
ommuni
ation burst, re
overing the frequen
y

support, and then de
ompressing the data with a zone-dependent de
ompres-

sion (demodulation) operation for dete
ted signals of interest was given. It was
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demonstrated that when de
ompressing a parti
ular zone, the spe
trum of signals

originating from other Nyquist zones remains spread, so that even if multiple sig-

nals fold to the same intermediate frequen
y, the parti
ular 
ommuni
ation signal

of interest 
an be demodulated.

Experiments were performed with a hardware prototype. Su

essful re
overy

of up to �ve simultaneous signals was shown, in
luding identi�
ation of the 
enter

frequen
ies for LTE, WiFi, and Bluetooth 
ommuni
ation signals. The advantage

of 
ombining measurements from multiple 
hannels was demonstrated. Joint

angle and frequen
y estimation is shown to be viable with an antenna array


onne
ted to the prototype. These results show that the Nyquist Folding Re
eiver

is an ar
hite
ture with very promising potential for wide instantaneous bandwidth

appli
ations.

Interesting future topi
s not explored by this thesis in
lude modifying or for-

mulating 
ompressive re
onstru
tion algorithms to be optimized for the stru
-

tured sampling performed by the re
eiver. Di
tionary learning of signals that are

to be identi�ed in a real environment would be useful for monitoring purposes.

An improved sensing model with a phase-independent representation basis 
ould

potentially be derived and used to 
ombine measurements from multiple 
han-

nels in a dire
tion �nding array, or a group sparsity algorithm might be used to

promote sparsity in ea
h 
hannel. It would also be interesting to test the re
eiver

in an environment with a larger number of 
ontrolled signal sour
es, in determine

what the maximum sparsity level is that 
an be a

ommodated by the re
eiver

subje
t to a required re
onstru
tion probability.
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