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Abstrat

Inreased utilization of wide swathes of spetrum motivate reeivers with wide

instantaneous bandwidth. Traditional wideband reeivers inherently have high

data rates that are di�ult to proess and store, and reeivers that use multiple

analog to digital onverters to ahieve wide bandwidth have high power usage

and ost. Compressive sensing (CS) provides a potential low-data-rate and low-

power solution in environments where only a small portion of the wide spetrum

monitored is in use at one time, through sub-Nyquist sampling at the informa-

tion rate. The Nyquist Folding Reeiver (NYFR), proposed by Fudge et al., is

one suh promising CS arhiteture. This thesis investigates the design trade-o�s

inherent to any NYFR reeiver. Basi appliations inluding pulse detetion,

angle of arrival estimation, and proessing of ommuniation signals are simu-

lated. Finally, a prototype reeiver was used to experimentally demonstrate the

apabilities of a NYFR with an instantaneous bandwidth of 18 GHz while only

sampling at 1.5 GSPS.
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Chapter 1

Introdution

Inreasing utilization of large amounts of spetrum motivates monitoring of wide

bandwidths for appliations suh as ognitive radio where empty hannels are

identi�ed to more e�iently use the spetrum, or for signal detetion and apture

for signals intelligene. Traditional methods of aomplishing this are expensive

in both prie and power usage. Designing analog to digital onverters that op-

erate at high frequenies is a di�ult a�air, and even when the ADC portion is

solved, the tremendous amount of data generated requires high throughput to

the proessor or large quantities of storage.

Current wideband reeivers fall largely in two ategories. The �rst have multi-

ple reeive hannels, eah �ltered to sample a small slie of spetrum, and an ADC

for eah. The additional hardware for eah hannel auses high ost. The seond

are sweeping reeivers. These move between multiple frequeny zones, monitor-

ing a wide bandwidth over time with fewer omponents. The major drawbak to

the sweeping reeiver is that this does not give a wide instantaneous bandwidth;

for example, a frequeny hopping radar that broadasts for only a very short time

before hanging frequenies may get missed as the reeiver is sweeping through

other frequenies.

The modern �eld of ompressive sensing gives potential for a reeiver arhi-
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teture that solves both the issues of handling large amounts of data and the ost

of wide instantaneous bandwidth. Appliations of the theory allow for sampling

a wide bandwidth with a single low sample-rate ADC. The Nyquist Folding Re-

eiver (NYFR), proposed by Fudge et al. [1℄, is one partiularly promising design

of a ompressive sensing system. The NYFR signi�antly undersamples input

signals ausing them to alias suh that original frequenies would normally be

lost, but the NYFR enodes the original frequeny as modulation on the input

signals so that all of the original information is preserved. Compressive sensing

onepts allow for this enoded frequeny information to be reovered, with the

assumption that the original spetrum was sparse. Fudge developed a model for

a prototype NYFR that uses in-phase and quadrature-phase (I/Q) sampling, and

demonstrated frequeny reovery of ontinuous wave tones and on-o� key (OOK)

signals.

This thesis provides a model for a NYFR that uses real-valued samples rather

than I/Q data, and adds results from a simulation of the real-valued reeiver

model used to investigate the trade-o�s inherent to any NYFR arhiteture. The

information given about the trade-o�s potentially enables the seletion of op-

erating parameters that are loser to optimal for spei� environments. The

thesis shows suessful reovery of pulses and ommuniation signals on a pro-

totype reeiver, and notably the reovered signals have wider bandwidth than

the CW tones and OOK signals demonstrated by Fudge. Finally, this thesis

adds experimental veri�ation of basi appliations, suh as diretion �nding and

demodulation of ommuniation signals.
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1.1 Organization

Chapter 2 begins with a short introdution to ompressive sensing that is needed

to understand the underlying theory that allows the reeiver to work. An overview

of ompressive sensing reonstrution algorithms is given. Finally a survey is

given of other ompressive sensing reeiver arhitetures. Chapter 3 goes in detail

on the spei�s of the Nyquist Folding Reeiver itself, both the system model and

the physial implementation. Chapter 4 desribes the e�et of various design

parameters on the performane of a NYFR. Several basi appliations of the

reeiver are explored through simulation. Chapter 5 gives experimental results

from a physial NYFR prototype, on�rming that the simulated appliations are

indeed possible in reality. Chapter 6 gives the �nal onlusions, overview of the

work, and potential future researh topis.
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Chapter 2

Bakground

2.1 Compressive Sensing Theory

First, before going into detail about the NYFR, it is helpful to understand the

onept that allows the NYFR to sample far below the Nyquist rate, without,

under spei� irumstanes, losing any information. This hapter will give a brief

overview of ompressive sensing (CS) theory, whih is a mathematial framework

for sampling a system at the information rate rather than the Nyquist rate. While

the work of Nyquist and Shannon established that sampling at a rate twie the

highest frequeny of a ontinuous �nite-bandwidth signal is a su�ient ondition

for reovering all the information in the signal, this ondition is not neessarily

the only su�ient one. Nyquist hinted at the idea that the atual information

ontent may only make up a limited portion of an analog signal in his desription

of separate intelligene arrying and inert omponents that form telegraph signals

in 1924 [2℄, insinuating that sampling at the Nyquist-Shannon rate may waste

some e�ort on reovery of the inert omponent. However, a method for sampling

loser to the information rate for a general set of irumstanes did not arrive until

the modern theory of ompressive sensing was developed by Candès, Romberg,

Tao, and Donoho over the ourse of 2004 to 2006 [3℄. Compressive sensing added

a mathematial framework apable of alulating the lower bound on how many
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measurements are required to reover the full information ontent of a signal.

Similarities to modern ompressive sensing an be found in the historial use of

the ℓ1-norm in several di�erent �elds, ranging from omputational statistis to the

reation of seismi images in the 1970s from undersampled data [4℄. Algorithms

appliable to the reovery of sparse solutions have existed at least sine mathing

pursuit was formulated in 1993 [5℄.

2.1.1 Compressed Signals

As the name implies, signals that are ompressible are entral to the onept

of ompressive sensing. If a signal an be represented in some vetor spae by

a small number of linearly independent vetors, it has a sparse representation

in some representation basis Ψ. The number of nonzero oe�ients required to

represent the signal is the sparsity k of the signal. Many real world signals are

not stritly sparse, but rather are said to be ompressible. A ompressible signal

has the majority of its energy ontained in a small number of oe�ients, suh

that when most of the oe�ients are approximated as zero the original signal is

still well represented. The level of sparsity of the ompressed signal determines

the e�ieny of the ompressive sampling [6℄.

The mutual oherene µ of two matries is the absolute value of the maximum

ross-orrelation between any pair of olumns from the matries, as de�ned by

µ(Φ,Ψ) = max
k,j

|〈φk, ψj〉| . (2.1)

The value of µ is bounded by

1√
n

≤ µ ≤ 1 for a pair of N × N matries [7℄.

Now onsider some sensing basis Φ that is inoherent with the representation

basis, that is µ(Φ,Ψ) is minimal. The information in the small number of om-
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pressible oe�ients is spread into many oe�ients in the sensing basis. Eah

measurement in the sensing basis reords some information about the full sup-

port of the signal in the representation domain. For an illustrative example, a

onstant frequeny sine wave is sparsely represented as a Dira delta in the fre-

queny domain, and extends in�nitely in the time domain. It is known by the

Nyquist sampling theorem that in order to reover the frequeny ontent of any

signal it is su�ient to sample in the time domain at twie the frequeny of the

highest frequeny omponent. Additionally, if it is known a priori that there is

only a single sinusoid present, then its frequeny is known after sampling for one

period, not requiring all of the in�nite number of time domain oe�ients to be

sampled. It follows that sampling the entire support of the sensing basis is not a

requirement for sampling the total information ontent of the signal.

For a signal that is sparse in the representation basis, a small number of om-

pressive samples taken in the sensing basis may be su�ient to measure all the

needed information. Not every measurement neessarily reords new information,

onsider for the time-frequeny domain single sinusoid example if the signal is

being uniformly sampled in the time domain at some rate. If, for example, the

sinusoid's frequeny is exatly a multiple of the sample rate every measurement

will be made at the same point on the sine wave and thus the frequeny is not

measured. If however the sinusoid is sampled in random points in time, eah

measurement will be at a di�erent point on the sinusoid and thus adds new infor-

mation. Random sampling is indeed a popular onept used in many ompressive

sensing systems, as any random matrix is likely to be highly inoherent with any

representation basis. Random sampling is not the only e�etive method though,

as a strutured sampling sheme ould be designed to sample at the best points

of the sinusoid, or at least a su�ient number of them. The Nyquist Folding
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Reeiver is suh a strutured sampling sheme [8℄. The question now beomes

one of how an the original signal be reovered from these measurements, and

how many measurements are truly needed to identify the original sparse signal.

2.1.2 An Underdetermined Problem

Even though the aquired ompressed measurements ontain most of the infor-

mation that the original signal had, the measurements are not useful for most

appliations until the original signal in the sparse representation basis is reon-

struted. This applies to ompressed information in general, for example, when

viewing ompressed JPEG2000 omputer graphis, the end user does not stare at

stored wavelet oe�ients, instead the image must �rst be deompressed to a 2D

grid of olours. Reovery of the original signal from ompressive measurements

is not straightforward, as it requires solving an under-determined linear system.

Let zΦ ∈ ℜm
be a vetor of m ompressed measurements, A ∈ ℜm∗n = ΦΨ be

the measurement matrix, and xΨ ∈ ℜn
be the original signal of length n that is

sparse in Ψ, then

z = Ax (2.2)

is the linear system that is to be solved for x. This is the reovery of the signal

x from measurements z. As the point of ompressive sensing is to take only as

many measurements as are neessary to identify the original sparse signal, m < n

measurements are taken, thus (2.2) has in�nitely many solutions. However, it

is known that the original signal is sparse in the representation domain. The ℓ0

norm is the measure of sparsity, the number of non-zero omponents of a vetor

x. By adding the onstraint that the original signal is known to be the most

sparse, a unique solution an be found.
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2.2 Reonstrution Algorithms

If the original signal is know to be sparse, the most straightforward approah for

solving the system would be to solve

minimize ||x||0 subjet to Ax = z (2.3)

by searhing through all possible solutions and seleting the one that is the most

sparse. This brute-fore approah is not omputationally feasible though, as it is

a NP-hard problem. Instead, there are several major families of algorithms that

have been designed to more e�iently solve for the original sparse signal from the

ompressive measurements [9℄. Some may be better suited to ertain problems,

depending on the struture of the signals and the sensing matrix.

The algorithms an be broadly grouped into �ve families: greedy iterative,

iterative thresholding, ombinatorial, onvex relaxation, and non-onvex mini-

mization. Greedy iterative algorithms solve the linear system in a series of it-

erative steps. First the residual r is set equal to z. Now at eah step a loally

optimal, that is greedy, seletion of the olumn of A that orrelates most with

r is made. The oordinate of the olumn is reorded as part of the support of

x. The ontribution of the oordinate to z is estimated and subtrated from r,

then the next iteration is performed on the residual. Removing the ontribution

of the most highly orrelated olumn dereases the least square error with eah

iteration. The major hanges between di�erent algorithms are the stopping ri-

teria and the details of estimating eah olumn's ontribution. In general these

algorithms perform best with signals that are very sparse, with the quality of

reovery rapidly beoming worse as sparsity dereases. The need for very sparse
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signals an ause issues in systems with signi�ant noise, as noise adds additional

non-zero oe�ients in the representation basis; one algorithm alled Regularized

Orthogonal Mathing Pursuit worked well in the ideal NYFR simulations but had

a muh lower suess rate on reovering the frequeny support from atual data

with multiple signals and noise present.

Iterative thresholding algorithms limit the solution set for noisy measurements

with some form of soft or hard thresholding. There are many variations of these

algorithms, with the thresholding funtion dependent on the spei� problem.

After thresholding the solution is found through iteration similar to the greedy

iterative algorithms. Message passing algorithms are a modi�ation of iterative

algorithms that inlude additional variables with eah iteration, messages, that

are used to speed onvergene.

Combinatorial algorithms use group testing to reover the signal. They are

omputationally fast, but require the sensing matrix A to itself be sparse. Thus

they are only useful for very spei� problems, and the NYFR is not one of

them. While it is shown later that the NYFR sensing matrix an be onsidered

blok-sparse, onsisting of bloks for eah Nyquist zone the system operates on,

the bloks themselves are large for any pratial system with usable baseband

bandwidth.

2.2.1 Convex Optimization

The algorithms that give the best reonstrution quality for the NYFR reeiver

implementation are in the onvex optimization family. If instead of attempting to

minimize the ℓ0 norm diretly, we relax the problem to minimizing the ℓ1 norm,

then signal reovery beomes a onvex problem with the potential for e�ient

linear solutions. The ℓ1 norm is the sum of the absolute value of the vetor

9



ℓ0 ℓ0 < ℓp < ℓ1 ℓ1 ℓ∞

Figure 2.1: Unit sphere with p-norm. The dashed line on ℓ0 gives an example of

a region of feasible solutions.

omponents as de�ned by

||x||1 =
N∑

i=1

|xi|. (2.4)

In addition to being onvex, the ℓ1 norm is not smooth, so regularization on it also

promotes sparsity. Convex optimization has broad appliation, whih has aused

it to beome a well-studied problem with reliable and e�ient solutions [10℄. For

a stritly onvex problem, any loal minimum found is guaranteed to also be the

unique, global minimum, giving an obvious advantage over a nononvex prob-

lem where one ould imagine an algorithm might get stuk in a loal minimum

between two hills, not knowing that past the next hill is a better solution.

Figure 2.1 illustrates the onept of general ℓp norms in two dimensions. In

this ase the region of feasible solutions to Ax = b is a ontour. The geometry

of the norms are represented by unit spheres in Figure 2.1, that is the plot of

all points for whih ℓp=1. Let a unit sphere grow from the origin until it �rst

intersets the solution region, then that �rst intersetion is the minimum-norm

solution. For any solution on the ℓ0 norm, the support is of size one, as the

intersetion is either entirely on the x or the y axis. Thus the ℓ0 norm is the most

sparse.

There is ative researh seeking the potential advantages of using ℓp quasi-
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norms with 0 < p < 1, forming the non-onvex family of ompressive reonstru-

tion algorithms [11℄. The 0 < p < 1 is more sparse than the ℓ1 norm as many

solutions have one large and one small oe�ient; it an be seen on the �gure

that most intersetions with the norm will have either a large x or a large y

omponent, but not both. A simple test to see that the norm is not onvex is to

attempt to draw a line between two points on the norm without interseting the

inside of the norm, this is possible on any pair of points from di�erent axes on

the ℓ0 norm and for many points on the 0 < p < 1 norms, so these norms are not

onvex. Thus the 0 < p < 1 norms are said to further promote sparsity, but are

no longer onvex ausing more di�ulty in solving the problem e�iently.

The ℓ1 norm still promotes sparsity, just to a lesser degree than p < 1, and

is onvex. Sine the ℓ1 norm is onvex, when a loal minimum is found, it is

guaranteed to also the global minimum, giving the optimal solution. Thus the

ℓ1 norm is e�etive for ompressive sensing reonstrution, as we are reovering

signals that are sparse, and e�ient algorithms for solving onvex problems exist.

Any norm with p > 1 is also onvex, but is also a smooth funtion with most

intersetions having both a large x and a y omponent, so it is not useful for

promoting sparsity. The �rst intersetion of the solution region with ℓ∞ has a

support of size two, evenly split between the x and y axes, learly not sparse.

The onept of the two-dimensional unit sphere extends to n many dimensions,

with for example the ℓ0 forming a many dimensional spiky ball for ompressive

sensing problems with a large representation basis.

There are three ommonly used onvex relaxations of the ompressive sensing

problem. The �rst is basis pursuit (BP), whih is de�ned as

minimize ||x||1 subjet to Ax = z . (2.5)

11



The exat solution sought by basis pursuit does not work well for analog mea-

surements ontaining noise, so for these ases the basis pursuit denoising (BPDN)

formulation is used instead, whih is

minimize ||x||1 subjet to ||Ax− z||2 ≤ σ , (2.6)

where σ gives a tolerane for how exat the solution must be and is usually

derived from an estimate of the noise power. It is worth noting that in most

sampling shemes the noise in the original representation basis will be folded into

the smaller number of measurements taken, multiplying the noise variane by

n/m, so the noise power an be signi�ant in a real system [12℄. The least ab-

solute shrinkage and seletion operator (LASSO) is the �nal ommon relaxation.

LASSO pre-dates modern ompressive sensing, having originally been reated as

a regression analysis method for statistis, but is diretly equivalent to the BPDN

problem [13℄ as it is de�ned by

minimize ||Ax− z||2 subjet to ||x||1 ≤ τ . (2.7)

The problem solved for the NYFR is the BPDN one rather than BP, as the goal

is to reover signals on real hardware with noisy measurements. Additionally,

in ompressive sensing literature, the BPDN formulation is more ommon than

LASSO.

If x is su�iently sparse and the sensing matrix A is appropriately designed,

the onvex relaxation of the problem will yield the exat solution of x. An s-

sparse signal is de�ned as having a support size of s, that is the vetor has s many

nonzero elements. Candès introdued the restrited isometry property (RIP) as
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a means to haraterize the quality of the sensing matrix [14℄. For eah integer

s = 1, 2, ..., N the restrited isometry onstant δs of the matrix A is de�ned as

the smallest number suh that

(1− δs)||x||22 ≤ ||Ax||22 ≤ (1 + δs)||x||22 (2.8)

for all s-sparse vetors. Thus, a sensing matrix satis�es the (s,δ)-RIP if the

above ondition holds for every s-sparse vetor x, and perfet reonstrution is

guaranteed via onvex relaxation. Various reonstrution guarantees based on

the RIP have also been found for other reonstrution methods [15℄. While this

is a ommonly used property, solving the general problem of whether an arbitrary

sensing matrix A satis�es the (s,δ)-RIP is NP-hard.

As alulating a value for δ is a hard problem for many ases, it is ommon to

turn to the measure of oherene between the sensing and representation bases to

predit reonstrution performane. For the ase of ℓ1 optimization with a signal

x ∈ R
n
and a uniform random sampling basis Candès found that the probability

of suessful reonstrution exeeds 1− δ, if

m ≥ C · µ2(Φ,Ψ) · s · log(n/δ) (2.9)

where m is the number of measurements, C is some positive onstant, µ is the

mutual oherene of the two bases, and s is the sparsity of the signal [16℄. This

shows that higher inoherene between the bases or greater sparsity lowers the

neessary number of ompressive measurements for reonstrution.

The spetral projeted-gradient SPGL-1 onvex reonstrution algorithm in

partiular was found to give high reonstrution performane with low omputa-

13



tional time for the NYFR system [17℄. The spei� formulation that solves the

BPDN problem is used as there is signi�ant noise in the NYFR hain. Muh

of the onvergene speed of the SPGL-1 algorithm is due to its exploitation of a

Pareto frontier [18℄. When there are two or more variables being optimized, the

Pareto frontier is the urve formed by the set of values where one variable an-

not be improved without harming the other variable. As the BPDN problem is

onstrained by both ||x||1 and ||Ax−b||2, a Pareto frontier is formed by the two

norms. The authors prove that this Pareto urve is ontinuously di�erentiable,

enabling the use of a Newton root-�nding algorithm to solve a non-linear equation

desribing the urve. This approah gives a fast iterative algorithm that outputs

a small searh spae of optimal solutions. The seond innovation of the algorithm

is an optimized method of performing least squares minimization with orthogonal

projetions of vetors on a onvex set. This projetion algorithm is extended to

omplex vetors, and thus useful for reovering signals in the frequeny domain.

2.3 Sampling Paradigms

So far the mathematial onept of ompressive sensing has been disussed, but

not how CS systems are realized in hardware. As a random sensing basis gives

a low level of oherene with any other basis, random sampling shemes are a

popular method of implementing a ompressive sensing system. Perhaps one

of the most popular examples of suh a system is the Rie single-pixel amera.

An array of digitally ontrolled miro mirrors are randomly �ipped on or o� to

re�et random linear ombinations of light onto a single CCD sensor. A set of

these single-pixel measurements is solved for the random sequene used and the

wavelet domain ompressed image is reonstruted.

The goal of the NYFR is to perform analog-to-information onversion at low

14



sample rates. There are several systems that use di�erent sampling shemes to

meet the same goal. Most ompeting systems use a random sensing matrix as

opposed to the NYFR's strutured sensing matrix.

The Random-Modulation Pre-Integrator arhiteture was demonstrated with

2 GHz of instantaneous bandwidth and a 320 MS/s sample rate. The RMPI mod-

ulates the input signal with a pseudorandom binary sequene (PRBS), integrates

the output of the modulator, then samples at a low rate. A potential limitation is

that the PRBS generation and mixing must our at the Nyquist rate. Suessful

reonstrution of two 450 ns pulses with di�erent arrier frequenies that overlap

in time has been shown [19℄.

Northrop-Grumman's Non-uniform Sampler samples at random time intervals

with a nonuniformly loked sample-and-hold iruit [20℄. An 8192-bit PRBS

ontrols the sample times. The instantaneous bandwidth is 2.2 GHz, and a low-

sample-rate ADC samples at 230MS/s. Experiments suessfully reonstruted

GSM signals with a bit error rate under 10−5
.

The Modulated Wide-band Converter multiplies an input signal with a bank

of periodi waveforms before low pass �ltering and sampling at below the Nyquist

rate [21℄. This arhiteture is an implementation of the Xampling sheme [22℄.

The bank of modulators aliases di�erent parts of the spetrum, from the entire

Nyquist range, into the baseband. To ahieve a ertain performane level, this

sheme has a trade-o� between the sample rate of eah hannel and the number

of hannels.

The above sampling paradigms for analog signals are all limited in that either

some system omponents still have to operate at the Nyquist sampling frequeny,

spei�ally to generate the PRBS, or multiple reeive hannels are required, in-

reasing power requirements and ost. The NYFR does not have these on-
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straints; the highest frequeny that must be generated is only slightly higher

than the sampling lok, and only a single reeive hain is required.

16



Chapter 3

Nyquist Folding Reeiver

Now that a brief overview of ompressive sensing has been given, this hapter will

over the hardware of the Nyquist Folding Reiever (NYFR) and the CS model

that links the NYFR's sampling and representation bases. In 2008 Fudge et al.

onsidered a ompressive sampling sheme that would use strutured non-uniform

sampling rather than random sampling for reovery of signals that are sparse in

the frequeny domain [1℄. Random sampling shemes require some omponents

to operate at the high frequeny Nyquist rate of the signals, whereas a non-

uniform sampling sheme ould potentially be realized with only omponents

at the Nyquist rate of the baseband. If a signal is undersampled, below the

Nyquist rate, it will alias to some lower frequeny and thus information on the

original frequeny will be lost. However, the original struture of the signal will

be largely preserved, as long as the sampling rate is higher than the bandwidth

of the signal. The NYFR enodes the original frequeny information onto the

aliases of input signals, in suh a way that ompressive sensing onepts an be

used to reonstrut the original inputs ompletely.

A prototype system was built with experimental results and a matrix model

for the ompressive sensing equation published in 2012 [8℄. In depth information

about Fudge's prototype hardware is not provided however, and the model is not

17



sRF (t) Limiter

Pulse TrainPulse Train

Zero-Crossing

Harmoni Mixer

LPF LPF

ADC

sLO(t) Information Reovery

tk

∆(t)

y1(t)

z1(t)

z1[n]

Figure 3.1: Basi blok diagram for one NYFR hannel.

diretly usable for the system used in this thesis. In partiular Fudge's model

uses a omplex in-phase and quadrature-phase representation with an ADC that

provides I/Q data. How the NYFR hardware manipulates input signals naturally

leads to the model desribing the system, so �rst we give a detailed desription

of the prototype reeiver hardware.

3.1 Hardware Implementation

A high-level blok diagram of the prototype NYFR reeiver is shown in Figure 3.1.

A Tektronix arbitrary waveform generator (AWG) is used along to generate the

referene loal osillator signal sLO(t). Use of the AWG gave �exibility in exper-

imenting with additional modulation patterns and parameters. In a prodution

system, a heaper devie that only requires omponents operating up to the de-

sired baseband sampling rate ould be used to generate the modulated LO signal.

Inside the harmoni mixer, a step reovery diode is used to reate a very nar-

row, high-bandwidth pulse on eah positive zero rossing of sLO(t). Figure 3.2

illustrates the pulse generation for a onstant-frequeny LO and a frequeny-

modulated LO. Let sLO(t) be a real sinusoid sin(ωLOt), then the ideal approxi-
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Figure 3.2: Narrow pulses are generated on the zero rossings of the LO port.

The lower plot shows how the frequeny of pulse generation varies along with a

frequeny-modulated LO.

mation of the diode output is by a train of Dira delta funtions

∆(t) =
∞∑

k=−∞

δ(t− kT ) (3.1)

with T being the period of sLO(t). The Fourier transform of a pulse train is a
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omb funtion with a spike at the harmonis of ωLO suh that

∆(ω) =

∞∑

k=−∞

δ(ω − kωLO) . (3.2)

In real hardware the amplitudes of the higher harmonis roll o�, as the pulses

generated by the mixer are not ideal impulse funtions, limiting the useful band-

width of the devie. The HL9313 mixer used for the reeiver has a nominal 3 dB

bandwidth of 15 GHz. Thus the nonideal mixer reates pulses with some shape

p(t), so that the pulse train takes the form

∆(t) = (

∞∑

k=−∞

δ(t− kT )) ∗ p(t) , (3.3)

and has a spetrum de�ned by

∆(ω) = P (ω)
∞∑

k=−∞

δ(ω − kωLO) (3.4)

where P (ω) drops by 3 dB at approximately 15 GHz.

The pulse train is then mixed with the RF input port. As the RF input

sRF (t) mixes with eah omponent of ∆(t), opies of the input are reated at

ωRF ± kωLO. Thus, the harmoni mixer is e�etively sampling sRF at eah zero

rossing whih auses aliasing harmonis of the of the mixer's sample rate, ωLO.

The opy at baseband with a frequeny less than

sLO
2

is the opy produed by

the harmoni losest to the original frequeny.

Now let the sLO(t) be a real frequeny modulated sinusoid entered at ωLO

with phase modulation θ(t)

sLO(t) = sin(ωLOt+ θ(t)) (3.5)
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and θ(t) a sinusoidal modulation de�ned as

θ(t) =
F∆

Fmod
sin(2πFmodt) . (3.6)

For the hardware implementation used in this thesis, ωLO is 1.5 GHz. Aording

to the Dira saling property [8℄, the non-uniform pulse train generated in the

harmoni mixer takes the form

∆̃(t) = ϕ′(t)
∑

k

2πδ(ϕ(t)− 2πk) (3.7)

where ϕ = ωLOt+ θ(t). The identity 2π
∑

k δ(t− 2πk) =
∑

k e
jkt

is then used to

rewrite (3.7) as

∆̃(t) = (ωLO + θ′(t))
∑

k

ejk(ωLOt+θ(t)) . (3.8)

Considering that the modulation is narrowband suh that |θ′(t)| << ωLO, (3.8)

an be approximated by

∆̃(t) ≈ ωLO

∑

k

ejk(ωLOt+θ(t)) = ωLO

∑

k

ejkωLOtejkθ(t) . (3.9)

The ejkθ(t) term shows that modulating the frequeny of sLO(t) spreads the spe-

trum of the pulse train harmonis, with the amount of spread inreasing as the

magnitude of the harmoni number k inreases. Thus eah harmoni has a unique

pattern enoded on it. Figure 3.3 shows the pulse train spetrum for suh a mod-

ulated pulse train with a peak frequeny deviation F∆ of 4 MHz. Figure 3.4 shows

the spetrum of a pulse train for a higher frequeny deviation, F∆=15 MHz. The

energy ontent of eah harmoni is spread out over a wider range of frequenies.
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Figure 3.3: Simulated spetrum of the pulse train inside the harmoni mixer for a

sinusoidal sLO(t) with a F∆ of 4 MHz. As the frequeny inreases the amplitude

of the harmonis drop with P (ω), and the energy of the higher harmonis is

spread out over a wider frequeny range.

The seletion of F∆ requires a performane trade o� that will be examined in

depth later in the thesis. Note that the typial peak frequeny deviation F∆ used

throughout this thesis is 4 MHz unless otherwise stated.

Next, let there be a real, narrowband RF input signal with a enter frequeny

at ωRF and phase φ

x(t) = cos(ωRF t+ φ) . (3.10)
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Figure 3.4: Spetrum of the pulse train inside the harmoni mixer for a sinusoidal

sLO(t) with a F∆ of 15 MHz. Eah harmoni has its energy spread over a wider

range of frequenies than the equivalent harmonis in Figure 3.3.

The harmoni mixer output then beomes

y(t) = x(t)∆(t) ≈
∑

k

cos(ωRF t + φ)ejkωLOtejkθ(t) . (3.11)

The output of the harmoni mixer is followed by an anti-aliasing �lter. Let

this low pass anti-aliasing �lter (LPF) have a uto� frequeny of

1

2
ωLO, and

let kH be the harmoni in the Fourier series of the impulse train that satis�es

0 ≤ |ωRF −kHωLO| ≤
1

2
ωLO, in other words kHωLO is the harmoni losest to the
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input RF frequeny. The output of the LPF is then

z(t) = cos((ωRF − kHωLO)t+ φ)ejkHθ(t) . (3.12)

It is lear that the opy of the RF input passed by the �lter is the produt of only

the harmoni losest to ωRF . Reall that eah harmoni has a unique frequeny

spread from the sLO(t) modulation. This means the resulting mixer and �lter

output for two opies of an input signal, whih are idential exept for having

arrier frequenies from di�erent Nyquist zones, are unique even if the inputs

fold to the same baseband frequeny. Sine information on the original frequeny

support is preserved even though the input signal is aliased, it is possible to

reonstrut the original signal. Figure 3.5 illustrates this onept. The �gure

plots the simulated output spetrum for a 9.2 GHz ontinuous-wave (CW) RF

input and a sinusoidally modulated sLO(t). Examination of the plotted spetrum

shows that no two harmoni produts are idential, and only a single produt is to

the left of the LPF uto� frequeny, thus the original zone is uniquely identi�ed.

The spetrogram in Figure 3.6 shows a simulation of the mixer and �lter output

for a 3.5 GHz and 9.2 GHz tone with a sinusoidal modulated sLO(t) with F∆=15

MHz. The 9.2 GHz tone is learly modulated over a wider frequeny range.

For a non-ideal system the areful onsideration of the frequeny response

of the LPF must be made. The ideal ut-o� in Figure 3.5 passes the desired

harmoni produt without any attenuation, while perfetly bloking the harmoni

produts from the wrong Nyquist zones. The atual �lter used in this NYFR

implementation has a uto� frequeny fc of 750 MHz, half the sampling rate

of the system. If there is non-negligible attenuation at half the sLO(t) enter

frequeny, as is the ase with the reeiver prototype, then the reeiver will have
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Figure 3.5: Output spetrum of the harmoni mixer for a 9.2 GHz tone RF input

blind-spots at all multiples of

fLO
2

. Any signal that folds to a frequeny lose

to

fLO
2

will be attenuated below the noise �oor. The blind zone issue an be

mitigated by using two hannels with di�erent sampling frequenies hosen suh

that the two resulting blind zones never our at the same frequenies throughout

the desired bandwidth of the reeiver, but this obviously leads to higher system

ost.

On the other hand, if the LPF uto� is set to a higher frequeny, or the �lter

order is low ausing the frequeny roll-o� of the �lter to be less steep, suh that

frequenies higher than

fLO
2

are not attenuated enough, unwanted aliases from

harmonis outside of the RF signal's original Nyquist zone will be passed by the
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Figure 3.6: Spetrogram of the simulated harmoni mixer and LPF output for a

3.5 GHz and 9.2 GHz tone RF input. For simple RF input ases the spetrogram

may be used to visually estimate the original input frequenies. The sLO(t)
used is sinusoidal modulation with F∆ =15 MHz and Fmod=5 MHz. As the

enter frequeny of sLO(t) is fLO =1.5 GHz, the Nyquist rate baseband has a

bandwidth of 750 MHz. The 9.2 GHz tone folds to 3.5 GHz - 6·1.5 GHz=200

MHz, and the 3.5 GHz tone folds to 500 MHz. The ompressed 9.2 GHz signal

deviates 6 ·F∆=90 MHz from the 200 MHz enter. The period of the modulation

is 0.2 µs due to the Fmod of 5 MHz.

�lter. As the unwanted harmoni produts in the output are indistinguishable

from a true input signal, they may lead to false positives during reonstrution

of the input. General reonstrution performane is also lowered by the false

positives, as now the signal being reonstruted is less sparse.

The next omponent in the reeive hain is an ampli�er. As the harmoni

mixer spreads the energy of signals from higher zones aross the spetrum, am-

pli�ation is required to math to the dynami range of the analog to digital

onverter (ADC). Then another low pass �lter is used to remove spurious prod-
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Figure 3.7: Real valued ompressive sensing matrix model for the NYFR imple-

mentation.

uts from the ampli�er. Finally the reeiver output is sampled at 1.5 GS/s by a

Red Rapids Model 276 ADC with 12-bit resolution. Three of these PCIe ards are

hosted in a Linux PC with MATLAB used to proess the output of the prototype

three hannel NYFR.

In order to math the ompressive sensing model with the physial hardware,

the phase of the modulation indued on the RF signal, and thus the starting phase

of sLO(t) must be known. The phase o�set between the start of an ADC apture

and the sLO(t) generated by the AWG is ontrolled by triggering both the ADCs

and the AWG with a multihannel digital pulse generator. The delay between the

ADC trigger and AWG trigger was experimentally adjusted to aount for the

delay of the whole system, inluding the delays between the triggers and atual

ation and the phase response of the reeive hain. In a prodution system, this

timing and phase must also be aurately known.

3.2 Compressive Sensing Model

Now a CS model of the measurement proess performed by the hardware is needed

to enable reonstrution of the original RF input from the ompressed reeiver
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output. The real-valued signal model for the hardware used by this thesis is

developed in [23℄. Figure 3.7 shows the full model. The ompressed measurements

z are aptured by the ADC in the time domain. R is a set of identity matries

that projet Z number of Nyquist zones onto a baseband of K samples.

The onjugate symmetri diagonal matrix S ontains the modulation indued

on eah zone as a funtion of time. As shown in Setion 3.1 when given a

frequeny-modulated sLO(t) the harmoni mixer spreads the input signal over a

range of frequenies, with the spread inreasing for higher harmonis of sLO(t) and

thus higher frequeny input signals. The modulation indexM = 0,−1, 1, 2,−2, ..., Z

is the parameter that uniquely de�nes the original frequeny of the ompressed

signals giving an output with a peak frequeny deviation MF∆. The sign of the

modulation is set by whether the signal is from the upper or lower sideband,

and negative modulation is shifted 90 degrees from the positive modulation. The

modulation index depends on the Nyquist zone of the RF input frequeny fRF ,

giving the pattern

M(fRF ) =






0, for fRF <
fLO
2

−1, for

fLO
2

< fRF < fLO

1, for fLO < fRF <
3fLO
2

−2, for

3fLO
2

< fRF < 2fLO

.

.

.

.

.

.

−Z, for

(2Z − 1)fLO
2

< fRF < ZfLO

Z, for ZfLO < fRF <
(2Z + 1)fLO

2

. (3.13)

Thus S is also said to be split into two onjugate symmetri bloks for eah zone,

onsisting of the time modulation pattern ommon to all zones modi�ed for that
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partiular zone's value of M .

Ψ is a blok diagonal matrix with eah blok onsisting of the inverse dis-

rete Fourier transform (IDFT) matrix for one sub-band. The IDFT bloks are

split into upper and lower side-bands in order to math the sign of the indued

modulation. Finally X is the omplex-valued disrete Fourier transform of the

full-bandwidth signal. The full model is an under-determined equation, as only

R, S, Φ, and z whih is shorter than X are known. The system samples in the

time domain and represents the signal in the frequeny domain. The two bases

are inoherent, whih is optimal for ompressive sensing. The equation may be

solved for X with CS algorithms if X is sparse and z onsists of a su�ient num-

ber of measurements that have low oherene. The assumption that the original

frequeny spetrum is sparse limits reovery of signals with very wide bandwidth,

espeially those wide enough to �ll the whole baseband.

Figure 3.8 shows the results of using the ompressive sensing model with a

onvex reovery algorithm to reover the original frequenies for the inputs show

in Figure 3.6. The original frequenies of the two CW tones are orretly reov-

ered. Note that these inputs �t the assumption of a sparse frequeny spetrum.

For ases with wide-bandwidth signals, espeially ones wide enough to �ll the

baseband de�ned by ADC's low sample rate, reovery of the spetrum will fail

as the sparsity assumption is no longer true. The left panel Figure 3.9 shows an

LFM hirp that starts at 2.3 GHz and ends at 3 GHz, having signi�ant band-

width ompared to the sample rate. The right panel shows the failed spetrum

reovery. It is worth noting, however, that the hirp is still sparse in frequeny

over a small period of time, thus for short enough time windows, reovery of some

kinds of LFM signals is still possible. Additionally, a CS model using a di�erent

basis ould potentially be found, for example a ditionary of various expeted
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Figure 3.8: Output of the SPGL-1 onvex reovery algorithm ran on the simulated

inputs from Figure 3.6 for the CS model given in this hapter. Both of the input

frequenies, 3.5 GHz and 9.2 GHz, are orretly reovered. Thus the CS model

is shown to work for a sparse ase with s = 4.

hirp signals, then this example input would have a sparse representation in that

basis. Now that it has been shown that the sparsity of the spetrum an ause

reonstrution to fail, the RIP will be used in order to get an idea of what number

of measurements or level of sparsity is su�ient for reonstrution.
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Figure 3.9: The simulated reeiver output for wideband LFM hirp starting at 2.3

GHz and ending at 3 GHz is plotted in the left panel. The right panel shows the

ideal spetrum of the hirp, and the attempted reovery of the spetrum through

onvex optimization. Reovery is not suessful as the input hirp is not sparse

in the basis used for the CS model.
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3.2.1 RIP Analysis

As mentioned in Chapter 2, the restrited isometry property an be used to

establish whether a sensing matrix is guaranteed to exatly reover x for a sparsity

level s. Of ourse, the di�ult omputation is determining δs for a matrix. By

the de�nition of the RIP, the problem of �nding the RIP onstant is equivalent

to �nding the signal x that is s-sparse and gives the largest value of δs

||Ax||22 = (1± δs)||x||22. (3.14)

Additionally the spetral norm-deviation of x is de�ned as

δs(x) =

∣∣∣∣∣
||A∗

Λ(x)Ax||2
||x||2

− 1

∣∣∣∣∣ (3.15)

where Λ(x) is the support of x [24℄. The spetral norm of x is the maximum

singular value of x. Finding δs is then equivalent to �nding the maximum value

spetral norm-deviation of all possible ombinations of x.

Determining δs exatly for a given s would require examining all possible val-

ues x an take with a support size of s, whih is learly not feasible. Instead Fudge

et al. onsider what should be the worst ase for the NYFR system, frequeny-

bin-entered tones at frequenies that fold to the same baseband frequeny [24℄.

First, the system is onsidered as if there no zone-dependent modulation indued.

Without modulation, it is impossible to distinguish between two signals that orig-

inate from di�erent Nyquist zones but fold to the same frequeny, whih is the

worst ase. By de�nition the worst ase gives the maximum value of δs(x), whih

is then also the restrited isometry onstant of A for any s-sparse signal. Fudge

shows that for ases where aliased, bin-entered frequenies do not fold to the
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same ompressed bin, δs is identially zero, and establishes a lower bound of one

for folds to the same bin.

A RIP onstant of one or greater does not guarantee suessful reonstrution

for any algorithm. This leads to an alternative onsideration of how often these

worst ases will our. If the original signal x onsists of s ontinuous-wave

(CW) tones that have a uniform probability of originating from any partiular

frequeny bin in the reeiver's bandwidth, then it follows that the probability

of δs(x) being identially zero, guaranteeing reonstrution, is the probability of

any two of the tones aliasing to the same baseband frequeny-bin, whih is found

through a short derivation to be

P (δs(x)) =

(
fLOT − 1

fLOT

)s!/(2(s−2)!)

(3.16)

where T is length in seonds of the reonstrution window. For the values most

ommonly used for the implementation of the NYFR in this thesis, fLO=1.5

GHz and T=1 µs, whih gives a probability of 0.9993 of suessful reovery of

any spetrum ontaining two signals with a high-signal-to-noise ratio (SNR). Of

ourse, in a real environment the distribution of signals aross the spetrum is

far from uniform, and rarely will a signal be a bin-entered CW tones, so this

result is of limited utility.

Next, we extend this onsideration of the worst ase to the NYFR system

that indues a zone-dependent modulation. Consider two signals that fold to the

same ompressed enter frequeny. The further away the original Nyquist zones

are, the more their modulation di�ers and thus the less orrelated they are. The

worst ase will be when the two signals are highly orrelated; that is, when they
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are from adjaent zones. An upper bound for δs was then alulated in [24℄ to be

δs ≤ sC

√
1

F∆T
(3.17)

where C is some onstant that must be empirially found for a partiular modula-

tion pattern. In general it an be onluded that for a high-SNR ase, inreasing

the peak frequeny deviation of sLO(t) or inreasing the number of measurements

will improve the level of sparsity that is guaranteed to be reonstruted. As the

exat performane bound of the NYFR is di�ult to derive mathematially, suh

that the urrent literature requires C be empirially found, a useful step for de-

signing the system was the reation of a simulation based on the hardware. The

simulation was then used to quikly �nd values for adjustable parameters suh

as the sLO(t) modulation pattern that should later give reasonable performane

for the hardware prototype.
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Chapter 4

Simulation

This hapter will detail results found through the use of a MATLAB simulation

of the NYFR system. The simulation enabled analysis of some of the design on-

straints inherent with the NYFR arhiteture, eventually leading to a reasonable

set of parameters that were used with the reeiver prototype. The simulation

was designed to math the operation of the harmoni mixing hardware. Short

pulses are generated on the zero rossings of the simulated sLO(t), and mixed

with simulated input signals. The bandwidth of the mixer is modeled as having

the -3 dB point at the 15 GHz harmoni. The LO enter frequeny is 1.5 GHz.

An aurate simulation of the harmoni mixer behavior is su�ient to model the

ompressive sensing performane. The other omponents of the system are only

simulated for the ideal ase: the digital LPF used to simulate the analog LPF

after the harmoni mixer output has a signi�antly sharper uto� at 750 MHz

than the �lter used in the hardware implementation, and other loss in the system

omponents suh as the limiters and ADC quantization loss are not onsidered.

4.1 Frequeny Reovery

The e�ets of several system parameters on the ability to reover the frequeny

support of narrowband input signals are analyzed in order to obtain optimal re-
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onstrution performane. The design of the LO sampling waveform is of partiu-

lar interest. For the ase of induing the sinusoidal frequeny modulation de�ned

in (3.6) on the RF input by modulating the phase of the LO waveform, the peak

frequeny deviation F∆ and the modulation rate Fmod must be seleted. F∆ in-

volves a trade-o� between reovering low-power signals in higher Nyquist zones

and the ability to determine the orret origination zone. Inreasing Fmod allows

for reovery of shorter pulses by inreasing the inoherene of the small number of

measurements taken during the short pulse, but the maximum modulation rate is

limited by phase noise. Both parameters limit the dynami reonstrution range

of the system.

4.1.1 Seletion of Peak Frequeny Deviation

Inreasing F∆ dereases the orrelation between ompressed signals in adjaent

Nyquist zones, thus making it easier for ompressive reonstrution algorithms to

identify the orret zone. However, inreasing F∆ also spreads the energy ontent

of the input signal over a wider frequeny range, eventually ausing the signals at

higher zones to fall below the noise �oor. Thus a trade-o� must be made between

the probability of seleting the orret Nyquist zone and the signal-to-noise ratio

(SNR) requirements of a pratial system.

Figure 4.1 shows the results of a Monte Carlo simulation for the probability of

suessful reonstrution versus SNR for signals in the �rst seven Nyquist zones.

F∆ is set to 4 MHz. Eah trial onsists of randomly generating a single input

frequeny with added white noise, attempting to reover the frequeny support

with the SPGL-1 solver, and �nally lassifying the reonstrution as suessful if

the energy in the bins ontaining the original frequeny is greater than 80% of the

maximum reonstruted frequeny bin. The two frequeny bins surrounding the
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random frequeny are summed in order to handle ases where the frequeny does

not exatly �t on the simulation grid. This approah does allow a reonstrution

with a limited number of false positives to still be lassi�ed as suessful. Forty-

eight trials were performed for eah zone and SNR step. The reonstrution

performane dereases rapidly as the spetrum of the modulated input signal

falls into the noise �oor. The SNR requirements for reonstrution grow at an

inreasing rate as the modulation index inreases.

Now onsider that signals that fold to the same baseband frequeny, with all

things idential other than the original zone, are still somewhat similar as the

same modulation pattern is applied to eah. The oherene between idential

signals from di�erent zones is not zero. In the most extreme ase of F∆=0 Hz,

the mutual oherene is one, and whih zone the signal originally ame from may

not be determined. An important e�et aused by the modulation patterns for

eah zone not being ompletely inoherent is that when onvex optimization is

performed to reover a signal at a frequeny fRF , spurious values appear in the

reonstrution at fRF ± fLO. The highest magnitude spurs are always in the

zones to either side of the orret one, as these zones have the least di�erene

in modulation pattern and thus have the highest oherene with the true zone.

Algorithm families suh as iterative thresholding make the oherene issue less

lear, as they stop iterating after reonstruting a seleted number of the highest

magnitude oe�ients rather than optimizing the whole signal basis, and the

weaker fRF ± fLO will often fall below the threshold for reonstrution, but there

is still a nonzero probability that an inorret Nyquist zone will be seleted.

A seond Monte Carlo simulation was performed to �nd the relative levels

of the adjaent Nyquist zones versus F∆. Thirty-two simulations per F∆ step

were performed for a onstant RF input with frequeny fRF on the simulation
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Figure 4.1: Results of Monte Carlo Simulation for the reonstrution of random

frequenies in eah Nyquist zone versus SNR. Trials are ran for seven Nyquist

zones eah with a orresponding modulation index M = ±1,±2, ...,±7. For

eah trial, a CW tone is randomly seleted with uniform probability from the

frequeny range of the urrent zone. AWG is added to the generated input to

give a spei� SNR. Reonstrution is then performed for eah trial. The number

of reonstrutions that orretly identify the random tone is used to estimate

the probability of suessful reonstrution at various SNRs for eah zone. As

the SNR dereases, the modulated harmoni mixer output falls below the noise

�oor, ausing reonstrution to fail. As the energy of input signals from higher

Nyquist zones is spread out over a wider frequeny range aording to MF∆,

high frequeny signals require a higher SNR for the ompressed output to remain

above the noise �oor.
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frequeny grid with an SNR of 40 dB. Peak frequeny deviations of sLO(t) were

stepped through from 0.5 MHz to 6 MHz with a onstant Fmod of 5 MHz. The

mean relative level of the peak side zones is plotted in Figure 4.2. It an be seen

that the side-zone levels are dereasing as the peak frequeny deviation inreases.

This intuitively makes sense, as the higher the peak frequeny deviation, the less

orrelated di�erent zones are.

To illustrate the relation between Fmod and F∆, the simulation is performed

again with an Fmod of 10 MHz and plotted in Figure 4.3. Inreasing the mod-

ulation rate without also inreasing the underlying sampling rate of the system

auses there to be fewer measurements at eah intermediate sampling frequeny.

Fewer measurements lowers the reonstrution performane of the system, rais-

ing the side-zone levels. Thus the seletion of F∆ is a trade-o� that depends on

the required attenuation of the side-zones, the modulation rate, and the needed

sensitivity of the system to low-power signals in the higher Nyquist zones.
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Figure 4.2: Mean relative level of the spurs from adjaent zones for di�erent

peak frequeny deviation values. As the same signal, exept for originating in

di�erent Nyquist zones, is not perfetly inoherent, the reonstrution of the

original signal X appears to have nonzero omponents at the fRF ± nfLO where

n is integer multiples of fLO. Inreasing F∆ dereases the oherene of the zones

with eah other. The zones to either side of the zone the signal truly originates

from, the "side-zones", have the least di�erene in modulation pattern and thus

are the most likely to be reonstruted with signi�ant false magnitude. A CW

input of 9.2 GHz with added AWGN for an SNR of 60 dB is used for eah trial.

Trials are ran for eah value of F∆. The mean of all side-zone power levels,

inluding both adjaent zones, are plotted.

40



PSfrag replaements

F∆ (MHz)

S

i

d

e

z

o

n

e

L

e

v

e

l

(

d

B

)

Relative Sidezone Level for F
mod

=10 MHz

1 2 3 4 5 6 7 8 9 10

−20

−15

−10

−5

−3

0

5

10

Figure 4.3: Relative level of the adjaent zones for di�erent modulation frequeny

deviation values, with the modulation rate set to 10 MHz. A CW input of 9.2

GHz with added AWGN for an SNR of 60 dB is used for eah trial. Trials are

ran for eah value of F∆. The mean of all side-zone power levels, inluding both

adjaent zones, are plotted.
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4.1.2 Reonstrution Dynami Range

For a pratial ase where there is not a priori knowledge of the number of signals

or their power levels, some disussion must be made of how to selet a threshold

to determine whether there is an atual signal loated at a frequeny in the

reonstruted spetrum, or just a spurious reonstrution or noise. One simple

method is to set a minimum amplitude threshold for a reonstruted signal to be

onsidered a true signal. However when the original input had multiple signals

of varying power levels, seleting whih signals are truly present beomes more

di�ult.

As the magnitudes of side-zone harmonis, dependent on the seletion of Fmod

and F∆, an be signi�ant, the side-zones limit the dynami range of the system

when performing reonstrution. As the onvex optimization is not guaranteed to

determine exatly the original zone of a signal, shown in Setion 4.1.1, harmonis

of the signal will appear at freconstructed ± fLO with a power level relative to the

original signal power. If one signal soure has a signi�antly higher power than

another soure, the reonstruted harmonis of the �rst signal may also have

a higher power than the seond soure. If the threshold for signal detetion is

set relative to the strongest reonstrution, in order to ignore the harmonis,

detetion of the seond soure will fail. An example for three CW tones of

unequal power at 3.5, 3.65, and 3.8 GHz is shown in Figure 4.4. The signals are

all loated in the same zone, in order to ignore any a�ets from the frequeny

spread inreasing with higher zones. The signal at 3.8 GHz has the highest power,

at 80 dB above the noise �oor, 3.65 GHz is 20 dB above, and 3.5 GHz is 30 dB

above. The side harmonis of the 3.8 GHz tone are higher for the 10 MHz Fmod

ase than the 5 MHz ase, as expeted. Indeed they are higher than the reovered

42



PSfrag replaements

Original

Reonstruted

Frequeny (GHz)

N

o

r

m

a

l

i

z

e

d

O

u

t

p

u

t

(

d

B

)

Reovered Spetrum, F

mod

=5 MHz, F∆=4 MHz

0 2 4 6 8 10 12

−80

−70

−60

−50

−40

−30

−20

−10

0

PSfrag replaements

Original

Reonstruted

Frequeny (GHz)

N

o

r

m

a

l

i

z

e

d

O

u

t

p

u

t

(

d

B

)

Reovered Spetrum, F

mod

=5 MHz, F∆=1 MHz

0 2 4 6 8 10 12

−80

−70

−60

−50

−40

−30

−20

−10

0

Figure 4.4: The reonstrution dynami range is limited by the harmonis loated

in the zones to either side of the strongest signal. In the top �gure the higher value

of F∆ auses the average magnitude of the side-zone harmonis to be lower, suh

that in this example all original signals are reonstruted above the harmonis.

In the bottom �gure F∆ is dereased, raising the side-zones of the strongest signal

above the orret frequenies of the other two signals, ompliating identi�ation

of the signals present.
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tones at 3.65 GHz and 3.5 GHz tones, so a simple thresholding method would

either give false positives or false negatives.

There is a potential for more intelligent detetion methods to alleviate this

e�et. An iterative method ould selet the strongest reonstruted signal, sub-

trat that signal and the predited harmonis from the reonstruted spetrum,

then repeat until the strongest detetion is below some threshold that is seleted

from the reeiver noise �oor. This method would have a few drawbaks, however,

as this ould ause the presene of a real, but weak, signal that is loated at a

harmoni of the one strong signals to not be deteted. This method also beomes

more fragile in the presene of signals with signi�ant bandwidth, as the band-

width must be estimated before subtrating the harmonis. The performane of

this method will be shown in Chapter 5.

4.1.3 Phase Auray Requirement

The question of how lose the phase of the sensing matrix used for reonstrution

must math the phase of the measurements should be onsidered, in order to be

informed of the timing requirements for a real system. A single simulated CW

tone in the 16-17.5 GHz Nyquist zone mathing the highest zone of the physial

prototype, is input into the harmoni mixer along with a sinusoidal sLO(t) with

the modulation θ(t, τ) = F∆

Fmod

sin(2πFmodt + τ). The mixer output for various

values of phase drift τ is then reonstruted via a sensing matrix assuming τ = 0.

This proedure simulates the unknown alignment between the sLO(t) generator

and the start of an ADC apture in a the real system. The results for F∆=4 MHz

and Fmod=5 MHz are plotted in Figure 4.5.

There is a sharp transition between suessful and failed reovery at the same

delay for both the ROMP greedy iterative thresholding algorithm and the SPGL-
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Figure 4.5: Simulation performed to test how losely the phase of the CS model

and the ompressive measurements must math in order to get suessful reovery.

One hundred trials were performed for eah time delay, generating a CW tone

in the highest Nyquist zone with added AWGN. The estimated probability of

reovery is plotted. For the tested LO parameters reovery fails when there is a

di�erene of approximately 4.25 ns between the model and measurements.

1 onvex optimization. Inreasing the slope of the modulation by inreasing the

modulation rate or peak deviation dereases the misalignment at whih reon-

strution fails. Depending on the seleted LO parameters, this onstraint is not

too di�ult to meet; for the values used for the majority of the experiments per-

formed with the hardware prototype, the timing must remain within only 4.25 ns

ompared to the modulation period of 0.2 µs.
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4.2 Reovery of Pulses

The reovery of pulses is of interest as few signal soures in the real world are

onstant-frequeny tones. Digital ommuniation systems transmit in bursts as

needed, and in several shemes only transmit part of the time to allow other

devies to share the same frequeny. Frequeny hopping radar is another inter-

esting signal soure, espeially sine existing swept frequeny reeivers will miss

some of the pulses. If the duration of a pulse is long enough for the system to

apture a number of inoherent measurements to satisfy the RIP, reonstrution

performane is the same as that of a CW tone. A pulse length requirement of

greater than one LO modulation period was disovered to be a general rule of

thumb for there to be measurements taken with low enough oherene for su-

essful reovery. Inreasing Fmod dereases the oherene of eah measurement in

the pulse, allowing reonstrution of a shorter pulse where only a small number of

measurements may be taken, but as noted in Setion 4.1.1 there is also a negative

e�et in that inreasing Fmod raises the side-zone magnitudes. Figure 4.6 shows

an example of two simulations for a pulse length three miroseonds shorter than

half a modulation yle and for a pulse length equal to half the modulation y-

le. The underlying sampling rate of the system de�ned by fLO and the ADC

sampling rate limits the shortest pulse than an be reonstruted as well, sine

the sample rate obviously limits the number of measurements of the pulse that

are taken. Figure 4.7 shows an example of reonstrution of three pulses, eah

lasting more than one modulation period. With three pulses in the reonstrution

window, intermodulation produts also appear in the reonstrution.

As ontinuous reonstrution is omputationally expensive, to the point that

with urrent tehnology it is di�ult to sale up to real-time proessing, it is
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Figure 4.6: Simulated reonstrutions to show an example of the pulse length

requirements for suess. The top �gure has a pulse length equal to one LO mod-

ulation period, giving it a su�ient number of measurements with low oherene

for suessful reonstrution. The bottom �gure has the same pulse exept now

it is three miroseonds shorter, giving it fewer inoherent measurements. The

smaller number of measurements auses the reonstrution to be notieably less

lean.

useful to examine alternatives. Rather than intensive proessing of either large

time windows or many windows, it is faster to only perform reonstrution on

small time windows that may ontain new signals of interest. Classial pulse

detetion tehniques, suh as those used for radar, are useful for time loalization,

allowing a fast reonstrution to be performed to identify the original frequeny

support only when the signals present hange. It is later shown in Setion 4.5 that

knowledge of the frequeny support an be used to demodulate the ompressed

data, arriving at the original signals of interest. This three-step sheme an redue
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Figure 4.7: Simulation and reovery of three pulses of varying duration at 2.415,

2.8, and 4.82 GHz with an SNR of 20 dB. The left pane shows the reovered

spetrum, with the frequeny support of all three pulses orretly identi�ed. The

right pane shows a spetrogram of the simulated ompressed pulse data.

omputational ost for reovery of pulses or bursty ommuniation signals. This

method is limited by how e�etive the pulse detetion method is, and the shortest

duration that is reonstrutible is set by the seletion of Fmod. As high values

of Fmod are both limited by phase noise and the required dynami range of the

reonstrution, there is a pratial limit on the minimum pulse length.

Constant False Alarm Rate (CFAR) is used for suh an example of pulse

detetion preproessing. CFAR is used in radar to determine whether range ells

from time series data ontain targets, with the goal of providing a onstant rate
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of false alarm [25℄. The time data is split into several ells. Then the ells are

iterated over, with the urrent ell being the ell under test (CUT). Referene

ells on either side of the CUT are used to estimate the power level of noise and

interferers in order to adaptively set a threshold for detetion. For radar, often

guard ells are a small number of ignored ells in between the CUT and referene

ells, used to ensure returns from the target in the CUT does not e�et the noise

power estimation, but for the NYFR we're using the CFAR tehnique to detet

the presene of a new pulse and the guard ells are not needed. The threshold

is set above the noise power estimated from the referene ells, so that there is a

onstant rate of false alarm alulated from the probability of noise in one sample

exeeding the threshold. The adaptive threshold auses ontinuous signals and

short pulses to only be deteted one, as after the detetion the threshold raises

above the new power level, and long pulses are deteted one near the beginning

and ends of the pulse as the power level of the NYFR output hanges. The system

must wait until the referene ells after the CUT arrives before the threshold an

be alulated, so CFAR will add some lateny to the system.

A simulation is reated that has one CW tone present at 11.5 GHz, and a

pulse-gated tone at 7.4 GHz with a pulse duration of 1 µs. The probability of

false alarm is set to 10−6
. The CFAR output detets a time lose to the enter of

eah pulse and is plotted in Figure 4.8. The plot of the threshold inreases as eah

pulse begins and dereases as the pulses end. For eah ontinual set of ells that

all exeed the threshold, the enter ell marks the beginning or end of a pulse and

is plotted on the �gure as detetions. A short 0.4 µs reonstrution window is

reated for eah detetion, aligned with the start of the modulation period prior

to the pulse enter. The reonstrution output for one of the deteted pulses is

shown in Figure 4.9. This method works well for any ase where the total power
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Figure 4.8: Constant False Alarm Rate detetion is used to detet pulses. The

top �gure pane displays the spetrogram of the simulated input. A CW tone

is present at 8.35 GHz in order to show how CFAR sets the threshold when a

signal is present for the whole apture, and four pulses of di�erent frequenies

and duration are simulated. The bottom panel shows the CFAR output. The

blue line traks the total power of the NYFR output at that time. The other line

plots the threshold adaptively set by CFAR. The irles mark the pulse detetions

that are used to selet windows of the ompressed data for reonstrution.

in the RF spetrum hanges when any signals of interest start or stop; the one

weakness is that if the next pulse starts immediately when the previous one ends,

and has nearly the same power level, the hange will not be deteted. A more

omplex detetion method that also takes into aount the baseband frequeny

as well, possibly a wavelet based method, would handle suh a ase.
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Figure 4.9: One of the pulses is deteted by CFAR then the frequeny support

is reovered with a short reonstrution window. Both the CW tone that is

present throughout the whole apture and the deteted pulse's frequeny are

reovered. The pulse frequeny was reovered without performing reonstrution

for the entire 100 µs simulation, signi�antly lowering the number of omputations

performed.
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Figure 4.10: Real valued ompressive sensing matrix model for ombining mea-

surements from multiple hannels.

4.3 Multihannel Reovery

Measurements from multiple reeiver hannels may be ombined in the reovery

step, apturing more samples in the same time period and thus improving re-

onstrution performane. Expanding the ompressive sensing model to inlude

this is simple; the data from eah hannel may simply be appended together as

shown in Figure 4.10. The matrix R beomes a blok diagonal matrix, with one

blok for eah hannel. The time modulation matrix S is expanded vertially for

eah hannel, allowing for di�erent modulation patterns for eah hannel. The

remainder of the model is the same as for the single-hannel ase. If idential

modulation is used for two ideal hannels with perfetly synhronous timing then

the measurements will be the same, adding no information to the system. In

reality the timing will never be perfet, so the measurements will be di�erent,

but as shown earlier in the single-hannel ase, if signi�ant phase di�erenes are

not aounted for in the sensing model, reonstrution will fail. Instead, di�erent
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Figure 4.11: Results for reovery using only the hannel with sinusoidal modu-

lation and for reovery using also the measurements from the hirp modulated

hannel. The dual hannel ase reovers all of the input frequenies, while the

single-hannel misses eight of them. As predited the RIP, inreasing the number

of low oherene measurements used for reovery improves the reovery perfor-

mane, allowing for full reovery in less sparse environments.

modulation shemes an be applied to eah sLO(t) to guarantee that the hannels

add unique information.

By the RIP it is known that additional inoherent measurements should allow

reonstrution of less sparse signals. A simulation of two hannels is reated.

One hannel has sinusoidal modulation with Fmod= 5 MHz and F∆= 4 MHz.

The seond hannel is modulated with a linear uphirp with a rate of 6 MHz and

0.2 µs period. One hundred frequeny-bin-entered CW tones of equal power

are simulated as input. SPGL-1 is used to reonstrut the spetrum over a 0.5

µs window. The results for reovery on only the sinusoidal hannel and on the
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ombined hannels are plotted in Figure 4.11.

If for this ase suessful reovery is de�ned optimistially as the original

frequeny bin being reovered with greater than one perent of the original am-

plitude, the single-hannel ase reovers 92% of the tones. The dual hannel

reovery for di�erent modulations, giving twie the e�etive number of measure-

ments, reovers 100% of the tones. Qualitatively the top panel is a leaner reon-

strution as well. Thus, it is shown that for an ideal multihannel system, if the

hannels indue di�erent modulation on sLO(t), the reonstrution performane

an be improved.

Additionally, the same inputs are reovered with measurements from two

hannels that both use the sinusoidal modulation from earlier. One hannel is de-

layed by 1.3 ns to simulate the imperfet timing math a real system would have,

making the measurements from eah hannel slightly di�erent while still being

within the phase auray requirements established in Chapter 3. Figure 4.12

displays an example of the reovery. This ase of ombining two identially mod-

ulated hannels also reovers 92% of the tones, just as if only a single-hannel

were used, showing that ombining measurements from multiple hannels using

an idential sLO(t) makes little di�erene on reonstrution performane.
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Figure 4.12: Results for reovery using ombined measurements from two han-

nels that both have the same sinusoidal modulation. Eight input signals are

missed, just as in the single-hannel ase, demonstrating that ombining mea-

surements from multiple hannels does not have a signi�ant e�et on reovery

performane if the measurements from the two hannels have high oherene.

Taking nearly idential measurements in multiple hannels adds no new informa-

tion to the system.
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Figure 4.13: Blok diagram of the two element NYFR array used for diretion of

arrival estimation.

4.3.1 Diretion of Arrival Estimation

One advantage of the strutured sampling approah of NYFR is that it allows

for simple implementation of existing diretion of arrival (DOA) tehniques, as

long as the same modulation is applied to two or more hannels. It should also

be noted that joint estimation of both frequeny and diretion of arrival without

prior information about either is an ative area of interest [26℄[27℄. The basi

DOA estimation for multiple soures problem assumes that the frequenies of the

signals arriving at the antenna array are known [28℄. Common solutions inlude

the MUltiple SIgnal Classi�ation (MUSIC) tehnique and the ESPRIT algorithm

for uniform linear arrays. MUSIC is applied to frequeny estimation in [29℄. The

narrowband MUSIC tehnique has been extended to wideband ases [30℄. The

NYFR provides a promising solution for sparse RF environments. Figure 4.13

gives the blok diagram of a two-hannel NYFR system whih is a linear array.

Let sRF (t) be a narrowband real signal cos(ωct+φ). The sLO(t) with sinusoidal
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d

α

Figure 4.14: Geometry of antenna array for DOA estimation.

modulation that is desribed in Chapter 3 is used for both hannels. The output

of the �rst harmoni mixer and LPF is given in (3.12).

Now the geometry for a uniform linear array with elements separated by a

distane d meters is shown in Figure 4.14. The narrowband plane wave sRF1(t)

is inident on the array at an angle α. Let sRF1(t) arrive at element 1 at time t,

then the signal inident at element 2 is the time delayed sRF1(t − τ) = sRF2(t).

From the geometry it is derived that the time delay τ between the signal arriving

at the two elements is

τ =
d sin(α)

c
. (4.1)

The seond harmoni mixer samples the time delayed sRF2(t), giving

y2(t) = y1(t− τ) ≈
∑

k

sRF2(t)e
jnH(ωLOt+θ(t))e−jτ . (4.2)

The modulation indued by the harmoni mixers is independent of the time delay

at eah element. This means that CS reonstrution an be applied using the

same measurement matrix for either digitized hannel to reover the frequeny

support. The reovered enter frequeny also gives the wavenumber

2π

λ
. Sine
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equal modulation has been indued on eah signal, they are simply delayed opies

of eah other allowing traditional diretion of arrival estimation tehniques to be

applied without demodulating the hannels.

Capon Minimum Variane Distortionless Response (MVDR) beamforming is

implemented for a reasonable tradeo� between omplexity and resolving power.

The MVDR power spetrum is de�ned as

P (φ) =
1

aH(φ)R̂−1a(φ)
(4.3)

where a is the array manifold and R̂ is the sample ovariane matrix. It must

be onsidered that the original signal frequeny may not exatly align with the

reonstrution frequeny grid. Error in estimating the original frequeny also in-

trodues error to the angle of arrival estimation. To improve the angle estimation

performane, an angle-frequeny spetrum is reated by alulating the MVDR

power for the reovered frequeny ±10 KHz. The peak power from the spetrum

is then used as a re�ned angle estimate.

A simulation for a three element ULA spaed by 1.5 m is reated with three

CW soures: 6.02 GHz at −65◦, 4.44 GHz at 0◦, and 8.52 GHz at 42◦. The

soure frequenies are orretly identi�ed by reonstrution with one element.

The output of the MVDR-based DOA estimation is shown in Figure 4.15. The

signals are estimated to be at −69.5◦, −0.516◦, and +44.0◦, all lose to the orret

angles.

It was shown earlier that using two or more hannels with di�erent modula-

tion patterns adds additional inoherent measurements, allowing for faster on-

vergene to the original sparse solution. However, multihannel reonstrution is

not fully ompatible with using multiple hannels for diretion �nding. Spei�-
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Figure 4.15: Output of diretion of arrival simulation. The jointly estimated

frequenies and angles are all lose to the ideal ones.

ally, the phase di�erene between the hannels onneted to di�erent antennas

will ause the urrent system model and ompressive sensing solvers to fail when

the time delay between the signal arriving at eah antenna beomes signi�ant.

The NYFR CS model solves for the omplex-valued DTFT of the original sig-

nal. The system is not just solving for the magnitude of the frequeny spetrum,

but also the phase. When an RF signal impinges on an array, there is a phase

di�erene between the opy at eah hannel that is exploitable for diretion �nd-

ing. This phase di�erene means that the orret solution for a signal that is to

be reonstruted for one partiular hannel is an entirely di�erent solution from

the orret one for a separate hannel. Now if the measurements from the two

di�erent hannels were ombined, based on the CS model, they give on�iting
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information on what the original signal was, lowering reonstrution performane

or ausing it to fail. There is an additional ompliation in that when di�erent

modulations are applied to two hannels they must be demodulated before being

used for angle estimation, as the hannels are no simply time delayed opies.

The most straightforward to implement solution to have both diretion �nd-

ing apabilities and improved reonstrution performane from multiple hannels

would be to use a three hannel system, with two phase mathed hannels with

di�erent modulation patterns proessing the input of one antenna, and the third

providing the angle of arrival estimation with a seond antenna. However, this

obviously has the downside of higher ost. There is some potential to apply al-

gorithms that promote group sparsity or blok sparsity to the hannels, in whih

ase the solution that separately is the most sparse for eah hannel is found.

Another alternative would be the reation of a phase independent representation

basis.

4.4 Communiation Signal Reovery

Another advantage of the strutured sampling approah of NYFR has over sys-

tems with a random sampling matrix is the apability to reover the original

signals with a simple demodulation operation, whih is more spei�ally termed

as deompression. When the original arrier frequeny of a signal is identi�ed,

the modulation applied by the harmoni mixer is also known. Demodulating the

ompressed data using the known Nyquist zone gives the original, deompressed,

signals that were present in that zone.

Another nie property is that signals from other zones that fold onto the

same ompressed frequeny remain frequeny modulated. Consider that there

is one partiular signal of interest, and we want to ignore all other signals, so
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the other signals are unwanted interferes. The frequeny deviation beomes

(Mi − Mdemod)F∆ where Mi is the original modulation index of an unwanted

interferer and Mdemod is the modulation index for whih the data is being de-

ompressed. Thus for an interfering signal with the same modulation sign as the

signal of interest, that is an interferer that originates from the same of either

the upper or lower zone sidebands, the interferer's frequeny deviation inreases

for eah zone between it and the signal of interest. For signals from the other

sideband, with the opposite modulation sign, the loser the zones are, the further

energy is spread. The important takeaway is that any interfering signals that

alias to the same frequeny still have their spetrum spread, e�etively whitening

the interferers and thus improving the SNR of the partiular signal of interest.

A simulation is performed for a random QPSK bitstream. For this exerise, 10

symbols are generated at a modulation rate of 5 Msym/s, and AWGN is added to

simulated RF input to have an SNR of 30 dB. To simulate interferene from other

signal soures, two other RF inputs of equal power, one a CW tone at 8.4 GHz,

M = −6, and the other a FM modulated signal with a bandwidth of 44.1 KHz

at 9.6 GHz, M = 6, are generated. The QPSK signal has a arrier frequeny

of 2.4 GHz, M = −2, whih aliases to 600 MHz. The two interfering signals

fold down to the same alias at 600 MHz. The left panel of Figure 4.16 shows

the spetrogram of the ompressed and digitized output of the reeiver. All ten

symbols are present in the plot. As the QPSK signal is in the lower Nyquist zone,

it an be visually identi�ed as the signal with the lowest peak frequeny deviation

out of the three signals. Additionally, the one-sided power spetral density of the

ompressed and deompressed NYFR output is plotted in Figure 4.17.

Reonstrution is performed with SPGL-1 to identify the signals present and

their arrier frequenies, with the result shown in Figure 4.18. The reonstrution
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Figure 4.16: The left panel ontains the spetrogram of the ompressed QPSK

signal with interferers. The QPSK signal is from the lowest zone, and as suh

appears as the signal around 600 MHz with the lowest peak frequeny deviation.

The right panel shows the spetrogram of the data that has been deompressed

for the Nyquist zone that the ompressed QPSK signal originates from. The

QPSK signal now appears as a straight line at 600 MHz, as the zone dependent

frequeny modulation has been removed from it.
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Figure 4.17: Power spetral density (PSD) of the ompressed and unompressed

data with interferers. The upper panel shows the ompressed spetrum. Note

that the energy of the signals that were folded to 600 MHz is spread out over a

wide bandwidth. The PSD of the demodulated data has a muh narrower peak

at 600 MHz from the deompressed QPSK signal.
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Figure 4.18: Reonstrution of the frequeny support of the QPSK signal and

two interferers. All three frequenies are reonstruted.

identi�es that there is a signal at 2.4 GHz, in the seond Nyquist zone. At this

point the ompressed data an be demodulated for this zone of interest. In a

prodution system it would likely be neessary to demodulate eah zone and

side-band that the reonstrution reports as having a signal, in this example the

three at M = −2,−6, 6, as whih signals are partiularly interesting might not

be known.

The demodulation is then performed aording to

zdemod,M (t) = z(t)e−jMθ(t)
(4.4)
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where θ(t) is the sinusoidal modulation de�ned in Chapter 3, with an Fmod of

5 MHz and an F∆ of 10 MHz. The demodulation operation has low omputation

ost as it it simply element-wise multipliation of two vetors, and eah zone

an be demodulated and proessed in parallel, so deompressing multiple zones

should not present any throughput issues in a real system. In this ase we are

interested in the QPSK signal, so the deompressed spetrogram for the M = 2

zone is plotted on the right of Figure 4.16. Upon omparison of the two spe-

trograms in Figure 4.16, it an be learly seen that the frequeny spread of the

interfering signals is inreased after deompression, as the right panel shows that

the frequeny deviation of the 9.6 GHz interferer is inreased to 11F∆.

In a prodution system, a priori knowledge of expeted ommuniations pro-

tools, or some algorithms to determine the sheme, would be needed. For this

simulated ase, with a priori knowledge of the bandwidth of the QPSK, and the

enter frequeny reovered by the reeiver, a digital FIR bandpass �lter is dy-

namially reated with the passband at frecovered± 5 MHz and used to isolate the

deompressed data. The QPSK ommuniation signal itself is then demodulated,

with assumption of prior knowledge of the symbol timing and phase. Figure 4.19

plots the onstellation diagram of the demodulated signal. The symbols are well

de�ned, even with the added interferene from the two overlapping RF signals

of equal power. This simple reovery of the original ommuniation signal dis-

plays the advantage of the strutured sampling performed by the NYFR, largely

preserving the original struture of measured signals.
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Figure 4.19: Constellation diagram for a simulated QPSK signal with the sim-

ulated reeiver output deompressed for the QPSK signal's original zone. The

two interferers that alias to the same enter frequeny have little e�et, as the

demodulated QPSK symbols are losely grouped into the four states that were

transmitted. Thus the NYFR an potentially apture ommuniations signals

even if multiple signals with bandwidth fold to the same frequeny.
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Chapter 5

Experimental Results

Now that examination has been made of the trade-o�s inherent in the design of

sLO(t), and simulations have been performed showing several potential applia-

tions of the system, in this hapter we will on�rm these �ndings on a physial

NYFR prototype. For testing single hannel frequeny reovery, the simulations

show that F∆=4 MHz and Fmod = 5 MHz should be a reasonable trade-o� be-

tween the reonstrution dynami-range, the probability of reonstruting high

Nyquist zones, and a minimum reonstrutable pulse duration of 0.2 µs, thus

reonstrutions of CW tones and pulses using these parameters will be demon-

strated. First diret stimulation of the harmoni mixer input port will be shown,

then later over-the-air (OTA) aptures with a broadband antennas are given. The

ability to use multiple hannels for inreased reonstrution performane and di-

retion of arrival estimation will be tested. Finally an OTA ommuniation signal

will be deompressed and demodulated.

The omplete experimental setup for testing the prototype reeiver is pitured

is pitured in Figure 5.1. The arbitrary waveform generator used for sLO(t) is at

the bottom of the rak on the left, and host PC is to the right with the timing

pulse generator sitting on top. The prototype reeivers are on top of the rak

that holds the AWG. Three opies of the reeiver were pakaged in two ases to

67



Figure 5.1: Full experimental setup with test equipment.

keep the ontents proteted but easily aessible.

5.1 Hardware Charaterization

In order to measure the atual frequeny response and useful bandwidth of the

reeiver hain, an automated testing suite was reated in MATLAB. A CW tone

with no modulation was generated at 1.5 GHz and fed into the LO port. Using

a onstant LO allowed the frequeny response of the system to be measured

separately from the magnitude roll-o� aused by the usual spetrum spreading

of higher Nyquist zones. A waveform generator ontrolled by MATLAB was

attahed to the RF input port and swept from 0 Hz to 18 GHz in inrements

of 10 MHz. At eah step, a 10 ms ADC apture is taken and the PSD was
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Figure 5.2: Frequeny response of a single NYFR hannel for F∆ = 0. The blind
frequenies aused by the anti-aliasing �lter appear at eah multiple of 750 MHz.

The roll-o� of the harmoni mixer is visible in how the zones, eah entered about

multiples of 1.5 GHz, are attenuated at the higher frequenies.

estimated in MATLAB. The bin for the downonverted input RF frequeny was

then reorded. The resulting measure of the frequeny response for one of the

hannels is pitured in Figure 5.2. The roll-o� and nothes aused by the low

pass �lter at 750 MHz learly delineate the sub-bands of eah Nyquist zone. The

frequeny response in eah sub-band due to the two LPFs is far from �at; it

would likely be useful in many situations to digitally orret for this. The ADCs

themselves have about 1dB of attenuation at 750 MHz as well. The roll-o� of

harmonis generated by the harmoni mixer is shown by the weaker response to

higher Nyquist zones. The goal for the reeiver was to over a range from 1.5

GHz to about 16 GHz. The 10 dB attenuation of signals in the higher frequeny

range did not prevent reovery of high frequeny over-the-air signals that were
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high power, but if weak signals are to be monitored, it should be improved.

5.2 Single-Channel Reovery

In the early stages of experimenting with the reeiver, many tests were performed

with the RF port stimulated by diret onnetion to waveform generators. Some

work was required to aount for the phase delay of the reeiver hains and the

delay between the ADC's reeive trigger and the data samples. Another issue

was that the AWG generated additional high-frequeny harmonis in addition

to sLO(t), whih aused additional, weaker opies of the RF tones with higher

frequeny deviations in the reeiver output. Adding an appropriate bandpass

�lter on the AWG output alleviated this. One those two issues were solved,

suessful reovery of up to three CW tones was demonstrated on eah of the

reeiver hannels. Figure 5.3 shows one of the results of these experiments. The

left panel shows a spetrogram of the ompressed data aptured by the signal.

In the spetrogram the three input signals with varying peak levels of frequeny

modulation are visible. The right panel shows the results of reonstrution with

the SPGL-1 algorithm, on top of the ideal spetrum of the input frequenies.

Figure 5.4 gives another example, with the additional ompliation of two of the

tones folding to the same alias frequeny. The power levels of the inputs are also

more losely mathed in this example.

The timing sensitivity for lean reonstrution of one CW tone with the SPGL-

1, SALSA, ROMP, and COSAMP algorithms was tested by inreasing the delay

between triggering the AWG and the ADCs until reonstrution failed. Both

4.3 GHz and 9.2 GHz tones were tested. For all algorithms, reonstrution fails

when the misalignment with the model is greater than 8 ns nanoseonds for a

5 MHz modulation rate LO, slightly more tolerant than predited in Setion 4.1.3.
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Figure 5.3: Reonstrution of three CW tones from signal generator onneted to

RF port. The left panel displays a spetrogram of the ompressed data aptured

by the reeiver. The ompressed 3.85 GHz tone is at the top of the spetrogram,

the 9.4 GHz in the middle, and the 7.7 GHz tone is at the bottom. The right

panel shows that all three tones are reovered suessfully. The 3.85 GHz tone

is reonstruted as having very low amplitude, due to the input signal being

generated at a lower power and the LPFs attenuating the 650 MHz frequeny

that the tone folds to.
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Figure 5.4: Reonstrution of three CW tones. Two fold to same intermediate

frequeny at 600 MHz. The right pane displays suessful reonstrution of all

three tones, thus it is shown that signals folding to the same frequeny an indeed

still be reovered.
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Figure 5.5: Example of CFAR pulse detetion used on OTA data. The upper

panel shows a spetrogram of the NYFR output. Both a CW tone and a series

of 1 µs duration pulses are present. The lower panel shows the CFAR output.

The threshold adjusts to detet eah pulse one, and all pulses were deteted as

shown by the irles on the plot.

The timing requirement is not a huge onstraint on the design of an NYFR, as

the suess of this system shows that timing on the order of a nanoseond is

not di�ult ahieve. With the 5 MHz modulation rate ommonly used for this

implementation, pulses lasting only a �fth of a miroseond an be reovered.

Suessful reonstrution was demonstrated with mixed CW tones and miroseond-

sale pulses. CFAR thresholding was used as in Chapter 4 to detet proessing

windows that ontain a pulse, then reonstrution was performed for eah de-

teted pulse. The CFAR output is shown in Figure 5.5. Figure 5.6 shows an

example of one of the deteted reonstrution windows. The right pane of the
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Figure 5.6: Example of OTA pulse reonstruted by CFAR detetion and proess-

ing window seletion. Both the CW tone and pulse frequenies were reovered

without performing reonstrution for the whole 200 µs apture, greatly lowering

the number of omputations performed.

�gure displays a spetrogram of the window of ompressed data that the reon-

strution is performed on. As the spetrogram learly shows two signals, both

the CW tone and at the pulse frequeny, it is lear that CFAR deteted a win-

dow ontaining a pulse. The reonstrution in the left panel shows that both

frequenies were reonstruted.

Next, reonstrution is performed on over-the-air aptures. A broadband 2-20

GHz double ridge horn was onneted to the RF input of one hannel. Captures

were performed in a busy lab environment ontaining multiple WiFi, Bluetooth,

and ellular devies. As most of these operate at frequenies that are in lower
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Nyquist zones, the wide frequeny overage is demonstrated with two X-band

transmitters purposely pointed toward the reeiving antenna. A spetrogram and

reovered spetrum for one of the more interesting aptures, featuring input from

a ell phone and aWiFi devie, is shown in Figure 5.7. The RF environment in the

building was rather sparse, as it ontained a limited number of ommuniation

devies that share narrow spetrum alloations and transmit infrequently, and

the building itself is well shielded from outside transmitters. Figure 5.8 shows

another example, with reonstrution performed on a 1 µs window. The dynami

range of the signals present is wide enough that the low-power Bluetooth signal

was below the harmonis of the other soures, so an example of prediting and

removing harmonis from the reovered spetrum is given.

Another set of data was aptured with a high-gain, 1.0-2.5 GHz antenna with

the intent of deteting weaker signals in the lower industrial, sienti�, and medi-

al (ISM) bands. Figure 5.9 shows one example from this dataset with suessful

reovery of the enter frequenies of two di�erent WiFi hannels. Identi�ation

of individual hannels demonstrates potential usage for the system in ognitive

radio; for example a single reeiver hannel ould simultaneously detet whih

hannels are in use in the 900 MHz, 2.4 GHz, or 5 GHz bands in order to selet

an empty one to use for transmission.

Suessful reovery of the frequeny support has been demonstrated for a

sparse environment and for up to �ve simultaneous soures. It is signi�ant that

the ommuniation signals reovered have bandwidth, proving that the system

an perform reovery of signals other than ideal, frequeny-bin-entered, CW

tones.
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Figure 5.7: Example of reonstrution of over-the-air apture with a 2 to 18 GHz

antenna. A high power QPSK signal is present at 15.3 GHz, 5 µs pulses at 9.05

GHz, LTE ell phone signal at 1.9 GHz, and a WiFi QPSK signal at 2.462 GHz.

A spur from the ADC sampling lok at fs/4, 375 MHz, was also reonstruted.

This gives a useful example of reovery in an atual sparse-RF environment that

ontains several ommuniation signals with some amount of bandwidth.
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Figure 5.8: Example of reonstrution of over-the-air apture with a 2 to 18 GHz

antenna. A high power QPSK signal is present at 10.6 GHz, LTE ell phone

signal at 1.9 GHz, and a low-power Bluetooth signal at 2.42 GHz. The relative

power of the Bluetooth signal is so low ompared to the other two signals that

it is outside of the dynami range for the sLO(t) used, as an be seen by the red

stars. An example of �ltering the harmonis by iterating through the strongest

reonstrutions, removing their predited harmonis until a threshold of -30 dB

is hit, is given by the blue irles.
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Figure 5.9: Example spetrogram and reonstrution from the dataset aptured

with a high gain 1-2.5 GHz antenna. The spetrogram learly shows two om-

muniation signals between 2.4 and 2.5 GHz, as well as the faint ADC sample

lok spur at 350 MHz. A san of available WiFi networks from a smartphone

shows that devies are transmitting on WiFi Channel 1 and 11 at about 2.412 and

2.462 GHz, mathing within ±1 MHz of the peak frequenies in the reonstruted

spetrum shown at the bottom of the �gure.
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5.3 Multihannel Reovery

After single-hannel reovery was demonstrated, experiments were performed

with multiple reeiver hannels. It is predited in Setion 4.3 that simultane-

ously using the data from multiple hannels with di�erent modulation shemes

has a positive impat on reonstrution performane, as more inoherent mea-

surements are being used to reonstrut the signal. For the ideal ase of using the

same modulation, there should be no bene�t, as the additional samples from one

hannel would be idential to those from the other and thus add no additional

information. In reality the ADCs will not sample at the exat same time, and

thus multiple hannels with the same modulation sheme would provide more

measurements, but in order to atually realize bene�t the phase di�erene be-

tween the hannels would have to be known and aounted for in the sensing

model.

First for omparison idential modulation shemes are used on eah hannel.

The external triggers used to time the LO waveform generator and the PCIe

ADCs start the apture on eah ADC ard within ±1 sample of eah other, or

approximately within 1 ns, whih is within the requirements for mathing the

sensing matrix model. As the ADCs used were not spei�ally designed to be

well mathed for use in multihannel appliations, the frequeny response of the

two di�er somewhat. The signal entered at 340 MHz in the baseband pitured

in Figure 5.10 is about 3 dBm lower in hannel 2 than hannel 1. This di�erene

did not prevent reovery in the experiments performed, but it is possible that

a system designed to have more losely mathed hannels would have better

reonstrution performane.

Next experiments were performed with di�erent modulation shemes applied
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Figure 5.10: Comparison of two reeiver hannels with same modulation. The

signal in Channel 2 is about 3 dBm lower and the ADC fs/4 spur is slightly

worse. The hannels are reasonably well mathed though, as reonstrution with

idential CS models sueeded on eah and suessful angle of arrival estimation

will be shown later.

to eah hannel, spei�ally ombining linear and sinusoidal frequeny modula-

tion. Figure 5.11 gives an example of using sinusoidal modulation on hannel one

with a peak deviation of 4 MHz and modulation rate of 5 MHz, and triangular

modulation on hannel two with a peak deviation of 6 MHz and 0.5 µs period.

The reonstruted spetrum using the ombined measurements from both han-

nels shows improvement over the single-hannel reonstrutions with a dereased

peak spurious frequeny magnitude. This mathes the theoretial improvements

shown in Setion 4.3.

Now to test diretion �nding, an experiment was reated with a two element

array of X-band horn antennas. The horns are physially large, limiting the

minimum element separation to 2.75 m, giving a maximum grating lobe free look

angle of only ±5.2◦ for a 10 GHz soure. This would limit utility in a pratial
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Figure 5.11: Combined multihannel reovery with di�erent modulation shemes.

Channel 1 has sinusoidal modulation and Channel 2 has a triangle waveform

applied. The reovery resulting from the ombined hannels has a larger di�erene

between the orret signal at 4.75 GHz and the strongest false result. Thus it is

shown that ombining measurements from multiple modulation shemes an give

improved reonstrution quality.
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system unless mehanial sanning is used, but for the purpose of showing that

the diretion of arrival estimation is viable, the limited maximum look angle is

su�ient. The oordinate system is set up suh that when faing from the array,

negative angles are to the left of the array enter and positive to the right. A

pulsed soure at 7.845 GHz is to the right of a pulsed soure at 8.02 GHz, both

soures are less than 5 degrees to the right of the array enter. When a single-

hannel is used the two soure frequenies are identi�ed in Figure 5.12. The

soures are atually lose enough to the enter of the array that the time delay

between the two elements is lower than 4.25 ns, spei�ally

τ ≤ 0.0275
sin(5◦)

c
= 8ps , (5.1)

low enough that ombining measurements from both hannels for reonstrution

does not fail, but due to the phase delay the reonstrution quality degraded. As

the di�erene between the soure angle and the array enter inreases, reonstru-

tion over multiple hannels should fail. The MVDR angle-frequeny spetrum is

alulated around the two soure frequenies and the peak values seleted. Fig-

ure 5.13 shows that the 7.845 GHz soure is orretly identi�ed as being right of

the 8.02 GHz soure, and the estimated angles for eah are to the right of the

array enter as expeted. Thus appliation of the NYFR to joint diretion of

arrival and frequeny estimation is shown to be viable.
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Figure 5.12: Reovery of soure frequenies impinging on the two element array.

Single-hannel reonstrution is suessful. The ombined hannel reonstrution

is worse due to the time delay between the array elements, but does not fail

outright as in this ase the time delay is muh less than a nanoseond.
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Figure 5.13: Plots of the normalized angle-frequeny spetrum slie around the

estimated frequeny. The bottom plots of are the MVDR beamformer output

for the peak frequeny slie found from the spetrum above. The 8.02 GHz is

orretly identi�ed as being on the left of the 7.45 GHz soure.
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Figure 5.14: The OTA apture in Figure 5.7 was deompressed for M=10, then

bandpass �ltered with a enter frequeny at 300 MHz in order to extrat the

signal deteted at 15.3 GHz. The spetrogram of the deompressed and �ltered

output learly shows one ommuniation signal at 300 MHz. The pulsed signal

that was present in the apture is faintly visible at about -50 dB below the omm

signal.

5.4 Communiation Signal Reovery

Final experiments were performed to show that reovery of ommuniation sig-

nals by the NYFR is possible. The OTA apture from Figure 5.7 is deompressed

for the modulation index M=10 and bandpass �ltered to extrat the QPSK signal

at 15.3 GHz. The QPSK signal is a randomly generated bitstream with a known

symbol rate of 1 Msym/s. Figure 5.14 shows the deompressed and �ltered QPSK

signal. Root-raised-osine pulse shaping is used on the transmitter, so mathed

�ltering is applied to the deompressed data. Timing reovery was done by sam-
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Figure 5.15: Constellation diagram of the QPSK signal reovered from the over-

the-air apture. The onstellation is well de�ned, with the 80 symbols aptured

all lumped relatively lose one of the four transmitting states. Now if the pilot

signal or sequene were known by the system, the digital information that was

transmitted has been reovered by the NYFR.

pling the mathed �lter peaks, as the proessing was done o�ine. The reovered

onstellation diagram is plotted in Figure 5.15, showing that the symbols are

well identi�ed. Thus the viability of reovering ommuniation signals with the

NYFR is shown.
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Chapter 6

Conlusions and Future Work

The trade-o�s of design parameters for sLO(t) whih ontrols the modulation

pattern indued on RF signals by the Nyquist Folding Reeiver were identi�ed and

disussed. In partiular, a trade-o� must be made between orretly identifying

the original Nyquist zone and the ability to reover low SNR signals from higher

Nyquist zones. The LO signal modulation rate must be seleted for the shortest

pulse time that is to be reoverable while not being suh a high rate of modulation

that the phase di�erene of the real hardware and the ompressive sensing model

is not too great for reonstrution.

Multihannel NYFR systems were also onsidered. A system model was re-

ated that ombines measurements from multiple hannels, and it is found that

if eah hannel has a unique modulation sheme, more inoherent measurements

are olleted in the same time window, improving reonstrution quality. Con-

versely, ombining multiple hannels with idential modulation does not a�et

reonstrution. Multiple hannels are also used for joint angle of arrival and

frequeny estimation.

A full proess for identifying a ommuniation burst, reovering the frequeny

support, and then deompressing the data with a zone-dependent deompres-

sion (demodulation) operation for deteted signals of interest was given. It was
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demonstrated that when deompressing a partiular zone, the spetrum of signals

originating from other Nyquist zones remains spread, so that even if multiple sig-

nals fold to the same intermediate frequeny, the partiular ommuniation signal

of interest an be demodulated.

Experiments were performed with a hardware prototype. Suessful reovery

of up to �ve simultaneous signals was shown, inluding identi�ation of the enter

frequenies for LTE, WiFi, and Bluetooth ommuniation signals. The advantage

of ombining measurements from multiple hannels was demonstrated. Joint

angle and frequeny estimation is shown to be viable with an antenna array

onneted to the prototype. These results show that the Nyquist Folding Reeiver

is an arhiteture with very promising potential for wide instantaneous bandwidth

appliations.

Interesting future topis not explored by this thesis inlude modifying or for-

mulating ompressive reonstrution algorithms to be optimized for the stru-

tured sampling performed by the reeiver. Ditionary learning of signals that are

to be identi�ed in a real environment would be useful for monitoring purposes.

An improved sensing model with a phase-independent representation basis ould

potentially be derived and used to ombine measurements from multiple han-

nels in a diretion �nding array, or a group sparsity algorithm might be used to

promote sparsity in eah hannel. It would also be interesting to test the reeiver

in an environment with a larger number of ontrolled signal soures, in determine

what the maximum sparsity level is that an be aommodated by the reeiver

subjet to a required reonstrution probability.
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