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Abstract

Increased utilization of wide swathes of spectrum motivate receivers with wide
instantaneous bandwidth. Traditional wideband receivers inherently have high
data rates that are difficult to process and store, and receivers that use multiple
analog to digital converters to achieve wide bandwidth have high power usage
and cost. Compressive sensing (CS) provides a potential low-data-rate and low-
power solution in environments where only a small portion of the wide spectrum
monitored is in use at one time, through sub-Nyquist sampling at the informa-
tion rate. The Nyquist Folding Receiver (NYFR), proposed by Fudge et al., is
one such promising CS architecture. This thesis investigates the design trade-offs
inherent to any NYFR receiver. Basic applications including pulse detection,
angle of arrival estimation, and processing of communication signals are simu-
lated. Finally, a prototype receiver was used to experimentally demonstrate the
capabilities of a NYFR with an instantaneous bandwidth of 18 GHz while only

sampling at 1.5 GSPS.
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Chapter 1

Introduction

Increasing utilization of large amounts of spectrum motivates monitoring of wide
bandwidths for applications such as cognitive radio where empty channels are
identified to more efficiently use the spectrum, or for signal detection and capture
for signals intelligence. Traditional methods of accomplishing this are expensive
in both price and power usage. Designing analog to digital converters that op-
erate at high frequencies is a difficult affair, and even when the ADC portion is
solved, the tremendous amount of data generated requires high throughput to
the processor or large quantities of storage.

Current wideband receivers fall largely in two categories. The first have multi-
ple receive channels, each filtered to sample a small slice of spectrum, and an ADC
for each. The additional hardware for each channel causes high cost. The second
are sweeping receivers. These move between multiple frequency zones, monitor-
ing a wide bandwidth over time with fewer components. The major drawback to
the sweeping receiver is that this does not give a wide instantaneous bandwidth;
for example, a frequency hopping radar that broadcasts for only a very short time
before changing frequencies may get missed as the receiver is sweeping through
other frequencies.

The modern field of compressive sensing gives potential for a receiver archi-



tecture that solves both the issues of handling large amounts of data and the cost
of wide instantaneous bandwidth. Applications of the theory allow for sampling
a wide bandwidth with a single low sample-rate ADC. The Nyquist Folding Re-
ceiver (NYFR), proposed by Fudge et al. [1], is one particularly promising design
of a compressive sensing system. The NYFR significantly undersamples input
signals causing them to alias such that original frequencies would normally be
lost, but the NYFR encodes the original frequency as modulation on the input
signals so that all of the original information is preserved. Compressive sensing
concepts allow for this encoded frequency information to be recovered, with the
assumption that the original spectrum was sparse. Fudge developed a model for
a prototype NYFR that uses in-phase and quadrature-phase (I/Q) sampling, and
demonstrated frequency recovery of continuous wave tones and on-off key (OOK)
signals.

This thesis provides a model for a NYFR that uses real-valued samples rather
than I/Q data, and adds results from a simulation of the real-valued receiver
model used to investigate the trade-offs inherent to any NYFR architecture. The
information given about the trade-offs potentially enables the selection of op-
erating parameters that are closer to optimal for specific environments. The
thesis shows successful recovery of pulses and communication signals on a pro-
totype receiver, and notably the recovered signals have wider bandwidth than
the CW tones and OOK signals demonstrated by Fudge. Finally, this thesis
adds experimental verification of basic applications, such as direction finding and

demodulation of communication signals.



1.1 Organization

Chapter 2 begins with a short introduction to compressive sensing that is needed
to understand the underlying theory that allows the receiver to work. An overview
of compressive sensing reconstruction algorithms is given. Finally a survey is
given of other compressive sensing receiver architectures. Chapter 3 goes in detail
on the specifics of the Nyquist Folding Receiver itself, both the system model and
the physical implementation. Chapter 4 describes the effect of various design
parameters on the performance of a NYFR. Several basic applications of the
receiver are explored through simulation. Chapter 5 gives experimental results
from a physical NYFR prototype, confirming that the simulated applications are
indeed possible in reality. Chapter 6 gives the final conclusions, overview of the

work, and potential future research topics.



Chapter 2

Background

2.1 Compressive Sensing Theory

First, before going into detail about the NYFR, it is helpful to understand the
concept that allows the NYFR to sample far below the Nyquist rate, without,
under specific circumstances, losing any information. This chapter will give a brief
overview of compressive sensing (CS) theory, which is a mathematical framework
for sampling a system at the information rate rather than the Nyquist rate. While
the work of Nyquist and Shannon established that sampling at a rate twice the
highest frequency of a continuous finite-bandwidth signal is a sufficient condition
for recovering all the information in the signal, this condition is not necessarily
the only sufficient one. Nyquist hinted at the idea that the actual information
content may only make up a limited portion of an analog signal in his description
of separate intelligence carrying and inert components that form telegraph signals
in 1924 [2], insinuating that sampling at the Nyquist-Shannon rate may waste
some effort on recovery of the inert component. However, a method for sampling
closer to the information rate for a general set of circumstances did not arrive until
the modern theory of compressive sensing was developed by Candés, Romberg,
Tao, and Donoho over the course of 2004 to 2006 [3]. Compressive sensing added

a mathematical framework capable of calculating the lower bound on how many



measurements are required to recover the full information content of a signal.
Similarities to modern compressive sensing can be found in the historical use of
the ¢1-norm in several different fields, ranging from computational statistics to the
creation of seismic images in the 1970s from undersampled data [4]. Algorithms
applicable to the recovery of sparse solutions have existed at least since matching

pursuit was formulated in 1993 [5].

2.1.1 Compressed Signals

As the name implies, signals that are compressible are central to the concept
of compressive sensing. If a signal can be represented in some vector space by
a small number of linearly independent vectors, it has a sparse representation
in some representation basis ¥. The number of nonzero coefficients required to
represent the signal is the sparsity k of the signal. Many real world signals are
not strictly sparse, but rather are said to be compressible. A compressible signal
has the majority of its energy contained in a small number of coefficients, such
that when most of the coefficients are approximated as zero the original signal is
still well represented. The level of sparsity of the compressed signal determines
the efficiency of the compressive sampling [6].

The mutual coherence p of two matrices is the absolute value of the maximum

cross-correlation between any pair of columns from the matrices, as defined by

p(@, W) = max [(op, ¥5)] (2.1)

)]

1
The value of u is bounded by T < p < 1 for a pair of N x N matrices |7].
n

Now consider some sensing basis ® that is incoherent with the representation

basis, that is u(®, ¥) is minimal. The information in the small number of com-



pressible coefficients is spread into many coefficients in the sensing basis. Each
measurement in the sensing basis records some information about the full sup-
port of the signal in the representation domain. For an illustrative example, a
constant frequency sine wave is sparsely represented as a Dirac delta in the fre-
quency domain, and extends infinitely in the time domain. It is known by the
Nyquist sampling theorem that in order to recover the frequency content of any
signal it is sufficient to sample in the time domain at twice the frequency of the
highest frequency component. Additionally, if it is known a priori that there is
only a single sinusoid present, then its frequency is known after sampling for one
period, not requiring all of the infinite number of time domain coefficients to be
sampled. It follows that sampling the entire support of the sensing basis is not a
requirement for sampling the total information content of the signal.

For a signal that is sparse in the representation basis, a small number of com-
pressive samples taken in the sensing basis may be sufficient to measure all the
needed information. Not every measurement necessarily records new information,
consider for the time-frequency domain single sinusoid example if the signal is
being uniformly sampled in the time domain at some rate. If, for example, the
sinusoid’s frequency is exactly a multiple of the sample rate every measurement
will be made at the same point on the sine wave and thus the frequency is not
measured. If however the sinusoid is sampled in random points in time, each
measurement will be at a different point on the sinusoid and thus adds new infor-
mation. Random sampling is indeed a popular concept used in many compressive
sensing systems, as any random matrix is likely to be highly incoherent with any
representation basis. Random sampling is not the only effective method though,
as a structured sampling scheme could be designed to sample at the best points

of the sinusoid, or at least a sufficient number of them. The Nyquist Folding



Receiver is such a structured sampling scheme [8]. The question now becomes
one of how can the original signal be recovered from these measurements, and

how many measurements are truly needed to identify the original sparse signal.

2.1.2 An Underdetermined Problem

Even though the acquired compressed measurements contain most of the infor-
mation that the original signal had, the measurements are not useful for most
applications until the original signal in the sparse representation basis is recon-
structed. This applies to compressed information in general, for example, when
viewing compressed JPEG2000 computer graphics, the end user does not stare at
stored wavelet coefficients, instead the image must first be decompressed to a 2D
grid of colours. Recovery of the original signal from compressive measurements
is not straightforward, as it requires solving an under-determined linear system.
Let zg € R™ be a vector of m compressed measurements, A € R"™" = &W be
the measurement matrix, and xg € R" be the original signal of length n that is
sparse in W, then

z = Ax (2.2)

is the linear system that is to be solved for x. This is the recovery of the signal
x from measurements z. As the point of compressive sensing is to take only as
many measurements as are necessary to identify the original sparse signal, m < n
measurements are taken, thus (2.2) has infinitely many solutions. However, it
is known that the original signal is sparse in the representation domain. The ¢,
norm is the measure of sparsity, the number of non-zero components of a vector
x. By adding the constraint that the original signal is known to be the most

sparse, a unique solution can be found.



2.2 Reconstruction Algorithms

If the original signal is know to be sparse, the most straightforward approach for

solving the system would be to solve

minimize ||x]||o subject to Ax = z (2.3)

by searching through all possible solutions and selecting the one that is the most
sparse. This brute-force approach is not computationally feasible though, as it is
a NP-hard problem. Instead, there are several major families of algorithms that
have been designed to more efficiently solve for the original sparse signal from the
compressive measurements [9]. Some may be better suited to certain problems,
depending on the structure of the signals and the sensing matrix.

The algorithms can be broadly grouped into five families: greedy iterative,
iterative thresholding, combinatorial, convex relaxation, and non-convex mini-
mization. Greedy iterative algorithms solve the linear system in a series of it-
erative steps. First the residual r is set equal to z. Now at each step a locally
optimal, that is greedy, selection of the column of A that correlates most with
r is made. The coordinate of the column is recorded as part of the support of
x. The contribution of the coordinate to z is estimated and subtracted from r,
then the next iteration is performed on the residual. Removing the contribution
of the most highly correlated column decreases the least square error with each
iteration. The major changes between different algorithms are the stopping cri-
teria and the details of estimating each column’s contribution. In general these
algorithms perform best with signals that are very sparse, with the quality of

recovery rapidly becoming worse as sparsity decreases. The need for very sparse



signals can cause issues in systems with significant noise, as noise adds additional
non-zero coefficients in the representation basis; one algorithm called Regularized
Orthogonal Matching Pursuit worked well in the ideal NYFR simulations but had
a much lower success rate on recovering the frequency support from actual data
with multiple signals and noise present.

[terative thresholding algorithms limit the solution set for noisy measurements
with some form of soft or hard thresholding. There are many variations of these
algorithms, with the thresholding function dependent on the specific problem.
After thresholding the solution is found through iteration similar to the greedy
iterative algorithms. Message passing algorithms are a modification of iterative
algorithms that include additional variables with each iteration, messages, that
are used to speed convergence.

Combinatorial algorithms use group testing to recover the signal. They are
computationally fast, but require the sensing matrix A to itself be sparse. Thus
they are only useful for very specific problems, and the NYFR is not one of
them. While it is shown later that the NYFR sensing matrix can be considered
block-sparse, consisting of blocks for each Nyquist zone the system operates on,
the blocks themselves are large for any practical system with usable baseband

bandwidth.

2.2.1 Convex Optimization

The algorithms that give the best reconstruction quality for the NYFR receiver
implementation are in the convex optimization family. If instead of attempting to
minimize the ¢y norm directly, we relax the problem to minimizing the ¢; norm,
then signal recovery becomes a convex problem with the potential for efficient

linear solutions. The ¢; norm is the sum of the absolute value of the vector
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Figure 2.1: Unit sphere with p-norm. The dashed line on ¢; gives an example of
a region of feasible solutions.

components as defined by

N
[l =)l (2.4)
i=1

In addition to being convex, the ¢; norm is not smooth, so regularization on it also
promotes sparsity. Convex optimization has broad application, which has caused
it to become a well-studied problem with reliable and efficient solutions [10]. For
a strictly convex problem, any local minimum found is guaranteed to also be the
unique, global minimum, giving an obvious advantage over a nonconvex prob-
lem where one could imagine an algorithm might get stuck in a local minimum
between two hills, not knowing that past the next hill is a better solution.

Figure 2.1 illustrates the concept of general ¢, norms in two dimensions. In
this case the region of feasible solutions to Ax = b is a contour. The geometry
of the norms are represented by unit spheres in Figure 2.1, that is the plot of
all points for which ¢,—=1. Let a unit sphere grow from the origin until it first
intersects the solution region, then that first intersection is the minimum-norm
solution. For any solution on the ¢, norm, the support is of size one, as the
intersection is either entirely on the x or the y axis. Thus the ¢y norm is the most
sparse.

There is active research seeking the potential advantages of using ¢, quasi-

10



norms with 0 < p < 1, forming the non-convex family of compressive reconstruc-
tion algorithms [11]. The 0 < p < 1 is more sparse than the ¢; norm as many
solutions have one large and one small coefficient; it can be seen on the figure
that most intersections with the norm will have either a large x or a large y
component, but not both. A simple test to see that the norm is not convex is to
attempt to draw a line between two points on the norm without intersecting the
inside of the norm, this is possible on any pair of points from different axes on
the ¢y norm and for many points on the 0 < p < 1 norms, so these norms are not,
convex. Thus the 0 < p < 1 norms are said to further promote sparsity, but are
no longer convex causing more difficulty in solving the problem efficiently.

The ¢, norm still promotes sparsity, just to a lesser degree than p < 1, and
is convex. Since the ¢; norm is convex, when a local minimum is found, it is
guaranteed to also the global minimum, giving the optimal solution. Thus the
/1 norm is effective for compressive sensing reconstruction, as we are recovering
signals that are sparse, and efficient algorithms for solving convex problems exist.

Any norm with p > 1 is also convex, but is also a smooth function with most
intersections having both a large z and a y component, so it is not useful for
promoting sparsity. The first intersection of the solution region with /., has a
support of size two, evenly split between the x and y axes, clearly not sparse.
The concept of the two-dimensional unit sphere extends to n many dimensions,
with for example the ¢, forming a many dimensional spiky ball for compressive
sensing problems with a large representation basis.

There are three commonly used convex relaxations of the compressive sensing

problem. The first is basis pursuit (BP), which is defined as

minimize ||x||; subject to Ax =z . (2.5)

11



The exact solution sought by basis pursuit does not work well for analog mea-
surements containing noise, so for these cases the basis pursuit denoising (BPDN)

formulation is used instead, which is

minimize ||x||; subject to ||[Ax —z|ls <o |, (2.6)

where o gives a tolerance for how exact the solution must be and is usually
derived from an estimate of the noise power. It is worth noting that in most
sampling schemes the noise in the original representation basis will be folded into
the smaller number of measurements taken, multiplying the noise variance by
n/m, so the noise power can be significant in a real system [12]. The least ab-
solute shrinkage and selection operator (LASSO) is the final common relaxation.
LASSO pre-dates modern compressive sensing, having originally been created as
a regression analysis method for statistics, but is directly equivalent to the BPDN

problem [13] as it is defined by

minimize ||Ax — zl||> subject to ||x||; <7 . (2.7)

The problem solved for the NYFR is the BPDN one rather than BP, as the goal
is to recover signals on real hardware with noisy measurements. Additionally,
in compressive sensing literature, the BPDN formulation is more common than
LASSO.

If x is sufficiently sparse and the sensing matrix A is appropriately designed,
the convex relaxation of the problem will yield the exact solution of x. An s-
sparse signal is defined as having a support size of s, that is the vector has s many

nonzero elements. Candés introduced the restricted isometry property (RIP) as

12



a means to characterize the quality of the sensing matrix [14]. For each integer
s = 1,2,..., N the restricted isometry constant d, of the matrix A is defined as

the smallest number such that

(1= 0[5 < [[Ax]]3 < (1+0,)|I[3 (2.8)

for all s-sparse vectors. Thus, a sensing matrix satisfies the (s,0)-RIP if the
above condition holds for every s-sparse vector x, and perfect reconstruction is
guaranteed via convex relaxation. Various reconstruction guarantees based on
the RIP have also been found for other reconstruction methods [15]. While this
is a commonly used property, solving the general problem of whether an arbitrary
sensing matrix A satisfies the (s,0)-RIP is NP-hard.

As calculating a value for § is a hard problem for many cases, it is common to
turn to the measure of coherence between the sensing and representation bases to
predict reconstruction performance. For the case of /1 optimization with a signal
x € R™ and a uniform random sampling basis Candés found that the probability

of successful reconstruction exceeds 1 — 4, if

m>C - p*(®,¥) - s-log(n/d) (2.9)

where m is the number of measurements, C is some positive constant, p is the
mutual coherence of the two bases, and s is the sparsity of the signal [16]. This
shows that higher incoherence between the bases or greater sparsity lowers the
necessary number of compressive measurements for reconstruction.

The spectral projected-gradient SPGL-1 convex reconstruction algorithm in

particular was found to give high reconstruction performance with low computa-

13



tional time for the NYFR system [17]. The specific formulation that solves the
BPDN problem is used as there is significant noise in the NYFR chain. Much
of the convergence speed of the SPGL-1 algorithm is due to its exploitation of a
Pareto frontier [18]. When there are two or more variables being optimized, the
Pareto frontier is the curve formed by the set of values where one variable can-
not be improved without harming the other variable. As the BPDN problem is
constrained by both ||x||; and ||Ax — bl|s, a Pareto frontier is formed by the two
norms. The authors prove that this Pareto curve is continuously differentiable,
enabling the use of a Newton root-finding algorithm to solve a non-linear equation
describing the curve. This approach gives a fast iterative algorithm that outputs
a small search space of optimal solutions. The second innovation of the algorithm
is an optimized method of performing least squares minimization with orthogonal
projections of vectors on a convex set. This projection algorithm is extended to

complex vectors, and thus useful for recovering signals in the frequency domain.

2.3 Sampling Paradigms

So far the mathematical concept of compressive sensing has been discussed, but
not how CS systems are realized in hardware. As a random sensing basis gives
a low level of coherence with any other basis, random sampling schemes are a
popular method of implementing a compressive sensing system. Perhaps one
of the most popular examples of such a system is the Rice single-pixel camera.
An array of digitally controlled micro mirrors are randomly flipped on or off to
reflect random linear combinations of light onto a single CCD sensor. A set of
these single-pixel measurements is solved for the random sequence used and the
wavelet domain compressed image is reconstructed.

The goal of the NYFR is to perform analog-to-information conversion at low

14



sample rates. There are several systems that use different sampling schemes to
meet the same goal. Most competing systems use a random sensing matrix as
opposed to the NYFR’s structured sensing matrix.

The Random-Modulation Pre-Integrator architecture was demonstrated with
2 GHz of instantaneous bandwidth and a 320 MS/s sample rate. The RMPI mod-
ulates the input signal with a pseudorandom binary sequence (PRBS), integrates
the output of the modulator, then samples at a low rate. A potential limitation is
that the PRBS generation and mixing must occur at the Nyquist rate. Successful
reconstruction of two 450 ns pulses with different carrier frequencies that overlap
in time has been shown [19].

Northrop-Grumman’s Non-uniform Sampler samples at random time intervals
with a nonuniformly clocked sample-and-hold circuit [20]. An 8192-bit PRBS
controls the sample times. The instantaneous bandwidth is 2.2 GHz, and a low-
sample-rate ADC samples at 230MS/s. Experiments successfully reconstructed
GSM signals with a bit error rate under 1075,

The Modulated Wide-band Converter multiplies an input signal with a bank
of periodic waveforms before low pass filtering and sampling at below the Nyquist
rate [21]. This architecture is an implementation of the Xampling scheme [22].
The bank of modulators aliases different parts of the spectrum, from the entire
Nyquist range, into the baseband. To achieve a certain performance level, this
scheme has a trade-off between the sample rate of each channel and the number
of channels.

The above sampling paradigms for analog signals are all limited in that either
some system components still have to operate at the Nyquist sampling frequency,
specifically to generate the PRBS, or multiple receive channels are required, in-

creasing power requirements and cost. The NYFR does not have these con-

15



straints; the highest frequency that must be generated is only slightly higher

than the sampling clock, and only a single receive chain is required.
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Chapter 3

Nyquist Folding Receiver

Now that a brief overview of compressive sensing has been given, this chapter will
cover the hardware of the Nyquist Folding Reciever (NYFR) and the CS model
that links the NYFR’s sampling and representation bases. In 2008 Fudge et al.
considered a compressive sampling scheme that would use structured non-uniform
sampling rather than random sampling for recovery of signals that are sparse in
the frequency domain [1]. Random sampling schemes require some components
to operate at the high frequency Nyquist rate of the signals, whereas a non-
uniform sampling scheme could potentially be realized with only components
at the Nyquist rate of the baseband. If a signal is undersampled, below the
Nyquist rate, it will alias to some lower frequency and thus information on the
original frequency will be lost. However, the original structure of the signal will
be largely preserved, as long as the sampling rate is higher than the bandwidth
of the signal. The NYFR encodes the original frequency information onto the
aliases of input signals, in such a way that compressive sensing concepts can be
used to reconstruct the original inputs completely.

A prototype system was built with experimental results and a matrix model
for the compressive sensing equation published in 2012 [8]. In depth information

about Fudge’s prototype hardware is not provided however, and the model is not
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Figure 3.1: Basic block diagram for one NYFR channel.

directly usable for the system used in this thesis. In particular Fudge’s model
uses a complex in-phase and quadrature-phase representation with an ADC that
provides I/Q data. How the NYFR hardware manipulates input signals naturally
leads to the model describing the system, so first we give a detailed description

of the prototype receiver hardware.

3.1 Hardware Implementation

A high-level block diagram of the prototype NYFR receiver is shown in Figure 3.1.
A Tektronix arbitrary waveform generator (AWG) is used along to generate the
reference local oscillator signal s;o(t). Use of the AWG gave flexibility in exper-
imenting with additional modulation patterns and parameters. In a production
system, a cheaper device that only requires components operating up to the de-
sired baseband sampling rate could be used to generate the modulated LO signal.

Inside the harmonic mixer, a step recovery diode is used to create a very nar-
row, high-bandwidth pulse on each positive zero crossing of spo(t). Figure 3.2
illustrates the pulse generation for a constant-frequency LO and a frequency-

modulated LO. Let spo(t) be a real sinusoid sin(wpot), then the ideal approxi-
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Harmonic Mixer Pulse Train Generation
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Figure 3.2: Narrow pulses are generated on the zero crossings of the LO port.
The lower plot shows how the frequency of pulse generation varies along with a

frequency-modulated LO.

mation of the diode output is by a train of Dirac delta functions

A(t) = f: 5(t — kT) (3.1)

k=—00

with 7" being the period of s;o(t). The Fourier transform of a pulse train is a
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comb function with a spike at the harmonics of wro such that

Alw)= Y 8w —kwro) - (3.2)

k=—00

In real hardware the amplitudes of the higher harmonics roll off, as the pulses
generated by the mixer are not ideal impulse functions, limiting the useful band-
width of the device. The HLL9313 mixer used for the receiver has a nominal 3 dB
bandwidth of 15 GHz. Thus the nonideal mixer creates pulses with some shape

p(t), so that the pulse train takes the form

A(t) = (3 8t —KT)) () | (33)

k=—00

and has a spectrum defined by

Alw)=P(w) > §(w— kwro) (3.4)

k=—o00

where P(w) drops by 3 dB at approximately 15 GHz.

The pulse train is then mixed with the RF input port. As the RF input
sgr(t) mixes with each component of A(t), copies of the input are created at
wrr £ kwro. Thus, the harmonic mixer is effectively sampling sgr at each zero
crossing which causes aliasing harmonics of the of the mixer’s sample rate, wyo.
The copy at baseband with a frequency less than SLTO is the copy produced by
the harmonic closest to the original frequency.

Now let the spo(t) be a real frequency modulated sinusoid centered at wro

with phase modulation 6(t)

sro(t) = sin(wrot + 0(1)) (3.5)
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and 0(t) a sinusoidal modulation defined as

o(t) =

F
a sin(27 Foqt) (3.6)

mod

For the hardware implementation used in this thesis, wyo is 1.5 GHz. According
to the Dirac scaling property [8], the non-uniform pulse train generated in the

harmonic mixer takes the form

A(t) = ¢/(1) ) 2md(o(t) — 2mk) (3.7)

k

where ¢ = wrot + 0(t). The identity 27>, §(t — 27k) = >, e7*" is then used to

rewrite (3.7) as

E(t) WLO + 9 Zejk(wLot+9(t ) (38)

Considering that the modulation is narrowband such that |6/(t)| << wro, (3.8)

can be approximated by

A(t) ~ wro Z eIk(wrot+6(t) — Wro Z eIkwrot (jko(t) (3.9)
k k
The /*® term shows that modulating the frequency of s;o(t) spreads the spec-
trum of the pulse train harmonics, with the amount of spread increasing as the
magnitude of the harmonic number £ increases. Thus each harmonic has a unique
pattern encoded on it. Figure 3.3 shows the pulse train spectrum for such a mod-
ulated pulse train with a peak frequency deviation Fa of 4 MHz. Figure 3.4 shows
the spectrum of a pulse train for a higher frequency deviation, FA=15 MHz. The

energy content of each harmonic is spread out over a wider range of frequencies.
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Harmonic Mixer Pulse Train Spectrum, Fo=4 MHz
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Figure 3.3: Simulated spectrum of the pulse train inside the harmonic mixer for a
sinusoidal spo(t) with a Fa of 4 MHz. As the frequency increases the amplitude
of the harmonics drop with P(w), and the energy of the higher harmonics is
spread out over a wider frequency range.
The selection of Fa requires a performance trade off that will be examined in
depth later in the thesis. Note that the typical peak frequency deviation Fa used
throughout this thesis is 4 MHz unless otherwise stated.

Next, let there be a real, narrowband RF input signal with a center frequency

at wrr and phase ¢

x(t) = cos(wgrrpt + @) . (3.10)
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Harmonic Mixer Pulse Train Spectrum, Fao = 15 MHz
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Figure 3.4: Spectrum of the pulse train inside the harmonic mixer for a sinusoidal
spo(t) with a Fa of 15 MHz. Each harmonic has its energy spread over a wider
range of frequencies than the equivalent harmonics in Figure 3.3.

The harmonic mixer output then becomes
y(t) = z(t)A(t) =~ Z cos(wrpt + ¢)ethrotekd®) (3.11)
k

The output of the harmonic mixer is followed by an anti-aliasing filter. Let
1

this low pass anti-aliasing filter (LPF) have a cutoff frequency of JWLO; and

let kg be the harmonic in the Fourier series of the impulse train that satisfies

1
0 < |wrr —kpwro| < §wLo, in other words kgwro is the harmonic closest to the
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input RF frequency. The output of the LPF is then

2(t) = cos((wrp — kywro)t + ¢)edkuf® (3.12)

It is clear that the copy of the RF input passed by the filter is the product of only
the harmonic closest to wgp. Recall that each harmonic has a unique frequency
spread from the s;o(t) modulation. This means the resulting mixer and filter
output for two copies of an input signal, which are identical except for having
carrier frequencies from different Nyquist zones, are unique even if the inputs
fold to the same baseband frequency. Since information on the original frequency
support is preserved even though the input signal is aliased, it is possible to
reconstruct the original signal. Figure 3.5 illustrates this concept. The figure
plots the simulated output spectrum for a 9.2 GHz continuous-wave (CW) RF
input and a sinusoidally modulated s;o(t). Examination of the plotted spectrum
shows that no two harmonic products are identical, and only a single product is to
the left of the LPF cutoff frequency, thus the original zone is uniquely identified.
The spectrogram in Figure 3.6 shows a simulation of the mixer and filter output
for a 3.5 GHz and 9.2 GHz tone with a sinusoidal modulated sy o(t) with FA=15
MHz. The 9.2 GHz tone is clearly modulated over a wider frequency range.

For a non-ideal system the careful consideration of the frequency response
of the LPF must be made. The ideal cut-off in Figure 3.5 passes the desired
harmonic product without any attenuation, while perfectly blocking the harmonic
products from the wrong Nyquist zones. The actual filter used in this NYFR
implementation has a cutoff frequency f. of 750 MHz, half the sampling rate
of the system. If there is non-negligible attenuation at half the s;o(t) center

frequency, as is the case with the receiver prototype, then the receiver will have
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Output for 9.2GHz Sinusoid RF Input, FA=15 MHz
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Figure 3.5: Output spectrum of the harmonic mixer for a 9.2 GHz tone RF input

blind-spots at all multiples of fLTO. Any signal that folds to a frequency close
to JCLTO will be attenuated below the noise floor. The blind zone issue can be
mitigated by using two channels with different sampling frequencies chosen such
that the two resulting blind zones never occur at the same frequencies throughout
the desired bandwidth of the receiver, but this obviously leads to higher system
cost.

On the other hand, if the LPF cutoff is set to a higher frequency, or the filter
order is low causing the frequency roll-off of the filter to be less steep, such that

frequencies higher than JCLTO are not attenuated enough, unwanted aliases from

harmonics outside of the RF signal’s original Nyquist zone will be passed by the
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Simulated Mixer and Filter Output
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Figure 3.6: Spectrogram of the simulated harmonic mixer and LPF output for a
3.5 GHz and 9.2 GHz tone RF input. For simple RF input cases the spectrogram
may be used to visually estimate the original input frequencies. The spo(t)
used is sinusoidal modulation with Fn =15 MHz and F,,,,=5 MHz. As the
center frequency of s;o(t) is fro =1.5 GHz, the Nyquist rate baseband has a
bandwidth of 750 MHz. The 9.2 GHz tone folds to 3.5 GHz - 6-1.5 GHz=200
MHz, and the 3.5 GHz tone folds to 500 MHz. The compressed 9.2 GHz signal
deviates 6- FA=90 MHz from the 200 MHz center. The period of the modulation
is 0.2 ps due to the F),,q of 5 MHz.
filter. As the unwanted harmonic products in the output are indistinguishable
from a true input signal, they may lead to false positives during reconstruction
of the input. General reconstruction performance is also lowered by the false
positives, as now the signal being reconstructed is less sparse.

The next component in the receive chain is an amplifier. As the harmonic
mixer spreads the energy of signals from higher zones across the spectrum, am-

plification is required to match to the dynamic range of the analog to digital

converter (ADC). Then another low pass filter is used to remove spurious prod-
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Figure 3.7: Real valued compressive sensing matrix model for the NYFR imple-
mentation.

ucts from the amplifier. Finally the receiver output is sampled at 1.5 GS/s by a
Red Rapids Model 276 ADC with 12-bit resolution. Three of these PCle cards are
hosted in a Linux PC with MATLAB used to process the output of the prototype
three channel NYFR.

In order to match the compressive sensing model with the physical hardware,
the phase of the modulation induced on the RF signal, and thus the starting phase
of spo(t) must be known. The phase offset between the start of an ADC capture
and the s;o(t) generated by the AWG is controlled by triggering both the ADCs
and the AWG with a multichannel digital pulse generator. The delay between the
ADC trigger and AWG trigger was experimentally adjusted to account for the
delay of the whole system, including the delays between the triggers and actual
action and the phase response of the receive chain. In a production system, this

timing and phase must also be accurately known.

3.2 Compressive Sensing Model

Now a CS model of the measurement process performed by the hardware is needed

to enable reconstruction of the original RF input from the compressed receiver
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output. The real-valued signal model for the hardware used by this thesis is
developed in [23]. Figure 3.7 shows the full model. The compressed measurements
z are captured by the ADC in the time domain. R is a set of identity matrices
that project Z number of Nyquist zones onto a baseband of K samples.

The conjugate symmetric diagonal matrix S contains the modulation induced
on each zone as a function of time. As shown in Section 3.1 when given a
frequency-modulated sy (t) the harmonic mixer spreads the input signal over a
range of frequencies, with the spread increasing for higher harmonics of sy o(t) and
thus higher frequency input signals. The modulationindex M =0,—-1,1,2, —-2,..., Z
is the parameter that uniquely defines the original frequency of the compressed
signals giving an output with a peak frequency deviation M Fa. The sign of the
modulation is set by whether the signal is from the upper or lower sideband,
and negative modulation is shifted 90 degrees from the positive modulation. The
modulation index depends on the Nyquist zone of the RF input frequency frr,

giving the pattern

( 0, for frr < fLTO
—1, for fLTO < frr < Jro
L, for Jro < frr < 3J;LO
M(frr) =4 -2,  for 3f2LO < frr < 2fro - (3.13)
—Z, for w < frr < Zfro
| 4 for Zfro < frr < w

Thus S is also said to be split into two conjugate symmetric blocks for each zone,

consisting of the time modulation pattern common to all zones modified for that
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particular zone’s value of M.

W is a block diagonal matrix with each block consisting of the inverse dis-
crete Fourier transform (IDFT) matrix for one sub-band. The IDFT blocks are
split into upper and lower side-bands in order to match the sign of the induced
modulation. Finally X is the complex-valued discrete Fourier transform of the
full-bandwidth signal. The full model is an under-determined equation, as only
R, S, ®, and z which is shorter than X are known. The system samples in the
time domain and represents the signal in the frequency domain. The two bases
are incoherent, which is optimal for compressive sensing. The equation may be
solved for X with CS algorithms if X is sparse and z consists of a sufficient num-
ber of measurements that have low coherence. The assumption that the original
frequency spectrum is sparse limits recovery of signals with very wide bandwidth,
especially those wide enough to fill the whole baseband.

Figure 3.8 shows the results of using the compressive sensing model with a
convex recovery algorithm to recover the original frequencies for the inputs show
in Figure 3.6. The original frequencies of the two CW tones are correctly recov-
ered. Note that these inputs fit the assumption of a sparse frequency spectrum.
For cases with wide-bandwidth signals, especially ones wide enough to fill the
baseband defined by ADC’s low sample rate, recovery of the spectrum will fail
as the sparsity assumption is no longer true. The left panel Figure 3.9 shows an
LFM chirp that starts at 2.3 GHz and ends at 3 GHz, having significant band-
width compared to the sample rate. The right panel shows the failed spectrum
recovery. It is worth noting, however, that the chirp is still sparse in frequency
over a small period of time, thus for short enough time windows, recovery of some
kinds of LFM signals is still possible. Additionally, a CS model using a different

basis could potentially be found, for example a dictionary of various expected
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Figure 3.8: Output of the SPGL-1 convex recovery algorithm ran on the simulated
inputs from Figure 3.6 for the CS model given in this chapter. Both of the input
frequencies, 3.5 GHz and 9.2 GHz, are correctly recovered. Thus the CS model
is shown to work for a sparse case with s = 4.

chirp signals, then this example input would have a sparse representation in that
basis. Now that it has been shown that the sparsity of the spectrum can cause

reconstruction to fail, the RIP will be used in order to get an idea of what number

of measurements or level of sparsity is sufficient for reconstruction.
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Figure 3.9: The simulated receiver output for wideband LEM chirp starting at 2.3
GHz and ending at 3 GHz is plotted in the left panel. The right panel shows the
ideal spectrum of the chirp, and the attempted recovery of the spectrum through
convex optimization. Recovery is not successful as the input chirp is not sparse
in the basis used for the CS model.
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3.2.1 RIP Analysis

As mentioned in Chapter 2, the restricted isometry property can be used to
establish whether a sensing matrix is guaranteed to exactly recover x for a sparsity
level s. Of course, the difficult computation is determining d, for a matrix. By
the definition of the RIP, the problem of finding the RIP constant is equivalent

to finding the signal x that is s-sparse and gives the largest value of d
1AX|[3 = (1 £ 6,)[[x][3. (3.14)
Additionally the spectral norm-deviation of x is defined as

ds(x) =

A% JAx
[k "2_1‘ -

1]z

where A(x) is the support of x [24]. The spectral norm of x is the maximum
singular value of x. Finding d5 is then equivalent to finding the maximum value
spectral norm-deviation of all possible combinations of x.

Determining d, exactly for a given s would require examining all possible val-
ues x can take with a support size of s, which is clearly not feasible. Instead Fudge
et al. consider what should be the worst case for the NYFR system, frequency-
bin-centered tones at frequencies that fold to the same baseband frequency [24].
First, the system is considered as if there no zone-dependent modulation induced.
Without modulation, it is impossible to distinguish between two signals that orig-
inate from different Nyquist zones but fold to the same frequency, which is the
worst case. By definition the worst case gives the maximum value of d,(x), which
is then also the restricted isometry constant of A for any s-sparse signal. Fudge

shows that for cases where aliased, bin-centered frequencies do not fold to the
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same compressed bin, d, is identically zero, and establishes a lower bound of one
for folds to the same bin.

A RIP constant of one or greater does not guarantee successful reconstruction
for any algorithm. This leads to an alternative consideration of how often these
worst cases will occur. If the original signal x consists of s continuous-wave
(CW) tones that have a uniform probability of originating from any particular
frequency bin in the receiver’s bandwidth, then it follows that the probability
of d5(x) being identically zero, guaranteeing reconstruction, is the probability of
any two of the tones aliasing to the same baseband frequency-bin, which is found

through a short derivation to be

T 1 sl/(2(s—=2)!)
L) (3.16)

Plaa) = (207

where T is length in seconds of the reconstruction window. For the values most
commonly used for the implementation of the NYFR in this thesis, fro=1.5
GHz and T=1 ps, which gives a probability of 0.9993 of successful recovery of
any spectrum containing two signals with a high-signal-to-noise ratio (SNR). Of
course, in a real environment the distribution of signals across the spectrum is
far from uniform, and rarely will a signal be a bin-centered CW tones, so this
result is of limited utility.

Next, we extend this consideration of the worst case to the NYFR system
that induces a zone-dependent modulation. Consider two signals that fold to the
same compressed center frequency. The further away the original Nyquist zones
are, the more their modulation differs and thus the less correlated they are. The

worst case will be when the two signals are highly correlated; that is, when they
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are from adjacent zones. An upper bound for d; was then calculated in [24] to be

[ 1
< —_— .
0y < sC T (3.17)

where C'is some constant that must be empirically found for a particular modula-
tion pattern. In general it can be concluded that for a high-SNR case, increasing
the peak frequency deviation of s;o(t) or increasing the number of measurements
will improve the level of sparsity that is guaranteed to be reconstructed. As the
exact performance bound of the NYFR is difficult to derive mathematically, such
that the current literature requires C' be empirically found, a useful step for de-
signing the system was the creation of a simulation based on the hardware. The
simulation was then used to quickly find values for adjustable parameters such
as the spo(t) modulation pattern that should later give reasonable performance

for the hardware prototype.
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Chapter 4

Simulation

This chapter will detail results found through the use of a MATLAB simulation
of the NYFR system. The simulation enabled analysis of some of the design con-
straints inherent with the NYFR architecture, eventually leading to a reasonable
set, of parameters that were used with the receiver prototype. The simulation
was designed to match the operation of the harmonic mixing hardware. Short
pulses are generated on the zero crossings of the simulated s;o(t), and mixed
with simulated input signals. The bandwidth of the mixer is modeled as having
the -3 dB point at the 15 GHz harmonic. The LO center frequency is 1.5 GHz.
An accurate simulation of the harmonic mixer behavior is sufficient to model the
compressive sensing performance. The other components of the system are only
simulated for the ideal case: the digital LPF used to simulate the analog LPF
after the harmonic mixer output has a significantly sharper cutoff at 750 MHz
than the filter used in the hardware implementation, and other loss in the system

components such as the limiters and ADC quantization loss are not considered.

4.1 Frequency Recovery

The effects of several system parameters on the ability to recover the frequency

support of narrowband input signals are analyzed in order to obtain optimal re-
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construction performance. The design of the LO sampling waveform is of particu-
lar interest. For the case of inducing the sinusoidal frequency modulation defined
in (3.6) on the RF input by modulating the phase of the LO waveform, the peak
frequency deviation Fo and the modulation rate F),,q must be selected. Fa in-
volves a trade-off between recovering low-power signals in higher Nyquist zones
and the ability to determine the correct origination zone. Increasing F;,,q allows
for recovery of shorter pulses by increasing the incoherence of the small number of
measurements taken during the short pulse, but the maximum modulation rate is
limited by phase noise. Both parameters limit the dynamic reconstruction range

of the system.

4.1.1 Selection of Peak Frequency Deviation

Increasing Fa decreases the correlation between compressed signals in adjacent
Nyquist zones, thus making it easier for compressive reconstruction algorithms to
identify the correct zone. However, increasing Fa also spreads the energy content
of the input signal over a wider frequency range, eventually causing the signals at
higher zones to fall below the noise floor. Thus a trade-off must be made between
the probability of selecting the correct Nyquist zone and the signal-to-noise ratio
(SNR) requirements of a practical system.

Figure 4.1 shows the results of a Monte Carlo simulation for the probability of
successful reconstruction versus SNR for signals in the first seven Nyquist zones.
Fp is set to 4 MHz. Each trial consists of randomly generating a single input
frequency with added white noise, attempting to recover the frequency support
with the SPGL-1 solver, and finally classifying the reconstruction as successful if
the energy in the bins containing the original frequency is greater than 80% of the

maximum reconstructed frequency bin. The two frequency bins surrounding the
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random frequency are summed in order to handle cases where the frequency does
not exactly fit on the simulation grid. This approach does allow a reconstruction
with a limited number of false positives to still be classified as successful. Forty-
eight trials were performed for each zone and SNR step. The reconstruction
performance decreases rapidly as the spectrum of the modulated input signal
falls into the noise floor. The SNR requirements for reconstruction grow at an
increasing rate as the modulation index increases.

Now consider that signals that fold to the same baseband frequency, with all
things identical other than the original zone, are still somewhat similar as the
same modulation pattern is applied to each. The coherence between identical
signals from different zones is not zero. In the most extreme case of Fo=0 Hz,
the mutual coherence is one, and which zone the signal originally came from may
not be determined. An important effect caused by the modulation patterns for
each zone not being completely incoherent is that when convex optimization is
performed to recover a signal at a frequency frp, spurious values appear in the
reconstruction at frr + fro. The highest magnitude spurs are always in the
zones to either side of the correct one, as these zones have the least difference
in modulation pattern and thus have the highest coherence with the true zone.
Algorithm families such as iterative thresholding make the coherence issue less
clear, as they stop iterating after reconstructing a selected number of the highest
magnitude coefficients rather than optimizing the whole signal basis, and the
weaker frr + fro will often fall below the threshold for reconstruction, but there
is still a nonzero probability that an incorrect Nyquist zone will be selected.

A second Monte Carlo simulation was performed to find the relative levels
of the adjacent Nyquist zones versus Fa. Thirty-two simulations per Fa step

were performed for a constant RF input with frequency frr on the simulation
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Figure 4.1: Results of Monte Carlo Simulation for the reconstruction of random
frequencies in each Nyquist zone versus SNR. Trials are ran for seven Nyquist
zones each with a corresponding modulation index M = +1,£2 ..., +7. For
each trial, a CW tone is randomly selected with uniform probability from the
frequency range of the current zone. AWG is added to the generated input to
give a specific SNR. Reconstruction is then performed for each trial. The number
of reconstructions that correctly identify the random tone is used to estimate
the probability of successful reconstruction at various SNRs for each zone. As
the SNR decreases, the modulated harmonic mixer output falls below the noise
floor, causing reconstruction to fail. As the energy of input signals from higher
Nyquist zones is spread out over a wider frequency range according to M Fa,
high frequency signals require a higher SNR for the compressed output to remain
above the noise floor.
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frequency grid with an SNR of 40 dB. Peak frequency deviations of sy o(t) were
stepped through from 0.5 MHz to 6 MHz with a constant F},,; of 5 MHz. The
mean relative level of the peak side zones is plotted in Figure 4.2. It can be seen
that the side-zone levels are decreasing as the peak frequency deviation increases.
This intuitively makes sense, as the higher the peak frequency deviation, the less
correlated different zones are.

To illustrate the relation between F,,; and Fa, the simulation is performed
again with an F),,; of 10 MHz and plotted in Figure 4.3. Increasing the mod-
ulation rate without also increasing the underlying sampling rate of the system
causes there to be fewer measurements at each intermediate sampling frequency.
Fewer measurements lowers the reconstruction performance of the system, rais-
ing the side-zone levels. Thus the selection of F is a trade-off that depends on
the required attenuation of the side-zones, the modulation rate, and the needed

sensitivity of the system to low-power signals in the higher Nyquist zones.
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Figure 4.2: Mean relative level of the spurs from adjacent zones for different
peak frequency deviation values. As the same signal, except for originating in
different Nyquist zones, is not perfectly incoherent, the reconstruction of the
original signal X appears to have nonzero components at the frr = nfr.o where
n is integer multiples of fro. Increasing Fa decreases the coherence of the zones
with each other. The zones to either side of the zone the signal truly originates
from, the "side-zones", have the least difference in modulation pattern and thus
are the most likely to be reconstructed with significant false magnitude. A CW
input of 9.2 GHz with added AWGN for an SNR of 60 dB is used for each trial.
Trials are ran for each value of FA. The mean of all side-zone power levels,
including both adjacent zones, are plotted.
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Relative Sidezone Level for F,,,q—10 MHz
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Figure 4.3: Relative level of the adjacent zones for different modulation frequency
deviation values, with the modulation rate set to 10 MHz. A CW input of 9.2
GHz with added AWGN for an SNR of 60 dB is used for each trial. Trials are
ran for each value of Fa. The mean of all side-zone power levels, including both
adjacent zones, are plotted.
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4.1.2 Reconstruction Dynamic Range

For a practical case where there is not a priori knowledge of the number of signals
or their power levels, some discussion must be made of how to select a threshold
to determine whether there is an actual signal located at a frequency in the
reconstructed spectrum, or just a spurious reconstruction or noise. One simple
method is to set a minimum amplitude threshold for a reconstructed signal to be
considered a true signal. However when the original input had multiple signals
of varying power levels, selecting which signals are truly present becomes more
difficult.

As the magnitudes of side-zone harmonics, dependent on the selection of F}, .4
and F, can be significant, the side-zones limit the dynamic range of the system
when performing reconstruction. As the convex optimization is not guaranteed to
determine exactly the original zone of a signal, shown in Section 4.1.1, harmonics
of the signal will appear at f econstructeda £ fro With a power level relative to the
original signal power. If one signal source has a significantly higher power than
another source, the reconstructed harmonics of the first signal may also have
a higher power than the second source. If the threshold for signal detection is
set relative to the strongest reconstruction, in order to ignore the harmonics,
detection of the second source will fail. An example for three CW tones of
unequal power at 3.5, 3.65, and 3.8 GHz is shown in Figure 4.4. The signals are
all located in the same zone, in order to ignore any affects from the frequency
spread increasing with higher zones. The signal at 3.8 GHz has the highest power,
at 80 dB above the noise floor, 3.65 GHz is 20 dB above, and 3.5 GHz is 30 dB
above. The side harmonics of the 3.8 GHz tone are higher for the 10 MHz F},,,4

case than the 5 MHz case, as expected. Indeed they are higher than the recovered
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Recovered Spectrum, F,,,q=5 MHz, FA=4 MHz
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Figure 4.4: The reconstruction dynamic range is limited by the harmonics located
in the zones to either side of the strongest signal. In the top figure the higher value
of Fa causes the average magnitude of the side-zone harmonics to be lower, such
that in this example all original signals are reconstructed above the harmonics.
In the bottom figure F is decreased, raising the side-zones of the strongest signal
above the correct frequencies of the other two signals, complicating identification
of the signals present. 43



tones at 3.65 GHz and 3.5 GHz tones, so a simple thresholding method would
either give false positives or false negatives.

There is a potential for more intelligent detection methods to alleviate this
effect. An iterative method could select the strongest reconstructed signal, sub-
tract that signal and the predicted harmonics from the reconstructed spectrum,
then repeat until the strongest detection is below some threshold that is selected
from the receiver noise floor. This method would have a few drawbacks, however,
as this could cause the presence of a real, but weak, signal that is located at a
harmonic of the one strong signals to not be detected. This method also becomes
more fragile in the presence of signals with significant bandwidth, as the band-
width must be estimated before subtracting the harmonics. The performance of

this method will be shown in Chapter 5.

4.1.3 Phase Accuracy Requirement

The question of how close the phase of the sensing matrix used for reconstruction
must match the phase of the measurements should be considered, in order to be
informed of the timing requirements for a real system. A single simulated CW
tone in the 16-17.5 GHz Nyquist zone matching the highest zone of the physical
prototype, is input into the harmonic mixer along with a sinusoidal spo(f) with
the modulation 6(t,7) = % sin(27Fy0at + 7). The mixer output for various
values of phase drift 7 is then reconstructed via a sensing matrix assuming 7 = 0.
This procedure simulates the unknown alignment between the s;o(t) generator
and the start of an ADC capture in a the real system. The results for Fao=4 MHz
and F},,q=5 MHz are plotted in Figure 4.5.

There is a sharp transition between successful and failed recovery at the same

delay for both the ROMP greedy iterative thresholding algorithm and the SPGL-
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Figure 4.5: Simulation performed to test how closely the phase of the CS model
and the compressive measurements must match in order to get successful recovery.
One hundred trials were performed for each time delay, generating a CW tone
in the highest Nyquist zone with added AWGN. The estimated probability of
recovery is plotted. For the tested LO parameters recovery fails when there is a
difference of approximately 4.25 ns between the model and measurements.

1 convex optimization. Increasing the slope of the modulation by increasing the
modulation rate or peak deviation decreases the misalignment at which recon-
struction fails. Depending on the selected LO parameters, this constraint is not
too difficult to meet; for the values used for the majority of the experiments per-

formed with the hardware prototype, the timing must remain within only 4.25 ns

compared to the modulation period of 0.2 ps.
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4.2 Recovery of Pulses

The recovery of pulses is of interest as few signal sources in the real world are
constant-frequency tones. Digital communication systems transmit in bursts as
needed, and in several schemes only transmit part of the time to allow other
devices to share the same frequency. Frequency hopping radar is another inter-
esting signal source, especially since existing swept frequency receivers will miss
some of the pulses. If the duration of a pulse is long enough for the system to
capture a number of incoherent measurements to satisfy the RIP, reconstruction
performance is the same as that of a CW tone. A pulse length requirement of
greater than one LO modulation period was discovered to be a general rule of
thumb for there to be measurements taken with low enough coherence for suc-
cessful recovery. Increasing F),,q decreases the coherence of each measurement in
the pulse, allowing reconstruction of a shorter pulse where only a small number of
measurements may be taken, but as noted in Section 4.1.1 there is also a negative
effect in that increasing F,.q raises the side-zone magnitudes. Figure 4.6 shows
an example of two simulations for a pulse length three microseconds shorter than
half a modulation cycle and for a pulse length equal to half the modulation cy-
cle. The underlying sampling rate of the system defined by fro and the ADC
sampling rate limits the shortest pulse than can be reconstructed as well, since
the sample rate obviously limits the number of measurements of the pulse that
are taken. Figure 4.7 shows an example of reconstruction of three pulses, each
lasting more than one modulation period. With three pulses in the reconstruction
window, intermodulation products also appear in the reconstruction.

As continuous reconstruction is computationally expensive, to the point that

with current technology it is difficult to scale up to real-time processing, it is
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Figure 4.6: Simulated reconstructions to show an example of the pulse length
requirements for success. The top figure has a pulse length equal to one LO mod-
ulation period, giving it a sufficient number of measurements with low coherence
for successful reconstruction. The bottom figure has the same pulse except now
it is three microseconds shorter, giving it fewer incoherent measurements. The
smaller number of measurements causes the reconstruction to be noticeably less
clean.

useful to examine alternatives. Rather than intensive processing of either large
time windows or many windows, it is faster to only perform reconstruction on
small time windows that may contain new signals of interest. Classical pulse
detection techniques, such as those used for radar, are useful for time localization,
allowing a fast reconstruction to be performed to identify the original frequency
support only when the signals present change. It is later shown in Section 4.5 that
knowledge of the frequency support can be used to demodulate the compressed

data, arriving at the original signals of interest. This three-step scheme can reduce

47



Recovered Spectrum Compressed Data
1.2 T

g [deal
—*— Recovered

Normalized Recovery
Frequency (GHz)

0.5 1 1.5
Frequency (GHz) Time (ps)

Figure 4.7: Simulation and recovery of three pulses of varying duration at 2.415,
2.8, and 4.82 GHz with an SNR of 20 dB. The left pane shows the recovered
spectrum, with the frequency support of all three pulses correctly identified. The
right pane shows a spectrogram of the simulated compressed pulse data.
computational cost for recovery of pulses or bursty communication signals. This
method is limited by how effective the pulse detection method is, and the shortest
duration that is reconstructible is set by the selection of F),,q. As high values
of F,0q are both limited by phase noise and the required dynamic range of the
reconstruction, there is a practical limit on the minimum pulse length.
Constant False Alarm Rate (CFAR) is used for such an example of pulse

detection preprocessing. CFAR is used in radar to determine whether range cells

from time series data contain targets, with the goal of providing a constant rate
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of false alarm |25]. The time data is split into several cells. Then the cells are
iterated over, with the current cell being the cell under test (CUT). Reference
cells on either side of the CUT are used to estimate the power level of noise and
interferers in order to adaptively set a threshold for detection. For radar, often
guard cells are a small number of ignored cells in between the CUT and reference
cells, used to ensure returns from the target in the CUT does not effect the noise
power estimation, but for the NYFR we’re using the CFAR technique to detect
the presence of a new pulse and the guard cells are not needed. The threshold
is set above the noise power estimated from the reference cells, so that there is a
constant rate of false alarm calculated from the probability of noise in one sample
exceeding the threshold. The adaptive threshold causes continuous signals and
short pulses to only be detected once, as after the detection the threshold raises
above the new power level, and long pulses are detected once near the beginning
and ends of the pulse as the power level of the NYFR output changes. The system
must wait until the reference cells after the CUT arrives before the threshold can
be calculated, so CFAR will add some latency to the system.

A simulation is created that has one CW tone present at 11.5 GHz, and a
pulse-gated tone at 7.4 GHz with a pulse duration of 1 ps. The probability of
false alarm is set to 107%. The CFAR output detects a time close to the center of
each pulse and is plotted in Figure 4.8. The plot of the threshold increases as each
pulse begins and decreases as the pulses end. For each continual set of cells that
all exceed the threshold, the center cell marks the beginning or end of a pulse and
is plotted on the figure as detections. A short 0.4 ps reconstruction window is
created for each detection, aligned with the start of the modulation period prior
to the pulse center. The reconstruction output for one of the detected pulses is

shown in Figure 4.9. This method works well for any case where the total power
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Figure 4.8: Constant False Alarm Rate detection is used to detect pulses. The
top figure pane displays the spectrogram of the simulated input. A CW tone
is present at 8.35 GHz in order to show how CFAR sets the threshold when a
signal is present for the whole capture, and four pulses of different frequencies
and duration are simulated. The bottom panel shows the CFAR output. The
blue line tracks the total power of the NYFR output at that time. The other line
plots the threshold adaptively set by CFAR. The circles mark the pulse detections
that are used to select windows of the compressed data for reconstruction.

in the RF spectrum changes when any signals of interest start or stop; the one
weakness is that if the next pulse starts immediately when the previous one ends,
and has nearly the same power level, the change will not be detected. A more
complex detection method that also takes into account the baseband frequency

as well, possibly a wavelet based method, would handle such a case.
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Figure 4.9: One of the pulses is detected by CFAR then the frequency support
is recovered with a short reconstruction window. Both the CW tone that is
present throughout the whole capture and the detected pulse’s frequency are
recovered. The pulse frequency was recovered without performing reconstruction
for the entire 100 ps simulation, significantly lowering the number of computations
performed.
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Figure 4.10: Real valued compressive sensing matrix model for combining mea-
surements from multiple channels.

4.3 Multichannel Recovery

Measurements from multiple receiver channels may be combined in the recovery
step, capturing more samples in the same time period and thus improving re-
construction performance. Expanding the compressive sensing model to include
this is simple; the data from each channel may simply be appended together as
shown in Figure 4.10. The matrix R becomes a block diagonal matrix, with one
block for each channel. The time modulation matrix S is expanded vertically for
each channel, allowing for different modulation patterns for each channel. The
remainder of the model is the same as for the single-channel case. If identical
modulation is used for two ideal channels with perfectly synchronous timing then
the measurements will be the same, adding no information to the system. In
reality the timing will never be perfect, so the measurements will be different,
but as shown earlier in the single-channel case, if significant phase differences are

not accounted for in the sensing model, reconstruction will fail. Instead, different
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Dual Channel Reconstruction with Different Modulation
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Figure 4.11: Results for recovery using only the channel with sinusoidal modu-
lation and for recovery using also the measurements from the chirp modulated
channel. The dual channel case recovers all of the input frequencies, while the
single-channel misses eight of them. As predicted the RIP, increasing the number
of low coherence measurements used for recovery improves the recovery perfor-
mance, allowing for full recovery in less sparse environments.

modulation schemes can be applied to each s;o(t) to guarantee that the channels
add unique information.

By the RIP it is known that additional incoherent measurements should allow
reconstruction of less sparse signals. A simulation of two channels is created.
One channel has sinusoidal modulation with F},,,— 5 MHz and Fa= 4 MHz.
The second channel is modulated with a linear upchirp with a rate of 6 MHz and
0.2 ps period. One hundred frequency-bin-centered CW tones of equal power
are simulated as input. SPGL-1 is used to reconstruct the spectrum over a 0.5

ps window. The results for recovery on only the sinusoidal channel and on the
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combined channels are plotted in Figure 4.11.

If for this case successful recovery is defined optimistically as the original
frequency bin being recovered with greater than one percent of the original am-
plitude, the single-channel case recovers 92% of the tones. The dual channel
recovery for different modulations, giving twice the effective number of measure-
ments, recovers 100% of the tones. Qualitatively the top panel is a cleaner recon-
struction as well. Thus, it is shown that for an ideal multichannel system, if the
channels induce different modulation on spo(t), the reconstruction performance
can be improved.

Additionally, the same inputs are recovered with measurements from two
channels that both use the sinusoidal modulation from earlier. One channel is de-
layed by 1.3 ns to simulate the imperfect timing match a real system would have,
making the measurements from each channel slightly different while still being
within the phase accuracy requirements established in Chapter 3. Figure 4.12
displays an example of the recovery. This case of combining two identically mod-
ulated channels also recovers 92% of the tones, just as if only a single-channel
were used, showing that combining measurements from multiple channels using

an identical s;o(t) makes little difference on reconstruction performance.
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Figure 4.12: Results for recovery using combined measurements from two chan-
nels that both have the same sinusoidal modulation. Eight input signals are
missed, just as in the single-channel case, demonstrating that combining mea-
surements from multiple channels does not have a significant effect on recovery
performance if the measurements from the two channels have high coherence.
Taking nearly identical measurements in multiple channels adds no new informa-
tion to the system.
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Figure 4.13: Block diagram of the two element NYFR array used for direction of
arrival estimation.

4.3.1 Direction of Arrival Estimation

One advantage of the structured sampling approach of NYFR is that it allows
for simple implementation of existing direction of arrival (DOA) techniques, as
long as the same modulation is applied to two or more channels. It should also
be noted that joint estimation of both frequency and direction of arrival without
prior information about either is an active area of interest [26][27|. The basic
DOA estimation for multiple sources problem assumes that the frequencies of the
signals arriving at the antenna array are known [28]. Common solutions include
the MUItiple SIgnal Classification (MUSIC) technique and the ESPRIT algorithm
for uniform linear arrays. MUSIC is applied to frequency estimation in [29]. The
narrowband MUSIC technique has been extended to wideband cases [30]. The
NYFR provides a promising solution for sparse RF environments. Figure 4.13
gives the block diagram of a two-channel NYFR system which is a linear array.

Let spp(t) be a narrowband real signal cos(w.t+¢). The s o(t) with sinusoidal
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Figure 4.14: Geometry of antenna array for DOA estimation.

modulation that is described in Chapter 3 is used for both channels. The output
of the first harmonic mixer and LPF is given in (3.12).

Now the geometry for a uniform linear array with elements separated by a
distance d meters is shown in Figure 4.14. The narrowband plane wave sgpi(t)
is incident on the array at an angle a. Let sgpq(t) arrive at element 1 at time ¢,
then the signal incident at element 2 is the time delayed sgppi(t — 7) = Srpa(t).
From the geometry it is derived that the time delay 7 between the signal arriving

at the two elements is
dsin(o
. ( )

; (4.1)
The second harmonic mixer samples the time delayed sgps(t), giving
yg(t) =11 (t — T) ~ Z SREF2 (t)ejnH(wLOH—e(t))e_jT . (42)

k

The modulation induced by the harmonic mixers is independent of the time delay
at each element. This means that CS reconstruction can be applied using the
same measurement matrix for either digitized channel to recover the frequency

27
support. The recovered center frequency also gives the wavenumber 3 Since
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equal modulation has been induced on each signal, they are simply delayed copies
of each other allowing traditional direction of arrival estimation techniques to be
applied without demodulating the channels.

Capon Minimum Variance Distortionless Response (MVDR) beamforming is
implemented for a reasonable tradeoff between complexity and resolving power.

The MVDR power spectrum is defined as

P(¢) = (4.3)

1
af(¢)R~a(9)
where a is the array manifold and R is the sample covariance matrix. It must
be considered that the original signal frequency may not exactly align with the
reconstruction frequency grid. Error in estimating the original frequency also in-
troduces error to the angle of arrival estimation. To improve the angle estimation
performance, an angle-frequency spectrum is created by calculating the MVDR
power for the recovered frequency +10 KHz. The peak power from the spectrum
is then used as a refined angle estimate.

A simulation for a three element ULA spaced by 1.5 ¢m is created with three
CW sources: 6.02 GHz at —65°, 4.44 GHz at 0°, and 8.52 GHz at 42°. The
source frequencies are correctly identified by reconstruction with one element.
The output of the MVDR-based DOA estimation is shown in Figure 4.15. The
signals are estimated to be at —69.5°, —0.516°, and +44.0°, all close to the correct
angles.

It was shown earlier that using two or more channels with different modula-
tion patterns adds additional incoherent measurements, allowing for faster con-
vergence to the original sparse solution. However, multichannel reconstruction is

not fully compatible with using multiple channels for direction finding. Specifi-
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Figure 4.15: Output of direction of arrival simulation. The jointly estimated
frequencies and angles are all close to the ideal ones.

cally, the phase difference between the channels connected to different antennas
will cause the current system model and compressive sensing solvers to fail when
the time delay between the signal arriving at each antenna becomes significant.
The NYFR CS model solves for the complex-valued DTFT of the original sig-
nal. The system is not just solving for the magnitude of the frequency spectrum,
but also the phase. When an RF signal impinges on an array, there is a phase
difference between the copy at each channel that is exploitable for direction find-
ing. This phase difference means that the correct solution for a signal that is to
be reconstructed for one particular channel is an entirely different solution from
the correct one for a separate channel. Now if the measurements from the two

different channels were combined, based on the CS model, they give conflicting
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information on what the original signal was, lowering reconstruction performance
or causing it to fail. There is an additional complication in that when different
modulations are applied to two channels they must be demodulated before being
used for angle estimation, as the channels are no simply time delayed copies.
The most straightforward to implement solution to have both direction find-
ing capabilities and improved reconstruction performance from multiple channels
would be to use a three channel system, with two phase matched channels with
different modulation patterns processing the input of one antenna, and the third
providing the angle of arrival estimation with a second antenna. However, this
obviously has the downside of higher cost. There is some potential to apply al-
gorithms that promote group sparsity or block sparsity to the channels, in which
case the solution that separately is the most sparse for each channel is found.
Another alternative would be the creation of a phase independent representation

basis.

4.4 Communication Signal Recovery

Another advantage of the structured sampling approach of NYFR has over sys-
tems with a random sampling matrix is the capability to recover the original
signals with a simple demodulation operation, which is more specifically termed
as decompression. When the original carrier frequency of a signal is identified,
the modulation applied by the harmonic mixer is also known. Demodulating the
compressed data using the known Nyquist zone gives the original, decompressed,
signals that were present in that zone.

Another nice property is that signals from other zones that fold onto the
same compressed frequency remain frequency modulated. Consider that there

is one particular signal of interest, and we want to ignore all other signals, so
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the other signals are unwanted interferes. The frequency deviation becomes
(M; — Mgemoa)Fa where M; is the original modulation index of an unwanted
interferer and M gemoq is the modulation index for which the data is being de-
compressed. Thus for an interfering signal with the same modulation sign as the
signal of interest, that is an interferer that originates from the same of either
the upper or lower zone sidebands, the interferer’s frequency deviation increases
for each zone between it and the signal of interest. For signals from the other
sideband, with the opposite modulation sign, the closer the zones are, the further
energy is spread. The important takeaway is that any interfering signals that
alias to the same frequency still have their spectrum spread, effectively whitening
the interferers and thus improving the SNR of the particular signal of interest.
A simulation is performed for a random QPSK bitstream. For this exercise, 10
symbols are generated at a modulation rate of 5 Msym /s, and AWGN is added to
simulated RF input to have an SNR of 30 dB. To simulate interference from other
signal sources, two other RF inputs of equal power, one a CW tone at 8.4 GHz,
M = —6, and the other a FM modulated signal with a bandwidth of 44.1 KHz
at 9.6 GHz, M = 6, are generated. The QPSK signal has a carrier frequency
of 2.4 GHz, M = —2, which aliases to 600 MHz. The two interfering signals
fold down to the same alias at 600 MHz. The left panel of Figure 4.16 shows
the spectrogram of the compressed and digitized output of the receiver. All ten
symbols are present in the plot. As the QPSK signal is in the lower Nyquist zone,
it can be visually identified as the signal with the lowest peak frequency deviation
out of the three signals. Additionally, the one-sided power spectral density of the
compressed and decompressed NYFR output is plotted in Figure 4.17.
Reconstruction is performed with SPGL-1 to identify the signals present and

their carrier frequencies, with the result shown in Figure 4.18. The reconstruction

61



Compressed Output Demodulated

700 700
: ’, NI AAOAN
ooo I LAV N
.'.1"'11:!'1' : | 'l"c Tl 'l ’u
— 500 | — 500
N N
o =
=) =) o)
400 400 8
S} O [
= = 2
= 300 2 300 @
(<] ]
= =
200 200
100 100
0 0
05 1 15 05 1 15
Time (ps) Time (ps)

Figure 4.16: The left panel contains the spectrogram of the compressed QPSK
signal with interferers. The QPSK signal is from the lowest zone, and as such
appears as the signal around 600 MHz with the lowest peak frequency deviation.
The right panel shows the spectrogram of the data that has been decompressed
for the Nyquist zone that the compressed QPSK signal originates from. The
QPSK signal now appears as a straight line at 600 MHz, as the zone dependent
frequency modulation has been removed from it.
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Figure 4.17: Power spectral density (PSD) of the compressed and uncompressed
data with interferers. The upper panel shows the compressed spectrum. Note
that the energy of the signals that were folded to 600 MHz is spread out over a
wide bandwidth. The PSD of the demodulated data has a much narrower peak
at 600 MHz from the decompressed QPSK signal.
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Figure 4.18: Reconstruction of the frequency support of the QPSK signal and
two interferers. All three frequencies are reconstructed.

identifies that there is a signal at 2.4 GHz, in the second Nyquist zone. At this
point the compressed data can be demodulated for this zone of interest. In a
production system it would likely be necessary to demodulate each zone and
side-band that the reconstruction reports as having a signal, in this example the
three at M = —2, —6,6, as which signals are particularly interesting might not
be known.

The demodulation is then performed according to

Zdemod,M(t) - Z(t)e_jMe(t) (44)
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where 6(t) is the sinusoidal modulation defined in Chapter 3, with an F,,q of
5 MHz and an Fa of 10 MHz. The demodulation operation has low computation
cost as it it simply element-wise multiplication of two vectors, and each zone
can be demodulated and processed in parallel, so decompressing multiple zones
should not present any throughput issues in a real system. In this case we are
interested in the QPSK signal, so the decompressed spectrogram for the M = 2
zone is plotted on the right of Figure 4.16. Upon comparison of the two spec-
trograms in Figure 4.16, it can be clearly seen that the frequency spread of the
interfering signals is increased after decompression, as the right panel shows that
the frequency deviation of the 9.6 GHz interferer is increased to 11Fx.

In a production system, a priori knowledge of expected communications pro-
tocols, or some algorithms to determine the scheme, would be needed. For this
simulated case, with a priori knowledge of the bandwidth of the QPSK, and the
center frequency recovered by the receiver, a digital FIR bandpass filter is dy-
namically created with the passband at f,ccovereat ® MHz and used to isolate the
decompressed data. The QPSK communication signal itself is then demodulated,
with assumption of prior knowledge of the symbol timing and phase. Figure 4.19
plots the constellation diagram of the demodulated signal. The symbols are well
defined, even with the added interference from the two overlapping RF signals
of equal power. This simple recovery of the original communication signal dis-
plays the advantage of the structured sampling performed by the NYFR, largely

preserving the original structure of measured signals.
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Figure 4.19: Constellation diagram for a simulated QPSK signal with the sim-
ulated receiver output decompressed for the QPSK signal’s original zone. The
two interferers that alias to the same center frequency have little effect, as the
demodulated QPSK symbols are closely grouped into the four states that were
transmitted. Thus the NYFR can potentially capture communications signals
even if multiple signals with bandwidth fold to the same frequency.
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Chapter 5

Experimental Results

Now that examination has been made of the trade-offs inherent in the design of
sro(t), and simulations have been performed showing several potential applica-
tions of the system, in this chapter we will confirm these findings on a physical
NYFR prototype. For testing single channel frequency recovery, the simulations
show that Fa—4 MHz and F,,,q = 5 MHz should be a reasonable trade-off be-
tween the reconstruction dynamic-range, the probability of reconstructing high
Nyquist zones, and a minimum reconstructable pulse duration of 0.2 ps, thus
reconstructions of CW tones and pulses using these parameters will be demon-
strated. First direct stimulation of the harmonic mixer input port will be shown,
then later over-the-air (OTA) captures with a broadband antennas are given. The
ability to use multiple channels for increased reconstruction performance and di-
rection of arrival estimation will be tested. Finally an OTA communication signal
will be decompressed and demodulated.

The complete experimental setup for testing the prototype receiver is pictured
is pictured in Figure 5.1. The arbitrary waveform generator used for spo(t) is at
the bottom of the rack on the left, and host PC is to the right with the timing
pulse generator sitting on top. The prototype receivers are on top of the rack

that holds the AWG. Three copies of the receiver were packaged in two cases to
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Figure 5.1: Full experimental setup with test equipment.

keep the contents protected but easily accessible.

5.1 Hardware Characterization

In order to measure the actual frequency response and useful bandwidth of the
receiver chain, an automated testing suite was created in MATLAB. A CW tone
with no modulation was generated at 1.5 GHz and fed into the LO port. Using
a constant LO allowed the frequency response of the system to be measured
separately from the magnitude roll-off caused by the usual spectrum spreading
of higher Nyquist zones. A waveform generator controlled by MATLAB was
attached to the RF input port and swept from 0 Hz to 18 GHz in increments

of 10 MHz. At each step, a 10 ms ADC capture is taken and the PSD was
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NYFR Frequency Response, No Modulation
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Figure 5.2: Frequency response of a single NYFR channel for FA = 0. The blind
frequencies caused by the anti-aliasing filter appear at each multiple of 750 MHz.
The roll-off of the harmonic mixer is visible in how the zones, each centered about
multiples of 1.5 GHz, are attenuated at the higher frequencies.

estimated in MATLAB. The bin for the downconverted input RF frequency was
then recorded. The resulting measure of the frequency response for one of the
channels is pictured in Figure 5.2. The roll-off and notches caused by the low
pass filter at 750 MHz clearly delineate the sub-bands of each Nyquist zone. The
frequency response in each sub-band due to the two LPFs is far from flat; it
would likely be useful in many situations to digitally correct for this. The ADCs
themselves have about 1dB of attenuation at 750 MHz as well. The roll-off of
harmonics generated by the harmonic mixer is shown by the weaker response to
higher Nyquist zones. The goal for the receiver was to cover a range from 1.5

GHz to about 16 GHz. The 10 dB attenuation of signals in the higher frequency

range did not prevent recovery of high frequency over-the-air signals that were
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high power, but if weak signals are to be monitored, it should be improved.

5.2 Single-Channel Recovery

In the early stages of experimenting with the receiver, many tests were performed
with the RF port stimulated by direct connection to waveform generators. Some
work was required to account for the phase delay of the receiver chains and the
delay between the ADC’s receive trigger and the data samples. Another issue
was that the AWG generated additional high-frequency harmonics in addition
to spo(t), which caused additional, weaker copies of the RF tones with higher
frequency deviations in the receiver output. Adding an appropriate bandpass
filter on the AWG output alleviated this. Once those two issues were solved,
successful recovery of up to three CW tones was demonstrated on each of the
receiver channels. Figure 5.3 shows one of the results of these experiments. The
left panel shows a spectrogram of the compressed data captured by the signal.
In the spectrogram the three input signals with varying peak levels of frequency
modulation are visible. The right panel shows the results of reconstruction with
the SPGL-1 algorithm, on top of the ideal spectrum of the input frequencies.
Figure 5.4 gives another example, with the additional complication of two of the
tones folding to the same alias frequency. The power levels of the inputs are also
more closely matched in this example.

The timing sensitivity for clean reconstruction of one CW tone with the SPGL-
1, SALSA, ROMP, and COSAMP algorithms was tested by increasing the delay
between triggering the AWG and the ADCs until reconstruction failed. Both
4.3 GHz and 9.2 GHz tones were tested. For all algorithms, reconstruction fails
when the misalignment with the model is greater than 8 ns nanoseconds for a

5 MHz modulation rate LO, slightly more tolerant than predicted in Section 4.1.3.
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Reconstruction of 3.85, 7.7, and 9.4 GHz Tones
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Figure 5.3: Reconstruction of three CW tones from signal generator connected to
RF port. The left panel displays a spectrogram of the compressed data captured
by the receiver. The compressed 3.85 GHz tone is at the top of the spectrogram,
the 9.4 GHz in the middle, and the 7.7 GHz tone is at the bottom. The right
panel shows that all three tones are recovered successfully. The 3.85 GHz tone
is reconstructed as having very low amplitude, due to the input signal being
generated at a lower power and the LPFs attenuating the 650 MHz frequency

that the tone folds to.
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Reconstruction of 4.05, 8.1, and 11.5 GHz Tones
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Figure 5.4: Reconstruction of three CW tones. Two fold to same intermediate
frequency at 600 MHz. The right pane displays successful reconstruction of all
three tones, thus it is shown that signals folding to the same frequency can indeed

still be recovered.
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Compressed Data
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Figure 5.5: Example of CFAR pulse detection used on OTA data. The upper
panel shows a spectrogram of the NYFR output. Both a CW tone and a series
of 1 ps duration pulses are present. The lower panel shows the CFAR output.
The threshold adjusts to detect each pulse once, and all pulses were detected as
shown by the circles on the plot.

The timing requirement is not a huge constraint on the design of an NYFR, as
the success of this system shows that timing on the order of a nanosecond is
not difficult achieve. With the 5 MHz modulation rate commonly used for this
implementation, pulses lasting only a fifth of a microsecond can be recovered.
Successful reconstruction was demonstrated with mixed CW tones and microsecond-

scale pulses. CFAR thresholding was used as in Chapter 4 to detect processing
windows that contain a pulse, then reconstruction was performed for each de-
tected pulse. The CFAR output is shown in Figure 5.5. Figure 5.6 shows an

example of one of the detected reconstruction windows. The right pane of the
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Reconstruction of Detected Pulse at 175.084 ps
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Figure 5.6: Example of OTA pulse reconstructed by CFAR detection and process-
ing window selection. Both the CW tone and pulse frequencies were recovered
without performing reconstruction for the whole 200 s capture, greatly lowering
the number of computations performed.

figure displays a spectrogram of the window of compressed data that the recon-
struction is performed on. As the spectrogram clearly shows two signals, both
the CW tone and at the pulse frequency, it is clear that CFAR detected a win-
dow containing a pulse. The reconstruction in the left panel shows that both
frequencies were reconstructed.

Next, reconstruction is performed on over-the-air captures. A broadband 2-20
GHz double ridge horn was connected to the RF input of one channel. Captures
were performed in a busy lab environment containing multiple WiFi, Bluetooth,

and cellular devices. As most of these operate at frequencies that are in lower
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Nyquist zones, the wide frequency coverage is demonstrated with two X-band
transmitters purposely pointed toward the receiving antenna. A spectrogram and
recovered spectrum for one of the more interesting captures, featuring input from
a cell phone and a WiFi device, is shown in Figure 5.7. The RF environment in the
building was rather sparse, as it contained a limited number of communication
devices that share narrow spectrum allocations and transmit infrequently, and
the building itself is well shielded from outside transmitters. Figure 5.8 shows
another example, with reconstruction performed on a 1 ps window. The dynamic
range of the signals present is wide enough that the low-power Bluetooth signal
was below the harmonics of the other sources, so an example of predicting and
removing harmonics from the recovered spectrum is given.

Another set of data was captured with a high-gain, 1.0-2.5 GHz antenna with
the intent of detecting weaker signals in the lower industrial, scientific, and medi-
cal (ISM) bands. Figure 5.9 shows one example from this dataset with successful
recovery of the center frequencies of two different WiFi channels. Identification
of individual channels demonstrates potential usage for the system in cognitive
radio; for example a single receiver channel could simultaneously detect which
channels are in use in the 900 MHz, 2.4 GHz, or 5 GHz bands in order to select
an empty one to use for transmission.

Successful recovery of the frequency support has been demonstrated for a
sparse environment and for up to five simultaneous sources. It is significant that
the communication signals recovered have bandwidth, proving that the system
can perform recovery of signals other than ideal, frequency-bin-centered, CW

tones.
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Figure 5.7: Example of reconstruction of over-the-air capture with a 2 to 18 GHz
antenna. A high power QPSK signal is present at 15.3 GHz, 5 ps pulses at 9.05

GHz,

LTE cell phone signal at 1.9 GHz, and a WiFi QPSK signal at 2.462 GHz.

A spur from the ADC sampling clock at f,/4, 375 MHz, was also reconstructed.
This gives a useful example of recovery in an actual sparse-RF environment that
contains several communication signals with some amount of bandwidth.
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Figure 5.8: Example of reconstruction of over-the-air capture with a 2 to 18 GHz
antenna. A high power QPSK signal is present at 10.6 GHz, LTE cell phone
signal at 1.9 GHz, and a low-power Bluetooth signal at 2.42 GHz. The relative
power of the Bluetooth signal is so low compared to the other two signals that
it is outside of the dynamic range for the s;o(t) used, as can be seen by the red
stars. An example of filtering the harmonics by iterating through the strongest
reconstructions, removing their predicted harmonics until a threshold of -30 dB
is hit, is given by the blue circles.
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OTA 1-2.5 GHz capture, WiFi Channel Recovery
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Figure 5.9: Example spectrogram and reconstruction from the dataset captured
with a high gain 1-2.5 GHz antenna. The spectrogram clearly shows two com-
munication signals between 2.4 and 2.5 GHz, as well as the faint ADC sample
clock spur at 350 MHz. A scan of available WiFi networks from a smartphone
shows that devices are transmitting on WiFi Channel 1 and 11 at about 2.412 and
2.462 GHz, matching within +1 MHz of the peak frequencies in the reconstructed
spectrum shown at the bottom of the figure.

78



5.3 Multichannel Recovery

After single-channel recovery was demonstrated, experiments were performed
with multiple receiver channels. It is predicted in Section 4.3 that simultane-
ously using the data from multiple channels with different modulation schemes
has a positive impact on reconstruction performance, as more incoherent mea-
surements are being used to reconstruct the signal. For the ideal case of using the
same modulation, there should be no benefit, as the additional samples from one
channel would be identical to those from the other and thus add no additional
information. In reality the ADCs will not sample at the exact same time, and
thus multiple channels with the same modulation scheme would provide more
measurements, but in order to actually realize benefit the phase difference be-
tween the channels would have to be known and accounted for in the sensing
model.

First for comparison identical modulation schemes are used on each channel.
The external triggers used to time the LO waveform generator and the PCle
ADCs start the capture on each ADC card within +1 sample of each other, or
approximately within 1 ns, which is within the requirements for matching the
sensing matrix model. As the ADCs used were not specifically designed to be
well matched for use in multichannel applications, the frequency response of the
two differ somewhat. The signal centered at 340 MHz in the baseband pictured
in Figure 5.10 is about 3 dBm lower in channel 2 than channel 1. This difference
did not prevent recovery in the experiments performed, but it is possible that
a system designed to have more closely matched channels would have better
reconstruction performance.

Next experiments were performed with different modulation schemes applied
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Figure 5.10: Comparison of two receiver channels with same modulation. The
signal in Channel 2 is about 3 dBm lower and the ADC f;/4 spur is slightly
worse. The channels are reasonably well matched though, as reconstruction with
identical CS models succeeded on each and successful angle of arrival estimation
will be shown later.

to each channel, specifically combining linear and sinusoidal frequency modula-
tion. Figure 5.11 gives an example of using sinusoidal modulation on channel one
with a peak deviation of 4 MHz and modulation rate of 5 MHz, and triangular
modulation on channel two with a peak deviation of 6 MHz and 0.5 ps period.
The reconstructed spectrum using the combined measurements from both chan-
nels shows improvement over the single-channel reconstructions with a decreased
peak spurious frequency magnitude. This matches the theoretical improvements
shown in Section 4.3.

Now to test direction finding, an experiment was created with a two element
array of X-band horn antennas. The horns are physically large, limiting the
minimum element separation to 2.75 cm, giving a maximum grating lobe free look

angle of only +5.2° for a 10 GHz source. This would limit utility in a practical
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Figure 5.11: Combined multichannel recovery with different modulation schemes.
Channel 1 has sinusoidal modulation and Channel 2 has a triangle waveform
applied. The recovery resulting from the combined channels has a larger difference
between the correct signal at 4.75 GHz and the strongest false result. Thus it is
shown that combining measurements from multiple modulation schemes can give
improved reconstruction quality.
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system unless mechanical scanning is used, but for the purpose of showing that
the direction of arrival estimation is viable, the limited maximum look angle is
sufficient. The coordinate system is set up such that when facing from the array,
negative angles are to the left of the array center and positive to the right. A
pulsed source at 7.845 GHz is to the right of a pulsed source at 8.02 GHz, both
sources are less than 5 degrees to the right of the array center. When a single-
channel is used the two source frequencies are identified in Figure 5.12. The
sources are actually close enough to the center of the array that the time delay
between the two elements is lower than 4.25 ns, specifically

< 0.0275500%)

=8ps (5.1)

low enough that combining measurements from both channels for reconstruction
does not fail, but due to the phase delay the reconstruction quality degraded. As
the difference between the source angle and the array center increases, reconstruc-
tion over multiple channels should fail. The MVDR angle-frequency spectrum is
calculated around the two source frequencies and the peak values selected. Fig-
ure 5.13 shows that the 7.845 GHz source is correctly identified as being right of
the 8.02 GHz source, and the estimated angles for each are to the right of the
array center as expected. Thus application of the NYFR to joint direction of

arrival and frequency estimation is shown to be viable.
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Figure 5.12: Recovery of source frequencies impinging on the two element array.
Single-channel reconstruction is successful. The combined channel reconstruction
is worse due to the time delay between the array elements, but does not fail
outright as in this case the time delay is much less than a nanosecond.
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Figure 5.13: Plots of the normalized angle-frequency spectrum slice around the
estimated frequency. The bottom plots of are the MVDR beamformer output
for the peak frequency slice found from the spectrum above. The 8.02 GHz is
correctly identified as being on the left of the 7.45 GHz source.
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OTA Decompressed and Filtered for 15.3GHz signal
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Figure 5.14: The OTA capture in Figure 5.7 was decompressed for M=10, then
bandpass filtered with a center frequency at 300 MHz in order to extract the
signal detected at 15.3 GHz. The spectrogram of the decompressed and filtered
output clearly shows one communication signal at 300 MHz. The pulsed signal
that was present in the capture is faintly visible at about -50 dB below the comm
signal.

5.4 Communication Signal Recovery

Final experiments were performed to show that recovery of communication sig-
nals by the NYFR is possible. The OTA capture from Figure 5.7 is decompressed
for the modulation index M=10 and bandpass filtered to extract the QPSK signal
at 15.3 GHz. The QPSK signal is a randomly generated bitstream with a known
symbol rate of 1 Msym/s. Figure 5.14 shows the decompressed and filtered QPSK
signal. Root-raised-cosine pulse shaping is used on the transmitter, so matched

filtering is applied to the decompressed data. Timing recovery was done by sam-
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Figure 5.15: Constellation diagram of the QPSK signal recovered from the over-
the-air capture. The constellation is well defined, with the 80 symbols captured
all clumped relatively close one of the four transmitting states. Now if the pilot
signal or sequence were known by the system, the digital information that was
transmitted has been recovered by the NYFR.

pling the matched filter peaks, as the processing was done offline. The recovered
constellation diagram is plotted in Figure 5.15, showing that the symbols are

well identified. Thus the viability of recovering communication signals with the

NYFR is shown.
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Chapter 6

Conclusions and Future Work

The trade-offs of design parameters for s;o(t) which controls the modulation
pattern induced on RF signals by the Nyquist Folding Receiver were identified and
discussed. In particular, a trade-off must be made between correctly identifying
the original Nyquist zone and the ability to recover low SNR signals from higher
Nyquist zones. The LO signal modulation rate must be selected for the shortest
pulse time that is to be recoverable while not being such a high rate of modulation
that the phase difference of the real hardware and the compressive sensing model
is not too great for reconstruction.

Multichannel NYFR systems were also considered. A system model was cre-
ated that combines measurements from multiple channels, and it is found that
if each channel has a unique modulation scheme, more incoherent measurements
are collected in the same time window, improving reconstruction quality. Con-
versely, combining multiple channels with identical modulation does not affect
reconstruction. Multiple channels are also used for joint angle of arrival and
frequency estimation.

A full process for identifying a communication burst, recovering the frequency
support, and then decompressing the data with a zone-dependent decompres-

sion (demodulation) operation for detected signals of interest was given. It was
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demonstrated that when decompressing a particular zone, the spectrum of signals
originating from other Nyquist zones remains spread, so that even if multiple sig-
nals fold to the same intermediate frequency, the particular communication signal
of interest can be demodulated.

Experiments were performed with a hardware prototype. Successful recovery
of up to five simultaneous signals was shown, including identification of the center
frequencies for LTE, WiFi, and Bluetooth communication signals. The advantage
of combining measurements from multiple channels was demonstrated. Joint
angle and frequency estimation is shown to be viable with an antenna array
connected to the prototype. These results show that the Nyquist Folding Receiver
is an architecture with very promising potential for wide instantaneous bandwidth
applications.

Interesting future topics not explored by this thesis include modifying or for-
mulating compressive reconstruction algorithms to be optimized for the struc-
tured sampling performed by the receiver. Dictionary learning of signals that are
to be identified in a real environment would be useful for monitoring purposes.
An improved sensing model with a phase-independent representation basis could
potentially be derived and used to combine measurements from multiple chan-
nels in a direction finding array, or a group sparsity algorithm might be used to
promote sparsity in each channel. It would also be interesting to test the receiver
in an environment with a larger number of controlled signal sources, in determine
what the maximum sparsity level is that can be accommodated by the receiver

subject to a required reconstruction probability.
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